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Una metodoloǵıa computacional para la
generación de mapas genómicos a partir de

imágenes de Fluoroscanning

Abstract
Fluoroscanning is a novel system for quickly generating genomic maps. Unlike preceding

systems like optical mapping and nanocoding, Fluoroscanning relies only on the intensity

signals produced by dye fluorochromes when bound to DNA nucleotides, which we deem

Fluoroscans. As part of this work, we wanted to develop and evaluated a fast digital image

processing pipeline for extracting Fluoroscan signals from fluorescence microscopy images, to

devise and implement a parallel and highly optimized algorithm for simulating the physical

principles behind Fluoroscanning, and to guide laboratory experiments using such a tool

in order to enable the generation of genomic maps through alignment algorithms. As a

result of our work, we were able to set up a workflow in which real Fluoroscans extracted

from digital images were used to adjust the parameters of a Monte Carlo simulation of

Fluoroscanning which was then leveraged to guide further laboratory experiments and to

generate a synthetic human-genome-scale dataset which will enable the development of signal

alignment algorithms for genomic map generation.

Keywords: image processing, DNA, genomics, simulations, signal processing.

Resumen
El Fluoroscanning es un sistema novedoso para la generación rápida de mapas genómicos.

A diferencia de sistemas anteriores como el optical mapping y el nanocoding, el Fluoroscan-

ning solo se basa en la intensidad de las señales (que llamamos Fluoroscans) producidas por

fluorocromos de tinte cuando se adhieren a nucleótidos de ADN. Como parte de este trabajo,

se desarrolla y se evalúa una serie de pasos que incluyen procesamiento de imágenes para

extraer señales Fluoroscan de manera rápida a partir de imágenes de microscoṕıa de fluo-

rescencia, un algoritmo paralelo y altamente optimizado para simular los principios f́ısicos

detrás del Fluoroscanning y una metodoloǵıa para guiar experimentos de laboratorio a partir

de dicho algoritmo. Como resultado de nuestro trabajo, pudimos establecer un flujo de tra-

bajo en el que Fluoroscans reales extráıdos de imágenes digitales se utilizaron para ajustar

los parámetros de las simulaciones, que a su vez fueron utilizadas para guiar experimentos

de laboratorio y para generar un conjunto de datos sintético a escala genómica que permitirá

ayudar al desarrollo de algoritmos de alineamiento de señales para la generación de mapas

genómicos.

Palabras clave: procesamiento de imágenes, ADN, genómica, simulaciones, proce-

samiento de señales.
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1 Introduction

1.1. Background and motivation

DNA encodes genetic information and is comprised of two anti-parallel, complementary

strands of nucleotides — e.g., cytosine (C) and guanine (G), adenine (A) and thymine (T).

Sets of three nucleotides, called codons, are transcribed by RNA polymerase into messen-

ger RNA. The latter is in turn decoded and translated by the ribosome into amino-acids,

resulting in the proteins that shape living beings as we know them. This process is known

as the central dogma of molecular biology (Alberts et al., 2008, p. 331), as depicted in Fig-

ure 1-1. Although most of DNA consists of repeated sections, the frequencies of individual

nucleotides fluctuate significantly across genes (Louie et al., 2003; Majewski et al., 2002).

Furthermore, variations can occur within the whole set of DNA — i.e., the genome — of a

living being. These alterations include single nucleotide variants (SNVs) and larger struc-

tural variants associated with standard genetic polymorphism as well as diseases like cancer

(Li et al., 2016; Valouev, Schwartz, et al., 2006).

Figure 1-1: Abstracted representation of the central dogma of molecular biology. Source:

the authors, inspired by Alberts et al. (2008, p. 331).

Genomic background analysis is key for gaining a comprehensive understanding of an in-

dividual’s genome structure and tailoring treatments for subject-specific conditions (Nandi,

2017; Valouev, Li, et al., 2006). Modern genomic map assembly and sequencing algorithms,
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in conjunction with readily available computational resources, have allowed biomedicine ex-

perts to handle vast genomics datasets. In fact, the analysis of human genomes has revealed

that sequence variation is highly prevalent among individual genomes (Gupta et al., 2015).

However, these advances have not been carried out comprehensively nor are they informa-

tive enough across the entire human genome (Kounovsky-Shafer et al., 2017; Lesho et al.,

2016). On the other hand, research efforts such as the Precision Medicine Initiative (PMI)

are intended to analyze genomic data from around a million volunteers (Precision Medicine

Initiative (PMI) Working Group, 2015), resulting in a pressing need for developing novel

methods to improve the acquisition and processing of genomic data (Kounovsky-Shafer et

al., 2017).

Among the wide array of approaches for the analysis of genomic data, single DNA molecule

analysis systems such as optical mapping and nanocoding have proven useful for their ca-

pability to quickly generate genome maps. In such systems, DNA molecules are analyzed

directly, which enables faster generation of large-scale datasets while having no noise from

DNA amplification steps, and allows researchers to study longer sequences. More specifically,

in optical mapping, DNA sequences are identified by their detecting cuts caused by restric-

tion enzymes (Valouev, Schwartz, et al., 2006; Valouev, Li, et al., 2006; Zhou & Schwartz,

2004); whereas, in Nanocoding, nicking endonucleases are used to incorporate fluorescent la-

bels in specific locations of the DNA molecules (Gupta et al., 2016; Jo et al., 2009). In both

approaches, distance-based barcodes covering long molecular spans are produced based on

the distances between restriction/nicking sites. Such barcodes can be employed for refining

existing genomes, as a basis for de-novo genome assembly, and for detecting mutations in

the genomes of specific individuals.

Fluoroscanning, developed at the Laboratory for Molecular and Computational Genomics

(LMCG), is a novel single DNA molecule analysis system (Nandi, 2017). This system builds

on the single-molecule-based nanocoding system for whole-genome analysis, also pioneered

at LMCG (Gupta et al., 2016). Unlike other genomic assembly approaches such as optical

mapping and nanocoding, fluoroscanning requires little manipulation of genomic DNA and

supports extensive DNA molecule analysis. Furthermore, no cloning is involved, which

means that variations across the genome are fully accounted and that artifacts related to

mapping small fragments from repeat regions can be avoided (Nandi, 2017). Fluoroscanning

is intended to allow for the generation of genomic maps based on the features of luminosity

signals (Fscans) extracted from the backbone of dyed DNA molecules using image processing

algorithms. The rationale behind this is to exploit fast approaches from the signal processing

domain in order to produce such maps faster than the distance-based alignment approaches in

which other systems rely. If this is achieved, it will be possible to detect structural mutations

in an individual’s genome and to pinpoint areas that should receive further attention in order

to provide personalized healthcare.
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1.2. Previous work

Single molecule genome analysis systems, such as optical mapping and nanocoding, are ca-

pable of detecting and describing structural variants and polymorphisms, which can result

in a myriad of diseases and related complications (Jo et al., 2009; Shiguo et al., 2007). These

techniques also serve as scaffolds to guide and validate DNA sequencing-based genome as-

semblies. Notably, sequencing approaches for genomic data acquisition have proven to be

precise and provided the input for many state-of-the-art sequence alignment algorithms, but

they are not scalable enough for fulfilling neither the large genomic assembly needs of many

laboratories nor the objectives of the Precision Medicine Initiative, which entail analyzing

data from over a million volunteers in order to develop patient-specific treatments based on

genomic background (Kounovsky-Shafer et al., 2017; Leung et al., 2017; Precision Medicine

Initiative (PMI) Working Group, 2015).

In order to develop the optical mapping and nanocoding systems, algorithms employed for

sequencing-based genomic analysis were modified to process distance-based barcodes, result-

ing in faster genomic analysis (Gupta et al., 2016; Jo et al., 2009; Nagarajan et al., 2008;

Valouev, Li, et al., 2006). However, in the aforementioned systems, genomic composition is

calculated based on restriction gaps and nicking sites which must be detected with special-

ized algorithms after a molecule’s backbone is segmented (Ravindran & Gupta, 2015). On

top of being more computationally expensive to analyze, restriction site densities constrain

the resolution of the generated genomic maps to around 1kb on a human cell line (Chan

et al., 2018). In contrast, Fluoroscanning only requires detecting the DNA molecules and

extracting intensity signals from them prior to inferring the genomic composition of a DNA-

sequence. Furthermore, the fact that the system is based on continuous signals means that

its resolution is higher (around 550bp), and has the potential of improving with the use of

better quality optical sensors. However, Fluoroscanning currently depends on the nanocod-

ing system for carrying out alignment, meaning that its full potential is yet to be realized

(Nandi, 2017).

Due to the reasons described before, it is necessary to develop new algorithms or to adapt

existing ones (Nandi, 2017) to better analyze Fluoroscanning data. We expect that a com-

putational pipeline comprising Fluoroscan extraction, reference Fluoroscan generation based

on Monte Carlo simulations, and consensus Fluoroscan assembly (i.e., barcoding) based on

alignment will contribute to the state-of-the-art in computational approaches for solving bi-

ological problems (Ching et al., 2018; Min et al., 2017). More specifically, a computational

approach for the generation of DNA barcodes based on fluoroscanning will open the door

for future work on the detection of genetic anomalies in specific patients and will constitute

a step towards the goal of building a fully functional fluoroscanning system which outper-

forms previous DNA barcoding methods. With such a system, candidate mutation areas in
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the genome (that is, areas of the reference genome for which no signal fragments could be

aligned) could be pointed out in order to carry out an in-depth analysis which in turn would

help determine the exact causes of such mutations.

1.3. Problem statement

Single molecule DNA analysis systems like optical mapping and nanocoding enable the gen-

eration of genomic maps and the detection of structural variations based on DNA barcodes

(Gupta et al., 2016; Jo et al., 2009). However, running times for both systems are lengthy:

the alignment of a (healthy) human DNA molecule to a reference genome takes up to two

months with optical mapping and six weeks with nanocoding even when relying on high-

performance clusters for compute. Ideally, Fluoroscanning-based genomic analysis should be

faster than the former systems, since extracting intensity signals is a less computationally

intensive task than detecting restriction gaps or nicking sites and measuring the distances

between them (Nandi, 2017).

Nandi (2017) showed that DNA fragment intensity signals extracted from digital images cor-

relate with GC/AT content and the presence of certain motifs, meaning that Fluoroscanning

data could provide important sequence composition information and allow for the generation

of DNA barcodes. However, no method exists yet that allows Fluoroscanning signals to be

aligned to each other or to a reference genome (Nandi, 2017); the existing pipeline involves

running a complete nanocoding pipeline and extracting noisy luminosity signals from DNA

molecules that have not been prepared with Fluoroscanning in mind. Since nanocoding

does provide an accurate alignment, Nandi (2017) was able to prove that signals extracted

from DNA molecules belonging to the same region had statistically significant similarities.

Thus, further work must be directed toward developing tools that enable extracting Fscans

from DNA molecules prepared specifically for the Fluoroscanning system. More specifically,

this problem can be divided into three sub-problems: extracting Fscans from DNA images,

generating a “reference signal” from the reference genome that serves to guide laboratory

experiments, and aligning Fluoroscans extracted from images to the reference signal in order

to produce consensus Fluoroscans for the full genome. As part of this thesis, we focus on

the former two and leave the task of designing alignment algorithms for future research.

Fluoroscan intensity signal extraction requires the design of a computational pipeline of algo-

rithms designed specifically for treating Fluoroscanning images. This way, we will avoid the

computational cost of adapting techniques derived from nanocoding such as those employed

in the approximation proposed by Nandi (2017). As per Ravindran and Gupta (2015), the

first part of the proposed computational pipeline will be comprised by several phases: image

pre-processing, stitching of adjacent images, identification of regions of interest, and extrac-

tion of intensity signals. Each of these steps will be done based on digital image processing



6 1 Introduction

techniques, since machine learning approaches based on convolutional neural networks and

transformer-based architectures would require a significant human annotation effort.

In order to provide enough data for guiding the laboratory experiments carried out at

the LMCG, we propose generating in-silico Fluoroscans. This can be done by means of

chemically and theoretically informed Monte Carlo simulations. Knowledge about physical,

chemical (Kounovsky-Shafer et al., 2017), and statistical (Nandi, 2017) properties of DNA-

fluorochrome interactions — e.g., stretch, dye fingerprint, binding and release probabilities,

etc. — will be used to generate accurate intensity simulations from any nucleotide sequence;

we named the resulting signals straightforwardly: Monte Carlo Fluoroscans. The advantage

of this approach is that any arbitrary sequence that can be used as part of laboratory exper-

iments can be also modeled to obtain a Monte Carlo Fluoroscan. However, a prerequisite for

guiding laboratory experiments with Monte Carlo Fluoroscans is to fit the parameters of our

Monte Carlo to the conditions of the experiments. Naturally, the experiments are subject to

much more noise than the Monte Carlo under ideal conditions. Therefore, we must develop

a pipeline for introducing noise into the simulated Fluoroscans. By modeling a sufficient

amount of sources of noise, it should be possible for the distribution of Monte Carlo Fluo-

roscans to be fitted to that of Fluoroscans obtained from experiments. One added benefit to

this is that it will enable the generation of massive datasets of simulated Fluoroscans which

can be used to test future Fluoroscan alignment algorithms without carrying out a massive

amount of experiments and to have a well-defined ground truth for evaluation.

