
EEG-based BCI monitoring framework:
Real-time acquisition and visualization from

audiovisual stimulation paradigms

Yeison Nolberto Cardona Álvarez

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electric, Electronic and Computing Engineering

Manizales, Colombia

2022

EEG-based BCI monitoring framework:
Real-time acquisition and visualization from

audiovisual stimulation paradigms

Yeison Nolberto Cardona Álvarez

Dissertation submitted as a partial requirement to receive the grade of:

Master of Engineering - Automatics

Director:

Prof. Germán Castellanos-Domínguez, Ph.D.

Co-director:

Prof. Andrés Marino Álvarez-Meza, Ph.D.

Academic research group:

Signal processing and recognition group (SPRG)

Universidad Nacional de Colombia

Faculty of Engineering and Architecture

Department of Electric, Electronic and Computing Engineering

Manizales, Colombia

2022

Framework de monitoreo para BCI basado
en EEG: Adquisición, visualización y

procesamiento en tiempo real de paradigmas
de estimulación audiovisual

Yeison Nolberto Cardona Álvarez

Disertación presentada como requisito parcial para recibir el título de:

Maestría en Ingeniería - Automatización Industrial

Director:

Prof. Germán Castellanos-Domínguez, Ph.D.

Codirector:

Prof. Andrés Marino Álvarez-Meza, Ph.D.

Grupo de investigación:

Grupo de control y procesamiento digital de señales (GCPDS)

Universidad Nacional de Colombia

Facultad de Ingeniería y Arquitecura

Departamento de Ingeniería Eléctrica, Electrónica y Computación

Manizales, Colombia

2022

ACKNOWLEDGEMENTS

A very special thanks goes out to my parents who always believed in the power of

education.

I would like to express my gratitude to the professors Andrés Marino Álvarez

Meza and Germán Castellanos Domínguez for their orientation during this

research. Besides, I would like to thank all the Signal Processing and Recognition

Group (SPRG) of the Universidad Nacional de Colombia sede Manizales for their

suggestions and hours of academic discussion, to David Cardenas Peña and the

Automatic research group of the Universidad Tecnológica de Pereira for allow me

to work in so interesting projects. Finally, special tanks to Vanessa Cañaveral for

her revisions and corrections about the redaction of this document.

Finally, I recognize that this research would not have been possible without the

support given by the project: Caracterización Morfológica de Estructuras Cerebrales por

Técnicas de Imagen para el Tratamiento Mediante Implantación Quirúrgica de

Neuroestimuladores en la Enfermedad de Parkinson (código 110180763808), funded by

MINCIENCIAS.

Yeison Nolberto Cardona Álvarez

2022

ABSTRACT

The widespread use of neurophysiological signals to develop brain-computer

interface (BCI) systems has certainly varied clinical and nonclinical applications.

Main implementations in medical issues include: rehabilitation, cognitive state

analysis, diagnostics, assistive devices for communication, locomotion and

movement. By other hand, there is a bunch of researches that approaches the BCI

systems to healthy people in fields like: neuroergonomics, smart homes,

neuromarketing and advertising, games, education, entertainment and even

security and validation. Not all EEG acquisition systems are capable to use in BCIs

systems. Even if the clinic devices are highly accurate, these implementations have

a limited, or nonexistent, real-time data flow access; because they mainly use is

about diagnostic and offline analysis. Recently, and because of the cheapening

prototyping development, there is in the market a set of low-cost embedded

systems for electroencephalography (EEG) acquisition, i.e., OpenBCI, InteraXon,

Muse, NeuroSky MindWave and Emotiv. All these options usually include a high

or low-level software development kit (SDK), that could be open-source or

proprietary and will come with a different grade of flexibility (rigid or

customizable electrode placement, multiple sampling rates, transmission

protocols, wireless, etc). Many of these devices have shown capabilities to handle

BCI tasks, but they need a context-specific development to boost their base

benefits. Acquiring brain signals is only one task for a BCI system, also it is

necessary to carry out a lot of data processing and controlled experiments,

x Abstract

concerning this have been specialized software for developers and researchers

purpose i.e., BCI2000, Neurobehavioral Systems Presentation, Psychology

Software Tools, Inc. ePrime and PsychoPy. All these systems offer greater ease of

use through experimenter interfaces, but they can be costly, require high-level

programming and technical skills, and usually do not support dedicated data

acquisition. For this reason, the acquisition involves the implementation of third

party software and drivers; consequently, losing interesting hardware features in

favor to support as many devices as possible. To implement a BCI system is an

interdisciplinary activity that requires a set of specific and outstanding

knowledges about communication systems, signals acquisition, instrumentation,

clinical protocols, experiments validation, software development, among others.

Besides, in order to perform a real-world experiment, the user must calibrate the

specific set of acquisition system, stimuli delivery and data processing stages.

Current software approaches try to converge multiple technologies and

methodologies to provide general purpose BCI systems. The most popular is the

BCI200, which comes with default paradigms but their interface has been pointed

out to be not very intuitive and its operation is difficult to understand, although, it

is possible to add new paradigms, this include software contributions using their

own libraries and do not through a built-int development interface. Other

software widely used is the OpenVIBE this one includes a graphical drag-and-drop

interface to perform data analysis with an extensive set of pre-defined algorithms.

Its synchronous acquisition system is known for not only occasionally frozen the

computer but also for adding delays to the streaming of the signals. All these

systems handle with an extensive set of compatible devices which may be good at

first glance but make that some specific hardware features are not available for

compatibility reasons. On the side of the open source hardware, we can find that

OpenBCI a flexible option, but with some important lacks. The most important

relies on the communication between the computer and the board is not always

stable and their graphical user interface (GUI) does not provide the possibility of

acquiring data under wich a particular BCI paradigm. Otherwise, their hardware

xi

base and SDK features gives to this board a huge potential to implement a

complete BCI system comparable with medical grade equipment.

With all these factors in mind, we aim to develop a standalone BCI system with

the OpenBCI Cyton board that handles the signal acquisition and the stimuli

deliver in the same interface, to reduce the needed infrastructure to perform

neurophysiological experiments. Alongside a distributed platform to improve the

performance, increase the scalability, and reduce the jitter. This software,

BCI-Framework, provides the user with a built-in development environment

enhanced with a custom API for data interactions, montage context, and markers

generation. This environment is full compatible with any Python module and is

focused in the generation of real-time visualizations, data analysis and

network-based stimuli delivery for the remote presentation of audiovisual cues.

This approach converges almost all needed components for BCI researches into a

single standalone implementation.

In a nutshell, the introduced EEG-based BCI framework comprises the following

benefits: i) A portable and cheap acquisition system (hardware) founded on the

well-known OpenBCI devices. ii) This approach includes a wireless, e.g., Wi-Fi,

communication protocol to couple the EEG data acquisition and event markers

synchronization from audiovisual stimulation paradigms. iii) A distributed system

is enhanced within this BCI framework to carry out real-time data acquisition and

visualization while favoring the inclusion of conventional or user-designed EEG

data processing libraries over a Python language environment. In addition, a

latency-based quality assessment method is carried out.

Keywords: Brain-Computer Interface, Signals acquisition, Neurophysiological

experiments, Distributed systems, Embedded systems, OpenBCI.

RESUMEN

El uso generalizado de señales neurofisiológicas para desarrollar sistemas BCI

ciertamente tiene diversas aplicaciones clínicas y no clínicas. Las principales

implementaciones en temas médicos incluyen: rehabilitación, análisis del estado

cognitivo, diagnóstico, dispositivos de asistencia para la comunicación,

locomoción y movimiento. Por otro lado, hay muchas investigaciones que acercan

los sistemas BCI a personas sanas en campos como: neuroergonomía, hogares

inteligentes, neuromarketing y publicidad, juegos, educación, entretenimiento e

incluso seguridad y validación. No todos los sistemas de adquisición de EEG se

pueden usar en los sistemas BCIs. Incluso si los dispositivos clínicos son muy

precisos, estas implementaciones tienen un acceso limitado o inexistente al flujo

de datos en tiempo real; debido principalmente a que se tratan sistemas enfocados

al diagnóstico y análisis fuera de línea. Recientemente, y debido al abaratamiento

del desarrollo de prototipos, existe en el mercado un conjunto de sistemas

embebidos de bajo costo para la adquisición de EEG, algunos de ellos son:

OpenBCI, InteraXon, Muse, NeuroSky MindWave y Emotiv. Todas estas opciones

suelen incluir un SDK de nivel alto o bajo, que puede ser de código abierto o

privativo los cuales vienen con un grado diferente de flexibilidad (disposición de

electrodos rígida o personalizable, frecuencias de muestreo variable, diferentes

protocolos de transmisión, conexión inalámbrica, etc). Muchos de estos

dispositivos han demostrado capacidades para manejar tareas BCI, pero necesitan

un desarrollo específico del contexto para aumentar sus beneficios básicos.

xiv Resumen

Adquirir señales cerebrales es sólo una tarea indiidual para un sistema completo

de BCI, también es necesario llevar a cabo una gran cantidad de procesamiento de

datos y experimentos controlados, con respecto a esto se ha especializado

software para desarrolladores e investigadores, por ejemplo: BCI2000,

Neurobehavioral Systems Presentación, Psychology Software Tools, Inc. ePrime y

PsychoPy. Todos estos sistemas ofrecen una mayor facilidad de uso a través de las

interfaces del sistema de experimentos, pero pueden ser costosos, requieren

habilidades técnicas y de programación de alto nivel y por lo general, no admiten

la adquisición de datos dedicada. Por esta razón, la adquisición de señales se basa

en la implementación de software y controladores de terceros; en consecuencia, se

pierden características de hardware interesantes a favor de soportar tantos

dispositivos como sea posible. Implementar un sistema BCI es una actividad

interdisciplinaria que requiere un conjunto de conocimientos específicos y

sobresalientes sobre sistemas de comunicación, adquisición de señales,

instrumentación, protocolos clínicos, validación de experimentos, desarrollo de

software, entre otros.

Además, para realizar un experimento del mundo real, el usuario debe calibrar el

conjunto específico de sistema de adquisición, entrega de estímulos y etapas de

procesamiento de datos. Los enfoques de software actuales intentan hacer

converger múltiples tecnologías y metodologías para proporcionar sistemas BCI de

propósito general. El más popular es el BCI200, que incorpora paradigmas

predeterminados pero se ha señalado que su interfaz es poco intuitiva y su

funcionamiento es difícil de entender, aunque es posible agregar nuevos

paradigmas, esto permite incluir contribuciones de software utilizando sus propias

bibliotecas. y no mediante una interfaz de desarrollo integrada. Otro software

ampliamente utilizado es OpenVIBE, este incluye una interfaz gráfica de arrastrar y

soltar para realizar análisis de datos con un amplio conjunto de algoritmos

predefinidos. Su sistema de adquisición sincrónica es conocido no sólo por

congelar ocasionalmente la computadora, sino también por agregar retrasos en la

transmisión de las señales. Todos estos sistemas manejan un amplio conjunto de

xv

dispositivos compatibles que pueden ser buenos a primera vista, pero hacen que

algunas características específicas del hardware no estén disponibles por razones

de compatibilidad. Del lado del hardware de código abierto, podemos encontrar

que OpenBCI es una opción flexible, pero con algunas carencias importantes. La

más importante se basa en que la comunicación entre la computadora y la placa no

siempre es estable y su GUI no brinda la posibilidad de adquirir datos bajo un

paradigma BCI particular. Por otro lado, su base de hardware y las características

de SDK le dan a esta placa un gran potencial para implementar un sistema BCI

completo comparable con el equipo de grado médico.

Con todos estos factores en mente, nuestro objetivo es desarrollar un sistema BCI

independiente con la placa OpenBCI Cyton que maneje la adquisición de señales y

la entrega de estímulos en la misma interfaz, para reducir la infraestructura

necesaria para realizar experimentos neurofisiológicos. Junto con una plataforma

distribuida para mejorar el rendimiento, aumentar la escalabilidad y reducir el

jitter. Este software, BCI-Framework, proporciona al usuario un entorno de

desarrollo integrado mejorado con una API personalizada para interacciones de

datos, selección de montaje y generación de marcadores. Este entorno es

totalmente compatible con cualquier módulo de Python y se centra en la

generación de visualizaciones en tiempo real, análisis de datos y entrega de

estímulos a través de conexiones de red para la presentación remota de señales

audiovisuales. Este enfoque reúne casi todos los componentes necesarios para la

investigación de BCI

En pocas palabras, el sistema BCI basado en EEG presentado comprende los

siguientes beneficios: i) Un sistema de adquisición portátil y económico

(hardware) basado en los conocidos dispositivos OpenBCI. ii) Este enfoque incluye

un protocolo de comunicación inalámbrico (Wi-Fi), para acoplar la adquisición de

datos de EEG y la sincronización de marcadores de eventos de paradigmas de

estimulación audiovisual. iii) Se implementa un sistema distribuido dentro de este

entorno BCI para llevar a cabo la adquisición y visualización de datos en tiempo

xvi Resumen

real mientras se favorece la inclusión de bibliotecas de procesamiento de datos

EEG convencionales o diseñadas por el usuario sobre un entorno de lenguaje

Python. Además, se lleva a cabo método para la evaluación de la calidad basada en

la latencia.

Palabras clave: Interfaces Cerebro-Computador, Adquisición de señales,

Experimentos neurofisiológicos, Sistemas distribuidos, Sistemas embebidos,

OpenBCI.

CONTENTS

Acknowledgements vii

Abstract ix

Resumen xiii

Contents xx

List of figures xxii

List of tables xxiv

Abbreviations xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 4

1.2.1 Acquisition system requirements 4

1.2.2 BCI software development issues 5

1.2.3 Computational cost . 6

1.3 State-of-the-art BCI systems . 7

1.3.1 BCI hardware . 7

xviii Contents

1.3.2 BCI software . 11

1.3.3 Real-time and computational cost handling 15

1.4 Aims . 16

1.4.1 General aim . 16

1.4.2 Specific aims . 16

1.5 Outline and contributions . 17

1.5.1 High-level acquisition drivers for OpenBCI 17

1.5.2 Distributed implementation 18

1.5.3 BCI-Framework . 18

1.6 Thesis structure . 19

2 High-level acquisition drivers for OpenBCI 21

2.1 Drivers architecture . 22

2.1.1 OpenBCI SDK . 22

2.1.2 Board interface . 25

2.2 Drivers development . 26

2.2.1 Application programming interface (API) 26

2.2.2 Data acquisition and deserialization 28

2.2.3 External inputs acquisition (Boardmodes) 30

2.3 Data storage . 32

2.4 Summary and discussion . 35

3 Real-time and distributed implementation 37

3.1 Real-time . 37

3.2 Kafka: Open-source distributed event streaming platform 38

3.2.1 Topics . 38

3.2.2 Producer . 39

3.2.3 Consumer . 39

3.2.4 Transformer . 39

3.3 Distributed system implementation 40

3.3.1 Remote Python Call . 40

3.4 Isolated acquisition . 41

Contents xix

3.5 Electrode impedance measurement 41

3.6 Latency analysis . 46

3.7 Sampling analysis . 48

3.8 Summary and discussion . 52

4 BCI-Framework 55

4.1 Software description . 56

4.1.1 Real-time visualizations backend 57

4.1.2 Stimuli delivery backend . 58

4.1.3 Development environment 58

4.2 Real-time data analysis . 60

4.2.1 Data analysis scripting . 62

4.3 Real-time visualization . 67

4.3.1 Data visualization scripting 67

4.4 Stimuli delivery . 69

4.4.1 Stimuli delivery scripting . 69

4.4.2 Widgets . 71

4.4.3 Audiovisual stimuli . 77

4.4.4 Stimuli delivery pipeline . 79

4.4.5 Hardware-based event synchronization 82

4.5 Markers, commands, annotations and feedbacks 82

4.6 Latency analysis and event marker synchronization 85

4.7 Close the loop and Neurofeedback 86

4.8 Summary and discussion . 86

5 Final remarks 89

5.1 Conclusions and discussion . 89

5.2 Future work . 90

5.3 Academic products . 91

5.3.1 Journal papers . 91

5.3.2 Patents . 91

5.3.3 Software registers . 92

xx Contents

Appendix A Python: Systemd service 93

Appendix B Python: Qt-Material 97

Appendix C Python: Matplotlib-FigureStream 107

Appendix D Python/Brython: Radiant framework 111

Appendix E Database: Motor imagery 117

Appendix F Database: Visuospatial workingmemory - Change detection task123

Appendix G Paradigm: Reward stop signal task (RSST) 127

Bibliography 130

LIST OF FIGURES

1-1 Thesis contribution . 2

1-2 Thesis contribution . 17

2-1 Drivers architecture . 22

2-2 OpenBCI Cyton data block deserialization 31

3-1 Raw signal for the lead-off configuration. 43

3-2 Filtered signal for the lead-off configuration. 43

3-3 Real-time impedance measurement of a 10 KOhm potentiometer. . . 46

3-4 Latencies for 100 samples block size and 1000 SPS. 47

3-5 Latency vs Block size . 48

3-6 Sampling lost detection . 50

3-7 Bad markers detection . 50

3-8 Trials remaining after to remove trials with ’BAD’ markers 51

3-9 Sampling rate analysis after remove bad markers. 52

4-1 BCI-Framework: Extensions panel 59

4-2 BCI-Framework: integrated development environment 60

4-3 Kafka transformer . 61

4-4 kafka consumer . 67

4-5 Stimuli delivery interface . 70

4-6 Brython Radiant: Typography . 72

xxii LIST OF FIGURES

4-7 Brython Radiant: Buttons . 73

4-8 Brython Radiant: Switch . 74

4-9 Brython Radiant: Checkbox . 74

4-10 Brython Radiant: Radios . 75

4-11 Brython Radiant: Select . 76

4-12 Brython Radiant: Slider . 77

4-13 Stimuli delivery pipeline . 82

4-14 BCI-Framework: Marker synchronization 85

B-1 light_cyan_500.xml theme for Qt-Material 98

B-2 QPushButtons stylized with class property. 101

B-3 QPushButtons stylized with user defined class property. 102

E-1 Motor imagery (MI) paradigm implementation with markers

indicators. 118

E-2 MI stimuli delivery interface with arrow cues. 119

E-3 MI stimuli delivery interface with pacman-base cues. 120

E-4 MI with intentional detection. 121

E-5 MI with nonintentional stimulus. 122

F-1 Visuospatial Working Memory (VWM) paradigm implementation

with markers indicators. 124

F-2 VWM stimuli delivery interface. 125

F-3 VWM neurofeedback dash board. 126

G-1 Reward Stop Signal Task (RSST) stimuli delivery dashboard. 129

LIST OF TABLES

1-1 Popular acquisition devices used for BCI systems. 8

1-2 OpenBCI Cyton configurations using Daisy expansion board andWi-

Fi shield. 11

1-3 Most widely used software for implementing BCI systems. 13

2-1 Distribution of the 33-byte of binary package that contain a single

array of 8 channels and the auxiliary data. 23

2-2 The type of auxiliar data based on the 33-byte of the binary pakage. 24

2-3 If the 33-byte is 0xc3 or 0xc4 the byte 26 define the component of
accelerometer value coded in the byte 27. 24

2-4 OpenBCI Cyton default booting configuration. 27

2-5 EEG data distribution, values are 24-bit signed, MSB first. 29

2-6 EEG data package format for 16 channels. 30

2-7 Acquisition drivers for OpenBCI, at the moment BrainFlow and

OpenBCI Stream are the only drivers that support OpenBCI Cython

acquisition board. The focus of the first one is to support

acquisition and keep the compatibility across different hardware,

OpenBCI Stream serve a configurable system suitable for

development and research. 34

xxiv LIST OF TABLES

3-1 Latencies comparison, the latency has been expressed in terms of

percentage of the block size to make the possible the comparison

between different systems configurations. 49

B-1 Environ variables defined by Qt-Material. 100

ABBREVIATIONS

ADC analog-to-digital converter 42

API application programming interface xviii, 26, 55, 59, 87, 90

BCI brain-computer interface ix–xi, xiii–xv, xvii, xviii, 1–7, 9–16, 18, 26, 32, 55, 56, 86, 90,
118

CLI command-line interface 21, 26

ECG electrocardiography 10, 18, 89

EEG electroencephalography ix, xiii, 2–4, 6, 7, 10, 15, 16, 18, 25, 61, 89

EMG electromyography 10, 18, 89

ERP event-related potential 6, 65

FFT Fast Fourier transform 61

FPGA field-programmable gate array 15

GUI graphical user interface x, xv, 5, 56

HDF hierarchical data format 32, 33

IDE integrated development environment 16

JSON JavaScript object notation 28

xxvi Abbreviations

LDR light-dependent resistor 85

MI Motor imagery xxii, 117–122

MQTT message queue telemetry transport 26

RPyC remote Python call 21, 40, 41, 52

RSST Reward Stop Signal Task xxii, 129

RTP real-time protocol 41

SBC single-board computer 16, 41

SDK software development kit ix, xi, xiii, xv, 5, 7, 22, 27

SPRG Signal Processing and Recognition Group 3, 91

SPS samples per second 10, 26, 41

TCP transmission control protocol 10, 23, 26

UX user experience 22

VWM Visuospatial Working Memory xxii, 123–126

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

A brain-computer interface (BCI) is a hardware and software communication

system that enables cerebral activity alone to control computers and external

devices [1]. The widespread use of neurophysiological signals to develop BCI

systems has certainly varied clinical and non-clinical applications. Main

implementations in medical issues include rehabilitation, cognitive state analysis,

diagnostics, and assistive devices for communication, locomotion, or movement.

