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pre están ah́ı. A Andrea, por el apoyo y una amistad astronómica. Un agradecimiento muy
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Resumen

Ecuación de d́ınamo cosmológica bajo teoŕıa de perturbaciones cosmológicas a

primer orden

En este trabajo se pretende dar una introducción a las perturbaciones cosmológicas y aplica-

ciones desde el punto de vista de la Relatividad numérica, en particular se muestra como se

pueden aplicar estas perturbaciones al formalismo 3+1. Las perturbaciones cosmológicas se

dan a primer orden sobre la solución espacialmente plana de Friedman-Lemaitre-Robertson-

Walker (FLRW), esto con miras a obtener la ecuación de d́ınamo cosmológico, bajo la apro-

ximación de d́ınamo cinemático, para poder estudiar la evolución de los campos magnéticos

primordiales y su amplificación. También se mostrará el estudio computacional de perturba-

ciones cosmológicas a partir de la Relatividad Numérica haciendo uso del software Einstein

Toolkit, se hace énfasis en FLRWSolver para la solución numérica de las ecuaciones de cam-

po de Einstein desde el punto de vista cosmológico.

Palabras clave: Cosmoloǵıa, Relatividad numérica, Campos magnéticos cosmológicos, Eins-

tein Toolkit, FLRWSolver.

Abstract

Cosmic dynamo equation under cosmological perturbation theory at first order

This thesis aims to give an introduction to cosmological perturbations and their applications

from the point of view of numerical relativity, in particular it shows how these perturba-

tions can be applied to the 3+1 formalism. The cosmological perturbations are given up

to first order on the spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution,

this looking to obtaining the cosmological dynamo equation, under the kinematic-dynamo

approximation, in order to study the evolution of primordial magnetic fields and their ampli-

fication. The computational study of cosmological perturbations from Numerical Relativity

will also be shown using the Einstein Toolkit software, emphasizing FLRWSolver for the

numerical solution of the Einstein field equations from the cosmological point of view.

Keywords: Cosmology, Numerical relativity, Cosmological magnetic fields, Einstein Tool-

kit, FLRWSolver.
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Introduction

The study of magnetic fields has a broad spectrum, has been playing a role in astronomy and

cosmology. Magnetic field can be found on our solar system, planets, stars, galaxies, galaxy

clusters and in the voids of the Large-Scale Structure (LSS). In each case there is a broad

study of the magnetic fields, one example is the case of how the Earth’s magnetic field has

sustained for billion years [53], the study of magnetic cycles of the Sun [29], the micro-Gauss

magnetic fields host in spiral galaxies [20, 19], the stochastic magnetic field in galaxy clusters

and the origin and evolution of the weak magnetic field in the Intergalactic medium (IGM)

voids [116]. The relevance of the study of the magnetic field is increase if we also look into the

Hubble tension [117, 63], briefly speaking, the CMB and the standard candles measurements

of the Hubble factor do not match, but if we include primordial magnetic fields before

recombination, then recombination occurs much faster because magnetic pressure induced

by the magnetic field and there would be less time to Big Bag Nucleosynthesis (BBN) to

occur affecting the amount of primordial elements.

The case that we will work on this document are the magnetic fields present in the early

universe, and because is about the early universe that we are talking about, these fields must

be studied from the cosmology point of view. A first question that arise is how to determine

if the field is primordial or not? It is possible to find primordial magnetic fields at the voids

of the LSS as a relic from the early universe, and the primordial nature is conserved in these

places because the fields were present before structure formation and did not suffer to much

amplification [99]. After knowing if a field is primordial or not another question arises: How

magnetic fields were created in the early universe? The origin of magnetic fields can be given

by several causes and determining which each of cause is, or are, true, is extremely difficult.

Here we will mention a few mechanisms of generation of primordial magnetic fields, we are

clear that in this thesis we will not cover in full detail this topic, we will just mention it.

First, we must consider different stages in the evolution of the universe because in each could

be different phenomena that could induce the origin of the primordial magnetic fields. Let

us start with inflation, during this stage to generate magnetic fields one has either to couple

the electromagnetic field to the inflaton [82] or introduce another coupling which breaks

conformal invariance, for example couple the electromagnetic field to curvature or helical-

inflaton coupling [37]. Another possibility for creation of magnetic fields in the early universe

is given by charge separation or generation of vortical currents at the moment of cosmological

phase transitions, these transitions can be given by electroweak and QCD phase transitions

[115, 65, 109]. Another thing that could be consider for generation during recombination is
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that electron scattering is more efficient and feel a greater drag than do the protons prior

to recombination, this produces a net electric current that sources a magnetic field if there

is turbulence during cosmological recombination [51, 22, 42]. To determine if these origins

are possibly right, it is necessary to check if these effects leave a signature in the CMB to be

detected[59, 35, 58]

Next question about these fields is: How these fields evolve along the history the universe?

In this case the field is sustained by the dynamo action, these equations can be obtained

from the Maxwell equations and will tell how the field will evolve in time [33, 98, 64, 68].

In this document we will focus on the dynamo equation obtained using cosmological per-

turbation setting a spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution for

the Einstein’s fields equations (EFE) and perturbing a background magnetic field up to

first order [55]. The problem is that these equations need a magnetic seed, otherwise there

could not be magnetic field, that why first we needed to know first about the origin of the

magnetic field, origins that we mention earlier. The evolution of the field will be obtained,

in this case, from numerical solution of the dynamo equation, then we also have to evolve

Einstein’s field equations along with the full relativistic dynamo equation. The evolution of

cosmological perturbed EFE has been done before, for example codes like CAMB [73, 1] or

CLASS [72, 2], evolves background and first order perturbations in the Fourier space using

Boltzmann equations, there are several codes that also take this approach and even in mo-

dified theories of gravity [8, 94, 60, 61, 123]. Another evolution point of view is the evolution

of cosmological equations, in particular non-local inhomogeneity, using Numerical Relativity

[78, 62, 28, 21, 44, 45, 85, 119], there are several codes which already implement this ap-

proach like CosmoGraph [3], GRChombo [31], Einstein Toolkit [74, 46, 122, 15] and several

others, here reference of some of these codes [67, 7, 10, 50]. Here we will be using Einstein

Toolkit together with FLRWSolver [77] to set initial conditions for cosmological evolution

in Einstein Toolkit.

As mentioned above, in this document we will not worry about the origin of the magnetic

fields in the intergalactic medium (IGM) but keep in mind that it should have one, the real

target is to study the evolution of magnetic fields given a seed field, therefore our main

goal is to study the dynamo equation. To be able to achieve this, the present document

presents five chapters: chapter 1 gives a brief introduction to numerical relativity presenting

the 3+1 formalism and obtaining the Maxwell equations and the perfect fluid equations in

the context of 3+1 formalism; chapter 2 gives an introduction to the 1+3 formalism used

in cosmology, its most representative quantities and the Maxwell equations in this forma-

lism; chapter 3 introduces the cosmological perturbations, here the background solution is

set, spatially flat FLRW universe, together with the cosmological perturbations, then the

perturbation are introduced for 3+1 and 1+3 formalism and the perturbations relations bet-

ween both formalisms, some of the result here match with some previous works done on the

matter [38, 119]; in chapter 4 we present the dynamo equation for the presented formalisms

and also compare the equations with result already obtain other publications, we also see



4 Contents

how the magnetic field decay when there are no perturbations, here is important to remark

that the dynamo equation must be set using Lagrangian observers (1+3 formalism), then an

equivalence between electromagnetic fields for both formalisms must be achieve to obtain a

dynamo equation in the 3+1 formalism [23, 26, 32]; in chapter 5 computational implementa-

tion is shown, Einstein Toolkit is used to evolve equations in the computational domain

setting initial conditions with FLRWSolver, the simulations implemented in this work start

in a redshift z ≈ 1100 and ends at z ≈ 534, this to keep the linearity in the perturbations

[77], in this chapter also evolve the dynamo equation obtained in chapter 4, we do it here

because it uses the velocity field obtained using Einstein Toolkit.

Along the text we will use natural units used in [18, 5] unless otherwise stated, then

G = c = 1, for the Maxwell equation ε0 = 1, to be able to obtain the measurements of

the magnetic fields in Gauss units (G), a factor of 2,35537 × 1015 G must be multiplied to

the magnetic fields. The tensor indices are given by Greek letters (α, β, γ, ...) and will take

the values from zero (0) to three (3), sometimes Latin indices will be used (i, j, k, ...) and

will take the values from one (1) to three (3).



1. Brief introduction to 3+1 Numerical

Relativity

This is the chapter where we introduce the 3+1 formalism of Numerical Relativity (NR), we

will foliate the spacetime and rewrite the Einstein equations in the main quantities of this

formalism. We also study the perfect fluid and the Maxwell’s equations in 3+1 formalism.

Here we follow mainly [103, 18, 47]

1.1. Einstein equations in 3+1 formalism

Here we will work under the General theory of Relativity (GR) given by E. Einstein, we will

take the Einsteins field equations as in (A-58) to be able to split them in the 3+1 formalism.

1.1.1. Foliation of spacetime

Σt

β

α∆t

nΣt+∆t

t

Figure 1-1.: This is an scheme to be able to understand how the lapse function α and

the shift vector β are defined. The lapse function determines the physically

proper time between two points on two neighboring spatial hypersurfaces Σt

and Σt+△t. The shift vector is the relative velocity between eulerian observers

and the lines of constant spatial coordinates.

To write the Einstein field equations in the 3+1 formalism, we need first to take our spacetime

M4 and make a foliation from a family of hypersurfaces, see appendix B, to be able to study
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the Einstein’s equations as a Cauchy problem, we will denote this hypersurfaces as Σt, where

the parameter of the foliation t corresponds to the coordinate time. From this we have a

normal vector to the hypersurfaces n, which is futurelike, and a projector to the hypersurfaces

γ inducing a spatial metric on each hypersurface1. For a timelike 4-vector t on the spacetime

tangent to the time axis, tα = (∂/∂t)α and tα∇αt = 1, then we project t along n and γ in

the following way

α = −tαnα, βα = tβγαβ . (1-1)

The functions α and βα are called the lapse function and the shift vector, respectively, and

the observers which his 4-velocity is n are called eulerian observers. Let us set up an induced

coordinate system, taking a basis of spatial 3-vectors
{
Eα

(i)

}
that reside on a particular time

slice Σt
2, then Eα

(i)∇αt = 0. We Lie dragg the spatial vectors along t,

LtE
α
(i) = 0, (1-2)

as a consequence, these basis vectors connect points with the same spatial coordinates on

neighboring slices and as a temporal basis 4-vector we take Eα
(i) = t [18]. Let us consider

two adjacent hypersurfaces Σt and Σt+∆t, given the induced coordinates we can write the

metric tensor components as follow

gαβ =

(
−α2 + βkβ

k βj
βi γij

)
, gαβ

(
−1/α2 βj/α2

βi/α2 γij − βjβi/α2

)
, (1-3)

where βi = γijβj,we should keep in mind that latin indices goes from 1 to 3, with the metric

tensor components is possible to write the line element

ds2 = α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
, (1-4)

where (xi) = (x1, x2, x3) represents the induced coordinate system over the hypersurfaces.

The lapse function α determines the physical proper time between two points on two neigh-

boring spatial hypersurfaces along αn and the shift vector specifies the difference between

αn and t which determines the direction of the time axis for each spatial point [103], a

scheme of the foliation is presented in figure 1-1. The normal vector can be written in terms

of α and βi as follows

nµ =

(
1

α
,−β

i

α

)
, nµ = (−α, 0, 0, 0) . (1-5)

The role of extrinsic curvature K defined in (B-6) in the foliation of spacetime is denoting

the degree of difference of the normal vector field and its parallel transported version along

a spatial geodesic [103], the components of K can be written as

Kαβ = −γσα∇σnβ = − (∇αnβ + nαn
σ∇σnβ) . (1-6)

1Take into account that the projector is the diffeomorphism of the induced metric γ. For details see appendix

B
2The subscript i = 1, 2, 3 distinguishes the vectors
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From above’s expression we can see that K is purely spatial, this tensor is also symmetric,

Kαβ = Kβα.

1.1.2. Evolution and constrain equations

To write evolution equations we need first to decompose the energy-momentum tensor T pro-

jecting it along the normal vector and along the hypersurfaces Σt. For an Eulerian observer

with 4-velocity n, unit normal 4-vector to Σt, the full projection of T along n,

E = T (n,n) = Tµνn
µnν (1-7)

is the matter energy density. Similarly, the mixed projection,

p := T (γ ( ) ,n) =⇒ pα = −Tµνγµαnν , (1-8)

is the matter momentum density measured by the Eulerian observer3. The full projection

along the hypersurface of T 4,

S := γ̄∗
MT =⇒ Sαβ = Tµνγ

µ
αγ

ν
β , (1-9)

is the matter-stress tensor. We can rewrite T as

T = En⊗ n+ n⊗ p+ p⊗ n+ S, (1-10)

in terms of its components

Tαβ = Enαnβ + nαpβ + pαnβ + Sαβ. (1-11)

From this, it is possible to write ∇µT
µ
α = 0 as follows [47]

∇µS
µ
α −Kpα + nµ∇µpα + nα∇µp

µ − pµKµα −KEnα + EDα lnα + nµnα∇µE = 0. (1-12)

If we project (1-12) onto Σt, using the induced coordinates, is obtained the expression

(∂t − Lβ) pi + αDjS
j
i + SijD

jα− αKpi + EDiα = 0, (1-13)

which is known as the momentum conservation. Now projecting along the normal vector to

Σt is obtained the expression

(∂t − Lβ)E + α
(
Dip

i −KE −KijS
ij
)
+ 2piDiN = 0, (1-14)

which is known as the local energy conservation.

3Here we can also take T (n,γ ( )), this represents the energy flux 1-form measured by the Eulerian

observer, given the symmetry of T then φ = c2p
4The projector γ̄∗

M is defined in appendix B
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Now we can obtain the Einstein fields equations in its 3 + 1 form. Let us star applying

the operator γ̄∗
M to the expression (A-58), then we fully project the equations over the

hypersurface Σt, then we obtain

LmKαβ = −DαDβα + α
{
Rαβ +KKαβ − 2KασK

σ
β + 4π [(S − E) γαβ − 2Sαβ]

}
, (1-15)

where D is the covariant derivative given by γ, see appendix B. which can be obtain also

from the evolution equation (B-13), because (B-13) is the projection of the Riemann tensor

along the normal 4-vector. The fully projection perpendicular to Σt is

R +K2 −KαβK
αβ = 16πE, (1-16)

known as the Hamiltonian constrain5, we have to take into account that this equation can

be obtain from the Gauss equation, because the Gauss equation is the full projection of the

Riemann tensor over the hypersurface. The mixed projection of the Einstein equations is

DβK
β
α −DαK = 8πpα, (1-17)

known as the momentum constrain. Similar to the Hamiltonian constrain, it can be obtained

from the Codazzi equation which is the mixed projection of the Riemann tensor.

Now we can to obtain the evolution equations. In appendix B we obtain the evolution

equations (B-19) for the induced metric, then using the induced coordinate system we rewrite

equations (B-19), (1-15), (1-16) and (1-17) respectively in the following way [47, 18, 13]

∂tγij = Lβγij − 2αKij, (1-18)

∂tKij = LβKij −DiDjα + α
{
Rij +KKij − 2KikK

k
j + 4π [(S − E) γij − 2Sij]

}
, (1-19)

R +K2 −KijK
ij = 16πE, (1-20)

DjK
j
i −DiK = 8πpi. (1-21)

This system of equations is known as the 3+1 Einstein system. This system of equations

is fulfilled in each of the hypersurfaces Σt for a time t, therefore it is also fulfilled in the

hypersurface Σt+∆t for a time t + ∆t. This because the Lie derivative guarantees that for

a vector field v evaluated at a time t lies into the tanget space of a point in Σt, then v

evaluated at a time t + ∆t will lie into the tanget space of a point in Σt+∆t [47], this can

also be seen in expression (1-2). Therefore we can evolve the equations (1-18) and (1-19),

but expressions (1-20) and (1-21) only have spatial derivatives but these still are fulfilled on

each Σt and should evolve with expressions (1-18) and (1-19), if we take the derivatives of

the constrains (1-20) and (1-21) we find that if these are fulfilled for an initial hypersurface,

then they remain constant, therefore it not should be evolve with (1-18) and (1-19) [103].

5The name for this equations is because can be obtain from the ADM Hamiltonian formulation, its the

result of the variation of the Hamiltonian with respect the lapse function α.
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1.1.3. Choice of lapse and shift

Here we will impose coordinate conditions specifying the lapse function α and the shift vector

β. The lapse α determines how the shape of the hypersurfaces Σt changes in time, since it

relates the advance of proper time to coordinate time along the normal vector n. The shift β

determines how change spatial points at rest with respect to an Eulerian observer, then the

spatial gauge is determine by β. The idea here is to mention a few choices. a full description

of these choices are given in [18, 103, 23].