1.4. Contributions

As part of this work, we developed a solid framework for the extraction of Fluoroscans from

digital images, which can be employed as part of the Fluoroscanning whole genome analysis

system. We proposed Monte Carlo simulations of the dye-DNA interactions which allowed us

to simulate the dynamics of Fluoroscanning and better adjust actual experiments. Finally,

we proposed a set of signal processing algorithms and workflows that allows us to validate the

usefulness of our simulations for guiding experiments in the LMCG, which in turn constitute

a first step toward the alignment of Fluoroscans for genomic map generation.

1.5. Organization

The document is organized as follows: in Chapter 2, we briefly summarize the proposed

Fluoroscanning whole genome analysis system. In Chapter 3, we outline the image process-

ing pipeline employed for extracting fluoroscans from digital images. Next, in Chapter 4,

we describe the framework for in-silico simulations of fluoroscans. In Chapter 5, we report
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the methodology for validating the usefulness of Monte Carlo simulations for guiding Fluo-

roscanning experiments. Finally, in Chapter 6, we provide conclusions and insight for future

work.



2 Fluoroscanning

2.1. Introduction

Fluoroscanning is a single DNA molecule analysis system in which the composition of DNA

molecules is estimated based on fluorescence profiles extracted from the molecules’ backbones

after dying them with fluorochromes. Unlike optical mapping and nanocoding, Fluoroscan-

ning does not rely on enzymatic reactions and its resolution is not limited by the frequency

of specific restriction/nicking sites. Even when compared to other approaches for DNA se-

quence composition analysis, Fluoroscanning reflects the GC content of DNA molecules with

higher resolution and accuracy, with its estimated resolution being of around 550 bp as es-

timated from the point spread function (PSF) of the microscope.

The data acquisition workflow is fairly simple: first, dye binding is carried out in a controlled

manner using fluorochromes; next, the molecules are presented on positively-charged PDMS

microchannels and surfaces that cause them to stretch; and, finally, digital images can be

acquired either manually or automatically with a microscope, which enables the signals to

be extracted from the backbone of the molecules using image processing algorithms simi-

lar to those employed for optical mapping (Ravindran & Gupta, 2015). A more detailed

description of this workflow can be visualized on Figures 3-2 and 3-3, while the complete

image processing suite is described in Chapter 3.

For DNA sequence profiling, Fluorosanning relies on the increased quantum yields and bind-

ing probabilities of bis-intercalating fluorochromes (such as YOYO-1) when interacting with

GC-rich regions, as opposed to AT-rich ones (Netzel et al., 1995; Rye et al., 1992), result-

ing in favorable signal-to-noise ratios (Günther et al., 2010). In essence, this means that,

upon extracting fluorescence profiles from dyed DNA molecules, GC-rich regions tend to be

brighter (and show up as peaks) whereas AT-rich regions tend to be darker (and show up

as valleys). Moreover, a simple GC% profile can be derived from a reference DNA sequence

and used to validate the accuracy of Fluoroscans.

However, the above does not paint the full picture: numerous photophysical factors impact

noise and part of the experimental work at LMCG involved carefully tuning the amount of

dye, binding conditions, and ionic strengths through a two-step binding scheme. This helped

them reduce the inhomogeneous binding and signal phase variation caused by an excessive
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amount of dyes being present while the DNA molecules are stretched. Parallel to this, our

our efforts in Chapters 4 and 5 centered on fitting the Monte Carlo simulations to the ex-

perimental conditions at the LMCG by introducing noise sources like variable dye loading,

dye luminosity variation, degraded dark fluorochromes, phase shifts, and imaging noise.

2.2. Conceptual and theoretical framework

2.2.1. Key terminology

DNA: Deoxyribonucleic acid is a molecule composed of two nucleotide chains which

form a double helix carrying the genetic instructions used in the growth, development,

functioning, and reproduction of all living organisms and a number of viruses. DNA

contains four complementary deoxynucleotide bases: cytosine and guanine, adenine

and thymine. The strands which makes up the double helix are not only complemen-

tary, but also anti-parallel. The RNA polymerase transcribes these into messenger

RNA, replacing thymine with uracil. Messenger RNA is translated into the amino-

acids which make up proteins necessary for living beings (Alberts et al., 2008, p. 331).

Codon: A sequence of three DNA or RNA bases which encode a specific amino-acid.

Many codons can translate into the same aminoacid, however, in most cases altering a

single base can result in a different aminoacid. There also exist start and stop codons

which delimit coding regions (Alberts et al., 2008, p. 367).

Genome: The complete set of genes of a living being. A genome contains all of the

information necessary for building and maintaining an organism. In the case of human

beings, the genome is made up by more than 3 billion pair bases, and there is a copy

of it in every cell with a nucleus (Roy et al., 2017).

Single Nucleotide Variation (SNV): A variation which occurs when a single base in a

genome is altered with respect to the reference genome. Notably, some SNVs have

been associated to diseases (Katsonis et al., 2014).

Single Nucleotide Polymorphism (SNP): SNVs which occur with a known frequency

(greater than 1 per cent) within a given population. Despite the importance of both

SNPs and SNVs, single nucleotides are too small to be detected by fluorescence mi-

croscopy, and thus will not be considered in our work.

Structural Variation (SV): Large-scale (larger than 1 kb) variations in a genome with

respect to the reference genome. Some examples of SVs are insertions, duplications,

deletions, translocations, complex genomic rearrangements, and aneuploidy (Gupta et

al., 2015).
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Structural Polymorphism (SP): Similar to SNPs, SPs are structural variations which

occur with a known frequency within a given population. They have been recently

discovered to be rather frequent within the human genome (Gupta et al., 2015). Unlike

SNVs and SNPs, SVs and SPs are big enough to be analyzed at the 200 nucleotide per

pixel resolution provided by fluoroscanning (Nandi, 2017).

Fluorescence microscopy: Fluorescent molecules absorb light at one wavelength and

emit it at a longer one. When fluorescent dyes interact with nucleic acids they have

a probability of intercalating and fluorescing. This means cells that lack color can be

stained with dyes for visualization. This is done by means of fluorescence microscopes

which possess two filters: one that only allows wavelengths that excite the dyes through,

and another one that only lets through the wavelengths emitted by the dye when it

fluoresces. This way, fluorescence microscopy can be used to visualize specimens that

otherwise would be impossible to see (Alberts et al., 2008, p. 586).

Dye-DNA interactions: Dyes used for fluoroscanning, such as YOYO-1 (named from

Oxazole Yellow, abbreviated as YO), exhibit very large degrees of fluorescence enhance-

ment when they bind to nucleic acids. As per some studies, fluorescence intensity of

YOYO depends on the base sequence and GC-rich DNA sequences have twice the

quantum yield of those rich in AT (Larsson et al., 1994; Netzel et al., 1995). This

indicates that the probability of dyes intercalating between DNA bases and emitting

fluorescence is non-uniform.

Digital image processing: A branch of signal processing focused on the processing of

digital (that is, discrete) images by means of a digital computer. Tasks typically classi-

fied as digital image processing receive an image as input and output another, modified

digital image. Examples include noise removal and image enhancement. Algorithms

used for feature measurement and extraction are categorized as image analysis meth-

ods, but for the sake of simplicity we will group them together with lower-level image

processing techniques (Gonzalez & Woods, 2008).

Monte Carlo (MC) simulations: A family of non-deterministic or numerical statistical

methods employed for approximating complex mathematical expressions whose exact

evaluation is complex to carry out. MC methods rely on repeated random number

sampling to generate numerical results. These kinds of simulations are useful because

they allow modeling physical systems with many parameters, such as the Dye-DNA

interactions which allow us to obtain Fluoroscans (DeGroot et al., 2011, p. 787).

Machine Learning: A field built on computer science, mathematics, and probability. It

is centered around the design of (sometimes biologically inspired) models for automated

large-scale data analysis. Unlike algorithms created for obtaining exact solutions, ma-

chine learning models have a strong focus on approximate predictions based on large
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sets of data. There exist main two sub-fields within machine learning: supervised

learning, where the focus is on accurate prediction based on labeled datasets, and

unsupervised learning, where the aim is to find accurate descriptions of data Barber

(2012). For the purposes of this thesis, we focus on the random forest algorithms used

by Nandi (2017) as part of his work.

2.2.2. Previous work

Optical mapping: this system for single molecule genome analysis was pioneered at the

LMCG (Aston et al., 1999; Dimalanta et al., 2004; Schwartz et al., 1993; Teague et al.,

2010), and it has enabled scientists to carry out comprehensive genome analyses that

complement DNA sequencing by detecting structural variations at much larger scales

while sacrificing basepair-level resolution. Optical mapping allows for the construction

of ordered restriction map of enzyme cut sites spanning whole genomes, without any

need for cloning. Microfluidic devices and automated imaging and computational work-

flows are combined to generate large-scale datasets from millions of DNA molecules

that are first stretched on a charged surface and then ”cleaved” by a restriction enzyme

targeting specific DNA sub-sequences (from 4 to 8 bp in length). The gaps left by the

enzymes are imaged by means of fluorescence microscopy, and the distances between

the gaps are used as a descriptor for every imaged molecule. These ”ordered restriction

maps” (also called Rmaps) are, to some extend, similar to sequencing data, and many

methods have been developed for aligning them, either among themselves for de-novo

assembly, or against a reference for genome refinement or structural variant detection

(Valouev, Schwartz, et al., 2006; Valouev, Li, et al., 2006; Valouev, Zhang, et al.,

2006). Importantly, one can easily ”simulate” Rmaps by cutting reference genomes at

restriction sites and use them as a noiseless reference for optical mapping.

Nanocoding (Jo et al., 2009): also created in the LMCG, this is a more advanced single

molecule genome analysis which uses fluorochrome labeling instead of restriction cuts

for characterizing DNA molecules. The process is as follows: first, a long DNA molecule

(up to several Mb) is acquired from a test genome. The molecule is stained with a

fluorochrome that embeds into DNA and produces fluorescence light. Next, the DNA

molecule is nicked with restriction enzymes that only cut one strand of the cleavage

site and marks it with a fluorochrome that can be visualized as a red punctate in

contrast with the green DNA backbone (Kounovsky-Shafer et al., 2017). The molecules

are presented on nanoslits which confine and stretch DNA strands, thus facilitating

visualization (Kounovsky-Shafer et al., 2017). Images of lengthy DNA sequences with

a resolution of 200 nucleotides per pixel are then acquired by fluorescence microscopy.

Once the molecule backbones and the punctates are identified, alignment methods

designed for optical mapping can be used without extensive modifications.
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Nanocoding-based Fluoroscanning (Nandi, 2017): prior to this and several concurrent

works at LMCG, Fluoroscanning was based on the existing nanocoding system. Once

images are captured and processed, areas marked by nanocoding punctates — the

nanocoding equivalent of restriction gaps — are exploited for aligning the whole set

of DNA strands either among themselves or to a reference genome. Under this frame-

work, intensity signals (Fluoroscans) are extracted for every nanocoding map and those

belonging to the same genome region are averaged. The set of aligned, averaged Flu-

oroscans spanning the whole genome is called a consensus Fluoroscan and is expected

to provide genomic information about organisms similarly to consensus maps obtained

from optical mapping and nanocoding.

Other approaches for enzyme-free DNA sequence profiling: Fluoroscanning is not the

sole system to attempt to reveal DNA sequence composition without any enzymatic

reactions. For instance, Reisner et al. (2010), Marie et al. (2013), and Marie et al.

(2018) introduced and developed denaturing mapping, a method which exploits the

relative differences in melting temperatures of DNA regions based on their GC content.

This enabled them to obtain fluorescence intensity profiles that reflected composition

at a resolution of around 1 kb, but the temperature manipulation and the subsequent

kymograph acquisition are lengthy processes. Concurrent work by the Jo laboratory

(Lee & Jo, 2016; Lee et al., 2018; Park et al., 2019) has shown that fluorescent proteins

that bind to AT-rich areas can serve as a constrast to non-specific fluorescent DNA

binder to produce sequence-specific DNA composition profiles. On the other hand,

researchers at the Westerlund laboratory (Dvirnas et al., 2018; Müller et al., 2019)

have used netropsin (a sequence-selective ligand) to block YOYO-1 dyes from binding

with AT-rich regions, making them darker. Notably, the resolution of approaches based

on sequence selective binding such as those of the Jo and Westerlund groups are lower

(around 10 kb), likely due to false-negative and false-positive bindings.

2.3. Fluoroscanning and its long term objectives

Currently, at LMCG, Fluoroscans can be only aligned to generate a genome map by re-

lying on the nicking sites provided by nanocoding system. Ideally, Fluoroscanning should

work independently from nanocoding, that is: individual Fluoroscans should be aligned to a

reference genome based only on fluorescence signal information. Indeed, Fluoroscanning is

intended to allow for the generation of genomic maps based on the features of the Fluoroscan

signals. The idea behind this is to exploit fast algorithms from the signal processing domain

in order to produce such maps faster than the distance-based alignment approaches in which

other systems rely. If this is achieved, we should be able to detect large scale mutations in

an individual’s genome and to pinpoint areas of it that should receive further attention in
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order to provide personalized healthcare.



