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Title in English

Ground State of Fermions in Quasi-1D Honeycomb Optical Lattices

T́ıtulo en español

Estado Base de Fermiones en Redes Ópticas Cuasi-1D Tipo Panal

Abstract: Lattice models (tight-binding) for many-body systems give a good theoretical
and experimental framework to study quantum phase transitions presented in several
strongly correlated materials at low temperature. In general, those phase transitions are
driven by a fine-tuning of non-thermal parameters such that each phase is determined by
a fixed energy scale. In particular, the Ionic Hubbard model allows to study crystalline
bipartite lattices where the possible phase transitions are induced by a competition
between the on-site interaction U and the geometry of the lattice itself given by the
staggered potential ∆. Furthermore, recent experimental and theoretical works on honey-
comb lattice connect the model with phenomenon like unconventional superconductivity
[Journal of the Physical Society of Japan 82 (2013) 034704] and topological correlated
systems [PhysicaB 481 (2016) 53-58]. Motivated by this, we study the ground-state
properties of the Ionic Hubbard model in two scenarios: a narrow honeycomb lattice
regarding it as a quasi 1D lattice and a mass-imbalanced chain. To explore those systems,
we use a density renormalization group (DMRG) finite algorithm with a matrix product
state (MPS) method.

Resumen: Los modelos de redes (tight-binding) para sistemas de muchos cuerpos dan
un buen marco teórico y experimental para estudiar transiciones de fases cuánticas
presentes en diversos materiales fuertemente correlacionados a bajas temperaturas. En
general, estas transiciones de fases pueden ocurrir debido a un ajuste fino de parámetros
no térmicos tal que cada fase se determina por una escala fija de enerǵıa. En particular,
el modelo Iónico de Hubbard permite estudiar una red cristalina bipartita donde dos
fases son inducidas debido a la competencia entre la interacción local U y la geometŕıa
de la red misma dada por el potencial escalonado ∆. Además, trabajos experimentales
y teóricos recientes sobre redes de tipo panal relacionan el modelo con fenómenos como
superconductividad no convencional [Journal of the Physical Society of Japan 82 (2013)
034704] y sistemas topológicos correlacionados [PhysicaB 481 (2016) 53-58]. Motivados
por esto, nosotros estudiamos las propiedades del estado base del modelo Iónico de
Hubbard en dos escenarios: una red delgada tipo panal, estudiada a través de un mapeo
cuasi 1D, y una cadena con imbalance de masas. Para explorar estos sistemas, usamos
un algoritmo finito del grupo de renormalización de la matriz densidad (DMRG) y un
método de producto de estados de matrices (MPS).

Keywords: Honeycomb lattice, Ionic Hubbard model, DMRG algorithml, Phase transi-
tions

Palabras clave: Red tipo panal, modelo Iónico de Hubbard, algoritmo DMRG, Tran-
sición de fase.
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Introduction

Several technological developments achieved during the twenty century like the laser and
neutron spectroscopes [SWM, HSS71], the ion traps [Deh68, Deh69] or the laser cooling
technique [CMDCT89] gave rise to powerful tools to explore a set of features of atoms
and complex materials. The prediction and observation of phenomena such as the an-
tiferromagnetism in MnO [SS49], the superfluity of helium-3 [ORL72, OGRL72], the
Bose-Einstein condensation [AEM+95] in a dilute gas of atoms of 87Rb between others
were some of the great achievements of that time. But at the end of the century, de-
spite the increased knowledge about the structure of complex materials, it became evident
that theoretical approaches like the band theory or the density functional theory were not
enough to explain the observed phenomena. This failure highlighted the importance and
nontrivial role of the interactions in the many-body systems.

On the other hand, the theoretical works and experiments with cold trapped atoms
established a new way to study many-body physics. For instance, the paper of Jaksch et al
[JBC+98] and posterior experiment of Bloch-Hänsch group [Gre02] shown that materials
where the interaction between its particles is relevant can be studied, or simulated, using
an effective system of atoms stored in a periodical arrangement called optical lattice. In
these systems, physical characteristics like the interaction strength between the atoms or
the crystalline structure of the lattice can be controlled by fixing a few optical parameters
which allows a careful exploration of the strong correlated matter physics.

Now, this new perspective about the interacting systems opened a wide research line
in condensed matter physics not only in the experimental branch, but also in the theo-
retical and computational one. Tools like the Bethe ansatz, bosonization, conformal field
theory (CFT), dynamical mean field theory (DMFT), quantum Monte-Carlo (QMC), nu-
merical renormalization group (NRG) or density matrix renormalization group (DMRG)
are some exact and approximated methods that appear in the context of optical lattices.
The application of those methods together with the experimental realization of one and
two dimensional lattices [GWO00, TGU+12] has allowed the study of several phenom-
ena such as the spin-charge separation, supersolid states, exotic insulator and magnetic
phases, anisotropic superconductivity between others [FGKS05, JFG+09, KHI+09, KD07,
CZLW10, GKR06, SE19a, GKR14, WI13, CBKG19, PH16a]. Due to the difficulty of
describing this wide variety of interesting phenomena using an exact method, the theoret-
ical investigation of many-body systems through numerical simulation of lattice models
became more and more common.

One of the most recurrent models in this context is the Hubbard model, a simple model
that includes the attractive or repulsive local interaction between particles in an optical
lattice. Nowadays, the study of the competition between the characteristic energy scales
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of the model together with the geometry and the dimension of lattice has allowed the de-
scription of numerous phenomena like the already mentioned. Turns out to be particularly
interest the study of the ionic Hubbard model, a model which describes local interacting
electrons in a bipartite lattice with an energy offset between neighbor sites. This model
has been theoretically studied in one-dimension [FGN99, MMNS04, TAJN06] and two-
dimension [PBH+07, LLTL15, SE19b] where different types of transitions between a band
insulator and an antiferromagnetic insulator have been reported, due to the competition
between the energy offset ∆ and the local interaction U between the electrons.

This transition was observed experimentally in 2015 by M. Messer et al. [MDU+15].
In Messer’s experiment, the ionic Hubbard model was realized on a honeycomb lattice
using a two-component gas of 40K load into an optical lattice. On the one hand, for weak
interaction with respect to the energy offset (U � ∆), they notice the atoms of 40K with
different spin tend to occupy a same site, leading to a band insulator phase with a charge
density wave. On the other hand, for strong interaction between atoms (U � ∆), they
observe that each site is occupied by a single atom such that there is an antiferromagnetic
order in the lattice.

In regard to the intermediate regime (U ∼ ∆), M. Messer and co-workers did not
explore this regime, keeping open a question about the physics of this region which is a
current controversial discussion. This because, according to theoretical studies in one-
dimension, the ionic Hubbard model presents an intermediate dimerized insulating phase
for U ∼ ∆ [MMNS04]. However, in two-dimensional lattices different type of insulator
phases or even the absence of the intermediate phase has been predicted [PBH+07, KD07,
CZLW10, LLTL15, CBKG19].

Motivied by this open question, we explore the ionic Hubbard model in two scenarios
using a density matrix renormalization group (DMRG) algorithm with a matrix product
state (MPS) method. In the first scenario, we explore the ground state of the model on a
narrow honeycomb lattice through a one-dimensional map. We explore narrow lattices due
to the limitation of the DMRG algorithm to work with wide lattices [SW12]. In the second
scenerio, we study the ground state of the model in a one-dimensional lattice, considering
that the SU(2) symmetry of the model is explicitly broken by a mass-imbalance in the
system (mass-imbalanced ionic Hubbard model). For these scenarios, we want to know if
there is a shift in the position of the critical points with respect to the one-dimensional
ionic Hubbard model [MMNS04] and the previous numerical researches based in mean-field
and dynamical mean-field theory [SBJJ17, LLTL15]. We use the MPS method in order
to reduce the numerical complexity of our simulations, in particular for the honeycomb
lattice.

This document is organized as follows: In Chapter I, the Hubbard model is described
in the context of optical lattices and recent theoretical and numerical researches about this
model in honeycomb and mass-imbalanced lattices are reviewed. In Chapter II, the physics
of the ionic Hubbard model in one and two-dimensional lattices are briefly described and
the results of the investigation are presented. Finally, in Conclusions, the conclusions of
this investigation are presented.



CHAPTER 1

Hubbard Model

In this chapter, we give a detailed description of the Hubbard model from its origin around
the metal-insulator transition. In order to highlight the relevance of the model nowadays,
we present a wide discussion about this model in the context of ultracold atoms physics.
Also, we give a review of recent theoretical and numerical researches in respect to the
effects of interaction in periodical lattices described by the Hubbard model. In particular,
we regard two systems: narrow honeycomb lattices and lattices with mass-imbalance.

1.1 Fermi-Hubbard model

The understanding of effects of correlations in an electron gas was one of the problems
that rose to attention in the middle of the twentieth century [Pin53, SBFB57]. Since, the
theoretical models for a free electron gas, implemented for a long time to describe the
characteristics of conducting bands of metals and alloys, do not give a good explanation
to the behavior of d- and f -electrons in materials composed by transition metals or rare-
earth metals. For instance, the insulator nature of the nickel oxide (NiO) could not be
explained those traditional models.

In that time, there were two approximations for the electric and magnetic properties
of electrons in a material, the first one is known as the valence bond model [HL27, Mis12]
where each atom in a molecule is considered to be in a bonding or antiboding state causing
the electrons in a material to remain in the bond between two atoms, this theory describes
the usual insulators like NaCl. The other model is known as the band theory [WD31] for
metals, where the electrons of the conduction band are considered as a free gas. These
approaches seem to be different approximations to the wave-function of a solid, however in
1949 Nevill Mott [Mot49] showed that both models are actually the same approximation,
giving a possible explanation to the insulator state of NiO.

In fact, the band theory and valence bond model are the same approximation, since
they both essentially neglect the electron-electron interaction energy in the solids to de-
scribe their properties. But in the particular case of the NiO, an inconsistency between
these models seems to appear. According to the band theory, the nickel oxide must be a
metal due to its partially filled d-band, however the pure state of this oxide is an insulator.
At the same time, this insulator state can not be predicted by the valence bond model,

1
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because there are unpared electrons in the d-band. This inconsistency suggests that the
electron-electron correlation in the NiO must be relevant.

Following this argument, N. Mott asserted that NiO can not be a metal because
the electrostatic interaction between electrons does not let them move at all. Despite
this affirmation, the fundamental reason of the insulator state of NiO and the apparent
contradiction between both theories was no yet explained clearly, until the proposal of
John Hubbard in 1963 [hub63] of a model to study the effects of correlations in narrow
bands. This model, called as Hubbard model, is described by the following Hamiltonian:

H =
∑
kσ

εkc
†
kσckσ +

1

2

∑
k1k2k′1k

′
2σ1σ2

〈k1k2|V |k′1k′2〉 c†k1σ1
c†k2σ2

ck′2σ2ck′1σ1

−
∑
kk′σ

(
2 〈kk′|V |kk′〉 − 〈kk′|V |k′k〉

)
νk′c

†
kσckσ, (1.1)

where V = V (x,x′) is the Coulomb interaction potential between the electrons of the
system. Here, the electrons are regarded to be in a partially-filled narrowband with a
Hartree potential. The first term corresponds to the kinetic energy εk of the electrons in
each level of the bands, the second is the interaction energy between them and the last term
is the Hartee-Fock potential due to the electrons in the s-band particularly. The operators
c†kσ and ckσ are the creation and annihilation operators of an electron of momentum k
and spin σ =↑, ↓ that belong to the first Brillouin zone and νk is the occupation number
of electrons with momentum k. The matrix elements of the Coulomb potential are given
by

〈k1k2|V |k′1k′2〉 = α

∫
V

ψ∗k1
(x)ψk′1

(x)ψ∗k2
(x′)ψk′2

(x′)

|x− x′| dxdx′,

being α the strength of Coulomb interaction and ψk(x) is the wave-function of an electron
with momentum k. The usual form of this model is found by introducing the creation and
annihilation particle operators of an electron in a lattice site j with spin σ is given by:

c†jσ =
1√
V ol

∑
k

e−ik·Rjc†kσ, cjσ =
1√
V ol

∑
k

eik·Rjckσ,

where V ol is the volume of the crystalline lattice. Here Rj is the vector of the lattice site
j and V is the size of the system. Also, it is necessary to consider the Wannier functions
φ(x) defined by

φ(x) =
1√
V ol

∑
k

e−ik·xψk(x).
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Using those definitions, the Hubbard Hamiltonian can be written straightforward as

H =
∑
ij

tijc
†
iσcjσ +

1

2

∑
ijlmσ1σ2

〈ij|V |lm〉 c†iσ1c
†
jσ2
clσ2cmσ1

−
∑
ijlmσ

(2 〈ij|V |lm〉 − 〈ij|V |ml〉) νjmc†iσclσ,

where

tij =
1

V

∑
k

εke
ik·(Ri−Rj),

〈ij|V |lm〉 = α

∫
φ∗(x−Ri)φ(x−Rm)φ∗(x′ −Rj)φ(x′ −Rl)

|x− x′| dxdx′,

νij =
1

V ol

∑
k

νke
ik·(Ri−Rj).