On the other hand, there is significant research that approaches the BCI systems to

healthy people in fields like neuroergonomics [2], smart homes [3],

neuromarketing and advertising [4], games [5], education [6], entertainment [7],

security and validation [8].

In order to connect the brain to external devices, two types of brain activities can

be monitored: electrophysiological and hemodynamics. Electrochemical

2 Introduction

Cerebral activity External devicesBCI system

Figure 1-1. The purposed aims in this works contribute with the implementation of a
integral application, beyond that, the synergy between this characteristic allow
the achievement of advance features that merge the acquisition with the stimuli
delivery in a flexible development environment.

transmitters exchanging information between the neurons generate the

electrophysiological signals [9]; electroencephalography (EEG),

electrocorticography, magnetoencephalography, and electrical signal acquisition in

single neurons are the techniques used to measure these activities. The

hemodynamics response is a process in which the blood releases glucose to active

neurons [10]; neuroimaging methods can quantify these changes, such as

functional magnetic resonance and near-infrared spectroscopy. Yet, EEG is the

most common method to get relevant information from the brain activity in BCIs

systems, due to its high temporal resolution, relatively low cost, high portability,

and few risks to the users [11]. Figure 1-1 shows how a BCI system works like a

brain transducer.

However, although BCI systems could require high demanding computational

resources [12], it is possible to build a capable system that works with EEG,

skin-surface electrodes, and low-cost embedded acquisition devices. Furthermore,

using free software and open-source resources, with the correct selection and

integration of these components and focusing on the improvement of the signal

acquisition, may consequently achieve clinical validation, effective dissemination

models, and probably most importantly, increased reliability. Then, BCIs aim to

become an important new technology for people with disabilities and, possibly,

the general population [13].

1.1 Motivation 3

In a local context, the Signal Processing and Recognition Group (SPRG) of the

Universidad Nacional de Colombia have been working on the analysis of

neurophysiological data to propose and develop machine learning methodologies

for the assisted diagnosis of mental conditions [14, 15], automated analysis of

human activity recognition [16], and biomedical data analysis [17]. More recently,

SPRG have shown an interest in working with their own databases instead of using

public domain ones in a variety of research projects (supported by Minciencias,

Dirección Nacional de Investigaciones de Manizales (DIMA), and Vicerrectoría de

Investigaciones de la Universidad Nacional de Colombia):

• Herramienta de apoyo al diagnóstico del TDAH en niños a partir de múltiples

características de actividad eléctrica cerebral desde registros EEG.

• Desarrollo de un sistema integrado de monitoreo de actividad cerebral a

partir de registros EEG en pacientes bajo anestesia general para ambientes

quirúrgicos.

• Prototipo de interfaz cerebro-computador de bajo costo para la detección de

patrones relevantes de actividad eléctrica cerebral relacionados con TDAH.

• Prototipo de interfaz cerebro-computador multimodal para la detección de

patrones relevantes relacionados con trastornos de impulsividad.

• Interfaz cerebro-computador basada en aprendizaje de máquina y teoría de

información como soporte a la detección de trastornos de déficit de atención

e hiperactividad.

• Brain Music: Prototipo de interfaz interactiva para generación de piezas

musicales basado en respuestas eléctricas cerebrales y técnicas de

composición atonal.

The achievement of an independent BCI software with an environment for

developers and researchers that integrates an interface to design their custom

visualization and neurophysiological experiments, which also handles the signals

acquisition, synchronizes markers, and automatically creates ready-to-use

databases, would comprise a very useful tool for the SPRG. It would also greatly

simplify the testing and designing of BCI systems, guarantee better repeatability,

reduce failure points, and speed up the debugging process.

4 Introduction

1.2 Problem statement

Implementing a BCI system is an interdisciplinary activity that demands specific

and outstanding knowledge about communication systems, signals acquisition,

instrumentation, clinical protocols, experiment validation, and software

development [18]. A BCI software that functions properly can be easily adapted to

different experimental situations and can facilitate the operation of entire research

programs rather than the execution of an individual study. Therefore, the premise

of existing open-source or commercial BCI software is to reduce this complexity,

difficulty, and cost [19].

Including “open” components increases the technology acceptance [20], reduces

costs, enables collaborative development, and impulses a community working

around BCI to extend this machinery for the general population [13]. The main

issues about BCI development systems lie around (i) the EEG acquisition system

used for BCI differs from standard or medical implementations. (ii) The specialized

software is hard to modify according to specific needs, and (iii) the highly

variational computational cost leads to the development of unstable and

difficult-to-scale applications.

1.2.1 Acquisition system requirements

Not all EEG acquisition systems are capable of using BCIs systems. Even if the

clinic devices are highly accurate, these implementations have limited, or

nonexistent, real-time data flow access; due to their primary use being diagnostic

and offline analysis [21]. Overall, low-cost EEG headsets show greater design

convenience, as the portability, for “real world” occupational use and capabilities

to handle BCI tasks with varying degrees of success [22]. However, open-source

software and occupational refinement may boost the potential of these systems.

1.2 Problem statement 5

Besides, there exists a need to implement a context-specific development to

improve their base features [23].

As shown in Table 1-1, there is a complete set of devices, but only one of the listed

hardware is “open-source”; therefore, its freedom makes it possible to modify the

hardware and also access the firmware. Then, with all these options, it is possible

and needed to develop custom drivers with high-level interactions. Even if the

OpenBCI is the most featured option, the communication between the computer

and the board is not always stable [24], and their graphical user interface (GUI)

does not provide the possibility of acquiring data under a particular BCI paradigm.

Otherwise, their hardware base and software development kit (SDK) features give

this board an enormous potential to implement a complete BCI system comparable

to medical-grade equipment [25].

1.2.2 BCI software development issues

As for the software capable of handling BCI implementation, a few of them are

independent, but in almost all cases, at least a couple is needed to perform a

complete BCI paradigm. Some will perform only acquisition, others will include

data processing, and a few will have stimuli delivered integrated with the main

interface [26]. The main reason to use over one software is that many of these

tools, even when they can be helpful, are not strictly for BCI but behavioral

sciences, neuroscience, psychology, psychophysics, or linguistics.

Proprietary software compromises the extensibility1 of its tools by limiting data

transmission protocols or creating a close list of compatible hardware [27, 28, 29].

Although all these software offer greater ease of use through experimenter

interfaces, they can be costly. The open-source options still require high-level

programming and technical skills, and usually, no one supports dedicated data

acquisition [19].

1Extensibility is the ability of the software system to allow and accept the significant extension of
its capabilities without major rewriting of code or changes in its basic architecture.

6 Introduction

1.2.3 Computational cost

The three most important tasks of a BCI system are signal acquisition, feature

extraction and classification, and command translation or mapping [30]. These

tasks demand a high-performance computer running many processes under

non-real-time operating systems. Distributing those three highly CPU resources

consuming processes in a distributed system will reduce the computing

complexity of a BCI framework, thus increasing the reliability of overall system

performance [30]. In a standard EEG-based medical experiment, there are at least

three components of data abstraction working simultaneously: data acquisition,

signal database, and signal visualization [31, 32]. But in a close-loop BCI system, at

least seven main components are required to be synchronized: data acquisition,

signals database/storage, feature processing (extraction and classification),

visualization (temporal or spatial), command generation for actuators, command

database, and feedback acquisition [30].

BCI systems usually do not run under a real-time operating system which means

that the use of the resources will affect each component of the system. Some

paradigms in the event-related potential event-related potential (ERP) need high

precision for marker synchronization. For this purpose, the latency must be not

only at low levels but also with small variabilities. This additional measure is

called jitter. Both tell about the stability of a system and the capacity to handle

more processes. Under some environments like the researching, centralized

systems are susceptible to being slow down because of unexpected processing

costs [33, 34].

Therefore, some problems related to the agile acquisition of EEG signals under

multiple paradigms remain unsolved. For this reason, the following research

question arises: how to develop an independent EEG-based BCI monitoring

framework that integrates real-time acquisition and visualization from audiovisual

stimulation paradigms using OpenBCI?

1.3 State-of-the-art BCI systems 7

1.3 State-of-the-art BCI systems

1.3.1 BCI hardware

Recently, and because of the cheapening prototyping development, a set of

low-cost embedded systems for EEG acquisition has appeared in the market. All

these options typically include an SDK which could be open-source or proprietary:

this embedded device commonly adds some flexibility (rigid or customizable

electrode placement, multiple sampling rates, transmission protocols, wireless,

among others).

Many EEG acquisition systems have been developed in recent years; however, to

name only the most significant ones, a selection criterion was taken into account

to compare: portable devices that are still available in the market with a stable and

substantial base of active users.

Montages and electrodes placement

Table 1-1 compiles the features of the most relevant acquisition systems.

Regarding electrode placement, devices with rigid placements are related to simple

neurophysiological activities like concentration, drowsiness, stress, and

Approach-Withdrawal pleasantness. In most cases, a task that only needs

booleans or low-frequency data transmission is provided: these systems will not

return the raw EEG data, but will return trends for only a few channels (InteraXon

Inc. Muse2, IMEC EEG Headset3, or NeuroSky Mind Wave4). Other devices concentrate

their distributions in the sensory-motor brain areas to perform motor-imagery

tasks (Emotive EPOC+5 or B-Alert x106). Portable devices usually support wireless

2https://choosemuse.com/
3https://www.imec-int.com/en/eeg
4https://store.neurosky.com/pages/mindwave
5https://www.emotiv.com/epoc/
6https://www.advancedbrainmonitoring.com/products/b-alert-x10

https://choosemuse.com/
https://www.imec-int.com/en/eeg
https://store.neurosky.com/pages/mindwave
https://www.emotiv.com/epoc/
https://www.advancedbrainmonitoring.com/products/b-alert-x10

8 Introduction

BCI hardware Electrode types Channels
Protocol and
Data transfer

Sampling rate
Open

hardware

Enobio Flexible / Wet 8, 20, 32 BLE 250 Hz No

q.DSI 10/20 Flexible / Dry 21 BLE 250 Hz - 900 Hz No

NeXus-32 Flexible / Wet 21 BLE 2.048 KHz No

IMEC EEG Headset Rigid / Dry 8 BLE ???? No

InteraXon Inc. Muse Rigid / Dry 5 BLE 220 Hz No

Emotive EPOC+ Rigid / Wet 14 RF 128 Hz No

Cognionic CGXMOBILE Flexible / Dry 72, 128 BLE 500 Hz No

Biosemi ActiveTwo Flexible / Wet 256 USB 2 KHz - 16 KHz No

actiCAP slim/snap
Flexible / Wet /

Dry
16 USB 2 KHz - 20 KHz No

NeuroSky MindWave Rigid / Dry 1 RF 250 Hz No

Cognionic Quick-20 Rigid / Dry 28 BLE 262 Hz No

B-Alert x10 Rigid / Wet 9 BLE 256 Hz No

OpenBCI
Flexible / Wet /

Dry
8, 16 RF/BLE/Wi-Fi 250 Hz - 16 KHz Yes

Table 1-1. Popular acquisition devices used for BCI systems.

1.3 State-of-the-art BCI systems 9

data transmission, Bluetooth (Enobio7, q.DSI 10/208, NeXus-329, Cognionic CGX

MOBILE10), radiofrequency, or Wi-Fi. Only the wired and the Wi-Fi ones are

capable of handling data transmission over 1 kHz. These kinds of transmissions

are also associated with a large number of channels (OpenBCI11, Cognionic

Quick-2012, ActiCap13 or Biosemi ActiveTwo14).

It is possible to conclude that, even if the rigid electrode placements can be used

for some BCI experiments, the flexible electrode placement is the best option for

general BCI. Also, devices that do not include a universal electrode attachment

provide standard montages, like the 10-20 one, and additionally, wired systems

are related to high electrode density. Lastly, few “open” devices show success in

the market.

Licensing and freedoms

Licensing is one of the most important features when considering the inclusion of

hardware in a real environment. There are mainly three options: first, close

hardware with close restrictive licenses; in these cases, the developments can not

be redistributed, commercialized, or even shared for repeatability experiments [].

Second, close hardware with open licenses, which allows developers to build,

modify and share a complete acquisition system []. Finally, and similar to the

second case, a device that can be completely open means that there are no

restrictions on the development, and all builds, configurations, and modifications

can be shared.

So, a real-world solution generally includes “open” components to increase the

technology acceptance [35, 36], reduce costs, enable collaborative development,

7https://www.neuroelectrics.com/solutions/enobio
8http://www.quasarusa.com/productsdsi.htm
9https://www.biofeedback-tech.com/nexus-32
10https://www.cgxsystems.com/mobile-128
11https://openbci.caom/
12https://www.cgxsystems.com/quick-20m
13https://brainvision.com/products/acticap-slim-acticap-snap
14https://www.biosemi.com/products.htm

https://www.neuroelectrics.com/solutions/enobio
http://www.quasarusa.com/products_dsi.htm
https://www.biofeedback-tech.com/nexus-32
https://www.cgxsystems.com/mobile-128
https://openbci.caom/
https://www.cgxsystems.com/quick-20m
https://brainvision.com/products/acticap-slim-acticap-snap
https://www.biosemi.com/products.htm

10 Introduction

and impulses a community working around BCI to extend this machinery for the

general population [13].

OpenBCI acquisition system

On the open-source hardware side, we can find that OpenBCI is one of the most

flexible options [37]. This board not only works with EEG but is also suitable for

electromyography (EMG) and electrocardiography (ECG). The OpenBCI Cyton15

biosensing board comprises a PIC32MX250F128B microcontroller, a ChipKIT

UDB32-MX2-DIP bootloader, a LIS3DH 3-axis accelerometer, and an ADS1299

analog-to-digital converter with 8 input channels (expandable to 16) up to a

sampling rate of 16 kHz. Notably, EEG channels can be configured as monopolar

and bipolar (and, consequently, sequentially) with up to five external digital inputs

and three analog inputs. Also, the data flow is accessible through a Wi-Fi interface

using transmission control protocol (TCP).

Table 1-2 summarizes OpenBCI main configurations. RFduino, by default, supports

250 samples per second (SPS) and 8 channels, but with the Daisy addition, it can

expand up to 16 channels, and, with the Wi-Fi shield, the sample rate can increase

up to 16 kHz. All channels can be configured as monopolar, bipolar, and sequential.

The OpenBCI Cyton board used to have Python-compatible drivers16, but now these

are deprecated in favor of a new family of drivers board agnostic, BrainFlow17. The

main reason to develop board-first drivers resides in taking advantage of all low-

level features and integrating them into the final drivers through high-level board

configurations.

15https://openbci.com/
16https://github.com/openbci-archive/OpenBCI_Python
17https://brainflow.org/

https://openbci.com/
https://github.com/openbci-archive/OpenBCI_Python
https://brainflow.org/

1.3 State-of-the-art BCI systems 11

OpenBCI Cyton Channels
Digital
inputs

Analog
inputs

Max sample rate Featured protocol

RFduino 8 5 3 250 Hz Serial

RFduino + Daisy 16 5 3 250 Hz Serial

RFduino +Wi-Fi shield 8 2 1 16 KHz TCP (over Wi-Fi)

RFduino +Wi-Fi shield + Daisy 16 2 1 8 KHz TCP (over Wi-Fi)

Table 1-2. OpenBCI Cyton configurations using Daisy expansion board and Wi-Fi shield.

1.3.2 BCI software

Acquiring brain signals is only one task for a BCI system. It is also necessary to carry

out a lot of data processing and controlled experiments. Therefore, a specialized

software segment persists for developers and researchers that offer tools for this or

similar purposes. In this case, non-BCI software refers to tools that are not designed

for BCI environments, but integrate features that they can also use, usually related

to neuroscience in general. Conversely, there is a set of applications that integrate

useful features for BCI, such as data processing and, sometimes, close-loops.

Table 1-3 summarizes the most common systems used for BCI where we can see

four big groups: (i) the ones with stimuli delivery and data analysis are designed

for close loops like BCI200018 OpenViBE19 and Neurobehavioral Systems Presentation20;

(ii) others have the same features, but their implementation is not focused on

closing the loop like ePrime21, OpenSesame22, and g.BCISYS23; (iii) and a few of them

18https://www.bci2000.org/
19http://openvibe.inria.fr/
20https://www.neurobs.com/
21https://pstnet.com/products/e-prime/
22https://osdoc.cogsci.nl/
23https://www.gtec.at/product/bcisystem/

https://www.bci2000.org/
http://openvibe.inria.fr/
https://www.neurobs.com/
https://pstnet.com/products/e-prime/
https://osdoc.cogsci.nl/
https://www.gtec.at/product/bcisystem/

12 Introduction

that only include data analysis, typically the Matlab toolboxes like EEGLAB24 and

FieldTrip25; (iv) some neuropsychology tools, since this is a precision task, only

have in their interfaces a stimuli delivery like Millisecond Inquisit Lab26

Pychotoolbox-327, MonkeyLogic28, and PychoPy29. Additionally, there exist multiple

tools that are not mentioned here, except OpenBCI GUI30, which like this one, only

works as a demo interface for their main hardware products.

All previous systems have two additional features that share no relation with the

main groups of focused users or the final implementation: the extensibility, the

ability to create, modify and run custom experiments instead of the included by

default, and the license distribution. However, these features are related to them.

Free (as in freedom) licenses usually give the user the tools to not only configure

but rebuild the software itself. A system that does not offer the user the capability

for extensibility is generally a proprietary one.

Non-BCI related software

For the caseswhere extensibility is a needed feature, some BCI implementation uses

a set of applications simultaneously. Diverse psychology software can generate a

stimulus to use in BCI paradigms; certainly, there are really fast and precise tools in

this field, with graphical interfaces for easy design of experiments and audiovisual

stimulation. Additionally, other types of software can be used to process data in

real-time, which can be done through a private scripting interface, toolboxes, or

libraries. Also, some programming languages like Matlab [38, 39] and Python [40]

host dedicated environments to handle the processing necessary for BCI.

24https://sccn.ucsd.edu/eeglab/index.php
25https://www.fieldtriptoolbox.org/
26https://www.millisecond.com/products/inquisit6/laboverview.aspx
27http://psychtoolbox.org/
28https://www.brown.edu/Research/monkeylogic/
29https://www.psychopy.org/
30https://github.com/OpenBCI/OpenBCIGUI

https://sccn.ucsd.edu/eeglab/index.php
https://www.fieldtriptoolbox.org/
https://www.millisecond.com/products/inquisit6/laboverview.aspx
http://psychtoolbox.org/
https://www.brown.edu/Research/monkeylogic/
https://www.psychopy.org/
https://github.com/OpenBCI/OpenBCI_GUI

1.3 State-of-the-art BCI systems 13

BCI software
Stimuli
delivery

Devices Data analysis
For

close-loop
Extensibility License

BCI2000 Yes A large set In software Yes yes GPL

OpenViBE Yes A large set In software Yes Yes AGPL-3

Neurobehavioral
Systems
Presentation

Yes Has official list In software Yes Yes Proprietary

Psychology
Software Tools,
Inc. ePrime

Yes
Proprietary
devices only

In software No Yes Proprietary

EEGLAB No
Determined by

Matlab
System Matlab No - Proprietary

PsychoPy Yes NO NO No Yes GPL

FieldTrip No NO System Matlab No Yes GPL

Millisecond
Inquisit Lab

Yes
Serial and

parallel devices
NO No No Proprietary

Psychtoolbox-3 Yes
Determined by
Matlab and
Octave

NO No - MIT

OpenSesame Yes
Determined by

Python
System Python No Yes GPL

MonkeyLogic Yes
Determined by

Matlab
NO No No Proprietary

g.BCISYS Yes
Proprietary
devices only

System Matlab No No Proprietary

OpenBCI No
Proprietary
devices only

No No Yes MIT

Table 1-3. Most widely used software for implementing BCI systems.

14 Introduction

BCI as an independent software

An independent software comprises the complete process of a BCI

implementation: this goes from data acquisition to real-world command

generation. A delivery feature is also included in its interfaces, regardless of

whether the focus is on research or production; usually, these systems do not

include the interpretation of commands in the real world and depend on

third-party systems for the markers synchronization. It is also common that the

interface for the acquisition is a part of the stimuli delivery. On the other hand,

there are a few tools designed specifically for BCI, like BCI2000 [41] and OpenViBE

[42], which are available under permissive licenses and have an active community

of developers and users working with both of them. It is then up to the

community to manage the incorporation of new acquisition systems and custom

paradigms, even if the main interface does not support extensibility.

The most popular tool focused on BCI is BCI200 which comes with default

paradigms; however, it has been pointed out that its interface is not very intuitive

and its operation is difficult to understand initially [43], and although it is possible

to add new paradigms, this one must include software contributions using their

own libraries and not through a built-int development interface. Another software

widely used is OpenViBE, which features a graphical drag-and-drop interface to

perform data analysis with an extensive set of pre-defined algorithms;

nevertheless, its synchronous acquisition system is known for occasionally

freezing the computer and adding delays to the signal streaming [24]. It is easy to

point out that high-level tools require a lot of computational resources.

Marker synchronization

For both cases, BCI and non-BCI implementations, the data acquisition requires to

be synchronized with the stimuli delivery. Multiple techniques are described [44]

to make these measures in the instances where it is possible. In most cases,

specialized laboratory equipment is necessary [45, 46] to calculate latencies and

1.3 State-of-the-art BCI systems 15

make corrections offline. This approach satisfies the database generations, and for

real-time analysis, the system must be calibrated with a previously measured

latency. This measurement is not constant and will depend on the operating

system and may even be correlated with processing techniques, so the protocol to

measure latencies must be executed after minimal system changes. Other options

include creating control signals [47] and performing corrections in real-time. This

choice will only work on systems that can acquire external signals in conjunction

with the EEG channels.

