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Resumen

Detección de tumores pancreáticos malignos basado en la caracterización de

textura durante secuencias de video de ultrasonido endoscópico

El Cáncer de Páncreas (CP) fue la séptima causa de muerte por cáncer en el mundo en

2020. Es uno de los más agresivos y en la mayoŕıa de los casos se diagnostica en etapas

avanzadas por su respuesta asintomática. El diagnóstico del CP se realiza mediante técnicas

de imágen como ultrasonido (US), tomograf́ıa computarizada(TAC), resonancia magnéti-

ca(RMN) y Ecoendoscopia(EE). Aunque la EE tiene la más alta sensibilidad, el proceso de

entrenamiento de los especialistas requiere más de 150 procedimientos supervisados, convir-

tiendose en un procedimiento altamente dependiente de la experticia del gastroenterólogo y

del manejo de las múltiples fuentes de ruido durante el procedimiento. Por lo tanto, es de-

seable un segundo lector para apoyar el procedimiento y asistir el proceso de entrenamiento.

Se han desarrollado estrategias computacionales para apoyar la detección del CP, pero son

semi-automáticos en la práctica y altamente suceptibles a las fuentes de ruido. La principal

contribución de este trabajo es el desarrollo de una estrategia automática para detectar CP en

secuencias de video completas de procedimientos de EE. El método describe los eco-patrones

en imágenes de EE utilizando el algoritmo “SURF”por sus siglas en inglés. Se definen y des-

criben un conjunto de puntos de interés correlacionados en un análisis multiecala y se filtran

las fuentes de ruido que usualmente no se correlacionan entre escalas. Luego, las imágenes

con CP se diferencian mediante una clasificación binaria utilizando métodos de soporte vec-

torial y árboles de decisión. Adicionalmente, el método se evalúa utilizando una base de

datos pública construida en este trabajo con 55 casos en total. Finalmente, el rendimiento

se compara con los enfoques t́ıpicos de aprendizaje profundo, obteniendo un rendimiento

de 92.1 % y 90.0 %, respectivamente. Adicionalmente, el metodo propuesto es estable en ex-

perimentos al adicionar ruido, en los que las redes fallan en mantener un rendimiento similar.

Palabras clave: Cáncer de páncreas, adenocarcinoma, detección, diferenciación, eco-

endoscopia, clasificación de imagenes.
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Abstract

Detection of pancreatic malignant tumors based on texture characterization du-

ring endoscopy ultrasound video sequences

Pancreatic Cancer (PC) is one of the most aggressive cancers, constituting the seventh

leading cause of cancer-related death globally in 2020. Usually, the asymptomatic response

of PC causes the delayed diagnosis of the disease. Diagnosis of PC usually includes ultra-

sonography (US), computed tomography (CT), magnetic resonance (MRI), and endoscopic

ultrasound (EUS). Although EUS is the diagnostic method with the highest sensitivity re-

ported, the procedure is highly operator-dependent. A gastroenterologist requires more than

150 supervised procedures to interpret the anatomy blurred by several noise sources. The-

refore, a second reader may be desirable to support the procedure and assist the training

process in a gastroenterology service. Some computational strategies have been developed

to detect PC in EUS images, but those methods are semi-automatic in practice and very

susceptible to noise. Hence, the main contribution of this work is an automatic strategy to

detect PC in complete video sequences of EUS procedures. The proposed methodology des-

cribes the mixture of echo patterns using the Speeded-Up Robust Features (SURF) method.

A set of interest points are defined and described correlating the echo patterns in a mul-

tiscale analysis, and filtering the noise sources, usually uncorrelated among different scales.

Then, images with PC are differentiated by a binary classification method, evaluating Sup-

port Vector Machines and Adaboost models. Additionally, the proposed method is assessed

using a public EUS database constructed and released in this work, with 55 cases. Finally,

the proposed method was compared with typical Deep Learning approaches, reaching an

accuracy of 92.1 % and 90.0 %, respectively. In addition, the method herein proposed is also

stable in experiments with added noise, while the nets fail to maintain a similar performance.

Keywords: Pancreatic cancer, adenocarcinoma, detection, differentiation, endoscopic

ultrasound, Echoendoscopy, image classification
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1. Introduction

1.0.1. Functions of the pancreas

The pancreas is a gland of approximately 10 to 25 cm in length, located on the posterior

abdominal wall, that plays a vital role in digestion and metabolism processes[54, 48, 70].

For descriptive purposes, the pancreas is divided into three regions: a head, a body, and

a tail[45, 70, 48], as shown in Figure 1-1. Furthermore, the pancreas is a mixed gland

composed of two types of tissues: the exocrine cells that secrete digestive enzymes required

in the digestion process and the endocrine cells that produce hormones necessary for the

metabolism process[48, 45, 54, 70]. Exocrine tissue is composed of clusters of acinar and

pancreatic stellate cells involved in the main disorders of the pancreas, including Pancreatic

Cancer (PC) and Chronic Pancreatitis (CP)[54]. Unfortunately, the deep location of the

gland and the closeness with vital structures make the pancreas inaccessible to physical

examination and convert the surgery into a hazardous task[45].

Figure 1-1.: Pancreatic Gland: exocrine component is composed

of Acinar Cells and endocrine by Islet Cells.
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1.0.2. Natural history of pancreatic cancer

Pancreatic Cancer (PC) is a consequence of a successive accumulation of gene mutations that

evolve from pre-malignant lesions to fully invasive cancer[25]. Pancreatic tumors are classified

into two main categories: exocrine and endocrine. Approximately 85 to 90 % of the cases

are exocrine tumors. Moreover, ductal adenocarcinoma (mutations originated in the ductal

epithelium) is almost 90 % of malignant pancreatic tumors. Typically, PC affects patients in

their seventh decade of life, most with metastasis or surgically inoperable disease[84].

PC was the seventh leading cause of cancer-related death globally in 2020 and the ninth in

Colombia in 2017[74, 7]. In 75 % of the cases, PC is diagnosed at advanced stages, with one

of the lower survival prognoses. The 5-year survival rate ranges between 4 to 7 % and rises

to 25 % when the tumor is surgically removable, but the disease is operable only in 9 % of

the cases.[73, 40, 81, 51, 78, 31]. Some risk factors of PC are etiological, such as cigarette

and alcohol consumption and excess weight[7]. Usually, PC presents as an asymptomatic

disease until the mass affects the liver function, obstructs the pancreatic and common hepatic

ducts, or causes metastasis[13, 44]. Generally, the symptoms are related to the surrounding

structures, organs, nerves, and vessels or systemic effects caused by the chemicals secreted

by the tumor. Therefore, the symptoms are variable and nonspecific, like abdominal and

back pain, fatigue, weight loss, nausea, and jaundice[84, 13, 44, 51, 31, 78]. Hence, effective

early PC diagnosis remains a challenging task.

Even with the recent improvement in the knowledge of the disease, PC remains an illness that

is difficult to analyze, detect, and treat. The poor prognosis of PC is owing to the delayed

diagnosis, causing inadequate or inefficient treatments when the patient presents distant

metastasis or nodal invasion[31, 78]. Although PC is less common than other cancers, the

mortality rate is one of the higher. In 2018, the incidence was 458,918 new cases and 432,242

deaths worldwide, achieving a mortality rate of 98 %[6]. The incidence of PC varies across

regions by differences in diagnostic practices[46].

1.0.3. Pancreatic cancer screening process

The Pancreatic Cancer screening process includes two kinds of tests: serologic and imaging

techniques. Treatment response of the disease is evaluated with serological tests, measuring

different biomarkers like carbohydrate antigen 19 to 9 (CA19-9), carcinoembryonic antigen,

alpha-fetoprotein, chromogranin A, neuron-specific enolase, pancreatic polypeptide, and fun-

ctional neuroendocrine tumor[40, 84]. However, PC diagnosis and staging are performed using

imaging techniques, such as Ultrasound, Computed Tomography, Magnetic Resonance, or

Echoendoscopy.

The evaluation process of PC is shown in Figure 1-2. Usually, the first practiced test is

the abdominal Ultrasound (US) because of its noninvasive component, low cost, and high

availability. However, the entire pancreas is difficult to visualize, making the detection of

tumors a challenging task[44, 76]. Therefore, when the suspicion of PC is strong is practiced
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other imaging techniques like Computed Tomography (CT), Magnetic Resonance (MRI),

Positron Emission Tomography (PET), or Echoendoscopy (EUS). When a pancreatic tu-

mor is detected, a biopsy is acquired to evaluate the malignancy of the lesion. With EUS,

the sample is collected immediately by the EUS-guided fine-needle aspiration (EUS-FNA)

procedure[44, 50]. However, when the tumor is detected using CT, MRI, and PET is ne-

cessary to practice another exam to collect the biopsy. Hence, EUS is the only method to

diagnose and stage PC at the same procedure[52, 76]. The general EUS sensitivity is ran-

ged from 87 to 100 %[51, 55, 16], and the procedure is particularly helpful to detect tumors

smaller than 30 mm[51]. Therefore, detection of smaller tumors implies the diagnosis of

the disease in early stages, even in asymptomatic patients with risk factors of PC, such as

a family history of cancer, specific gene mutations, and Peutz−Jeghers syndrome, among

others. Some studies implement pancreatic surveillance protocols using EUS and MRI to

detect precursor lesions or earlier stages of cancer, detecting a potentially curable disease

and improving the prognosis[19, 22].

Figure 1-2.: Typical evaluation process of Pancreatic Cancer and the sensitivity of the

procedures involved in the detection of PC (Adapted from [50, 51, 31, 40, 16]).

With the clinical exam and the results of imaging techniques, the doctor defines the TNM

score, considering three components: the primary tumor size, the presence of metastasis in
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the lymph nodes, and the presence of distant metastasis, as shown in Figure 1-3. The TNM

classification for pancreatic tumors in the UICC TNM Atlas[24] is shown in Table 1-1.

Figure 1-3.: TNM staging system of pancreatic cancer.

T: the extent of the primary tumor

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

T1 Primary tumor limited to the pancreas, 2 cm or less in the largest dimension

Tis Carcinoma in situ

T2 Tumor limited to the pancreas, more than 2 cm in the largest dimension

T3 Tumor extends directly into any of the following: duodenum, bile duct, peripan-

creatic tissues

T4 Tumor extends directly into any of the following: stomach, spleen, colon, and ad-

jacent large vessels

N: Extent of regional lymph node metastasis

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Regional lymph node metastasis

N1a Metastasis in a single regional lymph node

N1b Metastasis in multiple regional lymph nodes

M: Absence or presence of distant metastasis.

M0 No distant metastasis

M1 Distant metastasis as liver or peritoneal dissemination

Table 1-1.: TNM Classification of pancreatic tumors, taken from [24].
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1.0.4. Echoendoscopy procedure

Echoendoscopy or Endoscopic Ultrasonography (EUS) is similar to upper gastrointestinal

Endoscopy, but in this case, the tip of the endoscope has a high-frequency transducer. EUS

procedure is performed in two stages: first, the typical Optical Endoscopy is performed by

introducing the probe into the mouth, esophagus, stomach, and duodenum. Then, the Ultra-

sound(US) mode is activated to scan surrounding organs such as the pancreas, kidney, liver,

and gallbladder. Therefore, the US technique enables the detection of lesions in the target

organs because with this technique could be differentiate soft tissues and water structures,

and also, some general ultrasonic signs could be observed, such as the location, size, internal

and surrounding echo patterns, and borders of the lesions. Finally, when the tumor is locali-

zed, the samples for histological examination are acquired using the EUS-guided fine-needle

aspiration(EUS-FNA) procedure.

US image is composed of reflected ultrasound waves affected by the acoustic impedance

of the tissues. Image construction depends on the transducer configurations to screen the

waves in a specific time and space. US waves could be interpreted using amplitude (A-mode),

brightness (B-mode or C-mode), motion (M-mode), or frequency (Doppler). The B-mode

is the most common technique used in clinical practice. A linear array is constructed by

plotting the intensity of the resulting echoes as a two-dimensional image, using a gray-scale

representation to illustrate the amplitude of the returning or reflecting radio frequency waves.

B-mode images are composed of defined areas with similar intensities or echo patterns like

anechoic, hypoechoic, and hyperechoic, as illustrated in Figure 1-4. Echo patterns are defined

by Echogenicity, which is the ability to reflect or transmit the US waves depending on the

tissue composition[30, 56]. Black intensities or anechoic patterns represent tissues that do not

return echoes, and white intensities or hyperechoic patterns represent those that highly reflect

echoes[57, 71]. Typically, healthy tissues are composed of well-defined areas. For example,

the fascia, connective tissues, distal nerves, ligaments, and tendons generate hyperechoic

patterns, cartilage and muscles cause hypoechoic patterns, and bones, vessels, veins, arteries,

and fat yield anechoic patterns[56]. The normal pancreas appearance is characterized by a

homogeneous texture with a finely reticular pattern. Furthermore, the main pancreatic duct

has a smooth wall, and the ventral pancreas is relatively hypoechoic compared with the dorsal

pancreas[72, 20]. However, tumoral lesions are characterized by a complex and heterogeneous

mixture of hyperechoic, anechoic and hypoechoic patterns as a result of necrotic or fluid-filled

cystic areas of the lesions[56].
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Figure 1-4.: Echo patterns in B-mode US images: hyperechoic, hypoechoic and anechoic.

Image enhancement of Echoendoscopy images

Although the usefulness of the EUS to detect and differentiate pancreatic cancer, EUS is a

highly operator-dependent procedure. The EUS utility is influenced by the abilities and skills

of the gastroenterologist and by the hard interpretation of the pancreatic anatomy blurred by

multiple noise sources. Also, solid lesions of digestive disease are typically hypoechoic, which

limits the differentiation between benign and malignant lesions. Therefore, complementary

tools such as Elastography and Contrast-Enhanced EUS have been developed to support the

diagnosis of the disease, improve the quality of the images, support the staging process and

assist the biopsy acquisition[36, 71, 37].

Strain Elastography: superimposed colored map over the B-mode image, acquired

without additional devices. Elastography is the most common post-processing techni-

que used in EUS, which evaluates the stiffness of the tissues, measuring their response

and deformation when a mechanical compression force is applied and quantifying the

displacement of the tissues by a color map. A tumor is defined as malignant or be-

nign using the resultant color patterns, knowing that malignant tumors are composed

of necrotic tissues, being more rigid and denser and causing less motion than normal

surrounding tissues.[71, 37, 11].

The first study that reported the use of Elastography for the evaluation of pancreatic

tissues was in 2006[17, 37]. Recently, many researchers have been applying the tech-

nique to differentiate tissues between pancreatic cancer, benign pancreatic tumors,

pancreatitis, and normal pancreas. Initially, the patterns and predominant color of the

image were used to classify the lesion between malign or benign[17, 32, 18, 27]. Then

quantitative features are calculated to improve the interpretability and objectivity of
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the Elastography technique, such as Histogram or Strain Ratio (SR), defining cut-

off values or using the features as an input to train Convolutional Neural Networks

(CNN)[64, 62, 65]. An example of an Elastography image and the estimation of SR are

shown in Figure 1-5. Moreover, some works that apply Elastography to differentiate

lesions between pancreatic cancer and pancreatitis are shown in Table 1-2.

