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• Enciso-Olivera, C., Ordóñez-Rubiano, E., Casanova-Libreros, R., Rivera, D., Zarate-
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“Computer Assisted Assignment of ICD Codes for Primary Admission Diagnostic in

ICUs”, Proc. Springer - 12th Congreso Colombiano de Computación CCIS 735, 211–

223 (2017).
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Abstract

Computational strategies to characterize topological properties of

pathologically altered functional brain networks

Consciousness alterations, including disorders of consciousness (DOC), propose a defiant sce-

nario from the prognosis and diagnosis perspectives. Brain resting-state functional imaging

mitigates this challenge, offering alternatives to explore brain activity in altered conscious-

ness states. Furthermore, connectivity functional variations in resting have been linked

with consciousness alterations. So, considering the evidence of connectivity alterations in

altered consciousness states, this thesis inquires new computational approximations to de-

scribe topological characteristics associated with the resting-state connectivity in altered

states of consciousness.

This work introduces two computational strategies for the characterization of topological

features underlying the graph representation model. The first strategy describes graph con-

nectivity properties of the so-called functional connectome, linking its alterations to the

patients’ level of consciousness. Despite the capacity characterization of this approach, it

is limited only to describe pair-wise interactions, which is the base of the graph model.

The second strategy characterizes both low and high-order connectivity properties from the

topological perspective using Persistent Homology (PH), resulting in a richer representation

of the brain functional interactions. These properties include the number of holes (0 and 1

dimensions) emerging in the resting-state dynamic across different scales. This strategy was

investigated in healthy control (HC) subjects and later extended to patients with altered

states of consciousness.

The first strategy (graph-based) suggests variations in critical properties related to conscious-

ness, such as integration, segregation, and centrality, when comparing HC and patients with

DOC. In HC, the second strategy (PH-based) provided evidence of persistent 1-dimensional

holes, indicating that resting-state connectivity exhibits high-order interactions. Results also

suggest that brain regions associated with the appearance of these 1-holes have a marked

symmetry in both cerebral hemispheres. In patients with altered states of consciousness,

results related to 0-dimensional holes indicate dissimilarities among the time courses, likely

linking to particular integration mechanisms in these conditions. Additionally, 1-dimensional

holes were also identified in the pathological population. However, brain regions involved in

the appearance of these features differed from the ones observed for HC. In particular, no

symmetry was observed.

These results shows topological changes in the functional connectome of patients with al-

tered states of consciousness, suggesting that high-order functional interaction mechanisms

may play an important role in the emergence of consciousness in patients with DOC.
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Resumen

Estrategias computacionales para caracterizar las propiedades topologicas de

las redes cerebrales funcionales patológicamente alteradas

Las alteraciones de la conciencia, incluyendo los desórdenes de conciencia (DOC), proponen

un escenario desafiante desde la perspectiva del pronóstico y el diagnóstico. Las imágenes

funcionales del cerebro en estado de reposo reducen este desaf́ıo, ofreciendo alternativas para

explorar la actividad cerebral en estados alterados de conciencia. Además, variaciones en

la conectividad funcional en reposo han sido relacionadas con alteraciones de la concien-

cia. Entonces, considerando la evidencia de cambios de la conectividad en estados alterados

de conciencia, esta tesis indaga en nuevas aproximaciones computacionales para describir

caracteŕısticas topológicas asociadas con la conectividad en estado de reposo para estados

alterados de conciencia.

Este trabajo presenta dos estrategias para la caracterización de rasgos topológicos suby-

acentes a los modelos de grafos. La primera estrategia mide las propiedades del grafo o

conectoma funcional, vinculando sus variaciones con el nivel de conciencia. Sin embargo,

este enfoque está limitado por la base de interacción por pares del modelo de grafos. La se-

gunda estrategia describe propiedades de alto orden de una representación de interacciones

simultáneas a través del complejo simplicial mediante el uso de la homoloǵıa persistente

(PH). Las propiedades de alto orden son las fronteras de los huecos de dimensión 0 y 1 del

estado de reposo. Esta estrategia se implementa para sujetos controles (HC) sanos y se

ajusta para pacientes con estados alterados de conciencia.

Los resultados del primer método, basado en medidas de grafos, muestran variaciones en

propiedades clave relacionadas con la conciencia, como la integración, la segregación y la cen-

tralidad. La segunda estrategia en HC identificaron huecos 1 dimensionales persistentes, in-

dicando que la conectividad en estado de reposo exhibe interacciones de alto orden. Además,

hay regiones cerebrales asociadas con la aparición de estos huecos que muestran simetŕıa al

ser vistos sobre los hemisferios cerebrales. En pacientes con estados alterados de conciencia,

el método incluye la descripción de los huecos 0 dimensionales, denotando la integración

entre las señales en estado de reposo. Los resultados de los huecos 0 dimensionales indican

distancias mayores entre las señales. Además, en esta población también se identificaron

huecos 1 dimensionales. Su persistencia es comparable a la de los sujetos HC, pero las re-

giones cerebrales involucradas en su ocurrencia son distintas y no se observa simetŕıa. Estos

resultados sugieren que efectivamente existen variaciones topológicas de orden bajo y alto

asociadas con la alteración de la conciencia. Además, estas variaciones pueden servir para

nuevas investigaciones en conciencia.
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1. Introduction

The understanding of brain functions represents a highly challenging area. In the last

decades, this scientific endeavor has been the main focus of many pieces of research. In

particular, the connectome characterization, both functional and structural [126], and the

use of the complex network analysis to characterize brain [85], have increased advances in

this area. These tools have improved our knowledge about brain alterations in pathological

conditions [85]. Remarkably, they allowed associating variations on graph properties from

healthy to pathological states. That is the case of altered states of consciousness, which in-

cludes pharmacological sedation, and Disorder Of Consciousness (DOC). DOC encompasses

a set of brain conditions, including acute comatose state, Minimally Conscious State (MCS),

and Unresponsive Wakefulness Syndrome (UWS). Formally, DOC is the name given to a

group of related disorders which are linked by disruption to some common underlying sys-

tem known as consciousness [128]. The patients with altered consciousness do not respond

to external stimuli; then, distinct approaches to measuring brain activity are needed to get

clues about their brain state.

Advances in functional neuroimaging provide a way to assess brain activity, and resting-state

protocols emerge as an alternative to measure brain function in altered states of consciousness

without the need of a patient response [18, 17]. The brain’s spontaneous activity without

stimuli constitutes the base of the resting-state signal, which provides a resting functional

connectome [64]. This connectome represents a suitable description of brain function for

subjects which not respond to stimuli, as in patients with altered states of consciousness,

such as DOC. The study of this connectome on these patients suggests that some graph

properties variations are associated with functional brain changes under states of conscious-

ness alterations [12, 49]. These variations can be understood more generally as changes on

the topological features of the functional resting connectome [29]. However, these topological

descriptions are based on network construction, i.e., the existence of pair-wise relationships

between elements. This assumption may oversimplify brain dynamics descriptions by only

considering the connection of pairs of elements, putting aside the potential existence of high-

order topological structures [35], which may play an important role in the consciousness

phenomena emergence. This thesis aims to overcome limitations on the topological char-

acterization imposed by the graph representation of the resting functional connectome for

characterizing patients with altered states of consciousness.
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1.1. Brain function description and variation in

pathological states

Anatomical and functional characterization of the distinct brain injuries, particularly those

related to alterations of consciousness, has emerged as an area of high research activity in

diverse fields. For instance, in health, because of the clinical implications of diagnosis and

prognosis in these patients [129], in ethics, due to the issues of life of patients with con-

sciousness alterations [140], and social, because of the impact in the public health system of

care of these patients [13, 63]. Some of the principal research objectives in the area include

diagnosis support based on the structural and physiological [49] alterations caused by brain

damage [83], prognosis in accordance with the severity of the damage based on functional

and biomechanical models of characterization of consciousness states [90], among others.

Recently, studies based on dynamic neuroimaging (functional Magnetic Resonance Imaging

- fMRI) have established the existence of functional brain networks activated during resting

state [41]. Some of these studies have suggested that in normal conditions, the brain in

resting-state is organized in regions of sensory-cognitive relevance, in the so-called resting-

state networks (RSNs). These regions are functionally co-activated, i.e., spatially segregated

areas show functional activation simultaneously. The resting-state fMRI (R-fMRI) has been

employed as an objective alternative to study the alterations of consciousness because it

registers brain activity without patient collaboration, and it is not restricted by the avail-

ability of sensory channels of stimulation [46]. Alterations in connectivity on these entities

have been proposed as biomarkers of different pathological brain conditions [170, 6, 84, 192].

Investigating functional activation dynamics and patterns of these resting-state networks

constitutes open research areas [61]. In particular, these connectivity variations have been

proposed for the characterization and classification of distinct brain disorders [141]. How-

ever, despite advances, the processing, analysis, and understanding of these signals and the

extraction of features to build bio-markers linked to specific neuro-pathologies are open prob-

lems in the information processing of brain functional data [2, 82].

Graph theory has been employed to characterize resting-state networks, notably functional

and structural interactions, variations, and relationships with specific brain development

and alterations [192]. Recently, it has been suggested that brain function is organized in

specialized and segregated brain areas or hubs of fast processing [158, 89]. Also, functional

and anatomical brain networks have been proposed to be organized in small-world and

rich-club topologies [28]. Besides, variations of brain network properties have been linked

to specific brain diseased conditions, for example, the increment of the hub’s efficiency in

comatose patients [1].
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1.2. Problem statement

fMRI studies have established the existence of functional brain networks which are activated

in resting-state [139]. The alterations of connectivity levels in these entities have been pro-

posed as biomarkers for the study of various pathological conditions, including Alzheimer’s

disease, Autism, Parkinson’s disease, Schizophrenia, and DOC, among others [87, 85]. Thus,

studies of brain functional connectivity in combination with the so-called complex network

analysis have been established as a strategy to get knowledge about brain function in healthy

and diseased conditions. It gives many descriptors, including topological, which rely on a

unitary element of analysis, the network. Identifying the bio-markers and incorporating the

assessment of variations produced by the pathology. It is commonly performed by comparing

against healthy brain networks. However, the brain structure and function of patients diag-

nosed with disorders of consciousness are severely damaged. This deterioration is thought to

result in a complete reconfiguration of the functional brain networks [128, 50, 82]. Conditions

associated with altered states of consciousness could lead to scenarios where the compari-

son with healthy control subjects is not suitable, resulting in an unsatisfactory description

and posterior examination of its connectivity. The challenge here is the characterization

of functional connectivity in severely damaged brains. In particular, the identification of

topological variations in functional network connectivity for patients with altered states of

consciousness. Therefore, the development of computational strategies that use functional

information of severely damaged brains and its emergent properties could improve our cur-

rent knowledge about brain function, in particular those that include a recent strategy called

Topological Data Analysis (TDA) to describe the topology of the resting functional connec-

tome for patients with altered states of consciousness.

1.3. Justification

Severe alterations of brain function in altered states of consciousness could lead to chal-

lenging neuroimaging analysis scenarios. Neuroimaging approaches may not differentiate

the resulting brain activity patterns in extremely damaged brains. In particular with those

which use a global perspective of the functional brain network. Global network properties

capture dynamic and topological information through statistical measurements [19]. They

are computed over the whole network as a unique entity, leading to analysis conditions that

hide local properties which may be relevant in DOC and other altered states of consciousness

studies. For instance, scenarios with apparent disconnections represent topological changes

probably hidden in the global strategy. Recently, TDA has emerged as an alternative to

overcome these limitations. The aim of TDA is to understand the shape of data in order

to extract meaningful insights [112]. It includes the classification of loops and higher di-

mensional voids within the space [33], providing a high-order connectivity-based description.
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Then, TDA represents an alternative to study the brain function of severely damaged brains.

Even more for those brains with apparent disconnections and other topological variations.

1.4. Contributions

This thesis investigates the topological properties of altered functional brain networks. In

particular, brain networks of patients with consciousness alterations. It begins with a pair-

wise interaction representation of the functional activity at rest, forming a graph. This graph

representation allows describing interactions and topological properties from the connection

distributions. In a set of segregated areas, the RSNs describe topological connectivity al-

terations associated with the level of consciousness, allowing to characterize key properties

related to consciousness in the R-fMRI, such as integration, segregation, and centrality.

However, despite the richness of this characterization, high-order topological features can

not be described from the graph perspective. Therefore, later persistent homology (PH)

is used as a tool to describe high-order topological features in R-fMRI for healthy people.

This approach found by the first time high-order 1-holes features appearing robustly in this

population. The brain regions involved in the emergence of these high-order features were

also investigated, finding that particular brain regions were more frequently involved in the

occurrence of these features. The existence of these topological features, 1-holes or loops, in

association with the identification of the involved brain regions in healthy subjects may pro-

vide a new perspective for functional connectivity. But, does this approach powerful enough

to describe R-fMRI functional connectivity in pathological conditions? To answer this ques-

tion, we improve classic description coming from PH method to describe key high-order

features for patients with an acute altered state of consciousness. The improved description

considered the characterization of the rate of integration of 0-holes to examine the functional

disruption attributed to the pathological condition. We found that this 0-holes description

suggests a displacement due to dissimilarities in R-fMRI patients’ time courses. Also, we

found 1-holes appearing robustly in patients, but the regions implicated in their occurrence

were different from brain regions obtained in healthy subjects. To summarize, we describe

high-order features through 0-holes and 1-holes of R-fMRI functional connectivity, which

may provide new insights about consciousness alterations in patients with DOC. Figure 1-1

presents an illustration of the properties identified in the different settings.

1.5. Thesis structure

This thesis is organized as follows: Section 1.6 provides the basics about disorders of con-

sciousness, imaging and diagnosis. Next, Chapter 2 provides a first topological description

of resting-state alterations through graph measurements, finding differences between pop-

ulations due to pathological conditions. Chapter 3 addresses the use of TDA as a tool
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(a) (b) (c)

Figure 1-1.: Illustration of process and contributions of this thesis. (a) Representation of

the graph-based approach studied in Chapter 2. Edges describe topological fea-

tures. The blue network represents healthy people while magenta and orange

represent patients with DOC. (b) Representation of the persistent 1-holes de-

scription for healthy subjects examined in Chapter 3. Similar loops found in

both hemispheres. (c) Representation of the 0-holes and 1-holes in the R-fMRI

of patients with an acute altered state of consciousness studied in Chapter 4,

no hemisphere similarities were found.

to describe resting topology on HC subjects and reports the regions involved in functional

topological structures. Chapter 4 investigates the use of TDA on patients with acute alter-

ations of consciousness and compares these features with the ones identified for HC. Finally,

Chapter 5 covers the main conclusions and recommendations.
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1.6. Disorders of consciousness, imaging and diagnosis

Consciousness refers to the state of awareness of self and one’s relationship with the en-

vironment. From a clinical view, it commonly consists of two components, wakefulness or

arousal and awareness [24]. Both features seem to link to anatomic structures and their

specific functions [115]. DOC encompasses a set of particular conditions occurring after a

coma state, affecting these dimensions [153, 24]. Patients with brain injuries can remain

in a coma state for several weeks, and the recovery from this state may lead to distinct

consciousness levels [153, 24]. These levels include the minimally conscious state (MCS) and

the unresponsive wakefulness syndrome (UWS). Patients in MCS exhibit signs of fluctuat-

ing yet, reproducible remnants of non-reflex behavior. UWS is related to patients that open

their eyes but remain unresponsive to external stimuli [128, 153, 103, 138]. Also, a sub-

categorization of MCS was recently proposed to classify patients into MCS+ or MCS- based

on the level of observed behavioral responses [25]. Figure 1-2 illustrate how these states

locate in the two dimensions that define consciousness, awareness, and vigilance. Recent ev-

idence suggests that these DOC conditions link to particular affectations of brain structure

and function [74]. For instance, the breakdown of particular circuits like the mesocircuit is

related to the loss of neurons from the central thalamus, causing functional affectations in

the thalamostriatal and thalamocortical paths.

Diagnosis of DOC conditions is commonly performed by using neurophysiological assess-

ments, such as the Coma Recovery Scale (CRS) [73, 152] or the Rancho Los amigos scale [182],

that aim to assess the behavioral response of the patient. Nevertheless, these patients may

present substantial motor deficits, sensory losses, language impairments, and vigilance fluc-

tuations resulting in affectations of this response capacity. Therefore, these clinical evalua-

tions may lead to a high rate of misdiagnoses and non-appropriate treatments [153]. Despite

this, the knowledge of diagnostic criteria and the use of valid and sensitive standardized

scales are necessary and crucial to establish a precise diagnosis of DOC [153]. Recently, ap-

proaches for DOC diagnosis incorporate various neuroimaging techniques in addition to the

scale-based behavioral assessments, aiming to reduce misclassification rates. The following

section presents an introduction to neuroimaging in DOC.

1.6.1. Neuroimaging to support DOC diagnosis

Neuroimaging is the name given to a variety of techniques that directly or indirectly record in

an image the structure or function of the nervous system [62]. These techniques include differ-

ent brain function and structure assessments [40] like Electroencephalography (EEG) [133],

magnetic resonance imaging (MRI) [105], fMRI [7, 31], diffusion-weighted magnetic reso-

nance imaging (diffusion MRI) [113, 59], Diffusion Tensor Imaging [8], positron emission



1.6 Disorders of consciousness, imaging and diagnosis 7

Figure 1-2.: Level and contents of consciousness. The level of consciousness can be disso-

ciated from behaviors that are traditionally regarded as a sign of vigilance or

arousal (such as the opening of eyes, command following, among others). Typ-

ically, high conscious levels are associated with an increased range of conscious

contents. Whether or not a high level of consciousness without any conscious

contents is possible remains unclear [22]
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tomography (PET) [91, 104], among others. In general, neuroimaging allows observing the

structure and function of the brain of living organisms. Two of the techniques widely used

to study brain function are PET and fMRI. PET is an image acquisition technique that

captures the metabolism of glucose in the brain [104, 128], and fMRI is a technique that

captures the hemodynamic brain activity [31].

Neuroimaging techniques can be used to study conditions of DOC. For instance, the levels

of metabolized glucose per minute in DOC are illustrated in figure 1-3. This image shows

how the brain consumes glucose caused by its activity. Particularly, healthy individuals

and patients with Lock-in syndrome evidence high metabolic activity compared to patients

with DOC. However, the acquisition, analysis, and interpretation of neuroimaging data from

patients with severe brain damage are challenging [104]. For example, in quantitative PET

studies, the absolute value of cerebral metabolic rates depends on many assumptions, and

in cases of cerebral pathology, a consensus for diagnosis using this tool has not been yet

established [104, 103]. In fact, for patients with DOC is more extended the use of relative

value metabolism [161].

Figure 1-3.: Resting cerebral metabolism in healthy individuals and patients in unrespon-

sive wakefulness syndrome/vegetative state, locked-in syndrome and minimally

conscious state [104].

Brain imaging, acquisition protocols, and posterior analysis and interpretations, of patients

with severe brain damage, as in patients diagnosed with a DOC, is challenging because the
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protocols are commonly proposed and adjusted to healthy controls subjects. For instance,

many fMRI studies require the subjects’ active participation in the so-called evoked protocols.

