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Lo más importante en la vida es la paz interior, cúıdala y

protégela como el tesoro más preciado. Ella será tu alegŕıa en todo

momento. Ella te guiará por caminos seguros y te aconsejará lo

mejor en momentos dif́ıciles. Su presencia es apenas perceptible,

pero su ausencia es devastadora. Ella es lo mejor que podŕıas

desear y lo que siempre quisieras tener. Por eso, si quieres vivir

contento y dichoso, a ella servirás y para ella vivirás. Por ella lo

harás todo y con ella todo lo harás. Que todas tus decisiones

sirvan a tu alegŕıa. Aunque te tome tiempo, haz el esfuerzo de

pensar: ¿Qué te gratifica más?

Luis H.

“¿Te parece prudente aumentar el ya crecido número de los malos,

de los que poco realmente positivo puedes esperar, y desanimar a

la minoŕıa de los mejores, que en cambio tanto pueden hacer por

tu buena vida? ¿No es más lógico sembrar lo que intentas cosechar

en lugar de lo opuesto, aun a sabiendas de que la cizaña puede

estropear tu cosecha? ¿Prefieres portarte voluntariamente al modo

de tanto loco como hay suelto, en lugar de defender y mostrar las

ventajas de la cordura?”

Marco Aurelio
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mis metas académicas y personales. A mis amigas Laura Andrea Villada Atehortúa y Melissa
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frecuentes enseñanzas sobre la vida y su apoyo emocional a lo largo de nuestra amistad.

Además considero en extremo valiosa su influencia en mi formación académica caracterizada

por seguir el rigor cient́ıfico y el análisis exhaustivo de las observaciones realizadas en el

transcurso de una investigación.





Content

Resumen 3

Summary 5

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Summarized membrane time-line . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Market and potential of MF and UF membranes . . . . . . . . . . . . 11

1.2.3 Basic concepts of membrane processes . . . . . . . . . . . . . . . . . 13

1.2.4 Importance and applications of microfiltration and ultrafiltration . . . 15

1.2.5 Microfiltration (MF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.6 Ultrafiltration (UF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.7 Transport Phenomena and operation types in MF and UF . . . . . . 17

I Driving Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III Concentration polarization and fouling . . . . . . . . . . . . . . 20

IV Prevention and mitigation of concentration polarization and fouling 23

1.2.8 Microfiltration/Ultrafiltration modeling . . . . . . . . . . . . . . . . . 24

I Concentration Polarization . . . . . . . . . . . . . . . . . . . . . 24

II Fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III Critical, Threshold and Sustainable Flux . . . . . . . . . . . . . 25

1.2.9 Mathematical modeling for Process System Engineering . . . . . . . . 27

1.3 Hypothesis and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Thesis content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.1 Academic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Content 1

1.6.2 Social . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.3 Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.7.1 Journal paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.7.2 Peer reviewed conference papers . . . . . . . . . . . . . . . . . . . . . 34

1.7.3 Conference presentation . . . . . . . . . . . . . . . . . . . . . . . . . 34

References 35

2 Ultrafiltration intensification by dynamic operation: insights from hybrid mo-

deling 39

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 SE-HPLC data treatment . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.4 Parameter estimation and optimization problem . . . . . . . . . . . . 51

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 SE-HPLC Data treatment . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Model calibration and predictive power . . . . . . . . . . . . . . . . . 56

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References 68

3 Model-based sensitivity analysis of dynamic ultrafiltration 73

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Hybrid mathematical modeling description . . . . . . . . . . . . . . . 77

3.3.2 Dynamic Operation analysis . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.3 Stationary Operation analysis . . . . . . . . . . . . . . . . . . . . . . 80

3.3.4 Comparative analysis for dextran separation . . . . . . . . . . . . . . 81

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Dynamic Operation analysis . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Stationary Operation analysis . . . . . . . . . . . . . . . . . . . . . . 85

3.4.3 Comparative analysis for dextran separation . . . . . . . . . . . . . . 90

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 97



2 Content

Appendix A 100



Modelamiento basado en datos de

procesos de micro y ultra - filtración

Resumen

Los procesos de microfiltración (MF) y ultrafiltración (UF) se utilizan ampliamente en varios

campos industriales y de investigación, y han surgido diferentes empresas para desarrollar

mejoras y nuevos diseños de dichas tecnoloǵıas. Sin embargo, algunos inconvenientes re-

lacionados con la operación del proceso, a saber, la polarización de la concentración y el

ensuciamiento, impiden que el uso de las membranas se extienda en todos los sectores indus-

triales. La polarización de la concentración y el ensuciamiento son los principales problemas

en MF y UF que deben gestionarse para diseñar un proceso de separación. Las estrategias

de operación dinámica se utilizan para mitigar los efectos adversos de la polarización y el

ensuciamiento y mejorar el rendimiento de la separación. No obstante, existe un equilibrio

entre las condiciones operativas para alcanzar los efectos deseados. En esta investigación, se

desarrollan y ajustan dos modelos matemáticos h́ıbridos para representar los fenómenos de

polarización de la concentración en la UF dinámica de dextrano T500. Dichos modelos arro-

jan un coeficiente de determinación ajustado de 0.9185 y 0.9626, respectivamente, y pueden

predecir la concentración en la superficie de la membrana, el flujo y el rechazo observado.

Los resultados muestran el efecto intensificador de la operación dinámica al disminuir el

MWCO de la membrana hasta 74 veces sin reducir el flujo. Los datos experimentales de

la literatura y los modelos h́ıbridos desarrollados en este documento brindan información

sobre el sistema para el diseño de sistemas de membrana donde la selectividad se puede

mejorar y ajustar de acuerdo con las condiciones operativas en lugar del tamaño de poro

de la membrana. El mejor modelo matemático h́ıbrido se utiliza para explorar el sistema de

UF en funcionamiento dinámico en diferentes escenarios con el objetivo de proporcionar una

mayor comprensión del sistema. Con este enfoque, se realiza un análisis de sensibilidad para

evaluar el desempeño de la separación en términos de flujo y factor de rechazo en función de

las variables de entrada: duración del backshock (BS), tiempo entre backshocks (TBBS) y

concentración de dextrano (Cb). El análisis de sensibilidad permite encontrar regiones ope-

rativas donde se pueden lograr flujos elevados manteniendo un factor de rechazo aceptable.

Con el objetivo de resaltar las ventajas de aplicar la operación dinámica en lugar de la filtra-

ción convencional, se realiza un análisis comparativo entre una membrana con bajo MWCO

en operación convencional de flujo cruzado y una membrana con alto MWCO en operación
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dinámica. El efecto de la polarización de la concentración se analiza y explica mediante el

módulo de polarización. Este módulo se define como la relación entre la concentración en la

superficie de la membrana y la concentración en el seno del fluido. Valores tan altos como

160 para este módulo tienen un impacto negativo en la selectividad, mientras que valores

cercanos o inferiores a 34 mejoran la separación. El flujo medio puede aumentarse hasta un

43,8% con BS = 1 s y TBBS = 5 s. Con respecto al análisis comparativo, los ahorros en

costos de membrana alcanzan valores en torno al 50% al operar una membrana de alto MW-

CO en condiciones dinámicas. El modelado matemático en ultrafiltración dinámica es una

herramienta clave, desde la perspectiva de la ingenieŕıa de sistemas de procesos, para evaluar

el rendimiento de la separación en diferentes condiciones operativas. El modelo matemático

h́ıbrido desarrollado en esta investigación permite la optimización de la operación a través

del análisis de sensibilidad y permite diseñar el proceso de separación dado un objetivo de

concentración definido, en el contexto de la ultrafiltración de dextrano.

Palabras clave: Ultrafiltración dinámica, intensificación de membranas, MWCO, modela-

miento h́ıbrido.



Data-driven modelling of micro and ultra

- filtration processes

Summary

The microfiltration (MF) and ultrafiltration (UF) processes are widely used in several in-

dustrial and research fields, and different enterprises have emerged to develop enhancements

and new designs of such technologies. Nevertheless, some drawbacks related to process ope-

ration, namely concentration polarization and fouling, keep membranes from spreading in

all industrial sectors.

Concentration polarization and fouling are the main problems in MF and UF to be ma-

naged in order to design a separation process. Dynamic operation strategies are used to

mitigate adverse effects of polarization and fouling and improve the separation performance.

Nevertheless, there is a balance among the operational conditions to reach the desired effects.

In this research, two hybrid mathematical models are developed and tuned to represent the

concentration polarization phenomena in dynamic UF of dextran T500. Such models yield

an adjusted determination coefficient of 0.9185 and 0.9626, respectively, and can predict the

concentration at the membrane surface, the flux and the observed rejection. The results dis-

play the intensifying effect of dynamic operation by decreasing the Molecular Weight Cut-Off

(MWCO) of the membrane up to 74 times without reducing the flux. The experimental data

from literature and herein developed hybrid models provide system insights for membrane

systems design where the selectivity can be enhanced and tunned according to operating

conditions rather than the membrane pore size.

The best hybrid mathematical model is used to explore the UF system under dynamic opera-

tion at different scenarios aiming to provide further system understanding. With this focus,

a sensitivity analysis is accomplished in order to evaluate the separation performance in

terms of flux and rejection factor as a function of input variables: backshock time (BS),

time between backshocks (TBBS), dextran bulk concentration (Cb). The sensitivity analysis

allows finding operational regions where high fluxes can be achieved while keeping acceptable

rejection factor. Aiming to highlight the advantages of applying dynamic operation instead

of conventional filtration, a comparative analysis is performed between a membrane with low
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MWCO under conventional cross-flow operation and a membrane with high MWCO under

dynamic operation. Concentration polarization effect is analyzed and explained by concen-

tration polarization modulus. This modulus is defined as the ratio between concentration at

the membrane surface and the bulk concentration. Values as high as 160 for this modulus

have a negative impact on selectivity, while values close or lower than 34 improve separation.

Average flux can be enhanced up to 43.8% with BS = 1 s and TBBS = 5 s. With respect

to the comparative analysis, membrane cost savings reach values around 50% by operating

a membrane of high MWCO under dynamic conditions.

Mathematical modeling in dynamic ultrafiltration is a key tool, from a process system en-

gineering perspective, to assess the separation performance under different operating con-

ditions. The hybrid mathematical model developed in this research allows optimization of

operation through sensitivity analysis, and allows designing of the separation process given

a definite concentration target, in the context of dextran ultrafiltration.

Keywords: Dynamic ultrafiltration, membrane intensification, MWCO tuning, hybrid mo-

deling.



1. Introduction

Membrane technologies have drawn great attention in the last 60 years because of their

remarkable performance in terms of selectivity, throughput, product purity, reduction in

chemical usage, mild operating conditions, compactness, carbon footprint reduction, energy

saving and process safety (Charcosset, 2006; Abels et al., 2013; Wei et al., 2014; Prado-Rubio

et al., 2016). These benefits have led to an increasing research on this topic, thus, a big

membrane market has emerged and several companies have been working extensively in the

prototype development that can be used industrially. The industrial interest in the membra-

nes is creating scale economies that is helping to decrease the prices of membrane systems.

Membrane technologies include several fields such as microfiltration, ultrafiltration, nano-

filtration, reverse osmosis, electrodialysis, gas separation, pervaporation, carrier-facilitated

transport, membrane contactors, piezodialysis (Baker, 2012), and other integrated systems

like hybrid distillation and membrane bioreactors, among others (Prado-Rubio et al., 2019).

From the possibilities, the focus of this thesis is on micro- and ultrafiltration processes.

Micro- and ultrafiltration (MF and UF) are processes used to separate and/or concentrate

particulate matter, macromolecules and colloids from a fluid stream (Mulder, 1996; Bacchin

et al., 2006). These particles and solutes are aimed to be removed by means of a physical

barrier so called membrane. The membranes in MF and UF systems are made of a porous

material which can retain the particles or the solute with a specific range of size (Baker,

2012) and they mainly differ in the pore size distribution (Scott, 1995).

Some of the applications of MF and UF are summarized in table 1-1.

Table 1-1.: Application fields of micro- and ultrafiltration processes (Scott, 1995; Mulder,

1996; Baker, 2012).

Application field Examples

Beverage industry
Clarification of juices, wines and beer. Cold

sterilization without sacrificing flavor.

Automotive industry
Removal of electro-coat paintings in water

streams.

Dairy sector
Protein concentration (e.g. whey). Cheese

production.
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Continuation of Table 1-1

Application field Examples

Petrochemical

industry

Refining of oils and petroleum. Oil/water

emulsions separation.

Drinking water

industry
Microorganisms removal.

Wastewater treatment Microorganisms and organic matter removal.

Pharmaceutical

industry
Sterilization with no thermal damage.

Seawater desalination
Removal of organic matter, microorganisms

and oil as a pretreatment or reverse osmosis.

Biotechnology
Metabolite purification and enzyme

extraction.

Microelectronic

industry
Ultrapure water production.

MF and UF technologies are interesting since they operate at low temperatures, present

high product quality and selectivity, have low operating costs when it is compared with

conventional separation processes like distillation (Prado-Rubio et al., 2016). Besides, it is

a compact technology, and it is easy to scale up and automate (Baker, 2012; Dı́az et al., 2017).

Among the application fields of MF and UF, the most interesting and active nowadays is

the water (Association, 2005) and wastewater treatment (Schrotter and Bozkaya-Schrotter,

2010), because there is an increasing concern about the conservation of the natural resour-

ces and the human health (Knops and Franklin, 2000; Singh, 2015). This concern has been

evident through more strict environmental regulation and policies relating to water quality

for consumption (Hillis, 2000; Singh, 2015; Sikdar and Criscuoli, 2017) and final disposal

(Sikdar and Criscuoli, 2017). The water industry has made major advances in MF and UF

technologies due to the imperative necessity to supply water for the population conside-

ring the fresh water scarcity around the world (Baker, 2012). Hence, MF and UF are under

constant optimization to make membrane technology more competitive. In this regard, it

is believed that a deep understanding of the underlying dynamic nature of the phenomena

involved in MF and UF could lead to overcome the problems associated to this technology:

concentration polarization and fouling. This idea is based on a process system engineering

perspective (PSE) which has proven to be a powerful tool in the synthesis, design, control,

optimization and intensification of industrial production processes.

According to Pistikopoulos et al. (2021a), “PSE is the scientific discipline of integrating sca-

les and components describing the behavior of a physicochemical system, via mathematical
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modelling, data analytics, design, optimization and control”. They stated that PSE can be

understood at three different layers. The inner layer is related to design, building and ope-

ration of manufacturing processes aiming to transform some raw materials into the desired

products. The middle layer involves a deep understanding of the process and its underneath

phenomena allowing higher efficiencies in resource usage. The outer layer is focused on ad-

dressing environmental and social challenges making the process more sustainable.

PSE strongly relies in mathematical models in its core layer, so a deep understanding of

the phenomena is required through the development of models based on first principles or

system identification (Keil, 2018; Pistikopoulos et al., 2021a).

Different factors have imposed new challenges for the industrial production processes, such

as resource limitations, climate change, growing global population, required smarter, flexible

and sustainable manufacturing processes and demand of high quality and versatile products

(United-Nations, 2015; Pistikopoulos et al., 2021a). In this regard, PSE offers different tools

and applications as a way to satisfy these evolving needs of society (Tian et al., 2018).

Process Intensification (PI) is one of the research fields of PSE and aims to decrease signi-

ficantly the energy consumption and reduce the operational and capital costs of a chemical

process by improving the transfer rates of mass, heat and momentum. (Tian et al., 2018).

These goals can be achieved if the following outcomes are obtained: smaller equipment size

for a given throughput, higher throughput for a given equipment size or a given process, less

holdup in equipment or less inventory in process for the same throughput, less usage of utility

materials and feedstock for a given throughput, and higher performance for a given unit size

(Ponce-Ortega et al., 2012; Tian et al., 2018; Stankiewicz and Moulijn, 2018). Some strate-

gies have been identified and proven to be successful in achieving these outcomes. They can

be summarized as: merging various operations or processes into a single equipment, research

on new materials with better properties, process integration, design of smaller equipments,

operating at different conditions, enhancing the driving forces, applying new operational

strategies such as periodic operation or dynamic modes (Tian et al., 2018). These PI acti-

vities are grouped by other authors into three levels: (a) equipment, (b) methods, and (c)

plant design (Keil, 2018).

PI is applied in several fields of chemical and process engineering such as separation, reac-

tion, combined reaction separation processes, and alternative energy sources (Tian et al.,

2018). One successful technology in achieving PI goals is the integration of membrane pro-

cesses with conventional technologies in separation and reaction fields (Tian et al., 2018;

Keil, 2018). Integration of membranes allows yielding high product quality, requiring less

space by plant compactness, a minor environmental impact, and an efficient use of energy

(Tian et al., 2018; Keil, 2018).
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As mentioned before, membrane processes are already used in PI, however, their design and

operation is rather far from being optimal. Thus, this thesis is focused on using PSE methods

and tools, such as mathematical modeling and simulation, in order to: (1) find appropriate

operating conditions for membrane separations in MF and UF processes, (2) increase the

MF and UF membrane economic potential and (3) overcome one of the main drawbacks in

membrane functioning: concentration polarization.

1.1. Motivation

Membrane technologies are very attractive from an industrial, academic, research and envi-

ronmental perspective. They offer promising results in the efficient usage of resources, energy

consumption and environmental impact. Nevertheless, some drawbacks related to process

operation, namely concentration polarization and fouling, keep membranes from spreading

in all industrial sectors (Baker, 2012). Besides, it has been shown that the design and opti-

mal operation of the MF and UF systems are limited by the low understanding (translated

into little development of principles-based mathematical models) of the underlying dynamic

physiochemical phenomena: concentration polarization and fouling (Dı́az et al., 2017). The

complexity of the membrane process dynamics and the time-variant properties of the feed

stream and membrane have made of the membrane separation processes a challenge for being

designed, optimized and further intensified (Skiborowski, 2018).

From a process system engineering perspective (PSE), to carry out a design and operation

of these processes it is necessary to rely on mathematical models that can represent and

predict their behavior in a robust manner (Prado-Rubio and von Stosch, 2017; Tian et al.,

2018; Pistikopoulos et al., 2021a).

Although membranes are already considered an equipment for separation intensification or

an element to be integrated with other units by intensifying the process (Pistikopoulos et al.,

2021b), membrane-based separation can be further intensified through implementation of in-

tensifying methods in the category of new operational strategies such as periodic operation or

dynamic modes. For instance, reversing the permeate flow periodically can contribute to the

membrane cleaning and mitigation of concentration polarization. Nonetheless, an optimal

configuration of the dynamic operation has been made according to extensive experiments

and is dependent on the type of membrane, the nature of the solute, transmembrane pressure

and other operating conditions (Jonsson and Rubio, 2011; Rosinha, 2011; Dı́az et al., 2017;

Prado-Rubio and von Stosch, 2017). So, there is a need to develop mathematical models

aiming to get a deep understanding of the involved multiscale phenomena and to predict the

filtration behavior under different conditions in order to further intensify membrane techno-

logies. These achievements in PI goals allows contributing to the actual challenges such as
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sustainability, efficiency in energy and resource usage, high quality products and mitigation

of climate change.

Hence, the present thesis is focused in the development of mathematical tools, through

PSE, that allow modelling and simulation of dynamic MF and UF systems, such that better

operational conditions can be found in order to increase its economic potential. It is expected

that such models will allow developing improved process design and optimizing both the

performance and the operation conditions for dynamic MF and UF systems.

1.2. Background

1.2.1. Summarized membrane time-line

The industrial application of the membrane technology had its origin in the 1960s and went

through four broad phases (Baker, 2012). The first one was characterized by the following

features: (1) New processes based on the Loeb-Sourirajan technique to develop high perfor-

mance membranes. (2) Reduction in the selective layer thickness of the membrane in the

order of 0.1 µm was achieved by several companies. (3) Different membrane modules were

developed such as plate and frame, capillary, hollow fine fiber and spiral wound. (4) It was

very important the support offered by the US Department of Interior, Office of Saline Water

(OSW) for the development of reverse osmosis, microfiltration, ultrafiltration and electro-

dialysis. The second phase was marked by the economic support of OSW. Thanks to the

OSW, the results obtained in the research were applied on commercial products. In addi-

tion to this, the microfiltration, ultrafiltration, reverse osmosis and electro-dialysis became

processes well established commercially. In the third phase, membranes for gas separation

processes were developed and used in industrial systems such as nitrogen separation from

air, and hydrogen separation. Another process, that began in this phase but has had a slow

growth since then, is the pervaporation system for dehydration of solvents.

The attention was focused on water treatment in the last phase. The objective in this stage is

to build systems based on microfiltration and ultrafiltration for the treatment of wastewater

and municipal water sources. The timeline of these four phases is represented in figure 1-1.

1.2.2. Market and potential of MF and UF membranes

Economic data about the market of membranes offer a good idea of the dimension and im-

portance that the industry has assigned to the membrane technology in separation processes.

BCC Research has published a report entitled “Ultrafiltration Membranes: Technologies and

Global Markets” where it is revealed that “The global ultrafiltration (UF) membranes mar-
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Figure 1-1.: The development of the membrane separation industry, 1960-2010. Reprinted

from (Baker, 2012).

ket should reach $5.5 billion by 2025 from $4.2 billion in 2020 at a compound annual growth

rate (CAGR) of 5.7% for the forecast period of 2020 to 2025” (BCC-Research, nda). Pre-

viously, in 2016, BCC Research had highlighted that the global market for UF membranes

had grown to about $3.3 billion from $ 3.1 billion in 2015 and that the expected CAGR was

of 6.9% for the period 2016 - 2021, increasing to about $ 4.6 billion in 2021 (BCC-Research,

nda). According to this information, UF market is expected to keep growing in spite of the

slighty decrease of the CAGR from 2016 to 2020.

Regarding microfiltration membranes market, BCC Research mentioned that it should reach

$3.7 billion by 2023 from $ 2.4 billion in 2018 at a CAGR of 9.0% for the period 2018 to

2023 (BCC-Research, ndb). Previously, the CAGR was estimated in 8%, 10% and 6.7% for

2010, 2013 and 2015, respectively (BCC-Research, ndb). Although there are variations in

the growth rate, it is sure that MF market is expected to keep rising for the coming years.

According to Markets and Markets analysts, the main drivers for ultrafiltration systems

developments are: (1) the increasing awareness regarding water and wastewater treatment,

(2) selective separation technology, and (3) stringent regulatory and sustainability policies

concerning the environment (Markets and markets, nd).

Therefore, it is evident the increasing interest in the development of membranes technologies.

This allows finding new fields of application and improvements in current processes. The in-
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terest in this topic is because of the high reached efficiencies in systems using membranes,

and the achievement of separations that before were expensive, difficult, or not still possible.

It seems that the objective with membrane technologies is to push reaction and purification

systems beyond their limits (Escobar and der Bruggen, 2011).

1.2.3. Basic concepts of membrane processes

“A membrane is nothing more than a discrete, thin interface that moderates the permeation

of chemical species in contact with it” (Baker, 2012). According to structure, membranes

can be classified into: a) Isotropic and b) Anisotropic.

Isotropic membranes consist of a material layer homogeneous in composition and structure

and can be microporous, dense (nonporous) or electrically charged. The thinner is the layer

the better is the flux through the membrane. Therefore, a new design was created with the

aim of achieve high fluxes without losing mechanical strength and that is the anisotropic

membrane. This consists of a porous support material over which a thin layer performs the

separation. The support material has a structural function to offer mechanical strength and

the thin layer is usually made of some kind of polymer and determines the separation pro-

perties and permeation rates (Mulder, 1996; Baker, 2012). Some of the materials used to

construct membranes are: polymeric, ceramic, metallic and liquid.

The separation processes with membranes can be grouped according to the driving force as

follows (Calabrò and Basile, 2011):

Pressure driven operations (Microfiltration, ultrafiltration, nanofiltration, reverse os-

mosis, gas separation and pervaporation).

Concentration driven operations (Dialysis and osmosis)

Operations in electric potential gradient (Electro-dialysis, membrane electrolysis, and

electrophoresis)

Operations in temperature gradient (membrane distillation)

In separation processes with membranes under pressure driven operation, a pressure diffe-

rence is applied as the driving force to separate particles or solutes from a stream (Calabrò

and Basile, 2011; Baker, 2012). In this sense, a feed solution is forced to flow through the

membrane and only the solvent and the solutes smaller than the pores of the membrane

can pass through it to the permeate stream. While the particles larger than the pores are

retained over the membrane surface. Depending on the application, the desired product can
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be the retained solute or the permeate.

Most of the membranes in pressure driven operations are usually characterized by the mole-

cular weight Cut-Off (MWCO) which is a measure of the retention capability. This parameter

depends on several factors such as the pore size distribution of the membrane, suspension

stability, bulk concentration, solute size, solute molecular weight, salt content, pH, solute

shape, cross-flow velocity, among others (Mulder, 1996; Zydney and Xenopoulos, 2007; Wic-

kramasinghe et al., 2009; Baker, 2012). Hence, the membranes in pressure driven operations

are differentiated by the particle size capable to separate. Thus, conventional filtration, mi-

crofiltration, ultrafiltration, nanofiltration and reverse osmosis remove particles larger than

1µm, 50 nm, 3nm, 1 nm and 0.1 nm, respectively (Calabrò and Basile, 2011). The separation

range have diffuse boundaries because a membrane has a pore size distribution and not a

unique value of pore size (figure 1-2).