3 Extraction of Fluoroscans from digital

images

3.1. Introduction

The first step in the Fluoroscanning pipeline is to extract signals from digital images of elon-

gated, dyed DNA molecules presented on a charged surface (see Figure 3-1). We acquire

such images following several steps, which comprise the experimental procedure in which the

sample is prepared and placed on a glass surface, and image acquisition using a MD scanner.

This way, it is possible to acquire about 400 images 2560x2160 16-bit gray-scale images per

experiment. However, prior to signal extraction, it is necessary to address several issues, in-

cluding the presence of noise in images as a result of noise particles being present on the DNA

fragment backbone, DNA fragments being crossing over each other, DNA fragments overlap-

ping, lighting from noise particles interfering with the intensity profile of DNA fragments,

lighting from DNA fragments interfering with the intensity profile of other nearby fragments,

and images being out of focus, among others. In addition to noise, we also need to account

for the need to stitch together several images in order to be able to analyze DNA frag-

ments which extend across two or more images, which also requires us to define the amount

of overlap to be included in every pair of consecutive pictures belonging to the same channel.

In order to address the above issues, we build upon Wscan, a computer vision program

to automatically render Fscan profiles from image datasets of DNA molecules bound with

fluorochrome dyes. The microscope images were flat field corrected then input to Wscan.

The workflow comprises several stages that are detailed below: image overlapping, region of

interest detection, molecule segmentation, DNA molecule backbone identification, molecule

background correction, and lastly, Fscan output (Ravindran & Gupta, 2015). This im-

proved version of Wscan is implemented with Python 3 and several popular libraries, such

as NumPy (Harris et al., 2020) and scikit-image (Van der Walt et al., 2014).

This chapter is organized as follows: in Section 3.2 we describe previous work on the seg-

mentation of elongated DNA molecules as well as thin, elongated items in general in digital

images. Next, in Section 3.3 we describe the methodology followed in this work. Then,

we show our results in Section 3.4, and finally we analyze them and provide some ideas for

future work in Section 3.5.
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Figure 3-1: Elongated DNA molecules imaged using the MD system; as in most Fluoroscan-

ning experiments, they have an horizontal orientation which we can leverage

for Fluoroscan extraction. The image was processed for visualization using

Contrast Limited Adaptive Histogram Equalization (CLAHE) with clip limit

= 0.001. Source: the authors.

3.2. Previous work

Previous work on segmentation of dyed DNA fragments in digital images comprises proposals

for the segmentation of optical mapping and nanocoding images, which is centered mainly

on the use of traditional digital image processing algorithms. Other relevant work includes

both classic digital image processing and convolutional neural networks for the segmenta-

tion of thin elongated objects in fields such as medical and concrete structure image analysis.

In their review, Ravindran and Gupta (2015) described the framework for the processing of

Optical Mapping images in research and commercial-grade systems. The described method

consists of first segmenting and skeletonizing the backbone elongated DNA molecule frag-

ments. This is done by taking as part of the backbone the pixels with the highest intensity
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value along the axis the molecules are deposited in a 5-pixels neighborhood perpendicular

to such axis. In addition, every backbone pixel has to fulfill the condition of having an

intensity value higher than the intensity of the extremes of its neighborhood by manually

defined falloff value δ. Then, the endpoints of the the molecule fragments are used to stitch

adjacent images. Next, the fragments are grouped as belonging to the same molecule based

on their proximity and orientation, and the distance maps are calculated using integrated

fluorescence across a 5-pixel neighborhood surrounding the fragments.

Bahadar et al. (2016) proposed a method for the segmentation of retinal blood vessels in

digital images using a Hessian based approach and Otsu-based region thresholding. First,

they used CLAHE to enhance contrast. Then, they used the Hessian matrix and eigenvalues

transform at two different scales in order to extract wide and thin vessels, which is coupled

with a modification of global and local Otsu thresholding in order to classify vessel and

non-vessel pixels. Finally, they employed an area-based threshold method to clean up noisy

pixels and unconnected regions up to 30 pixels in size, resulting in the final segmented image.

Shit et al. (2020) developed clDice a novel loss function for the segmentation of thin tubular

structures in digital images. In essence, the authors defined an improved loss function

based on the classic morphological skeletonization algorithm and the well-known DICE loss

function, and implemented a differentiable version of it. This way, they were able to train

convolutional neural networks in such a way that the ”backbone” of thin elongated objects

could be prioritized over other features such as the absolute number of correctly classified

pixels, resulting in better performance for such architectures.

3.3. Methods

3.3.1. Experimental data

In this section, we analyzed images belonging to two kinds of samples in order to account

for two key needs in the Fluoroscanning pipelines:

BAC 876A24: We study this bacterial artificial chromosome since it contains several

AT-rich areas which turn into noticeable features in Fluoroscanning experiments. Fur-

thermore, the size of the sequence is such (around 224 kb) that most fragments fit in a

single image, thus allowing us to carry out Fluoroscanning signal quality experiments

prior to the implementation of more elaborate digital image processing algorithms.

HEK: We use DNA material from Human Embryonic Kidney cells since it allows us

to easily image very long DNA fragments which span several images. Such fragments

can belong to a much more varied set of DNA sequences, meaning the features of the

extracted Fluoroscans cannot be readily associated without robust signal alignment.
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However, this data does allows us to verify the effectiveness of digital image processing

algorithms in extracting large signals.

3.3.2. Data acquisition

Figure 3-2: The workflow developed at LMCG for preparing DNA samples. First, the

PDMS microchannels are adhered to a charged surface. Next, the DNA solution

is spread at the entrance of the microchannels with a wide bore pipet tip and

the capillary action pulls the solution, stretching the DNA molecules on the

channels. The microchannels are removed and the surface is mounted on a

glass slide with a drop of BME/TE for visualization. Source: Yumin Lian at

the LMCG.

Sample preparation

In Fluoroscanning experiments, the sample is prepared per the following protocol (see Figure

3-2 for a visual description):

PDMS micro-channels are adhered to a derivatized, positively charged glass surface.

The micro-channel is cut to create the opening.

The DNA solution is placed at the channels’ entrances with a wide bore pipette tip.

Capillary action sucks the solution into the channels and deposits the stretched DNA

molecules.
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Once the solution reach the end of the channels, the PDMS is peeled off and any

leftover solution left on the glass surface is cleaned.

A drop of BME/TE is added at the center of a glass slide.

The side of the surface with the DNA is placed on the BME/TE drop and centered on

the glass slide.

Image acquisition

Prepared samples are placed in a MD fluorescence microscopy which takes between 20 and

100 2560x2160 16-bit gray-scale images of each channel in the charged glass surfaces. In some

cases, fragments can not be imaged in a single picture, so a degree of overlap (around 700

microns) between images belonging to the same channel is included as part of the acquisition

process. See Figure 3-3 for a visual overview of this process.

Figure 3-3: The workflow developed at LMCG for acquiring images from a prepared sample.

The sample is first put in the microscope and the images are captured either

manually or automatically depending on the system. Once the images are

acquired, the Fluoroscans are extracted using the methods described in the

rest of this chapter. Source: Yumin Lian at the LMCG.

Data labeling: stitching

In order to be able to quantify the automated stitching procedure, 50 pairs images belonging

to several DNA samples were selected and aligned manually by two human annotators in

order to determine the number of pixels that need to be considered in both the x and y-axes

for lining up and stitching overlapping images (see Figure 3-4).
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Figure 3-4: Two overlapping images acquired from the same channel in a sample. The

overlapping areas (circled in green) for each image are of around 730 pixels

and are useful for putting two consecutive images together. The images were

processed for visualization using CLAHE with clip limit = 0.001. Source: the

authors.

Data labeling: pixel-wise segmentation

20 images corresponding to several DNA samples (experiments with images deemed to be

good, bad, and very noisy) were selected and segmented manually by two human annotators

after carefully evaluating a set of conditions for discerning usable DNA molecules from

unusable ones as well as noise elements. Such conditions were deemed to be as follows:

The backbone of an usable DNA molecule is defined as the pixel with the highest inten-

sity level in its 5-pixel neighborhood perpendicular to the orientation of the molecule

(pixel class 1, color green).

Very small particles or DNA molecules (less than 30 pixels) are classified as noise (pixel

class 2, color yellow).

Any increase of more than 1000 in intensity values is determined to be an overlap

between two molecules, a knot within a single molecule, or a particle of noise embedded

on/near the molecule (pixel class 3, color red).

Situations where two molecules were too close to each other were not considered to be over-

laps unless the two molecules actually touched each other, due to issues with subjective

calculation of proximity between objects in images. Such situations are addressed more ap-

propriately in further sections.
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The resulting images (see Figure 3-5) contain information from each of the three aforemen-

tioned classes and were used to evaluate the performance of the segmentation algorithms

employed in this work.

Figure 3-5: An image and its corresponding, manually-labeled segmentation mask. Green,

yellow, and red pixels represent usable molecules, noise fragments, and unusable

molecules, respectively. Contrast enhanced for visualization of the original

image using CLAHE with clip limit = 0.001. Source: the authors.

3.3.3. Exploratory data analysis

Prior to carrying any kind of processing on the images, we carried out a basic statistic

analysis on the distribution of pixel intensities for a set of 100 images selected from several

experiments. We were able to evidence that the pixel intensity values ranged from 500 to

around 40,000, with a mean intensity value of 905.7. The histogram of one of the images is

displayed in Figure 3-6.

Analyzing the histograms of several images allowed us to notice that the distribution of pixel

intensity values are skewed to the right, that is, there are numerous outlier, high intensity

pixel values which often correspond with noise and overlapping areas as shown in Figure

3-7. However, there is no hard-threshold that can be defined from visual inspection of the

histogram, so more elaborated approaches were deemed necessary for DNA molecule seg-

mentation.

In addition, the study of several consecutive images belonging to the same channel in Sub-

subsection 3.3.2 allowed us to determine that, due to particularities with the imaging system
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Figure 3-6: Histogram of a single dyed DNA molecules image; while it would be fairly easy

to set a threshold for separating background from areas where dye is present,

a similar approach can not identify noise particles. The bins are trimmed to

around 8000 for visualization. Source: the authors.

and the sample itself, the y-axis offset increases or decreases constantly with each consecutive

image, resulting in an effect similar to that occurring with some images stitched together

and displayed (see Figure 3-8) in the work of Ravindran and Gupta (Ravindran & Gupta,

2015).

One last discovery made during the exploratory data analysis was that the imaging system

sometimes produced images comprised entirely of white noise. In order to prevent such im-

ages from having an impact on the data processing pipeline, they are excluded based on the

following criteria:

usable(I) =

{
True, if max(I)−min(I) ≥ 1500

False, otherwise
(3-1)

where I is the array containing all of the intensity values which represent a given image. In

other words, images with a low dynamic range are assumed to be unusable.
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Figure 3-7: Close-up of part of an image in which noise fragments (circled in yellow) and

overlapping molecules (circled in red) are present. Ideally, our image process-

ing pipeline should not extract Fluoroscans from such areas. The image was

processed for visualization using CLAHE with clip limit = 0.001. Source: the

authors.

3.3.4. Pre-processing

Phenomena such as photo-bleaching and variations in the baseline intensity levels across

each image result in inaccurate molecule extraction in areas close to the edges of the images.

This is problematic since the precision of the Fluoroscanning system depends strongly on the

intensity levels associated with each extracted molecule. For this reason, we implemented a

two-step strategy for removing the background in our images:

The background was corrected using simple flat field correction, employing a bright

image F in order to get a corrected version C of image I, as in Equation 3.3.4.

C =
I

F
(3-2)
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Figure 3-8: Example of three stitched images in the Optical Mapping system. Note that

if the stitching is done poorly, information extracted from molecules spanning

more than one image will be inaccurate. Source: Ravindran and Gupta (2015).

Any remaining background irregularities are removed by estimating the background

using a median filter with a column-vector shaped kernel of size (100×1). The median

filter is very robust to outliers and thus fits mostly to the background, preserving the

relative differences between molecule intensity levels.

Other approaches such as fitting second and third order surfaces to the shape of the back-

ground (Voigtländer, 2015), while useful for single images, were not as effective near the

edges of the images, making the subsequent image stitching step more difficult.

3.3.5. Image stitching

After the images have been pre-processed, the next step is to obtain a single, contiguous

image for every channel in the sample. The number of images per channel can range from 10

to 100 depending on the experiment, so this must be done automatically. One way to achieve

this is by carrying out image registration. A naive approach is to minimize the Mean Squared

Error (MSE) of the differences between pixel intensity values of the overlapped areas of both

images, testing for a range of offset values ox and oy. More elaborate approaches involve the

use of the Fourier transform to detect the offset values which maximize the cross-correlation

in the frequency domain (Guizar-Sicairos et al., 2008).

We tested both approaches in addition to a simple but effective improvement of the Fourier

transform approach: we determined the vertical and horizontal shift between two contiguous

images by using a fast-Fourier-transform-(FFT) phase cross-correlation 2D image registra-

tion algorithm (Guizar-Sicairos et al., 2008) on image slices of 800 pixels width in order to

reduce computational costs and to reduce the chances of obtaining spurious offsets. Once

the offsets for every pair of images Ii, Ii+1 have been calculated, the images are merged into a
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single, contiguous array representing the whole channel. In the cases where unusable images

are present, such images are discarded and a fixed horizontal offset of ox = 10 pixels with

no vertical offset is used instead to signal that the remaining images are not contiguous.