1.3.3 Real-time and computational cost handling

At present, most existing systems use a high-quality algorithm to train the data

offline and run only the classification in real-time, so much work has been done to

reduce the computational cost for processing signals to use in BCI [48, 49]. A

constant discussion turns around the computational cost vs. accuracy [50]

because, along with new processors, new costly analysis techniques also emerge.

Therefore, low-cost computational methods are always an aim [51].

Offline analysis may not represent significant challenges unless the amount of data

to process is high. Although cloud-based strategies (e.g., NeuroCAAS [52]) are

practical, they are not suitable for the real-time requirement of the BCI systems.

Real-time processing of large neural data streams has become workable thanks to

advances in computer processing power, electronics such as microprocessors and

field-programmable gate arrays (FPGAs), and specialized and open-source software

[53]. In the neuroscience field, RTBiomanager [54] was designed to explore the use

of real-time technology to build a set of novel experiments that combine different

recording and stimulation techniques. In a similar context, purposes like RTHybrid

[55] are not only efforts on real-time stimuli delivery precision but also

standardization methods.

16 Introduction

All tools for real-time computational in the field of neuroscience and BCI are focused

on the processing instead of the acquisition, themain reason is due the separation of

the specialized software. Other approaches to improve the processing are related

with the optimisation instead of the distributed computing. Then, is required a

framework that allows the flexible implementation of distribute computing, for the

design and the development of BCI systems.

1.4 Aims

1.4.1 General aim

To develop an EEG-based BCI monitoring framework with real-time acquisition

and visualization for audiovisual stimulation paradigms using OpenBCI, focused on

designing, performing, and validating BCI systems to conduct experiments in all

stages: design, testing, and production.

1.4.2 Specific aims

• To implement a cross-platform library for OpenBCI hardware that allows

distributed functionalities, low-level board configurations, an acquisition

protocol, data storage, and external inputs handler.

• To implement a distributed computing paradigm that allows managing

acquisition boards, acquiring EEG signals through a network, synchronizing

markers, measuring latencies, and delivering stimuli experiments into a

decentralized environment using a single-board computer (SBC) scheme.

• To develop an independent interface with an integrated development

environment (IDE) featured to configure the acquisition system, design

real-time visualizations, execute timelock analysis, and perform stimuli

delivery.

1.5 Outline and contributions 17

1.5 Outline and contributions

In the following, we briefly introduce the main contributions of this thesis. They

are summarized in Figure 1-2

Figure 1-2. The purposed aims in this works contribute with the implementation of a
integral application, beyond that, the synergy between this characteristic allow
the achievement of advance features that merge the acquisition with the stimuli
delivery in a flexible development environment.

A complete source code for the drivers OpenBCI-Stream31 and BCI-Framework32 are

available in the public research group repository.

1.5.1 High-level acquisition drivers for OpenBCI

OpenBCI Cyton is the most promising hardware to implement signals acquisition

due to its low-level features and open-source design. However, it is significantly

lacking in drivers, there are no dedicated tools to handle acquisition signals, and

the current approach does not take advantage of all hardware capabilities. A

31https://github.com/UN-GCPDS/openbci-stream
32https://github.com/UN-GCPDS/bci-framework

https://github.com/UN-GCPDS/openbci-stream
https://github.com/UN-GCPDS/bci-framework

18 Introduction

qualified and research-grade tool for BCI implementations must gather a set of

features related to the quality of the signal and the reliability of the data acquired;

this can be done by implementing subroutines such as impedance measurement

and marker synchronization, respectively.

Bearing this in mind, we proposed to develop OpenBCI-Stream, a high-level Python

module for EEG/EMG/ECG acquisition, and distributed streaming for OpenBCI Cyton

boards. This development is related to the first specific aim, and it is described in

Chapter 2.

1.5.2 Distributed implementation

The proposed acquisition system is susceptible to be affected by the

computational environment, this can affect the sampling and the real-time desired

feature. Research environs needs that the computational cost of the data

processing not affect the performance of neurophysiological experiments itself. To

mitigate this issues, the implementation of the developed system use distributed

computing approaches to facilitate the escalation and the integration with custom

and third party systems.

Chapter 3 exposes the methods and resources used to built the distributed features

alongside a definition of real-time used in this work, also an analysis to measure and

compare latencies has been performed for some common acquisition configurations

with OpenBCI.

1.5.3 BCI-Framework

The effectiveness of a BCI system, and the ability of users to learn to use it, depends

on the system’s ability to acquire and process signals, present stimuli in real-time,

1.6 Thesis structure 19

and provide the user with consistent feedback with low latency and minimal jitter

[44].

Chapter 4 presents BCI-Framework, this is the top-level software that integrates all

the components developed in this work. Defines a new integrated approach to

works with BCI systems, establish a dynamic and fast method to design custom

paradigms, and generate visualizations. Serve to the user a clean development

environment with all parameters and the data stream ready to use.

1.6 Thesis structure

The next parts of this thesis is organized as follows. In Chapter 2 we introduce a

brand new drivers for OpenBCI that integrates a full features to handle the

acquisition board through a Python API implementation. Chapter 3 implements

the mentioned drivers under a distributed paradigm for board configuration and

data acquisition. Also a set of experiments to measure the latency and

performance has been included. Finally, in Chapter 4 all components developed

were integrated into a single GUI software called BCI-Framework that also serve a

development environment than can be used to design and build custom real-time

visualizations and neurophysiological experiments.

CHAPTER

TWO

HIGH-LEVEL ACQUISITION DRIVERS FOR OPENBCI

This chapter exposes the design and development of a driver that comprises a set

of scripts that deal with the configuration and connection with the board and is

also compatible with both connection modes supported by OpenBCI Cyton: the

default RFduino (through serial dongle) and Wi-Fi (with the OpenBCI Wi-Fi Shield).

The drivers are a stand-alone library that can access the acquisition board from

three different endpoints: (i) a command-line interface (CLI) that serves simple

instructions to configure, start and stop data acquisition, debug stream status, and

register events markers; (ii) a Python Module with high-level instructions and

asynchronous acquisition; (iii) a remote object-proxying that uses Remote Python

call (RPyC) for distributed implementations.

22 High-level acquisition drivers for OpenBCI

Figure 2-1. Drivers architecture

2.1 Drivers architecture

A full-featured driver for OpenBCI Cyton will need solid basic features related to a

high-level board configuration, acquisition protocol, and external inputs handler.

These three components are essential for developing generic tasks that almost all

BCI systems must implement as impedance measurement, markers

synchronization, and data storage, to mention a few. Additionally, the integration

of components like flexibility, scalability, and a well-designed user experience (UX)

that lets the user focus on the data stream manipulation and consumption, rather

than the acquisition and connection, would impact positively on the development

of custom implementation that satisfies specific requirements. To achieve this, it

must take full advantage of the current and official SDK1 distributed by OpenBCI.

2.1.1 OpenBCI SDK

The Cyton board is based on an ADS1299, a 24-bit analog-to-digital converter

designed by Texas Instruments for bio-potential measurements. OpenBCI has built

its acquisition system over a ChipKIT development board with their respective

firmware. The SDK defines an instruction set based on Unicode character exchange,

1docs.openbci.com/Cyton/CytonSDK/

https://docs.openbci.com/Cyton/CytonSDK/

2.1 Drivers architecture 23

Byte index Description

[0] Header, always 0xa0

[1] Sample number

[2:26) EEG data, values are 24-bit signed, MSB first

[26:32) Aux data

[32] Footer, 0xcX where X is 0-F in hex

Table 2-1. Distribution of the 33-byte of binary package that contain a single array of 8
channels and the auxiliary data.

e. g., to turn on channel 1, character ’1’ (equivalent to the integer 49) must be
sent, and to turn it off, character ’!’ (equivalent to the integer 33). This instruction

set adds additional commands over Wi-Fi mode. The protocols that implement this

command-based intercommunication with the board are serial for the USB dongle

and TCP for the Wi-Fi interface. Additionally, some commands for the Wi-Fi

module are sent to the board through plain HTTP protocol.

The main firmware version used is later than v3.0.0, but it is known that the

impedance measurement does not work correctly on this version, and although

there is a pull request that solves this issue2, the OpenBCI team has done nothing

about it. It is possible to use official versions, but the board must be reset every

time before the impedance measurement and never change the sampling

frequency on run-time; this is the only firmware-level modification, optional but

recommended, to use the developed drivers.

Data formats

The type of data to send to the acquisition board is Unicode only; however, the

board has three types of responses: Unicode, human-readable strings, and binary.

2https://github.com/OpenBCI/OpenBCICytonLibrary/pull/95

https://github.com/OpenBCI/OpenBCI_Cyton_Library/pull/95

24 High-level acquisition drivers for OpenBCI

Footer
byte [33]

Byte 26 Byte 27 Byte 28 Byte 29 Byte 30 Byte 31 Description

0xc0 AX1 AX0 AY1 AY0 AZ1 AZ0 Standar with accel

0xc1 UDF UDF UDF UDF UDF UDF Standar with raw aux

0xc2 UDF UDF UDF UDF UDF UDF User defined

0xc3 AC AV T3 T2 T1 T0 Timestamp set with accel

0xc4 AC AV T3 T2 T1 T0 Timestamp with accel

0xc5 UDF UDF T3 T2 T1 T0 Timestamp set with raw aux

0xc6 UDF UDF T3 T2 T1 T0 Timestamp with raw aux

Table 2-2. The type of auxiliar data based on the 33-byte of the binary pakage.

Byte 26 Byte 27

0x58 AX1

0x78 AX0

0x59 AY1

0x79 AY0

0x5a AZ1

0x7a AZ0

Table 2-3. If the 33-byte is 0xc3 or 0xc4 the byte 26 define the component of accelerometer
value coded in the byte 27.

2.1 Drivers architecture 25

There are no issues about the human-readable strings, but there are usually errors

and generic responses to commands. The responses on Unicode are for internal

registers, i. e., responses that use the same Unicode command to report the actual

configuration. The data stream, the package that contains the EEG time series along

with the auxiliary data, uses a binary format of 33 bytes.

Table 2-1 shows the distribution of these 33 bytes. The header byte defines the

start of the sequence, which is always 0xa0. The second one is an incremental byte
from 0x00 - 0xff. The third set of 24 bytes contains the value for 8 channels in
24-bit signed format. The fourth set of 6 bytes encodes the auxiliary data. Finally,

the footer byte defines the type of auxiliary data streamed. Table 2-2 describes the

type of data that the auxiliary data could contain: they are basically accelerometers,

external raw inputs, and timestamps. For the case where the timestamp is merged

with accelerometer data, Table 2-3 defines the codification mode, when, and where

to find the acceleration value.

The streaming uses different data formats to package the information, 24-bit

signed for EEG data, 16-bit signed for accelerometer data, and 32-bit unsigned for

timestamps.

2.1.2 Board interface

The board interface refers to the physical way and the protocol used to configure

the board and how the data stream is accessed. OpenBCI supports two interfaces:

Serial and Wi-Fi.

Serial setup

The default connection for OpenBCI is called serial because the computer will

recognize the board as a serial device; however, it is wireless since the interface

includes a USB-serial adapter that uses the proprietary RFDuino interface. This

26 High-level acquisition drivers for OpenBCI

interface is a Bluetooth-modified protocol to achieve the highest data rates. Using

this interface, the maximum sample rate for 8 channels is 250. Since the computer

recognizes the board as a serial device, communication is based on simple

read(bytes) and write(bytes) commands.

Wi-Fi interface

It is possible to increase the SPS up to 16k with an additional board, the Wi-Fi

Shield; nevertheless, these rates are not helpful for BCI purposes; instead, the

rates of around 1 or 2 kSPS are easier to handle for the system. Two protocols can

be used over Wi-Fi, Message queue telemetry transport (MQTT) and TCP. For

simplicity, the TCP was chosen over the other since the MQTT protocol is just a

reimplementation of the TCP one.

2.2 Drivers development

The development of the drivers is entirely in Python and is focused on establishing

three significant bases: the configuration of the board, the data acquisition, and the

external inputs handler.

2.2.1 Application programming interface (API)

The main module is called openbci_stream and has three main submodules:

acquisition, to handle the data stream and the configuration board; daemons, to
automatize the acquisition based on operating system commands; and utils, to
accommodate the utility scripts responsible for CLI, filters, storage, and

visualizations.

The Cyton board is initialized with the default configurations listed in Table 2-4, so

the acquisition can be easily initialized with the following instructions:

2.2 Drivers development 27

Feature Default

Sample rate 250

Gain 24

Input type set ADSINPUT_NORMAL

Bias set Include in BIAS

SRB2 set Connect this input to SRB2

SRB1 set Disconnect all N inputs from SRB1

Channels All on

Table 2-4. OpenBCI Cyton default booting configuration, all channels active on monopolar
configuration.

from openbci_stream.acquisition import Cyton

openbci = Cyton('serial', endpoint='/dev/ttyUSB0', capture_stream=True)
openbci.stream(15) # capture 15 seconds of data
openbci.eeg_time_series # Raw EEG is allocated in this class instance

In this example, we are using the Cyton board over a USB-serial interface. Since one

of the main features of this module is to guarantee real-time acquisition, the full

timestamp of the acquired data is also available on the timestamp_time_series
instance:

openbci.timestamp_time_series # Unix format timestamp

High-level board configurations

A high-level library is obtained through the automatization of low-level commands.

The CytonConstants class collects all SDK definitions into attributes using constant
notation. For example, this is the Unicode used to configure the sample rates:

28 High-level acquisition drivers for OpenBCI

SAMPLE_RATE_16KSPS = b'~0'
SAMPLE_RATE_8KSPS = b'~1'
SAMPLE_RATE_4KSPS = b'~2'
SAMPLE_RATE_2KSPS = b'~3'
SAMPLE_RATE_1KSPS = b'~4'
SAMPLE_RATE_500SPS = b'~5'
SAMPLE_RATE_250SPS = b'~6'

Additionally, the high-level methods use multiple input shapes as valid parameters,

e. g., the CytonBase.command. They also used to write commands into the firmware
and can accept the raw Unicode, the CytonConstants, or the name in string format.
This flexibility is appreciated at the time of implementing high-level interfaces.

>>> CytonBase.command(b'~4')
>>> CytonBase.command(CytonConstants.SAMPLE_RATE_1KSPS)
>>> CytonBase.command('SAMPLE_RATE_1KSPS')

2.2.2 Data acquisition and deserialization

This task must be executed in a separate process to guarantee an efficient

acquisition and, in addition, an optimal data structure based on

multiprocessing.managers.SyncManager.Queue is implemented in this task to

access the data through a different process. Regardless of the interface selected,

serial or Wi-Fi, the data format transmission can be configured as RAW, binary or

formatted, using JavaScript object notation (JSON). The JSON format has the

advantage that the data is already deserialized, but the disadvantage is that the

transmitted packages are variable in size. Conversely, RAW formats fix the

package size problem, but a deserialization process is necessary to access the real

data. This last format was selected because of the fast transmission and the

detection of lost packets.

Table 2-5 shows how, in 24 bytes, the 8 channels of 24-bit signed, each one, are

compressed. This conversion is expensive for Python since there is no native 24-

bit signed format. For 8 channels, the data has no singular conditions, but for 16

2.2 Drivers development 29

EEG data index Description

[2:5) Data value for EEG channel 1

[5:8) Data value for EEG channel 2

[8:11) Data value for EEG channel 3

[11:14) Data value for EEG channel 4

[14:17) Data value for EEG channel 5

[17:20) Data value for EEG channel 6

[20:23) Data value for EEG channel 7

[23:26) Data value for EEG channel 8

Table 2-5. EEG data distribution, values are 24-bit signed, MSB first.

channels, a specific format is implemented to interpret the 16 channels using the

same amount of data transmitted for 8 channels. Table 2-6 describes the process

for unpacking 16 channels for only 8 transmitted at a time. Basically, the Cyton (first

8 channels) and the Daisy (last 8 channels) transmissions are interleaved, and the

empty blocks are completed by the mean of the last two transmissions from the

same board.

After acquiring the binary data, a deserialization process is necessary. This process

consists of converting the bytes to values with physical units, i. e., µV for EEG and

g for acceleration. Once the stream is started, a continuous flow of binary data is

stored in a queue-based data structure. This data is processed to extract the EEG and

the AUX data. A few steps must be implemented to deserialize the binary package:

(i) select a block of binary data, (ii) prepend the offset data to the block, (iii) find

the bytes header (0xa0) and slice the block with this byte as the first element and
the following are 33 bytes (at this point, the data is a list of arrays of maximum 33

elements), (iv) crop the block of binary data to ensure that the length for all elements

is 33, and store the offset data to complete the next block of binary data, (v) create

30 High-level acquisition drivers for OpenBCI

Received Upsampled board data Upsampled daisy data

sample(3) avg[sample(1), sample(3)] sample(2)

sample(4) sample(3) avg[sample(2), sample(4)]

sample(5) avg[sample(3), sample(5)] sample(4)

sample(6) sample(5) avg[sample(4), sample(6)]

sample(7) avg[sample(5), sample(7)] sample(6)

sample(8) sample(7) avg[sample(6), sample(8)]

Table 2-6. EEG data package format for 16 channels.

a matrix of shape (33,N).

Now, the data structure on a shape (33,N) must meet a set of conditions: (i) all
the first columns must contain the 0xa0 value, (ii) the second column must be

incremental, and (iii) the last column must be in format 0xcX, all with the same
value. These conditions are described in Table 2-1. All rows outside of these rules

must be removed. Figure 2-2 shows graphically how a corrupted data set is

cleaned and contextualized to deserialize the main structures.

2.2.3 External inputs acquisition (Boardmodes)

For OpenBCI, it is possible to configure the content of the Auxiliary data, and by

default, it is the accelerometer data; nevertheless, there are different signal types:

digital, analog, ormarker. Inmarkermode, a value can be inserted programmatically

into the time series; and for digital and analog mode, a set of physical input ports

are available to insert signals. The external input acquisition is a significant feature

since the capability to acquire signals alongside the EEG implies that the system can

be used to measure latencies itself [44].

2.2 Drivers development 31

(a) Raw block of binary data with inconsistent bytes and missing ones.

(b) Block of binary data aligned and reshaped.

Figure 2-2. Data deserialization must guarantee the data context to avoid overflow in
subsequent data conversion. The fist block of columns, from 2 to 26, contain
the EEG data and the columns 26 to 32 contain the Auxiliary data.

Programmatically, the boardmode can be changed at runtime through the method

command:

>>> openbci.command(CytonConstants.BOARD_MODE_DEFAULT)
>>> openbci.command(CytonConstants.BOARD_MODE_DEBUG)
>>> openbci.command(CytonConstants.BOARD_MODE_ANALOG)
>>> openbci.command(CytonConstants.BOARD_MODE_MARKER)

Table 1-2 shows the number of analog and digital inputs available for each OpenBCI

configuration. In default mode, the Auxiliary data will contain three-time series,

one for each axis (x,y,z), and for marker mode, a single time series with zeros and
the value of the markers as singular points.

32 High-level acquisition drivers for OpenBCI

2.3 Data storage

The feature of storing acquired data for posterior analysis is fundamental for

research. Feeding the state-of-art with public databases must be considered a

community objective since collaborative efforts have brought BCI systems to the

actual level.

The ideal format for data storage must meet a set of requirements: (i) it must not

be RAM-based since the data appending process must read the packages, and these

must be written to disk at that moment; (ii) must integrate a method to save

metadata information alongside the time series, where this metadata can be used

to describe things like the montage, the experiment, the engineer, and events,

among others; (iii) the reading process must support partial access instead of

allocating the complete archive in RAM; (iv) must be exportable to multiple

formats.

hierarchical data format (HDF)

HDF was the format chosen for the default storage of EEG data, as it meets all

previous requirements; however, there are some significant issues3. The most

relevant one is related to the corruption risks, but this is a shortcoming that can be

solved pragmatically with the implementation. Other reported problems are

related to the performance, bugs, philosophy, and implementation, but these do

not compromise the use of this specific application.

Custom data storage handler

This data handler uses PyTables, which is built on the top of the HDF5 library using

the Python language and the NumPy package. An important feature of PyTables is

3https://cyrille.rossant.net/moving-away-hdf5/

2.4 Summary and discussion 33

that it optimizes memory and disk resources, so data takes up much less space

(especially, if on-flight compression is used) than other solutions such as relational

or object-oriented databases [56].

The main modules to manage the proposed file format resides on the HDF5Reader
and HDF5Writer classes, for example:

from openbci_stream.utils import HDF5Reader

reader = HDF5Reader('database.h5')
reader.eeg # Raw EEG data (Channels x Time)
reader.markers # Dictionary with keys as events

and list of timestamps as values
reader.timestamp # Array of timestamp time series
reader.annotations # Arrays of events annotations
reader.close()

Or using Python context managers:

with HDF5Reader(filename) as reader:
reader.eeg
reader.markers
reader.timestamp
reader.annotations

The HDF5Writer is used internally to create the HDF5 file with these features. At
runtime, a single script must be implemented isolated to ensure the storage from

the processing and acquisition.