They record the activation produced after some form of stimuli. Those evoked protocols are

not suitable for DOC patients because their condition implies the unresponsive to external

stimuli. As an alternative to overcome this limitation, the resting-state protocols emerge to

register brain activity without a requirement of external stimuli.

1.6.2. Resting-State Networks and functional network connectivity of

DOC diagnosed patients

During the last two decades, the brain activity registered at rest, i.e., while the brain is

not exposed to any stimuli [46], has been studied. The main advantage of the protocol is

that it does not require sophisticated experimental setups and overcomes the need for ac-

tive participation of the subject. Therefore, this protocol has been explored as an objective

alternative to characterize brain dynamics further and construct bio-markers for different

pathological brain conditions [17]. For instance, research in brain activity in resting condi-

tions suggests that healthy brains organize into large-scale functionally connected RSNs of

sensory/cognitive relevance [41, 64, 139]. At least ten of these RSNs are consistently iden-

tified in healthy control subjects: default mode network (DMN), sensory/motor, executive

control left, executive control right, saliency, auditory, cerebellum, and three visual net-

works(medial, lateral, and occipital) [41]. Alterations on these networks correlate to DOC,

i.e., the dynamic of some of these networks links to DOC condition. For instance, DMN is

the principal network activated in an awake state at rest [136, 26] whose alterations have

related to the disorder of consciousness [177, 60, 44].

Different analysis methods at resting-state have been explored in consciousness alterations re-

search [45, 196]. Including different imaging modalities, such as EEG and fMRI [88, 66, 148],

among others. To identify RSNs and to link them to distinct pathologies, including DOC,

it is necessary to talk about the interactions. Both EEG and fMRI provide a set of signals

associated with specific brain regions. Then, each brain region has an associated time-course

that represents the activity at the region. In fMRI, each voxel has an associated time-course.

This way, it is possible to compute the functional interaction between pairs of regions by

computing an interaction measure between its corresponding time courses. The interaction

between regions is normally computed by correlation. Two kinds of approaches are used to

study the brain region interactions, seed-driven and data-driven [82, 130]. In the seed-driven

approach, a specific region is chosen and characterized by estimating the correlation between

this predefined area, the seed, and all other voxels around the brain. This strategy is used in

DOC analysis [44, 22, 49], showing that consciousness in these patients is related to specific

regions connection. Consciousness is associated with the emergence of specific circuits into

the brain, involving regions inside the DMN [21, 44, 82]. Region selection in this approach
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is critical because incorrect choices of seeds may result in wrong characterizations. Further-

more, consciousness does not seem to be a phenomenon of isolated circuits [44, 168], even if

some specific circuits have been related to this emergence. It is a phenomenon of underly-

ing global processes [99], which local, seed-based approaches can poorly characterize. Then,

a complete connectivity scenario that accounts for the whole brain regions becomes necessary.

An alternative that considers relations between the entire brain regions is the independent

component analysis (ICA) [121, 12, 41]. In fMRI, ICA is a data-driven approach to decom-

pose the whole-brain BOLD signals into a number of contributing volumetric spatial maps

and their associated time-courses [130], ICA assumes that the time series on each voxel

is a mixture of a set of statistically independent hemodynamic sources of activity in the

brain [31], considering the signal as a global feature. ICA looks for functional activity of

spatially segregated but correlated brain areas by using higher-order statistics to enforce spa-

tial independence between components [193, 170]. Other approaches to analyze RSN signal

include seed based methods [102], principal component analysis (PCA) [68], and clustering

techniques [86], among others. The use of these methods has improved the understanding

of the RSN’s dynamic and activation patterns for healthy controls. Functional connectivity

alterations within RSNs serve as biomarkers for the study of a variety of pathological condi-

tions [17] including, Alzheimer [170, 23] and Schizophrenia [192], among others. However, in

patients with pathological conditions, these phenomena are still poorly understood [84]. The

following section illustrates the standard processing of time-courses to create the functional

connectivity network.

Functional connectivity network computation

fMRI detects small changes in the MRI signal, which is associated with neuronal activity.

MRI signal measures the excitation of hydrogen atoms in the brain the exposure to a mag-

netic field. Specifically, fMRI detects the variations associated with the depolarization of the

neuron. When neurons depolarize, a hemodynamic response is triggered that increases the

amount of oxygenated blood relative to deoxygenated blood. In particular, deoxygenated

blood is paramagnetic and distorts the MRI signal from hydrogen atoms in the surrounding

tissue, while oxygenated blood is diamagnetic. When the ratio of oxygenated over deoxy-

genated blood increases, the MRI signal also increase, see Figure 1-4. This phenomenon

results in a blood oxygen level-dependent contrast (BOLD) in a region of increased neuronal

activity [20]. Furthermore, when the brain is in a resting wakeful state (R-fMRI), regions of

correlated low-frequency fluctuations can be detected in the time series of the BOLD signal

(ă0.1 Hz) [18].

Preprocessing of the BOLD signal usually includes a correction for temporal shifts and

section-dependent intensity differences. This is followed by regression of head motion and



1.6 Disorders of consciousness, imaging and diagnosis 11

Figure 1-4.: Physiological and physical processes leading to the measured fMRI signal. fMRI

signal depends on both blood oxygenation and volume as a function of physical

acquisition parameters, such as magnetic field strength and MRI sequence [175]

other nuisance regressors, including signal time courses for regions of interest located in

the ventricles and white matter, which are related to high proportions of noise associated

with cardiac and respiratory signals [173]. Spatial smoothing and low-pass filtering to retain

frequencies ă0.1 Hz let remove the signal from non-neural causes and improve the signal-

to-noise ratio. Then images are registered in atlas space to achieve spatial agreement with

coordinate systems and between subjects [106]. Some approaches in data preprocessing

include whole-brain regression and head motion correction. Whole-brain regression, which

regresses the mean time course of the whole brain, has been proposed as a method to improve

the specificity of correlations and reduce noise [64]. Both become a subject of debate because

whole-brain regression may produce spurious negative correlations that have no physiolog-

ical significance, and inadequate head motion correction can result in spurious correlations

in fMRI analysis [106].

Distinct methods can be used to analyze the data after preprocessing. One method is a

seed-based analysis, which involves selecting regions of interest (ROIs) and correlating the

average BOLD time course of voxels within these ROIs with each other and with the time

courses of all other voxels in the brain. Typically, a threshold is determined to identify

voxels significantly correlated with the region of interest. However, this approach requires

an a priori selection of ROIs. Another approach is independent component analysis (ICA), a

mathematical technique that maximizes statistical independence among its components [41].

ICA can be used to identify spatially distinct RSNs of RS-fMRI data. Compared to seed-
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based methods, ICA has the advantage of requiring few a priori assumptions, but requires

the manually selection of important components and distinguish noise from physiological

signals. Nevertheless, some studies have attempted to automate this process and use ICA

as a method to identify noise within the BOLD signal [106]. Despite their differences both

approaches exhibits similar results in analysis of healthy subjects groups [139]. Finally, func-

tional network connectivity (FNC) approach considers a collection of ROIs as nodes con-

nected by edges. This connection could be established as the correlation between ROIs [86].

Formally, Functional connectivity refers to temporal correlation between spatially remote

neurophysiological events, expressed as deviation from statistical independence across these

events in distributed neuronal groups and areas [68, 18]. Distinct correlation measures

have used to compute the FNC, for instance, Pearson’s correlation [94] and distance cor-

relation [163, 143]. The graph representation of ROIS as nodes and connectivity as edges

provides a basis for characterize the connectivity of brain regions [106], see Figure 1-5 for a

FNC process summary. This representation and graph measurements reveals a small-world

topology of functional connectivity [28]. Small-world is achieved through the existence of

hubs. Hubs are critical nodes with large numbers of connections, that allow high levels of

local connectivity [28]. This way small-world networks have high clustering coefficients, i.e.

high level of local connections, and an overall short distance between any two nodes, or a

small average path length [106].

Figure 1-5.: Resting state fMRI data are collected from a subject. Voxel time series are

extracted from the set of images, and a Pearson correlation analysis is performed

between all possible pairs of voxels. The correlations are represented in the

form of a correlation matrix, which is binarized at a given threshold to yield

an adjacency matrix. The functional network is thereby defined, where each

ROI is represented by a node and connections are determined by the adjacency

matrix [96]
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Functional connectivity within RSNs

As previously mentioned, a complementary RSNs analysis strategy that considers the func-

tional relationship among RSNs is explored in FNC [82]. FNC studies focused on the as-

sessment of the level of interaction during spontaneous activity among different RSNs. This

dynamic brain representation results from computing pair-wise measurements of connectiv-

ity between the RSNs time-courses. Typical measurements of interaction include Pearson’s

correlation coefficient that aims to capture linear relationships among the time-courses [94],

Granger causality that characterizes directional connectivity [185], and temporal slicing win-

dow that allows exploring temporal changes in the RSN connectivity [146]. Most of these ap-

proaches rely on the underlying assumption that RSN brain dynamics follow linear regimes.

However, recent evidence suggests that the neuronal function of cortical ensembles during

resting-state may follow non-linear behaviors [186]. Therefore, these interaction measure-

ments may be limited to capture this phenomenon. An alternative approach to characterize

these non-linear conditions is the distance correlation that aims to capture non-linear re-

lationships between different RSNs [143, 3, 71, 191]. These no-linearities could suggest

high-order interactions. In addition, this FNC has been explored as a possible biomarker of

loss of consciousness [44, 74, 82].

To summarize, the FNC provides a framework for the analysis of healthy and pathological

conditions. In altered states of consciousness, including DOC, the FNC was created based

on the connectivity of specific circuits linked to consciousness emergence. Variations in the

connectivity and topology of the nodes in these circuits have been successfully associated

with DOC, pharmacological sedation, and other conditions of altered consciousness [84, 44,

52, 79] . Then, many studies are centered on consciousness-related circuits, leaving aside

the connectivity with the rest of the brain. Furthermore, a general view of the connectivity

changes due to altered states of consciousness stills unexplored. Moreover, brain connectivity

from a general perspective could be described by the associations between RSNs, providing a

rough characterization of brain function in DOC. The next chapter develops the description

of the brain connectivity between RSNs by using network measurements. This approach

allows characterizing connectivity properties associated with altered states of consciousness,

specifically for DOC.



2. Brain function topological description

from networks

This chapter presents a description of the topological features computed over a network

structure. First, it introduces the uses of network representations on resting-state signals as

an object that encompasses the brain regions and associations between pairs of them. Then,

the chapter presents the definition of features used to describe a network. In particular, for

a network that represents the interactions between RSN in normal and pathological DOC

conditions. Next, it exposes the network properties variations linked to the consciousness

levels (healthy subjects, MCS, and UWS patients). The main content of this chapter were

published as an article in Brain and Behavior [119].

As described in previous chapter, due to the communication difficulties imposed by the DOC

conditions, functional connectivity analyses based on R-fMRI serve as an alternative to over-

come the need to record the responses to stimuli [159, 46]. Also, the brain organization in

RSNs provides a suitable representation to study the preservation of sensory and cognitive

brain functions without any explicit stimulation [139] specifically for DOC studies. First

analyses of RSNs in patients with DOC were focused on alterations of the functional connec-

tivity inside the DMN. This functional structure encompasses specific brain regions linked

to the consciousness emergence phenomenon [21, 44]. Decreases in functional connectivity

within this network links to modifications of the level of consciousness in these patients.

Posterior studies showed that DOC conditions might affect functional connectivity within

multiple RSNs [84, 80, 44, 49, 52, 130]. In particular, variations in intrinsic connectivity

for specific RSNs relate to alterations in sensorial and awareness functions [21, 44, 49]. For

instance, in decreased connectivity levels in DMN and frontoparietal networks [122]. Addi-

tional evidence indicates changes in the connectivity between RSNs, for instance, reductions

of the connectivity strength between RSNs in patients with DOC compared to healthy con-

trols (HC) [143] and alterations in the level of anti-correlation between RSNs associated with

the recovery of consciousness [51]. These variations in the RSNs circuits were also observed in

patients with induced altered consciousness states, as in propofol sedation [80, 79]. Recently

studies which incorporate time-delay models found variations in specific talamo-cortical cir-

cuits associated with DOC [32]. Also, Bodien et al. [20] review the degree of the functional

and effective connectivity alterations in relation with the severity of impaired consciousness.

Additionally, stimulus of specific circuits identified in R-fMRI and correlated with DOC
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awareness level have been used to improve diagnosis between acute and chronic DOC [156],

and the identification of specific circuits as feasible targets for neuro-modulation [122]. All

these analyses converged to alterations within particular RSNs or between specific pairs of

RSNs that may have functional relevance for consciousness emergence.

Nevertheless, these approaches may be limited because they lack a more general view of

the brain, regarding, for instance, the existence of multiple functional units in the brain

interacting among them [87]. They instead focused on specific consciousness-related circuits

within the brain. A more general perspective would be important because consciousness

preservation in these patients may also require functional units related not only to con-

sciousness processing but also to stimuli and response, and possibly systems to orchestrate

them [169]. The understanding of interactions among these units may provide valuable in-

formation about these conditions [169]. A model of functional connectivity among RSNs has

been proposed in the so-called Functional Network Connectivity (FNC) [94], which considers

the functional interaction between these large-scale units. This model provides a network

representation in which interactions between high-order functional systems are characterized

using network measurements [28, 87]. Lately, connectivity density decreases were associated

with consciousness alterations in coma states, providing a general description of FNC al-

terations [114]. However, the specific reconfiguration of FNC associated with consciousness

states remains poorly understood. In other words, how the FNC model may highlight re-

organizations of connectivity related to the underlying pathology characterizing the DOC

condition. In this section, the FNC interaction patterns were studied by assessing modifica-

tions in integration, segregation, and centrality properties, which have been suggested to be

highly relevant for consciousness emergence [169].

Functional connectivity alterations within and between some RSNs observed in patients

with DOC may be interpreted as variations of the integration, segregation, and centrality

properties. For instance, functional connectivity changes within some RSNs could relate

to alterations in the integration levels of some particular functional systems known to be

involved in the consciousness phenomena, such as DMN [21]. Similarly, the variations of the

connectivity between functional systems might associate with variations in brain segregation

mechanisms. For example, the changes observed in the thalamocortical connectivity in

unconsciousness may result in decreases in their level of segregation [44]. Additionally,

reductions in functional connectivity of a central node as the thalamus reported in patients

with DOC would generate centrality disruptions [150]. In the network, the topology refers

to how the elements are connected and grouped from the pair-wise relation, how some of

them are integrated into clusters, and how some nodes become relevant. Thus, variations in

the connectivity levels between brain regions, or the role change of a node in the network,

are expressions of topological changes in the FNC. This way, FNC topology variations due

to the DOC pathology, patients in MCS or UWS, are described by alterations of these three
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properties on the specific consciousness circuits when compared against healthy people.

In contrast to previous studies that only focused on a limited set of RSNs, we considered

the interactions among the whole set of functional units. To reach this objective, the FNC

was computed for each subject obtaining a general brain functional representation with the

interactions between RSNs. This approach allows studying integration, segregation, and cen-

trality for the general brain by considering the interactions between high-order functional

systems. Next, we used a set of network measurements to assess the mentioned properties.

In particular, degree, strength, clustering coefficient, betweenness, and eigenvector centrali-

ties [28, 87, 27] were used to understand relevant brain functional properties modifications

for different states of consciousness. Degree and strength assess the integration between func-

tional brain regions, i.e., how the brain regions are connected and how strong are connections

respectively. The clustering coefficient measures the segregation of brain regions, i.e., how

the brain regions are interconnected, creating functional units. Betweenness and eigenvector

centralities evaluate the relevance of a region in the functional connectivity model, i.e., how

important a brain region is for communication because it belongs to the shortest path, or it

is connected to other relevant brain regions respectively.

The main contributions of this chapter are: (i) A graph measurement-based method was

developed, characterizing pair-wise interactions between RSNs, and (ii) measured values

were associated with the consciousness levels, indicating topological variations in R-fMRI

related to the consciousness phenomenon.

2.1. Graph theory approximations used to gain knowledge

about brain pathologies

2.1.1. Complex network analysis

Networks are systems composed of many highly interconnected units. Initially, its study was

mainly of a branch of discrete mathematics known as graph theory. Nevertheless, during the

last two decades, the investigation of networks whose structure is irregular, complex, and

dynamically evolving in time became of research interest in the so-called complex networks.

Complex networks were firstly motivated for their use as proper representations in real prob-

lems, like transportation, Internet, protein chains, among others [19]. Therefore, the research

on complex networks was encouraged to define new concepts and measures to characterize

relevant network characteristics, such as its topology, i.e., structure and arrangement of the

network. Remarkably, these researches unveiled unifying principles and statistical proper-

ties, which resulted common to many existing networks [19, 162]. Then, their study, in

early stages modelling real phenomena, results in important emerging characteristics which

revives the research in graph theory but considering the properties of the real networks. The
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real networks are characterized by the same topological properties, as for instance relatively

small characteristic path, lengths, high clustering coefficients, fat tailed shapes in the de-

gree distributions, degree correlations, and the presence of motifs and community structures.

All these features make real networks radically different from regular lattices and random

graphs, the standard models studied in mathematical graph theory [4, 19].

Complex networks investigations mainly focused on the changing from small networks to

systems with thousands of millions of nodes, and they were initially modeled as random

graphs or generalized random graphs assuming that they were large-scale networks with no

apparent design principles [4]. However, two main directions of complex network analysis

were emerged to model its structure, small-world, and scale-free networks. Both of them

were introduced to model networks that mimic the growth of a network and to reproduce

the structural properties observed in real topologies [19].

Random graphs

A random graph is a graph in which the edges are distributed randomly, i.e. the nodes in the

graph that have the same number of links have the same probability to be selected [4]. Large-

scale networks with no apparent design principles have been described as random graphs.

They have been proposed as the simplest and most straightforward realization of a complex

network because networks with a complex topology and unknown organizing principles often

appear random [19]. Random-graph theory studies the properties of the probability space

associated with graphs. In general, properties of such random graphs can be determined

using probabilistic arguments where the attributes of graphs are studied as functions of the

increasing number of random connections [19]. Then, in a random graph, the probability

of select a node with a fixed number of links follows a uniform distribution.

Small-world networks

The small-world concept in simple terms describes the fact that despite their often large

size in which most nodes are not neighbors, in most networks there is a relatively short

path between any two nodes. The distance between two nodes is defined as the number of

edges along the shortest path connecting them. Then, in a small-world network, the distance

between two randomly chosen nodes is small, and it grows proportionally to the logarithm

of number of nodes in the network [180].

Scale-free networks

Scale-free networks are networks whose their degree distribution follows a power law [19].

The degree of a node is the number of its direct connections to other nodes. The distribu-

tion degree P pkq gives the probability that a randomly selected node has exactly k edges.
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Scale-free nature of real networks is rooted in two generic mechanisms shared by many real

networks The number of nodes increases by the subsequent addition of new nodes. The like-

lihood of connecting a new node depends of the node’s degree [4]. Numerical simulations

indicated that a network with these properties evolves into a scale invariant state with the

probability that a node has k edges following a power law with an exponent γ “ 3 indepen-

dent of number of nodes already present in the network [4, 19].