Geodesic slicing

The geodesic slicing is given by

α = 1, β = 0. (1-22)

This means that the worldlines of the Eulerian observer are geodesics. The evolution equa-

tions in this case are given by

∂t ln γ
1/2 = −K, (1-23)

∂tK = KijK
ij + 4π (E + S) . (1-24)

Maximal slicing

The maximal slicing correspond to vanishing the mean curvature of the hypersurfaces

K = 0, (1-25)

in this case the volume of spatial surfaces is extremized [47]. With this choice the evolution

equation for K becomes an elliptic equation for α

D2α = α
(
KijK

ij + 4π (E + S)
)
, (1-26)

therefore it is possible to solve the lapse α independently of the shift β.

Harmonic slicing

Here the DeDonder gauge is used □xα = 0, requiring that this condition holds for x0 = t

□t = 0, (1-27)

this is rewritten in the following way [47]

(∂t − Lβ)α = −Kα2. (1-28)

Taking β = 0

∂tα = −Kα2, (1-29)
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then

α = C
(
xi
)√

γ, (1-30)

where C (xi) is an arbitrary function of the spatial coordinates. Ir is possible to generalize

this slicing as follows

(∂t − Lβ)α = −Kf (α) , (1-31)

taking f (α) = 2/α it is possible to write the shift as

α = 1 + ln γ. (1-32)

1.2. Perfect fluid in numerical relativity

Here we will take into account the energy momentum-tensor for a perfect fluid given by

T µν = (ρ+ p)uµuν + pδµν , (1-33)

where ρ and p represent the energy matter density and the pressure, respectively, measure

by the fluid frame, and u represents the 4-velocity of the fluid which is timelike and unitary,

u · u = −1. Let us define the Lorentz factor as

W = −n · u (1-34)

which represents the proportionality of the proper time of the Eulerian observer and the

proper time of the observer. It is possible to make a 3+1 decomposition of the 4-velocity u

as follows

u = W (n+U) , (1-35)

where n ·U = 0, from above expression and using the normalization of u

W =
1√

1−U ·U
. (1-36)

Another type of velocity is the fluid coordinate velocity v, which gives information about the

variation of displacement of the fluid worldline respect to the constant spatial coordinates.

This velocity fulfills two relations

vi =
ui

u0
, (1-37)

and

U = α−1 (v + β) . (1-38)

From the decomposition of the energy-momentum tensor E = Tαβn
αnβ, then

E = W 2 (ρ+ p)− p, (1-39)
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for the case of pα = −Tµνγµαnν and using coordinates

pi = (E + p)Ui, (1-40)

and for Sαβ = Tµνγ
µ
αγ

ν
β also using coordinates

Sij = pγij + (E + p)UiUj. (1-41)

From (1-13), using (1-14) and, because we already calculate pi and Sij for the perfect fluid

case, it is possible to obtain the relativistic Euler equation [47]

∂tUi+v
jDjUi = − 1

E + p

[
αDip+ Ui

(
∂tP − βj∂jP

)]
+UjDiβ

i−Diα+UiU
j
(
Djα− αKjkU

k
)
.

(1-42)

1.3. Maxwell’s equations in 3+1 formalism

In this section we will follow mostly [47] for the deduction of Maxwell’s equations, but there

are also other references to follow this procedure like [18, 103]. The electromagnetic field is

represented by a 2-form F which is antisymmetric, this tensor is called the Faraday tensor.

The electric field (E) and the magnetic field (B) measured by Eulerian observers defined in

terms of F and the normal vector n is

E = F ( ,n) , (1-43)

B =∗ F (n, ) (1-44)

where ∗F is the Hodge dual of F and is given by

∗Fαβ =
1

2
4εµναβFµν , (1-45)

where 4ε is the space-time Levi-Civita tensor. The fields are tangent to the hypersurface,

then

n ·E = 0, (1-46)

n ·B = 0, (1-47)

this allow us to write the Faraday tensor as follows

F = n⊗E −E ⊗ n+4 ε (n,B, , ) , (1-48)

writing the Faraday tensor in terms of its components

Fαβ = nαEβ − Eαnβ +
4 εµναβn

µBν (1-49)
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and for the Hodge dual

F = −n⊗B +B ⊗ n+4 ε (n,E, , ) . (1-50)

The Maxwell equations in GR are given by

∇[αFβγ] = 0, (1-51)

∇βF
αβ = 4πjα, (1-52)

with j the 4-curren, using ∗F , the equation (1-51) can be written as

∇β
∗Fαβ = 0. (1-53)

We must now perform the 3+1 split of the expressions (1-53) and (1-52). Let us start with

the decomposition of the 4-current

j = ρn+ J , (1-54)

where ρ is the electric charge density and J is the electric current, from (1-54)

ρ = −n · j, (1-55)

J = γ (j) , (1-56)

n · J = 0. (1-57)

From these expressions we can see that the electric charge ρ is the projection of the 4-

current along the normal vector, the electric current J is the projection of the 4-currrent on

the hypersurface, therefore the projection of J along n is zero.

We are going to start performing the 3+1 split of (1-53), first we will write this expression

in terms of the fields E and B

∇µ

(
−nαBµ +Bαnµ + 4εβσαµnβEσ

)
= 0. (1-58)

Let us focus only on the magnetic field contribution, computing this contribution

∇µ (−nαBµ +Bαnµ) = LnB
α − nα∇µB

µ −K, (1-59)

where

LnB
α = nµ∇µB

α −Bµ∇µn
α and K = −Bα∇µn

µ. (1-60)

Introducing the normal evolution vector m = αn

LnB
α =

1

α
[(∂t − Lβ)B

α +Bµα∇µn
α] , (1-61)

where we used that B is tangent to the hypersurface and that ∇ ·B = D ·B +B ·D lnα,

using

∇µ (−nαBµ +Bαnµ) =
1

α
LmB

α −KBα − nαDµB
µ. (1-62)
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On the other hand

∇µ

(
4ερσαµnρEσ

)
= −4ερσαµnµEσDρ lnα + 4ερσαµnρ∇µEσ, (1-63)

whereKµρ appears, but because
4ερσαµ is antisymmetric andKµρ is symmetric 4ερσαµKµρ = 0.

Now, 4ερσαµ has a temporal and a spatial orientation, the temporal induced orientation is

given by n, then
4ερσαµnρ∇µEσ = 4εµαρσnµDρEσ, (1-64)

on the other hand DρEσ = α−1 [Dρ (αEσ)− EσDρα], replacing this expression in (1-64) and

the resulting equation in (1-63)

∇µ

(
4ερσαµnρEσ

)
=

1

α
nµ

4εµαρσDρ (αEσ) . (1-65)

Defining ε = 4ε (n, , , ) and replacing (1-62) and (1-65) in (1-58)

LmB
α − αKBα − αDµB

µnα + ϵαβσDβ (αEσ) = 0. (1-66)

Taking the induced coordinates to the hypersurface, if we project the equation (1-66) along

the normal vector we obtain the divergence of the magnetic field for an Eulerian observer

DiB
i = 0 (1-67)

and projecting over the hypersurface, because we are using the induced coordinates to the

hypersurface m = ∂t − β, we obtain the 3+1 Faraday equation

(∂t − Lβ)B
i − αKBi + ϵijkDj (αEk) = 0. (1-68)

Following the same procedure for (1-52), replacing the Faraday tensor in terms of E and B

∇µ

(
nαEµ − Eαnµ +4 εβσαµnβBσ

)
= µ0j

α. (1-69)

Similar to the case of the homogeneous equations, the last expression can be rewritten as

− LmE
α + αKEα + ϵαβσDβ (αBσ) + αnαDµE

µ = µ0α (ρen
α + Jα) , (1-70)

under the induced coordinate system to the hypersurface, projecting (1-70) along n we obtain

the 3+1 Gauss equation

DiE
i = µ0ρe, (1-71)

and projecting (1-70) over the hypersurface we obtain the 3+1 Ampère equation

(∂t − Lβ)E
i − αKEi − ϵijkDj (αBk) = −µ0αJ

i. (1-72)
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1.4. Chapter conclusions

A brief introduction to the 3+1 formalism of general relativity was given where the spacetime

was foliated using a set of spatial hypersurfaces, with this set of quantities appear and just

like the metric tensor describe the spacetime, this new quantities will describe the spacetime

as well, these are: the lapse function α, the shift vector β, the spatial metric γ and the

extrinsic curvature K. Apart from these, the energy-momentum tensor was decomposed in

the 3+1 formalism together with ∇µT
µ
α = 0, obtaining new quantities and equations in the

3+1 formalism. The Einstein field equations were written in a set partial differential equations

involving the 3+1 quantities mention above: one set of this equations evolves respect to a

parameter foliation t, evolving the quantities γij and Kij, the another two equations are

constrain equations that must be fulfilled in every hypersurface. Some choices for lapse and

shift were mention to evolve α and β together with the field equations. The perfect fluid case

was given for the energy-momentum tensor, and also the Maxwell equations where written

in the 3+1 formalism.



2. 1+3 Formalism

Before introducing cosmological perturbations, we will describe the spacetime geometry using

Lagrangian observers, which corresponds to the 1+3 formalism. As in the last chapter where

the 3+1 formalism was introduced, this is a general splitting of the spacetime, sometimes it

can match with the 3+1 but not always. Here we will mainly follow [41, 40].

2.1. Coordinates and 4-velocity

The coordinates taken are such that for a three dimensional hypersurface, wich will be

denoted as S, each the world line intersect the hypersurface only once, the values of the

spatial coordinates are maintained along each world line and the time coordinate increases

along each flow line, we label the spatial coordinates as yi. Let t be the time coordinate along

the fluid, then the adapted coordinates to the flow lines (t, yi) are the comoving coordinates.

It can be taken a normalized time s = τ + s0, where τ is the time proper time measure by

the world lines from the taken hyprersurface and s0 is an arbitrary constant. With the world

lines in terms of local coordinates xµ such that xµ = xµ (τ) where τ is the proper time along

the world lines, the preferred 4-velocity is the unit timelike vector

uα =
dxα

dτ
where uµuµ = −1. (2-1)

In normalized comoving coordinates

uµ = δµ0 if and only if
ds

dτ
= 1,

dyi

dτ
= 0. (2-2)

This implies that the vector u is tangent to the direction where all the yi are constant. Let

T be a type
(
p
q

)
tensor, the time derivative of T along the fluid lines is

Ṫ
α1···αp

β1···βq = uσ∇σT
α1···αp

β1···βq . (2-3)

This determines the accelerations vector

u̇α = uσ∇σu
α, (2-4)

and as a consequence u̇αuα = 0, giving in that way a projection contribution along the

4-velocity.
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2.2. Spatial projection

Similar to the 3+1 formalism, we have an induced metric tensor for the hypersurfaces S

defined as

hαβ = gαβ + uαuβ, (2-5)

this induced metric tensor is also a projector over S. Just as in 3+1 formalism, it is posible

to project along h and u, let X be a 4-vector, then

Xα
⊥ = hαβX

β and Xαf = −uαuβXβ, (2-6)

where X⊥ is orthogonal to u and Xf is parallel to u. From expression (2-5) we can write

the line elements as follows

ds2 = − (δt)2 + (δl)2 , (2-7)

where

δt = uµdx
µ, (2-8)

δl = hµνdx
µdxν . (2-9)

This is a decomposition of an arbitrary displacement into a time difference δt and a spatial

distance δl measured by an observer moving with 4-velocity.

In the case of S the normal vector to the hypersurface is u and the observers with 4-velocity

u, observer along the fluid, are Lagrangian observers. Here we have to take into account that

the hypersurfaces S do not always match with the hypersurfaces Σ from the 3+1 formalism,

then the normal vector n to Σ neither match with u. From the mathematical point of view,

the induced metric γ from 3+1 formalism and h share several properties and the geometry

given in appendix B also applies for h.

Projections orthogonal to u which are also symmetric tracefree, for a two rank tensor T are

given by

T⟨αβ⟩ =

{
hγ(αh

σ
β) −

1

3
hαβh

γσ

}
Tγσ, (2-10)

and we can use this to write any two rank tensor as follow

Tαβ = (hγα + uαu
γ)
(
hδβ + uβu

δ
)
Tγδ

=
1

3
hαβh

γδTγδ + T⟨αβ⟩ + hγαh
δ
βT[γδ] − hγαTγδu

δuβ − uαu
γTγδh

δ
β + uαuβu

γuδTγδ. (2-11)

This expression will be useful in the next section. Similar to the derivative D in 3+1 for-

malism, the projector h induced an operator ∇̄, this operator it is also the projection of the

covariant derivative ∇ along the hypersurfaces S, see appendix B.
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2.3. Kinematic quantities

Let us define V as follows

Vαβ = hγαh
δ
β∇δuγ = ∇̄βuα, (2-12)

we can split V into its symmetric and skew-symmetric part

Vαβ = V(αβ) + V[αβ], (2-13)

let Θαβ = V(αβ) = ∇̄(β uα) and ωαβ = V[αβ] = ∇̄[β uα], the tensor Θαβ is known as the

expansion tensor and ωαβ is known as the vorticity tensor. From (2-10)

Θαβ = σαβ +
1

3
Θhαβ, (2-14)

where σαβ = Θ⟨αβ⟩ = ∇̄⟨β uα⟩ is known as the shear tensor and Θ is the expansion rate.

Given the spatial projection and the projection along u, it is possible to write the covariant

derivative of the 4-velocity in the following way [41]

∇βuα = hγαh
δ
β∇δuγ − u̇αuβ

= ∇̄βuα − u̇αuβ. (2-15)

From (2-13) and the definitions of σαβ, ωαβ and Θ the covariant derivative of u is written as

∇βuα = σαβ + ωαβ +
1

3
Θhαβ − u̇αuβ. (2-16)

Let us see how the terms Θ, σαβ and ωαβ behaves. Lets us consider how a sphere of fluid

particles changes during the elapse of s small increment in proper time, let us set the zero

coordinates in the center of the sphere, the figure 2-1 shows the action of each one of this

terms separately. The tensor Θαβ determines the rate of change of distance of neighboring

particles in the fluid and the volume expansion of the fluid is given by Θ, the Hubble

parameter is defined therefore as

H =
1

3
Θ (2-17)

for a pure expansion case. The shear tensor σαβ leaves the volume invariant but determines

the distortion arising in the fluid flow, the directions that remains unchanged (principal

directions) are eigenvectors of σαβ, other directions are changed. The vorticity tensor ωαβ
determines a rigid rotation preserving the relative distances, the magnitude of vorticity is√
ωαβωαβ. To determine the rotation axis its define the vorticity vector

ωδ =
1

2
ωαβuγϵ

αβγδ, (2-18)

then the vorticity is also given by
√

1
2
ωαωα.
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Θ σαβ ωαβ

Figure 2-1.: Here we consider how a sphere of fluid particles changes during the elapse of

a small increment in proper time. On the left is possible to see the action of

Θ, transforming the original sphere into a sphere of bigger volume but the

orientation does not change. In the center of the image can be seen how σαβ
distorts the sphere, leaving the volume constant and the direction of the axes

remain unchained. On the right, the action of ωαβ alone is the rigid rotation

leaving one direction fixed. Reference image, figure 1 from [40].

2.4. Energy-momentum tensor and propagation equations

In the case of 1+3 formalism it is possible to decompose the energy-momentum tensor as

follows [41]

Tαβ = ρuαuβ + qαuβ + uαqβ + phαβ +Παβ, (2-19)

where

ρ = Tαβu
αuβ, (2-20)

is the energy density relative to u,

qα = −Tβγuβhγα, (2-21)

is the relativistic momentum density, which is also the energy flux relative to u,

p =
1

3
Tαβh

αβ, (2-22)



2.4 Energy-momentum tensor and propagation equations 19

is the isotropic preasure and

Παβ = Tγδh
γ
⟨αh

δ
β⟩, (2-23)

is the anisotropic preasure. Taking the case of the perfect fluid qα = 0 and Παβ = 0, then

Tαβ = ρuαuβ + phαβ, (2-24)

taking into account (2-5) we have the same expression as in (1-33).

