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Resumen 

 

Influencia de los factores de individuo y especie en la mortalidad de los árboles de 

dosel en un bosque de la Amazonía: vinculación de sensores remotos y datos 

terrestres 

 

La mortalidad de los árboles es un proceso ecológico fundamental que determina la 

estructura y funcionamiento de los bosques. En este estudio, vinculamos datos de 

sensores remotos y monitoreos terrestres para evaluar la influencia de la exposición de la 

copa de los árboles a la luz (en relación con el área total de la copa), la desviación 

individual de las tasas de crecimiento, el tamaño del árbol (DBH), y la densidad de la 

madera de las especies, sobre la mortalidad de 984 árboles de dosel en la Parcela 

Permanente Amacayacu, Amazonía noroccidental, entre el 2013 y 2019. Ajustamos 

Modelos Lineales Generalizados de Efectos Mixtos para investigar las variables o 

combinación de variables que mejor explicaba la probabilidad de muerte durante este 

período. Encontramos que los árboles de dosel de especies con baja densidad de la 

madera fueron menos propensos a morir cuando tuvieron mayor proporción de copa 

expuesta a la luz, mientras que, árboles de alta densidad de madera fueron ligeramente 

más propensos a morir a mayor proporción de su copa expuesta a la luz. Árboles que 

crecieron menos que el promedio de su especie presentaron mayor mortalidad, 

especialmente en especies con baja densidad de la madera. El rol de la densidad de la 

madera en la determinación de la sobrevivencia de los árboles de dosel bajo diferentes 

condiciones de luz indica respuestas diferenciales de las estrategias de historia de vida. 

Nuestros resultados destacan la importancia de tener en cuenta las estrategias de historia 

de vida (e.g., representadas por la densidad de la madera) al predecir la demografía de 

los bosques bajo el rápido cambio climático. 

Palabras clave: área de copa; densidad de la madera; disponibilidad de luz; drones; 

estrategias de historia de vida; sobrevivencia arbórea; tasas de crecimiento; tamaño 

del árbol.   
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Abstract 

 

Influence of tree-level and species-level factors on the mortality of canopy trees in 

an Amazon forest: linking remote sensing with ground-based data 

 

Tree mortality is a fundamental ecological process determining forest structure and 

functioning. Here, we linked remote sensing and ground-based data to assess the influence 

of tree crown exposure to light (relative to total crown area), individual deviations of growth 

rates, tree size (DBH), and species wood density on the mortality of 984 canopy trees for 

the Amacayacu Forest Dynamics Plot, northwestern Amazon, between 2013 and 2019. We 

fitted Generalized Linear Mixed-Effects models to investigate the variables or combination 

of variables that best explained the probability of death during this period. We found that 

canopy trees of low wood density species were less prone to die when their proportion of 

crown was more exposed to sunlight, whereas high wood density trees were slightly more 

prone to die with higher relative crown exposure to light. Trees growing less than their 

species average had higher mortality, especially in low wood density species. The role of 

wood density in determining the survival of canopy trees under varying light conditions 

indicates differential responses of life-history strategies. Our results highlight the 

importance of accounting for life-history strategies (e.g., proxied by wood density) when 

predicting forest demography under rapidly changing climate. 

 

Keywords: crown area; drones; growth rates; life-history strategies; light 

availability; tree size; tree survival; wood density. 
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Introduction 

Tree mortality highly influences forest carbon dynamics, functioning, and composition. 

Increases in tree mortality have been proposed to be the main cause of the long-term 

decline in Amazon carbon stocks (Hubau et al., 2020) with negative consequences for the 

global climate regulation (Friedlingstein et al., 2022). However, what drives changes in tree 

mortality as well as the covariates influencing trees’ response remain poorly understood 

(McDowell et al., 2022), especially in the tropics, where the high species diversity results in 

multiple responses to a given factor (Zuleta et al., 2022a; Bauman et al., 2022). The 

multivariate nature of tree mortality and the relatively low numbers of trees dying every year 

make it a difficult process to understand, estimate, and ultimately predict (McMahon et al., 

2019). 

 

Tree mortality results from a combination of factors (Franklin et al., 1987). Some of these 

are slow or chronic factors (e.g., genetic factors, resource limitation; ‘presses’, Harris et al., 

2018), while others can kill trees within a single season (e.g., drought, pest outbreak) or 

almost instantaneously (e.g., lightning, wind disturbances; ‘pulses’, Negrón-Juárez et al., 

2017; Yanoviak et al., 2020). These factors are non-mutually exclusive and operate at the 

individual, species, and stand levels (e.g., Arellano et al., 2019; Aleixo et al., 2019; 

Esquivel-Muelbert et al., 2020). At the species level, trees generally array on a continuum 

of resource allocation strategies (i.e., the growth-mortality trade off; Wright et al., 2010) with 

fast-growing species dying faster than slow-growing species, especially in undisturbed 

tropical forests (Russo et al., 2021). The low mortality of slow growing species is 

presumably mediated by their high wood density, a key trait that provides mechanical 

support, hydraulic safety during droughts, and greater resistance to pests and pathogens 

(Augspurger & Kelly, 1984; Hacke et al., 2001; Chave et al., 2009). Within species, 

however, trees that grow faster than conspecifics have greater access to resources and 

therefore are less prone to die (Rüger et al., 2011; Camac et al., 2018; Arellano et al., 2019; 

Russo et al., 2021). 
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Resource availability, both aboveground and belowground, also influences tree mortality 

(Russo et al., 2005; Zuleta et al., 2017; Arellano et al., 2019). Light limitation has been 

found to be one of the most prevalent and impactful mortality risks in six tropical forests, 

even for trees larger than 10 cm in diameter (Zuleta et al., 2022a). Light, as the fundamental 

source of energy for photosynthesis, constitutes one of the major resources for which trees 

compete (Wright, 2002). Light-limited trees are more prone to die by competition (Muller-

Landau et al., 2006), but also by other comorbidity factors such as falling branches/trunks 

of neighboring trees (Zuleta et al., 2022a). However, large trees can also be more likely to 

die because they are subjected to high evaporative demands, high winds, lightning, and 

have accumulated more damage by living longer (Bennett et al., 2015; Yanoviak et al., 

2020; Gora & Esquivel-Muelbert, 2021). It is common in tropical forests that intermediate 

size trees die less than both small and large trees (Rüger et al., 2011; Arellano et al., 2019). 

