
 
 

 

 

 

 

Automatic Generation of GIS Vector Layers from 

Orthomosaics using Deep Learning 

 

 

John Robert Ballesteros Parra 

 

 

 

 
Universidad Nacional de Colombia – Sede Medellín Facultad de Minas Programa de Doctorado 

en Ingeniería de Sistemas e Informática 
Medellin, Colombia 

2022 
  



 
 

Automatic Generation of GIS Vector Layers from 

Orthomosaics using Deep Learning 

 

 

 

John Robert Ballesteros Parra 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of: 

PhD. Doctor en Ingeniería - Ingeniería de Sistemas e Informática 
 
 
 

Advisor: 
German Sanchez Torres, Ph.D. 

Universidad del Magdalena 
 
 

Co-Advisor: 
John Willian Branch Bedoya, Ph.D. 
Universidad Nacional de Colombia 

 
 
 
 
 
 

Universidad Nacional de Colombia – Sede Medellín Facultad de Minas Programa de Doctorado 
en Ingeniería de Sistemas e Informática 

Medellin, Colombia 
2022 

  



 
 

 

Abstract 

 

Keywords: GIS, Vectorization, GAN, Semantic Segmentation, Orthomosaics, Deep Learning, 

Image Translation, Image Caption. 

 

This thesis presents a three methods pipeline for extraction of point, line, and polygon vector 

objects from orthomosaics using a deep generative model as an alternative to the default semantic 

segmentation approach. The first method consists of two workflows, the vector ground truth is 

acquired by manual digitalization of certain objects or from Open Street Maps. Raster layers input 

are spectral and geometrically augmented, both inputs are then tessellated and paired into image-

masks that pass through an imbalance checking step. Balanced dataset is then random split into a 

final dataset. Conditional and unpaired generative models are compared and pix2pix is chosen by 

its better results on image to mask translation. Results of the chosen model on different datasets 

and configurations are reported on the mIoU metric. A batch size of 10 and datasets of 1000 image-

masks pairs of 512x512 pixels, with overlapping augmentation showed the best quantitative results. 

Height of objects from the DSM, and VARI index contribute to decrease variance of discriminator 

and generator losses. Producing synthetic data is the horsepower of generative models, so a double 

image to mask translation is used to improve resultant masks in terms of continuity and uniform 

width. Double image to mask translation model is trained with a dataset of equal size masks of 1 

meter called primitive masks, that are obtained by a buffer distance parameter. This cleaning 

procedure showed to improve resultant masks, that are then converted to vector and measured by 

quantity, length, or area against vector ground truth, using a proposed metric for map creation 

called “The average geometry similarity (AGS)”. 

 

 

 

 

 

 

 

  



 
 

Generación Automatica de Capas Vectoriales SIG de 

Ortomosaicos usando Aprendizaje Profundo 

 

Resumen 

 

Palabras clave: SIG, Vectorización, Redes Antagónicas, Segmentación Semántica, 

Ortomosaicos, Aprendizaje Profundo, Traducción de Imagen. 

 

Esta tesis presenta una metodología basada en tres métodos para la extracción de puntos, lineas, y 

polígonos de objetos vectoriales presentes en ortomosaicos usando un modelo generativo basado 

en aprendizaje profundo como una alternativa al enfoque de segmentación semántica usado por 

defecto. El primer método consiste en dos líneas de trabajo, las capas vector de entrenamiento son 

adquiridas bien sea por digitalización manual de los objetos de interés o directamente desde Open 

Street Maps (OSM). Las capas raster de entrada son aumentadas spectral y geométricamente, 

teseladas y emparejadas en pares imagen-mascara que se chequean ante el imbalance. El conjunto 

de datos balanceado es luego partido al azar para obtener el conjunto final. Los modelos 

generativos, condicionales y no emparejados son comparados y el mejor es escogido para realizar 

las traducciones entre imagen y mascara. Los resultados de la comparación y los obtenidos por el 

mejor modelo sobre diferentes conjuntos de datos, y su configuración son reportados usando la 

metrica mIoU. Un lote de tamaño diez para un conjunto de 1000 image-mascaras de 512x512 

pixeles, con augmentación por solapamiento mostró los mejores resultados cuantitativos. La altura 

de los objetos obtenida del DSM, y el índice VARI contribuyen a disminuir la varianza del 

discriminador y del generador. La producción de datos sintéticos es el caballo de batalla de los 

modelos generativos, así que una doble traducción de imagen a mascara (DCIT) es empleada para 

mejorar las mascaras resultantes en términos de su continuidad y uniformidad. Un modelo para 

realizar DCIT es entrenado con un conjunto de datos de igual tamaño de mascara de 1 metro 

llamado mascaras primitivas, que son obtenidas usando una distancia buffer como parametro. Este 

procedimiento de limpieza mostró que mejora las mascaras resultantes, que son luego convertidas 

a vector y medidas en cantidad, distancia, o area vs la realidad vectorial, usando una métrica 

propuesta para la creación de mapas llamada “Similaridad geomética promedia (AGS)”. 
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Chapter 1 

1 Introduction 
 

From ancient times, people have tried to represent physical objects of the landscape, 
they include natural and man-made of any scale, complexity, and character. The remote 
sensing and GIS mapping communities call them geographical objects or features, vehicles, 
roads, and building are examples of geographical objects. Even today, maps are obtained 
by a manual restitution of objects from drone, aerial, or satellite orthomosaics (Van Etten 
et al., 2019). The process includes recognition, visual classification, digitalization, and 
attribution of objects that are organized in different layers. This manual method is 
cumbersome and prone to errors; besides it takes large efforts in terms of time, and expert 
people. Furthermore, landscape changes rapidly due to earth natural processes and human 
interaction, which demands constant updating and curation of maps. Figure 1.1 illustrates 
afore mentioned steps applied to create a road layer from a satellite orthomosaic. An 
orthomosaic is an ortho-rectified and geo-referenced image of the earth’s surface. It is 
created by stitching partially overlapped images in a software using a method called 
Structure from Motion (SfM) (Kameyama & Sugiura, 2021). The rapid development, and low 
cost of satellite imagery, but specially, the ease of acquisition and high resolution of drone 
aerial imagery (Murtiyoso et al., 2020), have made orthomosaics a useful tool in 
engineering, architecture, geology, and many other fields (Avola & Pannone, 2021; 
Ballesteros et al., 2021; Bhatnagar et al., 2020; Zhang et al., 2015). 
 

 
 

Figure 1.1. Manual creation of a vector layer. The manual creation of road network for a small town may take 
days to months. 
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GIS have two spatial data types to represent geographic data, raster and vector 
(Bolstad, 2016). A raster layer is a grid of regularly sized pixels. Each pixel is classified as an 
object or part of an object like tree, road, building, etc. The spatial resolution, also called 
the grid sampling distance (GSD), depends on the pixel size, the smaller the pixel the higher 
the spatial resolution. Raster is likely to represent continuous objects such as element 
concentration or surfaces like a digital terrain model (DTM). Other examples of raster data 
would be aerial photographs, and scanned maps. A vector layer, or vector map, consists of 
objects defined by coordinates in a given spatial reference system (Bolstad, 2016). They are 
of three types:  

 
● Point: a point object in two dimensions is a pair of coordinates (𝑥𝑖, 𝑦𝑖) that represent 
separate non-adjacent features. Examples are: volcanoes, offices, schools, and 
shopping malls. 
 
● Line: a line is a set of coordinates of its vertices, used to represent linear features 
characterized by having starting and ending points. Some examples of linear objects 
are roads, rivers, and metro lines. 

 
● Polygon: It is represented by a set of coordinates in which the first and the last pair 
of coordinates are the same according to a certain level of tolerance. A polygon is two 
dimensional and can be used to measure the area of the desired geographic object. 
Lakes, city boundaries, or forests are examples of polygons. 

 
Vector is appropriate to represent discrete objects, for example a vehicle or a pipe. 

Vector objects have metadata that describes the characteristics — the name of a road, or 
the population of a region. These extra, non-spatial metadata of an object are called 
“attributes”, and are stored in an “attribute table” (Bolstad, 2016). Vector layers are 
commonly obtained by manual digitalization on the screen of a computer, after that, 
objects are also manually attributed one by one. Figure 1.2. illustrates raster and vector GIS 
computer graphic representations. 

 

 
 

Figure 1.2. Raster and vector object representation. 
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GIS have different file formats for both vector and raster data. The most common are: 
 

● Geographic JavaScript Object Notation (GeoJSON: .geojson) is the most used format 
for web-based mapping. It stores the coordinates as text in JSON form, which 
includes the vector points, lines, polygons as well as tabular information within curly 
braces “{}” (Butler et al., 2016). 
 

● ESRI Shapefile (.shp) is widely accepted by all commercial and opensource 
organizations. It has become the industry standard (The Home of Location Technology 
Innovation and Collaboration | OGC, www.ogc.org). 

 
● GeoTIFF (.Tif, .Tiff) stores raster data. It has become an industry standard for satellite 
and remote sensing imagery (Mahammad & Ramakrishnan, 2003). 
 
Deep learning models have improved the performance of the already rapidly 

developing field of computer vision, which powers emerging technologies like facial 
recognition, augmented reality, and self-driving cars (Pashaei et al., 2020). To keep pace 
with the high speed of production of remote sensing imagery, and at the same time, 
increase the accuracy of mapping, deep neural network models have been lately included 
into the mapping workflow (Osco et al., 2021). Deep Learning based Semantic 
Segmentation, also called pixel classification, is the process of assigning a class to each pixel 
in the image, distinguishing for instance, roads from buildings, and vegetation (Xu et al., 
2018). Semantic Segmentation has been extensively studied in ground imagery, and it is the 
state-of-the-art method to perform GIS layers extraction from orthomosaics (Ng & 
Hofmann, 2018). To accomplish this, semantic segmentation models input image tiles from 
an orthomosaic paired with corresponding masks called the ground truth. Masks are binary 
or color images that represent objects of interest in the neural networks. These masks are 
frequently obtained and annotated manually. 

The goal of this thesis is to propose and study an alternative method to semantic 
segmentation, based on a generative model and data, to generate “cleaner” and less 
discontinue masks to automatically obtain vector layers and attributes. The rest of the 
thesis is organized as follows: 
 
Chapter 2: presents a brief overview of existing work in geographic objects extraction from 
orthomosaics. Starting with GIS computer graphic representation of objects, it describes 
manual and semi-automatic methods, image semantic segmentation architectures and 
deep generative methods.  
 
Chapter 3: is an introduction to our proposed methodology for GIS vector layer extraction 
from orthomosaics. It illustrates the three methods proposed: paired data, generative 
model, and post-processing. 
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Chapter 4: addresses the paired data workflow in detail. It describes the different steps to 
produce better data to improve the generative model for point, line, and polygon objects 
of interest, and presents examples of the created datasets. 
 
Chapter 5: explores the results and findings of applying the proposed generative model, the 
image to mask translation model, to produce better quality masks. It also describes model 
hyperparameters and experiments in training. 
 
Chapter 6: describes how proposed model can improve mask generation prior to 
vectorization using the concepts of primitive masks and double image to mask translation. 
This chapter also tackles the automatic attribution of objects via color encoding-decoding. 
 
Chapter 7: studies the proposed image translation model performance and results.  
 
Chapter 8: summarizes our most important findings and offers a discussion of the most 
promising directions for improving our system. 
 

1.1 Problem Description 

 
In GIS computer graphics, geographical objects are represented as point, line, or polygon 

based on scale and characteristics. Mapping communities, open source or proprietary, are 

particularly interested in automatically extracting them from aerial, and satellite imagery, 

and very recently from drone orthomosaics. Geographical objects extraction from aerial 

imagery refers to the process of transition of the data representation between a set of pixels 

(raster), and a set of georeferenced coordinates (vector) called a vector layer or layer 

(Girard & Tarabalka, 2018; Li et al., 2021). 

With the advent of artificial intelligence, deep semantic segmentation and 

vectorization has become the default method to automatically extract vector layers from 

orthomosaics. Deep Learning Segmentation models like U-Net (Ronneberger et al., 2015), 

Pyramid Scene Parsing Network (PSPNet) (H. Zhao et al., 2017), DeepLab (Cheng et al., 

2020), and FCN (J. Long et al., 2015), and their improved versions, have been adapted for 

the aerial, drone and satellite imagery domain to address automatic mapping of objects in 

images (Abdollahi et al., 2021; Pashaei et al., 2020). The resultant segmentation masks, 

inferred by the model, are then cleaned by a set of different heuristic methods and 

vectorized into layers. (Ng & Hofmann, 2018) have proposed a pipeline to obtain vector 

layers from aerial images using different semantic segmentation models. Figure 1.3 shows 

the methods of the mentioned pipeline. 
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Figure 1.3. Robosat: A Computer Vision Pipeline for geographic objects extraction. Modified from (Ng & 

Hofmann, 2018). 

However, geographical objects impose specific challenges to semantic segmentation, such 

as: 

● They exhibit high interclass object variance of reflectance, texture, and shape. For 

example, building roofs have similar color to paved roads (Zhang et al., 2015). 

● Different geographical object classes have a large overlapping in reflectance, 

texture, and shape. For instance, an unpaved road may look as a river. 

● Geographic objects are commonly occluded by other objects, clouds, and shadows. 

For example, a vehicle can be occluded by a building roof or by trees (Zhang et al., 

2015). 

● Orthomosaics are geo-located and have a larger number of pixels compared to 

ground imagery. They have millions of pixels while ground imagery have thousands 

(Avola & Pannone, 2021; Osco et al., 2021). 

Furthermore, the use of semantic segmentation to geographical objects still has the 

following issues: 

● Creation of high number of false positives, and ineffective representation of straight 

lines and square corners, both common in man-made objects like roads, and 

buildings (Li et al., 2021). 

● It needs a huge number of training examples, and thus it is heavily affected by 

imbalance pixel-classes, for example, between background and roads, which is 

frequently observed in datasets (Gao et al., 2018). 
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● Limited generalization, a segmentation model created for certain objects in the 

developed countries, does not perform the same in other latitudes (Maggiori et al., 

2017). 

● High specificity of semantic segmentation makes different objects and geometry 
require models’ modifications (Y. Long et al., 2021; Marmanis et al., n.d.). 
 

In summary, semantic segmentation may produce irregular and discontinuous masks 

that lead to an erroneous vector representation transition. This happens even using high 

quality training masks, and a multi-procedure cleaning postprocessing. Furthermore, 

creating a loss function that treats object geolocation as a direct objective of optimization 

is not feasible due to the unknown number of key points in input images, and the difficulty 

to handle irregular length outputs using Convolutional Neural Networks (CNNs) (Li et al., 

2021). Figure 1.4. shows an example of a training and resultant segmentation road mask. 

  
(a) (b) 

Figure 1.4. Segmentation mask example. (a) Training mask for road extraction, (b) Resultant mask by the U-

Net semantic segmentation model. Modified from (Marmanis et al.,2017). 

Due to the mentioned issues, our approach is to test a deep generative model instead 
of semantic segmentation, to generate cleaner and simpler masks of point, line, and 
polygon objects from input images, and create training data to simplify the vectorization 
process into layers. 

A formal definition of the problem is as follows: Given an orthomosaic 𝑋 and the 
simplest raster representation 𝑌 of an object class in 𝑋, a deep generative based 

methodology for GIS vector layers extraction consists of finding a function: 𝑔(𝑥𝑖
𝑝

, 𝜃, 𝑤1
𝑘), 

where 𝜃 are the hyperparameters, and 𝑤 the weights of a CNN. That is optimized 

supervisely by pairs of (𝑥𝑖
𝑝, 𝑦𝑖

𝑝) ϵ 𝑋 𝑎𝑛𝑑 𝑌 using a loss function 𝐿(𝑦, 𝑔) =

∑ 𝑚𝑖𝑛𝜃𝐸𝑝
𝑖 (𝑦𝑖

𝑝, 𝑔(𝑥𝑖
𝑝)) that allows to synthetically creates a class 𝐶𝑖  𝑖𝑛 𝑌 ∀ 𝑝𝑖𝑥𝑒𝑙𝑖 𝑖𝑛 𝑋. In 

other words, the generation of groups of pixels (objects classes) of the input image into a 

resultant mask of a buffer distance 𝑑 conditioned by group of examples (𝑥𝑖
𝑝, 𝑦𝑖

𝑝).  

Furthermore, the masks ỹ ⊆  𝑌 inferred by the model 𝑔 can be then cleaned by another 

function ℎ(ỹ 𝑖
𝑝) to produce 𝑧𝑖

𝑝  in a way that (𝐸(𝑧𝑖
𝑝, ỹ 𝑖

𝑝) − 𝐸(𝑔(𝑥𝑖
𝑝), 𝑦𝑖

𝑝)) < 0, and 

vectorize those into layers such as: 𝑣𝑒𝑐𝑡(𝑧𝑖
𝑝) = [𝑎11, … , 𝑎𝑚𝑛]𝑇. 
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1.2 Research Questions  

 
This thesis addresses the following research questions: 
 

- What are the steps and procedure to generate GIS vector layers from orthomosaics 
using a deep generative model? 

 
- Which type of training masks: multiscale, overlapping, full size, height-augmented 

or index-augmented, help a deep generative model to obtain the best results in 
terms of less irregular and continuous masks. 

 
- What are the algorithms and their application order for post-processing resultant 

masks in order to obtain GIS vector layers comparable to the ones created manually? 
 

1.3 Objectives 

 
Current thesis proposes the following objectives: 

1.3.1 General 

To develop a methodology to obtain GIS vector layers from orthomosaics using a deep 

generative model. 

1.3.2 Specific 

1. To develop a method for creating paired datasets for point, line, and polygon 

objects. 

2. To choose a generative model to produce masks for point, line, and polygon 

geographical objects present in orthomosaics. 

3. To define a post-processing method to clean up the masks of the model output, and 

the geometry of the corresponding vector objects. 

4. To validate the proposed methodology using datasets reported in the scientific 

literature. 

 

1.4 Contribution and Academic Products 

 
This thesis presents contributions to the extraction of point, line, and polygon geographical 
objects from orthomosaics. These goals have been achieved by using an Image to Mask 
Translation Model instead of the traditional Deep Learning Semantic Segmentation 
approach. 



8 
 

 
● We developed a method to create paired data that allows to train a Deep Generative 

Image to Mask Translation Model. 
  

● We pre-trained a model with satellite imagery of the domain, and augment data in 
a novel way using height of objects and indexes that combined or fusion bands, this 
showed to improve and speed up the Image to Mask Translation Process. 
 

● We proposed the use of Primitive Masks as a target domain for the Image to Mask 
Translation Model. 
 

● Proposed Primitive Masks may affect the dataset imbalance, so we implemented a 
double Image to Mask Translation model that not only used less imbalance data, but 
also enhanced the geometry of translation masks. This geometry is critical to the 
vectorization of point, lines, and polygon objects which was performed afterwards 
using simplification.  

 
Part of this thesis is presented in the following publications: 
 

● Ballesteros, John R.; Sanchez-Torres, German; Branch-Bedoya, John W.   HAGDAVS: 
Height-Augmented Geo-located Dataset for Detection and Semantic Segmentation 
of Vehicles in Drone Aerial Orthomosaics. Data, April 14, 2022, MDPI. 
 

● Ballesteros John R., Branch John W, Sánchez Torres Germán. Automatic road 
extraction in small urban areas of developing countries. The IEEE SCLA International 
Conference 2021. Medellín, Colombia, September 20-23, 2021. 

 
● Ballesteros John, Sánchez Torres Germán, Branch John W. Modelo de generación 

automática de capas SIG a partir de aprendizaje profundo. Conferencia en Congreso 
Colombiano de Geología. Medellín, Agosto 2021. 
 

● Ballesteros John, Branch John W. Generación automática de mapas usando IA: 
Conferencia presentada en el ESRI-SGC GISDay. Abril 2021. 

 
● Ballesteros John R., Detección y Segmentación Automática de Infraestructura 

Urbana en Imágenes de Drone y Satélite usando Inteligencia Artificial. Ponencia  en 
el X Congreso Internacional de Ingeniería Civil, CONCIVIL, julio 28 al 31, Cartagena, 
Colombia. 
 

● Ballesteros John R., Sánchez-Torres Germán, Branch John W., Segmentación 
Semántica de Ríos y Erosión Mediante GANs. XV Semana de la geología, 
Barranquilla, Col., Agosto 2022, Abstract Accepted. 
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● Ballesteros, J.; Sanchez-Torres, G.; Branch, J., Road Semantic Segmentation by 
Fusion-augmented Drone Orthomosaics using a Conditional GAN. In progress. 
Drone, March 2022, MDPI. 
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Chapter 2 

2 An Overview of GIS Vector Layer Extraction from Orthomosaics 
 

Chapter makes a description of the state-of-the-art methods to automatically extract 
layers from orthomosaics. After that, it studies previous manual and semi-automatic 
methods, and details Deep Learning architectures, which are the present workforce, for the 
automatic extraction of vector layers. 
 

2.1 State of the Art 

 

Foundational mapping remains a challenge in the developing countries, especially in 

changing scenarios such as natural disasters when time is critical. Creating and updating 

maps is currently a highly manual process requiring a large number of human experts to 

either create features or validate automated outputs (Shermeyer & Van Etten, 2019). Next 

is a compendium of related work. 

(Ng & Hofmann, 2018) proposed Robosat, a 4-step pipeline to obtain vectors from 

aerial and satellite imagery, they describe data preparation as acquisition plus annotation, 

model refers to the application of detection and semantic segmentation algorithms like Yolo 

V2, U-Net and PSPNet. Post-processing is composed by a set of methods applied to resultant 

masks and then to resultant vectors like morphological operators, contouring, simplification 

and deduplication. For different objects and results segmentation and post-processing was 

different and results were varied. (Crommelinck et al., 2016, 2017) introduces a workflow 

for automated cadastral boundary delineation from UAV data. This is done by reviewing 

and synthesizing approaches for feature extraction from various application fields. It 

consists of preprocessing, image segmentation, line extraction, contour generation and 

postprocessing. (Sahu & Ohri, 2019a) used semantic segmentation model based on U-Net 

to extract individual buildings in densely compacted areas using medium resolution 

satellite/UAV orthoimages and measure performance on the dice coefficient. However, the 

chosen metric lacks a geometric aspect involved in the problem. Then a post-processing 

pipeline for separating connected buildings and converting them into GIS layer for further 

analysis was performed manually. The vectorization (polygonization) was carried out by the 

simple and effective Douglas-Peucker method. However, it involved choosing of different 

threshold and hand engineering. (Bulatov et al., 2016) went further to vectorize networks, 

and modified Douglas-Peucker algorithm for street generalization after application of 
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preprocessing, thinning, polygonization, and filtering. (Deigele and Brandmeier, 2020) 

tested different CNNs in conjunction with an integration and vectorization in ArcGIS to 

evaluate forest damage due to storms on high-resolution PlanetScope satellite data. A 

custom implementation of U-Net proved to be more accurate than transfer learning that 

completely failed (IoU=0.55). Forests and building polygon objects exhibited less imbalance 

classes. (Zhang et al., 2015) Combined UAV Ultra-High resolution Orthophotos with DSM to 

create land cover classification maps, their experiments demonstrate that the DSM 

information has greatly enhanced the classification accuracy from 63.93% with only spectral 

information to 94.48%. Also, (Al-Najjar et al., 2019) fusion DSM and UAV images for land 

use/land cover mapping using CNNs. Results confirmed that fusion data performed better 

than only RGB images, with an overall pixel accuracy of 0.98. Adding the heights of features 

such as buildings and trees improved the differentiation between vegetation specifically 

where plants were dense. (Girard & Tarabalka, 2018) moved from a typical segmentation-

vectorization approach to directly learning and output vectorial semantic labeling of the 

image, they propose a deep learning approach which predicts vertices of the polygons of 

Solar photovoltaic array dataset. However, the method is restricted to 4-sided polygons, so 

that the network has a fixed-length output. The loss function used to train the network is 

the mean L2 distance between the vertices of the ground-truth polygon and the predicted 

polygon. This assumes that both ground-truth and predicted polygons have their vertices 

numbered in the same way (same starting vertex and same orientation), so a different loss 

function which is invariant to the starting vertex should be used. This approach seems to be 

stagnant until geometric deep learning is operative, since it allows to encode nodes and 

their coordinates into a neural network. As another option, (Li et al., 2021) uses the U-Net, 

Cascade R-CNN, and Cascade CNN ensemble models to obtain building segmentation maps, 

building bounding boxes, and building corners, respectively, from very high-resolution 

remote sensing images. They later used Delaunay triangulation to construct building 

footprint polygons based on the detected building corners with the constraints of building 

bounding boxes and building segmentation maps. The ensemble approach promises to have 

a good performance to extract accurate building footprint polygons from remote sensing 

images, but the architecture is to complex and customized to only building objects. (Xie et 

al., 2020) proposes a method, using a multifeature convolutional neural network (MFCNN) 

and morphological filtering, for treating the irregular building boundaries resultant from 

high-resolution images. They showed that the method improved IoU by 3.04% respect to 

other segmentation-heuristic combined methods. (Sester et al., 2018) put together 

computer vision and cartography domains for studying the building footprint generalization 

problem, they describe main issues of post-processing masks as the interplay between 

different operators. Small parts of the building are eliminated (dissolve), the outline is 

simplified (simplification), neighboring objects can be merged (aggregation), too small 
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buildings can be enlarged (enhancement), buildings are displaced (displacement). A 

network for improving cartographic generalization is trained and good results are obtained 

when compared using IoU metric. However, the benchmark for cleaning masks is the human 

operator, who can design an aesthetic and correct representation of the physical reality.  

