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”Much of what is known about earthquakes follows from
study of the motion of the ground”
- Charles Richter, Elementary Seismology, 1958
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Abstract

Seismological networks, whether global, regional, or local, have the objective of monitoring
seismic activity. This implies the detection of seismic events and determination of their loca-
tion (latitude, longitude, depth and origin time) with an acceptable level of uncertainty. We
apply these steps in three seismic networks automatically. A regional seismic network (Colom-
bian Seismological Network-CM, station separation ∼ 100 km), and two local and temporary
networks (station separation ∼ 10-30 km) in northern South America: the Middle Magdalena
Valley Array (VMM), and the Carribean-Mérida Andes seismic array (YU).
To achieve this, continuous data of multiple stations needs to be processed to detect and pick
seismic phases (usually body waves). In many networks this process is carried out by an analyst
who, visually examining the traces, determines the arrival time of a wave at a station. However,
for dense seismic networks or temporary deployments, this task can be very laborious, requiring
several analysts. To detect and pick the seismic phases automatically of the CM network, we
use two pre-trained Deep Learning models: EQTransformer and PhaseNet. We derive some
statistics to compare the performance in both reliability and compatibility with the Scanloc
association and location algorithm. Based on the above, we use only EQTransformer for the two
local networks.
The CM catalog generated by the PhaseNet and EQTransformer picks was compared with the
manual catalog. Both catalogs are sufficiently reliable to show asimilar distribution of inter-
mediate and shallow seismicity in the Colombian territory. The local networks show a more
detailed patterns of seismicity locations. At last, we merge the catalogs in only one automatic
seismic catalog and use some transects to identify regional tectonic structures and highlight
regional faults. The results show that this implementation is reliable enough to generate auto-
matic seismic catalogs with the appropriate quality in terms of the event location errors and is
capable of defining major tectonic structures. Better yet, it can improve earthquake processing
times and complement manual catalogs due to its good performance for small earthquakes and
aftershocks.
Key Words: Deep learning, Autopicking, PhaseNet, EQTransformer, Colombian seismicity.



viii

Resumen

Las redes sismológicas, ya sean mundiales, regionales o locales, tienen como objetivo vigilar
la actividad sísmica. Esto implica la detección de eventos sísmicos y la determinación de su
localización (latitud, longitud, profundidad y tiempo de origen) con un nivel aceptable de incer-
tidumbre. Aplicamos estos pasos en tres redes sísmicas de forma automática. Una red sísmica
regional (Red Sismológica Colombiana-CM, separación entre estaciones ∼ 100 km), y dos redes
locales y temporales (separación entre estaciones ∼ 10-30 km) en el norte de Suramérica: Las
redes sísmicas locales del Valle Medio de Magdalena (VMM) y de los Andes del Caribe-Mérida
(YU).
Para ello, es necesario procesar los datos continuos de múltiples estaciones para detectar y picar
las fases sísmicas (normalmente ondas de cuerpo). En muchas redes, este proceso lo lleva a cabo
un analista que, examinando visualmente las trazas, determina el tiempo de llegada de cada onda
a una estación. Sin embargo, en redes sísmicas densas o en despliegues temporales, esta tarea
puede ser muy laboriosa y requerir varios analistas. Para detectar y picar las fases sísmicas
automáticamente de la red CM, utilizamos dos modelos de Deep Learning pre-entrenados: EQ-
Transformer y PhaseNet. Derivamos algunas estadísticas para comparar el rendimiento tanto en
fiabilidad como en compatibilidad con el algoritmo de asociación y localización Scanloc. Basán-
donos en lo anterior, utilizamos solo EQTransformer para las dos redes locales.
El catálogo CM generado por los picks de PhaseNet y EQTransformer se comparó con el catálogo
manual. Ambos catálogos son suficientemente confiables para mostrar una distribución similar
de la sismicidad intermedia y somera del territorio colombiano. Las redes locales muestran un
patrón más detallado de la localización de la sismicidad. Por último, fusionamos los catálogos en
uno solo catálogo sísmico automático y usamos algunos cortes para identificar estructuras tec-
tónicas regionales y resaltar fallas regionales. Los resultados muestran que esta implementación
es lo suficientemente fiable como para generar catálogos sísmicos automáticos con la calidad
adecuada en términos de errores de localización de eventos y es capaz de definir las principales
estructuras tectónicas. Mejor aún, puedemejorar los tiempos de procesamiento de terremotos y
complementar los catálogos manuales gracias a su buen rendimiento para terremotos pequeños
y réplicas.
Palabras claves: Aprendizaje Profundo, Autopicado, PhaseNet, EQTransformer, Sismicidad Colombiana.
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1 Introduction

The amount of seismological data has been increasing both globally [Suárez et al., 2008, Ringler
et al., 2019, Londoño et al., 2019], with the growth of seismological networks, continuous mon-
itoring, and the deployment of local or temporary networks for specific studies [Cornthwaite
et al., 2017, Londoño et al., 2019, Molina et al., 2020]. This increase has also allowed an increase
in the number of detected earthquakes or characterized seismic events and also the identifica-
tion of seismic activity that previously went unnoticed.
With the increase in data volume has also come the need to develop computational tools that
are capable of processing, analyzing and detecting seismic events (due to the volume of data).
These developments include automatic earthquake detection methods (STA/LTA) [Allen, 1978,
Trnkoczy, 2009, Liu and Zhang, 2014, Kumar et al., 2018], event detection using template match-
ing [Gibbons and Ringdal, 2006, Ross et al., 2019a, Lee et al., 2020], Fingerprint and Similarity
Thresholding methods (FAST) [Bergen and Beroza, 2019] and more recently Machine Learning
methods to detect events and/or determine the arrival of seismic waves [Ross et al., 2018a, Ross
et al., 2018b, Zhu and Beroza, 2019, Woollam et al., 2019, Dokht et al., 2019, Pardo et al.,
2019, Mousavi et al., 2020]. Additionally, with the deployment of dense seismic networks for
local studies (monitoring of induced seismicity, tomography or study of aftershocks).
This seeks to implement two pre-trained Supervised Deep Learning models (SDL), PhaseNet
[Zhu and Beroza, 2019] and EQTransformer [Mousavi et al., 2020], to pick/detect seismic phases
in the Colombian territory. Both models were used to pick the seismic phases of the National
seismological network (FDSN code: CM), and only EQTransformer was used to pick the seismic
phases of two local and temporary networks in Northern South America: The Middle Magdalena
Valley seismic array (VMM-Spanish acronyms) and the Caribbean Merida Andes seismic array
(FDSN code: YU). The objective is to significantly improve the detection of small, repetitive
and/or unusual events that are difficult or impossible to detect using traditional tools or that
require the dedication of unavailable personnel.
Once the seismic phases are identified, it is necessary to associate them. Phase association
consist to linking phase detections on different stations that originate from a common source.
From the seismic phases of the earthquake, the location, and later themagnitude of the event are
determined. The automatic association task is predominantly based on a grid search and back-
projection algorithms [Sheen and Friberg, 2021, McBrearty et al., 2019b, Yeck et al., 2019]. With
the increasing phase picking sensitivity and the large volume of information to be processed,
there are other approaches including Machine Learning (ML) and deep learning (DL) [Ross et al.,
2019b, McBrearty et al., 2019a, Zhu et al., 2021].
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AlthoughML and DLmodels are very promising to improve significantly the overall performance
of earthquake monitoring workflow, we did not find a user-friendly association algorithm to use,
although some recent work has been presented [McBrearty, 2021, Zhu et al., 2021]. Therefore,
we use the associator algorithm used by the automatic processing of the Colombian Seismo-
logical Network. This is the Scanloc module from SeiscomP3 [Potsdam, 2018]. It is based on
DBSCAN to cluster P-phases tomake preliminary origins located by the configured locator. Then,
adittional P and S phases are aggregated to the existing solution by a relocation procedure. We
used LOCSAT and HYPO71 to locate the seismic events. As the Scanloc algorithmwas performed
on the Colombian Geological Survey computers, it was only possible to use it on the CM and
VMMnetworks, which are the ones they operate. For YU network; we didn’t use SGC computers
due to data privacy terms in the data, then we used a free association algorithm proposed in the
EQTransformer repository and the HYPOCENTER method to locate the seismic events. Finally,
the Colombian 1D velocity model [Ojeda and Havskov, 2001] was used herein as input for each
locator.

This shows a detailed analysis of the phase picking results of bothmodels and their compatibility
with the association algorithms. It also shows the automatic seismological catalog obtained for
the three seismic networks. In general, for both PhaseNet and EQTransformer, the automatic
national catalogs are similar to the manual one. However, the expected level of earthquake de-
tection detail was not achieved because the association algorithm is very sensitive to false picks.
This is a bottleneck, especially for PhaseNet picks. This limitation is substantially reduced for
local networks, and therefore, their results showmuch better resolution. Finally, we merged the
automatic catalogs into a single catalog that summarizes reliable information on the seismicity
of northwestern South America.

Lastly, through some profiles, we illuminate some actively deforming zones occurring beneath
the Northern Andes, mainly bounded by the relative convergence of the Nazca, Caribbean and
South American plates. We identified the Benioff zones associated with the subduction of the
Nazca and Caribbean plates and we determine the strike direction and dip angle. The catalog
shows the prominent discontinuity of seismicity around 5.5°N , separating the Cauca and Bucara-
manga segments [Ojeda andHavskov, 2001, Vargas andMann, 2013, Syracuse et al., 2016]. In the
Bucaramanga segment, two seismic clusters are evident. Bucaramangas seismic nest centered at
6.875°N and 73.115°W at 150 km depth approximately, and another cluster located at 5.31°N
and 73.77°W close to the municipalities of Ubaté and Cucunubá. Finally, we also illuminate lin-
eaments associated to several systems of active crustal faults, including: -The Magdalena Valley
Fault System in the middle of the Eastern and Central Cordillera. - And the Llanos Foothill Fault
System at the boundary between the Eastern Cordillera and the South American Shield. To the
south of this fault system, there is the Algeciras Fault system. Where a series of earthquake af-
tershocks were located since the Mesetas-Meta main earthquake ( 2019-12-24T19:03:52 UTC).
And in the north of Colombia and western Venezuela, we identified the triangular Maracaibo
Block, limited by the Bucaramanga, Boconó and Ocá fault systems. Based on the above, this
implementation is reliable enough to generate automatic seismic catalogs with the appropriate
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quality in terms of the event location errors and is capable of defining major tectonic structures.