MNE compatibility

The HDF5Reader class has amethod to generatemne.EpochsArray4, this method needs

a tmin (i. e., the time in seconds before the stimulus), the duration of the epoch, and

the desired markers.

reader = HDF5Reader('sample-eeg.h5')
epochs = reader.get_epochs(tmin=-2, duration=6, markers=['RIGHT', 'LEFT'])

34 High-level acquisition drivers for OpenBCI

Feature OpenBCI Python (2015)
and pyOpenBCI (2015)

OpenBCI LSL
(2017)

BrainFlow
(2018)

OpenBCI Stream
(2020)

Language Python Python Python, C++,
Java and C# and
support for Julia,
Matlab and Rust

Python

Acquisition boards All OpenBCI boards All OpenBCI
boards

+10 different
boards

OpenBCI Cyton

Distributed paradigm No No No Yes

Impedance measurement No No No Yes

Set boardmodes No No No Yes

Set sampling rate No No No Yes

Set package size No No No Yes

Markers syncronization No No No Yes

Asynchronous acquisition No Yes No Yes

Data storage No No Yes Yes

Active development No No Yes Yes

Table 2-7. Acquisition drivers for OpenBCI, at the moment BrainFlow and OpenBCI Stream
are the only drivers that support OpenBCI Cython acquisition board. The focus of
the first one is to support acquisition and keep the compatibility across different
hardware, OpenBCI Stream serve a configurable system suitable for development
and research.

2.4 Summary and discussion 35

2.4 Summary and discussion

At the time of initiating the development of our drivers, four tools compatible

with OpenBCI Cyton were available, as shown in Table 2-7. However, OpenBCI

Python5, pyOpenBCI6, and OpenBCI LSL7, all developed officially by OpenBCI, are now

deprecated, but at the time, they served as references and templates for our

implementation.

Currently, only two implementations are supported to work with OpenBCI Cyton,

BrainFlow8, and our drivers OpenBCI Stream9. Brainflow is recognized by the broadest

hardware support, as more than 11 boards are now compatible. However, this can

also be a disadvantage since developing device-agnostic applications to target

more boards neglects the acquisition board’s capabilities, for example, the features

in OpenBCI Stream related to the Boardmodes, the sampling rate, the marker

synchronization, and the Impedance measurement are implemented purely with

in-depth handling of the hardware capabilities.

4https://mne.tools/stable/generated/mne.EpochsArray.html
5https://github.com/openbci-archive/OpenBCI_Python
6https://github.com/openbci-archive/pyOpenBCI
7https://github.com/openbci-archive/OpenBCI_LSL
8https://brainflow.org/
9https://openbci-stream.readthedocs.io/

https://mne.tools/stable/generated/mne.EpochsArray.html
https://github.com/openbci-archive/OpenBCI_Python
https://github.com/openbci-archive/pyOpenBCI
https://github.com/openbci-archive/OpenBCI_LSL
https://brainflow.org/
https://openbci-stream.readthedocs.io/

CHAPTER

THREE

REAL-TIME AND DISTRIBUTED IMPLEMENTATION

In the previous chapter there is a lack bout data acquisition and transmission, this

issues are solved over a distributed computing approach. In this chapter are

described the implementation of the developed drivers for OpenBCI over a

distributed frame. This feature use a distributed event store and

stream-processing platform called Apache Kafka for the data transmission through

the network, this same network is also used to deploy web servers and

synchronize the systems. All this set defines the real-time conditions and describe

the operating condition of the BCI system implemented.

3.1 Real-time

The real-time definition used to describe the purposed system is based on the

sampling blocks transmission, the system developed guarantees that all EEG data

blocks of duration P will be available for the user in a time lower that P , no

38 Real-time and distributed implementation

matters the duration of the block. In this case available refers to ready to use data

in the development environment.

This definition arises from the need to compare different system configurations.

Given that the obtained acquisition system is highly configurable about sampling

rate, numbers of channels, protocols, and block of data transmitted. Express the

latency in percentage terms simplify the comparison of the capabilities when a BCI

system is designed and developed.

3.2 Kafka: Open-source distributed event
streaming platform

The core of the distributing system resides in Kafka, this software is fast enough to

implement real-time applications and so simple to be based on binary data

transmission. The main platform run under Java but there is a wrapper called

kafka-python1 that able the programming inside python environments.

In addition to all the infrastructure that Kafka brings to the system, when used in

the development of a system, this work only will refers to the main features related

to read and send stream data: Produsers, consumers and generators scripts.

3.2.1 Topics

Kafka protocol is so simple that the identifiers consist of a single string called topic,

this topic are categories used to organize messages. Internally they are configured

by other features like, replication factor and partitions, our implementation consist

only in one server, in order to speed-up the message transmission by avoiding the

triggering and the redundant message allocation. The topics needs explicit

definition, there can not be created on run-time.

1https://kafka-python.readthedocs.io/en/master/

https://kafka-python.readthedocs.io/en/master/

3.2 Kafka: Open-source distributed event streaming platform 39

3.2.2 Producer

From a coding perspective, the producers consist of scripts that feed the streaming

with new data, then Kafka distribute this messages to all nodes connected. Since

Kafka only comprise the transmission of binary data, all messages involved are

serialized in producers and de-serialized in consumer using the Python standard

library pickle.

from kafka import KafkaProducer
producer = KafkaProducer()

for _ in range(100):
producer.send('my_topic', b'some_message_bytes')

In order to run this scripts, the Kafka service must be running in background.

3.2.3 Consumer

The scripts that implement a Kafka consumer are based on asynchronous callbacks:

from kafka import KafkaConsumer

consumer = KafkaConsumer()
consumer.subscribe(['my_topic'])
for msg in consumer:

print(msg)

3.2.4 Transformer

The transformer are a combination of consumers and producers, this kind of scripts

consume data from the stream and then stream back with a different topic. The

transformers are useful to parallelize process.

40 Real-time and distributed implementation

3.3 Distributed system implementation

The distributed implementation is used to isolate the acquisition system, since

this is not running under a real-time operating system, the latencies can turn into

unstable ranges due other non related computational process running in

background.

Centralized process are also susceptible to high computational demanding

processing tasks, if a BCI system is under development the performance could vary

in part only due the available resources, compromising the comparability of the

evaluated models.

3.3.1 Remote Python Call

The RPyC Python module enable the execution through network of wrapped

modules, this module require a few configurations to start serving object-proxying

to overcome the physical boundaries between processes and computers, so that

remote objects can be manipulated as if they were local.

Although the module requires a custom scripting in order to access to

object-proxying, with the aim to simplify the implementation of the drivers a

transparent configuration have been included in the development. The argument

host refers and initialize the connection with the remote module running in the
pointed server. All methods, commands and responses generated are processed in

the same way that local are, them, the user will not notice any difference from use

the library with a local or a remote OpenBCI device.

from openbci_stream.acquisition import Cyton

openbci = Cyton('serial', host='192.168.1.1', endpoint='/dev/ttyUSB0', capture_stream=True)
openbci.stream(15) # capture 15 seconds of data
openbci.eeg_time_series # Raw EEG is allocated in this class instance

3.4 Isolated acquisition 41

3.4 Isolated acquisition

Once defined the distributed system, a recommended step is move the acquisition

into a isolated environment. A dedicated operating system that only executes the

daemons and process related to the acquisition as well as the Kafka server. This

system also can be configured as aWi-Fi access point, needed to handle the OpenBCI

through the Wi-Fi module. All this tasks can be implemented into a SBC using a

operating system based on a minimalist distribution of GNU/Linux.

For the development of this work, a preconfigured environment for Raspberry Pi

was developed using Archlinux ARM, althoughManjaro ARM Minimal can also be used,

the configuration is described in the documentation2 as a simple terminal command

over a fresh installation.

This distribution enable the Raspberry Pi as a plug and play acquisition server. Every

time that the system boot this one will be configured as A real-time protocol (RTP)

server and aWi-Fi access point, the Kafka server will start to running in background,

the binary deserializer daemon start listening binary data, and the EEG streamer

start to listening deserialized data, and the RPyC server starts wrapping the drivers.

Although the RPyC module brings access to the EEG data, this protocol is not

enough for the high rate transmissions needed for configurations of 1000 SPS and

16 channels. For this reason Kafka is used to distribute data even when there is

only one client involved.

3.5 Electrode impedance measurement

A low impedance electrode-skin is always recommended because, under low

ranges, the effect on the amplifications remains at low levels, even lower than the

2https://openbci-stream.readthedocs.io/en/latest/notebooks/A3-server-based_acquisition.html

https://openbci-stream.readthedocs.io/en/latest/notebooks/A3-server-based_acquisition.html

42 Real-time and distributed implementation

resolution of Analog-to-digital converter (ADC). The ADS12993 in the

analog-to-digital converter for biopotential measurements is implemented in

OpenBCI: this microcontroller includes a way to perform the impedance measure

using the lead-off current sources.

This method consists of injecting a small current of 6nA at 31.2Hz. The signal

acquired is processed to calculate the VRMS voltage and then the impedance Z

using Ohm’s law.

openbci = Cyton(
'wifi',
'192.168.1.113',
host='192.168.1.1',
capture_stream=True,
daisy=False,

)

openbci.command(cons.SAMPLE_RATE_250SPS)
openbci.command(cons.DEFAULT_CHANNELS_SETTINGS)
openbci.leadoff_impedance(

range(1, 9),
pchan=cons.TEST_SIGNAL_NOT_APPLIED,
nchan=cons.TEST_SIGNAL_APPLIED,

)

openbci.stream(7)
data_raw = np.array(openbci.eeg_time_series)

band_2737 = GenericButterBand(27, 37, fs=250)
data = band_2737(data_raw)

The VRMS can be calculated as the std() of the voltage array.

VRMS =
Vpp

2
√
2
≈ std(V)

This is how our IRMS can be calculated:

3https://www.ti.com/product/ADS1299

https://www.ti.com/product/ADS1299

3.5 Electrode impedance measurement 43

Figure 3-1. Raw signal for the lead-off configuration.

Figure 3-2. Filtered signal for the lead-off configuration.

44 Real-time and distributed implementation

IRMS =
6nA√

2

Then the impedance Z is...

Z =
VRMS

IRMS

Since the VRMS and the std(V) are by default in µV , this would be the impedance

measured for a vector of data V :

Z =
std(V) · 10−6 ·

√
2

6 · 10−9
Ω

The Cyton board has a 2.2K Ohm resistors in series with each electrode, so we must

remove this value in way to get the real electrode-to-head impedance.

Real time measurement

For this experiment we will use the Kafka consumer interface, and the same

potentiometer. Keep in mind that this measurement uses one second signal, so,

the variance will affect the real measure, in real-life the amplitude not change so

drastically.

from openbci_stream.acquisition import OpenBCIConsumer
from openbci_stream.acquisition.cyton_base import CytonConstants as cons
from openbci_stream.utils.filters import GenericButterBand
import numpy as np
import time

def get_rms(v):

3.5 Electrode impedance measurement 45

return np.std(v)

def get_z(v):
rms = get_rms(v)
z = (1e-6 * rms * np.sqrt(2) / 6e-9) - 2200
if z < 0:

return 0
return z

Z = []
band_2737 = GenericButterBand(27, 37, fs=250)
with OpenBCIConsumer(

'wifi',
'192.168.1.113',
host='192.168.1.1',
auto_start=False,
streaming_package_size=250,
daisy=False,

) as (stream, openbci):
with OpenBCIConsumer(host='192.168.1.1') as stream:

openbci.command(cons.SAMPLE_RATE_250SPS)
openbci.command(cons.DEFAULT_CHANNELS_SETTINGS)
openbci.leadoff_impedance(

range(1, 9),
pchan=cons.TEST_SIGNAL_NOT_APPLIED,
nchan=cons.TEST_SIGNAL_APPLIED,

)
time.sleep(1)
openbci.start_stream()

for i, message in enumerate(stream):
if message.topic == 'eeg':

eeg, aux = message.value['data']
eeg = band_2737(eeg)
z = get_z(eeg[0])
Z.append(z)
print(f'{z/1000:.2f} kOhm')

if i >= 15:
break

This measure needs a block of data to obtain a stable value. Although the method

used to calculate the VRMS is fast, the std(), at non-stationary times, such as while
the electrode is fixed ormanipulated, will affect the impedancemeasurement, so the

calculated valuewill not be accurate. Themeasure impedance protocol requires rest

periods before interpreting the value calculated.

46 Real-time and distributed implementation

Figure 3-3. Real-time impedance measurement of a 10 KOhm potentiometer.

Some recommendations for improving the impedance measurement can be: (i)

Take shorts signals but enough, 1 second is fine. (ii) Remove the first and last

segments of the filtered signal. (iii) Nonstationary signals will produce wrong

measurements. (iv) A single measurement is not enough, is recommended to work

with trends instead.

3.6 Latency analysis

The latency comprise the time elapsed between the acquisition of raw EEG data

from the OpenBCI board and the availability in the development framework. This

analysis was performed over a complete distributed system and the following

conditions: (i) The OpenBCI acquisition system was isolated in a dedicated

Raspberry Pi, (ii) The data was read in a remote computer using the developed

drivers, (iii) The block size was fixed in 100 samples, and (iv) The samples per

second was fixed in 1000. The system was designed in a way that all times are

registered and streamed alongside the main EEG data. This feature able to

developers to perform a latency analysis without configure a special mode, this

means that use the same conditions of a EEG acquisition session.

3.6 Latency analysis 47

Figure 3-4. Latencies for 100 samples block size and 1000 SPS. The latencies show the
elapsed time from reading the packet to the time of packaging. The dashed
line mark the minimum latency and the shade is the standard deviation for all
segment.

In figure 3-4 are plotted four relative timestamps and compared with the block

duration. The Binary produced is the time elapsed since the raw data was acquired

and streamed through Kafka, Binary consumed is the time elapsed since the binary

data was consumed, just before to the deserialization, EEG produced refers to the

duration of the transmission, this is the time since the thee EEG was inserted in

the Kafka stream and read in the final consumer. There is a few facts about this

plot that needs to be mentioned, The difference between zero and EEG produced

also includes the clock offset. The time bewteen Binary consumed and EEG produced

is the time spent on the deserialization of the raw data. The time bewteen Binary

produced and Block duration is the time spent on the acquisition of the EEG data, this

is the latency acquisition of OpenBCI when its works over the WiFi protocole. We

can conclude then, that the deserialization process is highly time expensive.

The same process was performed for six different block sizes keeping the same

1000 SPS, the results are showed in Figure 3-5, only the Binary produced is

compared with the Block size. For block sizes under the 1000 samples and up to

48 Real-time and distributed implementation

Figure 3-5. Latency vs Block size. In the left is possible to see that the latency is proportional
to the block size. In the right plot, the latency decrease for small block size but
their standard deviation (jitter) increase. The preferred configuration was set up
in 100 samples block size due the lower jitter.

100 the latency seems to be lineal. If the data is represented using the percentage

as a comparison measure, the latency seems to stabilize in 50%, however the jitter

appear to increase with block size. This results suggest that the optimal

configuration for the EEG acquisition, using the developed drivers, is around 100

samples block size with only 8 ms of jitter.

Table 3-1 show a comparison between different BCI systems configurations. The

wired systems has significantly lower jitter than wireless. For centralized

implementations like BCI2000 + g.USBamp the latency depends also of the

paradigm, then, the same configuration have different latencies responses.

3.7 Sampling analysis

The sampling is the process to acquire data at fixed sample rate, the acquisition

process must gather the a uniform sampling rate of the signal. It is inevitable to

lose data, there are some reasons, like lags in the Wi-Fi connection, in the

acquisition board or in the operating system. If it is assumed that the acquisition

is homogeneous, then, after a session of EEG all data will be widen to cover the

3.7 Sampling analysis 49

BCI system Sample rate Block size Jitter Communication Distributed Latency

BCI2000 + DT3003 [41] 160 Hz 6.35 ms 0.67 ms Wired No 51.9 %

BCI2000 + NI 6024E [41] 25 kHz 40 ms 0.75 ms Wired No 27.5 %

BCI2000 + g.USBamp [44] 1200 Hz 83.3 ms 5.91 ms Wired No 14, 30, 48 %

OpenViBE + TMSi Porti32
[57]

512 Hz 62.5 ms 3.07 ms Optical MUX No 100.4 %

BCI-Framework 1000 Hz 100 ms 5.7 ms Wireless Yes 56 %

Table 3-1. Latencies comparison, the latency has been expressed in terms of percentage of
the block size to make the possible the comparison between different systems
configurations.

supposed duration of the experiment. This will drive to an incorrect partitioning

of trials. OpenBCI includes a set of special features that can be used to detect this

anomalies. The first one is to use the sample indexes to detect when a data is not

transmitted, and the second consist of to use known test signal. Additional to this

ones, the developed drivers include a timestamp annotation for each sample that

can be used too.

For the following analysis, a signal of continuous 64 minutes of acquisition was

processed, recorded at 250 SPS, with 100 samples per block size and 16 channels.

In Figure 3-6 are compared the three features to detect the samples skips. Any of

this methods can be used to locate this points. The selected one is to use the sample

indexes, this method has the advantage that can be used with a normal acquisition

of EEG, the timestamp also can be used, but is more easy and fast to process the

sample indexes. The test signal requires to use the channels for EEG, which makes

it less practical.

After to perform an algorithm to detect the sampling skips in the signals, this ones

are marked as BAD:sample. The Figure 3-7 relates the timestamp with this markers.

50 Real-time and distributed implementation

Figure 3-6. The sampling lost can be detected by analysing the timestamp, using a test signal
or analysing the sample index.

Figure 3-7. The bad markers detection can localize the sampling lost and place markers in
that locations.

3.7 Sampling analysis 51

Figure 3-8. This plot show the trials and the proportion trials remaining after to remove the
trials that contain almost one ’BAD’ marker for a session of 60 minutes of EEG
acquisition, and with a dynamical trial duration between 100 ms to 10000 ms

The BAD:sample markers can be used to crop and remove the signal around this
ones and to keep with the correctly sampling data.

In a real experiment is desired a set of trials free of BAD markers. The density of
this markers can affect a number determined of trials depending of the size of the

trial. Figure 3-8 show the results of an experiment of 60 minutes of duration and

how many trials must be discarded for each trial duration.

Figure 3-9 compare the sampling rate around this markers. In the left without

remove the skipping points, and in the right after to remove the points identified

as bad samples. The right column data are more easy to interpret, the superior plot

show the difference of the period in milliseconds, a solid line mark the expected

4ms (1/250Hz), a secondary line 50ms equally distributed above and below. The

inferior plot describe the mean of the period for each one of the segments

resulting after removing the samples around the BAD:sample.

52 Real-time and distributed implementation

Figure 3-9. The sampling rate analysis after remove bad markers evidence a data period
acquisition close to 4 ms (250 SPS).

3.8 Summary and discussion

The real-time implementation used in this works has been fixed to guarantee the

distributions of packages in a time inferior to the package duration itself. Also, the

latency measures are expressed in terms of proportion of the acquisition block size,

this approach facilitate the comparison with other systems and with the proposed

system itself due the different acquisition configuration.

There are two resources used to implement distributed features, the first one is

RPyC, this Python module create a remote proxy to access to the drivers module

configuration and basic variables. This method use a protocol communication that

is too slow to be used to stream EEG in real-time, then Kafka handles this task by

implementing a real-time distributed streaming platform. Kafka, also brings other

features to generate custom data streams.

The best configuration that integrate, for high sampling rate (1 KSPS), a low and

stable latency was the one with fixed transmission block size of 100 samples. This

3.8 Summary and discussion 53

configuration keeps the system stable enough to recover after interruptions and still

flexible to implement real-time tasks.

Detect interruptions in the acquired signal is important for the BCI

implementations, the performance of the developed systems reside on the quality

of the data with which they are fed. Our drivers was designed with the feature to

keep and store the data necessary to make this detection and perform automatic

purge of bad trials..

CHAPTER

FOUR

BCI-FRAMEWORK

In computer programming, a framework is an abstraction in which software,

providing generic functionality, can be selectively changed by additional

user-written code, thus providing application-specific software. It supply a

standard way to build and deploy applications and is a universal, reusable

software environment that allow particular functionality as part of a larger

software platform to facilitate the development of software applications, products

and solutions. Frameworks-based software may include support programs,

compilers, code libraries, toolsets, and application programming interfaces (APIs)

that bring together all the different components to carry up the development of a

project or system [58] without the need to looks out of the framework.

This chapter describe the implementation of a independent BCI software that

consists of a distributed processing tool, stimuli delivery, psychophysiological

experiments designer and real-time data visualizations for OpenBCI.

We purpose an open-source tool for the acquisition of EEG/EMG/ECG signals and

designed to work with OpenBCI’s Cyton board, the main core of this software lies on

56 BCI-Framework

OpenBCI-Stream1 and a library designed to handle all the low-level hardware

features to extend the hardware capabilities with high-level programming libraries

developed in Chapter 2. BCI-Framework comprises a GUI with a set of individual

computational processes (distributed or in a single machine), that feeds

visualizations, serve stimuli delivery, handle acquisitions, storage data and/or

process data in real-time. Additionally has a built-in development environment

and a set of libraries that the user can implement to create their specific

functionalities.

BCI-Framework as well as all BCI applications implies the participation of at least two

kind of users that will be widely used in this chapter: (i) the user role refers to the

person that manipulate the framework to execute experiments; (ii) the patient is

the subject from whom the EEG data is being acquired; (iii) a third profile can be

assigned to a developer or researcher, this subject use the framework extensibilities to

create new experiments and visualizations.

4.1 Software description

BCI-Framework is a desktop application that was developed entirely using Python

and the GUI was implemented initially on PySide2 and updated to run under the

latest stable release of PySide62. In fact all libraries implemented are free (as in

freedom) or at least Open-Source. The software architecture is modular and designed

taking into account the scalability and the configurability. Almost all components

run on independent computational process and are connected to the main interface

through websockets or simple HTTP petitions.