Figure 1-2.: Nominal pore size of membranes used in separations driven by pressure gra-

dients. Reprinted from (Baker, 2012).

The retention capability characterization in UF membranes is carried out by filtrating ma-

cromolecules solutions of well defined molecular weight such as polymers (e.g. dextrans,

proteins) and viruses (Capannelli et al., 1983; Bakhshayeshi et al., 2011; Yehl and Zydney,

2021), being the dextran retention test the most common for applications where virus remo-

val is not required (Bakhshayeshi et al., 2011). Regarding MF membranes, there are three

techniques: bacterial challenge test, bubble point test and, the less common, the latex cha-

llenge test (Baker, 2012).
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1.2.4. Importance and applications of microfiltration and

ultrafiltration

One important feature of MF and UF technologies is that they allow concentration and se-

paration of species while avoiding the thermal damage at the same time (Calabrò and Basile,

2011). This is a very necessary and useful feature that make MF and UF suitable in fields

like food, beverage, pharmaceuticals and biotechnology. Additionally, they also find applica-

tions in water pretreatment for desalination processes, microelectronic industry, water and

wastewater treatment (Leos and Zydney, 2017), automotive industry and medicine (Nunes

and Peinemann, 2006).

Regarding water treatment, the environmental legislation is getting more stringent in the last

years. This has led to an increase in the utilization of MF and UF systems to achieve satis-

factorily the new disinfection standards for drinking water (Kennedy et al., 2008; Peinemann

and Nunes, 2010). Examples of the stringent legislation are Giardia and Cryptosporidium

removal guidelines of the Surface Water Treatment Rule, USA 1989 and the directive for the

quality of water for human consumption, EC 1998. More recent data regarding regulations

for drinking water can be found in the federal law “Safe Drinking Water Act (SDWA)” set by

the U.S. Environment Protection Agency (EPA, 2021) and in the Guidelines for Drinking-

water Quality from the World Health Organization (WHO, 2006).

Desalination of seawater has begun to extend because of the water scarcity. With the aim

of supplementing freshwater resources, reverse osmosis (RO) is used to desalinate seawater

and brackish water, while MF and UF are used as pretreatment to RO (Kennedy et al., 2008).

1.2.5. Microfiltration (MF)

Particles and biological material with sizes in the range of 0.025 µm to 10 µm can be re-

moved by using MF membranes which usually are made of polymeric or ceramic materials.

Although many fibrous media can serve as a filtration media for this same particulate matter,

only a MF membrane can guarantee a quantitative retention based on a defined pore size

distribution (Calabrò and Basile, 2011). A MF system can be used to clarify and sterilize

fluids, trap microorganisms for a later analysis and remove cellular material from a lysate

(Mulder, 1996; Association, 2005; Starbard, 2009; Baker, 2012). The membrane configuration

depends on the type of module used. The modules normally utilized for MF are the same for

UF (Figure 1-3): hollow fiber, plate and frame, tubular and spiral wound (Association, 2005).
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(a) Spiral wound module (b) Plate and frame module

(c) Hollow fiber module (d) Tubular module

Figure 1-3.: Types of modules used in microfiltration and ultrafiltration processes. Reprin-

ted from (Baker, 2012)

1.2.6. Ultrafiltration (UF)

Ultrafiltration membranes work like those in MF, the difference lies in the Molecular Weight

Cut-Off. Molecules with sizes in the range of 1 -1000 kDa can be retained by UF membranes

(Calabrò and Basile, 2011). A membrane used for UF is usually made with an anisotropic

structure and its average pore diameter is in the range of 10 – 1000 Å (Baker, 2012).

The main factors affecting the separation and permeability through the UF membranes

are (i) Applied pressure difference, (ii) Chemical, molecular and electrostatic interactions

between the membrane material and the solute to be retained, (iii) Pore size distribution

of the membrane which is related to the MWCO, (iv) pH of the feed stream, (v) Shape

of the solute, (vi) Concentration polarization (a concept discussed further in section 1.2.7)

and (vii) Fouling (discussed further in section 1.2.7) (Calabrò and Basile, 2011; Baker, 2012).
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Characterization of pore size in MF and UF is an important task to classify the membrane

in one of the two groups (MF or UF). Traditionally the test consisted in performing some

experiments with model molecules such as dextran to evaluate the Molecular Weight Cut-Off

of the membrane (Bakhshayeshi et al., 2011; Yehl and Zydney, 2021). Nevertheless, it has

arisen the need to evaluate the membrane capability to remove some virus and bacteria from

the water. Virus and bacteria removal can not be evaluated with the MWCO because the

solutes have different properties like charge, structure and hydrodynamic permeability. For

that reason, a virus challenge test is more appropriated to test the performance of the mem-

brane in removal of microorganisms (Peinemann and Nunes, 2010). It is worth mentioning

that, although the MWCO had been considered a fixed parameter of membranes, recent

research highlight the dependency of MWCO measurement on different factors related to

operating conditions (Jonsson and Rubio, 2011; Yehl and Zydney, 2021).

The membrane material in both MF and UF can be polymeric or ceramic. Among the poly-

meric commonly used compounds are: polypropylene, Polyethersulfone/polyvinylpyrrolidone

blends, polysulfone, polyvinyldenefluoride, cellulosic derivatives and polyacrylnitrile (Peine-

mann and Pereira Nunes, 2010). Common construction materials for the ceramic membranes

are: aluminum oxide, titanium dioxide, zirconium dioxide, or a carbon composite (American

Water Works Association , 2005). The membrane modules used in UF processes are depicted

in Figure 1-3.

1.2.7. Transport Phenomena and operation types in MF and UF

In order to understand how MF and UF membranes perform separation, it is necessary

to discuss the physio-chemical phenomena involved, the driving forces normally used for

separation and the operating conditions applied to the membrane modules.

I. Driving Force

The feed stream is forced to cross the MF and UF membrane by means of a pump that

applies a pressure difference between the feed-side and the permeate-side of the membrane

(Figure 1-4), so called transmembrane pressure (TMP). Hence, the pressure gradient is the

driving force in these processes (pore-flow model). The particulate matter is retained at the

membrane by two mechanisms. The first one, corresponds to screen filters in which the parti-

cles larger than the membrane pore size are retained in its surface. Usually the screen filters

have an anisotropic structure, where a fine micro-porous layer lies on more open micro-porous

support. Ultrafiltration membranes are mostly screen filters. The second mechanism is found

in the so called depth filters. Here, the particles are not only retained on the external surface

of the membrane but also inside the constrictions within the pores or adsorbed in the inner

walls of a tortuous path inside the pore. Depth filters have a homogeneous structure, that is,

they are isotropic. Microfiltration membranes are mostly depth filters (Baker, 2012). There
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Figure 1-4.: Driving force in microfiltration and ultrafiltration processes (Baker, 2012)

are four mechanisms by which dispersed material gets trapped in a depth filter (Figure 1-5):

(a) simple sieving, (b) inertial impaction, (c) Brownian diffusion, (d) electrostatic adsorption.

Figure 1-5.: Four mechanisms by which dispersed material is captured in depth filters.

Reprinted from (Baker, 2012).

II. Operation modes

The process configuration in UF and MF can be set in multiple forms according to the dia-

gram in figure 1-6.
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Two relevant concepts regarding to the operation of an UF and MF membrane module

need to be introduced: constant transmembrane pressure (TMP) operation and constant

flux operation (Baker, 2012). Constant TMP refers to a set up where the pressure difference

applied to the system (between feed and permeate) is kept constant, thus the flux through

the membrane gradually decreases with time because of the fouling (Mulder, 1996; Baker,

2012). In UF processes, most of the constant pressure operation systems work under cross-

flow mode in order to keep fouling under control and they have found applications in paint

electrocoating systems, food industry, oil-water emulsions, process water, product recycling

and biotechnology (Baker, 2012). These applications are usually driven by processes where

the components to be separated have enough value to offset the process cost.

Figure 1-6.: Operation modes in UF and MF (Wagner, 2001; Baker, 2012).

Constant flux consists of membrane system in which the TMP is increased to keep always

the same flux, compensating the increasing resistance due to fouling (Mulder, 1996; Baker,

2012). Submerged systems are often the most used in this category by the UF membranes.

They find applications where keeping a constant flux is essential for the process, for instance,

in drinking water supply and membrane bioreactors (Baker, 2012). Submerged systems are

usually coupled with an air sparging system to control the fouling.

In cross-flow mode, the feed stream is pumped in a tangential direction to the membrane

surface and the retained stream is recirculated to the system. If the concentration in the

recirculation loop is desired to reach a specified concentration level, a bleed stream can be

used (Association, 2005; Baker, 2012). Dead-end filtration, also called filtration in deposition



20 1 Introduction

mode or direct filtration, is a configuration where the entire feed stream is forced to cross the

membrane in a single step. Hence, all the contaminants, colloids or particulate matter are

retained. After some time, a cleaning is necessary to remove this residual cake (Association,

2005; Baker, 2012).

Some of the most commonly used configuration in industries are illustrated in figure 1-7,

and combinations of them are also used, so called, christmas tree design.

(a) Multiple-stage feed-and-bleed system.

(b) Multi-stage recirculation design

Figure 1-7.: Some of the most commonly used process configurations in UF and MF. Re-

printed from (Wagner, 2001; Baker, 2012)

III. Concentration polarization and fouling

It has been observed that the UF and MF membranes undergo a decline in flux with the time

(in constant pressure operation) or an increase in the transmembrane pressure (in constant

flux operation) and this behavior is caused by two highly coupled phenomena: concentration

polarization and fouling (Calabrò and Basile, 2011).

Concentration polarization refers to the generation of a concentration profile at the boundary

layer adjacent to the membrane surface. During the ultrafiltration or microfiltration process,

a pressure difference is applied to drive the liquid stream plus solutes to flow towards the

membrane. A portion of particles or solutes are rejected (retained onto the surface or trapped
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in the constrictions inside the pores) due to the selectivity of the membrane. The solutes or

particles start to concentrate in the stagnant layers adjacent to the membrane surface in the

feed side. The generated concentration profile is considered and additional resistance to the

flux and may cause other phenomena. For instance, depending on the nature of the solute,

osmotic pressures can be produced, the pressure driving force can be counterbalanced and

the membrane performance is negatively affected (Figure 1-8). Besides, the concentration

profile also contributes to counterbalance the flux through the membrane since the solute

starts to move against its gradient concentration back to the bulk (so called back-diffusion).

Figure 1-8.: Concentration polarization scheme. Reprinted from (Pabby et al., 2008).

Figure 1-9.: Fouling formation mechanisms in micro- and ultrafiltration membranes (Bac-

chin et al., 2006).

Due to the high solute concentration in the boundary layer, a second phenomenon is pro-

moted: fouling. Fouling refers to a buildup of material on the membrane pores (Figure 1-9).

For UF and MF, there are various forms in which the fouling can occur:
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Adsorption: occurs when an interaction between the solutes and the membrane material

exists. This implies that adsorption is present even when there is no permeation flux.

Pore blockage: a particle gets trapped in a pore by blocking it totally or partially

Deposition: this refers to the cake formation at the membrane surface.

Gel formation: if high values of concentration on the membrane surface are reached due

to the concentration polarization, it is possible that some compounds can precipitate

or lead to a gel formation. This occurs mainly when the solute involves proteins.

The fouling has serious consequences over the separation performance. For example, in an

experimental set up of Hughes and Field (2006) a yeast suspension is filtered under a cons-

tant flux operation (Figure 1-10). The fouling generated by the deposition of the yeast on

the membrane surface causes an increase in the TMP during the first hour. This translates

into more energy to be supplied by pumping systems and therefore higher operating costs.

Additionally, after flushing the membrane (phase II in Figure 1-10), the TMP can not be

restored to its initial value, implying that some of the fouling is irreversibly adhered to the

membrane, which negatively affects the separation performance.

Figure 1-10.: Transmembrane pressure curve in a filtration operation for yeast suspension

at constant flux. Reprinted from (Hughes and Field, 2006).

On the other hand, if a separation process is performed under constant pressure, the fouling

causes flux decline as the time evolves (Figure 1-11).

The fouling in the MF and UF membranes is a very important issue to be taken into con-

sideration because it affects directly the membrane replacements costs. Therefore, cleaning
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strategies must be applied in order to extend the membrane life-cycle (Calabrò and Basile,

2011).

Figure 1-11.: Flux decline in a constant pressure separation process. Reprinted from (Baker,

2012).

IV. Prevention and mitigation of concentration polarization and fouling

There are several strategies for reducing the effect of fouling in separation processes with

membranes and they are summarized in Table 1-2. The techniques categorized as direct

methods are those that aim to disturb the hydrodynamic conditions of the boundary layer

in order to prevent the solute concentration from achieving high values at the membrane

surface. Whilst those strategies grouped under indirect methods utilizes other approaches to

mitigate fouling such as modifying the physio-chemical properties of the membrane, adding

pre-treatment processes or selecting an appropriate system configuration.

The periodic maintenance cleaning is included in the list of fouling prevention strategies

because frequent and short cleanings can diminish the necessity of major cleaning-in-place

(CIP) procedures (Peinemann and Pereira Nunes, 2010).

Table 1-2.: Strategies to prevent and reduce fouling in UF and MF membranes. Reprinted

from (Peinemann and Nunes, 2010).
Direct Methods Indirect Methods

Turbulence promoters (e.g., modified

membrane spacers)
Pretreatment by filtration

Pulsed or reverse flow Treatment of the membrane surface
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Continuation of Table 1-2

Direct Methods Indirect Methods

Rotating or vibrating membranes
Preparation of more hydrophilic

membranes

Stirred cells with rotating blades close

to the membrane

Selection of appropriated operating

mode

Ultrasonic enhancement
Selection of optimum operating

conditions

Periodic maintenance cleaning: (1)

Chemical cleaning (2) Hydraulic

cleaning (3) Mechanical cleaning

Periodic backwash with permeate or

gas

Generation of a dynamic membrane

layer

1.2.8. Microfiltration/Ultrafiltration modeling

I. Concentration Polarization

A mathematical model for concentration polarization is obtained by applying a mass balan-

ce over the boundary layer in the feed side of the membrane. The assumptions in the mass

balance are: steady state, Fick law of diffusion, there is no chemical reaction, there is no con-

centration gradient in a direction parallel to the membrane surface (stagnant layer), density

is constant and diffusion coefficient is independent of concentration. After integrating the

differential mass balance and reorganizing, the following formula is developed (Baker, 2012):

Cim − Cip

Cib − Cip

= exp
(Jv · δ

Di

)
(1-1)

Where Cim is the concentration of solute in the feed stream at the membrane surface, Cip is

the concentration of solute at the permeate side, δ is the boundary layer thickness, Jv is the

flux through the membrane and Di is the Fick diffusion coefficient. This equation predicts

the relation of the solute concentration at the membrane surface with the flux. However, this

equation does not consider other relevant effects such as the osmotic pressure generated by

the solute and the temporal evolution of the concentration profiles over the boundary layer.

II. Fouling

In the absence of fouling, the Darcy’s law can be used to establish a relationship between

the volumetric flux and the applied transmembrane pressure by means of a proportionality

constant referred to as permeability (Lp) (See equation 1-2). Permeability is a property of

a porous material for allowing a fluid to pass through it under an applied pressure. Hence,

a high permeability indicates high flux through the porous material, while low permeability

causes low flux (Popham, 2019).

J = Lp ·∆P (1-2)
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If the concentration polarization is relevant and the generated osmotic pressure is conside-

rable, hence the model can be rewritten in the following form:

J =
1

µ ·Rm

(
∆P −∆π

)
(1-3)

Where Rm is the membrane resistance in the absence of fouling and is measured experimen-

tally. µ is the viscosity of the permeate. ∆π is the osmotic pressure and it is set to zero if

the feed does not contain solutes, that is, the feed is pure solvent. An equivalent form of the

last equation is:

J =
1

µ(Rm +Rcp)
(∆P ) (1-4)

Where Rcp is the resistance associated with the concentration polarization layer. Now, if fou-

ling is present in the membrane, the equation can be extended by including extra resistances:

J =
1

µ(Rm +Rads +Rrev +Rirrev)
(∆P −∆π) (1-5)

Rads represents the resistance associated to the adsorption of solute due to interactions with

the membrane. Rrev corresponds to the reversible resistance that disappears after switching

to pure solvent and Rirrev corresponds to the resistance that only can be removed when an

intensive chemical cleaning procedure is performed.

III. Critical, Threshold and Sustainable Flux

There are some important concepts regarding to the possible operative flux values. The first

of them is the critical flux defined as “the flux at which fouling is first observed for a given

feed concentration and given cross-flow velocity” (Field and Pearce, 2011). The critical flux

can be referred to the strong form, Jcs (adsorption is negligible), the weak form, Jcw (adsor-

ption is present) or the irreversible form (Bacchin et al., 2006; Beier and Jonsson, 2009). The

following expressions assume that the osmotic pressure is small. Jcs and Jcw are the strong

form and the weak form of the critical flux, respectively.

J =
1

µ ·Rm

(∆P ), for J < Jcs (1-6)

J =
1

µ(Rm +Rrev +Rirrev)
(∆P ), for J > Jcs (1-7)
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J =
1

µ(Rm +Rads)
(∆P ), for J < Jcw (1-8)

J =
1

µ(Rm +Rads +Rrev +Rirrev)
(∆P ), for J > Jcw (1-9)

Critical flux is easily observed in a stationary flux - TMP curve without osmotic pressure

effects and corresponds to the point at which the curve starts to deviate from linearity

(Figure 1-12).

Figure 1-12.: Strong and weak form of the critical flux. Reprinted from (Field and Pearce,

2011).

Nevertheless, the critical flux concept does not apply for a dead-end system in which there

is always fouling in some extent. Hence a new concept was introduced: the threshold flux. It

consists in a value of the flux above of which the fouling rate increases markedly and below

of which the fouling rate is moderate. This is expressed as follows.

Rate of permeability loss = a+ b · (J − J∗) for J > J∗ (1-10)

Rate of permeability loss = a for J < J∗ (1-11)

In addition to the critical and threshold flux concepts, there is another flux related with the

economical aspect of the process. The value of flux at which the operational costs and capital

costs are in optimal balance is called sustainable flux. It is referred as a balance because low

operational costs are achieved with low fluxes (cleaning procedures are less intensives), but

low capital costs are achieved with high fluxes (less membrane area is required). Another

definition for sustainable flux is “the net flux that can be maintained using mechanical and



1.2 Background 27

chemical enhancing means to meet an operation cost objective over the projected life of the

membrane” (Field and Pearce, 2011).

These concepts of critical, threshold and sustainable flux are very important for specifying

the operating conditions of a membrane separation system from techno-economic viewpoint.

Therefore, the modelling of the membrane fouling, concentration polarization and/or flux

decline is an interesting field of research, since the determination and prediction of the fouling

rate could be used to optimize the operational conditions in such a way that the maximum

revenues can be achieved. Hence, the following sections deal with possible models that might

be used for accomplishing this task.

1.2.9. Mathematical modeling for Process System Engineering

Mathematical modeling is a powerful and useful tool in science and engineering because it

can be used for simulation, optimization, process intensification, control, process system en-

gineering, clustering, classification, prediction and monitoring (Hangos and Cameron, 2001;

Zendehboudi et al., 2018).

A classification of mathematical models is somewhat difficult because of the rising of a subs-

tantial amount of models in the recent years and all of them offer different characteristics

and features. However, they can be roughly grouped into three categories: white-box models

or first principles models, gray-box models and black-box models, according to their reliabi-

lity on process knowledge or input-output data inference (Zendehboudi et al., 2018; Azevedo

et al., 2019).

The main features of each type of model are summarized in table 1-3 and some examples

are sketched in Figure 1-13.

Purely white or purely black box models are quite rare in process engineering. It is rather

common finding models that combine the structure of white box models with some parame-

ters or correlations based on input-output mapping. Hence, grey box models are the models

most used in engineering applications. The development of a model can be performed through

the seven step modeling procedure sketched in Hangos and Cameron (2001): (1) problem

definition by establishing the process description and the modeling goal; (2) identification of

the relevant phenomena involved in the process; (3) incorporation of the available process

data; (4) development of the model equations; (5) mathematical solution of the model equa-

tions; (6) verification of the model solution against reality; (7) validation of the model with

new data or experiments. This steps have some return points as shown in figure 1-14.

The mathematical model development in step four relies on some key components (Hangos
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‎MATHEMATICAL 
‎MODELS IN 
‎PROCESS 

‎MODELING

‎BLACK-BOX 
‎MODELS

‎Transfer 
‎functions

‎Time series

‎Empirical 
‎models

‎Machine 
‎learning

‎Deep learning

‎GRAY-BOX 
‎MODELS

‎Some 
‎applications

‎Chemical 
‎processes

‎Reaction 
‎engineering

‎Separation 
‎processes

‎Transport 
‎phenomena

‎Biofuels

‎Petroleum 
‎engineering

‎Reservoir rock 
‎characterization

‎Reservoir 
‎simulation and 

‎optimization

‎Reservoir fluid 
‎characterization

‎Energy systems

‎Energy 
‎conversion

‎Energy storage

‎Energy 
‎management

‎WHITE-BOX 
‎MODELS

‎Lumped 
‎parameters

‎Linear ‎Non-linear

‎Distributed 
‎parameters

‎Linear ‎Non-linear

Figure 1-13.: Mathematical model classification. Adapted from Zhang (2010).

and Cameron, 2001):

Assumptions

Model equations and characterizing variables: differential equations for mass, energy

and momentum balances; constitutive equations for thermodynamic relations, transfer

rates and physical constraints.

Initial conditions (if applicable)

Boundary conditions (if applicable)

Parameters. Usually obtained from step three.

As a result of following these steps (Figure 1-14), a mathematical model is obtained and

can be classified in two types: lumped parameter and distributed parameter. The former has

variables that do not change spatially, while the latter include variables that vary spatially.

Depending on the modeling target, the model can be focused on emulating the dynamic

behavior of the process or just its steady state. Hence, the final model can be one of four

(Hangos and Cameron, 2001):
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Table 1-3.: Features of white, gray and black box models (Zhang, 2010; Zendehboudi et al.,

2018; Azevedo et al., 2019).
White box models Black box models Gray box models

Rely on the governing equa-

tions derived from engineering

and nature laws (e.g. mass,

energy and momentum conser-

vation laws).

Can be built before the opera-

tion of a process.

Provide understanding of the

process behavior under the ef-

fects of operating conditions.

Have good extrapolation capa-

bilities only limited by the mo-

del assumptions.

Feature high computational

burden.

Are also called mechanistic,

analytical, phenomenological,

physical, fundamental and pa-

rametric models.

Face several challenges such as

high dimensionality, time de-

lay, uncertainties, multi-scale

and non-linearity.

Rely on mapping the In-

put/Output data.

Their parameters do not have

physical interpretation.

Their performance is restricted

to the range of available data.

Feature low computational

burden.

Feature high data demand.

Are also called data-based,

non-parametric, empirical and

data-driven models.

Combine models from white-

box and black-box models.

The well known phenomena

is predicted by the white-box

part and the unknown part of

the process is modeled by the

black-box model.

Have the benefits from both

white and black box models.

Offer more flexibility because

they can be re-calibrated with

new dataset.

Reduce the amount of requi-

red parameters comapred with

black-box models.

Are also called semi-

analytical, semi-physical,

semi-parametric and hybrid

models.

Lumped parameter dynamic model. Normally represented by a set of ordinary diffe-

rential equations with initial value problem.

Distributed parameter dynamic model. Normally represented by a set of partial diffe-

rential equations.

Lumped parameter steady state model. Normally represented by a set of algebraic

equations.

Distributed parameter steady state model. Normally represented by a set of ordinary

differential equation with boundary value problem.

Most of the parameters used in a model come from empirical correlations. For instance,

hydrodynamic properties such as Prandtl number, Reynolds number and mass transfer coef-

ficients are based on equations extracted from several experimental trials (Çengel and Ghajar,

2020). Hence, the parameters can be considered as the black box component in a mathema-

tical model for process engineering applications.
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Figure 1-14.: Seven step modeling procedure. Adapted from Hangos and Cameron (2001).

1.3. Hypothesis and Objectives

1.3.1. Hypothesis

Data-driven models can be used in microfiltration and ultrafiltration processes to predict:

The flux decline and observed rejection in the membrane.

The best operating conditions for the system in order to accomplish a desired separation

performance.

1.3.2. Objectives

I. General Objective

Determine the predictive power of different data driven models in ultrafiltration and micro-

filtration processes.

II. Specific Objectives

Identify and analyze different types of data-driven models to predict the behavior of

microfiltration and ultrafiltration processes.
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Collect and analyze experimental data of microfiltration and ultrafiltration processes

from literature and/or in collaboration with other research groups/enterprises.