3.3.6. Detection of regions of interest

As seen in Figures 3-1 and 3-4, each channel (that is, the region of the image where DNA

molecules are) comprises about 50% of the images captured with the MD system, with the

rest of the image consisting mostly of noise and background areas. For this reason, we

employ a simple approach for detecting the region of interest in each channel:

The image is reduced to 1/5 of its original size to reduce computational costs.

The reduced image is transformed to a 8-bit representation and thresholding is used

with a fixed threshold t = 10 to segment it into background and foreground areas.

A fixed window fitted to the vertical size of the channel is used at every possible

position in the y-axis.

The window which maximizes the amount of pixels segmented as foreground is selected

as the window containing the region of interest.

The window’s coordinates are extrapolated to the original image, which is then reduced

to the channel only.

Since the maximum vertical size of the channel can vary when using stitched images, the

size of the fixed window corresponding to the channel is increased based on the accumulated

oy offsets.

3.3.7. Segmentation

Otsu-based thresholding

The first tested approach for segmentation was to carry out binary thresholding based on

Otsu’s method (Otsu, 1979), which minimizes intra-class variance based on Equation 3.3.7:

σ2
w(t) = w0(t)σ2

0(t) + w1(t)σ2
1(t) (3-3)

where w0 and w1 are the probabilities associated to each class (0: background, 1: foreground)

and the σ2 values are the corresponding intra-class variances of the underlying intensity

levels, for a given threshold t. The minimization of the intra-class variances is achieved by

iterating through all possible thresholds and choosing the one which minimizes the variances.
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Standard-deviation-based thresholding

The second approach for segmenting elongated DNA molecules was to employ standard-

deviation-based thresholding. The idea behind using standard-deviations is to detect pixels

which are within the range of expected Fluoroscanning signal values, pixels which fall below

the usual range of intensities (background), and very intense pixels which are above the

usual range of intensities (noise or overlaps).

Morphology and intensity-based segmentation

A third approach for segmentation is to employ more complex digital image processing tech-

niques: after ROI detection, we determine the minimal bounding box for each DNA molecule.

Since most molecules were horizontally orientated as they were deposited in microchannels,

we identified the brightest pixels along the horizontal axis (“DNA backbone”) using a max-

imum filter with a 1× 100 pixels kernel. This approach helped obtain (noisy) image masks

of candidate molecules. Next, we removed all noise particles and DNA molecules less than

50 pixels in size with 8-connectivity (i.e., pixel a is connected to pixel b if a is in one of

the eight positions that surround b) using the Python scikit-image package (Van der Walt

et al., 2014). The identified bounding boxes in the ROIs helped reducing the computational

cost in the subsequent steps.

For each rectangular bounding box containing a DNA molecule, our algorithm identifies

the brightest pixel in each column of pixels vertical to the DNA backbone. Next, it checks

the connectivity of the brightest pixels using a queue. If the brightest pixels are eight-

connected and form a series of interconnected segments, the entire object is defined as the

DNA molecule backbone. Otherwise, a quality filter is used to determine how to connect the

fragments. Compared with the skeletonization functions usually used for computer vision,

this identification algorithm is more effective in detecting the backbone of the molecules, as

it includes several inductive biases about the way molecules are visualized in the microfluidic

channels.

Despite the accuracy of this approach, we were able to identify artifacts consisting of trun-

cated backbones in the form of dim spots on some molecules. The truncated points were dis-

criminated from non-molecule objects through morphological filtering; more specifically, we

used the closing operation on the identified backbones and pinpointed all pairs of molecules

that such an operation was able to reconnect. Then we use a modified version of Dijkstra’s

algorithm for path-finding (Cormen et al., 2001), which helps us link two backbone fragments

belonging to the same molecule.

The grey levels on each molecule’s backbone pixels were output as a continuous fluorescence

intensity signal. These signals, called Fscans, were exported in Excel files with additional in-
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formation about the DNA molecules, including each pixel’s (x, y) position on the overlapped

image, assigned molecule numbers, and image numbers. Composite images labeled with the

backbone pixels, ROI boxes, and molecule numbers were also exported, along with screen

views of Fscan profile plots for quick data inspection.

3.3.8. Characterization

Proximity-based criteria

A neighborhood criteria is used to determine whether the pixels in the detected molecule

backbone are usable, this is done by taking a circular area with a radius of 5 pixels around the

molecule. The quality of a molecule is penalized based on two criteria: first, the entropy of

the neighborhood, and second, the presence or absence of other molecules or noise fragments

in the defined neighborhood.

Elongation-based criteria

Ideally, molecules should be well-stretched in order to be able to extract good Fluoroscans

from them. For this reason, we calculate the tortuosity of each molecule as per Espinosa et

al (2013). We deem those molecules with a low tortuosity score to be well stretched whereas

molecules with high tortuosity scores are classified as poorly stretched.

3.3.9. Evaluation metrics

The MSE metric was employed to measure the accuracy of the image stitching approaches,

whereas the Jaccard Index metric was employed to quantify the quality of the segmentation

algorithms. A more qualitative approach was used in order to facilitate the analysis of the

characterization criterions: the Fluoroscans with the best and worst scores extracted from

the BAC images were visually compared with their ground-truth in order to verify the results.

Mean Squared Error

The MSE metric measures the squared error for the stitching coordinates of a pair of images

is defined as the squared difference between the automatically obtained offsets ox, oy and the

ground truth, human-annotated offsets ôx, ôy (Eq. 3-4). This metric penalizes large errors

with powers of 2, which is preferable to us since large errors would result in being unable to

recover Fscans belonging to molecules spanning two or more images.

MSE =
(ox − ôx)2 + (oy − ôy)2

2
(3-4)
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Jaccard Index

Given a ground-truth binary mask U and an automatically generated segmentation mask V ,

the Jaccard Index is defined as the intersection over the union of all pixels in both masks

(Eq. 3-5); higher Jaccard Index values are better.

Jaccard(U, V ) =
|U ∩ V |
|U ∪ V |

(3-5)

3.4. Results

3.4.1. Pre-processing

It is possible to confirm the positive impact of the proposed background correction approach

in Figure 3-9, where the intensity levels of a molecule which crosses from one image to

another are displayed prior to and after background correction. In addition, Table 3-1

confirms a noticeable improvement of image stitching accuracy when using pre-processed

images.

Figure 3-9: The intensity profile of a molecule before (left) and after (right) background

correction. The red line indicates a point where two images were combined

using the stitching algorithm. We can see that background correction partly

removes the baseline effect in the signal. Source: the authors.
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3.4.2. Image stitching

As shown in Table 3-1, restricting the portion of the images based on the number of microns

of overlap established in the MD system set-up allows to obtain a more precise estimation of

the offset values ox and oy while using less computational resources. Figure ?? depicts the

results of applying the best stitching approach on a series of 20 pictures taken consecutively.

Table 3-1: MSE and average execution times of the tested image registration approaches;

the restricted Fourier-based registration is both faster and much more accu-

rate than all other approaches. Source: the authors.

Name MSE MSE (pre-pr.) Execution time

Naive registration 21.71 14.34 5.10 seconds

Fourier-based registration 7.41 5.22 0.74 seconds

Restricted Fourier-based registration 0.14 0.08 0.22 seconds

Figure 3-10: A mosaic of 20 stitched contiguous Fluoroscanning images into a super image

and a zoomed-in view on a portion of the super image. Since there is usually

some degree of vertical shift, there is a step effect in the mosaic. Source: the

authors.

3.4.3. Segmentation

The segmentation results can be seen in Table 3-2, we can see that, despite a slightly

higher computational cost, our morphology-based approach significantly improves over the

two other proposed methods.
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Table 3-2: Performance of molecule detection and segmentation approaches;

despite being an order of magnitude slower, the morphology-based

approach has a much better Jaccard index. Source: the authors.

Name Jaccard Index Execution time

Otsu’s thresholding 0.675 0.12 seconds

Standard deviation-based approach 0.761 0.11 seconds

Morphology-based approach 0.893 1.77 seconds

3.5. Discussion

The proposed framework for the segmentation and characterization of dyed, elongated DNA

molecules using morphology-based techniques allowed us to extract Fluoroscan signals which

strongly correlate with the corresponding GC-composition profiles, and to measure their

quality based on two criteria: vicinity to noise and other molecules and molecule stretch.

Due to the properties of the sensor’s point spread function, the resolution achieved by this

method can reach up to 550 bp, which, to the best of our knowledge, surpasses that of

other approaches centered on enzyme-free DNA content profiling (Marie et al., 2018). Im-

portantly, WScan is not sensitive to changes in the general luminosity of an image and it

has been already tested with two microscopes and under a myriad of experimental condi-

tions at LMCG, which means that it has the potential to output even better results as the

experimental methods behind Fluoroscanning improve.

In terms of accuracy, the morphology-based approach results in precise segmentation masks

although there is a higher computational cost associated to the more complex computa-

tional pipeline. The thresholding (Otsu, 1979) and standard deviation-based segmentation

approaches are an order of magnitude faster, but often fail due to the fact that the his-

tograms of the Fluoroscanning images do not lend themselves to simple thresholding. On

the other hand, when compared to the image processing methods used for optical mapping

and nanocoding (Cao et al., 2014; Ravindran & Gupta, 2015), our approach uses several

additional filtering steps to ensure that the extracted molecule backbones are not rendered

useless by nearby molecules or noise particles.

Future work should comprise the usage of more elaborate, orientation-independent tech-

niques such as matched-Gaussian filters for the morphological segmentation approach, which

have been proved to be very effective for supervised segmentation tasks. In addition, modern

semantic segmentation neural network architectures could have reasonable performance de-

spite the limited amount of available data. However, we have to note that DNA molecules are

usually stretched in a predictable way, so deep learning-based approaches using specialized

loss functions (Shit et al., 2020) might not be necessary given the accuracy of our current
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approach. Moreover, our methodology allows us to easily enforce the fact that we only want

to consider a pixel to be part of the backbone if it is the brightest along a perpendicular cut

(even if illumination conditions change), which is not necessarily the case with deep learning

methods.

In addition to the above, we argue that it is necessary to propose a formal database archi-

tecture for the Fluoroscanning pipeline which allows end-users to discard poor Fluoroscans

by examining the original images and the extracted signals. Such a structure should also

account for noise and overlaps by partially flagging molecules which contain them so that

their usable portions can be exploited in further steps. This will probably be a key step as

part of a larger research and software engineering effort to turn Fluoroscanning into a fully

automatic system for whole genome analysis.



4 Monte Carlo simulations of

Fluoroscanning

4.1. Introduction

In order to study the behavior of DNA molecules during the processes on which the Fluo-

roscanning system is based, it is necessary to carry out computational modeling of the way

DNA and dye molecules interact (Nandi, 2017). This is motivated by the fact the experi-

mental procedures on which Fluoroscanning is based have not been fully standardized yet

and it is thus necessary to provide tools that allow us to create genome-sized datasets for

testing further steps of the pipeline.

Due to the above, we propose the generation of Monte Carlo Fluoroscans based on physical

and chemical properties of DNA and dye. Some of the properties we considered aspects were

the quantum yield of the dyes, the dye binding and release probabilities, the dye to basepairs

ratio, and the variation in length caused by the intercalation of dye fragments between

basepairs, among other parameters related to the phenomena on which the Fluoroscanning

system is based.

4.2. Methods

4.2.1. Underlying principles

We rely on a Monte Carlo (MC) scheme that incorporates fundamental aspects from the

chemistry of the dyes as well as approximated physical aspects of dye intercalation, molecu-

lar diffusion and fluctuations. We focus on bichromophore dyes of the cationic cyanine family,

namely the pyridinium or oxazole yellow YOYO-1 and the quinolinium or thiazole orange

TOTO-1 (see Fig. 4-2 A-B). The general framework of our MC is to generate a random

walk of dye binding (intercalating) and releasing events over independent DNA molecules

with a specific sequence. Simulated fluorescence signals are averaged over thousands of MC

steps and a consensus Fscan is then generated for the DNA molecule of interest. We selected

some characteristics from the dye’s chemistry and physics to inform the MC random walk.

Similarly, we introduce fluctuations that attempt to mimic experimental conditions as close

as possible. Consequently, the MC is parameterized with a set of “macroscopic” variables
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Figure 4-1: The Monte Carlo Fluoroscanning simulation pipeline. Source: the authors.
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that cover the relevant physical-chemical aspects.

Figure 4-2: A. Chemical structure of a bichromophore pyridinium or oxazole yellow YOYO-

1 dye. B. Chemical structure of a bichromophore quinolinium or thiazole orange

TOTO-1. C. Schematic of a YOYO and TOTO – DNA intercalation where

the DNA lengthens a distance ∆l and the dye imposes a footprint based on

neighbor exclusion. D. Schematics of some of the MC’s parameters: location of

the molecule end in the initial pixel, size of the pixel, pixel-to-pixel interaction,

molecular stretch fluctuations and backbone stretch variations. Source: the

authors.