As was mentioned previously, graph theory and more specifically complex network analysis

had been used to model, to understand and to get insights about several types of real

systems. The complexity arises in the behavior of a system of interacting elements that

combines statistical randomness with regularity [28]. During the last decades, brain studies

and investigations had also adopted these kind of approaches to model brain structure and

function in healthy and pathological conditions.

2.1.2. Complex network analysis in brain imaging

The brain is a network which consists of spatially distributed, but functionally linked regions

that continuously share information with each other [89, 43]. As mentioned previously, func-

tional neuroimaging allows to explore and identify functional connections of specific brain

regions and local connections. These connections permit to define a brain functional network

or functional connectome [160]. By analyzing this connectome important clues about overall

organization of functional communication in the brain network have been unveiled [89, 44].

This analysis have been mainly performed by using complex network measurements that al-

lows to capture emerging organizational principles of complex systems [28]. Complex network

measurements are supported on graph theory, see anexe table A-1 for a brief description

of some complex network measurements commonly employed to characterize brain networks.

Complex network measurements have been used to understand function affectations and re-

configurations in pathological brain conditions such as, Alzheimer [196, 23, 170], Schizophre-

nia [141, 192] and Autism [141], among other conditions, see Table 2-1, for a brief reference

of network measurements used in brain pathological conditions studies. Complex network

analysis has been also applied to study relationships among resting-state networks, and their

topological structure [178]. Brain networks alterations were consistently related with some

brain affectations, but for DOC conditions graph properties remain poorly understood [84].

Recently, approaches adopt local [118] and global [117] complex network measurements to

characterize the functional network connectivity of patients in DOC. These works link some

alterations of network topology with the consciousness variations. They mainly relate lo-

cal variations of the default mode network, and global variations of the average clustering

coefficient and average strength with the alterations of consciousness.
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Table 2-1.: Researches which use network measurements to evaluate brain conditions with

specific pathologies

Pathology Network Measurement Alteration

Schizophrenia Connectivity Connectivity fluctuations [192, 151]

Alzheimer
Clustering, modularity and

path length

Clustering and modularity reduc-

tions [23]

Strength Strength reduction [65]

Epilepsy

Connectivity Global connectivity decrease [164]

Eccentricity and between-

ness centrality

Decrease of eccentricity and between-

ness centrality [176]

Strength, clustering coeffi-

cient, efficiency and charac-

teristic path

Decrements of strength, clustering

coefficient, efficiency and increment

of characteristic path [189]

Multiple Sclerosis Modularity Increased modularity [69]

Parkinson Clustering coefficient and

modularity

Higher clustering and modularity [6]

Autism Betweenness centrality Higher betweenness centrality [137]

DOC Clustering coefficient,

strength, efficiency and

characteristic path

Increment of clustering coefficient

and strength [118, 117]

Degree and hubs High degree, hubs reorganization [1]

Measurements to quantify complex networks topological properties were used to understand

brain normal processes like aging and cognition, and pathological states like Schizophrenia,

Dementia, Alzheimer among others [94]. Alterations in complex measurements as mod-

ularity, hierarchy, centrality and the distribution of network hubs have been also related
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with specific behaviors of brain diseases. These properties modifications can be associated

with topological changes. Then, the complex network analysis allows to understand some

topological variations of the networks induced by brain pathologies.

2.2. Functional connectivity reshape in patients with

disorders of consciousness

This section presents the characterization of a functional connectome for Healthy Control

(HC) subjects and patients with DOC [31, 87, 27, 159], in particular, a connectome with

RSNs as nodes. This connectome corresponds to a large-scale network of functional relation-

ships between functionally related brain regions. Network-based measurements computed on

this connectome provide a functional depiction of synchronized, spontaneous and segregated

activity [87, 141, 159]. There is an important methodological challenge in the characteri-

zation of the functional relationship between large-scale areas (RSNs), mainly related with

the severe brain damage of patients in DOC conditions. Particularly, brain-injured patients

may present functional and structural affectations that may change the connectome prop-

erties. Therefore, a particular processing pipeline that accounts for these alterations was

considered, including, severe structural affectations, large head motions, and individual vari-

ability, among others. Figure 2-1 summarizes the process used to characterize functional

connectivity alterations at the general brain level of interactions between RSNs.

2.2.1. Materials and Methods

Subjects and patients

Participants were healthy volunteers and patients with UWS or MCS following severe brain

damage studied at least 5 days after acute brain insult. HC subjects were subjects free of

psychiatric or neurological history. Clinical examination was performed using the French

version of the Coma Recovery Scale-Revised (CRS-R) [73, 154]. The CRS-R is a stan-

dardized measure for characterizing the level of consciousness and monitoring recovery of

neurobehavioral function [73]. It consists of 30 hierarchically arranged items that comprise 6

subscales addressing auditory (5 items), visual (6 items), motor (7 items), oromotor/verbal

(4 items), communication (4 items), and arousal (4 items) processes. The scoring is based on

the presence or absence of specific behavioral responses to sensory stimuli administered in a

standardized manner, and the lowest item in each subscale represents reflexive activity while

the highest item represents cognitively mediated behaviors [73, 154]. Exclusion criteria were

contra-indication for MRI (e.g., presence of ferromagnetic aneurysm clips, pacemakers), MRI

acquisition under sedation or anesthesia and large focal brain damage (ą 50% of total brain

volume). Structural brain damage was assessed by visual inspection of two experts. Written

informed consent to participate in the study was obtained from the healthy subjects and
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Figure 2-1.: Illustration of methodological procedure defined as the sequence of the following

processes: Data acquisition consist of 300 volumes functional MRI at rest and

a structural MRI for each subject. Next, data preprocessing including brain

extraction, alignment, registration, Gaussian smoothing, motion correction and

normalization. Following by a data driven approach to extract the RSNs us-

ing spatial independent component analysis and a template matching strategy.

Then, functional network connectivity between RSNs were computed by the

lagged distance correlation method. Finally, integration, segregation and cen-

trality measurements were computed to characterize the populations in different

states of consciousness
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from the legal surrogates of the patients. The study was approved by the Ethics Committee

of the Medical School of the University of Liège [46].

Data description

Acquisitions from 75 subjects were used for this study: 27 HC subjects (14 women, mean age

47 ˘ 16 years), 24 patients with MCS (8 women, mean age 47 ˘ 16 years; 9 of non-traumatic

etiology: 2 anoxic, 3 with cerebrovascular accident, 3 with hemorrhage, 1 with seizure; 14 of

traumatic, and 1 of mixed etiology) and 24 with UWS (12 women, mean age 50 ˘ 18 years;

18 of non-traumatic etiology: 9 anoxic, 6 with cerebrovascular accident, 2 with hemorrhage,

1 metabolic; 5 of traumatic, and 1 of mixed etiology). 31 patients with UWS and MCS

were assessed in the chronic setting, i.e., ě 50 days post-insult. For each subject, fMRI data

were acquired in a 3T scanner (Siemens medical solution in Erlangen, Germany). Three

hundred fMRI volumes multislice T2*-weighted functional images were captured (32 slices;

voxel size: 3 ˆ 3 ˆ 3 mm3; matrix size 64 ˆ 64 ˆ 32; repetition time = 2000 ms; echo

time = 30 ms; flip angle = 78˝; field of view = 192 ˆ 192 mm2). The three initial volumes

were discarded to avoid T1 saturation effects. Additionally, a structural T1-weighted image

was acquired for anatomical reference. Patients were scanned in sedation-free condition,

and healthy volunteers were instructed to close their eyes, relax without falling asleep and

refrain from any structured thinking (e.g. counting, singing, etc.), as commonly performed

in resting-state paradigms [12, 80].

Data preprocessing

Data preprocessing was performed using the Statistical Parametric Mapping (SPM8) [67]

toolbox for Matlab (The Mathworks, Inc., Sherborn, MA, USA). SPM preprocessing stages

included realignment and adjustment for movement-related effects, co-registration of func-

tional onto structural data, segmentation of structural data, normalization into standard

stereotactic MNI space, and spatial smoothing with a Gaussian kernel of 8 mm. Motion

correction (e.g. small, large and rapid motions, noise spikes and spontaneous deep breaths)

was applied by using ArtRepair toolbox for SPM [120, 46]. To evaluate the data acquisi-

tion quality, the frame-wise displacement [134] was assessed on each population, figure 2-2

present the computation for each population set, red-line indicates the average displacement

per frame in the population. The HC subjects exhibit the lowest values while the UWS

patients show the highest.

Resting-State Networks identification

The RSNs were selected for each subject as follows: First, the R-fMRI signal was decomposed

into maximally independent spatial maps using spatial ICA [121]. ICA decomposition was

performed with 30 components [94] and the infomax algorithm as implemented in GroupICA
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(a) Healthy Controls (b) MCS patients (c) UWS patients

Figure 2-2.: Frame-wise displacement computed for (a) Healthy control subjects, (b) Mini-

mally Conscious State (MCS) patients, and (c) Unresponsive Wakefulness Syn-

drome (UWS) patients. Red line indicates the average displacement.

toolbox [31]. Each spatial map (source fMRI signal) has an associated time-course. It corre-

sponds to the common dynamic exhibited by the component. Second, RSNs were identified at

individual level [46] by using a two-fold process: template matching and neuronal/artifactual

classification. Template Matching is an approach that aims to identify each RSN directly

from the single subject spatial ICA decomposition [46]. It is a matching problem with two

constraints: (i) a template had to be assigned to one of the 30 ICs and (ii) an IC could

be labeled as an RSN or not. These two conditions ensure that all the templates (one for

each RSN) have to be assigned and a unique identification of each IC, which deal with the

potential concurrent component assignation. The pair between the template and the IC with

the highest goodness of fit score was selected [46]. Later, a Neuronal/Artifactual classifi-

cation of independent components (ICs) was performed by using a machine learning based

labeling method [46]. It consists of a binary classification approach by means of support

vector machine (SVM) classifier trained on 19 independently assessed healthy subjects. This

SVM uses the fingerprints obtained from ICA decomposition (n = 30 components) as the

feature vector containing both spatial (i.e. degree of clustering, skewness, kurtosis, spatial

entropy) and temporal information (i.e. one-lag autocorrelation, temporal entropy, power

of five frequency bands: 0 - 0.008 Hz, 0.008 - 0.02 Hz, 0.02 - 0.05 Hz, 0.05 - 0.1 Hz, and

0.1 - 0.25 Hz). Commonly, components of artifactual origin encompasses (i) high-frequency

fluctuations ą .1Hz, (ii) spikes, one or more abrupt changes in the normalized time-course,

(iii) the presence of sawtooth pattern and (iv) the presence of threshold voxels in the superior

sagittal sinus. Finally, neuronal time-courses of the RSNs were extracted at the individual

level, and they were subsequently used for the functional connectivity computations.

Functional Network Connectivity estimation

For each subject, a FNC matrix was computed by using a measure of dependency between

pairs of representative time-courses, resulting in a matrix with the strengths of interactions

between the identified RSNs. The strength for edges pointing to RSNs marked as no-neuronal

were set as zero, indicating no interaction. The measures of dependency level were computed
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using the distance correlation (DC) between time-courses [163]. DC aims to measure non-

linear dependencies between two random variables X and Y with finite moments in arbitrary

dimension. In order to account for time delays, a circular shifted lagged version of the DC

was used [94, 143]. Once the FNC was computed, it induces a functional connectivity

matrix, which was used to characterize alterations of functional connectivity. A 10 ˆ 10

weighted matrix was computed to model interactions between different RSNs. Each one of

them models a brain region associated with specific arousal and awareness regions related to

consciousness emergence. An entry cij in this matrix corresponds to the interaction between

the RSNi and RSNj assessed by using the lagged DC.

Network characterization

FNC matrix contains a measure of dependency between pairs of RSNs time-courses. To

assess functional connectivity alterations, three network properties were computed for each

FNC matrix, namely, integration, segregation and centrality of the functional connectivity

between RSNs. FNC integration was assessed by degree and strength [28, 27, 142]. FNC

segregation was characterized by clustering coefficient [28, 27, 142], and FNC centrality was

estimated by betweenness centrality and eigenvector centrality [110], a brief description of

the mentioned measurements is in Table 2-2. These computations were performed using the

brain connectivity toolbox [142].

Table 2-2.: Brief description of networks measurements used to characterize the FNC.

Networks measurements used to estimate the integration, segregation and centrality of

resting-state networks (RSNs) in a network built from functional connectivity between them.

N is the set of all nodes in the network, n is the number of nodes, L is the set of all links

in the network, and l is the number of links. pi, jq is a link between nodes i and j. pi, jq

are associated with normalized connection weights 0 ď wij ď 1. aij is the connection status

between i and j: aij “ 1 when link exist and aij “ 0 otherwise.

Name Formulation Description

Integration Measurements

Degree ki “
ř

jPN aij Number of links connected to the node

(Connection weights are ignored in calcula-

tions) [28, 142]

Strength kwi “
ř

jPN wij Sum of weights of links connected to the

node [28, 142]

Segregation Measurements

Continued on next page
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Table 2-2 – Continued from previous page

Name Formulation Description

Number of

triangles

twi “
1
2

ř

j,hPNpwijwihwjhq
1{3 Geometric mean of the weights of the triangles

around the node i [28, 142]

Clustering

coefficient

Cw “ 1
n

ř

iPN
2twi

kipki´1q
Quantifies the number of connections that ex-

ist between the nearest neighbors of a node as

a proportion of maximum number of possible

connections [28, 142]

Centrality Measurements

Betweenness

centrality

bi “
1

pn´1qpn´2q

ř

h,jPN

ρ
piq
hj

ρhj
The fraction of all shortest path that contains

a given node [142]. Where ρhj is the number

of shortest paths between j and h, and ρ
piq
hj is

the number of shortest paths between j and h

through node i

Eigenvector

centrality

Ax “ λx “ 1
λ
Ax, xi “

1
λ

řn
j“1 aijxj

Self-referential measure of centrality: nodes

have high eigenvector centrality if they con-

nect to other nodes that have high eigenvector

centrality [110]. A denotes an n ˆ n similar-

ity matrix. xi is defined as the ith entry in

the normalized eigenvector belonging to the

largest eigenvalue of A

FNC degree values quantify the number of non-zero correlations of each RSN with other

nodes in the network, while strength values indicate not only a correlation between RSNs

but also the robustness of this correlation. They also provide a measure of the communi-

cation quality expressed in the correlation, i.e., higher values for these two measurements

indicate better communication. Similarly, FNC segregation was measured by clustering coef-

ficient. This assessment indicates how well-connected neighbor nodes are in order to become

a grouped unit. High clustering coefficient values indicate that a set of nodes are well con-

nected among themselves. Additionally, FNC centrality was assessed by betweenness and

eigenvector measurements. Higher betweenness centrality values of a RSN mean that a node

belongs to a high number of the shortest paths (path with the minimum distance between

two nodes) between pairs of nodes in the network. For example, when a RSN time-course

is better related to other time-course in sequence, it presents a better communication path.

Furthermore, a higher RSN eigenvector centrality value indicates that this RSN is better

connected to other central nodes. This estimates how central a RSN is based on the direct

connections to others that have strong links. All measurements herein used were computed
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for each node, i.e., for each RSN in the FNC. Average measurements were calculated to

quantify communication quality among the network nodes. They describe the global net-

work functional connectivity properties and depict all the network variations associated with

FNC alterations.

Statistical analysis

To assess the discrimination power of the network properties, an unpaired-sample t-test [181]

(Bonferroni corrected) was computed. For the statistical analysis, the following comparisons

were performed: HC versus subjects with MCS, HC versus subjects with UWS, HC versus

subjects with DOC (UWS and MCS), and subjects with MCS versus subjects with UWS.

2.3. Results

2.3.1. Loss of Functional Network Connectivity Integration in DOC

Figure 2-3 shows degree and strength values for subjects in different states of consciousness

for the 10 different RSNs herein studied. As observed in Figure 2-3A, degree values were

higher for HC compared to subjects with altered states of consciousness (MCS and UWS)

in all RSNs, except by the sensorimotor network. Significant differences (p ă 0.005) were

observed for the values of degree when comparing HC with MCS populations in auditory

network, DMN, ECN Left and visual medial network. Significant differences (p ă 0.005)

were also found when comparing HC versus subjects with UWS and when comparing HC

and subjects with DOC in auditory network, DMN, ECN Left, visual medial network, and

ECN Right. Also, degree values for subjects with MCS were greater than the UWS in all

RSN but no significant differences were observed.

As observed in Figure 2-3B, strength values were higher for HC in comparison to subjects

with altered states of consciousness in all RSNs except by sensorimotor and cerebellum net-

works. Significant differences (p ă 0.005) in strength values were observed for HC compared

to subjects with MCS and for HC versus the population of DOC, in auditory network, DMN

and visual medial network. HC presented strength values significantly higher than subjects

with UWS. No significant differences were observed between strength values of subjects with

MCS compared to subjects with UWS.

Figure 2-4 shows the average degree and average strength values. Average values were

estimated as a global characteristic of functional connectivity network between RSNs. As

observed in Figure 2-4A, average degree values were higher for HC compared to altered

states of consciousness. Significant differences were also found for HC (M = 3.81, SD =

2.10) when compared with UWS (M = 1.71, SD = 2.59) (t = 3.16, p = 0.003). Similarly,
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Figure 2-3.: Integration measurements. (A) Degree and (B) strength show a similar dis-

tribution across healthy subjects and patients with Disorders OF Conscious-

ness. Both evidence higher values for Healthy Controls (HC) than subjects

with DOC in the same Resting-State Networks (RSNs) (auditory, cerebellum,

Default Mode Network (DMN), Executive Control Network (ECN) Left, ECN

Right, saliency, sensorimotor, visual lateral, visual media and visual occipital).

Significant differences between HC and Minimally Conscious State (MCS) and

Unresponsive Wakefulness Syndrome (UWS) patients were assessed in RSNs

associated with the phenomenon of consciousness emergence (auditory, DMN,

ECN Left, ECN right, Saliency). Fingerprints lines indicate mean values, and

thin lines indicate standard deviation values for each RSN. › aims for signifi-

cant difference between HC and MCS. ‹ aims for significant difference between

HC and UWS. z aims for significant difference between HC and DOC
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Figure 2-4.: Distribution of the average integration measurements for the three populations

herein studied. (A) Degree and (B) Strength. Red lines indicate the mean,

black lines indicate the median and red wine lines indicate the maximum. Each

dot in the violin represents the measurement on a single subject. › aims for a

significant difference between Healthy Controls (HC) and Minimally Conscious

State (MCS) (p ă .05). ‹ aims for a significant difference between HC and

Unresponsive Wakefulness Syndrome (UWS) (p ă .05). z aims for a significant

difference between HC and patients with disorders of consciousness p ă .05).
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significant differences in average degree were also found when HC subjects were compared

with DOC (M = 1.97, SD = 2.69) (t = 3.03, p = 0.003). Further, the average degree pre-

sented a decreasing tendency which corresponds to the increase in DOC severity. As observed

in Figure 2-4B, average strength values were higher for HC compared to altered states of

consciousness. No significant differences were observed for these averages when compared

among populations, in contrast to the previous observation of decreases in the average degree

values. Also, average degree and average strength values exhibit greater spread distributions

for subjects with MCS and subjects with UWS than for HC subjects.