Autor Strategy Patients Metrics

Giovannini

et al.,

2009 [18]

Differentiate between malignant and be-

nign pancreatic lesions using qualitative

definition depending on the predominant

color (blue or green)

Total: 121

PC: 72

PNETs: 16

Benign: 2

CP: 28

Metastasis: 3

TPR: 92.3 %

TNR:80.0 %

ACC: 89.2 %

Săftoiu

et al.,

2008[64]

Differentiation between normal pancreas,

chronic pancreatitis, pancreatic cancer,

and neuroendocrine tumors, using a cut-off

value of the hue histogram of a 10-second

video

Total: 114

NP: 68

CP: 11

PC: PC

PNETs: 3

TPR: 91.4 %

TNR:87.9 %

ACC:89.7 %

Multilayer perceptron neural network trai-

ned to differentiate between benign or ma-

lignant lesions

AUROC: 95.7 %

Iglesias-

Garćıa

et al.,

2010[29]

Diagnosis of Malignancy in Solid Pancrea-

tic masses using a cut-off value of the

Strain Ratio measure

Total: 86

Malignant: 58

Benign: 28

TPR: 100.0 %;

TNR: 92.9 %

ACC: 97.7 %

Săftoiu

et al.,

2012 [65]

Differentiation between pancreatic cancer

and chronic pancreatitis, training a Neu-

ral Network with the hue histogram of 125

static frames

Total: 258

CP: 47

PC: 211

TPR: 87.6 %

TNR: 82.9 %

ACC: 84.3 %

Table 1-2.: State of the art of Elastography in Pancreatic Cancer. For these works are

computed the following performance metrics: True positive rate or sensi-

tivity (TPR), True negative rate or specificity (TNR), accuracy (ACC),

and receiver operating curve (ROC).

Nevertheless, Elastography is a subjective procedure, highly dependent on the specialist

expertise[86] and biased by the compression force or maneuver. Moreover, a lesion could

have a completely different appearance at different video capturing times[12, 41, 49].

Some studies evaluate the non-usefulness of Elastography in the pancreas because the

small shape of the gland causes incomplete images when lesions are larger than 35 mm.

Therefore, some tumoral borders are lost, and the strain ratio calculation is hindered
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by the difficulty of capturing surrounding reference tissues[35, 26].

Figure 1-5.: Example of an Elastography image and computation of Strain Ratio as

the quotient of a reference area surrounding the mass (B) and a selected

representative area from the tumor (A)[29], taken from [28]

Contrast-Enhanced Echoendoscopy (CH-EUS): procedure to evaluate the vascu-

larity of the lesion. This technique supports the delineation of the lesions and improves

the diagnostic accuracy to differentiate between benign and malignant solid and cystic

pancreatic lesions[63, 37]. The first reported application of CH-EUS was in 1995, using

an intra-arterial CO2 infusion. Then, different echo-enhancing agents were developed

to resonate with the stimulus of the US waves, producing low artifact images[37, 36].

When the enhancement level is maximum, the vascular response is evaluated. Three

vascular patterns are defined to represent the differences between the lesion and the su-

rrounding tissues, such as: hypovascular, isovascular, and hypervascular tumor[67]. An

example of the lesion enhancement is shown in Figure 1-6. The hypoenhanced pattern

associated with adenocarcinoma achieves high sensitivity and specificity (higher than

90 %), even in small lesions[63, 37]. However, CH-EUS is affected by artifacts such as

blooming, overpainting, and motion noises[36].
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Figure 1-6.: Hypoenhacement of the pancreatic cancer tumor. In the B-mode image (left),

the lesion is low echoic (arrows), but in the CH-EUS image (right), the lesion is

hypoenhanced in comparison with the surrounding tissues. The figure is taken

from [36].

Challenges of Echoendoscopy procedure

Detection of pancreatic masses or tumors during an entire EUS video sequence is a very cha-

llenging task because of the several capturing noise sources, namely: a) operator-dependent

component, b) tumoral features and c) image noises. The low diagnostic yield is the most

significant challenge in EUS tissue acquisition, with the potential to negatively impact pa-

tient outcomes yielding improper patient care. A review reported a false negative diagnoses

rate of 4 % to 45 % in solid pancreatic masses using EUS-FNA[81]. EUS challenges are shown

in Figure 1-7 and explained below.

Operator-dependent procedure

EUS is a highly operator-dependent technique. In particular, an experienced gastro-

enterologist requires advanced technical and cognitive skills, i.e., the specific training

process takes between 150 and 225 supervised procedures before a specialist achieves

the competency and learns a proper anatomic interpretation of a reduced field of vision

biased by the ultrasound distortion[55, 85, 59, 8, 30, 79, 5, 81, 80, 86].

Tumoral features

Typically, a mass is recognized by a rounded shape[83], but malignant masses are cha-

racterized by irregular or ill-defined borders[56, 5]. Moreover, the complex anatomy and

tissue architecture visualized in US images is difficult to understand[14, 86]. Further-

more, Chronic Pancreatitis (CP) interferes with PC detection, especially at the early

stages of PC. The differentiation between the inflammation caused by CP from a dis-

crete neoplasm in EUS images is difficult because the symptoms and imaging findings

between the diseases are very similar[2, 68, 55].
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Figure 1-7.: Challenges of Echoendoscopy procedure.

Image Noises

US images are interfered with many sources of noise that difficult the detection of

injuries, such as: the Speckle noise, the curved distortion of the image, and the optimal

angle of incidence, which are explained below.

a Ultrasound images are degraded by the Speckle Noise, an intrinsic artifact produ-

ced by the coherent summation of constructive and destructive ultrasound echoes.

This artifact is a multiplicative noise that introduces a high-frequency component

in the image, changing the intensity level of some pixels. Speckle noise adds a gra-

nular pattern in the image caused by electromagnetic interference when the waves

reflect on the rough surface and impact between them. This very harmful noise

limits the detection of injuries, especially in low-contrast images[47].

b Curved transducers used in EUS procedures distribute the image intensities ra-

dially. The transducers generate a wedge-shaped US beam that affects the appea-

rance of straight anatomical tissues, showing the structures curved, thus, difficul-

ting to understand the ultrasound anatomy[30, 85].

c The quality of the image is related to the resultant angle between the US waves

and the surface of the tissue (angle of incidence). Better images are acquired if the

angle is perpendicular or close because more US waves reflect in the transducer.

The operator has to achieve the ability to tilt or rotate the probe to obtain

adequate images[30].
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1.0.5. State of the art of pancreatic cancer detection using

Echoendoscopy images

Despite the difficulties of the EUS procedure, the impact of PC on the tissue architecture

implies changes that could be extracted using digital imaging processing[14, 86]. Therefore,

some computational strategies have been developed to differentiate PC from pancreatitis or

healthy tissues in pre-selected EUS images[14, 87, 86, 66]. Besides the application of Elasto-

graphy images in EUS video sequences as part of Machine Learning workflows, as shown in

section 1.0.4-Elastography, other computational strategies use the B-mode images. One ap-

proach is textural feature extraction, including measures such as gray level distribution, run-

length, co-occurrence matrix, Fourier power spectrum, and energy[86, 14, 53, 87]. Further-

more, classic deep learning strategies have been applied using typical architectures[43, 38],

such as ResNet50 or other small-scale-deep architectures adapted for EUS images. Studies

that implement the mentioned strategies are presented in Table 1-3, and the most relevant

articles are described below.

Machine learning-based frameworks: Textural analysis has been performed to

train and test SVM workflows. For example, Zhang et al.[86] differentiate PC and

non-PC patches extracted from EUS images, using a collection of 216 cases diagnosed

by two gastroenterologists, of which 153 were confirmed with PC by histopathology

analysis. The remaining 63 cases included patients with normal pancreas and chronic

pancreatitis. A single frame was selected per case and the tumoral region was deli-

neated by a specialist to extract tumoral RoIs, while the remaining area of the frame

was defined as non-tumoral RoI. After the region was pre-selected, a histogram of the

pixel intensities was computed from each RoI to extract a set of fractal features of the

M-band wavelet transform. Such representation was used to feed an SVM classifier,

obtaining 97.98 % of accuracy under a validation scheme of 50 random partitions bet-

ween the training and testing sets. Similarly, Zhu et al.[87] developed a strategy using

frames and RoIs selected by an expert, but in this case, PC samples were differen-

tiated from CP using 262 and 126 EUS images for each class, respectively. A total of

105 statistics were computed for each RoI from the gray level histogram and the wa-

velet transformation, ending up with 25 statistics selected by the Sequential Forward

Selection algorithm. An SVM classifier was trained over 200 trials of randomized ex-

periments, obtaining an accuracy of 94.20 % and specificity of 96.25 %. Although these

methods achieve good results, the influence of expert assistance was not determined.

Likewise, as previously mentioned, positive and negative regions come from the same

frame, making the noise similar, a remarkable reduction of variance since ultrasound

is well known for capturing multiplicative noise[47]. This limitation is also an intrin-

sic weakness of most deep learning approaches, which have been reported to be quite

sensitive to noise[42]. In addition, the wavelet analysis applied by both works is not

rotation invariant and probably might not capture the heterogeneous patterns of the
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tumor regions at different orientations, as usually occurs in a complete exploration.

Deep learning-based frameworks: Neural Networks architectures have been ap-

plied in medical imaging analysis, such as VGGNet, LeeNet, GoogleNet and ResNet[43].

For example, Tonozuka et al.[77] designed a small CNN to predict the location of pan-

creatic tumors using PC and non-PC cases from manually selected images of 139 EUS

videos. The network assembled six blocks for feature extraction, each containing convo-

lution, normalization, and activation layers, and fourth max-pooling layers to downsize

the features maps. At the end of the network, a convolutional layer obtained a sco-

re map with a probability at each position belonging to one of the two classes. The

classification task reported 92.4 % of sensitivity and 84.1 % of specificity. Since the re-

markable results, the strategy performance depends on the expert selection of frames.

On the other hand, Kuwahara et al.[39] developed a strategy to predict whether Intra-

ductal papillary mucinous neoplasms - IPMN (precursor lesions of PC) are malign or

benign. The CNN architecture used was the classical but still competitive ResNet50 as

the feature extractor, followed by a Global average classification layer. This network

was fed with 508,160 images produced by the data augmentation process from 3,970

EUS images recorded from 50 patients diagnosed with IPMN. Performance was eva-

luated under a 10-fold-cross-validation scheme, reporting an accuracy, sensitivity and

specificity of 94.0 %, 95.7 %, and 92.6 %, respectively. In contrast to previous works,

this method took frames from a small temporal interval of the EUS video. However,

the authors did not analyze a complete exploration of the pancreas, or a differential

diagnosis challenge, i.e., pancreatitis cases.

Besides the presented works, Chen et al., Lee et al., and Han et al. [9, 10, 82, 21] analyze

ultrasound images of other organs, such as the breast, liver, and esophagus. The general

disadvantage of the state of the art methods is the semiautomatic component in real practice

and the biased results for the selection of images or patches. Therefore, the lesions are

delineated by experienced gastroenterologists when the tumor is clearly defined, and the

regions are selected without the tumoral borders. So even with the high reported classification

rates, the application scenario is not realistic.
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Challenges in post-processing strategies of Echoendoscopy images

Development and evaluation of the methods to support the detection and differentiation of

PC in Echoendoscopy procedures have some limitations, such as:

Diagnostic PC strategies in the state of the art are evaluated in private databases,

restricting the development of new methods to improve the classification results or to

build clinical applications to support the diagnosis of Pancreatic Cancer.

The state of the art methodologies are semi-automatic in practice because experts

select specific frames or patches, biassing the training and evaluation of the models.

Speckle Noise is a multiplicative noise that affects classical strategies such as Deep Lear-

ning workflows. The impact of this noise does not evaluate in the developed methods.

1.0.6. Contributions

In summary, important advances in detecting PC during EUS procedures have been develo-

ped using imaging processing techniques, but those strategies are semi-automatic in practice,

very susceptible to noise sources, and only evaluated in private databases, as shown in sec-

tion 1.0.5. Hence, the strategies do not model a real clinical scenario.

For those reasons, the main contributions of this work are:

Construction of an annotated Public Database of Echoendoscopy images of the pan-

creas. The dataset includes cases with pancreatic cancer, pancreatitis, and healthy

pancreas (see section 2).

Development of an automatic method that detects pancreatic cancer frame-by-frame

during complete Echoendoscopy videos. The proposed method performs a multi-scale

analysis to characterize the echo patterns and filter the noise sources, usually uncorre-

lated among scales. The method was compared with deep learning-based approaches

of the state of the art, achieving competitive results and being less sensitive to typical

Ultrasound noises (see section 3).

Finally, an additional experimentation with the selected Deep Learning approaches

was performed, testing different balancing techniques of the dataset and evaluating

the impact of pre+post processing methods (see section 4).



2. Pancreatic EUS Database

This chapter is based on the article “Endoscopic ultrasound database of the pancreas” [33],

presented at SIPAIM 2020 and published on the SPIE platform. The article summarizes the

information from the constructed public database of EUS videos from patients with pancrea-

tic cancer, pancreatitis, and healthy pancreas. Abstract: Pancreatic Cancer (PC) is a very

aggressive cancer, with a mortality of 98 % and a 5-year survival rate of 6.7 %[40, 81, 51].

Endoscopic ultrasonography (EUS) is the main imaging modality to detect PC in early sta-

ges. The reported sensitivity of PC diagnosis for an experienced gastroenterologist ranges

from 87 to 100 %[51, 55, 16]. Computational strategies, such as Elastography, have been

developed to support mass malignancy diagnosis. However, the studies evaluate their strate-

gies using private datasets, making results incomparable. This work presents an annotated

open-access database of Endoscopy Ultrasound videos obtained in the Gastroenterology Unit

of the Hospital Universitario Nacional de Colombia and the Unidad de Gastroenteroloǵıa y

Ecoendoscopia. The database consists of a set of 55 cases acquired in the B-mode Ultrasound

image, composed of 18 cases with pancreatic cancer, 5 cases with pancreatitis, and 32 cases

that include healthy pancreas, liver, and gallbladder. Pancreatic cancer cases were confir-

med and staged by pathological examination from biopsy samples and manually annotated

per each video frame. Additionally, a preprocessing methodology is presented to highlight the

useful echo patterns to differentiate pancreatic diseases.
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2.1. Methodology

Although the advances in pancreatic cancer diagnosis, there are no available public databases

of Echoendoscopy videos that include patients with pancreatic cancer to construct new

methodologies and compare them with state of the art methods. Hence, an annotated open-

access database of Endoscopy Ultrasound videos was constructed. A total of 55 cases were

included, divided among 30 women and 25 men whose ages varied between 55 ± 17 years.

The database contains videos of patients diagnosed with pancreatic cancer, pancreatitis,

and healthy pancreas. All the videos with tumors are manually annotated and staged with

the TNM system by an expert gastroenterologist with more than 20 years of experience.

Additionally, a preprocessing step is proposed seeking to highlight relevant texture patterns

in EUS images, such as hyperechoic, hypoechoic or anechoic patterns. Therefore, the radial

distribution of intensities in EUS images is mapped to a Cartesian representation by applying

a polar to Cartesian transformation. Then, a contrast enhancement method was applied to

highlight EUS texture patterns. The methodology pipeline is shown in Figure 2-1.

Figure 2-1.: The proposed methodology incorporates four steps: first, a set of cases was

captured and selected. Then, the frames with additional procedures were de-

leted. Afterward, the tumoral cases were delineated. Finally, a preprocessing

step was proposed to rearrange visual information to highlight echo patterns.