The energy-momentum tensor written in 1+3 formalism allow us to write the Einstein Field

equations projections in this formalism, taking (A-58) and assuming Λ = 0 then [41]

hαγhβδ(4)Rγδ = 8πΠαβ + 4π (ρ− p)hαβ, (2-25)

hαγuβ(4)Rγβ = −8πqα, (2-26)

uαuβ(4)Rαβ = 4π [ρ+ 3p] . (2-27)

Now we are going to obtain the propagation equations, but before that we will obtain the

electric and magnetic Weyl parts, for this let us decompose the Riemann tensor in the

following way

(4)Rαβγδ = Cαβγδ+
1

2

(
gαγ

(4)Rβδ + gβδ
(4)Rαγ − gβγ

(4)Rαδ − gαδ
(4)Rβγ

)
+
1

6
(4)R (gαγgβδ − gαδgβγ) ,

(2-28)

where Cαβγδ is the Weyl tensor. It is possible to decompose the Weyl tensor into its irreducible

parts

Eαβ = Cαγβδu
γuδ, Hαβ =

1

2
ϵαγδC

γδ
βεu

ε, (2-29)

this allows to write the Weyl tensor as

C γδ
αβ = 4

(
u[αu

[γ + h
[γ
[α

)
E

δ]
β] + 2ϵαβεu

[γH δ]ε + 2u[αHβ]εϵ
γδε. (2-30)

It is possible now to obtain the propagation equations, first let us use the commutation

relation

(∇α∇β −∇β∇α)uγ =
(4)Rαβγδu

δ, (2-31)

The expression (2-31) can be written in the following ways [86]

(∇αuβ)
· −∇αu̇β + (∇αuγ) (∇γuβ) = −(4)Rγαβδu

γuδ, (2-32)

(∇αu
α)· −∇αu̇

α +
(
∇αuβ

)
(∇βuα) = −(4)Rαβu

αuβ, (2-33)

from (2-33), using (2-27) and the kinematic decomposition of u we obtain

Θ̇ = −1

3
Θ2 − 1

2
(ρ+ 3p)− 2

(
σ2 − ω2

)
+Dαu̇α + u̇αu̇

α (2-34)
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which is the Raychaudhuri equation. If we obtain the symmetric trace-free part of (2-32)

and use expressions (2-28) and (2-30) we obtain the shear propagation equation [41, 40]

σ̇⟨αβ⟩ = −2

3
Θσαβ − σγ⟨ασ

γ
β⟩ − ω⟨αωβ⟩ +D⟨α u̇β⟩ + u̇⟨α u̇β⟩ − Eαβ +

1

2
Παβ, (2-35)

similarly, projecting (2-32) with ϵαβγ, we obtain the vorticity propagation equation

ω̇⟨α⟩ = −2

3
Θωα −

1

2
ϵαβγD

βu̇γ + σαβω
β. (2-36)

Just like the propagation equations it is also possible to obtain constrain equations, from

the (0, α) component of the projection of (2-31)

Dβσαβ =
2

3
DαΘ+ ϵαβγD

βωγ + 2ϵαβγu̇
βωγ − qα, (2-37)

the contraction of (2-31) with ϵαβγ give us

Dαω
α = ωαu̇α (2-38)

and the contraction of the symmetric trace-free part of (2-32) with ϵγδϵ

Hαβ = curlσαβ +D⟨αωβ⟩ + 2u̇⟨αωβ⟩. (2-39)

2.5. Maxwell equations in 1+3 Formalism

Here we are going to consider the electromagnetic field from the point of view of Lagrangian

observers, this means that if we consider a perfect fluid with 4-velocitu u, the observer is

moving along the fluid with such velocity. The electric and magnetic fields measure by this

observer are going to be denoted by e and b respectively. The components of the Faraday

tensor for this case are given by

Fµν = uµeν − eµuν + ϵµνδγb
δuγ (2-40)

and the Hodge dual is given by

∗Fµν = bµuν − uµbν + ϵµνδγe
δuγ. (2-41)

We are going to make the 1+3 splitting of the Maxwell equations, from ∇β
∗Fαβ = 0,

projecting along u

uα∇β

(∗Fαβ
)
= ∇β

(
uα

∗Fαβ
)
− uα∇β

(∗Fαβ
)
= 0, (2-42)

replacing (2-41) in (2-42) we obtain

−∇βb
β +

(
bαuβ + ϵγδαβeδuµ

)
∇βuα = 0. (2-43)



2.5 Maxwell equations in 1+3 Formalism 21

Using the general decomposition (2-16) and (2-18)

eδuγϵ
γδαβ∇βuα = 2ωαeα. (2-44)

On the other side, because ∇̄βb
α = hµβh

α
ν∇µb

ν then

∇̄αb
α = ∇βb

β − uβbν∇βuν , (2-45)

from equations (2-43),(2-44) and (2-45)

∇̄αb
α = 2ωαeα, (2-46)

this is the divergence equation for the magnetic field in 1+3 formalism. Now we make a

spatial projection

hγα∇β

(
−bαuβ + uαbβ + ϵµναβuµeν

)
= 0, (2-47)

then

− hγαḃ
α − bγ∇βu

β + hγαb
β∇βu

α + hγαϵ
µναβeν∇βuµ + hγαϵ

µναβuµ∇βeν = 0. (2-48)

We have that hγαb
β∇βu

α = bβ∇βu
γ, then

bγ∇βu
β − bβ∇βu

γ = −
(
σγβ + ωγβ −

2

3
Θδγβ

)
bβ. (2-49)

On the other hand

hγαϵ
µναβeν∇βuµ = hγαϵ

µναβeν (ωµβ − u̇µuβ) , (2-50)

because ωµβ and eν contribute only spatially hγαϵ
µναβeνωµβ = 0. Therefore we can rewrite

equation (2-48) as

hγαḃ
α =

(
σγβ + ωγβ −

2

3
Θδγβ

)
bβ − ϵγµνβuµ∇βeν − hγαϵ

µναβu̇µuβeν , (2-51)

the last equation is knows as the Faraday equation in 1+3 formalism.

Now we split the equation ∇βF
αβ = 4πjα, therefore we need to decompose the 4-current,

this decomposition is given by

j = ρuu+ Ju, (2-52)

where ρu is the charge density and J is the electric current measure by the observer. These

quantities fulfill the following properties

ρu = −u · j, (2-53)

Ju = h (j) , (2-54)

u · Ju = 0. (2-55)
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Projecting over u

uα∇βF
αβ = ∇β

(
uαF

αβ
)
− Fαβ∇βuα = 4πuβj

β, (2-56)

replacing the Faraday expression

∇βe
β +

(
−eαuβ + ϵγδαβbδuγ

)
∇βuα = 4πρu (2-57)

and following the procedure that was made when we obtained the expression for the diver-

gence of the magnetic field, we have

∇̄αe
α = 4πρu − 2ωαbα, (2-58)

which is the Gauss equation in 1+3 formalism. Now projecting spatially, following the pro-

cedure to obtain the Faraday equation but adding the electric current we have

hγαė
α =

(
σγβ + ωγβ −

2

3
Θδγβ

)
eβ + ϵγµνβuµ∇βbν + hγαϵ

µναβu̇µuβbν − 4πJγu , (2-59)

which is the Ampère equation in 1+3 formalism. Finally, the Ohm’s law is given by

jν = σeµ, (2-60)

where we are considering only the isotropic part of the Ohm’s law, there are more terms

representing anisotropies due to the presence of the magnetic field [23].

2.6. Chapter conclusions

An introduction to the 1 + 3 formalism was given, this formalism is essential in the dynamo

approach. Similar to the 3 + 1 decomposition, here there is also a decomposition along an

hypersurface S through a projector h and along a 4-vector u normal to S. The difference

with the 3+1 formalism is that the observer with 4-velocity u, called Lagrangian observer, go

along the fluid, the decomposition of tensors here is a symmetric trace free projection and the

temporal derivative is the derivative along u. The covariant derivative of u is decomposed in

kinematic quantities that describe the actions over the fluid. The energy-momentum tensor

is also decompose in 1 + 3 formalism, also the Einstein field equations and the Weyl tensor,

together with the commutation relation of the covariant derivative applied to u, evolution

equations for the kinematic quantities and constrain equation are obtained. Finally the

Maxwell equations are presented together with the isotropic part of the Ohm’s law.



3. Cosmological perturbations

In this chapter the cosmological perturbations are presented. We start by perturbing the

spatially flat Friedman-Lemâıtre-Robertson-Walker (FLRW) solution, the 3+1 quantities

are obtain in the perturbed formalism, the Maxwell equations are also perturbed in the case

of 3+1 and 1+3 formalism.

3.1. Perturbed FLRW equations

To obtain the perturbed equations first we must to fix a background, in this case we assume

a spatially flat FLRW solution. After fixing the background solution it is possible to perturb

the geometric and matter quantities to obtain the desire equations.

3.1.1. Background equations

The line element for the FLRW metric is [88]

ds2 = −dt2 +
(

a2 (t)

1 + 1
4
kr2

)
δijdx

idxj, (3-1)

where r2 = x2 + y2 + z2, if k > 1 the solution represents a closed universe, if k < 1 the

solution represents an open universe and if k = 0 the solutions represents a flat universe. In

this case we are taking a spatially flat universe, therefore the line element is given by

ds2 = −dt2 + a2 (t) δijdx
idxj. (3-2)

The line element can also be written in terms of the conformal time η, which is define in

such a way that dη = a−1dt, this allow us to write the line element as

ds2 = a2 (η)
(
−dη2 + δijdx

idxj
)
. (3-3)

Given (3-3) we can calculate the geometric quantities associated to this solution, given in

Appendix E. In the background evolution, the energy-momentum tensor is taken as a perfect

fluid, the components of the tensor are given by

Tαβ = (ρ+ p)uαuβ + pδαβ , (3-4)
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Figure 3-1.: These graphics shows the evolution of a/a0 and ρ/ρ0 respect to conformal time

η. The solution in the graphic, red line, is given by equations (3-10) and (3-11).

It is also shown, in blue dots, a numerical solution using Einstein Toolkit,

matching with the results obtained in [77]. The discussion of these results will

be one of the main topics of chapter 5.

where ρ is the energy density and p the pressure. In the rest of frame of the fluid

uα = (1, 0, 0, 0) and uβ = (−1, 0, 0, 0) , (3-5)

therefore

T 0
0 = −ρ (η) , T i0 = 0, T ij = p (η) δij. (3-6)
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Figure 3-2.: Evolution for the Hubble parameter for matter domination era, the red line

shown the evolution using expression (3-8). There is also a numerical evolution

obtained from the results of the numerical simulations in Einstein Toolkit,

using the fact that H = a′/a and that z = −1 + (zCMB + 1)/a where zCMB =

1100. The ρ used in this case is the same one that appears in figure 3-1.

Computational implementation will be discussed in chapter 5.

From the energy and momentum conservation ∇µT
µ
α = 0, setting α = 0 the conservation

equation is obtained

ρ′ + 3H (ρ+ p) = 0, (3-7)

where H = a′/a, which is known as the Hubble parameter. Using (A-57) setting α = 0 and

β = 0 the Friedman equation is obtained

H2 =
8π

3
a2ρ, (3-8)

its evolution is shown in figure 3-2, and from the (i, j) components of (A-57) combined with

Friedman equation
a′′

a
=

4π

3

(
ρa2 + 3p

)
. (3-9)

The solution for (3-7), (3-8), (3-9) is given by [79]

a = a0ξ
2, (3-10)

ρ = ρ0ξ
−6, (3-11)

ξ = 1 + η

√
2

3
πρ0a20, (3-12)
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where a0 = a (η0) and ρ0 = ρ (η0) for the initial time η0 = 0, the evolution of a and ρ is

shown in figure 3-1. There is a redundancy given by the diffeomorphism invariance of GR,

therefore the system of equations (3-7), (3-8) and (3-9) is closed by the equation of state

p (η) = w (η) ρ (η) . (3-13)

Different values of w represents different epochs of the universe: w = 1/3 represents radiation

dominance epoch and w = 0 represents matter dominance epoch. Replacing the equation of

state in the Friedman equation

a (η) ∝


η2/(1+3w) w constant and w ̸= 1,

η2 w = 0 (Matter dominance) ,

η w = 1/3 (Radiation dominance) .

(3-14)

The total energy density is given by

ρ = ρR + ρM , (3-15)

and the total pressure is

p = pR + pM , (3-16)

where the index R andM represents the radiation and matter term respectively. The present

value of the density, knows as the critical density, is given by

ρ0 =
3H2

0

8π
, (3-17)

in terms of conformal time

ρc (η) =
3H2 (η)

8πa (η)
, (3-18)

then

ρR (η) = ρ0ΩRa
−2 (η) , ρM (η) = ρ0ΩMa

−1 (η) , (3-19)

where

ΩR =
ρR (η)

ρc (η)
, ΩM =

ρM (η)

ρc (η)
, (3-20)

are values of energy fraction. This defined quantities allow us to rewrite the Friedman equa-

tion as

H (a) = H0

√
ΩR

a2
+

ΩM

a
. (3-21)

All the backgroud quantities were obtained using Sagemath and Sagemanifolds [48, 49] and

the codes are shown in appendix F.
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3.1.2. Perturbed equations

Here we will apply the perturbation theory shown in Appendix C. The metric tensor can be

split in a background plus a perturbed contribution

g = ḡ + δg, (3-22)

the term ḡ in this case represents the FLRW metric tensor and δg are the perturbations of

the FLRW spacetime. The components of the metric tensor can be written in the following

way [25, 90]

g00 = −a2 (η)

(
1 + 2

∞∑
n=1

ψ(n)

n!

)
, (3-23)

g0i = a2 (η)
∞∑
n=1

ω
(n)
i

n!
, (3-24)

gij = a2 (η)

[(
1− 2

∞∑
n=1

ϕ(n)

n!

)
δij +

∞∑
n=1

χ
(n)
ij

n!

]
, (3-25)

where ψ(n) and ϕ(n) are scalar perturbations, ω
(n)
i are vector perturbations and χ

(n)
ij are tensor

perturbation all of order n. Writing the metric tensor components gαβ up to first order and

the contravariant metric tensor components gαβ in its matrix representation

gαβ = a2
(
− (1 + 2ψ) ωi

ωj (1− 2ϕ) δij + χij

)
, gαβ = a−2

(
− (1− 2ψ) ωi

ωj (1 + 2ϕ) δij − χij

)
.

(3-26)

where, for simplicity, we removed the index (1), then the perturbations from now on are ψ,

ϕ, ωi and χij.We will also consider perturbed matter quantities, therefore for the density ρ,
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the pressure p, the 4-velocity u, the electromagnetic field e and b and the 4-current j

ρ = ρ(0) +
∞∑
n=1

1

n!
ρ(n), (3-27)

p = p(0) +
∞∑
n=1

1

n!
p(n), (3-28)

uα =
1

a (η)

(
δα0 +

∞∑
k=1

1

k!
vα(k)

)
, (3-29)

ei =
1

a2 (η)

(
∞∑
n=1

1

n!
ei(n)

)
, (3-30)

bi =
1

a2 (η)

(
∞∑
n=1

1

n!
bi(n)

)
, (3-31)

jµ =
1

a (η)

(
∞∑
n=1

1

n!
ji(n)

)
. (3-32)

The velocity vα is the peculiar velocity, we can obtain an expression for the peculiar velocity

using the fact that the norm of uα is constant

uµuµ = uµuνgνµ = −1, (3-33)

using (3-29) and (3-26)

v0(1) = −ψ, (3-34)

therefore

(uα) =
(
u0, ui

)
= a−1

(
1− ψ, vi(1)

)
, (3-35)

(uα) = (u0, ui) = a
(
−1− ψ, ωi + v

(1)
i

)
. (3-36)

According to (1-37) and (1-38)

vi = vi(1), (3-37)

U i = a−1
(
vi(1) + ωi

)
, (3-38)

Using this expressions, it is possible to write the relativistic Euler equation perturbed at first

order(
U

(1)
i

)′

=
1

ρ(0) + p(0)

[
α(1)∂ip(0) + α(0)∂ip(1) + U

(1)
i p′(0) +

(
ρ(1) + p(1)

)
α(0)p(0)

]
, (3-39)

where we used the fact that it is possible to split the lapse function into a background and a

perturbed contribution, just like in (3-57). Keeping in mind thatU is the spatial contribution
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of u, the equation is rewritten as

(
ρ(0) + p(0)

) [
a
(
ω
(1)
i + v

(1)
i

)]′
= aϕ∂ip(0) + a∂ip(1) + a

(
ω
(1)
i + v

(1)
i

)
p′(0) +

(
ρ(1) + p(1)

)
ap(0).