The canopy forest layer is highly diverse and is mainly composed of large-sized trees that 

contribute most to biomass and woody productivity (Lutz et al., 2018; Araujo et al., 2020; 

Piponiot et al., 2022). Large trees are particularly vulnerable to water stress, wind and 

lighting and these abiotic drivers are predicted to increase with global warming (Gora & 

Esquivel-Muelbert, 2021; McDowell et al., 2022). The survival of canopy trees in Amazon 

terra firme forests have been found to be strongly driven by extreme climatic events, wood 

density, successional position, and deciduousness; where soft-wooded, pioneer, and 

evergreen species are particularly vulnerable to extreme years (Aleixo et al., 2019). Overall, 

tree mortality is projected to increase with climate change (Bauman et al., 2022; McDowell 

et al., 2022) where large trees will have a disproportionately impact on carbon stocks. 

However, focused investigations are needed to understand how tree- and species-level 

factors could influence tree survival. 

 

Recent studies have used remote sensing to evaluate the linkages of tree mortality with 

abiotic factors ( e.g., precipitation, soil characteristics; Araujo et al., 2021; Cushman et al., 

2022). High resolution images, such as those obtained with Remotely Piloted Aircraft 

Systems (RPAS, also known as drones), are a remote sensing product that allows to get 

attributes on difficult to sample locations, such as the canopy forest layer. Moreover, the 

integration of remote sensing with ground-based data allows to broaden the perspective of 

ecological processes as is tree mortality. 
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Here, we assessed the influence of tree- and species-level factors on the mortality of 

canopy trees in the Amacayacu Forest Dynamics Plot in Colombia, northwestern Amazon. 

We used an orthomosaic derived from a RPAS, and two censuses of the 25-ha plot to 

evaluate the role of crown exposure to light (relative to total crown area), individual 

deviations of growth rates, tree size (DBH), and species wood density on the survival of 

canopy trees between 2013 and 2019. We asked: What are the tree- and species-level 

factors that influenced canopy tree mortality during this period? Given the importance of 

light in plant processes, we expect trees with higher proportions of their crown exposed to 

direct sunlight to die less compared to less sun-exposed trees. We also expect this effect 

to covary with tree size, growth rates, and the species wood density, due to the different life 

history strategies. 

 

 

 





 

 
 

1. Materials and methods 

1.1 Study area 

This study was carried out at the 25 ha Amacayacu Forest Dynamics Plot (AFDP), located 

in the Amacayacu National Natural Park in Colombia (3°48’33.02” S and 70°16’04.29” W), 

northwestern Amazon. The AFDP is located on a highly-diverse terra firme forest (Duque 

et al., 2017) and is part of the Forest Global Earth Observatory (ForestGEO; Davies et al. 

2021). The mean annual temperature is 25.8°C, mean annual precipitation is 3,216 mm 

and mean relative humidity is 86% (Zuleta et al., 2020).The plot is located on tertiary 

sediments of Pebas geological formation, the elevation varies between 89 and 108 m.a.s.l 

with hilly and moderately dissected topography, and has poor soils, high acidity, and low 

base saturations due to the dominance of minerals such as kaolinite and quartz (Chamorro, 

1989; Zuleta et al., 2020). The AFDP has 579 ± 38 individuals per ha with diameter at breast 

height (DBH) ≥ 10 cm, with a total of 642 named species at the 25 ha (Duque et al., 2017). 

The canopy layer is situated approximately above 25 m of altitude.  

1.2 Data collection and processing 

We tested the role of species-adjusted tree growth rates (SA-GR), tree size (log(DBH)), 

relative crown exposure to light (RCEL), and species wood density (WD) on the mortality 

of 984 canopy trees of 265 species (48 families) in the AFDP. We gathered these variables 

for each tree in 2013 and assessed their survival status in 2019. Below, we described the 

methods to obtain each of these variables. 

1.2.1 Forest censuses 

The AFDP was established between April 2007 and December 2009, where all free-

standing woody stems (i.e., trees, shrubs, palms and tree ferns) with DBH ≥ 1 cm were 

mapped, tagged, measured, and collected for species identification. The second and third 
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censuses were carried out between October 2013 and March 2016 and between July 2019 

and February 2022, respectively. During these full censuses the survival of all trees were 

assessed, the DBH for surviving trees was recorded, and all new recruits were measured, 

tagged, mapped, and identified. The mean census intervals between the first and second 

census (2007-2013) and between the second and third census (2013-2019) were 6.7 

(standard deviation (SD) =1.1) and 5.2 (SD=1.3) years, respectively. Voucher specimens 

were deposited and identified in the Herbario Amazónico Colombiano (COAH) of the 

Instituto Amazónico de Investigaciones Científicas SINCHI.  

1.2.2 Species-adjusted tree growth rates (SA-GR) 

To estimate the tree growth rate deviation from the species average (SA-GR), we calculated 

growth rates (g, cm yr-1) of trees with DBH ≥ 1 cm across the two census intervals (from 

2007 to 2013 and from 2013 to 2019) in the 25 ha of the AFDP as: 

𝑔 =
𝐷𝐵𝐻𝑓𝑖𝑛𝑎𝑙 − 𝐷𝐵𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡𝑖𝑚𝑒𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖𝑚𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 , 

where 𝐷𝐵𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐷𝐵𝐻𝑓𝑖𝑛𝑎𝑙 are the diameters at the breast height (cm) at 𝑡𝑖𝑚𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 

𝑡𝑖𝑚𝑒𝑓𝑖𝑛𝑎𝑙 , respectively, for each census interval. If the diameters were not measured at 1.3 

m height we calculated the corrected DBH using the following taper equation (Metcalf et 

al., 2009): 

𝐷𝐵𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐷𝛼(𝐻𝑂𝑀 −1.3) , 

Where 𝛼 is the tapering factor and 𝐻𝑂𝑀 is the height (m) of measurement of diameter 𝐷 

(cm). The tapering factor 𝛼 was estimated for each tree as (Cushman et al., 2021): 

𝛼 = 0.151 − 0.025 × log(𝐷) − 0.02 × log(𝐻𝑂𝑀) − 0.021 × log(𝑊𝐷) + 𝑠𝑖𝑡𝑒 , 

where 𝑊𝐷 is the wood density of the species (g cm-3) and 𝑠𝑖𝑡𝑒 takes the value of −0.00161 

for the AFDP. 

 

We assumed as errors and therefore excluded tree measurements in which the 𝐷𝐵𝐻𝑓𝑖𝑛𝑎𝑙 

was > 4𝑆𝐷 below the 𝐷𝐵𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (Condit et al., 2004), where: 

𝑆𝐷 = (0.006214 × 𝐷𝐵𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙) + 0.9036 

We also excluded trees with 𝑔 > 4 cm yr-1. Since the distribution of 𝑔 is extremely right-

skewed, we applied the modulus transformation on the growth rates, which reduces the 
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skewness of the data and allows the inclusion of negative growth rates (Condit et al., 2017). 