Since the electrons belong to a narrow s-band, the Wannier functions can be approxi-
mated as an atomic s-functions which are localized, i.e. that those functions do not overlap
so much with its neighbor functions, if the bandwidth is small enough. This implies that
the integral 〈ii|V |ii〉 = U has a magnitude much greater than the magnitude of any other
integral, leading to the following approximation in the Hamiltonian:

H =
∑
ij

tijc
†
iσcjσ +

1

2

∑
ijlmσ1σ2

Uδijδilδimc
†
iσ1
c†jσ2clσ2cmσ1 −

∑
ijlmσ

(Uδijδimδil) νjmc
†
iσclσ

=
∑
ij

tijc
†
iσcjσ +

U

2

∑
iσ1σ2

c†i,σ1c
†
i,σ2

ci,σ2ci,σ1 − U
∑
iσ

νiic
†
i,σci,σ

=
∑
ij

tijc
†
iσcjσ + U

∑
i

ni,↑ni,↓ − U
∑
i

νiini,

where the anticommutation rules of the fermionic operators c†i,σ, ci,σ and the definitions

ni,σ = c†i,σci,σ, ni = ni,↑ + ni,↓, were considered in the last line. Since νii = 1
V ol

∑
k νk =

N
2V ol , being N the total number of electrons, then

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

ni,↑ni,↓ −
UN

2V ol

∑
i

ni

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

ni,↑ni,↓ −
UN2

2V ol
.
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The last term is a constant and can be dropped. Thus, as long as the condition over
the integral 〈ii|V |ii〉 is valid, the Hamiltonian (1.1) can be approximated to the following
Hamiltonian:

H =
∑
ij

tijc
†
iσcjσ + U

∑
i

ni,↑ni,↓, (1.2)

called Hubbard’s Hamiltonian. Although in this derivation done by Hubbard the electrons
are supposed to be in an s-band, himself discusses [HF64a] that this approximation is valid
even for 3d-electrons in transition metals. Besides, the solution of this model provided
a connection between the valence bond model and the band theory such that a metal-
insulator (MI) quantum phase transition1 is predicted [HF64b] and finally a theory for the
insulating state of NiO was given.

A MI transition was discussed previously also by N. Mott who, as we already men-
tioned, highlighted the importance of the electrostatic interaction in this phenomenon
[Mot49, Mot56, Mot61]. In the works of N. Mott, a phase transition from a metallic to
a non-metallic in a crystalline lattice is supposed to be related with the increase of the
lattice parameter at zero temperature. From the point of view of the Hubbard model,
this hypothesis corresponds to the prediction of a quantum phase transition when the
electrostatic coupling U is much larger than the hopping parameter t, U � t.

Figure 1.1. Sketch of MI transition in the plane n-U/t. The transition can occur by two ways:
the filling-control metal-insulator transition (FC-MIT) and the bandwidth-control
metal-insulator transition (BC-MIT). From [IFT98]

.

The Hubbard model particularly predicted the MI transition for a special case where
the number of electrons in the lattice is one per site (half-filling) and there is not a
ferromagnetic order in the lattice such that the number of electrons of spin up and spin
down are the same. However, the MI transition can occur by tuning two parameters

1A quantum phase transition is a phase transition at zero temperature where the transition is given by
tuning of non-thermal parameter as an external magnetic field in the quantum Hall effect [AMU75] or the
electrostatic interaction energy U in the Hubbard model.
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[IFT98], the electrostatic interaction strength U/t and the band filling n (ratio between the
number of particles and the length of lattice). In figure 1.1 a sketch of the MI transition
by two routes is shown. On one hand, the transition described by Hubbard, a bandwidth-
control metal-insulator transition (BC-MIT) where the transition is given by the shifting
of the U/t parameter and a fix vale of the filling (n = 1 for half-filling case). On the other
hand, the transition caused by a filling-control (FC-MIT). This transition is particularly
interesting by its relation2 with the high-Tc cuprate superconductors discovered in 1986
[BM86] which motivated the studies about the Hubbard model in two-dimensional lattices.

Additionally, the MI transitions can be broadly classified according to various aspects
of the metal and insulator side of the transition as well as the dimensionality. Principally,
the spin and orbital components and its degrees of freedom are important for this classifi-
cation. Either in the metal or insulator side, three types of phases are possible near to the
transition, all those depending on its excitation spectrum and whether there are broken
symmetries.[IFT98].

In a first kind of insulators, a symmetry breaking3 leads to a density wave in the
system. For instance, if the symmetry related with the spin component is broken, an
antiferromagnetic or a ferromagnetic state is expected for the ground state. Similarly, a
lifting of degeneracy in d orbitals (t2g orbitals) cause a staggered orbital order or a uniform
orbital order in the phase. An example of this kind of insulators is the antiferromagnetic
phase observed in the oxide V2O3 where the MI transition is a FC-MIT [MRR+71].

Now, if no symmetry is broken, the insulator ground state is expected to be in the spin
sector with projection Sz = 0[LM62], which can be degenerated or not. When the state
with Sz = 0 is not degenerated, there is an energy difference (spin gap) between the state
with total spin S = 1 and the state with total spin S = 0 of the system. Some examples of
this kind of insulators are doped cuprates like Sr14−xCaxCu24O41 [QBXFQ+08, KSK96],
organic salts like TTF -TCNQ [Leo81], Kondo insulators between others [Mot90, IFT98].
The MI transition related to those insulators is in general also a FC-MIT and the insulator
phase is characterized by a small spin gap compared with the charge gap [Hid92, KI93,
KI94]. This insulator phase without symmetry breaking must be differentiated from the
band insulator phase (full-filled band insulator, for example) where the spin and charge
gap are both finite and have the same electron-hole excitation gap. These phases will be
important later in the development of this thesis.

Finally, the third type of insulator is an insulator where neither of the symmetries
are broken nor a spin gap exits. This phase is presented in the one-dimension Hubbard
model at half-filling. Due to the large quantum fluctuations natural for low dimensional
systems and the algebraic decay of antiferromagnetic correlation, the MI transition have
not a spontaneous symmetry breaking (Mermin-Wagner theorem) neither a gap in the spin
excitation spectrum. However, despite the absence of a symmetry breaking, this insulator
phase has an antiferromagnetic order in the chain [LW68] which is a very amazing feature
that turned it into the center of the research around MI transition in the last 50 years.

In regard to the metal phases near to MI transition, those can be classified also ac-
cording to symmetry breaking in their components. For the symmetry breaking phase
a spin or orbital density wave is expected, for example the weakly first order BC-MIT
from an antiferromagnetic metal toward an antiferromagnetic insulating phase observed
in NiS2−xSex pyrite [MTS+00]. In the other case, again the most interesting one, the

2Typical compounds of cuprate superconductors are Mott insulators.
3Here we refer to an explicit symmetry breaking or a spontaneous one.
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MI transition occurs in low dimensional systems where the symmetry breaking is not pos-
sible due to the large quantum fluctuations. In this case, two different phases emerge
[KTK98, TLN+92, NYKS96]: a superconductor phase and a metallic Fermi-liquid phase.

METAL \ INSULATOR I1 (symmetry breaking) I2 (spin gap)

M1 (symmetry breaking) V2O3, NiS2−xSex La1−xSrxCoO3 [KES+96]

M2 (superconductor) BEDT -TTF salts [KTK98] Sr14−xCaxCu24O41

M3 (Fermi-liquid metal) RNiO3 [TLN+92] La1.17−xSrxV S3.17 [NYKS96]

Table 1.1. Overall MI transitions observed in various compounds. Adapted from [IFT98]

.

Although, the Mott-insulator phase is usually defined as an insulator caused by the
local Coulomb repulsion, the classification discussed above shows that there is not a unique
kind of insulator related with this interaction. Due to this, we will refer in general to
the insulating phases related to the MI transition as correlated insulating phases (see a
summary of these phases and its related transitions in table 1.1) and as Mott-insulator
to the engaging phase presented in the one-dimensional Hubbard model at half-filling.

1.2 Optical lattices and superfluid-insulator transition

Due to all these engaging phenomena observed around of the MI transitions, a great
interest arose on the role of electric interactions in the physics of many-body systems.
However, as we just saw, the emergence of those phenomena strongly depends on the
structural properties of the materials. And even though in the twentieth century, these
properties were widely studied by experimental techniques like laser and neutron spec-
troscopy [SWM, HSS71], ion traps [Deh68, Deh69], laser cooling technique [CMDCT89],
between others, the inability of tuning the lattice parameters of the materials revealed
the necessity of a new technique for a complete exploration of the physics of many-body
systems.

Fortunately, these same technological developments did not just open new possibilities
for ultrahigh-precision spectroscopy, but also allowed the study of crystalline solids in
a controlled way [GWO00]. The formation of ordered structures in stored laser-cooled
ions [Wal93] and the experimental relation of Bose-Einstein condensation using magnetic
optical traps (MOT) [AEM+95] started a wide research line in the condensed matter
physics around of ultracold atoms and optical lattices.

Formally, an optical lattice is understood as a system formed by atoms stored in a
crystalline lattice using optical traps and diverse cooling methods. The more typical optical
traps are the optical dipole traps where neutral atoms are stored using the interference
between counter-propagating laser beams with a Gaussian profile. Depending on the
propagation direction of the beams and how many beams are used to create the trap, the
atoms can be load into the resulting one, two or three-dimensional lattices.

For instance, when two laser beams are counter-propagating in the y-direction, the
interference between them generates a three-dimensional potential given by [WS13]:



CHAPTER 1. HUBBARD MODEL 7

V (x, y, z) = −V0exp
{
−2

x2 + z2

w2(y)

}
cos2(ky), (1.3)

where

w(y) = w0

√
1 +

(
y

yR

)2

, yR =
πw2

0

λ
,

being λ the wave-length of the laser, k = 2π/λ is the wave number, w0 is the so-called the
beam waist and V0 is the maximum potential depth of the trap. This potential corresponds
to a one dimensional lattice with a periodicity of d = λ/2 as we can see in figure 1.2-a.
The lattice periodicity can be shifted by introducing an angle α between the beams such
that d = λ

2 sin(α/2).

a b

Figure 1.2. Optical lattice potential (for z = 0) produced by the interference between counter-
propagating laser. (a) One dimensional lattice in y-direction given by (1.3), (b) Two
dimensional lattice in the xy-plane given by (1.4).

Optical lattices of higher dimensions can be produced by using three or more laser
beams4. For example, a regular square lattice in the xy plane can be generated by the
interference of four laser beams, two in the y-direction and two in the x-direction (see
figure 1.2-b). The resulting potential is given by:

V (x, y, z) = −V0exp
{
−2

x2 + z2

w2(y)

}
cos2(ky)− V0exp

{
−2

y2 + z2

w2(x)

}
cos2(kx), (1.4)

In order to load the atoms into the lattice, a MOT is used. First, the atoms are trapped
in the MOT with a red detuning5 near to resonance [RPC+87]. Then, before the magnetic
trap be turned off, the dipole trap is simply overlapped with the atomic cloud captured in

4A regular triangular lattice is generated by the interference of three coplanar lasers beams with an
angle of 120◦ between them [WS13].

5A red detuning means that the laser frequency is tuning below of the resonant frequency of the atomic
system.
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the MOT. Nowadays, an optical lattice can trap about 105 ∼ 108 atoms at temperatures
from 10nK to 1µK and densities of 1010 ∼ 1012cm−3 [MCH93].

The low densities achieved in the loading process cause that the interaction6 between
atoms to be binary with a characteristic interaction distance r0. In this regime, the trapped
atomic gas is said to be dilute which means that the interaction range r0 is much smaller
than the mean particle separation, i.e. nr30 � 1 where n the density of the gas.

Also, due to the low temperature of the system, the thermal de Broglie wavelength
Λ =

√
2π~2/mkBT is much larger that the r0, Λ� r0. In this condition, called ultracold

limit, the quantum behavior dominates the classical one, being this the principal reason
because the optical lattices are an appropriate system to explore quantum phenomena of
matter7.

The most used atoms in this kind of traps are alkali atoms like 6Li, 40K, 87Rb or
isotopes of them because their transition wavelength lie within a convenient spectral range.
Since the atoms loaded in an optical lattice constitute a dilute ultracold gas, the scattering
inside the atomic gas does not depend on the shape of the potential. In fact, when two
atoms of an ultracold gas collide within a potential VI(r), being r the radial distance
between the atoms, the scattering amplitude does not depend on the scatter angle [LL59].
This means that the collision in the utracold limit just occurs when the relative angular
momentum ` between the atoms is zero (s-regime).

Due to this, the potential VI(r) can be replaced by an effective hard-sphere with radius
a which is described by a pseudo-potential V(r) given by[HY57]:

V(r) =
4π~2a
m

δ(r) = gδ(r),

where m is the mass of the atoms loaded in the optical lattice8 and a is called the scattering
length which can be determined from the phase shift caused by the potential. Thus,
ultracold atoms trapped in an optical lattice can be described by the following Hamiltonian
[JBC+98]:

H =

∫
ψ†(x)

(−~2
2m
∇2 + V (x)

)
ψ(x)d3x +

1

2

∫ ∫
ψ†(x)ψ†(x′)V(x− x′)ψ(x)ψ(x′)d3xd3x′

=

∫
ψ†(x)

(−~2
2m
∇2 + V (x)

)
ψ(x)d3x +

g

2

∫
ψ†(x)ψ†(x)ψ(x)ψ(x)d3x. (1.5)

where ψ(x) is the field operator for the atoms. The atoms can be bosons or fermions,
depending on internal nuclear structure. Expanding the field operator in the lattice site
operators ai, ψ(x) =

∑
iw(x− xi)ai with w(x) the Wannier functions, the Hamiltonian

can be rewritten as follows:

6Typically a Van der Waals short-range interaction.
7Due to the thermal de Broglie wavelength has the same order that the mean particle separation, the

quantum statistics are also relevant in optical lattices. Quantum gases where this occurs (nΛ3 & 1) are
referred as a degenerate gases.

8If the atoms that collides in the optical lattice have different masses, the coupling constant g in the
pseudo potential is given by g = 2π~2a/µ, where µ is the reduced mass.
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H = −
∑
<i,j>

tija
†
iaj +

U

2

∑
i

ni(ni − 1), (1.6)

being ai (a†i ) the annihilation (creation) operator of a particle at lattice site i which
obeys bosonic or fermionic commutation or anti-commutation rules depending on the
case, U = g

∫
|w(x)|4d3x the strength of local interaction between two atoms, and ti,j =

t =
∫
w(x− xi)

(
−~2
2m ∇2 + V (x)

)
w(x− xj) the hopping matrix element between neighbor

site < i, j >.