The success behind cationic cyanine dyes is originated on the large degree of fluorescence

enhancement when intercalating (binding) on nucleic acids; it has been established that a

change in the relative orientation of the benzothiazole and quinolinium rings from skew to

planar is responsible of this enhancement and that the intercalation lengthens the DNA

molecule (Deligeorgiev et al., 2010; Netzel et al., 1995). In principle, dAdT sequences pro-

duce different type of binding than dGdC sequences. Concomitantly, a site that provides
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greater torsion immobilization with respect to the central methine produces a greater emis-

sion enhancement (Netzel et al., 1995). In addition, every dye molecule that binds within

two complementary bases imposes an exclusion restriction on the neighboring bases, which

defines the dye’s footprint (Fig. 4-2 C). Previous experimental studies helped to identify

the physical characteristics of the dye intercalation, including how the dye may alter the

physical and mechanical properties of the DNA molecules and the process of intercalation

(Nyberg et al., 2013). These efforts identified the DNA stretch to be a control variable for

the binding/release rate (Bennink et al., 1999). Overall, the probability of a dye molecule

to intercalate increases by increasing the stretch due to an increase of the binding rate and

a decrease of the releasing one.

From all the properties of fluorescence dyes, there are two that are worthwhile mentioning:

(i) the emission lifetime (ELT) and (ii) the fluorescence quantum yield (QY). The excited

state of a fluophore exists for a finite time. During this time, it undergoes conformational

changes and is subjected to several interactions with its molecular environment. These pro-

cesses have two important consequences: the energy of the exited electronic singlet state is

partially dissipated, yielding a relaxed singlet excited state from which fluorescence emission

originates. Second, not all the molecules initially excited by absorption return to the ground

state by fluorescence emission. Other processes such as collisional quenching, fluorescence

resonance energy transfer and intersystem crossing may also depopulate the relaxed singlet

state (Johnson, 2010). The fluorescence quantum yield, which is the ratio of the number

of fluorescence photons emitted to the number of photons absorbed, is a measure of the

relative extent to which these processes occur. YOYO-1 and TOTO-1 have longer emission

lifetimes that other cyanine dyes, with an ELT in the range of 3 to 5 nanoseconds (Netzel

et al., 1995; Shapiro, 2004). More importantly, the average emission lifetimes on dAdT and

dGdC do not vary (Netzel et al., 1995). Consequently, the only timeline restriction on an

experiment is the time needed for the destruction of the excited fluorophore due to photo-

sensitized generation of reactive oxygen species, namely photobleaching. On the other hand,

there are differences in the emission QY between the pyridinium and quinolinium dyes when

bound to dAdT and dGdC. For instance, QYs for YOYO-1 are reported to be 0.43 and 0.64

when bounded to dAdT and dGdC, respectively, while for TOTO-1 are 0.16 and 0.39 (Netzel

et al., 1995). It results in a GC/AT QY ratio of 2.44 for TOTO-1 and of 1.49 for YOYO-

1. Therefore, QY becomes a major element of the in-silico Fscan calculation through the MC.

In laboratory experiments, the molecular presentation of the DNA molecules starts with

preparation and addition of the dye to the polymer solution. The conditions of ionic strength,

temperature, pH and concentration are engineered and controlled with high laboratory stan-

dards to ensure consistency and to minimize statistical errors. For the fluoroscanning mea-

surements, the molecules are elongated and presented on a surface, typically following optical

mapping mounting techniques (Tang et al., 2015). Here, the molecular stretch is controlled
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with microscale precision, thereby resulting on an average stretch with a standard deviation

between 3 to 8% for an ensemble of mounted molecules. Using the image-processing methods

described in Chapter 3, we identify the end of the molecules (initial pixel) and the Fscan

signal is measured. The Fscans are then used to organize and orient identical molecules.

The optics’ resolution dictates the size of the pixel, which is translated to the average num-

ber of bases per pixel. Common values of optical resolution determine that the number of

bases per pixel is between 90 and 150. The fluorescence intensity of a particular pixel is

a collective and coherent optical construction of all the ”active” dyes within the pixel and

from interactions between intensities from the neighboring pixels.

The MC constructs Fscans through a random walk over the sequence of the molecule of

interest, comprising dye fluorochrome intercalation (binding) and release events. These MC

Fscans are predicated by the binding and photophysical properties of dye-DNA complexes

reported in the literature and measured in the experiments carried out at the LMCG, which

include: i) A non-overlapping dye “footprint” [1 dye molecule /4 bp] (Johansen & Jacobsen,

1998; Spielmann et al., 1995), with dye binding (“loading”) reflecting experiment d/b ratios

(available dye amount limited at any d/b ratios or unlimited, resulting in various dye loading

up to a full loading of 1 dye/ 4 bp); ii) sequence dependent quantum yields of YOYO-1 and

TOTO-1, as described above (Netzel et al., 1995); iii) MC Fscan length (assuming B-DNA)

adjusted for intercalation-mediated elongation effects, 0.51 nm/dye molecule as reported by

Günther et al. (2010) by fitting the force extension curves of YOYO-1 bound DNA; and

iv) imaging system parameters of pixel size (106.7 nm, 64.3 nm; Molecular Devices, Zeiss,

respectively) and measured point spread function (PSF). The PSF was measured by averaged

Gaussian fitting on images of 100 nm diameter fluorescent beads (FluoSpheres Size Kit 2,

Carboxylate-modified Microspheres, yellow-green fluorescent (505/515); Invitrogen; CAT

No. F8888) images: Molecular Devices (σ) = 1.11 +- 0.03 pixels), and the Zeiss system

(1.67 +- 0.06 pixels).

During a step, a base is selected randomly along the DNA molecule and a probability tree is

used to decide whether the dye is bind or released. The MC is guided by chemical and phys-

ical information. The schematics of some of the MC variables are listed in Fig. 4-2 D. The

MC simulation starts by defining the sequence and the number of independent and identical

molecules to be considered. The MC performs the chemically informed random walk on

each molecule independently. The end base of each molecule is placed randomly within the

initial in-silico pixel, introducing the first level of fluctuation to the MC. The average stretch

and its standard deviation are input parameters that determine the second and third level

of experimental fluctuations. Each molecule is constructed base-to-base following a random

walk through the DNA backbone using 0.34 nm as the maximum distance between bases

and satisfying the average stretch and its deviation. The probabilities for a dye to bind or

to be released are calculated from a hyperbolic tangent function of the average stretch. The

parametrization of these functions follow previous experimental conclusions and experimen-
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tal Fscans. The quantum yield, the footprint and the intercalating length are central input

variables that are collected from the chemistry of each dye.

For our simulations, a MC step is defined as the number of random events to bind or release

a dye to each base pair of the DNA molecule of interest. In other words, a MC step for a

21 kbp long DNA covers 21 thousand random events. We found that a consistent cFscan is

obtained after 20 to 40 thousand MC steps. Block averaging is performed every 1,000 MC

steps, where the dyes that are intercalated are used to generate the in-silico fluorescence

signals from Gaussian functions. The optical intensity in a pixel is constructed from all the

individual Gaussians within the pixel and from the intensity interaction with neighboring

pixels. We used a hyperbolic tangent function for the pixel-to-pixel interaction with a width

of 3 pixels. The average molecular stretch defines the binding (PB) and the release (PR)

probabilities. During a MC event, the probability of a binding or releasing event is selected

with a MC probability of PMC = 50%. Subsequently, a base pair is selected randomly and

its status is used to delineate the success of the MC event. The state of a base pair can be

either “free”, intercalated with a dye – dyed- or “within the footprint of a neighboring dye”.

During a binding event, the dye intercalates a free base pair according to an acceptance

probability AB = min(1, PB). Similarly, a release event will free the intercalating dye of a

dyed base pair with according to AR = min(1, PR). During the block averaging, we track

the average number of dyed base pairs, the average stretch, the MC acceptance/rejection

ratio, the base intercalation fluctuations, among other variables. Recall that during a dye

intercalation the DNA lengthens, therefore the number of bases per pixel and the base-pixel

identity changes during every accepted MC event.

The MC simulation also accounts for experimental noise factors stemming from degraded

“dark” fluorochromes, variable luminosities of individual dyes, imaging noise, and DNA

stretch. The amount of noise required to closely simulate the experiment is empirically tested

in Chapter 5 by comparing MC Fscans to Fscans derived from monomers (monFscans).

4.2.2. Implementation

Monte Carlo experiments are a class of computational algorithms in which problems whose

exact solutions are extremely hard to calculate in a deterministic way are solved using

random sampling to obtain an approximate solution. Many physical and mathematical

problems have been addressed employing this kind of solution, however, this usually implies

high computational costs, so highly optimized and/or parallel implementations are often

preferred. The MC Fluoroscan simulation algorithm was thus developed in C++ 11 as

it is one of the fastest programming languages used in scientific computing (International

Organization for Standardization, 2012; Pereira et al., 2021). We used the config4cpp

library for parsing configuration files, the Eigen numerical computing library for highly

http://www.config4star.org/
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optimized array operations (Guennebaud & Jacob, 2010), and the Open MP library for

parallel processing (Chandra et al., 2001). We compiled the code with the G++ open source

compiler with several optimization flags and run most simulations on the CONDOR HTC

cluster provided by the University of Wisconsin, Madison as well as in the UNICA cluster

of Universidad Nacional de Colombia. The full process is described in Figure 4-1.

4.2.3. Random number generation

All random numbers were generated using the C++ 11 implementation of the Mersenne

Twister pseudo random number generator (Matsumoto & Nishimura, 1998), which has a

period of 219937−1. We employ several instances of the random number generator (initialized

with different seeds) when carrying out parallel simulations on the same DNA molecule.

4.2.4. Input data and Monte Carlo parameters

For the purpose of carrying out MC Fluoroscan simulations, we first prepare the data and the

simulation parameters. The parameters in the Fluoroscan simulation include the following:

Sequence: the DNA sequence to be used as input for the simulation.

Region of interest: the first and last basepair of the DNA region to be simulated.

Number of molecules: the number of molecules to be simulated.

Distance between basepairs (dbp): the distance between two basepairs, fixed to 0.34

nm as per the literature.

Pixel size (spx): The size of each pixel in the simulated sensor, in nanometers, fixed

to either 106.7 or 64.3 (depending on the optics) as per experimental measurements at

LMCG.

Simulated sensor’s Gaussian width (wpix): The width of the Gaussian for the simulated

sensor’s point spread function, set to 0.75 experimentally.

Molecular elongation and standard deviation (el, σel): How stretched the molecule is, a

fully stretched molecule will have a higher dye binding probability and a lower release

probability.

Transition of the binding probability function: defines how fast the probability of

binding transitions from 0 to 1, set to 0.42 by default.

Stiffness of the binding probability function: defines how close to a straight line is the

slope of the binding probability function, set to 2.0 by default.
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Transition of the release probability function: defines how fast the probability of release

transitions from 0 to 1, set to 0.64 by default.

Stiffness of the release probability function: defines how close to a straight line is the

slope of the release probability function, set to 3.0 by default.

Increase in length for dye intercalation (∆l): The increase in length for each dye particle

bound to the DNA molecule, set to 0.51 as per Günther et al. (2010).

Limited dye simulation flag: Whether to run a simulation with limited dye.

Basepair to dye ratio for limited dye simulations ( bp
dye

): The basepair to dye ratio for a

limited dye simulation.

GC quantum yield: The intensity levels associated to dyes bound to GC nucleotides,

set to 0.64 for YOYO-1 dye and 0.39 for TOTO dye, as per Netzel et al. (1995).

AT quantum yield: The intensity levels associated to dyes bound to AT nucleotides,

set to 0.43 for YOYO-1 dye and 0.16 for TOTO dye, as per Netzel et al. (1995).

Dye footprint: The number of basepairs which are blocked by a bound dye fragment,

set to 4 (including the main basepair) by default as per experimental measurements

at LMCG.

Methylation sites: The specific n-mers which result in methylation. Each methylation

site has its own associated binding and release probability parameters and quantum

yields.

Dark fluorochrome rate: the frequency at which a given fluorochrome might ”stay dark”

during the simulation, leading to a diminished contribution of dye to the captured

intensity values.

Dye luminosity perturbation: whether to add a random perturbation to the luminosity

yield of bound fluorochromes, and the range of possible perturbations.

4.2.5. Data pre-processing

Prior to carrying out the MC steps proper, several operations are carried out. For simplicity,

these are going to be described for a single molecule. First, the data from a FASTA file is

loaded into memory and the number of basepairs n in the region of interest are counted.

The string is parsed into a vector seq of length n, on which G and C nucleotides are labeled

as 1, while A and T nucleotides are labeled as 2.
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Several values of interest such as the initial length of the DNA sequence, the maximum

number of dye intercalations, and the maximum length after dye intercalations are then

calculated. The number of pixels is defined as the maximum intercalation length divided by

the pixel size spx. Several masks are also generated at this first step, including a mask for

methylated areas, which serves as a look-up vector for calculations related to this feature

during further steps. If the relevant flag is turned on, the number of available dye fragments

is also established during this stage by dividing the number of basepairs by the bp
dye

ratio.

Prior to beginning the simulation, an array containing the distances between every couple

of adjacent basepairs is created and a random walk is carried out on it as per the following

equation:

di,i+1 = (r − 0.5) · 0.05 · dbp · el, (4-1)

where r is a random number sampled uniformly between 0 and 1, dbp is the standard dis-

tance between basepairs, and el is the molecular elongation. This introduces a degree of

randomness in the distances between basepairs which simulates the physical phenomenon of

some parts of the molecule not being fully elongated on the positively charged surface. In

order to simplify further calculations, we carry out the cumulative sum operation on array

d, resulting in an array x which contains the cumulative length of the molecule at every

basepair i.