The major feature of BCI-Framework is the capability to implement a complete

EEG-based BCI system in a single software application. This achievement, in part,

1https://openbci-stream.readthedocs.io
2https://wiki.qt.io/Qt_for_Python

https://openbci-stream.readthedocs.io
https://wiki.qt.io/Qt_for_Python

4.1 Software description 57

is due the dedicated support to OpenBCI Cyton board and the Isolated acquisition

that was described and implemented in Chapter 3. This feature leaves to the main

machine, the one that run the framework interface, to keep all the resources to

perform visualisations, processings and run a stimuli delivery server. And at the

same time have a reliable flow of data.

BCI-Framework use a set of background services that run independent of each other,

some process are initialised from inside the framework and others from outside,

all process run under a distributed network. All this backend services exchange

information using Kafka orWebsockets, it depends on the priority level or the amount

of the information transmitted.

4.1.1 Real-time visualizations backend

This feature uses the Matplotlib3 backend through FigureStream4 a python module

developed explicitly for this framework, that serve the visualization using a simple

HTTP real-time streaming. This module creates a static endpoint and the image is

updated like in a video streaming, this is a synchronous process, this means that the

user has the control and the responsibility to feed the streaming frame by frame.

In background, a Flask5 application is running and serving the endpoint with the

streaming plot for all users in the network, then, the visualizations can be both,

consumed and generated from any terminal. This feature is ideal for distributed

systems, since, costly real-time visualizations can be executed on a independent

hardware.

The development of this backend module is described in the appendix Matplotlib-

FigureStream.

3https://matplotlib.org/
4https://figurestream.readthedocs.io/
5https://flask.palletsprojects.com/

https://matplotlib.org/
https://figurestream.readthedocs.io/
https://flask.palletsprojects.com/

58 BCI-Framework

4.1.2 Stimuli delivery backend

This environment is based on HTML and JavaScript, is basically a dynamic web

application. However, in order to standardize all user scripts into a single

language, this feature use Brython6, a Python3 implementation for client-side web

programming. This tool able to the user to write web applications, however, is

necessary a server running with the dependencies and the library itself. With the

intention to simplify the implementation and the start up of Brython projects, a

Python module called Brython-Radiant framework was implemented that solve

this isssues. This module is a Brython framework for the quick development of web

apps with pure Python/Brython syntax so there is no need to care about HTML, CSS,

or JavaScript. Runs over Tornado7 and include support to Websockets, Local Python

Scripts and Material Design Components8. This is basically a set of scripts that allows

the same script run from Python and Brython, when its running under Python a

Tornado server is created and configure the local path for serving static files, and a

custom HTML template is configured in runtime to import the same script, this

time, interpreted by Brython.

Brython-Radiant able to the user to create with pure Python and a single script a

complete web application that can interact with the native Python environment.

And when run under a network-based implementation allows to be consumed from

any terminal.

4.1.3 Development environment

The main interface is divided into two high-level functionalities: (i) Real-time

analysis, to collect and process data, include and interface to handle custom

6https://brython.info/index.html
7https://www.tornadoweb.org
8https://material.io/develop/web

https://brython.info/index.html
https://www.tornadoweb.org
https://material.io/develop/web

4.1 Software description 59

Figure 4-1. BCI-Framework: The extensions panel is used to access to all visualizations
and stimuli delivery paradigms source code, as well to create a new ones from
scratch.

visualizations and serve Kafka generators; (ii) Stimuli delivery, to serve remote

audiovisual stimuli and configure experiments. This functionalities includes a set

of visualizations and basic paradigms by default, instead of being rigidly included

in the interface, they are in fact fully editable and configurable, even new ones can

be created from scratch as an extension. All scripts are accessible under an

integrated development environment.

The development environment is one of the most outstanding features of

BCI-Framework, this environment able to developers to implement custom data

analysis, real-time visualizations and, design custom stimuli delivery experiments

or paradigms without leaving the main interface. This is achieved by the

development and the implementation of an API that interact with the framework

60 BCI-Framework

Figure 4-2. BCI-Framework: Integrated development environment with previsualization
area and debug console.

parameters, the real-time data stream and with the users. Figure 4-2 shows a

capture of the integrated development environment, that consist of a full Python

syntax highlighting, a previsualization area, a directory tree navigator, and a

debugging console.

4.2 Real-time data analysis

The data analysis is powered by all Python modules and the wrapped ones. This

language has showed, to be a good choice for research and develop neuroscience

implementations [59]. Currently there are a bunch of modules like MNE9

specifically designed for exploring, visualizing, and analyzing human

neurophysiological data. Alongside, much other that can be used to implement

custom analysis like Numpy10 and Scipy11, or for implement machine learning

9https://mne.tools/
10https://numpy.org/
11https://scipy.org/

https://mne.tools/
https://numpy.org/
https://scipy.org/

4.2 Real-time data analysis 61

Figure 4-3. Kafka transformer that generates a new kind of data (for example FFT) and
stream it alongside the existent streams.

approaches like Scikit-learn12 and TensorFlow13.

BCI-Framework was designed in such a way that the user/researcher can use the

environment in combination with an easy to access EEG signals and markers to

build their BCI system without care about the acquisition, synchronization and

distribution. This approach allows to implement the real-time analysis as a basic

Kafka consumer or a Kafka transformer that connect with the stream that contain

the EEG (or other signal) and consume the data to serve the user/research and then

generate reports, execute local commands or send back a new kind of data to the

stream.

For example, we can suppose that we need the Fast Fourier transform (FFT) of the

EEG signals in real-time, then, we can use a single script that calculate the FFT and

create a new topic with the new data and stream it through all consumers. This

transformer is graphically represented in Figure 4-4, this script must run as an

isolated process, and could be executed on any terminal of the network, the new

data stream is automatically integrated and is available for all terminals.

12https://scikit-learn.org/
13https://www.tensorflow.org/

https://scikit-learn.org/
https://www.tensorflow.org/

62 BCI-Framework

4.2.1 Data analysis scripting

The scripting consist of configure through a custom API the environment needed to

read EEG signal. A bare minimum script looks like:

from bci_framework.extensions.data_analysis import DataAnalysis

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

if __name__ == '__main__':
Analysis()

The DataAnalysis class includes a lot of useful methods to handle and configure
the acquisition and manipulation of the data stream.

The API includes a custom decorator called loop_consumer, that is used to access
asynchronously to the data stream. on every 'eeg' and 'marker' incoming data,
this strings represents Kafka topics. The stream method only needs to be called a
single time, after that, the decorator takes control of the executions, this means that

entire script must finish with the call of the decorated method, in the constructor

method. Is not possible, to use the decorator loop_consumer in more than one
place, so the argument topic could be used to create a flow control.

from bci_framework.extensions.data_analysis import DataAnalysis, loop_consumer

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.stream()

@loop_consumer('eeg', 'marker')
def stream(self):

print('Incoming data...')

if __name__ == '__main__':
Analysis()

4.2 Real-time data analysis 63

The decorated method receives five optional arguments: data, topic, frame,
latency and kafka_stream. This arguments are defined in the wrapped decorator
definition that is the reason why there is no arguments in the initial caller. This

arguments works like inputs, and are optional, if some one is not declared then

that local variable will be not created.

@loop_consumer('eeg', 'aux')
def stream(self, data, topic, frame, latency):

print(f'Incoming data #{frame}')

match topic:
case 'eeg':

print(f'EEG{data.shape}')
case 'aux':

print(f'AUX{data.shape}')

print(f'Topic: {topic}')
print(f'Latency: {latency}')

@loop_consumer('eeg', 'aux', 'marker')
def stream(self, topic):

match topic:

case 'eeg':
print("EEG data incomming...")

case 'aux':
print("AUX data incomming...")

case 'marker':
print("Marker incomming...")

This scripting define themethods to subscribe to the Kafka stream topics. This solve

issue about the access to the real-time data stream, however a high-level methods

are also available to process, crop and buffer data.

Buffering

For real-time analysis, additionally to subscribe and acquire data from topics, is

required a method to handle the buffer of the data acquired. The create_buffer
method is used to configure the retention of the data streamed.

64 BCI-Framework

self.create_buffer(seconds=30, fill=0)

The previous command will create a buffer of 30 seconds filled with 0 by default,

the size of the buffer depends of the sampling rate and the number of the channels,

this information is obtained from the framework parameters.

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.create_buffer(seconds=30, fill=0)
self.stream()

@loop_consumer('eeg', 'aux')
def stream(self):

Buffer: all data from the last 30 seconds
eeg = self.buffer_eeg
aux = self.buffer_aux

print(f'EEG{eeg.shape}')
print(f'AUX{aux.shape}')

Notice that the previous script has not argument in the decorated method, and

that the buffer is accessible through the self.buffer_eeg and self.buffer_aux
instance attributes.

Resampling

A sample length fixed will be created with the argument resampling, by default is
1000 samples. A buffer for the auxiliary data with the same features is also

generated. The buffering process is transparent for the user, once defined with

create_buffer this will be automatically updated.

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.create_buffer(seconds=30, fill=0, resampling=1000)
self.stream()

@loop_consumer('eeg', 'aux')

4.2 Real-time data analysis 65

def stream(self):

Resampled buffer:
the data from the last 30 seconds in a vector of 1000 samples
eeg_r = self.buffer_eeg_resampled
aux_r = self.buffer_aux_resampled

print(f'EEG{eeg_r.shape}')
print(f'AUX{aux_r.shape}')

The resampled timeseries use the self.buffer_eeg_resampled and

self.buffer_aux_resampled instance attributes.

Data slicing referenced by markers

This feature works similar to loop_consumer, but instead of return the latest block
of data, the marker_slicingmethod return a trial. A trial is localized by almost one

marker, and a margin time previous and posterior to the marker.

from bci_framework.extensions.data_analysis import DataAnalysis, marker_slicing

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

Needs to be greater than the duration of the slice.
self.create_buffer(seconds=30, aux_shape=3)
self.slicing()

@marker_slicing(['Right', 'Left'], t0=-2, duration=6)
def slicing(self, eeg, aux, timestamp, marker):

print(eeg.shape)
print(aux.shape)
print(timestamp.shape)
print(marker)
print()

if __name__ == '__main__':
Analysis()

In the previous script we are capturing trials of 6 seconds duration around the

markers 'Right' and 'Left'. This feature is useful for debugging purposes, and
synchronous paradigms with explicit markers presence, like ERP.

66 BCI-Framework

Feed the stream using Kafka producer

The data analysis can also works as a Kafka producer, this feature is used to generate

commands, annotations, feedbacks and any other type of data under custom topics.

from bci_framework.extensions.data_analysis import DataAnalysis

class Analysis(DataAnalysis):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

if __name__ == '__main__':
Analysis(enable_produser=True)

Once activate the producer, the send_command, send_feedback and

send_annotationmethods are available.

Command
self.send_command('MyCommand', value=45)

Annotation
self.send_annotation('The subject yawn', duration=5)

Feedback
feed = {'var1': 0,

'var2': True,
'var3': 'Right',
}

self.send_feedback(**feed)

send_feedback method are keyword arguments only
self.send_feedback(a=0, b=2.3, c='Left')

Custom topic
self.generic_produser('my_topic', my_data)

The generic_produsermethod can be used to stream any custom data under a user

defined topic.

4.3 Real-time visualization 67

Figure 4-4. Kafka consumer that access to the real-time EEG stream and use the data to
perform individual process.

4.3 Real-time visualization

The visualizations works very similar that the Real-time analysis, with the

difference that only comprise Kafka consumers due the visualization is indented

to be displayed inside of the BCI-Framework interface and over a HTTP protocol

instead to create a new kind of data stream.

The real-time visualizations consists of a computational process that manipulate

the data in order to create static visualization and then update this one

consecutively. The environment to create visualizations automatically serve the

real-time EEG stream, then the user only must comply about the visualizations.

4.3.1 Data visualization scripting

Data visualization are based on Matplotlib-FigureStream, this interface inherits all

features from it and extends the utilities with an specific ones. Additionally all

topics explained in _analysisch4:data_analysisReal-time analysis development are

valid here too, since visualizations is a special case of real-time analysis.

from bci_framework.extensions.visualizations import EEGStream
from bci_framework.extensions.visualizations.utils import loop_consumer

68 BCI-Framework

class Stream(EEGStream): # This is `matplotlib.Figure` based class
def __init__(self):

super().__init__()

self.axis = self.add_subplot(111)
self.axis.set_title('Title')
self.axis.set_xlabel('Time')
self.axis.set_ylabel('Amplitude')
self.axis.grid(True)
self.stream()

@loop_consumer('eeg')
def stream(self, *args, **kwargs):

self.feed()

if __name__ == '__main__':
Stream()

Here the main difference is the class to heritage, EEGStream, and the self.feed()
method. In this bare minimum example the constructor generates an empty plot

using standard matplotlib and them the loop_consumer will serve the data to the
developer disposition.

@loop_consumer('eeg')
def stream(self, data):

eeg, aux = data

ch0 = eeg[0] # first eeg channel
self.line.set_ydata(ch0)
self.axis.set_ylim(ch0.min(), ch0.max())

time = range(len(ch0)) # time axis
self.line.set_xdata(time)
self.axis.set_xlim(time[0], time[-1])

self.feed()

The loop_consumer is used to update asynchronously the plot, since this method
is executed on every new package received, this continuous update will create a

plotting animation. The self.feed()method send an update to the plotting stream
server.

4.4 Stimuli delivery 69

4.4 Stimuli delivery

The interface for stimuli delivery is the only that interact directly with the patient,

neurophysiological experiments requires a controlled environment with the

purpose to decrease the artifacts [60, 61] in the signal as well as keep the patient

concentrated on his task. This requirements suggest that the stimuli delivery must

work over a remote presentation system and, in this way, separate physically the

user from the patient. The method selected to develop an environment with these

features was the classic web application based on HTML, CSS and JavasScript

through the implementation of the Brython-Radiant framework.

Although this is a common feature in almost all neurophysiological experiments

designer software, after a series of observations and experience acquiring databases

for the SPGR, we propose a brand new environment for the design, implementation

and configuration of audio-visual stimuli delivery. Our interface able to the user

to design flexible experiments and change the parameter easy and quickly without

reprogramming the paradigm. Also, since the acquisition interface is integrated into

the framework the database is generated automatically with all respective metadata

and synchronized markers. Then the user only has to worry about the experiment

while the database is generated in second plane.

The proposal interface still requires that both, the stimuli delivery and the

previsualization in the dashboard, update the screen synchronously. Then there

are two kind of views, the first one is for the patient, this view only includes the

stimuli presentation and is the responsible to create the time markers. The second

view is for the user, additional to the stimuli preview also include a dashboard, this

interface able to configure the experiment execution.

4.4.1 Stimuli delivery scripting

This interface environment use Brython and the Radiant framework as backend for do

the web development in a Python style.

70 BCI-Framework

Figure 4-5. Stimuli delivery interface, in the left the live view of the stimulus presented
remotely to the patient, in the right the dashboard with the main parameter of
the experiment.

from bci_framework.extensions.stimuli_delivery import StimuliAPI

Brython modules
from browser import document, html
from browser.widgets.dialog import InfoDialog

class StimuliDelivery(StimuliAPI):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
document.clear()

main brython code
document.select_one('body') <= html.H3('Hello world')

button = html.BUTTON('click me')
button.bind('click', lambda evt: InfoDialog('Hello', 'world'))
document.select_one('body') <= button

if __name__ == '__main__':
StimuliDelivery()

The StimuliAPI includes lot of methods to simplify the interaction with the stimuli
delivery environment

4.4 Stimuli delivery 71

Stimuli area and Dashboard

One of the main features is the possibility to make configurable experiments, in

favor to this philosophy, by default they are build both areas, self.stimuli_area
and self.dashboard in the class constructor.

The attempt use of the stimuli area is to use it to present the stimulus, this area is

automatically duplicated in the remote patient view. The right side is intended to

the dashboard, this layout is only accessible for the user, and is used to configure

the experiment.

The both areas are accessible thought the class attribute self.stimuli_area and
self.dashboard, as instances of browser.html.DIV. There is a particularity in the
language about the use of <= to nest elements.

4.4.2 Widgets

All widgets and styles are part of Material Components Web14 and can be

implemented with a custom module implementation designed to display widgets

and get values. All widgets are available troughs the Widgets submodule located in
the module bci_framework.extensions.stimuli_delivery.utils.

from bci_framework.extensions.stimuli_delivery.utils import Widgets as w

14https://material.io/develop/web

https://material.io/develop/web

72 BCI-Framework

Typography

Not only for aesthetics, a default font was selected to make the messages easy to

read, even on small screens, in combination with a set of hierarchies and contexts.

self.dashboard <= w.label('headline1', typo='headline1')
self.dashboard <= w.label('headline2', typo='headline2')
self.dashboard <= w.label('headline3', typo='headline3')
self.dashboard <= w.label('headline4', typo='headline4')
self.dashboard <= w.label('headline5', typo='headline5')
self.dashboard <= w.label('headline6', typo='headline6')
self.dashboard <= w.label('body1', typo='body1')
self.dashboard <= w.label('body2', typo='body2')
self.dashboard <= w.label('subtitle1', typo='subtitle1')
self.dashboard <= w.label('subtitle2', typo='subtitle2')
self.dashboard <= w.label('caption', typo='caption')
self.dashboard <= w.label('button', typo='button')
self.dashboard <= w.label('overline', typo='overline')

Figure 4-6. Brython Radiant: Default typography.

Buttons

The buttons have the action on_click associated, this action just trigger a method,
a function or an anonymous function.

4.4 Stimuli delivery 73

self.dashboard <= w.label('Buttons', typo='headline4', style=flex_title)
self.dashboard <= w.button(

'Button 1',
style=flex,
on_click=lambda: setattr(

document.select_one('#for_button'), 'html', 'Button 1 pressed!'
),

)
self.dashboard <= w.button(

'Button 2', style=flex, on_click=self.on_button2
)
self.dashboard <= w.label(

f'', id='for_button', typo=f'body1', style=flex
)

def on_button2(self):
document.select_one('#for_button').html = 'Button 2 pressed!'

Figure 4-7. Brython Radiant: Buttons.

Switch

The switch, like the button, have an action associated, but also, a state. The state

can be getted on any moment using the id with the method get_value(id) or in
the argument of the binded action.

self.dashboard <= w.label('Switch', typo='headline4', style=flex_title)
self.dashboard <= w.switch(

'Switch 1', checked=True, on_change=self.on_switch, id='my_swicth'
)
self.dashboard <= w.label(

f'', id='for_switch', typo=f'body1', style=flex
)

74 BCI-Framework

def on_switch(self, value):
value = self.widgets.get_value('my_swicth')
document.select_one('#for_switch').html = f'Switch Changed: {value}'

Figure 4-8. Brython Radiant: Switch.

Checkbox

Multiple selection list items use the checkbox to interact with this list of items, the

state comprise the list of selected options, and on_change is triggered on every item
status changed.

self.dashboard <= w.label('Checkbox', typo='headline4', style=flex_title)
self.dashboard <= w.checkbox(

'Checkbox',
options=[[f'chb-{i}', False] for i in range(4)],
on_change=self.on_checkbox,
id='my_checkbox',

)
self.dashboard <= w.label(

f'', id='for_checkbox', typo=f'body1', style=flex
)

def on_checkbox(self):
value = w.get_value('my_checkbox')
document.select_one('#for_checkbox').html = f'Checkbox Changed: {value}'

Figure 4-9. Brython Radiant: Checkbox.

4.4 Stimuli delivery 75

Radios

Similar to checkboxes but, the selection is exclusive to only one item, then the state

is a string.

self.dashboard <= w.label('Radios', typo='headline4', style=flex_title)
self.dashboard <= w.radios(

'Radios',
options=[[f'chb-{i}', f'chb-{i}'] for i in range(4)],
on_change=self.on_radios,
id='my_radios',

)
self.dashboard <= w.label(

f'', id='for_radios', typo=f'body1', style=flex
)

def on_radios(self):
value = w.get_value('my_radios')
document.select_one('#for_radios').html = f'Radios Changed: {value}'

Figure 4-10. Brython Radiant: Radios.

Select

The select component comply the same function that the radios, but the interface

is displayed to the user using a different widget.

self.dashboard <= w.label('Select', typo='headline4', style=flex)
self.dashboard <= w.select(

'Select',
[[f'sel-{i}', f'sel-{i}'] for i in range(4)],
on_change=self.on_select,
id='my_select',

)
self.dashboard <= w.label(

f'', id='for_select', typo=f'body1', style=flex
)

def on_select(self, value):
value = w.get_value('my_select')
document.select_one('#for_select').html = f'Select Changed: {value}'

76 BCI-Framework

Figure 4-11. Brython Radiant: Select.

Sliders

The slider are used to select numbers from a range or a range itself. The state is the

value or the range and the trigger event is the continuous update, not the change

after a release.

Slider
self.dashboard <= w.label('Slider', typo='headline4', style=flex)
self.dashboard <= w.slider(

'Slider',
min=1,
max=10,
step=0.1,
value=5,
on_change=self.on_slider,
id='my_slider',

)
self.dashboard <= w.label(

f'', id='for_slider', typo=f'body1', style=flex
)

Slider range
self.dashboard <= w.label('Slider range', typo='headline4', style=flex)
self.dashboard <= w.range_slider(

'Slider range',
min=0,
max=20,
value_lower=5,
value_upper=15,
step=1,
on_change=self.on_slider_range,
id='my_range',

4.4 Stimuli delivery 77

)
self.dashboard <= w.label(f'', id='for_range', typo=f'body1', style=flex)

def on_slider(self, value):
value = w.get_value('my_slider')
document.select_one('#for_slider').html = f'Slider Changed: {value}'

def on_slider_range(self, value):
value = w.get_value('my_slider')
document.select_one('#for_range').html = f'Range Changed: {value}'

Figure 4-12. Brython Radiant: Sliders.