The latter Hamiltonian is very similar to the Hubbard Hamiltonian discussed in the
previous section. Indeed, for a fermionic gas, we have that ni(ni − 1) = 2ni,↑ni,↓9, such
that the Hamiltonian for fermions trapped in an optical lattice is exactly the Hubbard’s
Hamiltonian (1.2). For a bosonic gas, the Hamiltonian (1.6) is commonly called as the
Bose-Hubbard Hamiltonian which exhibits a very interesting quantum phase transition,
likewise its fermion counterpart. As we discussed in the previous section, this transition
depends on the interaction strength U/t that, in this optical lattice scenario, can be
smoothly tuned by fixing either the potential depth or the scattering length. The former
quantity is related with the value of the hopping amplitude, while the latter is related
with the on-site interaction between the atoms.

The Hubbard’s transition in a bosonic ultracold gas is similar to the fermionic one,
but in the bosonic case, the metallic phase for the weak interaction limit (U/t << 1)
actually corresponds to a superfluid phase [FWGF89, Leg98]. This was firstly observed by
M. Greiner et al.[Gre02] in 2002 where a Bose-Einstein condensate of 87Rb atoms loaded
in a three-dimensional optical lattice was studied. In this experiment, they observed the
transition from the superfluid phase to an insulator phase controlling the lattice potential
depth, V0. As this quantity was increased in the experiment, the hopping amplitude
decreased exponentially such that a Mott-insulator phase was observed for low values of
V0.

In fact, in figure 1.3, it is shown a series of absorption images of the interference
pattern in the lattice for different values of V0. Here, we can observe that a coherent in-
sulator phase appears for low values of V0, since there is a clear maximum of interference
localized (see figure 1.3-a) in a lattice site which is characteristic of the Mott-insulator
phase. For high values of V0, this maximum of interference decrease causing the inter-
ference pattern of the lattice to disappear (figure 1.3g-h) such that the system enters
toward the superfluid phase.

This experiment undoubtedly showed that optical lattices and the Hubbard model are a
perfect scenario to study or simulate the physics of condensed matter. However, in the last
decades, the exploration of the Hubbard model in optical lattices has been also relevant in
other branches of the physics. In particular, the transition toward the Mott-insulator phase
is supposed to be a good initial state for quantum computing [JBC+99]. Nevertheless, the
initialization is not the unique challenge to realize a real quantum computer. For instance,

9In a fermionic system we have that ni = ni,↑ + ni,↓ and n2
i,σ = ni,σ for σ =↑, ↓, then:

ni(ni − 1) = n2
i − ni = n2

i,↑ + n2
i,↓ + 2ni,↑ni,↓ − ni,↑ − ni,↓ = 2ni,↑ni,↓.
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achieve long decoherence times or find an universal set of quantum gates is also important
to quantum computing [DiV00].

Figure 1.3. Absorption image of the lattice after of a time-flight of 15 ms. The lattice potential
depth is measured in units of the recoil energy Er = 2π2~2/mλ2, being λ the wave-
length of the lattice. The values of V0 are: (a) 0, (b) 3Er, (c) 7Er, (d) 10Er, (e)
13Er, (f) 14Er, (g) 16Er, (h) 22Er. From [Gre02].

1.3 Experimental realization of The Fermi-Hubbard model
in optical lattices

In regard to the realization of Hubbar’s Hamiltonian in an optical lattice, in 2008 R.
Jördens et al. [JrSGn+08] achieved to explore this model in a three-dimensional lattice
load with a Fermi-Fermi balanced mixture of 40K in two states of the hyper-fine F = 9/2
manifold. In this experiment, unlike to the Greiner’s experiment, the effect of interaction
in the fermionic gas was studied directly tuning the on-site interaction parameter. This
is possible due to a phenomenon called Feshbach resonance where two atoms that collide
in a magnetic field can be trapped in a resonant bound molecular state, causing a shift in
the scattering length at low energies.

Figure 1.4. Elastic scattering cross-section of the collision between atoms of 40K in |9/2,−9/2〉
and |9/2,−7/2〉 states loaded in an optical lattice as a function of the magnitude of
an external uniform magnetic field. From [LRT+02].
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Feshbach resonance occurs when two states in different collision channels10 are ener-
getically close. This resonance has been observed in ultracold gases of 40K [LRT+02] or
6Li [BAR+05] as well as in several heteronuclear mixtures like 87Rb -88Sr [BCP+18],
87Rb -40K [IGO+04], 6Li -173Y b [GLST+20]. Since the state energy of the atoms depends
on its internal structure (nuclear and spin structure), the resonance between the two states
can be carefully controlled by the applied magnetic field thanks to the Zeeman effect. For
example, in a spin-mixture of 40K atoms in the |9/2,−9/2〉 and |9/2,−7/2〉 states, the
scattering cross-section depends on the magnetic field (see figure 1.4). This directly
implies a shift in the scattering length and in the on-site interaction between the atoms
caused by the magnetic field [CGJT10].

The Fermi-mixture of 40K in the R. Jördens’s experiment can be created from an
ultracold fermionic gas in two stages: an evaporation stage and a transfer stage [LRT+02,
DJ99]. First, the initial gas is polarized in the |9/2, 9/2〉 state by removing the other spin
states of the gas applying a frequency-swept microwave field (evaporative cooling). Then,
the polarized gas is loaded into the optical lattice where a radio-frequency field is applied
in order to transfer the atoms in the |9/2, 9/2〉 state to the |9/2,−9/2〉-|9/2,−7/2〉 mixture
state. In both steps, the magnetic field is generated between the two coils of the MOT.

a

t

U

U << t

b

U >> t

Figure 1.5. Sketch of metallic and insulator phases near to MI transition: (a) Metallic phase
where the particles are not localized moving between the lattice sites, (b) Mott-
insulator phase where the particles are localized and an antiferromagnetic order is
observed. The red and blue spheres represent the particles with spin up and down,
respectively.

The effects of correlation in the R. Jördens’s experiment was studied from the fraction
of double occupied sites, D. This quantity can be measured by an absortion image of
the lattice after increasing rapidly the depth of the optical lattice in order to prevent any
tunneling of the atoms. According to our previous discussion about MI transition in the
Hubbard model, when the system is in the strong correlation limit (U >> t), the atoms
can not move between the lattice sites leading to an antiferromagnetic ordering with no

10When two atoms collides in a potential, the scatter state can be trapped in the potential o not
depending on the spin and nuclear structure of the atoms itself. The states trapped in the potential are
regarded to be in the close channel of the potential, while the free scattered states are said to be in the
open channel of the potential.
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double occupied sites (see figure 1.5-(b)). Conversely, in the weak regime (U << t), the
system must be in a metallic phase such that the atoms are not localized (see figure
1.5-(a)). In this case, if the depth of the lattice is increased, a non-null double occupancy
must be observed. Taking into account this, R. Jördens et al. predicted a MI transition in
their experiment, since a high double occupancy was observed for the non-interacting case
(see white circles in figure 1.6-a), meanwhile this quantity is less than 6% for a non-null
value of the coupling energy (see figure 1.6-b). Furthermore, the insulator phase was
recognized as the Mott insulator phase, due to this phase corresponds to an incompressible
phase.

Figure 1.6. Double occupancy as a function of total atom numbers in the lattice for different
values of on-site interaction U measured with respect to the hopping amplitude (here
J). (a) Double occupancy for strong and weak coupling limit (black and white circles
respectively), (b) Zoomed behavior for the strong coupling limit, here the solid red
and blue lines represent the theoretical approach for D assuming full localization of
atoms, i.e., neglecting the kinetic energy. From [JrSGn+08].

In fact, this can be seen from the slope of the double occupancy ∂D/∂N in the figure
1.6. This quantity is an indirect measure of compressibility κ = ∂n/∂µ, since the filling n
increase with D. More than the antiferromagnetic order in the insulator phase, a Mott-
insulator have several unique characteristics as a null compressibility[GFW+06]. In the
weak regime, the system is compressible due to the slope ∂D/∂N is positive, but in the
strong coupling limit (U/h > 5kHz), the slope vanish indicating that the system has
entered to the Mott insulator phase (see figure 1.7). This behavior agrees well with the
result expected from the Hubbard model in the atomic limit, i.e., when the kinetic energy
is neglected (see solid lines in figure 1.6-b and figure 1.7).
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Figure 1.7. Slope ∂D/∂N as a function of U/h (here, h is Planck’s constant). The compressibility
∂D/∂N was obtained from a least-squares fit of D(N) = (∂D/∂N)N + D0 to the
data in figure 1.6. The solid line represents the expected value of ∂D/∂N in the
atomic limit (neglected kinetic energy). From [JrSGn+08].

Although the smooth decay of the ∂D/∂N in the figure 1.7 indicates a continuous
phase transition in the system, the criticality of this transition depends strongly on the
dimension and geometry of the lattice. For instance, a phase transition belonging to
the Heisenberg universality class was predicted in the three-dimensional model at half
filling [Kar13], meanwhile for the two-dimensional model several researches suggest that
the transition can belong to the 3D XY universality class in a triangular lattice [Sen08],
2D Ising universality class [ME12] in a square anisotropic lattice or even Gross-Neveu-
Heisenberg universality class in a honeycomb lattice [PTHAH15]. Besides, in the one-
dimensional model, the phase transition corresponds to the Berezinskii-Kosterlitz-Thouless
(BKT) transition [BLSS07].

Despite there is not an exact solution for the Hubbard model in two or higher di-
mensions, which will allow a fundamental description of the phases near a MI transition
and the criticality of this transition, the study interacting spin mixtures in optical lattices
with different geometries provide a good framework to explore the Hubbard model physics
and other engaging phenomena. In the following sections, we will remark this idea in two
particular examples: the Hubbard model in honeycomb lattices and the mass-imbalanced
Hubbard model.

1.4 Hubbard model in a honeycomb lattice

About the study of complex geometries in optical lattices, an interesting system is the
honeycomb lattice. This kind of lattice has been widely studied since the discovery of
graphene [NGM+04] due to current applications of this material in electronics [FBI+14],
spintronics [HKGF14], development of high-frequency and logic transistors [MMF+18,
MRPM+20], among others [RVPS15, XWX+14]. However, although the pure graphene
presents engaging topological features like Dirac points, the absence of a gap energy is an
obstacle for some already mentioned applications.
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a b

Figure 1.8. Crystallographic edge orientations in graphene nanoribbons fabricated by scanning
tunnelling microscope lithography: (a) Armchair orientation, (b) Zigzag orientation.
From [MJH+14].

One way to get a non-zero gap in graphene consists of achieve an electronic confinement
in narrow strips. These strips, called as graphene nanoribbons, can be fabricated by
techniques based on scanning tunneling obtaining ribbons with nanometric widths and
well-defined edge orientation [TDLB08, MJH+14], as we can see in figure 1.8. Due to
the narrow width of these ribbons, an electronic gap up to 0.5 eV emerges in both possible
orientations of the edge (armchair and zigzag).

Figure 1.9. Experimental and theoretical width dependence of the energy gap in graphene
nanoribbons for the two possible edge orientation: (a) armchair, (b) zigzag. Theo-
retical data correspond to density functional theory for armchair ribbons depending
on the number of rows in the ribbon (3n, 3n + 1 and 3n + 2, being n = 1, 2, 3 · · · ),
and from mean field Hubbard model approach for zigzag ribbons (solid lines are just
a guide for the eye). From [MJH+14].

Indeed, in the figure 1.9, we can observe the experimental and theoretical results of
G. Z. Magda et al. about the dependence of the energy gap with respect to the width in
nanoribbons fabricated by scanning tunneling microscopy (STM) [MJH+14]. For armchair
as well as zigzag nanoribbons, the electronic gap decreases with the width of the ribbon.
However, this behavior is different depending on the edge orientation. Meanwhile, the gap
continuously decreases in armchair graphene nanoribbons (AGNR), there is a discontinuity
in the gap function for zigzag graphene nanoribbons (ZGNR). This indicates a transition
between a semiconductor phase and a metal phase (zero gap phase) when the edges have
a zigzag orientation.



CHAPTER 1. HUBBARD MODEL 15

Figure 1.10. Mean field results for the spin density (red: spin up, blue: spin down) in ZGNR for
a 5 nm strip (left) and 10 nm (right). From [MJH+14].

This transition observed by Magda and its coworkers is also predicted correctly by
themselves from a mean field approach of the Hubbard model (blue triangles in figure
1.9b). This forecast relates directly the gap opening in ZGNR with the correlation between
the confined electrons in the ribbons, since this correlation is the fundamental reason for
the insulator phase in the Hubbard model. Besides, from the same mean field calculations,
a magnetic order in the semiconductor phase as well as in the metallic phase of the ZGNR
was predicted by means of analyzing the spin density along the ribbons given by the
following expression:

〈Sz(r)〉 =
1

2
(〈n↑(r)〉 − 〈n↓(r)〉) ,

where r is a position vector lying to the lattice and n↑(r) (n↓(r)) is the particle density
with spin up (spin down) at the site r. Specifically, an antiferromagnetic order is predicted
for semiconductor ribbons (narrow ribbons in left side of figure 1.10), meanwhile a
ferromagnetic order is predicted for the metallic ones (wide ribbons in right side of figure
1.10).