Extracting linear objects, like roads, from overhead imagery is dealt separately, and in 

contrast to polygon objects, it is characterized as imbalance. (Kearney et al., 2020) extracted 

unpaved roads from RapidEye imagery with 87 % precision and 89 % recall using CNN, hand 

engineering post-processing improved initial predictions. Results changed the public road 

database by 20 % through additions and removals. (Abdollahi et al., 2019) uses an immense 

range of image features, such as detectors for edge detection, filters for texture, filters for 

noise depletion and a membrane finder for road extraction from UAV imagery. 

Morphological operators are applied on the images for improving extraction precision and 

the road extraction precision is calculated based on manually digitized road layers. 

Customized methods little improved results and increased hand engineering involvement. 

Also (Abdollahi et al., 2020), compared four types of deep learning models: GANs, 

deconvolutional networks, FCNs, and patch-based CNNs. GAN based on U-Net model used 

was the second with best F1 Score performance on UAV and Google Earth images. Author 

highlights GANs as capable of achieving boundary information and smooth segmentation 

maps. Same author in (Abdollahi et al., 2021) presents the Road Vectorization Network 

(RoadVecNet), which comprises two interlinked U-Net networks to simultaneously perform 

road segmentation and road vectorization. The first network with powerful representation 

capability can obtain more coherent and satisfactory road segmentation maps even under 

a complex urban set-up. The second network is linked to the first network to vectorize road 

networks by utilizing all the previously generated feature maps. They utilize a loss function 

called focal loss weighted by median frequency balancing (MFB_FL) to focus on the hard 

samples, fix the training data imbalance problem, and improve the road extraction and 

vectorization performance over Google Earth imagery. (W. Yang et al., 2021) worked in a 

method of extracting roads and bridges from high-resolution remote sensing images, edge 

detection is performed, and the resultant binary edge is vectorized. Their network 

integrates binary cross entropy to deal with road class imbalance. (Gao et al., 2018) 

presented a weighted balance loss function over a PSPNet to solve the road class imbalance 

problem caused by the sparseness of roads. They compared with the cross-entropy loss 

function, and found that it can reduce training time dramatically for the same precision, 

especially for narrow rural roads. (Gong et al., 2020) uses a pre-trained VGG network into a 

U-Net and an attention module to solve road problems like tortuous shape, connectivity, 

occlusion, and different scales. Then the skeleton is extracted from the segmentation 

results and processed by denoising and straight-line connection and vectorized to realize 

the automatic road network. (Hartmann et al., 2017) proposed a GAN approach for road 
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network synthesis called StreetGAN, with a post-processing step, they extract a graph-

based representation from the generated images. Results were evaluated qualitatively and 

in terms of road network similarity measures. However, as a standard GAN its training uses 

random noise in generating resultant masks. This makes users are required to provide noise 

input, or rerun the generation several times due to the lack of control of the training 

process. (Pan et al., 2019) proposed a GAN with spatial and channel attention mechanisms 

(GAN-SCA) for the segmentation of buildings on the Inria and The Massachusetts Building 

Dataset. The generator is a U-Net-SCA networks, and the discriminator also uses an 

attention mechanism. Spatial and attention modules enable the segmentation to find 

features in specific positions and enhance results. Nevertheless, this architecture demands 

a larger number of examples and longer training times. 

The increasing spatial resolution of overhead imagery, specially coming from drones, 

provides fine details for object extraction, but at the same time makes default segmentation 

methods to incur in ambiguities (Pan et al., 2019). Traditional segmentation, postprocessing 

and vectorization approach for GIS layer extraction is overloaded with hand engineering 

methods that are object and geometry specific. 

 

2.2 Manual Digitalization and Object Attribution 

 

Manual restitution and object attribution are the most time-consuming tasks in the 

process of creating a vector layer in a GIS software. The former consists of drawing on the 

pc screen, one by one, the shape of an object of interest. Prior to that, the user should have 

set a tolerance, or a distance within every location is considered coincident or identical, and 

it is commonly pre-defined in modern GIS Software as  
1 𝑐𝑚/100𝑐𝑚

10 
= 0.001, this is, at least 

ten times smaller than the precision of digitalized data.  

After vector objects have been drawn, characteristics should be assigned to each of 

them, for instance a road may have attributes like speed, name, lanes, surface, etc. These 

values should be written appropriately in an attribute table. Modern Web GIS applications 

have improved manual digitalization and attribution using predefined values that users can 

pick from to speed up the process. An example of this is Open Street Maps (OSM), an open 

source and community map database of the world. Figure 2.2. illustrates the manual 

digitalization and object attribution tasks.  
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(a) 

 
(b) 

Figure 2.2. Manual digitalization and object attribution. (a) Manual sketch creation in a Standalone GIS, (b) 
Web GIS, OSM web app (OpenStreetMap/ www.osm.org). 

 

2.3 Semi-automatic Methods for Object Extraction from Aerial Images 

 

Semi-automatic methods refer to those that require user intervention, and the 

application of feature engineering to extract specific patterns on the image. This involves 

the tunning of a number of hyper parameters in the model or the combination of models 

http://www.osm.org/
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(Yan, 2019). Feature engineering consists of the use of spectral, texture, morphological, and 

boundary characteristics, as indicators to distinguish objects of interest present in imagery. 

Classification algorithms use texture, color, and geometry of objects, their performance is 

affected by the high variance of inter-class geographic objects and at the same time 

coincidence of these characteristics within the same class. For instance, an airport runway 

may have similar characteristics of a highway. 

Dynamic Programming Algorithms like the LSB Snakes and the Geodesic (Gülch, n.d.; 

W. Wang et al., 2016) help in roads digitalization, the user must choose a road in the image, 

by pointing on the screen the initial and ending points of the object, these points are called 

seeds. Edge detection algorithms try to detect changes in spectral response of pixels, this is 

obtained by calculating gradients of the contrast in each image channel, three channels for 

RGB images, and only one for gray color images.  For the gradient calculation, local filters 

show better results (ChiangYao-Yi et al., 2014). Graph-based algorithms have been used for 

the case of semi-automatic road extraction (W. Wang et al., 2016), they consider an image 

as a weighted graph, where a node is a pixel or region of pixels, and arcs are calculated by 

the difference between nodes. Result is obtained using a matrix of nodes. The limitation of 

this method is the number of nodes that can be processed and the different methods of 

pre-processing and post-processing that should be applied to obtain the results. Figure 2.3 

results of some semi-automatic methods for road extraction from aerial imagery. 

 
(a) 
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(b) 

 
(c) 

Figure 2.3. Semi-automatic methods for object extraction from aerial imagery. (a) Dynamic Programming 
Algorithms. Left is the input image, Right is the result, (b) Semi-automatic classification. Left is the input image, 
Right is the result, (c) Graph-based algorithms. Left is the input image; Right is the result. 
 

2.4 Deep Learning for Image Semantic Segmentation 

 
Today, deep convolutional neural networks (DCNN) have become the default algorithm 

for image semantic segmentation surpassing classical methods. Pixel-level classification is 

performed by converting input images into high dimensional arrays, after that, the process 

is reversed creating images with the same input dimensions. This encoding-decoding 

process is called autoencoding (Pashaei et al., 2020; H. L. Yang et al., 2018). Main 

architectures for semantic segmentation are presented next. 

2.4.1 Fully Convolutional Network (FCN) 

In image classification, an input image is re-scaled and goes through the convolution layers 

and fully connected (FC) layers, and outputs one predicted label for the input image. FCN 

turns FC layers into 1×1 convolutional layers and the image is not downsized; the output is 

not a single label. Instead, the output has a smaller size than the input image (due to the 
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max pooling). Upsampling the output above, a pixelwise output (label map) can be 

obtained. Convolution produces smaller size output. Thus, the term deconvolution is 

coming from upsampling to get the output size larger. Deconvolution is misinterpreted as 

reverse process of convolution. It is also called up convolution, transposed convolution or 

fractional stride convolution. After going through up to seven levels of convolution layers 

(conv7) as below, the output size is small, then 32× upsampling (called FCN-32s) is done to 

make the output have the same size of input image. But it also makes the output feature 

map rougher. This is because, deep features can be obtained when going deeper, but spatial 

location information is lost. That means output from shallower layers have more location 

information. FCN combines both to enhance the result, it is done for each pixel, they are added 

from the results of different layers within a model. FCN is perhaps the most basic models for 

semantic segmentation (J. Long et al., 2015). Figure 2.4 illustrates its architecture. 

 
 

Figure 2.4. Fully Convolutional Network (FCN). Modified from (J. Long et al., 2015). 

2.4.2 DeepLab 

An input image goes through the network using an atrous convolution (r>1 in equation 2.1), 

or also called dilated convolution. The output is bilinearly interpolated and then goes 

through the fully connected conditional random field (CRF) layer that fine-tunes the result 

and get the final output. Equation 2.1. shows values in an atrous convolution. 

𝑦[𝑖] =  ∑ 𝑥[𝑖 + 𝑟 ∗ 𝑘]𝑤[𝑘]𝐾
𝑘=1 , (2.1) 

When rate of sampling (r = 2), the input signal is sampled alternatively. It means 

padding two zeros at both left and right sides of filters. Sampling the input image every 2 

inputs for convolution. Thus, output will have 5 outputs which makes the output feature 

map larger. The atrous convolution allows this network to enlarge the field of view of filters 

to incorporate a larger context. It is an efficient mechanism to control the field-of-view and 

finds the best trade-off between accurate localization (small field-of-view) and context 

assimilation (large field-of-view). The output is much larger than in FCN, it only needs to 
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have 8× upsampling to up sample the output and bilinear interpolation has good 

performance for the 8× up sampling. Fully Connected CRF is applied at the network output 

after bilinear interpolation. With 10 times of CRF, small areas with different colors around 

the objects are smoothed out successfully. Since CRF is a post-processing task, it makes 

DeepLab not an end-to-end learning framework, and it is why CRF is not used in later 

versions of the architecture. This model presents some failure examples where the objects 

of interest consist of multiple thin parts (Cheng et al., 2020). Figure 2.5 shows the DeepLab 

architecture steps. 

 
 

Figure 2.5. DeepLab steps. Modified from (Cheng et al., 2020). 

2.4.3 Pyramid Scene Parsing Network (PSPNet) 

The PSPNet challenges three issues observed in the FCN, these are: 

● Mismatched Relationship: FCN predicts objects relationships wrongly. For instance, 
a boat can be predicted as a “car” based on its appearance, ignoring spatial 
relationships between objects or common knowledge, for instance, a car is seldom 
over a river. 
 

● Confusion Categories: FCN predicts mixed objects. For instance, an object is either a 
skyscraper or a building, but not both. 
 

● Inconspicuous Classes: Overlooking the global scene category may fail to parse small 
objects. For instance, a pillow has similar appearance with a sheet, so it is not 
segmented. 

 
PSPNet highlights global information of the image using a pyramid pooling module that 

works as follows. An input image is passed to a dilated CNN based on ResNet, extracting 

feature maps of 1/8 of the input image. At (c) pyramid pooling module consists of four sub-
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region average pooling that is performed for each feature map (red, orange, blue and green 

blocks). Red is the coarsest level which perform global average pooling over each feature 

map, to generate a single bin output. Orange divides the feature map into 2×2 sub-regions, 

then performs average pooling for each of them. Blue divides the feature map into 3×3 sub-

regions, then perform average pooling for each sub-region. Green is the finest level which 

divide the feature map into 6×6 sub-regions, then perform pooling for those regions. Then, 

1×1 convolution is applied to each pooled feature map to reduce the context representation 

to 1/N of the original one (black) if the level size of pyramid is N. If the input feature map is 

2048, then the output feature map will be (1/4) × 2048 = 512. Bilinear interpolation is 

performed to up-sample each low-dimension feature map to have the same size as the 

original feature map (black). All levels of feature maps are concatenated with the original 

feature map (black). These feature maps are fused as global prior. That is the end of pyramid 

pooling module at (c), finally, it is followed by a convolution layer to generate the final 

prediction map at (d). PSPNet is the champion of ImageNet Scene Parsing Challenge 2016. 

It also got the 1st place on PASCAL VOC 2012 & Cityscapes datasets. It is published in 2017 

CVPR with more than 600 citations (H. Zhao et al., 2017). Figure 2.6 shows the PSPNet 

architecture. 

 
 
Figure 2.6. PSPNet architecture. Modified from (H. Zhao et al., 2017). 
 

2.4.4 SegNet 

The SegNet counts on an encoder-decoder network, followed by a final pixel-wise 

classification layer. At the encoder, there are 13 convolutional layers from VGG-16 and 2×2 

max pooling layers that make indices (locations) are stored. At the decoder, up-sampling 

and convolutions are performed. During up sampling, the max pooling indices at the 

corresponding encoder layer are recalled to up sample. At the end, there is a K-class 

Softmax classifier that is used to predict the class for each pixel. It outperforms FCN, and 

DeepLab, obtaining a higher global average accuracy (G) and showing strength in large-size 

classes. It has low memory requirement during both training and testing and the model size 

is much smaller than FCN, however, SegNet is slower than FCN and DeepLab, because of 
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the decoder architecture (Badrinarayanan et al., 2017). Figure 2.7 shows the architecture 

of SegNet. 

 
 
Figure 2.7. SegNet architecture. Modified from (Badrinarayanan et al., 2017). 
 

2.4.5 U-Net 

The U-Net was initially designed for the segmentation of Electron Microscopic (EM) 

biomedical images. It is based on a convolutional network that consists of contraction and 

expansion path with an ‘U’ shape, from which it takes its name. The encoding left side has 

a consecutive of two times of 3×3 convolution and 2×2 max pooling. This helps to extract 

advanced features and reduces the size of feature maps. The expansion right path is a 

consecutive of 2×2 up-convolution and two times of 3×3 convolutions. It is done to recover 

the size of segmentation map. However, the process reduces the spatial information though 

it increases the feature information. That means, it gets advanced features, but losses the 

localization information. Thus, after each up-convolution, it has concatenation of feature 

maps that are within the same level. This concatenation retrieves localization information 

from the contraction path to the expansion path. At the end, a 1×1 convolution maps the 

feature map size from 64 to 2, since the output feature map only have 2 classes in the 

original implementation (Ronneberger et al., 2015). Figure 2.8 shows the U-Net 

architecture, gray arrows represent the skip connections to perform concatenation of 

feature maps at the same level. The U-Net advantage, over other architectures for the 

semantic segmentation of geographic objects, is its capacity to segment using less training 

examples, but its performance is low for linear and small objects (compared to the total size 

of image) (Pashaei et al., 2020). 
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Figure 2.8. U-Net. Modified from (Ronneberger et al., 2015). 

 

Table 2.1 compares the previous segmentation architectures over three important 

geographical objects: vegetation, roads, and water (Pashaei et al., 2020). Results show that 

U-Net surpasses the rest, except the FC-DenseNet, but it uses less training examples and 

inference time. 

Table 2.1. Comparison of architectures for the segmentation of geographical objects. Modified from 
(Pashaei et al., 2020).

 
 

2.5 Metrics for Semantic Segmentation 

 
Pixel-level classification is evaluated in terms of number of pixels considered as true 
positive, false positive, and false negative. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the ratio of the true positive pixels 
to all detected positive class. 𝑅𝑒𝑐𝑎𝑙𝑙 is the ratio of the true positive pixels to the reference 
or ground truth pixels. These metrics are defined in the equations 2.2. and 2.3 (Deigele et 
al., 2020). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2.2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =      
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2.3) 

 
Where, TP or true positive denotes the number of pixels correctly classified (e.g., road 

pixels as road pixels), FP or false positive are the number of non-positive class pixels 
misclassified as positive class (no building pixels as building), and FN or false negative 
denotes the number of positive class pixels that are not detected. 

The intersection over union (𝐼𝑜𝑈) metric, also known as the Jaccard index, is scale 
invariant and provides a measure of the overlap between two objects by dividing the area 
of the intersection by the area of the union as stated in Equation 2.4. 

 
𝐼𝑜𝑈(𝐴, 𝐵)  =  𝑎𝑟𝑒𝑎(𝐴 ∩  𝐵)/𝑎𝑟𝑒𝑎(𝐴 ∪  𝐵) (2.4) 

 
𝐼𝑜𝑈 is the ratio of the true positive pixels to the total number of true positive, false 

positive, and false negative pixels. It ranges from 0–1 (0–100%), where 0 means no overlap, 
and 1 the perfect overlapping segmentation. Equation 7.3. can be written as Equation 2.5. 

 

𝐼𝑜𝑈    =     
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (2.5) 

 
𝐼𝑜𝑈 is widely used in the evaluation of model performance for image segmentation, as 

it provides a measure that penalizes false positive pixels. The (𝐼𝑜𝑈) has been extensively 
used in the assessment of road and building extraction results from overhead imagery (Van 
Etten et al., 2019) due to its ability to incorporate the geometrical aspect of the resultant 
masks. Figure 2.9. illustrates the geometrical aspect of 𝐼𝑜𝑈. 

 

 
 
Figure 2.9. Geometrical aspect of IoU Metric. Modified from (Pashaei et al., 2020). 

 

2.6 Deep Generative Models 

 
Generative models address the challenging task of estimating a distribution of a given 

high dimensional data 𝑃𝑑(𝑥), generating samples from random which have an approximate 
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distribution 𝑃𝜃(𝑥) of the training data, in such a way that 𝑃𝑑(𝑥) ⋍ 𝑃𝜃(𝑥). Considering a 

random input 𝑧 sampled from a tractable distribution 𝑝(𝑧) supported in 𝑅𝑚 and a training 

data intractable distribution supported in 𝑅𝑛. The objective of a trained generator 𝑔𝜃 can 

be written as Equation 2.6. 

𝑔𝜃: 𝑅𝑚 → 𝑅𝑛, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, min
𝜃

𝑑𝑖𝑠𝑡 (𝑃𝑑(𝑥), 𝑃𝜃(𝑥))   (2.6) 

The random vector 𝑧 is referred as a latent variable sampled from a latent space that 

in general, follows a Gaussian distribution with a mean of zero and a standard deviation of 

1 (Salimans et al., 2016). The distance minimization problem of Equation 2.6. can be tackled 

in the Equation 2.7. Once the generator 𝑔𝜃 is trained, the likelihood of the generated 

sample 𝑥 from the latent variable 𝑧 is: 

𝑃𝜃(𝑥) =  ∫ 𝑃𝜃(𝑥|𝑧)𝑃(𝑧) 𝑑𝑧  (2.7) 

Where 𝑃𝜃(𝑥|𝑧) is the closeness of the generated 𝑔𝜃(𝑧) to the sample 𝑥 (Goodfellow et 

al., 2014). Approximating the generator function utilize various deep neural networks 

architectures, e.g., CNN and RNN, by computing the generator parameters 𝜃. 

There exist two main classes of generative models, the explicit and implicit. The explicit 

models are likelihood-based and use an explicitly defined 𝑃𝜃(𝑥). Implicit models learn data 

distribution directly from training data without any prior model structure, using for 

instance, Generative Adversarial Networks or GANs (Goodfellow et al., 2014), which are 

unsupervised learning methods. The main purpose of generative models is to create 

synthetic data, this has many applications such as tackling datasets imbalance, perform 

image to text, image to image translation, image inpainting, synthesis of image-speech and 

sound, and super resolution. 

2.6.1 Generative Adversarial Networks (GANs) 

GANs learn a generation function from a training distribution using a two-player game of 

neural networks called the generator and the discriminator (or critic). The generator tries 

to fool the discriminator by generating images that look real. The discriminator tries to 

distinguish real-training data (𝑥 ~ 𝑃𝑑(𝑥)) from generated images. The main challenge is to 

simultaneously train these two networks in a way that both get better in every iteration, for 

this, the minimax loss function calculates the difference between the estimated and the 

training distribution as in Equation 2.8.  

min
𝑝𝜃𝑔

min
𝐷𝜃𝑑∈𝐹

𝔼𝑥~𝑝𝑑
[𝐷𝜃𝑑(𝑥)] − 𝔼𝑥~𝑝𝜃𝑔

[𝐷𝜃𝑑(𝐺𝜃𝑔(𝑥))]   (2.8) 

Where 𝐹 is a set of functions and the loss computes the distribution 𝑝𝜃𝑔 that minimizes 

the overall discrepancy, the first term of Equation 2.8 represents the discriminator which 
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uses directly the training dataset, the second part corresponds to the generator that uses 

the latent space to create synthetic data. Equation 2.3 can be rewritten in terms of the two 

players via logarithm likelihood in Equation 2.9. 

min
𝜃𝑔

min
𝜃𝑑

(𝔼𝑥~𝑝𝑑
[𝑙𝑜𝑔𝐷𝜃𝑑(𝑥)] + 𝔼𝑧~𝑝𝑧

[𝑙𝑜𝑔 (1 − 𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧)))])  (2.9) 

The discriminator needs to maximize the objective function for 𝜃𝑑 such that 𝐷𝜃𝑑(𝑥) ≈

1, which leads the output to be close to the real data. The term 𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧)) → 0 as it is 

fake data, therefore, the maximization of the function for 𝜃𝑑  will ensure that the 

discriminator can separate real and fake data. The generator needs to minimize the 

objective function for 𝜃𝑔 such that 𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧)) ≈ 1. If this happens the discriminator will 

classify generated data as real. The optimization of the objective function is performed in 

two steps repeatedly. First, the gradient ascent is used for the discriminator term, then the 

generator term is minimized using gradient descent. In practice, the second step is not 

feasible because the term 𝑙𝑜𝑔 (1 − 𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧))) is dominant when 𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧)) ≈ 1. 

Since the opposite behavior is required, the gradient ascent should instead maximize the 

modified generator term max
𝜃𝑔

𝔼𝑧~𝑝𝑧
[𝑙𝑜𝑔 (𝐷𝜃𝑑 (𝐺𝜃𝑔(𝑧)))], and then, the generator is 

trained and can be used separately. Figure 2.10. illustrates the process when training a GAN, 

the image is modified from (Goodfellow et al., 2014)  

 
Figure 2.10. GANs training. A random vector 𝑧 is input to the generator to create a fake output 𝑥 ~ 𝑃𝑑(𝑥) 
(green curve), that is far from original distribution 𝑃𝑑  (black curve). Therefore, the discriminator classifies this 
output as synthetic forcing the generator to generate outcomes closer to the data distribution. Finally, the 
discriminator is unable to detect between real or generated data. Modified from (Goodfellow et al., 2014). 
 

A limitation of GANs is the unstable training process, where discriminator and 

generator train in parallel. The discriminator sends gradients to the generator, if these 

values are beyond a specific interval, the process diverges, the losses of the discriminator 

go to zero and the loss of the generator explodes. This causes the generator to create 

artifacts or images that are far from the training dataset (Radford et al., 2016). Doing data 

augmentation increases the risk of instability due to the change of data distribution, so a 
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proper data augmentation for both discriminator and generator is required (S. Zhao et al., 

2020). 

2.6.2 Image Generation and Image to Image Translation 

Image generation is the process of obtaining an image from a random space, this is, the 

obtention of synthetic images that plausibly resemble the characteristics of existing 

distribution of training samples. Main application of image generation is synthetic data 

creation for model training, computer graphics, and design (Isola et al., 2017). Image 

generation is typically performed by generative models. 

Image to image translation is the conversion of a source image to a target image. For 

example, the conversion of satellite images to google maps images or the reverse (Isola et 

al., 2017). It is a challenging problem that requires custom models and loss functions for 

every translation task or dataset. Common approaches use pixel-wise classification models, 

but main issue is that each predicted pixel is independent of the pixels predicted before it 

and the broader structure of the image might be missed. These consider the output space 

as “unstructured”, in the sense that each output pixel is regarded as conditionally 

independent from all others of the input image. Image translation has demonstrated its 

power on a range of interesting tasks (Isola et al., 2017; Zhu et al., 2017), for example: 

● Semantic labels to images: (Cordts et al., 2016) has successfully performed 
translation of semantic images to photographs using the Cityscapes dataset. (Isola 
et al., 2017) presented an example for the conversion of architectural semantic 
labels of building facades to photographs, it was trained on the Facades dataset. 
 

● Satellite to Map and reverse: Data can be scraped from google maps or other map 
service to perform the translation between maps and satellite (Isola et al., 2017). 
 

● Black and white to color photographs, day to night photographs, thermal images to 
color photographs (Machine Learning Mastery/ www.machinelearning 
mastery.com). 
 

● Product sketches to photographs or edges to photographs: this is an important 
application in fashion and retail (Goodfellow et al., 2014). 

 
● Image inpainting: it consists of replacing white or black pixels present in an image to 

generated pixels in some sort that the resultant image has appropriate context. 
Figure 2.11 modified from (Isola et al., 2017) illustrates image translation examples. 
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(a) (b) 

 

Figure 2.11. Image Translation Examples. (a) Image inpainting, (b) Satellite to Map Translation: Satellite to 
map image to image translation example using pix2pix. The model hardly distinguishes the street details in 
the first epochs of training (left image), after 100 epochs different type of roads, parks and buildings are well 
differentiated (central image), when 150 epochs of training are reached (right image), fine details are 
improved for all the objects. 

2.6.3 Conditional and Unpaired Image to Image Translation 

Conditional image to image translation is the controlled conversion of a source to a target 

image. Conditionally means that the loss function makes the generated image to be 

plausible both in the content of the target domain, and as a translation of the input image. 

A conditional generative adversarial network (cGAN) architecture (Isola et al., 2017) is an 

extension of the GAN architecture (Goodfellow et al., 2014; Isola et al., 2017) to train a 

generator model, used for generating images in a conditional manner. This is, the cGAN 

controls that the image that is generated belongs to a specific class. In the same way as 

GANs, the discriminator model of cGAN is trained to classify images as real (from the 

training dataset) or generated (synthetic images), and the generator of cGAN is trained to 

fool the discriminator. For cGANs to learn a conditional generative model of a data 

distribution it requires a paired dataset, described in a previous section.  