(3-40)

From (3-26) it is possible to write the line element ds2, considering the conformal Newtonian

gauge [75]

ds2 = a2 (η)
[
− (1 + 2Ψ) dη2 + (1− 2Φ) δijdx

idxj
]
, (3-41)

considering perturbations at first order

G(1)
µν = 8πT (1)

µν ,

where G
(1)
µν and T

(1)
µν are the Einstein tensor and the energy-momentum tensor at first order

respectively. It is possible to write this equations as follow1 [77]

∇2Φ− 3H (Φ′ +HΨ) = 4πρδa2, (3-42)

H∂iΨ+ ∂iΦ
′ = −4πρa2δijv

j
(1), (3-43)

Φ′′ +H (Ψ′ + 2Φ′) =
1

2
∇2 (Φ−Ψ) , (3-44)[

∂i∂j −
1

3
δij∇2

]
(Φ−Ψ) = 0, (3-45)

where

δ = −1 + ρ(1)/ρ, (3-46)

for ρ the background density, (3-42) and (3-43) are the Hamiltonian and the momentum

constrains respectively. From ∇αT
α
µ = 0

δ′ = 3Φ′ − ∂iv
i
(1), (3-47)(

vi(1)
)′
= −∂iΨ−Hvi(1). (3-48)

Taking the linear case Ψ = Φ, the potential takes the general form [36]

Φ = f
(
xi
)
− g (xi)

5ξ5
, (3-49)

where the functions f and g are spatially dependent, these represents the growing and

decaying modes of the density perturbations [36, 88]. From the Hamiltonian constrain we

obtain

δ = C1ξ
2∇2f

(
xi
)
− 2f

(
xi
)
− C2ξ

−3g
(
xi
)
− 3

5
ξ−5g

(
xi
)
, (3-50)

1To write the equations in this way we followed [79] and used the Mathematica library xPand [95], the code

is shown in appendix F.
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where

C1 =
1

4πρ0a20
, C2 =

1

20πρ0a20
. (3-51)

From the momentum constrain

vi(1) = C3ξ∂
if
(
xi
)
+

3

10
C3ξ

−4∂ig
(
xi
)

(3-52)

where

C3 = −
√

1

6πρ0a0
. (3-53)

Taking only the growing modes

Φ = f
(
xi
)
, (3-54)

δ = C1ξ
2∇2f

(
xi
)
− 2f

(
xi
)
, (3-55)

vi(1) = C3ξ∂
if
(
xi
)
, (3-56)

last three equations will be useful in the computational results chapter.

3.2. Cosmological perturbations and Numerical Relativity

Given the cosmological perturbation theory, here we will apply it into NR, then we will

perturb 3 + 1 quantities at first order. For this we will make a direct comparison between

(1-3) and (3-26), but before this we need to take into account that it is possible to make

such an equality because it is possible to set up a set of basis in such a way that u and n are

perpendicular to the same hypersurface, it is possible to see that such bases exist because for

the FLRW background solution, four-vectors u and n match. We can decompose the lapse

function α, the shift vector β and the induced metric γ in the background and in the first

order perturbation contribution [38]

α = α(0) + α(1), (3-57)

βi = β
(0)
i + β

(1)
i , (3-58)

γij = γ
(0)
ij + γ

(1)
ij . (3-59)

Comparing directly (1-3) and (3-26) the background and the perturbed quantities for the

metric are given by

α(0) = a (η) , α(1) = a (η)ψ, (3-60)

β
(0)
i = 0, β

(1)
i = a2 (η)ωi, (3-61)

γ
(0)
ij = a2 (η) δij, γ

(1)
ij = a2 (η) (−2ϕδij + χij) . (3-62)
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Doing the same but with quantities with the covariant index

βi(0) = 0, βi(1) = ωi, (3-63)

γij(0) = a−2 (η) δij, γij(1) = a−2 (η)
(
2ϕδij − χij

)
. (3-64)

This allow us to write the normal vector to the hypersurface perturbed at first order

(nµ)(0) = a−1 (1, 0, 0, 0) , (nµ)(1) = a−1
(
−ψ,−ωi

)
, (3-65)

(nµ)
(0) = −a (1, 0, 0, 0) , (nµ)

(1) = −a (ψ, 0, 0, 0) . (3-66)

Let us calculate now the extrinsic curvature, from the evolution equation (1-19) we can

calculate Kij, but first we must calculate ∂ηγij and Lβγij, from (3-63) and (3-62)

∂ηγij = 2aa′ [(1− 2ϕ) δij + χij] + a2
(
−2ϕ′δij + χ′

ij

)
, (3-67)

Lβγij = 2a2∂(iω j), (3-68)

therefore

Kij = −a′ [(1− 2ϕ+ ψ) δij + χij] + a

[
ϕ′δij −

1

2
χ′
ij + ∂(iω j)

]
. (3-69)

In a similar way we calculate Kij, from (3-63) and (3-64)

∂ηγ
ij = −2a−2H

[
(1 + 2ϕ) δij − χij

]
+ a−2

[
2ϕ′ −

(
χij
)′]

, (3-70)

Lβγ
ij = −2a−2∂(iω j), (3-71)

therefore

Kij = a−3

[
ϕ′δij +Hψδij −H (1 + 2ϕ) δij +Hχij −

1

2
χij +

1

2

(
δkj∂kω

i + δki∂kω
j
)]
. (3-72)

Now we can compute the extrinsic curvature trace K = γijKij, from (3-64) and (3-69)

K = a−1
[
3 (−H + ϕ′ +Hψ) + δij∂(iω j)

]
. (3-73)

We will compute now the Christoffel symbols for the Levi-Civita connection D associated

with the metric γ, we replace (3-64) and (3-62) in (A-46)

Γkij = −2δk(i∂ j)ϕ+ ∂(iχ
k
j) + δijδ

kl∂lϕ− 1

2
δkl∂lχij. (3-74)

To be able to write all the quantities necessary to write Einstein field equations, the perturbed

quantities of the projected momentum energy tensor E, pα and Sαβ must be calculated

E = E(0) + E(1), (3-75)

pα = p(0)α + p(1)α , (3-76)

Sαβ = S
(0)
αβ + S

(1)
αβ , (3-77)
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then let us write the momentum-energy tensor in the following form

Tαβ = Tαβ(0) + Tαβ(1) . (3-78)

We already calculate the perturbed induced metric and normal vector over an induced coor-

dinate system, then replacing (3-62) and (3-66) in (1-7), (1-8) and (1-9)

E(0) = a2T 00
(0), E(1) = a2

(
2ψT 00

(0) + T 00
(1)

)
, (3-79)

p
(0)
i = a3T 0j

(0)δij, p
(1)
i = a3

{
T 0j
(0) [(ψ − 2ϕ) δij + χij] + T 00

(0)ωi + T j0(1)δij

}
, (3-80)

S
(0)
ij = a4T kl(0)δkiδlj, S

(1)
ij = a4

{
T kl(0) [(χki − 2ϕδki) δlj + (χlj − 2ϕδlj) δki] + T kl(1)δkiδlj

}
.

(3-81)

Let us see what happens with the Lorentz factor (1-34), if we equate the metric tensor

components written in terms of projectors h and γ and normal vectors u and n then

hαβ − uαuβ = γαβ − nαnβ, (3-82)

if we take a look at perturbed expressions for u, (3-35) and (3-36), and perturbed equations

for n, (3-66) and (3-65)

uαuβ and nαnβ ∼ (Background) + (Second order terms) , (3-83)

as a consequence hαβ and γαβ are the same up to first order, then the foliation for both

formalism perturbing up to first order over a flat FLRW solution is the same, this implies

that n and u are co-lineal because both are perpendicular to the same foliation, but the are

not the same, this implies that W = 1. Another way to check this is looking at (1-34) and

using perturbed expressions for u and n directly in (1-34), then

nαuβ ∼ (Background) + (Second order terms) , (3-84)

therefore W = 1 up to first order. Now let us calculate the energy-momentum tensor for the

perfect fluid case

E(0) = ρ(0), E(1) = ρ(1), (3-85)

p
(0)
i = 0, p

(1)
i = a

(
ρ(0) + p(0)

)
(vi + ωi) , (3-86)

S
(0)
ij = a2p(0)δij, S

(1)
ij = a2

{
p(0) (χij − 2ϕδij) + p(1)δij

}
, (3-87)

taking into account that in this case W = 1, then matches with the perfect fluid quantities

obtained in expressions (1-39), (1-40) and (1-41).

Now that we have the perturbed 3+1 expressions, we are able to write the Einstein’s field

equations perturbed in the 3+1 formalism. Something that we can immediately write are
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the background field equations using all the background quantities shown in this section and

the field equations (1-18), (1-19), (1-20) and (1-21). In the case of (1-18) and (1-21) the

background contribution is trivial2, in the case of (1-20) we obtain the Friedman equation

(3-8) and for (1-19) the expression (3-7). Let us see what we obtain at first order, in the case

of (1-21) we obtain

H∂iψ + ∂iϕ
′ +

1

4
∂j
(
χji
)′
− 1

4
∂jχij − ∂j∂(jω i) + δkl∂i∂(kω l) = −4πρ(0)a

2δijv
j, (3-88)

in the case of the Newtonian gauge the expression coincides with (3-43). In the case of the

hamiltonian constrain (1-20) at first order

∇2ϕ+
1

4
δij∂k∂(iχ

k
j) − 3H

[
ϕ′ +Hψ + δij∂(iω j)

]
= 4πa2ρ(1), (3-89)

in the case of the Newtonian gauge the expression coincides with (3-42). The evolution

equation (1-19) is given by

ϕ′′ +H (3ϕ′ + ψ) +H2 [ϕ′ + 2 (ϕ− ψ) + aψ] +∇2 (ψ − ϕ) = 4πρ(0)
[
a3 (ψ − ϕ) + 2aϕ+ a2ψ

]
and (1-18) at first order due to the geometrical terms is trivial [103].

3.3. 3+1 Maxwell equations perturbed at first order

Here we will apply apply the perturbations of the electromagnetic field and obtain the 3+1

Maxwell equations at first order

Bi =
1

a2
(
Bi

(0) +Bi
(1)

)
, Ei =

1

a2
(
Ei

(0) + Ei
(1)

)
, (3-90)

Bi = a2
(
B

(0)
i +B

(1)
i

)
, Ei = a2

(
E

(0)
i + E

(1)
i

)
. (3-91)

For the 4-current

jµ =
1

a

(
jµ(0) + jµ(1)

)
where jµ =

(
ρe, J

i
)
. (3-92)

We will calculate the background and first order contribution from (1-67), then we need to

calculate the covariant derivative, which is function of Γiik appears, using (3-74)

Γiik = −3∂kϕ. (3-93)

For (1-67) the background contribution is

∂iB
i
(0) = 0, (3-94)

2Trivial here means that the obtain expression is 0 = 0
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and the first order contribution is given by

∂iB
i
(1) − 3Bi

(0)∂iϕ = 0. (3-95)

Before writing (1-68) up to first order, we have to calculate first the following quantities

LβB
i = ωka−2∂kB

i
(0) − a−2Bk

(0)∂kω
i, (3-96)

∂ηB
i = −2a−2H

(
Bi

(0) +Bi
(1)

)
+ a−2∂η

(
Bi

(0) +Bi
(1)

)
, (3-97)

αKBi = a−1Bi
(0)

[
3Ha−1 (ψ − 1) + a−1

(
3ϕ′ + δ∂(kω j)

)]
− 3Ha−2

(
Bi

(1) + ψBi
(0)

)
, (3-98)

αEk = a3
(
E

(0)
i + E

(1)
i + ψE

(0)
i

)
, (3-99)

ϵ ij0k Γ
k
jl = ϵ ij0k

(
δjlδ

km∂mϕ− 1

2
δkm∂mχjl

)
. (3-100)

For (1-68) the background contribution is(
Bi

(0)

)′
+HBi

(0) + a5ϵijk∂jE
(0)
k = 0, (3-101)

and the first order contribution is given by

(
Bi

(1)

)′
+HBi

(1) −Bi
(0)

(
3ϕ′ + δkj∂(jωk)

)
+Bk

(0)∂kω
i − ωk∂kB

i
(0)

+ a5ϵijk
[
∂jE

k
(1) + Ek

(0)∂jψ + El
(0)

(
δjlδ

km∂mϕ− 1

2
δkm∂mχjl

)]
= 0. (3-102)

For (1-71), following a similar procedure to obtain (3-94) and (3-95), the background con-

tribution is given by

∂iE
i
(0) = a4πρ(0)e , (3-103)

and the first order contribution is given by

∂iE
i
(1) − 3Ej

(0)∂iϕ = 0. (3-104)

Finally, following a similar procedure to obtain (3-101) and (3-102) considering also the

4-current, the background contribution is given by(
Ei

(0)

)′
+HEi

(0) + a5ϵijk∂jB
(0)
k = −4πa2J i(0), (3-105)

and the first order contribution is given by

(
Ei

(1)

)′
+HEi

(1) − Ei
(0)

(
3ϕ′ + δkj∂(jωk)

)
+ Ek

(0)∂kω
i − ωk∂kE

i
(0)

− a5ϵijk
[
∂jB

k
(1) + ψ∂jB

k
(0) −Bl

(0)

(
δjlδ

km∂mϕ− 1

2
δkm∂mχjl

)]
= −4πa2

(
J i(1) + ψJ i(0)

)
.

(3-106)
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3.4. 1+3 Maxwell equations perturbed at first order

Here we will apply the perturbations of the electromagnetic field and obtain the 1+3 Maxwell

equations at first order, the field e and b perturbed at first order are given by

bi = a−2
(
bi(0) + bi(1)

)
, ei = a−2

(
ei(0) + ei(1)

)
, (3-107)

bi = a2
(
b
(0)
i + b

(1)
i

)
, ei = a2

(
e
(0)
i + e

(1)
i

)
. (3-108)

For the 4-current

jµ = a−1
(
jµ(0) + jµ(1)

)
where jµ =

(
ρu, J

i
u

)
(3-109)

and for the 4-velocity of the fluid

uµ = a−1
(
1− ψ, vi(1)

)
, uµ = a

(
−1− ψ, ω

(1)
i + v

(1)
i

)
. (3-110)

First we calculate the vorticity perturbed at first order, from the general decomposition of

∇βuα

ωij = a
(
∂[iω

(1)
j] + ∂[iv

(1)
j]

)
, (3-111)

σij = a
(
∂(iω

(1)
j) + ∂(iv

(1)
j)

)
− a2

3

[(
−Hψ(1) − ϕ(1)

)
δij +H

(
−2ϕ(1)δij + χ

(1)
ij

)]
, (3-112)

Θ = 3a−1H + a−1
(
∂jv

j − 3ϕ
)
. (3-113)

We must calculate also σji and ω
j
i

ωji = a−1δjk
(
∂[kω

(1)
i] + ∂[k v

(1)
i]

)
, (3-114)

σji = a−1δjk
(
∂(kω

(1)
i) + ∂(k v

(1)
i)

)
− 1

3

[(
−Hψ(1) − ϕ(1)

)
δji +H

(
−2ϕ(1)δji + χ

j(1)
i

)]
, (3-115)

now we are able to obtain the Maxwell equations perturbed at first order.

For (2-46), the background contribution is

∂jb
j
(0) = 0, (3-116)

and the first order contribution is

∂jb
j
(1) + bk(0)

[
−3∂kϕ− ∂kψ − 2Hωk +

1

2
∂jχ

j
k −

1

2
δjl ∂lχjk

]
+ bj(0)

[
a′ (ωj + vj) + a (ωj + vj)

′] = 0. (3-117)

For (2-51), the background contribution is(
bi(0)
)′
+Hbi(0) + a5ϵijk∂je

(0)
k = 0, (3-118)
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and the first order contribution is

(
bi(1)
)′
+Hbi(1) + bi(0)

[
2

3

(
∂kv

k − 3ϕ
)
− ψH

]
+ vj∂jb

i
(0)

= bj(0)

{
a−1δik (∂kωj + ∂kvj)−

1

3

[
H
(
2ϕδij − χij

)
− (Hψ + ϕ) δij

]
− 1

2

(
χij
)′
+ (ϕ′) δij

}
− a5ϵijk

[
∂ke

(1)
j + el(0)

(
∂jϕδkl −Hωjδkl −

1

2
∂jχkl

)]
. (3-119)

For (2-58), the background contribution is

∂je
j
(0) = a4πρ(0)u , (3-120)

and the first order contribution is

∂je
j
(1) + ek(0)

[
−3∂kϕ− ∂kψ − 2Hωk +

1

2
∂jχ

j
k −

1

2
δjl ∂lχjk

]
+ ej(0)

[
a′ (ωj + vj) + a (ωj + vj)

′] = a4πρ(1)u . (3-121)

For (2-59), the background contribution is(
ei(0)
)′
+Hei(0) + a5ϵijk∂jb

(0)
k = −a24πJ iu(0), (3-122)

and the first order contribution is

(
ei(1)
)′
+Hei(1) + ei(0)

[
2

3

(
∂kv

k − 3ϕ
)
− ψH

]
− ψa5ϵijk∂kb

j
(0) + vj∂je

i
(0)

= ej(0)

{
a−1δik (∂kωj + ∂kvj)−

1

3

[
H
(
2ϕδij − χij

)
− (Hψ + ϕ) δij

]
− 1

2

(
χij
)′
+ (ϕ′) δij

}
− a5ϵijk

[
∂kb

(1)
j + bl(0)

(
∂jϕδkl −Hωjδkl −

1

2
∂jχkl

)]
− a24π

(
ψJ iu(0) + J iu(1)

)
. (3-123)

In the case of the Omh’s law the background equation is given by

J iu(0) = σei(0), (3-124)

and the first order contribution

J iu(1)+
(
J ju(1)χ

i
j − 2ϕJ iu(1)

)
−ρ(0)u vi = σ

[
−2ei(0)

(
ϕ− ψ

2

)
+ ej(0)χ

i
j + ei(1) + ϵijk (ωj + vj) b

(0)
k

]
.