4.2.6. Monte Carlo steps

Each step of the Monte Carlo is carried out by sampling n basepairs in the molecule with

replacement (which acts as a sort of bootstrapping). Once a basepair is selected, a Bernoulli

random variable is sampled with p = 0.5 to decide whether to attempt to bind dye to or

release dye from the selected nucleotide. Once an action is selected, a uniform random

variable will be sampled taking into account the probability of binding/release, as follows:

p(bind) =
1 + tanh(el − tSbinding)SSbinding

2
, (4-2)

p(release) =
1− tanh(el − tSrelease)SSrelease

2
, (4-3)

where tSbinding is the transition speed of the binding probability function, SSbinding is the

stiffness of the binding probability function, tSrelease is the transition speed of the release

probability function, and SSrelease is the stiffness of the release probability function. Thus,

the state of each basepair is modeled as a simple Markov Chain (see Fig. 4-3) where it can
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either have a dye molecule bound to it (A) or not (B), based on the random probabilities

defined before.

There are, however, two conditions which can prevent dye from binding on a basepair during

a given iteration of the Monte Carlo:

The simulation is carried out with limited dye and there is no more dye available (until

some dye is released from the rest of the molecule).

There is already a dye fragment bound to the basepair or its neighbors.

Likewise, there are is one condition that can result in a release event not happening: the

basepair not having a dye molecule bound to it in the first place.

In all such cases, the attempt to bind or release will be aborted and the next basepair will

be sampled. Essentially, this means that for many of the n basepairs sampled during a given

Monte Carlo iteration no action will be taken at all.

It is important to note that the cumulative length of the molecule stored in x is modified

whenever a dye fragment intercalates with it, so a molecule which is fully loaded with dye

will typically be longer than molecules that are not, which raises the need to normalize

molecular length in some manner during further steps. We also note that the probability of

binding is higher than the probability of release in most experimental configuration, so in

order to prevent the Monte Carlo from getting stuck on a given state for too many iterations,

between 10 and 20% of the molecule is stripped of all dye fragments with a probability of

1% at the beginning of every iteration.

Figure 4-3: Markov Chain of dye intercalation states for a given basepair. Source: the

authors.
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4.2.7. Optical signal (Monte Carlo Fluoroscan) generation

After a certain number of Monte Carlo steps, two sampling operations are carried out in

order to simulate the aggregation of the lighting emitted by each DNA fragment which has

some dye intercalated with it and the optics of the MD imaging system, which are described

visually in Figure 4-4. The first step consists of aggregating the fluorescence yields of

each basepair depending on the local point spread function and the intensity values of their

neighborhoods, while the second step entails the aggregation of the intensity levels captured

by the simulated camera sensor depending on its point spread function and the established

pixel size.

Figure 4-4: An idealized view of fluoroscanning data aligned to its underlying molecule.

Bases are marked on the bottom as 100 short vertical black lines. Notably,

local distortions of the DNA backbone result in bases being non-uniformly

distributed along the interval. Upon staining of the DNA, dye molecules in-

tercalate between neighboring DNA bases; they do so in this example at only

20 spaces (short red vertical lines). Probabilistically, the dye binding sites

are assumed to depend in some way on the specific bases that are nearby the

binding site. Individual dye molecules fluoresce upon excitation with light; the

detectable fluorescence of each dye molecule here is shown as a Gaussian curve

(red) positionally centered on the dye location and with a fixed scale. The total

fluorescence is a superposition (addition) of the individual curves, and results

in the thick black curve in this example. Source: Nandi (2017).

Point spread function at the basepair scale

The perceived yield corresponding to a basepair which has a dye molecule bound to it

is impacted by its neighborhood. The point spread function of this phenomenon can be
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simulated as a Gaussian with the following variance:

σ2
bp = (dbp∆l) · 0.5, (4-4)

where dbp is the standard distance between adjacent basepairs and ∆l is the increase in

length when a dye binds to a basepair. Likewise, the yield φ emitted by a bounded basepair

is defined as:

φ(j) = QY (j) · (1 + ζ(j)) ·
(
1− dark(j)

)
, (4-5)

where QY is a function defining the standard quantum yield associated to basepair j de-

pending on whether seqj corresponds to an AT or GC nucleotide and whether or not it

underwent methylation, ζ(j) is a value sampled from a normal distribution N (0, ε2)1 which

perturbs the yield of basepair j, and dark(j) is a random Bernoulli variable sampled with

p defined by the dark fluorochrome rate parameter, and it defines whether the dye bound

to basepair j will produce any luminosity; if the rate is set to 0, the simulation will not

have any dark fluorochromes. Given the above, the yield Φ emitted by a given basepair is

calculated as follows:

Φ(i) =
i+20∑
j=i−20

φ(j) · e
−d(i,j)2

σ2
bp , (4-6)

where j is a basepair in the neighborhood comprising the 40 positions surrounding basepair i,

and d is the one-dimensional distance between central basepair i and neighboring basepairs j,

which is calculated from the cumulative length vector x. This process results in an aggregated

intensity array Φ with one intensity value per basepair, which is used as the input for the

next step.

Point spread function at the camera sensor scale

Once the per basepair intensity values are calculated, we can simulate the alignment of the

camera to the basepairs and calculate the intensity of each pixel as an iterative process with

a pixel-level variance defined based on the following equation:

σ2
pix = 2(wpix · spx)2. (4-7)

The Gaussian bell which represents this process, with pixel width wpix = 0.75, can be seen

in Figure 4-5. The result of the described process is an array which contains the intensity
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Figure 4-5: Gaussian bell representing the contribution of basepairs to the aggregated in-

tensity of a given pixel. The closer a basepair is to the center of the area

covered by the pixel, the more of its intensity will be captured by the simulated

camera sensor. Accordingly, basepairs close to the area covered by a given pixel

can also impact the total intensity due to the properties of the point spread

function.

values equivalent to each pixel that the imaging system would have captured. That is, a

Monte Carlo Fluoroscan of the molecule after being dyed with fluorescent dye.

The equation for obtaining the intensity level I associated with camera pixel c is defined as

follows:

I(c) =

i+dpix∑
j=i−dpix

Φ(j) · e
−d(xc,j)2

σ2
pix , (4-8)

where dpix is four times the number of basepairs expected to be contained within the span

of a pixel (4 spx
∆l

),xc is the estimated position of the center of the camera pixel perpendicular

to the molecule, and i is defined as the position of the basepair that is closest to xc. When

applied over all camera pixels, this results in a full signal I: the MC Fluoroscan. One final

post-processing step can be carried out in order to simulate imaging noise: we optionally

add noise on top of each pixel in signal I, sampled from a Gaussian distribution N (0, ρ2),

1This means that 95% of the time, the perturbation will be in the interval [−ε ·QY (i), ε ·QY (i)]. If ε is set

to 0, no perturbation will occur.
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where ρ is a percentage of the signal’s values adjusted as part of the work done in Chapter

4.

4.2.8. Consensus MC Fluoroscan aggregation

When the aforementioned process is carried out for several molecules, the signals can be

aggregated onto a single, consensus Monte Carlo Fluoroscan of the molecule, which due to the

noise introduced by the randomness in length and dye binding is closer to the experimental

results. This is done by first using a simple cross correlation to re-align the molecules and

then adding the intensities of each Fluoroscan and dividing it by the standard deviation

after subtracting the mean (see Figure 4-6). Any pixel which is not covered by all of the

molecules is discarded in order to avoid sudden dips in intensity at the edges of the consensus

signal.

Figure 4-6: Consensus Monte Carlo Fluoroscan aggregated from the Monte Carlo Fluo-

roscans of 5 simulated BAC 876A24 molecules. The two dips around pixels 360

and 450 correspond to AT-rich areas. Source: the authors.

4.2.9. Comparing Fluoroscans and GC profiles with MC Fluoroscans

In order to compare actual Fluoroscans with MC Fluoroscans we standardize both to have

mean 0 and unit standard deviation and we employ cross correlation to align them in order
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to provide a better comparison. We were able to measure aspects such as the frequency of

peaks and the average elongation in order to adjust the best conditions for MC Fluoroscan

generation, and we established a Gaussian width of 0.75 for the pixel point spread function

resulting in the best fit to the experimental data as shown in Figure 4-7.

Figure 4-7: Comparison of a Consensus MC Fluoroscan (cyan) and an actual Consensus

Fluoroscan (yellow) obtained from laboratory experiments on BAC 876A24.

The two big dips around pixels 360 and 450 are easily identifiable in the exper-

imental data. Source: the authors.

The comparison of a GC profile with the MC Fluoroscan is a similar procedure. We read

the DNA sequence and establish a window size based on the configuration employed for

the computational experiment. This way, we are able to compute a GC profile where high

% GC areas are represented as peaks and high % AT areas are represented as valleys. In

order to guarantee a comparison independent of the intensity and GC % units, we repeat

the standardization procedure (see Figure 4-8).
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Figure 4-8: Comparison of a Consensus MC Fluoroscan (red) and a GC profile (blue) ob-

tained from the DNA sequence of BAC 876A24. Under ideal conditions, the

MC Fluoroscan is very similar to the GC profile. Source: the authors.

4.3. Results

After comparing the Monte Carlo Fluoroscans with Fluoroscans extracted from actual dyed

DNA molecules as well as the ”ground-truth” GC profile of the BAC itself (Figures 4-7 and

4-8), we see that the simulation approach is close to the physical and chemical phenomena

behind the acquisition of Fluoroscans. By adjusting the parameters of the simulation it was

possible to closely approximate the resolution present in real Fluoroscans. The extent at

which our simulated data agrees with experimental data is further explored in Chapter 4.

Using our final parameters, adjusted through collaboration with the LMCG, we generated

Fluoroscans for most of the human genome.

4.4. Discussion

Monte Carlo Fluoroscans properly reproduce the most relevant landmarks present in both

the GC% profiles of the studied sequences and Fluoroscans resulting from the experimental

procedures described in Chapter 3. The flexibility of the simulation setup allows us to ma-
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nipulate physicochemical conditions and noise factors such as varying levels of elongation,

different point spread functions for the intensity profiles, differential binding probabilities

for specific sequences, variations in dye loading, among others. With the development of

this tool, we enable the generation of massive datasets of Fluoroscanning data based on any

given DNA sequence instead of being limited to what can be achieved with experimental

data. Most importantly, the generation of such datasets is the basis for the next objective:

studying the agreement between simulated and experimental data, and determining whether

it is possible to use the Monte Carlo to test experimental conditions ideas at a fraction of

the cost it would take to test them in the laboratory.

To the best of our knowledge, this is one of the first attempts to develop simulations that

can guide experimental procedures for a whole genome analysis system based on sequence

fluorescence intensity profiling (that is, using no restriction enzymes). Our approach consid-

ers both the physicochemical conditions of the experimental setup and a significant number

of noise sources, ranging from phase noise to perturbations in the luminosity output of the

dye. In contrast, Müller et al. (2019) used simulations to determine whether a whole human

genome could be mapped based on their sequence profiling approach, in a fashion similar to

simulating restriction maps in optical mapping work. On the other hand, Lee et al. (2018)

focused on the physical properties of DNA molecules confined in nanochannels. Compared

to their proposals, ours centers on modeling a wide array of parameters so as to test different

experimental conditions in a fast manner.

Finally, we must note that the current version of the Monte Carlo simulation is implemented

in C++ and optimized for multi-threaded execution. However, due to the complexity of

software development in C++, it is relatively difficult to introduce new features. Due to this,

we decided to translate the Monte Carlo to Python, using the Numba and Numpy libraries

for performance-critical sections and the standard library for non-critical tasks. One major

advantage is that new features can now be added with a fraction of the time that required for

doing so in the original C++ version, and that the code-base is now much more accessible to

researchers that are not familiar with C++. As of the writing of this document, the Python

version is faster than the C++ version (mainly due to clever use of vectorization for parts

of the code that previously were for loops), although it lacks checkpointing capabilities and

should be used only for shorter runs. In the future, we expect this missing feature to the

Python version so that it can be used for large-scale simulations of complete genomes.
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usefulness for genomic map generation

5.1. Introduction

In previous chapters, we developed a pipeline for extracting Fluoroscans from digital images

derived from experiments at the LMCG. Likewise, we developed highly customizable algo-

rithm capable of simulating the Fluoroscan generation process under various conditions. As

part of this chapter, we hope to use the tools we built before to address two main questions:

Whether or not MC Fluoroscans agree with findings derived from large scale experi-

mental data.

Whether or not MC Fluoroscans parameters can be fitted to achieve maximum simi-

larity to experimental data.

By addressing both questions, we hope to bring the simulation and experimental aspect of

our research into a common space where simulated data can be used to guide laboratory

experiments, thus saving precious time and resources and driving us closer to the goal of

generating genomic maps from fluorescence microscopy images.