The modulus-transformed growth rate (GR) was calculated as: 

𝐺𝑅(𝜃) = {
𝑔𝜃                             𝑔 ≥ 0

−{(−𝑔)𝜃}               𝑔 < 0
  

We used a 𝜃 = 0.4 since this value minimized the skewness of the growth rates of trees in 

the AFDP across both census intervals (Figure S1, Figure S2, Figure S3). We used GR 

instead of relative growth rates because the latter depends on tree size (Figure S4). 

 

Finally, we estimated the SA-GR (unitless) for each tree i of species j in our sample (i.e., 

crown delimited trees) as: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐺𝑅𝑖,𝑗 =
𝐺𝑅𝑖,𝑗 − 𝑚𝑒𝑎𝑛(𝐺𝑅)𝑗

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐺𝑅)𝑗
. 

We limited our analysis to species with at least 25 growth observations to avoid unreliable 

estimates due to lack of variability in rare species. 

1.2.3 Tree size (log(DBH)) 

To estimate the effect of tree size on mortality, we calculated the corresponding DBH (cm) 

of each tree at the time of the RPAS flight as: 

𝐷𝐵𝐻𝑓𝑙𝑖𝑔ℎ𝑡 = 𝐷𝐵𝐻2007 + [𝑔 × (𝑡𝑖𝑚𝑒𝑓𝑙𝑖𝑔ℎ𝑡 − 𝑡𝑖𝑚𝑒2007)] , 

where 𝐷𝐵𝐻2007 is the DBH (cm) of the tree at 𝑡𝑖𝑚𝑒2007 (first full census), 𝑔 is its growth rate 

(cm yr-1), and 𝑡𝑖𝑚𝑒𝑓𝑙𝑖𝑔ℎ𝑡 is the date of the RPAS flight. This DBH was finally log-transformed 

to improve model fitting. 

1.2.4 Relative crown exposure to light (RCEL) 

To assess the influence of light availability on canopy tree mortality we derived an unitless 

metric calculated as (Figure 1-1): 

𝑅𝐶𝐸𝐿 =  
𝐸𝐶𝐴

𝐶𝐴
 , 

where ECA is the vertically sun-exposed crown area (m2), calculated from a canopy 

orthomosaic obtained from a remotely piloted aircraft system (RPAS) (see below); and CA 

is the total crown area (m2) estimated from an allometric model based on 𝐷𝐵𝐻𝑓𝑙𝑖𝑔ℎ𝑡 (see 

below). RCEL indicates the proportion of total DBH-derived crown area of a tree that is 

exposed to vertical sunlight and, thus, varies from 0 to 1. Trees with RCEL values close to 
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1 are more exposed to vertical sunlight, whereas trees with RCEL values close to 0 are less 

exposed to sunlight. We excluded trees with an ECA greater than the upper confidence 

interval of the prediction of crown area (five trees) and truncated to RCEL = 1 those trees 

with RCEL > 1 (70 trees). Note that, ecologically, this metric cannot distinguish between 

the processes driving the actual crown area, therefore, trees with RCEL < 1 might either be 

shaded by other trees or have an incomplete crown due to damage or other factors. Overall, 

RCEL is a measure of resource acquisition relative to the potential resource acquisition for 

a tree of a given size, a proxy for the “payback” or “return” on the resource investment for 

any given tree. 

1.2.5 Vertically sun-exposed crown area (ECA) 

Near-infrared (NIR) images of the AFDP canopy were obtained using a RPAS in December 

2013, during the 9th Regional SilvaCarbon/GFOI Workshop on Forest Monitoring. This 

flight was made right at the beginning of the second census and aimed to characterize the 

conditions of canopy trees around the date in which trees were measured on the ground. 

The researchers used a fixed-wing SenseFLY Ebee integrated with a camera Canon 

PowerShot ELPH 110 HS with 4.3 mm focal length and 16 mpx of photo resolution. The 

total number of photos taken were 264 and the flying altitude was 112 m. They processed 

the photos on the photogrammetry software Agisoft Photoscan (https://www.agisoft.com, 

v.0.9.1) and generated a 6 cm spatial resolution orthomosaic. The georeferencing accuracy 

was assessed in terms of the root mean square error, where the X, Y, and Z errors were 

1.8, 0.7, and 13.5 m, respectively. The orthomosaic reproduces the real dimensions of tree 

crowns. 

 

We delimited all identifiable crowns of living trees with DBH ≥ 10 cm based on the NIR 

image and assigned their corresponding tag (i.e., unique individual code of the plot) over 

18 ha of the AFDP using QGIS software v.3.16.5 (QGIS Geographic Information System, 

2022). We carried out a semi-automated crown delimitation in which we first segmented 

the orthomosaic into polygons using the segmentation function of Orfeo ToolBox (Grizonnet 

et al., 2017) with a minimum region size of 7000 pixels (25.2 m2) and then, manually edited 

these polygons to adjust them to the actual tree crowns. For each 20 m x 20 m plot 

https://www.agisoft.com/
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quadrant, we first assigned and adjusted tree crowns for individuals with the biggest DBHs 

followed by the consecutively smaller DBHs because the probability of being in the canopy 

increases logistically with diameter (Araujo et al., 2020). Finally, we carried out a ground 

validation of the crown-tag assignments on the field for a random sample of 3% of the total 

number of trees initially delimited as well as for trees that were classified as unreliable 

during the crown delimitation process. We calculated ECA (m2) as the polygon area of each 

crown-delimited tree. 

1.2.6 Total crown area (CA) 

We estimated the CA (m2) of each crown-delimited tree at the time of the RPAS flight based 

on an allometric model constructed from a crown survey for 622 trees of 148 species in the 

AFDP. In this crown survey, we measured the DBH and the four radii of the crown of each 

tree ( sensu Bohlman & O’Brien, 2006). We calculated the crown area based on the four 

radii assuming circular crowns and excluded heavily damaged trees. We fitted a Linear 

Mixed-Effects Model (LMM) of total crown area as a function of DBH following a power 

function (i.e., CA = aDBHb), and included species (s) random intercepts and slopes to 

account for differences in tree architecture (Martínez-Cano et al., 2019; Zuleta et al., 2022b) 

(Table S1; Figure S5). In lme4 R notation, the formula was log(CA) ≈ 1+ log(DBH) + (1 + s 

| s). We evaluated the model residuals following a simulation-based approach (Figure S6). 

The total crown area for each of the crown-delimited trees was obtained from the 

predictions of this model based on the 𝐷𝐵𝐻𝑓𝑙𝑖𝑔ℎ𝑡 and their species identity. Species-specific 

random parameters were used if the species was present in the crown survey (78 species), 

whereas parameters from the averaged-population model were used if the species was not 

in the crown survey (187 species). We multiplied the model predictions by exp(RSE2/2) to 

correct the bias introduced by back transforming predictions of log-scale models (RSE: 

residual standard error of the fitted model). 