2 Earthquake monitoring workflow

Considering that we aim to monitor seismic events, we present an ordered recipe to obtain
seismic catalogs from the seismological data. First, we show three seismological networks used
in this work and how much data is associated to each one. The second section picking seismic
phases using two pre-trained deep learning models, and we discuss the theoretical difference of
them compared to traditional methodologies. In the next two sections we are going to see how
those picks are associated to a single seismic event, and the event located with some traditional
methods. Then, we explain the automatic process to compute the moment magnitude for each
event. All step by step of the earthquake monitoring workflow used in this work is included in
a github repository titled SeisMonitor¹

2.1 Seismological data acquisition

2.1.1 Seismological data

The times series data and metadata are the principal data to monitor the seismic activity. They
are saved according to the standard described in the SEED manual format of the International
Federation of Digital Seismograph Networks (FDSN). The time series data represents records of
the ground motion and is called a seismogram. In this work, the time series data was saved
in MSEED format and is ordered in the SeisComP3 database structure. On the other hand, the
metadata refers to the descriptive information of the seismological data, such as the station
information and the transfer function of the sensor. Regarding the sensors, they are identified
according to the SEED Channel Naming convention (see Table 2-1). Although there are several
ways to save the metadata; in this work, it was saved in DATALESS format.

¹SeisMonitor: https://github.com/ecastillot/SeisMonitor

Table 2-1: Sensor codes.
Sensor Location Code Sampling rate

BB Seismometer 00 HH 100
SP Seismometer 20 EH 100
Accelerometer 10 HN 200

https://github.com/ecastillot/SeisMonitor
http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf
http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf
https://ds.iris.edu/ds/nodes/dmc/data/formats/seed-channel-naming/
https://github.com/ecastillot/SeisMonitor
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Figure 2-1: Seismic networks: 1. The Colombian Seismic Network (CM) with some stations
of the VMM network (CM[VMM]). 2- The Middle Magdalena Valley seismic array
(VMM) with some stations of the CM network (VMM[CM]). 3- The Caribbean Mérida
Andes seismic array (YU). The blue line represents the VMM polygon

2.1.2 Seismological Networks

The seismological network is the set of stations deployed to cover a region of interest, where the
number of stations and the network geometry are parameters to be taken into account for better
earthquake locations. Wework with three seismological networks to detect and characterize the
occurrence of natural seismic activity (figure 2-1). 1- The Colombian Network with CM network
code in the FDSN. This is the national network to monitor seismic activity in the Colombian
territory [INGEOMINAS - Servicio Geologico Colombiano (SGC Colombia), 1993]. 2- The Middle
Magdalena Valley seismic array. Although this network is also operated by the Servicio Geológico
Colombiano (SGC) [Londoño et al., 2019] and then it uses the same network code in the FDSN,
in this work this regional temporary array is denoted with VMM network code. 3- Finally, The
CaribbeanMérida Andes seismic array with YU network code in the FDSN [Alan Levander, 2016].
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Colombian Network (CM)

The Colombian Seismic Network is currently operated by the SGC. Nowadays, until 2021, ac-
cording to the Colombian FDSN web service², this network has one station more than the one
reported by [Wielandt et al., 2021]. There are 59 real time public seismological stations with 49
BB and 8 SP seismometers. Also, there are 13 real time public stations with only accelerometer
sensors. The figure 2-1 shows that these stations seek to cover the seismic activity that may
exist in the Andean zone, the Pacific Coast and the Caribbean zone of Colombia. We down-
loaded seismic data of this network from 01/12/2019 to 01/01/2021. We also used available
data from some stations of the VMM network until 01/09/2020. The data were downloaded
by the following sensor priority: First BB seismometers, if not SP seismometers and else finally
accelerometers.

Middle Magdalena Valley array (VMM)

As a result of the National Government’s interest in developing the exploration of unconven-
tional hydrocarbons using the hydraulic fracturing technique in the Middle Magdalena Valley
(ValleMedio deMagdalena - VMM) and La Loma-Cesar, the SGC installed this network to develop
a seismicity baseline catalog. This is a local seismic network with temporary BB seismometers
along the basin to monitor the seismic activity. Although this network is also operated by the
SGC, in this work it is denoted with VMM network code (figure 2-1). We downloaded the data
of 23 temporary seismological stations from 01/01/2016 to 01/09/2020. Furthermore, for a bet-
ter resolution in the earthquake detection, in this period we also downloaded available data of
other 9 public stations of the CM network that surrounded the basin.

Caribbean Merida Andes Seismic array (YU)

The Caribbean-Mérida Andes (CARMA) seismic experiment was developed to investigate the flat
slab subduction and plate edge tectonics in Northern South America. This temporary seismic ar-
ray has 65 temporary BB stations deployed in North-Western South America (NWSA) zone from
2016 to 2018. The figure 2-1 shows the network geometry around Colombian and Venezuelan
territories. We only downloaded the one year approximately (01/01/2016 to 01/02/2017) from
the CARMA FDSN web service³ .

²FDSN web service of the Colombian Seismic Network: http://sismo.sgc.gov.co:8080/
³FDSN web service of the Caribbean- Mérida Andes (CARMA) seismic experiment: https://www.fdsn.org/

networks/detail/YU_2016/

http://sismo.sgc.gov.co:8080/
https://www.fdsn.org/networks/detail/YU_2016/
http://sismo.sgc.gov.co:8080/
https://www.fdsn.org/networks/detail/YU_2016/
https://www.fdsn.org/networks/detail/YU_2016/
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Figure 2-2: The upper panel represents a normalized seismogram of an earthquake. The figures
below show the timestamp corresponding to each P and S seismic phases of the
event.

2.2 Phase Picking

2.2.1 Seismic body waves

A seismic event is a sudden movement produced by a rupture process that releases energy in
the form of elastic waves, which travel through the Earth’s medium, reflecting and refracting on
the different types of materials they encounter in their path. Seismic waves are mainly divided
into two groups: body waves and surface waves. For the purposes of this investigation body
waves are explained: P-waves and S-waves.

P waves

It is a longitudinal wave whose oscillation is in the direction of propagation, that is, the medium
in which it travels is alternately compressed and dilated in the same direction of the propagation.
Figure 2-2 shows the first transient record of the seismogram alluding to its name as primary
wave, it travels faster than the S-wave.

S waves

The S-wave or secondary wave is a transverse wave that oscillates perpendicularly to the direc-
tion of propagation. Generally, these oscillations produce most of the damage when a seismic
event occurs. Figure 2-2 shows that it is the second transient recording. In general terms, P and
S wave recordings compose the main local signal of a seismic event.
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2.2.2 Seismic arrival times

P and S waves are recorded in the seismogram; now to monitor seismic activity, it is necessary
to detect the arrivals of each seismic wave. These arrivals are called seismic phases. The figure
2-2 shows the timestamps corresponding to each P and S seismic phases.
Seismological analysts are trained in recognizing seismic phases (mainly P and S seismic phases)
and they know some mechanisms to detect seismic phases at each seismic station of each type
of seismic event. For example, the use of signal filters could help to smooth the signal at the
appropriate frequencies in order to detect the changes in amplitude of each arrival.
For dense seismic networks or for long seismic processing times, detecting and picking seismic
phases could be a really difficult task in terms of time and dedication. Therefore, there are ef-
forts to automate this process. Among them one of the most prominent is the STA/LTA [Allen,
1978]. As shown in Figure 2-3, this algorithm is based on using two windows; one short (”Short
term average”-STA) and a longer one (”Long term average”- LTA), to calculate a rate between the
average amplitudes of each window. Once this rate is calculated, if it exceeds a certain threshold
then the arrival of a seismic phase is detected. Before calculating the ratio, it is necessary to use
a filter to improve the signal-to-noise ratio to facilitate the detection of the amplitude change.
There are several studies that used this method and obtained good results [McEvilly and Majer,
1982] [Earle and Shearer, 1994]. Moreover, there are improvements to this method [Baer and
Kradolfer, 1987]. On the other hand, it was developed AR-AIC picker [Sleeman and van Eck,
1999], it applied joint autoregressive (AR) modelling of the noise and seismic signal and Akaike
Information Criterion (AIC) to determine the onset of a seismic signal. Furthermore, some al-
gorithms analyze wave polarization to pick S seismic phases [Cichowicz, 1993] or to improve
S-wave arrival time measurements [Ross and Ben-Zion, 2014]. Other algorithms adopt wavelet
transform to pick P and S seismic phases [Anant and Dowla, 1997] [Al-Hashmi et al., 2013].
Despite the substantial efforts outlined above, these algorithms have multiple limitations that
make the process not fully automatic and not as accurate as that of an experienced analyst. For
example, the STA/LTA algorithm has been used for a long time in the SGC with some problems
including: - it sometimes confuses P and S phases, - it doesn’t pick seismic phases for low SNR
in the seismic signal - it confuses noise peak signals with seismic phases. Besides, it needs the
adjustment of the mentioned filters, time windows or thresholds according to the noise level of
each station. For all these reasons, in this work we were motivated to find new algorithms that
improve the effectiveness of the automatic detection and picking systems.

2.2.3 Phase picking with deep learning

Our goal is to use an algorithm that can be general enough to pick seismic phases regardless
of the station where it is recorded or type of earthquake occurring. Something similar to how
a seismological analyst does it, but this time in an automatic way. According to the concept
defined by International Business Machines Corporation (IBM), Machine learning (ML) is a branch
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Figure 2-3: STA/LTA detection algorithm. Taken from [Marmureanu, 2009]

of artificial intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate
the way that humans learn. In this sense, we focused our approach in a type of machine learning
based on artificial neural networks, which it is called Deep Learning (DL).
ML models can be designed as supervised learning (SL) models or as unsupervised learning (UL)
models. As the names suggest, the difference between them is the way of learning. The first
one uses labeled data sets to train algorithms to classify data and predict outcomes, then the
machine can learn if the model prediction is similar to the label. On the other hand, UL models
don’t use any labels or explicit instructions on what to do with it. It identifies patterns in the
structure of the input data set, something similar to self-learning. Although, UL could perform
more complex tasks than SL, they are more unpredictable. Besides, we want to take advantage
of large labeled data sets provided to pick seismic phases [Mousavi et al., 2019] [Magrini et al.,
2020]. Therefore, we focused our work to make predictions with two pretrained Supervised
Deep Learning (SDL) models.
We also direct our work in this sense because there are several promising results in the use of
SDL models applied to seismic phase picking. To understand how they work and how they are
evaluated, we present five general steps that any SDL model follows.