(3-125)
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3.5. Chapter conclusions

In this chapter the cosmological perturbations were introduced fixing the background solution

with a spatially flat FLRW solution, where the background behavior is shown. Together with

appendix C, it was shown how it is possible to perturb the background FLRW solution and

obtain the Einstein field equations perturbed at first order, taking the Newtonian gauge

are shown the complete expressions for the potential and perturbed quantities. Then it is

shown how the 3 + 1 quantities are expressed in terms of the background and perturbations

quantities shown together with the 3+1 Einstein field perturbed equations and the perturbed

Maxwell equations in 3 + 1 and 1 + 3 formalism.



4. Cosmic dynamo equation

In this chapter we obtain the cosmic dynamo equation perturbed at first order, but first we

give a review on basics of dynamo theory. Because the approach of the dynamo equation is

given by the observer who goes along with the lines of the fluid, Lagrangian observer, then

the dynamo equation is first obtain in the 1+3 formalism and then, with the electromagnetic

field equivalence of the 3+1 and 1+3 formalism, it is possible to obtain the dynamo equation.

4.1. Dynamo theory and mean-field MHD

The dynamo theory takes care of the way that magnetic fields are generated and maintai-

ned in different systems of interest, this is equally valid for highly conducting fluids, metal

liquids or ionized gas, all under rotation effects and convective movement. A system that

can maintain its own magnetic field through self movements in electrically conducting fluids

its called an hydromagnetic dynamo. In what follows we will review the basic aspects of

dynamo theory under magnetohydrodynamics (MHD).

Let us consider a conductive fluid, in the fluid is possible to measure the electric and magnetic

fields E and B respectively. The relation of electric currents J and the electric field in the

local reference frame is given by the Omh’s law

J = σE, (4-1)

where σ is the electric conductivity. The fluid can be accelerated , so in this local frame

the fluid is not inertial, then it is necessary to reformulate the Omh’s law in terms of fields

measure in an inertial field. Let us consider a medium with velocity u such that this is a

non-relativistic velocity, this means that |u| ≪ 1. Transforming the electric field

E → E + u×B, (4-2)

where the right hand side represents the inertial fields. In the case of high conductivity there

is no electric field, this can be seen taking the limit σ → ∞ in the equation (4-1), then

E = −u×B. (4-3)

In the case of the magnetic field, the transformation is given by

B → B + u×E. (4-4)



4.1 Dynamo theory and mean-field MHD 39

As a consequence of (4-3) and the fact that u is non-relativistic, the transformation of the

magnetic field is given by

B → B. (4-5)

From the Maxwell equations

ρe ∼
u

c2
J, (4-6)

where ρe is the charge density. Transforming the current J

J → J + ρeu, (4-7)

together with (4-6)

J → J . (4-8)

From this, the Ohm’s law can be written as follows

J = σ (E + u×B) . (4-9)

Using the Maxwell equations it is possible to obtain the induction equations [33, 110].

∂tB = ∇× (u×B) + (4πσ)−1∇2B. (4-10)

To obtain the induction equation it is necessary to take into account that. If we take into

account the Lorentz force

F =
1

4π

[
(B · ∇)B − 1

2
∇ |B|2

]
. (4-11)

The first part of the right hand side of Lorentz force equation is the magnetic tension, while

the second part is the magnetic pressure.

Now we will describe in brief the mean field MHD applied to the large scale dynamo [98],

here we must consider mean fields and also small fluctuations over the mean fields, then

we can split the magnetic field B as a mean contribution ⟨B⟩ and a deviation from this

mean Bd, this averaging ⟨· · · ⟩ must follow the Reynolds averaging rules. Let us see how this

averaging process works, if F and G are fluctuating fields then

F = ⟨F ⟩+ Fd, G = ⟨G⟩+Gd. (4-12)

The Reynolds averaging rules are given by [68, 97]

⟨⟨F ⟩⟩ = ⟨F ⟩ , ⟨Fd⟩ = 0, (4-13)

⟨F +G⟩ = ⟨F ⟩+ ⟨G⟩ , ⟨⟨F ⟩ ⟨G⟩⟩ = ⟨F ⟩ ⟨G⟩ , (4-14)

⟨FG⟩ = ⟨F ⟩ ⟨G⟩+ ⟨FdGd⟩ , ⟨⟨F ⟩Gd⟩ = 0 (4-15)

⟨∂tF ⟩ = ∂t ⟨F ⟩ , ⟨∂xF ⟩ = ∂x ⟨F ⟩ . (4-16)
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Then, the magnetic field B and the fluid velocity u are written as

B = ⟨B⟩+Bd, (4-17)

u = ⟨u⟩+ ud. (4-18)

Let us substitute expressions (4-17) and (4-18) into the induction equation (4-10), we can

separate the induction equation into the following expressions

∂ ⟨B⟩
∂t

= (∇× ⟨u⟩ × ⟨B⟩) + (∇× E) + (4πσ)−1 ⟨B⟩ , (4-19)

∂Bd

∂t
= (∇× ud × ⟨B⟩) + (∇× up ×Bd) + (∇× ⟨u⟩ ×Bd)− (∇× E) + (4πσ)−1Bd,

(4-20)

where E = ⟨up ×Bp⟩ is the electromotive force caused by the fluctuating motions. This

leads to dynamos with turbulent motions and hence turbulent magnetic fields, therefore is

known as the theory of the turbulent dynamo.

4.2. Electromagnetic field equivalence between 3+1 and

1+3 formalism

In the case of 3+1 formalism we have Eulerian observers with 4-velocity n perpendicular to

the hypersurface, if we took the case of 1+3 formalism we have Lagrangian observers with

4-velocity u, which is also the velocity of the fluid, then these observers move along with

the fluid. The electromagnetic field measure for both observer is not necessarily the same,

then we must know how to express the Lagrangian observed fields in terms of the Eulerian

fields, we remark here that the physics describe in both cases is the same, even there is an

equivalence. The Faraday tensor for an observer moving with the fluid is

Fµν = uµeν − eµuν + ϵδγµνu
δbγ, (4-21)

then the fields are given by

eµ = F νµuν , bµ = ∗F µνuν (4-22)

where eµuµ = bµuµ = 0. On the other hand for the Eulerian observers

Fµν = nµEν − Eµnν + ϵδγµνn
δBγ (4-23)

and

Eµ = F νµnν , Bµ = ∗F µνnν . (4-24)

From (4-22) and (4-23)

eµ = WEν − (Eνuν)n
µ + ϵδγµνBγnδuν , (4-25)

bµ = WBµ + (Bνuν)n
µ + ϵδγµνEγnδuν . (4-26)
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Now we must obtain the 3+1 decomposition from these fields, projecting along the normal

vector and the hypersurfaces

eµnµ = Eνuν , γµνe
ν = WEµ + ϵδγαµ Bγnδuα, (4-27)

bµnµ = −Bνuν , γµνb
ν = WBµ + ϵδγαµ Eγnδuα. (4-28)

Under the induced coordinate system over the hypersurfaces

eµnµ = Ejuj, ei = WEi + ϵjki Bjuk, (4-29)

bµnµ = −Bjuj, bi = WBi + ϵjki Ejuk. (4-30)

In chapter 2 we saw that the decomposition of the 4-current for a lagrangian observer is

given by j = ρuu+ Ju, projecting along the normal vector and the hypersurface

ρ = −Wρu + Jµunµ, Jµ = ρu (γµνu
ν) + γµνJ

ν
u . (4-31)

4.3. Dynamo equation at first order

Here we will obtain the dynamo equation at first order, the steps that are going to be followed

here are given in [83] where the full dynamo equation for 1+3 formalism is shown, but in

this reference is not clear enough how several expressions were obtained, the steps to obtain

this expressions are shown in appendix D, therefore the dynamo equation obtained in this

section can be obtained also with the general dynamo equation (D-26), here we apply the

same steps shown in appendix D but taking the particular case where a FLRW flat solution

is perturbed up to first order. Let us obtain the dynamo equations, let us start from the

Maxwell equations (3-118) and (3-122), if we apply isotropy and homogeneity conditions into

the fields, which means that ∂ib
(0)
j = ∂ie

(0)
j = 0 and b

(0)
i = b(0), the equation is given by(

b(0)
)′
+Hb(0) = 0, (4-32)

therefore b(0) ∝ a−1 in the background as is shown in figure 4-1. Usually the equation (4-32)

is written with a 2Hb(0), this guaranties that the magnetic field decays as a−2 [55, 57], for

this a frame choice is made and the field is written as b = (0, abi), then replacing this field

in Faraday’s equation (1-68) then bi ∝ a−2 [37, 106, 107], therefore in this work the frame is

choosen in such a way that the field decay as a−1. Now let us obtain the first order dynamo

equation, before obtaining the curl of the curl of bi(1), following [83], let us write the curl of

bi(1), using the Maxwell equations, as follow

a5ϵijk∂jb
(1)
k =

(
ei(1)
)′
+Hei(1) − ei(0)

[
ϕ′δij −

1

2

(
χij
)′
+ ∂iωj + ∂ivj +

a

3
(Hψ − ϕ+ 2Hϕ) δij −

a

3
χij

]
− a5ϵijk

[
−b(0)l

(
−2δl(j ∂k)ϕ+ δjk∂

lϕ−Hωlδjk + ∂(jχ
l
k) −

1

2
∂lχjk

)
− (ωj + vj − ∂jψ)

]
+ 4πa2

(
ψJ iu(0) + J iu(1)

)
, (4-33)
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Figure 4-1.: This figure shows the decay of the magnetic field in the background, it shows

the numerical evolution of (4-32) and the proportionality between the back-

ground magnetic field b(0) and the scale factor a.

let us define the following tensors

P i
j = ϕ′δij −

1

2

(
χij
)′
+ ∂iωj + ∂ivj +

a

3
(Hψ − ϕ+ 2Hϕ) δij −

a

3
χij,

F l
jk = −2δl(j ∂k)ϕ+ δjk∂

lϕ−Hωlδjk + ∂(jχ
l
k) −

1

2
∂lχjk, (4-34)

this will help to reduce our calculations. Now let us obtain the curl of the curl of bi(1)

a5ϵiml ϵ
ljk∂m∂jb

(1)
k =

[
ϵiml ∂me

l
(1)

]′
+Hϵiml ∂mel(1) − ϵiml ∂m

(
ej(0)P

l
j

)
− a5ϵiml ϵ

ljk∂m

[
−b(0)l F l

jk − (ωj + vj − ∂jψ) e
(0)
k

]
+ 4πa2ϵiml ∂m

(
ψJ iu(0) + J iu(1)

)
, (4-35)

after some calculations using Maxwell equations and the Ohm’s law then the dynamo equa-

tion is given by

−a5∂j∂jbi(0) = 4a−5H
[(
bi(1)
)′
+Hbi(1)

]
−a−5

[(
bi(1)
)′′

+H′bi(1) +H
(
bi(1)
)′
+ bj(0)P

i
j

]
−ϵijk∂j

(
el(0)P

k
j

)
− a5

{
∂ke

(0)
k

(
ωi + vi − ∂iψ

)
+ e

(0)
k ∂k

(
ωi + vi − ∂iψ

)
− ∂j

[
ei
(
ωi + vi − ∂iψ

)]}
+ ϵijkH

[
e
(0)
l F l

jk + e
(0)
k (ωj + vj − ∂jψ) + F l

jk

(
e
(0)
l

)′
+ (ωj + vj − ∂jψ)

(
e
(0)
k

)′]
.

+ 4πa2
{
ρ(0)vi + σ

[
ei(1) + ϵijk (ωj + vj) b

(0)
k

]}
(4-36)

Now let us take into account the average, here the values in the background must respect

isotropy and homogeneity, in this case we supposed that the magnetic field bi(0) is homoge-
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neous and sufficiently random such that1
〈
bi(0)

〉
= 0 and

〈
b
(0)
i bi(0)

〉
̸= 0 [16], this implies

that we have that the following terms are non-zero; b2(0), e
2
(0) and ei(0). Because part of the

cosmological history the universe is conductor, at big scales, because is composed of charged

particles coupled by interactions, we must consider the Ohm’s law. Under these assumptions

ĺım
σ→∞

J iu(0)
σ

= ĺım
σ→∞

ei(0) = 0. (4-37)

This does not implies that the current is zero, but if the current is not zero the charges

separate breaking homogeneity in the background therefore J iu(0) = 0, also from the Gauss

law ρ
(0)
u = 0. Finally the only non zero term in the background is b2(0) and

bi(0) = e2(0) = ei(0) = J iu(0) = ρ(0)u = 0. (4-38)

Under conditions (4-38) the Ohm law is written in the following way

J iu(1) = σ
[
ei(1) + ϵijk (ωj + vj) b

(0)
k

]
. (4-39)

The Faraday and the Ampère expressions at first order in 1+3 formalism, (3-119) and (3-123)

respectively, rearranging indices take the form(
bi(1)
)′
+Hbi(1) + ϵijk∂je

j
(1) = 0, (4-40)(

ei(1)
)′
+Hei(1) + ϵijk∂jb

(1)
k = −a24πJ iu(1). (4-41)

Now let us obtain the curl of the curl of bi(1) using (4-41) and (4-39)

ϵiml ϵ
ljk∂m∂jb

(1)
k = −ϵiml ∂m

(
el(0)
)′ − ϵiml H∂mel(1) − 4πa2ϵiml ∂mJ

l
u(1), (4-42)

using (4-40) to obtain ϵijk∂ke
(1)
j , the dynamo equation is given by [55](

bi(1)
)′′

= ∂j∂
jbi(1) −

[
2H + 4πa2σ

] (
bi(1)
)′ − [H′ +H2 + 4πa2σ

]
bi(1)

+ 4πa2σ∂j

[
bj(0)
(
ωi + vi

)
− bi(0)

(
ωj + vj

)]
, (4-43)

this equation will be studied from the numerical point of view in chapter 5. Now we want

to obtain the dynamo equation in the 3+1 formalism, for this we will use the equivalence

equations (4-29) and (4-30), because the electromagnetic fields are only on the hypersuface,

they do not have normal contribution, therefore we restrict to the spatial contribution of the

fields. The equivalence perturbed up to first order and under the conditions (4-38) are

ei(1) = Ei
(1) + aϵijkB

k
(0) (ωj + vj) , (4-44)

bi(1) = Bi
(1) + aϵijkE

k
(0) (ωj + vj) . (4-45)

1The ⟨· · · ⟩ is the expected value of the magnetic field
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Replacing these expressions in (4-43) we obtain the dynamo equation at first order in 3+1

formalism(
Bi

(1)

)′′
+ ϵi jk

[
aEj

(0)

(
vk + ωk

)]′′
= ∂j∂

j
[
Bi

(1) + ϵijkaE
k
(0) (vj + ωj)

]
−(

2H + 4πa2σ
) [
Bi

(1) + ϵijkaE
k
(0) (vj + ωj)

]′ − (H′ +H2 + 4πa2σ
) [
Bi

(1) + ϵijkaE
k
(0) (vj + ωj)

]
+ 4πa2σ∂j

[
bj(0)
(
ωi + vi

)
− bi(0)

(
ωi + vj

)]
. (4-46)

There are some things that should be point out, one of them is that these dynamo equations

do not have a gauge fixed, the information about how the perturbations affect the equation

are in vi, then given velocity field vi, it is possible to see how this velocity field affects the

magnetic field. This is what is called the kinetic dynamo [98, 33], it is possible to apply

this type of regime because Lorentz force terms, that can be seen in (4-11) are second order

contributions to the field, then there is no need to solve the non-linear dynamo.

4.4. Chapter conclusions

The dynamo theory and mean-field approximation of MHD helped us to obtain the dynamo

equation through the induction equation. Before obtaining the dynamo equation, the equi-

valence of 3 + 1 and 1 + 3 formalism was obtained, this equivalence plays the same role of

the reference frames transformations given in section 4.1. Finally, using the background and

perturbed Maxwell equations with the Reynolds averaging rules, it is possible to obtain the

dynamo equation.
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Here we will show the computational results together with the implementation of the software

Einstein Toolkit. Also, we will review some hyperbolic partial differential equations and

BSSN formalism, this because BSSN formalism is the one used by Einstein Toolkit, and

part of its numerical success is supported by the hyperbolic partial differential equations

theory.