 

Figure 1-1. Outline of methodology to estimate the Relative Crown Exposure to Light 

(RCEL) of canopy trees in the Amacayacu Forest Dynamics Plot (AFDP), northwestern 

Amazon. (a) The vertically sun-Exposed Crown Area (ECA, green polygons) of 984 trees 

of 265 species (48 families) was estimated using a near-infrared orthomosaic of the canopy 

of the AFDP. (b) Detailed ECA delimitation with the corresponding tree tag. (c) Ground-

based Crown Area (CA) survey for 622 trees of 148 species at the AFDP, where the DBH 
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and four radii of the crown of each tree were measured. (d) The CA survey was used to 

construct a Linear Mixed-Effects Model (LMM) to predict total CA as a function of DBH 

following a power function with species random intercepts and slopes. (e) Representation 

of the vertically sun-exposed crown area (ECA) and the total crown area (CA) to estimate 

(f) the relative crown exposure to light (RCEL) of a given tree. In (a) and (b) green polygons 

correspond to the vertically sun-exposed crown boundaries of each tree (i.e., observed from 

above) and black lines indicate 20 m x 20 m quadrats. This study was restricted to 18 out 

of 25 ha for which the survival of trees was assessed prior to the COVID-19 Pandemic. 

Figure S7 shows the status of these canopy trees (alive or dead) in 2019. 
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1.2.7 Species wood density (WD) 

We obtained WD (g cm-3) for each species according to literature (Chave et al., 2006; Zanne 

et al., 2009), giving priority to data nearest to the AFDP. When species-level values were 

not available we used genus-level, family-level, or the site average (Chave et al., 2006). 

1.2.8 Tree mortality rates 

For descriptive purposes, we calculated the annual mortality rate (𝜆, % yr-1) of canopy trees 

between the date of the RPAS flight and the third census as: 

𝜆 =  
log(𝑁𝑓𝑙𝑖𝑔ℎ𝑡) − log (𝑆2019)

𝑡𝑖𝑚𝑒2019 − 𝑡𝑖𝑚𝑒𝑓𝑙𝑖𝑔ℎ𝑡
, 

where 𝑁𝑓𝑙𝑖𝑔ℎ𝑡  is the number of trees alive at 𝑡𝑖𝑚𝑒𝑓𝑙𝑖𝑔ℎ𝑡 (second census) and 𝑆2019 is the 

number of those trees that survived until 𝑡𝑖𝑚𝑒2019 (third census). 

1.3 Model fitting 

To assess the influence of relative crown exposure to light, species-adjusted tree growth 

rates, tree size and species wood density on the mortality of canopy trees in the AFDP, we 

investigated the variables or combination of variables that best explained the probability of 

death using Generalized Linear Mixed-Effects Models (GLMM, logit link) including species 

random intercepts. We fitted 16 GLMMs with all possible combinations of covariates and 

their second-order interactions, including the full (all covariates) and the null (i.e., only 

intercept) models. We calculated their second-order Akaike’s information criterion (AICc) 

using the AICcmodavg package (Mazerolle, 2020). We ranked the models and selected the 

one with the lowest AICc as the best model (Burnham & Anderson, 2002). We also 

considered the inclusion of the log-transformed exposed crown area (log(ECA)) and the 

modulus-transformed tree growth rate (GR) as covariates but they were removed during 

preliminary analysis due to their high collinearity with other variables (Table S2). 

 

Mixed-effects models were fitted by maximum likelihood estimation (Laplace 

approximation) using the lme4 R package (Bates et al., 2015). Model residuals were 

evaluated with the DHARMa R package (Hartig, 2021). Conditional (R2C) and marginal 
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coefficients (R2M) of determination were calculated with the MuMIn R package (Barton, 

2022). All analyses were performed in R v.4.0.4 (R Core Team, 2021). 





 

 
 

2. Results 

Of the 984 canopy trees in our sample, we recorded 101 dead trees (10.3%) after a mean 

period of 6 (SD=0.2) years, which corresponded to an annual mortality rate of 1.82% yr-1. 

Dead canopy trees died all over the 18 ha sampled in the AFDP (Figure S7). Trees in our 

sample covered a wide range of diameters (10.73 – 138.84 cm, DBH), crown areas (21.54 

– 473.72 m2, CA), sun-exposed crown areas (2.45 – 460.87 m2, ECA), species-adjusted 

growth rates (-4.19 – 4.25, SA-GR), and species’ wood densities (0.20  – 1.05 g cm-3, WD) 

(Table S3; Figure S8). 

 

The mortality model with the lowest AICc included RCEL, WD, SA-GR, and their second-

order interactions (Table 2-1). The main effects of these variables and the interaction 

between RCEL and WD were highly significant (Table S4). Our model was correctly 

specified according to residual diagnostics (Figure S9), and there was no evidence of 

spatial autocorrelation in the probability of death (Figure S10) or in the residuals of the 

model (Figure S11). Overall, the probability of death decreased with WD, trees with the 

lowest WD had an estimated 12% probability of dying after the 6 years, while trees with the 

highest WD had three times lower probability of dying (4%) after that time period (Figure 

2-1a). The SA-GR was negatively related to the probability of death. Trees growing at the 

same rate as their species average (SA-GR=0) had 9% probability of dying after the 6 

years, whereas trees with the highest growth compared to their species average had three 

times lower probability of dying (3%) (Figure 2-1b).  

 

The total effect of RCEL on the probability of death was virtually constant, both the least 

sun-exposed trees (RCEL = 0.04) and totally sun-exposed trees (RCEL = 1) had 8% 

probability of dying after the 6 years (Figure 2-1c). However, the effect of RCEL was 

particularly influenced by their interactions with WD and SA-GR (Table 2-1;Table S4). 

RCEL was negatively related to mortality for trees belonging to species with low WD (≤ 0.47 

g cm-3) (Figure 2-2a), but positively related to mortality for trees with high WD (> 0.77 g cm-
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3) (Figure 2-2c). Trees with intermediate WD (0.47 g cm-3 < WD ≤ 0.77 g cm-3) had relatively 

constant probability of death across RCEL values (Figure 2-2b; Figure S12a). The effect of 

SA-GR on the probability of death was consistently negative for trees with low and 

intermediate WD, but not for trees with high WD (Figure 2-2 ;Figure S12b). Overall, high 

probabilities of death were predicted for trees with low RCEL, low WD, and low SA-GR 

simultaneously. 
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Table 2-1: Comparison of the 16 Generalized Linear Mixed-Effects Models to predict 

canopy tree mortality (M) using tree- and species-level factors. Models are ranked 

according to the difference in Akaike information criterion value corrected for small 

samples (ΔAICc) compared to the best model. Candidate fixed effects were relative 

crown exposure to light (RCEL, unitless), log-transformed size (log(DBH), cm), 

wood density (WD, g cm-3) and species-adjusted growth rate (SA-GR, unitless). All 

models included species as random intercept and second-order interactions among 

the fixed effects (not shown on the model description). Marginal (R2M) and 

conditional (R2C) R2 are the amount of variation explained by fixed effects and 

combined fixed + random effects, respectively (Nakagawa & Schielzeth, 2013). 