1. Prepare the data. Neural network models require numerical labeled data as input for train-
ing and testing. DL phase picking models use seismic signals as input data; and normally
for each given input, the network outputs the probability of an P-phase, an S-phase, or
noise for each time sample within the seismic signal window. The Stanford EArthquake
Dataset [Mousavi et al., 2019]; a global data set of seismic signals for AI, is one of the
state-of-the-art data sets to prepare seismic signals for DL phase picking models.

2. Define the model. The neural network model is an architecture defined by DL layers
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widely used to extract high-level abstract features, increasing the data interpretability to
make desired predictions. There are several neural networks, themost frequently used for
earthquake monitoring workflow are as follows: Multilayer Perceptron (MLP), also known
as multilayer feed-forward network, normally used at the end of the model architectures
to classify the data. Convolutional Neural Networks (CNN) are able to successfully capture
the spatial and temporal dependencies of the data to extract high-level abstract features.
Residual Neural Networks (ResNet) use skip connections to jump over layers to simplify
the architecture and accelerate the learning speed. Recurrent Neural Networks (RNN) are
used to create a persistent memory of data, then they are very useful to understand high
level abstract features in sequence of data. Transformer networks adopt the mechanism
of self-attention to prioritize each part of the input data. Finally, Graph Neural Networks
(GNN) use graph theory; where a graph is defined as a set of nodes with specific features
and edges to represent node connections, to extract high-level abstract shared features
at the nodes based on the node connections. This neural networks overview, allows us
understand the basic idea intended by each layer presented in the different model archi-
tectures.

3. Train the model. The training process refers to fitting the model parameters provided
by each layer to generate good predictions. It requires defining a loss function and an
optimization algorithm. The loss function is a metric to judge when the model makes
bad predictions, and the optimization algorithm seeks to minimize the loss function by
iteratively executing of comparing several solutions (different parameter weights) until a
satisfactory solution is found. The binary cross-entropy loss is commonly used for binary
classification. Then Phase picking DL models normally use it to predict binary vectors to
obtain the probability functions. On the other hand, ADAM optimization algorithm is one
of the most used for DL applications.

4. Evaluate the model. Once the model has been fitted, it must be evaluated against the test
data set. Once the test data set predictions have been obtained from the model, the next
values are computed:

• True positives (Tp): Predicted positive and are actually positive.

• False positives (Fp): Predicted positive and are actually negative.

• True negatives (Tn): Predicted negative and are actually negative.

• False negatives (Fn): Predicted negative and are actually positive.

The model could then be judged with the usual evaluation metrics defined as follows:

Precision =
Tp

Tp + Fp

(2-1)
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Recall =
Tp

Tp + Fn

(2-2)

F1 = 2 ∗ Precision×Recall

Precision+Recall
(2-3)

Precision computes the percentage of positive instances out of the total predicted posi-
tive. Recall computes the percentage of positive instances out of the total actual positive
instances. And F1-score is the harmonic mean of precision and recall, where higher F1
scores, the better is the model. Normally, F1-score is the selected metric to evaluate DL
models presented in the earthquake monitoring workflow.

5. Make predictions. If the model works as well as the user requires, the model is ready to
make predictions on any prepared data set.

With the aforementioned, we are going to introduce some of the phase picking SDL models and
establish why we chose EQTransformer [Mousavi et al., 2020] and PhaseNet [Zhu and Beroza,
2019] pretrained models to pick seismic phases on the Colombian seismological data (PhaseNet
only was applied to CM network).
Phase Picking SDL results are obtained from shallow neural networks [Dai and MacBeth, 1997]
[Gentili and Michelini, 2006], however their performances were greatly limited by its simple
neural network architecture, little number of training examples and slow computational speed.
Phase Picking SDL models have increased substantially due to the emergence of CNN. One of
themwas developed to Pwave arrival picking and first motion polarity determination [Ross et al.,
2018a]. Next, ConvNet SDLmodel was trained to detect seismic body-wave phases with millions
of hand-labeled phases from analysts at the Southern California Seismic Network (SCSN) [Ross
et al., 2018b]. The model’s input data consists in three-component records with a length of 400
samples and it classifies this record according to its detection as P,S or noise windows. Its results
suggest that it is extremely sensitive and robust in detecting phases even when masked by high
background noise.
PhaseNet SDL model was presented to pick the arrival times of both P and S waves [Zhu and
Beroza, 2019]. The model input data consists of three-component records with a length of 3001
samples and it uses an adapted version of the U-Net architecture [Ronneberger et al., 2015]; a
specific CNN architecture to create a segmentation mask. Each input data is tagged as a proba-
bility function with probability 0 when there are not seismic phases or else a gaussian function
is created, where P and S seismic phases are set with a probability of 1 at the first arriving P and
S wave (figure 2-4-b ). It was trained with six hundred thousands records approximately and
tested with about eighty thousands records taken from Northern California Earthquake Data
Center Catalog (NCEDC). Its results provide high accuracy and recall rate for both P and S picks,
and achieves significant improvement compared with a traditional STA/LTA method.
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Figure 2-4: EQTransformer and PhaseNet Supervised Deep Learning pre-trained models to pick
seismic phases.

PhaseNet’s approach served as one of the inspirations for the following SDL model. Other CNN
was designed with the same labeling approach for classifying seismic phase onsets for local seis-
mic networks [Woollam et al., 2019]. Even though they used a single 1D waveform as input data
and they didn’t have extensive training data, they demonstrated phase picking improvements in
comparison with STA/LTA method. Furthermore, Cospy SDL model proposed other CNN archi-
tecture approach to picking seismic phases to solve two Phasenet architecture drawbacks [Pardo
et al., 2019]. It receives 1024-sample as input data and was trained with a large amount of data
to perform P and S phase picks separately. Its results try to reach the human-level performance
and can contribute to decreasing the need for manual analysis.

Other ConvNet SDL was developed to achieve an automatic seismic event and phase detection
[Dokht et al., 2019]. With the help of the CNN architectures, it was done in two steps: first
to separate earthquake from nonearthquake and second to discrimanate P and S waves. They
identify∼ 20%more events than manual event detections and provide initial estimates of phase
onset times to determine preliminary earthquake locations to monitor natural and induced seis-
micity. Besides, PickNet SDL model was presented to pick P and S wave arrival times with high
accuracy close to that human experts [Wang et al., 2019], and it was used to determine seis-
mic tomography and contribute to improve the understanding of the Earth’s interior structure.
PickNet architecture was designed with CNN and ResNet to speed up the training convergence
and refine the detection result, and it was trained with a large amount of High-sensivity Seis-
mic Network (Hi-net) data to perform P and S phase picks separately. In contrast to the other
SDLmodels, their data was collected of local earthquakes with epicentral distances up to∼ 1000

km. They obtain∼ 10 times more P and S phases than reported by Japan Meteorological Agency
(JMA), and the predicted picks were used to perform a tomographic inversion to successfully
illuminate the Japan subduction zone.
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The above approaches use DLmodels to extract high-level features to pick seismic phases. How-
ever, EQTransformer SDLmodel was proposed for simultaneous earthquake detection and phase
picking [Mousavi et al., 2020] to improve themodel performance. The input data is 6000 samples
of three-component seismograms and there are three output sequences representing probabil-
ities associated with the existence of the earthquake signal (detection), and the P and S arrival
times. The detection output is a box-shaped function and the pick detection outputs are tri-
angular functions to define the probabilities of P and S phases (figure 2-4-a ). The architecture
is designed with a central encoder and three decoders, it uses a global attention mechanism at
the end of the encoder to direct the attention to the earthquake signal, and it also uses a lo-
cal attention mechanism in two decoders to direct the attention for both P and S phases. This
new approach is inspired by how the seismological analyst conducts it. First, their attention is
focused in detect the event; and then, they proceed to pick seismic phases. This SDL model
was trained with different and large number of seismic traces from different regions reported
in STEAD [Mousavi et al., 2019]. Furthermore, it employs augmentation techniques to simulate
several different types of seismograms usually recorded in continuous data. EQTransformer was
evaluated on aftershock series from Japan data unknown to the model and was able to greatly
increment the number of picks reported by JMA.
All of the above allow us to recognize the high influence of DL on phase picking. Although we
are aware of the good results presented in each one of them, we only find well-documented code
for PhaseNet and EQTransformer. Besides, according to the results in a common test data set
from STEAD, we could assume that these two are the best and the most recognized SDL models
in the picking phase state of art [Mousavi et al., 2020]. Therefore, we focused our phase picking
approach using two pre-trained deep learning models: PhaseNet and EQTransformer.

2.3 Phase Association

Phase association consists to linking phase detections on different stations that originate from
a common earthquake. Seismological analysts associate detections to the same seismic event
when these are close in time and, initially, come from stations spatially close (figure 2-5). The
other seismic phases will be associated along the way checking that the phase residuals or un-
certainties in hypocenter location do not increase dramatically.
Although the association concept is simple, it is a really hard task to address it automatically
because it needs to cluster coherent phases and removes the false ones. Besides there can be
various origins of seismic signals in the same interval of time; even overlapped. Which in turn
could be provided from the same or different hypocenter locations.
In general, automatic phase association is predominantly based on a grid search and back-
projection algorithms [Sheen and Friberg, 2021, McBrearty et al., 2019b, Yeck et al., 2019]. The
region of interest is discretized, and for each grid the detected arrivals are back-projected and
stacked to search a grid that exceed a threshold of count of back-projected arrivals. If one of
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Figure 2-5: The association algorithms seek to cluster the detected events by each station that
record the common earthquake. Normally, the detections are close in time and,
initially, come from stations spatially close.

them exceeds, the algorithm assumes a coherent origin. On the other hand, with the increasing
phase picking sensitivity and the large volume of information to be processed, there are other
approaches thanks to the notably ML and DL progress [Ross et al., 2019b, McBrearty et al.,
2019a, Zhu et al., 2021].

AlthoughML and DLmodels are very promising to improve significantly the overall performance
of earthquake monitoring pipelines, when we looking for a phase associator, we did not find
a user-friendly documentation. For this reason and because we aim to use the same phase
association for comparison, we use the scanloc module from SeisComP3 [Potsdam, 2018], the
associator algorithm used by the SGC. We use it to associate seismic phases obtained in the CM
and VMM networks. However, as YU seismic network is private, we couldn´t use scanloc for
this purpose. Therefore, as YU network has stations located relatively close to each other, we
use the association algorithm proposed in the EQTransformer repository.