2.1.1. Selection of cases

A set of cases was captured and selected from the Hospital Universitario Nacional de Colom-

bia (HUN) and the Unidad de Gastroenteroloǵıa y Ecoendoscopia (UGEC). The database

includes patients with pancreatic cancer staged and confirmed by a pathology study as ade-

nocarcinoma, patients with a healthy pancreas, and patients with chronic pancreatitis. All

the patients signed an informed consent about the procedure and the permission to use the

information exclusively for scientific purposes.
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Inclusion Criteria

Subjects that sign the Inform Consent

Patients with pancreatic cancer confirmed by biopsy

Subjects with a healthy pancreas

Patients with chronic pancreatitis

Exclusion Criteria

Subjects without clinical history

Patients with inconclusive pathology in the biopsy

2.1.2. Video acquisition and frame selection

EUS procedures were carried out by an experienced gastroenterologist using an Endoscopic

Ultrasound EG-3870UTK (Pentax Medical Company, Tokyo, Japan) combined with a video

processor Noblus Ultrasound Scanner (HITACHI, Tokyo, Japan). The EG-3870UTK has a

curved and linear-array ultrasound transducer, providing a linear beam. The transducer is

configured at a frequency of 7.5 MHz. And the field of view is 120◦ at a direction of 45◦ for-

ward oblique. Each procedure was digitized at a conventional gray-scale B-mode linear EUS

image, using the video recorder function of the Noblus Ultrasound Scanner. Each video was

exported in AVI video format without image degradation or compression. The videos have

a spatial resolution of 800 × 500 pixels and a temporal resolution of 15 frames per second.

Then, the videos were decomposed into a frame collection, and each frame was cropped to

anonymize the image by removing patient, clinical, and device information. Finally, frame

spatial resolution was 711 × 457 pixels.

The whole set of images is extracted in TIFF format, but they correspond to exactly the

same sequence of the original video. Then, a frame selection process was carried out to select

only video intervals with frames without any additional process performed by the specialist

such as Doppler, Elastography, or during the Biopsy procedure, as shown in Figure 2-2.

(a) Doppler (b) Elastography (c) Biopsy

Figure 2-2.: Frames with additional procedures not be included.
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2.1.3. Video annotation

Recall that the video here corresponds to the set of anonymized TIFF images obtained from

the original video sequence. Pancreatic tumors were manually delineated, and the lesions

were described using the visual features and the histopathology result. First, an experimented

gastroenterologist explores all the frames to select those with the presence of a tumor. Then,

the tumoral zone is drawn using a custom interface, obtaining a binary mask of each frame:

1 inside the pathological region and 0 otherwise, as shown in Figure 2-3

Figure 2-3.: Tumoral zone definition in a binary mask: 1 inside the pathological region and

0 otherwise.

2.1.4. Clinical Information

The patient information is collected in a CSV file, such as the clinical history of subjects,

the findings during the EUS procedure, TNM classification, and pathology analysis. First,

clinical information such as age, gender, symptoms, another suspicion exam, and treatment

is extracted from the medical register. Then, cases with the presence of a tumor are described

by the expert specifying the following information: the location of the lesion (head, body,

or tail of the pancreas), endoscopic diagnosis, and size of the mass. The size of the tumor

is estimated by the expert using the endoscope measurement tool to calculate the distance

between two markers positioned at the minor and major axis of the tumor. Furthermore, the

TNM score is defined for the tumoral masses based on the clinical findings of the EUS and

other imaging exams. Finally, the result of the pathology and stage of the tumor is defined

with the EUS-FNA.

2.1.5. Ethical Considerations

This work is carried out following resolution No. 008430 of 1993. Article 11 establishes the

scientific, technical, and administrative standards for research in humans. This project is

classified as research with minimal risk since the proposed methodology only requires the
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use of digital images generated from anonymized endoscopic ultrasound videos, deleting the

names or identification IDs of the subjects included in the study.

Construction of the public video collection was approved by the Institutional Review Board

of the Research Ethics Committee from the Facultad de Medicina - Universidad Nacional

de Colombia (Acta No. 010-083) and conducted according to the Declaration of Helsinki.

Written informed consent was obtained from all participants or authorized representatives

at each site. Each image was anonymized to protect the identity of the participants. More

details about the ethical considerations can be found at https://doi.org/10.1117/12.2581321.

2.1.6. Image Preprocessing

A preprocessing step was proposed to highlight useful echo patterns that describe healthy

and tumoral tissues and filter out the Speckle Noise, a multiplicative noise that affects the

image introducing a granular pattern that difficult the detection of injuries, especially in low

contrast images[47]. Also, the information is mapped to a Cartesian frame to redistribute

the intensities distorted by the curved transducers. The preprocessing step is performed in

three stages, and the pipeline is shown in Figure 2-4. First, the center of coordinates of

the ultrasound cone is found using the Hough transformation. Then, a conventional polar

transformation is carried out to calculate the angle and radius of each pixel. Finally, the

speckle noise is corrected by a median filter with a size of 9× 9 and a contrast equalization

of the histogram is applied using a bell-shaped filter with an alpha of 0.5 as the equalization

target. The configuration of filters was qualitatively optimized based on the spatial resolution

of video frames and aimed to preserve the echo patterns (textures) and borders of anatomical

structures.

Figure 2-4.: Preprocessing methodology: first, the center of coordinates is found (left), then

a polar transformation rearranges the information distributed radially (center),

and finally, a contrast enhancement highlights relevant patterns (right).
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Polar framework transformation

Curved transducers of the EUS procedure, generate a wedge or cone-shaped image, making

straight anatomical structures appear curved. Hence, a polar transformation is applied to

redistribute the information, as shown in Figure 2-5. To apply the transformation, the center

of coordinates is found. First, the image is binarized and is found the borderlines of the mask

using the Hough transformation. The radial center of coordinates corresponds to the point,

external to the image, where the main Hough line crosses with the center of the image.

Selection of the best line avoids the problems with images without well-defined borderlines

of the cone, as shown in Figure 2-6. Once this reference is established, a conventional polar

to Cartesian transformation is carried out by applying the equations shown in 2-1.

(a) Original image (b) Transformed image

Figure 2-5.: Example of redistribution of information.

Figure 2-6.: Center of coordinates finding. Each column means: a) original image, b) bina-

rized image, c) edge of the binary mask (red) and candidate lines (green), and

d) final line and center of coordinates.
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
r =

√
(x− Cx)2 + (y − Cy)2

θ = tan−1( y−Cy

x−Cx
)

(2-1)

Where,

x and y are the Cartesian coordinates of

the pixel

Cx and Cy are the coordinates of the cen-

ter.

Noise reduction and Contrast Enhancement

Medical images are contaminated by different noises that difficult the interpretation task.

Ultrasound images are affected by the Speckle Noise, a multiplicative noise caused by the

constructive and destructive coherent summation of US waves. This noise significantly redu-

ces the contrast resolution, introducing a granular pattern on the image, known as salt and

pepper noise. Speckle noise reduction becomes one of the necessary preprocessing steps in US

images. Some filters are applied to reduce this kind of noise. The basic filter is the median,

which replaces each pixel with the median value in a neighborhood. As a non-linear filtering

technique, the median eliminates the noise but preserves edges and important details of the

image[69, 3]. In this work, the size of the applied median filter is 9×9 pixels.

Also, a tumoral zone in Ultrasound images is characterized by a complex mixture of hy-

perechoic, hypoechoic or anechoic patterns, in contrast with healthy tissues that present

well-defined areas of echo patterns[56]. The generated heterogeneous patterns in PC images

could be visually imperceptible. Hence, the textures are highlighted by an equalization tech-

nique to enhance the image contrasts. The histogram is adapted to a bell-shaped with an

alpha of 0.5 as the equalization target.

2.2. Results

The database includes 46 cases from the Hospital Universitario Nacional de Colombia (HUN),

acquired between May 2019 to June 2020, and 9 subjects from the Unidad de Gastroente-

roloǵıa y Ecoendoscopia (UGEC), collected between January 2015 to June 2016. The cases

were grouped and labeled into three groups: 32 cases as the normal pancreas (NP), 5 cases as

chronic pancreatitis (CP), and 18 cases as pancreatic cancer (PC). In total were included 55

patients with 104 videos because some subjects have more than one video. From the videos,

66,249 frames were extracted and labeled as 16,585 with tumor and 49,664 without tumor.

The clinical information of all cases is summarized in Figure 2-7 and tables 2-1 to 2-2. Also,

detailed information about each patient is presented in Annexes A and B.
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Label
Number

of cases
Male Female Age (years)

Pancreatic cancer (PC) 18 10 8 65.4 ± 10.6

Pancreatitis (CP) 5 4 1 45.8 ± 10.1

Normal pancreas (NP) 32 11 21 51.4 ± 18.3

Table 2-1.: Summary of cases per type of lesion (label), gender, and age.

Symptoms
Label

PC CP NP

Abdominal pain 9 3 19

Jaundice 1 0 4

Emesis 2 2 2

Weigthloss 2 0 2

Diarrhea 0 1 2

Other 1 0 6

None 0 0 5

Not reported 9 2 5

Table 2-2.: Summary of cases per symptoms.

Figure 2-7.: Summary of clinical information of the patients.

The diagnosis of healthy pancreas and pancreatitis cases was confirmed only by endoscopic
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ultrasound analysis. The cases with healthy pancreas include patients with other abnorma-

lities, such as: 4 cases with vesicular polyps, 3 cases with gastric lesion, and other diagnoses

like ascites, dilated bile duct, cholelithiasis, vesicular microlithiasis, and mucous fold. On the

other hand, the cancer cases were diagnosed by endoscopic ultrasound analysis and confirmed

by histopathology examination. The location of the tumors was: 15 cases in the head, 2 cases

in the body, and 1 case in the tail of the pancreas. The mean size of the tumors is 31 ± 13.9

mm. The TNM staging score of the cases with pancreatic cancer is shown in Table 2-3. And

each case was manually delineated by an experienced gastroenterologist. Some examples of

pancreatic tumor annotation are presented in Figure 2-8.

Component
Score

X 0 1 2 3 4

(T) Primary tumor 0 0 2 1 11 2

(N) Regional lymph node metastasis 3 8 5 - - -

(M) Distant metastasis 10 0 6 - - -

Table 2-3.: Summary of Tumor staging score (TNM). The score did not report in two cases.

(a) Case C01 (b) Case C02 (c) Case C03

(d) Case C05 (e) Case C07 (f) Case C09

Figure 2-8.: Examples of EUS images with a manual delineation of the tumoral zone (red

line) performed by an expert.

The preprocessing methodology was validated qualitatively by a gastroenterologist, com-

paring the original and preprocessed images, as shown in Figures 2-9 and 2-10. The echo

patterns identification is difficult using the original images because some regions have low

contrast(column a). On the other hand, the result of the preprocessing step highlight the
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shadowed regions, improving the visualization of the echo patterns and the feasibility of

comparing the inside textures with the surrounding patterns(column c).

In summary, the database is organized in folders for healthy pancreas, pancreatitis, and

pancreatic cancer cases. Each folder contains a set of images in TIFF format organized as

follows: a) the original images of each case without personal information of subjects, b)

the preprocessed images, and c) the binary mask as the result of the manual annotation

of pancreatic cancer cases. Furthermore, a CSV file contains the clinical information about

all the subjects, such as the age, gender, tumor size, location of the tumor, stage of the

disease, endoscopic diagnosis, and pathology result. Finally, the database is available on the

website http://cimalab.unal.edu.co/?lang=esmod=programid=26 after the user fills out a

short online form asking for the complete name, mail, and affiliation.

(a) Original image (b) Transformed image (c) Final image

Figure 2-9.: Preprocessing result: each row corresponds to a frame of a particular case, and

the columns represent the original images (a), the resulting images after the

polar transformation(b), and the final result of the preprocessing step (c).
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Figure 2-10.: Qualitative result of the preprocessing step. Pattern enhancement of healthy

tissues (bottom) and tumoral lesions (top).

2.3. Conclusions

The proposed database builds a publicly available set of videos captured during endoscopic

ultrasound procedures of the pancreas. The database contains three groups of cases diagnosed

by an expert such as healthy pancreas, pancreatitis, and pancreatic cancer. Therefore, the

database may be used to develop diagnostic support tools for the detection and differentiation

of pancreatic diseases. Moreover, the database includes tumors smaller than 30 mm, enabling

the development of methods to perform an early diagnosis of PC. Furthermore, the database

collects patients with pancreatitis, enabling the differentiation between malignant tumors

and benign inflammation, a task with higher subjectivity in clinical practice. Finally, the

clinical information of the subjects and the tumor description are valuable features to relate

the EUS procedure to risk factors and prognosis of the disease.



3. Pancreatic Tumor Detection

This chapter is based on the article “Robust descriptor of the pancreas tissue for automatic

detection of pancreatic cancer in endoscopic ultrasonography”[60], published in the Ultra-

sound in Medicine and Biology journal. Abstract: Pancreatic Cancer (PC) has reported

mortality of 98 % and a 5-year survival rate of 6.7 %. Experienced gastroenterologists find

out 80 % of the early stages with endoscopic ultrasonography (EUS). This paper proposes

an automatic second reader strategy to detect PC in an entire EUS procedure, rather than

focusing on pre-selected frames as the state of the art methods do. The method unmasks echo

tumoral patterns in frames with a high probability of tumor. First, Speeded-Up Robust Fea-

tures define a set of interest points with correlated heterogeneities among different filtering

scales. Afterward, intensity gradients of each interest point are summarized by 64 features

at certain locations and scales. A frame feature vector is built by concatenating statistics of

each feature of the 15 groups of scales. Then, binary classification is performed by Support

Vector Machine and Adaboost models. The evaluation was performed using a dataset with

55 subjects, 18 of PC the class (16,585 frames) and 37 subjects of the non-PC class (49,664

frames), randomly splitting ten times. The proposed method reached an accuracy, sensitivity,

and specificity of 92.1 %, 96.3 %, and 87.8 %, respectively. The observed results are also stable

in noisy experiments while deep learning approaches fail to maintain similar performance.
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Typically, a tumoral zone is characterized by heterogeneous patterns, in contrast with healthy

tissues, usually composed of well-defined areas, i.e., mixtures of hyperechoic, hypoechoic or

anechoic patterns[56], as illustrated in Figure 3-1. This work introduces a novel second reader

by constructing a customized descriptor of pancreatic tumors. The method accurately detects

frames with a high probability of containing pancreatic adenocarcinoma during endoscopy

ultrasound procedures. The proposed descriptor captures the heterogeneous visual patterns

of tumoral regions by transforming the image to the SURF space at a particular scale and

with a preferred direction. A strong correlation of different intensity gradients at multiple

scales in the area surrounding these points captures the altered tissular architecture. Such

description demonstrated to successfully differentiate frames with or without pancreatic ade-

nocarcinoma. The presented approach outperformed state of the art deep learning algorithms

with lower complexity and training times.

Figure 3-1.: Two frames extracted from EUS videos show the different echo patterns:

healthy regions (left panel) are composed of hyperechoic (square), hypoechoic

(circle), and anechoic (diamond) patterns, while images with pancreatic cancer

(right panel) contain very heterogeneous regions (polygon).

3.1. Methodology

The pipeline of the proposed methodology is shown in Figure 3-2. First, the radial distribu-

tion of intensities is transformed to Cartesian coordinates and then enhanced by histogram

equalization. Regions with heterogeneous patterns are located by the Speeded Up Robust

Features (SURF) method, which detects points of interest at a specific image coordinate,

Gaussian radius (referred to as scales), and orientation[4]. Regions surrounding the detected

points, whose size is defined by the Gaussian radius, are characterized by 64 Haar wavelet

features describing the regional gradients. The set of obtained regions depends on the num-

ber of scales, which is clustered into 15 groups and described by computing different feature

statistics per group. A frame is characterized by a relevant set of 256 features found by the
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minimum Redundancy-Maximum Relevance (mRMR)[58] algorithm. Finally, two machine

learning models, Adaboost and SVM with RBF and Linear kernels, classify images as con-

taining or not malignant tumors. The video acquisition protocol and image preprocessing

step are described in chapter 2.