Total number of parameters (K), root mean squared error (RMSE) and log-likelihood 

(LL) are given for each model. 

 

Model K R2M R2C RMSE LL AICc ΔAICc 

M ~ RCEL + WD + SA-GR 8 0.06 0.23 0.28 -307.61 631.38 0.00 

M ~ WD + log(DBH) + SA-GR  8 0.07 0.21 0.28 -308.67 633.50 2.12 

M ~ RCEL + WD + log(DBH) + SA-GR 
(full model) 

12 0.09 0.26 0.28 -304.86 634.04 2.67 

M ~ WD + SA-GR 5 0.04 0.18 0.29 -313.36 636.78 5.40 

M ~ RCEL + WD 5 0.04 0.23 0.28 -313.45 636.96 5.58 

M ~ RCEL + WD + log(DBH) 8 0.06 0.26 0.28 -310.61 637.38 6.00 

M ~ RCEL + SA-GR 5 0.03 0.21 0.28 -314.24 638.54 7.17 

M ~ SA-GR 3 0.02 0.19 0.29 -316.32 638.66 7.28 

M ~ WD + log(DBH) 5 0.05 0.20 0.29 -314.59 639.24 7.87 

M ~ log(DBH) + SA-GR  5 0.03 0.20 0.28 -314.62 639.30 7.92 

M ~ RCEL + log(DBH) + SA-GR 8 0.04 0.23 0.28 -312.59 641.32 9.94 

M ~ WD 3 0.01 0.17 0.29 -318.24 642.50 11.12 

M ~ log(DBH) 3 0.01 0.18 0.29 -318.29 642.61 11.23 

M ~ 1 (null model) 2 0.00 0.17 0.29 -319.51 643.03 11.65 
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Model K R2M R2C RMSE LL AICc ΔAICc 

M ~ RCEL 3 0.00 0.19 0.28 -319.02 644.06 12.68 

M ~ RCEL + log(DBH)  5 0.02 0.22 0.28 -317.06 644.18 12.80 

 

 

Figure 2-1: Predicted probability of death (%) for canopy trees in the Amacayacu Forest 

Dynamics Plot as a function of (a) wood density (WD, g cm-3), (b) species-adjusted growth 

rate (SA-GR, unitless), and (c) relative crown exposure to light (RCEL, unitless). Lines 

represent the adjusted predictions from the model for each variable leaving the others 

conditioned at their mean and shaded areas indicate the 95% confidence interval. Point 

sizes are scaled according to the DBH of the trees. The second vertical axis, 𝜆, shows the 

corresponding annual mortality rate (% yr-1) for the predicted probability of death in a 6-year 

period. The color of the points in (b) and (c) indicates WD classes. 

 

 

 

 

Figure 2-2: Predicted probability of death (%) for canopy trees in the Amacayacu Forest 

Dynamics Plot as a function of relative crown exposure to light (RCEL, unitless) for three 

classes of wood density (WD, panels) within three classes of species-adjusted growth rate 

(SA-GR, color points). Lines represent the adjusted predictions from the model conditioned 

to reference values and shaded areas indicate the 95% confidence interval. Point sizes are 

scaled according to the DBH of the trees. The second vertical axis, 𝜆, shows the 

corresponding annual mortality rate (% yr-1) for the predicted probability of death in a 6-year 

period. Reference values were adjusted for WD at 0.41 g cm-3 in (a), 0.60 g cm-3 in (b) and 
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0.83 g cm-3 in (c). Reference values were adjusted for SA-GR at: -0.90 for trees with SA-

GR ≤ 0 (green points), 1.03 for trees with 0 < SA-GR ≤ 2 (orange points), and 2.51 for trees 

with SA-GR > 2 (purple points). 
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3. Discussion 

Tree mortality, a fundamental ecological process determining forest structure and 

functioning (Franklin et al., 1987), depends on multiple factors that operate at different 

levels. We studied the role of tree- and species-level factors on the mortality of canopy trees 

of the Amacayacu Forest Dynamics Plot (AFDP), northwestern Amazon, between 2013 and 

2019. We found that the relative crown exposure to light (RCEL), the species-adjusted 

growth rate (SA-GR), and the species wood density (WD) had a significant influence on 

canopy tree mortality. While WD and SA-GR were consistently negatively related to tree 

mortality, the effect of RCEL varied depending on the species' wood density. Our results 

indicate the importance of the inclusion of plant functional types related to life history 

strategies (e.g., proxied by wood density) to better predict forest demography under 

ongoing global changes. 

3.1 Influence of tree-level and species-level factors on 
canopy tree mortality 

Overall, WD and SA-GR were consistently negatively related to canopy tree mortality in the 

AFDP. Canopy trees of species with low wood density were more prone to die than trees 

with high wood density, a general pattern found across tropical forests (Nascimento et al., 

2005; Poorter et al., 2008; Arellano et al., 2019; Aleixo et al., 2019; Reis et al., 2022; 

Bauman et al., 2022). The high survival of species with high wood density is achieved via 

higher resistance to pathogen attack (Augspurger & Kelly, 1984), reduced vulnerability to 

drought-induced hydraulic failure (Hacke et al., 2001; Oliveira et al., 2019), higher tree 

mechanical stability (Poorter et al., 2008), and less susceptibility to crown damage (Arellano 

et al., 2019). The high mechanical stability provided by dense wood may be particularly 

critical for trees in the canopy layer, which are more prone to be disturbed by strong winds 
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and storms and have higher probability of being directly struck by lightning compared to 

trees in the understory (Yanoviak et al., 2020; Gora & Esquivel-Muelbert, 2021).  

 

Trees that grew less than their species average (negative SA-GR) had higher probability of 

death than trees that grew more than their species average (positive SA-GR). This effect 

was also found by Arellano et al., (2019) for trees with DBH≥10 cm in the Lambir forest 

dynamics plot in tropical Asia, using a similar species-adjusted standardization of individual 

growth. Other studies have found that trees with low, near-zero growth rates, were more 

prone to die than trees with higher growth rates (Rüger et al., 2011; Camac et al., 2018; 

Esquivel-Muelbert et al., 2020). These results support the idea of employing tree growth 

rates, relative to conspecifics, as a proxy of the health status of individual trees. Unhealthy 

trees tend to grow more slowly and have low carbon budgets (Rüger et al., 2011; Camac 

et al., 2018), which, in turn, reduces trees' ability to tolerate stress and ultimately survive. 