5.2. Comparing Monte Carlo Fluoroscans with

Fluoroscans derived from data-driven approach

The MC approach was not the first attempt at studying the properties of Fluoroscan-

ning. Previously, Nandi (2017) carried out a data-based approach to the generation of

synthetic Fluoroscanning data. He used a huge human chromosome dataset obtained using

the nanocoding system was used to train a tree-based Gradient Boosting regression algo-

rithm. As part of this process, Nandi considered a set of features based on DNA n-mers

with lengths 1 to 5 (base mers) as well as the same mers present in the neighboring pixels

(labelled as + and ++, as in Figure 1). This simulates a Gaussian kernel and allows to con-

sider the importance of mers at varying distances from the pixels that are generated through

this approach. The feature importance was calculated using nodal impurity (explained in

the first document) and resulted in AT-majority mers with lengths two to three having the
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most importance.

Monte Carlo Fluoroscan generation, on the other hand, is based on physical intuitions of the

behavior of DNA fragments interacting with dye molecules. This approach has been useful

to generate big Fluoroscan datasets without requiring us to carry out the huge number of

experiments that were necessary for training the Gradient Boosting algorithm. However, this

does not mean that the importance analysis results obtained with the Gradient Boosting are

inadequate, as recent experimental data from tests done at the Schwartz Lab have shown

that AT-rich areas are more informative in terms of characterizing the underlying features

of a given DNA molecule. Thus, we expect both approaches to output similar results.

Figure 5-1: Pipeline for determining n-mer importance, we align the MC Fluoroscan to

a reference GC profile and, based on the underlying composition of the MC

Fluoroscan, we produce an importance score. Source: the authors.
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5.2.1. Measuring feature importance in Monte Carlo Fluoroscans

Having stated the above, it is necessary to provide additional detail on the approach used

to measure importance in Monte Carlo Fluoroscans. As part of the Monte Carlo, the quan-

tum yield of every basepair in a sequence is first aggregated with its neighbors to create a

full resolution signal using a Gaussian, which is further aggregated to pixel-size resolution

employing a second Gaussian. The yield data for all basepairs is readily available as an

output of the C++ Monte Carlo routines, for example, for a sequence A A A T there exists

a vector of yields which would look like [0.78, 0.91, 0.91, 0.78]. For each basepair there is

additionally data on its position in the DNA chain measured in nanometers. In addition,

there is information on the yield and the position of each pixel’s center along the chain.

Taking this into account, we read all of this data and generate a hash-map structure for

every pixel where the occurrence of every possible mer from lengths 1 to 5 is registered. The

base mer features are counted by considering all basepairs in the following interval:

[pxi,center − px size, pxi,center + px size] (5-1)

Where pxi,center represents the center of pixel i and px size is the pixel size as defined during

the simulation. An example of a hash-map for an arbitrary pixel would be as follows:

hashmappx = {AT : 5, GC : 1, TT : 3, . . . , AAAA : 1} (5-2)

This hash-map is furthermore expanded by including + and ++ features, in which the n-

mer counts of neighbouring pixels are added as independent features (e.g., AT++: 10). This

way, we simulate Nandi’s approach by considering the same amount of possible mers in a

5-pixel window. Once the n-mer data for each pixel is obtained, we can now measure the

importance of each feature for a given dataset. This is done by considering several aspects:

The intensity level of the pixel in relation to the full-length signal

The frequency of the n-mers

The degree to which a given pixel which contains the n-mers remains after applying a

Fourier filter

The size of the pseudo-pixel which directly impacts the Gaussian function used to

weigh feature importance (this step is relevant during the generation of the hash-map)

The process begin by calculating a Fourier reconstruction of a 50-pixel size window f with

the Discrete Fourier Transform F:

(F̂f)l(k) =

s1−1∑
x1=0

...

sd−1∑
xd=0

fl(x1, ..., xd)e
−2iπ

d∑
j=1

xjkj
sj

. (5-3)
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In order to filter noise from the signal, the inverse F̂−1 is calculated with modes truncated

to a set Zkmax as per a kmax value as follows:

(F̂−1f)l(x) =

s1−1∑
k1=0

...

sd−1∑
kd=0

fl(k1, ..., kd)e
−2iπ

d∑
j=1

xjkj
sj

, (5-4)

Zkmax = {(k1, ..., kd) ∈ Zs1 × ...× Zsd |kj ≤ kmax,j or sj − kj ≤ kmax,j, for j = 1, ..., d}. (5-5)

Where kmax is empirically defined as 80% of the number of modes for the window. By doing

this, we keep only the most important features of the signal Brady (1992). Once the window

f is filtered, the importance for all mers in pixels within the window is calculated as follows:

importancemer,pix =

∑
pixval · freqmer

nmers
(5-6)

In addition, to avoid bias toward smaller n-mers, the importance of every with a given

length and at a given distance from the center pixel (base, + or ++) is standardized (mean

0, standard deviation 1) with respect to mers belonging to the same category. After this,

we obtain a hash-map of importance levels for every pixel which measures quantitative

importance instead of the frequencies:

imp hashmappxi = {AT : 1.46, GC : 1.2, TT : 2.33, .., AAAA : 0.1, ...} (5-7)

The final importance hashmap is thus the sum of importances for all pixels in the studied

signal (see Figure 5-1 for a summary of the complete procedure, and Figure 5-2 for some

examples of the resulting importance scores).

5.2.2. Results of the importance analysis

Ideally, there should be consistency in terms of the mers that appear most frequently as

important, but this aspect tends to fluctuate due to the particularities of each DNA fragment

or chromosome. For this reason, it is possible to aggregate data from several chromosomes;

we thus compare the importance of three datasets:

Chromosome 1.

Chromosome 19.

Chromosomes 1 and 19.
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Figure 5-2: N-mer importance results on chromosomes 1 and 19, with 106.7 nm pixel size.

We can see that mostly 5-mers are considered important, with little represen-

tation of smaller n-mers. Source: the authors.

Figure 5-3: Nandi’s feature importance results, using Random Forest (left) and Gradient

Boosting Trees (right) algorithms fitted to Nanocoding data. Source: Nandi

(2017).
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The experiments were carried out with the base conditions used for experiments with the

Monte Carlo, the most important of these being the pixel size of 106.7 nm that was employed

in the simulations (see Figure 5-2).

The results show that there is agreement between the results on both chromosomes, aside

from the expected fluctuations. The most frequent mers are AT-based 5-mers and 4-mers in

the central pixel and the ++ pixels to each side of the center, which is also in agreement with

Nandi’s results. However, this differs from the prevalence of AT-based 1-mers and 2-mers in

Nandi’s work, as seen in Figure 5-3.

Considering the above, we hypothesize that the results might be heavily influenced by the

pixel size employed in the simulations, which motivates us to carry out simulations with

several pixel sizes and re-evaluate our results.

Pseudo-pixel testing

Figure 5-4: Pseudo-pixel size test results on an aggregate dataset comprised by chromo-

somes 1, 2, 18, and 19 with 106.7, 50, and 10 nm pixel size. Smaller pixel sizes

result in a more varied representation of n-mers of different lengths, which is

in turn closer to what was obtained by Nandi (2017). Based on this data, we

were able to confirm that there was an agreement between both methodologies

for computing feature importance. Source: the authors.

To determine if the pixel size employed for the gaussian pseudo pixel in the simulation had

an impact on the relevance of specific n-mer sizes, we carried out tests with several values
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Table 5-1: Comparison of n-mer frequency in the top 20 n-mers for each pixel size, vs

Nandi’s Gradient Boosting. Source: the authors.

Configuration 1-mers 2-mers 3-mers 4-mers 5-mers

Gradient Boosting 10% 40% 30% 20% 0

106.7 nm Monte Carlo 0 0 0 10 % 90 %

50 nm Monte Carlo 0 0 20 % 80 % 0

10 nm Monte Carlo 15 % 60 % 20 % 5% 0

Table 5-2: Comparison of AT frequency in the top 20 n-mers and top 50 n-mers for the 10

nm Monte Carlo vs Nandi’s Gradient Boosting. We can see that both approaches

have a similar % of AT n-mers in both the top 20 and top 50, which suggests

agreement. Source: the authors.

Configuration % of AT in top 20 % of AT in top 50

Gradient Boosting 90.19 % 72.18 %

10 nm Monte Carlo 84.09 % 64.49 %

for the pixel size, in this case we the results with 106.7 nm, 50 nm, and 10 nm. In order to

account for a wider region of the human genome, we carried out this analysis on chromo-

somes 1, 2, 18, and 19.

As it can be seen in Figure 5-4, we get a distribution closer to that obtained by Nandi,

albeit there is not the same distance between the 1st and 2nd top mers. As a way to better

quantitate the effect of both configurations, we calculate the relative frequency of n-mers

with a given size in the top 20 positions for each simulation, as per Table 5-1. In addition

to, we calculate the relative frequency of AT and GC mers in the Gradient Boosting analysis

and our Monte Carlo-based analysis (see Table 5-2).

From these results, we can see that short, AT-rich n-mers are prevalent in our Monte Carlo

simulation (chemistry and physics-informed approach) to a similar degree as they are in the

Gradient Boosting (data-informed approach). Importantly, this suggests that Monte Carlo

simulations of Fluoroscanning can be used to guide wet lab experiments under a controlled

environment.
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5.3. Fitting MC parameters to experimental data

At this stage of the Fluoroscanning project, our work was focused on small-scale alignment

to enable fitting the parameters of the MC Fluoroscan generation algorithm to the exper-

imental data. For this reason, researchers at the LMCG devised a concatemer sequence

comprised of 30+ repeats of the 5.5 mb pUC19-H23 plasmid monomer. catFscans resulting

from the concatemer sequence can be easily divided into several smaller segments (monFs-

cans) that can be aligned together with relatively simple signal processing algorithms. On

the other hand, our MC algorithm is readily available to generate synthetic Fscans from

the same concatemer FASTA sequence (catMCFscans) that can also be divided into smaller

segments (monMCFscans). These synthetic Fscans can be used as a theoretical reference for

processing experimental Fscans under various conditions, resulting in a golden opportunity

for understanding Fluoroscan generation parameters (and therefore noise) through quanti-

tative analyses.

As stated in Chapter 3, our Monte Carlo algorithm incorporates noise factors including

dye luminosity variation, degraded dark fluorochromes, phase shifts, and imaging noise.

By comparing the synthetic data with experimental data, we validated and quantitated

these noise factors from experiments. These noise factors are also reduced correspondingly

through the data processing workflow including normalization, filtering by length, filtering

by similarity to the synthetic reference and averaging for a consensus. The noise-reducing

workflow is especially empowered by large datasets collected from DNA concatemers. After

the processing steps, we evaluated signal similarity by Pearson correlation coefficient and

signal to noise contrast by information theory (Borst & Theunissen, 1999).

5.3.1. Experimental data and setup

In this chapter, we focus on the concatemer sequence resulting from chaining together 30

repeats of the pUC19-H23 plasmid monomer. Each monomer consists of 5627 bp, for a total

168810 bp in the full sequence. The parameters to fit include the stretch, the percentage of

dark fluorochromes, the Gaussian dye intensity perturbation, and the imaging noise. The

amount of noise to closely simulate the experiment are empirically tested by comparing the

resulting monomer MCFscan (monMCFscan) dataset to the monFscan dataset. DNA stretch

variation is assessed by the length distributions of monMCFscans and monFscans. The

three noise factors affecting fluorescence intensity, including “dark” fluorochromes, variable

luminosities of dyes and imaging noise, are quantitated by cumulative information rate using

Borst and Theunissen’s informational theory method (Borst & Theunissen, 1999).
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5.3.2. Fscan preprocessing workflow

The preprocessing workflow (see Fig. 5-5) features a series of filters and analyses designed to

minimize outliers in Fscans stemming from variances in intramolecular stretch (S = appar-

ent molecule length / theoretical molecule length of DNA with intercalation-mediated elon-

gation), producing “signal phase shifts,” and overlapping DNA fragments that contribute

spurious luminosities to analyte molecules. The workflow is largely implemented using tools

available in the SciPy (Virtanen et al., 2020) Python library.

Figure 5-5: catFscan preprocessing workflow for reducing outliers and partitioning catFs-

cans into consistently oriented, uniformly sized monFscans. Filters attenuate

experiment noise in datasets stemming from spurious fluorescence signals, and

local variations of DNA stretch (causing phase shifts). Source: LMCG.

Wscan (described in Chapter 2) creates concatemer Fscan datasets (catFscan) from image

files which are then manually curated. The resulting catFscans are processed by these steps:

Partition each catFscan into constituent monomer “monFscans.” The Python pack-

age detecta (Duarte, 2021) identifies periodic valleys (fluorescence signal minima)
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harboring AT-rich sequence as the cut-off for bounding each monFscan within a con-

catemer (catFscan). The maximum valley threshold and the minimum monomer size

are adjusted to refine partitioning for each catFscan dataset.

Normalize each monFscan by dividing signal values by its minimum and then subtract-

ing the mean. The minimum signal values serve as internal standards for correcting

fluorescence intensity variances across large datasets.

Consistently orient monFscan (5’ – 3’) by cross correlation against a synthetic reference.

The reference signal, “MCref2,” is created by two steps of a Monte Carlo simulation

(see Chapter 3) and normalized in the same way as with monFscan datasets, ensuring

catFscans comprise consistently oriented monFscans.

Ensure nearly full stretch to minimize phase shifts by filtering monFscans (mode length

2 pixels); monFscans typically span 40 pixels, or 2.57 µm.