Validate the predictive power of the identified models to reproduce the behavior of

microfiltration and ultrafiltration processes.

Optimize the operational conditions of microfiltration and ultrafiltration processes for

water treatment.

1.4. Methodology

This research is focused on model development to improve the operating conditions for dyna-

mic filtration system (MF and UF) towards providing system understanding and best opera-

tion scenarios. For achieving that goal, it is required to develop a model that can predict the

flux decline, the membrane selectivity and the dynamic behavior of UF and MF membranes

under different operation conditions. The overview of the employed methodology is depic-

ted in Figure 1-15. The main steps for the development of this thesis are sketched as follows:

The first step consists of collecting experimental data related to MF or UF from lite-

rature, research groups and/or enterprises.

According to the nature of the available data and a previous revision of the mathema-

tical model types, a preliminary selection of the mathematical model is made. Since

data come from dynamic ultrafiltration of dextran T500 where some system features

are not entirely understood, a hybrid model is proposed in order to capture most of

the physico-chemical phenomena by means of deterministic equations. The variability

that is not explained by the deterministic relations is managed by black box models.

The model structural configuration is set. The inputs, outputs and dependencies of

the black box model are defined. The mathematical function describing the black box

model is then proposed.

Next, model tuning is performed to adjust the full mathematical model to the experi-

mental data. Some statistical indexes and techniques are used to evaluate the goodness

of the fit, such as, adjusted correlation coefficient, parity plots and confidence intervals

for the estimated parameters.
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Figure 1-15.: Proposed methodology diagram.

The output of the model is then analyzed along with the statistic indexes, aiming to

assure that parameters are identifiable and lie in physically feasible intervals, and the

experimental data are accurately predicted. If the model prediction power is not ac-

ceptable, a new structure for the black box model is assumed and the cycle is repeated

as shown in Figure 1-15.

If the model prediction power is good enough, the model is exploited by performing

a sensitivity analysis in order to evaluate the separation performance under different

input disturbances, namely, backshock time (BS), time between backshock (TBBS),

bulk concentration (Cb) and transmembrane pressure (TMP). The separation perfor-

mance is analyzed through rejection factor, membrane flux, concentration profiles and

concentration polarization modulus.
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Finally, a comparative analysis is accomplished aiming to highlight the benefits of

using dynamic operation. Within the comparative analysis, economic savings in terms

of required area and membrane costs are highlighted.

1.5. Thesis content

This thesis has been written using each chapter as an article, thus the reader must be aware

about potential repetition of information between each chapter. This feature is suitable in

order to have chapters with coherence independently of each other.

In order to achieve the proposed objectives of the thesis, the mathematical modeling and

analysis of a dynamic ultrafiltration system is performed in two chapters. The chapter en-

titled “Ultrafiltration intensification by dynamic operation: Insights from hybrid modeling”

focuses on the development and identification of the mathematical models aiming to predict

the flux and selectivity of a dynamic ultrafiltration system by utilizing experimental data

from dextran separation. The content of this chapter was published in a scientific journal

article displayed in Appendix A which is recommended to read instead. The chapter en-

titled “Model-based sensitivity analysis of dynamic ultrafiltration” consists of an analysis

of the separation performance in terms of flux, observed rejection and concentration at the

membrane surface as a function of the input variables BS, TBBS, Cb and TMP. Besides, a

comparative analysis is made at the end of the chapter aiming to highlight the benefits of

using dynamic operation versus conventional cross flow operation.

1.6. Impact

1.6.1. Academic

With a developed mathematical model for dynamic MF and UF systems, it is straightfor-

ward to establish the operating conditions that allow the filtration process to achieve the

desired separation performance. The model also helps to validate if some desired outputs are

achievable by the filtration system. This model allows increasing process understanding in

dynamic microfiltration and ultrafiltration systems.

1.6.2. Social

Micro and ultrafiltration technologies are spread out across different fields such as: microelec-

tronics, biotechnology, water desalination, pharmaceuticals, dairy sector, automotive sector,

beverages, petrochemicals, wastewater and water treatment. According to this, meaningful

improvements in the process that involve UF and MF membranes can be highly benefited
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as more efficient process are implemented and high quality products are produced. In this

way, the life quality of the population can be improved.

1.6.3. Environmental

Further process intensification can be implemented for membrane technologies, especially

micro and ultrafiltration processes thanks to this research work. So, the outcomes of the

research would help membrane technologies to meet current challenges such as sustainability,

efficiency in energy and resource usage and high quality products.

1.7. Contributions

1.7.1. Journal paper

L.H. López-Murillo, V.H. Grisales-Dı́az, M. Pinelo, O.A. Prado-Rubio, Ultrafiltration in-

tensification by dynamic operation: Insights from hybrid modeling, Chem. Eng. Process. -

Process Intensif. 169 (2021) 108618. https://doi.org/10.1016/j.cep.2021.108618.

L.H. López-Murillo, V.H. Grisales-Dı́az, O.A. Prado-Rubio, Model-based sensitivity analysis

of dynamic ultrafiltration. Paper under development with a 95% of progress.

1.7.2. Peer reviewed conference papers

Luis Humberto López- Murillo, Vı́ctor Hugo Grisales Diaz, Manuel Pinelo, Óscar Andrés

Prado- Rubio. (2021). Ultrafiltración Dinámica - Modelamiento de la Intensificación de Se-

lectividad. In Proceedings of “XLII Encuentro Nacional de la AMIDIQ – Desaf́ıos actuales

de investigación y docencia de ingenieŕıa qúımica” (ISSN: 2683 - 2925). Jorge Ramón Ro-

bledo Ort́ız (Editor). Pages: PRO 246-251. Academia Mexicana de Investigación y Docencia

en Ingenieŕıa Qúımica (AMIDIQ).

1.7.3. Conference presentation

Luis Humberto López- Murillo, Vı́ctor Hugo Grisales Diaz, Manuel Pinelo, Óscar Andrés

Prado- Rubio. (2021). Ultrafiltración Dinámica - Modelamiento de la Intensificación de Se-

lectividad. Oral presentation in XLII Encuentro Nacional de la AMIDIQ – Desaf́ıos actuales

de investigación y docencia de ingenieŕıa qúımica, 08 - 11 september, 2021. Virtual event.
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2. Ultrafiltration intensification by

dynamic operation: insights from

hybrid modeling

2.1. Abstract

Concentration polarization and fouling are the most important issues to be addressed when

designing ultrafiltration (UF) and microfiltration (MF) units for a specific application. Dy-

namic operation in UF and MF, such as backshock, is a method that allows mitigating

adverse effects of polarization and fouling thus enhancing the separation performance. Ho-

wever, there is a trade-off between operational conditions (i.e. backshock duration time BS,

the time between backshock TBBS, and flux) to achieve the desired effects. Herein, two

hybrid mathematical models are developed and tuned to predict the behavior of the pola-

rization layer in dynamic UF (R2
adj of 0.9185 and 0.9626, respectively). Both hybrid models

can estimate the concentration on the membrane surface (e.g. 27 g/L when BS is 1.25 s and

TBBS is 5 s). The results illustrate the intensifying effect of dynamic operation by decreasing

the Molecular Weight Cut-off up to 74 times without decreasing the membrane flux. The

performed experiments and developed models provide system insights for membrane systems

design where the rejection could be enhanced and tunned according to operating conditions

rather than the membrane pore size.

2.2. Introduction

Ultrafiltration (UF) and microfiltration (MF) are separation technologies widely used in

industrial fields such as water treatment (Byhlin and Jönsson, 2003; Jönsson et al., 2006;

Verma and Sarkar, 2017, 2018; Chen et al., 2018; Grzegorzek and Majewska-Nowak, 2018;

Shi et al., 2019), food (Neggaz et al., 2007), beverage (Macedo et al., 2011), pharmaceutical

(Zaidi and Kumar, 2004; KWON et al., 2008; Pu et al., 2012) and biotechnology due to their

good performance and selectivity under moderate conditions. Nevertheless, filtration mem-

brane technologies have some drawbacks that limit their performance and efficiency, namely

concentration polarization and fouling (Peinemann and Nunes, 2010; Baker, 2012). These

phenomena affect membrane performance by reducing the flux and decreasing selectivity (or
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rejection factor).

Due to the adverse impact of the aforementioned phenomena, there have been efforts to

develop several methods to reduce, control, avoid and correct the effects of concentration

polarization and fouling by mechanical, hydraulic, chemical means or their combination (Pei-

nemann and Nunes, 2010; Baker, 2012). Some examples are: turbulence promoters, pulsed or

reverse flow (dynamic operation), rotating or vibrating membranes, stirred cells with rota-

ting blades close to the membrane, ultrasonic enhancement, periodic maintenance cleaning,

periodic backwash with permeate gas (dynamic operation), generation of a dynamic mem-

brane layer, pre-treatment by filtration, membrane surface treatment, preparation of more

hydrophilic membranes, appropriated operating mode selection.

Among the mentioned methods to control concentration polarization and fouling, some could

be grouped into the general term ”dynamic operation”. Particularly, there is a technique in

which, every period of time, the flux is reversed across the membrane during a specified

amount of time. Then, a pressure is applied in the permeate side and the flux crosses from

permeate to the retentate side. Such reversed flux can remove some of the internal and ex-

ternal fouling while disrupting the concentration profile in the boundary layer. There are

several variations of this technique with different names: backshock, backpulse and back-

flush, only differentiating in frequency and duration (Gao et al., 2019). Dynamic operation

can be considered as part of process - intensifying methods (Stankiewicz and Moulijn, 2000)

since overall performance can be improved significantly by reverting flux in a periodic way

(Srijaroonrat et al., 1999; Salladini et al., 2007; Bakhshayeshi et al., 2011b; Borujeni et al.,

2015). Nevertheless, further intensification by using dynamic operation only can be achieved

for UF and MF if it is performed at the appropriate operating conditions. The appropriate

selection of operating conditions is not an easy task for a particular application. Therefore,

it is interesting to use a process system engineering approach where mathematical models

are used for process design and operation.

Table 2-1.: List of models used for predicting ultrafiltration process behavior.

System Model type Model use Ref

Whey separation process

with UF

It includes mass balances

and a black box model to

predict fouling.

The model is

evaluated under

different feed stream

concentrations and is

used for control

purposes.

(Saltık et al., 2017)
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Continuation of Table 2-1

System Model type Model use Ref

Cross flow membrane

filtration of colloidal

suspension

It is an artificial neural

network with a radial

basis function.

It is used to predict

the flux decline under

different conditions:

particle size, solution

pH, ionic strength and

transmembrane

pressure.

(Chen and Kim, 2006)

Cross flow membrane

filtration of colloidal

suspension

It is based on Darcy’s law

integrated with a feed

forward artificial neural

network

It is used to predict

flux and flux

resistances.

(Azevedo et al., 2019)

Soy protein production

from extracts of deffated

soybean flour by using

tubular and spiral wound

ultrafiltration modules

Darcy’s law and film

theory.
Flux prediction

(KRISHNAKUMAR

et al., 2004)

Cross flow membrane

filtration of colloidal

suspension

Feedforward

back-propagation neural

network and a radial basis

function network. The

architectures of these are

found by genetic

algorithms.

Flux prediction (Sahoo and Ray, 2006)

Whey UF process

A data driven differential

equation (empiric model). Flux prediction (Yee et al., 2009)

Water treatment plant

A hybrid model

integrating Darcy’s law

and artificial neural

networks.

Flux prediction in

dead-end

ultrafiltration process.
(Chew et al., 2017)

Wastewater treatment

application

Single Input - Single

Output structures and

Multiple Input - Single

Output structures were

evaluated by using system

identification techniques.

Flux prediction
(Prado-Rubio and von

Stosch, 2017)

Wastewater treatment of a

petrochemical process

A hybrid model coupling

Darcy’s law and artificial

neural networks.
Flux prediction

(Grisales Dı́az et al.,

2017)

Dynamic UF of dextran

Computational fluid

dynamics and

semi-analytical models

Flux and observed

rejetion prediction

(Vinther et al.,

2014a,b, 2015; Vinther

and Jönsson, 2016a,b)
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In literature, different models have been developed for predicting ultrafiltration processes

behavior. Some of the latest models are summarized in Table 2-1. In general, the proposed

models have the following limitations to be applied for process intensification:

Those models based on solution diffusion approach do not include the real phenomena

that occurre in UF and MF: the sieving mechanism. Mostly, they are limited to static

operation and not dynamic operation.

Black box models, such as autoregressive models, artificial neural networks, among

others, only predict flux and not the permeate concentration, rejection neither selecti-

vity. Additionally, they need extensive experimental data to calibrate the models, and

results are particular for the investigated application limiting their use in other fields.

Besides, noise from experimental data tends to be captured by the model.

Development of pure deterministic models is difficult because the phenomena involved

are nonlinear and time variant, and there is insufficient process understanding of the

mechanistics underneath.

Recent models using computational fluid dynamics have not been validated with ex-

perimental data (Vinther et al., 2014b, 2015; Vinther and Jönsson, 2016a,b).

Therefore, the aim of this research is to analyze the intensifying effect of dynamic opera-

tion on UF separation performance, thus develop and tune two hybrid models with different

complexity level. Both are intended to predict flux and observed rejection in dynamic UF

considering concentration polarization, vital for optimizing process design and operation.

The proposed hybrid models merge the flexibility of black box approaches with the inter-

pretability of first principles models, thus they have good extrapolation capabilities and low

data requirements [29, 23]. Their structure allows having insights on the phenomena under-

neath, so they can be used for UF and MF process design and optimization of operating

conditions. Compared to previously developed models depicted in table 2, the novel hybrid

models proposed in this work are aimed to increase prediction power while providing insights

of the dynamic phenomena underneath. Thus, they have enhanced extrapolation capabili-

ties than previous efforts modelling similar systems. Finally, hybrid models can serve as a

building block for developing models with phenomena more complicated than concentration

polarization.

The paper is structured as follows: the methodology presents the experimental setup, model

development, the methods for data treatment and model tuning. The results section shows

the models prediction capabilities and the effects of dynamic operation on UF performance.

Finally the conclusions are drawn.
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2.3. Methodology

All abbreviations and nomenclature used throughout this paper are summarized in table 2-2.

Table 2-2.: Nomenclature.
List of symbols

Am Membrane area (m2)

BS Backshock duration time (s)

c Total dextran concentration (g/ml)

C Dextran concentration (kg/m3 or g/L)

Di Dextran diffusion coefficient (m2/s)

F Cross flow (L/h)

Js Dextran flux (kg/(m2 · s))
Jv flux through the membrane (m3/(m2 · s))
k1 Coefficients for flux through small pores(−)

k2 Coefficients for flux through large pores(−)

Lp Membrane permeability (m3/(m2 · s · bar))
MW Molecular weight (kDa)

MWCO Molecular weight cut off (−)

Rint Intrinsic rejection (−)

Robs Observed rejection (−)

RT Retention time in SE-HPLC (min)

t time (s)

TBBS Time between backshocks (s)

TMP Transmembrane pressure (bar)

v Volume level in the permeate tank (m3)

vout Flow from the permeate tank (m3/s)

x Spatial coordinate in the boundary layer (m)

Greek letters

α Coefficient in diffusivity expression(m2/s)

β Exponent in diffusivity epression (−)

δ Boundary layer thickness (µm)

∆PBS Transmembrane pressure during BS (bar)

π Osmotic pressure (bar)

Subscripts

i ith molecular weight interval

p Permeate

b Bulk

T Tank

m Membrane

2.3.1. Experimental set up

Experiments for conventional and dynamic operation of UF membrane were performed using

Dextran T500 (Inês Pereira Rosinha, 2011). Dextrans are commonly used in dextran sieving

tests as a standard method for characterizing the pore size distribution of ultrafiltration

membranes (Bakhshayeshi et al., 2011a). Additionally, dextrans have very important appli-

cations in clinical, pharmaceutical and biomedical field (Song et al., 2012; Gaspar et al.,
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2016; Zarrintaj et al., 2020).

The experiments are carried out in an ultrafiltration system used to test cross flow filtration

with hollow fibers in continuous, diafiltration or high frequency backshock operation mode.

Such equipment is conformed by eight components (see figure 2-1): hollow fiber module (bo-

re - side feed), pump, feed tank, permeate hold up tank, flowmeter, thermostat, backshock

system and a computer.

Figure 2-1.: Ultrafiltration system used to test cross flow filtration with hollow fibers in

continuous, diafiltration or high frequency backshock operation mode.

The feed solution is dextran T500 (Amersham Pharmacia Biotech AB) in an aqueous so-

lution at 1 g/L. Dextran T500 has an average molecular weight of 500 kDa. The feed tank

contains the aqueous solution and is pumped to the membrane module where the stream

is divided in two: the retentate and the permeate. The flowmeter is placed in the retentate

stream. Both permeate and retentate are returned to the feed tank, closing the system. The

permeate stream passes through a tank of 2 L (where samples are taken) before returning

to the feed tank. Dextran concentrations are measured by size exclusion high performance

liquid chromatography (SE-HPLC) coupled to a refractive index detector as indicated in

literature for dextran quantification (Basedow and Ebert, 1979; Tkacik and Michaels, 1991;

Zydney and Xenopoulos, 2007; Bakhshayeshi et al., 2011a). A high frequency backshock

system is installed to apply pressure in the permeate side to reverse the flow during a time

specified by the user in the computer.
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The membrane module is a hollow fiber system with poly-ether sulfone (PES) membrane

from X-flow Membranes (The Netherland). The module has 54 cm in length, 2.4 cm in shell

diameter, 50 tubes and 1.5 mm in tubes diameter corresponding to 0.1 m2 of membrane

area. The operational conditions of the experiment are summarized in Table 2-3. The dex-

tran solution is fed to the membrane and different backshock times (BS) and times between

backshock (TBBS) are evaluated. The reverse flux in dynamic operation allows disruption

of the concentration profile at the boundary layer. This strongly modifies concentration

polarization phenomenon as concentration at the membrane surface is diluted after each

disruption. As consequence, there is a lower probability that solute crosses the membrane

through the pores, creating the intensifying effect on membrane rejection (selectivity).

From the experimental perspective, it is necessary to assess which values of BS and TBBS

are the best for intensifying the system performance. A total of 9 dynamic experiments are

carried out plus a conventional cross flow filtration (without BS). Average permeate and

feed concentrations are measured by SE-HPLC, and average flux is also monitored. Chroma-

tograms are mathematically processed to extract the concentration of six molecular weight

intervals using an experimental correlation to transform retention time to molecular weight.

So, from one single experiment, it can be obtained seven experimental data points: six con-

centrations (one for each molecular weight interval) and one average flux. Hence, 7 data

points per experiment (10 experiments) gives a total of 70 experimental data to perform the

model tuning.

Table 2-3.: Operating conditions for the experimental tests in the dynamic ultrafiltration

system.
Variable Value

Transmembrane pressure

(TMP)
0.85 bar

Cross flow (F) 162 L/h

Backshock time (BS) 0.25 , 0.75 , 1.25 s

Time between backshock

(TBBS)
5, 10, 15 s

2.3.2. SE-HPLC data treatment

Dextran T500 not only contains molecules with 500 kDa, but it presents a molecular weight

distribution being 500 kDa the average. Hence, a mathematical procedure is needed to es-

timate the concentration of each molecular weight intervals from the chromatograms. Eight

intervals are constructed but the first and the last are discarded as they do not contribu-

te significantly to the total concentration, so only six intervals are used. To do so, first,

a logarithmic relation between retention time and molecular weight is built by analyzing
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chromatograms from dextran samples of different average molecular weight (dextran T500,

T229, T110, T70, T40 and T10). Then, a linear regression between area under the curve

and concentration is developed by performing a calibration curve with samples of dextran

T500 at six different concentrations. So, with the logarithmic relation, the elution time is

converted to molecular weight and, with the linear regression, the chromatogram signal is

divided into intervals and their corresponding areas are transformed to concentration. Thus,

the concentration of each molecular weight interval can be computed.

In a previous work, multiple experiments were performed to tune the dynamic operating

system, including replicates (Inês Pereira Rosinha, 2011). The best operation performance

was selected to investigate in this contribution. The concentration measurements from re-

tentate, permeate and feed streams were made in duplicate. The heights of the replicated

chromatograms are averaged before extracting the area under the curve.Once the concentra-

tion of each molecular weight interval is computed, the observed rejection factor is calculated

(equation 2-1) (Baker, 2012).

Robs = 1− CT i

Cib

(2-1)

Where CT i is dextran concentration of i-th molecular weight interval in the permeate tank,

and Cib is dextran concentration of i-th molecular weight interval in feed stream. The ob-

served rejections and fluxes are average quantities since permeate concentrations and fluxes

are measured from the permeate tank (which holds up the permeate until sampling) in each

experiment.

2.3.3. Model development

Unlike the models reviewed in table 2, the models developed here allow prediction of obser-

ved rejection and flux in dynamic ultrafiltration by considering BS and TBBS values.

The models are intended to describe dynamically the phenomena inside the boundary layer

formed over the membrane surface in the retentate side (figure 2-2). So, mass balances are

developed for dextran at the boundary layer where diffusive and convective transport are

present. Diffusion is modeled by Fick’s law and convection is modeled by Darcy’s law. Solutes

are retained by a membrane sieving action, that is, solutes only can cross the membrane if

they pass through larger pores. High dextran concentrations produce osmotic pressures that

must be considered in the model. In addition, periodic backshocks are performed, so reverse

flux must be part of the model.

The assumptions to be considered in the model construction are:

There is not chemical reaction at the membrane surface.
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Figure 2-2.: Boundary layer diagram where concentration polarization takes place after

achieving steady state. The left side corresponds to feed and the right side to

permeate. Adapted from (Baker, 2012)

Physicochemical properties in the boundary layer are constant.

There are not velocity components in directions different from the perpendicular one

to the membrane surface at the boundary layer.

The diffusivity coefficients are only dependent on molecular weight and not on the

concentration. Interactions between different molecular weight dextrans are ignored.

Fick’s law is a good representation for describing diffusion of dextrans.

The tickness of the boundary layer is constant when defining the cross flow velocity.

This parameter is estimated using a correlation based on the dimensionless numbers

Reynolds and Schmidt (Jonsson, 1984).

The osmotic pressure generated by high dextran concentration can be modeled by a

third degree polynomial (Wijmans et al., 1985).

The concentration in permeate is much less than in the feed side, so polarization and

osmotic pressure is neglected in the permeate side.

A mass balance is performed for each molecular weight interval of dextran over the boundary

layer on the membrane surface. Additionally, at the exit of permeate stream, there is a small

tank holding up 2 L of retentate from which the samples were taken. For this tank, a simple

mass balance is performed to predict its volume and concentration over time.
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Both hybrid models share the same phenomena and the same assumptions, only differing in

the black box section.

Hybrid model 1

The mass balance for the boundary layer is represented by equation 2-2 (Bird et al., 2002).

∂Ci

∂t
= Di

∂2Ci

∂x2
− Jv

∂Ci

∂x
(2-2)

Where Ci is the solute concentration in the boundary layer, Di is the solute diffusion coef-

ficient, Jv is the flux trough the membrane and x is the perpendicular direction to the

membrane surface. Di is modeled by equation 2-3 (Vinther et al., 2014a).

D = α · (MW )β (2-3)

Where α is 2.6804 · 10−10 and β is −0.4754. The diffusivity expression is considered part of

the black box model inside the hybrid model 1.

The partial differential equation (equation 2-2) is coupled with the following boundary con-

dition (Baker, 2012).

JvCi − Di
∂Ci

∂x

∣∣∣∣
x=δ

= Js (2-4)

The solute flux through the membrane, Js, is also expressed as Js = JvCip. The flux Jv can be

calculated by the Darcy’s law (equation 2-5) (Baker, 2012). It is worth mentioning that the

flux through the membrane changes when the backshock is taking place, since the inversion

of the driving force implies a reverse flux. So, positive transmembrane pressure drives a

forward flux during TBBS and the negative transmembrane pressure drives a backward flux

during BS. {
Jv = Lp(TMP −∆π) Forward flux

Jv = −Lp ·∆PBS Backward flux
(2-5)

where, Lp is the membrane permeability, TMP is the transmembrane pressure, ∆π is the

osmotic pressure difference across the membrane, ∆PBS is the transmembrane pressure made

by the backshock system (being ∆PBS = 0.9 bar from experiments). The second expression

in equation 2-5 has a negative sign because, during backshock, the flux is reverted going

backwards from permeate to the retentate side. It is important to note that BS, TBBS and

∆PBS have to be carefully chosen for simulations, since the average flux can yield negative

values if enough flux is reversed during backshock operation compared to forward operation.

BS indicates how long the second expression in equation 2-5 holds, while TBBS - BS indi-

cates how long the first expression in equation 2-5 holds.
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The osmotic pressure for dextran is computed by equation 2-6 (Wijmans et al., 1985).