The EQTransformer-associator algorithm is a very simple algorithm based on the detection times.
The scanloc module is based on the DBSCAN algorithm, that at first clusters P-phases. Next, it
is based on a grid-search algorithm and back-projection method to locate the clusters and get
preliminary origins. Finally, it associates additional picks from P and S waves by a relocation
procedure. P phases are added if travel-time residuals are not larger than a user-fixed threshold.
Additionally, S phases are added if 1) The reference P phase is already associated and 2) if the
root mean square (RMS) travel time residual is not larger than an user-fixed threshold.

https://eqtransformer.readthedocs.io/en/latest/tutorial.html#phase-association
https://eqtransformer.readthedocs.io/en/latest/tutorial.html#phase-association
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2.4 Event location and magnitude estimation

Oncewe have identified the set of phases that correspond to a common seismic event, we have to
get the earthquake location (X,Y, Z) and the origin time T in which it was nucleated. Therefore,
there are four unknown earthquake parameters that will have to be estimated from the observed
arrival times. This is known as the inverse problem.
On the other hand, the forward problem consist to predict travel time tipred for each ith station
considering prior knowledge of the location and time origin of the earthquakem = [X,Y, Z, T ],
the velocity model of the area, and the location of the stations. We could get the predicted travel
time tipred means of ray-based methods, which solve the kinematic ray equation, or grid-based
methods, which solve the Eikonal equation [White et al., 2020].
However, as wementioned before, we want to find the optimal solution form from the observed
arrival times tiobs. Normally, it is obtained when the smallest arrival time residual is found at each
station. The residual ri at the ith station is defined as the difference between the observed travel
time tiobs and predicted travel time tipred.

ri = tiobs − tipred (2-4)

The most widely used algorithms to identify the best fitting event are based on a grid search
approach in combination with iterative least squares inversion algorithm [Micallef, 2019].
As we suggested in the section 2.3 regarding the Scanloc module, after the first P-clusters are
collected then a grid-search algorithm is used to locate the events. In this process, once the re-
gion is discretized, potential locations are founded in each grid point computing the P-residuals.
Then, any earthquake location program is launched. For this purpose, we used LOCSAT, HYPO71
to locate the seismic events corresponding to the CM and VMM seismic networks. Each of these
earthquake location programs determine the best-fitting location in the possible potential loca-
tions by using iterative least squares inversion algorithm until the RMS is sufficiently minimized.
This location process is continuously repeated while the other P and S phases are associated.
In the YU network, the HYPOCENTER location program provided by the SEISAN software was
used to locate the clusters given by the EQTransformer-associator algorithm.
In order to quantify the energy released by the seismic events, the instrument response is re-
moved from windowed seismic data on each station. Then, thanks to the Scamp Seiscomp mod-
ule, the amplitudes were computed from waveform data based on incoming associated picks
to estimate the magnitude of the seismic events. The SGC computes local magnitude ML for
magnitude values smaller thanML = 4. For those cases, it is estimated according to a distance-
correction function calculated for five zones due to the different attenuation values associated
with the various tectonic environments and regional geological features present in the country
[Lopez et al., 2020]. However when the magnitude values are greater, the moment magnitude
Mw derived from mB magnitude [Bormann and Saul, 2008] is preferred.
On the other hand, we always calculate the moment magnitudeMw derived frommB magnitude
for CM and VMM networks. So far, for the YU network, we have not calculated the magnitude.
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Although both, the SGC and this work, used different magnitude types for magnitude values
smaller thanML = 4, one of the biggest reasons to divide the territory into zones is to decreasing
discrepancies with Mw. Therefore, we can compare the magnitude values of the manual and
automatic catalogs.



3 Phase picking results

This chapter is dedicated to show the phase picking results, processing time results, some spe-
cific examples to elucidate and some analyses to evaluate the performance of the SDL pre-trained
models. For this purpose, we only analyze the phase picking results of the CM network because
it is the only one from which we have analyst picks to compare to.
First, we present the processing time to run PhaseNet and EQTransformer models in the CM
network data. Also, we show the versatility of the twomodels. Second, we show some examples
of both SDLmodels where we obtained very good results to detect seismic phases in earthquake
aftershocks. Third, we present the entire catalog phase picking results. We study the threshold
probability of each station in terms of generating good phase picking results. To achieve this, we
look for EQTransformer and PhaseNet picks that are in the manual pick database. In principle,
the picks that are found in both catalogs (SDL and manual) give us an idea of the probability
threshold of the SDL that best reproduces the manual picks. Besides, this analysis was made
for three types of instruments: HH, EH and HN. Finally, for picks founded in both catalogs, we
analyze phase picking time precision and true phase probability distributions. All of the above
gives a general idea of the advantages and disadvantages of using EQTransformer and PhaseNet
models on seismological data from a regional network.

3.1 Processing times

For the CM network we ran EQTransformer and PhaseNet SDL pre-trained models in 30 free
jupyter notebook environments from Google Colaboratory. Each jupyter notebook offers the
same computer device: Intel(R) Xeon(R) CPU@2.30GHz (1 core, 2 threads) and RAM:∼ 12.6GB.
In each of these we download and process the data every 2 separately hours for a total of 395
days of 59 seismological stations and 13 accelerometer stations. Throughout the year and one
month of processing data not all stations operated continuously. PhaseNet was executed with
the following input hyperparameters: 50% data overlap and 0.3 P-phase and S-phase probability
thresholds. And EQTransformer was executed with: 30% data overlap, 0.3 detection threshold
and 0.01 P-phase and S-phase probability thresholds. The batch size used in both model was 100
examples. Unlike EQTransformer, PhaseNet outputs are given in sample units for each segment,
we then converted them to time. To do this, we had to study the overlapping segments and keep
the segment with the highest average probability. This small amount of post-processing is also
considered in the time taken by the algorithm.
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EQTransformer took ∼ 5 minutes to process 2 data hours in 1 Colab jupyter notebook, while
PhaseNet took ∼ 9 minutes. Then, 2 data hours take ∼ 14 data processing minutes for both
models. Although both models process the same length of data, in a single run PhaseNet can
only receive half as much data as EQTransformer as input, then, PhaseNet took longer time.
Furthermore, PhaseNet overlaps more data. Considering the above, processing 395 days of data
from 72 stations using both models in 30 Colab jupyter notebooks takes approximately 2 days.
The SGC hires expert seismological analysts to process and disseminate real-time information
from the public stations of the CM network. Informally, we asked them to estimate the time
it would take an analyst to manually process 2 hours of data. Although there are many factors
that can vary the result (emotional conditions, active breaks, earthquake density, active stations,
etc.). On average, a processing time of∼ 1.3 hours per 2 hours of data is considered. Under this
very shallow approximation, an expert will take ∼ 304 days to process 395 days of 75-stations
data.
Therefore, both models can reduce processing times considerably and even be speeded up if
better hardware is used if you have better hardware than the one presented in this investigation.
Furthermore, they are flexible in terms of hardware and software components. This makes it
very functional and operative in any system where seismological processing is required.

3.2 EQTransformer and PhaseNet performance

3.2.1 Introduction to general examples

Both models have their advantages and disadvantages, we present some specific examples to
illustrate each of them. The example presented in the figure 3-1a shows an intermediate depth
seismic event where P-phase and S-phase were detected by all pickers. The event was detected
in the closest station to the hypocentral location (BAR2 to ∼ 0.13° of distance, where S-P time
difference is about 15 seconds), and was located in the Bucaramanga Nest, a zone with significant
seismic activity in a very compact volume [Prieto et al., 2012].
Figure 3-1b shows again an intermediate depth seismic event but this time located at a site far
from the station. the S-phase was not detected by PhaseNet. This happened because the S-P
time difference is larger that the time window that PhaseNet receives as input. Therefore it
can not cover the entire waveform record to predict correctly. Similar cases were detected in
the seismic events produced in the Bucaramanga Nest. Stations farther away than ∼ 2.5° have
more than 30 seconds of S-P time difference. Therefore, PhaseNet can not pick seismic phases
correctly in several stations that record a Bucaramanga nest seismic event. However, for the
closer stations, it can detect the seismic phases very well, even events not detected either by
the analyst or by EQTransformer (Figure 3-1c).
As we suggested before, sometimes PhaseNet can detect seismic events not detected by other
methods. This situation is even more pronounced when the seismic events are shallow and
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Figure 3-1: Examples of advantages and disadvantages of the EQTransformer and PhaseNet
models. a) EQTransformer, PhaseNet and seismological analysts detect all phases
recorded at station BAR2 as a result of an earthquake located in the Bucaramanga
nest. BAR2 is the first station to record the earthquake. The time difference S-P is
usually 15 seconds. b) PhaseNet can not detect the S phase for an event where the
time difference S-P is larger than 3000 samples (> 30 s). c) Two consecutive seismic
events in the Bucaramanga nest. Unlike, EQTransformer, PhaseNet could detect all
seismic phases.
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Figure 3-2: Introduction to PhaseNet results. a) PhaseNet is sometimes the only one that can
detect very small events. b) PhaseNet often confuses spike signals with P phases.

have small amplitudes (Figure 3-2a). These events are usually seen in one or two stations of
a regional network such as CM. Although we are aware about this advantage, in this regional
seismic processing it is not very useful as they cannot be located. On the other hand, in figure
3-2b we note that PhaseNet makes several mistakes for spike signals and filtering them is a really
hard task because the probability values are very high.
A final example (figure 3-3), shows a set of earthquake aftershocks. We analyzed 8 minutes of
data 5.5 hours after the main shock (not shown) at the station closest to the epicenter (∼ 32 km
of distance). The main shock origin time was 2019-12-24T19:03:52 UTC and its magnitude was
6.0. The epicenter location was in Mesetas-Meta (lat:3.45°N , lon:74.19°W ) and its depth was 8
km [Mayorga et al., 2020, Londoño et al., 2019, Prieto, 2022].
EQTransformer and PhaseNet models can detect events not detected by the seismological ana-
lyst. In this interval, both manage to register more events than reported by the SGC. EQTrans-
former finds 3 adittional events while PhaseNet finds 5. Notwithstanding the above, PhaseNet
predicts more false positives than EQTransformer. However, this can be managed for both mod-
els by setting probability thresholds.

3.2.2 Truthfulness of the picks results

In figure 3-4 we show the P-phase picking results of both models together with manual picks
in the CM network. PhaseNet has much more picks because it has some false picks attributed
to signal spikes or sometimes because it confuses P and S seismic phases, among others. In
addition, the most drastic changes in the scale of picks for both models occur at the stations
with accelerometer instruments (HN sensor). This means that in these instruments there is a
higher probability of false picks. We will discuss this in more depth later.
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Figure 3-3: Autopicking algorithms applied to a set of earthquake aftershocks. The studied time
interval was 8 minutes, 5.5 hours after the main shock (M 6.0) at the station closest
to the epicenter (∼ 32 km of distance). Red squares represent events detected only
by EQTransformer and PhaseNet. Green squares represent events detected only by
PhaseNet.
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Figure 3-4: Comparison of picks reported by SGC, PhaseNet and EQTransformer models. EQ-
Transformer model complements the database of isolated stations such as the PRV
station. We present some random PRV phase picking results at 2 seconds in a 15-
second time window. We find out the majority are true picks because there were
noticeable amplitude changes.