Integration measurements suggest that RSNs related to awareness are better connected for

conscious subjects [82]. Higher degree values of auditory network, DMN, ECN Left, ECN

Right, and visual medial network for HC indicate that, for this population, these RSNs are

more connected to other RSNs than in subjects with DOC (Figure 2-3). This reduction

of the degree values in altered states of consciousness could be understood as a reduction

of relationships between RSN time-courses, i.e., representative time-courses are less or not

correlated, suggesting an alteration of the functional connectivity structure in this patients.

This result corroborates the disruption of external and internal awareness networks [44] and

the decrease in anti-correlated connectivity previously observed in subjects with DOC [52].

Also, functional connectivity of salience network was reported as diminished in altered states

of consciousness [80]. This network is usually associated with the orchestration between

internal attention and task-related-states, and its alterations were linked to consciousness

disorders [84]. In this experiment degree values for salience network support this observation.

A more detailed analysis of the integration phenomena can be obtained by studying strength

values alterations (Figure 2-4). These values were also reduced in altered states of conscious-

ness indicating that the amount of information that different time-courses share is lower for

subjects with DOC. This observation confirms the functional disruption associated with the

severity of the pathological condition, as was reported for highly detailed networks in dis-

tinct consciousness states [130]. Further, this reduction could result from a deterioration

process of the connectivity between RSNs, which can be an effect of the connectivity drops

in small regions [82]. Also, averaged integration measurements, both degree and strength,

suggest that preserved levels of consciousness seem to be related to narrow distributions for

integration values. In particular, patients with UWS seem to exhibit a larger variety of con-

nectivity values including hyperconnectivity (increment of connectivity) and disconnections,

when compared to healthy subjects. Subjects with altered states of consciousness not only

reduce the number of connections between RSNs, but also degrade the ones that remain, sug-

gesting a reduction of the synchronization level associated with the communication between

networks. Importantly, the measures herein proposed were computed in large spatial regions

that contain previously studied areas, such as the thalamo-cortical circuit [44]. Therefore,

breakdowns in integration seem to appear not only for small brain areas, as reported for
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strength reductions in the connectome computed from EEG [29], but also for larger func-

tional systems. Similarly to our results, Cacciola et al. [29] compute integration measure-

ments for subjects with MCS and UWS, but they were also not significant to discriminate

between those populations. To conclude, the local integrations measurements corroborates

previous findings of connectivity disruptions for patients with DOC, while global integration

describes the global integration assessments exhibits a decreasing tendency related to the

consciousness level, i.e., the conscious subjects seem to be better integrated than patients

with MCS, and patients with MCS seem to better integrated than patients with UWS.

2.3.2. Loss of Functional Network Connectivity Segregation in DOC

Figure 2-5 reports the clustering coefficient values for subjects in different states of con-

sciousness. Higher clustering coefficient values were obtained for HC in comparison to al-

tered states of consciousness except in sensorimotor, cerebellum and visual lateral networks

(Figure 2-5A). Clustering coefficient values for HC present significant differences (p ă 0.005)

compared to subjects with MCS in auditory network and DMN. Significant differences (p ă

0.005) also were observed when comparing HC and subjects with UWS for auditory and vi-

sual medial networks. No significant differences of clustering coefficient values were observed

for the RSN when compare subjects with UWS and subjects with MCS. Finally, differences

between subjects with DOC and HC subjects were significantly distinct (p ă 0.005) for au-

ditory network, DMN and visual medial network.

Figure 2-5B shows the average clustering coefficient values. These values were higher for

HC compared to altered states of consciousness. Average clustering coefficient values were

significantly higher for HC (M = 0.20, SD = 0.06) compared to subjects with MCS (M =

0.12, SD = 0.12) (t = 2.95, p = 0.004). Similarly, significant differences were also higher

when comparing HC and subjects with DOC (M = 0.12, SD = 0.14) (t = 2.97, p = 0.004).

Further, distributions of the average clustering coefficient were narrower for HC than for

subjects with DOC while their means exhibit a slightly decreasing tendency in correspon-

dence with the severity of DOC.

High values in clustering coefficient of the DMN seem to be related to the level of synchro-

nization of this network with other RSNs. This result was previously reported in specific

awareness circuits involving the DMN [46]. Segregation measurement assessed by clustering

coefficient confirms that consciousness could be a phenomenon involving segregated func-

tional units that work in an integrated manner [167]. RSNs could be understood as seg-

regated regions that execute specific tasks [17] but share information in consciousness phe-

nomena [84]. Sensory and cognitive-related networks appear to be more clustered for HC. In

contrast, the segregation increases for sensorimotor in DOC with no significant differences

between MCS and UWS. A similar finding was reported in an experiment with altered states
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of consciousness and anesthesia [79] where an increment of functional connectivity between

thalamus and sensorimotor network was found in altered states of consciousness.

Figure 2-5.: Segregation measurement between Resting-State Networks by clustering coeffi-

cient. (A) fingerprint (B) violin plot. Higher clustering coefficient values were

observed for Healthy Controls (HC) than for subjects with Disorders of con-

sciousness (DOC) except by sensorimotor network. › aims for a significant

difference between HC and patients with Minimally Conscious State (MCS).

‹ aims for a significant difference between HC and Unresponsive Wakefulness

Syndrome (UWS). z aims for a significant difference between HC and patients

with DOC.

Altered segregation values in the sensorimotor region, jointly with integration changes, are

suggesting a variation in the sensorimotor time-course behavior, becoming more synchro-

nized with other high related RSNs; thus, these variations suggest the configuration of a

segregated functional unit. This behavior seems to be a consequence of different scenarios

out of the scope of the present study that could be analyzed in future explorations. However,

this finding is contrary to the reported by Cacciola et al. were they reveal an increment of the

clustering coefficient in the patients with UWS when compared against MCS, the mentioned

difference could be a result of the computation of the clustering coefficient using a binary

matrix [29] instead of a weighted connectivity matrix, as in our case. In brief, variations of

the segregation measurements in patients with DOC seems to be caused for a reconfiguration

of the functional synchronized groups.
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2.3.3. Alterations of Functional Network Connectivity Centrality in

DOC

Betweenness centrality and eigenvector centrality values are reported in Figure 2-6. Be-

tweenness centrality values were higher for HC in contrast to subjects with altered states of

consciousness for DMN, ECN Left, ECN Right, salience network and cerebellum network,

as observed in Figure 2-6A. These centrality values of subjects with UWS were higher when

comparing to subjects with MCS and when comparing to HC subjects, for auditory, senso-

rimotor, visual lateral, visual medial and visual occipital networks. Also, ECN Right and

salience network has values of zero of betweenness centrality for UWS patients, indicating

that these nodes were not part of any shortest path in the network.

Figure 2-6.: Centrality measurements. (A) Betweenness centrality exhibits a central role

changing in auditory, sensorimotor, visual lateral and visual occipital networks

for subjects with Disorders of Consciousness (DOC). Similarly, (B) eigenvector

centrality presents a role alteration for auditory and sensorimotor networks in

subjects with DOC. › aims for a significant difference between Healthy Con-

trols (HC) and patients with Minimally Conscious State (MCS). ‹ aims for a

significant difference between HC and patients with Unresponsive Wakefulness

Syndrome (UWS). z aims for significant difference between HC and patients

with DOC.
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As observed in Figure 2-6B, eigenvector centrality values were higher for HC compared to

subjects with DOC except by auditory and sensorimotor networks. Higher values of eigen-

vector centrality for HC with significant differences (p ă 0.005), were observed for DMN,

ECN Left, ECN Right, and visual medial network compared with subjects with DOC. Sim-

ilarly, when contrasting HC and subjects with MCS, significant differences (p ă 0.005) were

obtained for DMN. Eigenvector centrality values were significantly different (p ă 0.005) for

DMN, ECN Left, ECN Right and visual medial network in comparison with HC and sub-

jects with UWS. Further, eigenvector centrality values were higher for subjects with MCS

compared to HC, and for subjects with MCS versus UWS for the sensorimotor network.

Finally, auditory network eigenvector centrality values were higher for subjects with UWS

compared to subjects with MCS, which were also higher than HC. This observation in the

auditory network indicates an increasing tendency in centrality, which corresponds with the

severity of the pathology. For this network, significant differences (p ă 0.005) were found

between subjects with UWS and HC.

Figure 2-7 illustrates average betweenness centrality and average eigenvector centrality. Av-

erage betweenness centrality values were higher for HC in contrast to subjects with altered

states of consciousness. Also, the distribution of these values is narrower for MCS compared

to HC and subjects with UWS (Figure 2-7A). Similarly, higher values of average eigenvec-

tor centrality were observed for HC when comparing to subjects with DOC (Figure 2-7B).

Significant differences were observed when compare the populations, between HC (M = 0.25

SD = 0.06) and subjects with MCS (M = 0.19 SD = 0.08) (t = 3.61 p = 0.00071), between

HC and subjects with UWS (M = 0.16 SD = 0.08) (t = 5.04 p= 0.00001), and between HC

and subjects with DOC (M = 0.18 SD = 0.08) (t = 4.54 p = 0.00002). Further, average

eigenvector centrality values exhibit a decreasing tendency as the severity of the pathology

increases. They also showed a narrower distribution for HC in comparison to subjects with

DOC.

Centrality measurements indicate how central a node is in the network. High centrality scores

in auditory and sensorimotor networks suggest that these functional units play a central role

in patients with altered states of consciousness, revealing a behavior alteration phenomenon

even if these regions exhibit a functional connectivity reduction in patients with altered

states of consciousness, as was previously reported [44, 98]. This observation could be fur-

ther explored to understand the kind of variation induced by DOC that reveals a centrality

increment. Similarly, higher scores in sensorimotor network suggest that this network also

change its nature, becoming more important in subjects with altered states of consciousness.

Interestingly, even if the sensorimotor input-output loops were reported as not required for

consciousness [168], the circuits involving these RSN were altered by the pathology [49]. A

surprising finding is the increment of centrality values for this external awareness network in

subjects with DOC, which is not expected due to its associated behavior to sensory stimuli
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Figure 2-7.: Average centrality distribution measurements (A) Betweenness Centrality, (B)

Eigenvector Centrality. Red lines are the mean, black lines are the median, red

wine lines are the maximum. Average eigenvector centrality shows narrower

distributions for Healthy Controls (HC) than subjects with Disorders of Con-

sciousness (DOC). Also, a decreasing tendency is observed in correspondence

with the consciousness content. › significant difference between HC and pa-

tients with Minimally Conscious State (MCS). › significant difference between

HC and patients with Unresponsive Wakefulness Syndrome (UWS). z signifi-

cant difference between HC and patients with DOC.
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and motor reaction. A similar finding was reported by Cacciola et al, where an increment

of the betweenness centrality in posterior cingulate and visual areas were stated for patients

with UWS [29]. However, this finding at RSN level can be a result of a brain reconfiguration

in response to not-conscious stimuli response [169]. Increases of centrality values of func-

tional connectivity between RSN in altered states of consciousness suggest a modification of

their time-courses nature, becoming more relevant in subjects with DOC. Nevertheless, this

new central role of some RSNs would be not suitable for consciousness phenomena, where a

sort of equilibrium between segregation and integration is required [167, 168, 169, 29]. Sum-

marizing, centrality alterations describe a reconfiguration of the relevant functional units in

altered consciousness states that seem to be not suitable for the emergence of consciousness.

2.4. Discussion

Complex network analysis have been proposed to capture topological variations of real net-

works derived from pathologies (see Table 2-1), this approach is strongly supported on the

assumption that the complex network represents a single object [19], i.e., the complex net-

work measurements describe the properties of nodes and relationships of a single network.

Some of their measurements can be related with topological features in the sense that they

describe particular connection patterns, those patterns can be accounted and evaluated mak-

ing possible to identify variations associated to different phenomena. That is the case of the

measurements used to characterize integration, segregation, centrality and other specific net-

work properties.

Integration measurements allow to identify connectivity disruptions. Decreases in the degree

and strength average values account for these events. They capture the loss of a connection

as well as the quality of the connection reduction. A lost connection directly alters the

topology of the element, in particular if with that loss some nodes of the network cannot be

reached. In patients with DOC, the integration values measured on the FNC computed from

RSN evidence a decreasing tendency linked with the consciousness level, i.e., high integration

values mean more consciousness content.

On another hand, segregation measurements may indicate a sort of topology variation by the

identification of the groups appearance. It might be understood as a second analysis level,

it is based on the integration measurements, but it describe not only the connections, they

also describe the way as the connection co-occurs indicating collections of connected compo-

nents. These collections and their conformation have been used to describe specific network

topologies, like small-world, rich-club among others. The segregation measurements on RSN

based connectivity for patients with DOC exhibits variations that seems to be caused for a

reconfiguration of the functional synchronized groups.
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Finally, centrality measurements describe the relevance of network elements, e.g., nodes,

edges, paths, among others. Centrality variations describe reconfiguration of the network

accounting for changes in the role of the units in the network. The centrality alterations

in DOC points to regions with change its role, in particular signaling which become more

relevant in association with the consciousness level, as in the sensorimotor and auditory

networks, or indicating which reduce its relevance as the DMN, visual media and executive

control networks.

To conclude, complex network measurements provide a set of tools to describe, evaluate and

characterize a network. Even in a global scale as the FNC built from RSN, they capture

some variations that can be linked with a specific pathological condition, and in some cases

they can be associated with the severity level of the pathology. However, their measurements

partially describe the topological properties focused on the existence of links between nodes.

Other interesting topological features, like loops or voids are left a side by this complex

network approach. Also, they were limited by the existence of a single structure, one network,

and this assumption could be not suitable in scenarios where are multiple objects of interest,

like disconnected nodes or regions in the networks.



3. Topological Data Analysis on

functional network connectivity for

healthy control subjects

As previously mentioned, the functional connectome of brain activity acquired on resting-

state emerged as an alternative to provide measurements of brain function at multiple

scales [17, 85]. Analyses on these connectomes encompass various graph theory methods

to identify central nodes, critical paths, and communities, among other essential functional

brain components [85]. These functional descriptions characterize various Functional Net-

work Connectivity (FNC) properties associated with brain dynamics in healthy subjects and

provide biomarkers for several pharmacological and pathological conditions [183, 179]. No-

tably, most of these analyses operate on the graph abstraction with nodes representing the

brain regions, and edges the values of measures of interaction or synchronization between

pairs of regions [142, 159, 85]. In FNC, this measure commonly links to the correlation

value between two time-courses, which describe commonalities in the activation of both ar-

eas. This approach provides a powerful representation to model a variety of phenomena

related to connectivity [85]. However, the pairwise interaction assumption underlying the

functional graph model over-simplifies brain dynamics by considering at the very base only

co-fluctuations on the activity of two brain regions [9]. This could underestimate how brain

function may exhibit high-order interactions among multiple brain regions, i.e., interactions

among more than two areas [9]. This paper investigates the existence of robust high-order

functional components on the resting state dynamic in healthy subjects at an individual

level by using Persistent Homology (PH), a data analysis strategy based on topology to

characterize high-order connectivity features robustly.

Description of high-order interactions in resting state has been previously explored, mainly

through graph measurements based on triangles. In contrast to an edge, a triangle repre-

sents the co-existence of interactions for ensembles of three nodes [159, 132]. This high-order

interaction representation is the base for different connectome characterizations, like the clus-

tering coefficient, transitivity, and small-worldness [142]. These approaches aim to describe

the resting state as a network of distributed modules likely performing segregated tasks [159].

However, despite the success of these strategies for the resting state connectome characteri-

zation, other high-order interactions mechanisms are still poorly studied [9]. More recently,
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alternative methods for exploring these interactions in the fMRI brain functional connectome

have emerged, such as Topological Data Analysis (TDA) [135, 111, 75, 35]. TDA encom-

passes methods aimed to characterize datasets using techniques from topology. In contrast

to graph-based methods, TDA allows the description of high-order interactions [72]. For

instance, Saggar et al. [145] proposed a TDA description of brain function, identifying the

topology of fMRI acquired in related evoked stimuli by using a combination of dimension-

ality reduction, clustering, and graph networks techniques [155]. They found cohesive high

modularity across different tasks, where each module reflects similarities in task responses.

Salch et al. illustrated the use of TDA for characterizing loops in fMRI acquired during an

associative learning paradigm [147]. Similarly, Ellis et al. showed that TDA could discover

cycles in simulated event-related fMRI data [56], and Billings et al. used TDA to segment

brain states that differ across a time series of experimental conditions [16]. These approaches

confirm the capacity of TDA to identify high-order structures of interaction over functional

datasets [56, 16, 147]. However, in these cases, the emergence of the functional structures

was conditioned by an experimental stimulus, absent during resting-state protocols. On

the other hand, Cassidy et al. used TDA to examine the Spatio-temporal consistency of

resting-state at different temporal and spatial scales. However, they focused on a descrip-

tion of low-order topological features [35]. Petri et al. also used TDA on resting-state fMRI

to investigate the emergence of loops in R-fMRI dynamic, showing that the distribution of

the complete set of loops observed for the whole population may help distinguish between

two conditions, namely, placebo and psilocybin [132]. This evidence points to the existence

of loops underlying the resting state. However, these works do not indicate whether these

cycles emerge individually or if they are persistent enough to be considered as functional

components.

This work investigates the existence of robust cycles at the individual level in the R-fMRI

dynamic. For this, we devised a strategy for characterizing loops on the R-fMRI dynamic

using PH. We evaluated this strategy at the individual level on healthy controls population.

Finally, we characterize the brain regions involved in the emergence of these loops. Our

main contributions are the description through high-order topological features in R-fMRI

applying PH at an individual level, and the identification of brain regions involved in the

emergence of these features. In contrast, previous studies aimed to characterize loops in the

fMRI induced by stimuli or focused on the whole set of loops at the population level on

R-fMRI.

This chapter first provides a motivation to use TDA to describe (R-fMRI) time-courses.

Second, it presents some relevant TDA concepts and their use in the brain function descrip-

tion. Third, it describes the TDA method employed to characterize R-fMRI time-courses for

healthy control (HC) subjects. Finally, it reports the high-order features of the HC subjects

and the brain regions implicated in its emergence.
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The main contributions of this chapter are: (i) A high-order topological features description

in R-fMRI of Healthy Subjects through persistent homology, (ii) these high-order R-fMRI

features robustly appear across the healthy population, and (iii) brain regions involved in the

appearance of these high-order features were identified, providing a new analysis perspective.

Besides, this chapter was submitted to Network Neuroscience, and it is under review.