4.4.3 Audiovisual stimuli

Since Brython-Radiant is basically a frontend framework, all visual stimuli can be

implemented through JavaScript, HTML, and CSS. Web applications are the most

featured environ to develop audivisual stimuli. Present and update views,

reproduce audio or video are basic tasks in this environment.

Tones and audio

The Tone library allows playing single notes using the javascript AudioContext
backend, the duration and the gain can also be configured.

78 BCI-Framework

from bci_framework.extensions.stimuli_delivery.utils import Tone as t

duration = 100
gain = 0.5

self.dashboard <= w.button(
'f#4',
on_click=lambda: t('f#4', duration, gain),
style={'margin': '0 15px'},

)
self.dashboard <= w.button(

'D#0',
on_click=lambda: t('D#0', duration, gain),
style={'margin': '0 15px'},

)
self.dashboard <= w.button(

'B2',
on_click=lambda: t('B2', duration, gain),
style={'margin': '0 15px'},

)

The Audio module allows to reproduce complete audio files.

from bci_framework.extensions.stimuli_delivery.utils import Audio as a

a.load('rain.wav')

self.dashboard <= w.label(
'Audio',
'headline4',
style={

'margin-bottom': '15px',
'display': 'flex',

},
)
self.dashboard <= html.BR()

self.dashboard <= w.slider(
'Gain',
min=0,
max=1,
step=0.1,
value=0.5,
id='gain',
on_change=a.set_gain,

)

self.dashboard <= w.button(
'Start', on_click=a.play, style={'margin': '0 15px'}

4.4 Stimuli delivery 79

)
self.dashboard <= w.button(

'Stop', on_click=a.stop, style={'margin': '0 15px'}
)

Visual stimuli

A complete free HTML-based environment available to design and implement

neurophysiological experiments.

from bci_framework.extensions.stimuli_delivery.utils import icons

self.dashboard <= icons.fa('fa-arrow-right') # FontAwesome
self.dashboard <= icons.bi('bi-arrow-right') # Bootstrap icon
self.dashboard <= icons.mi('face', size=24) # Material icons

4.4.4 Stimuli delivery pipeline

Pipelines consist of the controlled execution of methods with asynchronous

timeouts. We define a paradigm as a sequence of trials, and each trial is composed

of a sequence of parameterized views.

For example, in the classic motor imagery paradigm with two classes, right and left.

A trial is the presentation of one stimulus, each trial is composed of a sequence of

views: clear screen, wait, show stimulus, clear screen. And then, the next trial with

the same sequence of views but with different parameters, like the stimulus itself,

or random waits.

This task can be implemented programmatically with the pipeline design pattern

and simplified the implementation. First one we need to define the trials like a list

of parameter used for each one of the single trial. For example, here we define 3

trials:

80 BCI-Framework

trials = [
{'s1': 'Left', # Trial 1
'r1': 91,
},

{'s1': 'Right', # Trial 2
'r1': 85,
},

{'s1': 'Left', # Trial 3
'r1': 30,
},

]

And the trial views consists of a list of sequential methods with a respective timeout

(method, timeout), if the timeout is a number then thiswill indicate themilliseconds

until the next method call. If the timeout is a list, then a random (with uniform

distribution) number between that range will be generated on each trial.

view = [
(self.view1, 500),
(self.view2, [500, 1500]),
(self.view3, w.get_value('slider')),
(self.view4, w.get_value('range')),

]

The view configuration can used states from widgets by referencing the id instead
of an explicit value:

view = [
(self.view1, 500), # timeout
(self.view2, [500, 1500]), # range
(self.view3, 'slider'), # from widgets id
(self.view4, 'range'),

]

Then, we need to define the views methods, each method is a step needed to build

a single trial. By definition, all views will share the same arguments, even if they are

not used by that method.

4.4 Stimuli delivery 81

def view1(self, s1, r1):
print(f'On view1: {s1=}, {r1=}')

def view2(self, s1, r1):
print(f'On view2: {s1=}, {r1=}')

def view3(self, s1, r1):
print(f'On view3: {s1=}, {r1=}')

def view4(self, s1, r1):
print(f'On view4: {s1=}, {r1=}\n')

Finally, our pipeline can be executed with the method self.run_pipeline:

self.run_pipeline(view, trials)

Here, the pipeline is running all tree trials and for each one the four views, notice

that each view receive all the parameter that configure the single trial.

On view1: s1=Left, r1=91
On view2: s1=Left, r1=91
On view3: s1=Left, r1=91
On view4: s1=Left, r1=91

On view1: s1=Right, r1=85
On view2: s1=Right, r1=85
On view3: s1=Right, r1=85
On view4: s1=Right, r1=85

On view1: s1=Left, r1=30
On view2: s1=Left, r1=30
On view3: s1=Left, r1=30
On view4: s1=Left, r1=30

In addition to handle the organization and planning execution of the trials, the main

purpose of the pipelines is to synchronize the remote presentation. Figure 4-13

shows the composition of a basic trial, each view needs a time to complete their

execution, the pipeline system ensure that times the between T0 − T1, T1 − T2,

and T2− T3, remains the same for all executions, no matter the fluctuations of the

view execution.

82 BCI-Framework

Figure 4-13. Each trial is composed of views, the pipelines features define the asynchronous
execution of each view at the precise time.

4.4.5 Hardware-based event synchronization

The stimuli delivery interface integrate a physical method to synchronize markers,

this method used an small portion of the same screen that present the stimulus. In

this area a sensor is attached and connected directly with the acquisition system in

order to obtain a single stream with both signals, EEG and the external ones using

the analog boardmode supported by OpenBCI.

4.5 Markers, commands, annotations and
feedbacks

In order to integrate and intercommunicate all environments a set of custom

channels for messaging was defined, this commands are functional in all environs:

Data analysis, visualization and Stimuli delivery. The markers, annotations, and

feedbacks interacts internally in the framework in order to configure the

framework, intercommunicate process or create registers over the acquired signal.

Unlike commands that consist of a simple recommendation to standardize the

interaction of the framework environment with external process.

Markers

Used to define events over the EEG signal, needs a label and optionally a blink time

in milliseconds.

4.5 Markers, commands, annotations and feedbacks 83

self.send_marker("MARKER")
self.send_marker("MARKER", blink=200)

The timestamp for each marker is generated internally in order to the use the main

Kafka clock reference, this strategy avoids to use multiple clocks sources and

generate latencies with differents trends. Large latency with small jitter is always

preferred over small latency with large jitter.

Annotations

Used to define events over the patient, needs a description and optionally a

duration.

self.send_annotation('Data record start')
self.send_annotation('The subject yawn', duration=5)

This format is exported to the EDF standard annotations. Like in markers the

timestamp is generated internally.

Commands

This is a private framework topic defined in Kafka used to share information with

external devices, the main purpose is about to close the loop for complete BCI

systems. Need a label and a value, the value can be also any Python data structure.

self.send_command('MyCommand', value=45)
self.send_command('MyCommand', value={'A':45, 'B':12})

This messages use the 'command' topic to share the information.

84 BCI-Framework

Feedbacks

The feedbacks are used to communicate the Data analysis and Data visualizations

with the Stimuli Delivery platform with asynchronous callbacks. For this purpose,

there is a predefined stream channel called feedback. This is useful to develop

Neurofeedback applications.

The asynchronous handler can be configured with the Feedback class:

from bci_framework.extensions.stimuli_delivery import Feedback

This object needs an identifier and optionally callback method to handle the input

messages.

self.feedback = Feedback(self, 'my_feedback_id') # ID
self.feedback.on_feedback(self.on_input_feedback) #callback

The callback method will receive the input data as keyword only arguments.

def on_input_feedback(self, **feedback):
...

And the method self.feedback.write is the intented way to send feedbacks to
the complementary environment.

self.feedback.write(**feedback)

This code structure must be on both endpoints, with the same ID in order to

communicate them and exchange feedback information

4.6 Latency analysis and event marker synchronization 85

Figure 4-14. BCI-Framework: Marker synchronization real-time interface.

4.6 Latency analysis and event marker
synchronization

Is possible to take advantage of the OpenBCI implementation, this board includes

a set of analog and digital inputs that can be used to synchronize markers. In order

to use OpenBCI, we will only need an light-dependent resistor (LDR) module

connected to the pin D11 (or A5) and start the automatic latency correction

system included in BCI-Framework.

BCI-Framework integrates an interface to measure latencies and synchronize

markers (Figure 4-14), it was designed to be used on distributed environments.

This simple latency correction consists of a stimuli delivery with only a marker

synchronization area, the LDR module is constantly sensing (the boardmode must

be in analog mode) so the changes on the square signal are compared with

streamed markers and then the latency is corrected. The latency correction only

affects the current instance, if BCI-Framework is restarted this calibration will be

lose. For hard event synchronization, is prefer to use the markers synchronization

constantly during all session.

86 BCI-Framework

4.7 Close the loop and Neurofeedback

The BCI application with a close loop implementation consist of process in

real-time the acquired data in order to execute commands in the real world.

Although physiologically the close-loop signals differs from neurofeedback signals,

since the nature of the data is different, the programmatically handle is exactly the

same and are handled by Feedbacks. Once the feedback is defined through a

method to perform asynchronous communication between them, the

neurofeedback approaches can be implemented using this features. This

implementation can be designed to run inside the interface, using Real-time data

analysis or to run isolated in no contextualized process. In Appendix F.3 shows the

implementation of a neurofeedback system.

The advantage to run process inside the framework is that this scrips share all the

environment variables, and can be monitored through the main interface. On the

other hand the scripts that run outside the framework only have access to the

Kafka streams, this means that only can use the acquire data and are agnostics

about everything else.

4.8 Summary and discussion

BCI-Framework is the convergence of a set of drivers and tools working together

to serve to the user a full environment to acquire EEG signals and perform

neurophysiological experiments with reliability and flexibility. Advance user can

use the framework to develop custom visualizations and design paradigms that

satisfy their needs using the integrated development environment. The main

development was performed using Python, this feature brings to the framework

one of the most complete computational libraries to work with data analysis and

machine learning highly used to develop BCI systems today.

4.8 Summary and discussion 87

The integrated development environment serve a full API with the main tasks

automatized. The real-time data analysis and visualization build in background a

fast system to buffering, sub-sampling and slice incoming EEG data en real-time.

The stimuli delivery scripting has been designed to present views to the patient

asynchronously. In all cases the developer only must care about the specific

implementation of the analysis, visualizations and paradigm designed.

However the system only supports one acquisition board, OpenBCI Cyton, although

this is one of themost flexible and featured options available at themoment towrite

this thesis, the spreading of the framework tool could be seriously compromised.

Also the main operating system focused, any based on GNU/Linux, could be a reason

that limits the adoption of the framework by the community.

CHAPTER

FIVE

FINAL REMARKS

5.1 Conclusions and discussion

For this work were identified all components needed to get flexible, scalable, and

integral BCI system. Flexibility to adapt and modify experiments, make fast

changes in runtime, and process data in real-time; Scalability in the execution of

data analysis distributing expensive task without affect the main acquisition

process; A framework that integrate a full environment with almost all tools to

develop complete research-grade BCI systems.

In order to guarantee all promised high features, a single board (OpenBCI Cyton) was

choose to be configured and controlled in deep. Then, a brand new set of drivers

was developedwith the capability to take advantage of the hardware and all benefits

of the ADS1299. The acquisition system support multiple sampling rate, packaging

size, communication protocol, and free electrodes placement for use not only for

EEG but ECG and EMG. Additional to this, a unique feature to synchronize markers

had been included using the low levels characteristics of the acquisition board.

90 Final remarks

Unlike the centralized systems that share the resources as well the stability. The

distributed systems allow the controlled execution of a set of critical process like:

The acquisition, the implementation of a dedicated system to handle the

interaction with the OpenBCI hardware brings to the system robustness; the

stimuli delivery, that allows pull apart the rendering and audiovisual generation to

be able to stream markers and annotations in accurate times; and real-time data

analysis, from experimental and not debugged scripts without the worry of causing

exceptions in the system. Although it is a distributed system, the real-time

streaming is guaranteed, the latency and the jitter keeps in accepted ranges for

closed-loop BCI systems, and acquisition methodology ensure that the bad

sampling data can be labeled and processed as appropriate.

The development environment contribute with a full API and an automatic

background to configure common task in the field of BCI data processing like:

buffering, sub-sampling and real-time trials slicing; an easy-to-use set of widgets to

build dashboards for stimuli delivery; an environment to develop and debug

custom extensions; and an interface to integrate the user develops alongside other

extension at the same time. Implement neurofeedback paradigms and

close-the-loop represent the most demanding and interesting tasks supported

already in the system.

5.2 Future work

We have presented a framework to develop BCI systems with a lot of new features

that are not present in state-of-art. However, there are still many issues that can be

addressed to improve the performance, acceptance and the wide spreading of our

system. In particular, the following aspects could be of interest for future work:

• The electrodes density has always been one important discussion [62, 63, 64]

in the field of BCI systems. The proposed acquisitionmethod has the potential

to be parallelized and multiply the number of electrodes.

5.3 Academic products 91

• As well the selected board for this work, OpenBCI Cyton, is one of the

hardware with best performance and configurability, there is necessary a

new acquisition board that integrates the most recent technology and

communication protocols in a single board.

• The SPRG has recently interest in clinic multi-modal acquisition,

BCI-Framework can be turn into a new framework to acquire and process

real-time philological signals from multiple sources and serve visualizations,

diagnostic support or store data.

• Although the system has been proven under specific applications and some

databases has been generated (Appendix: Motor imagery, Appendix:

Visuospatial working memory - Change detection) there is necessary more

integration and validation with the methodologies developed the group.

5.3 Academic products

5.3.1 Journal papers

Paper submitted to SoftwareX - Journals | Elsevier with the name ”A real-time

acquisition, visualization, and stimuli delivery Python-based tool for

neurophysiological experiments”

5.3.2 Patents

The systems was submitted to the Crearlo no es suficiente summons for a patentability

search process with the Universidad Nacional de Colombia sede Manizales as main

beneficiary, with the title ”MÉTODO Y SISTEMA PARA LA SINCRONIZACIÓN DE

MARCADORES ASOCIADOS A SISTEMAS DE INTERFAZ

CEREBRO-COMPUTADOR”, postulation ID 343 and Application number

NC2022/0007405 from May 28, 2022.

appendix:motor-imagery
appendix:working_memory
appendix:working_memory

92 Final remarks

5.3.3 Software registers

A script developed with BCI-Framework for motor imagery paradigm based on

games stimulus (Pacman interface), was submitted to software register in the

textitUniversidad Nacional de Colombia sede Manizales.

APPENDIX

A

PYTHON: SYSTEMD SERVICE

Description: Simple API to automate the creation of custom daemons for GNU/Linux.

License: BSD-2-clause

Latest version: 1.8
Python: 3.8, 3.9, 3.10
PyPi: https://pypi.org/project/systemd-service/

Repository: https://github.com/UN-GCPDS/systemd-service

Documentation: https://systemd-service.readthedocs.io/en/latest/

A daemon is a service process that runs in the background and supervises the

system or provides functionality to other processes. Traditionally, daemons are

implemented following a scheme originating in SysV Unix [65]. Modern daemons

should follow a simpler yet more powerful scheme, as implemented by systemd

[66].

Systemd service is a Python module to automate the creation of Python-based

daemons under GNU/Linux environments.

https://pypi.org/project/systemd-service/
https://github.com/UN-GCPDS/systemd-service
https://systemd-service.readthedocs.io/en/latest/

94 Python: Systemd service

A.1 Install

pip install -U systemd-service

A.2 Handle daemons

from systemd_service import Service

daemon = Service("stream_rpyc")

daemon.stop() # Start (activate) the unit.
daemon.start() # Stop (deactivate) the unit.
daemon.reload() # Reload the unit.
daemon.restart() # Start or restart the unit.

daemon.enable() # Enable the unit.
daemon.disable() # Disable the unit.

daemon.remove() # Remove the file unit.

This commands are uquivalent to the systemctl calls, for example run in terminal
the folowing command:

\$ systemctl enable stream_rpyc

Can be running inside a Python environment with using systemd_service

from systemd_service import Service

daemon = Service("stream_rpyc")
daemon.enable()

A.3 Creating services 95

A.3 Creating services

Similar to the previous scripts, the services can be created using systemd_service:

daemon = Service("stream_rpyc")
daemon.create_service()

If the service must be initialized after other service

daemon = Service("stream_rpyc")
daemon.create_service(after='ntpd')

A.4 Creating timers

Defines a timer relative to when the machine was booted up:

daemon = Service("stream_rpyc")
daemon.create_timer(on_boot_sec=15)

A.5 Example

This module is useful when is combined with package scripts declaration in

setup.py file:

setup.py

scripts=[
"cmd/stream_rpyc",

]

The script could looks like:

96 Python: Systemd service

#!/usr/bin/env python

import sys

if sys.argv[-1] == "systemd":
from systemd_service import Service
daemon = Service("stream_rpyc")
daemon.create_timer(on_boot_sec=10, after='network.target kafka.service')

else:
from my_module.submodule import my_service
print("Run 'stream_rpyc systemd' as superuser to create the daemon.")
my_service()

Then the command can be called as a simple script but with the systemd argument
the command will turn into a service.

\$ stream_rpyc
Command executed normally

\$ stream_rpyc systemd
Service created

APPENDIX

B

PYTHON: QT-MATERIAL

Description: Material inspired stylesheet for PySide2, PySide6, PyQt5 and PyQt6.

License: BSD-2-clause

Latest version: 2.12
Python: 3.8, 3.9, 3.10
PyPi: https://pypi.org/project/qt-material/
Repository: https://github.com/UN-GCPDS/qt-material
Documentation: https://qt-material.readthedocs.io/en/latest/

This is another stylesheet for PySide6, PySide2, PyQt5 and PyQt6, which looks like

Material Design (close enough).

B.1 Install

pip install -U qt-material

https://pypi.org/project/qt-material/
https://github.com/UN-GCPDS/qt-material
https://qt-material.readthedocs.io/en/latest/

98 Python: Qt-Material

Figure B-1. light_cyan_500.xml theme for Qt-Material.

B.2 Usage

import sys
from PySide6 import QtWidgets
from PySide2 import QtWidgets
from PyQt5 import QtWidgets
from qt_material import apply_stylesheet

create the application and the main window
app = QtWidgets.QApplication(sys.argv)
window = QtWidgets.QMainWindow()

setup stylesheet
apply_stylesheet(app, theme='dark_teal.xml')

run
window.show()
app.exec_()

B.3 Themes

from qt_material import list_themes

B.4 Custom colors 99

list_themes()

['dark_amber.xml',
'dark_blue.xml',
'dark_cyan.xml',
'dark_lightgreen.xml',
'dark_pink.xml',
'dark_purple.xml',
'dark_red.xml',
'dark_teal.xml',
'dark_yellow.xml',
'light_amber.xml',
'light_blue.xml',
'light_cyan.xml',
'light_cyan_500.xml',
'light_lightgreen.xml',
'light_pink.xml',
'light_purple.xml',
'light_red.xml',
'light_teal.xml',
'light_yellow.xml']

B.4 Custom colors

Color Tool1 is the best way to generate new themes, just choose colors and export as

Android XML, the theme file must look like:

<!--?xml version="1.0" encoding="UTF-8"?-->
<resources>
<color name="primaryColor">#00e5ff</color>
<color name="primaryLightColor">#6effff</color>
<color name="secondaryColor">#f5f5f5</color>
<color name="secondaryLightColor">#ffffff</color>
<color name="secondaryDarkColor">#e6e6e6</color>
<color name="primaryTextColor">#000000</color>
<color name="secondaryTextColor">#000000</color>
</resources>

Save it as my_theme.xml or similar and apply the style sheet from Python.

apply_stylesheet(app, theme='dark_teal.xml')

1https://material.io/resources/color/!/?view.left=0view.right=0

https://material.io/resources/color/##!/?view.left=0&view.right=0

100 Python: Qt-Material

B.5 Light themes

Light themes will need to add invert_secondary argument as True.

apply_stylesheet(app, theme='light_red.xml', invert_secondary=True)

B.6 Environ variables

There is a environ variables related to the current theme used, these variables are

for consult purpose only.

Environ variable Description Example

QTMATERIAL_PRIMARYCOLOR Primary color #2979ff

QTMATERIAL_PRIMARYLIGHTCOLOR A bright version of the primary color #75a7ff

QTMATERIAL_SECONDARYCOLOR Secondary color #f5f5f5

QTMATERIAL_SECONDARYLIGHTCOLOR A bright version of the secondary color #ffffff

QTMATERIAL_SECONDARYDARKCOLOR A dark version of the primary color #e6e6e6

QTMATERIAL_PRIMARYTEXTCOLOR Color for text over primary background #000000

QTMATERIAL_SECONDARYTEXTCOLOR Color for text over secondary background #000000

QTMATERIAL_THEME Name of theme used "light_blue.xml"

Table B-1. Environ variables defined by Qt-Material.

B.7 Alternative QPushButtons and custom
fonts

There is an extra argument for accent colors and custom fonts.

B.8 Custom stylesheets 101

extra = {

Button colors
'danger': '#dc3545',
'warning': '#ffc107',
'success': '#17a2b8',

Font
'font_family': 'Roboto',

}

apply_stylesheet(app, 'light_cyan.xml', invert_secondary=True, extra=extra)

The accent colors are applied to QPushButton with the corresponding class
property:

pushButton_danger.setProperty('class', 'danger')
pushButton_warning.setProperty('class', 'warning')
pushButton_success.setProperty('class', 'success')

Figure B-2. QPushButtons stylized with class property.