The existence of an antiferromagnetic order in the gapped phase of ZGNR is also re-
lated with the interaction between the confined electrons in the ribbon. In fact, numerical
approaches beyond the mean field of G. Z. Magda et al., demonstrate that an antiferromag-
netic insulator phase is presented in narrow ribbons of a honeycomb lattice with Hubbard’s
interaction [HHLM03, HL16]. For instance, the figure 1.11 shows the spin density in a
narrow ribbon calculed by Density Matrix Renormalization Group (DMRG) algorithm
performed by I. Hagymási and Ö. Legeza [HL16], where a clear antiferromagnetic order
is observed for a non-null interaction parameter (figure 1.11b).

a b

Figure 1.11. DMRG results for spin density (red: spin up, blue: spin down) in ZGNR: (a)
U/t = 0, (b) U/t = 4. From [HL16].
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Moreover, this antiferromagnetic ground state in ZGNR is consistent with the Lieb’s
Theorem[Lie89] about the repulsive Hubbard model at half-filling for bipartite lattices
which states that the ground state is unique11 and has a total spin S = 1

2 ||B|− |A||, where
|B| (|A|) is the number of sites in the B (A) sublattice. Since |B| = |A| = 3 for the
honeycomb lattice, the theorem predict a unique ground state with S = 0. According to
this, the insulator phase in ZGNR must be a singlet state with a finite spin gap, which
is an example of the second type of insulators near to the MI transition discussed in the
Section 1.1.

Indeed, this feature also was predicted by numerical approaches as the DMRG explo-
ration done by T. Hikihara et al. [HHLM03] in 2003. In this investigation, the ground-state
properties of ZGNR with Hubbard interaction were studied by analyzing the spin density,
spin correlations functions as well as the spin and charge gaps. The spin and charge gaps,
denoted by ∆S and ∆C respectively, are defined as follows:

∆S =E0(N↑ + 1, N↓ − 1)− E0(N↑, N↓), (1.7)

∆C =E0(N↑ + 1, N↓) + E0(N↑ − 1, N↓)− 2E0(N↑, N↓). (1.8)

where E0(N↑, N↓) is the ground state energy of the system with N↑ spin up electrons and
N↓ spin down electrons. In figure 1.12, we can see that there is non-zero spin gap (white
squares) for positive on-site interaction parameter.

Figure 1.12. Spin and charge gaps at thermodynamic limit for a narrow ZGNR ( with just one
hexagon of wide) as a function of the on-site interaction parameter U of the model.
From [HHLM03].

To conclude, the magnetic properties of the insulator/semiconductor ground state of
ZGNR are very interesting quantum characteristics that could be important to future
applications in spintronics [HKGF14] and other fields already mentioned at the beginning
of this section. Also, the implementation of honeycomb geometry in tunable geometry
optical lattice [TGU+12] allows for a detailed exploration of this magnetic properties.

11except for the typical 2S + 1 degeneracy
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1.5 Mass-imbalanced Hubbard model

In regard to the emerged physics of systems with spin mixtures, currently the possibility
of trap different types of atoms in an optical lattice [TVA+08, STN+09, TGL+10] allows
for the study several phenomena. In particular, phenomena like Fulde, Ferrell, Larkin,
and Ovchinnikov (FFLO) superconductivity [TU08, CP18], fermionic superfluity [OPS08]
or atom-dimer attraction [JZC+14] can be studied in lattices loaded with an interacting
Fermi mixtures. According to the recent researches, all these phenomena seem to be
related with an imbalance in the spin mixtures.

As we mentioned in Section 1.3, a spin mixture can be a heteronuclear mixture, where
the difference between the total number of atoms loaded into the optical lattice or the
difference between the masses of them leads respectively to a population-imbalance or a
mass-imbalance in the system. On the one hand, in a population-imbalanced ultracold
gas, the finite magnetization of the ground state cause that an s-wave superconductor
state would not be possible12 [FF64, LO64], giving place to engaging phenomena like the
already mentioned FFLO superconductivity. On the other hand, a spin mixture with
mass-imbalance exhibits an asymmetry in the kinetic energy of particles with different
spin, which favors energetically a superfluid state when the confining potential of one of
the atomic species in the mixture goes out [OPS08].

Moreover, mass-imbalanced mixtures are related with localization phenomena like the
localized magnetic moments in samarium hexaboride (SmB6) which are connected with
the semiconductor-metal transition in this material[MBG69, FK69]. As well as the metal-
insulator transition in others transition-metal oxides, the transition in SmB6 can be stud-
ied by a Hubbard model. However, the model that describe this material corresponds to
a modification of the Hubbard model.

In the model proposed by L. M. Falicov and J.C. Kimball [FK69] to describes the
samarium hexaboride, it is assumed that the localized magnetic moments interact with
spinless electrons. This is equivalent to consider interacting electrons where for example
the electrons with spin ↑ has an infinite mass (a limit case of mass-imbalance). According
to this, the Falicov-Kimball Hamiltonian can be written as follows [GIJL90, KL86]:

HMI =
∑
〈i,j〉,σ

tσ

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓, (1.9)

with t↑ = 0 and t↓ = t. The ground state of this Hamiltonian exhibits interesting properties
[KL86] as a positive gap at half-filling for all U 6= 0 (as well as in the insulator phase of the
Hubbard model) and a long range order for all dimensions d at zero temperature, which
persists for d ≥ 2 at finite small temperature. This long range order is related with the
phenomena of crystallization of the matter that gives an alternative explanation of why a
periodic arrangement of nuclei is the configuration of minimum energy.

Although the insulator phase of the Falicov-Kimball model (FK model) is very similar
to the insulator phase to the Hubbard model, these phases are fundamentally different in
one dimension. Even more, the correlated insulator of any mass-imbalanced chain differs

12Since the cooper paring between particles with opposite spin can not occur for an arbitrary weak
coupling.
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from Mott insulator phase of the Hubbard model, since that insulator exhibits a finite
spin gap [FDanLan95]. In fact, for the strong coupling limit the Hamiltonian (1.9) can
be mapped to an anisotropic XXZ Heisenberg chain given by the following Hamiltonian
[GMJ16]:

HXXZ = J
∑
i

Sxi S
x
i+1 + Syi S

y
i+1 + γSzi S

z
i+1,

being Sxi (resp. Syi , Szi ) the x (resp. y, z) component of an effective 1
2 -spin operator13

at site i, J = 4t↑t↓/U and γ = (t2↑ + t2↓)/2t↑t↓. Since J > 0 and γ > 114 when there is
mass-imbalance, the ground state of the system is antiferromagnetic and has a finite spin
gap cause by the asymmetry parameter γ [DCG66].

This particular difference, in the spectrum of the ground state of the Hubbard model
and mass-imbalanced Hubbard model at one dimension, suggest that a phase transition
between the two correlated insulators occurs. According to Bethe Ansatz approach of the
XXZ Heisenberg chain, the spin gap open right when there is not mass-imbalance, i.e. at
γ = 1 (t↑ = t↓). Moreover, this gap opens exponentially slow near to the phase transition
point as follows [DCG66]:

∆S = 4πJ exp
{
−π2/[2(2(γ − 1))1/2]

}
, 1 < γ ≤ 2,

which is characteristic of a BKT transition. For the weak coupling limit, this transition
remains, but does not occur at the balanced point t↑ = t↓ [CG08]. Finally, the quantum
criticality of the mass-imbalance model at two or higher dimensions is a very interesting
topic[SCH12, GUJ+13]. Mostly, away from the half-filling, there are rich phase diagrams
of the model that include charge and spin density wave orders, phase separation, super
solid phase, between others engaging phases [SVFF07, Mat07, Fcv08, BCD+10, Far12].

13The spin operators are given by:

Sαi =
∑
µ,ν

c†i,µσ
α
µ,νci,ν ,

where σαµ,ν are the Pauil matrices with α = x, y, z.
14As (t↑ − t↓)2 = t2↑ + t2↓ − 2t↑t↓ > 0



CHAPTER 2

Ionic Hubbard Model

In the previous chapter, we have seen how the experimental realization of a fermionic Mott-
insulator on optical lattices motivated the theoretical and numerical research of several
many-body phenomena in the context of the Hubbard Hamiltonian. In this chapter,
we focus in a particular Hubbard Hamiltonian called the ionic Hubbard model (IHM)
which describes interacting electrons in a staggered potential. We give a brief theoretical
and experimental review of the model in one and two-dimensional lattices, centering our
attention in the honeycomb lattice that is the main frame of this thesis. Also, we present
the results of a transversal research about the mass-imbalanced IHM made during the
development of this project.

2.1 Origins of Ionic Hubbard Model (IHM)

The ionic Hubbard model is a modification of the Hubbard model proposed by Paul J.
Strebel and Zoltán G. Soos in 1970 [SS70] to describe the effects of charge transfer (CT)
interaction in stacks of electron donors and acceptors in aromatic crystals. This interaction
has an electrostatic origin, caused by a transferred fraction of electric charge between two
or more molecules.

Donor (D) molecules are characterized by a low ionicity potential, meanwhile an ac-
ceptor (A) ones are characterized by a high electron affinity. Those features lead the D
and A molecules, like Tetrathiafulvalene (TTF) and chloranil respectively, to stack to-
gether face to face (see figure 2.1-a) due to two kinds of interactions [Mul54, Soo74].
The first one corresponds to the typical intermolecular forces, i.e., forces caused by some
electrostatic interaction between multipole moments (London dispersion forces for exam-
ple). The other interaction (the CT interaction) is caused when a fraction of the electronic
charge is transfered from D to A leading to an attractive electrostatic force between the
molecules. According to this, a DA complex can take two possible states: one where the
molecule has not a net electric charge (neutral state, see figure 2.1-b) and other where
a pair DA is ionized D+A− due to the charge transfer (ionic state, see figure 2.1-c).

19
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Figure 2.1. Charge-Transfer complex example: (a) Molecular structure of TTF-Chloranil, (b)
neutral phase of the CT complex, (c) ionic phase of the CT complex. Gray, green,
red, yellow and white spheres represent C, Cl, O, S and H atoms respectively and
the single and double lines represent the single and double bonds between the atoms.

The occurrence of those states in an organic charge-transfer complex suggest the pres-
ence of a phase transition between a neutral phase and an ionic phase. In fact, J.B.
Torrance et al. in 1981 [TVML81] reported the first observation of a neutral-to-ionic tran-
sition in organic charge-transfer solids. This transition is characterized by a competition
between the ionizing energy of a DA pair, and the electrostatic repulsion between two
electrons in the same molecule.
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Figure 2.2. Total energy of a DA pair in a CT complex as a function of ρ. The solid and dashed
line corresponds to the energy in the neutral and ionic phase, respectively.
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Indeed, let ID be the ionizing potential of the D molecule, AA be the electron affinity of
the A molecule and U the Coulomb attractive interaction energy. Then, the total energy
of the DA pair is given by [Soo74]

E(ρ) = (ID −AA)ρ− αUρ2, (2.1)

where ρ is the degree of CT and α is the Madelung constant of ionic pair D+A−. Thus, if
ID −AA > αU , the ionized DA pair is not a stable state, causing the solid to fall into the
neutral phase (ρ = 0). Otherwise, if ID − AA < αU , the ionized state (ρ = 1) minimized
the pair energy (2.1) causing the solid to be in the ionic phase. We can observe this from
a plot of the DA energy (2.1) as a function of ρ (see figure 2.2).

As we mentioned, this phenomenon was described theoretically by Strebel and Soos in
1970. They describe the CT complex as a quantum mechanical systems characterized by
a modified Hubbard model:

Hionic = −t
∑
i

c†iσci+1σ + U
∑
i

ni,↑ni,↓ +Hsite +Hα, (2.2)

where Hsite and Hα are a phenomenological description of the on-site energy representing
the inequivalence of D and A molecules and the energy difference between the three-
dimensional lattice of D+, A− ions and of D, A molecules respectively. On the one hand,
the first term introduces an energy difference (sometimes called staggered energy offset)
between odd and even sites of the chain as follows:

Hsite = ∆
∑
i,σ

(−1)iniσ. (2.3)

Since all the electrons are paired on the D molecule in the neutral phase, Hsite gives a
−2∆ energy for a DA pair, meanwhile in the ionic phase this site contribution vanishes.
Thus, the excitation energy to create an ionic pair from the neutral phase is 2∆. Such
energy can be estimated as [NSM66, SS70]

2∆ = (ID −AA) + U,

because it is exactly the energy to transfer one electron from the donor to the acceptor
molecule. According to this and equation (2.1), the neutral phase occurs for 2∆ > (1+α)U ,
meanwhile the ionic phase occurs for 2∆ < (1 + α)U . On the other hand, the Hα term is
given by:

Hα = −2α

L

〈∑
i,σ

′
ni,σ

〉2

, (2.4)
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where the sum goes over the acceptor sites and L is the total number of molecules in
the chain. This term represents the total molecular Madelung energy in the ionic phase
[SS70, KMM64].

2.2 One-dimensional IHM

The Madelung term (2.4) is just included to take into account the three-dimensional
distribution of the D+A− pair in the ionic phase. Due to this, the main cause of the
neutral-to-ionic phase transition is related to the competition between U and ∆ energies.
Thus, the Hamiltonian that describes the phase transition in the IHM is the following :

Hionic = −t
∑
i

c†iσci+1σ + U
∑
i

ni,↑ni,↓ + ∆
∑
i,σ

(−1)iniσ. (2.5)

The competition between energy scales in the IHM gives rise to very interesting phe-
nomena: an insulator-insulator transition, which had been one of the hardest and engag-
ing problems in condensed matter physics[TAJN06, MCFSV16]. For example in a one-
dimensional lattice, according to bosonization calculations[FGN99], two critical points of
U were predicted for a fixed value of ∆ such that an ionic Hubbard chain has first a band
insulator phase for U < Uc1 characterized by a non-zero band gap, followed by an Ising-
like phase transition to an intermediate phase for Uc1 < U < Uc2 where the band gap is
zero and some kind of dimerization appears in the lattice, and finally a BKT transition
to a correlated Mott-insulator U > Uc2 characterized by a peculiar particle ordering (see
figure 2.3).