Unpaired image to image translation is the conversion of a source image to a target 

image without the need of a pixel-to-pixel paired dataset (Zhu et al., 2017). This method 

can learn to capture special characteristics of one image collection and figuring out how 

these characteristics could be translated into other image collection, all in the absence of 

any paired training examples, or conversely using an unpaired dataset. A successful 

approach for unpaired image-to-image translation is the CycleGAN architecture. The 

CycleGAN (Zhu et al., 2017) is also an extension of the GAN architecture (Goodfellow et al., 

2014) in which one generator takes images from the first domain as input, and outputs 

images for the second domain, and other generator takes images from the second domain 

as input and generates images from the first domain. Two discriminator models are then 

used to determine how plausible the generated images are and update the generator 

models accordingly. This extension alone might be sufficient to generate plausible images 
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in each domain, but not enough to generate translations of the input images. This means 

that adversarial losses alone cannot guarantee that the learned function can map an 

individual input 𝑥𝑖  to a desired output 𝑦𝑖. To solve that, CycleGAN uses an additional 

extension called cycle consistency, this is that an image output by the first generator could 

be used as input to the second generator, and the output of the second generator should 

match the original image. The reverse is also true: an output from the second generator can 

be fed as input to the first generator and the result should match the input to the second 

generator. Cycle consistency comes from neural machine translation (NMT) where a phrase 

translated from English to Spanish should translate from Spanish back to English and be 

identical to the original phrase. The reverse process should also be true. Cycle consistency 

is encouraged by adding an additional loss to measure the difference between the 

generated output of the second generator and the original image, and the reverse. This acts 

as a regularization of the generator models, guiding the image generation process in the 

new domain toward image translation (Zhu et al., 2017). 

Unpaired image translation has many applications such as: Style Transfer, that refers 

to the learning of artistic style, often paintings, and applying it to another domain, such as 

photographs.  Object Transfiguration refers to the transformation of objects from one class, 

such as apples into another class of objects, such as oranges. Season Transfer refers to the 

translation of pictures taken in one season to another, such as summer to winter. 

Photograph generation from paintings is the synthesis of photorealistic images given a 

painting, typically by a famous artist or scene. Finally, Image Enhancement refers to 

improvements of images in specific aspects (Zhu et al., 2017). 

2.6.4 Pix2Pix 

The Pix2Pix GAN architecture is an implementation of the cGAN, where the generation of a 

target image is conditional on a given input image (Isola et al., 2017). The generator model 

is provided an image as input to generate a translated version of the image. The 

discriminator model is given an input image and a real or generated pixel-paired image to 

determine whether the paired image is real or generated. Finally, the generator model is 

trained to both fool the discriminator model and to minimize the loss between the 

generated image and the expected target image. As such, the Pix2Pix GAN must be trained 

on image paired datasets that are comprised of source images (before translation) and 

target images (after translation). The Pix2Pix architecture is a general approach for 

conditional image translation, it has been trained and tested for a wide range of image 

translation tasks (Isola et al., 2017). It involves three components: a generator model, a 

discriminator model, and a model optimization procedure. Both the generator and 

discriminator models use standard Convolution-BatchNormalization-ReLU blocks of layers 

as in any deep convolutional neural networks.  
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The generator model is based on the U-Net, and unlike a standard GAN model 

(Goodfellow et al., 2014), it does not take a random point 𝑧 from the latent space as input. 

Instead, it takes an image from source domain as input (e.g., satellite), and produces an 

image in the target domain (e.g., map). The source of randomness comes from the use of 

dropout layers that are used both during training and prediction (Isola et al., 2017). 

The discriminator model takes an image from the source domain and an image from 

the target domain and predicts the likelihood of whether the image from the target domain 

is real or generated. Pix2Pix discriminator model uses a PatchGAN which is a network 

designed to classify patches of an input image as real or synthetic (Isola et al., 2017), rather 

than doing it over the entire image. The discriminator tries to classify if each N×N patch 

(70x70) of an image is real or generated by the model. The Patch is run convolutionally 

across the image, averaging all responses to provide an ultimate scalar value. The PatchGAN 

discriminator model is implemented as a CNN, but the number of layers is set such that the 

receptive field of each output of the network maps to a specific size in the input image 

(70x70). The PatchGAN output is a single feature map of real/synthetic predictions that are 

averaged to a score. A patch size of 70×70 pixels was found to be the most effective across 

a range of image-to-image translation examples (Isola et al., 2017). 

A standard GAN model is trained in a standalone manner (Goodfellow et al., 2014; 

Salimans et al., 2016), Pix2Pix discriminator model does it the same way, minimizing the 

negative log likelihood of identifying real and generated images, although conditioned on a 

source image. However, since the discriminator training is too fast compared to the 

generator, the discriminator loss is halved  
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟_𝐿𝑜𝑠𝑠 

2
  in order to slow down the 

discriminator training. The generator model is trained using both the adversarial loss with 

the discriminator, and the mean absolute error (MAE) or L1, this is the pixel difference 

between each generated translation of the source image and the corresponding expected 

target image in the training dataset. The adversarial loss and the L1 loss are combined into 

a composite loss function, which is used to update the generator model. In the original 

paper by (Isola et al., 2017), L2 loss (sum of squared differences) was also evaluated and 

resulted in blurry images. The adversarial loss conditions the generator model to output 

images that are plausible in the target domain, the L1 loss regularizes the generator to 

output images that are a plausible translation of the source image. In this way, the objective 

of the discriminator does not change, but the generator needs to fool the discriminator, but 

at the same time, get outputs near to the ground truth. The composite loss function is 

controlled by a hyperparameter called lambda (λ), which ranges between 10 to 100, e.g., 

giving 10 to 100 times the importance of the L1 loss compared to the adversarial loss during 

the generator training. Equation 2.10. shows the composite loss function for the generator. 
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Generator Loss = Adversarial_Loss + λ × L1_Loss  (2.10) 

2.6.5 Paired and Unpaired Datasets in Deep Learning 

A paired dataset is formed by examples of input images 𝑥𝑖  (e.g., shoes-sketches) and the 

expected target images 𝑦𝑖 (e.g., shoes) coupled pixel to pixel. The target images also called 

masks or class labels exhibit the desired modifications of input images at a pixel-level. Paired 

datasets are challenging and expensive to produce, since it requires the pixel-to-pixel 

correspondence, for instance, taking pictures of different scenes under different conditions 

is difficult to comply. Moreover, in many cases, these datasets do not exist or cannot be 

produced due to copy rights, as with the famous artists paintings and their respective 

photographs (Isola et al., 2017). Paired datasets are specifically used in semantic 

segmentation problems, where an input image is classified into an output binary (black and 

white) or multi-color mask image. 

In contrast, an unpaired dataset consists of two groups of images 𝑋 (e.g., horses), and 

𝑌 (e.g., zebras) that are not related in a pixel-wise manner, but they have general 

characteristics that can be extracted from each group and used to convert from 𝑋 to 𝑌. This 

type of dataset is more used in semi-supervised or un supervised learning. Figure 2.12. 

presents examples of paired and unpaired datasets (Zhu et al., 2017). 

 

  
(a) (b) 

Figure 2.12. Paired and Unpaired datasets. (a) Horses to zebras paired dataset, (b) Horses to zebras unpaired 
dataset.   
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Chapter 3 
 

3 A Methodology to Extract GIS Vector Layers from Orthomosaics 
using a Deep Generative Model 

 

This chapter is a brief description of the methodology, composed by a pipeline of three 
consecutive methods for vector objects extraction from orthomosaics. It starts with the 
production of image-mask paired datasets for points, lines, and polygons using drone 
orthomosaics. After that, a deep generative method is chosen and used to create masks for 
objects of interest in input images. The post-processing method applies a generative model 
to clean and improve the resultant masks of the second method and convert them to vector. 
The three methods form the core of the thesis, they are introduced next, and further 
described and tested in the coming chapters. Figure 3.2 illustrates our methodology. 

 

 
 

Figure 3.1. Proposed methodology. 

 

3.1 Paired Data Method 

 
This method produces balanced and feature-enriched datasets to make generative 

model be more robust to geometric, spectral, and multi-scale variations of geographic 
objects. It also pretends to speed up and improve the training of the generative model when 
applied to point, line, and polygon masks objects. Datasets consist of three channels images 
chips and corresponding masks (img, msk) paired pixel to pixel, i.e., (drone image chip, 
binary mask). Separate datasets are produced and used to extract point, line, or polygon 
objects. Figure 3.2. summarizes this method. 
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Figure 3.1. Summary of the method to produce paired datasets. 

 
As shown in Figure 3.1, the workflow starts with two separate pipelines, one is the 

Ground Truth (GT), consisting of points, lines, or polygon objects of interest in vector format 
(Shapefiles, or GeoJSON) that can be queried from OSM. The Aerial Raster Layers are 
composed by the orthomosaics and the DSM obtained by satellite or drone. Both pipelines 
get together at tessellation and captioning steps, where specific chip sizes for images and 
masks are produced. The imbalance check is performed for every mask, and then pairing 
chips into single images of the form (img,msk) are produced. Finally, a random split into the 
training, validation, and testing datasets is applied using a desired percentage. All these 
steps are described thoroughly in the next chapter. 
 

3.2 Generative Method for Image to Mask Translation 

 
Image to image translation is a technique based on deep generative models, in which 

a model learns target labels (masks) from images in the source domain (e.g., satellite, drone 
orthomosaics) (Ballesteros et al., 2021). We propose to use image to mask translation as an 
alternative of semantic segmentation to extract vector layers from orthomosaics. 
Conditional and unpaired generative models for image-to-mask translation are 
implemented and compared. After results, the best option to generate masks for point, line, 
and polygon objects from drone orthomosaics is chosen. The chosen model needs to tackle 
the following challenges: 

● Quality masks: Model should generate masks with a high similarity to the ground 
truth, especially in the case of objects with right angles (man-made objects). This 
should produce a smaller number of false positives compared to other models. 
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● Data requirements: Since most projects in geography does not have a huge amount 
of data, model should be less data hungry. Paired or unpaired datasets might be a 
requirement. 

 
● Class imbalance: if the model is affected by imbalance, it should provide a way to 

mitigate it. 
 

● Same model architecture valid for point, line, and polygon masks: The same model 
architecture can be trained to generate masks for point, line, and polygon objects 
without the need of manual engineering. 

 
● Cleaning and simplification of masks: Model can support a way to clean and simplify 

masks. 
 

● Attribute extraction: Model can be used to obtain binary masks, but also multi-
class-colored masks employed to automatically extract attributes or object types. 

3.2.1 Use of Height Information in Generative Models 

Few recent studies have integrated CNNs with height geometric information coming from 

a DSM and normalizing with a DTM (Sun & Wang, 2018; Zhang et al., 2015). Typical two 

approaches are whether to input a fourth channel with the height information to a network, 

or having two networks that receive RGB and height information separated and 

concatenate results at the end (Marmanis et al., 2020). Results in building segmentation 

and land cover maps showed that the use of DSM highly improved the pixel accuracy (1.2% 

up to 1.8%) (Al-Najjar et al., 2019). Also, results were better when normalizing DSM with a 

DTM to obtain local height and when using a fourth channel in the network. In the future 

section dedicated to the generative model, our approach is to fuse height information into 

the three channels of RGB images and compare it with replacing the blue channel with the 

height information. 

3.2.2 Automatic Attribute Extraction in Generative Models 

The attribute extraction of objects is a part of the automatic layers extraction process. 
Attribution is the process of giving characteristics to each object and store them in a table 
in an organized manner. In a GIS, object attribution is as important as geometry, and 
coordinates of objects. Since masks can be colored, color can be used to encode a specific 
attribute (Van Etten, 2019). In the same way, color decoding is a way to perform attribute 
extraction. For instance, a road can be green for high speed, yellow for medium, and red for 
low-speed values. Figure 3.2. shows an example of attribute extraction via color encoding-
decoding. In chapter 5, we will test color encoding-decoding in a generative model with the 
purpose of extracting attributes from our road dataset. 
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Figure 3.2. Color encoding-decoding for attribution. Image shows type of vehicles encoded by color. Blue are 
motorcycles (code=1), green represents cars (code=2), and red color are ghosts of cars (code=3). Image 
modified from (Ballesteros, 2022). 
 

3.3 Post-processing Method 

 
Normally, post-processing consists in the application of several heuristic and 

consecutive methods prior to vectorization for cleaning resultant masks of deep learning 
models (Pote, 2021; Ren & Xu, 2015; Saeedimoghaddam & Stepinski, 2020). It is also 
common to use a set of tools after vectorization to improve resultant vector layers. 

  

3.3.1 Post-processing of Resultant Masks 

There are a set of tools commonly used to post-process resultant masks, generally irregular 
and discontinuous, with the purpose of cleaning, refining, and convert them to vector (Ng 
and Hoffman, 2018), some of them are: 
 

• Color equalization: It is accomplished by effectively spreading out the most frequent 
intensity values, i.e., stretching out the intensity range of the image. 

 

• Morphological operations: They are of two types applied one after the other, 
erosion followed by dilation. Erosion removes speckle noise ("islands"), but it also 
shrinks objects. Dilation re-expands the objects. 

 

• Fill in holes: The converse of the previous step, removing "lakes" (small false 
negatives that are topologically inconvenient) in the mask. 

 

• Contouring: Continuous pixels having same color or intensity along the boundary of 
the ask are joined. The output is a binary mask with contours. 

 

• Vectorization: It is the transformation of data representation in which objects are 
converted from in-tile pixel coordinates (masks) to GeoJSONs or Shapefiles formats 
in geographic coordinates (latitude and longitude). 
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3.3.2 Post-processing of Vector Objects 

For cleaning vector objects after vectorization, another series of tools can be applied one 
after another (Ng & Hofmann, 2018; Sahu & Ohri, 2019; Touya et al., 2019), they are:  
 

• Simplification or generalization: Douglas-Peucker algorithm is applied which takes 
line segments and gives a similar curve with fewer vertexes. 

 

• Merging: This tool combines vector polygons or lines that are nearly overlapping, 
such as those that represent a single feature broken by tile boundaries, into a single 
polygon or line. 

 

• Centerline: Roads, rivers and other objects are often represented by complex 
polygons. Since one of the most important attributes of a linear object is its length, 
extracting this attribute and linear geometry from a polygon is very useful. 

 
 Post-processing becomes cumbersome in this way and results are achieved by hand 

engineering (Filin et al., 2018). Figure 3.3. shows some examples of afore mentioned steps 
(Ng and Hoffman, 2018). 

 
 
 

 

 
(a) (b) 

Figure 3.3. Post-processing steps. (a) Douglas-Peucker simplification of a line, (b) Merging of building 
polygons. 
 
 

Compared to hand engineering, our post-processing method (chapter 6) uses a deep 
generative model and look to solve discontinuity (false negative pixels) and irregularity 
(false positive pixels) of resultant masks, caused by the original generative model. Obtaining 
better quality masks in this regard, for point, line, and polygon objects in orthomosaics, may 
lead to a better vector representation. 
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Chapter 4 
 

4 A Method for Producing Paired Datasets 

 
The first method has the objective of producing datasets with highly discriminative 

information for training a generative model to create masks for point, line, or polygon from 
orthorectified images. Next, the workflow of the method is described as well as datasets 
examples obtained by experimentation using this method. 

 

4.1 A Workflow for Producing Paired Datasets 

 
To create a paired dataset, vector ground truth data and orthomosaics-DSM are initially 

processed via Python scripts in two separate process lines. Figure 4.1 shows the different 
steps of the method for producing paired datasets. 

 

 
 
Figure 4.1. Method for producing paired datasets. 

 

4.1.1 Raster Layers: Aerial Drone Imagery, DSM, DTM 

Aerial imagery, especially satellite and drone orthomosaics, is becoming ubiquitous. This is 
due to ease of use and the affordable price of consumer and professional drones, and also 
to the rapidly increasing availability, quality and price of satellite imagery (Avola & Pannone, 
2021; Weir et al., 2019). Orthomosaics are created by stitching images that partially overlap, 
using a method called Structure from Motion (SfM) (Kameyama & Sugiura, 2021). Drone 
orthomosaics have a very high spatial resolution, measured by the Ground Sample Distance 
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(GSD) (Heffels & Vanschoren, 2020; Shermeyer & Etten, 2019; Weir et al., 2019), which is 
the physical pixel size; a 10 cm GSD means that each pixel in the image has a spatial extent 
of 10 cm. The GSD of an orthomosaic depends on the altitude of the flight above ground 
level (AGL) and the camera sensor. Drone image data is acquired by executing several 
autonomous flights, using a commercial drone and a controlling App, for example: Dji Mavic 
3Pro, Dji Phantom 4Pro V2 or other with the Capture App (Professional Photogrammetry 
and Drone Mapping Software/ www.pix4d.com). Raw drone photographs are commonly 
obtained at heights between 50 and 250 m AGL, depending on the GSD required for the 
specific application and local flight regulation by the authority (e.g., FAA). Mapping areas 
are covered with flight lines using a frontal overlap of 80-85% and a lateral overlap of 70-
75%. An orthomosaic to cover one-hectare areal extent is obtained in around one minute 
of flight at 100 meters AGL. Individual images and GPS Log of the flights are processed in a 
photogrammetric software to obtain default photogrammetric products which are an 
orthomosaic, a DSM, and a 3D point cloud of a mapping area. We employed Open Drone 
Map (www.opendronemap.org), an open-source software, to obtain mentioned products 
when processing raw drone images (Ballesteros et al., 2021). The WGS1984 is the common 
Geographical Coordinate System (GCS) used to geo-reference the products. Figure 4.2 
illustrates the workflow for the acquisition and processing of individual raw drone images. 
 

 
 

Figure 4.2. Drone imagery data acquisition and processing. Individual drone images and GPS Log are processed 
in Open Drone Map software to obtain drone orthomosaics and DSM. 

 
Although the method is intended to be applicable to any aerial overhead imagery. We 

use drone imagery that was acquired over fifteen small to medium size urban areas in 
Colombia, South America.  Figure 4.3. shows an example of the acquired drone imagery. A 
concise list of the drone acquired imagery and its metadata is presented in table 4.1. 
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Figure 4.3. Drone orthomosaic and DSM [1] Aerial Raster Layers. This example corresponds to the urban area 
of El Retiro, Colombia, with a GSD of 7.09 cm/px. 
 

Table 4.1. Acquired Drone Imagery 

Settlement Geographic Extension 
(Xmin,Ymin,Xmax,Ymax) 

Flight Height 
(m) 

GSD 
(cm/px) 

Area 
(Hectares) 

El Retiro, Ant. 
-75,5057858485094 6,05456672000301 
-75,4995986448169 6,06544416605448 120 7 82.9 

La Ceja, Ant. -75,4379001836735 6,03130980894862  
-75,4332962779884 6,0342695019348 

80 5.5 16.8 

Prado_largo, Ant. -75,5311888383421 6,15636546472326  
-75,5226877620765 6,16018600622437 

90 5.7 40 

Rionegro, Ant. -75,3809074659528 6,13947401033623  
-75,3760197352806 6,14988050247727 

80 5.5 62.7 

 

4.1.2 Geometric Data Augmentation 

Data augmentation improves performance of deep learning models (Buslaev et al., 2020), 

it helps model generalization (Blaga & Nedevschi, 2020; Y. Long et al., 2021; Song & Kim, 

2020; Weir et al., 2019), increasing the number of available examples to train a model. 

However, there are not many studies on the influence of data augmentation on geographic 

data, and specifically, which of the augmentation methods is the best. Geometric 

augmentation consists of transformations in scale, angle, and form of images. These 

variations depend on the field of application and particularly, on the requirements imposed 

to a model. For instance, ninety degrees mirroring may not be applicable to common 

objects like dogs or bikes, but they are applicable to overhead imagery. Most important 

geometric augmentation methods for geographic objects are (Buslaev et al., 2020): 

● Rotation: Consists of small clockwise rotations of images, suggested value is 10 
degrees (Blaga & Nedevschi, 2020).  
 

● Mirroring: It is a transformation in which, upper and lower, or right and left, parts 
of images interchange position. They are commonly referred as vertical and 
horizontal mirroring. 
 

● Resizing or Zooming: It is the magnification of certain parts of an image, zooming in 
or out. 
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● Crop: It is the trimming of an image at certain place. 

 
● Deformation: It is the elastic change of the proportion of image dimensions. It is a 

common phenomenon that occurs in the borders of orthomosaics. 
 

● Overlapping: It is the repetition of a part of an image measured by a percentage (%). 
Some of these transformations are implemented in open python libraries (Buslaev et 

al., 2020).  
 
Geometric augmentation is applied to the Aerial Raster Layers. Overlapping of 10% and 

20%, clockwise 10 degree increasing angle rotations, as well as mirroring (90 degrees) are 
used. Figure 4.4. shows examples of (img,msk) pairs obtained by the application of different 
types of geometric augmentation. Annex 1 contains our scripts implementation in Jupyter 
Notebooks for geometric overlapping, rotations, and mirroring. 

  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.4. Geometric Augmentation. (a) Rotation, (b) Mirroring, (c) Zoom, (d) Cut, (e) Elastic Deformation, (f) 
Overlapping. 
 

4.1.3 Spectral Data Augmentation 

It is the change in brightness, contrast, and intensity (gamma value) of images (Buslaev et 

al., 2020). They are described as follows: 
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● Brightness: It is the amount of light of an image, it increases the overall lightness of 
the image—for example, making dark colors lighter, and light colors whiter (GIS 
Mapping Software, Location Intelligence & Spatial Analytics | Esri, www.esri.com). 
 

● Contrast: It is the difference between the darkest and lightest colors of an image. 
An adjustment of contrast may result in a crisper image, making image features may 
become easier to distinguish (GIS Mapping Software, Location Intelligence & Spatial 
Analytics | Esri, www.esri.com). 

 
● Intensity or Gamma Value: It refers to the degree of contrast between the mid-level 

gray values of an image. It does not change the extreme pixel values, the black or 
white, it only affects the middle values (Buslaev et al., 2020). A gamma correction 
controls the brightness of an image. Gamma values lower than one decrease the 
contrast in the darker areas and increase it in the lighter areas. It changes the image 
without saturating the dark or light areas, and doing this brings out details in lighter 
features, such as building roofs. On the other hand, gamma values greater than one 
increase the contrast in darker areas, such as shadows from buildings or trees in 
roads. They also help bring out details in lower elevation areas when working with 
elevation data like DSM or DTM. Gamma can modify the brightness, but also the 
ratios of red to green to blue (GIS Mapping Software, Location Intelligence & Spatial 
Analytics | Esri, www.esri.com). 

Figure 4.5 shows examples of the resultant imagen when different types of spectral 
augmentation are applied (Buslaev et al., 2020). 

 

 
(a) 

 
(b) 
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(c) 

Figure 4.5. Spectral Augmentation. (a) Brightness, (b) Contrast, (c) Intensity (Gamma Value). 

 
Spectral augmentation of Aerial Raster Layers is implemented in open python libraries 

like PIL (Pillow, https://pillow.readthedocs.io). Typically, 10% increment or decrement of 
current values is applied. Annex 1 contains our implementation in a Jupyter Notebook for 
increasing and decreasing 10% of default values of brightness, contrast, and intensity. 

4.1.4 Data Fusion 

Due to computational limitations, most of Deep Learning models for computer vision 
make use of images with three channels (bands), i.e., RGB images (Xu et al., 2018). Data 
Fusion is a way for incorporating additional discriminant information to the available 
channels. Objects height can be a discriminant where exist intricate spatial relations. For 
instance, the spatial relations between vehicles, roads, trees and buildings are good 
examples of such a case. Also, there are many popular vegetation indexes developed in 
remote sensing and mostly used in agricultural monitoring. The well-known Normalized 
Difference Vegetation Index (NDVI) quantifies the health of vegetation by measuring the 
difference between bands in a near infrared image (NIR) (Eng et al., 2019). Data fusion is 
applied to orthomosaics for integrating height (DSM, DTM) or indexes (NDVI, VARI) into a 
dataset as follows: 

• Height: The DSM, which contains the height of objects in an image can be fused 
with the orthomosaics, by adding it whether algebraically or logarithmically, to 
each red (R), green (G), and blue (B) bands as stated in Equations 3.1. and 3.2. 
Other option is replacing any of the bands with DSM, for instance, the blue 
band, this comes from the idea that blue color is less frequent in objects of 
nature, RGDSM is calculated in Equation 3.3. 
 

𝐻𝑅𝐺𝐵 = (𝑅 + 𝐷𝑆𝑀), (G + 𝐷𝑆𝑀), (B + 𝐷𝑆𝑀) (3.1) 

𝐻𝐿𝑅𝐺𝐵 = (𝑅 + 𝐿𝑜𝑔(𝐷𝑆𝑀)), (𝐺 + 𝐿𝑜𝑔(𝐷𝑆𝑀)), (𝐺 + 𝐿𝑜𝑔(𝐷𝑆𝑀)) (3.2) 

𝑅𝐺𝐷𝑆𝑀 = (𝑅), (𝐺), (𝐷𝑆𝑀)  (3.3) 

 

In any case, the resultant image is a three bands false color composite (López-
Tapia et al., 2021) with values ranging between 0 and 255, so values of every 
band should be re-scaled to that interval. For instance, the DSM is re-scaled 
from its original values in meters (Zhang et al., 2015). The resultant image can 
be called NDSM, and it is obtained by Equation 3.4. 
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𝑁𝐷𝑆𝑀 = (𝐷𝑆𝑀– 𝐷𝑆𝑀𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡) ∗ 255/(𝐷𝑆𝑀𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 − 𝐷𝑆𝑀𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡) (3.4) 

 

𝐷𝑆𝑀𝑚𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 and 𝐷𝑆𝑀𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 are the minimum, and maximum values 
of the DSM respectively. More datasets are including these days height as a way 
to improve image understanding, for example, the NYU depth V2, the SUN RGB-
D, and the HAGDAVS (Sun & Wang, 2018; Ballesteros et al., 2022). 