Filter monFscans by fluorescence intensity: (+/- 1 SD of the range of pixel grey levels).

Ensure monFscan datasets are the same length as MCref2 by B-spline interpolation.

Using this workflow, it is possible to generate datasets of monFscans from laboratory ex-

periments, which are one of the inputs for the parameter fitting workflow described in the

following section.

5.3.3. Parameter fitting workflow

The pUC19-H23 plasmid concatemer sequence comprising 30 repeats of the plasmid is used

for the MC simulation. The noise parameters are fitted through the pipeline described in

Fig. 5-6.

40 concatemer molecules (40 29 full monomer Fscans = 1,160) are generated in each

simulation. During the first run, the noise parameters are selected naively. In further

runs, they are adjusted to better fit the experimental data.

Partition the concatemer MCFscan (catMCFscan) / catFscan into monMCFscans

/monFscans as per the workflow described in Section 5.3.2.

Compare monMCFscans/ monFscans by length distributions. Outliers with lengths

outside the range of 25 to 60 pixels are left out.

Preprocess the monMCFscans /monFscans datasets by the rest of the workflow de-

scribed in Section 5.3.2 after partitioning. Both datasets use MCref2 as reference. An

exception in the workflow is using a different normalization method. Normalizing using
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Figure 5-6: Workflow for empirically determining noise for MC by comparing length distri-

bution and information rate in resulted monMCFscans to the monFscans, both

datasets preprocessed using the workflow described in Section 5.3.2. Source:

LMCG.

the minimum as internal standard can preserve potential fluorescence intensity vari-

ances on modified DNA alleles. However, dividing by the minimum also exaggerates

variations in the normalized signals. Therefore, we normalize differently to minimize

signal variances for the noise analysis by xi = xi−x̄
SD(x)

.

Align monMCFscans/monFscans with MCref2 by cross correlation. Most of the mon-

MCFscans/monFscans do not need to be shifted. Some signals that are shifted by

more than 2 or 3 pixels are filtered out.

Filter by Pearson correlation coefficient. 10% of the monMCFscans/monFscans most

similar to MCref2 are carried forward.

Compare noise in filtered monMCFscans/ monFscans by cumulative information rate.

The noise parameters are then adjusted to repeat the workflow until the noise in monMCF-

scans is the same as in monFscans.
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Figure 5-7: monMCFscans are compared to monFscans from one-step binding with a d/b

mixing ratio in 1x TE. (a-d). Aligned, preprocessed and filtered individual sig-

nals (monFscans) from each dataset and their average signal (thick red) used

for the noise analysis (Borst & Theunissen, 1999). (a) monMCFscan1 without

noise. (b) monMCFscan2 with noise: 80% -120% DNA stretch, 20% of dark

fluorochromes, Gaussian dye luminosity variation with σ = 60%. (c) monMCF-

scans3 with noise same as (b) and pixel level noise(σ = 1.3%). (d) monFscans

( d/b mixing ratio in 1x TE). (e) Overlayed signal and noise power spectra

and (f) signal to noise ratio (SNR) and cumulative information rate curves

of the four datasets. The overlays of only results from monMCFscans3 and

monFscan are plotted for clarity: (i) signal and noise spectra and (j) signal to

noise ratio (SNR) and cumulative information rate. (g, h) Length distributions

of (g) monMCFscans3 (38.4 4.7 pixels) and (h) monFscans (39.3 4.6 pixels)

with the mean showed by black line and the range of SD by gray dashed

lines. (k, l) Pearson correlation coefficient distributions of (k) monMCFscans3

(mean: 0.791, median: 0.810, 80th percentile: 0.877, 90th percentile: 0.895)

and (l) monFscans (mean: 0.790, median: 0.806, 80th percentile: 0.879, 90th

percentile: 0.902). The mean (black), median (orange), 80th percentile (red)

and 90th percentile (green) are marked by colored lines. Source: LMCG.
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5.3.4. MC parameter fitting results

As per our empirical results, 20% of randomly selected dyes are dark (no fluorescence) and

dye luminosity variances can be modeled as Gaussian distribution (σ = 60% of signal val-

ues). Furthermore, imaging noise is determined to be a Gaussian distribution (σ = 1.3% of

signal values) to be added to final MCFscans on a per pixel basis. The appropriate amount

of stretch variation in MC, imitating the effect of DNA elongation in microfluidic channels,

is determined based on the length distribution of monMCFscans. Random stretch from 80%

to 120% in MC results in similar length distributions between the monMCFscans and mon-

Fscans (Fig. 5-7g, h). The normal distributions of monMCFscan lengths are caused by two

factors. First, the stretch-based dye-binding probability and release probability modelled in

MC affect the intercalation-induced elongation. Second, noise in signals causes errors in au-

tomatic partitioning of catFscans into monFscans. Besides stretch variation, the addition of

dye luminosity fluctuation and dark fluorochromes in MC both increase the noise spectrum

densities (Fig. 5-7e, results of testing the two noise factors separately are not shown). The

high frequency noise is manifested at the pixel level by variation of grey levels (Fig. 5-7e,f).

This noise simulates background noise from ambient light and image readout on the camera.

Fig. 5-7i, j show the closely overlapped signal and noise power spectra, SNR and cumula-

tive information rate curves of monFscans and monMCFscans added noise. As an overall

assessment of similarity, Pearson correlation coefficient distributions are compared between

monMCFscan and monFscan datasets (Fig. 5-7k, l). The distributions of Pearson corre-

lation coefficients of the two datasets measured with the same reference show very similar

shapes and statistics. The close match of monMCFscans and monFscans in length distri-

butions, signal information rates and Pearson correlation coefficient distributions support

that our in-silico Monte Carlo simulation accurately captures the signal and noise features

of experiment data.

5.3.5. Understanding noise factors

By closely simulating experiment noise factors in MC, we understood the types of noise in

Fscans and minimized the noise using the designed catFscan preprocessing workflow. The

monFscans from the concatemers provide large datasets for the noise analysis. The knowl-

edge we obtained from monFscans about the dye binding and photophysical properties of

the Fluoroscanning system can be applied to general DNA Fscans.

Stretch variation, as the source of phase shifts, is minimized by the length filtering steps

which include nearly fully stretched molecules, with the resampling step also helping to

bring all monFscans to the same length. Our modeling of stretch variation simulates a

homogeneous stretch along each DNA molecule. Although stretch-facilitated elongation in-

troduces some local phase shifts due to random dye binding patterns in MCFscans, the main
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component of local phase shift in Fscans, probably caused by intramolecular inhomogeneous

stretch, is missing in the MCFscans. Local stretch variation is not incorporated because of

the complexity in quantifying its extent and frequency in Fscans for a meaningful simulation.

Lacking local phase shift explains the more pronounced features in the cMCFscan than in

the cFscan like the deeper valleys (Fig. 5-7c, d). Besides the differences in cFscan features,

monMCFscans are very similar to monFscans in the evaluations of similarity with respect

to the reference and in terms of signal to noise contrast.

We attribute noise in fluorescence intensity to dye luminosity fluctuation, degraded dark flu-

orochromes, and imaging noise. The first two factors simulated in MC mainly contribute to

the medium frequency noise we see in the experimental Fscans. As for the missing high fre-

quency noise component, we introduce it by adding pixel level imaging noise. By combining

the three sources of noise, we enable a close match between the noise spectra of monMCF-

scans and monFscans. Furthermore, since we understand the fluorescence intensity noise

originates from both dye luminosities and imaging noise, we added filters in the Fscan pre-

processing workflows to minimize these types of noise. A filter of fluorescence intensity range

of monFscan is applied first for removing Fscans obviously out of range, mostly due to DNA

overlapping. After that, we use the synthetic reference from MC for similarity filters for the

Fscans using the Pearson correlation coefficient and cross-correlation. The synthetic refer-

ence is an average of MCFscans with incorporated noise to represent the common features

of Fscans.

5.4. Discussion

In this chapter, we discussed two questions: first, whether or not there was an agreement

on the importance of specific n-mers for our physicochemically informed approach and for

Nandi’s machine learning-based approach; and second, whether or not we were able to ad-

just the parameters of our Monte Carlo simulations to closely match the distribution of real

Fluoroscans.

Regarding feature importance, our first attempt at comparing the Random Forest (RF)-

based approach with our simulations only resulted in partial agreement: while it was clear

that AT-rich regions were the most important according to both methods, the RF priori-

tized smaller n-mers whereas the Monte Carlo focused on 4 and 5-mers. One hypothesis

was that due to the relatively big size of our simulated pixel (106.7 nm, which is equivalent

to between 125 and 325 bp depending on dye load), we were giving more importance to

larger n-mers, whereas the RF has direct access to all n-mer scales as part of its regression

mechanism. Once we reduced our pixel size to 10nm (equivalent to between 10 and 30 bp)

we saw a much bigger similarity both in the frequency of all n-mer sizes for both meth-
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ods. Another significant takeaway is that, the importance of AT-rich regions across all of

our tests agrees with recent work on enzyme-free whole genome analysis, where AT-rich re-

gions are prioritized as targets for differential binding (Dvirnas et al., 2018; Park et al., 2019).

In regards to noise parameter adjustment, using concatemers to extract catFscans allowed us

to circumvent the lack of a proper alignment system by using simple alignment approaches to

align hundreds of smaller DNA fragments expected to have the same features to a reference

signal generated with our Monte Carlo. By doing this and filtering based on several criteria

as described in Figure 5-5, we were able to develop a comparison framework for tweaking the

Monte Carlo noise parameters until finding the correct conditions so that the distribution

of monomer Monte Carlo Fscans matched that of experimental monomer Fscans. Since we

only had to generate experimental Fscans once and every Monte Carlo run took around

an hour, we were able to iterate quickly. One noise component that we are not yet able

to manipulate is the intramolecular inhomogeneity that causes local phase shifts. Future

work should consider ways to address this in order to more accurately fit the experimental

distribution.
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6.1. Conclusions

In this work, we proposed a series of steps toward a comprehensive methodology for generat-

ing genomic maps from Fluoroscanning images. Compared to other whole genome analysis

systems, Fluoroscanning requires a different set of techniques to guarantee the generation

of reliable maps for big genomes. Therefore, we explored the segmentation and characteri-

zation of molecules from images in order to obtain Fluoroscans, the generation of synthetic

Fluoroscans using a chemically and theoretically informed Monte Carlo algorithm, and the

development of approaches to verify the agreement between experimental and simulated data

to better guide the experiments carried out at the Laboratory for Molecular and Computa-

tional Genomics.

The main highlights of our work include the fact that, by using morphology-based digital

image processing algorithms, DNA molecule backbones can be extracted reliably. Moreover,

our Monte Carlo algorithm can model the majority of the sources of noise that impact exper-

imental Fluoroscan data, including imaging noise, dark fluorochromes, methylation factors,

and stretch variation, among others. Thanks to parallelization, the Monte Carlo can also

be scaled up by using high-performance computing clusters to generate massive datasets of

synthetic Fluoroscans. This aspect was particularly useful when fitting the noise parameters

of the MC to those of real data, as it allowed us to quickly iterate through sets of parameters.

Although our work did not encompass the implementation of signal alignment algorithms

required for aligning thousands of smaller Fscans into a single genome map, the Monte

Carlo Fluoroscan simulation algorithm with fitted noise parameters can be a powerful tool

for validating any future proposals for Fluoroscan alignment; any evaluation protocol will

be simplified by the fact that we can easily retrieve the underlying composition and location

of any Monte Carlo Fluoroscan, no matter the noise conditions that we employ. Motivated

by this, we are planning to run our algorithm with the discovered noise parameters on the

majority of the human genome. Essentially, this means that our work is a significant contri-

bution to the development of a novel whole genome analysis system which has the potential

to generate DNA sequence composition profiles with higher resolution (around 550 bp) than

other proposals, and thus complement genome assemblies of sequencing reads to help dis-

cover genomic structural variations.
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6.2. Future work

As part of the work that is currently being carried out at the LMCG, researchers are using

the algorithms proposed in this thesis for testing whether it is possible to classify Fscans from

DNA with different methylation types. Preliminary results indicate that methylation classes

can be identified in Fscans extracted from concatemers by using relatively simple machine

learning algorithms with more than 90% accuracy. Since our MC simulation algorithm in-

corporates different methylation conditions (aka: differential binding), there is potential for

it to continue guiding experiments centered on the capability of Fluoroscanning to identify

different methylation sites or other kinds of underlying phenomena. Moreover, the develop-

ment of a Python version of the MC Fluoroscan will enable us to easily incorporate more

parameters and noise sources if required in the future.

On the other hand, given that we will generate synthetic Fluoroscans based on the human

genome, there is room for testing modern signal alignment algorithms on alignment tasks

of varying difficulty. In particular, we want to explore the potential of data-intensive deep

learning algorithms, which we were unable to employ in this work due to the limited avail-

ability of experimental data. With the availability of genomes from many kinds of organisms,

one interesting line of experimentation would be to test whether models trained on the hu-

man genome would be able to generalize to the genomes of other organisms without major

performance drops. Finally, we also expect the quality of Fluoroscans extracted from labo-

ratory experiments to increase as the protocols continue to get refined and more advanced

microscope sensors become available.
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