Figure 2.3. One-dimensional ionic Hubbard model phase diagram: Band insulator (BI) for U <
Uc1 , spontaneously dimerized insulating phase (SDI) for Uc1 < U < Uc2 and Mott-
insulator for U > Uc2 . From [FGN99].

In 2004 S. R. Manmana et al. [MMNS04] studied numerically the insulator-insulator
phase transition of the ionic Hubbard model in one dimension. In this work, the authors
calculated the charge (∆1 = ∆C), spin and excitation gap1 (∆E) determining the exact
critical points of the two phases transitions. In the figure 2.4 is shown the gap energies
for an ionic Hubbard chain as a function of U/t for a fixed value of ∆/t = 10 at the

1the excitation gap is given by:

∆E = E1(N↑, N↓)− E0(N↑, N↓),

where E1(N↑, N↓) is the first excited state energy.
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thermodynamic limit. The band insulator phase is characterized by a non-zero value of the
excitation gap ∆E . The phase transition to the intermediate phase occurs when ∆E = 0,
the authors report Uc1/t = 21.39 for this transition. The second transition to Mott-
insulator phase is characterized by a null value of the spin gap at 21.55 < Uc2/t < 21.69.

Figure 2.4. The U dependence of gaps energy at the thermodynamic limit for an ionic Hubbard
chain with ∆/t = 10. The inset shows the behavior of gaps for a large range of U .
From [MMNS04].

The band insulator and Mott-insulator phases can be described considering two limit
cases of the IHM: the limit of weak coupling (U � ∆, t) and the limit of strong coupling
(U � ∆, t). In the first limit, which belongs to the band insulator phase, the ground state
exhibits a charge modulation as it is shown in figure 2.5-a, where particles with different
spin tend to stay together in deeper potential well sites. This modulation, called charge
density wave (CDW), occurs since the particles can not tunnel to shallow potential well
sites, due to the high value of energy offset. We must note that this phase corresponds
to the neutral phase of the system, where there is no charge transfer between donors and
acceptors2.

Now, in the other limit (which corresponds to the Mott-insulator), the strong on-site
interaction causes that particles with different spin can not be in the same site, leading
to a charge transfer in the system (characteristic of ionic phase). Due to this, there is an
occupation of one particle per site along the lattice with an antiferromagnetic order, as
we can see in the figure 2.5-c. In fact, the lattice presents an antiferromagnetic order
since the IHM in the strong coupling limit is equivalent to an effective Heisenberg model
with an antiferromagnetic ground state [GMJ16]:

Heff = J
∑
i

Si · Si+1,

where Si = (Sxi , S
y
i , S

z
i ) is the spin operator at site i, and J = 4t2U/(U2 −∆2).

2Here, the donors are in the sites with more deep potential well.



CHAPTER 2. IONIC HUBBARD MODEL 24

a

b

c

Figure 2.5. Sketch of phases in the IHM in one-dimension: (a) band insulator phase for weak
coupling limit, (b) spontaneous dimerized intermediate phase, (c) Mott-insulator for
strong coupling limit. The red (resp. blue) spheres represent particles with spin up
(resp. spin down).

In regard to the intermediate phase, according to the previous mentioned theoretical
and numerical studies [FGN99, MMNS04], this is a phase different to the neutral and ionic
phases of the CT complexes which is characterized by a dimerization in the chain. For
instance, in the work of S. R. Manmana et al., the intermediate phase is described by the
so called bond-order (BO) parameter, given by:

〈B〉 =
1

L− 1

∑
i,σ

(−1)i
〈
c†i+1,σci,σ + c†i,σci+1,σ

〉
,

being L the total number of sites in the lattice. This quantity has been used to study
dimerized phases in other systems [WA96], and in particular for the IHM, allows to de-
termine if there exists an asymmetry in the hopping probability between sites with deep
and shallow potential well.

Figure 2.6. Bond-order parameter at the thermodynamic limit as a function of local interaction
in a one-dimensional lattice for a fix energy offset δ = 2∆ = 20. From [MMNS04].
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As we can see in the figure 2.6, the BO parameter is positive in the limit L → ∞
for the intermediate phase studied by S. R. Manmana et al. for a fixed energy offset
(∆/t = 10)3. Thus, the intermediate phase corresponds to a dimerized state of the chain,
as it is shown in the figure 2.5-b. We must note that the BO parameter is zero in the
band insulator phase as well as in the Mott-insulator phase, since for those phases the
particles occupy a fix site.

2.3 Two-dimensional IHM and Optical Lattices

About of current researches around of IHM, in 2015 M. Messer et al. [MDU+15] success-
fully studied the IHM model in an optical lattice loaded with a balanced mixture of 40K
atoms. In this experiment, the two-component fermionic gas is confined into a honeycomb
lattice created using three laser beams X,Y, X̄ of wavelength λ = 1064nm. The beams X
and Y are perpendicular, meanwhile the beam X̄ is collinear with X but detuned by a
frequency δ (see figure 2.7-a). The bipartite honeycomb lattice displayed in the figure
2.7-b is obtained by fixing the relative intensities of beams, which create the honeycomb
geometry, and varying the detuning frequency δ in order to introduce the energy offset ∆
between the two sites A and B of the unit cell.

a b

Figure 2.7. Optical lattice used by M. Messer et al. to explore the IHM in two dimension. (a)
Laser beams disposition, (b) Honeycomb lattice with an energy offset between sites
A and B of the unit cell. From [TGU+12].

As one result of this investigation, M. Messer et al. observed that the double occupancy
D in the lattice is suppressed as the local interaction increases, as we can see in figure
2.8-a. The fraction of double occupied sites was measured, like in the previous work of
R. Jördens et al. [JrSGn+08] by radio-frequency spectroscopy for attractive and repulsive
interaction between the atoms loaded into the lattice. For attractive and weak repulsive
interaction, the double occupancy is positive, as expected for the CDW phase of the IHM.
However, the value of D decreases as a function of U/t until it vanishes for strong repulsive
interaction, indicating a transition from the CDW phase to another insulator phase (Mott-
insulator phase or similar). Although, in the M. Messer’s experiment the CDW phase and
a metallic phase for U = 4.85(9)t and ∆ = 0.00(4)t (see figure 2.8-b) was confirmed in
the system, by analyzing the correlations of fluctuations (noise correlations), they can not
determine the existences of an intermediate phase like in the one-dimensional IHM.

3δ = 2∆ in figure 2.6.
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a b

Figure 2.8. Results of M. Messer’s experiment. (a) Fraction of double occupied sites D as a
function of local interaction U for a fix energy offset (∆/t = 16.3(4)), (b) Sketch
of phase diagram of the IHM on a honeycomb lattice at half-filling. Hollow (resp.
full) circles in figure (a) represent attractive (resp. repulsive) interaction between
the atoms. From [MDU+15].

The nature of an intermediate phase between the CDW phase and the Mott-insulator
phase in two dimension has been theoretically debated. For square lattices4, studies of IHM
using dynamical mean-field theory (DMFT) and quantum Monte Carlo (QMC) predict
a metallic intermediate phase [PBH+07, SE19b]. However, others numerical approaches
suggests a different nature of this phase including a spin density wave (SDW) [CZLW10],
a metastable d-wave superconductor [CBKG19] or even an insulating phase with a bond
order similar to the one-dimensional lattice [KD07].

In regard with the honeycomb lattice, a DMFT study done by Lin HF et al. [LLTL15]
in 2015 suggests that there is no intermediate phase at half-filling. In this research,
they study the phase transition of the IHM on a honeycomb at half-filling and out of
it, considering a hole doping case. About the half-filling phase transition, they identify a
phase transition between a band insulator and an antiferromagnetic insulator by analyzing
the double occupancy and staggered magnetization given by:

D =
1

L

∑
µ=(i,j)∈A,B

〈nµ,↑nµ,↓〉, (2.6)

Ms =
1

L

∑
µ=(i,j)∈A,B

sgn(µ)(nµ,↑ − nµ,↓), (2.7)

where L is the total number of sites in the lattice, and sgn(µ) = 1 (resp. sgn(µ) = −1)
if the site µ = (i, j) ∈ B (resp. µ = (i, j) ∈ A). These two quantities as a function of
local interaction for different energy offset are shown in figure 2.9. On the one hand,
the fraction of double occupied sites is always decreasing as a function of local interaction
indicating a CDW phase for weak interaction, as expected for the phase transition from
band insulator toward Mott-insulator in the IHM. On the other hand, the staggered mag-
netization is zero for some U values depending on the energy offset and becomes positive
for a critical value of Uc/t. This predicts that for strong local interaction (U > Uc), the
system presents an antiferromagnetic order. Since, the staggered magnetization turns pos-

4A similar metallic intermediate phase was predicted in Bethe lattices [GKR06, BGK15]
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itive suddenly, there is no evidence of an intermediate phase between the band insulator
phase and the antiferromagnetic insulator phase.

a b

Figure 2.9. Lin HF’s DMFT results for the IHM on a honeycomb lattice. (a) Double occupancy
(Docc = D) as a function of local interaction for different values of energy offset,
(b) staggered magnetization as a function of local interaction for different values of
energy offset. From [LLTL15].

2.4 IHM with Mass-imbalance

Another scenario of the IHM that it is currently interesting is the mass-imbalanced case.
As we mentioned in the Section 1.5, the possibility to load different types of atoms into
an optical lattice allows to study engaging phenomena like superconductivity, fermionic
superfluity or atom-dimer attraction. In the mass-imbalanced IHM, particularly, it is
interesting to inquire about the insulator-insulator transition of the model and the nature
of the possible intermediate phase.

a b

Figure 2.10. Sketch of expected phases of the IHM with mass-imbalance on a one-dimensional
lattice. (a) CDW phase for weak coupling limit (U � ∆), (b) antiferromagnetic
insulator phase for strong coupling limit (U � ∆). The red and blue spheres repre-
sent the particles with spin up and down, respectively, and its radius represents the
mass-imbalance between the two species of atoms in the lattice. From [PGFSV21].

The mass-imbalanced IHM is defined by the Hamiltonian:

HIMI = −
∑
〈i,j〉,σ

tσ

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓ + ∆
∑
i,σ

(−1)iniσ. (2.8)

As in the balanced version of the model at half-filling, a band insulator with a CDW and an
antiferromagnetic insulator is expected for the weak and strong coupling limit respectively.
Indeed, for the limit where U � ∆, the particles in the system can not tunnel to sites
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with shallow potential well, due to the high value of the energy offset. We must note that
this fact is true independently of the spin of the particles, since in this limit the particles
with spin up, as well as with spin down, tend to occupy the sites with deep potential well
(see figure 2.10-a). For the limit where U � ∆, particles with different spin can not
occupy the same site leading to an insulator phase with one particle per site (see figure
2.10-b).

Although in one-dimension, the insulator phase for the strong coupling limit seems to
be similar to the Mott-insulator of the ionic Hubbard chain. The mass-imbalance intro-
duces an asymmetry in the spin sector (since the SU(2) symmetry of the model is broken)
causing a difference in the spectrum of these phases. We can see this from a perturba-
tive treatment of the Hamiltonian (2.8), where like the mass-imbalance Hubbard model
(1.9), the IHM with mass-imbalance is equivalent to the following effective Heisenberg
Hamiltonian [GMJ16]:

Hionic−eff = J
∑
i

Sxi S
x
i+1 + Syi S

y
i+1 + γSzi S

z
i+1 − h

∑
i

(−1)iSzi , (2.9)

where

J =
4t↑t↓U

(U2 −∆2)
, γ =

t2↑ + t2↓
2t↑t↓

, h =
2(t↑ − t↓)∆
(U2 −∆2)

.

As in the Hubbard model with mass-imbalance, the γ parameter causes the spin gap of
the system to be finite, in contrast to the null spin gap in the Mott-insulator for the
IHM chain. Also, we must note that the last term of Hamiltonian (2.9) breaks explicitly
the translational symmetry. Thus, it is expected that the ground state of the IHM with
mass-imbalance in the strong coupling limit would be an antiferromagnetic insulator with
a charge modulation with or without a finite spin gap.

About the existence of an intermediate phase, a previous research based on mean-field
theory (MFT) [SBJJ17] of the model suggests that there is a weak first-order transition
between the band insulator and the antiferromagnetic phase at one-dimension, without
any intermediate phase. In this work, the two phases are characterized by charge (δC)
and spin (δS) order parameters defined by:

δC = − 1

L

∑
i,σ

(−1)i 〈ni,σ〉,

δS = − 1

L

∑
i,σ

(−1)iσ 〈ni,σ〉.

The charge (resp. spin) order parameter allows to determine if there is a charge (resp.
spin) order in the chain. When there is a CDW in the lattice |δC | = 1 and |δS | = 0, while
in an antiferromagnetic phase |δC | = 0 and |δS | = 1. Thus, if |δC | > |δS |, a charge order
leads in the system, meanwhile a spin order dominates in the lattice, if |δC | < |δS |.
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Figure 2.11. Mean-field density order parameters as a function of local interaction for different
values of t↓. From [SBJJ17].

The charge and spin order parameter obtained by MFT as function of local interaction
for different values of t↓ are shown in figure 2.11. For t↓ = 0.9t↑ as well as t↓ = 0.5t↑, we
can observe that the charge order parameter δC is near to one for U = 0.0, while δS = 0
in this point. This fact indicates that the system is in the CDW phase in the absence of
interaction. As the local interaction increases, the charge order parameter decreases and
the spin order parameter increases, and |δC | > |δS | until a threshold value U∗ after which
the spin order prevails in the system. According to MFT calculations, the critical point of
the weak first-order transition between the charge order phase and spin order one is given
by [SBJJ17]:

U∗ = ∆

[
1 +

(
2t↓
∆

)2
]
,

for the limit of ∆ large.