5.1. Hyperbolic partial differential equations

The 3+1 evolution equations is known in mathematics as a set of hyperbolic PDEs, but the

problem of these equations is that do not behave well in the numerical simulations, this can

be seen from the mathematical properties of PDEs that we will show here and after that we

can see how this could be applied to the 3+1 evolution equations. A system of hyperbolic

PDEs at first order can be written in general as follow

∂tu+
∑
i

Mi · ∂iu = S (u) , (5-1)

where u is an n dimensional column vector known as solution vector, Mi are n×n matrices

known as the velocity matrices, in this case with constant components, and S is an n

dimensional columns vector known as the source vector. Another way to write this system,

applying the sum convention, is as follow

∂tu+ ∂iF
i (u) = S (u) , (5-2)

where

M i
ab =

∂F i
a

∂ub
, (5-3)

here we will stick to the first case. Let us consider S = 0, then

∂tu+Mi · ∂iu = 0. (5-4)

The system of equations (5-4) is said to be well-posed if it is possible to define a norm ∥·∥
such that ∥∥u (t, xi)∥∥ ≤ k1e

k2t
∥∥u (0, xi)∥∥ , (5-5)
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where k1 and k2 are constants independent of the initial conditions u (0, xi)1.

Let n and unitary arbitrary vector and let P be defined as follow

P = Mini, (5-6)

this matrix is known as the principal symbol. The hyperbolocity is defined as follows, the

system is called

Symmetric hyperbolic if P can be symmetrized in a way independent of n,

Strongly hyperbolic if, for all unit vectors n, P has a set of real eigenvalues and a

complete set of eigenvectors,

and Weakly hyperbolic if P has real eigenvalues but not a complete set of eigenvectors.

Let us take the eigenvalues and eigenvectors for P

Pea = λaea, (5-7)

where {ea} is the set of eigenvectors and λa are the eigenvalues. Let us define the matrix E
such that the columns of the matrix are the eigenvectors ea

E = (e1, e2, · · · , en) . (5-8)

From this a new matrix H, called the symmetrizator, is defined as follow

H =
(
E−1

)T E−1, (5-9)

which is hermetic and defined positive. IfH is independent of n, then the system is symmetric

hyperbolic. From H it is possible to define an inner product and a norm as follow

⟨u,v⟩ := u†Hv, (5-10)

∥u∥2 := ⟨u,u⟩ = u†Hu. (5-11)

This norm will be the norm that is used in the well-posed system, this because the system

is well-posed if and only if the system of PDEs is strongly hyperbolic [54]. If we want to

apply this to the evolution equations in the 3+1 formalism (1-18) and (1-19) there is a

problem, these equations have second order terms, but its is possible to rewrite this system

as a first order hyperbolic PDE. This allows to show that the 3+1 evolution system is weakly

hyperbolic [66], therefore the idea is to rewrite the 3+1 formalism such that the evolution

PDEs are strongly hyperbolic.

1If we consider S ̸= 0 we can also apply this definition of well-posedness, however it must be take into

account that this is valid only if S is linear, then S = Su where S is constant in space and time.
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5.2. BSSN formalism

Here we will show in brief one of several formalisms used to evolve Einstein’s equation, this

formalism is called BSSN (Baumgarte-Shapiro-Shibata-Nakamura) developed by Baumgarte

and Shapiro [17] and Shibata and Nakamura [104]. Let us take the spatial metric γ and

decomposed into a conformal metric γ̄ and a conformal factor as follow

γij = e4ϕγ̄ij. (5-12)

The extrinsic curvature tensor is decompose into its trace and traceless part

Kij = Aij +
1

3
γijK, (5-13)

where Aij is traceless. Because the conformal factor

Ãij = e−4ϕAij, (5-14)

then

Kij = e4ϕÃij +
1

3
γijK. (5-15)

Under γ̄ we have a covariante derivative D̄ such that D̄γ̄ = 0, this allow to write the

Hamiltonian and momentum constrains as follow, respectively

γ̄ijD̄iD̄je
ϕ − eϕ

8
R̄ +

e5ϕ

8
ÃijÃ

ij − e5ϕ

12
K2 + 2πe5ϕE = 0, (5-16)

D̄j

(
e6ϕÃij

)
− 2

3
e6ϕD̄iK − 8πe6ϕpi = 0. (5-17)

The evolution equation for γ is splitted in two equations, an evolution equation for ϕ and

another one for γ̄

∂tϕ = −1

6
αK + βl∂lϕ+

1

6
∂lβ

l, (5-18)

∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k. (5-19)

Similar to the case of γ, in the case of Kthe evolution equations are for K and Ãij

∂tK = −γijDjDiα + α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα (E + S) + βk∂kK, (5-20)

∂tÃij = e−4ϕ
(
−(DiDjα)

TF + α(RTF
ij − 8πSTF

ij )
)
+ α

(
KÃij − 2ÃilÃ

l
j

)
+ βk∂kÃij + Ãik∂jβ

k + Ãkj∂iβ
k − 2

3
Ãij∂kβ

k, (5-21)

where the TF means Trace-Free. On the other hand, γ̄ allows to write the Ricci tensor as

follow

Rij = R̄ij +Rϕ
ij, (5-22)
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where R̄ij is given by γ̄ for Rij and R
ϕ
ij by ϕ, these terms are written explicitly as follow

Rϕ
ij = −2

(
D̄iD̄jϕ+ γ̄ij γ̄

lmD̄lD̄mϕ
)
+ 4

(
(D̄iϕ)(D̄jϕ)− γ̄ij γ̄

lm(D̄lϕ)(D̄mϕ)
)
, (5-23)

R̄ij = −1

2
γlm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄lm
(
2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
, (5-24)

where Γ̄ijk are the Christoffel symbols given by γ̄ and Γ̄i = γ̄jkΓ̄ijk = −∂jγij. The term Γ̄i is

taken as an independent function, then we have a new constrain equation

Γ̄i + ∂jγ
ij = 0 (5-25)

and an evolution equation for Γ̄i

∂tΓ̄
i = −2Ãij∂jα + 2α

(
Γ̄ijkÃ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijpj + 6Ãij∂jϕ

)
+ βj∂jΓ̄

i − Γ̄j∂jβ
i +

2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i. (5-26)

The constrains equations (5-16), (5-17) and (5-25) together with (5-18), (5-19), (5-20), (5-21)

and (5-26) form the BSSN equations. The advantage of these set of evolution equations are

strongly hyperbolic PDEs [100].

5.3. Einstein Toolkit

In chapter 1 we presented the Einstein’s field equations written in a hyperbolic form, this

allows that the equations can evolve in a computational way, which is known as the Einstein’s

equations in the 3+1 formalism. The main problem of this set of equations is that is weakly

hyperbolic, therefore these equations are rewritten in what is known as the BSSN formalism.

The main problem now is how to evolve the equations in a computational way, it must be

taken into account that these equations are computationally demanding [14]. This leads

to the development of code made to evolve efficiently the Eintein’s field equations. There

are several options available for free download used for the evolution of the equations, [71]

mentions a few useful codes in section four, GRChombo [31] and Dendro-GR [92, 43] are other

example of this kind of codes.

To evolve the Einstein equations we used the free open-source code Einstein Toolkit (ET)

[74, 122, 15]. The ET perform high-level numerical-relativity simulations, even while operating

within the constraints of desktop-level computational power, some examples of its success

are simulations on binary black hole merger [96, 120], binary neutron stars merger [80, 81]

among others. ET uses a set of core modules that provide the infrastructure to build complex

simulations codes, this is done using the Cactus framework [46] with a central core known

as the “flesh”, this provides the interaction between modules to be able to compile, the

modules are called “thorns”. Several thorn are used in each simulation on the ET, here we
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will mentions just a few used in this thesis given their importance. Here we will not focus

on installation and use of ET, for this we recommend the ET tutorial for new users2, the

videos on ET youtube channel3 and [30]. Let us mention some of the most relevant thorns

used in this Thesis: McLachlan [6] are a set of thorns used to evolve the spacetime using the

BSSN formalism, GRHydro [87] is used to evolve MHD quantities in flat and curve spaces,

to implement the evolution GRHydro uses the thorn MoL [11] which implements the method

of lines to evolve partial differential equations. For analyzing the output the typical thorns

used are CarpetIOASCII and CarpetIOScalar, which writes .asc or .xg files of the values

of specified variables, and also CarpetIOHDF5 which writes outputs in .h5 files, these torns

belongs to the Carpet arrangement, Carpet [101, 102] is a mesh refinement driver for Cactus

framework capable to run with multiple grid patches.

There are several works which applied numerical relativity to cosmology using cosmological

perturbation and evolving the field equations using ET [21, 119]. In this case we will focus our

attention in a particular thorn called FLRWSolver [77], this thorn is written in fortran90

which sets initial conditions for cosmological perturbations at first order using a FLRW flat

background using the Newtonian gauge4. The cosmological perturbation can be turn-off,

then it could be used for the evolution of the background field equations for the FLRW

solution.

Here we will briefly show how to run a simulation using ET assuming that is already installed,

first we need to initialized it with SimFactory [12]. and for this it is necessary to run the

following command in the Carpet directory, which is created during the installation

./ simfactory/bin/sim setup -silent

After running this command it is possible to star running our simulations. To run it we need

first a parameter file, these files end with .par and a few examples can be found in the par

directory inside /Cactus directory, these files have all the necessary parameters to run a

simulation in ET. We also need a name for the simulation, let us assume that the parameter

file that we need to use is called parameters.par and it is located on the /par directory, the

name that we want to give to our simulation is MySimulation, then to run the simulation

the following command have to be written on the terminal

./ simfactory/bin/sim create MySimulation --configuration sim

--parfile=par/parameters.par

the command create creates the directory where the results of the simulation will be stored,

this directory is created in the /simulations directory, /simulations is created in the same

directory where /Cactus is, also after --parfile the location of the parameter file must be

specified. To be able to finally execute our simulation we need to run the following command

2This tutorial can be found on https://einsteintoolkit.org/documentation/new-user-tutorial.

html
3ET youtube channel https://www.youtube.com/channel/UC8IObWZ7_wEbWnbIKVIQRYQ/featured
4We will work only under this gauge, but this does not mean that other gauge can be taken, for example

in [119] tensor perturbation are included to the study gravitational waves

https://einsteintoolkit.org/documentation/new-user-tutorial.html
https://einsteintoolkit.org/documentation/new-user-tutorial.html
https://www.youtube.com/channel/UC8IObWZ7_wEbWnbIKVIQRYQ/featured
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./ simfactory/bin/sim MySimulation --cores=2 --num -threads =1

--walltime =0:20:00

here another options appears, cores is related to the amount of cores of the computer,

--num-threads is the number of threads per process to use and walltime is the limit

amount of time for the implementation of our simulation. These two lines can be written as

one without problems in the following way

./ simfactory/bin/sim create -sumit MySimulation --parfile=par/parameters.par

--cores =2 --num -threads =1 --walltime =0:20:00

this is possible because the command create-sumit. This commands will not show the

status of the simulation, to be able to see itwe need to rnu the command

./ simfactory/bin/sim list -simulations MySimulation

if the simulation ended running we will see [ACTIVE (FINISHED), or [ACTIVE (RUNNING) if

it is still running. Using only list-simulations will show the status of all the simulations

in the local machine, but does not follow the simulation, for this it is possible to use the

following command

./ simfactory/bin/sim show -output --follow MySimulation

and if we do not want to keep following the simulation we must interrupt the kernel, this

will not interrupt our simulation5.

To analyze the files obtained in the simulation several tools can be used, for .dat files pyhton

can be used, the difficulties are in the .hdf5 files, these can be read using the h5py library,

but even with this library the handling of these kind of files could turn out very difficult. To

be able to handle with all the different types of files that produces ET are tools made specially

for this purpose, one of them is the library SimulationTools [9] made for Mathematica, the

one that are going to use is called kuibit [24], a free pyhton library for ET post-processing.

Before analysing the simulations that will be presented, we will show how to include FLRWSolver,

this because this thorn is not (yet) included with the default thorns that came with ET6. First

it must be downloaded from https://github.com/hayleyjm/FLRWSolver_public, after

cloning the repository it must be placed in /Cactus/arragements/EinsteinInitialData

and change directory’s name to FLRWSolver, then we need to include FLRWSolver to the list

of thorns that are going to be compiled, this list is in the file einsteintoolkit.th used for

the ET installation, what should be added is the line EinsteinInitialData/FLRWSolver

at the end of the list coresponding to the EinsteinInitialData thorns. Finally we must

rebuild ET with the following command

5The list of all SimFactory commands that can be used can be found on http://simfactory.org/info/

documentation/userguide/commands.html
6Here we will show how to install a version of FLRWSolver which only includes the necessary files to solve

the FLRW spacetime with no perturbations and with a sinlge mode linear perturbation, currently there

is a version of FLRWSolver which includes gaussian random linear perturbations but this did not worked

for us.

https://github.com/hayleyjm/FLRWSolver_public
http://simfactory.org/info/documentation/userguide/commands.html
http://simfactory.org/info/documentation/userguide/commands.html
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./ simfactory/bin/sim build -j2 --thornlist ../ einsteintoolkit.th

Sometimes Meudon BH or Lorene thorns does not allow to build FLRWSolver, therefore these

must be comented in the einsteintoolkit.th file if necessary. Inside the FLRWSolver is

a directory called /par, here are some parameter files to check if everything went the right

way.

Before showing some results obtained with FLRWSolver some comments, first we need to call

FLRWSolver in order to use it, solve the FLRW background equations we must specify that

we do not want perturbations in our simulation, this is done in the parameter file that we

are going to use, this is done by witting

ActiveThorns = "FLRWSolver"

FLRWSolver :: FLRW_perturb = "no"

In case that we want to perform a simulation including single-mode perturbations

ActiveThorns = "FLRWSolver"

FLRWSolver :: FLRW_perturb = "single_mode"

FLRWSolver :: FLRW_perturb_direction = "all"

FLRWSolver :: single_perturb_wavelength = 1.0

FLRWSolver :: phi_perturb_amplitude = 1.e-6

As can be seen, the second line of the above code includes the single-mode perturbations,

FLRW perturb direction indicates the spatial direction of the perturbation, could be x,

y, z or all. The parameter single perturb wavelength is the wavelength of the scalar

perturbation mode and phi perturb amplitude is the amplitude of the perturbation.

5.4. Results

First we will show the evolution of FLRW spacetime without perturbation and then with

perturbations, it is possible to compare the numerical and the analytical results using the

expressions obtained in section 3.1. In this case we ran a simulation over a 403 grid in a 1

Gpc size box, the simulation starts from a redshift z = 1100, which corresponds to CMB

photon decoupling [88, 78], the final redshift is z ≈ 534, which corresponds to η ≈ 3000, we

decide to evolve up to this point because beyond η ≈ 104 the difference between solutions

and numerical results start to differ significantly [77]. For both cases, background and per-

turbations, the equation of state is given by (3-13). According to the thorn documentation

of EOS Omni [4], thorn used to provided the equation of state for the ET simulations, it is

possible to implement the polytropic equation

p = Kpolyρ
γ (5-27)

where we fix values to Kpoly and γ. Looking at (3-13) then Kpoly = 0 and γ = 1, but in

ET is not possible to assign zero to Kpoly, therefore we assign a value close to zero, in this

case Kpoly = 10−4, lowest values lead to NaN values in the simulation. Using this values for
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simulations in ET with FLRWSolver will result problemati, because assigning γ = 1 lead to

NaN values, just like in Kpoly case, then the value assign is γ = 2, therefore the equation of

state for the simulations is the polytropic equation

p = Kpolyρ
2. (5-28)

The form to include this values in the parameter file is as follows:

ActiveThorns = "EOS_Omni"

EOS_Omni :: poly_k = 1.e-4

EOS_Omni :: poly_gamma = 2.0

Now let us see the backgroung evolution results. In figure 3-1 it is shown the evolution

for a/a0 and ρ/ρ0, as can be seen analytical results match with the numerical results, the

maximum relative error for a was 0,005% and for ρ was 0,016%, the minimum relative error

was 0,004% and 0,011% respectively [77, 79]. After the evolution of a and ρ is obtained, we

proceed to calculate the Hubble parameter with the numerical values of the scale factor a

obtained with ET, because H = a′/a then it is possible to use finite center-differences [70]

and then compare with expression (3-8). This comparison is shown in figure 3-2, just like

in the case of a and ρ there is a good match between the numeric solution and the analytic

solution, the maximum relative error in this case was 0,008% and the minimum was 0,006%.