 
● Index: It may replace one of the RGB channels of an orthomosaic with the value of 

an index. The Visible Atmospherically Resistant Index (VARI) was developed by 
(Gitelson et al., 2002), on a measurement of corn and soybean crops in the 
Midwestern United States, to estimate the fraction of vegetation in a scene, with 
low sensitivity to atmospheric effects in the visible portion of the spectrum. It is 
exactly what occurs in low-altitude drone imagery (Eng et al., 2019). Equation (3.5) 
allows to calculate the VARI for an orthomosaic using the red, green and blue bands 
of an image. 
 

𝑉𝐴𝑅𝐼 =  (𝐺𝑟𝑒𝑒𝑛 −  𝑅𝑒𝑑) / (𝐺𝑟𝑒𝑒𝑛 +  𝑅𝑒𝑑 –  𝐵𝑙𝑢𝑒) (3.5) 
 

VARI Index should also be re-scaled to the RGB orthomosaics values interval 
[0.,255.]. Equation (3.4) can be used to obtain the NVARI Index. Data fusion is used 
to replace the green color with the VARI Index. This has the purpose of better and 
faster discriminate green objects, removing the effects of the atmospheric 
distortions. Figure 4.6. shows the resultant examples of height augmentation, RG-
DSM, and index augmentation, the RVARIDSM false color composite images. 

 

 
(a) 

 
(b) 
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Figure 4.6. Data Fusion. (a) Height Augmentation: False color composite RG-DSM image obtained by fusion of 
red and green bands and use of DSM instead of the blue band, The RG-DSM is a bluish-looking image in terms 
of the height of the objects, the higher the objects in the image the bluish the color, would height aid to 
segment vehicles from roads, and roads from trees and buildings, even when they exhibit similar spectral 
responses, (b) Index Augmentation: resultant RVARIDSM false color composite image obtained by data fusion 
of Red, use of NVARI in the green band to discriminate green objects, and the NDSM in the blue band to 
discriminate different heights. 

 

4.1.5 Vector Layers (Ground Truth): point, line, and polygon objects 

Depending on the location in the world, vector ground truth data is obtained by 
querying for existing objects like roads and rivers, and less frequently for buildings in the 
OSM world database. A Python script to query vector objects from OSM database, and their 
conversion to shapefiles is provided in Annex 1. If inexistent, vector layers should be 
produced by a manual digitalization on the PC screen using the input orthomosaics and DSM 
as base layers and tracing point, line, and polygon objects. A description of a manual 
digitalization of each geometry is as follows: 
 

● Point: Point vector objects are those than can be represented as (𝑥, 𝑦) coordinates 
at a geographical extent. They are created by pinpointing them over the 
orthomosaic at a place that represents object extension and location. Some 
examples of point vector objects are vehicles, poles, trees, road signs, tanks. 

 
● Line: Linear objects are those in which length is a lot larger than width. They are 

digitalized by adding vertices (𝑥, 𝑦) at any change of direction, and have at least two 
vertices. Some examples of line objects are roads, rivers, and trains. 
 

● Polygon: Vector polygons represent region objects; they are digitalized by creating 
vertices at each change of direction until last vertex coincides with the initial one. 
Buildings and forests are examples of polygon objects. 

4.1.6 Vector Masks, Raster Masks and Color Masks 

Point, line, and polygon ground truth vector layers, obtained from OSM or by manual 

digitalization, are buffered using a distance parameter. The resultant vectors are called 

vector masks. They are converted to raster (rasterized) to produce a raster mask. A raster 

mask is an image with the same geographic extension of the input orthomosaic or DSM 

from which objects are vectorized (typically millions of pixels). Raster masks can be binary 

(black and white), they represent only one object of interest (positive class) and its 

background (negative class). The positive class is encoded in white color (class = 1), it 

competes against the ground, dominant class, encoded as black (class = 0). A color raster 

mask may be used when extracting object attributes. For instance, road speed, vehicle type, 

roof material and many others. Producing raster masks semi automatically for vector 

objects needs an optimum buffer distance. Since it is used to increase the size of point and 

line vector geometries, it is a “tradeoff” between getting imbalance masks (small buffer 
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distance) with no misclassified pixels, and including a high number of pixels with a certain 

degree of misclassification (large buffer distance). Since masks for polygon objects are 

generally not imbalance, their buffer distance is zero (0). Vector masks are rasterized, 

converted to binary masks, or if attributes are needed, they are rasterized into color masks. 

4.1.7 Image Caption and Image Captioning 

Image Caption is the automatic description of a given image by a sentence that has sense 

in a specific language. It has been a fundamental task in the Deep Learning domain and 

counts with many applications in web search and in the help of blind people. Image caption 

can be regarded as an end-to-end sequence to sequence problem 

(www.machinelearningmastery.com), as it converts images, which is regarded as a 

sequence of pixels to a sequence of words. State of the art Image Caption systems use a 

combination of a CNN and a Recurrent Neural Network (RNN). The first network classifies 

and retrieves the characteristics (words) found in the image, the second extracts a correct 

sequence of words that describes the image (Vinyals et al., 2015). Nonetheless, image 

caption is not yet widely used in the GIS domain, a proposed application in this field would 

be to automatically describe overhead images. Image Captioning is the process to assign a 

list of valid attributes to every image in a dataset. This is the labeling of images with a list of 

attributes. To train an image caption model, image captioning should be applied to a set of 

images that contains objects of interest and store them as (𝑖𝑚𝑎𝑔𝑒, [𝑐𝑎𝑝𝑡𝑖𝑜𝑛𝑠]) list. The 

Ground Truth Vector Layers with attributes for an object of interest stored in vector files 

(shapefile or GeoJSON) are inherited by the images when they are both split with the same 

extension (desired output image size) at the tessellation stage, producing a captioned 

dataset. For instance, a vehicle may have attributes like type (truck, bus, car, motorcycle, 

etc.), service (public, private), color (red, green, black, white, etc.), and many others. Image 

captioning results in specialized datasets for describing point, line, or polygon objects, i.e., 

vehicles, roads, and buildings. 

4.1.8 Image Tessellation, Imbalance Check, Pairing and Dataset Splitting 

Due to computational restrictions, it is common to train deep learning models with square 

256x256 px images. In this respect, orthomosaics and raster masks (binary or color) are 

huge, thus they should be tessellated at a desired size 𝑁, producing (𝑁𝑥𝑁 pixels) image 

chips, for example, 256x256 pixels or other. Since many geographical objects are scarce 

respect to the ground, they produce an im-balance mask. Class imbalance is a common 

problem that affects performance of deep learning models, moving the decision boundary 

towards the dominant class (S. Wang et al., 2016). The imbalance ratio of the positive class 

can be calculated for a specific dataset with 𝑛 images as in Equation 3.6. 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 = ∑
𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠

𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠+𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠

𝑛
𝑖=1   (3.6) 
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Values of around 0.5 in the Equation 3.5. correspond to a pixel balanced mask, values 

below 0.001 are an extremely imbalance mask. Every image–mask chips corresponding to 

a balance mask are saved as a whole image of (2𝑁𝑥𝑁 pixels), for instance 512x256 pixels. 

Imbalance ratio is checked on every mask using a threshold 𝑡, instead of calculating it on 

the whole raster mask. Finally, a random splitting of the dataset is done using a proportion 

value α. An initial partition into (1 − 𝛼) for training, and α for validation-testing is 

performed. This last dataset is again random split into 𝛼/2 to produce separate validation 

and testing datasets. 

Different sizes can be used for tessellations, starting bottom up from 256x256 pixels, 

to 512x512, and ending up at 1024x1024 pixel images, or the other way around. Images and 

corresponding masks are then paired into (img,msk) with sizes of 512x256, 1024x512, and 

2048x1024 pixels. Since imbalance can affect the performance of the generative model, 

every (img,msk) pair should be checked to pass an imbalance ratio threshold 𝑡, for example: 

10%, 20%. This is performed in the imbalance check step. Figure 4.7. shows an example of 

paired (img,msk) for point (vehicles), line (roads), and polygon (buildings) objects in the 

drone orthomosaics. 

   
(a) (b) (c) 

Figure 4.7. Paired (img, msk) for point-line-polygon in orthomosaics. (a) mask for point objects, ex. vehicles, 
(b) mask for line objects, ex. Roads, (c) mask for polygon objects, ex. Buildings. 

 

4.2 Experiments and Results 
 

To challenge the proposed method to produce geographic paired datasets, we created 

one dataset from acquired drone imagery per each geometry. Vehicles, roads, and buildings 

are excellent examples of common objects of interest that are represented in those 

geometries. 

4.2.1 Point Objects Masks: A Vehicle Paired Dataset Example 

One of a good examples of point vector layers in GIS are vehicles. Semantic Segmentation 
of vehicles is a widely studied area in computer vision and Artificial Intelligence, driverless 
cars are good evidence of that. A few research studies have proposed datasets for vehicle 
segmentation in satellite or drone imagery (Bisio et al., 2021; Blaga & Nedevschi, 2020). 
They constitute the base for training segmentation models, where pixel-level classification 
is dominantly performed by the U-Net architecture (Abdollahi et al., 2021; Pashaei et al., 
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2020; H. L. Yang et al., 2018). Figure 4.8. shows training image and segmentation masks in 
the Potsdam satellite dataset (Song & Kim, 2020) and in the HAGDAVS drone dataset 
(Ballesteros et al., 2022). 

 

  
(a) (b) 

Figure 4.8. Segmentation datasets in Satellite and Drone imagery. (a) Potsdam Dataset, (b) Hagdavs Dataset. 

 
Vehicle geolocation in drone aerial orthomosaics is also becoming particularly 

important due to its application in different fields like security, traffic and parking 
management, urban planning, logistics, and transportation, among many others. However, 
different sizes or masks shapes for vehicles limit to accurately geo-locate vehicles position 
in a GIS (Fan et al., 2016). Also, vectorized masks with different shapes are difficult or 
impossible to handle in a GIS vector layer (Li et al., 2021). The “Domino Dataset” for vehicle 
geolocation is a paired dataset obtained by the proposed method. It is semi automatically 
labeled; vehicles are pinpointed around its central position, over the roof, using 
orthomosaics as the base layers. This point shapefile (*.shp) is created in the QGIS open-
source software (www.qgis.org). Some attributes can be added to the point vector layer, 
like: type of vehicle as an integer value, i.e., 1:car, 2:motorcycle, 3:bus. After this, a buffer 
vector layer is obtained using 1 meter (radius value). The buffer is rasterized afterwards, 
producing an 8bit raster binary mask in .tiff image format. Circle buffer raster layer is made 
of white pixels that represent vehicles, and the black pixels form the background (negative 
class). It has the same geo-reference and extension of the base orthomosaic. Values of 25% 
above and below normal contrast and brightness were used as spectral augmentation of 
orthomosaics. Images and corresponding masks were rotated by 10-degree increments. 
Height augmentation is included, placing the DSM into the blue channel, height would make 
possible to segment vehicles a lot easier than when that information is not present 
(Ballesteros et al., 2022). As stated before, the buffer distance is relevant because a larger 
value impedes to segment neighbor vehicles, meanwhile a small radius creates a more 
imbalance positive class. Datasets using different radius values can be created and used in 
the model to obtain the optimum value. Figure 4.9. illustrates the Domino dataset 
obtention process. Table 4.2. describes the number of images of the dataset and link to 
download it. 
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Figure 4.9. Domino dataset for vehicle geolocation. 

4.2.2 Line Objects Masks: A Road Paired Dataset Example 

Roads are one of the best examples of linear features studied in GIS. Intelligent 

transportation systems generally require fast processing of road conditions, and it has 

numerous potential applications such as: driver assistance, transportation scheduling, and 

route optimization (Batra et al., 2019). Road infrastructure evaluation is a demanding task, 

it is performed in terms of road quality, type, and total length (Brooks, 2017; Pinto et al., 

2020). To this end, computer vision is becoming ubiquitous through the use of semantic 

segmentation using satellite imagery with full size road masks datasets (Gerke et al., 2014; 

Song & Kim, 2020). However, road segmentation is challenging due to the different road 

types, and various background, weather, and illumination conditions (Y. Long et al., 2021; 

Van Etten, 2019; Van Etten et al., 2019), but also for little or no attributed data availability. 

Drones are being explored by many Departments of Transportation (DOTs) for innovative 

applications, as an emerging and cost-effective solution for road asset inspections (Aldana 

Rodriguez et al., 2021), and mapping (Ballesteros et al., 2021). Compared to ground images, 
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obtained by vehicle mounted cameras and sensors, drones can travel at very high speeds 

and cover large areas in a short amount of time. With the aid of drone imagery new insights 

are being developed thanks to its high resolution, but, at the same time, computer vision 

algorithms should be more robust due to the gathering of new information contained at 

centimeter-level spatial resolution (Avola & Pannone, 2021). Having as many labels for 

roads as possible is desirable, for instance, labels for road speed, road surface and its 

quality, road class, and type, are the support for the development of better supervised deep 

learning algorithms applied in road assessment. Figure 4.10. shows examples of satellite 

and aerial datasets for road segmentation. 

  
(a) (b) 

Figure 4.10. Road segmentation datasets. (a) RSI: Satellite, full size dataset (b) Road Massachusetts Dataset: 
Aerial, no attribution, equal size, binary dataset. 
 

The Type Surface Quality and Speed Road Dataset (TSQS Road Dataset), is created by 

our proposed method for paired datasets. It consists of five drone orthomosaics and 

corresponding raster multi class color masks of roads, making 16 km the total length of 

different road types in a developing country. The orthomosaics are acquired at various 

locations, flight heights (80 to 200 m), and spatial resolution (GSD between 5 and 10 cm/px). 

Classes and speed are created semi-automatically using python scripts (Annex 1), and 

quality-surface manually labeled by civil engineering students. Roads are coded in a 

sequence manner (color:class_name:class_number), with the following attributes: road 

type (red:paved:1, green:unpaved:2), road surface (red:concrete:1, green:asphalt:2, 

blue:grava:3, white:earth:4), quality of the surface (red:good:1, green:regular:2, 

blue:bad:3), road speed (red:5km/h:1, green:20km/h:2, blue:40km/h:3, white:60km/h:4, 

gray:80km/h:5), and road class (red:residential:1, green:highway:2, blue:secondary:3, 

white:tertiary:4, gray:path:5, yellow:pedestrian:6). Roads are buffered using 1-, 2-, or 3-

meters buffer distance and represented with different color. Background pixels correspond 

to negative class (black:background:0) for all the cases. Table 4.1. summarizes name of 

location, extension in WGS84 geographic coordinate system, GSD, flight height and area of 

the orthomosaic. Figure 4.11. shows examples of the different segmentation road masks by 

attributes. 
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(a) (b) 

Figure 4.11. TSQS Road Dataset. (a) Orthomosaic-mask, (b) mask using attribute type of road: red color 
represents paved roads, green represents unpaved, and black the background class. 

4.2.3 Polygon Objects Masks: A Building Paired Dataset Example 

In GIS, buildings are represented as polygons. Accurate building polygons provide essential 

data for a wide range of urban applications such as construction, solar energy allocation, 

and environmental studies in heat island impacts (Murtiyoso et al., 2020). There are many 

datasets that have served as the base for the application of deep learning models to extract 

pixel-based building areas from remote sensing imagery. Some examples of those are: the 

Massachusetts Building Dataset acquired by plane, the satellite-based Wuhan University 

building dataset (WHU), and the ISPRS Vaihingen dataset (Gerke et al., 2014). These 

datasets have annotated the building footprint in vector format and converted to binary 

ground truth masks, most of their examples have been collected in developed countries, 

where there are building separation and uniformity of materials. Figure 4.12 illustrates the 

Massachusetts and WHU dataset (Mnih & Hinton, 2010). 

  
(a) (b) 

Figure 4.12. Building footprint datasets. (a) Massachusetts dataset, (b) WHU Building dataset. 
 

Our proposed dataset focuses on building roof structure rather than the footprint, this 

is the differentiation of all the parts of a building roof. Roof structure also allows to extract 

and incorporate additional information for geospatial analysis like orientation (respect to 

the sun), type of material (metal, bitumen-asphalt, pvc, tar and gravel, acrylic, wood, clay 

tile, solar panel, concrete, green backyard, buildup backyard), number of floors, and runoff 

direction. Ground truth vector polygons are obtained by manually dissecting buildings from 

the street blocks. This is labeled over acquired drone imagery using binary and colored 
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masks. Figure 4.13. illustrates the proposed roof information dataset, also called the RIF 

dataset. Table 4.2. describes the number of images of the dataset and link to download it. 

  
(a) (b) 

Figure 4.13. RIF dataset. (a) Image-binary mask, (b) Roof material mask, 4 types of roofs are found in the 
depicted block. 

4.2.4 Image Caption Dataset for Roads from Drone Imagery 

Our image caption dataset uses the TSQS Road Dataset vector layer GT to cut corresponding 
orthomosaics, obtaining in this way, a set of images of roads that are captioned with type, 
surface, quality, and road speed attributes. If the Vector GT has attributes originally, or they 
are annotated manually, our method can create semi automatically a specialized caption road 
dataset at a desired image size. Annex 1 contains a script developed for image captioning, 
where a square and uniform size net is created and used to clip GT Vector Layers as well as 
Raster Layers. The net has a parametric size to create different size images, e.g., 256x256, 
512x512 pixels and so on. The manual association of the images with corresponding attributes 
could be cumbersome, in the script the corresponding list of attributes are assigned to each 
clipped image, obtaining the set of pairs image - attribute list (img, [captions]). Figure 4.14. 
shows the image caption dataset for roads. Image captions can be retrieved for an input image 
using a classifier architecture. Figure 4.15. shows a proposed classifier architecture for 
obtaining image caption of our proposed datasets. Table 4.2. describes the number of images 
for the described datasets, and the link to download it. 
 

 Table 4.2. Paired Datasets Created by Proposed Method 

Name of the dataset No. of images Link 

Domino Dataset 1000 https://doi.org/10.5281/zenodo.
5718809 

TSQS Road Dataset 2500 https://zenodo.org/deposit/6878
854 

Caption Dataset 1220 https://zenodo.org/deposit/6949
339 

RIF dataset Road Drone  850 https://zenodo.org/deposit/6950
521 
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(a) 

  
(b) 

Figure 4.14. Image caption dataset for roads in drone imagery. (a) Uniform squared net to clip, (b) Examples 

of captioned image chips of 256x256 pixels. 
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Figure 4.15. A classifier architecture for image caption of proposed datasets. 

 

4.3 Conclusions and Future Work 

 

Proposed method to create paired datasets is of general application to satellite, aerial, 

or drone acquired imagery. It consists of two streams, the first one allows to acquire 

satellite information, and the vector ground-truth from querying the world’s biggest open-

source GIS database. The other stream brings user information in the form of raster, for 

example, drone imagery consistent of orthomosaics, DSM, and DTM. Vector stream is easy 

to couple with raster, and the use of the customizable buffer distance parameter can obtain 

balanced datasets. The level of imbalance can be checked for every image-mask pair. It is 

also applicable to any object geometry and to the production of binary or multi-class color 

masks for attribute extraction. The novel inclusion of height values, as well as the VARI 

Index, in the channels of RGB images help to discriminate tree occlusions and spectral 

similarities. Our method includes the possibility of creating geographic image caption 

datasets. These are scarce in the geographic realm and constitute the base for building 

specialized web search services. 

Future work is suggested on the development of a pipeline for automatically labeling of 

geographic data. Creating a benchmark of obtained datasets by the proposed method 

would aid in the improvement of models for geographic objects extraction.  



52 
 

Chapter 5 
 

5 A Generative Method for Objects Extraction from Orthomosaics 
 
Images to masks translation using a deep generative model can be performed 

conditionally or unpaired on the training dataset (Isola et al., 2017; Zhu et al., 2017). The 
differences between them are the use of a simpler and smaller model architecture that 
requires less examples of aligned image-mask pairs in the former case. Or in the second 
case, employing a more complex architecture based on the cycle consistency, that needs a 
larger number of unpaired examples to learn the translation between the two latent spaces. 
Both approaches are evaluated next, and the results are compared to choose the most 
appropriate one for quality mask generation with less manual engineering. 

 

5.1 Conditional and Unpaired Image to Image Translation 

 
The description of Pix2Pix, and Cycle GAN implementations, and the inclusion of 

transformers and U-Net is presented next. 
 

5.1.1 Conditional Image to Image Translation using Pix2Pix 

Pix2Pix model is used over the same dataset, during 100 epochs and with a dropout of 50%. 
This model is complemented including attention modules. The Pix2Pix architecture was 
implemented in Keras for Tensorflow library, see code in Annex 1. The Generator uses a U-
Net architecture, it takes source images (orthomosaics chips) and outputs target images 
(masks) of the given examples of paired datasets. The PatchGAN of 70x70 pixels 
discriminator is provided with an input image (a drone image chip) and a real (training 
example mask) or a generated mask, and it must determine whether it is real or generated 
by the network. Figure 5.1. illustrates the architecture of the PatchGAN discriminator, and 
Figure 5.2. shows the architecture for the generator model. 
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Figure 5.1. Implementation of the PatchGAN architecture in Keras (The CNN-patch discriminator). 
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Figure 5.2. Architecture of the generator model based on U-Net. Modified from (Ronnenberg et al, 2015). 

 

Equation 2.2 of section 2.1 can be re-written as Equation (5.1) (Isola et al., 2017). 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝐿𝑜𝑠𝑠 = 𝐸𝑥, 𝑦[𝐿𝑜𝑔𝐷(𝑥, 𝑦)] + 𝐸𝑥, 𝑧[𝐿𝑜𝑔(1 − 𝐷(𝑥, 𝑦’))]  +  𝜆 𝐸𝑥, 𝑦, 𝑧[||𝑦 − 𝑦’||]   (5.1) 

Equation 3.1 is the sum of the discriminator loss on the real masks examples (d1_loss), the 

discriminator loss on the generated masks (d2_loss), and the differences between pixels in 

the generated mask and the ground truth mask (L1_Loss). An easier way to re-write the 

Equation 3.1 is as Equation 5.2. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝐿𝑜𝑠𝑠 = 𝑑1_𝑙𝑜𝑠𝑠 + 𝑑2_𝑙𝑜𝑠𝑠 + 𝐿1_𝐿𝑜𝑠𝑠   (5.2) 

In general, Pix2Pix conditional translation model achieves good learning results when 
𝑑2_𝑙𝑜𝑠𝑠 is smaller than 𝑑1_𝑙𝑜𝑠𝑠 and the value of 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝐿𝑜𝑠𝑠 is small (less than one) even 
with 𝜆 equal to 100 as stated in the original paper (Isola et al., 2017). 

5.1.2 Unpaired Image to Image Translation using CycleGAN 

Training a generative model for image-to-image translation normally requires a dataset of 
paired examples. These kinds of datasets are typically created by an expensive manual 
procedure which is limiting. A way to perform image translation without the need of paired 
datasets is The CycleGAN. It is trained in an unsupervised way using a collection of images 
from the source and target domains that do not need to be coupled. So, the model extracts 
the characteristics of both latent spaces and use them to make the translation (Zhu et al, 
2107). The Cycle GAN involves the simultaneous training of two generators and two 
discriminator models. One generator takes images from the first domain and outputs 
images for the second domain, and the other generator takes images from the second 
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domain and generates images from the first domain. Discriminator models are used to 
determine how plausible the generated images are and update the generator models 
accordingly. This might be enough to generate plausible images in each domain but cannot 
guarantee that the learned function can map an individual input 𝑥𝑖 to a desired output 𝑦𝑖. 
To ensure that, Cycle GAN uses cycle consistency, which is that an image output by the first 
generator could be used as input to the second generator and the output of the second 
generator should match the original image. The reverse is also true. This is achieved by 
adding an additional loss to measure the difference between the generated output of the 
second generator and the original image, and the reverse. The Generator and discriminator 
use the same configuration as the Pix2Pix model (Isola et al, 2017). The discriminator 
architecture is: C64-C128-C256-C512m, referred to as a 3-layer PatchGAN, where C means 
a convolution block and m a max pooling layer. The model does not use batch 
normalization; instead, instance normalization is used as a very simple type of normalization 
and involves standardizing (e.g., scaling to a standard Gaussian) the values on each feature 
map. The intent is to remove image-specific contrast information from the image during 
image generation, resulting in better generated images. Generator model uses a sequence 
of down sampling convolutional blocks to encode the input image, a few residual network 
(ResNet) convolutional blocks to transform the image, and a few upsampling convolutional 
blocks to generate the output image. Figure 5.3. shows a training diagram for the Cycle 
GAN. 
 

 
 

Figure 5.3. Unpaired image to image translation training diagram. 

 
An unpaired image to image translation model based on a Cycle GAN is trained using a 
dataset of 649 images of 256x256 pixels, 100 epochs, and learning rate of 0.02 
hyperparameters. A python script to train the Cycle GAN can be found in Annex 1. 

5.1.3 Semantic Segmentation (U-Net) and Computer Vision Transformers (CvT) 

Image semantic segmentation and image generation are two related processes in deep 
learning, the first one encodes image information, then it decodes information, which is a 
generative procedure (Ronneberger et al., 2015). Generation also performs encoding and 
decoding over input images, but it assigns a score for every generated image until 
generation is improved. This extra step ensures quality of the generated images, and it leads 
to believe that generation tends to produce a better version of inference masks when 
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compared to segmentation. The default U-Net architecture for semantic segmentation 
(Ronneberger et al., 2015) is implemented based on a ResNet34 backbone with a Learning 
Rate of 0.02, a batch size (bs) of 8. It is trained during 100 epochs and used ninety degrees 
rotations for data augmentation. 