The extent to which a slow growth rate is the cause or a consequence of a process killing 

the trees is yet to be determined.  

 

Contrary to our general expectation, we did not find a consistently negative effect of our 

metric of relative crown exposure to light on canopy tree mortality. However, the probability 

of death was significantly dependent on the interaction between the relative crown exposure 

to light and the species’ wood density. The relationship between canopy tree mortality and 

RCEL was negative for trees with low WD and positive for trees with high WD. Since 

species with low and high wood densities are generally light-demanding and shade-tolerant 

species, respectively, these results can be explained by differences in the response of 

these life history strategies to the gradient of relative crown exposure to light (Nascimento 

et al., 2005; Poorter et al., 2008; Wright et al., 2010; Rüger et al., 2012). The decreasing 

probability of death for trees with low WD with increasing RCEL indicates that these 

resource-acquisitive, fast-growing species benefit from being more exposed to sunlight. 

Fast-growing, low wood density trees require high light conditions to compensate for their 

high maintenance costs (Givnish, 1988; Lüttge, 2008) and, therefore, have higher 

probability of death when they are light-limited. In addition, this light-dependent survival of 

trees with low WD was particularly pronounced for trees growing less than their species 
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average (i.e., negative SA-GR), but all trees with low WD, regardless their SA-GR, 

converged toward low probabilities of death when their crowns were fully exposed to 

sunlight. Light-demanding species with low wood density have been shown to have more 

positive growth responses to light availability compared to species with higher wood density 

(Rüger et al., 2012; Cifuentes & Moreno, 2022), which is in line with the sharp decrease of 

the probability of death with increasing light exposure in low wood density trees. 

 

On the contrary, for high wood density trees, we found a slight increase in the probability of 

death with increasing relative crown exposure to light. One reason may be that shade-

tolerant understory species in this group may have experienced abrupt increases in light 

availability caused by new gap openings, which increased their risk of mortality due to the 

exposure to photosynthetically active radiation high above the light saturation point, leading 

to high leaf stress and photoinhibition (Valladares & Niinemets 2008; but see Cifuentes & 

Moreno 2022). However, we only found two dead individuals of known understory, shade-

tolerant species (Hirtella racemosa and Moquilea jaramilloi, Chrysobalanaceae) out of 16 

dead trees in this high wood density group. Most of the dead trees in this group make up 

the canopy layer of terra firme forests in the Northwestern Amazon (e.g., Eschweilera 

genus, Brosimum guianense, Licania micrantha, Pouteria hispida) and are expected to 

tolerate high exposure to light. Therefore, other unmeasured factors (e.g., droughts 

(Bennett et al., 2015), higher temperatures, lower humidity, higher evaporative demands 

(Bin et al., 2022), structural damage (Zuleta et al., 2022a)) are more likely to have 

contributed to the increase in mortality of these high wood density trees with increasing 

RCEL. Considering the low number of dead trees of high wood density species (6.9%) 

compared to trees of intermediate (10.1%) and low wood density species (13.8%) (Figure 

2-1a), conclusions on the mortality mechanisms of trees with high wood density should be 

taken with caution (McMahon et al., 2019). 

3.2 RCEL as an ecological metric related to tree survival 

Although light varies along a continuum across forest strata, the vast majority of studies 

use a categorical index to characterize the light availability of trees (e.g., crown illumination 

index; (Clark & Clark, 1992), adapted from Dawkins & Field (1978)). We used a continuous 
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metric for light availability that accounts for the proportion of total tree crown area that is 

exposed to vertical sunlight (RCEL) and reflects the amount of resources allocated to the 

crown that are potentially intercepting direct light. Given that the crown holds the machinery 

for capturing and transforming light into resources for growth and tree maintenance 

(Givnish, 1988), RCEL could also be interpreted as a proxy for tree health. A RCEL value 

lower than one indicates that a portion of the crown area is not observed from above, which 

may be influenced by at least two non-mutually exclusive mechanisms: crown shading and 

crown damage. Synchronized ground-based assessments of tree damage and remote 

sensing-based assessments of tree crowns would be needed to disentangle these 

mechanisms. 

 

Since crown area is inherently correlated to tree diameter, an obvious question is if RCEL 

relates to DBH and to what extent are these variables related to tree survival. In our 

modeling results, the second model with the lowest AICc included DBH instead of RCEL 

(Table 2-1) and predictions of probability of death based on the model with DBH were 

similar to predictions from the model including RCEL (Figure S13). However, the correlation 

between RCEL and DBH was relatively low (Figure S14; R2 = 4.29%, P<0.001 in standard 

major axis regression analysis), indicating that both tree-level variables may reflect different 

mechanisms. While RCEL is associated with the actual exposure of the tree to direct light 

(as discussed above), DBH is primarily a metric for trunk size. Deviations between RCEL 

and DBH may be due to tree architecture, crown plasticity, tree light competition, forest 

gaps, and tree damage (Jucker et al., 2015; Zuleta et al., 2022b). For example, a tree with 

10 cm of DBH can be either fully exposed to light, shaded by other trees, or highly damaged. 

This is very likely the reason why the best model explaining tree survival of canopy trees in 

our study included RCEL instead of DBH. It is worth nothing, however, that RCEL does not 

capture the full spectrum of tree light interception along the vertical forest strata (Lüttge, 

2008; Bin et al., 2022). 

3.3 Implications with climate change 

Diverse studies had documented and predicted an increment in the vapor pressure deficit 

(VPD), air temperature and drought occurrences at the tropical regions (Trenberth et al., 

2014; McDowell et al., 2022). As these abiotic factors tend to increase or be more recurrent, 
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it is expected that larger trees and species of low wood density would be at higher risk of 

death (Bennett et al., 2015; Zuleta et al., 2017), leading to a decrease in the carbon stocks 

(principally due to the higher death of large trees), shorter forests stands and probably a 

more dominance of high wood density species (Aleixo et al., 2019; McDowell et al., 2020). 

The high probability of death of large trees would lead to a shorter and more dynamic 

canopy; with higher rates of gap formations and with small trees more prone to occupy the 

canopy layer, which would ultimately favor the survival of low wood density species at this 

forest stratum. Also, as VPD and air temperature tend to increase, we would expect less 

cloud cover and therefore, the relative crown exposure to light would have a bigger impact 

in the survival of canopy trees, again benefiting the low wooded trees that are more sun 

exposed. Studies had also documented and projected an increase in the atmospheric CO2, 

which allows plants to be more water-efficient in photosynthesis and therefore growth faster 

(i.e., “CO2 fertilization”; McDowell et al., 2022). However, the increase in other limiting 

factors such as poor nutrients and water stress could potentially limit trees to effectively 

reach faster growth rates (Peñuelas et al., 2017). Irrespective of the pace of climate change, 

we expect that trees growing more than the species average would have more survival, 

since this reflects the ability to acquire more resources that could potentially reduce their 

risk of death. 