π = A1 · c+ A2 · c2 + A3 · c3 (2-6)

where, A1 = 0.0867, A2 = 2.98, A3 = 89.8. Equation 2-5 is required in equation 2-2 but it

still lacks of information: the boundary condition needs the solute flux, Js, and therefore the

permeate concentration, Cip. The calculation of Js has already been described for membranes

where solution-diffusion model applies (Scott, 1996; Vinther et al., 2014a), e.g. in reverse

osmosis (see equation 2-7).

Js = B(Cim − Cip) (2-7)

where,B is the solute permeability through the membrane and Cim is the concentration at the

membrane surface. Nonetheless, the solution diffusion model does not describe appropriately

the separation mechanism that occurs in ultrafiltration and microfiltration. Hence, it is

necessary to develop a more appropriated expression for computing Js. According to pore flow

model, which is more appropriate for ultrafiltration and microfiltration, the solute retention

is carried out by the sieving action. It means that the membrane has a pore size distribution,

that is, there are pores smaller than the solute size and also pores bigger than solute size.

Therefore, the equations 2-8 and 2-9 are used instead (Jonsson, 1980).

Jv = k1(TMP −∆π) + k2(TMP −∆π) (2-8)

Js = k2(TMP −∆π)Cim (2-9)

The total flux through the membrane is conformed of two contributions. The first term of

equation 2-8 corresponds to the flux through the pores smaller than the solute size, and

the second term corresponds to the flux through the pores bigger than the solute size. In

equation 2-9 the solute flux is expressed as the flux through the large pores multiplied by

the concentration at the membrane surface.

The permeate concentration can be computed with the aid of equations 2-8 and 2-9, as

follows.

Cip =
Js
Jv

=
k2

k1 + k2
Cim (2-10)

Recalling the definition of intrinsic rejection (Vinther et al., 2014a).

Rint = 1− Cip

Cim

= 1− k2
k1 + k2

(2-11)

So, the permeate concentration can be expressed as a function of the intrinsic rejection and

the concentration at the membrane surface (see equation 2-12). Note that Rint is specific

of the pairing membrane and solute, since k1 and k2 are related to the membrane pore size

distribution relative to the solute size. It implies that Rint is independent of pressure and

concentration and only depends on the the solute size relative to the pore size distribution
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of the membrane (sieving action). The expression for Cip as a function of Rint is considered

part of the black box model inside the hybrid model 1.

Cip = (1−Rint)Cim (2-12)

The mass balance for the 2 L tank in the permeate stream is in equations 2-13 and 2-14.

dv

dt
= Jv · Am − vout (2-13)

dCT i

dt
=

Jv · Am · Cip − vout · CT i − CT i · dv
dt

v
(2-14)

Where v is the volume level inside the tank, Am is the membrane area, vout is the outlet

flow, being zero when the tank is not full and the same value as the term Jv · Am when the

tank is full, CT i is the concentration inside the tank for the ith molecular weight interval.

The differential equation 2-2 is solved using the method of lines with 1000 nodes in the

boundary layer and ode15s function from Matlab ®. Ode15s function is chosen because of

its ability and speed to solve stiff systems.

Hybrid model 2

From preliminary model tuning, it was noticed that still the variance of the experimental

data is not fully represented by hybrid model 1. Therefore, an additional gray-box model is

proposed to cover the remaining output variance.

If Rint from the first hybrid model is plotted against molecular weight, a monotonic ascending

curve, that tends to one as molecular weight grows up, is observed. This kind of curve can be

modeled by exponentials, sigmoids or rational functions. The latter was proper for modeling

Rint (equation 2-15a).

Rint = min

(
1− 1 + b · (1 + a ·MW )

1 + a ·MW

, 1

)
(2-15a)

This function takes the minimum value between the expression and one, because the rational

function can give values greater than one, which is not allowed for the physical interpreta-

tion of Rint. If a and b are estimated for each operating condition and their dependece on

BS/TBBS are analyzed, a Lennard-Jones like function with two parameters could fit the

data (equations 2-15b and 2-15c). These last two parameters for a expression are left to

depend linearly on TBBS (equations 2-15d and 2-15e).

a = ϵ1 ·

[(
σ1

BS/TBBS + σ1

)12

−
(

σ1

BS/TBBS + σ1

)6
]

+ 1.63 (2-15b)
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b = ϵ2 ·

[(
σ2

BS/TBBS + σ2

)12

−
(

σ2

BS/TBBS + σ2

)6
]

+ 2.808 · 10−3 (2-15c)

ϵ1 = P1 · TBBS + P2 (2-15d)

σ1 = P3 · TBBS + P4 (2-15e)

The independet terms in equations 2-15b and 2-15c forces a and b to adopt certain values

when there is no backshock. These values are found when a and b were estimated for operation

with no backshock.

2.3.4. Parameter estimation and optimization problem

Concentration polarization model in hybrid model 1 (equation 2-2) requires some parameters

to be solved, such as intrinsic rejection Rint and permeability Lp. Therefore, a parameter

estimation must be carried out by using the collected experimental data.

For parameter estimation the model outputs are: fluxes and observed rejection factors

for each molecular weight interval, the inputs are: time between backshock (TBBS) and

backshock time (BS), and the parameters to be estimated are: intrinsic rejection (Rint) and

permeability (Lp).

For parameter estimation, a weighted sum of squared residuals is used as objective function

(equation 2-16).

L =
N∑

n=1

Wi · (ysim − yexp)
2 (2-16)

Where N is the total number of experimental data, Wi are the weights, ysim are the simula-

ted outputs and yexp are the experimental outputs. Using the weigth factor Wi, the observed

rejections are scaled to percentages, that is, between 0 and 100 and not in the original range

(0 to 1). This is done to provide analogous rejection and flux contributions to the objeti-

ve function and have a better trade-off for the model predictions. The model tuning is a

non-convex optimization problem, then, it presents multiple local minima, so gradient ba-

sed algorithms get stuck in there. Thus, a global optimization algorithm is required to find

the best parameters that fit the experimental data. The methaheuristic method referred to

as particleswarm available in Matlab® is employed with the following parameters: SelfAd-

justmentWeight = 1.1 and SocialAdjustmentWeight = 1.8. These values were tunned from

preliminary simulation and have shown a faster convergence.

The workflow for the identification of the hybrid model 2 follows the next steps:

a and b are estimated for each operating condition.
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P1, P2, P3, P4, ϵ2, σ2 from equation 2-15 are estimated by using the values of a and b from

the previous step. The Matlab function used to find these parameters was lsqcurvefit

with the following options: ’StepTolerance’ set to 1 · 10−10 and ’FunctionTolerance’ set

to 1 · 10−10.

The chosen statistical indexes for model performance are the adjusted determination coeffi-

cient R2
adj plus the parameters and predictor confidence interval of 95%.

2.4. Results and Discussion

2.4.1. SE-HPLC Data treatment

The concentration of the permeate stream is measured for each operating conditions. For

establishing what percentage of the chromatogram is related with each molecular weight

interval, the area under the curve is divided into eight regions. The retention time intervals

are divided according to [8.3, 9.0, 9.8, 10.7, 11.5, 12.3, 13.2, 14.0, 15] minutes which, through

the logarithmic relation, corresponds to [6705, 3636, 1755, 847, 409, 197, 95, 46, 19] kDa.

The first and the last divisions are neglected in the analysis due to their relatively low con-

tribution to the total concentration. The divisions between 9 and 14 minutes in retention

time are equally spaced.

The experimental results at different BS and TBBS are depicted in table 2-4. Robs,1 co-

rresponds to rejection of dextran with molecular weight between 3636 and 1755 kDa, Robs,2

between 1755 and 847 kDa, Robs,3 between 847 and 409 kDa, Robs,4 between 409 and 197

kDa, Robs,5 between 197 and 95 kDa, and Robs,6 between 95 and 46 kDa.

Table 2-4.: Experimental data where inputs are BS and TBBS, while outputs are the ob-

served rejection for six molecular weight intervals and flux.

BS TBBS

Robs,1

3636 -

1755

kDa

Robs,2

1755 -

847 kDa

Robs,3

847 -

409 kDa

Robs,4

409 -

197 kDa

Robs,5

197 - 95

kDa

Robs,6

95 - 46

kDa

Flux

[LMH]

0 - 0.8600 0.7736 0.6885 0.6110 0.5439 0.4729 33.60

0.25 5 0.9646 0.9227 0.8603 0.7807 0.6877 0.5466 39.42

0.75 5 0.9734 0.9636 0.9447 0.9172 0.8760 0.7980 34.67

1.25 5 0.9670 0.9597 0.9477 0.9339 0.9170 0.8799 20.26

0.25 10 0.9363 0.8642 0.7852 0.7028 0.6175 0.5126 38.36

0.75 10 0.9876 0.9714 0.9422 0.8941 0.8189 0.6911 46.35

1.25 10 0.9766 0.9614 0.9437 0.9178 0.8769 0.7888 38.58

0.25 15 0.9323 0.8627 0.7821 0.6941 0.6028 0.4860 37.57

0.75 15 0.9646 0.9481 0.9140 0.8543 0.7592 0.5865 45.98

1.25 15 0.9755 0.9647 0.9407 0.8986 0.8263 0.6800 57.64
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Figure 2-3.: Experimental observed rejection in a continuous spectrum under TBBS = 5 s

for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO

in each operating condition. Adapted from (Inês Pereira Rosinha, 2011)

Figure 2-4.: Experimental observed rejection in a continuous spectrum under TBBS = 10 s

for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO

in each operating condition. Adapted from (Inês Pereira Rosinha, 2011)

If the absorbance in permeate and feed chromatograms is directly used to compute observed

rejection (Zydney and Xenopoulos, 2007; Wickramasinghe et al., 2009), a continuum spec-

trum is obtained (figures 2-3, 2-4 and 2-5). It is observed that increasing BS from 0 to 1.25

seconds, the rejection profiles are higher. It is explained from the fact that backshock system

allows the disruption of the profile concentration on the feed side, since the reversed permea-

te stream dilutes the concentration on the boundary layer (Vinther et al., 2014b; Vinther

and Jönsson, 2016a). Dextran concentration at the membrane surface on the feed side is
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Figure 2-5.: Experimental observed rejection in a continuous spectrum under TBBS = 15 s

for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO

in each operating condition. Adapted from (Inês Pereira Rosinha, 2011)

Figure 2-6.: Experimental observed rejection in a continuous spectrum under BS = 1.25 s

for three values of TBBS: 5, 10 and 15 s. Adapted from (Inês Pereira Rosinha,

2011)

decreased as BS increases, so there is less probability that solute can cross the membrane

and it causes the rejection values to be higher for all molecular weights with respect to static

operation (no BS). So, longer times for backschock permit a larger impact on the boundary

layer. This is further analzyed with the hybrid models developed in the following sections.

From (figures 2-3, 2-4 and 2-5) the membrane molecular weight cut off (MWCO) is redu-

ced substantially from 3380 kDa (without BS) by a factor of 74, 28 and 17, for TBBS of
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5, 10 and 15 seconds, respectively. These results disagree with the traditional perspective

that separation performance is only defined by the pore size distribution of the membrane,

indicating that operating conditions (BS and TBBS) can also influence significantly the se-

paration performance.

Prior reasearch had analogous results showing how operating conditions can affect directly

the MWCO of a membrane by disrupting the concentration polarization in the boundary

layer by different means (Jonsson, 2008). Investigations on characterization of virus retenti-

ve membranes (Grznárová et al., 2006) have shown that the sieving curve (and threfore the

MWCO) was highly correlated with important parameters such as stirring speed, TMP and

flux. Zydney, A. L. and Xenopoulos, A. found that sieving coefficients and MWCO are highly

influenced by changes in filtrate flux, particularly for membranes of high MWCO (Zydney

and Xenopoulos, 2007). Wickramasinghe, S.R. and coworkers have stated that the MWCO

of a membrane only applies under the test conditions specified by the manufacture, since

MWCO is highly dependent on solute species and operating conditions (Wickramasinghe

et al., 2009). Yehl, C.J. and Zydney, A.L. have investigated how operating conditions, such

as effective wall shear rate and permeate flow rate can influence the MWCO of a hollow

fiber membrane during dextran ultrafiltration (Yehl and Zydney, 2021). The MWCO can

vary from < 200 kDa to more than 1200 kDa with effective wall shear rates ranging from

2000 s−1 to 11000 s−1. Besides, the MWCO can vary between 190 kDa and 1280 kDa for

permeate flow rates between 1.7 ml/min and 10 ml/min, respectively. Analogously to the

mentioned research, herein it is demostrated that using dynamic operation the separation is

highly influenced by disrupting the boundary layer and even could be tuned.

From figures 2-3, 2-4 and 2-5, it is interesting to notice the increase of observed rejection for

larger dextran molecular weight. This is explanied by the sieving mechanism that allows UF

membrane to separate solutes of different size. So, dextrans with high molecular weight are

expected to be more retained than the smaller ones. The sieving mechanism can be related

to the probability that a solute with a specified size finds a pore large enough to pass through

it, considering that the membrane has a pore size distribution.

From figure 2-6 it is evident that lower TBBS values improve substantially rejection factor

especially for low molecular weight range. When using low frequency disruptions, polarization

generates a reduction on solute rejection since high dextran concentration are maintained

longer on the membrane surface. Hence, higher frequencies of backshock allow to keep con-

trolled this by reducing the average solute concentration on the membrane surface, since the

backshock times are in the same magnitud order as that of the development of the polari-

zation layer. This point is further discussed in hybrid models section. For this reason, lower

TBBS values have a better influence on rejection profiles.
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Nevertheless, increasing BS and reducing TBBS does not garantee a better overall perfor-

mance of the process, considering the trade-off between observed rejection and membrane

flux. Table 2-4 indicates that increasing BS from 0.25 to 1.25 seconds, decreases the flux

under TBBS of 5, however, increasing the BS under TBBS of 15 increases flux. This is a clear

evidence that the effect of BS over flux depends on TBBS value. The flux reduction is gene-

rated by two situations: if the BS is too large with respect to TBBS, most of the permeate

is used to wash the membrane during backshock causing a decrease in the average flux over

a period of time. On the other hand, if the BS is small compared to TBBS, concentration

polarization fully develops and flux declines again. For example, the flux of 20.26 LMH in

table 2-4 is lower than that of static operation because in such experiment BS represents

the biggest proportion of the TBBS, which means that the combination of BS = 1.25 and

TBBS = 5 wastes more permeate than the other experiments.

2.4.2. Model calibration and predictive power

Hybrid model 1

The results of the parameter estimation for hybrid model 1 are presented in table 2-5. An

adjusted determination coefficient is computed for the model yielding a value of 0.9185 which

is an indicator of good performance for the model.

The values for Rint,i are in agreement with their physical interpretation. Note that Rint,1

corresponds to the highest molecular weight and Rint,6 to the lowest molecular weight. It

is expected that high molecular weight solutes are rejected by the membrane in a higher

probability and this is confirmed in table 2-5. In spite of the high values for the estimated

intrinsic rejections, the concentration polarization has such a dramatic impact on the perfor-

mance that observed rejection is much lower compared to the intrinsic rejections, achieving

values of down to 47%.

The permeability obtained from parameter estimation (table 2-5) is in agreement with va-

lues reported in literature under similar conditions with a membrane made of poly-ether

sulfone (Garćıa-Molina et al., 2006). There, ultrafiltration of dextran with molecular weight

between 36 and 44 kDa was carried out under 1 bar of TMP and a feed concentration of

1g/L. The permeability was found to be between 55 and 65 L/(m2 · h · bar) corresponding
approximately to the confidence interval shown in table 2-5.

Confidence intervals for each parameter do not include the zero, hence it can be said that

such parameters are statistically distinct from zero and contribute to the prediction capabi-

lity of the model. In addition, the confidence intervals are narrow since their corresponding

percentages with respect of the nominal values are below 15% as shown in the last column
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Table 2-5.: Estimated parameters and their confidence intervals for the first hybrid model:

intrinsic rejections for six molecular weight intervals and permeability.

Parameter Value
Confidence interval (at

95% confidence)

Confidence

interval

(%)

Rint,1 0.9990 0.9549 - 1.0431 ± 4.41%

Rint,2 0.9985 0.9603 - 1.0367 ± 3.83%

Rint,3 0.9977 0.9627 - 1.0327 ± 3.51%

Rint,4 0.9965 0.9581 - 1.0349 ± 3.85%

Rint,5 0.9938 0.9305 - 1.0571 ± 6.37%

Rint,6 0.9847 0.8435 - 1.1259 ± 14.34%

Lp

L/(m2 · h · bar) 56.2211 52.0216 - 60.4206 ± 7.47%

in table 2-5.

Predictor confidence intervals are computed and illustrated in figure 2-7 for TBBS = 5 s and

BS = 1.25 s, and it is observed that they include satisfactorily the experimental data. For

the remaining operating conditions, the figures have a similar behaviour (results not shown).

However, such intervals include values above 1 and this is not possible for the model since the

observed rejections are always lower than the intrinsic rejections. So, although the predictor

confidence intervals cover values above 1, the real model outputs for observed rejections are

bounded up to the same values as intrinsic rejections.

Figure 2-7.: Predictor confidence interval for hybrid model 1.

From parity plots for rejection and flux in figures 2-8 and 2-9, it is clear that most of the

points fall into the ± 15% , only 4 out of 70 points fall outside. Such differences between

the simulated data and experimental data may be due to some assumptions made during

model construction, for instance, the membrane is modeled as a barrier perpendicular to

the flux and the axial geometry of the hollow fiber is not considered. There are some other
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Figure 2-8.: Parity plot for observed rejections (Hybrid model 1). Dashed lines indicate ±
15%.

Figure 2-9.: Parity plot for fluxes in LMH (Hybrid model 1). Dashed lines indicate ± 15%.

factors that could also be influencing such as potential fouling, the membrane asymmetry

and changes in the hydrodynamic conditions of the boundary layer.

Although figures 2-8 and 2-9 seem to be a good indicator of model prediction, figures 2-

10, 2-11 and 2-12 clearly indicate that the hybrid model 1 have limitations to capture the

variance in observed rejection for TBBS = 10 and TBBS = 15 (for all BS values). This shows

the model flaws from a structural or phenomenological perspective. For this reason, a new

hybrid model is proposed, intended to be able to predict better the observed rejections.
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Figure 2-10.: Experimental and simulated observed rejection versus molecular weight under

TBBS = 5 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model

1).

Figure 2-11.: Experimental and simulated observed rejection versus molecular weight under

TBBS = 10 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model

1).

Hybrid model 2

From the previous model, Rint can be plotted versus MW (figure 2-13). Such a graph points

out that Rint can be modeled by a rational function like equation 2-15a. The parameters a

and b are estimated for each operation condition and they are depicted in figures 2-14 and

2-15. It is observed that a Lennard-Jones like function can fit the values for a and b. Hence,

the black box model used to predict Rint is summarized in equation 2-15.
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Figure 2-12.: Experimental and simulated observed rejection versus molecular weight under

TBBS = 15 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model

1).

Figure 2-13.: Estimated intrinsic rejection versus molecular weight.

Equations 2-15 have 6 parameters in total to be estimated P1, P2, P3, P4, ϵ2, σ2. Table 2-6

summarizes the estimated parameters and their confidence intervals. Since these parameters

do not have physical interpretation, they can take any value including negatives. Their confi-

dence intervals show that many of them lie in a wide interval but all of them are statistically

different from zero, so they all contribute to the predictive capability of the hybrid model 2.

In figures 2-16 and 2-17 a parity plot for flux and observed rejection are plotted, respec-

tively. The dots in figure 2-17 are more distributed over the 45° line indicating a better

prediction for the hybrid model 2 compared to the hybrid model 1. The dots in figure 2-16

seems to be unchanged or the change was imperceptible. It points out that the black box

model used to structure the intrinsic rejection in hybrid model 2 only has influence on the
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Figure 2-14.: Dependence of a parameter on BS/TBBS and TBBS. Circles represent values

from estimation for each operating condition and line represents the fitted

equation 2-15b

Figure 2-15.: Dependence of b parameter on BS/TBBS. Circles represent values from es-

timation for each operating condition and line represents the fitted equation

2-15c

observed rejections and not on the fluxes.

Considering that the maximum concentration on the membrane surface, predicted with the

hybrid model 2, is almost 30 g/L (figure 2-23), the osmotic pressure for dextran T500 is ne-

gligible compared to the operating transmembrane pressure (TMP = 0.85 bar) for dextran

concentration between 0 and 30 g/L (figure 2-18). Therefore, the flux variance in model

predictions is not caused by osmotic pressures. Indeed, the flux variance predicted by the

model is due to the different BS and TBBS values. So, the average flux depends on duration
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Table 2-6.: Estimated parameters and their confidence intervals for the second hybrid mo-

del.

Parameter Value
Confidence interval (at

95% confidence)

Confidence

interval

(%)

P1 -0.1888 -0.2214 to -0.1562 ± 17.27%

P2 4.9861 4.8085 to 5.1637 ± 3.56%

P3 -0.0253 -0.0399 to -0.0106 ± 58.10%

P4 0.6129 0.4861 to 0.7398 ± 20.69%

ϵ2 0.0125 0.0110 to 0.0141 ± 12.60%

σ2 0.6759 0.5629 to 0.7890 ± 16.73%

Lp

L/(m2 · h · bar) 56.2211 55.7808 to 56.6614 ± 0.78%

Figure 2-16.: Parity plot for fluxes (Hybrid model 2). Dashed lines indicate ± 15%.

Figure 2-17.: Parity plot for observed rejections (Hybrid model 2). Dashed lines indicate ±
15%.
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and frequency of the backshock as longer BS durations imply wasting more permeate. This

analysis conflicts with analysis made in CFD modelling performed by Frank and co-workers

(Vinther et al., 2014a,b, 2015; Vinther and Jönsson, 2016a,b) where it is stated that flux

variance in UF of dextran T500 is caused by osmotic pressure. There is a subtlety in their

analysis, they state that osmotic pressures do not change significantly with molecular weight

and for that reason they used the correlation for osmotic pressure of dextran T10. Using

experimental data from literature, it can be seen in figure 2-18 that there is a substantial

difference between osmotic pressures for dextran T500 and dextran T10, therefore, their

properties can not be treated as if they were the same compound.

Figure 2-18.: Osmotic pressure for different dextrans: T500, T70 and T10 versus dextran

concentration (Jonsson, 1984; Wijmans et al., 1985).

In figures 2-19, 2-20, 2-21, observed rejection are plotted against molecular weight as be-

fore. It is evident that the hybrid model 2 has better prediction capabilities than the hybrid

model 1 analyzed in the previous section. This better overall performance is confirmed when

calculating the adjusted determination coefficient yielding a value of R2
adj = 0.9626.

Besides the confidence interval of parameters, the predictor confidence interval was calculated

for TBBS = 5 s and BS = 1.25 s and it is illustrated in figure 2-22. Note that experimental

data fall inside the predictor confidence interval which is narrower than the corresponding

to hybrid model 1 in figure 2-7.

A dynamic simulation for dextran concentration profiles in the boundary layer was made by

using the hybrid model 2 with BS = 1.25 s and TBBS = 5 s, because it provides an insight

of the phenomena occurring there. This simulation allows to know the maximum concentra-

tion achieved on the membrane surface predicted by the model and understand the effect

of dynamic operation on the concentration profiles over the boundary layer. The results are
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Figure 2-19.: Experimental and simulated (Hybrid model 2) observed rejection versus mo-

lecular weight under TBBS = 5 s for different BS = 0, 0.25, 0.75 and 1.25 s.

Figure 2-20.: Experimental and simulated (Hybrid model 2) observed rejection versus mo-

lecular weight under TBBS = 10 s for different BS = 0, 0.25, 0.75 and 1.25 s.

plotted in figures 2-23 and 2-24. In figure 2-23 the boundary layer is about 15 µm which

is in agreement with the value of 20 µm reported in literature as a typical number for many

applications (Baker, 2012). It can be oserved that dextran concentration at the membrane

surface can achieved values of almost 30 g/L (figure 2-23), that is, thirty times the feed

concentration. This concentration polarization is mitigated by the backshock system as ob-

served in figure 2-24. For TBBS of 10 and 15 s, this high concentration value is kept a longer

time because the backshock is performed at lower frequency. This result confirms that high

dextran concentrations at the membrane surface affect strongly the rejection factors under

different operation conditions and that dynamic operation is an efficient method to mitigate

concentration polarization as seen before in figures 2-3, 2-4 and 2-5.
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Figure 2-21.: Experimental and simulated (Hybrid model 2) observed rejection versus mo-

lecular weight under TBBS = 15 s for different BS = 0, 0.25, 0.75 and 1.25 s.

Figure 2-22.: Predictor confidence interval for hybrid model 2.