We employed State-of-the-art Computer Vision Transformers (CvT) uses three blocks 
of attention modules and a VGG11 back bone. This approach is trained during 150 epochs 
in 1000 images of 500x500 pixels since it demands more data and longer training. CvT 
implemented architecture is presented in Figure 5.4 based on (Wu et al., 2021). 

 

 

Figure 5.4. Computer Vision Transformers architecture. 

 

5.2 Experiments and Results 

 

The following tests are performed to challenge the previously chosen conditional image 
to image translation generative model. Since the generation of good quality binary masks 
pursues the same objective as semantic segmentation, the metrics to evaluate it can be the 
same. For a raster mask, we evaluate image to image translation model performance based 
on the average of 𝐼𝑜𝑈 metric (𝑚𝐼𝑜𝑈), over the generated masks raster format calculated 
for all the images of a test dataset. 

 

5.2.1 Comparing Results of Conditional and Unpaired Generative Models 
Image Semantic Segmentation (U-Net), Computer Vision Transformers (CvT), conditional 

(Pix2Pix), and unpaired image translation (CycleGAN) generative approaches are tested 

over the same dataset, the Massachusetts Building dataset, and qualitative and quantitative 

results are compared with the aim of choosing the right model for image to mask translation 

in the geographic object realm. 

Qualitative results in Figure 5.5. show that the U-Net creates irregular segmentation 

masks, and rounded buildings, but also false positive pixels, even in the green objects over 

the training dataset. Transformers obtained rounded borders of buildings, and several false 
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positives specially in pixels that connect separate buildings. Generation based on 

conditional translation seems to create better masks than U-Net and Transformers which 

seem to worsen results of generation when added, perhaps due to the small number of 

examples used here compared to the reported in the original CvT paper. Figure 5.6 

illustrates qualitative results of U-Net, CvT, and Pix2Pix to image to mask translation over 

the Massachusetts Buildings dataset. 

 
 

Figure 5.5. Qualitative results of U-Net on the Massachusetts Building Dataset. GT and segmentation masks 

by U-Net are represented in white pixels and placed over the aerial image source. 

Quantitative results in Figure 5.6. show that conditional image to mask translation 

based on Pix2Pix generates more regular, cleaner and right-angle masks compared to the 

other models. Pix2Pix model exhibits masks closer to the ground truth for buildings 

compared to the other approaches. Also, the false positive pixels are less clustered which 

can be removed after a post processing cleaning procedure. Pix2Pix model. Experiments on 

this method applied to point, line, and polygon objects are presented in a coming section. 

Figure 5.6 shows quantitative results, based on IoU, when unpaired and conditional image 

to mask translation models are compared. Table 5.1 compares the results. 

     
(a) (b) (c) (d) 

 
(e) 

     
Figure 5.6. Results for Semantic segmentation, (a) Image, (b) Ground truth, (c) CvT, (d) unconditional and, (e) 

conditional image to mask translation. Results are obtained using the same 649 image examples of the 

Massachusetts Building dataset of 256x256 pixels over 100 training epochs. 

Table 5.1. Unpaired, conditional translation and  others comparative results  

Model mIoU 

CvT 0.11 

Unpaired translation CycleGAN 0.19 
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U-Net 0.67 

Conditional translation cGAN (Pix2Pix) 0.79 

5.2.2 Image to Point Mask Translation  

For testing the image translation to point objects, we use the domino dataset described in 

a previous section, in which vehicles are represented as point masks using 1 meter buffer 

distance. Figure 5.7. illustrates the Image-to-Image Translation Model components to 

generate point masks. 

 
 

Figure 5.7. Pix2Pix training diagram for image-to-point-mask translation. 

 

Figure 5.8 shows how the generator loss for the testing dataset using 1m buffer 

distance behaves better than larger distances for vehicle translation. Figure 5.9 shows the 

vehicle generation using 100 epochs of training on a dataset of 250 examples of 1 meter of 

buffer distance, image size of 256x256, and a batch size (bs) of 1. 

   

Figure 5.8. Generator and discriminator losses for image to point mask translation. 1m buffer distance 

vehicle dataset exhibits less variance in generator loss (blue curve) than in the both discriminator losses, d1 

(loss of discriminator in real images) and d2 (loss of discriminator in generated images).   
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Figure 5.9. Qualitative results for image to point-mask. Upper images are drone, the images in the bottom 

are the target latent space and the ones in the middle are the generated or translated target images. 

Successive epochs of training show better qualitative results. Different images are shown in each training 

example. 

5.2.3 Image to Line Mask Translation  

For image to line mask translation, we use the TSQS road dataset produced by us, in which 

roads are represented by line masks of 3m buffer distance from the centerline. Figure 5.10. 

illustrates the Image-to-Image Translation Model components to generate point masks. 
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Figure 5.10. Pix2Pix training diagram for image-to-line-mask translation. 
 

Figure 5.11 shows the qualitative results of translated line masks using 100 epochs, 250 

examples, image size of 256x256, and a bs of 1. 
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Figure 5.11. Qualitative results for image to line mask translation. 3m buffer distance road dataset. Up most 

images are drone, middle are real images, and images in the bottom correspond to translated road images. 

Successive training shows an improvement in the continuity of translation masks. The same image is shown 

in each training epoch to show learning evolution, third image case shows no learning due to a small number 

of examples of that type. 

5.2.4 Image to Polygon Mask Translation  

For polygon mask translation, the Massachusetts building dataset is tested with 100 epochs, 

649 examples, 256x256 image size, and bs of 1. In the case of polygons, the buffer distance 

parameter is zero (d = 0) since class imbalance ratio is larger compared to points and lines, 

16% of pixels are positive class. Figure 5.12. shows the Image-to-Image Translation Model 

components to generate polygon masks. Qualitative results for the polygon mask 

translation are shown in Figure 5.13. 

 
 

Figure 5.12. Pix2Pix training diagram for image-to-polygon-mask translation. 
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Figure 5.13. Qualitative results for image to polygon mask translation for the Massachusetts Building 
Dataset. Up most images are aerial imagery with low resolution compared to drone, bottom are real images 
of buildings, and images in the middle correspond to translated building images. In this case, training shows 
good qualitative results, comparing generated versus ground truth, since the very first epochs. This is probably 
due to a less imbalance binary class dataset. Special attention is deserved for round shape buildings, the 
apparition of some true negatives and false positives.  

5.2.5 Model Hyperparameters 

Translation model hyperparameters are learning rate, lambda value, number of epochs, and 

batch size. A dataset of 250 images of 256x256 pixels, with suggested values of learning rate 

= 0.002 (lr) and lambda value = 100 by (Isola et al., 2017) were used. Experiments over the 

last two parameters are shown in Figure 5.14. It illustrates that increasing the number of 

epochs above 100 does not reduce generator loss or its variance and does not generate 

better results. A graph of discriminator and generator losses and mIoU metric against 

number of epochs show that increasing the number of epochs does not necessarily improve 

the mIoU metric. As expected, a higher bs improved mIoU in 0.01. An experiment with bs=1, 

bs=6, and bs=10 only produced an increase of 0.01 (1%) in mIoU between the two extreme 

values. Figure 5.15. exhibits the results of bs vs mIoU with a dataset of 1100 images of 

256x256. However, bs=10 decreased the training time of model in around five times 

compared to bs=1. 

  
(a) (b) 

Figure 5.14. Effect of number of epochs. (a) Discriminator and generator losses vs epochs, (b) mIoU vs epochs. 

As shown in graphs, increasing the number of epochs to 150 does not seem to improve generator or 

discriminator losses values, and not their variance. On the other hand, more epochs of training do not imply 

a model with better metrics. 
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                                (a)                     (b) 

Figure 5.15. Effect of batch size. (a) batch size = 1 mIoU = 0.713, (b) batch size = 10 mIoU = 0.723. 

5.2.6 Effects of Imbalance on Image to Mask Translation 

Imbalance pixel classes affects deep learning models including image to mask translation 

(Gao et al., 2018). Figure 5.16 presents how imbalance changes with the increase in the 

buffer distance parameter of the road dataset to create the binary mask. The larger the 

buffer distance the more balance dataset is obtained. 

 
 

Figure 5.16. Imbalance vs buffer distance in roads. These values are averaged for the entire raster masks not 

yet tessellated. 

Figure 5.17. illustrates how point, line, and polygon masks generation from images is 

affected by imbalance. Generator and discriminator loss graphs show the impact in model 
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learning behavior. Different examples of imbalance classes show that the less imbalance 

the class is, the sooner the model starts learning. This is, the generator loss decreases with 

training, and it does not diverge as it is in the case of an extremely imbalance, i.e., the 10 

cm buffer dataset (< 0.05% of positive class). 

 
(a) 

 
(b) 

 
(c) 

Figure 5.17. Effects of imbalance pixel classes on image translation. (a) Left image shows losses of a 10cm 

buffer distance domino dataset for vehicles with an imbalance ratio of 0.04%, right image shows 50 cm buffer 

distance with an imbalance ratio of 1%. (b) Left image shows losses of a 50cm buffer distance for roads dataset 
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with an imbalance ratio of 7%, right image shows 1 meter buffer distance roads dataset with an imbalance 

ratio of 13.5%. (c) Massachusetts Building dataset has an imbalance ratio of 16%. Polygon objects datasets 

tend to be less imbalance, it means they have a larger imbalance ratio.  

A less imbalance dataset, it means a larger imbalance ratio, allows the translation 

model to learn faster (allowing the generator and discriminator losses to decrease in 

equilibrium between discriminator and generator). A python script to calculate the 

imbalance ratio of a (img-msk) dataset, delete the complete black masks, and to obtain a 

dataset with a pre-defined imbalance ratio is presented in Annex 1. An experiment with 

four different values of imbalance ratio is carried out. Imbalance ratios less or equal than 

1% are not able to generate masks regardless the number of training pairs (tested up to 

1000). Results for Imbalance ratios greater than 5%, 10%, and 20% are exhibited in Figure 

5.18. It seems that having more pixels per class improves mIoU results. 

 

 
(a) (b) (c) (d) 

 

  
(e) (f) 

Figure 5.18. Effects of imbalance on the mIoU. (a) Highly Imbalance masks, (b) Imbalance masks, (c) Medium 

Imbalance masks, (d) Balanced masks, (e) graphs of generator losses of different imbalance datasets: they 

show similar behavior except for the 1% imbalance ratio dataset, which exploded, (f) graph of mIoU vs 

Imbalance ratio. Datasets with imbalance ratio >=20% showed the best results. 

Table 5.2. Imbalance vs mIoU in road dataset  



67 
 

Imbalance for roads mIoU 

<=1% 0-0.1 
<5% 0.353 

>=5% 0.468 
>=10% 0.723 
>=20% 0.939 

5.2.7 Effects of Number of Examples and Size of Images in Mask Translation 

There has been a tendency to believe that the larger the training dataset the better the 
results. However, that depends on the model configuration in terms of its hyperparameters 
and depth (Abdollahi et al., 2019). To challenge this, the same model configuration is 
trained using the same dataset with different number of examples. A model training with 
250, 500, 1000 and 1500 images of 256x256 pixels and roads masks of 3 meters was carried 
out, and the results were compared. Hyperparameters used were: 100 epochs, LR=0.02, 
Dropout=0.5 and no data augmentation was done on the dataset. Figure 5.19. illustrates 
the mIoU metric results for different number of examples of the training road dataset. All 
the models exhibit problems in the borders. Figure 5.20. presents two graphs, the mIoU vs 
number of examples and the training time vs number of examples.   
 

  
(a) (b) 

 

  
(c) (d) 

  
Figure 5.19. Effect of number of examples in translation model performance. (a) 250 examples (b) 500 

examples, (c) 1000 examples and (d) 1500 examples.  As it is expected the higher the number of (image,mask) 

examples the better the metric. Time required to train different models in Google Collab started in 2 hours 

for 250 (img,msk) pairs of 256x256 px, and ended in 5 to 7 hours for 1500 (img,msk) pairs. A model for 2000 

examples took 13 to 15 hours of training and obtained a mIoU of 0.76 in the test set. However, when a 

batch_size of 10 was used, the training time decreased five times, so a model with 250 images was trained in 

around 25 minutes. 

Table 5.3. Examples vs performance in road dataset 

Number of pairs mIoU 

250 0.35-0.48 
500 0.49-0.55 

1000 0.60-0.72 
1500 0.75-0.90 
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>=2000 >=0.939 

 

  
(a)  (b)  

Figure 5.20. Effect of number of examples in training time. (a) mIoU vs number of (img,msk) pairs, (b) Training 
time vs number of (img,msk) pairs examples using a bs = 1. As graphs suggest, the best trained models can be 
obtained within 1000 and 1500 examples. 
 

Also, different image size is employed for training models to challenge which is the 
most appropriate image size for mask translation. Image size is increased to 512x512 pixels, 
and then to 1024 pixels, and different models were trained. All the hyperparameters are 
constant and the model performs image resampling to 256x256 pixels. 256 pixels 
correspond to 15.4 m at 6 cm/px average GSD, 30.7 m for images of 512, and 61.4 m for 
1024 pixels, this is almost the size of a block in a standard city. Results seem to show that 
the larger the image size the better the IoU metric of the test dataset. Figure 5.21. presents 
the mIoU metric results for 512, and 1024 pixels images pairs of the training road dataset. 
As stated in (Van Etten et al., 2019), IoU metric penalizes more false positives or 
irregularities (generated image 1, IoU=0.58), than false negatives or discontinuities of masks 
(generated image 2, IoU=0.73). As observed, major cases of false positives and false 
negatives are due to spectral similarities or spectral changes for models trained on both 
sizes. Table 5.4. compares size vs performance. 
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(a) (b) (c) 

Figure 5.21. Effect of image size in translation model performance. (a) Model trained with 512x512 px, (b) 

Model trained with 1024x1024 px, (c) model trained with 1500x1500 px (90m). These results suggest that 

training with larger image sizes improves the performance but generates more discontinuities and data 

availability may become an issue. 

Table 5.4. size vs performance in road dataset 

Size (px) mIoU Test pairs 

512x512 0.65 378 
1024x1024 0.55 329 
1500x1500 0.59 329 

5.2.8 Multi-Scale Training 

To challenge the effect of multi-scale training in model performance, two models are train 
over the same dataset but in different scale order. Starting first with images of 256x256, 
then 512x512 and ending up training with images of 1024x1024 pixels. After that, training 
in reverse order is performed, and a comparison of both models’ results is carried out. 
Figure 5.22. illustrates both cases. Table 5.5 shows the results when training bottom up and 
top down. 
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(a) (b) (c) 

Figure 5.22. Multi-Scale Training. (a) Training bottom-up 256x256 to 1024x1024 px (b), Training top-down 

1024x1024 to 256x256 px, (c) Training with 256x256 px and inferring at 1500x1500 px. 

Table 5.5. Bottom-up vs top-down training 

Size (px) mIoU Test pairs 

256x256 to 1024x1024 0.40 378 
1024x1024 to 256x256 0.28 378 

Training only at 256 but inferring 
at 1500x1500 

0.45 378 

5.2.9 Transfer Learning using Satellite Imagery 

The experiment for transfer learning consists of using the weights of a pre-trained model 

with 300 satellite images road masks pairs of 256x256 pixels with a GSD of 2.25 m/px over 

100 epochs. The pre-trained model is then retrained it with an imbalance ratio dataset >20% 

used in the imbalance experiment. Figure 5.23. shows the effect of applying transfer 

learning, comparing the results with the model that is not previously trained. 
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(a) (b) 

 
(c) 

Figure 5.23. Effect of Transfer Learning. (a) Satellite images and corresponding road masks, obtained from 

Mapbox and OSM respectively for model weights transferring, (b) Left image, Model with transfer learning 

(using weights from satellite), mIoU is: 0.909. Right image, model without transfer learning, mIoU is: 0.939, 

(c) generator loss of the transfer learning model exhibits less variability and smaller values in the training 

process compared to base model. 

5.2.10 Effects of Data Augmentation on Image to Mask Translation 

Data augmentation has been considered the horse power to deal with the class imbalance 

problem (S. Wang et al., 2016), multiplying the number of examples by many times and 

reducing in this way the dominant class in proportion to the positive class in a dataset. 

Which method of augmentation is better for drone imagery in image-to-image translation 

is still an open question. How is it possible to include data fusion with the purpose of 

reducing variance of generation and discrimination losses, and in this way, to reduce the 

training, and obtain better results. Experiments for different augmentation methods are 

presented next.  

• Geometric and Spectral Augmentation on Image to Mask Translation 

Geometric augmentation is implemented as ten degrees clockwise rotations, mirroring right 

to left and up to down, and horizontal overlapping of 30 %. Changes in 10% up over contrast, 
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brightness, and gamma values are performed over a separate dataset with an imbalance 

ratio >10% to compare the impact respect to the geometric augmentation. Figure 5.24. 

shows a comparison of data augmentation results using different methods. As expected, 

the maximum performance of the model was obtained when all the augmentation methods 

were applied, however, the application of overlapping and rotation plus mirroring obtained 

almost the same results. Table 5.6. summarizes augmentation results. 

  
(a) 

   
(b) (c) (d) 

Figure 5.24. Data Augmentation Comparison. (a) 30% overlapping (left), mirroring (right), (b) Spectral 

augmentation, (c) Rotation, (d) All augmentation together 

Table 5.6. Influence of data geometric and spectral augmentation 

Augmentation Method mIoU 

Overlapping (30%)  0.794 
Mirroring (vert. and hor.) 0.789 

Rotation (10 degree increase clockwise) 0.779 
Spectral (10% random increase in brightness, intensity and contrast) 0.659 

All augmentation together 0.847 

• Data Fusion on Image to Mask Translation 

Data fusion is used to include additional information, in this case height, that comes from 

the DSM and the VARI index into one channel of the RGB three channel images, without the 

need of creating additional channels, which may increase the size of architecture, the 

training time or the computational resources. 

Height augmentation: we want to evaluate the power of height information for the 

discrimination against spectral similarities of vehicles, roads and buildings against their 

surrounding objects. Also, which channel to replace by height data or it is better to add 

height to existing color channels. Our rationale is to initially remove blue channel since it is 



73 
 

the less in importance and compare this with the sum of height to each channel values and 

re-scale values to [0,255] interval. Figure 5.25. shows how the DSM data depletes the 

variance of the three training losses in image translation model for roads. Variance of 

generator loss (blue graph), but also of the discriminator loss on the real images (orange 

graph) and the discriminator loss on the generated images (green graph) decreased, and 

losses are smaller than when height is not present in the data. This behavior keeps the same 

even after 100 epochs of training, and as it was studied before, no improvement is 

exhibited. 

 
 

Figure 5.25. Effect of height information in image to mask translation of roads. Left image shows the 

constant decreasing of generator loss from the very first training epoch up to the 70th epoch, after that epoch, 

the three losses exhibit a high and constant variance even after 100 epochs. Right image shows an initial 

constant value of losses, they start decreasing after 20 epochs and continue with this behavior for the whole 

rest of training epochs, not apparent improvement is shown after the 100 epochs. 

VARI Index: Vehicles, roads, and buildings have a close spatial relationship between them 

and with other neighbor objects like trees. Green color is a spectral discriminant of trees, 

thus including information how green is an object and removing atmospheric influence is 

keen to the extraction model capabilities. We exchange the green color channel with the 

VARI Index in the search of a better and faster learning of the green objects by the model. 

Figure 5.26. shows results including DSM and VARI index into the model. Table 5.7. 

summarizes the results obtained with different data fusion. 
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(a) (b) 

  
(c) (d) 

Figure 5.26. Data fusion on Image to Mask Translation. (a) RG-DSM, this model gets confused in unoccupied 

zones that are at the ground level and have a similar spectral response to roads, (b) RVARIB, this model seems 

to not discriminate heights very well, (c) HRGB, summing height values to the three RGB channels and re-

scaling to [0,255] interval does not seem to be better than using height values in the blue band, (d) HRVARIB, 

it seems that combining VARI and DSM does not improve the results of only using height in the blue channel. 

Table 5.7. Influence of data fusion 

Fusion Method mIoU 

RG-DSM  0.725 
RVARIB 0.549 
HRGB 0.621 

HRVARIB 0.508 
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5.2.11 Image to Mask Translation Model Generalization and Occlusions  

Model generalization is tested via inferencing roads using images from other settlement (La 

Ceja, Ant.) with a higher GSD (5.5 cm/px), these are different to the ones of the training 

dataset (El Retiro, Ant. GSD 7.09 cm/px). Also, model is tested on challenge situations like 

different type of occlusions, and positive class scarcity. Figure 5.27 shows examples when 

model is used on a different settlement, with other light conditions and road characteristics, 

and when tree and building occlusions are present. Table 5.8 summarizes model 

generalization results. 

 
(a) 

  
(b) (c) 

Figure 5.27. Image to Mask Translation Model Generalization. (a) Model generalization over different 

settlement, although resultant masks are relatively good, mIoU metric is around 60%, this is because the 

differences in the GSD of the orthomosaics which cause a difference in ground truth, (b) Tree Occlusions, (c) 

Building Occlusions. Model sorted out well tree occlusions. However, for road occlusion or when inferring 
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over imbalance images, model behaves deficiently, generating false positives especially in zones with similar 

spectral response. 

Table 5.8. Model Generalization 

Case mIoU 

Inferring on different settlements 0.595 
Tree occlusions 0.929 

Building occlusions 0.428 

5.2.12 Color Encoding-Decoding for Attribute Extraction 

Figure 5.28 shows the results of an example of the model trained using a dataset with two 

road types, paved, unpaved, and background. They are encoded using color, red (1), green 

(2), and black (0) respectively. 

 
 

Figure 5.28. Encoding color for automatic attribute extraction. Model can generate and discriminate road 

types with an mIoU=0.798. 

5.2.13 Results on point, line and polygon objects 

Figure 5.29 illustrates results on different object geometries. 

 
(a) 
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(b) 

 
(c) 

Figure 5.29. Results on different sizes of masks for vehicles, roads and buildings. (a) vehicles, (b) roads, (c) 

buildings. 

 

5.3 Conclusions and Future Work 

 

Qualitative results show that Image to Mask Translation Models is agnostic to geometry 

of objects of interest in source imagery, and type or scale of input imagery. Results also 

show that conditional translation models work better than unconditional in terms of the 

need of a smaller number of examples, less training time, and number of epochs in the 

geography realm. Meanwhile, semantic segmentation and attention modules generated 

more round-shaped masks compared to image to mask translation approach. However, 

translation models are not completely free of producing round masks results for anthropic 

objects, like roads and buildings. 

Although generation of masks started with around 250 image-mask pairs and 

increasing the number of training examples improved the results, it also increased the 

training time in Google Collab. It started in around 3 hours for 250 examples and went up 
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to 14 hours for 2000 examples. Fortunately, it decreased almost in five times using a batch 

size of ten nor one as in the beginning. It slightly raised the mIoU metric as well. Other 

hyperparameters of the model like number of epochs, does not necessarily improved the 

results when moved above 100. 

Transfer learning and multi-scale training did not seem to improve the mask translation 

results, on the other hand, imbalance datasets are indeed a ubiquitous complex problem 

that affected results in quality, number of examples and epochs needed for the model to 

learn. Imbalance checking by every image-mask pair, not by the whole orthomosaic, helped 

in obtaining results closer to the ground truth. Geometric augmentation, especially the 

overlapping method, improved results more than the spectral augmentation. Image fusion 

performed by the inclusion of height and VARI index made up the learning process less 

variable. Inclusion of height data reduced the variance of the generator and discriminator 

loss. 

Model generalizes from similar region roads style and composition, nonetheless, mIoU 

metric did not measured well when masks are discontinuous or when orthomosaics with 

different GSD were used. Model also worked fine on tree occlusion, but mIoU highly 

decreased when challenged to situations of scarce or occlusion of roads. 

The use of other color spaces different to RGB, such as HSV, is suggested as an additional 

work to test if image to mask translation models would perform better. 
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Chapter 6 
 

6 A Post-processing Method 
 

GIS vectorization methods rely on uniform width, and continuity of the input masks, to 
produce point, line, and polygons objects. While semantic segmentation methods employ 
full-size masks, that also contribute to have less imbalance classes. Vectorization of full-size, 
irregular width or discontinuous masks commonly create an erroneous vector 
representation, for instance, road centerline or building footprints. So, the objective 
becomes the obtention of continuous and uniform width translated masks from images, 
since they produce a better vector representation. Experiments with our model-integrated 
concepts of Primitive Masks and Double Image to Mask Translation for the enhancement of 
masks are presented next. 

 

6.1 Primitive Masks 
 

A Primitive Mask is the simplest and uniform-width target mask for objects of a certain 
geometry present in source images, that is obtained in a semi-automatic way using a chosen 
buffer distance. It is produced to have the less possible pixels from other classes and it is 
imbalance checked to a threshold 𝑡. To obtain a raster mask for an object from vector 
ground truth in a semi-automatic way, a GIS user may choose a value for the buffer distance. 
However, setting an optimum value is not easy, since for instance, a vehicle can be geo-
located at the central point of a ball of radius 10 cm, 50 cm, 100 cm, etc. A road can be 
depicted by its centerline unitary pixels, or by a X meters-width mask. Choosing a small X 
value will cause an imbalance class, on the other hand, picking a large buffer distance would 
create a high variability distribution of misclassified pixels. So, an equilibrium between 
width and gaussian distribution variance is searched via an optimization process as shown 
in a future section. So, the purpose of using primitive masks is to find a gaussian-like 
statistical distribution of pixel values of the specific objects of interest that have enough 
number of pixels. This will improve the uniform shape of resultant masks and then the 
geometry and geographic coordinates of extracted objects. 

A primitive mask can be colored to represent multi-classes or attributes like type of 
vehicle, road class, speed, roof material, and many others. Figure 6.1. illustrates a primitive 
mask for roads. 
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Figure 6.1. Example of a Primitive Mask for Roads. It consists of setting an optimum value for a buffer 
distance. 