2.5 A DMRG Study: IHM for Narrow Honeycomb Lattice
and Mass-imbalance Chain

In order to explore the ground state properties of the IHM in a honeycomb lattice and in
a mass-imbalanced chain beyond the previous DMFT and MFT approaches, we employed
a DMRG algorithm with a matrix product state algorithm (MPS), based in the ITensor
library [FWS20]. We use the MPS algorithm due to this technique allow us to reduce
the computational complexity of our simulations, notably for the honeycomb lattice. For
this kind of lattice, we simulated two narrow lattices with zigzag edge orientation using a
quasi one-dimensional mapping from the original lattice to an inhomogeneous chain, as it
is shown in figure 2.12.
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Figure 2.12. Map of a honeycomb bipartite lattice, with Lx sites in the zigzag edge and Ly

sites in the armchair edge, into an inhomogeneous chain with long hopping. (a)
Honeycomb lattice with Lx = 2 and Ly = 2, (b) image of honeycomb lattice with
Lx = 2 and Ly = 2 into a chain, (c) honeycomb lattice with Lx = 2 and Ly = 4,
(d) image of honeycomb lattice with Lx = 2 and Ly = 4 into a chain. The solid
red spheres and fuzzy blue circles represent the two type of sites in the bipartite
lattice. The x and y axis in the figure (a) and (b) represent the coordinates of each
(x, y)-site in the honeycomb lattice. The solid red lines (resp. dashed blue lines)
in figure (b) y (d) represent the hopping of particles to its first neighbors (resp.
second or fourth neighbors).

The total number of sites of the honeycomb lattice is given by L = 2LxLy +Ly, where
Lx (resp. Ly) is the total number of sites Lx in the top of zigzag edge (resp. left of
armchair edge). The resulting chain from this map presents a long hopping term in its
Hamiltonian and has a peculiar order of the sites of the bipartite lattice, say type A and
type B sites (red solid spheres and fuzzy blue circles in figure 2.12). For example, in a
honeycomb lattice with Lx = 2 and Ly = 2 (figure 2.12-a), there is a second neighbor
hopping term in the Hamiltonian for all sites and an ABBA ordering of sites along the
lattice5 (see figure 2.12-b). We explore just two narrow lattices (with Ly = 2 and Ly = 4)
due to simulate wider lattices involves huge tensorial products which are computational
expensive (see Appendix A).

For the honeycomb lattices, in order to ensure a truncation error of around 10−7 ∼ 10−6

of our simulations, we keep up to 900 states per block for the narrowest lattice and up to

5Similarly, for a honeycomb lattice with Ly = 4, there is a fourth neighbor hopping term in the
Hamiltonian for all sites and ABABBABA ordering of sites along the lattice (see figure 2.12-c,d).
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4000 for the widest lattice. The error in the ground state energy was 10−3 ∼ 10−2 in the
worst cases, but around of 10−5 or better in most cases. Also, we use a noise parameter
a = 10−12 ∼ 10−5 to avoid meta-stable states. For the mass-imbalanced chain, we use the
same noise parameter that for the honeycomb lattices, and keep up to 800 ∼ 1000 state
per block in order to ensure a truncation error of around 10−9. For this system, the error
in the ground state energy was 10−6 in the worst case, but around 10−8 or better in the
most cases.

2.5.1 Narrow honeycomb lattice Ly = 2

For the honeycomb lattice with Ly = 2 , we set t = 1 eV as our scale energy and consider
lattices with Lx = 10, 13, 16, 19, 22 and 25, all lattices with open boundary conditions. All
quantities were calculated for an energy offset of ∆/t = 10 in order to compare directly
our results with the previous DMRG research of S. R. Manmana et al. of IHM in one-
dimension.
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Figure 2.13. Charge gap of a narrow honeycomb lattice with ∆/t = 10 and Ly = 2: (a) gap as
a function of U for lattice sizes Lx = 10, 13, 16, 19, 22 and 25, (b) finite size scaling
for some U values. The solid line in (a) is a visual guide, meanwhile the solid and
dashed lines in (b) show a least-square fit to a second order polynomial a+ b/L2.
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In figure 2.13-a, the charge gap ∆C as a function of the on-site interaction parameter
U is shown for different lattice sizes. We observe that this gap is always finite which is
characteristic of an insulator state, this suggests that any phase in the system is an insu-
lator like in the previous studies of IHM. For all lattice sizes, we note that the charge gap
present a minimum similar to the minimum reported by S. R. Manmana et al. [MMNS04]
for the one-dimensional IHM. Also, we examine the dependence of ∆C as a function of
1/Lx in the figure 2.13-b for some U values in the studied region, here the gap shows a
quadratic behavior in 1/Lx for all the explored U values.
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Figure 2.14. Spin gap of a narrow honeycomb lattice with ∆/t = 10 and Ly = 2: (a) gap as a
function of U for lattice sizes Lx = 10, 13, 16, 19, 22 and 25, (b) finite size scaling
for some U values. The solid line in (a) is a visual guide, meanwhile the solid and
dashed lines in (b) show a least-square fit to a second order polynomial a+ b/L2.

In regard with the spin gap ∆S , the figure 2.14-a shows the U dependence of this
quantity for different lattice sizes. From this plot, we observe that for all lattice sizes the
gap decreases linearly as a function of U for U/t . 21.2, then remains almost constant (in
particular for large lattice size, Lx = 19, 22, 25) as U/t increases. This change of behavior
on ∆S with respect to U suggests a possible change in the ground state of the system
(phase transition). Moreover, the region where the spin gap remains almost constant could
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correspond to an antiferromagnetic phase similar to the insulator phase of the Hubbard
model on narrow honeycomb lattices discussed in Section 1.4. As well as the charge gap,
we explore the dependence of the spin gap as a function of 1/Lx and we observe again a
quadratic scaling as the solid and dashed lines show in figure 2.14-b. It is important to
note that for all the explored values of U , the spin gap remains finite at the limit Lx →∞.

Now, about of the excitation gap ∆E , this quantity also is finite for all explored lattice
sizes as we can see from the figure 2.15-a. As the charge and spin gap, the excitation gap
decreases linearly for U/t . 21.2 and then presents a change of its behavior as a function
of the local interaction parameter, which suggests a possible change in the ground state
of the system depending on U . For large lattices (Lx = 25 for example), we note that
the excitation gap presents a minimum as the charge gap for later increases up to a local
maximum and finally decreases slowly to remain almost constant for U/t & 21.4, similar
to the spin gap. Again, the finite size scaling, shown in the figure 2.15-b, indicates a
quadratic dependence of ∆E with respect to 1/Lx.

21.0 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8

U

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

∆
E

Lx = 10

Lx = 13

Lx = 16

Lx = 19

Lx = 22

Lx = 25

a

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

1/Lx

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

∆
E

U/t = 21.05

U/t = 21.25

U/t = 21.3

U/t = 21.4

U/t = 21.6

U/t = 21.75

b

Figure 2.15. Excitation gap of a narrow honeycomb lattice with ∆/t = 10 and Ly = 2: (a)
gap as a function of U for lattice sizes Lx = 10, 13, 16, 19, 22 and 25, (b) finite size
scaling for some U values. The solid line in (a) is a visual guide, meanwhile the
solid and dashed lines in (b) show a least-square fit to a second order polynomial
a+ b/L2.
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At the limit Lx → ∞, we found that all explored gaps are finite, but there is a clear
change in the behavior of the gaps as a function of U , as we can see in figure 2.16. For
U/t . 21.2, the charge and spin gaps are equal and decrease linearly as U/t increases. For
these values of U/t, the excitation gap also decreases linearly as a function of U/t, but
its value is slightly smaller than the others gap energies. Then, for 21.2 . U/t . 21.4,
the charge and excitation gap present a minimum value for later increase. In this region,
the excitation gap reaches a maximum matching with the spin gap energy. Finally, for
U/t & 21.4, the spin and excitation gap decreases slowly remaining equal and almost
constant, while the charge gap increases linearly. In this last range, the fact that the first
excited state corresponds to a spin excitation suggests a fundamental change in the ground
state of the system such that a quantum phase transition could occur for 21.2 . U/t . 21.4
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Figure 2.16. Charge, spin, and excitation gap at thermodynamic limit for a narrow honeycomb
lattice with ∆/t = 10 and Ly = 2. Solid lines are a visual guide.

In order to determine if there is a quantum phase transition in the system, we calculated
the fidelity susceptibility of the state as a function of the local interaction parameter. This
quantity measures the change in the overlapping of the ground state wave functions as
a function of a given parameter and has been used to study quantum phase transitions
[ZPac06, GU10, CWHW08]. For a lattice with L sites, the susceptibility as a function of
U is given by:

χ(U) = − 2

L
lim
dU→0

logF (U,U + dU)

dU2
,

where F (U,U + dU) = 〈Ψ(U)|Ψ(U + dU)〉 is the fidelity, the ground state wave function
Ψ overlapping. Note that those quantities are useful to identify a critical point where
there is a fundamental change of the ground state of the system. In fact, if there is
no dependence of the ground state with respect to the parameter U , the inner product
〈Ψ(U1)|Ψ(U2)〉 = 1 for any U1, U2, then χ(U) = 0 for all U. However, if χ(U) 6= 0 for some
U = Uc, we can conclude that the state Ψ(Uc) is different to the state Ψ(Uc + dU) for any
small dU (F (Uc, Uc + dU) 6= 1), i.e. there is a change in the ground state near to Uc.
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Figure 2.17. Susceptibility of fidelity for narrow honeycomb lattices with ∆/t = 10, Ly = 2 and
dU = 0.01. Solid lines are a visual guide.

In figure 2.17, the fidelity susceptibility for different lattice size as a function of
U/t is shown. From this plot, we confirm a quantum phase transition in the system,
since the susceptibility is not null for some values of U . In particular, for Uc = 21.3t,
the susceptibility presents a peak indicating the critical point of transition. Although,
the maximum value of susceptibility increases with the lattice size, we do not observe
an appreciable dependence of the critical point with respect to 1/Lx. Unlike the IHM
in a one-dimensional lattice, we do not observe an intermediate phase, a result that is
consistent with the previous DMFT study of IHM on a honeycomb lattice.
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Figure 2.18. Double occupancy as a function of U/t for a lattice with Lx = 25, Ly = 2 and
∆/t = 10

As we mentioned above, the fact that the spin gap remains finite in the system suggests
the insulator phase for U > 21.3 is antiferromagnetic, according to the effective Heisenberg
model for strong coupling limit. Indeed, we can observe this from the double occupancy
and density plots of the lattice. In figure 2.18, the double occupancy as a function of
U/t is shown. Here, we can see that this quantity is a decreasing function of U/t which is
characteristic in the transition from a band insulator with a CDW to an antiferromagnetic
insulator in the IHM. When U � ∆, the particles with different spin tends to occupy a
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same site, due to its repulsion interaction is not so strong and the probability of tunneling
is low, cause the high energy offset. For U � ∆, the strong repulsion interaction between
particles with different spin cause that two particles can not be in the same site, so that
must be one particle per site in the lattice.
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Figure 2.19. Density per site in a honeycomb lattice with Lx = 25, Ly = 2 and ∆/t = 10.
(a) Density profiles for U/t = 10, (b) Density profiles for u/t = 30. In the top
of each figure is shown the profile of total density n(i) = 〈ni〉 of the lattice, while
in the bottom of each figure is shown the spin density profiles n↑(i) = 〈ni,↑〉 and
n↓(i) = 〈ni,↓〉. Solid lines are a visual guide.

In the figure 2.19, the density profile of the system is shown for two values of U/t, one
for each phase in the system. For U � Uc (U/t = 10), we find that D = 0.48 and observe
that there is a CDW in the system with a periodicity of two sites, i.e. two sites with
two particles and then two sites without particles (top of figure 2.19-a). This peculiar
charge modulation is due to the quasi-one dimensional map used in this investigation (see
figure 2.12). For U � Uc (U/t = 30), we find that D = 0.01 and observe that there is
one particle per site (top of figure 2.19-b). In this phase, we also observe that there is
a braid in the spin density profile of the lattice (see bottom of figure 2.19-b), where it
is more probable to found a particle with spin up (resp. spin down) on an odd site (resp.
even site).

This density profile in the lattice suggests an antiferromagnetic ordering in the phase
for U > Uc. In fact, we observe an antiferromagnetic order in this phase by analyzing the
spin correlation function S(x, y;x′, y′) = 〈Sz(x, y)Sz(x′, y′)〉 − 〈Sz(x, y)〉 〈Sz(x′, y′)〉. In
figure 2.20-a is shown the spin correlation along the top zigzag edge6 for two different
U values. For U/t = 10 (CDW phase), the correlation is always zero, hence there is no
magnetic order in the top edge as well as in the bottom edge7. However, for U/t = 30,
the correlation alternates between positive and negative for neighbor sites, indicating an
antiferromagnetic order in the edges. Moreover, as we can see in the inset of the figure
2.20-a, the spin correlation between sites of different edges is always negative for U/t = 30,
a feature consistent with an antiferromagnetic order in the whole lattice for U > Uc.

6Here, we refer to the correlation function between the site (1, 1) and sites (x, 1) of the original honey-
comb lattice.

7Since the honeycomb lattice has reflection symmetry, we obtain the same results for the bottom zigzag
edge.
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Figure 2.20. Spin correlation for a lattice with Ly = 2, Lx = 25 and ∆ = 10 for two values
of local interaction parameter. (a) Correlation function along the top zigzag edge,
(b) Correlation function along the sites in the top of edge (sites with x coordinate
even). The inset of figure (a) shows the spin correlation between sites of different
edge for U/t = 30, meanwhile the inset of figure (b) shows a semi-log plot of the
correlation function for U/t = 30. Solid lines are a visual guide.