On the other hand, EQTransformer keeps approximately the same scale of picks as the manual
ones. EQTransformer has more picks in some isolated stations. Where the seismic events are only
observed at one station because the seismic event is small and close enough, or because there
is not much station density. In these specific cases it would be normal for the analyst not to see
or attempt to pick the earthquake .
For instance, both situations occur at PRV station (lat:13.376, lon:-81.36). It is an isolated station
located in the Providencia Island (in the Caribbean 5 degrees north of continental Colombia). To
get a general idea of what happened here, we chose randomwaveforms from these specific cases
and plotted them aligned at 2 seconds in a 15-second time window (Figure 3-4). We find out
that the majority are true picks because there were noticeable amplitude changes. Then, even
for these cases, EQTransformer complements the database.
Assuming that the SGC have all the seismic phases, we denominate true picks when we find the
respective EQTransformer or PhaseNet pick in the SGC database. The time threshold condition
to join the picks are if the time difference between them is less than 1.5 seconds. In order to
refine the results, we study the probability threshold to have true picks.
In figure 3-5 we show a representative example of the general probability behavior of both
models for both P and S phases in HH instruments. Most EQTransformer picks turn out to be
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true picks. It is shown to be robust across the full width of probabilities. For both P and S
phases, from probability ∼ 0.05− 0.15 there are more true than false picks. This makes it very
reliable at high probabilities. Curiously, for the S-phases predicted by EQTransformer in figure
3-5, apparently there are more false than true picks for the highest probabilities (∼ 0.85 − 1).
We claim these picks really do exist, they just do not exist in the SGC database.
On the other hand, PhaseNet results suggest that the model is very sensitive in terms of proba-
bility values; that is, we only trust on very high probabilities. As wementioned before, PhaseNet
delivers a large amount of picks. Therefore, in terms of good quality in the seismic processing
task, for PhaseNet we need a more robust associator algorithm than could be used for EQTrans-
former. Because apart from associating the picks in different events, it must also be sufficiently
prepared to be able to separate true picks from many that are false. However, as we are going to
show in the section 4.1.1, another solution is to remove those picks by probability thresholds
before using the association algorithm.
In addition, we are also interested in presenting the same analysis for different instruments.
EQTransformer maintains its good performance for EH instruments. While those of PhaseNet
seem not to be as good as those shown for HH.We expect this result because the EQTransformer
model was trained with a large number of EH signals compared to the PhaseNet model. For this
reason, it was able to better generalize the detection on this type of signals.
Regarding HN instruments, as its data have different sampling rate as the data with the models
were trained. EQTransformer interpolates them at 100 Hz, and then, runs along the data trim-
ming at 6000 samples. Therefore, the model always is trying to predict 1 minute of data (as in
the training). PhaseNet does not interpolate by default. It only runs the data trimming at 3000
samples. Hence, PhaseNet is only trying to predict 30 seconds of data when the sampling rate of
the signal is 100 Hz. However, PhaseNet allows the user interpolate at 100 Hz. But, we realized
this too late. The user must infiltrate the code and adjust his own data preprocessing ¹.
Consequently, we pass the data with PhaseNet’s default preprocessing settings. That is, in our
processing, PhaseNet for accelerometers is trying to predict results every 15 seconds instead of
the usual 30 seconds (as in the training). Of course, this is not desired. Then, we do not focus
the results on the comparison of models to predict on accelerometer signals. However, we are
going to discuss them separattely.
In figure 3-7, EQtransformer interpolation proves to be a very useful engineering artifact for pre-
dicting results in accelerometer signals. This means that even if the model has not been trained
with accelerometers, it still has good predictions. For PhaseNet, we recommend interpolating
the data. Surely, this will allow to show better results.
We compare the temporal closeness of the automatic picks with the manual picks. We can only
do this analysis for picks found in both databases. In general, the models pick the seismic phases
at the same time that the analyst do (figure 3-8). However, the pick time differences are larger
as the pick probabilities are smaller. This mainly happens for S phases.

¹”You can customize the preprocessing of mseed file, such as filtering and resampling, inside the function
readmseedindatareader.py.”
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Figure 3-5: Stacked number of P and S picks as function of EQTransformer and PhaseNet proba-
bilities for BAR2 station (HH instrument). The light blue bar represents the number
of picks that were found in the SGC database. While the dark blue bar represents
those that were not found.



26 3 Phase picking results

Figure 3-6: Stacked number of P and S picks as function of EQTransformer and PhaseNet prob-
abilities for PAM station (EH instrument). The light blue bar represents the number
of picks that were found in the SGC database. While the dark blue bar represents
those that were not found.
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Figure 3-7: Stacked number of P and S picks as function of EQTransformer and PhaseNet proba-
bilities for PDSC (HN instrument). The light blue bar represents the number of picks
that were found in the SGC database. While the dark blue bar represents those that
were not found.
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Figure 3-8: Comparison of the automatic time picks and manual picks of each seismic phase
for both models. X-axis represents the time difference between picks (At most 1.5
seconds) and Y-axis represents the probabilities given by each model

To conclude, although PhaseNet performs better abilities to detect small earthquakes, EQTrans-
former provides more confidence in detecting true P and S phases. The scale of EQTransformer’s
number of picks is similar to that reported by the SGC, while PhaseNet overflows. On the other
hand, since EQTransformer shows so many true picks at low probabilities, then it allows to have
more confidence for results with high probabilities. This hypothesis is not necessarily true in
PhaseNet because it sometimes assigns high probabilities to signals from external noises (usually
where there are large amplitude changes). Finally, considering that the pre-processing for HH
and EH instruments were the same in both models, the EQTransformer results suggest better
performance on several types of instruments. This allows its operability in seismic networks
with a wide variety of sensors.



4 Phase Association, Event location and
Magnitude estimation

The content of this chapter is based mainly on the association results and their performance
in obtaining reliable seismic catalogs of both regional and local networks. For the regional case
we study the association performance for both PhaseNet and EQTransformer pickers in the CM
seismic network. Association algorithms based on relocation procedures are very sensitive to
false picks and clusters of picks that do not converge to an optimal location result. Therefore, we
design an empirical filter for PhaseNet picks with the aim of obtain as many picks associations
as possible without losing too many pick detections. As the EQTransformer picks are more
reliable, this intermediate step was not necessary. Lastly, we compare the seismic catalogs and
the magnitude estimation obtained from PhaseNet and EQTransformer picks with the manual
catalog and other automatic catalogs.
From the regional results, we decided to use only EQTransformer for the VMM and YU local
seismic networks, where we observed, association algorithms based on relocation procedures
perform much better than the regional case, and therefore, the quality and operability of the
EQTransformer results can be exploited much more.

4.1 Regional networks

For the regional case we study the association performance for both PhaseNet and EQTrans-
former pickers in the CM seismic network. The Scanloc module from SeisComP3 was used to
associate those picks. It determines hypocenter solutions using cluster search and relocation
procedure. We used LOCSAT and HYPO71 locator methods together with the velocity models
IASPEI91 and Colombian 1D velocity model [Ojeda and Havskov, 2001], respectively, as inputs
to the relocations performed in Scanloc. Therefore, we got seismic origins by each method. This
was done because some picks were discarded by one locator because did not achieve a good fit,
while the other did. So we finally merge the origins and remove duplicates.

4.1.1 Association performance in the CM network

Subsection 3.2.2 suggests the need for a robust associator algorithm that apart from associating
picks to different sources, it must also ignore false picks so as not to degrade the event location
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Figure 4-1: Number of filtered picks in PhaseNet.

accuracy, an important issue to address for PhaseNet in particular.
The first attempt to associate PhaseNet picks failed because we were considering the full range
of the picks probabilities, and several of them were false picks. Therefore, we explore filters
to clean the pick database. In the subsection 3.2.2, we also approached the probability analysis
and we found true picks if the time difference between PhaseNet and SGC pick is less than 1.5
seconds. We filter PhaseNet picks by each station and based on the lowest probability bin that
meets the following condition:

3Tp ≥ FP (4-1)

where Tp and FP represents the quantity of true and false picks respectively. For example, in
the figure 3-5, PhaseNet’s P and S picks at station BAR2 were filtered since 0.8 and 0.6 proba-
bility values respectively. Sometimes this condition never was satisfied as PhaseNet results in
the figure 3-7. In these cases, we filter them from probability values of 0.85 for HH and EH
instruments, and 0.95 for HN.
Figure 4-1 shows that the filter allows us to eliminate a large number of picks in PhaseNet. We
chose the filter condition considering several tests in one week of data. The test aimed to find
the right probabilities for each station, so that the picks could be associated, but not too strict
to loose too many earthquakes.
However, the choice of an optimal filter is a very difficult task because there are several false
picks with high probabilities, and several true picks with low probabilities.
Figure 4-2-a represents an example of PhaseNet associations in two hours of seismic aftershocks
in the CM network. The filter reduced a lot of picks to be able to associate the remaining ones.
Although most of the false picks were eliminated, many of the real ones were also removed.
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Then, we were able to obtain some associations with a small number of phases. Thus, the filter
allows to have event detections but it substantially decreases the quality.

(a)

(b) (c)

Figure 4-2: Associated phases by picker in two hours of seismic aftershocks. Station indices are
sorted so that the last index corresponds to the station closest to the epicenter of
the main earthquake at 19:03 UTC. a) PhaseNet. b) EQTransformer c) Manual SGC
picks

As EQTransformer outputs have more confidence, the Scanloc module was able to associate
more picks ( Figure 4-2-b). Even for picks manually verified almost all picks were associated (
Figure 4-2-c). This can be seen in the association statistics of both models for all picks obtained
for the CM network (Figures 4-3-a & 4-3-b). The Scanloc module associates many more picks
for EQTransformer than for PhaseNet. In addition, it is shown that more than eighty percent
of the verified SGC picks were successfully associated for both P and S phases. While for both
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PhaseNet and EQTransformer the association percentages were remarkably low for the entire
range of probabilities. Therefore, there are much more rejected picks than associated picks.