In certain cases, primitive masks may be imbalance, so their use by any deep learning model, 

including a generative model could be challenging. To deal with this problem, we propose 

the Double Conditional Image to Mask Translation (DCIT) and the double paired datasets as 

explained next. 

 

6.2 Double Image to Mask Translation and Double Paired Datasets 

 

As mentioned earlier, post-processing of resultant masks from deep learning models is 
overloaded with heuristics and hand engineering, depending on the type of masks obtained 
by a model, their quality, and the object to extract (Ng & Hofmann, 2018). Conditional 
translation of pixels between two semantic latent spaces may not produce perfect results 
in the case of highly distant spaces, or diverse, scarce and imbalance datasets, which 
produces spurious masks. To clean the resultant masks, we propose The Double Conditional 
Image Translation (DCIT), which consists in the use of a second generative model for the 
translation between spurious source masks and corrected target masks. The second 
generative model is trained on a double paired dataset as exhibited in Figure 6.2. 
 

 
(a) 
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(b) 

Figure 6.2. Double Pair Dataset Example and Double conditional image translation (DCIT). (a) Double Paired 
Dataset, it consists of pairs of (spurious masks – corrected masks), in which spurious are generated by a deep 
generative model. (b) DCIT, as it is shown in illustration, the first translation generated pixels in a full-size 
masks latent space, then the DCIT generates pixels in a primitive masks latent space. 

 
In theory, the translation from full-size, irregular or discontinuous masks to corrected 

masks using DCIT is feasible, since the semantic distance between binary masks is smaller 
than the existing between the RGB images and binary masks. Figure 6.3. illustrates the 
training diagram for the DCIT. 

 

 
 
Figure 6.3. DCIT training diagram. First, a Pix2Pix translates source images to full or regular size masks, a 
second Pix2Pix architecture performs image translation from regular masks with errors, to primitive masks. A 
complete example would be, first a translation between source images (orthomosaic chips) to target (full-size 
masks) using a dataset with an imbalance ratio > 20% for the best results. Resultant masks (irregular and 
discontinuous) will be taken by a second translation, that translates them to corrected masks. Masks produced 
by DCIT are in principle easier to vectorize and create better point, line, or polygon geometries. 
 

Figure 6.4. shows examples of full-size training mask, the resultant irregular and 
discontinuous masks obtained by deep learning models, and primitive masks used to clean 
masks using a DCIT. An example of a double paired dataset to train a DCIT model to correct 
roads is presented too. 
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(a) (b) (c) 

 
(d) 

Figure 6.4. Examples of masks and double image translation road dataset. (a) Full-size and primitive masks, 
(b) Irregular mask, (c) Discontinuous mask, (d) DCIT dataset for roads. Picture (a) shows that full-size masks 
are manually digitized and difficult to acquire, primitive mask on the other hand are equal width and produced 
automatically by setting a buffer distance parameter, they produce a road centerline (green line) after 
vectorization. Pictures (b) and (d) show examples of resultant mask by deep learning models, our DCIT 
approach uses a dataset of irregular and discontinuous masks paired with primitive masks to be trained and 
output clean masks as shown in (d). 

 

6.3 Experiments and Results 
 

As found in previous chapter, imbalance makes a great impact on mask generation, 
obtaining the best results when at least 20% of pixels belong to the positive class. So, using 
equal-size masks with a wrong width will cause a low performance model. Next section 
describes a method to obtain primitive masks. 

 

6.3.1 Primitive Masks and Buffer Distance 

Primitive masks are equal-size masks obtained automatically to semi-automatically using a 

buffer distance parameter. This is one of the advantages over the traditional and manual 

digitized segmentation masks. However, a small buffer distance will produce low variance 

gaussian distribution but imbalance dataset. On the other hand, large buffer distances will 

produce high variance gaussian distributions but a larger value of the imbalance ratios. 

Primitive masks are obtained when the optimum value of buffer distance is set. Figure 6.5. 

shows how buffer distance parameter affects the distribution of pixels RGB values of roads. 
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(a) 

 

 

   
(b) 

    
(c) 

    
(d) 

    
(e) 

Figure 6.5. Primitive mask and buffer distance parameter. (a) RGB distribution for the whole orthomosaic, 

(b) primitive mask with 50cm buffer distance, imbalance ratio =2.13%, (c) primitive mask with 1m buffer 

distance, imbalance ratio =4.35%, (d) primitive mask with 2m buffer distance, imbalance ratio=7.86, (e) 

primitive mask with 3m buffer distance, imbalance ratio=13.56. The same experiment was performed over 

other 10 orthomosaics, and the values are similar due perhaps to the fact that roads have a similar size and 

materials in the mapping zone. 
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Graph of standard deviation of pixel values per band vs buffer distance of Figure 6.6. 
illustrates a method to find the optimum buffer distance, this is, to obtain primitive masks 
for the roads and the results. 

 
Figure 6.6. Primitive masks and buffer distance parameter. For a buffer distance of 100 cm (yellow vertical 

line), there is practically no change in standard deviation of RGB values distribution, which indicates that 1 

meter is the best gaussian distribution of values, and so this is the buffer distance to set for obtaining primitive 

masks. Blue graph seems to confirm why replacing blue channel by DSM values does not seem to work as 

good as expected, and instead summing DSM values to every RGB channel is a better option. 

Figure 6.7. shows the results when obtaining primitive masks for point objects, in this case, 

vehicles. 

   

 
 a) 

   
 b)  

    
 

 (c)  
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Figure 6.7. Primitive masks for point objects. (a) Gaussian distributions (50cm, 100 and 150cm) are not 

perfectly shaped because vehicles are not uniformly colored. This also explains the higher standard deviation 

compared to the previous road masks example. The graph of standard deviation of RGB pixel values vs 

distance (upper right image) shows that 100 cm seems to be the appropriate buffer distance for producing 

primitive masks. (b) In GIS, vehicles are modeled as points, so main feature is position and the attribute type, 

image in the middle shows masks with 50 cm (left), 100 cm (middle), and 150 cm (right) buffer distance of 

point vehicle locations. (c) Image in the bottom illustrates full size semantic segmentation masks for vehicles. 

However, although they consist of more pixels, the RBG distribution is very similar to the primitive masks 

exposed in image (a).  

6.3.2 Double Image to Mask Translation for Masks and Vector Improvement 

We applied double image to mask translation to the road dataset to clean resultant 
masks of the generative model. Figure 6.8. shows the results in terms of model performance 
and learning graphs of testing vs training road dataset.  

 

 

 

 

(a) (b) 
Figure 6.8. DCIT model performance and learning graphs. (a) DCIT Model performance mIoU=0.892, As can 
be observed model cleans effectively discontinuous and irregular masks, right is input spurious mask, center 
is the GT and left is the obtained mask by DCIT, (b) Discriminator and generator losses of the training vs the 
testing dataset. 

 
Figure 6.9. exhibit the improvement of resultant masks by the application on DCIT in the 
case of a dataset formed only by discontinuous and irregular masks. 
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Figure 6.9. Improvement of discontinuous and irregular masks by the application of DCIT. Center mask is the 
GT, right is the input image, and left is the generated by DCIT. When DCIT is applied only on spurious masks, 
it effectively tackles discontinuity (false negative pixels) and irregularity (clusters of false positive pixels) in 
masks. However, mIoU decreases from 0.892 obtained for a mixed dataset to 0.802 for only spurious. 
 

Finally, Figure 6.10 illustrates vectorization results on an irregular mask obtained by the 
generative model versus those after DCIT is applied. 
 

   
(a) (b) (c) 

Figure 6.10. Post-processing. (a) Vector of a road irregular mask obtained by a semantic segmentation model 
using a U-Net, (b) Vector representation of a primitive mask generated by our approach, (c) Vectorization into 
a centerline of the previous primitive mask. 

 

6.4 Conclusions and Future Work 
 

The concepts of primitive masks and double image translation are introduced and 
developed. Primitive masks for training image translation and double image translation 
models bring several benefits. It starts with allowing a more uniform gauss distribution of 
RGB pixel values that improves model training and performance. In the second place, it 
supports the enhancing of masks, correcting discontinuity and irregularity of masks using a 
DCIT integrated model. Primitive masks depend on the optimization of the standard 
deviation as a function of the buffer distance, this process can be automated following the 
method proposed in the text for a road dataset. Primitive masks obtained were 1 meter 
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width a standard deviation of around 30 for the orthomosaic of a settlement. However, the 
value was a constant for the majority of the other ten settlements acquired with drone. A 
double paired dataset for roads is introduced for training a DCIT model. DCIT is an 
integrated model to perform image to mask and then mask to primitive mask translation. It 
is used as a measure to clean masks that are translated deficiently with an image to mask 
translation model. DCIT showed good results in a road-testing dataset for solving 
discontinuities, generating continuous masks, and making uniform masks when initial 
model generated irregular masks. The results obtained by the DCIT model are vectorized 
and visually compared with the resultant mask obtained by a U-Net segmentation model. 

Future work is proposed in reducing the size of the DCIT network, it has the same size 
as the first one, but we consider that a smaller network might be work better since the 
distance between the irregular and discontinue masks latent spaces is closer than the image 
to mask latent spaces.  Second would be to build a web application that integrates the whole 
approach proposed here and brings people an opportunity to play with pixel distributions, 
imbalance, primitive masks and double image translation to solve local mapping problems. 
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Chapter 7 

7 Validation of the Proposed Methodology 
 

Vehicle, road, and building localization from overhead imagery has often been treated 
as an image segmentation problem, i.e., identifying which pixels in an image belong to 
which class. However, metrics like F1-Score and mIoU do not consider mask discontinuities, 
and comparison to Vector GT. These two aspects make the difference of a metric to be used 
in GIS vector layer obtention. The proposed evaluation metric is discussed below. 
 

7.1 Proposed Performance Metric 
 

Road predictions are affected by occlusions and shadows, as stated in (Van Etten et al., 
2019), legacy metrics as 𝐼𝑜𝑈 does not optimally evaluate road continuity (discontinuities), 
and errors in width are less penalized than brief breaks in inferred roads. These situations 
led authors in (Van Etten et al., 2019) to propose metric based upon Dijkstra’s shortest path 
algorithm. The Average Path Length Similarity (APLS) sums the differences in optimal paths 
between GeoJSON vector ground truth and GeoJSON proposal graphs. Missing paths in the 
graph are assigned the maximum proportional difference of 1.0. The APLS metric scales 
from 0 (poor) to 1 (perfect), Equation 7.1. 
 

APLS =  1 −  
1

𝑁
∑ 𝑚𝑖𝑛 {1,

| L(a,b) − L(a, ,b,) |

 L(a,b)
}  7.1 

 
Where N = number of unique paths, while L(a, b) = length of path(a, b). The sum is taken 

over all possible source (a) and target (b) nodes in the ground truth graph. The node a, 
denotes the node in the proposal graph closest to the location of ground truth node a. If 
path (a, , b,) does not exist, the maximum contribution of 1.0 is used, thereby ensuring that 
missing routes are highly penalized. Equation 7.1. is easy to apply if the proposal graph G’ 
has nodes coincident with the ground truth graph G. In practice, however, proposals will 
not align perfectly with ground truth graphs, so a number of post-processing snapping, and 
additional considerations should be done to calculate the APLS metric, which at the same 
time is only applicable to roads. 

Additional to the flaws of the IoU reported by (Van Etten et al., 2019), Figure 5.6. 
showed that when evaluating model generalization with images of a different settlement, 
mIoU decreased although resultant masks were qualitatively good. This situation was 
caused by a difference in GSDs of the orthomosaics used for training and for inferencing, 
which resulted in a different size between the GT and the resultant masks. This cannot be 
corrected, and then, evaluating mask geometry after vectorized is particularly meaningful, 
because a simple and accurate vector data representation is crucial to the map production. 
For these reasons, we propose the Average Geometry Similarity (AGS), as APLS, a metric 
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based on the ground truth vector objects, calculating a difference in number, distance, and 
area between vector objects generated by model against the original vectors, but also the 
time taken to generate a number of objects, length, or area. These two values are calculated 
at least within 𝑛 (three as the minimum) different areas of interest (AOIs), 100m, 200m, and 
400m. This metric better reflects not only the fidelity of geometry and thus the required 
manual editing workload when converting a model inference mask to real map products.  
Equations 7.2., 7.3, and 7.4 are designed for points (ex. vehicles), lines (ex. roads), and 
polygons (ex. buildings) respectively.  
 

AGS_Points =
1

𝑛
∑ (1 −𝑛

1 min {1,
| #V(a,b) −#𝑉′(a,b) |

 #V(a,b)
}), points/s   7.2 

 

AGS_Lines =
1

𝑛
∑ (1 −𝑛

1 min {1,
| L(a,b) − 𝐿′(a,b) |

 L(a,b)
}), m/s   7.3 

 

AGS_Polygons =
1

𝑛
∑ (1 −𝑛

1 min {1,
| A(a,b) − 𝐴′(a,b) |

 A(a,b)
}), m2/s  7.4 

 
Where, #V and #𝑉′ are the number of, for instance vehicles, within an area defined by 

points a and b, for both the ground truth, and model respectively. L(a, b) and 𝐿′(a, b) are the 
length of roads for ground truth and model within points (a, b), and A(a, b), 𝐴′(a, b) are the 
area of buildings for the GT and the model within points (a, b). Proposed metric scales from 
0 (poor) to 1 (perfect). The time would serve as a benchmark in the future, (H. L. Yang et al., 
2018) obtained building binary masks, using a SegNet model, with an average processing 
time of less than one minute for an area of ~56 km2. However, they don´t mention the 
hardware employed. AGS is non dimensional, the second term is meter of automatic 
generation per second. AGS is used only for vector objects, so it is not applicable to imagery. 
Figure 7.1 illustrates the proposed AGS metric for the roads example. Center point of 
increasing area is arbitrary, but it is suggested to be in the middle of the orthomosaic of 
mapping interest. A script to obtain the three squares can be found in Annex 1. 
 

    
(a) (b) (c) (d) 

Figure 7.1. AGS Proposed Methodology Performance Metric. (a) 100m, 200m, and 400m AOIs, (b) GT roads, 
(c) Generated roads, (d) GT and generated roads. 

 

7.2 Experiments and Results 
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AGS Metric was used to evaluate performance of the method using different generative model 

configurations. AGS_Lines for roads of settlement El Retiro, (Ant.) was calculated. Python script for 

calculating AGS Metric for Lines can be found in Annex 1. Figure 7.2. shows resultant road network 

after vectorization and Table 7.1. summarizes the AGS results.  

   
(a) (b) (c) 

 
(d) 

Figure 7.2. Application of AGS Metric. (a) Image to mask translation model and vectorization without primitive 
masks, (b) Image to mask translation model with primitive masks and vectorization, (c) Model including double 
image to mask translation and vectorization, green line is the GT, (d) Complete area of inference. 
 
 

Table 7.1 Results of estimating AGS_Lines for metric roads vectorization 

Orthomosaic Application of AGS Metric - Roads AGS_Lines 

El Retiro, 
(Ant.) 

Image to mask translation model and vectorization without primitive 
masks 

0.801 at 12.87 
m/s 

Image to mask translation model with primitive masks and 
vectorization 

0.903 at 12.39 m/s 

Model including double image to mask translation and 
vectorization 

0.940 at 12.03 m/s 
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7.3 Conclusions and Future Work 
 

A metric called AGS is proposed based on the weakness of the mIoU for the mapping 
field and related work. At least roads of 4 settlements were mapped automatically and AGS 
metric evaluated. Results show that proposed metric is useful to measure the difference 
between maps created by a person and automatic mapping. This metric, accompanied of 
the produced datasets, may lead to a benchmark for standardizing map automation. The 
developed methodology created urban road network of El Retiro (Ant.) in 36 minutes using 
a windows PC CPU 2.8 HGz, core i7, with 4 Gb RAM. We obtained AGS_Lines of 0.94 and 12 
m/sec, and La Ceja (Ant.) in 16 minutes with an AGS_Lines of 0.96 at 15 m/sec. 

Space for future work is on the development of a metric that has into account 
differences in coordinates, also there is an opportunity to build a cloud platform that 
integrates the three methods documented in this thesis. 
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Chapter 8 

8 Conclusions 
 

This thesis presents a pipeline for extraction of point, line, and polygon vector features 

from orthomosaics via a generative model. It improves data creation and its effectiveness 

on model performance to produce better quality masks in terms of continuity and uniform 

size. These are the most relevant aspects in the vector layers production. Our pipeline 

integrates post-processing in three methods to pass from drone imagery to vector layers. 

In Chapter 3, we showed the three components in which the pipeline is based on, and 

the specific details for everyone. Different data transformations that should be performed 

to improve model training and behavior are highlighted. Image to mask translation model 

is described to replace the traditional segmentation models in extracting geographic 

objects. Description of introduced concepts, primitive masks and double image translation, 

that help integrating post-processing of masks into the generative model to create better 

vector objects. 

Chapter 4 presents the data pairing workflow, buffer distance proved to be the key 

parameter for allowing the method to produce datasets for point and line objects in a semi-

automatic way compared to alternative manual approaches. The data imbalance check is 

keen to produce less imbalance image-mask pairs, with a suggested imbalance ratio 

threshold above 10% to guarantee generative model to learn. The proposed method 

developed an easy way to augment dataset with height values, and fusion of VARI Index 

into RGB images that may be discriminative for some objects. A vehicles dataset as an 

expression of point objects, and a road dataset as an instance of line objects dataset, are 

examples of the application of this method. 

Chapter 5 showed that conditional image to mask translation showed better qualitative 

and quantitative results in production of cleaner and uniform masks compared to the 

unconditional or the semantic segmentation approach. Also, it exhibited a higher mIoU 

value even including state of the art attention modules. Generation of point, line or polygon 

masks, conditionally and supervised, could solve some of the problems of semantic 

segmentation commonly described by many scientists. Model hyperparameters like batch 

size equal to 10 and 100 epochs showed the best training results. Around 1000 training 
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examples of NRG-DSM paired images with a size of 512x512 px exhibited the best model 

performance for production of road masks. This overcomes the performance of VARI index 

and the combination of VARI with the DSM. 

Chapter 6 describes how to obtain primitive masks with the aim of producing gaussian-

like distribution of masks that guarantees convergence of chosen generative model. 

Proposed graph of standard deviation vs mask buffer distance to obtain a primitive mask 

proved that the best size for vehicle and road datasets was 1 meter for orthomosaics of 

different settlements. The double image to mask translation also introduced in this chapter, 

solved the discontinuous, and irregular width masks obtained by semantic segmentation 

and previous generative models. 

Finally, in chapter 7 the proposed AGS metric measures performance of the 3-method 

pipeline to extract vector layers, comparing objects automatically obtained vs man-made. 

Results of AGS show that double image translation enhanced vectorization in the urban 

road network of the settlement El Retiro, which is verified by a small value of AGS when 

model did not include it.  

Recommendation for future research may be centered on the mechanisms for directly 

encoding geographic objects coordinates to produce vector outputs using geometric deep 

learning.  There is also room to fine-tune the double image to mask translation model in a 

way that can be integrated in other deep learning architectures for improving resultant 

masks. More research is needed to establish how double image translation may replace all 

or part of the methods commonly used to postprocess masks and produce vector objects.  
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Annexes 
 

Annex 1. Python Scripts 
 

This Annex documents the scripts used within the proposed pipeline. Scripts are run in 

Google Collab or locally using Jupyter Notebooks. They are grouped in the three methods 

of the proposed methodology. 

 

Paired Data 

 

Data entry has two inputs, one is the raster format composed by orthomosaics and DSM. 

The other is the vector point, line, or polygon layers that form the ground truth. 

Raster Layers 

For the raster layers stream three block of scripts are developed, these are: 

• Geometric augmentation: mirroring (horizontal and vertical), rotations (10 degrees 

increments), overlapping (10%, 20%). 

 
# This script performs geometric augmentation over orthomosaics and GT masks, flip top to bottom, left to right, 10 deg 

 

import os 

import sys 

from PIL import Image 

Image.MAX_IMAGE_PIXELS = None 

 

mypath = "C:/data/" 

 

imagenes = 1 

for f in os.listdir(mypath): 

    i = Image.open(os.path.join(mypath, f)) 

    print(f, i.size, i.mode) 

    fname, fext = os.path.splitext(f) 

    i.rotate(10).convert('RGB').save(os.path.join(mypath,'n{}.tif'.format(fname))) 

    i.transpose(Image.FLIP_TOP_BOTTOM).convert('RGB').save(os.path.join(mypath,'v{}.tif'.format(fname))) 

    i.transpose(Image.FLIP_LEFT_RIGHT).convert('RGB').save(os.path.join(mypath,'h{}.tif'.format(fname))) 

    imagenes = imagenes + 1 

print("processed orthomosaics: "+ str((imagenes-1)*3)) 
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# This script makes overlapping images from an orthomosaic (10%, 20%) with a specific chip size. 

import os 

import cv2 

 

path_to_img = r"C:\data\NameOrthomosaic.tif" 

path_to_msk = r"C:\data\NameMask.tif" 

savedir = "C:/data/" 

 

img = cv2.imread(path_to_img) 

img_h, img_w, _ = img.shape 

split_width = 256 

split_height = 256 

 

def start_points(size, split_size, overlap=0.2): 

    points = [0] 

    stride = int(split_size * (1-overlap)) 

    counter = 1 

    while True: 

        pt = stride * counter 

        if pt + split_size >= size: 

            points.append(size - split_size) 

            break 

        else: 

            points.append(pt) 

        counter += 1 

    return points 

 

X_points = start_points(img_w, split_width, overlap = 0.2) 

Y_points = start_points(img_h, split_height, overlap = 0.2) 

 

count = 0 

name = 's' 

frmt = 'png' 

 

for i in Y_points: 

    for j in X_points: 

        split = img[i:i+split_height, j:j+split_width] 

        cv2.imwrite(os.path.join(savedir + '{}_{}.{}'.format(name, count, frmt)), split) 

        count += 1 

print("Se han producido ", count, "imagenes de ",  overlap, "de overlap") 

 

• Spectral augmentation: brightness, contrast and gamma value (intensity). 
 

# This script makes spectral augmentation over orthomosaics changing brightness and contrast to 20% more 

 

import os 

import sys 

from PIL import Image, ImageEnhance 

Image.MAX_IMAGE_PIXELS = None 

 

mypath = "C:/data/" 
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myorthomosaic = "Name.tif" 

 

def change_brightness(path, ortomosaic, brightness = 1.2): 

    img = Image.open(os.path.join(path, ortomosaic)) 

    print(img.size, img.mode) 

    enhancer = ImageEnhance.Brightness(img) 

    print("Se produjo una ortofoto con iluminacion de: "+ str(brightness)) 

    return enhancer.enhance(brightness).save(os.path.join(path,'Ilum_{}'.format(ortomosaic)))   

 

def change_contrast(path, ortomosaic, contrast = 1.2): 

    img = Image.open(os.path.join(path, ortomosaic)) 

    print(img.size, img.mode) 

    enhancer = ImageEnhance.Contrast(img) 

    print("Se produjo una ortofoto con contraste de: "+ str(contrast)) 

    return enhancer.enhance(contrast).save(os.path.join(path,'Cont_{}'.format(ortomosaic)))   

 

change_brightness(mypath,myorthomosaic) 

change_contrast(mypath,myorthomosaic) 

 

• Data fusion: production of fusion of images into three channels, and indexes like 

VARI.  

Vector Layers information from OSM 

For the vector layers stream, a workflow is developed in python as well as in Model Builder-

ARCGIS. OSM is a good, probably the default, source of point, line, and polygon information. 