If we look now at the perturbed EFE, we must compare the quantities δ and vi, the solutions

for these quantities are given by (3-54), (3-55) and (3-56). The initial conditions are set up

by FLRWSolver [77] with the following spatial function

Φ = Φ0

3∑
i=1

sin

(
2π

L
xi

)
, (5-29)

which is a solution for the perturbed EFE, with the solutions (3-55) and (3-56) for δ and vi,

respectively, then

δ =

[
C1

(
2π

L

)2

− 2

]
Φ0

3∑
i=1

sin

(
2π

L
xi

)
, (5-30)

vi =
2π

L
C3Φ0 cos

(
2π

L
xi

)
. (5-31)

To compare this solutions with the numerical results given by ET we used the background

solutions, using (3-46) it is possible to obtain δ. In the case of the velocity ET gives the

projected four velocity, which is given by (3-38), taking ωi = 0, it is possible to obtain the

velocity (3-37) in terms of (3-38). The comparison between the numerical and the analytical

solutions are given by figures 5-1, which corresponds to the δ case solution, and 5-2 for the

velocity solution case, for the simulations it was always used a wavelength of value 1. In

figures 5-1 and 5-2 we show two types of figures, the first one is fixing a point and then see

how this point evolves in time, the other type of figure is fixing a space slice, in this case
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Figure 5-1.: Evolution for δ with respect the conformal time and how evolves along the x

coordinate in different times, in both cases analytic and numeric solutions are

presented, the points represent the numeric solution.

along x axis and see how numerical solutions evolve in time. For both cases the numerical

solution matches with the analytic solutions (3-55) and (3-56), the maximum relative error

for the velocity was 0,026%, in the case of δ the maximum relative error is 0,007%. As we

can see in figure 5-1, the modes of δ increase, beside the close numerical error, this is a

expected behaviour for δ.

Let us now check how linear was the performed simulation, for this we have to check how

the difference between the potential ϕ and ψ evolve along the simulation, to obtain this

quantities in terms of 3 + 1 quantities we used equations (3-60) and (3-62), the result of the

difference between the potential is given in figure 5-3. The linearity is given in the initial
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Figure 5-2.: Evolution for δ with respect the conformal time and how evolves along the x

coordinate in different times, in both cases analytic and numeric solutions are

presented, the points represent the numeric solution.

conditions, where the difference between the potentials is zero, along the simulation, due to

numerical dissipation, the difference between both potential increases, according to [77] this

difference will lead to a maximum of 6,5 × 10−6, according to figure 5-3 this difference is

much bigger than the one reported, in the final time reached in the simulation the difference

was almost |ϕ− ψ| ≈ 0,5, which differs from the value reported in [77], this means that the

deviation from linearity do not start in times around 104 like [77], in this case the deviation

from linearity started at orders of 102 in time.

Now we will evolve equation (4-43) from the numerical point of view, let use the following

notation to be brief bi ≡ bi(1), we will discretize this equation spatially and temporally, for

the temporal evolution the discretization, using the index n for time discretizaton with a
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Figure 5-3.: Evolution of the difference between the potentials ϕ and ψ along the simulation,

at the beginning of the simulation the linearity is maintained, but during the

evolution of the simulation this difference increase almost to 0,5.

time step ∆η, is given by [70](
bi
)′ ≈ (bin+1 − bin

)
/∆η +O (∆η) , (5-32)(

bi
)′′ ≈ (bin+1 − 2bin − bin−1

)
/ (∆η)2 +O (∆η)2 , (5-33)

replacing this in (4-43), the time evolution discretization is given by

bin+1 ≈ (1 + ∆ηD1)
−1×{

bin−1 +
(
1−∆η2D2

)
bin +∆η2∂j∂jb

i
n +∆η24πa2σ

[
∂j

(
bj(0)v

i
)
n
− ∂j

(
bi(0)v

j
)
n

]}
, (5-34)

where

D1 = 2Hn + 4π (an)
2 σ (5-35)

D2 = (H′)n + (Hn)
2 + 4π (an)

2 σ (5-36)

there is also an spatial derivative that must be solved, in this case finite center-differences

is used for first and second derivatives. The discretization was done this way because, be-

fore using expression (5-34) the fourth order Runge-Kutta method was used [70], but the

numerical evolution after a few iterations did not converge, then the numerical result were

to much higger that usual.

To evolve (5-34) first we need to obtain the background quantities, H and a, these were

obtain using FLRWSolver, then we add perturbations to the simulation, this give us the
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Figure 5-4.: Growth of magnetic field bi given by the numerical solution of the equation

(4-43), the conductivity for this case is σ = 0,01. What it is assumed here is

that the average field is constant in the spatial domain.

velocity field that is shown in (4-43) and (5-34). Therefore, with the results obtained with

ET and FLRWSolver it is possible to solve (4-43), then we notice how the magnetic field is

affected given a velocity field, this is known as the kinematic dynamo [98, 33], it is possible

to evolve the field in this way because Lorentz force terms, as can be seen in (4-11), are given

by second order contributions. The results of the evolution using the discretization (5-34)

are shown in figure 5-4, in this case we are assuming that the initial average magnetic field

is constant and that the conductivity is σ = 0,01, we set up this value because it was used in

[83], the evolution shows is a growing magnetic field, as longer the time in the simulation, the

growth of the field start to decrease, we need to take into account that this is only applied to

the matter domination era after CMB photon decoupling, then cosmological constant effects

and higher order effects are missing here.
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In this work we presented two broad formalism of GR, each one of these can be really wide

by their own. For the case of the 3 + 1 formalism, presented in Chapter 1, the spacetime

is foliated with spatial hypersurfaces, the observers which its four velocity is the normal

vector to this surfaces are called Eulerian observers. The foliation of the spacetime allows to

define a spatial projector, that also works as a metric for the hypersurfaces, in such a way

that geometric quantities can be decompose in contributions along the normal vector and

over the hypersurfaces. The decomposition let write the Einstein field equations into a set

of hyperbolic partial differential equations to be evolve numerically. The particular case of

the perfect fluid was presented in this formalism and also the Maxwell equations.

In chapter 2 the second mentioned formalism was presented, this is the 1+3 formalism. From

the mathematical point of view, it is just like 3+1 formalism, because it also implements the

geometry of foliations and hypersurfaces. The main difference is that the observer in the 1+3

formalism, called Lagrangian observer, goes along the lines of fluid, and the four velocity of

the fluid is the normal vector to the hypersurfaces in this particular case. This four velocity

allows to obtain certain kinematic quantities that describe the cosmological fluid, how this

quantities act over the fluid is shown in figure 2-1. In this formalism it is also possible to

decompose the Einstein’s field equations, just like 3 + 1 formalism, and together with the

commutation of covariant derivative, the propagation equations of the mentioned kinematic

quantities are obtained together with the Maxwell equations in this formalism.

Now that the two formalism were introduced, then it is possible to perturbed the main

quantities for both formalism through cosmological perturbations, this was done in chapter

3. First, the background was fixed, it was used a flat FLRW solution, and then this solution

was perturbed up to first order. This enables to show the perturbed 3 + 1 Einstein field

equations together with perturbed Maxwell equations in both formalism, this includes the

Ohm’s law.

Before setting up the cosmological dynamo equation, main goal of chapter 4, a review on

classical dynamo theory is made starting from pre-Maxwell equations, the induction equation

is obtained and then, with the averaging process the turbulent dynamo equation is obtain.

Because the approach of the dynamo equation is along the Lagrangian observer, to know

how the 3+1 electromagnetic fields behaves in terms of the 1+3 fields, then an equivalence

between both electromagnetic fields is shown. Finally, the cosmological dynamo equation,

with and with out average, is obtained, in the case of the averaged equation it should be

keep in mind that this average process follows the average Reynolds rules. It was checked
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that the field decays as a−1 in the absence of perturbations.

Finally, in chapter 5, it is shown how the software Einstein Toolkit (ET) was implemented,

specially the thorn FLRWSolver which sets up initial conditions to the EFE, in such a way

that these equations could evolve using the numerical methods already implemented in ET.

The formalism used to evolve the EFE is the BSSN formalism, which is based on the 3 + 1

formalism, what makes the BSSN formalism and optimal way to evolve the equations is that

it is possible to write the EFE in a set of strongly hyperbolic partial differential equations,

therefore a review on hyperbolic partial differential equations is made together with the fo-

rementioned BSSN formalism. After that, a quick introduction on ET is made, emphasizing

on how to include FLRWSolver, this because till the date, FLRWSolver is freely available

but not included on the ET. Then FLRWSolver was used to solve numerically the Friedmann

equations, which correspond to the background solution, and also the perturbed Einstein

field equations for a sinusoidal form of the perturbations in the Newtonian gauge. For the

background case the maximum relative error found, comparing to the analytical solution,

for the scale factor a of 0,004% and ρ of 0,016%, in the case of the perturbations some of

the figures shown in [77] where reproduced using the functions δ and the velocity vi, in this

case the maximum relative error for the velocity was 0,026%, in the case of δ the maximum

relative error was 0,007%, the difference between the potentials along the simulations was

almost 0,5. This implementation using ET with the low values in the relative error shows

that ET is capable of maintain the linearity of the perturbations δ and vi up to times of order

≈ 103. The linearity is measure by the gravitational slip |Φ−Ψ| and according to [77] the

linearity is maintained up to ≈ 104 order, where the evolution of the equations should show

a deviation from the linear regime, but in this work that was not the case, at a time of order

102 the code start to show deviations, around a time of 1500 the deviation was almost 0,2

and at time order of 103 the deviation from linear regime was almost 0,5.

The dynamo equation (4-43) was evolved numerically, for this the background results were

obtained with FLRWSolver together with the velocity field, where the perturbation infor-

mation is. The value assigned to the conductivity was σ = 0,01, value used in [83], the

discretization used is shown in (5-34) and the results of this discretization are shown in fi-

gure 5-4, then the field is amplified but as long as the time increase, the increase of the field

decay, then it tends to a certain value, after that start to decree but really slowly, still the

field is higher than the initial field. This lead to future work of solving the dynamo equation

in a non linear way, this mean to be able to set up initial conditions in ET to see how differ

the kinematic dynamo from the non linear dynamo, also work with the dynamo equation in

higher orders setting initial conditions for the magnetic field in a similar way than SONG does

[8]. This is not limited to General Relativity, this also could be done in modified theories

of gravity like f(R) theories of gravity where a 3 + 1 scheme is well stablish, see [27, 84],

making possible a general evolution of the magnetic field.
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This appendix is a brief review of differential geometry needed to study General Relativity,

along this appendix some references are given to a deeper study of the subject.

A.1. Differential Manifolds

The mathematical language of General Relativity (GR) is the differential geometry. In this

section we are going to give some of the main geometric definitions and properties used in

GR. For further details see [108, 89, 52].

LetM be a topological space, a coordinate chart Cα = (φα, Uα) overM is a homeomorphism

φα : Uα ⊆ M → Rn, (A-1)

where Uα is an open set overM. We call a Cr-atlas overM to a chart collection {Cα = (φα, Uα)}α∈I
such that

M =
⋃
α∈I

Uα, (A-2)

and if Uα
⋂
Uβ ̸= ∅ then

φβ ◦ φ−1
α : φα

(
Uα
⋂

Uβ

)
⊆ Rn → φβ

(
Uα
⋂

Uβ

)
⊆ Rn (A-3)

is a Cr diffeomorfism. Two Cr atlas over a topological space M are compatible if the union

of the atlas is a new atlas, then, the union of all compatible atlas over a topological space

forms an equivalence class atlas, or a maximal altas. Then, a Cr differentiable manifold M
is a Haurdorff topological space with a maximal atlas.

A manifold is orientable if there is an atlas {ϕα, Uα}α∈I such that, in every no-empty inter-

section Uα
⋂
Uβ of open sets, the determinant of the matrix ∂xi/∂x′j is greater than zero,

where xi are Uα coordinates and x′i are Uβ coordinates. An atlas is locally finite, if every

point in the manifold has an open neighborhood that intercepts only a finite number of

neighborhood Uβ. A manifold M is paracompact if for every atlas {ϕα, Uα}α∈I , exist a a

locally finite atlas {ψβ, Vβ}β∈I with each Vβ contained in some Uα.
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Tangent space , Dual space and Tensors

Tangent space

Let us define the set of all real value functions over a manifold M as

F (M,R) := {f : M → R} , (A-4)

where for f, g ∈ F (M,R) we have a vector space structure and if f is differentiable respect

to a chart (ϕα, Uα), it is also differentiable respect to (ϕβ, Uβ). A tangent vector vp to the

manifold in a point p is a function

vp : F (M,R) → R
f 7→ vp (f)

, (A-5)

such that vp is lineal in R and meets the Leibniz product property. The space of all tangent

vectors at the point p, denoted by TpM, is a vector real space. The partial derivatives,

denoted as ∂α where i = 1, 2, ..., n and n is the manifolds dimension, are tanget vectors

in TpM and form a base for the tangent space. Then, for vp ∈ TpM and introducing the

Einsten sum convention

vp =
∑
α

vαp ∂α

∣∣∣∣∣
p

≡ vαp ∂α
∣∣
p
. (A-6)

Dual space

A one-form ω in the point p is a real function over TpM

ω : TpM → R
v 7→ ω (v) ≡ ⟨ω,v⟩ , (A-7)

such that ω is linear in R. The space of all one-forms, denoted by T ∗
pM, is called the dual

vector space. Every function f ∈ F (M,R) defines a one-form df in p, this one.form is called

the differential of f in p. For the local coordinates ϕα(p) = (x1, x2, ..., xn) we have that the

set of differentials {
dx1, dx2, ..., dxn

}
(A-8)

in p forms a base for the dual vector space, then

ω = ωαdx
α. (A-9)

This space meets the condition

⟨dxα, ∂β⟩ = δαβ , (A-10)

where {∂α} is a base of TpM.
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Tensors

Let Πs
r be defined as

Πs
r :=

{(
η1, ...,ηr,Y 1, ...,Y s

)
—ηi ∈ T ∗

pM,Y j ∈ TpM
}
, (A-11)

then a tensor T of type
(
r
s

)
is a multilinear function over Πs

r

T : Πs
r → R

(η1, ...,ηr,Y 1, ...,Y s) 7→ T (η1, ...,ηr,Y 1, ...,Y s) .
(A-12)

The space of all tensors, denoted as T rs , is called the tensor product

T rs := TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸
r-times

⊗ T ∗
pM⊗ · · · ⊗ T ∗

pM︸ ︷︷ ︸
s-times

, (A-13)

this is a vector real space of dimension r + s. Given T ∈ T rs it can be written as

T = Tα1···αr

β1···βs ∂α1 ⊗ · · · ⊗ ∂αr ⊗ dxβ1 ⊗ · · · ⊗ dxβs , (A-14)

where Tα1···αr

β1···βs are the components of T , we call the index α1 · · ·αr contravariant and β1 · · · βs
covariant, then the components of the tensor T related to to the contravariant index are called

contravariant components and the ones related to the covariant index are called covariant

components. Under a change of coordinates the tensor components, the vector and the

one-foms components as well, transform acording to

T ′γ1···γr
σ1···σs =

∂x′γ1

∂xα1
· · · ∂x

′γr

∂xαr

∂xβ1

∂x′σ1
· · · ∂x

βs

∂x′σs
Tα1···αr

β1···βs . (A-15)

Transformation between manifolds

Let M and N be two manifolds. We can define a diffeomorfism between these manifolds

ϕ : M → N . (A-16)

From this, we can induce a new function

ϕ̃ : F (M) → F (M)

f 7→ ϕ̃ (f)
(A-17)

defined as
[
ϕ̃ (f)

]
(p) = f (ϕ(p)), where p ∈ M. We induce now the function

ϕ∗ : TpM → Tϕ(p)N
X 7→ ϕ∗ (X)

(A-18)

such that

ϕ∗ (X(f))|ϕ(p) := X (f ◦ ϕ)|p , (A-19)
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M N
p φ(p)

F (M) F (N )

TpM TpN
T ∗pM T ∗pN

φ

φ∗
φ∗

φ̃

Figure A-1.: Diffeomorphism between the manifolds M and N

the function ϕ∗ is known as pushforward. Now, from the definition of ϕ∗, we define the

function

ϕ∗ : T ∗
ϕ(p)N → T ∗

pM
ω 7→ ϕ∗ (ω)

(A-20)

given by

⟨ϕ∗ (ω) ,X⟩ = ⟨ω, ϕ∗ (X)⟩ , (A-21)

the function ϕ∗ is known as pullback. These functions extends to tensors of type (0, s) and

(r, 0), then extends to (r, s) tensors, a scheme of the diffeomorphism are in figure A-1.