3.1. From resting-state connectivity to topology

description through boundaries

Topology provides a straightforward alternative to encode high-order interactions by describ-

ing them as groups of nodes or simplices. Simplices represent the simultaneous interactions

of multiple elements. Moreover, simplices can be collected on a simplicial complex, just

like graphs are collections of edges and vertices. Then, the simplicial complex represents

the connectivity among elements from a general perspective not limited by the number of

interacting components. To characterize the properties of the simplicial complex, TDA, or

specifically algebraic topology, provides tools like PH [54]. PH is a method to describe topo-

logical features at various resolutions [14, 54, 72]. For this, PH first represents the data, a set

of points, as a simplicial complex, and then computes robust descriptors related to bound-

aries of the holes across different scales [54]. These descriptors correspond to the number

of loops, voids, and in general, cavities [33, 55], summarizing the topological properties of

data. These topological features may provide meaningful data insights because they describe

robust data organization structures.

Figure 3-1 illustrates some simplicies and a particular simplicial complex, the figure shows

the first four simplices that describe simultaneous interactions among elements. A simplex of

degree k or k-simplex indicates the structure with k` 1 elements connected simultaneously,

i.e., a 0-simplex refers to points, a 1-simplex refers to an object with two points with a

connection (a line), a 2-simplex represents an object with three points with a simultaneous

connection among them (a triangle whis is also called a face), a 3-simplex a tetrahedron,

and so on for higher-dimensional simplices [72, 111], Figure 3-1a. Figure 3-1b displays a

simplicial complex. As observed, a simplicial complex is formed by simplices of different

degrees in configurations that may also include holes. For instance, a graph is a simplicial

complex with 0-simplices (nodes) and 1-simplices (edges). The simplicial complex object

(simplices and holes) constitutes a base to describe high-order features in terms of cavities.

Figure exemplifies three distinct types of cavities: a) 0-holes, which are cavities in the space

that emerge by the existence of clusters, i.e., a set of points conected by simplices of degree

1 or more. Figure 3-1b shows three different clusters, and the corresponding three 0-holes,

each indicated by the shaded areas, b) 1-holes, cavities completely bounded by at least three

1-simplex, i.e., are empty spaces surrounded by lines, the illustration shows two of these
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1-holes, and c) 2-holes, voids enclosed by at least four 2-simplex, i.e., holes surrounded by

triangles. Figure illustrates one 2-hole, i.e., a cavity completely contained by eight 2-simplex.

0-simplex 1-simplex

2-simplex 3-simplex

(a) Simplices

0-Hole
0-Hole

1-hole

0-Hole1-hole 2-hole

(b) Simplicial complex

Figure 3-1.: Illustration of simplices and simplicial complex. (a) Simplices from 0 to 4 simul-

taneusly interacting elements. (b) A simplicial complex with three connected

components, two 0-simplex and a complex composed by simplices of different

dimensions, and a set of holes defined by these simplices. The 0-hole appears

at the boundaries of a set of connected simplices (shaded area). Similarly, the

1-hole is a cavity completely bounded by at least 1-simplices. The 2-hole is

completely bounded by at least 2-simplices, and so on.

This differentiation in holes of different dimensions extends the notion of interaction, pro-

viding a complementary perspective beyond the pairwise interactions used on graph theory.

Importantly, holes in dimensions greater than one represent an alternative mechanism of

integration between points because the presence of one of these holes indicates the existence

of a surrounding high-order particular structure of interactions.

To compute this structure PH starts with a point cloud expressed in some adequate rep-

resentation space, commonly a metric space. From this point cloud, the first step is the

construction of a connectivity structure representing the neighborhood associations between

these points, codifying high-order relationships. According to Ghrist [72], “the more obvious

way to convert a collection of points txαu in a metric space into a global object is to use the

point cloud as vertices of a combinatorial graph whose edges are determined by proximity (the

vertices within some specified distance ε)”. This construction results in a high-dimensional

object, a simplicial complex, which is a space built from simple pieces (simplices) identified

combinatorially by faces that codify a proximity representation between points [72].
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Figure 3-2 illustrates the simplicial-complex computation via the Vietoris-Rips algorithm

(further details in Ghrist [72]). In this approach, the simplicial complex contains k-simplices,

each corresponding to unordered pk` 1q-tuples of points that are pairwise within a distance

ε. This ε is called the filtration value, and it represents the extent of a neighborhood consid-

ered around each point. The term filtration is also used to designate the process of adding

simplices to form a simplicial complex when changing the filtration value up to ε. In this

particular example, the filtration starts with a set of twenty-one disconnected nodes, ε “ 0.

Then while the filtration value increases, the intersections of the balls with radius ε cen-

tered around points result in neighborhood relationships (see the green area around points),

involving more than two points, as illustrated with triangles in the Figure. These neighbor-

hood relationships are codified as simplices that together conform the simplicial complex.

As observed in Figure 2 for an increasing sequence of ε values, namely, 0, a, b, c, d, and

e, each filtration value results in a corresponding simplicial complex modeling a particu-

lar extent of the neighborhood relationship. So, the filtration and the filtration value are

comparable to the network and threshold in the traditional connectome approach, where the

threshold codifies the structure of the network, as the filtration value codifies the filtration [9].

Once the neighborhood relationships between points, corresponding to particular ε values,

have been defined and codified as a simplicial complex. It is possible to compute the topo-

logical invariants that describe high-order interactions [72]. These invariants are features

associated with a topological space that do not change under continuous space deforma-

tions, such as the number of holes [76]. Then, the notion of topological invariant is related

to those features that survive across successive deformations, and a hole can be understood

as a structure that prevents an object from being continuously shrunk to a point. Thus,

the existence of a hole is an indicator of a particular connectivity structure around it, i.e.,

the connectivity configuration that prevents that the space represented by the simplicial

complex collapses under continuous deformations, acting as a connectivity boundary.

Remarkably, well-known facts about R-fMRI signal can be interpreted in the PH context.

For instance, from the PH perspective, the resting-state connectome can be understood as

the complement of the 0-holes, i.e., the connected components at a given threshold. This

connected components are simplicial-complex of degree 1 or more (see Figure 3-1). Thus, it

is possible to macth the graph in the connectome approach with the connected components

that produce the 0-holes described by PH. Nevertheless, it is worthy to recall that the PH

approach accounts for the “holes” that emerge from the data rather than for the connection

itself. This way, it provides a view of the interaction among elements complementary to the

view commonly used in R-fMRI brain analysis. Furthermore, the PH could be understood

as a generalization of the graph approaches where a graph is a fixed instance with degree 1.
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Figure 3-2.: Illustration of the simplicial constructions from a cloud point set. The pictures

shows the simplices for an increasing value ε. Thus, as the ε value grows,

different simplices configurations appears, and with them the corresponding

topological features counted by Betti numbers.
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PH or specifically algebraic topology provides tools for counting these holes. In particular,

PH relies on the notion of homology, which allows counting the number of holes of finite

simplicial complexes. The homology or homology group (H) of a simplicial complex is the

collection of k-holes formed by k-simplices (further details in [72, 75]). PH counts the bound-

aries surrounding the holes that are persistent for a sequence of filtrations, i.e., the number

of simplicial complex holes of filtrations at different filtration values. Then, PH counts the

persistent k-holes, i.e., holes in the homology at dimension k (Hk). In this context, another

tool for homology description is the Betti numbers, they are the rank of features of a par-

ticular k-dimension for a complex at a fixed ε value. Betti numbers count the occurrence of

k-holes (a k-hole is a hole bounded by k-simplices); Betti 0 counts the 0-holes, Betti 1 counts

1-holes, i.e., the appearance of a hole surrounded by 1-simplex, an empty area surrounded

by pairs of connected objects; Betti 2 counts voids, the emergence of a 2-dimensional hole,

i.e., a void enclosed by 2-simplices (triangles), and so on, see Figure 3-2.

Two distinct approaches are commonly used to represent the emergence and disappear of the

topological features, namely, the TDA barcodes [72], and the persistence diagrams [14], see

Figure 3-3. A barcode is a representation of the homology groups resulting from different fil-

tration values as a collection of bars (intervals) representing the birth and death times of the

k-dimensional holes [5, 72]. It allows studying the evolution of these holes along a nested se-

quence of a simplicial complex [5]. This nested sequence of a simplicial complex results from

using increased values of filtration. A significant attribute of this representation is that long

barcodes are associated with robust features, i.e., long barcodes link to features that persist

along different filtration values [93]. In contrast, short barcodes are commonly related to

noisy topological features, such as holes that appear during small intervals of filtration values.

Persistence diagrams provide an alternative way to summarize the topological structure of

data. As in the barcodes, persistence diagrams summarize the topological features for the

sequence of filtration values. Formally, the persistence diagram is a collection of triplets

ăhomology degree, birth time, death timeą of the filtration sequence [14]. The set of

triplets can be represented as points in a two-dimensional plot, with x the birth time and y

the death time. The triplets with short distances between birth and death time corresponds

to short barcodes, which can be associated with noise and are represented as points close to

the diagonal line. In contrast, the triplets with long distances correspond to persistent or

highly robust features, i.e., the points far from the diagonal line, see Figure 3-3.

Therefore, Betti numbers, barcodes and persistent diagrams allows to identify persistent

features, in R-fMRI context, it provides a description of high-order structures that could be

associated to connectivity phenomena from a complementary perspective focus on “holes”.
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Figure 3-3.: Illustration of the barcodes (left) and persistence diagrams (right). Both bar-

codes and persistence diagrams show the features birth and death for the ho-

mology H0 and H1. Persistent H1 features are labeled with capital letters, in

appearance order, (A, B and C respectively) in both diagrams. In the bar-

codes, the length of the horizontal line indicates persistence of a feature, while

the number of lines crossed by a vertical line is the Betti number at a specific ε

value. Similarly, in the persistence diagram, the distance di between each point

and the diagonal indicates persistence, but it is hard to see the Betti number

for a given ε.

3.2. Materials and methods

Figure 3-4 shows the proposed strategy to characterize the topological features for the

resting-state functional brain activity. The first stage (blue rectangles) encompasses the

computations made on each individual in the dataset. This phase extracts a representative

time-course per cortical region using Independent Component Analysis (ICA) followed by

the computation of topological features, which includes (i) estimation of the distance matrix

summarizing the neighborhoods relations among representative time-courses, (ii) description

of H0 and H1 features on the filtrations resulting from the Vietoris-Rips algorithm, (iii) iden-

tification of the most persistent H1 feature at the individual level. The second stage (orange

rectangle) characterizes H1 features emerging at an individual level for the whole population

and consists of two main sub-processes. The first one summarizes the topological features

found at an individual level for the whole population through a 1-hole distribution. The

second one identifies the brain regions most involved in the emergence of the longest H1

feature. This last process estimates the number of times that a region appears associated

with the persistent H1, the depiction of frequency of occurrence of these regions onto a brain

map representation.
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Representative time-course extraction
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Structural

Independent Component Analysis

Cortical extraction
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Persistent diagram
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Figure 3-4.: Method to compute the topological features for R-fMRI, starting with the im-

ages acquisition, followed by the data preprocessing, continuing with the topo-

logical description, and ending with the summarization of properties on the

population. Blue boxes indicate the process done per individual.
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3.2.1. Dataset

The Beijing-Zang center dataset from the 1000 functional connectome project, consisting

of resting-state functional MRI (R-fMRI) acquisitions and a T1 MRI for anatomical refer-

ence, was used to investigate loops in synchronization. It is composed by 198 subjects (122

Females) in ages between 18 to 26 years. The R-fMRI acquisition properties are: time resolu-

tion of 2.0 seconds, 33 slices and 255 time points. All datasets in the project are anonymous,

and the demographic information is limited to gender, age, and handedness.

3.2.2. Data preprocessing

The structural T1 image was segmented into cortical and subcortical regions by the FreeSurfer

standard stream. This segmentation process offers two atlas-based region sets (Desikan-

Killiany and Destrieux). The segmentation is based on a probabilistic information model.

The model was estimated from manually labeled images and uses geometric information

from the cortical model plus the naming convention for the final segmentation [47]. In this

approach, the Desikan-Killiany parcellation was selected, which provides a set of sixty-four

(64) cortical regions and fifteen (15) subcortical regions, but only the cortical were consid-

ered for the functional analysis. The R-fMRI process provides signals linked to neuronal

activity. It entails two stages made by using SPM and AirRepair toolboxes [120]. The first

stage includes realignment and adjustments for movement effects for functional images; also,

the co-registration onto structural data, normalized into standard stereotactic MNI space,

and spatially smoothed with a gaussian kernel of 8mm. These were motion-corrected (small,

large, and rapid motions, noise spikes, and spontaneous deep breaths), as described previ-

ously [46]. Second, the R-fMRI signal was decomposed into maximally independent spatial

maps using spatial ICA. This decomposition used a fixed point algorithm implemented in

the GroupICA toolbox. The signal was described by thirty (30) independent components

classified by their origin into neuronal or artifactual. The classification employed a machine

learning labeling method, a support vector machine trained on nineteen healthy subjects

independently assessed. Then, the signals were reconstructed by combining the independent

components exhibiting neuronal behavior [46]. The preprocess ends with the computation

of the representative signal of each cortical region estimated by averaging the reconstructed

signals that belong to a specific area.

3.2.3. Functional Connectome TDA description

The topological description was made based on the assembly of simplicial complex per sub-

ject. It was built from the dataset of reconstructed functional signals. These signals con-

stitute a set of points in an n-dimensional Euclidean space, one point per signal, and one
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representative signal per brain region, see Figure 3-5. The ensemble of points turns into

a global object via simplicial complex computation. Here, proximity is defined as a joint

distance, i.e., a distance from a similarity measurement. In this case, Pearson’s correlation

(r) is used to compute the distance matrix [58], which is the input of TDA, see equation 3-1:
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where X “ pX1, X2, ¨ ¨ ¨ , Xnq and Y “ pY1, Y2, ¨ ¨ ¨ , Ynq are two R-fMRI time courses, and x

and y are the mean of the time-course X and Y respectively.

-dimensional spacenR-fMRI parcellation based signal 

Figure 3-5.: Cloud point representation from n-dimensional signals. For each brain region a

representative signal is considered as a point in a n-dimensional space

Persistent homology computations

Barcodes computation was performed on the distance matrix by using Ripser [10], through

its python wrapper (PyRipser) [171]. This tool provides a simple set of settings to compute

homology features. PH Computations were based on the Vietoris-Rips approach, establish-

ing the criteria to compute a simplex based on the distances. (Py)Ripser allows specifying

the homology group and the max number of dimensions to consider in the computation of

TDA features. Informally, 0-degree homology groups (0-hole topological feature) capture

the connected components, and 1-degree homology groups capture regions forming a loop

structure [54]. The Ripser process on a distance matrix results in a set of birth and death

values per bar at the respective degree or dimension. It also provides a corresponding set

with the list of elements associated with the feature emergence. The process supplies two

lists with corresponding components, one with the bar description and the other with the

elements involved in the appearance of a topological feature. Once the topological features

are computed, the process continues with the association of the longitude to each H1 bar.

Then, all bars in H1 have the birth, death, and longitude. The set of H1 bars are sorted by

the longitude value. The persistent feature is the 1-hole with the largest longitude, the first
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in the sorted bars. Finally, the selection of regions related to the persistent 1-hole consists

of (i) sorting the list of associated elements based on the longitude criteria and (ii) choosing

the first list.

3.2.4. Topological features population description

The description of the topological features, in this case for H1, was performed from two per-

spectives. The first one summarizes the computed features for the population. The second

one estimates the frequency of the brain region appearance in the persistent 1-holes.

Summary of the H1 topological features

The H1 persistent features at the group level were summarized using the length of the most

persistent H1 feature per subject. In particular, the longest bar linked to H1 was selected

per subject, and the distribution of these features was calculated. Following this, the prob-

ability of observing particular longitudes for these features was computed, indicating the

distribution of these persistent features in the population. Similarly, the birth values of

these features could be different through the group. An enhanced persistent diagram il-

lustrates the summary of the 1-holes. It depicts the distribution of 1-holes, one point per

subject in the group, and the frequency of longitudes as a histogram at left.

Brain regions in persistent 1-hole

Brain regions associated with the emergence of H1 were also characterized. In principle,

any brain region can belong to a H1 feature; the 1-holes could be related to distinct ele-

ments. Therefore, the number of times a brain region appears to be related to the largest

H1 emergence was quantified. This quantification results from searching all the regions in

the element list of nodes conforming the H1 nodes of each subject. The frequency of brain

regions in the emergence of 1-hole in the population is two-fold, presented as a sorted bar

diagram and projected into a brain representation.

3.3. Results

3.3.1. Loops in the fMRI resting-state connectivity dynamic

Figure 3-6 shows the topological features exhibited by the fMRI resting-state dynamic sum-

marized as barcodes and the persistent diagrams for a subject. Figure 3-6 also shows the
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corresponding distance matrix (Figure 3-6a), computed from the Pearson’s correlation be-

tween the regional time-courses, used for the PH calculations. This distance matrix induces

an implicit data space to describe the brain’s time-courses fMRI dynamic on the subject.

This space contains the connectivity relationships or neighborhoods linked to regional R-

fMRI regional time-course synchronizations.

Topological holes characterize the connectivity relationships in this fMRI data space, 1-

dimensional holes (H1), which refers to loops in the R-fMRI data space, i.e., sets of time-

courses weakly synchronized in pairs that together conform cycles. Each line in the barcode

(Figure 3-6b) represents a particular hole. Large lines refer to persistent holes, i.e., holes

that consistently appear across different filtration values. The persistent diagram (Figure 3-

6c) also shows these persistent topological features as two-dimensional points appearing far

from the diagonal, with different colors representing the dimension of the topological feature.

As observed, the fMRI resting-state time-courses in this subject show high levels of connec-

tivity, as evidenced by the 0-holes found in the persistent analysis (blue dots in Figure 3-6c).

Remarkably, the time-courses are organized around 1-dimensional holes (see Figure 3-6b),

indicating that resting-state may also exhibit high order interactions. Importantly, these

high-order interactions seem to be highly robust across different extends of filtration values

or scales, as illustrated for instance by the topological 1-hole feature marked as an orange

line in H1 and also showed in the persistent diagram with a black cross (see Figure 3-6c).

Figure 3-7 shows the distribution of the most persistent H1 feature at the group level. This

figure includes a histogram summarizing the length of the largest H1 bars. These lengths

indicate the persistence of the 1-holes in the population under study. Importantly, this figure

shows that a large percentage of subjects showed persistent 1-holes, with lengths between

0.05 and 0.24 for most of them (183 of 198). However, the complete range of distances was

between 0.02 and 0.51, showing that there are also subjects for which the R-fMRI dynamic

exhibited both highly persistent and noisy loops in connectivity. The higher frequencies

ranged between 0.05 to 0.17, indicating that 1-holes consistently emerge for at least 10% of

filtration values range, normalized between 0 and 1. Additionally, the distribution of points

exhibits a wide range of birth values for the persistent 1-holes, ranging from 0.02 to 0.34,

mainly concentrated between 0.05 and 0.25. The distribution presents no apparent relation

between the birth and death times of the largest loop for the population. Also, the radius

of the circle representing the H1 feature is an indicator of the number of regions involved

in the emergence of the feature. The figure presents small and big radius at different birth

values and lengths, indicating no apparent relation between the number of regions with the

length of the features, neither the birth of it. In fact, the most of the H1 features shows less

than fifteen brain regions implicated in their emergence.
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(a) Distance matrix

0.1 0.3 0.5

(b) H1 Barcodes (c) Persistence diagram.