# This script downloads point, line or polygon objects of interest from OSM within coordinates (Xmin, Ymin), (Xmax, Ymax) 

 

!pip install overpass 

!pip install geopandas 

 

from google.colab import drive 

drive.mount('/content/drive', force_remount=True) 

root_dir = "/content/drive/My Drive/" 

base_dir = root_dir + 'automap/' 

print("base_dir is: ", base_dir) 

 

import os 

import overpass 

import geopandas as gpd 

import time 

import json 

 

mypath = base_dir + 'ortofotos/vias/' 

myname = "roadsGirardota.geojson" 

mynameout = "roadsGirardota.shp" 

mytime = time.time() 

 

api = overpass.API() 

data = api.get('way["highway"](6.367,-75.458,6.391,-75.433);', verbosity='geom', responseformat="geojson") 
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[f for f in data.features  if f.geometry['type'] == "LineString"] 

with open(os.path.join(mypath, myname), 'w', encoding='utf-8') as myfile: 

    json.dump(data, myfile, ensure_ascii=False, indent=4) 

print("Se creo un mapa: ", myname, 'en', mypath) 

gdf = gpd.read_file(os.path.join(mypath, myname)) 

gdf.to_file(os.path.join(mypath, mynameout), driver='Shapefile') 

mytimef = time.time() 

print("Se ha creado con éxito:", mynameout,'a partir de un geojson en:', round((mytimef-mytime),2), 'segundos') 

Area and extension of Raster Drone Imagery 

raster_path = r'C:\Users\john\Downloads\AutoMap\datos\El_Retiro600.tif' 

ras = arcpy.Raster(raster_path) 

area = ((ras.width*ras.height)*(ras.meanCellWidth*ras.meanCellHeight)*(111**2)*100) 

print(round(area,1)) 

print(ras.extent) 

print(ras.meanCellWidth) 

Production of binary or attributed mask from point, line or polygon 
 

# This script creates a point, line or polygon dataset from ground truth shapefiles  

import arcpy 

 

# Local variables: 

Roads_San_Pedro_Buffer1_Eras2__2_ = "Roads_San_Pedro_Buffer1_Eras2" 

Roads_San_Pedro_Buffer1_Eras2__3_ = Roads_San_Pedro_Buffer1_Eras2__2_ 

AOI_Andes_Identity = "AOI_Andes_Identity" 

AOI_San_Pedro = "AOI_San_Pedro" 

Roads_San_Pedro = "Roads_San_Pedro" 

type_1 = Roads_San_Pedro 

type_2 = Roads_San_Pedro 

Roads_San_Pedro_Buffer1 = "C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1" 

Buffer_3m = "C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer" 

Roads_San_Pedro_Buffer1_Eras = "C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras" 

Roads_San_Pedro_Buffer1_Eras1 = "C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras1" 

Roads_San_Pedro_Buffer1_Eras1__2_ = Roads_San_Pedro_Buffer1_Eras1 

Roads_San_Pedro_Buffer1_Eras1__4_ = Roads_San_Pedro_Buffer1_Eras1__2_ 

Roads_San_Pedro_Buffer1_Eras2 = "C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras2" 

Feature_Road1 = "C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Feature_Road1" 

ortofotos = "C:\\Users\\PC-ONE\\Downloads\\ortofotos" 

ortofotos__2_ = ortofotos 

 

# Process: Select Layer By Attribute (2) 

arcpy.SelectLayerByAttribute_management(Roads_San_Pedro, "NEW_SELECTION", "\"type\" = 2") 

 

# Process: Buffer (2) 

arcpy.Buffer_analysis(type_2, Roads_San_Pedro_Buffer1, "150 Centimeters", "FULL", "ROUND", "ALL", "", "PLANAR") 
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# Process: Select Layer By Attribute 

arcpy.SelectLayerByAttribute_management(Roads_San_Pedro, "NEW_SELECTION", "\"type\" = 1") 

 

# Process: Buffer 

arcpy.Buffer_analysis(type_1, Buffer_3m, "3 Meters", "FULL", "ROUND", "ALL", "", "PLANAR") 

 

# Process: Erase 

arcpy.Erase_analysis(Roads_San_Pedro_Buffer1, Buffer_3m, Roads_San_Pedro_Buffer1_Eras, "") 

 

# Process: Merge 

arcpy.Merge_management("C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras;C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer", Roads_San_Pedro_Buffer1_Eras1, "surface 

\"surface\" true false false 80 Text 0 0 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,surface,-1,-1;max_speed \"max_speed\" true false 

false 10 Long 0 10 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,max_speed,-1,-1;type \"type\" true false false 10 

Long 0 10 ,First,#,C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,type,-1,-1;quality 

\"quality\" true false false 30 Text 0 0 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,quality,-1,-1;class \"class\" true false false 50 Text 0 

0 ,First,#,C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,class,-1,-1;BUFF_DIST 

\"BUFF_DIST\" true true false 0 Double 0 0 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,BUFF_DIST,-1,-1;ORIG_FID \"ORIG_FID\" true true 

false 0 Long 0 0 ,First,#,C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer,ORIG_FID,-1,-

1;Shape_Length \"Shape_Length\" true true true 8 Double 0 0 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras,Shape_Length,-1,-1,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras,Shape_length,-1,-1;Shape_Area 

\"Shape_Area\" true true true 8 Double 0 0 ,First,#,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras,Shape_Area,-1,-1,C:\\Users\\PC-

ONE\\Documents\\ArcGIS\\Default.gdb\\Roads_San_Pedro_Buffer1_Eras,Shape_area,-1,-1") 

 

# Process: Add Field 

arcpy.AddField_management(Roads_San_Pedro_Buffer1_Eras1, "type", "SHORT", "", "", "", "", "NULLABLE", 

"NON_REQUIRED", "") 

 

# Process: Calculate Field 

arcpy.CalculateField_management(Roads_San_Pedro_Buffer1_Eras1__2_, "type", "reclass(!OBJECTID!)", "PYTHON_9.3", 

"def reclass(OBJECTID):\\n    if (OBJECTID == 1):\\n        return 1\\n    else:\\n        return 2\\n") 

 

# Process: Identity 

arcpy.Identity_analysis(AOI_San_Pedro, Roads_San_Pedro_Buffer1_Eras1__4_, Roads_San_Pedro_Buffer1_Eras2, "ALL", 

"", "NO_RELATIONSHIPS") 

 

# Process: Apply Symbology From Layer 

tempEnvironment0 = arcpy.env.cartographicPartitions 

arcpy.env.cartographicPartitions = Roads_San_Pedro_Buffer1_Eras2 

arcpy.ApplySymbologyFromLayer_management(Roads_San_Pedro_Buffer1_Eras2__2_, AOI_Andes_Identity) 

arcpy.env.cartographicPartitions = tempEnvironment0 

 

# Process: Feature to Raster 
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arcpy.FeatureToRaster_conversion(Roads_San_Pedro_Buffer1_Eras2__3_, "type", Feature_Road1, "C:\\Users\\PC-

ONE\\Downloads\\ortofotos\\wgs84\\San_Pedro.tif") 

 

# Process: Raster To Other Format (multiple) 

arcpy.RasterToOtherFormat_conversion("C:\\Users\\PC-ONE\\Documents\\ArcGIS\\Default.gdb\\Feature_Road1", 

ortofotos, "TIFF") 

 

It is also possible to develop the previous script using the Model Builder in ARCGIS, see 

Figure A1.2: 

 

Figure A1.2. Script to create GT masks from point, line or polygon vector layers. 

 

Image Captioning 

A script in ArcGIS to create an image captioning dataset is presented next. 

# This script creates a captioning dataset: (img, attribute list) 

import arcpy 

 

# Local variables: 

AOI_Andes = "Roads\\AOI_Andes" 

Output_Labels = "" 

Roads_Andes = "Roads_Andes" 

Network_Image_Caption = "C:\\Users\\PC-

ONE\\Downloads\\ortofotos\\RSQS_Dataset.mdb\\Roads\\Network_Image_Caption" 

Roads_Andes_Captioned = "C:\\Users\\PC-

ONE\\Downloads\\ortofotos\\RSQS_Dataset.mdb\\Roads\\Roads_Andes_Captioned" 

 

# Process: Create Fishnet 

Height_size = 0,00021954578432 

Base_size = 0,00021954578432 

arcpy.CreateFishnet_management(Network_Image_Caption, "-75,889360382 5,64578355200007", "-75,889360382 

15,6457835520001", " Height_size ", " Base_size ", "", "", "-75,871570313 5,67187862600002", "NO_LABELS", AOI_Andes, 

"POLYGON") 

 

# Process: Intersect 
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arcpy.Intersect_analysis("Roads_Andes #;C:\\Users\\PC-

ONE\\Downloads\\ortofotos\\RSQS_Dataset.mdb\\Roads\\Network_Image_Caption #", Roads_Andes_Captioned, 

"NO_FID", "", "INPUT") 

Tessellation, Pairing, and Dataset Splitting 

For the central stream, three scripts were developed: 

• Tessellation: partition of image and mask to certain size. 
 

# This script tessellates orthomosaics and corresponding masks into chips img,msk of a specific size 

 

import os 

import sys 

from PIL import Image 

Image.MAX_IMAGE_PIXELS = None 

 

savedir = "C:/data/img/" 

path = "C:/data/img_in" 

 

start_pos = start_x, start_y = (0, 0) 

cropped_image_size = w, h = (512,512) 

frame_num = 1 

 

for filename in sorted(os.listdir(path)): 

    img = Image.open(path + '/' + filename) 

    ##if img.endswith('.tiff'): 

    print(path + '/' + filename) 

    width, height = img.size 

    for col_i in range(0, width, w): 

            for row_i in range(0, height, h): 

                crop = img.crop((col_i, row_i, col_i + w, row_i + h)) 

                save_to= os.path.join(savedir + "{:1}.png") 

                crop.convert('RGB').save(save_to.format(frame_num)) 

                frame_num += 1 

print('El numero de imagenes de ' + str(w) + 'x' + str(h) + ' obtenidas fue de:', frame_num-1) 

 

savedir2 = "C:/data/msk/" 

path2 = "C:/data/msk_in" 

 

start_pos = start_x, start_y = (0, 0) 

#cropped_image_size = w, h = (600,600) 

#cropped_image_size = w, h = (256,256) 

frame_num = 1 

 

for filename in sorted(os.listdir(path2)): 

    img = Image.open(path2 + '/' + filename) 

    print(path2 + '/' + filename) 

    ##if img.endswith('.tiff'): 

    width, height = img.size 

    for col_i in range(0, width, w): 

            for row_i in range(0, height, h): 
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                crop = img.crop((col_i, row_i, col_i + w, row_i + h)) 

                save_to= os.path.join(savedir2 + "{:1}.png") 

                crop.save(save_to.format(frame_num)) 

                frame_num += 1 

print('El numero de mascaras de ' + str(w) + 'x' + str(h) + ' obtenidas fue de:', frame_num-1) 

 

• Pairing: put together each image chip and corresponding mask into one sole image. 
 

# This script put img and corresponding msk together in one image 

 

import os 

import sys 

from PIL import Image, ImageEnhance 

Image.MAX_IMAGE_PIXELS = None 

 

myfolder1 = "C:/data/img/" 

myfolder2 = "C:/data/msk/" 

myoutfolder = "C:/data/dataset512/" 

 

total_width = 1024 

max_height = 512 

 

lst1 = [] 

lst2 = [] 

#formato = '.jpg' 

formato = '.png' 

 

new_im = Image.new('RGB', (total_width, max_height), color=(0,0,0)) 

 

for count, filename in enumerate(sorted(os.listdir(myfolder1))): 

    (lst1.append(filename)) 

 

for count2, filename2 in enumerate(sorted(os.listdir(myfolder2))): 

    (lst2.append(filename2)) 

 

for i in range(0,len(lst1)): 

    im=Image.open(myfolder1+str(lst1[i])).convert("RGB") 

    #im=Image.open(myfolder1+str(lst1[i])) 

    img=Image.open(myfolder2+str(lst2[i])).convert("RGB") 

    #img=Image.open(myfolder2+str(lst2[i])) 

    new_im.paste(im, (0,0)) 

    new_im.paste(img, (max_height,0)) 

    new_im.save(myoutfolder + str(i+1) + formato) 

print("Se han emparejado " + str(i+1) + ' imagenes de ' + str(max_height) +' pixeles en el formato: ' + formato) 

 

• Splitting: randomly split the dataset into training, validation and testing. 
 

# This script randomly splits the dataset into 80% for training, and 20% for validation and testing, and 50% of the last 

partition for test. 
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import os 

source = "C:/data/dataset512" 

dest1 = "C:/data/dataset512/valid" 

dest2 = "C:/data/dataset512/test" 

 

p1 = 0.2 # this is the percentage split value 

 

files = os.listdir(source) 

import shutil 

import numpy as np 

for f in files: 

    if np.random.rand(1) < p1: 

        shutil.move(source + '/'+ f, dest1 + '/'+ f) 

 

p2 = 0.5  

files = os.listdir(dest1) 

for f in files: 

    if np.random.rand(1) < p2: 

        shutil.move(dest1 + '/'+ f, dest2 + '/'+ f) 

print("Split done",str(p1*100),"% validation",str(p2*100), "% test") 

 

• Imbalance calculation: calculate the degree of imbalance of a dataset. 
 

# This code calculates the percentage of white pixels over total pixels in image 

 

import cv2 

import numpy as np 

import os 

#from PIL import Image 

 

path = os.path.join(base_dir + 'dataset256_3m_RGB/', '750/') 

 

count = 0 

tot_white_px = 0 

tot_blk_px = 0 

 

for filename in os.listdir(path): 

    img = cv2.imread(path + '/' + filename, cv2.IMREAD_GRAYSCALE) 

    n_white_pix = np.sum(img == 255) 

    tot_white_px = n_white_pix + tot_white_px 

    n_black_pix = np.sum(img == 0) 

    tot_blk_px = tot_blk_px + n_black_pix 

    #if (count == 0): 

  #    mylog = open(base_dir + 'dataset256_3m_RGB/' + "imbalance_log.log", "a") 

  #    mylog.write('dataset_size' + ',' + 'wh_px' + ',' + 'bl_px'+','+'tot_px'+','+'imbalance' + '\n') 

  #    mylog.close() 

    if (count == len(os.listdir(path))-1): 

      mylog = open(base_dir + 'dataset256_3m_RGB/' + "imbalance_log.log", "a") 

      

mylog.write(str(len(os.listdir(path)))+','+str(tot_white_px)+','+str(tot_blk_px)+','+str(tot_blk_px+tot_white_px)+','+str(ro

und((tot_white_px/(tot_blk_px+tot_white_px))*100,1))+'\n') 
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      mylog.close() 

    count += 1 

print('Number of white pixels:', tot_white_px) 

print('Number of black pixels:', tot_blk_px) 

print('Total pixels in the dataset:', tot_blk_px+tot_white_px) 

print('imbalance:', round((tot_white_px/(tot_blk_px+tot_white_px))*100,1), "%") 

print('Number of processed images:', count) 

print('> Log of dataset imbalance has been saved into:', base_dir + 'dataset256_3m_RGB/') 

 

• Removing black masks: removes black no information masks in the dataset. 
 

# This code deletes (removes) all masks and the corresponding image chips that are only black (only one color) 

 

from PIL import Image 

import os 

path = "C:/Users/john/Downloads/AutoMap/datos/msk256_RGB_Roads_1m/" 

path2 = "C:/Users/john/Downloads/AutoMap/datos/img256_RGB_Roads_1m/" 

 

count = 0 

for filename in os.listdir(path): 

    img = Image.open(path + '\\' + filename) 

    clrs = img.getcolors() 

    if len(clrs) == 1: 

        count = count + 1 

        print(filename, len(clrs), count) 

        os.remove(path + '\\' + filename) 

        os.remove(path2 + '\\' + filename) 

print("El numero total de imagenes borradas es de:", str(count)) 

print("El numero total de máscaras borradas es de:", str(count)) 

 

Models 

CycleGAN: 
from google.colab import drive 

drive.mount('/content/drive', force_remount=True) 

root_dir = "/content/drive/My Drive/automap/" 

base_dir = root_dir + 'CycleGan/' 

print(base_dir) 

 

# example of preparing the imgs to roads 

from os import listdir 

from numpy import asarray 

from numpy import vstack 

from keras.preprocessing.image import img_to_array 

from keras.preprocessing.image import load_img 

from numpy import savez_compressed 

import os 

from random import random 

from numpy import load 

from numpy import zeros 

from numpy import ones 
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from numpy import asarray 

from numpy.random import randint 

from tensorflow.keras.optimizers import Adam 

from keras.initializers import RandomNormal 

from keras.models import Model 

from keras.models import Input 

from keras.layers import Conv2D 

from keras.layers import Conv2DTranspose 

from keras.layers import LeakyReLU 

from keras.layers import Activation 

from keras.layers import Concatenate 

from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization 

 
# load all images in a directory into memory 

def load_images(path, size=(256,256)): 

 data_list = list() 

 # enumerate filenames in directory, assume all are images 

 for file_name in listdir(path): 

  # load and resize the image 

  pixels = load_img(path + file_name, target_size=size) 

  # convert to numpy array 

  pixels = img_to_array(pixels) 

  # store 

  data_list.append(pixels) 

 return asarray(data_list) 

 

# dataset path 

#path = base_dir + 'img2road/' 

path = base_dir + 'img2build/' 

# load dataset A 

dataA1 = load_images(path + 'trainA/') 

dataAB = load_images(path + 'testA/') 

#print(len(dataA1)) 

#print(len(dataAB)) 

dataA = vstack((dataA1, dataAB)) 

print('Loaded dataA: ', dataA.shape) 

# load dataset B 

dataB1 = load_images(path + 'trainB/') 

dataB2 = load_images(path + 'testB/') 

dataB = vstack((dataB1, dataB2)) 

print('Loaded dataB: ', dataB.shape) 

# save as compressed numpy array 

#filename = os.path.join(base_dir, 'img2road_256.npz') 

filename = os.path.join(base_dir, 'img2build_256.npz') 

savez_compressed(filename, dataA, dataB) 

print('Saved dataset: ', filename) 

 

# load and plot the prepared dataset 

from numpy import load 

from matplotlib import pyplot 

# load the face dataset 
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data = load(os.path.join(base_dir, 'img2build_256.npz')) 

dataA, dataB = data['arr_0'], data['arr_1'] 

print('Loaded: ', dataA.shape, dataB.shape) 

# plot source images 

n_samples = 3 

for i in range(n_samples): 

 pyplot.subplot(2, n_samples, 1 + i) 

 pyplot.axis('off') 

 pyplot.imshow(dataA[i].astype('uint8')) 

# plot target image 

for i in range(n_samples): 

 pyplot.subplot(2, n_samples, 1 + n_samples + i) 

 pyplot.axis('off') 

 pyplot.imshow(dataB[i].astype('uint8')) 

pyplot.show() 

 

# define the discriminator model 

def define_discriminator(image_shape): 

 # weight initialization 

 init = RandomNormal(stddev=0.02) 

 # source image input 

 in_image = Input(shape=image_shape) 

 # C64 

 d = Conv2D(64, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(in_image) 

 d = LeakyReLU(alpha=0.2)(d) 

 # C128 

 d = Conv2D(128, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d) 

 d = InstanceNormalization(axis=-1)(d) 

 d = LeakyReLU(alpha=0.2)(d) 

 # C256 

 d = Conv2D(256, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d) 

 d = InstanceNormalization(axis=-1)(d) 

 d = LeakyReLU(alpha=0.2)(d) 

 # C512 

 d = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(d) 

 d = InstanceNormalization(axis=-1)(d) 

 d = LeakyReLU(alpha=0.2)(d) 

 # second last output layer 

 d = Conv2D(512, (4,4), padding='same', kernel_initializer=init)(d) 

 d = InstanceNormalization(axis=-1)(d) 

 d = LeakyReLU(alpha=0.2)(d) 

 # patch output 

 patch_out = Conv2D(1, (4,4), padding='same', kernel_initializer=init)(d) 

 # define model 

 model = Model(in_image, patch_out) 

 # compile model 

 model.compile(loss='mse', optimizer=Adam(lr=0.0002, beta_1=0.5), loss_weights=[0.5]) 

 return model 

 

# generator a resnet block 

def resnet_block(n_filters, input_layer): 
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 # weight initialization 

 init = RandomNormal(stddev=0.02) 

 # first layer convolutional layer 

 g = Conv2D(n_filters, (3,3), padding='same', kernel_initializer=init)(input_layer) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # second convolutional layer 

 g = Conv2D(n_filters, (3,3), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 # concatenate merge channel-wise with input layer 

 g = Concatenate()([g, input_layer]) 

 return g 

 

# define the standalone generator model 

def define_generator(image_shape, n_resnet=9): 

 # weight initialization 

 init = RandomNormal(stddev=0.02) 

 # image input 

 in_image = Input(shape=image_shape) 

 # c7s1-64 

 g = Conv2D(64, (7,7), padding='same', kernel_initializer=init)(in_image) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # d128 

 g = Conv2D(128, (3,3), strides=(2,2), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # d256 

 g = Conv2D(256, (3,3), strides=(2,2), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # R256 

 for _ in range(n_resnet): 

  g = resnet_block(256, g) 

 # u128 

 g = Conv2DTranspose(128, (3,3), strides=(2,2), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # u64 

 g = Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 g = Activation('relu')(g) 

 # c7s1-3 

 g = Conv2D(3, (7,7), padding='same', kernel_initializer=init)(g) 

 g = InstanceNormalization(axis=-1)(g) 

 out_image = Activation('tanh')(g) 

 # define model 

 model = Model(in_image, out_image) 

 return model 

 

def define_composite_model(g_model_1, d_model, g_model_2, image_shape): 
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 # ensure the model we're updating is trainable 

 g_model_1.trainable = True 

 # mark discriminator as not trainable 

 d_model.trainable = False 

 # mark other generator model as not trainable 

 g_model_2.trainable = False 

 # discriminator element 

 input_gen = Input(shape=image_shape) 

 gen1_out = g_model_1(input_gen) 

 output_d = d_model(gen1_out) 

 # identity element 

 input_id = Input(shape=image_shape) 

 output_id = g_model_1(input_id) 

 # forward cycle 

 output_f = g_model_2(gen1_out) 

 # backward cycle 

 gen2_out = g_model_2(input_id) 

 output_b = g_model_1(gen2_out) 

 # define model graph 

 model = Model([input_gen, input_id], [output_d, output_id, output_f, output_b]) 

 # define optimization algorithm configuration 

 opt = Adam(lr=0.0002, beta_1=0.5) 

 # compile model with weighting of least squares loss and L1 loss 

 model.compile(loss=['mse', 'mae', 'mae', 'mae'], loss_weights=[1, 5, 10, 10], optimizer=opt) 

 return model 

 

# define a composite model for updating generators by adversarial and cycle loss 

# load and prepare training images 

def load_real_samples(filename): 

 # load the dataset 

 data = load(os.path.join(base_dir, filename)) 

 # unpack arrays 

 X1, X2 = data['arr_0'], data['arr_1'] 

 # scale from [0,255] to [-1,1] 

 X1 = (X1 - 127.5) / 127.5 

 X2 = (X2 - 127.5) / 127.5 

 return [X1, X2] 

 

# select a batch of random samples, returns images and target 

def generate_real_samples(dataset, n_samples, patch_shape): 

 # choose random instances 

 ix = randint(0, dataset.shape[0], n_samples) 

 # retrieve selected images 

 X = dataset[ix] 

 # generate 'real' class labels (1) 

 y = ones((n_samples, patch_shape, patch_shape, 1)) 

 return X, y 

 

# generate a batch of images, returns images and targets 

def generate_fake_samples(g_model, dataset, patch_shape): 

 # generate fake instance 



117 
 

 X = g_model.predict(dataset) 

 # create 'fake' class labels (0) 

 y = zeros((len(X), patch_shape, patch_shape, 1)) 

 return X, y 

 

# save the generator models to file 

def save_models(step, g_model_AtoB, g_model_BtoA): 

 # save the first generator model 

 filename1 = os.path.join(base_dir, 'g_model_AtoB_%06d.h5' % (step+1)) 

 g_model_AtoB.save(filename1) 

 # save the second generator model 

 filename2 = os.path.join(base_dir, 'g_model_BtoA_%06d.h5' % (step+1)) 

 g_model_BtoA.save(filename2) 

 print('>Saved: %s and %s' % (filename1, filename2)) 

 

# generate samples and save as a plot and save the model 

def summarize_performance(step, g_model, trainX, name, n_samples=3): 

 # select a sample of input images 

 X_in, _ = generate_real_samples(trainX, n_samples, 0) 

 # generate translated images 

 X_out, _ = generate_fake_samples(g_model, X_in, 0) 

 # scale all pixels from [-1,1] to [0,1] 

 X_in = (X_in + 1) / 2.0 

 X_out = (X_out + 1) / 2.0 

 # plot real images 

 for i in range(n_samples): 

  pyplot.subplot(2, n_samples, 1 + i) 

  pyplot.axis('off') 

  pyplot.imshow(X_in[i]) 

 # plot translated image 

 for i in range(n_samples): 

  pyplot.subplot(2, n_samples, 1 + n_samples + i) 

  pyplot.axis('off') 

  pyplot.imshow(X_out[i]) 

 # save plot to file 

 filename1 = os.path.join(base_dir, '%s_model_%06d.png' % (name, (step+1))) 

 pyplot.savefig(filename1) 

 pyplot.close() 

 

# update image pool for fake images 

def update_image_pool(pool, images, max_size=50): 

 selected = list() 

 for image in images: 

  if len(pool) < max_size: 

   # stock the pool 

   pool.append(image) 

   selected.append(image) 

  elif random() < 0.5: 

   # use image, but don't add it to the pool 

   selected.append(image) 

  else: 
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   # replace an existing image and use replaced image 

   ix = randint(0, len(pool)) 

   selected.append(pool[ix]) 

   pool[ix] = image 

 return asarray(selected) 

 

# train cyclegan models 

def train(d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset): 

 # define properties of the training run 

 n_epochs, n_batch, = 100, 1 

 # determine the output square shape of the discriminator 

 n_patch = d_model_A.output_shape[1] 

 # unpack dataset 

 trainA, trainB = dataset 

 # prepare image pool for fakes 

 poolA, poolB = list(), list() 

 # calculate the number of batches per training epoch 

 bat_per_epo = int(len(trainA) / n_batch) 

 # calculate the number of training iterations 

 n_steps = bat_per_epo * n_epochs 

 # manually enumerate epochs 

 for i in range(n_steps): 

  # select a batch of real samples 

  X_realA, y_realA = generate_real_samples(trainA, n_batch, n_patch) 

  X_realB, y_realB = generate_real_samples(trainB, n_batch, n_patch) 

  # generate a batch of fake samples 

  X_fakeA, y_fakeA = generate_fake_samples(g_model_BtoA, X_realB, n_patch) 

  X_fakeB, y_fakeB = generate_fake_samples(g_model_AtoB, X_realA, n_patch) 

  # update fakes from pool 

  X_fakeA = update_image_pool(poolA, X_fakeA) 

  X_fakeB = update_image_pool(poolB, X_fakeB) 

  # update generator B->A via adversarial and cycle loss 

  g_loss2, _, _, _, _  = c_model_BtoA.train_on_batch([X_realB, X_realA], [y_realA, X_realA, X_realB, 

X_realA]) 

  # update discriminator for A -> [real/fake] 

  dA_loss1 = d_model_A.train_on_batch(X_realA, y_realA) 

  dA_loss2 = d_model_A.train_on_batch(X_fakeA, y_fakeA) 

  # update generator A->B via adversarial and cycle loss 

  g_loss1, _, _, _, _ = c_model_AtoB.train_on_batch([X_realA, X_realB], [y_realB, X_realB, X_realA, 

X_realB]) 