(a)

(b)

Figure 4-3: Associated and unassociated picks by picker in the CM seismic network. Left y-axis
represents the amount of picks in logarithmic scale and the right y-axis shows the
associated percentage of picks. The SGC label indicates the associated percentage of
the total of SGC picks. a) PhaseNet b) EQTransformer

We note that the associator, in addition to being sensitive to false picks, also rejects true prelim-
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inary associations whose locations do not converge. This happens because the appropriate picks
are not associated or because there are not enough picks to converge to a solution. In turn, this
can happen when there are too many picks; both positive or false, so close in time as to make
it difficult to locate them. For that reason, association algorithms using location procedures can
be a major bottleneck in the workflow to automatically detect events with DL models.
Finally, we show the number of associated picks provided by DL models that are not in the SGC
catalog. In the case of PhaseNet, due to the filter used, most of the picks are found in the SGC
catalog (Figure 4-4-a). While, EQTransformer uses a notable amount of picks did not find in the
SGC catalog (Figure 4-4-b). Thus, EQTransformer complements the SGC database. Nevertheless,
most of the associated picks are also in the SGC Catalog. Which, in turn, provides a degree of
reliability.

4.1.2 Performance of the seismic catalog in the CM network

For each of the associations there is a preferred hypocentral location, thus, for each of the auto-
matic pickers we obtain a seismological catalog. To obtain reliable locations we require for each
earthquake at least:

• Minimum 4 P-phases and 2 S-phases per event.

• Uncertainties in epicentral location: latitude ≤ 15km and longitude ≤ 15km

• Uncertainty in depth ≤ 30km

• rms ≤ 2

We calculate the moment magnitude Mw derived from mB magnitude, and we compare the
magnitude values with the manual catalog for the CM network. To compare, we join the events
in the automatic and manual catalogs if each of them have similar origin time and come from
the same source location. The origin time difference must be ≤ 1.5s. The difference in the
epicenter location must be ≤ 15km in latitude and longitude, and the depth difference must be
≤ 30km. The picks recorded by each DL model allow the calculation of a magnitude consistent
with the magnitude calculated from the manual picks (Figure 4-5). Notice that the magnitude
variance decreases as the magnitude increases.
Figure 4-6 shows the number of events per magnitude bin in the various catalogs obtained by
each picker. SGC-manual are the phases picked and associated by the analysts, while SGC-auto
are those picked by the analysts but associated by the Scanlocmodule. The first immediate result
is that the automatic pickers are severely affected by the association algorithm, while Scanloc
module works quite well to associate manual picks. Keep in mind that the manual catalog allows
the analyst to move the pick given an initial guess, so taht if the association module wants to
throw out a pick, the analyst can move it in order to keep it.
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(a)

(b)

Figure 4-4: Stacked number of P and S associated picks as function of EQTransformer and
PhaseNet probabilities. The light blue bar represents the number of picks that were
found in the SGC database. While the dark blue bar represents those that were not
found. a) PhaseNet. b) EQTransformer.

Nevertheless, it seems fair to compare the number of events obtained by each automatic picker.
Despite having substantially filtered PhaseNet’s picks, its results yield many more small events
than the STA/LTA algorithm. Nonetheless, EQTransformer have the greatest number of events
between them.
In conclusion both PhaseNet and EQTransformer pickers significantly improve the automatic
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Figure 4-5: Comparison of the magnitude values calculated from the picks obtained by PhaseNet
and EQTransformer versus those calculated manually by the SGC picks.

processing of the SGC. Even better, considering what we have seen in the analysis of the picks,
they could complement or even exceed the manual results if there was a good associator for
these types of picks.

4.2 Local networks

In agreement with the conclusions of chapter 3 and what was seen for the CM network, the EQ-
Transformer picks were shown here optimal results for obtaining a high quality catalog. There-
fore, we decided to only use EQTransformer for the VMM and YU local networks.
As for the association algorithm, we used the same association procedure for the VMM network
as for the regional network. While for the YU network, for data privacy terms, we used the free
association algorithm proposed in the EQTransformer repository. Unlike Scanloc, it links the
phases based on detection times only. We used HYPOCENTER with the Colombian 1D velocity
model to locate the seismic events. For this thesis, we have not calculated the magnitudes of
the YU network events.

4.2.1 Association performance in the VMM and YU networks

As expected, the association algorithms work much better for local networks, and therefore, a
significant gain is obtained from the small detections given by SDLmodels. In the VMMnetwork
the association percentage of the EQTransformer picks increase twenty percent more than in the
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Figure 4-6: Number of events per magnitude by each picker in the CM network. SGC-manual are
picked and associated by the analysts. The others are associated with the Scanloc
module.
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Figure 4-7: Associated and unassociated picks picked by EQTransformer in the VMM seismic
network. Left y-axis represents the amount of picks in logarithmic scale and the
right y-axis shows the associated percentage of picks.

CM network ( Figure 4-7). In local networks, Scanloc is less likely to reject picks because it is
easier for associations to converge to a good solution.
On the other hand, we observe for both CM and VMM networks the same distributions of the
percentage of association as a function of probability. For P-phases, the associated percentage
increases as the probability increases. While for S-phases, it increases until 0.5 of probability and
for higher probabilities it decreases. This is one of the weaknesses of associating by relocation.
In this case, the S phases that are highly reliable could not be associated because it increased
the rms of the trial location, or simply because the reference P-phase is not associated. Since
the high probabilities in EQTransformer are so reliable, in these cases the problem may be due
to the velocity model, since it cannot relocate with new S-phases.
We use the association algorithm proposed in the EQTransformer repository in the YU network
results. In figure 4-8, we can observe that the percentage of association remains at forty percent
for all probabilities in both phases. When comparing the two local networks VMM and YU, we
note that for phase P, the Scanloc module associates a higher percentage of picks. However,
for S-phases, the association percentage is much higher in the algorithm proposed by EQTrans-
former.

4.2.2 Performance of the seismic catalog in the VMM network

The quality of the local catalog locations follows the same condition as in the regional network.
In addition, we also calculate the moment magnitudeMw for the VMM network, and not for the
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Figure 4-8: Associated and unassociated phases by EQTransformer in the YU seismic network.
Left y-axis represents the amount of picks in logarithmic scale and the right y-axis
shows the associated percentage of picks.

YU network.
Figure 4-9 show us the number of events per magnitude, showing that the detection ability
was significantly improved. Events with lower magnitude than in the regional case are detected
and located. This guarantees the ability of EQTransformer to detect small events with great
reliability.
We compare the results with two SGC catalogs obtained from the seismic processing of the
VMM network stations. Both report events with depth ≤ 50km and occurring within the VMM
polygon (2-1). Both catalogs come from different working groups, therefore they are obtained
with different velocity models and location methods.
The first catalog is the general baseline of seismicity (LBG) and the second is the TECTO catalog ¹.
It should be clarified that the information contained in the LBG catalog is dynamic until the start
of exploration activities. This dynamic behavior is due to the daily recording and reprocessing
of new events in the VMM region.
Figure 4-10 shows that the LBG catalog is processed from the 2018 onwards, and the TECTO
catalog did not report seismic events in June and December 2017. In both catalogs, there are
20 to 40 additional events per month compared with EQTransformer, and most of them have a
magnitude less than 1. However, for magnitudes larger than 1, EQTransformer is able to detect
additional ones as well, and therefore, may complement the manual database.
The magnitude of the events that are both in the SGC catalogs were compared with the magni-
tude of the catalog reported with EQTransformer. Figure 4-11 shows that the magnitude of the

¹SGC Catalogs: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php

http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php
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Figure 4-9: Number of events per magnitude picked by EQTransformer in the VMM network.

(a) (b)

Figure 4-10: Stacked number of events (depth≤ 50km) as function of time in the VMMpolygon.
a) Comparison with the LBG catalog. b) Comparison with the TECTO catalog.

automatic catalog is overestimated with respect to what is reported by both manual catalogs.
We are not sure about the reason for this, but it is something to look at in future research.
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(a) (b)

Figure 4-11: Comparison of the magnitude values calculated from the picks obtained by EQ-
Transformer versus those calculated manually by the SGC picks in the LBG and
TECTO catalogs. a) Comparison with the LBG catalog. b) Comparison with the
TECTO catalog.
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Seismological catalogs allow us to understand much of the physics of earthquakes, their rela-
tionship to active tectonics and individual faults, as well as the seismic hazard of a particular
region. The resolution of the catalog depends on many factors, including the geometry of the
seismological network, the instrumentation, and finally, the data processing performed. In this
chapter we show the automatic seismological catalog obtained for the three seismic networks.
In general, both PhaseNet and EQTransformer the automatic results for the national network are
similar to the manual ones. And the results of the local networks show much better resolution
in their respective region. We also show that each of the catalogs illuminate structures and fault
systems that contribute to the knowledge of regional tectonics in northern South America. Fi-
nally, EQTransformer good performance as an autopicking algorithm and its compatibility with
the association and location methods, inspired us to merge the catalogs in to one automatic
seismic catalog to improve the visualization of the seismicity.

5.1 Catalogs obtained by each network

5.1.1 CM network

Figures 5-1-a and 5-1-b show the manual catalog reported by the SGC with the CM network. This
catalog was developed mainly with the NonLinLoc locator [Lomax et al., 2000]. Unlike linear
methodologies, it is a non-linear probabilistic earthquake locator, and, although it works slower,
is better at giving an accurate image of seismic locations. For this reason, we do not expect to
improve the manual locations, but we do expect to illuminate lineaments that allow us to define
some faults and some tectonic structures.
The SGC catalog reflects the activity in the colombian territory. The seismic activity illuminates
the major subduction processes due to the relative convergence between the Nazca, Caribbean
and South American plates (Figure 5-1-a) . In addition, there is also shallow seismicity along the
various active fault systems (Figure 5-1-b). This catalog highlights the main fault systems: The
Llanos Foothill Fault System, the Magdalena Valley Fault System and the Romeral Fault (Figure
5-1-c).
Both PhaseNet and EQTransformer catalogs are sufficient reliable to show asimilar distribution
of intermediate seismicity in the Colombian territory (figures 5-2 and 5-3). Furthermore, both
also show the abrupt change in position of the Benioff zone in the Nazca plate around 5.5°N
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(a) Depths >= 40 km are highlighted (b) Depths < 40 km are highlighted

(c) 1. East Cordillera. 2. Central Cordillera. 3. West
(oceanic affinity). 4. Craton. 5. Thrust and reverse
faults. 6. Subduction zones

Figure 5-1: a-b) SGC Manual catalog using the CM network. c) General tectonic framework of
the Northern Andes. Taken from [Fuenzalida et al., 1998]

[Ojeda and Havskov, 2001, Vargas and Mann, 2013, Syracuse et al., 2016, Sun et al., 2022]. At
the same latitude, volcanic activity also ceases at 5 Ma [Wagner et al., 2017, Kellogg et al., 2019].