Figure 3-6.: Topological features computed for a single subject. (a) shows the distance

matrix computed from the Pearson’s correlation between R-fMRI time-courses,

dark blue indicates lower distances while yellow indicates larger distances. (b)

shows H1 barcodes, orange line, highlight the most persistent H1 loop. (c)

persistent diagram summarizing H0 and H1 measurements, black contour dot

indicates the most persistent H1 loop.
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Figure 3-7.: H1 persistent summary of the topological features computed over all subjects

set. Distribution of the H1 largest loops at left. Right, length frequency of

the persistent 1-holes. Gray dashed lines are only for reference of distances

from the x “ y line at bottom. Also, the circle radius indicates the number of

regions involved in the appearance of the longestH1 feature in the corresponding

subject.
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3.3.2. Brain regions involved in H1 topological persistent structures

Once the existence of robust H1 topological features in healthy controls at the individual

level was established. The next section investigates how these features emerge in the brain

regions. But, first, it is worthy to recall that a boundary, or a sequence of nodes, defines

a 1-hole. In our case, these nodes refer to the brain regions, which compose the boundary

of synchronization loops. These nodes can be recovered from the PH analysis [10, 171].

Figure 3-8a shows the number of subjects in which each brain region was involved in the

composition of the most persistent H1 loop, i.e., the number of times a region was involved

in highly persistent synchronization loops. These regions are sorted in increasing order. The

region with the highest occurrence in the large synchronization loops corresponded to the

superior-temporal cortical areas in both hemispheres, appearing in most than 30% of the

population. The following regions were the left middle-temporal, left inferior-parietal, the

right temporal-pole, and the left bankssts involved in more than 22% of the subjects.

Figure 3-8b shows region occurrences in the most persistent synchronization loops repre-

sented onto the brain. Dark orange values represent a low level of occurrences, while yellow

areas correspond to high occurrence levels. This projection reveals symmetries in the involve-

ment of the regions in the emergence of the loops, which is more notorious in the temporal

lobe, particularly in the superior, middle, and bankssts cortical regions of both hemispheres.

3.4. Discussion

In this study, we used TDA to describe the persistence loops in R-fMRI time-courses on

healthy subjects. Remarkably, these topological features emerge robustly across different

scales, i.e., while filtration values change. These features are formed by 1-simplexes sur-

rounding a space, indicating at least two directions to reach any other element in the sim-

plex structure. These cycles in the network suggest that information can be delivered using

two different redundant paths and interpreted as redundant connections [145]. Importantly,

even if cycles can be computed directly from network approaches, their persistence is not

considered in the analysis due to the threshold selection in the connectome analysis. These

topological features (cycles or loops) constitute evidence of R-fMRI high order arrangements

hidden on classical pairwise models. In addition, we identified the brain regions most in-

volved in the emergence of these topological structures. We found that some brain regions

frequently appear in these persistence loops, suggesting a particular anatomical substrate

of these regions in the emergence of these interactions. Together this evidence supports the

existence of high order structures in functional connectivity in R-fMRI. Nevertheless, their

meaning and the specific roles of the brain regions involved are still unknown.

Initial studies in R-fMRI discovered the existence of low-level synchronous fluctuations (ă0.1
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(a) Regions involved in H1 greatest cycle.

(b) Regions involved in greatest cycles plotted on the brain.

Figure 3-8.: Regions involved in the most persistent loops. (a) Frequency of appearance of

the cortical region in the emergence of a greatest cycle. (b) Projection of the

frequency onto the brain.
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Hz) in blood oxygen level-dependent (BOLD) signal occurred independently of task stim-

ulation [18, 17]. This evidence pointed for the first time to a non-trivial organization of

the resting-state dynamic. Posterior studies robustly identified regions with coherent spa-

tiotemporal fluctuations grouped under the so-called resting-state networks (RSNs) [41].

This evidence suggests that the brain function in the resting state organizes in patterns of

coordinated activity related to synchronization mechanisms among brain regions. However,

the true extent and the nature of these patterns of coordination remains poorly understood.

Notably, the characterization of most coordination patterns described for R-fMRI relies on

pairwise synchronicity descriptions between time-courses, neglecting that alternative syn-

chronization mechanisms may also emerge from multi-regional interactions [35, 9]. More

recently, some studies in small populations aimed to overcome this limitation by directly

studying high-order interactions by looking for high-dimensional topological holes, which

indicate surrounding high-order interactions. The proposed analysis confirmed the existence

of H1 topological loops in healthy controls R-fMRI, as in [132], but in a large population.

Moreover, our results (Figure 3-7) suggest that the appearance of these 1-holes across the

people is not spurious, i.e., these holes robustly emerged across multiple scales in most sub-

jects for the large population herein studied. Thus, the occurrence of these 1-holes’ points to

the existence of multi-regional synchronization mechanisms of high-order nature underlying

the RS dynamic in healthy controls.

Description of high-dimensional data through algebraic methods as PH is beginning to be

widely used by the community. For fMRI (resting and evocated) in particular, these methods

avoid the arbitrary collapsing of data in space or time [145, 35]. An interesting approach

was developed by Saggar et al. [145]. In their, approach they use Mapper to understand

the shape of the fMRI dynamic among different activation processes related to instructions,

working memory, video, and math tasks. They found that activation is similar in the re-

lated cognitive tasks. Although they describe the resting-state periods between activation

tasks as peripheric shapes, it is not the focus of the work. Another approach that tackles

the resting-state fMRI was the work introduced by Cassidy et al. [35]. They use TDA to

overcome the drawbacks related to the scale and threshold selection in connectome analy-

sis of healthy subjects. They study the first Betti number B0, which models the topology

of connections, and found that the topology properties are robust across different scales;

however, they do not use the information of high topological dimensions. Here, we use the

second Betti number B1 to understand the topological structures (loops) of R-fMRI. The

TDA loops studies are not new, and asking for the emergence of these structures seems

to have a sense in biology and other fields. Topological studies have been introduced to

describe different phenomena in various domains, biological, medical, physical, and other

specialties. In biology, Bhaskar et al. [15] incorporate the TDA connected loops descriptors

to summarize the cell proliferation architectures; also, they use those descriptions to classify

particle configurations. Additionally, persistent cycles of gene network information shown to
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be robust features appear in the study of different datasets of glioblastoma [116]. In physics,

topological voids (H2 structures) were found in the study of the baryon acoustic oscillation

related to the galaxy distribution [100]. Finally, in medicine, Carpio et al. use the topo-

logical descriptors for the two first dimensions, i.e., H0 and H1. They found that different

cancer cells have distinct topological values at these dimensions, indicating the descriptiors

usefulness as biomarker.

Our approach in R-fMRI analysis allows identifying the most persistent H1 loop structures

for each subject. Also, it determines the brain regions involved in the emergence of the topo-

logical features. Bhaskar et al. [15] identify the largest loop in the multicellular architecture

of epithelial cells, but they do not inquire about the elements in the cycle. In our approach,

we found that middle temporal gyri, both hemispheres, are the regions that appear more

frequently in the most persistent H1 loops in the population considered for this study. These

brain regions are involved in the auditory association, multisensory integration, speech pro-

cessing, language comprehension [172, 124], and social cognition [127]. From the functional

perspective, these regions are in the cognition pathway, associated with the amygdala and the

prefrontal cortex [127]. They are involved in spatial working memory tasks with the occipital

region [53]. Also, they have been suggested as part of a separate ventral attention system

that acts as a circuit breaker to reorient attention [38]. With this in mind, the appearance

of the Superior Temporal Gyrus (STG) in the persistent cycle might be associated with the

alert systems, i.e., the process of achieving and maintaining a state of high sensitivity to

incoming stimuli. In particular, the participants are ordered to keep their eyes closed during

the acquisition process, but due to the acquisition condition, they are continuously prepared

to follow instructions. These have been described as an interface between language com-

prehension and the attention network [101]. Then, in this specific acquisition process, the

STG appearance in the persistent cycle might be related to the reorientation of the attention.

The approach developed in this study presents some drawbacks. Beginning with the TDA

process, the selection of the distance to compute the topological properties influence the

appearance of the topological structures [54]. In this case, we use a “distance” built from

Pearson’s correlation [36] which limits the range of possible distances, as well as affects the

Betti numbers and all other topological features. Another TDA consideration is the selection

of the coefficients group used. The presented approach uses Z{2Z as the coefficient group,

which is a 2-order cyclic group [75]. Although it is suitable for loops description, richer

structures related to high-order coefficient groups are out of its scope. Another concern is

the focus on only the most persistent loop. Figure 3-7 shows the existence of an interesting

number of features that are not spurious, so extending the analysis of loops to a percent-

age of the most persistent could provide a new perspective for the analysis because with

more cycles, it is possible to (i) enrich the R-fMRI topological description of each subject

which can be used in other developments like classification [15, 34] (ii) identify the nodes
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that are involved in more than one persistent loops because they could be relevant in the

study of brain high-order processes. Here we highlight that this new perspective not only

found the nodes and associations that are important by their connections, as in connectome

analysis, but that are important because there are some emerging limits, and the proper-

ties of these boundaries in brain functions are unknown. An interesting perspective is to

use the approach proposed here in the topological description of the R-fMRI in patholog-

ical conditions where the STG are involved. Then, the topological features (H1) could be

used in research with clinical application, mainly focusing on those where functional con-

nectivity alterations have been reported, in particular, for the study of bipolar and unipolar

depression [107], corneal ulcer [197], deafness [53], depression in Alzheimer disease [109],

Alzheimer disease [81], Comatose patients [92], Tinnitus [188, 30], anxiety disorders [187],

attention deficit hyperactivity disease [194], post-stroke memory [108] and internet gaming

disorder [195] among others. But not only pathological conditions alter the functional con-

nectivity of the superior temporal gyri so that this topological approach could be used for

studies of brain function related to chess practice [157], meditation [95] and second language

learning [37].

3.5. Conclusion

The presented PH strategy characterizes the resting-state connectome for healthy control

subjects. Persistent H1-holes were robustly found in healthy people, providing a new set of

features to consider in resting-state studies. These H1-holes indicate the existence of bound-

aries surrounded by 1-simplex (lines), conforming to a loop, i.e., a structure providing two

directions of connections for the boundary elements. Additionally, specific brain regions were

linked to the occurrence of these properties, pointing to a functional boundary. Moreover,

these brain regions frequently appear across populations, expressing a sort of symmetry in

the resting-state connectome topology and providing biological insight.
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of patients with altered states of

consciousness

Characterization of consciousness alterations, including DOC, is a highly challenging task

from the diagnosis and prognosis perspectives. Advances in neuroimaging, specifically,

resting-state imaging aims to mitigate this challenge, offering an alternative viewpoint to

explore brain activity in altered states of consciousness. In recent years, several investi-

gations link the variations in the connectivity of specific consciousness-related circuits to

affectations of consciousness [84, 44, 79, 80]. From a global network perspective, evidence

herein reported suggest that DOC patients exhibit functional connectivity alterations. As

reported in Chapter 2, these patients show network connectivity alterations between RSNs,

which are associated with modifications in properties likely required for consciousness emer-

gence such as integration, segregation, and centrality.

On the other side, TDA provides a specialized tool, the PH, to study high-order features

of data connectivity emerging from R-fMRI (see Chapter 3). Therefore, if DOC condition

alters R-fMRI connectivity, and in consequence, its topological properties, then it is reason-

able asking about changes in other topological features during altered states of consciousness,

for instance, in H0 and H1. Therefore, connectivity alterations due to DOC might result in

changes on the segregation and integration which can be associated with topological features

variation. Remarkably, our analysis showed that high-order connectivity features character-

ize the R-fMRI of healthy subjects. In particular, persistent loops, or H1-holes (chapter 3),

which link to high-order interaction mechanisms. Then, considering the evidence of graph

connectivity alterations in patients with DOC related to topological changes and accounting

for persistent high-order features in healthy subjects, the following questions arise: are there

high-order features that describe the resting-state topology of patients with altered states of

consciousness? and if these features exist, do they variate in these patients?.

This chapter aims to investigate these research questions by introducing a TDA analysis

approach to characterize high-order topological features in altered states of consciousness.

The proposed approach was used to describe a population of fifty patients in the intensive

care unit, all in an acute coma caused by severe brain injuries. Unlike the population with
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permanent DOC condition (Chapter 2.2.1), these patients present less gray matter damage

due to the permanent condition, improving the quality of acquired image mainly for the

automatic parcellation step. In permanent condition the gray matter is to thick resulting in

corrupted parcellations. Topological features obtained for these patients were then compared

to the ones obtained for healthy controls. Results show that R-fMRI of patients with altered

states of consciousness exhibits topological variations in H0 and H1 linked to integration.

In addition, the regions involved in the appearance of the persistent H1 feature differ in

both populations. This evidence supports the role of high-order interaction features on the

alteration of consciousness in acute states. Also, it shows the role that topological analysis

may have in the characterization of these conditions.

The main contributions of this chapter are: (i) a method based on persistent homology to

describe topological properties of functional connectivity for patients with an acute altered

state of consciousness, (ii) a new description of R-fMRI time-courses integration through the

0-holes, (iii) a characterization of high-order features for altered functional connectivity for

acute state patients, and (iv) the identification of brain regions involved in the appearance

of these high-order features, which are different from the brain regions identified in healthy

people setting.

This chapter is organized as follows. First, it introduces the TDA-based analysis aimed to

describe pathological conditions. Second, it describes the population with severely altered

consciousness here studied. Following, it presents the method used to measure the TDA

properties. Finally, it reports and discusses the main findings of TDA features resulting

from the acute unconsciousness condition studied compared to healthy people.

4.1. Materials and Methods

The approach used here improves the one presented in Section 3.2 to consider the variations

associated with DOC. Thus, some additional methodological adjustments were introduced

in the experimental setting for accounting the patients with disorders of consciousness. The

adjusted processes in the first stage (individual tasks) were: (i) the data acquisition, (ii) the

preprocessing of images, and (iii) the topological description including H0 description. In

the second stage, other summaries were added to the process, consolidating the H0 and

H1 population features, see Figure 4-1. This chapter focuses on describing the adjusted or

added processes.
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Figure 4-1.: A general method to compute the high-order features in patients with an acute

altered state of consciousness. Top section represents the image acquisition and

processing to extract the functional representative time-courses. Middle sec-

tion illustrates the topological measures per individual, and finally the bottom

section shows the procedures to summarize the population features, including

H0.
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4.1.1. Subjects demography and data description

Fifty patients with severe brain damage admitted to the intensive Care Unit (ICU) were

studied1. Admitted patients were in an acute coma after any of these three causes, stroke,

hypoxic-ischemic brain injury after cardiac arrest, or severe traumatic brain injury [57]. An

acute comatose state refers to a deep state of prolonged unconsciousness. Also, patients

in an acute coma state may evolve to MCS, UWS after some weeks [103]. The project

examined the admission of 293 candidates. The exclusion criteria included psychiatric or

neurological disease antecedents, impossibility to be transferred to the MRI scanner due to

medical condition, death in the 48 hours after ICU admission, familiar interdiction, and

Glasgow Coma Scale (GCS) score equal or greater to eight (8) [57]. The GCS is a standard

measure for assessing the depth and duration of impaired consciousness and coma [165, 166].

It is composed of fifteen (15) hierarchically arranged items that contain three (3) subscales

addressing eye-opening response (4 items), verbal response (5 items), and motor response (6

items). The scoring is based on the presence or absence of specific responses to stimuli, and

the highest score item represents cognitively mediated behaviors. Written informed consent

to participate in the study was obtained from the legal surrogates of the patients. The study

was approved by the Ethics Committee of the Medical School of the Fundación Universitaria

de las Ciencias de la Salud.

A total of fifty (50) patients (27 women (54%)) were included in this study. Their median

age was 64 years (IQR 49-74), nineteen patients (38%) were admitted with stroke, 18 (36%)

with hypoxic-ischemic brain injury after cardiac arrest, and 13 (26%) with severe traumatic

brain injury. From the consciousness perspective, 23 patients were in coma (44%), 11 in

MCS (20%), and 16 in UWS (32%). Table 4-1 reports further details of the patients. The

evaluation and classification of patients in a consciousness state were performed weeks after

the image acquisition.

Feature Coma MCS UWS Total p-value

(n=23) (n=11) (n=16) (n=50)

Age median (IQR) 50 (72-86) 48 (73-90) 47 (76-92) 49 (74-88) 0.42

Sex 0.56

Female (%) 13 (56.5) 7 (63.6) 7 (43.8) 27 (54)

Male (%) 10 (43.5) 4 (36.4) 9 (56.2) 23 (46)

Continue on next page

1These patients were the focus of the project “Caracterización de la conectividad estructural y funcional

del sistema reticular ascendente por medio de resonancia magnética con tractograf́ıa y BOLD, para la

predicción del estado de conciencia en pacientes posreanimación o con lesión cerebral traumática” which

look for the prognosis of the neurological outcome of the patients from structural and functional images
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Continued from previous page

Feature Coma MCS UWS Total p-value

Education 0.16

Illiterate (%) 0 (0) 0 (0) 1 (6.3) 0 (0)

High School (%) 9 (39.1) 2 (18.2) 5 (31.2) 16 (32)

Primary School (%) 10 (43.5) 5 (45.5) 2 (12.5) 17 (34)

Technical (%) 0 (0) 2 (18.2) 2 (12.5) 4 (8)

Graduate School (%) 4 (17.4) 2 (18.2) 6 (37.5) 12 (24)

Comorbidities 0.82

Hypertension (%) 7 (30.4) 7 (63.6) 8 (50) 22 (44)

Diabetes Mellitus (%) (26.1) 3 (27.3) 3 (18.8) 12 (24)

Hypothyroidism (%) 2 (8.7) 2 (18.2) 3 (18.8) 7 (14)

Dyslipidemia (%) 1 (4.3) 1 (9.1) 0 (0) 2 (4)

Acute myocardial infarction (%) 0 (0) 1 (9.1) 1 (6.3) 2 (4)

Other (%) 5 (21.7) 5 (45.5) 11 (68.8) 21 (42)

ICU admission GCS score median (IQR) 6 (3-7) 5 (4-8) 8 (4-8) 6 (3-8) 0.08

Intracranial Pressure

ICP monitoring (%) 2 (8.7) 1 (9.1) 1 (6.25) 4 (8) 0.95

Intracranial hypertension (%) 2 (8.7) 2 (18.2) 1 (6.25) 5 (10) 0.57

Mechanical ventilation (%) 22 (95.7) 10 (90.9) 14 (87.5) 46 (92) 0.65

Sepsis (%) 8 (34.8) 3 (27.3) 8 (50) 19 (38) 0.45

Vital status

Alive (%) 12 (52.2) 4 (36.4) 12 (75) 28 (56) 0.17

Deceased (%) 10 (43.5) 5 (45.5) 2 (12.5) 17 (43)

Transferred to a different institution (%) 0 (0) 1 (9.1) 2 (12.5) 3 (6)

GCS score at discharge median (IQR) 6 (3-11) 3 (3-14) 11 (9-12) 9 (3-12) 0.15

Table 4-1.: Clinical and demographic features according to state of consciousness after ICU

admission. P values correspond to comparative measures among the three pa-

tient groups [57]

4.1.2. Data acquisition

The images acquisition was made in a 1.5T General Electric scanner. For each patient, the

obtained images cover the whole brain. One hundred and eighty multi-slice T2*-weighted

functional images were acquired (axial orientation, slice thickness = 4.5 mm without free

space, matrix = 64 ˆ 64 mm, TR = 3000 ms, TE = 60 ms, flip angle = 90˝, and FOV =

288 ˆ 288 mm). The three initial volumes were discarded to avoid the saturation effects.