Figure 3-2.: The pipeline of the proposed method incorporates four steps: (a) a preproces-

sing step rearranges visual information and reduces the speckle noise. Then, a

set of interest points are detected (b) and described (c) by the SURF algorithm.

Finally, such description was used to train and test machine learning models (d)

to classify EUS images between pancreatic cancer and non-pancreatic cancer.

3.1.1. Detecting the Regions of Interest

Echogenicity, the ability to reflect or transmit US waves depending on the tissue composition[30,

56], characterizes tumoral lesions as a complex and heterogeneous mixture of hyperechoic,

anechoic and hypoechoic patterns as a result of the tumoral necrotic or fluid-filled cystic

areas[56]. A multi-scale analysis by the Speeded-Up Robust Features (SURF) aims to de-

tect points surrounded by regions with heterogeneous patterns[4]. Briefly, a scale-space is

generated by a set of Gaussian second-order derivative filters (Hessian matrix) of different

Gaussian radii or scales and grouped by octaves and levels. An octave is a set of filters whose

size is regularly increased by a pre-fixed step, and the number of levels corresponds simply

to the number of filters per octave. The present analysis was carried out with octaves whose

increments were 6, 12, and 24, with 5 levels per octave, resulting in Gaussian second-order

derivative filters whose radii vary between 1.6 to 16.4 (9× 9 to 123× 123 window size, res-

pectively). A set of response maps is obtained by convolving each filter with the integral

image computed from the US frame. Thus, the scale-space corresponds to the determinant

of the per-pixel-Hessian matrix at each response map.
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After a scale-space is built, candidate points of interest are those positions with a Hessian

determinant greater than 500. A threshold is picked from the minimal level of variation of

regions with hyperechoic, anechoic, and hypoechoic patterns. Afterward, a point of interest

corresponds to a three-dimensional neighborhood (3 × 3 × 3) of a candidate point whose

center is a Hessian maximum for three consecutive scales and a specific octave. A quadratic

interpolation then locates the neighborhood extremum which is approximated by one of the

114 filters with window sizes between 9 × 9 to 123 × 123 (Gaussian radius values between

1,6 to 16,4).

Figure 3-3.: Example of detected interest points over an EUS image(b). Each point is des-

cribed by a position, scale, and orientation(a). And, overlapped points are

deleted (c) or those near the black mask.

Some detected points are deleted following two criteria. First, when the point area overlaps

in more than 80 % of the outer cone or remaining black regions after the polar transformation

(see Figure 3-3.d). And when two points are separated by a maximum of 7 pixels on the

same scale or two consecutive scales (see Figure 3-3.c). At the end of the process, each

image is represented by a set of interest points described by its position and scale, as shown

in Figure 3-3.a.

3.1.2. Describing the Regions of Interest

Once relevant regions are detected as points of interest, their echographic patterns are cha-

racterized by the SURF descriptor as a vector of 64 features. To describe the points, the

dominant regional direction is determined by computing the Haar wavelet coefficients in x

and y directions within a square whose side length is 4×s (four times the scale) and which is

displaced within a circular area around the point of interest with a radius of 6×s by applying

sample steps of s. The x and y Haar coefficients per sample step are represented with a vector

centered at the origin, and a sliding orientation window of size π/3 adds up these vectors,
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obtaining a representative vector for each rotating window. Finally, the direction with the

highest magnitude is the dominant gradient orientation. Afterward, a squared area with a

size of 20 × s is aligned to this dominant direction, placed around the center of the point

of interest, and divided into 16 windows, subdivided into 25 sub-regions. The Haar wavelet

coefficients dx and dy in x and y directions are computed for each of the 25 sub-regions.

Finally, each of the 16 windows is described by the tetraplet
[∑

dx,
∑
dy,
∑
|dx|,

∑
|dy|
]
,

yielding a feature vector with 64 dimensions. This process is shown in Figure 3-4.

Figure 3-4.: Regions of Interest description workflow. First, an area around the detected

point is divided into 16 regions, described by 4 features:
∑
dx,

∑
dy,

∑
|dx|,

and
∑
|dy| as the result of the Haar wavelet analysis dx, dy within 25 subdi-

visions of the 16 sub-regions. Finally, the area of the point is characterized by

64 features (16 regions × 4 features).

At this point, the feature vectors of regions of interest with a similar scale are clustered in

15 groups and a statistic is computed for each feature, i.e., each group is represented as a

vector with 64 dimensions, as shown in Figure 3-5. Different statistics were tested, namely

the mean, median, mode, entropy, and minimum and maximum values for the 15 groups.

The best representation is set by a feature selection process, as explained below.
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Figure 3-5.: The feature vector that describes an EUS image is computed in 3 steps: First,

features of the interest points are grouped by scales. In each group, a statistic

is computed for each of the 64 features. Finally, the statistics computed in

the 64 features for the 15 groups are concatenated for a subsequent feature

selection process.

Selection of most relevant scale and feature statistics:

From the total of 5.760 features, namely mean, median, mode, entropy, and minimum and

maximum values from the groups of scales, the minimum Redundancy-Maximum Relevance

(mRMR)[58] selected the most discriminant features. A first experiment chose the relevant

scales, and then the most important statistics were determined, as shown in Figure 3-6.

Specifically, the first experiment consisted of building, for each group of scales (15 groups),

a feature vector concatenating all feature statistics (6 statistics × 64 features = 384 dimen-

sions), and then the mRMR algorithm selected the twenty most relevant features per group

of scales. A counter was storing the number of times a specific statistic was selected as dis-

criminative for the 15 groups. Finally, the statistic with the highest frequency among groups

was considered as discriminative, as shown in the top panel of Figure 3-6. Similarly, in a se-

cond experiment, a feature vector concatenates each statistic over all the scales (15 groups of

scales × 64 features = 960 dimensions). Therefore, scales with the highest frequency among

groups were considered as discriminative, as shown in the bottom panel of Figure 3-6. A

summary of the resultant cumulative frequency of this process for the ten iterations is shown

in Figure 3-7, being the median the most relevant statistic for the group of scales 2 to 5.
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Figure 3-6.: Feature selection process. The top panel shows the process to select the most

relevant statistic using the minimum Redundancy-Maximum Relevance algo-

rithm. And in the bottom panel shows the process to select the most relevant

groups of scales.
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Figure 3-7.: Cumulative frequency for the ten iterations of the feature relevance statistics

(right) and scales (left).

From described experiments, the median was chosen after evaluation with the mRMR selec-

tor. The resulting feature vector per frame is then built by concatenating the vectors of four

groups of scales, from 2 to 5, making a total of 256 characteristics.
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3.1.3. Detection of pancreatic tumor frames

A binary classification task consists in selecting frames with a malignant pancreatic tu-

mor (the positive class) against another tissue (the negative class), which stands for images

containing other organs commonly observed during an EUS exploration, like the healthy

pancreas, the liver, and the gallbladder, or frames with pancreatitis. This classification is

performed by a machine learning classifier, trained with a feature matrix extracted from a

set of frames used only for training. Each row of the feature matrix corresponds to a feature

vector (256 characteristics explained in the previous section) computed from a frame and a

label “1” if the class is positive or “0” otherwise. Afterward, the trained model predicts the

label from another set of frames for testing, i.e., frames with an unknown label. Two conven-

tional but representative machine learning models are evaluated: Adaboost and SVM with

RBF and Linear kernels. Once the model predicts the labels of the video frames, a further

refinement consists in filtering out mislabeled frames by a simple strategy that approximates

the sequence to a stationary stochastic process within a moving window of 61 frames. This

process assigns one to a frame if at least 25 % of the frames within the window are positive.

3.1.4. Dataset

The proposed approach was assessed using EUS videos from 55 subjects of the public data-

base described in chapter 2. The database includes patients in one of the following groups:

healthy pancreas, chronic pancreatitis, or pancreatic cancer. Each diagnosed case with pan-

creatic cancer was confirmed by histopathology examination from biopsy obtained with an

EUS-guided fine-needle aspiration (FNA). A high agreement was observed between expert

diagnosis and histological confirmation. But the gold standard in this work was the patho-

logy examination, thereby avoiding a second gastroenterologist opinion. Among the cases,

32 patients were reported as having normal pancreas, 18 patients were diagnosed with pan-

creatic adenocarcinoma, and 5 patients were informed with pancreatitis. Among the normal

pancreas cases, three were suspected of having a gastrointestinal stromal tumor, a lipoma

tumor compatible with a gastric subepithelial lesion, and an early gastric lesion, respectively.

The masses confirmed with PC were manually delineated by a trained gastroenterologist.

The lesions were measured on average 32± 9× 31± 8mm. The smallest recorded mass had

15× 24mm, and the largest had 43× 38mm. Most pancreatic tumors (fifteen), were located

in the head, while two were reported in the body and one in the tail.

3.1.5. Implementations

All methods were implemented in MATLAB platform v. 2020b (MathWorks Inc., Natick,

Massachusetts, USA). The parametrization of each methodological step is detailed in its co-

rresponding section in the methods. In summary, the median filter was set with a kernel size

of 9×9 pixels, and the histogram equalization with a bell-shaped function with an alpha of 0.5
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(Rayleigh distribution). The scale-space for discrete multiresolution analysis was constructed

with three octaves and five levels per octave. The threshold of Hessian determinant to define

the regions of interest from candidates was 500. For the AdaBoost model, the ensemble of

weak learners was constructed using decision trees in 100 iterations. And, for the SVM model

with linear and radial base kernels, the parameters were set as default. Code for reproducing

the reported results is available at https://github.com/jaruanob/PancreaticCancerDetection-

EUS.git.

3.2. Evaluation and results

The performance of the proposed approach was evaluated under a random subsampling

cross-validation scheme and was compared with three different typical Convolutional Neural

Networks (CNN).

3.2.1. Experimental setup

For the classification task, (a) an AdaBoost classifier was trained with an ensemble of decision

trees during 100 iterations, while the SVM classifier used either (b) RBF, and (c) Linear

kernels. The trained models perform a binary classification per frame, being pancreatic cancer

the positive class and healthy pancreas, liver, gallbladder, or pancreatitis, the negative class.

The evaluation included the computation of True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN). Subsequently, using these values, six metrics were

calculated: Accuracy (Acc), Sensitivity (Sens), Specificity (Spec), Positive Predictive Value

(PPV) or precision, Negative Predictive Value (NPV), and F-measure (F), as shown in Table

3-1.

Metric Description Equation

Accuracy Rate of correctly classified frames and the total frames TP+TN
TP+TN+FP+FN ∗ 100

Sensitivity Proportion of correctly classified frames of a specific

class

TP
TP+FN ∗ 100

Specificity Rate of correctly classified frames of other classes TN
TN+FP ∗ 100

Precision Predictive power to classify a specific class TP
TP+FP ∗ 100

NPV Predictive power to classify other classes TN
TN+FN ∗ 100

F-score Weighted combination of precision and sensitivity TP
TP+ 1

2
(FP+FN)

∗ 100

Table 3-1.: Metrics to evaluate the performance of the models.
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Random subsampling validation process

A 70-30 validation scheme was applied 10 times to two different databases, i.e., 70 % (≈
39 cases) was used for training and 30 % (≈ 16 cases) for testing. The two databases are

configured as follows:

Unbalanced dataset : the original dataset contains approximately 25 % of frames assig-

ned to the positive class.

Balanced dataset: the original dataset was randomly subsampled to obtain a similar

number of frames for each class.

Finally, feature selection explained in section 3.1.2 was applied only to the training set at

each of the ten iterations, as explained below. In summary, a feature vector of 256 dimensions

consists of the median of 64 features from groups of the scales 2 to 5. Such feature vector is

used to train and test the three classification models below.

3.2.2. Results of the random subsampling validation process

According to the experimental setup, the results of the three classification models with the

two databases are shown in Table 3-2. In general, results show this configuration (feature

median from groups of scales 2 to 5) discriminates between the two classes using the three

classifiers. However, sensitivity and accuracy increased using balanced data, while specificity

decreased. The best performance was achieved by the SVM classifier with RBF kernel, i.e.,

the average accuracy of 92.1 %, sensitivity of 96.3 %, specificity of 87.8 %, and F-measure

of 92.4 %. Additionally, the Receiver Operating Characteristic (ROC) curves of the three

classification models, as observed in Figure 3-8, show an Area Under the ROC Curve (AUC)

greater than 93.7 %. Detection of small masses is however of particular interest, and in this

case the two smaller masses ( 22 × 18mm and 20 × 20mm) were detected in the sequence

of frames with a sensitivity of 94.4 % and 87.9 % by the best configuration (SVM Classifier

with RBF kernel).
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Figure 3-8.: ROC curves for each classification model (columns) using unbalanced and ba-

lanced datasets (rows). The X-axis and Y-axis correspond to TP and FP rates

( %), respectively. Each graph shows the ROC curves for the random subsam-

pling validation process (10 iterations) and the average AUC.

Few cases showed mislabeled frames, False-negative, and three cases with sensitivity under

80 %, i.e., 67.4 %, 68.4 %, and 74.9 %. Figure 3-9 shows a mislabeled frame from each of

these cases, indicating the lesion with a red arrow. The left panel belongs to a video in

which the tumor is rarely visible, contaminated by typical transducer reverberation (green

arrow). In the mid panel, the echo patterns of a small lesion (25 × 25mm) are blurred by

abrupt exploration movements. Finally, in the right panel, a rare tumor is observed, basically

as isoechoic patterns, very far from the typical hypoechoic patterns in the database. These

three cases, quite far from distinctive tumoral echo patterns, were misclassified. It is worthy

to mention that none of the state of the art methods was capable of correctly classify the

patterns of right and left images in Figure 3-9, indicating the number of examples is still

very small.

Distribution of classes Classifier Acc( %) Sens( %) Spec( %) PPV ( %) NPV ( %) F-measure( %)

Unbalanced classes

(25 % PC / 75 % non-PC)

SVM (linear kernel) 90.6±3.8 89.1±5.1 91.1±4.6 77.9±9.2 96.2 ± 1.8 82.8±6.3

SVM (RBF kernel) 90.6±3.6 88.6±6.9 91.3±3.6 77.9±7.9 96.0 ± 2.3 82.7±6.5

AdaBoost 90.4±3.4 87.0±5.9 91.5±3.8 78.1±8.0 95.5 ± 2.0 82.1±5.9

Balanced classes

(50 % for each class)

SVM (linear kernel) 91.7±2.7 97.1±1.9 86.2±5.3 87.9±3.9 96.8 ± 2.1 92.2±2.3

SVM (RBF kernel) 92.1±2.7 96.3±2.4 87.8±4.5 89.0±3.6 95.9 ± 2.6 92.4±2.5

AdaBoost 91.9±2.7 96.1±2.4 87.6±5.9 88.9±4.3 95.8 ± 2.4 92.3±2.3

Table 3-2.: Classification results using the best configuration of the proposed approach.
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Figure 3-9.: Three different cases with the presence of Pancreatic Cancer were misclassified

in some frames. The red arrows show the location of lesions by the expert. The

strategy misled when the lesion was partially visible (left image), unfocused

echo patterns caused by abrupt movements (center), and an unusual pancreatic

tumor showing isoechoic patterns (right).