 

Overall, it’s difficult to define a single path of how climate change will affect tree’s survival 

and moreover predict with certainty the impacts on carbon dynamics and forest composition 

(Esquivel‐Muelbert et al., 2019; Aleixo et al., 2019). Climate change integrates gradual 

climate trends (e.g., increments in VPD and air temperature) and extreme weather events 

(e.g., droughts, extreme rainfall periods; Harris et al., 2018), which means that trees 

experience antagonistic drivers simultaneously or spaced in short periods of time. 

Moreover, although compositional changes have been observed as climate change 

progresses, there is a lag between the species response and the velocity of climate change 

(Esquivel‐Muelbert et al., 2019; Feeley et al., 2020). The present study assessed the 

influence at some tree- and species-levels factors in the mortality of canopy trees at a terra 

firme forest in the northwestern Amazon; it represents a small but valuable step to deepen 

into the complex tree mortality process. More research is needed about the factors that 
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influence tree mortality and how they vary with climatic and other potential drivers (e.g., 

drought, pests, land use change). 

 





 

 
 

4. Conclusion 

Our results indicate the importance of accounting for life-history strategies (proxied by wood 

density) when modeling tropical tree mortality. The survival of trees of species with low 

wood density depended on both having large proportions of their crowns exposed to vertical 

sunlight and growing more than their species average. On the contrary, the survival of trees 

with high wood density decreased with increasing relative crown exposure to light. 

Moreover, our study integrated high resolution remote sensing with ground-based data, an 

approach that could be upscaled to evaluate much larger areas. The fast-development and 

increasing accessibility of remote sensing products constitute a promising tool to better 

quantify the influence of climatic drivers (e.g., increasing vapor pressure deficit, high winds) 

on tree mortality as well as the tree- and species-level factors that mediate these responses 

(e.g., RCEL) at large spatial scales. 

 





 

 
 

A. Supporting information 

Table S1. Parameter estimates and statistics for the linear mixed-effects model employed 

to estimate crown area as a function of DBH in the Amacayacu Forest Dynamics Plot, 

northwestern Amazon. CI: confidence interval of the estimate. σ2: residual variance. Τ00: 

variance of the species random intercept. Τ11: variance of the DBH random slope per 

species. Ρ01: correlation between species random intercepts and slopes. 

 

Predictors  Estimates CI p 

(Intercept)  -0.03 -0.31 – 0.25 0.835 

DBH [log]  1.23 1.15 – 1.32 <0.001 

Random Effects 

σ2  0.45 

τ00 species  0.59 

τ11 species.log(DBH)  0.03 

ρ01 species  -1.00 

N species  148 

Observations  622 

Marginal R2 / Conditional R2  0.756 / NA 

RSE  0.41 
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Table S2. Pearson’s rank correlation coefficients for all variables initially considered as 

covariates of canopy tree mortality in the Amacayacu Forest Dynamics Plot, northwestern 

Amazon. Relative crown exposure to light (RCEL, unitless), log-transformed size 

(log(DBH), cm), wood density (WD, g cm-3), species-adjusted growth rate (SA-GR, 

unitless), log-transformed sun-exposed crown area (log(ECA), m2), log-transformed crown 

area (log(CA), m2) and tree growth rate (GR, cm yr-1). * Indicates significant Pearson 

correlation at 95% confidence (i.e., p-values ≤ 0.05). 

 

 
RCEL log(DBH) WD SA-GR log(ECA) log(CA) GR 

RCEL 1.00 
      

log(DBH) 0.18* 1.00 
     

WD 0.01 -0.08* 1.00 
    

SA-GR 0.20* 0.04 -0.04 1.00 
   

log(ECA) 0.76* 0.74* -0.04 0.17* 1.00 
  

log(CA) 0.18* 1.00* -0.08* 0.04 0.74* 1.00 
 

GR 0.27* 0.09* -0.26* 0.87* 0.25* 0.09 1.00 
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Table S3. Summary statistics for tree- and species-level factors obtained from the 984 

canopy trees that were crown delimited in the Amacayacu Forest Dynamics Plot, 

northwestern Amazon. Tree size (DBH, cm), sun-exposed crown area (ECA, m2), relative 

crown exposure to light (RCEL, unitless), wood density (WD, g cm-3), species-adjusted 

growth rate (SA-GR, unitless) and tree growth rate (GR, cm yr-1). Note that ECA, CA, and 

GR were included here to show their summary statistics but were not included as covariates 

on the canopy tree mortality models. 

 

Variable Min Median Max Mean SD 

DBH (cm) 10.73 33.94 138.84 36.45 16.19 

RCEL 0.04 0.42 1.00 0.46 0.24 

ECA (m2) 2.45 33.95 460.87 53.59 57.67 

CA (m2) 21.54 92.16 473.72 103.25 56.97 

WD (g cm-3) 0.20 0.59 1.05 0.61 0.16 

SA-GR  -4.19 1.08 4.25 1.01 1.11 

GR (cm yr-1) -0.69 0.41 3.74 0.55 0.55 

  



32 Influence of tree-level and species-level factors on the mortality of canopy 

trees in an Amazon forest: linking remote sensing with ground-based data 

 
Table S4. Parameter estimates and statistics for the best generalized linear mixed-effects 

canopy tree mortality model in the Amacayacu Forest Dynamics Plot, northwestern 

Amazon. Relative crown exposure to light (RCEL, unitless), wood density (WD, g cm-3), and 

species-adjusted growth rate (SA-GR, unitless). CI: confidence interval of the estimate. σ2: 

residual variance. Τ00: variance of the species random intercept. ICC: Interclass correlation 

coefficient.  