Resting-State images acquisitions follow the T2 echo-planar imaging process. Also, an axial
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structural T1 image was acquired (slice thickness = 1 mm, inter-slice gap = 1 mm, matrix

= 256 ˆ 256 mm, TR = 670 ms, TE = 22 ms, flip angle = 20˝ and FOV = 250 ˆ 250 mm)

and axial T2 (slice thickness = 6 mm, gap = 1 mm, matrix = 320 ˆ 320 mm, TR ˆ 6.000

ms, TE ˆ 96 ms, flip angle = 90˝ and FOV = 220 ˆ 220 mm) for anatomical reference,

further details in [123].

4.1.3. Data preprocessing

The T1 and R-fMRI data were preprocessed using the approach suggested in [97]. T1 prepro-

cessing includes manual removal of the neck, brain extraction using FSL [184], correction of

low-frequency intensity non-uniformity based on the N4 bias field correction algorithm from

SimpleITK [11], image denoising based on the nonlocal means algorithm from Dipy [11, 70],

and spatial normalization to standard stereotactic Montreal Neurological Institute (MNI)

space using the SPM12 normalization algorithm [11, 70, 131]. R-fMRI preprocessing in-

cludes remotion of the six initial volumes to avoid T1 saturation effects, head motion and

slice timing corrections were performed on the fMRI data using FSL, followed by artifact

correction using RapidArt [125]. Subsequently, the fMRI data were coregistered to a T1

image using SPM12 and spatially normalized to the MNI space using the SPM12 normaliza-

tion algorithm. Finally, spatial smoothing of the fMRI data was performed with a Gaussian

kernel of 8 mm full width at half maximum, as implemented in SPM12. The spurious vari-

ance was reduced by regression of nuisance waveforms derived from time series extracted

from regions of noninterest (WM and cerebrospinal fluid). Additional nuisance regressors

included the blood oxygen level-dependent imaging (BOLD) time series averaged over the

whole brain. Regions of interest (ROIs) for topological analysis of consciousness altered brain

signals were located based on the Destrieux atlas parcellation computed on the structural

image [48]. This parcellation consists of seventy-four (74) cortical regions per hemisphere

and specifies gyri and sulci regions. A region representative signal was obtained as the av-

erage of the time-courses that belong to the brain region, resulting in 148 representative

time-courses, which express the brain function. The main difference with the previously

described approach (see Chapter 3.2) is in the parcellation. The Destrieux parcellation has

more resolution, and it differentiate between sulcus and gyrus of the cortical regions. This

variation obey to the difficulty reached trying to get the Desikan-Killiany parcellation on the

new dataset.

4.1.4. Topological Data Analysis process for patients with altered

states of consciousness

The TDA analysis process computes the description of H0 and H1 features, presented in

chapter 3. The TDA analysis per patient starts with the computation of the distance ma-

trix. This matrix synthesizes the differences between representative time-courses of the brain.
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The process follows with the calculation of the TDA features on the time-courses from this

matrix representation. The persistent features are computed from the simplicial complex

obtained for a sequence of filtration values. Each simplicial complex represents a chain of

simplices created with the Vietoris-Rips method. Then, PH results in a topological descrip-

tion of boundaries that remain across successive filtrations. Keep in mind that the dimension

of boundary elements characterizes the topological features. An Hn feature is completely

bounded for a group of n-simplex, i.e., elements with n simultaneous connections integrating

n ` 1 data objects. Then, an H1 feature emerges as a boundary composed by a group of

1-simplices, which corresponds to lines. In this case, the topological process includes the

computations of H0 and H1, the estimation of H0 profile line, explained in the next section,

and the identification of the largest H1, following the process previously introduced in 3.2.3.

4.1.5. Summary of TDA features on patients with an altered state of

consciousness

As earlier, the topological features description is performed from two perspectives. The

first one summarizes the PH descriptions, in this case, the H0 and H1 features for the two

populations under study. H0 is linked to the integration of R-fMRI indicating how similar

the time-courses can be, while the H1 exhibits the appearance of boundaries. The second

one estimates the frequency of appearance of the brain regions in the most persistent H1.

This section only introduces the summary of H0 features. The other remains as described

before, see section 3.2.4.

H0 ribbon and H0 mean line

Lets remark that a barcode is a collection of horizontal lines representing the PH. It allows

to study the topological features in a nested sequence resulting of the increment of the filtra-

tion values ε. Each line represents the birth and death of a topological feature. For H0 all

lines birth at zero, and they death at some ε), indicates when they collapse in a connected

component, see chapter 3.1. In fact, the H0 barcode deaths represents when the components

merge with another one to form a larger connected component.

To introduce the H0 ribbon is necessary to present the H0 profile line. Each bar in H0

corresponds to a connected component, indicating the birth and death of the component.

For H0, at the beginning there are as many components as data points, when two connected

components merge, one of them dies. Thus, a bar death denotes the moment when a compo-

nent is integrated to other connected component. At the end all data points are integrated

into a single connected component. In consequence, the profile line shows how fast (or slow)

the components merge into at single simplicial complex. This line is constructed by con-

sidering the increasing sequence of death values computed for the bars in H0. It is worthy
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to recall that in H0 all bars birth at zero, so the profile line focused only on death values.

These profile lines were computed for each subject in the population. Each profile line has a

characteristic slope that may reveal how fast the data turn into a connected structure while

the filtration value increases. For instance, note that a set of uniformly data elements in

the space, i.e., all elements are equidistant among them, should have a completely vertical

profile line at a given distance. Figure 4-2 depicts profile lines for two data points sets to

illustrate integration, one of them with equidistant points. Therefore, this feature may help

to characterize integration properties.

(a) H0 Barcode and profile line for equidis-

tant (uniform distributed) points.
(b) H0 Barcode and profile line for non

equidistant points merged before ε “ b.

(c) H0 Barcode and profile line for non

equidistant points merged after ε “ b.

(d) Illustration of a ribbon computation,

minimum, maximum and mean of pro-

file lines.

Figure 4-2.: Profile lines for equidistant (a) and non equidistant (b and c) points. Profile

line in (b) shows the merge which starts early and collapse in a single connected

component before ε “ b when compared with profile line in (c) indicating a fast

integration. Late start of integration depicted in (c) shows a displacement in

the start of the profile line, which is associated with large dissimilarities in (c)

than in (b). Summary of population H0 profile lines as a ribbon (d) described

by the minimum, mean and maximum.
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The H0 ribbon corresponds to a summary of the H0 profile lines in a particular population.

Each profile line describes the integration into one connected component for each subject in

a population. The ribbon represents all the profiles obtained in the subjects by using the

area in the barcode space where all R-fMRI signals are considered connected, see figure 4-

2d. The H0 ribbon is defined by the minimum and maximum of the profile lines. Then,

minimum and maximum profile lines are computed for x axis, which is associated with the

integration, as described previously. They indicate the fast and slow integration respectively.

Note that the ribbon’s width indicates the variation in the profile lines in the population.

For instance, a narrow ribbon may indicate similar profiles. The ribbon’s area also serves

as an indicator of the variability of the H0 profiles. In order to complement the ribbon

area feature, the mean of the profile lines was also computed. H0 mean represent the mean

behavior of connectivity. This feature provides a global tendency view of the integration

into a single connected component.

4.2. Results

This section reports the results of the PH analysis in patients with altered states of conscious-

ness and topological variations when compared to the HC population. First, it exemplifies

the TDA computations performed for a single patient. Then, it presents the topological

features summary, beginning with the H0 ribbons for the HC and the patients with altered

states of consciousness. Following, it reports the persistent H1 summary for both popula-

tions. Finally, the regions more involved in the H1 appearance are reported.

4.2.1. Persistent homology features on a single patient

For each subject, a distance matrix consolidates the measures between regions. This measure

uses a distance based on Pearson’s correlation, see section 3.2.3. Once the matrix was com-

puted, the process follows by calculating the topological features. The features calculation

was made for H0 and H1. Figure 4-3b shows the persistent diagram for a subject. This

diagram shows dots indicating the birth and death of the topological features. H0 features

are shown in blue, and H1 features in orange.

For this subject, almost all H0 features fall in a range between 0.05 to 0.3 for the death

values. Then, at the 0.3 death value for this patient, most points belong to the simplicial

complex object. As in the previous stage with healthy people, the majority of orange dots

are near the dashed line, indicating that as soon as a H1-hole births, it deaths. However,

there are some far orange dots, signaling some persistent features. The orange dot with

black contour marks the most persistent H1 -hole. Figure 4-3a presents the H0 connectivity

characterization in R-fMRI data space through barcodes. H0-holes, which correspond to the

boundaries of groups of highly correlated regional time-courses, i.e., integrated components.
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(a) H0 Barcode for a patient. Red line indicates the H0 profile line.

(b) Persistence diagram for a subject, cross indicate the greatest H1-hole. Black contour dot

indicates the most persistent H1-hole

Figure 4-3.: H0 and H1 diagrams for a patient with DOC.
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Each line in the barcode represents a particular hole. The H0 profile line (red line in the

figure) describes the integration of components into a single simplicial complex. The R-fMRI

time-courses for this subject show connectivity levels in a wide range. Furthermore, the H0

integration into a single complex starts at 0.068 and ends at 0.35, in a range of 0.28. It

is worthy to recall that in this representation, R-fMRI distances restrict between 0 and 1.

Therefore, the late integration start and the long range (28%) indicate dissimilarities across

time-courses. However, the R-fMRI time-courses in this subject show levels of connectivity,

as evidenced by the H0-holes found in the persistent analysis.

Finally, the H0 profile lines were also computed for the healthy control subjects set described

in the previous chapter. These profile lines will be used in the ribbon computations to de-

scribe integration in healthy subjects, and to establish a comparison base for theH0 features.

4.2.2. Persistent homology reveals integration features across H0

The following Figure (4-4) shows the summary of the topological H0 features computed for

two datasets, for healthy subjects and the whole set of patients with acute altered states of

consciousness. Figure 4-4a shows the mean and ribbon of the profile line built for H0 for

the healthy population. The mean line starts in a filtration value close to zero for HC. This

start denotes that regions exhibit similar time-courses, i.e., a short distance between them.

However, the ribbon limit at the right points to subjects that present a different behav-

ior. Particularly, the connections start late, indicating that time-courses are not too similar

among them. Additionally, the slope of the profile line is an indicator of the homogeneity of

the distances between data elements, in this case, between the R-fMRI signal. Ribbon limit

lines and the mean line slopes are similar, indicating a sort of regularity in the H0 profiles.

Figure 4-4b reports the H0 ribbon and the H0 mean line of the acute altered states of con-

sciousness patients. The ribbon left limit starts near zero while the right ends close to 0.4.

Although this difference seems to be high, the mean width is about 0.2, indicating that the

maximum difference of the filtration values to reach a full integration is the same.

Compared toH0 healthy subjects profile ribbon. TheH0 ribbon of the acute unconscious pa-

tients looks displaced to the right, i.e., the distance between the brain region’s time-courses

is greater. Then, the signals are distant in acute unconscious patients than in healthy people.

Also, the width of the ribbon indicates homogeneity of the profiles across the populations.

The width of the HC ribbon is narrower than the acute unconscious patients’ ribbon, indi-

cating that there are more variations in the patients’ profiles, i.e., the range of the values

resulting in a full integration is greater. Another attribute to consider is the shape of the

ribbon limits. This value seems more similar in the acute unconscious patient’s ribbon than
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in the HC ribbon, indicating that profile lines have different behavior. However, the slope

of the mean lines in both settings, acute unconscious patients and healthy people, is similar,

indicating that the rate to reach full integration is the same.

H0

(a) H0 summary for HC subjects. (b) H0 summary for acute state patients.

Figure 4-4.: Summary of the H0 topological features computed on the two settings, Healthy

Control (HC) subjects and patients with acute altered consciousness state. (a)

Ribbon and average H0 for the HC. (b) Ribbon and average H0 for the acute

patients. Ribbon shows the range of distance values where the signals are

integrated into a single structure. Formally, the ribbon indicates the area where

H0-holes disappear. Mean line shows the global behavior, indicating that 0-

holes vanish near to distance 0.28 in HC, and to distance 0.34 for patients.

4.2.3. H1 features in patients with altered states of consciousness

Figure 4-5b shows the summary of the H1 most persistent features comparing both pop-

ulations, HC subjects, and patients in an acute altered state of consciousness. In blue, it

displays the frequency diagram and the points distribution for HC previously reported in

Figure 3-7. This figure also shows in green the diagrams for the patients, and at right,

the distribution of points characterizing the persistent H1 features. Each green square rep-

resents the persistent feature of an acute unconscious patient. The left picture displays a

histogram based on the distance of the point to the diagonal, i.e., the length from the birth
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time. Then, as distant is the point from the diagonal, as the persistent is the feature. The

points distribution here appears for birth values greater than 0.1 and lesser than 0.3, with

a higher concentration for values greater than 0.16. Complementary, the death values are

between 0.26 and 0.41. Additionally, the histogram (green area) shows a concentration of

the persistent H1 feature-length in a range between 0.09 and 0.19 for all subjects. As in

the healthy people faction, the H1 features are far from the diagonal, denoting no spurious

occurrence. In contrast, the acute state patients distribution seems to be more concentrated.

In HC, birth and death values are in long ranges compared with the values for acute state

patients. Also, patients distribution seems to be displaced, yet the appearance of the H1-

features in acute state patients are in the range of birth values reported previously for HC,

i.e., the birth range of HC includes the span of patients. The apparent displacement is an

expected result due to the late connection expressed in the H0. Even if this displacement

seems to be anticipated and caused by the pathology. The apparent disconnection argued in

the functional connectome analysis turns into a weak constraint, and it could be the result

of an inappropriate threshold selection.

(a) H1 persistent summary of the topological

features computed over healthy subjects.

(b) Summary of the H1 topological features

computed on patients with DOC.

Figure 4-5.: H1 persistent summaries of the topological features for two populations. (a)

healthy controls (b) patients with DOC. For each one, the distribution of the

H1 largest holes are at left while the histogram of lengths of the persistent hole

is at right. Gray dashed lines are only for reference of distances from the x “ y

line at bottom. Also, the circle radius indicates the number of regions involved

in the appearance of the longest H1 feature in the corresponding subject.
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Returning to the distribution ranges, HC exhibits long ranges for both birth and death val-

ues. Acute altered state of consciousness patients exhibits short-range values covered by HC

ones. Patients H1 frequency intersects with the HC frequency. The highest frequencies ap-

pear for the same feature persistence values. Then, the persistence of the features seems to

be not altered by the pathology, only the condensed ranges. In summary, the TDA approach

on acute altered states of consciousness patients shows the integration in a single simplicial

complex in H0, and the emergence of no artificial H1 features.

4.2.4. Brain regions in topological persistent structures for patients

with acute altered state of consciousness

Continuing with the TDA analysis for R-fMRI in acute altered states of consciousness, fig-

ure 4-6 presents the brain regions that are part of the most persistent H1-hole, as the regions

involved in its birth, i.e. when this regions is integrated into the simplicial complex the per-

sistent H1-hole emerge. In addition, this figure reports the frequency of the appearance of

a brain region in the emergence of the largest loop across the acute altered state of con-

sciousness population. Regions were sorted by the times that a brain region is present in

the greatest H1 loop, considering the whole acute altered states of consciousness population.

As observed, the highest frequency of occurrence values was obtained for the left gyrus tem-

poral superior plan temporal (21 times), followed by the left sulcus circular insula inferior

(20 times), next to the right gyrus temporal inferior (19 times). Particularly, these regions

appear in almost 40% of the patient’s large loop. Also, most of the brain regions are present

in at least ten of the greatest loops.

Figure 4-6.: Frequent brain regions in the most persistent H1 for patients with acute altered

states of consciousness
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Figure 4-7 shows a projection frequent brain regions on a glass representation. Brain regions

in glass allow identifying the anatomical localization of the frequent region in the H1-holes.

Yellow regions correspond to the most frequently regions involved in H1 holes.

Figure 4-7.: Frequency of regions involved in H1 projected on the brain glass representation.

As observed, in contrast with the healthy, here, the regions do not evidence any hemispherical

symmetry, indicating alterations in the emergence of the functional connectivity boundary

expressed by the H1. This condition is explicit in figure 4-7. This figure shows that the

projections of the regions that are at least in fifteen (15) of the persistent loop for the set

of patients. As observed, the left hemisphere seems to participate in the appearance of

topological structures than the right hemisphere more. Also, it exhibits the variation of

the regions involved in the mentioned phenomenon. In healthy people, its occurrence is

mainly in the superior temporal gyri for both hemispheres, as in their nearest brain regions,

i.e., middle temporal and bankssts gyri, both on the temporal lobe. While in patients with

acute altered states of consciousness, the referred behavior is not present. The first regions

involved in H1 loops were: (i) left temporal superior plan temporal gyrus, (ii) left circular

insula inferior sulcus, and (iii) right temporal inferior gyrus.

4.3. Discussion

This chapter presents the topological description of R-fMRI time-courses of patients with

acute altered states of consciousness. As in HC analysis, highly robust H1 loops emerge from

the integration of R-fMRI signals. These topological features persist in a range of longitudes

between 10% the 20% of the full range of distances. These features in acute state patients

constitute the first evidence about high-order structures of connectivity in these pathological

conditions. In addition, this chapter introduces a H0 analysis perspective. It includes the

profile lines to characterize the integration into a single simplicial complex and the popula-

tion summaries of the profile lines. H0 ribbon and the population’ mean summarize. Acute

state patients H0 ribbon indicates a late integration in contrast to HC H0 ribbon. Also,



72 4 TDA for R-fMRI of altered consciousness patients

H0 ribbon exhibits a wide range, suggesting more dissimilarities across fMRI resting-state

time-courses in patients than in the HC. Acute state patients H0 mean descriptor shows a

late start of the integration when compared with HC. Furthermore, this delayed beginning

is also an indication of the time-courses dissimilarities due to pathological conditions. How-

ever, the slope of the two H0 means descriptors, for acute state patients and HC seems to be

similar, indicating that once the integration process starts, the size of the filtration values

interval that results in a single unit is the same. In other words, regardless of the start dis-

placement, the values of the differences among resting-state time-courses, which lead to the

integrated unit, are similar for both populations. For instance, the difference values among

some time-courses in healthy controls are α ă β ă γ when measured the differences among

some time-courses in an acute altered state of consciousness patients the difference values are

the same, i.e., α ă β ă γ. Complementary, TDA on patients with an acute altered state of

consciousness exhibits H1 features. These H1 loops seem to be different from those reported

in HC subjects. The main variations are (i) the reduction of birth and death ranges, (ii) the

increment of birth values (late integration start), and (iii) the brain regions involved in the

emergence of the loop. Also, the regions implicated in the occurrence of these H1 features in

patients are different. This finding points that the feature might be involved in a variation of

high-order mental processes due to pathological conditions. In particular, the non-symmetry

of the regions presented in section 4.2.4. Also, the left circular insula inferior sulcus and left

superior plan temporal gyrus to claim the principal roles in the appearance of H1 features,

showing another difference when compared with HC subjects. However, their meaning and

function in the high-order description introduced here are still unknown. To conclude, these

findings in H0 and H1 evidence alterations in high-order interaction mechanisms associated

with loss of consciousness.