B.8 Custom stylesheets

Custom changes can be performed by overwriting the stylesheets, for example:

102 Python: Qt-Material

QPushButton {{
color: {QTMATERIAL_SECONDARYCOLOR};
text-transform: none;
background-color: {QTMATERIAL_PRIMARYCOLOR};

}}

.big_button {{
height: 64px;

}}

Then, the current stylesheet can be extended just with:

apply_stylesheet(app, theme='light_blue.xml')

stylesheet = app.styleSheet()
with open('custom.css') as file:

app.setStyleSheet(stylesheet + file.read().format(**os.environ))

And the class style can be applied with the setPropertymethod:

self.main.pushButton.setProperty('class', 'big_button')

Figure B-3. QPushButtons stylized with user defined class property.

B.9 Run examples 103

B.9 Run examples

A window with almost all widgets (see the previous screenshots) are available to

test all themes and create new ones.

git clone https://github.com/UN-GCPDS/qt-material.git
cd qt-material
python setup.py install
cd examples/full_features
python main.py --pyside6

B.10 Change theme in runtime

There is a qt_material.QtStyleTools class that must be inherited along to

QMainWindow for change themes in runtime using the apply_stylesheet()
method.

class RuntimeStylesheets(QMainWindow, QtStyleTools):

def __init__(self):
super().__init__()
self.main = QUiLoader().load('main_window.ui', self)

self.apply_stylesheet(self.main, 'dark_teal.xml')
self.apply_stylesheet(self.main, 'light_red.xml')
self.apply_stylesheet(self.main, 'light_blue.xml')

B.11 Integrate stylesheets in a menu

A custom stylesheets menu can be added to a project for switching across all default

available themes.

class RuntimeStylesheets(QMainWindow, QtStyleTools):

def __init__(self):
super().__init__()
self.main = QUiLoader().load('main_window.ui', self)

self.add_menu_theme(self.main, self.main.menuStyles)

104 Python: Qt-Material

B.12 Create new themes

A simple interface is available tomodify a theme in runtime, this feature can be used

to create a new theme, the theme file is created in the main directory as my.xml

class RuntimeStylesheets(QMainWindow, QtStyleTools):

def __init__(self):
super().__init__()
self.main = QUiLoader().load('main_window.ui', self)

self.show_dock_theme(self.main)

A full set of examples are available in the exmaples directoryhttps://github.com/UN-

GCPDS/qt-material/blob/master/examples/runtime/

B.13 Export theme

This feature able to use Qt-Material themes into Qt implementations using only local
files.

from qt_material import export_theme

extra = {

Button colors
'danger': '#dc3545',
'warning': '#ffc107',
'success': '#17a2b8',

Font
'font_family': 'monoespace',
'font_size': '13px',
'line_height': '13px',

Density Scale
'density_scale': '0',

environ
'pyside6': True,

B.13 Export theme 105

'linux': True,

}

export_theme(theme='dark_teal.xml',
qss='dark_teal.qss',
rcc='resources.rcc',
output='theme',
prefix='icon:/',
invert_secondary=False,
extra=extra,
)

This script will generate both dark_teal.qss and resources.rcc and a folder with
all theme icons called theme.

The files generated can be integrated into a PySide6 application just with:

import sys

from PySide6 import QtWidgets
from PySide6.QtCore import QDir
from __feature__ import snake_case, true_property

Create application
app = QtWidgets.QApplication(sys.argv)

Load styles
with open('dark_teal.qss', 'r') as file:

app.style_sheet = file.read()

Load icons
QDir.add_search_path('icon', 'theme')

App
window = QtWidgets.QMainWindow()
checkbox = QtWidgets.QCheckBox(window)
checkbox.text = 'CheckBox'
window.show()
app.exec()

This files can also be used into non Python environs like C++.

106 Python: Qt-Material

B.14 Density scale

The extra arguments also include an option to set the density scale, by default is 0.

extra = {

Density Scale
'density_scale': '-2',

}

apply_stylesheet(app, 'default', invert_secondary=False, extra=extra)

APPENDIX

C

PYTHON: MATPLOTLIB-FIGURESTREAM

Description: A backend for serve Matplotlib animations as web streams.

License: BSD-2-clause

Latest version: 1.2.6

Python: 3.8, 3.9, 3.10

PyPi: https://pypi.org/project/figurestream/

Repository: https://github.com/UN-GCPDS/matplotlib-figurestream

Documentation: https://figurestream.readthedocs.io/en/latest/

C.1 Install

pip install -U figurestream

https://pypi.org/project/figurestream/
https://github.com/UN-GCPDS/matplotlib-figurestream
https://figurestream.readthedocs.io/en/latest/

108 Python: Matplotlib-FigureStream

C.2 Bare minimum

By default, the stream serves on http://localhost:5000

FigureStream replace any Figure object
from figurestream import FigureStream

import numpy as np
from datetime import datetime

FigureStream can be used like any Figure object
stream = FigureStream()
sub = stream.add_subplot(111)
x = np.linspace(0, 3, 1000)

Update animation loop
while True:

sub.clear() # clear the canvas

--
Any plot operation
sub.set_title('FigureStream')
sub.set_xlabel('Time [s]')
sub.set_ylabel('Amplitude')
sub.plot(x, np.sin(2 * np.pi * 2 * (x + datetime.now().timestamp())))
sub.plot(x, np.sin(2 * np.pi * 0.5 * (x + datetime.now().timestamp())))
--

stream.feed() # push the frame into the server

For fast updates is recommended to use set_data, set_ydata and set_xdata
instead of clear and draw again in each loop, also FigureStream can be

implemented from a custom class.

FigureStream replace any Figure object
from figurestream import FigureStream

import numpy as np
from datetime import datetime

class FastAnimation(FigureStream):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

http://localhost:5000

C.3 Set host, port and endpoint 109

axis = self.add_subplot(111)
self.x = np.linspace(0, 3, 1000)

Single time plot configuration
axis.set_title('FigureStream')
axis.set_xlabel('Time [s]')
axis.set_ylabel('Amplitude')

axis.set_ylim(-1.2, 1.2)
axis.set_xlim(0, 3)

Lines objects
self.line1, *_ = axis.plot(self.x, np.zeros(self.x.size))
self.line2, *_ = axis.plot(self.x, np.zeros(self.x.size))

self.anim()

def anim(self):
Update animation loop
while True:

Update only the data values is faster than update all the plot
self.line1.set_ydata(

np.sin(2 * np.pi * 2 * (self.x + datetime.now().timestamp()))
)
self.line2.set_ydata(

np.sin(
2 * np.pi * 0.5 * (self.x + datetime.now().timestamp())

)
)

self.feed() # push the frame into the server

if __name__ == '__main__':
FastAnimation()

C.3 Set host, port and endpoint

If we want to serve the stream in a different place we can use the parameters host,
port and endpoint, for example:

110 Python: Matplotlib-FigureStream

FigureStream(host='0.0.0.0', port='5500', endpoint='figure.jpeg')

Now the stream will serve on http://localhost:5500/figure.jpeg and due the
0.0.0.0 host is accesible for any device on network. By default host is localhost,
port is 5000 and endpoint is empty.

http://localhost:5500/figure.jpeg

APPENDIX

D

PYTHON/BRYTHON: RADIANT FRAMEWORK

Description: A Brython Framework for Web Apps development.

License: BSD-2-clause

Latest version: 3.3.8
Python: 3.8, 3.9, 3.10

PyPi: https://pypi.org/project/radiant/

Repository: https://github.com/UN-GCPDS/brython-radiant

Documentation: https://radiant-framework.readthedocs.io/en/latest/

Radiant is a Brython1 framework for the quick development of web apps with pure

Python/Brython syntax so there is no need to care about (if you don’t want) HTML,

CSS, or Javascript. Run over Tornado2 servers and include support to Websockets,

Python Scripts and MDC.

1https://brython.info/
2https://www.tornadoweb.org/

https://pypi.org/project/radiant/
https://github.com/UN-GCPDS/brython-radiant
https://radiant-framework.readthedocs.io/en/latest/
https://brython.info/
https://www.tornadoweb.org/

112 Python/Brython: Radiant framework

D.1 Install

pip install -U radiant

D.2 Bare minimum

Radiant modules
from radiant.server import RadiantAPI

Brython modules
This modules are faked after `radiant` import
from browser import document, html

Main class inheriting RadiantAPI
class BareMinimum(RadiantAPI):

Constructor
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

#---
Brython code (finally)
document.select_one('body') <= html.H1('Hello World')
#
...all your brython code
#---

Run server
if __name__ == '__main__':

BareMinimum()

D.3 Extra options

Radiant modules
Import RadiantServer for advanced options
from radiant.server import RadiantAPI, RadiantServer

D.4 How to works 113

from browser import document, html

Main class inheriting RadiantAPI
class BareMinimum(RadiantAPI):

def __init__(self, *args, **kwargs):
""""""
super().__init__(*args, **kwargs)

#---
Brython code
document.select_one('body') <= html.H1('Hello World')
#
...all your brython code
#---

if __name__ == '__main__':
Advance options
RadiantServer('BareMinimum',

host='localhost',
port=5000,
brython_version='3.9.1',
debug_level=0,
)

D.4 How to works

This is basically a set of scripts that allows the same file run from Python and Brython,

when is running under Python a Tornado server is created and configure the local

path for serving static files, and a custom HTML template is configured in runtime

to import the same script, this time under Brython, is very simple.

D.5 WebSockets

This WebSockets are in the Tornado side and NOT in Brython. So, is basically and

WebSocketHandler3 object like:

3https://www.tornadoweb.org/en/stable/websocket.html

https://www.tornadoweb.org/en/stable/websocket.html

114 Python/Brython: Radiant framework

#ws_handler.py

from tornado.websocket import WebSocketHandler

class WSHandler(WebSocketHandler):

def open(self):
...

def on_close(self):
...

def on_message(self, message):
...

That can be included with the RadiantServer class in the websockethandler
argument:

RadiantServer('MainApp', websockethandler=('ws_handler.py', 'WSHandler'))

This websocket will be serving on /ws URL.

D.6 Python scripting

This feature is to run a real Python environment through methods that return

objects. make sure to inherit PythonHandler:

#python_foo.py

from radiant import PythonHandler

class MyClass(PythonHandler):

def local_python(self):
return "This file are running from Local Python environment"

def pitagoras(self, a, b):
return math.sqrt(a ** 2 + b ** 2)

This handler can be included with the RadiantServer class in the python argument:

D.7 Custom themes 115

RadiantServer('MainApp', python=('python_foo.py', 'MyClass'))

A full example of use could be:

from radiant import RadiantAPI, RadiantServer
from browser import document, html

class MainApp(RadiantAPI):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

document.select('body')[0] <= html.H1('Hello World')
document.select('body')[0] <= html.H3(self.MyClass.local_python())

a, b = 3, 5
c = self.MyClass.pitagoras(a, b)
document.select('body')[0] <= html.H3(f"Pitagoras: {a=}, {b=}, {c=:.3f}")

if __name__ == '__main__':
RadiantServer('MainApp', python=('python_foo.py', 'MyClass'))

D.7 Custom themes

Material themes fromMDC can be configuredwith Color Tool4 application, just select

the desired colors, save the file and add it to the RadiantServer class in the attribute
theme.

RadiantServer('MainApp', theme='custom_theme.xml')

4https://material.io/resources/color/

https://material.io/resources/color/

APPENDIX

E

DATABASE: MOTOR IMAGERY

Description: Motor Imagery database.

Subjects: 7

License: CC BY-NC-ND 4.0

Repository: https://github.com/UN-GCPDS/

Motor imagery (MI) is the process of imagining a motor action without any motor

execution. During an MI task, a subject visualizes in their mind an instructed

motor action, i.e., to move the right hand, without actually carrying it out. When

subjects plan and execute movements, characteristic rhythms in the sensorimotor

areas, typically the µ or precentral α rhythm (8–12 Hz) and the β rhythm (13–30

Hz), get activated [67]. That is to say, MI and motor execution share common

sensorimotor areas, and both involve envisioning and executing the same motor

plan [68]. Although, their neural mechanisms seem to have some differences [69].

Assessing and interpreting MI brain dynamics may contribute to applications like

the evaluation of pathological conditions, the rehabilitation of motor functions,

https://github.com/UN-GCPDS/

118 Database: Motor imagery

and motor learning and performance [70]. Particularly, much attention has been

paid in the literature to BCI systems that can decode MI-associated task patterns,

usually captured through scalp EEG signals, and translate them into commands in

order to control external devices [71, 67]. One the main limitations for the

widespread use of such systems being that about 15–30% of users display BCI

illiteracy, i.e. they do not gain enough control over the interfaces, possibly because

subjects with poor control performance do not exhibit discriminative task-related

changes over the modulation of sensorimotor rhythms during the interval of MI

responses [68].

E.1 Paradigm

This cue-based BCI paradigm consisted of up to four different motor imagery

tasks, represented by a succession of cues (arrow-shaped) and separated with an

asynchronous break. This paradigm used an arrow pointing to the left right, up or

bottom, which has been widely used [72, 73].

Figure E-1. MI paradigm implementation with markers indicators.

E.2 Stimuli presentation 119

E.2 Stimuli presentation

There is two kind of cues for the MI stimuli delivery, the first one is based on the

classic arrows and the second one use Pacman-based cues. Both of the paradigms

were build with a dashboard that can be used to configure the experiment times.

Figure E-2. MI stimuli delivery interface with arrow cues.

The Pacman-based cues use a clean interface in order to prevent unintentional

stimulation, then all screen indicators like time, score, level and bonus were

removed.

120 Database: Motor imagery

Figure E-3. MI stimuli delivery interface with pacman-base cues.

E.3 Intention detection

An additional feature were included into this paradigm, an intentional detection,

the cue add an stimuli indicating the next task, the subject must be instructed about

not perform any activity. The intentional detection, this task also has interest in the

field of the motor execution.

E.4 Motor imagery with intentional non-control stimulus 121

Figure E-4. MI with intentional detection.

E.4 Motor imagery with intentional
non-control stimulus

Other experimental feature included in the stimuli delivery was the intentional non-

control [74], this feature is useful to close the loop, since in real implementations

there are situations were the patient do not want to perform any action. This new

cue is modeled as a circle.

122 Database: Motor imagery

Figure E-5. MI with nonintentional stimulus.

APPENDIX

F

DATABASE: VISUOSPATIAL WORKING MEMORY -

CHANGE DETECTION TASK

Description: Visuospatial working memory database.

Subjects: 4

License: CC BY-NC-ND 4.0

Repository: https://github.com/UN-GCPDS/

Visuospatial Working Memory (VWM) is a memory system of limited capacity

with the ability to store and manipulate information for a short period of time

[75, 76]. It plays a key role in complex cognitive tasks such as comprehension,

reasoning, planning and learning [77, 78], as well as in daily activities such as

problem solving and decision-making [79]. VWM consists of three distinct stages

of information processing: encoding, maintenance or retention, and retrieval [80],

with the retention interval being considered as a defining component of VWM,

since it differentiates it from other memory types [76].

https://github.com/UN-GCPDS/

124 Database: Visuospatial working memory - Change detection task

F.1 Paradigm

The task consists in remembering the colors of a set of squares displayed on a

computer screen, termed memory array, and then comparing them with the colors

of a second set of squares located in the same positions, termed test array [81]. A

trial of the task begins with an arrow indicating either the left or the right side of

the screen for 0.2 s. Then, a memory array appears on the screen for 0.1 s. For

every trial, memory arrays are displayed on both hemifields, but the subject must

remember only those appearing on the side indicated by the arrow cue. Next, after

a retention interval lasting 0.9 s, a test array appears for a period of 2 s. During this

period the subject reports if the colors of all the items in the memory and test

arrays match. The task has three levels according to the number of elements in the

memory array: low memory load (one square), medium memory load (two

squares), and high memory load (four squares). The subject must perform a total

of 300 trials, with 100 trials for each memory load level (50 trials per hemifield).

Trials from different levels are presented at random. The color of one of the

squares in the test array differs from its counterpart in the memory array in 50% of

the trials.

Figure F-1. VWM paradigm implementation with markers indicators.

F.2 Stimuli presentation 125

F.2 Stimuli presentation

All stimuli are presented on a computer screen situated 120 cm away from the

subject. The stimulus arrays appear within two 7.2◦ × 13.15◦ rectangular regions

that are centered 5.4◦ to the left and right of a central fixation cross on a gray

background (the symbol ◦ stands for degrees of visual angle [82, 83]. Each colored
square (1.17◦ × 1.17◦) is randomly selected from a set of seven colors (red, blue,

violet, green, yellow, black and white). A given color can appear no more than

twice within an array. Stimulus positions were randomized on each trial, with the

constraint that the distance between squares within a hemifield was at least 3.5◦

(center to center) [84].

Figure F-2. VWM stimuli delivery interface.

F.3 Neurofeedback

Neurofeedback is attracting renewed interest as a method to self-regulate one’s

own brain activity to directly alter the underlying neural mechanisms of cognition

and behavior. It not only promises new avenues as a method for cognitive

126 Database: Visuospatial working memory - Change detection task

enhancement in healthy subjects, but also as a therapeutic tool. In the current

article, we present a review tutorial discussing key aspects relevant to the

development of EEG neurofeedback studies. In addition, the putative mechanisms

underlying neurofeedback learning are considered. We highlight both aspects

relevant for the practical application of neurofeedback as well as rather theoretical

considerations related to the development of new generation protocols. Important

characteristics regarding the set-up of a neurofeedback protocol are outlined in a

step-by-step way. All these practical and theoretical considerations are illustrated

based on a protocol and results of a frontal-midline theta up-regulation training for

the improvement of executive functions. Not least, assessment criteria for the

validation of neurofeedback studies as well as general guidelines for the

evaluation of training efficacy are discussed [85].

Figure F-3. VWM neurofeedback dash board.

APPENDIX

G

PARADIGM: REWARD STOP SIGNAL TASK (RSST)

The concept of inhibitory control in human cognition can be approached from its

basic motor and reflexive aspects to elaborate control processes such as planned

actions and strategies [86], it can also be simply defined as the resistance to

interference [87]. From a cognitive perspective, inhibitory control is not only a

fundamental tool to guide behaviour towards goals accomplishment but to

dynamically modify or cancel planned actions [88]. This dynamic dimension of

(inhibitory) cognitive control is crucial to enable the flexibility of cognitive and

behavioural control systems [89].

G.1 Paradigm

The general principle of Stop Tasks is a routine motor reaction where participants

must hit a key each time they are confronted with a frequent go stimulus, and a

cancellation of the ongoing action, after exposure to an infrequent stop signal. Our

128 Paradigm: Reward stop signal task (RSST)

visual stimuli and experimental design consist on a modified version of the SST

developed by Rubia and colleagues (2003) [90], which is, in turn, a faster visual

variant of the Tracking SST [91]. Main modifications reside on the introduction of

monetary feedback after each successful inhibition and the suppression of

punishment feedback after a failed inhibition [92].

Participants performed the Reward Stop Signal Task Paradigm (RSST) in two

different groups. One group was aware of the possibility of rewards magnitudes

shift but the order of rewards was not communicated (expected specific rewards

group). In the other group (unexpected reward group), participants only knew that a

monetary reward will appear without any mention to the reward shift and

subsequently discovered (by themselves) a distinct reward magnitude only at the

last block.

G.2 Stimuli presentation

The RSSTwas presented over 4 blocks of 4min each. Each block has one of the three

possible feedbacks: non-monetary reward (Smiley), low reward (50 COP) or high

reward (500 COP). Regardless of the assigned condition or group, all participants

performed exactly the same first – baseline- block, were each successful inhibition

was rewarded with a Smiley. Afterwards, participants received two types of the

mentioned monetary feedbacks.

To control for the effect of reward order presentation, we have built two

conditions: for Increasing condition the order was Smiley, 50 COP, 50 COP, 500

COP; and for Decreasing condition, Smiley, 500 COP, 500 COP, 50 COP.

Participants were randomly assigned to each condition in a counterbalanced way.

Half of participants underwent the Increasing Condition and the other half, the

Decreasing Condition.

G.2 Stimuli presentation 129

Figure G-1. Reward Stop Signal Task (RSST) stimuli delivery dashboard.

BIBLIOGRAPHY

[1] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,”

sensors, vol. 12, no. 2, pp. 1211–1279, 2012. (page 1)

[2] C. Tremmel, Estimating Cognitive Workload in an Interactive Virtual Reality

Environment Using Electrophysiological and Kinematic Activity. PhD thesis, Old

Dominion University, 2019. (page 1)

[3] M. Maleki, N. Manshouri, and T. Kayikcioglu, “Brain-computer interface

systems for smart homes-a review study,” Recent Advances in Electrical & Electronic

Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), vol. 14,

no. 2, pp. 144–155, 2021. (page 1)

[4] K. Polat, A. B. Aygun, and A. R. Kavsaoglu, “Eeg based brain-computer interface

control applications: A comprehensive review,” Journal of Bionic Memory, vol. 1,

no. 1, pp. 20–33, 2021. (page 1)

[5] G. A. M. Vasiljevic and L. C. de Miranda, “Brain–computer interface games

based on consumer-grade eeg devices: A systematic literature review,”

International Journal of Human–Computer Interaction, vol. 36, no. 2, pp. 105–142,

2020. (page 1)

132 Bibliography

[6] S. Taherian and T. C. Davies, “Caregiver and special education staff

perspectives of a commercial brain-computer interface as access technology:

a qualitative study,” Brain-Computer Interfaces, vol. 5, no. 2-3, pp. 73–87, 2018.