Finally, we also find an interesting phenomenon in the top of the zigzag edge of the
lattice. For the sites in this part of the lattice, we observe a ferromagnetic order in the
antiferromagnetic insulator phase. For U/t = 30, we note that the spin correlation function
along the top of the edge is always positive, as we can see in the figure 2.20-b and in
its inset. This feature of the ground state is similar to the previous researches about the
Hubbard model in zigzag graphene nanoribbons discussed in the Section 1.4. In regard
with the CDW phase, we again observe that there is no magnetic order in the lattice (see
square blue points in figure 2.20-b).

To conclude, according to our DMRG study of the IHM on a zigzag narrow honeycomb
lattice with Ly = 2, there is a quantum phase transition between a CDW phase and an
antiferromagnetic insulator phase with a finite spin gap. We find that the transition occurs
at Uc = 21.3t for a energy offset of ∆ = 10t. This point is identical to the critical point
of the transition from the bond-order insulator to the Mott-insulator in the IHM in one-
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Figure 2.21. Gap energies and fidelity susceptibility as a function of U for a narrow honeycomb
lattices with Ly = 2 and ∆/t = 0.4: (a) charge, spin, and excitation gap energy at
the limit Lx →∞, (b)Susceptibility for different lattice sizes.

dimension for the same energy offset. Then, in the honeycomb with Ly = 2, the band
insulator region is larger than the band insulator region in the one-dimensional lattice
such that the intermediate region disappears.

Comparing our results with the previous DMFT calculations, we noticed that there is
a difference for the honeycomb lattice with Ly = 2, since our DMRG calculation predicts
Uc = 2t for ∆ = 0.4t, while Uc = 4t according to the DMFT results for that value of
energy offset. Indeed, in figure 2.21, we show our results about the dependence of the
gap energies and fidelity susceptibility with respect to the local interaction for a lattice
with an energy offset of ∆/t = 0.4. The behavior of the gap energies is the same that we
described before, where the gap energies decrease as a function of U/t until the charge
gap reaches a minimum value and the spin and excitation gap take the same value at
Uc/t = 2.0 (see figure 2.21-a). As we show in the figure 2.21-b, at this point the
susceptibility of fidelity reaches a maximum in all explored lattices 8, indicating that the
phase transition occurs there.

8As before, we do not observe any finite size effect in the maximum of the susceptibility.
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2.5.2 Narrow honeycomb lattice Ly = 4

Now, in regard with the lattice with Ly = 4, we set also our scale energy as t = 1 and
explore the largest lattice (Lx = 6) that we could simulate with open boundary conditions.
According to the previous DMRG study about narrow zigzag nanoribbons [HL16], lattices
with Lx = 10 and Ly = 4 require keeping around of 15000 ∼ 20000 states per block in the
DMRG algorithm, a number of states per block larger than the one we achieve with our
code and resources.
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Figure 2.22. Charge, spin, and excitation gap for a narrow honeycomb lattice with ∆/t = 10,
Lx = 6, Ly = 4. Solid lines are a visual guide.

In figure 2.22 is shown the charge, spin and excitation gap as a function of U/t. As
before, we observe two regions in the system. On the one hand, a region where all gaps
are different and decrease linearly as U/t increases. On the other hand, a region where the
spin and excitation gap are equal, and the charge gap reaches a minimum value for then
increases. For this lattice, we do not observe that the spin and excitation gap remains
almost constant for large value of U/t. However, the fact that the first excitation state
of the system changes with the parameter U/t suggest a possible phase transition in the
lattice. This transition is confirmed by analyzing the fidelity susceptibility for this lattice.
In figure 2.23, we observe that this quantity is not zero, reaching a maximum value.
Nevertheless, this value is very small and can not be used to determine a critical phase
transition point.
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Figure 2.23. Fidelity susceptibility for narrow honeycomb lattices with ∆/t = 10, Lx = 6, Ly = 4
and dU = 0.01. Solid lines are a visual guide.

About the double occupancy in the lattice, in the figure 2.24, we observe that this
quantity is decreasing as a function of U/t indicating a transition from a phase with double
occupancy (CDW phase) and a phase without charge modulation. In fact, from the density
plots of figure 2.25, we can note that for the weak coupling phase (U/t = 10, see figure
2.25-a), there is a charge modulation in the lattice which has a peculiar periodicity due to
the quasi-one dimensional map (figure 2.12). For the strong coupling phase (U/t = 30,
see figure 2.25-b), there is no charge modulation, and we again observe a braid in the spin
density (bottom of figure 2.25-b). As before, this braid suggests an antiferromagnetic
order in the lattice.
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Figure 2.24. Double occupancy as a function of U/t for a lattice with Lx = 6, Ly = 4 and
∆/t = 10
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Figure 2.25. Density per site in a honeycomb lattice with Lx = 6, Ly = 2 and ∆/t = 10. (a)
Density profiles for U/t = 10, (b) Density profiles for u/t = 30. In the top of
each figure is shown the profile of total density n(i) = 〈ni〉 of the lattice, while
in the bottom of each figure is shown the spin density profiles n↑(i) = 〈ni,↑〉 and
n↓(i) = 〈ni,↓〉. Solid lines are a visual guide.

The antiferromagnetic order in the system is confirmed by analyzing the spin correla-
tion S(x, y;x′, y′) along the lattice. The spin correlation along the two first rows of the
honeycomb lattice for the two phases is shown in figure 2.26-a,b. For U/t = 30, we
observe an alternating spin correlation along the x axis in both rows, which is expected in
an antiferromagnetic ground state. Also, in the inset of figure 2.26-a, b, we see that the
spin correlation between sites of different rows is always negative for U/t = 30, a result
consistent with an antiferromagnetic order in whole lattice. As in the previous subsection,
we just analyze the first two rows of the lattice due to the reflection symmetry of the
honeycomb lattice. Besides, as before, we observe an interesting magnetic order in the
zigzag edge of lattice where the sites in the top of the edge has a ferromagnetic order,
since its spin correlation is always positive (see figure 2.26-c and its inset). In regard to
the CDW phase (U/t = 10), we do not observe any correlation in the system.
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Figure 2.26. Spin correlation for a lattice with Ly = 4, Lx = 6 and ∆ = 10 for two values of local
interaction parameter. (a) Correlation function along first row of lattice (top zigzag
edge), (b) Correlation function along second row of lattice, (c) Correlation function
along the sites in the top of edge (sites with x coordinate such that x ≡ 4 mod
8). The inset of figure (a)-(b) shows the spin correlation between sites of different
rows for U/t = 30, meanwhile the inset of figure (c) shows a semi-log plot of the
correlation function for U/t = 30. Solid lines are a visual guide.

As the conclusion of this subsection, we identify the same insulator phases that in the
lattice with Ly, but we can not determine the critical point of transition between them,
due to the computational effort required to explore the lattices with Ly = 4 at the limit
of Lx →∞.

2.5.3 Mass-imbalanced chain

For the mass-imbalanced chain, we set t↑ = 1 as our scale energy and consider lattices
with size from L = 64 to L = 512 with open boundary conditions. In order to compare
our results with the results of the previous research of Sekenia et al. about the mass-
imbalanced IHM, we explore the ground state properties of the system for an energy offset
of ∆/t↑ = 0.0 ∼ 3.0 and an imbalance parameter t↓/t↑ = 0.1 ∼ 0.9.

The dependence of the charge and excitation gap as a function of the local interaction
is shown in figure 2.27 for an infinite chain with ∆/t↑ = 2.0 and two values of imbalance
parameter. For the weak coupling limit, we expect that the charge and excitation gaps
be finite in the thermodynamic limit, since the ground state of IHM in this limit must
be correspond to a CDW. In fact, for this limit, we observe that both gaps are finite and
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equal, but decrease as a function of U/t↑ until a gap closing occurs. In the inset of figure
2.27-(a), it is shown the gaps as a function of 1/L for U/t = 4.55. From this plot, we note
that both gaps decrease linearly with the lattice size, reaching a small value that goes to
zero as L→∞.
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Figure 2.27. Charge and excitation gap in the thermodynamic limit as a function of local pa-
rameter for a lattice with ∆/t↑ = 2.0 and two values of imbalance parameter: (a)
t↓/t↑ = 0.5, (b) t↓/t↑ = 0.9. The Extrapolated values of the gaps were obtained
by a linear fit as a function of 1/L, as the finite size scaling that it is shown in the
inset of figure (a) for U/t = 4.55. The lines are visual guides. From [PGFSV21].

We observe that the gap closing takes place at U∗/t = 4.55 for t↓/t↑ = 0.5 and
U∗/t = 5.38 for t↓/t↑ = 0.9 (see figure 2.27-(b)). After the gap closing, we observe tha
both gaps increase with the local interaction, but in a different rate, indicating a change
in the ground state of the system with a possible quantum phase transition at U = U∗.
This result is similar to the previous MFT calculations. But comparing the critical points
reported in that research (U∗MF = 4.25 for t↓/t↑ = 0.5 and U∗MF = 4.81 for t↓/t↑ = 0.9),
we note a clear difference due to the correlation considered in our approach.

In order to describe the two phases in the system, we calculate some physical quantities
for ∆/t↑ = 2.0 and t↓/t↑ = 0.9. On the one hand, the spin gap in the thermodynamic
limit9 as a function of local interaction is shown in figure 2.28-(a). We observe that
this gap decreases linearly as U/t↑ increase until U = U∗ = 5.38t↑, for then changes its
behavior keeping almost constant for larges values of local interaction. We see this in
the inset of figure 2.28-(a), where the dependence of the spin gap with respect to the
inverse of the lattice size is shown for U/t↑ = 5.8. In this inset, we note that the spin
gap tends to a finite value ∆S/t↑ = 0.153 (dark green diamond point). As before, this
feature of the phase for large values of local interaction indicates that this phase could
be an antiferromagnetic insulator, according to the effective Heisenberg model for strong
coupling limit of IHM.

9The extrapolated values was obtained by a quadratic fit of the spin gap with respect to the inverse of
the lattice, a similar process to the displayed in the inset of figure 2.28-(a).
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Figure 2.28. Physical quantities of an ionic Hubbard chain as a function of local interaction for
lattices with ∆/t↑ = 2.0 and t↓/t↑ = 0.9: (a) Spin gap in the thermodynamic limit,
(b) staggered magnetization for a lattice with L = 144 sites, (c) ground state energy
for a lattice with L = 144 sites. The inset of figure (a) shows a finite-size scaling to
a quadratic polynomial of 1/L (dashed lines) used to obtain the extrapolated spin
gap value for U/t↑ = 5.8. The inset of figure (b) shows the spin density profile for
U/t↑ = 5.8. The inset of figure (c) shows the first derivative of the ground state
energy. The solid lines are visual guides. From [PGFSV21].

We confirm the antiferromagnetic order in the system for larges values of U/t↑ by
analyzing the staggered magnetization. This quantity as a function of local interaction is
shown in the figure 2.28-(b) for a lattice with L = 144 sites. In this plot, we observe
that for small values of U/t↑ (U < 5.38t↑) the staggered magnetization is small, since the
ground state is a CDW with a double occupied site in the two site unit cell. For large
local interaction (U > 5.38t↑), the staggered magnetization increases quickly, indicating
an antiferromagnetic order in the system in this region. The antiferromagnetic order for
the phase with strong local interaction is shown in the inset of figure 2.28-(b). Here, we
observe that the spin densities 〈ni,↑〉, 〈ni,↓〉 oscillate in phase indicating a charge modula-
tion in the lattice, but with a preference of spin up particles for even sites and spin down
particles for odd sites (see orange square for site 70 in the inset, for example).

Thus, as well as the previous MFT study of the IHM with mass-imbalance, we predict
that in one-dimension there are only two phases: a CDW insulator for weak interaction
and an antiferromagnetic insulator with finite spin gap for strong interaction, i.e., again we
do not observe the intermediate phase presented in the balanced ionic Hubbard chain. In
regard with the order of the transition, we find that this transition is a continuous one, in
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contrast with the weak first order transition predicted in the previous MFT calculations.
We can see this from the dependence of ground state energy with respect to the local
interaction that it is shown in figure 2.28-(c) for a lattice with L = 144 sites. From this
plot, we observe that the ground state energy is continuous as a function of U/t↑ with
continuous derivative (see inset of figure 2.28-(c)).
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Figure 2.29. von Neumann block entropy as a function of local interaction for a lattice with
L = 512 sites, ∆/t↑ = 2.0 and t↓/t↑ = 0.9. The inset shows the dependence of
block entropy with respect to the inverse of the lattice size. From [PGFSV21].

In order to obtain a phase diagram of the system, we calculate the von Neumann block
entropy of the chain given by

SA = −tr(ρA log ρA), (2.10)

where ρA = trB(ρ), with ρ = |Ψ〉 〈Ψ|, is the reduced density matrix of the subspace A of
an A−B bipartite partition of the lattice10. This quantity is useful to determine critical
points of phase transitions, even more for anisotropic systems like the IHM with mass-
imbalance, where the block entropy presents a maximum related with the phase transition
point [VLRK03, ON02, MAFSV10]. Indeed, as we can see in the figure 2.29 for a lattice
with L = 512 sites, ∆/t↑ = 2.0 and t↓/t↑ = 0.9, the bock entropy reaches a maximum value
near to the gap closing point (U∗/t↑ = 5.38), confirming that near this point a quantum
phase transition occurs. However, as we can observe in the behavior of the maximum
position of block entropy with respect to the lattice size (see in the inset of the figure
2.29), there is a small finite size effect which give us a correction from U∗/t↑ = 5.38 to
U∗/t↑ = 5.39 in the critical point at thermodynamic limit (purple diamond point in the
inset).