  # update discriminator for B -> [real/fake] 

  dB_loss1 = d_model_B.train_on_batch(X_realB, y_realB) 

  dB_loss2 = d_model_B.train_on_batch(X_fakeB, y_fakeB) 

  # summarize performance 

  print('>%d, dA[%.3f,%.3f] dB[%.3f,%.3f] g[%.3f,%.3f]' % (i+1, dA_loss1,dA_loss2, dB_loss1,dB_loss2, 

g_loss1,g_loss2)) 

  # evaluate the model performance every so often 

  if (i+1) % (bat_per_epo * 1) == 0: 

   # plot A->B translation 

   summarize_performance(i, g_model_AtoB, trainA, 'AtoB') 

   # plot B->A translation 
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   summarize_performance(i, g_model_BtoA, trainB, 'BtoA') 

  if (i+1) % (bat_per_epo * 5) == 0: 

   # save the models 

   save_models(i, g_model_AtoB, g_model_BtoA) 

 

# load image data 

dataset = load_real_samples(os.path.join(base_dir, 'img2build_256.npz')) 

print('Loaded', dataset[0].shape, dataset[1].shape) 

# define input shape based on the loaded dataset 

image_shape = dataset[0].shape[1:] 

# generator: A -> B 

g_model_AtoB = define_generator(image_shape) 

# generator: B -> A 

g_model_BtoA = define_generator(image_shape) 

# discriminator: A -> [real/fake] 

d_model_A = define_discriminator(image_shape) 

# discriminator: B -> [real/fake] 

d_model_B = define_discriminator(image_shape) 

# composite: A -> B -> [real/fake, A] 

c_model_AtoB = define_composite_model(g_model_AtoB, d_model_B, g_model_BtoA, image_shape) 

# composite: B -> A -> [real/fake, B] 

c_model_BtoA = define_composite_model(g_model_BtoA, d_model_A, g_model_AtoB, image_shape) 

# train models 

train(d_model_A, d_model_B, g_model_AtoB, g_model_BtoA, c_model_AtoB, c_model_BtoA, dataset) 

 

# load an image to the preferred size 

def load_image(filename, size=(256,256)): 

 # load and resize the image 

 pixels = load_img(filename, target_size=size) 

 # convert to numpy array 

 pixels = img_to_array(pixels) 

 # transform in a sample 

 pixels = expand_dims(pixels, 0) 

 # scale from [0,255] to [-1,1] 

 pixels = (pixels - 127.5) / 127.5 

 return pixels 

 

# load the image 

#image_src = load_image(os.path.join(base_dir, 'n02381460_541.jpg')) 

image_src = load_image(os.path.join(base_dir+'img2build/test/', '1.tif')) 

# load the model 

cust = {'InstanceNormalization': InstanceNormalization} 

#model_AtoB = load_model((os.path.join(base_dir, 'g_model_AtoB_011870.h5')), cust) 

model_AtoB = load_model((os.path.join(base_dir+'img2build/ResultsAB/', 'g_model_AtoB_001765.h5')), cust) 

# Make sure to use the following model to complete the task 

#model_AtoB = load_model('g_model_AtoB_100895.h5', cust) 

# translate image 

image_tar = model_AtoB.predict(image_src) 

# scale from [-1,1] to [0,1] 

image_tar = (image_tar + 1) / 2.0 

# plot the translated image 
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pyplot.axis('off') 

pyplot.imshow(image_tar[0]) 

thresh = numpy.mean(image_tar[0]) 

myarray = numpy.where(image_tar[0] > thresh, 255, 0).astype(numpy.uint8) 

pyplot.imsave(os.path.join(base_dir+'img2build/test/', '1_Gen2.png'),myarray, cmap=cm.gray,dpi=500) 

pyplot.show() 

 

AGS Metric 
# create a polygon from a center(x,y) plus x=y distance for AGS metric evaluation 

import geopandas as gpd 

from shapely.geometry import Polygon 

 

#filejson = r"C:\Users\john\Downloads\AutoMap\datos\area\AoI.geojson" 

#fileshape = r"C:\Users\john\Downloads\AutoMap\datos\area\AoI_100m.shp" 

fileshape = r"C:\Users\john\Downloads\Automap\datos\AoI_200m.shp" 

# cx, cy son las coordenadas del centro del poligono 

cx = -75.50263 

cy = 6.0581 

d = 50  # d es la mitad del lado del poligono de corte 

x1 = cx - (d/111000.) 

x2 = cx + (d/111000.) 

y1 = cy - (d/111000.) 

y2 = cy + (d/111000.)  

#lat_points = [6.0584, 6.0547, 6.0547, 6.0584] 

lat_points = [y2, y1, y1, y2] 

#lon_points = [-75.5028, -75.5028, -75.4964, -75.4964] 

lon_points = [x1, x1, x2, x2] 

polygon_geom = Polygon(zip(lon_points, lat_points)) 

crs = {'init': 'epsg:4326'} 

polygon = gpd.GeoDataFrame(index=[0], crs=crs, geometry=[polygon_geom])        

print(polygon.geometry) 

polygon.to_file(fileshape, driver="ESRI Shapefile") 

#polygon.to_file(filejson, driver='GeoJSON') 

print('xmin,ymin', x1,y1) 

print('xmax,ymax', x2,y2) 

import folium 

m = folium.Map([cy, cx], zoom_start=15, tiles='cartodbpositron') 

#folium.GeoJson(filejson).add_to(m) 

folium.LatLngPopup().add_to(m) 

m 

 

# Calculates length of every shape file using ArcPy 

geometries = arcpy.CopyFeatures_management(fc, arcpy.Geometry()) 

# Walk through each geometry, totaling the length 

length = sum([g.length for g in geometries]) 

# Execute CalculateField  

arcpy.CalculateField_management(in_table, field_name, length, "PYTHON_9.3") 
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Annex 2. Remote Sensing Datasets for Semantic Segmentation of 

Orthomosaics 
 

High-quality satellite, aerial, and drone imagery datasets facilitate comparisons of 

existing methods and lead to increased interest in aerial imagery applications in the deep 

learning and computer vision communities. 

 

Massachusetts buildings dataset 
This dataset is derived from the work of (Mnih & Hinton, 2010). It consists of 151 aerial 

images of the Boston area, with each of the images being 1500 × 1500 pixels for an area of 

2.25 square kilometers. Hence, the entire dataset covers roughly 340 square kilometers. 

The data is split into a training set of 137 images, a test set of 10 images and a validation 

set of 4 images. The target maps were obtained by rasterizing building footprints obtained 

from the OpenStreetMap project. The data was restricted to regions with an average 

omission noise level of roughly 5% or less. The large amount of high-quality building 

footprint data was possible to collect because the City of Boston contributed building 

footprints for the entire city to the OpenStreetMap project. The dataset covers mostly 

urban and suburban areas and buildings of all sizes, including individual houses and garages, 

are included in the labels. The datasets make use of imagery released by the state of 

Massachusetts. All imagery is rescaled to a spatial resolution of 1m/px. The target maps for 

the dataset were generated using data from OSM and represented as binary masks 

(0:background, 1:building). Target maps for the test and validation portions of the dataset 

were hand-corrected to make the evaluations more accurate. 

 
Table A2.1. Metrics for Massachusetts Building Dataset 

Author mIoU F1_Score Pixel 
Accuracy 

AUC OA 

Mnih, 2013 0.7138 0.8307 0.8311 0.9150 0.9356 

Xie et al., 2020 0.7452 0.8613 0.8865 ---- 0.9563 

 

Massachusetts roads dataset 
This dataset is derived from the work of (Mnih & Hinton, 2010). It consists of 1171 aerial 

images of the state of Massachusetts. Each image is 1500×1500 pixels in size, covering an 

area of 2.25 square kilometers. We randomly split the data into a training set of 1108 

images, a validation set of 14 images and a test set of 49 images. The dataset covers a wide 

variety of urban, suburban, and rural regions and covers an area of over 2600 square 

kilometers. The test set alone covers over 110 square kilometers. The target binary maps 
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(0:background, 1:road) were generated by rasterizing road centerlines obtained from OSM. 

A line thickness of 7 pixels and no smoothing was used in generating the labels. All imagery 

is rescaled to a spatial resolution of 1m/px. 

 
Table A2.2. Metrics for Massachusetts Roads Dataset 

 

 

 

 

 

Potsdam – Vaihingen Datasets 
They are also called the Potsdam - Vaihingen 2D Semantic Labeling Contest, the dataset 

is created and maintained by the International Society of Photogrammetry and Remote 

Sensing (ISPRS) (Gerke et al., 2014). It contains 38 patches (of the same size) for the 

Germany city of Potsdam and 33 patches for the Germany city of Vaihingen respectively, 

each consisting of a true orthophoto, extracted from a larger orthomosaic, and a DSM. The 

ground sampling distance of both is 5 cm/px for the Potsdam and 9 cm/px for the Vaihingen. 

The orthomosaics come as TIFF files in different channel compositions, where each channel 

has a spectral resolution of 8bit: 

• IRRG: 3 channels (IR-R-G) 

• RGB: 3 channels (R-G-B) 

• RGBIR: 4 channels (R-G-B-IR) 

The DSM are TIFF files with one band; the grey levels (corresponding to the DSM heights) 

are encoded as 32-bit float values. Both products are defined on the same grid (UTM 

WGS84) and all images have dimension 6000 x 6000 pixels. The so-called normalized DSMs 

is also provided, that is, after ground filtering the ground height is removed for each pixel, 

leading to a representation of heights above the terrain. This data was produced using some 

fully automatic filtering workflow, without manual quality control. There is no error free 

data guarantee, purpose is to help researchers to use height data, other than the absolute 

DSM. 

Since it is a contest, labelled ground truth is provided for only one part of the data. The 

ground truth of the remaining scenes will remain unreleased and stays with the benchmark 

test organizers to be used for evaluation of submitted results. Participants shall use all data 

with ground truth for training or internal evaluation of their method. 

 

Author mIoU F1_Score Pixel 
Accuracy 

AUC 

Mnih & Hinton, 2010 0.6245 ---- ---- ---- 

X. Gao et al, 2018 0.8210 ---- ---- 0.8873 

Abdollahi et al, 2021 0.8631 0.9251 ---- ---- 
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Figure A2.3. Potsdam-Vaihingen datasets. (a) RGBIR Image, (b) DSM, (c) Ground truth mask. 
 

 Table A2.3. Metrics for ISPRS Dataset 

 

SpaceNet: A Remote Sensing Dataset and Challenge Series 
CosmiQ Works, Radiant Solutions, and NVIDIA partnered to release SpaceNet as a Public 

Dataset on AWS and Challenge Series with the purpose of pursuing the innovation in the 

application of computer vision and deep learning to extract information from satellite 

imagery at scale (Van Etten et al., 2019). Today, map features such as roads, building 

footprints, and points of interest are primarily created through manual mapping 

techniques. SpaceNet partners believe that advancing automated feature extraction 

techniques will serve important downstream uses of map data, such as humanitarian and 

disaster response and other applications in both the public and private sectors. The first 

two SpaceNet challenges focused on building footprint extraction from satellite imagery. 

The third challenge addressed another foundational geospatial intelligence problem, road 

network extraction. The ability to create a road network is an important map feature 

(particularly if one can use this road network for routing purposes), while building footprint 

extraction serves as a useful proxy for population density. 

The SpaceNet dataset was the first challenge that covered large areas including cities in 

Asia and Africa. SpaceNet is a large corpus of labeled diverse overhead satellite imagery 

organized in the following challenges: 

 

• Challenge 1 - Rio De Janeiro Building Footprints: performed in 2016 aimed to 

extract building footprints from the DigitalGlobe WorldView 2 satellite imagery at 

Author mIoU F1_Score Pixel Accuracy 

Song et al., 2020 ---- 0.7982 0.8721 

Ziming Li et al, 2021 0.881 ---- ---- 

Marmanis et al., 2016 ---- ---- 0.885 
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50cm resolution. Imagery consists of 8-band multispectral imagery at 1m resolution, 

as well as pan-sharpened red-green-blue (RGB) imagery at 50cm resolution. 

Released imagery was created from a mosaic of multiple images and covers 2544 

square kilometers. The imagery was split into 400-meter tiles using utilities in 

python with 60% of the data released for training, 20% for testing, and 20% reserved 

for validation. For the Rio de Janeiro Area of Interest (AOI), over 300,000 building 

footprints were labeled semi-automatically and subsequently improved by hand. 

Any partially visible rooftops were approximated to represent the shape of the 

building. Adjoining buildings were marked individually as unique structures (i.e., 

each street address was marked as a unique building). 

 
Figure A2.2. SpaceNet Challenge 1, Rio de Janeiro Building Footprints. Left RGB Satellite Image, Ground truth 
building masks. 

 
Table A2.4 Metrics for Rio de Janeiro Buildings Footprint SpaceNet Dataset 

Author mIoU F1_Score Pixel Accuracy 

Van Etten et al., 2019 ---- 0.26 ---- 

 

• Challenge 2 - Las Vegas, Paris, Shanghai, Khartoum Building Footprints: It aimed to 

extract building footprints from the DigitalGlobe WorldView 3 satellite in a 

continuous image strip. The source imagery is distributed as a Level 2A standard 

product that has been radiometrically and sensor corrected and normalized to 

topographic relief using a coarse digital elevation model (DEM). It contains the 

original panchromatic band, the 1.24m resolution 8-band multi-spectral 11-bit 

geotiff, and a 30cm resolution Pan-Sharpened 3-band and 8-band 16-bit geotiff. The 

labeled dataset consists of 24,586 scenes of size 200 m × 200 m (650 px × 650 px) 

containing 302,701 building footprints across all four areas and are both urban and 

suburban in nature. The dataset was split 60%/20%/20% for train/test/validation. 

Each area is covered by a single image strip, which ensures that sun, satellite, and 
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atmospheric conditions are consistent across the entire scene. Final product was 

then inspected against topology errors to ensure that building footprints were 

closed and polygons did not overlap. 

 

Table A2.5. Metrics for Las Vegas building footprint SpaceNet Dataset 

Author mIoU F1_Score Pixel Accuracy 

Van Etten et al., 2019 ---- 0.693 ---- 

 

• Challenge 3 - Las Vegas, Paris, Shanghai, Khartoum Road Extraction: It used the 

imagery from Challenge 2, and because the competition was designed to enable the 

creation of routable road networks, a labeling schema based on OSM guidelines was 

established to ensure ground truth that would be usable by open-source routing 

tools. In addition to the digitizing of road- centerlines, four other attributes were 

recorded: 1) road type, 2) surface type, 3) bridge and 4) lane number. A GIS team at 

Radiant Solutions fully annotated each road centerline within 7 pixels, and all 

reported dangling roads or missed connections were corrected. 

 
Figure A2.3. SpaceNet Challenge 3. Left: Las Vegas GeoJSON Road label. Right: RGB image overlaid with road 
centerlines (orange). 

Table A2.6. Metrics for Road Extraction SpaceNet Dataset 

 

 

 

 

DeepGlobe 
Also presented as DeepGlobe Satellite Image Understanding Challenge. The datasets 

created and released for this competition may serve as reference benchmarks for future 

research in satellite image analysis (Demir et al., 2018). It is structured around three 

Author mIoU F1_Score Pixel 
Accuracy 

APLS 
Metric 

Van Etten et al., 2019 ---- ---- ---- 0.6663 

Batra et al, 2019 0.6245 ---- ---- 0.6077 
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different satellite image understanding tasks: 

 

• Road extraction: This is a binary segmentation problem to detect all the road pixels 

in each area. The evaluation is based on the accuracy of the road pixels. 

The training data for Road Challenge contains 6226 satellite imagery in RGB, with size of 

1024x1024. The imagery has 50cm pixel resolution, collected by Digital Globe’s satellite. 

The dataset contains 1243 validation and 1101 test images, but no masks. Each satellite 

image is paired with a mask image for road labels. The mask is a grayscale image, with white 

standing for road pixel, and black standing for background. File names for satellite images 

and the corresponding mask image are id _sat.jpg and id _mask.png, where id is a 

randomized integer. The labels are not perfect due to the cost for annotating segmentation 

mask, especially in rural regions. In addition, data providers intentionally didn't annotate 

small roads within farmlands. 

 
Table A2.7. Metrics for Road Extraction DeepGlobe Dataset 

Author mIoU F1_Score Pixel 
Accuracy 

APLS 
Metric 

Demir et al, 2018 0.5450 ---- ---- ---- 

Batra et al, 2019 0.6472 ---- ---- 0.6871 

 

• Building detection: It is formulated as a binary segmentation problem to localize all 

building polygons in each area. The evaluation will be based on the overlap of 

detected polygons with the ground truth. It uses the SpaceNet Building Detection 

Dataset. 

 

• Land cover classification: This problem is defined as a multi-class segmentation task 

to detect areas of urban, agriculture, rangeland, forest, water, barren, and 

unknown. The evaluation will be based on the accuracy of the class labels. 

The training data for Land Cover Challenge contains 803 satellite imagery in RGB, size 

2448x2448. The imagery has 50cm pixel resolution, collected by DigitalGlobe's satellite. The 

dataset contains 171 validation and 172 test images, but no masks. Each satellite image is 

paired with a mask image for land cover annotation. The mask is a RGB image with 7 classes 

of labels, using color-coding (R, G, B). File names for satellite images and the corresponding 

mask image are id _sat.jpg and id _mask.png, where the id is a randomized integer. 
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(a) (b) 

Figure A2.4. DeepGlobe Satellite Image Understanding Challenge. (a) Road extraction. (b) Land cover 
classification. 

 

Inria Aerial Image Labeling Dataset 
The Inria Aerial Image Labeling covered 810 km2 (405 km² for training and 405 km² for 

testing), with orthorectified color imagery of 30 cm resolution in various European and 

American cities (Maggiori et al., 2017). The aerial images cover dissimilar urban settlements, 

ranging from densely populated areas, e.g., San Francisco’s financial district to alpine towns, 

e.g., Lienz in Austrian Tyrol. Ground truth data has two semantic classes: building and not 

building, it is publicly disclosed only for the training subset. Inria addressed model 

portability between areas as some cities were included only in training data and some only 

in testing data. Instead of splitting adjacent portions of the same images into the training 

and test subsets, different cities are included in each of the subsets. For example, images 

over Chicago are included in the training set, and not on the test set, and images over San 

Francisco are included on the test set, and not on the training set. The ultimate goal of this 

dataset is to assess the generalization power of the techniques: while Chicago imagery may 

be used for training, the system should label aerial images over other regions, with varying 

illumination conditions, urban landscape and time of the year. The dataset was constructed 

by combining public domain imagery and public domain official building footprints in 2017. 

The training set contains 180 color image tiles of size 5000×5000, covering a surface of 

1500 m × 1500 m each. There are 36 tiles for each of the following regions: Austin, Chicago, 

Kitsap County, Western Tyrol, Vienna. The format is GeoTIFF (TIFF with georeferencing, but 

the images can be used as any other TIFF). Files are named by a prefix associated to the 

region (e.g., Austin or Vienna) followed by the tile number (1-36). The reference data is in a 

different folder and the file names correspond exactly to those of the color images. In the 

case of the reference data, the tiles are single-channel images with values 255 for the 

building class and 0 for the not building class. The test set contains the same number of tiles 

as the training set (but the reference data is not disclosed). There are 36 tiles for each of 

the following regions: Bellingham, WA, Bloomington, IN, Innsbruck, San Francisco, Eastern 

Tyrol. 
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(a) (b) 

 

 
(c) 

Figure A2.5. Inria Aerial Image Labeling Dataset. (a) Chicago. (b) Kitsap County, WA. (c) Vienna, Austria.   
 

Table A2.8. Metric for Inria Dataset U-Net 

 

DroneDeploy Dataset 
The DroneDeploy Segmentation Benchmark challenge was released as partnering with 

Weights & Biases to evaluate and encourage state-of-the-art machine learning on aerial 

drone data. The dataset consists of aerial orthomosaics and elevation images (Introducing 

DroneDeploys Aerial Segmentation Benchmark | DroneDeploy, n.d.). These have been 

annotated into 6 different classes: Ground, Water, Vegetation, Cars, Clutter, and Buildings. 

The resolution of the images, captured from drones, is approximately 10cm per pixel which 

gives them a great level of detail. The images are RGB TIFFs, the elevations are single 

channel floating point TIFFs, where each pixel value represents elevation in meters, and 

finally the labels are PNGs with 7 colors representing the 7 classes. Python scripts to clip 

images, elevation, and labels into chips of 300x300 pixels are provided. Color code used is 

BGR (Blue, Green, Red), (075, 025, 230) : BUILDING, (180, 030, 145) : CLUTTER, (075, 180, 

Author   mIoU F1_Score Pixel 
Accuracy 

OA 

Maggiori et al., 2017   0.7339 0.8452 0.8716 0.9420 

Pan et al., 2019   0.7752 ---- ---- 0.9660 

Xie et al., 2020   0.7943 0.8846 ---- 0.9639 
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060) : VEGETATION, (048, 130, 245) : WATER, (255, 255, 255) : GROUND, (200, 130, 000) 

CAR, (255, 000, 255) : IGNORE. U-Net architecture is proposed as the base implementation, 

and dataset providers suggest that there is immediate opportunity to experiment with: Data 

augmentation, Hyperparameters, Post-processing, Chip size, Model architecture, and the 

use of elevation tiles. 

 
Figure A2.6. DroneDeploy Dataset. Left: Image chip. Right: Labels.   
 

Table A2.9. Metric for DroneDeploy Dataset U-Net 

 

 

 

 

 

Toronto City dataset 
The TorontoCity benchmark covers the full greater Toronto area (GTA) with 712.5km2 of 

land, 8439km of road and around 400, 000 buildings (S. Wang et al., 2017). The benchmark 

provides different perspectives of the world captured from airplanes, drones and cars 

driving around the city. We use aerial images with full coverage of the GTA taken in 2009, 

2011, 2012 and 2013. They are orthorectified to 10cm/pixel resolution for 2009 and 2011, 

and 5 and 8cm/pixel for 2012 and 2013 respectively. This contrasts satellite images, which 

are at best 50cm/pixel. Our aerial images have four channels, i.e., RGB and Near infrared, 

and are 16-bit resolution for 2011 and 8 bit for the rest. As is common practice in remote 

sensing, projection of each image is the Universal Transverse Mercator (UTM) 17 zone in 

the WGS84 geodetic datum and tiled the area to 500 × 500m2 images without overlap. 

Images are not true orthophotos and thus facades are visible. The dataset also exploits 

airborne LIDAR data captured in 2008 with a Leica ALS sensor with a resolution of 6.8 points 

per m2. The total coverage is 22 km2. All the points are also geo-referenced and projected 

to the UTM17 Zone in WGS84 geodetic datum. Most of the dataset’s ground truth maps 

were created by the City of Toronto. Buildings have height estimates, the tallest building 

with 443m of elevation, the mean height of each building is 4.7m, and the mean building 

Author mIoU F1_Score Pixel 
Accuracy 

DroneDeploy 
Benchmark 2019 

0.525 ---- ---- 

Blaga et al, 2020 0.6178 ---- ---- 
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area is 148m2. In contrast, the largest building has an area of 120, 000m2. Dataset contains 

very accurate polylines representing streets, sidewalks, rivers and railways within the GTA. 

Each line segment is described with a series of attributes such as name, road category and 

address number range. Road intersections are explicitly encoded as intersecting points 

between polylines. Center lines define the connectivity (adjacency) in the street network. 

Road curbs define the road boundaries are also available and describe the shape of roads. 

 
Figure A2.7. TorontoCity Dataset. Left: Images. Right: Labels for roads center lines and curbs, and buildings.   
 

Table A2.10. Metric for TorontoCity Dataset U-Net 

 

Open Cities dataset 
Open Cities AI Challenge dataset has the purpose of segment buildings in African cities 

from aerial imagery and advance responsible AI ideas for disaster risk management. This 

means addressing barriers to applying ML in African urban environments and adopting best 

practices in geospatial data preparation to enable easier ML usage. The competition dataset 

has over 400 square kilometers of high-resolution drone imagery and 790K building 

footprints (DrivenData, n.d.). It is sourced from locally validated, open-source community 

mapping efforts from 10+ urban areas across Africa. The dataset was released in 2020 and 

main prize is for best open-source semantic segmentation model of building footprints from 

drone imagery that can generalize across a diverse range of African urban environments, 

spatial resolutions, and imaging conditions. Imagery is collected by commercial drones at 

much higher resolution and under diverse environmental conditions. In this dataset, 

buildings are more densely situated, and diverse in shape, construction style, and size 

compared to the ones seen in Europe, America or Asia. Furthermore, since this dataset is 

crowdsourced and community-driven data labeled, it may differ greatly in what base 

Author mIoU 
Road 

mIoU 
Building 

Pixel 
Accuracy 

F1_Score 

S. Wang et al., 2017 82.72% 78.80% ---- ---- 
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imagery layers are used, workflow, data schema, and quality control, requiring models that 

are robust to more label noise. Figure A2.8 shows examples of errors in labels. 

Dataset was manually labeled by different people by applying best practices in cloud-

native geospatial data processing, i.e., using Cloud-Optimized GeoTIFFs [COG] and 

SpatioTemporal Asset Catalogs [STAC]. STAC Browser tool allows to rapidly visualize and 

access any training data asset in a web browser, despite individual image files being up to 

several GBs. 

  
 

Figure A2.8. Open Cities Dataset. Quality of hand-drawn building footprint labels (alignment and 
completeness) can vary across or within image scenes. Examples from Challenge training dataset for Kampala, 
Uganda (left) and Kinshasa, Democratic Republic of the Congo (right). 

 
Table A2.11. Metric for Open Cities Dataset U-Net 

 

 

Author mIoU Precision Recall F1_Score 
Drivendata.com 0.86 92% 93% ---- 