Since static operation does not use permeate to wash the membrane and dextran T500 has

negligible osmotic pressures for concentrations between 0 and 30 g/L, the hybrid model 2

predicts that the maximum flux corresponds to static operation. This fact leads to consider

that the concentration on the membrane surface should achieve values higher than 30 g/L,

so more significant osmotic pressures can be obtained and maximum flux can correspond

to dynamic operation. In fact, it has been reported dextran concentrations (dextran T70)

on the membrane surface as high as 177 g/L with a feed concentration of 0.935 g/L under

TMP of 2 bar with no BS (Wijmans et al., 1985). Since diffusivity is the main parameter

influencing the maximum concentration that dextran can achieve on the membrane surface,

the assumption that dextran diffusivity does not depend on concentration is questionable or
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Figure 2-23.: Total dextran concentration in boundary layer during normal operation at 0,

1, 2, 3, 3.75 s.

Figure 2-24.: Total dextran concentration in boundary layer during backshock operation

at 3.75, 4, 4.25, 4.5, 5 s.

perhaps the correlation itself for diffusivity could be no appropriate for this application or

maybe there could be extra phenomena not yet included in the model.

Despite the model limitations, it is evident that most of the variance in experimental data

is explained by the model with a high degree of precision.
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2.5. Conclusions

Dynamic operation in ultrafiltration, by means of a backshock, have a tremendous effect

on the MWCO where it can be tuned from 3380 kDa to values between 46 and 197 kDa,

corresponding to a separation intensification in factors of 74 and 17 times, respectively. Two

hybrid models were developed with different degree of hybridization. The first achieved an

adjusted determination coefficient of 0.9185 while the second 0.9626. This indicates that the

modifications introduced into the second hybrid model allow increasing the prediction power

significantly.

The results of the present investigation reinforce that separation performance not only de-

pends on physical properties of the membrane and solute but it can also be directly mani-

pulated by means of dynamic operation. The idea that operating conditions can modify the

MWCO of a membrane has been recently mentioned in literature but it is not very popula-

rized, so it is necessary that this novel paradigm of separation performance in UF and MF

must be spread out in membrane sciences since its applications allow intensifying the UF

and MF processes.

The development of hybrid mathematical models for dynamic UF done in this paper open

new opportunities for optimization of process design and operation. Additionally, both hybrid

models can be used to provide further process insights and can serve as building blocks

for developing models including more phenomena beyond concentration polarization. By

using the models developed here as building blocks, future research work could include

precipitation, gel formation and fouling.
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Grznárová, G., Viktorin, M., and Lang, A. (2006). Characterization of virus retentive mem-

branes by a tailor-made dextran method. Desalination, 200(1-3):297–298.

Inês Pereira Rosinha (2011). High frequency backshock effect on ultrafiltration of selected

polysaccharides. Master thesis. Universidade Técnica de Lisboa & Technical University of

Denmark.

Jönsson, A.-S., Jönsson, B., and Byhlin, H. (2006). A concentration polarization model for

the ultrafiltration of nonionic surfactants. J. Colloid Interface Sci., 304(1):191–199.

Jonsson, G. (1980). Overview of theories for water and solute transport in9 UF/RO mem-

branes. Desalination, 35:21–38.

Jonsson, G. (1984). Boundary layer phenomena during ultrafiltration of dextran and whey

protein solutions. Desalination, 51(1):61–77.

Jonsson, G. (2008). Tuning of the cut-off curves by dynamic ultrafiltration. In Proc. Int.

Conf. Membr. Membr. Process. ICOM2008, Hawaii.

KRISHNAKUMAR, N., YEA, M., and CHERYAN, M. (2004). Ultrafiltration of soy protein

concentrate: performance and modelling of spiral and tubular polymeric modules. J.

Memb. Sci., 244(1-2):235–242.



70 REFERENCES

KWON, B., MOLEK, J., and ZYDNEY, A. (2008). Ultrafiltration of PEGylated proteins:

Fouling and concentration polarization effects. J. Memb. Sci., 319(1-2):206–213.

Macedo, A., Duarte, E., and Pinho, M. (2011). The role of concentration polarization in

ultrafiltration of ovine cheese whey. J. Memb. Sci., 381(1-2):34–40.

Neggaz, Y., Vargas, M. L., Dris, A. O., Riera, F., and Alvarez, R. (2007). A combina-

tion of serial resistances and concentration polarization models along the membrane in

ultrafiltration of pectin and albumin solutions. Sep. Purif. Technol., 54(1):18–27.

Peinemann, K.-V. and Nunes, S. P. (2010). Membranes for water treatment. John Wiley &

Sons.

Prado-Rubio, O. A. and von Stosch, M. (2017). Towards Sustainable Flux Determination for

Dynamic Ultrafiltration through Multivariable System Identification. In 27th Eur. Symp.

Comput. Aided Process Eng., volume 3, pages 2719–2724.

Pu, Y., Zou, Q., Liu, L., Han, Z., Wang, X., Wang, Q., and Chen, S. (2012). Clinical

dextran purified by fractional ultrafiltration coupled with water washing. Carbohydr.

Polym., 87(2):1257–1260.

Sahoo, G. B. and Ray, C. (2006). Predicting flux decline in crossflow membranes using

artificial neural networks and genetic algorithms. J. Memb. Sci., 283(1-2):147–157.

Salladini, A., Prisciandaro, M., and Barba, D. (2007). Ultrafiltration of biologically treated

wastewater by using backflushing. Desalination, 207(1-3):24–34.
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3. Model-based sensitivity analysis of

dynamic ultrafiltration

3.1. Abstract

Optimization of design and operation has been a challenging task to implement in microfil-

tration (MF) and ultrafiltration (UF) systems since there is a lack of robust mathematical

models that can predict the time variant behavior of the system under different conditions

(input disturbances). In a previous research, a hybrid mathematical model was developed

in order to have a high fidelity reproduction of MF and UF systems (López-Murillo et al.,

2021). This model also has the ability to predict the behavior of filtration systems under

dynamic operation which can intensify the membrane performance in terms of selectivity

while keeping high fluxes. Herein, such mathematical model is exploited to explore the UF

system under dynamic operation at different scenarios to provide system understanding.

In this sense, a sensitivity analysis is performed to evaluate the separation performance in

terms of flux and rejection factor as a function of input variables: backshock time (BS),

time between backshocks (TBBS), dextran bulk concentration (Cb). The sensitivity analysis

allows finding interesting operational regions where high fluxes can be achieved while kee-

ping acceptable rejection factor. The investigated system is the dynamic ultrafiltration of an

aqueous solution of dextran T500. In order to highlight the advantages of applying dynamic

operation instead of conventional filtration, a comparative analysis is performed between a

membrane with low MWCO under conventional cross-flow operation and a membrane with

high MWCO under dynamic operation.

From modeling results, concentration polarization is well diagnosed by concentration polari-

zation modulus. Values for this modulus as high as 160 have a negative impact on observed

rejection, while values close or lower than 34 improve selectivity. Average flux can be im-

proved up to 43.8% with BS = 1 s and TBBS = 5 s. Regarding the comparative analysis,

membrane cost savings can achieve values around 50% by using a membrane of high MWCO

under dynamic operation.
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3.2. Introduction

Ultrafiltration (UF) and microfiltration (MF) are interesting in separation processes where

mild conditions are required to achieve high separation performance (Neggaz et al., 2007;

KWON et al., 2008; Macedo et al., 2011). Hence, there is a great potential to exploit these

technologies for separation of metabolites in bioprocesses to be considered as one of the major

applications. MF and UF have a remarkable performance in terms of selectivity, throughput,

product purity, reduction in chemical usage, mild operating conditions, compactness, carbon

footprint reduction, energy saving and process safety (Charcosset, 2006; Abels et al., 2013;

Wei et al., 2014; Prado-Rubio et al., 2016). Nevertheless, the advantages of these membrane

technologies can be countered by two coupled phenomena referred to as concentration pola-

rization and fouling (Peinemann and Nunes, 2010; Baker, 2012), where flux and selectivity

are mainly affected during operation. These phenomena can be aggravated, if the solute can

generate a significant osmotic pressure at the membrane surface. Since concentration pola-

rization allows the formation of concentration profiles over the boundary layer as solute is

being retained, the driving force (TMP) can be reduced by the osmotic pressure exerted by

the high solute concentration achieved at the membrane surface.

Several techniques have been developed to mitigate concentration polarization and fouling

such as turbulence promoters, pulsed flow (dynamic flow), rotating membranes, ultrasonic

enhancement, periodic maintenance cleaning, periodic backwash with permeate or gas (dy-

namic operation), among others (Peinemann and Nunes, 2010). Within the options, the so

called “dynamic operation”have the ability of intensifying the separation process and tuning

the MWCO of the membrane, which allows a flexible performance adjustment (López-Murillo

et al., 2021). During dynamic operation in filtration systems, the flow is periodically rever-

ted from permeate to retentate side during a specified amount of time (backshock time, BS)

with a determined periodicity (time between backshocks, TBBS). This strategy allows the

disruption of the concentration profiles over the boundary layer. Such disruption is accom-

plished by diluting the high concentration at the membrane surface and removing some of

the retained particles, thus concentration polarization and fouling are mitigated, and sepa-

ration performance is improved (Jonsson and Prado-Rubio, 2011; López-Murillo et al., 2021).

Due to the inherent complexity of dynamic membrane filtration, mathematical modeling of

dynamic MF and UF processes is key for establishing the most appropriate operating condi-

tions for a given target. Several models have been developed in order to predict the behavior

of MF and UF systems but most of them are black box approaches with the following limita-

tions: (a) they only predict the flux but neither the rejection factor nor selectivity, (b) their

predictions are limited to the range where the data were extracted (i.e. low extrapolation

capabilities), (c) they can not be used in other applications, (d) most of the models can only

predict the static behavior of the filtration process (expected in crossflow systems below
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critical flux operation) (López-Murillo et al., 2021).

Recently, a hybrid mathematical model was successfully developed to predict the dynamic

UF process and overcome the limitations from previous models (López-Murillo et al., 2021).

This mathematical representation can be used to explore different operating conditions, sa-

ving time and economic resources. The case study used in López-Murillo et al. (2021) is

the dynamic ultrafiltration of an aqueous solution of dextran T500, since dextran is a bio-

molecule widely used in the food, clinical and pharmaceutical field, and it is also used for

membrane characterization (Bakhshayeshi et al., 2011; Pu et al., 2012; Gaspar et al., 2016;

Zarrintaj et al., 2020). Dextran purification and fractionation have been previously investi-

gated (see Table 3-1). Research has been focused on membrane separation processes such

as nanofiltration, ultrafiltration and microfiltration as part of the procedure for separating

dextrans with a specified molecular weight. In general terms, microfiltration (MF), ultrafil-

tration (UF) and nanofiltration (NF) are used to concentrate and purify aqueous dextran

solutions. First, high molecular weight dextrans are produced via fermentation by using

Leuconostoc mesenteroides, and then, concentrated by MF membranes (Dı́az-Montes et al.,

2020). Dextran molecular weights from 5 · 103 − 40 · 103 kDa can be achieved (Mountzouris

et al., 2002). By means of an enzymatic hidrolysis procedure, industrial grade dextran can

be transformed into oligodextrans with a broad range of MW and then concentrated with UF

or NF membranes (Mountzouris et al., 1999, 2002; Torras et al., 2008; Pinelo et al., 2009;

Pu et al., 2012; Su et al., 2018).

Table 3-1.: Dextran separation using membrane technologies.

Title Process MWCO
Membrane

material
TMP Flux

Perfor-

mance
Reference

Microfiltration-mediated

extraction of dextran

produced by Leuconostoc

mesenteroides SF3

MF and

MDF
0.1 µm Polysulfone

0.4 - 1.7

bar

8 - 16

kg m−2 h−1

Yield:

22.48

g L−1

(Dı́az-Montes

et al., 2020)

Modeling and optimal

operation of intermittent

feed diafiltration for

refining oligodextran

using nanoporous ceramic

membranes

UF and

UDF
2 kDa

ZrO2 and

α−Al2O3
0.7 MPa

25 - 165

LMH

Rejection:

82% -

94%

(Qi et al.,

2020)

Directing filtration to

narrow molecular weight

distribution of

oligodextran in an

enzymatic membrane

reactor

UF in

enzymatic

membrane

reactor

20 kDa
Polyether

sulfone
3 bar

34- 45

LMH

Yield:

50%

(Su et al.,

2018)
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Continuation of Table 3-1

Title Process MWCO
Membrane

material
TMP Flux

Perfor-

mance
Reference

Clinical dextran purified

by fractional

ultrafiltration coupled

with water washing

Fractional

UF

100 kDa

30 kDa

1 kDa

No

available
0.2 MPa

42- 82

32 - 40

6- 7 LMH

D

value:

5.4,

2.2,

2.5, 3.4

(Pu et al.,

2012)

Membrane technology for

purification of

enzymatically produced

oligosaccharides:

Molecular and

operational features

affecting performance

A review that provides an overview of the available knowledge about

the behaviour of enzymatically produced carbohydrate-based oligo-

and polysaccharides during membrane separation

(Pinelo et al.,

2009)

Composite polymeric

membranes for process

intensification: Enzymatic

hydrolysis of

oligodextrans

Dextran separation and purification was performed through an enzy-

matic membrane reactor made of polysulfone and activated carbon

loaded with dextranase. Their results are focused on (1) enzyme ac-

tivity, (2) enzyme adsorption by the activated carbon, (3) characte-

rization of the designed enzyme membrane reactor and (4) average

molecular weight of dextran present in product.

(Torras et al.,

2008)

Continuous production of

oligodextrans via

Controlled Hydrolysis of

Dextran in an Enzyme

Membrane Reactor

UF 10 kDa
No

available
100 kPa

No

available

Yield:

84.4%

-

98.7%

(Mountzouris

et al., 2002)

Modeling of oligodextran

production in an

ultrafiltration stirred-cell

membrane reactor

UF 10 kDa
No

available

200 - 400

kPa

0.01 - 0.11

ml cm−2min−1

Yield:

25%-

84%

(Mountzouris

et al., 1999)

The main purpose of this contribution is to use the previously developed hybrid mathema-

tical model from López-Murillo et al. (2021) to investigate different scenarios of dextran UF

separation. This research aims to find interesting operational regions where high fluxes can

be obtained while keeping high selectivity. Additionally, modeling results allows designing

processes where economic savings can be achieved by using a high MWCO membrane under

dynamic operation instead of a low MWCO membrane under conventional cross-flow opera-

tion. This approach demonstrates the usefulness and relevance of PSE strategies to screen

for operating conditions given a required separation performance. First, dynamic simulations

are performed to determine the membrane flux, the time dependent concentration profiles

at the membrane surface, the concentration in the permeate stream, and the observed re-

jection for the UF of an aqueous solution of dextran T500 (section 3.3.2). Such simulations

allow understanding how these variables evolve with time under specified values of dextran

bulk concentration (Cb), backshock times (BS) and time between backshocks (TBBS). Sub-

sequently, a stationary analysis is made as a function of Cb, BS and TBBS, by extracting

some features after the cycles become stationary (section 3.3.3). This analysis is convenient
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to summarize the simulation results from different operating conditions in a compact form.

Finally, aiming to highlight the benefits of using dynamic operation instead of conventio-

nal filtration, a comparative analysis is performed (section 3.3.4) by computing the average

flux and observed rejection for two membranes modules with different MWCO, one being

operated under dynamic conditions and the other under conventional cross-flow conditions

(without backshock).

This contribution is structured as follows. The methodology presents a summary of the hy-

brid mathematical model, the dynamic operation analysis, the stationary operation analysis

and the comparative analysis for dextran separation. The results section shows the models

prediction according to the operating conditions defined in methodology. Finally the conclu-

sions are drawn.

3.3. Methodology

Previously, a hybrid model has been developed for a dynamic UF system for an aqueous

solution of dextran T500 (López-Murillo et al., 2021). Then, the dextran is concentrated

into the retentate stream and a permeate flow passes through the membrane where mainly

water is extracted. The permeate is collected in a small tank where part of it is periodically

reversed to generate the dynamic operation. The membrane module is a hollow fiber system

with poly-ether sulfone membrane from X-flow Membranes (The Netherland). The module

has dimensions of 2.4 cm for shell diameter, 54 cm for length, 1.5 mm in tubes diameter

and has 50 tubes, corresponding to 0.1 m2 of membrane area. The cross-flow velocity used

for operation is Vcross = 0.509 m/s (Rosinha, 2011; Jonsson and Prado-Rubio, 2011; López-

Murillo et al., 2021).

3.3.1. Hybrid mathematical modeling description

The hybrid model describes the transient behavior of the physico-chemical phenomena at

the boundary layer adjacent to the membrane surface in the retentate side. Differential mass

balances are formulated for dextran where two transport mechanisms are present: diffusive

and convective. Diffusion is represented by Fick’s law and convection by Darcy’s law. It is

assumed that MF and UF membranes retain solutes by means of a sieving action. Additio-

nally, the model considers: (i) the osmotic pressure generated by high dextran concentrations

at the membrane surface as a result of concentration polarization, and (ii) the reversed per-

meate flux during periodic backshocks. The solution of this model displays the temporal

evolution of concentration profiles and permeate flux (López-Murillo et al., 2021).
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The hybrid model is represented by Equations 3-1 - 3-11 and a brief explanation of each

one is presented next. The description of each variable and parameter is displayed in Table

2-2. The values of the parameters and assumptions used for the simulations are taken from

López-Murillo et al. (2021).

Differential mass balance of dextran over the boundary layer adjacent to the membrane sur-

face for each molecular weight:

∂Ci

∂t
= Di

∂2Ci

∂x2
− Jv

∂Ci

∂x
(3-1)

Boundary conditions at the membrane surface and bulk solution:
JvCi − Di

∂Ci

∂x

∣∣
x=δ

= Js

Ci|x=0 = Cib

(3-2)

Mass balances for the permeate tank:

dv

dt
= Jv · Am − vout (3-3)

dCT i

dt
=

Jv · Am · Cip − vout · CT i − CT i · dv
dt

v
(3-4)

Black box model for dextran diffusivity:

D = α · (MW )β (3-5)

Total flux expression by modified Darcy’s law:
Jv = Lp(TMP −∆π) Forward flux

Jv = −Lp ·∆PBS Backward flux

(3-6)

Osmotic pressure correlation:

π = A1 · c+ A2 · c2 + A3 · c3 (3-7)
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Solute flux expression:

Js = JvCip (3-8)

Cip = (1−Rint)Cim (3-9)

Black box model for Rint:

Rint = min

(
1− 1 + b · (1 + a ·MW )

1 + a ·MW

, 1

)
(3-10a)

a = ϵ1 ·

[(
σ1

BS/TBBS + σ1

)12

−
(

σ1

BS/TBBS + σ1

)6
]
+ 1.63 (3-10b)

b = ϵ2 ·

[(
σ2

BS/TBBS + σ2

)12

−
(

σ2

BS/TBBS + σ2

)6
]
+ 2.808 · 10−3 (3-10c)

ϵ1 = P1 · TBBS + P2 (3-10d)

σ1 = P3 · TBBS + P4 (3-10e)

Observed rejection expression for each molecular weight interval:

Robs,i = 1− Ci,T

Ci,b

(3-11)

Global observed rejection expression:

Robs = 1− CT

Cb

(3-12)

The partial differential equations are solved by using the method of lines, discretizing the

derivatives by centered finite differences with 1000 nodes in space and solving the remaining

ordinary differential equations with a solver for stiff ODE’s - ode15s - in Matlab® version

2019b. The relative and absolute tolerance for ode15s are both set as 1 · 10−8.
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3.3.2. Dynamic Operation analysis

The effect of dextran bulk concentration Cb, backshock time BS, and time between backshocks

TBBS on the separation performance is shown through the analysis of the dextran concentra-

tion achieved at the membrane surface, and its influence on the flux and observed rejection.

Therefore, time profiles of these variables are crucial for obtaining insights into the pheno-

mena occurring during filtration. In this regard, two simulation scenarios are performed: one

with Cb = 1 g/L and the other with Cb = 10 g/L. Both of them are evaluated with TMP =

0.85 bar, TBBS = 5 s, BS = 1.25 s. Flux Jv, concentration at the membrane surface Cm and

concentration at the permeate tank Ci,T are computed for each instant of time. The observed

rejection for each molecular weight interval is calculated by using the concentrations at the

permeate tank (Equation 3-11).

3.3.3. Stationary Operation analysis

Although dynamic simulations can give some insights of the relevant transport phenomena,

there is a limitation in how many degrees of freedom can be depicted. In order to have a

wider panorama of operating conditions, a stationary operation analysis is used. Here, sta-

tionary operation refers to the stage when the cycles in dynamic operation are stabilized,

hence, some static like features can be extracted. For the stationary analysis, the operational

variables are depicted in Table 3-2.

Ten simulations are performed by varying dextran bulk concentration from 1 to 10 g/L

while keeping BS, TBBS and TMP at 1.25 s, 5 s and 0.85 bar, respectively. Other eight

simulations are accomplished by varying BS from 0.2 s to 1.6 s while keeping Cb, TBBS and

TMP at 1 g/L, 1.25 s and 0.85 bar, respectively. This last simulation outline is repeated

with Cb = 10 g/L. Eleven simulations are implemented by changing TBBS from 5 s to 15

s while keeping Cb, BS and TMP at 1 g/L, 1.25 s and 0.85 bar, respectively. Finally, nine

simulations are performed by varying TMP from 1 bar to 3 bar while holding Cb, BS, and

TBBS at 1 g/L, 1.25 s and 5 s, respectively. The established ranges for BS and TBBS are

set according to normal values utilized in backshock systems (López-Murillo et al., 2021;

Rosinha, 2011). The TMP interval is taken from usual values for operation of UF modules.

The range for Cb is selected from 1 to 10 g/L since UF is normally used for concentration

of oligodextrans after enzymatic hydrolysis of high molecular weight dextrans, and previous

research have reported concentrations between 1.5 and 50 g/L (Mountzouris et al., 2002;

Torras et al., 2008; Su et al., 2018).

The output features are the average flux, the maximum concentration at the membrane

surface and the total observed rejection. In this stationary operation analysis, the concen-

tration at the membrane surface (Cm) is taken in its maximum value achieved during the

filtration cycle (corresponding to the time before the backshock is applied), the average flux



3.3 Methodology 81

Table 3-2.: Operating conditions for the dynamic simulation of dextran separation in the

stationary operation analysis.

Variable Value units

Bulk concentration

(Cb)
1 - 10 g/L

Backshock time (BS) 0.2 - 1.6 s

Time between

backshock (TBBS)
5 - 15 s

Transmembrane

pressure (TMP)
1-3 bar

is computed by averaging the instantaneous flux over the simulation time, and the observed

rejection is calculated with the total dextran concentration in the permeate tank (Equation

3-12). This sensitivity analysis allows finding appropriate operating conditions for a desired

filtration performance in terms of flux and rejection as it is done in section 3.3.4.

3.3.4. Comparative analysis for dextran separation

According to experimental evidence and simulation results, BS and TBBS values can be ad-

justed to accomplish certain membrane rejection, which changes the conventional paradigm

that the MWCO is defined by the membrane pore size distribution (Jonsson and Prado-

Rubio, 2011; Rosinha, 2011; Yehl and Zydney, 2021; López-Murillo et al., 2021). Hence,

high MWCO membranes can be used under dynamic operation to perform separations with

similar rejections of low MWCO membranes but with higher fluxes, which in principle will

require less membrane area. This emerging paradigm allows saving money in the design of

a facility which uses membrane technologies, namely, UF and MF. In this section a com-

parative analysis is performed to show the benefits of using membranes with high MWCO

under dynamic operation with respect to using membranes of low MWCO under conven-

tional cross-flow operation (without backshock). Two UF membranes modules are intended

to concentrate dextran from an aqueous solution of dextran T500 at 1 g/L and at 10 g/L.

The dextran has the same molecular weight distribution from López-Murillo et al. (2021).

The separation process is performed under TMP between 1 and 3 bar since these values are

typical for UF processes. Both membranes are under the same TMP values but one has an

MWCO of 3380 kDa (membrane 1) and the other 72 kDa (membrane 2). These MWCO

values have been selected since certain BS and TBBS values are already known to tune

MWCO of membrane 1 to 72 kDa (López-Murillo et al., 2021). Such values are 1.25 s and 5

s for BS and TBBS, respectively.
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The estimated mathematical model from López-Murillo et al. (2021) is used for membrane

1, but a modified version is required for simulation of membrane 2. Particularly, only three

parameters have to be set: permeability Lp and parameters “a” and “b” from Equations 3-

10b and 3-10c. According to data from Pu et al. (2012), as shown in Table 3-1, a correlation

can be obtained for permeability Lp estimation from MWCO in dextran separations. So, a

potential equation is adjusted for prediction of Lp as a function of MWCO, by using the

mean values for flux from Table 3-1 and the corresponding MWCO. Once Lp is estimated,

“a” and “b” are tuned. Since membrane 2 is under conventional cross-flow operation, “a”

and “b” are simplified to the independent term in their respective equations. A grid of values

is tried for “a” and “b”, with ranges from 1 to 100 and −1 · 10−3 to 1 · 10−3, respectively,

until a MWCO of 72 kDa is obtained. This tuning approach for “a” and “b” is preferred

over parameter estimation through optimization because the latter requires several evalua-

tions of the objective function in order to converge to the result, and the simulation time

used for evaluating a single point is significantly high. Besides, the grid evaluation allows

guaranteeing to be close to the global optimum because the the response surface is known.