10In our calculation, we divided the chain by the middle.
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Figure 2.30. Phase diagram of the IHM with mass-imbalance. In figure (a) (resp. figure (b)),
critical points obtained with MFT (blue empty squares, from [SBJJ17]) and DMRG
(black circles corresponding to extrapoled values from maximum of entropy) are
shown in the ∆ − U∗ plane (resp. t↓ − U∗ plane). In figure (c), the critical point
surface as a function of energy offset and imbalance parameter is shown. This
surface divides the space into the CDW insulator phase (above the surface) and
antiferromagnetic insulator phase (beneath the surface). From [PGFSV21].

Taking account this correction in the critical points, we obtain the phase diagram of the
system for different values of energy offset and imbalance parameter. In figure 2.30-(a),
we show the phase diagram in the plane ∆− U∗ for an imbalance parameter t↓/t↑ = 0.9,
where the critical points found by MFT and by DMRG are compared. We observe that
for ∆/t↑ near to zero the critical points are every tiny, for then increase quickly and follow
increasing almost linearly for both methods. Although for small energy offset, the critical
points of MFT are similar to the obtained with DMRG, we observe a clear difference in
the critical points, where U∗ is higher for the DMRG as ∆ increases. This difference
is due to in our DMRG calculation it is taking into account the correlation between the
particles, meanwhile the mean-field theory (MFT) fundamentally neglects this correlation.
Now, fixing the energy offset to ∆/t↑ = 2.0, we again observe a difference between the two
methods. In figure 2.30-(b), we see that the critical points for both methods increase
as the imbalance parameter increases and just coincide at t↓/t↑ = 0.1. Finally, we display
the phase diagram space of the system in figure 2.30-(c), where the surface corresponds
to the critical points of the transition between the CDW phase (above the surface) and
the antiferromagnetic insulator phase (beneath the surface).



CHAPTER 2. IONIC HUBBARD MODEL 47

In conclusion, our DMRG study of the IHM with mass-imbalance predicts a phase
transition between two types of insulators without any intermediate phase like in the
balanced IHM on one-dimension. Additionally, using the von Neumann in the middle of
the chain, we find a difference with respect to the critical points calculated using MF. Also,
we predict that the transition is a continuous one, unlike the weak first order transition
reported in the previous MFT study.



Conclusions

Motivated by the controversial discussion about the physics in the intermediate region
of the insulator-insulator transition of the IHM, we studied the transition in two sce-
narios: the IHM on narrow honeycomb lattices and the IHM with mass-imbalance in
one-dimension. In order to explore those systems beyond the previous MFT and DMFT
studies, we used a DMRG algorithm together with an MPS method, considering the cor-
relation between the particles of the system in a more precise way. For the two systems of
interest, we calculated several quantities related to the ground state like the spin, charge
and excitation energy gaps, double occupancy, density profiles, spin-spin correlation func-
tion, staggered magnetization and von Neumann block entropy.

For the IHM model on narrow honeycomb lattices, we found that there are just two
insulator phases in the system: a band insulator with CDW and an antiferromagnetic in-
sulator, a result that is consistent with the previous DMFT study of the system [LLTL15].
Besides, we noticed that the antiferromagnetic insulator is not a Mott-insulator for the
two explored lattices, unlike to the results of DMFT calculations. On the one hand, for
the lattice with Ly = 2, we found that the spin gap is finite and almost constant as a func-
tion of local interaction for the antiferromagnetic phase, similar to the behavior predicted
previously in the insulator phase of the Hubbard model on honeycomb lattice [HHLM03].
Also for this phase, we found that there is a ferromagnetic order along the top sites of
the zigzag edge and antiferromagnetic order between edges, a feature similar to the one
predicted in the insulator phase of the Hubbard model on honeycomb lattice [HL16]. On
the other hand, for the lattice with Ly = 4 in the insulator phase with strong local inter-
action, we found that the spin gap is also finite and there is the same magnetic order in
the edges of the lattice, but we were not able to explore the system in the thermodynamic
limit (Lx → 0), because it requires more computational power than we have. Due to this,
we were capable to identify the two insulator phases of the system, but not the critical
point of transition between them.

About the position of the critical points in the IHM on a narrow honeycomb lattice,
those were determined by the fidelity susceptibility, a quantity that presents a maximum
value around the phase transition. We found that the transition from band insulator to
antiferromagnetic insulator phase occurs at Uc = 21.3t for the narrowest lattice with an
energy offset of ∆ = 10t. This point is identical to the critical point of the transition from
the bond-order insulator to the Mott-insulator in the IHM in one-dimension for the same
energy offset. Then, in the honeycomb with Ly = 2, the band insulator region is larger than
the band insulator region in the one-dimensional lattice such that the intermediate region
disappears. Comparing our results with the previous DMFT calculations, we noticed that
there is a difference for the honeycomb lattice with Ly = 2, since our DMRG calculation
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give Uc = 2t for ∆ = 0.4t, while Uc = 4t according to the DMFT results for that value of
energy offset.

In regard to the IHM with mass-imbalance in a one-dimensional lattice, we also were
able to identify a quantum phase transition from a band insulator with CDW and an anti-
ferromagnetic insulator, without an intermediate phase. Although this results is consistent
with the previous MFT study of the system, we found, by analyzing the behavior of the
ground state energy as function of local interaction, that this phase transition is continu-
ous contradicting the MFT result. Also, according to our DMRG study, the critical points
determined by the maximum value of von Neumann entropy at thermodynamic limit are
larger than the MFT ones, except for small values of energy offset and high values of the
imbalance parameter.

As outlook of this work, we recommend implementing other numerical methods to
explore the two-dimensional physics of the IHM. Numerical approaches like Projected
Entangled Pair States (PEPS) [CPGSV21] can be suitable to simulate wide honeycomb
lattices. Also, study the mass-imbalance model in narrow honeycomb lattice or in a lattice
with other geometry is a possible research to the future, as well as explore the model out
of the half-filling with different lattice geometries.



APPENDIX

Some Notes about the DMRG algorithm for two

dimensional systems

The DMRG method was proposed by White [Whi92] in 1992 as an algorithm to study large
correlated systems. Although this numerical method was designed for one dimensional
lattices, the study two-dimensional systems is also possible with this algorithm, but its
results are less accurate with respect to one dimension, and it requires a computational
effort which grows exponentially with the width of the system [SW12]. However, the
DMRG has been useful in the study of several two-dimensional systems as magnetic models
where the power of this method was demonstrated studying frustrated Heisenberg model
on CAVO and triangular lattices [Whi96, WC07]. Also, the DMRG algorithm was used
to study doped t-J and Hubbard models where it is predicted a d-paring which is one of
the phenomena observed in the high Tc cuprate superconductors[Sca01].

Quasi one dimensional map: Ladder Lattice

In order to understand why the computational effort is higher for wide lattices, let us
explain how to implement the DMRG algorithm to a two-dimensional lattice through
a simple example: a ladder lattice. As its name indicates, a ladder lattice is a narrow
rectangular lattice which figure resembles to a ladder [see figure 31]; a simple rectangular
lattice with a wide of two sites.

tx

ty

U

Figure 31. Scheme of a ladder lattice with local interactions.

Let us consider a general Hamiltonian for this type of lattice:
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Ĥladder = tx

∑
i,j

ĉ†i,j ĉi+1,j + h.c

+ ty

(
L∑
i=1

ĉ†i,1ĉi,2 + h.c

)
+ Û , (11)

where the operator ĉ†i,j (ĉi,j) is the creation (annihilation) operator of a particle in a lattice

site i, j, with i = 1, 2, · · · , L and j = 1, 2, and Û is an operator that includes others local
or non-local operators such that the two first terms in the Hamiltonian are horizontal and
vertical hopping terms, with a hopping amplitude tx and ty respectively, and the last term
corresponds to a local or non-local interaction in the lattice.

System Environment

Figure 32. Bipartite decomposition of a one dimensional lattice used to calculate the density
matrix of whole system in the DMRG algorithm.

Since the principal idea behind the DMRG algorithm is to truncate the Hilbert space by
discarding the state with less statistical weight using the density matrix of the system (see
figure 32), it is usual to build up the Hamiltonian of a one dimensional lattice through
the tensor product of two subspaces operators, sometimes called system and environment
operators. In order to use the DMRG algorithm in the ladder lattice, it is enough to
rewrite the ladder Hamiltonian Ĥladder as the following product:

Ĥladder = Ĥsys ⊗ IdL + IdL ⊗ Ĥenv + Ôsys ⊗ Ôenv, (12)

being IdL is the unity matrix of dimension L, Ĥsys and Ĥenv are the Hamiltonian of the
system and environment subsystems respectively, and Ôsys and Ôenv are operators of the
system and environment subsystems receptively. However, this assignment is not unique
for any lattice. In the figure 33 is shown two different ways to do such assignment:
the map of the ladder into a one dimensional lattice is defined by labeling the sites of the
original lattice and the local operators Ôi are defined according to the edges of the original
lattice.
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Figure 33. Two possible maps of a ladder lattice into an inhomogeneous chain: (a)-(b) first
mapping, (c)-(d) second mapping.

In both maps of the figure 33, the ladder lattice is mapped into an inhomogeneous
chain with a long hopping terms and long interaction between the lattice sites for Hamil-
tonian with non-local interactions terms. Let us suppose that Û has only local interaction
operators, i.e Û =

∑
i Ûi. Thus, in the first map (a)-(b), the ladder Hamiltonian (11) is

equivalent to the following Hamiltonian:

Ĥladder =
2L∑
i=1

(
tiĉ
†
i ĉi+1 + txĉ

†
i ĉi+2 + h.c

)
+

2L∑
i=1

Ûi, (13)

where ti = ty if and only if i ≡ 1 mod 2 and ti = 0 in otherwise. Thus, in order to write
this Hamiltonian in the form (12) we need to define the following operators for each step
of the DMRG algorithm:

Âsys = IdL−1 ⊗ ĉ†L, B̂sys = IdL−2 ⊗ ĉ†L−1 ⊗ Id1, (14)

Âenv = ĉL+1 ⊗ IdL−1, B̂env = Id1 ⊗ ĉL+2 ⊗ IdL−2. (15)

Thus, the Hamiltonian Ĥladder is rewrite as

Ĥladder = Ĥsys⊗IdL+IdL⊗Ĥenv+tLÂsys⊗Âenv+tx

(
B̂sys ⊗ Âenv + Âsys ⊗ B̂env

)
. (16)

The first tree terms in the last equation are usual terms in a one dimensional DMRG
algorithm, and the last terms is an extra term due to the assignment. It turns out that
this extra term involves a huge product between the system and environment subsystems,
which is computationally expensive.
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Now let us consider the second map (figure 33-(c) and (d)). In this case, the ladder
Hamiltonian is equivalent to the following Hamiltonian:

Ĥladder =
∑
i=1

(
tiĉ
†
i ĉi+1 + ty ĉ

†
i ĉi+5 + h.c

)
+
∑
i=1

Ûi, (17)

where ti = tx if and only if i 6= L and tL = 0. In contrast with the Hamiltonian of the first
map, this one involves a very long hopping terms, hopping to L-th nearest neighbors. In
order to write this Hamiltonian as equation (12) we need to define the following operators
for each step of the DMRG algorithm:

Âsys = IdL−1 ⊗ ĉ†L, Âenv = ĉL+1 ⊗ IdL−1, (18)

B̂sys = IdL−2 ⊗ ĉ†L−1 ⊗ Id1, B̂env = Id1 ⊗ ĉL+2 ⊗ IdL−2, (19)

Ĉsys = IdL−3 ⊗ ĉ†L−2 ⊗ Id2, Ĉenv = Id2 ⊗ ĉL+3 ⊗ IdL−3, (20)

D̂sys = IdL−4 ⊗ ĉ†L−3 ⊗ Id3, D̂env = Id3 ⊗ ĉL+4 ⊗ IdL−4, (21)

Êsys = IdL−5 ⊗ ĉ†L−4 ⊗ Id4, Êenv = Id4 ⊗ ĉL+5 ⊗ IdL−5. (22)

Thus, the Hamiltonian is rewritten as follows:

Ĥ2 = Ĥsys ⊗ IdL + IdL ⊗ Ĥenv + ty

(
Êsys ⊗ Âenv + D̂sys ⊗ B̂env (23)

Ĉsys ⊗ Ĉenv + B̂sys ⊗ D̂env + Âsys ⊗ Êenv
)
.

This time five extra appears terms that include a huge product between the system
and environment subspaces, which means a high computational effort. We must note that
this second map is equivalent to a wide ladder lattice. Therefore, the computational time
to work with a wide lattice principally is due to a very long hopping terms cause by the
map into a one dimensional lattice.
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[MJH+14] Gábor Zsolt Magda, Xiaozhan Jin, Imre Hagymási, Péter Vancsó, Zoltán
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Tailoring the atomic structure of graphene nanoribbons by scanning tun-
nelling microscope lithography. Nature Nanotechnology, 3(7):397–401, Jul
2008. 14

[TGL+10] T. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S. Kraft, S. J.
J. M. F. Kokkelmans, and J. T. M. Walraven. Broad feshbach resonance in
the 6Li−40K mixture. Phys. Rev. Lett., 104:053202, Feb 2010. 17

[TGU+12] Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman
Esslinger. Creating, moving and merging dirac points with a fermi gas in a
tunable honeycomb lattice. Nature, 483(7389):302–305, Mar 2012. VI, X,
16, 25



BIBLIOGRAPHY 65

[TLN+92] J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Nie-
dermayer. Systematic study of insulator-metal transitions in perovskites
rnio3 (r=pr,nd,sm,eu) due to closing of charge-transfer gap. Phys. Rev. B,
45:8209–8212, Apr 1992. 6

[TU08] Masaki Tezuka and Masahito Ueda. Density-matrix renormalization
group study of trapped imbalanced fermi condensates. Phys. Rev. Lett.,
100:110403, Mar 2008. 17

[TVA+08] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann.
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