5.1 Catalogs obtained by each network 43

These evidences have generated multiple geoscientific debates. On the one hand, they have
been interpreted as a tear in the Nazca plate [Vargas and Mann, 2013, Syracuse et al., 2016].
Where two subduction styles are generated [Chiarabba et al., 2016], a normal subduction with
associated volcanic arc towards the south and a flat subduction without volcanism to the north.
On the other hand, they are interpreted as the expression of two subduction processes [Fuen-
zalida et al., 1998, Sun et al., 2022]. Where intermediate seismicity from 5°N to the south is
associated with a diacronic ocean-continent subduction process [Martinez, 2016]; generating
insufficient conditions to generate dehydration of the lithosphere in subduction, and interme-
diate seismicity between 5°N and 8°N under the Cordillera Oriental is explained as a complex
continent-continent subduction process [Syracuse et al., 2016, Sun et al., 2022]. Previous au-
thors refer to the northern slab as Bucaramanga segment and the southern slab as the Cauca
segment. In this work we use this convention.

(a) Depths >= 40 km are highlighted (b) Depths < 40 km are highlighted

Figure 5-2: PhaseNet catalog using the CM network.

Figure 5-4 shows the same seismic profile a1-a2 for the three catalogs but with different widths
in the Bucaramanga segment. Both seek to contrast the quality of the catalogs in this zone.
The first transect only has a total width of 10km to mainly illuminate the Bucaramanga nest
(figure 5-4-b). While the second is 100kmwide to delineate the Benioff zone associated with the
Nazca subduction (figure 5-4-c). Both automatic catalogs allow to recognize the same location
of the volume associated with the Bucaramanga nest. It has an elliptical shape elongating in
down-slip direction [Zarifi et al., 2007]. Our results suggest that the nest is centered at 6.875°N
and 73.115°W at 150 km approximately. Likewise, both catalogs depict the subduction in the
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(a) Depths >= 40 km are highlighted (b) Depths < 40 km are highlighted

Figure 5-3: EQTransformer catalog using the CM network.

Bucaramanga segment.
In all catalogs there is a change in the direction of the deepest seismicity precisely at the location
of the Bucaramanga nest [Sun et al., 2022]. The northern part of the segment has a strike of
∼ N10°E down to 7°N , further south, the segment has a strike ∼ N35°E.
EQTransformer show better results to draw the system of surface faults than PhaseNet. They are
good enough to delineate the systems of Llanos foothill fault and Magdalena Valley. And only
EQTransformer is able to illuminate seismicity in the Romeral fault (figures 5-3-b and5-1-c). It
also is able to locate some earthquakes induced by massive wastewater injection near Puerto
Gaitán inside the quadrant: [3.65, 4.05,−71.67,−71.23] [Molina et al., 2020]. We highlight the
previous result because these earthquakes are difficult to locate with an automatic algorithm,
mainly because of the large azimuthal GAP implied by the geometry of the stations (figure 2-1),
and also because the simple model of subsurface velocities does not allow it.
Figure 5-5-a shows the seismic profile b1-b2 of the SGCmanual catalog. The transect is only 5 km
wide and illuminates a large volume of aftershocks generated by a Mw mainshock in Mesetas-
Meta at a depth of 13 km. This set of aftershocks is located in the Algeciras fault and are located
within the first 20 km depth [Mayorga et al., 2020]. PhaseNet and EQTransformer catalogs also
detect a large number of events in the transect (figures 5-5-b and 5-5-c). However, both show
the lineament only in the first 5 km depth due to the limitations of the location algorithms.
The automatic catalogs used the LOCSAT and HYPO71 location algorithms, while the manual
used NonLinLoc. We compared the aftershock locations in the c1-c2 profile with the same 5 km



5.1 Catalogs obtained by each network 45

−75.00° −74.00° −73.00° −72.00°

6.00°

7.00°

8.00° a1

a2

0 50 100 150 200

Depth (km)

0 100

km

−75.00° −74.00° −73.00° −72.00°

6.00°

7.00°

8.00° a1

a2

0 50 100 150 200

Depth (km)

0 100

km

−75.00° −74.00° −73.00° −72.00°

6.00°

7.00°

8.00° a1

a2

0 50 100 150 200

Depth (km)

0 100

km

(a) Region of interest for profile a1-a2

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

(b) Profile a1-a2 with width of 5 km on each side.

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

0

50

100

150

200

D
e

p
th

 (
k
m

)

0 50 100 150 200 250 300

Distance (km)

(a)(a)

(c) Profile a1-a2 with width of 50 km on each side.

Figure 5-4: a1-a2 profile using the CM network. From left to right column: Manual, PhaseNet
and EQTransformer catalogs.

of width for the first two days after the mainshock (figure 5-6). The SGC-manual catalog shows
that the main event is located at a depth of 13 km, and the highest magnitude aftershock is close
to it at a depth of 8 km (figure 5-6-a). The rest of the aftershocks are located at the grid nodes
where the NonLinLoc solution converges. It appears that the nodes are distributed every 1km,
which limits the resolution of the locations. On the other hand, catalogs obtained from LOCSAT
and HYPO71 show a different behavior (figures 5-6-b-d). Basically, most of the events are fixed
in the first 5km depth. This happens even for the SGC-auto catalog (figure 5-6-d), which has
almost the same as the manual catalog picks associations (figure 4-2-c), and therefore, almost
the same number of events (figure 4-6). The main difference is that was located with the same
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Figure 5-5: b1-b2 profile with width of 2.5 km on each side using the CM network.

location methodology as EQTransformer and PhaseNet. Therefore, the location algorithms used
in this work allow us to illuminate structures and faults in a general way. If you want to study
the detail, to the point of analyzing micro-faults, we recommend the use of more sophisticated
location algorithms, including for example hypoDD [Waldhauser, 2001]. We did not attempt to
do this, as it was beyond the scope of this work.

5.1.2 VMM network

Beyond human-inducedmonitoring purposes, the VMMnetwork is also useful for a scientifically
interesting region. It is located in a zone where three tectonic plates converge [Taboada et al.,
2000, Cortés et al., 2005, Vargas and Mann, 2013, Syracuse et al., 2016, Wagner et al., 2017,
Londoño et al., 2019, Londoño et al., 2020], and is contiguous to the Bucaramanga nest [Prieto
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Figure 5-6: c1-c2 profile with width of 2.5 km on each side using the CM network for the first
two days after Mesetas-Meta main earthquake. The region of interest is shown on
the map in figure 5-5

et al., 2012, Zarifi et al., 2007]. Close to where we observed a sudden change in the strike
direction in the subduction of the Bucaramanga segment. In addition, it is still unknownwhether
the Bucaramanga nest belongs to the Caribbean or Nazca Plates [Kellogg et al., 2019, Yarce et al.,
2014]. Then, we hope to contribute to the state of the art from what we have observed in the
VMM network catalog. It was obtained in a fully automatic way from the phases picked by
EQTransformer. We also hope that our contributions will be of great motivation to encourage
automatic monitoring based on deep learning.

The VMM network catalog is presented in figure 5-7. The catalog results are much better than
the CM network results. At first glance, the VMM network catalog is very similar to the manual
catalog obtained in this region for the years 2014-2017 [Londoño et al., 2019]. Furthermore, the
catalog is able to show in more detail the change in the strike direction in the subduction of the
Bucaramanga segment. We estimated that the northern part of the segment has a strike of ∼ 5°
and the southern has ∼ 28.32° .As we suggest, in the CM network, the Bucaramanga nest is the
place where this change is taking place [Sun et al., 2022].

We draw some profiles to the see the geometry of the subducing slab (figure 5-7-a). Previously,
cross sections have beenmade for this region every 10° in azimuth for subduction earthquakes at
VMM [Londoño et al., 2019]. In contrast, we decide to depict perpendicular profiles to the strike
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(a) Depths >= 40 km are highlighted (b) Depths < 40 km are highlighted

Figure 5-7: VMM catalog.

direction. Figure 5-8 shows the evolution of the slab geometry of the Bucaramanga segment. In
the profile a’1-a’2, the slab is illuminated to approximately 160 km depth and dipping at ∼ 50°.
b’1-b’2 shows a seismic cluster between 150 and 160 km deep, which projected on the surface
is located at 5.31°N and 73.77°W close to the municipalities of Ubaté and Cucunubá. To date
there is not much information about this seismic cluster. Further northeast, profiles g’1-g’2 and
h’1-h’2 show the Bucaramanga nest at 150 km depth. In these profiles the slab dips as much as
55°. In addition, greater depths, at distances 200-300 km of these profiles, a peculiar curvature
not seen in any previous research is shown. It is in the opposite direction to the dip of the
subducting slab. Besides, the profile i’1-i’2 shows a thin and strange alignment in the same
direction as the curvature, but a few kilometers after the Bucaramanga nest, it curves more
steeply until it reaches the surface. Finally, from j’1-j’2 to p’1-p’2, similar to previous results,
the usual geometry of the Benioff zone is observed. At these heights it dips with an angle of
∼ 51.3°.
We are not completely sure about the strange and funny folds we observed in g’ to i’ profiles
because, after all, the catalog was processed automatically. Despite the careful filters we used,
some events in the catalog could have escaped, and thus, generate misinterpretations. However,
we show these results because the other results have shown full coherence with what has been
studied to date, which gives us some confidence.
The VMM basin is limited to the northeast by the Santa Marta-Bucaramanga fault system, to the
east and SE by the Salinas, Bituima and Cambao fault systems, and to the west by the Central
Cordillera foothills [Pardo Trujillo, 2007, Londoño et al., 2019]. By studying the shallow seis-
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Figure 5-8: a’ to p’ profiles in the VMM catalog as shown in figure 5-7-a. They are 15 km wide
on each side. So the profiles do not intersect earthquakes between them.
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micity, through some profiles, we illuminate seismicity associated with some of these systems
of faults (figure 5-7-b). Profiles q’1-q’2 and r’1-r’2 are drawn perpendicular to the strike of the
La Salina fault system (5-9). This set of faults have an average strike N30°E and moderate dip
(30°ESE) [Taboada et al., 2000]. The profile q’1-q’2 shows seismicity in the first 30 km of depth,
between 30 and 40 km away from the profile. Ít is associated to the La Salina Fault system.
However, the profile r’1-r’2 shows two sectors of seismicity. The western sector is related with
the Cambrás fault, it is characterized by being in a system of faults located in the middle zone of
the VMM basin, mainly in a NS direction [Taboada et al., 2000]. While the eastern sector con-
tinues to illuminate the La Salina fault. Finally, in figure 5-10, s’1-s’2 profile, we also illuminate
a portion of seismicity that occurs parallel to the the Santa Marta-Bucaramanga fault, one of the
major faults in northern Colombia bounded by the triangular Maracaibo block [Taboada et al.,
2000, Londoño et al., 2019].