Comparison with convolutional neural network-based strategies

The proposed approach was compared with three Convolutional Neural Network architec-

tures typically used for EUS image classification tasks, namely GoogleNet, ResNet18, and

ResNet50[85, 43, 39, 77]. GoogleNet architecture has been used to detect masses in different

organs[43]. While the ResNet architecture has been applied to differentiate pancreatic can-

cer from pancreatitis or normal pancreas[39] or to detect organs or stages during the EUS

procedure[85]. The networks were initialized with pre-trained weights and adjusted following

a transfer learning scheme[61]. Each network was configured with the following parameters:

A Stochastic Gradient Descent as optimizer.

The loss function is Cross-Entropy.

A exponential decay strategy to decrease the learning rate during the training.

A grid search process was applied for each network to find the optimal values of four hyper-

parameters in 30 trials, such as: initial learning rate, batch size, multiplicative factor, and

step size of the learning rate decay strategy[1]. The networks were challenged with the same

iterations of the random subsampling validation process applied to the proposed approach

and using a balanced dataset to avoid overfitting. Additionally, ∼9 % of the training data

is separated to validate the networks at each epoch. The best model for each network was

chosen as the model with the highest validation accuracy along 40 epochs. Then, the selected

model was evaluated with the test set. The best configuration of the proposed method is

described at the end of section 3.2.1 was used to compare. Results are shown in Table 3-3.

The proposed approach outperformed the networks in two metrics, with the highest average

sensitivity, 96.3 %, to differentiate PC from control. The baseline approaches achieved ave-

rage specificity of 89.4 %, a value slightly higher than the 87.8 % obtained by the presented
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approach. In general, the method outperformed the others to detect the negative and positive

classes, reaching 92.1 % of average accuracy.

Strategy Configuration Acc( %) Sens( %) Spec( %) PPV( %) NPV( %) F-measure( %)

Proposed approach
Median of features from

4 scales + SVM (RBF kernel)
92.1±2.7 96.3±2.4 87.8±4.5 89.0±3.6 95.9 ± 2.6 92.4±2.5

Deep learning-based

frameworks

GoogleNet (Liu et al.[43]) 87.2±4.1 85.0±8.2 89.4±6.2 86.8±4.7 86.1 ± 6.0 89.4±5.2

ResNet18 (Liu et al.[43]) 85.6±4.2 81.8±10.1 89.4±6.9 84.8±5.2 83.8 ± 6.7 89.3±5.5

ResNet50 (Kuwahara et al.[39]) 90.0±3.0 86.9±6.0 93.0±3.8 89.6±3.4 87.9 ± 4.7 92.8±3.5

Table 3-3.: Comparison between the proposed approach with three deep learning strategies

under the same validation process.

Evaluation with images corrupted by white and speckle noise

Multiplicative noise is always present in EUS images, specifically the Speckle Noise. Also, US

images are perturbed by stochastic noises such as White Noise. Both noises are exacerbated

by the device maneuver during EUS exploration, distorting the tissues and difficulting the

detection of masses or pathologies. This condition was simulated by corrupting the testing set

with speckle noise (1, 10, 20, and 30 %) and white noise (1, 10, 20, and 30 %), and data was

also 70-30 partitioned. All methods were firstly evaluated without noise, and the results were

similar to the ones presented in section 3.2. Afterward, the noise was applied, as previously

mentioned, and the results, in terms of F-measure, are shown in Figure 3-10 (complete data

is shown in Annexe C). The proposed method with the three different models maintains

almost the same F-measure as the observed without noise, independently of the added noise

level. Interestingly, the networks were strongly affected, and their performance decreased.

While proposed models maintain the F-measure above 94 % for the different levels of Speckle

Noise, the ResNet50 falls down to 65 %, and the GoogleNet keeps about 90 %. Notice that

the performance is also decreased when white noise is added, and sometimes the pattern

is quite erratic, i.e., the ResNet50 falls down for 10 % of noise, but then the performance

improves a little bit with higher noise proportions. However, the performance of the nets is

always lower than the machine learning models.
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Figure 3-10.: Performance (F-measure) of the proposed method and the baseline strategies

when the test set is contaminated with speckle (up) and white (down) noise in

different proportions. Proposed models maintain the F-measure above 94 %,

independly of noise levels. However, the performance of the nets is always

lower than the machine learning models. The ResNet50 falls down to 65 %,

and the GoogleNet keeps about 90 %. Sometimes the pattern is quite erratic,

i.e., the ResNet50 falls down for 10 % of noise, but then the performance

improves a little bit with higher noise proportions.

3.3. Discussion

This work introduces a second reader of pancreatic cancer (PC) in Endoscopy Ultrasono-

graphy (EUS) videos by detecting frames with tumoral pancreatic masses. Although compu-

tational tools have been developed as second readers for EUS procedures, they have addressed

limited scenarios. Usually, they are semiautomatic and identify between PC, CP, or NP in

pre-selected EUS images or Regions of Interest (RoI)[85, 86, 63]. For instance, Zhang et

al.[86] differentiate PC and non-PC patches extracted from a collection of EUS images com-

posed of 216 cases diagnosed by two gastroenterologists. Of the cases, 153 were confirmed

with PC by histopathology analysis. The remaining 63 cases include patients with NP and

CP. For each case was selected a single frame, and the tumoral region was delineated by a

specialist to extract RoIs. Inside regions of the lesion was defined as tumoral RoIs. While,

the rest of the frame was defined as non-tumoral RoIs. This choice implies that the same

type of noise is present for the positive and negative classes, and an inevitable bias that was

avoided in the present investigation by including different frames and cases in the negative

class. After the region was pre-selected, a histogram of the pixel intensities was computed

from each RoI to extract a set of fractal features of the M-band wavelet transform. Such
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representation was used to feed an SVM classifier, obtaining 97.98 % of accuracy under a

validation scheme of 50 random partitions between the training and testing sets. Similarly,

Zhu et al.[87] developed a strategy using frames and RoIs selected by an expert. But, in

this case the PC samples were differentiated from CP using 262 and 126 EUS images for

each class, respectively. A total of 105 statistics were computed for each RoI from the gray-

level histogram and the wavelet transformation, ending up with 25 statistics selected by the

Sequential Forward Selection algorithm. An SVM classifier was trained over 200 trials of ran-

domized experiments, obtaining an accuracy of 94.2 % and specificity of 96.25 %. Although

these methods obtained good results, the influence of expert assistance was not determined.

Likewise, as previously mentioned, positive and negative regions come from the same frame

and therefore the noise is similar, a remarkable reduction of variance since ultrasound is well

known for the capturing multiplicative noise[47]. This is not only a limitation of this expe-

rimental setup but also an intrinsic weakness of most deep learning approaches, which have

been reported to be quite sensitive to noise[42]. In addition, the wavelet analysis applied

by both works is not rotation invariant and probably might not capture the heterogeneous

patterns of the tumor regions at different orientations as usually occurs in a complete ex-

ploration. In contrast, the method herein proposed identifies which frames may contain a

PC along a complete EUS video sequence without any expert intervention, while the SURF

wavelet analysis was aligned by the dominant orientation of the interest points, capturing

diverse patterns and preserving the description regardless of the view.

Deep learning-based frameworks have been applied to classify ultrasound images in different

organs, i.e. Liu et al.[43] and Kuwahara et al.[38] with the GoogleNet architecture. Tonozuka

et al.[77] designed a small CNN to classify PC and non-PC cases from manually selected

images of 139 EUS videos. This network assembled 6 blocks for feature extraction, each

containing convolution, normalization, and activation layers, and 4 max-pooling layers which

downsize the features maps. At the end of the network, a convolutional layer obtained a score

map with a probability of each position to be one of the two classes. The classification task

reported 92.4 % of sensitivity and 84.1 % of specificity, yet remarkable results, the strategy

performance depends on expert selection. In contrast, the method herein proposed is fully

automatic and detects PC frame-by-frame, with a sensitivity and specificity of 96.3 %, and

87.8 % respectively. On the other hand, Kuwahara et al.[39] developed a strategy to predict

whether precursor lesions of PC or Intraductal papillary mucinous neoplasms (IPMNs) are

malign or benign. The CNN architecture used was the classical but still competitive ResNet50

as the feature extractor, followed by a Global average classification layer. This network was

fed with 508,160 images produced by the data augmentation process from 3,970 EUS images,

recorded from 50 patients diagnosed with IPMN. Performance was evaluated under a 10 fold-

cross-validation scheme, reporting a 95.7 % of sensitivity, 92.6 % of specificity, and accuracy

of 94.0 %. In contrast to previous works, this method used frames from a small temporal

interval of the EUS video. Nevertheless, these authors did not analyze a complete exploration

of the pancreas, or a differential diagnosis challenge, i.e., pancreatitis cases. To compare
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with these deep learning-based frameworks (see section 3.2.2), two optimized versions of

ResNet and GoogleNet networks were tested with the collection of videos used in this work.

The ResNet50 architecture reached 90.0 % of average accuracy, 86.9 % of sensitivity, and

93.0 % of specificity. In contrast, the method herein presented, computationally much less

expensive, showed higher averaged accuracy (92.1 %), a sensitivity of 96.3 %, and a precision

of 92.4 %. Additionally, these networks were very sensitive to typical noises when the testing

set was contaminated with either white or speckle noise at different percentages (see section

3.2.2). In the case of white noise, uncorrelated at different scales, the proposed approach was

more robust, obtaining an F-measure above 88 %. In the case of speckle noise, the proposed

method, independently of the added noise level, obtained an F-measure above 94 %, while

the ResNet50 network hardly reached a 65 % of F-measure when speckle noise was 30 %.

The proposed method outperformed state of the art neural networks, likely because this

strategy characterizes relevant texture patterns by a feature adjusted multi-scale descrip-

tor. In addition, this method is robust to noise, an acknowledged limitation in the case

of neural networks that have a strong data dependency and may overfit, which looks the

case here. Furthermore, the actual applicability of deep learning methods is at least com-

plicated because these models require constant re-training in a problem with few data. The

presented method also showed limitations, mainly related with the number of examples for

particular conditions, precisely certain types of rare tumors, hidden lesions that demand mo-

re abrupt maneuvers of the gastroenterologist, and partially visible lesions. Nevertheless, the

performance of the method was remarkable, with specificity above 90 %. Finally, the current

method implementation in MATLAB is not optimized, and yet the average execution time

to process a frame in the whole database (66,249 frames) using a regular laptop (Intel Core

i7 with 4 cores running at 2.20 GHz and 8 GB of RAM) was 0.465 ± 0.028 seconds per

frame.

Other methods have focused on using EUS elastography and contrast-enhanced techniques,

to characterize PC. Saftoiu et al.[64, 63] applied a multi-layer perceptron to classify EUS

using any of these features. In the former case[64], the network was fed by features of the

hue histogram, reporting an average accuracy of 95 %. In the latter case[63], the contrast-

enhanced EUS histogram was reported to obtain a sensitivity of 94.64 % and specificity of

94.44 %. However, multi-center evaluation has shown elastography is highly dependent on

the force the specialist applies to the intestinal wall, i.e., a constant endoscope force during

an actual maneuver is hardly reproducible[41]. On the other hand, the contrast-enhanced

EUS procedure requires intravenous contrast agent injection, reason why this is not routinely

used in endoscopy exams.

3.4. Conclusions

The proposed approach detects pancreatic cancer during video endoscopic ultrasonography

procedures. The method outperformed state of the art methods at identifying frames with
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and without tumors, even in simulated noisy conditions, while data dependence is remarkably

lower. In addition, the method does not require a pre-selection of potentially suspicious

frames, i.e., the strategy is able to deal with a complete exploration of multiple organs

and the typical noisy conditions throughout a complete video, making this methodology

more real application. The strategy may be used as a guide for interns during training,

i.e., while they learn to interpret the anatomy of the pancreas, they may also learn the

echo patterns associated with lesions. This guidance would speed up the learning process of

trainees, incrementally improving their lesion identification. Likewise, the methodology does

not require a specific configuration of the ultrasound device since the method was developed

with a typical configuration, being easy to use and get started. In contrast, for the experts,

the tool may be a trustworthy second reader, as demonstrated by the collection of cases

herein evaluated.

The cases[33] and implementation[60] used in this work are publicly available. Although the

proposed method is not significantly expensive in computational terms, future work includes

developing a real-time application to be used in clinical practice by migrating the current

implementation to compiled programming languages. In addition, to feed the database with

pancreatitis cases and exceptional situations such as those producing false negatives
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Learning approaches in

echoendoscopy videos

This chapter shows an additional experimentation of the Deep Learning approaches used to

compare the methodology of section 3. Herein is presented a procedure to capture the pre-

viously mentioned heterogeneous EUS patterns based on a deep learning approach, adapting

pre-trained nets to the EUS domain by a transfer learning strategy. Such characterization

is performed frame-by-frame using classical architectures such as ResNet and GoogleNet.

Therefore, two methodologies are presented to differentiate pancreatic cancer in complete

sequences of frames. First, in section 4.1, the nets are trained to solve a binary problem,

differentiating frames between pancreatic cancer and non-pancreatic cancer. Also, the nets

are trained using optimized hyperparameters, and the impact of the pre+postprocessing

step is evaluated. Moreover, the impact of introduced noises is evaluated. Second, in section

4.2, the ResNet50 was selected to solve a multiclass problem, differentiating frames between

pancreatic cancer, pancreatitis, and healthy pancreas.

4.1. Automatic detection of PC using deep learning

framework

This subsection is based on the article “Automatic detection of pancreatic tumors in endosco-

pic ultrasound videos using deep learning techniques”[34] presented to participate at Medical

Imaging 2022 of SPIE, accepted for oral presentation, and published on the SPIE platform.

Abstract: Pancreatic Cancer (PC) is one of the most aggressive cancers, with a morta-

lity rate of 98 %. Although the diagnosis of PC is difficult in early stages, several imaging

techniques support the screening process, i.e., ultrasonography (US), computed tomography

(CT), and endoscopic ultrasound (EUS). EUS procedure reports the highest sensitivity (up to

87 %), and histological samples may be acquired during the same procedure. However, EUS

sensitivity depends on the gastroenterologist’s experience. The presented method performs an

automatic frame-by-frame detection of PC in complete EUS videos. First, the images are pre-

processed to rearrange the radial image intensities, filter out the Speckle Noise, and perform a

contrast enhancement to highlight relevant echo patterns. Then, a pre-trained Convolutional
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Neural Network (CNN) is adapted to the ultrasound domain by a transfer learning strategy

to characterize and classify EUS images between PC and non-PC classes. Finally, mislabeled

images are corrected by a temporal analysis. The methodology is evaluated using a dataset

of 66,249 frames from 55 EUS cases. In total, 18 patients are labeled as PC class, and 37

are labeled as non-PC class. A cross-validation scheme is applied seven times to evaluate the

performance of three convolutional neural networks: GoogleNet, ResNet18, and ResNet50 ar-

chitectures. The best results were 93.2±4.0, 87.7±5.4, 95.0±5.6, and 87.0±6.7 in accuracy,

sensitivity, specificity, and F-score, achieved with the ResNet50 architecture.

4.1.1. Methodology

Tissues in Ultrasound images are characterized by their Echogenicity, which is the ability to

reflect or transmit the US waves depending on the tissue composition[30, 56]. Typically, a

tumoral zone is characterized by a complex mixture of hyperechoic, hypoechoic or anechoic

patterns, in contrast with healthy tissues that present well-defined areas of echo patterns[56].