Topological description through persistent homology begins to be more relevant for the re-

search community. In R-fMRI, some authors used PH to describe the robustness across

distinct data scales [35]. Indeed they only use H0 to overcome threshold selection while

evidence robustness. Lord et al. [111] present the use of persistent homological scaffolds to

summarize topological properties. Also, they compare persistent homological scaffolds to

local graph metrics, showing their robustness. Homological scaffolds, introduced by Petri et

al. [132], describe the topological features. The description is made in terms of persistence

and (ii) appearance frequency in H1 cycles, providing two measurements of the importance

of edges. This chapter uses the H0 to characterize the integration into one single simpli-

cial complex for healthy and pathological conditions. Introducing a summarization of H0 for

populations, complementary to the reported by Cassidy et al. [35]. Also, this chapter focuses

on the relevance of H1, in particular for alterations in an acute altered state of consciousness

patients. In contrast to the PH scaffolds approximation [132, 111], here the relevance is

obtained directly from the PH identifying the largest feature, and the relevant objects, the

brain regions in the H1, with the exploration of the associated lists. However, it is important
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to remark that the PH scaffold is centered in the characterization of relevance by counting

the appearance frequency of an edge element in the H1 features emergence. Both approaches

use high-order features beyond the graph description.

In consciousness studies, graph or complex network approximations provide measurements

to relate consciousness with brain properties. A recent taxonomy of these approximations

considering distinct acquisition modalities and processing methodologies provides a consol-

idated base for consciousness studies [149]. It conciliates the complexity measures to ex-

amine consciousness at distinct levels, including DOC. In particular, measures to assess

properties related to the coexistence of functional integration and differentiation in the

brain [168, 99, 149]. The taxonomy classifies the complexity measures into three groups

1. topological differentiation, 2. temporal differentiation, and 3. mixed strategy All they

rely on a pair-wise representation of the interactions, which can be stationary (topologi-

cal) or dynamic (temporal). This representation limits the topological description to dyadic

interactions [111]. Furthermore, graph properties alterations associated with DOC have

been related to disconnections in local [84, 80, 39], and global [119] approaches. However,

these alterations might be the result of a misconception of weak interaction between nodes

as disconnections. This apparent disconnection biases the unconscious states’ topological

description with this graph representation centered in the edges. The proposed approach

describes the integration through H0-cycles, denoting a delay integration into a single sim-

plicial complex for patients with DOC. This delay is an increment in the distance between

time-courses, i.e., a reduction of the interaction strength. Some alternatives from hyper-

graphs [144, 9] and TDA [35, 111] tackle the graph limitations, providing distinct frames

which considers simultaneous interactions. Even more, Petri et al. [132] report topological

H1 features in altered states of consciousness. They describe fMRI H1 features by the PH

scaffolds. The PH scaffold measures the relevance of the elements involved in H1 appear-

ance. With this measurement, they robustly show H1 differences in pharmacological induced

states of consciousness. On the other side, the approach presented here allows identifying the

persistent H1 loop structures, one per patient, while recognizes the brain regions involved in

its emergence. It proposes a different approach to note the relevance of H1. Furthermore, it

associates the relevance and the occurrence frequency in subjects with acute altered states of

consciousness, showing differences compared to HC subjects. However, the exact role of the

regions in the emergence of H1 is out of scope. Finally, these findings provide new analysis

dimensions in the consciousness study.

Our results suggest some regional differences linked to states of consciousness alterations.

For example, the brain regions near to the insula and the regions in the Wernicke’s area near

to the left temporal superior temporal gyrus seem to be more involved in the H1 occurrence.

At the same time, there are two no contiguous regions in the right hemisphere, the main,

the inferior temporal gyrus, and the superior temporal gyrus. The temporal gyrus is related
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to the auditory association, multisensory integration, speech processing, language compre-

hension. The insula function is primarily related to sensorimotor processing, regulation

of autonomic function, interoception, pain perception, auditory processing, chemosensory

functions (processing of intensity, quality, and affective value of taste stimuli) [174]. Also, it

appears related to modulating the intensity of olfactory stimuli. Then, the insula is involved

in many different kinds of processing. The arising of the insula as a frequent region in the H1

persistent feature is one of the main differences when compared with the healthy approach.

It could be due to not awareness to follow instructions during the acquisition stage neither to

the reorientation of attention described previously for healthy subjects. Then, its emergence

as an element in the boundary of TDA functional description might be associated with the

reductions in its stimuli response and process.

The presented approach has some limitations. The main drawbacks of the TDA process were

already addressed in section 3.4. Here, the discussion is about the limitations due to the

pathological condition of the population. In severely damaged brain tissues, as a patient in

DOC conditions, this approach cannot be used because the parcellation process fails, making

it impossible to assign the representative time-course to a specific brain region. This severe

damage is caused by the prolonged time in pathological conditions. Thus, the presented

approach considers a set of patients in an acute altered state of consciousness. The PH

analysis of acute altered states of consciousness highlights the left superior plan temporal

gyrus and the left circular insula inferior sulcus as the more frequent regions in the largest

H1 boundary. So, identifying brain processes in which those regions are or are not active

may result in scenarios in which establishing some conditions to understand the emergence

of the acute state’s boundary could lead to new branches of analysis.
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5.1. Conclusions

Graph measurements provide a set of tools to describe, evaluate and characterize the resting-

state connectome. Even on a global scale, as the FNC is built from large regions, i.e., the

RSNs, they capture variations that can be linked with a specific pathological condition. In

the DOC case presented here, they can be associated with the severity level of the pathology.

Alterations in integration, segregation, and centrality confirm topological variations related

to the connectivity level among RSNs for DOC patients. Regardless of these variations

through the graph model, underlying topological properties can not be described from this

approach.

The strategy considering persistent homology characterizes resting-state connectome for

healthy control subjects. Persistent H1-holes were found in healthy people, providing a

new set of features to consider in resting-state studies. These H1-holes indicate the exis-

tence of boundaries surrounded by 1-simplex (lines), conforming to a loop. A persistent

loop provides two directions of connections for the elements in the boundary. Addition-

ally, the occurrence of these properties is linked to specific brain regions. The regions in

the H1-features frequently appear across populations, expressing a sort of symmetry in the

resting-state connectome topology and providing biological insight.

Persistent homology also describes topological properties in pathological conditions, i.e.,

patients in acute altered states of consciousness. The displacements H0-profile lines and

consistent appearance of H1-holes, with lengths comparable to healthy scenarios, provides

a set of characteristics for topological-based study. However, the brain regions involved

in the appearance of these high-order features, H1-holes, are distinct and not exhibits a

hemisphere symmetry, suggesting an alteration of the boundary in the resting-state activity.

These differences could be associated with the pathological condition, particularly with the

no response to stimuli.
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The PH strategies describe the topology of the resting-state functional connectome. Subja-

cent high-order features were robustly found for healthy and pathological conditions, sug-

gesting the existence of resting-state processes that go beyond the connectivity itself. These

H1-holes arise as a new element of interest that represents a limited connection among a set

of data objects, resting time-courses. The objects in the loop are connected, exhibiting at

least two directions to reach all the others in the set. But, the connection is limited because

it is not direct. Then, H1-hole and the elements implicated in its emergence propose a new

direction for the resting-state analyses, asking for the functional processes which generate

these structures, which imply integration and segregation at the same time.

5.2. Recommendations

The proposed strategy for topological data analysis takes as a basis the distance based on

Pearson’s correlation. However, the topological description only requires a distance. Then,

the use of other distances apart from linearities could lead to distinct topological features.

For instance, distances correlation or Granger causality that measures non-linearities and

directional connectivity respectively. Using any of these in the topological description may

result in a distinct set of persistent homology features. If there are different features, how it

impacts the topological description?

Topological characterization was made on a space of modules Z{2Z. This selection of modules

limits the dimension of topological features up to 2, i.e., cavities surrounded by 2-simplex

(faces). Then, a high-order description requires superior modules. Thus, computation of

topological features in R-fMRI analysis considering different modules lead to high-order cav-

ities descriptions, which might be suitable for resting-state studies.

The R-fMRI topological description through persistent homology in healthy subjects and pa-

tients reveals the existence of many H1-holes that are far from the diagonal. However, this

work only considers the most persistent H1-hole, one feature per individual, leaving aside

other persistent features. This way, the inclusion of more relevant H1 features, not just the

most persistent, could provide a rich scenario that giving more clues about integration and

segregation phenomena linked to consciousness emergence. Moreover, the selection of the

set of relevant H1-holes could regard the scaffolds approach to improve the meaningfulness

of the persistent features to consider.
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Study the H0-profile line provides a first picture about the integration phenomena in R-

fMRI, pointing to the interval length where all simplex converges into a single simplicial

complex. More formal properties, better than the visual slope introduced here, could lead

to a more detailed description of the integration of the data. In this case, the slope indicates

how fast the integration is, and slopes variations point to the distances differences regularity

in the data. Other properties, computed for a continuous increasing function as the profile,

could provide more information about integration.

The computed set of topological features, i.e., H0-holes and H1-holes might be used as char-

acteristics in a supervised classification machine learning process. For this, the sequence of

H0-holes and H1-holes can compose a features vector while the consciousness level is the

target vector. Thus, it is reasonable to use the persistent features as characteristics in a

machine learning classification algorithm, which can boost the use of persistent homology

features in other processes.



A. Annex: Complex Networks

Measurements

The table A-1 provides a short description of some of the complex networks measurements,

it does not represent a complete set of the graph measurements.

Table A-1.: network measurements employed to characterize brain networks [28]

N is the set of all nodes in the network, and n is the number of nodes. L is the set of

all links in the network, and l is the number of links. pi, jq is a link between nodes i and

j, (i, j P N). aij is the connection status between i and j: aij “ 1 when the link pi, jq

exists (when i and j are neighbors); aij “ 0 otherwise (aii “ 0 for all i). We compute the

number of links as l “
ř

i,jPN aij (to avoid ambiguity with directed links we count each

undirected link twice, as aij and as aji). Links pi, jq are associated with connection weights

wij. Henceforth, we assume that weights are normalized, such that 0 ď wij ď 1 for all i

and j. lw is the sum of all weights in the network, computed as lw “
ř

i, j P Nwij.

Measurement Formulation

Degree ki “
ř

jPN aij

Number of connections that link a node to the rest of the network

Strength kwi “
ř

jPN wij

Quality of the connections that link a node to the rest of the network

Shortest path length dwij “
ř

auvPgwiØj
fpwuvq

Shortest weighted path between i and j, where f is a map from weight to length and gwiØj
is the shortest weighted path between i and j

Number of triangles twi “
1
2

ř

j,hPNpwijwihwjhq
1{3

Geometric mean of the weights of the triangles around the node i

Continued on next page
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Table A-1 – Continued from previous page

Measurement Formulation

Characteristic path length Lw “ 1
n

ř

iPN

ř

jPN,j‰i d
w
ij

n´1

Average distance between node i and all other nodes

Global efficiency Ew “
1
n

ř

iPN

ř

jPN,j‰ipd
w
ijq
´1

n´1

The average inverse shortest path length. The global efficiency may be meaningfully com-

puted on disconnected networks, as paths between disconnected nodes are defined to have

infinite length, and correspondingly zero efficiency

Clustering coefficient Cw “ 1
n

ř

iPN
2twi

kipki´1q

Quantifies the number of connections that exist between the nearest neighbors of a node

as a proportion of maximum number of possible connections

Modularity Qw “ 1
lw

ř

i,jPN

”

wij ´
kwi k

w
j

lw

ı

δmi,mj

A network module contains several densely interconnected nodes, and there are relatively

few connections between nodes in different modules. Where mi is the module containing

node i, and δmi,mj
“ 1 if mi “ mj, and 0 otherwise

small-worldness S “ C{Crand

L{Lrand

The small-world measures the combination of segregated modules with a robust number

of intermodular links. Where C and Crand are clustering coefficients, and L and Lrand
are characteristics path lengths of the respective tested network and a random network.

Small-world networks often have S " 1

Betweenness centrality bi “
1

pn´1qpn´2q

ř

h,jPN

ρ
piq
hj

ρhj

The centrality of a node measures how many of the shortest paths between all other node

pairs in the network pass through it. Where ρhj is the number of shortest paths between

j and h, and ρ
piq
hj is the number of shortest paths between j and h through node i
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Identification

The following RSNs extraction was explained in [46]. First, single-subject ICA with 30

components was performed [190] using the infomax algorithm as implemented in the Group-

ICA of fMRI toolbox (GIFT: http://icatb.sourceforge.net/). The component images (spatial

maps) were calibrated to the raw data so the intensity values were in units of percent signal

change (PSC) from the mean [31]. This fit was used to scale the component images into units,

which reflect the deviation of the data from the mean, enabling a second level random effects

analysis to be performed [31]. The ICs were then matched to the templates representative of

the RSNs by means of a goodness-of-fit procedure. This method extends the single-template

goodness-of-fit approach [77] by quantifying the absolute PSC average of voxels falling in the

template minus the PSC average of voxels outside the template. The templates for each RSN

were selected by an expert after visual inspection from a set of spatial maps resulting from

Group ICA decomposition (30 components running GIFT) performed on 12 independently

assessed controls (4 women, mean age = 21 years ˘ 3, scanned on a 3T MR scanner using

a gradient echo-planar sequence of axial slice orientation: 32 slices, voxel-size = 3.4 ˆ 3.4 ˆ

3.0 mm3, repetition time = 2,460 msec, echo time = 40 msec, flip angle = 90, field of view =

220 ˆ 220 mm2). These templates were checked by another expert for accuracy of structural

labeling. Second, the multiple-template assignation procedure was performed. In order to

overcome potentially concurrent IC assignations to the same template, we introduced two

physiologic constraints: (i) a template had to be assigned to one of the 30 ICs and (ii) an IC

could be labeled as an RSN or not. The first constraint ensured that all templates would be

assigned, given that the number of ICs was larger than the number of the templates. The

second restriction forced a unique identification of each IC, which overcame the potentially

concurrent component assignations. The multiple components labeling with assignation

restrictions was formulated as a matching problem:

max
x

N
ÿ

i“1

M
ÿ

j“1

xi,jgi,j

s. t.
N
ÿ

i“1

Xi,j “ 1, 1 ď j ďM ,
M
ÿ

j“1

Xi,j ď 1 , 1 ď i ď N

with M “ 10 the number of different templates, N “ 30 the number of ICs, gi,j the goodness
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of fit between the component i and the template j and xi,j P t0, 1u, an assignation binary

variable indicating the match between the template j and the IC i. Hence, the couple between

the template and IC with the highest global goodness of fit (taking into account all templates

simultaneously) was eventually selected. The proposed optimization problem was solved by

using binary integer programming [78]. Third, for the discrimination between “neuronal”

and “non-neuronal”, the approach used a binary classification approach by means of support

vector machine (SVM) classifier trained on 19 independently assessed healthy subjects. The

feature, which was used for the training of the classifier was the fingerprints obtained from

ICA decomposition (n = 30 components). The fingerprint is a feature vector which contains

both spatial (i.e., degree of clustering, skewness, kurtosis, spatial entropy) and temporal

information (i.e., one-lag autocorrelation, temporal entropy, power of five frequency bands:

0 - .008 Hz, .008 - .02 Hz, .02 - .05 Hz, .05 - .1 Hz, and .1 - .25 Hz) and has been shown to

discriminate neuronal from artifactual components [42].
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; Bullmore, Edward T.: Hubs of brain functional networks are radically reorganized

in comatose patients. In: Proceedings of the National Academy of Sciences 109 (2012),

Nr. 50, S. 20608–20613

[2] Adolphs, Ralph: The unsolved problems of neuroscience. In: Trends in Cognitive

Sciences 19 (2015), Nr. 4, S. 173–175. – ISSN 1364–6613

[3] Ahmad, F ; Hussain, A ; Chaudhary, S U. ; Ahmad, I ; Ramay, S M.: A novel

method for detection of voxels for decision making: An fMRI study. In: International

Journal of Imaging Systems and Technology 26 (2016), Nr. 2, S. 163–167

[4] Albert, Réka ; Barabási, Albert-László: Statistical mechanics of complex networks.

In: Rev. Mod. Phys. 74 (2002), Jan, S. 47–97

[5] Atienza, Nieves ; Gonzalez-Diaz, Rocio ; Rucco, Matteo: Persistent Entropy

for Separating Topological Features from Noise in Vietoris-Rips Complexes. In: arXiv

e-prints (2017), Jan, S. arXiv:1701.07857

[6] Baggio, H.-C. ; Sala-Llonch, R. ; Segura, B. ; Marti, M.-J. ; Valldeoriola,
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[175] Uludağ, Kâmil ; Uğurbil, Kâmil: Physiology and Physics of the fMRI Signal. In:

Uludag, Kamil (Hrsg.) ; Ugurbil, Kamil (Hrsg.) ; Berliner, Lawrence (Hrsg.):

fMRI: From Nuclear Spins to Brain Functions. Boston, MA : Springer US, 2015,

Kapitel 8, S. 163–213

[176] Van Dellen, E. ; Douw, L. ; Hillebrand, A. ; de Witt Hamer, P.C. ; Baayen,

J.C. ; Heimans, J.J. ; Reijneveld, J.C. ; Stam, C.J.: Epilepsy surgery outcome

and functional network alterations in longitudinal MEG: A minimum spanning tree

analysis. In: NeuroImage 86 (2014), S. 354–363

[177] Vanhaudenhuyse, Audrey ; Noirhomme, Quentin ; Tshibanda, Luaba J.-F. ;

Bruno, Marie-Aurelie ; Boveroux, Pierre ; Schnakers, Caroline ; Soddu, Andrea

; Perlbarg, Vincent ; Ledoux, Didier ; Brichant, Jean-François ; Moonen, Gus-

tave ; Maquet, Pierre ; Greicius, Michael D. ; Laureys, Steven ; Boly, Melanie:

Default network connectivity reflects the level of consciousness in non-communicative

brain-damaged patients. In: Brain 133 (2010), Nr. 1, S. 161–171. – ISSN 0006–8950
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