5.1.3 YU network

The lack of instrumentation in the northern zone of South America is one of the main reasons
why the understanding of the Caribbean subducting plate has been limited. Besides, the complex
tectonic setting also makes it flexible to multiple interpretations [Taboada et al., 2000, Vargas
and Mann, 2013, Cortés et al., 2005, Sun et al., 2022, Cornthwaite et al., 2021]. Mainly based on
regional seismic tomography models [Vargas and Mann, 2013, Chiarabba et al., 2016, Syracuse
et al., 2016], local seismicity or on surface wave data. Recently, thanks to the YU network, it was
possible to illuminate Caribbean subduction through finite frequency teleseismic P-wave tomog-
raphy [Cornthwaite et al., 2021] suggesting it as a flat subduction. It was found that the northern
limit of subduction lies south of the Oca-Ancón fault of northern Colombia and Venezuela. And
although the southern boundary was not clearly defined, it was understood like a confluence of
overlapping and confluence slabs. The YU network was also used to process teleseismic data
in the CARMA region to produce a finite-frequency tomography model [Sun et al., 2022]. They
found that there is an overlap between the Nazca and Caribbean subduction north of the ”Cal-
das Tear”. Furthermore, they claim that Bucaramanga nest occurs within the Caribbean plate.
Although our objective is to present the resolution of the catalog obtained from the monitoring
of the YU network, we also hope that our results will contribute to build ideas for the great
tectonic debate in northwestern South America.
The YU catalog is presented in figure 5-11. Even though the processing time of the YU network
is much less than that of the VMM network, we observe that some interesting lineaments can be
drawn for depths less than 40 km (figure 5-11-b), and some areas of minining explosions were
satisfactorily represented. On the other hand, the deep events were mainly located to the north
(figure 5-11-a).
We draw some profiles to get an idea of the geometry of the subduction and to represent some
faults in the area (figure 5-11). Figure 5-12 shows subduction zone, with profiles b” to f” clearly
showing the Benioff Zone. In the profile d”1-d”2, we estimate the slab dip at 25°. Tomography
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Figure 5-9: q’1-q’2 and r’1-r’2 profiles to illuminate the La Salina fault system. They are 12 km
wide on each side.

results suggest 17° ± 3 [Hilst and Mann, 1994], and other results measured the flat segment
dip at 25° [Malavé and Suárez, 1995, Zarifi et al., 2007] to as much as 40° [van Benthem et al.,
2013, Bernal Olaya and Vargas, 2015].

The shallow profile j”1-j”2 (5-13) shows lineaments associated with two different system of
faults. The first lineament (left side in figure 5-13-b) is associated to one mining explosion zone.
Further southeast, we observe seismicity associated with the Perijá Fault System (figure 5-13),
which are characterized by reverse faults in a NE direction parallel to the foothills [Fuenzalida
et al., 1998]. A few kilometers further southwest, at the end of the profile, seismicity associated
with the Boconó fault system is delineated. It is one of the fault systems that build the triangular
Maracibo block [Fuenzalida et al., 1998]. Last but not least, it is observed that there are several
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Figure 5-11: YU catalog.

earthquakes fixed at 9 km depth due to one of the limitations of the HYPOCENTER algorithm.
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5.2 Merged automatic catalog

From the above results, we highlight the good performance of EQTransformer as an autopicking
algorithm. For the national network, it was able to illuminate the most important faults and
structures that the geometry of the stations allowed it to detect. Likewise, it is compatible with
the association and location algorithm used in this work. Therefore, we merged the automatic
processing of the three networks picked by EQTransformer into a single seismological catalog
(figure 5-14).
Duplicate seismic events were removed giving priority to the network that best located the
event. For the local networks we constructed their respective polygons where we expect good
locations. Then, events from each local network were only considered if they are inside their
respective polygon. Finally, we preferred the VMM network location for duplicate events at the
intersection of the polygons.
The catalog illuminates mainly north of 5° because it is the place where most of the processed
stations are located. In addition, it is where the VMM network is located, where we processed
almost five years of data. The catalog shows each of the annotations we made for each local
network. Besides, for both shallow and intermediate depth seismicity, it significantly improves
the visualization (figures 5-14-a and 5-14-b). For instance, figure 5-14-b shows the triangular
Maracaibo Block bounded by three great strike-dip faults (figure 5-1-c): the Boconó Fault (parallel
to the Mérida Cordillera) with NE azimuth, the Santa Marta-Bucaramanga Fault trending NNW, and the Oca
Fault with EW azimuth [Fuenzalida et al., 1998].
Finally, for this new catalog, we would like to highlight the strange structure that can be seen
near the Bucaramanga nest (Profile A1-A2 in figure 5-15). In addition, we also want to highlight a
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(a) Depths >= 40km are highlighted (b) Depths < 40km are highlighted

Figure 5-14: Unified automatic catalog

curious intermediate seismicity in the Boconó fault system (Profiles B1-B2 and C1-C2 in the figure
5-15). Each of these observations should be reviewed in more detail, for example relocating
the earthquakes with more sophisticated algorithms, such as Source- Specific Stations Terms
method [Richards-Dinger and Shearer, 2000, Martínez and Prieto, 2020], the double difference
relocation method [Waldhauser, 2001] or GrowClust [Trugman and Shearer, 2017].
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Figure 5-15: A to D profiles in the unified automatic catalog. They are 18 km wide on each side.



6 Conclusions

Manual processing of seismological data demands the use of time and personnel. Therefore,
there is a need to automate this processing. The most time-consuming task is the detection
and autopicking of seismic phases. We presented a detailed analysis of the performance of
two pre-trained deep learning models: PhaseNet and EQTransformer. Both are very flexible and
operational models, processing large amounts of data in very short times and without requiring
sophisticated software or hardware. Besides, they have an incredible ability to pick seismic
phases. Their results are comparable to the manual picking, showing better results for small
earthquakes or for aftershocks. In terms of detection, PhaseNet shows better abilities to detect
small earthquakes, but EQTransformer provides much more confidence in the results. In terms
of timing detection quality, both models usually pick the seismic phases at the same time that
an analyst would. In terms of the fidelity of the probability value of the picks, EQTransformer
probabilities present a better definition of the reality of the pick. The higher the probability of
the pick, the more likely it is to correspond to a real phase. The above statement cannot be
guaranteed for PhaseNet.
When the picks needed to be associated, most of the PhaseNet picks were rejected because the
Scanloc association and location algorithm is quite sensitive to false picks. This is because it
works with a relocation methodology. If the solution does not converge, the picks are rejected.
So we filtered and re-associated the PhaseNet picks. Our empirical filter allowed us to achieve
higher reliability and associate more detections. However, the quantity and quality of the events
picked by PhaseNet was severely affected. On the other hand, for EQTransformer, the results did
not need any filtering. Nevertheless, only about 30% of the phases were successfully associated
for the CM network. In the case of S-phases, Scanloc rejects a large number of true picks due to
its relocation methodology.
Comparing their results in terms of reliability and compatibility with the association algorithm,
we decided to use only EQTransformer for the two local networks, VMM and YU networks. The
same association and location algorithm was used for the VMM network. While, for terms of
data privacy in the YU network, we used the free association algorithm proposed in the EQTrans-
former repository and the Hypocenter locator method. For the VMM network, we observed a
great improvement in the percentage of association of the picks due to the fact that it is easier
to locate the events. In the case of S-phases, the large number of true picks rejected is better
highlighted. When we compare the automatic catalog with the LBG and TECNOmanual catalogs,
we find that the automatic catalog complements both catalogs for Mw magnitudes greater than
1. Finally, for the YU network, compared to the CM network, the percentage of association was
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also improved for both P and S phases.
Both PhaseNet and EQTransformer catalogs are sufficiently reliable to show the same distribu-
tion of intermediate and shallow seismicity in the Colombian territory. They are able to show a
break or jump in the Benioff zone in the Nazca plate at around 5.5°N , and also are able to draw
the main crustal fault systems, such as The Llanos Foothill Fault System and the Magdalena
Valley fault system. Through seismic profiles, we propose that the Bucaramanga nest has an
elliptical shape elongating in down-slip direction and is centered at 6.875°N and 73.115°W at
a depth of approximately 150 km. At this same location, we observe a sudden change in the
strike direction of the Bucaramanga segment. The northern part of the segment has a strike of
∼ N10°E until 7°N . Further south, the segment has a strike ∼ N35°E.
Local seismic catalogs significantly improve within the area of interest of each respective net-
work. Both complement each other to give a better understanding of the faulting and tectonic
setting of northern South America. From the VMM network, we estimated that the northern
part of the Bucaramanga segment has a strike of ∼ N5°E and the southern has ∼ N28°E. We
also show that there are two seismic clusters in the Colombian territory, the well-documented
Bucaramanga nest, and the little studied Cucunubá cluster. Besides, north of 5°N , the sub-
ducted Nazca slab dips at ∼ 50°, and at most 55°. Last but not least, at the same epicentral
location of the Bucaramanga nest, for depths greater than 150 km, a peculiar curvature not seen
in any previous research is shown. The YU network, we observe some interesting crustal linea-
ments for depths less than 40 km, including mining explosions and the Perijá and Boconó Fault
systems. Furthermore, we show the flat subduction of the Caribbean plate beneath northwest
South American plate at ∼ 25°.
Finally, EQTransformer’s good performance as an autopicking algorithm and its compatibility
with the association and location methods, inspired us to unify the catalogs in only one auto-
matic seismic catalog. It significantly improves the visualization of the seismicity. This catalog
was produced in a short time and is the result obtained from an automatic phase picking process-
ing performed by a deep learning model. It is a catalog with an appropriate quality in terms of the
event location errors and is capable of defining major tectonic structures. A major drawback of
our current processing is the association step. New and improved associators are needed, maybe
including ML algorithms. Some recent studies have proposed such new approaches [Ross et al.,
2019b, McBrearty et al., 2019a, Zhu et al., 2021], using them could improve automatic catalog
performance.
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