This work characterizes the variability of the echo patterns extracted from complete videos

of Echoendoscopy (EUS) procedures. First, a preprocessing step is applied to rearrange the

radial distributed intensities, filter out the Speckle Noise, and highlight the echo patterns.

This process is shown in section 2.1.6. Then, EUS images are characterized by a transfer

learning strategy, adapting a pre-trained convolutional neural network from natural images

to the EUS domain. The adapted fully-connected layers classify a frame between pancreatic

cancer and non-pancreatic cancer. Subsequently, a temporal correction strategy filters out

the misclassified frames in a specific temporal window. Finally, this process is applied frame-

by-frame during a video, detecting the presence of pancreatic cancer (PC). The pipeline of

this methodology is shown in Figure 4-1
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Figure 4-1.: Proposed method pipeline. First, a frame-by-frame annotated database of en-

doscopy videos is divided into PC class and non-PC class(a), and a prepro-

cessing step is applied(b). Then, a convolutional neural network is pre-trained

with millions of natural images and (c) adjusted to the ultrasound domain

using the transfer learning strategy (d). Finally, the trained network is evalua-

ted (e-f) to detect frames with pancreatic tumors.

Convolutional neural network architectures

Heterogeneous patterns of tumoral zones in EUS images may be characterized using a convo-

lutional neural network (CNN). The CNN builds a hierarchical representation of the distin-

ctive echo patterns to detect frames with pancreatic cancer in complete EUS videos. A CNN

is a set of layers sequentially connected, each layer composed of neurons that are grouped

to estimate task-dependent filters. The first layers convolve the filters with the input EUS

image, decomposing them to basic visual concepts, primitives, or local patterns. Then, the

resulting decomposition is progressively convolved with subsequent layers to compress the

information. Although CNN is a data-driven method, many classical architectures have been

extensively trained and validated in natural images, using databases with millions of images,

such as the ImageNet database[15, 61]. The natural domain represents a wide range of local

and global patterns that could be adapted to other domains, such as the EUS domain. A

transfer learning strategy adapts the domain by adjusting some layers of the network with

an iterative-adaptive process using a relatively low learning rate along the epochs.

In this work, three classical net architectures pre-trained with the Imagenet database are

used: GoogleNet, ResNet18, and ResNet50. The convolutional layers are frozen and used as

feature extractors. The fully connected layers are adapted and trained to differentiate frames

between positive or PC class (pancreatic cancer) and negative or non-PC class (healthy

tissues of the pancreas, liver, gallbladder, other gastrointestinal tumors, and pancreatitis).

This process is shown in Figure 4-1.d-e. A description of these architectures is presented
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below.

Googlenet: architecture of 22-layers, composed of 9 Inception Modules and ∼ 7M

parameters. These modules first concatenate a filter of size 1×1 to reduce the network

parameters and perform a rectified activation before the expensive 3 × 3 and 5 × 5

filters. This process decreases the number of operations and builds deeper networks

without the significant computational overhead. This architecture won the ImageNet

Large Scale Visual Recognition Contest (ILSVRC) in 2014 for image classification and

object detection[75, 61]. This net has been applied to breast cancer diagnosis in US

images[43].

ResNet: Architecture incorporates direct connections between non-contiguous layers,

reducing the problem of gradient attenuation in deeper layers, creating the so-called

residual blocks. These connections improve the performance of the classification tasks,

training deeper networks. One version of this network won the ImageNet Large Scale

Visual Recognition Contest (ILSVRC) in 2015 [23]. The number of trainable parame-

ters of ResNet18 and ResNet50 is 11M and 23M, respectively. This architecture is used

in US images from different organs: in the heart to recognize cardiac cycle phases, in

the prostate to delineate the gland[43], and in the pancreas to predict malignancy in

intraductal papillary mucinous neoplasms[38].

Temporal correction

A temporal vector is constructed by collecting the predicted labels per frame in the clas-

sification stage. Inside this vector, misclassified frames are filtered out by approximating a

stationary stochastic process within a moving window. Each frame is binarily labeled: when

a frame contains a tumor is set as one. Otherwise, the frame is set as zero. A regression is

applied using the labels in a predefined window. The model predicts the value of a frame

using the information present in the window: if more than a threshold of the frames is one,

the frame is labeled as the positive class. This process is shown in Figure 4-2. In this work

is defined a window size of 61 frames, and the threshold is set to 25 %
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Figure 4-2.: Temporal correction of misclassified frames: if the number of labeled frames

within a window are larger than a threshold, the frame is labeled as positive.

4.1.2. Results

The proposed methodology is assessed using the dataset detailed in chapter 2. In total,

66,249 frames are classified, 16,585 are positive class, and 49,664 are negative class. The

methodology performance is evaluated by comparing the predicted label of each frame with

the annotation by the experienced gastroenterologist. Also, the performance of three net

architectures is assessed (ResNet18, ResNet50, and GoogleNet). The experimental setup,

quantitative validation, and qualitative results are presented below.

Experimental Setup

Cross-validation scheme

The method is evaluated under a cross-validation scheme of 7 iterations. At each iteration,

∼ 38 cases are used for training and ∼ 17 for testing. Additionally, ∼ 4 cases of the training

set are used to validate the networks at each epoch. However, the dataset is unbalanced

between PC and non-PC cases, and each respective number of frames, i.e., the training set

is composed of ∼ 46, 638 ± 114 frames distributed in ∼ 11, 660 ± 22 frames with PC and

∼ 34, 978± 106 without PC. Since the networks are susceptible to overfitting in unbalanced

datasets, two strategies are evaluated to balance the number of frames between classes.

Additionally, the nets are trained and tested with two image types: preprocessed images

according to section 2.1.6 and original images from the database to evaluate the impact of

the preprocessing stage on the performance of nets. Hence, each architecture is evaluated

using the following database configurations:

Subsampled+original : The database is balanced with respect to the number of

frames from the PC class (∼ 11, 660 ± 22), i.e., approximately two-thirds of the non-

PC class frames are randomly removed, obtaining a total of ∼ 11, 691±81 frames. Also,
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the nets are trained with the raw images of the database (without the preprocessing

step).

Augmented+original : In this case, the database is balanced with respect to the

number of frames from the non-PC class (∼ 34, 978± 106) using a data augmentation

strategy. This technique creates synthetic images of the PC class, applying flip, zoom,

and combination of both operations in random frames to achieve ∼ 39, 058 ± 2, 303

frames in the PC class. Additionally, pancreatitis frames from the non-PC class are aug-

mented twice following the previous augmentation policies to obtain ∼ 39, 843± 1, 706

non-PC frames. Also, the nets are trained with the original images of the database.

Augmented+preprocessed : The nets are trained using the augmented dataset shown

in the previous configuration. But, in this case, the preprocessing step is applied to

the input images. Additionally, the images are resized using two image resolutions:

the original size of the database (457×711 pixels) and a similar size of the network

configuration (224×348 pixels).

The unbalanced proportion of data is preserved in the testing stage. The strategies are tested

using the unbalanced dataset of ∼ 19, 611±114 frames, in which 25 % of the data corresponds

to PC-class and 75 % to non-PC class.

Hyperparameters of networks and optimization

The selected convolutional neural network architectures are GoggleNet, ResNet18, and Res-

Net50, initialized with pre-trained weights from the ImageNet database. The loss function

is cross-entropy, and the optimization algorithm is stochastic gradient descent. The learning

rate during the training stage is reduced using the exponential reduction strategy, configured

with a reduction factor at every epoch.

Additionally, a grid search strategy is used to maximize the accuracy, looking for an optimal

combination of 5 hyperparameters: a) initial learning rate, b) batch size, c) decay factor

of the weights, d) the factor, and e) the number of epochs of the learning rate reduction

strategy [1]. This optimization process is carried out throughout 30 trials, using 25 % of the

training data at each iteration in the subsampled dataset. However, this process is applied

20 times with 10 % of the training data in the augmented dataset to reduce the extensive

training time. Subsequently, the nets are trained using the complete dataset with the best

hyperparameter configuration found in the previous process. Finally, the testing dataset is

evaluated using the model with the highest validation accuracy over 40 epochs.

Performance Metrics

The convolutional neural network predicts a label between non-PC and PC classes. Network

performance is quantified by comparing the predicted label for each frame with the expert
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annotation. This comparison is consolidated in a confusion matrix to obtain: a) True Posi-

tives (TP), b) True Negatives (TN), c) False Positives (FP), and d) False Negatives (FN).

Subsequently, five metrics are calculated using the confusion matrix: accuracy, sensitivity,

specificity, precision, and F1 score.

Quantitative Results

Cross-validation evaluation

Performance metrics are shown in Table 4-1, which is composed of three blocks to compare

the results of each configuration explained in Section 4.1.2. The first block presents the

subsampled+original configuration. The best result was obtained by the ResNet50, with an

accuracy, sensitivity, and specificity of 92.2±4.8, 94.6±2.2, and 91.3±6.2, respectively. Then,

the results of augmented+original configuration are shown in the second block, achieving the

best performance throughout all experiments with accuracy and specificity of 93.2±4.0 and

95.0±5.6, respectively, using the ResNet50 architecture. Finally, the third block shows the

results of augmented+preprocessed configuration. The ResNet50 also the architecture with

the highest results with an accuracy and specificity of 89.8±5.9 and 92.3±6.8, respectively,

using images with the original size. In the case of rescaled images, although the method

achieved lower results, the ResNet18 architecture reached 92.2±6.2 of sensitivity.

In general, the increased variability of the input images in the augmented database improves

the generalizability of the models, achieving better results in terms of accuracy and F-

score. Also, in terms of architectures, the results of ResNet and GoogleNet architectures are

equivalent, achieving an F-score and accuracy higher than 76 % and 87 %, respectively. Both

models were able to describe and differentiate remarkably the high variability of normal tissue

and pancreatitis and the mixture of textural patterns of pancreatic cancer. Nevertheless,

GoogleNet architecture is the smaller network with 4M and 16M fewer trainable parameters

compared to ResNet18 and ResNet50, respectively, being the net with the lowest computation

cost. Finally, although the performance of the nets slightly decreased using the preprocessing

step, the generalizability of the method is higher, as shown in section 4.1.3.
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Configuration Input size Network Acc( %) Sens( %) Spec( %) Prec( %) F1( %)

Subsampled

+original
457×711

GoogleNet 88.7±6.5 93.0±4.1 87.2±8.6 72.9±12.2 81.2±8.4

ResNet18 88.1±6.8 91.1±6.3 87.1±9.7 73.0±13.3 80.2±8.4

ResNet50 92.2±4.8 94.6±2.2 91.3±6.2 80.0±11.6 86.3±7.3

Augmented

+original
457×711

GoogleNet 91.3±4.7 86.7±5.0 92.8±5.7 81.7±12.2 83.7±7.6

ResNet18 90.9±5.8 88.4±7.5 91.7±7.8 80.6±13.2 83.6±8.3

ResNet50 93.2±4.0 87.7±5.4 95.0±5.6 87.4±12.4 87.0±6.7

Augmented

+preprocessed

224×348

GoogleNet 88.0±6.7 87.0±7.3 88.3±8.2 73.4±13.9 79.1±10.0

ResNet18 89.7±5.7 92.2±6.2 88.8±7.1 75.0±12.3 82.3±8.6

ResNet50 89.5±6.4 88.7±8.3 89.7±8.7 77.2±15.1 81.7±9.7

457×711

GoogleNet 87.9±5.4 86.0±10.9 88.6±6.4 72.8±10.8 78.4±9.0

ResNet18 87.9±6.0 78.7±11.6 91.0±6.5 76.2±13.5 76.8±10.7

ResNet50 89.8±5.9 82.3±10.8 92.3±6.8 80.4±14.3 80.6±10.3

Table 4-1.: Comparison of the performance of the nets with both balanced datasets and the

preprocessing step.

Qualitative Results

Examples of True-positives, True-negatives, False-positives, and False-negatives predictions

from the best configuration obtained by the method are shown in Figure 4-3, i.e., ResNet50

architecture using the original image and the augmented dataset.

PC class examples are shown in the first and second columns of Figure 4-3. The method

manages the high variability of tumoral shape and heterogeneous echo patterns, as shown in

true-positive samples. The worst cases of PC class are C13 and C18. First, the C13 case has

the smaller lesion of the database(2×2cm). Therefore, the tumor is visualized as very small

and without heterogeneous textures. Besides, the C18 case has low contrast, and the tumor

has a hypoechoic pattern without heterogeneous textures.

Non-PC class examples are shown in the third and fourth columns of Figure 4-3. This class

is composed of frames with different kinds of tissues, as displayed in Figure 4-3 with arrows,

such as: pancreas (green), kidney (yellow), liver (blue), and gallbladder(purple). Misclassified

frames of this class occur in low contrast images, blurry images, abrupt transducer move-

ments, or images with ring-down and reverberation artifacts. Worst results were achieved

in cases with tumors in other organs, such as the H12 case diagnosed with a GIST tumor

(Gastrointestinal stromal tumors) and H18 with a Lipoma Tumor.
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Figure 4-3.: Qualitative Results: each column represents frames labeled as: 1) True Positive,

2) False negative, 3) True negative, and 4) False positive. Arrows in the images

represent: tumors (red), healthy pancreas (green), liver(blue), kidney (yellow),

and gallbladder (purple).

4.1.3. Evaluation with images corrupted by speckle and white noise

Typically, US images are contaminated by speckle or white noise, limiting the detection

of injuries, especially in low contrast images[47]. These noises depend on different factors

such as the device configuration, abrupt movements, and angle of incidence with the tissues.

Therefore, the benefit of including the preprocessing and temporal correction (pre+post-

processing) steps in the CNN-based workflows herein is evaluated, i.e., the nets are challenged

with and without the pre+post-processing steps using images corrupted by different levels

of noise. However, public databases that include such noisy conditions are not available in

the state of the art. Hence, the testing set of the database was contaminated with speckle

and white noise using a variance of 1 %, 5 %, and 10 % separately, and the three networks

were tested.

The impact of these noises in the nets in terms of F-score is presented in Figure 4-4. Results

demonstrate that the performance of the nets is slightly less affected by the noise when

the pre+post-processing steps are applied. E.g., the F-score obtained by ResNet50 without
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pre+post-processing decreased dramatically from ∼ 80 % to ∼ 66 % in 10 % of White noise.

Meanwhile, the nets with pre+postprocessing almost preserved the same F-score, from ∼
82 % to ∼ 80 %. The previous interpretation is similar to the results obtained by RestNet18 in

White noise and ResNet50 in Speckle noise. Surprisingly, although GoogleNet is the smallest

network evaluated in this work, the obtained F-score was the less impacted, even in 10 % of

Speckle and White noises. In contrast, deeper networks such as the ResNet50 are over-fitted

with the training set, and in subtle changes in the testing set, the network was induced

to misclassification, as shown in these experiments. Also, the networks trained and tested

with small-size images are less affected. Hence, the median filter and contrast enhancement

process filter out the Speckle and White noise and highlight the representative echo patterns

to be characterized by the network. Also, the temporal voting stage corrects misclassified

frames caused by artifacts associated with the device movement.

Figure 4-4.: F-score differences between the original and corrupted datasets. The reference

is the performance of the nets without noise.