After the model for membrane 2 is adjusted and simulations are performed, fluxes and obser-

ved rejections for membrane 1 and 2 are compared. Since flux determines the required area

for a specified flow, and rejection measures the separation performance, these two features

are key in the comparative analysis.

Figure 3-1.: A dynamic ultrafiltration design aimed to take a feed stream of Fo at concen-

tration Co and concentrate it at Cb.
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In order to compare both membranes for a common target, a separation process is sketched

in Figure 3-1. First, the target concentration Cb is varied from 6 g/L to 10 g/L and the

cost of the membrane area is computed along with its corresponding retentate flow (Fb).

The feed stream flow Fo, TMP, BS and TBBS are hold at 10 000 L/h, 1 bar, 1.25 s and 5 s,

respectively. Second, Fo is changed in the range from 4 000 L/h to 10 000 L/h while keeping

TMP, Cb, BS and TBBS at 1 bar, 10 g/L, 1.25 s and 5 s, respectively. Membrane costs and

retentate flow (Fb) are calculated. And finally, the TMP is varied between 1 and 3 bar, while

holding Fo, Cb, BS and TBBS at 10 000 L/h, 10 g/L, 1.25 s and 5 s, respectively. In all the

cases, the feed concentration Co is maintained at 4 g/L. The membrane cost is asummed to

be a similar value to 241£/m2 since this is the price per unit area for a membrane made of

polysulfone with 2-mm fiber in the year 2020 (Zeynali et al., 2020).

The membrane area is calculated through a global mass balance and a dextran mass balance

over the separation system from Equations 3-13 and 3-14. Where F and ρ stands for flow and

density, and subscript o, p and b indicates feed, permeate and retentate bulk, respectively.

Considering that a dextran solution with a concentration of up to 10 g/L has a density

approximately equal to pure water, some simplifications can be made (Mach and Lacko,

1968). Additionally, if permeate flow can be replaced by Fp = Jv · Am, and after some algebra,

an expression can be obtained for the required area Am (Equation 3-15). Using Equations

3-13 and 3-14, an expression is obtained for computing retentate flow (Equation 3-16).

Co · Fo − Cb · Fb − Fp · Cp = 0 (3-13)

Fo · ρo = Fp · ρp + Fb · ρb (3-14)

Am =
Fo · (Co − Cb)

Jv · (Cp − Cb)
(3-15)

Fb = Fo ·
Co − Cp

Cb − Cp

(3-16)

3.4. Results and Discussion

3.4.1. Dynamic Operation analysis

Figure 3-2 depicts the total dextran concentration at the membrane surface over time for dy-

namic ultrafiltration with bulk concentration (Cb) of 1 and 10 g/L. The concentration profiles

show that increasing 10 times Cb causes the maximum concentration on the membrane surfa-

ce (Cm) to increase in 3.6 times from 43.4 to 158.7 g/L. This is in accordance with previous re-

search, which has estimated that dextran concentration can achieve values from 51 up to 364

g/L at the membrane surface for conventional UF of dextran T70 at 0.43 < Cb < 1.42g/L,
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2 < TMP < 6 bar and cross-flow velocities 1.06 m/s < Vcross < 2.75 m/s (Wijmans et al.,

1985). In general terms, although this research uses dextran T500, and the TMP, Cb and

Vcross are different, the maximum values for Cm (Figure 3-2) are within the range of possible

values estimated in Wijmans et al. (1985) to give confidence in the predicted results.

Figure 3-2.: Evolution of total dextran concentration at the membrane surface with

TMP=0.85 bar, BS=1.25 s, TBBS=5 s.

In figure 3-3, the instantaneous membrane flux is illustrated over time. The flux decline

is explained since the osmotic pressure, produced by the rise in Cm, plays an important

role in the dynamic behavior by reducing the driving force (TMP). Cm values of 43.4 and

158.7 g/L imply an osmotic pressure of 0.016 and 0.4477 bar, respectively. This is equi-

valent to a reduction of the TMP (0.85 bar) from 1.8% to 50.3%. Osmotic pressure has

been reported as the main cause for flux decline in dextran filtration (Wijmans et al., 1985;

Vinther et al., 2014a,b, 2015; Vinther and Jönsson, 2016a,b). For instance, Wijmans et al.

(1985) estimated osmotic pressures as high as 0.73 bar for conventional UF of dextran T70

at Cb = 0.935 g/L, TMP = 2 bar and Cm = 177 g/L. Although Wijmans et al. (1985) ex-

periment used dextran T70 and herein dextran T500 is investigated, it is clear that omsotic

pressure can significantly diminish the driving force in dextran UF. Consistently, in Figure

3-3, while flux does not decrease significantly at Cb = 1 g/L, it does with Cb = 10 g/L. In-

creasing Cb in 10 times, the flux at the end of each cycle declines to almost half, from 46 to

20 LMH.

In Figure 3-4, the observed rejection of different dextran MW fractions is plotted. It illus-

trates that filtration process retention of the target molecules is in average 3.5% higher by

increasing Cb. This behavior can be explained through the results from previous research

with similar systems. Zuriaga-Agust́ı et al. (2014) investigated an ultrafiltration of a binary

mixture of carboxymethyl cellulose sodium salt and an azo dye. They found comparable

rejection values irrespective of the pore size distribution of the membranes used in their
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Figure 3-3.: Permeate flux evolution with TMP=0.85 bar, BS=1.25 s, TBBS=5 s.

experiments. They proposed that a dynamic layer helps to filtration during operation and

the selectivity is not entirely defined by the membrane pore size distribution. Analogously,

other researchers found that membranes of 5 and 10 kDa in MWCO have similar rejections

for stevioside and they attributed this behavior to the formation of a dynamic cake layer

that helps to retain more solute (Chhaya et al., 2012). Recently, oligodextrans have been

concentrated by using a tailor-made ceramic membrane with MWCO of 2 kDa, and they

have found that observed rejection for oligodextrans between 1 kDa and 4 kDa incremented

from 84 to 92% by increasing Cb from 15 to 45 g/L at TMP = 0.7 MPa (Qi et al., 2020).

This result has been argued to be present in macromolecules filtration, since a dynamic layer

is formed at the membrane surface with increasing solute concentration (Qi et al., 2020).

Hence, the results predicted by the model simulation are aligned with recent experimental

observations associated to the concept of a dynamic layer. Such trend in dextran rejection

has been captured through the black box model for intrinsic rejection, Rint in equation 3-10a.

From dynamic simulations, it is straightforward to understand that Cb plays an important

role in dextran separation with UF membranes as high osmotic pressures can be generated,

thus reducing the flux. Nevertheless, plotting every dynamic simulation for each operating

condition is not an efficient strategy to analyze the whole behavior of dynamic ultrafiltration

of dextran. Thus, several simulations can be summarized in plots, if average quantities are

computed.

3.4.2. Stationary Operation analysis

To evaluate different conditions and visualize them all in a single picture, a stationary ope-

ration analysis is accomplished in this section. Different values are tested for Cb and the

results are plotted in Figure 3-5. Maximum concentration on the membrane surface Cm,max,
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Figure 3-4.: Observed rejection for dextran ultrafiltration with TMP=0.85 bar, BS=1.25 s,

TBBS=5 s.

average flux Javg and observed rejection Robs are the output variables shown in the vertical

axis. As it was mentioned previously, higher Cb implies a reduction for average flux. From

discussion about Figure 3-4, it is expected that the selectivity performs better at higher

Cb and this is evident in Figure 3-5 where the observed rejection increases (from 94.0% to

97.3%) at rising Cb values (from 1 to 10 g/L). As Cb is increased, the Cm,max also augments

through a non-linear relationship, since more dextrans are retained at the membrane surfa-

ce. The increment in Cm,max is reflected by an increase in osmotic pressure. Particularly, for

Cm,max of 43.4 and 158.7 g/L, the osmotic pressures are 0.0167 and 0.4477, respectively, which

affects directly the driving force for the flux. Therefore, an increase in 27 times in the osmo-

tic pressure caused an equivalent reduction of the average flux Javg from 22.96 to 13.89 LMH.

If backshock times (BS) are varied according to Table 3-2, the results are depicted in Figure

3-6. At lower BS values, concentration polarization is stronger and observed rejection decrea-

ses as Cm,max takes higher values. Interestingly, it was mentioned before that macromolecules

concentrated at the membrane surface enhance the rejection factor. In order to clarify why

Cm,max values as high as 160 g/L enhance rejection factor in Figure 3-5 (Robs = 97.3%) but

not in Figure 3-6 (Robs = 67.5%), it is necessary to compute the concentration polarization

modulus defined as the ratio Cm/Cb (Baker, 2012). The farther the modulus is from unity the

more severe is concentration polarization. In Figure 3-5 this modulus ranges from 43.38 to

15.87, and, in Figure 3-6 ranges from 160.7 to 33.9. From this observation it can be said that

two mechanisms are occurring during dextran UF: the formation of a dynamic layer that en-

hances rejection and the concentration polarization that deteriorates it. When concentration

polarization modulus increments, the membrane rejection is decreased by concentration po-

larization. However, when the modulus declines, the dynamic layer enhances filtration. From

Figure 3-6, it is evident that high BS values allow mitigating more efficiently the polariza-
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Figure 3-5.: Maximum dextran concentration at the membrane surface, average flux and

molecular weight cut off under different bulk concentrations (TMP=0.85 bar,

BS=1.25 s, TBBS=5 s).

Figure 3-6.: Maximum dextran concentration on the membrane surface, average flux and

molecular weight cut off under different backshock time values (TMP=0.85

bar, Cb=1 g/L, TBBS=5 s).

tion effect. This result is in good agreement with research of Vinther et al. (2014b); Vinther

and Jönsson (2016a) where fluxes and rejections of dextran dynamic UF are enhanced by

using BS from 0.5 to 1 s under TMP = 2 bar and TBBS = 5 s, mitigating concentration

polarization phenomena. Nevertheless, BS can not be set arbitrarily large, because at some

point BS starts to use more permeate than necessary, wasting it, thus decreasing average flux.

To analyze the influence of BS on Javg, different Cb values were tested (Figure 3-7). For

Cb = 5 g/L and Cb = 10 g/L, small BS values do not effectively mitigate concentration po-

larization, thus, the average flux is barely enhanced. When BS is increased up to 1 s, the



88 3 Model-based sensitivity analysis of dynamic ultrafiltration

Figure 3-7.: Average flux under different backshock time values (TMP=0.85 bar, Cb=10

g/L, TBBS=5 s).

concentration polarization is mitigated and the flux is restored. Nevertheless, if BS is further

increased, it uses more permeate than required and average flux declines again. It seems that

the mitigating effect of BS on polarization effect is stronger at Cb = 5 g/L and Cb = 10 g/L,

since the flux can be increased up to a 43.8% (from 10.24 to 14.73 LMH for Cb = 10 g/L)

at BS = 1 s. Vinther et al. (2014b) found through CFD that BS close to 1 s can generate

the maximum average flux in dynamic UF of dextran T500 under TMP = 2 bar and TBBS

= 5 s. For Cb = 1 g/L something particular occurs at BS between 0.2 and 0.8 s. It seems

that increasing BS from 0.2 to 0.4 s is only wasting permeate as concentration polarization

is not mitigated (flux slightly decreases). However, between 0.4 s and 0.8 s, BS is capable

to reduce concentration polarization and average flux is increased up to 30 LMH. After 0.8

s, BS uses more permeate than required and flux declines again. Considering that there is

a region where BS can obtain maximum fluxes, optimizations can be formulated in order

to maximize flux according to input conditions. Additionally, this result indicates that va-

riations in Cb can move the maximum, so the optimum is not defined at certain operating

conditions but it must be found dynamically according to input disturbances.

In Figure 3-8, high TBBS values allow Cm,max to rise (from 43.4 to 123.5 g/L) along with

the concentration polarization modulus (from 43.4 to 123.5) and, hence, the observed rejec-

tion slightly decreases from 94.03 to 90.85%. Regarding flux behavior, two influences have

to be considered: the use of permeate during backshock and the osmotic pressure. These

two variables affect directly the average flux. For Cm,max of 43.4 and 123.5 g/L, the osmotic

pressures are 0.0167 and 0.2253 bar, respectively. The increase in osmotic pressure is com-

pensated with less permeate wasted in backshock, hence, more permeate is passing through

the membrane in average (an increment from 22.96 LMH to 34.48), with the corresponding

consequence of obtaining a lower rejection.
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Figure 3-8.: Maximum dextran concentration on the membrane surface, average flux and

molecular weight cut off under different time between backshocks values

(TMP=0.85 bar, Cb=1 g/L, BS=1.25 s).

The effect of different TMP values between 1 and 3 bar are depicted in Figure 3-9. As higher

TMP values are imposed, more fluid is forced to cross the membrane. This fact increases

the rate at which membrane performs the filtration, as can be observed with the increment

in average flux from 29.03 to 92.6 LMH. Besides, since convective and diffusive transport

terms tend to be balanced according to Equation 3-1, more flux (convective term) implies a

higher solute concentration at the membrane surface. Consistently, Cm,max arises 3.45 times

from 59.6 to 205.8 g/L. According to Wijmans et al. (1985), Cm,max for UF of dextran T70

is estimated in 177 g/L at Cb = 0.935 g/L, Vcross = 1.06 m/s and TMP = 2 bar, which is

close to the value of 153.3 g/L from Figure 3-9. Such difference is about 13.4% and can

be attributed to the distinct diffusivities associated to the dextrans T70 and T500, diffe-

rences in membrane properties, different cross-flow velocity used, and dynamic operation

applied in this research. Fluxes values in Wijmans et al. (1985) ranges between 1.78 · 10−5

and 5.56 · 10−5 m/s, which corresponds to 64.08 and 200.16 LMH, respectively. Herein, flux

includes values lower than reported in Wijmans et al. (1985) due to the applied dynamic

operation uses lower TPM (1 - 3 bar), while Wijmans et al. (1985) uses 2, 4 and 6 bar, in

conventional cross-flow operation. If concentration polarization modulus is considered, it is

evident that observed rejection must decline as the modulus increments from 59.6 to 205.8.

Observed rejection falls from 91.46% to 58.3%. In general terms, higher TMP values impro-

ves average flux Jv but at the cost of reducing selectivity.

From this viewpoint, it is clear that a robust mathematical model for UF and MF is required

in order to implement PSE strategies that allow intensification of such membrane technolo-

gies. Additionally, optimal design and operation can be found by using this PSE approach.
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Figure 3-9.: Maximum dextran concentration on the membrane surface, average flux

and molecular weight cut off under different transmembrane pressure values

(Cb = 1 g/L, BS = 1.25 s and TBBS = 5 s).

3.4.3. Comparative analysis for dextran separation

The mathematical relation for permeability as a function of Molecular Weight Cut-Off is

obtained as: Lp = 3.0327 · (MWCO)0.5114 with Lp in LMH/bar and MWCO in kDa. With

the aid of this relation and the tuning procedure explained in the methodology, the adjust-

ment of membrane 2 provides the following values for Lp, “a” and “b”, respectively, 27.11

LMH/bar, 23.8 and 0.

Average flux Javg and total observed rejection Robs are compared between membrane 1 and

membrane 2 during concentration of a dextran aqueous solution. In the first simulation,

different TMP values are tried out ranging from 1 to 3 bar (Figure 3-10) while keeping the

others in the nominal values (BS=1.25 s, TBBS=5 s, Cb=1 g/L). The flux of membrane 2

is 56.63% of membrane 1 for a TMP of 1 bar, which means that the required area for a

target permeate flow is 56.63% less in membrane 1 than for membrane 2. Although flux is

crucial for comparison, it is useless if the separation is poor. Therefore, rejection factor is

considered as measure of the separation performance. For 1 bar in TMP, the rejection factor

is bigger in membrane 2 than in membrane 1, nevertheless, both are above 91%. As TMP

increases, the flux in membrane 1 rises faster than in membrane 2, however, the rejection

factor is heavily affected in membrane 1. This result is expected since larger TMP values

force more liquid to flow through the membrane, thus allowing the dextran to cross the po-

res of membrane 1 (MWCO=3380 kDa under conventional cross-flow operation) which are

larger than pores of membrane 2 (MWCO=72 kDa under conventional cross-flow operation).
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Figure 3-10.: Flux and observed rejection for two membranes under different TMP values

with Cb=1 g/L. Membrane 1: MWCO=3380 kDa, under dynamic conditions

(BS = 1.25 s and TBBS = 5 s). Membrane 2: MWCO=72 kDa, under con-

ventional cross-flow operation (BS = 0).

The influence of different bulk concentrations are depicted in Figure 3-11. Membrane 1

improves its rejection factor from 91.49% to 96.89%, with increasing Cb values due to the

dynamic membrane effect, while it is still showing savings in the required area compared to

membrane 2 in the range of 45.74% and 56.63%. An interesting trend is captured in the flux

ratio from Figure 3-11: a minimum is present, which implies that Cm,max rises at different

rate for both membranes as Cb increments.

Once identified that other Cb values enhance observed rejection of membrane 1, different

TMP values are tested under Cb = 10 g/L (Figure 3-12). From this plot, membrane 1 has

comparable separation performance as membrane 2 (with observed rejections avobe 93%),

in addition to providing higher fluxes with the corresponding saving in the required area.

This result suggests that a membrane operated under dynamic conditions can save costs

while keeping good separation performance under some regions of TMP and Cb with respect

to a membrane with a lower MWCO operated under conventional cross-flow conditions. For

example, if a minimum rejection of 93% is accepted for a dextran concentration process, it

can be concluded that membrane 1 allows saving required area in all the range of TMP bet-

ween 1 and 3 bar, while satisfying rejection threshold (Figure 3-12). Since normally MWCO

corresponds to 90% rejection, a 93% is higher than expected. Higher TMP also affects the

capital and operational costs, since more powerful pumps are required. Thus it is better to

select the lower TMP values of the range.

Considering the process design of Figure 3-1, membrane cost for concentrating a dextran
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Figure 3-11.: Flux and observed rejection for two membranes under different Cb values with

TMP=1 bar. Membrane 1: MWCO=3380 kDa, under dynamic conditions (BS

= 1.25 s and TBBS = 5 s). Membrane 2: MWCO=72 kDa, under conventional

cross-flow operation (BS = 0).

Figure 3-12.: Flux and observed rejection for two membranes under different TMP values

with Cb=10 g/L. Membrane 1: MWCO=3380 kDa, under dynamic condi-

tions (BS = 1.25 s and TBBS = 5 s). Membrane 2: MWCO=72 kDa, under

conventional cross-flow operation (BS = 0).

solution of 4 g/L is dependent on the target concentration. This relation is depicted in Figure

3-13 for a Fo = 10 000 L/h and TMP = 1 bar. When the target concentration is 6, 8 and

10 g/L, the cost for membrane 1 is 48.7%, 49.9% and 51.5% of the cost for membrane 2 at

the same target concentrations, respectively (which is in accordance with the estimated eco-

nomic savings in Figure 3-11). On the other hand, the retentate flow is computed for both

membranes. Since, membrane 1 presents lower observed rejections than membrane 2 (Figure
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3-11), it is expected that more of the dextran is lost in the permeate flow for membrane 1.

According to Equation 3-16, the Fb decreases as Cp increases, since its derivative is always

negative (Equation 3-17). Therefore, dextran loss through permeate stream implies that less

retentate can be obtained at the target concentration Cb, which is confirmed as retentate flow

is less for membrane 1 than for membrane 2 in Figure 3-13. Retentate flow for membrane 1 is

97.7%, 96.3% and 95.3% of that of membrane 2 at Cb of 6, 8 and 10 g/L, respectively. Using

membrane 1, instead of membrane 2, implies economic savings in the order of 50% as less

area is required. However, there is a slight reduction of the retentate flow of 3.6% in average.

dFb

dCp

= Fo ·
Co − Cb

(Cb − Cp)2
< 0, ∀ Cp (3-17)

Figure 3-13.: Membrane cost and retentate flow for target concentration ranging from 6 to

10 g/L. Membrane 1 is under dynamic operation with BS = 1.25 s, TBBS =

5 s, TMP = 1 bar and Fo = 10 000 L/h. Membrane 2 is under conventional

cross-flow operation.

Increasing the feed flow from 4 000 to 10 000 L/h, membrane costs and retentate flow

are calculated for membrane 1 and membrane 2 considering a TMP = 1 bar and a target

concentration of Cb = 10 g/L (Figure 3-14). Figure 3-14 depicts a linear relation between

membrane cost and feed flow Fo, expected from the Equation 3-15. Exploiting such linear

relationship, the slope is analyzed instead. For membrane 1 the slope of membrane cost is

9.33 and for membrane 2 is 18.11. Then, increasing Fo increments the membrane cost at a

higher rate (almost twice) for membrane 2 than for membrane 1. Therefore, the economic

saving by using membrane 1 instead of membrane 2 is 51.5% in all the range of Fo. The

retentate flow for membrane 1 has a slope of 0.381, being 95.5% of the slope for membrane
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2, which is 0.399. This result implies that the membrane 1 yield a retentate flow of 95.5%

of that of membrane 2 in all the range of Fo.

Figure 3-14.: Membrane cost and retentate flow for feed flow ranging from 4000 to 10 000

L/h. Membrane 1 is under dynamic operation with BS = 1.25 s, TBBS =

5 s, TMP = 1 bar and Fo = 10 000 L/h. Membrane 2 is under conventional

cross-flow operation.

Evaluating membrane cost and retentate flow under different transmembrane pressures yields

the Figure 3-15, considering a Fo = 10 000 L/h and a target concentration of Cb = 10 g/L.

Increasing the TMP from 1 to 3 bar, the membrane cost is reduced from 51.5% to 37.9%.

Nevertheless, the retentate flow for membrane 1 is 95.3% of the retentate flow for membrane

2 at TMP = 1 bar, and decreases to 89.8% at TMP = 3 bar. The retentate flow decline is

explained since observed rejection for membrane 1 is diminished at high TMP (Figure 3-12).

Thus, the dextran lost in permeate stream implies that less retentate flow can be obtained.

3.5. Conclusions

Mathematical modeling of dynamic operation in dextran ultrafiltration is a key tool, from

a process system engineering perspective, in order to evaluate the separation performance

under different operating conditions. In this sense, a previously developed hybrid model is

exploited to perform a sensitivity analysis. The average flux (Javg), the observed rejection

(Robs) and the maximum dextran concentration (Cm,max) at the membrane surface are com-

puted as a function of bulk dextran concentration (Cb), backshock time (BS), time between

backshock (TBBS) and transmembrane pressure (TMP). According to the results, concen-

tration polarization is well diagnosed by concentration polarization modulus. Values for this
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Figure 3-15.: Membrane cost and retentate flow for transmembrane pressure ranging from

1 to 3 bar. Membrane 1 is under dynamic operation with BS = 1.25 s, TBBS

= 5 s, TMP = 1 bar and Fo = 10 000 L/h. Membrane 2 is under conventional

cross-flow operation.

modulus as high as 160 have a negative impact on observed rejection, while values close or

lower than 34 improve selectivity due to the dynamic boundary layer formation. BS values

close to 1 s improve average flux up to 43.8% under Cb of 5 and 10 g/L. BS = 0.8 s improves

Javg just 7% for Cb of 1 g/L. Increasing TBBS higher than 5 s, keeping fixed BS = 1.25

s, improves Javg in 50.2% but gives up some of the rejection (from 94.03 to 90.85%). A

similar behavior is found when analyzing the effect of TMP. Increasing TMP, from 1 to 3

bar, improves Javg in a factor of 3.2, but it generates a drastic reduction in selectivity: Robs

falls from 91.46% to 58.3%.

In addition to the sensitivity analysis, a comparative analysis is accomplished. A membrane

of high MWCO, 3380 kDa (membrane 1), under dynamic operation (BS = 1.25 s and TBBS

= 5 s) is compared to a membrane of low MWCO, 72 kDa (membrane 2), under conventional

cross-flow operation. The membrane cost is determined during concentration of a dextran so-

lution of 4 g/L to 6, 8 and 10 g/L. Membrane cost savings can achieve values around 50% by

using membrane 1 instead of membrane 2 at the expense of obtaining slightly less retentate

flow. The reduction in retentate flow ranges from 3.6% to 10.2%. These losses in retenta-

te flow are acceptable or not according to a further economic analysis where revenues are

considered. Profits determine if the economic saving in area exceeds the loss in retentate flow.