(page 1)

[7] S. K. Mudgal, S. K. Sharma, J. Chaturvedi, and A. Sharma, “Brain

computer interface advancement in neurosciences: Applications and issues,”

Interdisciplinary Neurosurgery, vol. 20, p. 100694, 2020. (page 1)

[8] D. Bansal and R. Mahajan, EEG-Based Brain-Computer Interfaces: Cognitive Analysis

and Control Applications. Academic Press, 2019. (page 1)

[9] S. Baillet, J. C.Mosher, and R.M. Leahy, “Electromagnetic brainmapping,” IEEE

Signal processing magazine, vol. 18, no. 6, pp. 14–30, 2001. (page 2)

[10] S. Laureys, M. Boly, and G. Tononi, “Functional neuroimaging in the neurology

of consciousness: cognitive neuroscience and neuropathology,” 2009. (page 2)

[11] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain Computer Interfaces, a Review,”

Sensors, vol. 12, pp. 1211–1279, Jan. 2012. (page 2)

[12] K. Kostiukevych, S. Stirenko, N. Gordienko, O. Rokovyi, O. Alienin, and

Y. Gordienko, “Convolutional and recurrent neural networks for physical

action forecasting by brain-computer interface,” in 2021 11th IEEE International

Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), vol. 2, pp. 973–978, IEEE, 2021. (page 2)

[13] J. Wolpaw and E. W. Wolpaw, “Brain-computer interfaces: Principles and

practice,” 2012. (pages 2, 4, and 10)

[14] D. Cárdenas-Peña, D. Collazos-Huertas, and G. Castellanos-Dominguez,

“Enhanced data representation by kernel metric learning for dementia

diagnosis,” Frontiers in neuroscience, vol. 11, p. 413, 2017. (page 3)

Bibliography 133

[15] D. Collazos-Huertas, D. Cárdenas-Peña, and G. Castellanos-Dominguez,

“Instance-based representation using multiple kernel learning for predicting

conversion to alzheimer disease,” International journal of neural systems, vol. 29,

no. 02, p. 1850042, 2019. (page 3)

[16] J. D. Pulgarin-Giraldo, A. Ruales-Torres, A. M. Álvarez-Meza, and

G. Castellanos-Dominguez, “Relevant kinematic feature selection to support

human action recognition in mocap data,” in International Work-Conference on

the Interplay Between Natural and Artificial Computation, pp. 501–509, Springer,

2017. (page 3)

[17] J. V. Hurtado-Rincón, J. D. Martínez-Vargas, S. Rojas-Jaramillo, E. Giraldo,

and G. Castellanos-Dominguez, “Identification of relevant inter-channel eeg

connectivity patterns: a kernel-based supervised approach,” in International

Conference on Brain Informatics, pp. 14–23, Springer, 2016. (page 3)

[18] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.

Vaughan, “Brain–computer interfaces for communication and control,” Clinical

neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. (page 4)

[19] C. S. Nam, A. Nijholt, and F. Lotte, Brain–computer interfaces handbook:

technological and theoretical advances. CRC Press, 2018. (pages 4 and 5)

[20] J. R. Wessel, K. J. Gorgolewski, and P. Bellec, “Switching software in science:

Motivations, challenges, and solutions,” Trends in cognitive sciences, vol. 23, no. 4,

pp. 265–267, 2019. (page 4)

[21] M. Ordikhani-Seyedlar and M. A. Lebedev, “Augmenting attention with brain–

computer interfaces,” in Brain–Computer Interfaces Handbook, pp. 549–560, CRC

Press, 2018. (page 4)

[22] J.-A. Martinez-Leon, J.-M. Cano-Izquierdo, and J. Ibarrola, “Are low cost brain

computer interface headsets ready for motor imagery applications?,” Expert

Systems with Applications, vol. 49, pp. 136–144, 2016. (page 4)

134 Bibliography

[23] J. LaRocco, M. D. Le, and D.-G. Paeng, “A systemic review of available low-

cost eeg headsets used for drowsiness detection,” Frontiers in neuroinformatics,

vol. 14, 2020. (page 5)

[24] V. Peterson, C. Galván, H. Hernández, and R. Spies, “A feasibility study of a

complete low-cost consumer-grade brain-computer interface system,” Heliyon,

vol. 6, no. 3, p. e03425, 2020. (pages 5 and 14)

[25] J. Frey, “Comparison of a consumer grade eeg amplifier with medical grade

equipment in bci applications,” in International BCI meeting, 2016. (page 5)

[26] P. Brunner and G. Schalk, “Bci software,” in Brain–Computer Interfaces Handbook,

pp. 323–340, CRC Press, 2018. (page 5)

[27] A. Lécuyer, F. Lotte, R. B. Reilly, R. Leeb, M. Hirose, and M. Slater, “Brain-

computer interfaces, virtual reality, and videogames,” Computer, vol. 41, no. 10,

pp. 66–72, 2008. (page 5)

[28] M. Palaus, E. M. Marron, R. Viejo-Sobera, and D. Redolar-Ripoll, “Neural basis

of video gaming: A systematic review,” Frontiers in human neuroscience, p. 248,

2017. (page 5)

[29] M. Bassolino, M. Franza, J. Bello Ruiz, M. Pinardi, T. Schmidlin, M. Stephan,

M. Solca, A. Serino, and O. Blanke, “Non-invasive brain stimulation of motor

cortex induces embodiment when integrated with virtual reality feedback,”

European Journal of Neuroscience, vol. 47, no. 7, pp. 790–799, 2018. (page 5)

[30] I. Sugiarto and I. H. Putro, “Application of distributed system in neuroscience,

a case study of bci framework,” in The 1st international seminar on science and

technology, 2009. (page 6)

[31] V. Alvarez and A. O. Rossetti, “Clinical use of eeg in the icu: technical setting,”

Journal of clinical neurophysiology, vol. 32, no. 6, pp. 481–485, 2015. (page 6)

Bibliography 135

[32] S. Beniczky, H. Aurlien, J. C. Brøgger, L. J. Hirsch, D. L. Schomer, E. Trinka,

R. M. Pressler, R. Wennberg, G. H. Visser, M. Eisermann, et al., “Standardized

computer-based organized reporting of eeg: Score–second version,” Clinical

Neurophysiology, vol. 128, no. 11, pp. 2334–2346, 2017. (page 6)

[33] M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat,

“Advances in asynchronous parallel and distributed optimization,” Proceedings

of the IEEE, vol. 108, no. 11, pp. 2013–2031, 2020. (page 6)

[34] S. Deshmukh, K. Thirupathi Rao, andM. Shabaz, “Collaborative learning based

straggler prevention in large-scale distributed computing framework,” Security

and communication networks, vol. 2021, 2021. (page 6)

[35] A. Powell, “Democratizing production through open source knowledge: from

open software to open hardware,” Media, Culture & Society, vol. 34, no. 6,

pp. 691–708, 2012. (page 9)

[36] H. Legenvre, P. Kauttu, M. Bos, and R. Khawand, “Is open hardware

worthwhile? learning from thales’ experience with risc-v,” Research-Technology

Management, vol. 63, no. 4, pp. 44–53, 2020. (page 9)

[37] F. Laport, F. J. Vazquez-Araujo, D. Iglesia, P. M. Castro, and A. Dapena, “A

comparative study of low cost open source eeg devices,” in Multidisciplinary

Digital Publishing Institute Proceedings, vol. 21, p. 40, 2019. (page 10)

[38] R. Martínez-Cancino, A. Delorme, D. Truong, F. Artoni, K. Kreutz-Delgado,

S. Sivagnanam, K. Yoshimoto, A. Majumdar, and S. Makeig, “The open

eeglab portal interface: High-performance computingwith eeglab,”NeuroImage,

vol. 224, p. 116778, 2021. (page 12)

[39] T. Choudhury, A. Tripathi, B. Arora, and A. Aggarwal, “Implementation

of common spatial pattern algorithm using eeg in bcilab,” in International

Conference on Recent Developments in Science, Engineering and Technology, pp. 288–

300, Springer, 2019. (page 12)

136 Bibliography

[40] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck,

R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S. Hämäläinen, “MEG and EEG

data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, no. 267, pp. 1–

13, 2013. (page 12)

[41] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw,

“Bci2000: a general-purpose brain-computer interface (bci) system,” IEEE

Transactions on biomedical engineering, vol. 51, no. 6, pp. 1034–1043, 2004.

(pages 14 and 49)

[42] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand,

and A. Lécuyer, “Openvibe: An open-source software platform to design, test,

and use brain–computer interfaces in real and virtual environments,” Presence:

teleoperators and virtual environments, vol. 19, no. 1, pp. 35–53, 2010. (page 14)

[43] M. Madrid Sobrino, “Brain computer interface,” Master’s thesis, 2014.

(page 14)

[44] J. A. Wilson, J. Mellinger, G. Schalk, and J. Williams, “A procedure for

measuring latencies in brain–computer interfaces,” IEEE transactions

on biomedical engineering, vol. 57, no. 7, pp. 1785–1797, 2010.

(pages 14, 19, 30, and 49)

[45] S. Appelhoff and T. Stenner, “In com we trust: Feasibility of usb-based event

marking,” Behavior Research Methods, vol. 53, no. 6, pp. 2450–2455, 2021.

(page 14)

[46] M. Razavi, V. Janfaza, T. Yamauchi, A. Leontyev, S. Longmire-Monford,

and J. Orr, “Opensync: An open-source platform for synchronizing multiple

measures in neuroscience experiments,” Journal of neuroscience methods, vol. 369,

p. 109458, 2022. (page 14)

[47] C. E. Davis, J. G. Martin, and S. J. Thorpe, “Stimulus onset hub: An open-

source, low latency, and opto-isolated trigger box for neuroscientific research

replicability and beyond,” Frontiers in Neuroinformatics, vol. 14, 2020. (page 15)

Bibliography 137

[48] E. Netzer, A. Frid, and D. Feldman, “Real-time eeg classification via coresets

for bci applications,” Engineering applications of artificial intelligence, vol. 89,

p. 103455, 2020. (page 15)

[49] M. A. Hasan, M. U. Khan, and D. Mishra, “A computationally efficient method

for hybrid eeg-fnirs bci based on the pearson correlation,” BioMed Research

International, vol. 2020, 2020. (page 15)

[50] A. Ahmadi, O. Dehzangi, and R. Jafari, “Brain-computer interface signal

processing algorithms: A computational cost vs. accuracy analysis for wearable

computers,” in 2012 Ninth International Conference on Wearable and Implantable

Body Sensor Networks, pp. 40–45, IEEE, 2012. (page 15)

[51] V. Changoluisa, P. Varona, and F. D. B. Rodríguez, “A low-cost computational

method for characterizing event-related potentials for bci applications and

beyond,” IEEE Access, vol. 8, pp. 111089–111101, 2020. (page 15)

[52] T. Abe, I. Kinsella, S. Saxena, E. K. Buchanan, J. Couto, J. Briggs, S. L. Kitt,

R. Glassman, J. Zhou, L. Paninski, et al., “Neuroscience cloud analysis as a

service,” bioRxiv, pp. 2020–06, 2021. (page 15)

[53] S. M. Potter, A. El Hady, and E. E. Fetz, “Closed-loop neuroscience and

neuroengineering,” Frontiers in neural circuits, vol. 8, p. 115, 2014. (page 15)

[54] C.Muñiz, F. d. B. Rodríguez, and P. Varona, “Rtbiomanager: a software platform

to expand the applications of real-time technology in neuroscience,” BMC

Neuroscience, vol. 10, no. 1, pp. 1–2, 2009. (page 15)

[55] R. Amaducci, M. Reyes-Sanchez, I. Elices, F. B. Rodriguez, and P. Varona,

“Rthybrid: a standardized and open-source real-time software model library

for experimental neuroscience,” Frontiers in Neuroinformatics, vol. 13, p. 11,

2019. (page 15)

[56] “Welcome to pytables’ documentation! — pytables 3.7.0 documentation.”

https://www.pytables.org/. (Accessed on 03/29/2022). (page 33)

https://www.pytables.org/

138 Bibliography

[57] H. S. Kisakye, “Brain computer interfaces: Openvibe as a platform for a p300

speller,” 2013. (page 49)

[58] R. K. Soni, Full Stack AngularJS for Java Developers: Build a Full-Featured Web

Application from Scratch Using AngularJS with Spring RESTful. Apress, 2017.

(page 55)

[59] E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P.

Davison, “Python in neuroscience,” Frontiers in neuroinformatics, vol. 9, p. 11,

2015. (page 60)

[60] F.-B. Vialatte, J. Solé-Casals, andA. Cichocki, “Eegwindowed statistical wavelet

scoring for evaluation and discrimination of muscular artifacts,” Physiological

Measurement, vol. 29, no. 12, p. 1435, 2008. (page 69)

[61] G. Gómez-Herrero, W. De Clercq, H. Anwar, O. Kara, K. Egiazarian,

S. Van Huffel, andW. Van Paesschen, “Automatic removal of ocular artifacts in

the eeg without an eog reference channel,” in Proceedings of the 7th Nordic signal

processing symposium-NORSIG 2006, pp. 130–133, IEEE, 2006. (page 69)

[62] P. T. Wang, C. E. King, C. M. McCrimmon, J. J. Lin, M. Sazgar, F. P. Hsu,

S. J. Shaw, D. E. Millet, L. A. Chui, C. Y. Liu, et al., “Comparison of decoding

resolution of standard and high-density electrocorticogramelectrodes,” Journal

of neural engineering, vol. 13, no. 2, p. 026016, 2016. (page 90)

[63] L. Guo, “Principles of functional neural mapping using an intracortical ultra-

density microelectrode array (ultra-density mea),” Journal of Neural Engineering,

vol. 17, no. 3, p. 036018, 2020. (page 90)

[64] Q. Liu, M. Ganzetti, N.Wenderoth, and D.Mantini, “Detecting large-scale brain

networks using eeg: impact of electrode density, head modeling and source

localization,” Frontiers in neuroinformatics, vol. 12, p. 4, 2018. (page 90)

[65] “daemon.” https://www.freedesktop.org/software/systemd/man/
daemon.html. (Accessed on 06/04/2022). (page 93)

https://www.freedesktop.org/software/systemd/man/daemon.html
https://www.freedesktop.org/software/systemd/man/daemon.html

Bibliography 139

[66] “systemd.” https://www.freedesktop.org/software/systemd/man/
systemd.html#. (Accessed on 06/04/2022). (page 93)

[67] C. Xu, C. Sun, G. Jiang, X. Chen, Q. He, and P. Xie, “Two-level multi-

domain feature extraction on sparse representation for motor imagery

classification,” Biomedical Signal Processing and Control, vol. 62, p. 102160, 2020.

(pages 117 and 118)

[68] D. G. García-Murillo, A. Alvarez-Meza, and G. Castellanos-Dominguez, “Single-

trial kernel-based functional connectivity for enhanced feature extraction in

motor-related tasks,” Sensors, vol. 21, no. 8, p. 2750, 2021. (pages 117 and 118)

[69] M. Matsuo, N. Iso, K. Fujiwara, T. Moriuchi, D. Matsuda, W. Mitsunaga,

A. Nakashima, and T. Higashi, “Comparison of cerebral activation between

motor execution andmotor imagery of self-feeding activity,” Neural regeneration

research, vol. 16, no. 4, p. 778, 2021. (page 117)

[70] D. F. Collazos-Huertas, A. M. Álvarez-Meza, C. D. Acosta-Medina, G. Castaño-

Duque, and G. Castellanos-Domínguez, “Cnn-based framework using spatial

dropping for enhanced interpretation of neural activity in motor imagery

classification,” Brain Informatics, vol. 7, no. 1, pp. 1–13, 2020. (page 118)

[71] S. Galindo-Noreña, D. Cárdenas-Peña, and Á. Orozco-Gutierrez, “Multiple

kernel stein spatial patterns for themulticlass discrimination ofmotor imagery

tasks,” Applied Sciences, vol. 10, no. 23, p. 8628, 2020. (page 118)

[72] K. Choi, “Electroencephalography (eeg)-based neurofeedback training for

brain–computer interface (bci),” Experimental brain research, vol. 231, no. 3,

pp. 351–365, 2013. (page 118)

[73] C. Llanos, M. Rodriguez, C. Rodriguez-Sabate, I. Morales, and M. Sabate, “Mu-

rhythm changes during the planning of motor and motor imagery actions,”

Neuropsychologia, vol. 51, no. 6, pp. 1019–1026, 2013. (page 118)

https://www.freedesktop.org/software/systemd/man/systemd.html##
https://www.freedesktop.org/software/systemd/man/systemd.html##

140 Bibliography

[74] S. Perdikis, R. Leeb, and J. d. R. Millán, “Subject-oriented training for motor

imagery brain-computer interfaces,” in 2014 36th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, pp. 1259–1262, IEEE, 2014.

(page 121)

[75] A. D. Baddeley, “Working memory: theories, models, and controversies,”

Exploring Working Memory, pp. 332–369, 2017. (page 123)

[76] Y. G. Pavlov and B. Kotchoubey, “Oscillatory brain activity and maintenance

of verbal and visual working memory: A systematic review,” Psychophysiology,

vol. 59, no. 5, p. e13735, 2022. (page 123)

[77] E. L. Johnson, D. King-Stephens, P. B. Weber, K. D. Laxer, J. J. Lin, and R. T.

Knight, “Spectral imprints of working memory for everyday associations in the

frontoparietal network,” Frontiers in Systems Neuroscience, vol. 12, p. 65, 2019.

(page 123)

[78] D. Zhang, H. Zhao, W. Bai, and X. Tian, “Functional connectivity among multi-

channel eegs when working memory load reaches the capacity,” Brain research,

vol. 1631, pp. 101–112, 2016. (page 123)

[79] Z. Dai, J. De Souza, J. Lim, P. M. Ho, Y. Chen, J. Li, N. Thakor, A. Bezerianos,

and Y. Sun, “Eeg cortical connectivity analysis of working memory reveals

topological reorganization in theta and alpha bands,” Frontiers in human

neuroscience, p. 237, 2017. (page 123)

[80] E. L. Johnson, J. N. Adams, A.-K. Solbakk, T. Endestad, P. G. Larsson,

J. Ivanovic, T. R. Meling, J. J. Lin, and R. T. Knight, “Dynamic frontotemporal

systems process space and time in working memory,” PLoS biology, vol. 16,

no. 3, p. e2004274, 2018. (page 123)

[81] E. K. Vogel and M. G. Machizawa, “Neural activity predicts individual

differences in visual working memory capacity,” Nature, vol. 428, no. 6984,

pp. 748–751, 2004. (page 124)

Bibliography 141

[82] L. Newsome, “Visual angle and apparent size of objects in peripheral vision,”

Perception & Psychophysics, vol. 12, no. 3, pp. 300–304, 1972. (page 125)

[83] R. Haeuslschmid, S. Forster, K. Vierheilig, D. Buschek, and A. Butz,

“Recognition of text and shapes on a large-sized head-up display,” in Proceedings

of the 2017 Conference on Designing Interactive Systems, pp. 821–831, 2017.

(page 125)

[84] M. Villena-González, I. Rubio-Venegas, and V. López, “Data from brain activity

during visual workingmemory replicates the correlation between contralateral

delay activity and memory capacity,” Data in brief, vol. 28, p. 105042, 2020.

(page 125)

[85] S. Enriquez-Geppert, R. J. Huster, and C. S. Herrmann, “Eeg-neurofeedback as a

tool to modulate cognition and behavior: a review tutorial,” Frontiers in human

neuroscience, vol. 11, p. 51, 2017. (page 126)

[86] A. R. Aron, P. C. Fletcher, E. T. Bullmore, B. J. Sahakian, and T. W. Robbins,

“Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in

humans,” Nature neuroscience, vol. 6, no. 2, pp. 115–116, 2003. (page 127)

[87] F. N. Dempster, “The rise and fall of the inhibitory mechanism: Toward

a unified theory of cognitive development and aging,” Developmental review,

vol. 12, no. 1, pp. 45–75, 1992. (page 127)

[88] A. Bari and T. W. Robbins, “Inhibition and impulsivity: behavioral and neural

basis of response control,” Progress in neurobiology, vol. 108, pp. 44–79, 2013.

(page 127)

[89] J. S. Ide, P. Shenoy, J. Y. Angela, and R. L. Chiang-Shan, “Bayesian prediction

and evaluation in the anterior cingulate cortex,” Journal of Neuroscience, vol. 33,

no. 5, pp. 2039–2047, 2013. (page 127)

142 Bibliography

[90] K. Rubia, A. B. Smith, M. J. Brammer, and E. Taylor, “Right inferior

prefrontal cortex mediates response inhibition while mesial prefrontal cortex

is responsible for error detection,” Neuroimage, vol. 20, no. 1, pp. 351–358,

2003. (page 128)

[91] G. D. Logan and W. B. Cowan, “On the ability to inhibit thought and action: A

theory of an act of control.,” Psychological review, vol. 91, no. 3, p. 295, 1984.

(page 128)

[92] P. M. Herrera, A. V. Van Meerbeke, M. Speranza, C. L. Cabra, M. Bonilla,

M. Canu, and T. A. Bekinschtein, “Expectation of reward differentially

modulates executive inhibition,” BMC psychology, vol. 7, no. 1, pp. 1–10, 2019.

(page 128)

	Acknowledgements
	Abstract
	Resumen
	Contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	High-level acquisition drivers for OpenBCI
	Real-time and distributed implementation
	BCI-Framework
	Final remarks
	Appendix Python: Systemd service
	Appendix Python: Qt-Material
	Appendix Python: Matplotlib-FigureStream
	Appendix Python/Brython: Radiant framework
	Appendix Database: Motor imagery
	Appendix Database: Visuospatial working memory - Change detection task
	Appendix Paradigm: Reward stop signal task (RSST)
	Bibliography