4.1.4. Conclusions

The proposed method achieved outstanding performance to detect pancreatic cancer in ima-

ges of endoscopic ultrasound procedures. The method was able to handle the high variability

of complete videos, differentiating cancer from pancreatitis, healthy pancreas, and other tis-

sues with a remarkable performance. Such variability was not considered in the state of the

art methods. Also, it was demonstrated that the performance of the Neural Networks is

better when the dataset is balanced by applying augmentation policies. Although the per-

formance of networks trained and tested with preprocessed images is slightly lower, the nets

are more robust to Speckle and White noises. Future work includes increasing the number

of cases of pancreatic cancer and pancreatitis. Additionally, the method may be challenged

in a multi-class problem: pancreatic cancer, pancreatitis, and healthy tissue.
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4.2. Classification of a Multiclass problem

This subsection is based in the article “Detección automática de tumores pancreáticos en

v́ıdeos de ecoendoscopia usando técnicas de aprendizaje profundo”, presented at Congreso

de las Asociaciones Colombianas del Aparato Digestivo ACADI 2021, in which the work

won the first place of José Jácome Valderrama competition. Abstract: Introduction: Pan-

creatic Cancer has a mortality rate of 98 % (one of the higher rates in cancer). Also, the

5-year survival rate is less than 7 %. In addition, 75 % of cases are diagnosed in advanced

stages because PC is an asymptomatic disease in early stages. Several medical image moda-

lities have been used for the diagnosis of pancreatic cancer. However, Endoscopic ultrasound

achieves the highest sensitivity in pancreatic cancer detection, and EUS-FNA is used to guide

the biopsy acquisition for histopathological confirmation, standing out from other methods.

However, endoscopic ultrasound is a highly operator-dependent procedure for the complexity

in the anatomical interpretation altered by the typical noise sources in these images and the

similarity of other abnormalities such as pancreatitis. Hence, an automatic and robust se-

cond reader based on artificial intelligence is desirable to support the detection of pancreatic

cancer. Objective: Automatic classification frame-by-frame of endoscopic ultrasound videos

to differentiate pancreatic cancer from frames with pancreatitis or normal tissue. Methodo-

logy: the proposed approach is based on a deep learning strategy in a convolutional neural

network, specifically the ResNet50 architecture. This network is trained under a transfer

learning technique, which is initialized with pre-trained weights in millions of natural ima-

ges, learning to characterize local and global patterns used to describe endoscopic ultrasound

frames. Subsequently, the network is adjusted to the ultrasound domain by modifying the

classification layers and training the network with endoscopic ultrasound frames. Those fra-

mes were previously preprocessed to reorganize and highlight the relevant ultrasound patterns.

This approach was evaluated using 55 cases acquired in two different centers, with approxi-

mately 38.083 images in total. Results: A random cross-validation scheme was applied with

5 iterations, with partitions of 75 % for training and 25 % for testing. At each iteration, the

hyperparameters of the network were optimized based on the grid search technique throughout

20 tests. The predictions made by the method were compared with annotations made by an

expert with more than 20 years of experience, obtaining an average accuracy of 79.5 % for fra-

mes with normal tissue, 90.1 % with pancreatitis, and 84.3 % for Pancreatic Cancer frames.

The global results obtained were an average accuracy, sensitivity, and specificity of 84.8 %,

78.9 %, and 87.7 %. Conclusions: The proposed method achieved outstanding performance to

detect pancreatic cancer, being capable of differentiating cases of pancreatitis from pancreatic

tumors, and overcoming the high variability of a complete endoscopic ultrasound procedure.

Such variability was not considered in the state of the art methods.
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4.2.1. Methodology

In this case, the applied methodology is similar to section 4.1. Preprocessed images are

selected to train a ResNet50 architecture, solving a multiclass problem: classify between

frames with the presence of Pancreatic Cancer (PC), Chronic pancreatitis (CP), or normal

pancreas (NP). The pipeline of this methodology is shown in Figure 4-5.

Figure 4-5.: The pipeline of the proposed method to automatically detect pancreatic tu-

mors frame-by-frame in endoscopic ultrasound videos. First, a frame-by-frame

annotated database of endoscopy videos was divided into Pancreatic Cancer,

Healthy pancreas, and Pancreatitis classes (a). Then, each frame is preproces-

sed (b), and the dataset is divided into training and testing partitions (c). Af-

terward, convolutional neural networks are pre-trained with millions of natural

images (e) and adjusted to the ultrasound domain using the transfer learning

strategy, training only the last layers (d). The trained network is evaluated to

differentiate frames between classes(f-g).

4.2.2. Convolutional neural network architecture

As shown in section 4.1, echo patterns could be extracted by a convolutional neural network

(CNN) to differentiate pancreatic cancer from normal tissues and pancreatitis. The expla-
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nation of Neural Networks architectures is performed in subsection 4.1.1. In this work, the

selected architecture was ResNet50[23]. This 50-layer architecture stands out from others

since this net incorporates direct connections between non-contiguous layers, reducing the

problem of gradient attenuation in the deeper layers, creating the so-called residual block.

These connections improved the performance of image classification tasks, training deeper

networks than conventional ones. The deepest version of this network won the ImageNet

Large Scale Visual Recognition Contest (ILSVRC) in 2015 [15]. The network architecture is

described in Table 4-2.

# of layer Class Description Filter size

1 Convolutional Receive input image 7 x 7

2 Max Pooling
Reduce dimensionality taking

the maximum value
3 x 3

3 to 11 3 x Residual block

Each block have 3 convolutional layers

One block have:

1st layer: 1 x 1

2nd layer: 3 x 3

3rd layer: 1 x 1

12 to 23 4 x Residual block

24 to 41 6 x Residual block

42 to 50 3 x Residual block

Table 4-2.: Description of the ResNet50 architecture.

4.2.3. Classification of endoscopic ultrasound images by transfer

learning

This process is described in subsection 4.1.1, but in this case, the number of neurons in the

final layer is three, corresponding to classes in this problem: pancreatic cancer, pancreatitis,

and normal tissue.

4.2.4. Results

The performance of the proposed methodology is evaluated by comparing the labels predicted

by the method with the annotations made by the specialist. The methodology is assessed

using the database described in section 2. In summary, the database includes 55 subjects.

Among them, 32 patients are diagnosed with healthy pancreas or normal pancreas(NP), 18

patients with Pancreatic Cancer(PC), and 5 patients with pancreatitis(CP). In total, the

database is composed of 66,249 frames, 16,585 with PC, 7,474 with CP, and 42,190 with NP.

Experimental Setup

The method was evaluated under a cross-validation scheme of 5 iterations. Each iteration

distributes 75 % of the data for training and 25 % for testing. Additionally, 9 % of the

training data was used to validate the networks at each epoch. The proportion of samples
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from classes is balanced to avoid overfitting the network. To ensure this, pancreatitis case

frames were duplicated using data augmentation, in which new frames are generated by

applying a horizontal mirror transformation to the original data. Additionally, frames of

normal tissue cases were randomly subsampled. Thus, a total of 45,557 frames were used

to evaluate the proposed method, distributed as: 14,024 with normal tissue, 14,948 with

pancreatitis (7,474 original images, plus the same value of transformed images), and 16,585

with pancreatic cancer.

The convolutional neural network was configured as follows:

The selected architecture was ResNet50.

The net was initialized with pre-trained weights with the ImageNet database [61].

The loss function was cross-entropy.

The optimization algorithm was stochastic gradient descent.

The learning rate is reduced during the training stage using the exponential reduction

strategy, configured with a reduction factor at every epoch.

A weight decay strategy was applied.

Additionally, a grid search strategy was used to maximize the accuracy to achieve the optimal

combination of 5 hyperparameters: a) initial learning rate, b) batch size ), c) the decay factor

of the weights, d) the factor, and e) the number of epochs of the learning rate reduction

strategy [1]. This optimization process was carried out over 20 tests using 25 % of the training

data for each iteration of the validation scheme. Subsequently, with the best hyperparameters

found, complete training is performed for each iteration. Finally, the model with the highest

validation accuracy over 40 epochs was chosen to be evaluated with the test data.

Quantitative evaluation

The convolutional neural network predicts a label for each frame: Normal tissue (class NP)

represents frames of normal tissues from the pancreas, liver, and gallbladder, Pancreatitis

(class CP), and pancreatic cancer (class PC). To quantify the performance of the network,

the predicted label of each image is compared with the expert annotation, calculating ave-

rage value per class and a global result of the accuracy, specificity, sensitivity, F-score and

precision. The results are shown in Table 4-3. The proposed method classifies the three

classes outstandingly, obtaining an average accuracy of 84.8 %. Also, knowing that the main

objective of this work is the detection of pancreatic cancer, the method obtained the highest

F-score for this class, with 83.1 %. Additionally, the class with the lowest F-score was pan-

creatitis. This result could be explained by the low number of cases available to train the

model. However, the proposed method was able to handle the high variability of the Normal
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Tissue class and differentiate between the two abnormalities, pancreatitis and pancreatic

cancer.

Class Acc. ( %) Sens. ( %) Spec. ( %) Prec. ( %) F1 ( %)

NP 79, 5± 8, 4 71, 0± 14, 1 84, 2± 13, 9 75, 6± 17, 5 72, 5± 12, 9

CP 90, 1± 10, 1 76, 5± 30, 5 95, 2± 2, 7 65, 3± 21, 2 65, 5± 21, 9

PC 84, 3± 7, 2 86, 4± 16, 6 83, 3± 10, 5 82, 8± 11, 5 83, 1± 9, 8

Total 84, 8± 7, 8 78, 9± 14, 1 87, 6± 5, 8 74, 7± 11, 4 73, 7± 13, 0

Table 4-3.: Proposed method results of each class and the total average.

4.2.5. Conclusions

The performance of state of the art methods depends on the way of the specialist search for

anomalies in the EUS procedures and select specific frames with clear lesions. Nevertheless,

the proposed method does not perform a preselection of images, providing the possibility of

assisting a complete examination, alerting the expert if there is a malignant mass regardless

if the lesion is partially occluded or blurred. However, the main limitation of this work is the

amount of data used to evaluate the methodology[43, 82, 5, 39]. But none of the databases

used by the state of the art methods are publicly accessible.

The proposed method applies deep learning techniques in videos of patients with pancreatic

cancer confirmed by pathology, patients with normal pancreas, and patients with pancrea-

titis. In this task, the reached average accuracy was 84.3 % for pancreatic cancer, 90.1 %

for pancreatitis, and 79.5 % for normal pancreas, obtaining an overall average accuracy of

84.8 %. The results obtained with the proposed method are highly competitive compared

with state of the art methods. Also, the performance is superior in terms of the perfor-

med task complexity because the methodology is applied in complete Echoendoscopy video

sequences, capturing the full variability of the endoscopic ultrasound procedures, which is

close to a real scenario of EUS procedures. In future work, this technique could evolve into

a real-time tool that improves exam performance.



5. Conclusions

This work presents a novel methodology to perform an exhaustive and fine-tuned multi-

scale characterization of the echo patterns in EUS images, correlating them at different

scales, positions, and orientations. The robust characterization feeds classical binary machine

learning models that remarkably differentiate the tumoral echo patterns. The method was

compared with deep learning-based frameworks of the state of the art, achieving competitive

results and being less sensitive to typical noises of the ultrasound domain. Also, the proposed

method is an automatic strategy, in contrast with the state of the art methods that require

a pre-selection of frames. Therefore, the method is close to a real clinical scenario and could

be adapted to support the diagnosis of pancreatic cancer in a gastroenterology unit.

In addition, in this work was constructed the first public database of Echoendoscopy images of

the pancreas, including cases of patients with pancreatic cancer confirmed by histopathology

analysis, patients with pancreatitis, and patients with a healthy pancreas.

Finally, future work and perspectives include the development of a strategy to localize the

tumoral zone in detected frames using the multi-scale characterization of echo patterns.

Also, feed the database with more cases, especially pancreatitis cases, adapting the method

to solve the multi-class problem. In addition, the computational cost of the method may

be optimized to be used as a real-time application, migrating to a compiled programming

language.
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C01 PC 399 50 F Mass in the head of pancreas X

C02 PC 269 87 M Mass in the head of pancreas X

C03 PC 1700 63 F Mass in the head of pancreas X

C04 PC 1319 68 M Mass in the head of pancreas X

C05 PC 539 50 M Mass in the head of pancreas X

C06 PC 570 75 M Mass in the head of pancreas X

C07 PC 1251 71 M Mass in the head of pancreas X

C08 PC 3619 63 F Mass in the head of pancreas X

C09 PC 247 75 F Mass in the head of pancreas X

C10 PC 607 60 M Mass in the tail of pancreas X X

C11 PC 2798 64 M Tumor of the head of pancreas-

hepatic metastasis

X X

C12 PC 395 60 F Mass in head of pancreas, asci-

tis, hepatic cirrhosis

X X

C13 PC 739 69 F Uncinated process lesion X X

C14 PC 328 65 M Body of pancreas lesion X

C15 PC 435 45 M Body of pancreas lesion X
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C16 PC 157 80 M Pancreatic head mass, pancrea-

tic mass puncture and pancrea-

tic liquid

X

C17 PC 907 64 F Pancreatic head mass, punction

pancreatic mass and pancreatic

fluid

X X

C18 PC 306 69 F Distal coledocial lesion exten-

ding to the head of the pan-

creas, thickened coledoci

X X

H01 NP 588 44 F Cholelithiasis without cholecys-

titis, negative exam for choledo-

colithiasis

X

H02 NP 2609 63 F Mild ascitis X

H03 NP 28 59 F Mucous fold in the background X

H04 NP 1046 57 F Normal X

H05 NP 1000 74 F Normal X

H06 NP 569 47 F Normal X

H07 NP 81 40 M Normal X

H08 NP 900 27 F Vesicular polyp X

H09 NP 660 28 M Normal X X X

H10 NP 1504 84 M Normal X

H11 NP 617 61 M Vesicular polyp X

H12 NP 1071 72 M Gastric mucosa lesion in car-

dias, subepithelial lesion com-

patible with high grade gist

X
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H13 NP 112 36 M Normal X

H14 NP 3385 72 M Normal X

H15 NP 2714 80 F Normal X X X

H16 NP 732 60 F Normal X

H17 NP 1624 53 F Normal X X

H18 NP 2396 66 F Lipoma compatible with third

layer subepithelial lesion

X

H19 NP 2175 82 F Dilated choledochus, negative

for choledocolithiasis or pe-

riampular lesions, hepatic le-

sions under study

X X

H20 NP 397 65 F Normal X X X

H21 NP 1569 53 F Early gastric lesion 0-IIC X X

H22 NP 490 73 F Normal X X

H23 NP 820 51 F Normal X

H24 NP 1700 41 F Normal X

H25 NP 2765 48 M Normal X

H26 NP 327 26 M Vesicular polyps X

H27 NP 1481 32 F Vesicular polyps X

H28 NP 2805 28 F Vesicular microlithiasis X X

H29 NP 945 33 M Normal X

H30 NP 1737 29 F Normal X X X

H31 NP 404 33 F Normal X

H32 NP 2939 28 M Normal X
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P01 CP 740 48 F Chronic pancreatitis and pan-

creatic lithiasis

X

P02 CP 3661 36 M Chronic pancreatitis X X X

P03 CP 1751 60 M Chronic pancreatitis X

P04 CP 412 49 M Chronic pancreatitis X X

P05 CP 910 36 M Chronic pancreatitis and vesi-

cular polyps

X

Table A-1.: Clinical patient information categorized in three grpoups Pancreatic Cancer

(PC), Normal Pancreas (NP), and Chronic Pancreatitis (CP). See section 2
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patients with Pancreatic Cancer

Label
TNM

Score

Tumor

Size

(mm)

Lesion

Locate
Pathology

C01 T4NXM1 40x40 Head Suspicious of adenocarcinoma

C02 T3NXM1 22x18 Head Suspicious of adenocarcinoma

C03 T2N0M1 34x30 Head Suspicious of adenocarcinoma

C04 T1N0MX 15x24 Head Suspicious of adenocarcinoma

C05 T3N0MX 32x25 Head

The smears show a hemorrhagic background with fre-

quent atypical ductal cells with hyperchromatic nuclei,

discohesive, suggesting acini, others in bilayer, with

lymphocytes, and few epithelial cells without atypia.