 

Predictors Log-Odds CI p 

(Intercept) 1.60 -0.37 – 3.58 0.112 

RCEL -5.13 -8.76 – -1.50 0.006 

WD -5.86 -9.23 – -2.49 0.001 

SA-GR -1.19 -2.18 – -0.20 0.019 

RCEL * WD 7.36 1.41 – 13.31 0.015 

RCEL * SA-GR 0.66 -0.08 – 1.40 0.079 

WD * SA-GR 1.05 -0.46 – 2.55 0.174 

Random Effects       

σ2 3.29     

τ00 species 0.73   

ICC 0.18   

N species 265   

Observations 984   

Marginal R2 / Conditional R2 0.062 / 0.232     
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Figure S1. Density distribution and skewness for the modulus-transformed tree growth 

rates using different Ө parameters (see Methods) for trees with DBH≥ 1 cm in the 

Amacayacu Forest Dynamics Plot during the first census interval (2007–2013, 89,322 

stems). 
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Figure S2. Density distribution and skewness for the modulus-transformed tree growth 

rates using different Ө parameters (see Methods) for trees with DBH≥ 1 cm in the 

Amacayacu Forest Dynamics Plot during the second census interval (2013–2019, 85,637 

stems). 
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Figure S3. Density distribution and skewness for tree growth rates (g, cm yr-1) and the 

modulus-transformed growth rates with parameter Ө = 0.4 (GR, cm yr-1, see Methods) 

during (a) the first census interval (2007–2013, 89,322 stems) and (b) the second census 

interval (2013–2019, 85,637 tree stems) for trees with DBH≥ 1 cm in the Amacayacu Forest 

Dynamics Plot, northwestern Amazon. 
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Figure S4. Relationships between tree size (DBH) and three metrics of growth rates for 

trees with DBH≥ 1 cm during the first census interval (2007-2013, 89,322 stems) in the 

Amacayacu Forest Dynamics Plot. (a) Growth rate (g, cm yr-1), (b) modulus-transformed 

growth rate with parameter Ө = 0.4 (GR, cm yr-1), and (c) relative growth rate (RGR, cm yr-

1). Red points indicate the 984 canopy trees in our sample. 
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Figure S5. Observed values and model fit for the linear mixed-effects model employed to 

estimate crown area as a function of DBH in the Amacayacu Forest Dynamics Plot, 

northwestern Amazon. Points correspond to the observed values of crown area (CA, m2) 

at a given tree size (DBH, cm). Red line corresponds to the averaged-population model and 

shaded areas indicate the 95% confidence interval. Parameter estimates and statistics are 

presented in Table S1. 
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Figure S6. Residual diagnostics for the linear mixed-effects model employed to estimate 

crown area as a function of DBH in the Amacayacu Forest Dynamics Plot, northwestern 

Amazon. (a) Quantile-quantile plot of simulated residuals with tests for correct distribution 

(KS test), dispersion and outliers. (b) Simulated residuals against the predicted value. Note 

that in (a) the outlier test was significant, meaning that simulated residuals were outside the 

predicted range (red asterisks on (b)). After a careful inspection of these statistical outliers 

in the crown survey dataset, we decided to maintain these points. 
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Figure S7. Near-infrared (NIR) image with the survival status of trees studied in 2019 in 

the Amacayacu Forest Dynamics Plot (AFDP), northwestern Amazon. Delimited crowns for 

984 canopy trees of 265 species (48 families) in 18 out of the 25 ha AFDP. Green and blue 

polygons indicate trees that were found alive (883 trees) and dead (101 trees) in 2019, 

respectively. Black lines indicate 20 m x 20 m quadrats. The NIR image was obtained using 

a Remotely Piloted Aircraft System (RPAS) in December 2013. 
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Figure S8.  Frequency distribution of variables used in this study. (a) Tree size (DBH, cm), 

(b) relative crown exposure to light (RCEL, unitless), (c) sun-exposed crown area (ECA, 

m2), (d) crown area (CA, m2), (e) species-adjusted growth rate (SA-GR, unitless), (f) 

modulus-transformed growth rate (GR, cm yr-1). and (g) species’ wood density (WD, g cm-

3). 
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Figure S9. Residual diagnostics for the best generalized linear mixed-effects mortality 

model in the Amacayacu Forest Dynamics Plot, northwestern Amazon. (a) Quantile-

quantile plot of simulated residuals with tests for correct distribution (KS test), dispersion 

and outliers. (b) Simulated residuals against the predicted value. 
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Figure S10.  Near-infrared (NIR) image with the predicted probability of death (from the 

best GLMM model) of crowns delimited in the Amacayacu Forest Dynamics Plot (AFDP), 

northwestern Amazon. Delimited crowns for 984 canopy trees of 265 species (48 families) 

in 18 out of the 25 ha AFDP. The color scale indicates the predicted probability of death. 

Black lines indicate 20 m x 20 m quadrats. The NIR image was obtained using a Remotely 

Piloted Aircraft System (RPAS) in December 2013. 
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Figure S11. Empirical semi-variogram of the residuals of the best GLMM canopy tree 

mortality model. Points indicate the semivariance of each bin. Envelopes (dashed lines) 

correspond to the 95% confidence intervals obtained from Monte Carlo simulations. 
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Figure S12. Predicted probability of death for canopy trees in the Amacayacu Forest 

Dynamics Plot as a function of relative crown exposure to light (RCEL) within different 

classes of: (a) wood density (WD, g cm-3) and (b) species-adjusted growth rate (SA-GR, 

unitless). Lines represent the adjusted predictions from the model when conditioned on 

reference values and shaded areas indicate the 95% confidence interval. Colors of points 

in (a) indicate WD classes and reference values were adjusted at SA-GR = 1.01 with: WD 

= 0.41 g cm-3 (red), WD = 0.60 g cm-3 (blue) and WD = 0.83 g cm-3 (green). Colors of points 

in (b) indicate SA-GR classes and reference values were adjusted at WD = 0.61 g cm-3 

with: SA-GR = -0.90 (green), SA-GR = 1.03 (orange) and SA-GR = 2.51 (purple). The points 

size is scaled according to the DBH of the canopy trees. The second vertical axis, 𝜆, 

corresponds to the annual mortality rate (% yr-1) for the predicted probability of death. 
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Figure S13. Predicted probability of death (%) for canopy trees in the Amacayacu Forest 

Dynamics Plot for the second best model as a function of log-transformed size (log(DBH), 

cm) for three classes of wood density (WD, panels) within three classes of species-adjusted 

growth rate (SA-GR, color points). Lines represent the adjusted predictions from the model 

conditioned to reference values and shaded areas indicate the 95% confidence interval. 

Reference values were adjusted for WD at 0.41 g cm-3 in (a), 0.60 g cm-3 in (b) and 0.83 g 

cm-3 in (c). Reference values were adjusted for SA-GR at: -0.90 for trees with SA-GR ≤ 0 

(green points), 1.03 for trees with 0 < SA-GR ≤ 2 (orange points), and 2.51 for trees with 

SA-GR > 2 (purple points). The second vertical axis, 𝜆, shows the corresponding annual 

mortality rate (% yr-1) for the predicted probability of death in a 6-year period. 
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Figure S14. Relationship between log-transformed size and (a) relative crown exposure to 

light (RCEL, unitless) and (b) log-transformed sun-exposed crown area (log(ECA), m2). P-

values and R-squared values correspond to standard major axis regressions. 
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