Given these results, it is clear that the developed hybrid mathematical model allows opti-

mization of operation through sensitivity analysis, and allows designing of the separation

process given a definite concentration target, in the context of dextran ultrafiltration.
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Table 3-3.: Nomenclature.
List of symbols

A1,A2,A3 Polinomial coefficients in osmotic pressure expression

Am Membrane area (m2)

a, b,P1,P2,P3,P4 Parameters for intrinsic rejection expression

BS Backshock duration time (s)

C Dextran concentration (kg/m3 or g/L)

Di Dextran diffusion coefficient (m2/s)

F Cross-flow (L/h)

Js Dextran flux (kg/(m2 · s))
Jv flux through the membrane (m3/(m2 · s))
k1 Coefficients for flux through small pores (-)

k2 Coefficients for flux through large pores (-)

Lp Membrane permeability (LMH/bar)

Rint Intrinsic rejection (-)

Robs Observed rejection (-)

t time (s)

v Volume level in the permeate tank (m3)

vout Flow from the permeate tank (m3/s)

x Spatial coordinate in the boundary layer (m)

Greek letters

α Coefficient in diffusivity expression (m2/s)

β Exponent in diffusivity epression (-)

δ Boundary layer thickness (µm)

∆PBS Transmembrane pressure during BS (bar)

ϵ1, ϵ2, σ1, σ2 Parameters for intrinsic rejection expression

π Osmotic pressure (bar)

Subscripts

i ith molecular weight interval

p Permeate

b Bulk

T Tank

m Membrane

Acronyms

MW Molecular weight (kDa)

MWCO Molecular weight cut off (-)

RT Retention time in SE-HPLC (min)

TBBS Time between backshocks (s)

TMP Transmembrane pressure (bar)
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A B S T R A C T

Concentration polarization and fouling are the most important issues to be addressed when designing
ultrafiltration (UF) and microfiltration (MF) units for a specific application. Dynamic operation in UF and
MF, such as backshock, is a method that allows mitigating adverse effects of polarization and fouling thus
enhancing the separation performance. However, there is a trade-off between operational conditions (i.e.
backshock duration time BS, the time between backshock TBBS, and flux) to achieve the desired effects. Herein,
two hybrid mathematical models are developed and tuned to predict the behavior of the polarization layer in
dynamic UF (𝑅2

𝑎𝑑𝑗 of 0.9185 and 0.9626, respectively). Both hybrid models can estimate the concentration on
the membrane surface (e.g. 27 g/L when BS is 1.25 s and TBBS is 5 s). The results illustrate the intensifying
effect of dynamic operation by decreasing the Molecular Weight Cut-off up to 74 times without decreasing
the membrane flux. The performed experiments and developed models provide system insights for membrane
systems design where the rejection could be enhanced and tunned according to operating conditions rather
than the membrane pore size.

1. Introduction

Ultrafiltration (UF) and microfiltration (MF) are separation tech-
nologies widely used in industrial fields such as water treatment [1–
7], food [8], beverage [9], pharmaceutical [10–12] and biotechnol-
ogy due to their good performance and selectivity under moderate
conditions. Nevertheless, filtration membrane technologies have some
drawbacks that limit their performance and efficiency, namely con-
centration polarization and fouling [13,14]. These phenomena affect
membrane performance by reducing the flux and decreasing selectivity
(or rejection factor).

Due to the adverse impact of the aforementioned phenomena, there
have been efforts to develop several methods to reduce, control, avoid
and correct the effects of concentration polarization and fouling by
mechanical, hydraulic, chemical means or their combination [13,14].
Some examples are: turbulence promoters, pulsed or reverse flow (dy-
namic operation), rotating or vibrating membranes, stirred cells with
rotating blades close to the membrane, ultrasonic enhancement, pe-
riodic maintenance cleaning, periodic backwash with permeate gas

∗ Corresponding author.
E-mail addresses: lhlopezm@unal.edu.co (L.H. López-Murillo), vhgrisalesd@unal.edu.co (V.H. Grisales-Díaz), mp@kt.dtu.dk (M. Pinelo),

oaprador@unal.edu.co (O.A. Prado-Rubio).

(dynamic operation), generation of a dynamic membrane layer, pre-
treatment by filtration, membrane surface treatment, preparation of
more hydrophilic membranes, appropriated operating mode selection.

Among the mentioned methods to control concentration polariza-
tion and fouling, some could be grouped into the general term "dynamic
operation". Particularly, there is a technique in which, every period
of time, the flux is reversed across the membrane during a specified
amount of time. Then, pressure is applied in the permeate side and
the flux crosses from permeate to the retentate side. Such reversed flux
can remove some of the internal and external fouling while disrupting
the concentration profile in the boundary layer. There are several
variations of this technique with different names: backshock, backpulse
and backflush, only differentiating in frequency and duration [29]. The
dynamic operation can be considered as part of process – intensifying
methods [30] since overall performance can be improved significantly
by reverting flux in a periodic way [31–34]. Nevertheless, further
intensification by using dynamic operation only can be achieved for
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Table 1
List of models used for predicting ultrafiltration process behavior.

System Model type Model use Ref

Whey separation process with UF It includes mass balances and a black
box model to predict fouling.

The model is evaluated under
different feed stream concentrations
and is used for control purposes.

[15]

Crossflow membrane filtration of
colloidal suspension

It is an artificial neural network with
a radial basis function.

It is used to predict the flux decline
under different conditions: particle
size, solution pH, ionic strength and
transmembrane pressure.

[16]

Crossflow membrane filtration of
colloidal suspension

It is based on Darcy’s law integrated
with a feedforward artificial neural
network

It is used to predict flux and flux
resistances.

[17]

Soy protein production from extracts
of defatted soybean flour by using
tubular and spiral wound
ultrafiltration modules

Darcy’s law and film theory. Flux prediction [18]

Cross flow membrane filtration of
colloidal suspension

Feedforward back-propagation neural
network and a radial basis function
network. The architectures of these
are found by genetic algorithms.

Flux prediction [19]

Whey UF process A data driven differential equation
(empiric model).

Flux prediction [20]

Water treatment plant A hybrid model integrating Darcy’s
law and artificial neural networks.

Flux prediction in dead-end
ultrafiltration process.

[21]

Wastewater treatment application Single Input–Single Output structures
and Multiple Input–Single Output
structures were evaluated by using
system identification techniques.

Flux prediction [22]

Wastewater treatment of a
petrochemical process

A hybrid model coupling Darcy’s law
and artificial neural networks.

Flux prediction [23]

Dynamic UF of dextran Computational fluid dynamics and
semi-analytical models

Flux and observed rejection
prediction

[24–28]

UF and MF if it is performed at the appropriate operating conditions.
The appropriate selection of operating conditions is not an easy task
for a particular application. Therefore, it is interesting to use a process
system engineering approach where mathematical models are used for
process design and operation.

In literature, different models have been developed for predicting
ultrafiltration processes behavior. Some of the latest models are sum-
marized in Table 1. In general, the proposed models have the following
limitations to be applied for process intensification:

• Those models based on solution diffusion approach do not include
the real phenomena that occur in UF and MF: the sieving mecha-
nism. Mostly, they are limited to static operation and not dynamic
operation.

• Black box models, such as autoregressive models, artificial neural
networks, among others, only predict flux and not the perme-
ate concentration, rejection neither selectivity. Additionally, they
need extensive experimental data to calibrate the models, and
results are particular for the investigated application limiting
their use in other fields. Besides, noise from experimental data
tends to be captured by the model.

• Development of pure deterministic models is difficult because the
phenomena involved are nonlinear and time variant, and there is
insufficient process understanding of the mechanistic underneath.

• Recent models using computational fluid dynamics have not been
validated with experimental data [25–28].

Therefore, the aim of this research is to analyze the intensifying
effect of the dynamic operation on UF separation performance, thus
develop and tune two hybrid models with different complexity levels.
Both are intended to predict flux and observed rejection in dynamic
UF considering concentration polarization, vital for optimizing process
design and operation. The proposed hybrid models merge the flexibility
of black box approaches with the interpretability of first principles
models, thus they have good extrapolation capabilities and low data

requirements [29, 23]. Their structure allows having insights into the
phenomena underneath, so they can be used for UF and MF process
design and optimization of operating conditions. Compared to previ-
ously developed models depicted in Table 2, the novel hybrid models
proposed in this work are aimed to increase prediction power while
providing insights into the dynamic phenomena underneath. Thus, they
have enhanced extrapolation capabilities than previous efforts mod-
eling similar systems. Finally, hybrid models can serve as a building
block for developing models with phenomena more complicated than
concentration polarization.

The paper is structured as follows: the methodology presents the ex-
perimental setup, model development, the methods for data treatment
and model tuning. The results section shows the models prediction ca-
pabilities and the effects of the dynamic operation on UF performance.
Finally the conclusions are drawn.

2. Methodology

All abbreviations and nomenclature used throughout this paper are
summarized in Table 2.

2.1. Experimental set up

Experiments for conventional and dynamic operation of UF mem-
brane were performed using Dextran T500 [35]. Dextrans are com-
monly used in dextran sieving tests as a standard method for charac-
terizing the pore size distribution of ultrafiltration membranes [36].
Additionally, dextrans have very important applications in clinical,
pharmaceutical and biomedical field [37–39].

The experiments are carried out in an ultrafiltration system used
to test crossflow filtration with hollow fibers in continuous, diafiltra-
tion or high frequency backshock operation mode. Such equipment
is conformed by eight components (see Fig. 1): hollow fiber module
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Fig. 1. Ultrafiltration system used to test cross flow filtration with hollow fibers in continuous, diafiltration or high frequency backshock operation mode.

Table 2
Nomenclature.

List of symbols

𝐴𝑚 Membrane area (m2)
𝐵𝑆 Backshock duration time (s)
𝑐 Total dextran concentration (g/ml)
𝐶 Dextran concentration (kg/m3 or g/L)
𝐷𝑖 Dextran diffusion coefficient (m2/s)
𝐹 Crossflow (L/h)
𝐽𝑠 Dextran flux (kg/(m2 s))
𝐽𝑣 flux through the membrane (m3/(m2 s))
𝑘1 Coefficients for flux through small pores (–)
𝑘2 Coefficients for flux through large pores (–)
𝐿𝑝 Membrane permeability (m3/(m2 s bar))
𝑀𝑊 Molecular weight (kDa)
MWCO Molecular weight cut off (–)
𝑅𝑖𝑛𝑡 Intrinsic rejection (–)
𝑅𝑜𝑏𝑠 Observed rejection (–)
𝑅𝑇 Retention time in SE-HPLC (min)
𝑡 time (s)
TBBS Time between backshocks (s)
TMP Transmembrane pressure (bar)
𝑣 Volume level in the permeate tank (m3)
𝑣𝑜𝑢𝑡 Flow from the permeate tank (m3/s)
𝑥 Spatial coordinate in the boundary layer (m)

Greek letters

𝛼 Coefficient in diffusivity expression (m2/s)
𝛽 Exponent in diffusivity expression (–)
𝛿 Boundary layer thickness (μ m)
𝛥𝑃𝐵𝑆 Transmembrane pressure during BS (bar)
𝜋 Osmotic pressure (bar)

Subscripts

𝑖 𝑖th molecular weight interval
𝑝 Permeate
𝑏 Bulk
𝑇 Tank
𝑚 Membrane

(bore-side feed), pump, feed tank, permeate hold up tank, flowmeter,
thermostat, backshock system and a computer.

The feed solution is dextran T500 (Amersham Pharmacia Biotech
AB) in an aqueous solution at 1 g/L. Dextran T500 has an average
molecular weight of 500 kDa. The feed tank contains the aqueous

solution and is pumped to the membrane module where the stream is
divided in two: the retentate and the permeate. The flowmeter is placed
in the retentate stream. Both permeate and retentate are returned to the
feed tank, closing the system. The permeate stream passes through a
tank of 2 L (where samples are taken) before returning to the feed tank.
Dextran concentrations are measured by size exclusion high perfor-
mance liquid chromatography (SE-HPLC) coupled to a refractive index
detector as indicated in literature for dextran quantification [36,40–
42]. A high frequency backshock system is installed to apply pressure
in the permeate side to reverse the flow during a time specified by the
user in the computer.

The membrane module is a hollow fiber system with poly-ether
sulfone (PES) membrane from X-flow Membranes (The Netherland).
The module has 54 cm in length, 2.4 cm in shell diameter, 50 tubes
and 1.5 mm in tubes diameter corresponding to 0.1 𝑚2 of membrane
area. The operational conditions of the experiment are summarized
in Table 3. The dextran solution is fed to the membrane and dif-
ferent backshock times (BS) and times between backshock (TBBS)
are evaluated. The reverse flux in dynamic operation allows disrup-
tion of the concentration profile at the boundary layer. This strongly
modifies the concentration polarization phenomenon as the concen-
tration at the membrane surface is diluted after each disruption. As
consequence, there is a lower probability that solute crosses the mem-
brane through the pores, creating the intensifying effect on membrane
rejection (selectivity).

From the experimental perspective, it is necessary to assess which
values of BS and TBBS are the best for intensifying the system per-
formance. A total of 9 dynamic experiments are carried out plus a
conventional crossflow filtration (without BS). Average permeate and
feed concentrations are measured by SE-HPLC, and average flux is also
monitored. Chromatograms are mathematically processed to extract the
concentration of six molecular weight intervals using an experimental
correlation to transform retention time to molecular weight. So, from
one single experiment, it can be obtained seven experimental data
points: six concentrations (one for each molecular weight interval) and
one average flux. Hence, 7 data points per experiment (10 experiments)
give a total of 70 experimental data to perform the model tuning.

2.2. SE-HPLC data treatment

Dextran T500 not only contains molecules with 500 kDa, but it
presents a molecular weight distribution being 500 kDa the average.
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Table 3
Operating conditions for the experimental tests in the dynamic ultrafiltration system.

Variable Value

Transmembrane pressure (TMP) 0.85 bar
Cross flow (F) 162 L/h
Backshock time (BS) 0.25, 0.75, 1.25 s
Time between backshock (TBBS) 5, 10, 15 s

Hence, a mathematical procedure is needed to estimate the concen-
tration of each molecular weight interval from the chromatograms.
Eight intervals are constructed but the first and the last are discarded
as they do not contribute significantly to the total concentration, so
only six intervals are used. To do so, first, a logarithmic relation
between retention time and molecular weight is built by analyzing
chromatograms from dextran samples of different average molecular
weights (dextran T500, T229, T110, T70, T40 and T10). Then, a linear
regression between the area under the curve and concentration is
developed by performing a calibration curve with samples of dextran
T500 at six different concentrations. So, with the logarithmic relation,
the elution time is converted to molecular weight and, with the lin-
ear regression, the chromatogram signal is divided into intervals and
their corresponding areas are transformed to concentration. Thus, the
concentration of each molecular weight interval can be computed.

In a previous work, multiple experiments were performed to tune
the dynamic operating system, including replicates [35]. The best
operation performance was selected to investigate in this contribution.
The concentration measurements from retentate, permeate and feed
streams were made in duplicate. The heights of the replicated chro-
matograms are averaged before extracting the area under the curve.
Once the concentration of each molecular weight interval is computed,
the observed rejection factor is calculated (Eq. (1)) [14].

𝑅𝑜𝑏𝑠 = 1 −
𝐶𝑇 𝑖
𝐶𝑖𝑏

(1)

where 𝐶𝑇 𝑖 is dextran concentration of 𝑖th molecular weight interval in
the permeate tank, and 𝐶𝑖𝑏 is dextran concentration of 𝑖th molecular
weight interval in feed stream. The observed rejections and fluxes
are average quantities since permeate concentrations and fluxes are
measured from the permeate tank (which holds up the permeate until
sampling) in each experiment.

2.3. Model development

Unlike the models reviewed in Table 2, the models developed here
allow prediction of observed rejection and flux in dynamic ultrafiltra-
tion by considering BS and TBBS values.

The models are intended to describe dynamically the phenomena
inside the boundary layer formed over the membrane surface in the
retentate side (Fig. 2). So, mass balances are developed for dextran
at the boundary layer where diffusive and convective transport are
present. Diffusion is modeled by Fick’s law and convection is modeled
by Darcy’s law. Solutes are retained by a membrane sieving action,
that is, solutes only can cross the membrane if they pass through
larger pores. High dextran concentrations produce osmotic pressures
that must be considered in the model. In addition, periodic backshocks
are performed, so reverse flux must be part of the model.

The assumptions to be considered in the model construction are:

• There are not chemical reactions at the membrane surface.
• Physicochemical properties in the boundary layer are constant.
• There are not velocity components in directions different from the

perpendicular one to the membrane surface at the boundary layer.
• The diffusivity coefficients are only dependent on molecular

weight and not on the concentration. Interactions between differ-
ent molecular weight dextrans are ignored. Fick’s law is a good
representation for describing diffusion of dextrans.

Fig. 2. Boundary layer diagram where concentration polarization takes place after
achieving steady state. The left side corresponds to feed and the right side to permeate.
Source: Adapted from [14].

• The thickness of the boundary layer is constant when defining the
crossflow velocity. This parameter is estimated using a correlation
based on the dimensionless numbers Reynolds and Schmidt [43].

• The osmotic pressure generated by high dextran concentration
can be modeled by a third degree polynomial [44].

• The concentration in permeate is much less than in the feed side,
so polarization and osmotic pressure is neglected on the permeate
side.

A mass balance is performed for each molecular weight interval of
dextran over the boundary layer on the membrane surface. Addition-
ally, at the exit of permeate stream, there is a small tank holding up 2 L
of retentate from which the samples were taken. For this tank, a simple
mass balance is performed to predict its volume and concentration over
time.

Both hybrid models share the same phenomena and the same as-
sumptions, only differing in the black box section.

Hybrid model 1
The mass balance for the boundary layer is represented by

Eq. (2) [45].

𝜕𝐶𝑖
𝜕𝑡

= 𝐷𝑖
𝜕2𝐶𝑖

𝜕𝑥2
− 𝐽𝑣

𝜕𝐶𝑖
𝜕𝑥

(2)

where 𝐶𝑖 is the solute concentration in the boundary layer, 𝐷𝑖 is the
solute diffusion coefficient, 𝐽𝑣 is the flux trough the membrane and 𝑥
is the perpendicular direction to the membrane surface. 𝐷𝑖 is modeled
by Eq. (3) [24].

𝐷 = 𝛼 ⋅ (𝑀𝑊 )𝛽 (3)

where 𝛼 is 2.6804 ⋅ 10−10 and 𝛽 is −0.4754. The diffusivity expression is
considered part of the black box model inside the hybrid model 1.

The partial differential equation (Eq. (2)) is coupled with the fol-
lowing boundary condition [14].

𝐽𝑣𝐶𝑖 − 𝐷𝑖
𝜕𝐶𝑖
𝜕𝑥

||||𝑥=𝛿 = 𝐽𝑠 (4)

The solute flux through the membrane, 𝐽𝑠, is also expressed as 𝐽𝑠 =
𝐽𝑣𝐶𝑖𝑝. The flux 𝐽𝑣 can be calculated by the Darcy’s law (Eq. (5)) [14]. It
is worth mentioning that the flux through the membrane changes when
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the backshock is taking place, since the inversion of the driving force
implies a reverse flux. So, positive transmembrane pressure drives a
forward flux during TBBS and negative transmembrane pressure drives
a backward flux during BS.
{

𝐽𝑣 = 𝐿𝑝(𝑇𝑀𝑃 − 𝛥𝜋) 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑙𝑢𝑥
𝐽𝑣 = −𝐿𝑝 ⋅ 𝛥𝑃𝐵𝑆 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑓𝑙𝑢𝑥

(5)

where, 𝐿𝑝 is the membrane permeability, 𝑇𝑀𝑃 is the transmembrane
pressure, 𝛥𝜋 is the osmotic pressure difference across the membrane,
𝛥𝑃𝐵𝑆 is the transmembrane pressure made by the backshock system
(being 𝛥𝑃𝐵𝑆 = 0.9 bar from experiments). The second expression
in Eq. (5) has a negative sign because, during backshock, the flux is
reverted going backwards from permeate to the retentate side. It is
important to note that BS, TBBS and 𝛥𝑃𝐵𝑆 have to be carefully chosen
for simulations, since the average flux can yield negative values if
enough flux is reversed during backshock operation compared to for-
ward operation. BS indicates how long the second expression in Eq. (5)
holds, while TBBS–BS indicates how long the first expression in Eq. (5)
holds.

The osmotic pressure for dextran is computed by Eq. (6) [44].

𝜋 = 𝐴1 ⋅ 𝑐 + 𝐴2 ⋅ 𝑐
2 + 𝐴3 ⋅ 𝑐

3 (6)

where, 𝐴1 = 0.0867, 𝐴2 = 2.98, 𝐴3 = 89.8. Eq. (5) is required in Eq. (2)
but it still lacks of information: the boundary condition needs the solute
flux, 𝐽𝑠, and therefore the permeate concentration, 𝐶𝑖𝑝. The calculation
of 𝐽𝑠 has already been described for membranes where the solution-
diffusion model applies [24,46], e.g. in reverse osmosis (see Eq. (7)).

𝐽𝑠 = 𝐵(𝐶𝑖𝑚 − 𝐶𝑖𝑝) (7)

where, 𝐵 is the solute permeability through the membrane and 𝐶𝑖𝑚
is the concentration at the membrane surface. Nonetheless, the solu-
tion diffusion model does not describe appropriately the separation
mechanism that occurs in ultrafiltration and microfiltration. Hence, it
is necessary to develop a more appropriate expression for computing
𝐽𝑠. According to the pore flow model, which is more appropriate for
ultrafiltration and microfiltration, the solute retention is carried out
by the sieving action. It means that the membrane has a pore size
distribution, that is, there are pores smaller than the solute size and
also pores bigger than solute size. Therefore, the Eqs. (8) and (9) are
used instead [47].

𝐽𝑣 = 𝑘1(𝑇𝑀𝑃 − 𝛥𝜋) + 𝑘2(𝑇𝑀𝑃 − 𝛥𝜋) (8)

𝐽𝑠 = 𝑘2(𝑇𝑀𝑃 − 𝛥𝜋)𝐶𝑖𝑚 (9)

The total flux through the membrane is conformed of two contributions.
The first term of Eq. (8) corresponds to the flux through the pores
smaller than the solute size, and the second term corresponds to the
flux through the pores bigger than the solute size. In Eq. (9) the solute
flux is expressed as the flux through the large pores multiplied by the
concentration at the membrane surface.

The permeate concentration can be computed with the aid of
Eqs. (8) and (9), as follows.

𝐶𝑖𝑝 =
𝐽𝑠
𝐽𝑣

=
𝑘2

𝑘1 + 𝑘2
𝐶𝑖𝑚 (10)

Recalling the definition of intrinsic rejection [24].

𝑅𝑖𝑛𝑡 = 1 −
𝐶𝑖𝑝

𝐶𝑖𝑚
= 1 −

𝑘2
𝑘1 + 𝑘2

(11)

So, the permeate concentration can be expressed as a function of the
intrinsic rejection and the concentration at the membrane surface (see
Eq. (12)). Note that 𝑅𝑖𝑛𝑡 is specific to the pairing membrane and solute,
since 𝑘1 and 𝑘2 are related to the membrane pore size distribution
relative to the solute size. It implies that 𝑅𝑖𝑛𝑡 is independent of pressure
and concentration and only depends on the solute size relative to the
pore size distribution of the membrane (sieving action). The expression

for 𝐶𝑖𝑝 as a function of 𝑅𝑖𝑛𝑡 is considered part of the black box model
inside the hybrid model 1.

𝐶𝑖𝑝 = (1 − 𝑅𝑖𝑛𝑡)𝐶𝑖𝑚 (12)

The mass balance for the 2 L tank in the permeate stream is in
Eqs. (13) and (14).
𝑑𝑣
𝑑𝑡

= 𝐽𝑣 ⋅ 𝐴𝑚 − 𝑣𝑜𝑢𝑡 (13)

𝑑𝐶𝑇 𝑖
𝑑𝑡

=
𝐽𝑣 ⋅ 𝐴𝑚 ⋅ 𝐶𝑖𝑝 − 𝑣𝑜𝑢𝑡 ⋅ 𝐶𝑇 𝑖 − 𝐶𝑇 𝑖 ⋅

𝑑𝑣
𝑑𝑡

𝑣
(14)

where 𝑣 is the volume level inside the tank, 𝐴𝑚 is the membrane area,
𝑣𝑜𝑢𝑡 is the outlet flow, being zero when the tank is not full and the same
value as the term 𝐽𝑣 ⋅𝐴𝑚 when the tank is full, 𝐶𝑇 𝑖 is the concentration
inside the tank for the 𝑖th molecular weight interval.

The differential Eq. (2) is solved using the method of lines with
1000 nodes in the boundary layer and ode15s function from Matlab®.
Ode15s function is chosen because of its ability and speed to solve stiff
systems.

Hybrid model 2
From preliminary model tuning, it was noticed that still the variance

of the experimental data is not fully represented by hybrid model
1. Therefore, an additional gray-box model is proposed to cover the
remaining output variance.

If 𝑅𝑖𝑛𝑡 from the first hybrid model is plotted against molecular
weight, a monotonic ascending curve, that tends to one as molecular
weight grows up, is observed. This kind of curve can be modeled by
exponentials, sigmoids or rational functions. The latter was proper for
modeling 𝑅𝑖𝑛𝑡 (Eq. (15a)).