DIAGNOSIS: head lesion to the pancreas. ACAF: Po-

sitive for malignancy “favors adenocarcinoma”

C06 T3N1MX 35x35 Head

The smears show a slightly hemorrhagic background

with sheets of atypical epithelial cells with hyperchro-

matic nuclei, granular eosinophilic cytoplasm, loss of

the nucleus-cytoplasm relationship, some forming aci-

ni, accompanied by another group of benign cells.

Lymphocytes, histiocytes, and occasional neutrophil

polymorphonuclear cells. DIAGNOSIS: head lesion to

the pancreas. ACAF: Positive for malignancy “favors

adenocarcinoma”
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Label
TNM

Score

Tumor

Size

(mm)

Lesion

Locate
Pathology

C07 NR 40x40 Head

The smears are hypercellular with a hemorrhagic and

proteinaceous background, made up of ductal epithe-

lial cells, arranged in groups and sheets, with loss of

the nucleus-cytoplasm relationship and nuclear hyper-

chromatism, others small with pyknotic nuclei, accom-

panied by inflammatory cells of the lymphohistiocytic

and polymorphonuclear type. DIAGNOSIS: head le-

sion to the pancreas. BACAF: Positive for malignancy

“favors adenocarcinoma”

C08 T3N0MX 26x24 Head

Extended hypercellular cells with a proteinaceous and

slightly hemorrhagic background, made up of acinar

and ductal epithelial cells, some of them with loss of

the nucleus-cytoplasm relationship and nuclear hyper-

chromatism, arranged in sheets and groups of diffe-

rent sizes, accompanied by inflammatory cells of the

lymphohistiocytic type. DIAGNOSIS: head lesion to

the pancreas. BACAF: Positive for malignancy “fa-

vors adenocarcinoma”

C09 T3N0MX 25x25 Head

Extended hypercellular cells, with a hemorrhagic

background, made up of ductal epithelial cells, arran-

ged in groups, sheets, others loose, with loss of the

nucleus-cytoplasm relationship, nuclear hyperchroma-

tism, and overlap, mixed with polymorphonuclear

cells, lymphocytes and foamy histiocytes. DIAGNO-

SIS: head lesion to the pancreas. ACAF: Positive for

malignancy “favors adenocarcinoma”

C10 T4N1M1 40x40 Tail
Pancreas (cell block) - DIAGNOSIS: Carcinoma com-

promise

C11 T3NXM2 NR Head

Aspiration cytology - DIAGNOSIS: Category IV: Sus-

pect of mucinous neoplasm with focal atypia (Papani-

colau Cytopathology Society Classification)
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Label
TNM

Score

Tumor

Size

(mm)

Lesion

Locate
Pathology

C12 T3N0MX 44x38 Head

Pancreas (cell block) - Groups of epithelial cells with

loss of honeycomb pattern, overlap, anisocytosis, nu-

clear hyperchromasia. There are no prominent nucleo-

li. There is a tendency to discohesiveness. Focally, ce-

llular debris is identified in the background. Atypical

epithelial cells suspected of adenocarcinoma. DIAG-

NOSIS: The described findings are interpreted as well

differentiated adenocarcinoma.

C13 T1N1MX 20x20 Head

Malignant epithelial tumor constituted by small and

medium-sized glands of irregular shape, which are

composed of cells with pleomorphic and vesicular nu-

clei, with prominent nucleolus, which are arranged in a

desmoplastic stroma with lymphocytes and neutrophi-

lic PMNs; associated there is extension to the peripan-

creatic fat and the wall of the duodenum to the sub-

mucosa. DIAGNOSIS: Well differentiated infiltrating

ductal adenocarcinoma.

C14 T3N0MX 37x37 Body DIAGNOSIS: findings suspicious for malignancy

C15 T3N0M1 NR Body
Pancreas - DIAGNOSIS: ACAF - Category V: Suspect

for adenocarcinoma (Paris System)

C16 T3N1MX NR Head

There is little material consisting predominantly of

fibrin and red blood cells with occasional polygonal

cells with bulky hyperchromatic nuclei, some with pro-

minent nucleoli and scant cytoplasm. DIAGNOSIS:

These findings correlated with other studies result in

pathology suspected of malignancy

C17 T3N1MX NR Head

Cytological study of a mass in the head of the pan-

creas - DIAGNOSIS: Category V: Suspect for ductal

carcinoma

C18 NR NR Head

Pancreas - DIAGNOSIS: ACAF, Category V: Suspi-

cious of malignancy, the findings described are suspi-

cious of adenocarcinoma

Table B-1.: Tumoral information of Pancreatic cancer patients. Not reported size is labelled

as NR. See section 2



C. Annexed: Noise Results

Model Metric Original
Speckle Noise White Noise

1 % 10 % 20 % 30 % 1 % 10 % 20 % 30 %

Adaboost

Acc( %) 94,9 94,9 94,9 95,2 95,2 94,4 95,3 93,0 87,6

Sens( %) 95,1 94,9 94,7 95,5 95,7 94,3 96,4 96,0 98,0

Spec( %) 94,8 94,9 95,1 94,9 94,7 94,6 94,2 89,9 77,3

F( %) 94,9 94,8 94,9 95,2 95,2 94,4 95,3 93,2 88,7

Prec( %) 94,7 94,8 95,0 94,9 94,7 94,5 94,3 90,4 81,0

NPV( %) 95,1 94,9 94,8 95,5 95,7 94,4 96,3 95,8 97,6

SVM

with

Linear

kernel

Acc( %) 95,6 95,5 95,2 95,6 95,4 95,3 95,4 94,5 88,4

Sens( %) 96,8 96,3 95,7 96,6 96,7 95,8 96,8 97,9 99,7

Spec( %) 94,4 94,7 94,7 94,6 94,2 94,8 94,0 91,2 77,3

F( %) 95,6 95,5 95,2 95,6 95,5 95,3 95,4 94,7 89,6

Prec( %) 94,5 94,7 94,7 94,7 94,2 94,8 94,1 91,6 81,3

NPV( %) 96,8 96,3 95,7 96,5 96,7 95,8 96,7 97,8 99,6

SVM

with

RBF

kernel

Acc( %) 95,1 95,2 95,0 95,4 95,0 95,1 95,1 94,2 88,1

Sens( %) 96,1 95,7 95,5 96,3 96,0 95,6 96,1 97,7 99,4

Spec( %) 94,2 94,6 94,5 94,5 94,0 94,6 94,1 90,8 76,9

F( %) 95,2 95,2 95,0 95,5 95,0 95,1 95,1 94,4 89,2

Prec( %) 94,2 94,6 94,5 94,6 94,1 94,6 94,2 91,3 81,0

NPV( %) 96,1 95,7 95,5 96,3 95,9 95,6 96,1 97,6 99,2

Table C-1.: Performance metrics of the proposed method when the testing set is contami-

nated with speckle and white noise. See section 3.2.2
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Model Metric Original
Speckle Noise White Noise

1 % 10 % 20 % 30 % 1 % 10 % 20 % 30 %

GoogleNet

Acc( %) 92.7 92.6 92.4 92.2 90.9 92,2 92,5 74,6 61,5

Sens( %) 91.4 91.4 91.7 92.7 94.4 90,7 92,3 98,5 99,9

Spec( %) 93.9 93.7 93.1 91.8 87.4 93,7 92,7 51,0 23,5

F( %) 92.5 92.4 92.3 92.2 91.2 92,1 92,5 79,4 72,1

Prec( %) 93.7 93.5 92.9 91.8 88.1 93,5 92,6 66,5 56,4

NPV( %) 91.7 91.7 91.9 92.7 94.1 91,1 92,4 97,2 99,6

Resnet18

Acc( %) 77.9 78.0 77.4 77.3 78.6 73,4 74,0 59,3 53,0

Sens( %) 59.3 59.6 58.2 58.2 61.4 47,8 51,2 22,0 6,5

Spec( %) 96.2 96.2 96.3 96.2 95.5 98,8 96,5 96,2 98,9

F( %) 72.7 72.9 71.9 71.8 74.0 64,2 66,2 34,9 12,2

Prec( %) 94.0 94.0 94.0 93.8 93.2 97,4 93,5 85,2 85,4

NPV( %) 70.5 70.6 70.0 69.9 71.4 65,7 66,7 55,5 51,7

Resnet50

Acc( %) 90,0 89.9 84.4 75.2 73.4 90,4 58,9 74,4 70,8

Sens( %) 84.4 84.2 71.8 52.6 48.9 87,7 17,5 55,4 79,0

Spec( %) 95.4 95.4 96.7 97.5 97.6 93,1 99,9 93,1 62,8

F( %) 89.3 89.2 82.0 67.8 64.6 90,1 29,7 68,3 72,9

Prec( %) 89.3 89.2 82.0 67.8 64.6 92,6 99,5 88,9 67,7

NPV( %) 86.1 86.0 77.6 67.5 65.9 88,5 55,0 67,9 75,1

Table C-2.: Performance metrics of the baseline models when the testing set is contaminated

with speckle and white noise. See section 3.2.2
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[32] Janssen, Jan ; Schlörer, Eva ; Greiner, Lucas: EUS elastography of the pancreas:

feasibility and pattern description of the normal pancreas, chronic pancreatitis, and

focal pancreatic lesions. En: Gastrointestinal Endoscopy 65 (2007), Juni, Nr. 7, p.

971–978
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Anna ; Iglesias, Maŕıa ; Quer, M.T. ; De Llorens, Rafael ; Peracaula, Rosa:

Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. En:

World Journal of Gastroenterology 24 (2018), 06

[45] Mahadevan, Vishy: Anatomy of the pancreas and spleen. En: Surgery (Oxford) 37

(2019), Nr. 6, p. 297–301. – ISSN 0263–9319



Bibliography 73

[46] Maisonneuve, Patrick: Epidemiology and burden of pancreatic cancer. En: La Presse

Médicale 48 (2019), p. e113 – e123

[47] Mateo, Juan L. ; Fernández-Caballero, Antonio: Finding out general tendencies

in speckle noise reduction in ultrasound images. En: Expert Systems with Applications

36 (2009), Nr. 4, p. 7786 – 7797. – ISSN 0957–4174

[48] McGuckin, Ellen ; Cade, Jennifer E. ; Hanison, James: The pancreas. En: Anaesthe-

sia Intensive Care Medicine 21 (2020), Nr. 11, p. 604–610. – ISSN 1472–0299

[49] Mei, Mei ; Ni, Jingmei ; Liu, Dan ; Jin, Piaopiao ; Sun, Leimin: EUS elastography for

diagnosis of solid pancreatic masses: a meta-analysis. En: Gastrointestinal endoscopy

77 (2013), Nr. 4, p. 578–589

[50] Miura, Fumihiko ; Takada, Tadahiro ; Amano, Hodaka ; Yoshida, Masahiro ; Fu-

rui, Shigeru ; Takeshita, Koji: Diagnosis of pancreatic cancer. En: HPB 8 (2006), p.

337 – 342

[51] Moutinho-Ribeiro, Pedro ; Iglesias-Garcia, Julio ; Gaspar, Rui ; Macedo,

Guilherme: Early pancreatic cancer - The role of endoscopic ultrasound with or without

tissue acquisition in diagnosis and staging. En: Digestive and Liver Disease 51 (2019),

p. 4 – 9

[52] Moutinho-Ribeiro, Pedro ; Liberal, Rodrigo ; Macedo, Guilherme: Endoscopic

ultrasound in pancreatic cancer treatment: Facts and hopes. En: Clinics and Research

in Hepatology and Gastroenterology 43 (2019), Nr. 5, p. 513 – 521. – ISSN 2210–7401

[53] Norton, Ian D. ; Zheng, Yi ; Wiersema, Maurits S. ; Greenleaf, James ; Clain,

Jonathan E. ; DiMagno, Eugene P.: Neural network analysis of EUS images to differen-

tiate between pancreatic malignancy and pancreatitis. En: Gastrointestinal Endoscopy

54 (2001), Nr. 5, p. 625 – 629. – ISSN 0016–5107

[54] Omary, M. B. ; Lugea, Aurelia ; Lowe, Anson W. ; Pandol, Stephen J.: The

pancreatic stellate cell: a star on the rise in pancreatic diseases. En: The Journal of

Clinical Investigation 117 (2007), 1, Nr. 1, p. 50–59

[55] Owens, David J. ; Savides, Thomas J.: Endoscopic Ultrasound Staging and Novel

Therapeutics for Pancreatic Cancer. En: Surgical Oncology Clinics of North America

19 (2010), Nr. 2, p. 255 – 266. – ISSN 1055–3207

[56] Park, RichardD. ; Nyland, ThomasG. ; Lattimer, JimmyC. ; Miller, CharlesW.

; Lebel, JackL.: B-MODE GRAY-SCALE ULTRASOUND: IMAGING ARTIFACTS

AND INTERPRETATION PRINCIPLES. En: Veterinary Radiology 22 (1981), Nr. 5,

p. 204–210



74 Bibliography

[57] Patey, Susannah J. ; Corcoran, James P.: Physics of ultrasound. En: Anaesthesia

Intensive Care Medicine 22 (2021), Nr. 1, p. 58–63. – ISSN 1472–0299

[58] Peng, Hanchuan ; Long, Fuhui ; Ding, Chris: Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. En: IEEE

Transactions on pattern analysis and machine intelligence 27 (2005), Nr. 8, p. 1226–

1238

[59] Rosenthal, Michael H. ; Lee, Alexander ; Jajoo, Kunal: Imaging and Endoscopic

Approaches to Pancreatic Cancer. En: Hematology/Oncology Clinics of North America

29 (2015), Nr. 4, p. 675 – 699. – ISSN 0889–8588
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[63] Săftoiu, Adrian ; Vilmann, Peter ; Dietrich, Christoph F. ; Iglesias-Garcia,

Julio ; Hocke, Michael ; Seicean, Andrada ; Ignee, Andre ; Hassan, Hazem ; Stre-
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station recognition system in EUS: development and validation of a useful training tool

(with video). En: Gastrointestinal Endoscopy (2020). – ISSN 0016–5107

[86] Zhang, Min-Min ; Yang, Hua ; Jin, Zhen-Dong ; Yu, Jian-Guo ; Cai, Zhe-Yuan

; Li, Zhao-Shen: Differential diagnosis of pancreatic cancer from normal tissue with

digital imaging processing and pattern recognition based on a support vector machine

of EUS images. En: Gastrointestinal Endoscopy 72 (2010), Nr. 5, p. 978 – 985. – ISSN

0016–5107

[87] Zhu, Maoling ; Xu, Can ; Yu, Jianguo ; Wu, Yijun ; Li, Chunguang ; Zhang, Minmin

; Jin, Zhendong ; Li, Zhaoshen: Differentiation of Pancreatic Cancer and Chronic

Pancreatitis Using Computer-Aided Diagnosis of Endoscopic Ultrasound (EUS) Images:

A Diagnostic Test. En: PLOS ONE 8 (2013), 05, Nr. 5, p. 1–6