𝑅𝑖𝑛𝑡 = 𝑚𝑖𝑛

(
1 −

1 + 𝑏 ⋅ (1 + 𝑎 ⋅𝑀𝑊 )
1 + 𝑎 ⋅𝑀𝑊

, 1

)
(15a)

This function takes the minimum value between the expression and
one, because the rational function can give values greater than one,
which is not allowed for the physical interpretation of 𝑅𝑖𝑛𝑡. If 𝑎 and
𝑏 are estimated for each operating condition and their dependence on
BS/TBBS are analyzed, a Lennard-Jones like function with two parame-
ters could fit the data (Eqs. (15b) and (15c)). These last two parameters
for 𝑎 expression are left to depend linearly on TBBS (Eqs. (15d) and
(15e)).

𝑎 = 𝜖1 ⋅

[(
𝜎1

𝐵𝑆∕𝑇𝐵𝐵𝑆 + 𝜎1

)12
−

(
𝜎1

𝐵𝑆∕𝑇𝐵𝐵𝑆 + 𝜎1

)6
]
+ 1.63 (15b)

𝑏 = 𝜖2⋅

[(
𝜎2

𝐵𝑆∕𝑇𝐵𝐵𝑆 + 𝜎2

)12
−

(
𝜎2

𝐵𝑆∕𝑇𝐵𝐵𝑆 + 𝜎2

)6
]
+ 2.808 ⋅ 10−3 (15c)

𝜖1 = 𝑃1 ⋅ 𝑇𝐵𝐵𝑆 + 𝑃2 (15d)

𝜎1 = 𝑃3 ⋅ 𝑇𝐵𝐵𝑆 + 𝑃4 (15e)

The independent terms in Eqs. (15b) and (15c) forces 𝑎 and 𝑏 to adopt
certain values when there is no backshock. These values are found
when 𝑎 and 𝑏 were estimated for operation with no backshock.
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2.4. Parameter estimation and optimization problem

Concentration polarization model in hybrid model 1 (Eq. (2)) re-
quires some parameters to be solved, such as intrinsic rejection 𝑅𝑖𝑛𝑡 and
permeability 𝐿𝑝. Therefore, a parameter estimation must be carried out
by using the collected experimental data.

For parameter estimation the model outputs are: fluxes and ob-
served rejection factors for each molecular weight interval, the in-
puts are: time between backshock (TBBS) and backshock time (BS),
and the parameters to be estimated are: intrinsic rejection (𝑅𝑖𝑛𝑡) and
permeability (𝐿𝑝).

For parameter estimation, a weighted sum of squared residuals is
used as objective function (Eq. (16)).

𝐿 =
𝑁∑
𝑛=1

𝑊𝑖 ⋅ (𝑦𝑠𝑖𝑚 − 𝑦𝑒𝑥𝑝)2 (16)

where 𝑁 is the total number of experimental data, 𝑊𝑖 are the weights,
𝑦𝑠𝑖𝑚 are the simulated outputs and 𝑦𝑒𝑥𝑝 are the experimental outputs.
Using the weight factor 𝑊𝑖, the observed rejections are scaled to
percentages, that is, between 0 and 100 and not in the original range (0
to 1). This is done to provide analogous rejection and flux contributions
to the objective function and have a better trade-off for the model
predictions. The model tuning is a non-convex optimization problem,
then, it presents multiple local minima, so gradient based algorithms
get stuck in there. Thus, a global optimization algorithm is required
to find the best parameters that fit the experimental data. The meta-
heuristic method referred to as particleswarm available in Matlab® is
employed with the following parameters: SelfAdjustmentWeight = 1.1
and SocialAdjustmentWeight = 1.8. These values were tunned from
preliminary simulation and have shown a faster convergence.

The workflow for the identification of the hybrid model 2 follows
the next steps:

• 𝑎 and 𝑏 are estimated for each operating condition.
• 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝜖2, 𝜎2 from Eq. (15) are estimated by using the values

of 𝑎 and 𝑏 from the previous step. The Matlab function used to
find these parameters was lsqcurvefit with the following options:
‘StepTolerance’ set to 1 ⋅ 10−10 and ‘FunctionTolerance’ set to
1 ⋅ 10−10.

The chosen statistical indexes for model performance are the ad-
justed determination coefficient 𝑅2

𝑎𝑑𝑗 plus the parameters and predictor
confidence interval of 95%.

3. Results and discussion

3.1. SE-HPLC data treatment

The concentration of the permeate stream is measured for each
operating condition. For establishing what percentage of the chro-
matogram is related to each molecular weight interval, the area under
the curve is divided into eight regions. The retention time intervals
are divided according to [8.3, 9.0, 9.8, 10.7, 11.5, 12.3, 13.2, 14.0,
15] minutes which, through the logarithmic relation, corresponds to
[6705, 3636, 1755, 847, 409, 197, 95, 46, 19] kDa. The first and the
last divisions are neglected in the analysis due to their relatively low
contribution to the total concentration. The divisions between 9 and
14 min in retention time are equally spaced.

The experimental results at different BS and TBBS are depicted
in Table 4. 𝑅𝑜𝑏𝑠,1 corresponds to rejection of dextran with molecular
weight between 3636 and 1755 kDa, 𝑅𝑜𝑏𝑠,2 between 1755 and 847 kDa,
𝑅𝑜𝑏𝑠,3 between 847 and 409 kDa, 𝑅𝑜𝑏𝑠,4 between 409 and 197 kDa, 𝑅𝑜𝑏𝑠,5
between 197 and 95 kDa, and 𝑅𝑜𝑏𝑠,6 between 95 and 46 kDa.

If the absorbance in permeate and feed chromatograms is directly
used to compute observed rejection [42,48], a continuum spectrum
is obtained (Figs. 3–5). It is observed that increasing BS from 0 to

Fig. 3. Experimental observed rejection in a continuous spectrum under TBBS = 5 s
for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO in
each operating condition.
Source: Adapted from [35].

Fig. 4. Experimental observed rejection in a continuous spectrum under TBBS = 10 s
for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO in
each operating condition.
Source: Adapted from [35].

1.25 s, the rejection profiles are higher. It is explained from the fact that
backshock system allows the disruption of the profile concentration on
the feed side, since the reversed permeate stream dilutes the concen-
tration on the boundary layer [25,27]. Dextran concentration at the
membrane surface on the feed side is decreased as BS increases, so there
is less probability that solute can cross the membrane and it causes the
rejection values to be higher for all molecular weights with respect to
static operation (no BS). So, longer times for backschock permit a larger
impact on the boundary layer. This is further analyzed with the hybrid
models developed in the following sections.

From (Figs. 3–5) the membrane molecular weight cut off (MWCO)
is reduced substantially from 3380 kDa (without BS) by a factor of
74, 28 and 17, for TBBS of 5, 10 and 15 s, respectively. These results
disagree with the traditional perspective that separation performance is
only defined by the pore size distribution of the membrane, indicating
that operating conditions (BS and TBBS) can also influence significantly
the separation performance.
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Table 4
Experimental data where inputs are BS and TBBS, while outputs are the observed rejection for six molecular weight intervals and flux.

BS TBBS 𝑅𝑜𝑏𝑠,1
3636–1755 kDa

𝑅𝑜𝑏𝑠,2
1755–847 kDa

𝑅𝑜𝑏𝑠,3
847–409 kDa

𝑅𝑜𝑏𝑠,4
409–197 kDa

𝑅𝑜𝑏𝑠,5
197–95 kDa

𝑅𝑜𝑏𝑠,6
95–46 kDa

Flux [LMH]

0 – 0.8600 0.7736 0.6885 0.6110 0.5439 0.4729 33.60
0.25 5 0.9646 0.9227 0.8603 0.7807 0.6877 0.5466 39.42
0.75 5 0.9734 0.9636 0.9447 0.9172 0.8760 0.7980 34.67
1.25 5 0.9670 0.9597 0.9477 0.9339 0.9170 0.8799 20.26

0.25 10 0.9363 0.8642 0.7852 0.7028 0.6175 0.5126 38.36
0.75 10 0.9876 0.9714 0.9422 0.8941 0.8189 0.6911 46.35
1.25 10 0.9766 0.9614 0.9437 0.9178 0.8769 0.7888 38.58

0.25 15 0.9323 0.8627 0.7821 0.6941 0.6028 0.4860 37.57
0.75 15 0.9646 0.9481 0.9140 0.8543 0.7592 0.5865 45.98
1.25 15 0.9755 0.9647 0.9407 0.8986 0.8263 0.6800 57.64

Fig. 5. Experimental observed rejection in a continuous spectrum under TBBS = 15 s
for four values of BS: 0, 0.25, 0.75 and 1.25 s. The straight lines indicate MWCO in
each operating condition.
Source: Adapted from [35].

Fig. 6. Experimental observed rejection in a continuous spectrum under BS = 1.25 s
for three values of TBBS: 5, 10 and 15 s.
Source: Adapted from [35].

Prior research had analogous results showing how operating con-
ditions can affect directly the MWCO of a membrane by disrupt-
ing the concentration polarization in the boundary layer by different
means [49]. Investigations on characterization of virus retentive mem-
branes [50] have shown that the sieving curve (and therefore the

MWCO) was highly correlated with important parameters such as
stirring speed, TMP and flux. Zydney, A. L. and Xenopoulos, A. found
that sieving coefficients and MWCO are highly influenced by changes
in filtrate flux, particularly for membranes of high MWCO [42]. Wick-
ramasinghe, S.R. and coworkers have stated that the MWCO of a
membrane only applies under the test conditions specified by the
manufacture, since MWCO is highly dependent on solute species and
operating conditions [48]. Yehl, C.J. and Zydney, A.L. have inves-
tigated how operating conditions, such as effective wall shear rate
and permeate flow rate can influence the MWCO of a hollow fiber
membrane during dextran ultrafiltration [51]. The MWCO can vary
from <200 kDa to more than 1200 kDa with effective wall shear rates
ranging from 2000 𝑠−1 to 11000 𝑠−1. Besides, the MWCO can vary
between 190 kDa and 1280 kDa for permeate flow rates between 1.7
ml/min and 10 ml/min, respectively. Analogously to the mentioned
research, herein it is demonstrated that using dynamic operation the
separation is highly influenced by disrupting the boundary layer and
even could be tuned.

From Figs. 3–5, it is interesting to notice the increase of observed
rejection for larger dextran molecular weight. This is explained by the
sieving mechanism that allows the UF membrane to separate solutes of
different sizes. So, dextrans with high molecular weight are expected
to be more retained than the smaller ones. The sieving mechanism can
be related to the probability that a solute with a specified size finds a
pore large enough to pass through it, considering that the membrane
has a pore size distribution.

From Fig. 6 it is evident that lower TBBS values improve sub-
stantially the rejection factor, especially for low molecular weight
range. When using low–frequency disruptions, polarization generates
a reduction in solute rejection since high dextran concentrations are
maintained longer on the membrane surface. Hence, high frequency of
backshock allows keeping controlled polarization by reducing the aver-
age solute concentration on the membrane surface. The reason is that
backshock times are in the same order of magnitude as the development
of the polarization layer (this point is further discussed in the hybrid
models section). Thus, lower TBBS values promote increasing rejection.

Nevertheless, increasing BS and reducing TBBS does not guarantee
a better overall performance of the process, considering the trade-off
between observed rejection and membrane flux. Table 4 indicates that
increasing BS from 0.25 to 1.25 s, decreases the flux under TBBS of
5, however, increasing the BS under TBBS of 15 increases flux. This is
clear evidence that the effect of BS over flux depends on TBBS value.
The flux reduction is generated by two situations: if the BS is too
large with respect to TBBS, most of the permeate is used to wash the
membrane during backshock causing a decrease in the average flux
over a period of time. On the other hand, if the BS is small compared
to TBBS, concentration polarization fully develops and flux declines
again. For example, the flux of 20.26 LMH in Table 4 is lower than
that of static operation because in such an experiment BS represents
the biggest proportion of the TBBS, which means that the combination
of BS = 1.25 and TBBS = 5 wastes more permeate than the other
experiments.



Chemical Engineering and Processing - Process Intensification 169 (2021) 108618

8

L.H. López-Murillo et al.

Fig. 7. Predictor confidence interval for hybrid model 1.

3.2. Model calibration and predictive power

Hybrid model 1
The results of the parameter estimation for hybrid model 1 are

presented in Table 5. An adjusted determination coefficient is computed
for the model yielding a value of 0.9185 which is an indicator of good
performance for the model.

The values for 𝑅𝑖𝑛𝑡,𝑖 are in agreement with their physical interpreta-
tion. Note that 𝑅𝑖𝑛𝑡,1 corresponds to the highest molecular weight and
𝑅𝑖𝑛𝑡,6 to the lowest molecular weight. It is expected that high molecular
weight solutes are rejected by the membrane in a higher probability
and this is confirmed in Table 5. In spite of the high values for the
estimated intrinsic rejections, the concentration polarization has such
a dramatic impact on the performance that observed rejection is much
lower compared to the intrinsic rejections, achieving values of down to
47%.

The permeability obtained from parameter estimation (Table 5)
is in agreement with values reported in the literature under similar
conditions with a membrane made of poly-ether sulfone [52]. There,
ultrafiltration of dextran with molecular weight between 36 and 44
kDa was carried out under 1 bar of TMP and a feed concentration of
1g/L. The permeability was found to be between 55 and 65 𝐿∕(𝑚2 ⋅ ℎ ⋅
𝑏𝑎𝑟) corresponding approximately to the confidence interval shown in
Table 5.

Confidence intervals for each parameter do not include zero, hence
it can be said that such parameters are statistically distinct from zero
and contribute to the prediction capability of the model. In addition,
the confidence intervals are narrow since their corresponding percent-
ages with respect to the nominal values are below 15% as shown in the
last column in Table 5.

Predictor confidence intervals are computed and illustrated in Fig. 7
for TBBS = 5 s and BS = 1.25 s, and it is observed that they include
satisfactorily the experimental data. For the remaining operating condi-
tions, the figures have similar behavior (results not shown). However,
such intervals include values above 1 and this is not possible for the
model since the observed rejections are always lower than the intrinsic
rejections. So, although the predictor confidence intervals cover values
above 1, the real model outputs for observed rejections are bounded up
to the same values as intrinsic rejections.

From parity plots for rejection and flux in Figs. 8 and 9, it is clear
that most of the points fall into the ± 15% , only 4 out of 70 points fall
outside. Such differences between the simulated data and experimental
data may be due to some assumptions made during model construction,
for instance, the membrane is modeled as a barrier perpendicular to the

Fig. 8. Parity plot for observed rejections (Hybrid model 1). Dashed lines indicate ±
15%.

Fig. 9. Parity plot for fluxes in LMH (Hybrid model 1). Dashed lines indicate ± 15%.

Fig. 10. Experimental and simulated observed rejection versus molecular weight under
TBBS = 5 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model 1.)

flux and the axial geometry of the hollow fiber is not considered. There
are some other factors that could also be influencing such as potential
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Table 5
Estimated parameters and their confidence intervals for the first hybrid model: intrinsic rejections for six molecular weight intervals and
permeability.

Parameter Value Confidence interval (at 95% confidence) Confidence interval (%)

𝑅𝑖𝑛𝑡,1 0.9990 0.9549–1.0431 ±4.41%
𝑅𝑖𝑛𝑡,2 0.9985 0.9603–1.0367 ±3.83%
𝑅𝑖𝑛𝑡,3 0.9977 0.9627–1.0327 ±3.51%
𝑅𝑖𝑛𝑡,4 0.9965 0.9581–1.0349 ±3.85%
𝑅𝑖𝑛𝑡,5 0.9938 0.9305–1.0571 ±6.37%
𝑅𝑖𝑛𝑡,6 0.9847 0.8435–1.1259 ±14.34%
𝐿𝑝 𝐿∕(𝑚2 ⋅ ℎ ⋅ 𝑏𝑎𝑟) 56.2211 52.0216–60.4206 ±7.47%

Fig. 11. Experimental and simulated observed rejection versus molecular weight under
TBBS = 10 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model 1.)

Fig. 12. Experimental and simulated observed rejection versus molecular weight under
TBBS = 15 s for three values of BS: 0, 0.25, 0.75 and 1.25 s. (Hybrid model 1.)

fouling, the membrane asymmetry and changes in the hydrodynamic
conditions of the boundary layer.

Although Figs. 8 and 9 seem to be a good indicator of model
prediction, Figs. 10–12 clearly indicate that the hybrid model 1 have
limitations to capture the variance in observed rejection for TBBS = 10
and TBBS = 15 (for all BS values). This shows the model flaws from
a structural or phenomenological perspective. For this reason, a new
hybrid model is proposed, intended to be able to predict better the
observed rejections.

Fig. 13. Estimated intrinsic rejection versus molecular weight.

Fig. 14. Dependence of 𝑎 parameter on BS/TBBS and TBBS. Circles represent values
from estimation for each operating condition and line represents the fitted Eq. (15b).

Hybrid model 2
From the previous model, 𝑅𝑖𝑛𝑡 can be plotted versus 𝑀𝑊 (Fig. 13).

Such a graph points out that 𝑅𝑖𝑛𝑡 can be modeled by a rational function
like Eq. (15a). The parameters 𝑎 and 𝑏 are estimated for each operation
condition and they are depicted in Figs. 14 and 15. It is observed that
a Lennard-Jones like function can fit the values for 𝑎 and 𝑏. Hence, the
black box model used to predict 𝑅𝑖𝑛𝑡 is summarized in Eq. (15).

Eq. (15) have 6 parameters in total to be estimated 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝜖2,
𝜎2. Table 6 summarizes the estimated parameters and their confidence
intervals. Since these parameters do not have physical interpretation,
they can take any value including negatives. Their confidence intervals
show that many of them lie in a wide interval but all of them are
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Fig. 15. Dependence of 𝑏 parameter on BS/TBBS. Circles represent values from
estimation for each operating condition and line represents the fitted Eq. (15c).

Fig. 16. Parity plot for fluxes (Hybrid model 2). Dashed lines indicate ± 15%.

statistically different from zero, so they all contribute to the predictive
capability of the hybrid model 2.

In Figs. 16 and 17 a parity plot for flux and observed rejection are
plotted, respectively. The dots in Fig. 17 are more distributed over the
45◦ line indicating a better prediction for the hybrid model 2 compared
to the hybrid model 1. The dots in Fig. 16 seem to be unchanged or the
change was imperceptible. It points out that the black box model used
to structure the intrinsic rejection in hybrid model 2 only influences
the observed rejections and not the fluxes.

Considering that the maximum concentration on the membrane
surface, predicted with the hybrid model 2, is almost 30 g/L (Fig. 23),
the osmotic pressure for dextran T500 is negligible compared to the
operating transmembrane pressure (TMP = 0.85 bar) for dextran con-
centration between 0 and 30 g/L (Fig. 18). Therefore, the flux variance
in model predictions is not caused by osmotic pressures. Indeed, the
flux variance predicted by the model is due to the different BS and TBBS
values. So, the average flux depends on the duration and frequency of
the backshock as longer BS durations imply wasting more permeate.
This analysis conflicts with the analysis made in CFD modeling per-
formed by Frank and co-workers [24–28] where it is stated that flux
variance in UF of dextran T500 is caused by osmotic pressure. There
is a subtlety in their analysis, they state that osmotic pressures do not
change significantly with molecular weight and for that reason they

Fig. 17. Parity plot for observed rejections (Hybrid model 2). Dashed lines indicate ±
15%.

Fig. 18. Osmotic pressure for different dextrans: T500, T70 and T10 versus dextran
concentration [43,44].

used the correlation for the osmotic pressure of dextran T10. Using
experimental data from the literature, it can be seen in Fig. 18 that
there is a substantial difference between osmotic pressures for dextran
T500 and dextran T10, therefore, their properties cannot be treated as
if they were the same compound.

In Figs. 19–21, observed rejection are plotted against molecular
weight as before. It is evident that the hybrid model 2 has better
prediction capabilities than the hybrid model 1 analyzed in the previous
section. This better overall performance is confirmed when calculating
the adjusted determination coefficient yielding a value of 𝑅2

𝑎𝑑𝑗 = 0.9626.

Besides the confidence interval of parameters, the predictor con-
fidence interval was calculated for TBBS = 5 s and BS = 1.25 s and
it is illustrated in Fig. 22. Note that experimental data fall inside the
predictor confidence interval which is narrower than the corresponding
to hybrid model 1 in Fig. 7.

A dynamic simulation for dextran concentration profiles in the
boundary layer was made by using the hybrid model 2 with BS = 1.25
s and TBBS = 5 s, because it provides an insight into the phenomena
occurring there. This simulation allows to know the maximum concen-
tration achieved on the membrane surface predicted by the model and
understand the effect of the dynamic operation on the concentration
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Table 6
Estimated parameters and their confidence intervals for the second hybrid model.

Parameter Value Confidence interval (at 95% confidence) Confidence interval (%)

𝑃1 −0.1888 −0.2214 to −0.1562 ±17.27%
𝑃2 4.9861 4.8085 to 5.1637 ±3.56%
𝑃3 −0.0253 −0.0399 to −0.0106 ±58.10%
𝑃4 0.6129 0.4861 to 0.7398 ±20.69%
𝜖2 0.0125 0.0110 to 0.0141 ±12.60%
𝜎2 0.6759 0.5629 to 0.7890 ±16.73%
𝐿𝑝
𝐿/(m2 h bar)

56.2211 55.7808 to 56.6614 ±0.78%

Fig. 19. Experimental and simulated (Hybrid model 2) observed rejection versus
molecular weight under TBBS = 5 s for different BS = 0, 0.25, 0.75 and 1.25 s.

Fig. 20. Experimental and simulated (Hybrid model 2) observed rejection versus
molecular weight under TBBS = 10 s for different BS = 0, 0.25, 0.75 and 1.25 s.

profiles over the boundary layer. The results are plotted in Figs. 23
and 24. In Fig. 23 the boundary layer is about 15 μm which is in
agreement with the value of 20 μm reported in the literature as a typical
number for many applications [14]. It can be observed that dextran
concentration at the membrane surface can achieve values of almost 30
g/L (Fig. 23), that is, thirty times the feed concentration. This concen-
tration polarization is mitigated by the backshock system as observed
in Fig. 24. For TBBS of 10 and 15 s, this high concentration value
is kept a longer time because the backshock is performed at a lower
frequency. This result confirms that high dextran concentrations at the
membrane surface affect strongly the rejection factors under different

Fig. 21. Experimental and simulated (Hybrid model 2) observed rejection versus
molecular weight under TBBS = 15 s for different BS = 0, 0.25, 0.75 and 1.25 s.

Fig. 22. Predictor confidence interval for hybrid model 2.

operation conditions and that dynamic operation is an efficient method
to mitigate concentration polarization as seen before in Figs. 3–5.

Since static operation does not use permeate to wash the membrane
and dextran T500 has negligible osmotic pressures for concentrations
between 0 and 30 g/L, the hybrid model 2 predicts that the maximum
flux corresponds to static operation. This fact leads to consider that the
concentration on the membrane surface should achieve values higher
than 30 g/L, so more significant osmotic pressures can be obtained
and maximum flux can correspond to dynamic operation. In fact, it has
been reported dextran concentrations (dextran T70) on the membrane
surface as high as 177 g/L with a feed concentration of 0.935 g/L under
TMP of 2 bar with no BS [44]. Since diffusivity is the main parameter
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Fig. 23. Total dextran concentration in boundary layer during normal operation at 0,
1, 2, 3, 3.75 s.

Fig. 24. Total dextran concentration in boundary layer during backshock operation at
3.75, 4, 4.25, 4.5, 5 s.

influencing the maximum concentration that dextran can achieve on
the membrane surface, the assumption that dextran diffusivity does
not depend on concentration is questionable or perhaps the correlation
itself for diffusivity could be no appropriate for this application or
maybe there could be extra phenomena not yet included in the model.

Despite the model limitations, it is evident that most of the variance
in experimental data is explained by the model with a high degree of
precision.

4. Conclusions

Dynamic operation in ultrafiltration, by means of a backshock, have
a tremendous effect on the MWCO where it can be tuned from 3380
kDa to values between 46 and 197 kDa, corresponding to a separation
intensification in factors of 74 and 17 times, respectively. Two hybrid
models were developed with different degrees of hybridization. The
first achieved an adjusted determination coefficient of 0.9185 while
the second 0.9626. This indicates that the modifications introduced
into the second hybrid model allow increasing the prediction power
significantly.

The results of the present investigation reinforce that separation
performance not only depends on the physical properties of the mem-
brane and solute but it can also be directly manipulated by means of
dynamic operation. The idea that operating conditions can modify the
MWCO of a membrane has been recently mentioned in the literature
but it is not very popularized, so it is necessary that this novel paradigm
of separation performance in UF and MF must be spread out in mem-
brane sciences since its applications allow intensifying the UF and MF
processes.

The development of hybrid mathematical models for dynamic UF
done in this paper opens new opportunities for optimization of process
design and operation. Additionally, both hybrid models can be used to
provide further process insights and can serve as building blocks for
developing models including more phenomena beyond concentration
polarization. By using the models developed here as building blocks,
future research work could include precipitation, gel formation and
fouling.
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