A.2. Curvature

References for this section are [108, 93, 121]

Lie derivative, connection and covariant derivative

Let λ(t) be a curve over a manifold M, there exist only one maximal curve λ(t) over M
that goes through each p ∈ M such that λ(0) = p and its tangent vector in the point λ(t)

is the vector X|λ(t). The flux of a vector field X over M is a transformation

ϕ : M× R −→ M
(p, t) −→ ϕ(p, t) := λt(p)

(A-22)

if we fix t then we define a diffeomorfism that sends a point p in M to a point ϕt(p). With

this we can define the Lie derivative of a tensor T with respect to a vector field X in the
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point p is

LX T |p = Lim
t→0

1

t

(
T |p − (ϕt)∗ T |p

)
. (A-23)

Given the fact that under the change of coordinates de partial derivative is not invariant, we

need to generalize this concept over a manifold. This generalization is given by the covariant

derivative ∇XY , where X,Y ∈ TpM. Because ∇XY is a tensor, we can write it using the

bases {∂α} and {dxα}, then the components of this tensor, denoted as ∇βY
α, are

∇βY
α = ∂βY

α + ΓαβγY
γ. (A-24)

The terms Γαβγ are called Christoffel symbols of the second kind, these symbols are given by

Γαβγ =
〈
dxα,∇∂β∂α

〉
. (A-25)

Just like the partial derivative, it is linear and meets the Leibniz product property.

We extend the covariant derivative to arbitrary tensor. If T ∈ T sr , then ∇T ∈ T sr+1, where

the components of ∇T are

∇γT
α1···αr

β1···βs = ∂γT
α1···αr

β1···βs + Γα1
γσT

σα2···αr

β1···βs + · · ·+ Γαr
γσT

σα2···αr−1σ
β1···βs

− Γσγβ1T
α1···αr

σβ2···βs − · · · − ΓσγβsT
α1···αr

β1···σβs−1
, (A-26)

where it is still linear and meets the Leibniz product property. Given that is a tensor this

have to transform like in (A-15), from this we can see that the transformation rule for the

Christoffel symbols is given by

Γ′α
βγ =

∂x′α

∂xσ
∂xρ

∂x′β
∂xσ

∂x′ρ∂x′γ
+
∂x′α

∂xσ
∂xρ

∂x′β
∂xτ

∂x′γ
Γσρτ . (A-27)

With the covariant derivative and the Lie derivative defined, given T ∈ T rs (M), we can

write the components of LXT in terms of partial derivatives

(LXT )α1···αr

β1···βs = Xσ∂σT
α1···αr

β1···βs − T σα2···αr

β1···βs ∂σX
α1 − · · ·T α1···αr−1σ

β1···βs ∂σX
αr

+ T α1···αr

σβ2···βs∂β1X
σ + · · ·+ T α1···αr

β1···βs−1σ
∂βsX

σ, (A-28)

and in terms of covariant derivatives

(LXT )α1···αr

β1···βs = Xσ∇σT
α1···αr

β1···βs − T σα2···αr

β1···βs ∇σX
α1 − · · ·T α1···αr−1σ

β1···βs ∇σX
αr

+ T α1···αr

σβ2···βs∇β1X
σ + · · ·+ T α1···αr

β1···βs−1σ
∇βsX

σ. (A-29)

We need to keep in mind that in general relativity we work with a free torsion connection,

a consequence of this is that the Christoffel symbols are symmetric in its index, i.e.

Γαβγ = Γαγβ. (A-30)
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Parallel transport

Let T a tensor field and λ(t) a curve over a manifold M1, let us define the covariant

derivative along the curve as ∇∂tT , then if X is the tangent vector to the curve λ(t) then

the components of the covariant derivative along the curve is ∇γT
α1···αr

β1···βs X
γ. We said that a

vector is parallel transport along a curve λ(t) if ∇∂tT = 0. In the particular case of a vector

Y we choose a curve λ(t) such that we have a coordinate system xα(t) and Xα = dxα

dt
. We

said that the curve is a geodesic curve if the tangent vector is parallel transported along the

curve, this means that

∇XX = 0. (A-31)

For the basis {∂α} and {dxα} we can write this condition in the following way

d2xα

dt2
+ Γαβγ

dxβ

dt

dxγ

dt
= 0. (A-32)

Riemann tensor and metric tensor

In a euclidian space we have that we can commute the derivatives without problems, but

this does not happens in a curve space. A measure of this non-commutativity is given by

the Riemann tensor, the components of this tensor are given by

Rα
βγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ + ΓαγσΓ

σ
δβ + ΓαδσΓ

σ
γβ, (A-33)

these components have de following properties

Rαβγδ = −Rβαγδ = Rαβδγ = Rγδαβ, (A-34)

Rαβγδ +Rαβγδ +Rαβγδ = 0, (A-35)

∇ηR
α
βγδ +∇δR

α
βηγ +∇γR

α
βηδ = 0. (A-36)

From a contraction we define the Ricci tensor as

Rαβ = Rσ
ασβ. (A-37)

Over a manifold M we define the metric tensor as a symmetric tensor field of the type T 0
2 .

Given the basis {dxα} we have that

g = gαβdx
α ⊗ dxβ, (A-38)

with the metric tensor we can define a norm, the cosine of an “angle” for two given vectors

and the lenght of a path between two points, this allow us to write the distance along a

curve of two infinitesimal close points as

ds2 = gαβdx
αdxβ. (A-39)

1A curve λ is a function such that λ : I ⊂ R −→ M where R are the real numbers
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We said that the metric is not degenerated if the determinant of the metric is dinstict from

zero, det |gαβ| ̸= 0. This condition over the metric allows to define T 2
0 tensor type gαβ such

that

gαβgβγ = δαγ . (A-40)

From this we can built an isomorphism such that we can relate the covariant and contravari-

ant index components of the tensors, if we take a vector with components Xα then

Xα = gαβX
β (A-41)

and using (A-40)

Xα = gαβXβ. (A-42)

We can generalize this to tensor components, for example, for a tensor T with components

Tαβγ

Tαβγ = gγσT
αβγ (A-43)

Tαβγ = gγσ1gβσ2T
ασ2σ1 (A-44)

Tαβγ =gγσ1gβσ2gασ3T
σ3σ2σ1 (A-45)

in a similar way we do this for Tαβγ.

Let us define the signature of of the metric tensor as the number of positive eigenvalues less

the number of negative eigenvalues. A particular case is the signature n − 2, this is the

case of a Minkowskian or Lorenzian metric, from here we are going to assume a lorenzian

signature. A consequence of this is the values that can take the inner product of a vector

defined by the metric tensor, we are going to divide this cases in three. For a vector X we

said that this vector is

Null if g (X,X) = 0

Timelike if g (X,X) < 0

Spacelike if g (X,X) > 0

To get a relation between the metric tensor components we use variational calculus2, with this

we get the geodesic equation but in terms of the components of the metric tensor, this gives

the following relation between the Christoffel symbols and the metric tensor components

Γαβγ =
1

2
gασ (∂βgσγ + ∂γgσβ − ∂σgβγ) . (A-46)

With this in mind we can write the equation (A-26) in terms of the metric tensor components,

a consequence of this is that

∇γgαβ = 0 and ∇γg
αβ = 0. (A-47)

2For details see [93]
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Killing vector field

The metric, or the metric tensor components, gαβ is a form invariant under a transformation

from xα to x′α if g′αβ (x
′) is the same fuction of x′α as gαβ(x) is of xα. We know that gαβ

transform as a tensor, then if the metric is a form invariant

gαβ(x) =
∂x′ρ

∂xα
∂x′σ

∂xβ
gρσ(x

′), (A-48)

any transformation x → x′ that satisfies (A-48) is called an isometry. Let us consider an

infinitesimal coordinate transformation

x′
α
= xα + ϵξα with |ϵ| ≪ 1, (A-49)

to first order in ϵ we have that gαβ(x
′) ≈ gαβ(x) + ϵξλ∂λgαβ(x), then we can write (A-48) as

follows

gασ∂βξ
σ + gρβ∂αξ

ρ + ξλ∂λgαβ = 0. (A-50)

This can be rewritten in terms of derivatives of the covariant components ξα = gαµξ
µ, then

0 = gασ∂βξ
σ + gρβ∂αξ

ρ + ξλ∂λgαβ

= ∂βξα + ∂αξβ − ξλ (∂βgαλ + ∂αgβλ − ∂λgαβ)

= ∂βξα + ∂αξβ − 2ξλΓ
λ
αβ

therefore

∇βξα +∇αξβ = 0. (A-51)

This is the Killing equation, every vector that satisfies this equation is called a Killing vector.

The problem of determining all infinitesimal isometries of a given metric is now reduce to

determining the Killing vectors. Any linear combination of Killing vectors, with constant

coefficients, is a Killing vector. For more details see [121].

A.3. General relativity

Here we are going to name the postulates of general relativity and see which are the equations

that rules the dynamics of the spacetime.

Postulates of General Relativity theory

This postulates are a motivation of the geometrization of the gravity force in classical me-

chanics.

Postulate 1 The spacetime is the collection of all events, it is described by the pair (M, g),

where M is a Hausdorff smooth four-dimensional manifold and g is a lorenzian metric over

M.

Now let us introduce the postulates that involves the matter fields in the theory.
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Postulate 2 The equations that satisfy the matter fields must fulfill that if, for U ⊂ M is

convex and p, q ∈ U , then a signal can be send in U between p and q if and only if p and

qcan be join by a c1-curve contained in U , which tangent vector everywhere is non-zero and

timelike or null.

Postulate 3

There exist a symmetric tensor

Tαβ = Tβα = Tαβ (Ψi,∇Ψi) , (A-52)

where Ψi are the matter fields and i index the different matter field, such that the depence

of the matter fields is finite and

Tαβ = 0 over U ⊂ M and open set, if and only if Ψi = 0 for every i over U .

∇βT
αβ = 0

For a further discussion of the postulates see [52].

Einstein Field Equations

The gravitational action is

S = SE + SM + SΛ, (A-53)

where

SE =
c3

16πG

∫
(4)R

√
−gd4x (A-54)

is the Einstein action, (4)R is the Ricci scalar, SΛ is the contribution due to the cosmological

constant

SΛ = − c3

16πG

∫
2Λ

c2
√
−gd4x, (A-55)

and SM the matter action. From the matter action we can define the energy-momentum

tensor T µν , and because the matter action is a function of the Lagrange density L, which is

also function of matter fields Ψi, then [69, 34]

Tαβ =
∑
i

∂L

∂ (∇αΨi)
∇βΨi − gαβL. (A-56)

Taking the variation of the total action with respect to gµν one finds the Einstein field

equations with cosmological constant

(4)Rαβ −
1

2
(4)Rgαβ + Λgαβ = −8πG

c4
Tαβ, (A-57)
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from now on we will use the natural unit system, therefore G = c = 1. The set of equations

(A-57) can be written as

(4)Rαβ = 8π

(
Tαβ −

1

2
Tgαβ

)
+ Λgαβ. (A-58)

We can deduce the Einstein field equations in vacuum from an action this action is called

the Einstein-Hilbert action, taking Λ = 0 this action is given by

SEH =
1

16πG

∫
R
√
−gd4x, (A-59)

making δSEH = 0 leads to

Rαβ −
1

2
Rgαβ = 0. (A-60)

If we want to include the matter contribution to the field equations, we must add the following

term to the Einstein-Hilbert action

SM =

∫
L (Ψi)

√
−gd4x, (A-61)

where L is a lagrangian density. Making δ (SEH + SM) = 0 we obtain

Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ, (A-62)

these are ten non-linear coupled partial differential equations. For details see [89, 52, 108].
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This appendix attempt to give some highlights in geometry of hypersurfaces and foliations.

We start considering a spacetime (M, g) which is time orientable. For this appendix we will

mainly follow [47, 103, 18].

B.1. Geometry of hypersurfaces

A hypersurface of M is the image Σ of a 3-dimansional manifold Σ̂ by an embedding

Φ : Σ̂ −→ M, (B-1)

then

Σ = Φ
(
Σ̂
)
. (B-2)

A hypersurface can be defined locally as the set of point for which a scalar field on M is

constant. Let t be a scalar field over M, setting the constant to zero, for all p ∈ M, if

p ∈ Σ if and only if t(p) = 0. From Appendix A, the pullback Φ∗ is defined in the following

domains

Φ∗ : T ∗
pM −→ T ∗

p Σ̂, (B-3)

this allows to define the induced metric on Σ as

γ := Φ∗g, (B-4)

which is also called the first fundamental form of Σ. The hypersurface is said to be

Spacelike if and only if γ has signature (+ + +);

Timelike if and only if γ has signature (−++);

Null if and only if γ has signature (0 + +).

If Σ is a spacelike or timelike hypersurface, then the induced metric γ is not degenerate.

This implies that there is a unique connection (covariant derivative) D on the manifold Σ

that is torsion-free and satisfies

Dγ = 0. (B-5)
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Let u, v ∈ TpM, the extrinsic curvature tensor of Σ, or second fundamental form of the

hypersurface Σ, is

K : TpΣ× TpΣ −→ R
(u,v) 7−→ −u · (∇vn) ,

(B-6)

where n is a vector normal to Σ.

Given a scalar field t on M such that the hypersurface Σ is defined as a level surface of

t, the 1-form of the gradient of t is normal to Σ, the vector t = ∇t satisfies the following

properties

t is timelike if and only if Σ is spacelike;

t is spacelike if and only if Σ is timelike;

t is null if and only if Σ is null.

In the case where Σ is not null, it can be define a unit vector by setting

n :=
t

±t · t
, (B-7)

where

n · n = −1 if Σ is spacelike,

n · n = 1 if Σ is timelike.

From now on we focus on hypersurfaces Σ such that the induced metric is defined positive,

which will represents the spatial role of the physical system [13]. To be able to project any

quantity over Σ, we define the orthogonal projector onto Σ as

γ̄ : TpM −→ TpΣ

v 7−→ v + (n · v)n. (B-8)

As a direct consequence of n · n = −1, γ̄ satisfies γ̄(n) = 0. It is possible to generalize

aboves expression to 1-forms, even to any multilinear form A in the following way

γ̄∗
M : (TpM)n −→ TpΣ

(v1, ...,vn) 7−→ A (γ̄v1, ..., γ̄vn) .
(B-9)

Given (B-9), if v1,v2 ∈ TpΣ then γ̄∗
M [γ (v1,v2)] = γ (v1,v2) , therefore from now on

γ := γ̄∗
M (γ), similarly K := γ̄∗

M (K). For the case of a tensor T of type
(
p
q

)
on M, the

projection is denoted as γ̄∗
M (T ) , then for any basis {Eα} of TpM the projection of T onto

M is

(γ̄∗
MT )

α1...αp

β1...βq
= γα1

µ1
· · · γαp

µp γ
ν1
β1
· · · γνqβqT

µ1···µp
ν1···νq . (B-10)
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Now that we are able to project onto Σ, it must be possible to relate somehow the curvature

quantities of M with the ones of Σ, the relations that make this possible are the Gauss-

Codazzi relations, which are the full projection of the Riemann tensor in the hypersuface

and one index projection in to the normal vector, respectively [18]. The Gauss relations is

given by

γµαγ
ν
βγ

γ
ργ

σ
δ
(4)Rρ

σµν = Rγ
δαβ +Kγ

αKδβ −Kγ
βKαδ, (B-11)

where (4)R is the Riemann tensor in M and R is the Riemann tensor in Σ. The Codazzi

relation is given by

γµαγ
ν
βγ

λ
ρ
(4)Rρ

σµνn
σ = DβK

λ
α −DαK

λ
β . (B-12)

The Riemann tensor R is function of γ, then what Gauss-Codazzi relations says is that the

choice of γ and K cannot be arbitary, these must fullfill the relations (B-11) and (B-12).

We can also project two indices of the Riemann tensor along the normal vector, from this

we obtain the evolution equation

LnKαβ = nδnγγσαγ
ρ
β
(4)Rδργσ − α−1DαDβα−Kγ

βKαγ. (B-13)

B.2. Geometry of foliations

The 3+1 formalism is based on a foliation on spacetime by a 1-parameter family of spacelike

hypersurfaces, this is possible for the globally hyperbolic spaces [118]. A Cauchy surface is

a spacelike hypersurface Σ in M such that each causal curve without end points intersects

Σ once and only once. A spacetime (M, g) that admits a Cauchy surface Σ is said to be

globally hyperbolic. Any hyperbolic spacetime (M, g) can be foliated by a family of spacelike

hypersurfaces (Σt)t∈R, a foliation or slicing meant that there exist a smooth scalar field t̂ on

M, which is regular, such that its gradient never vanishes and

∀t ∈ R, Σt :=
{
p ∈ M|t̂(p) = t

}
. (B-14)

This hypersurfaces fulfill that

Σt ∩ Σt′ = ∅ and t ̸= t′,

M = ∪t∈RΣt.

Since we have a future directed unit vector normal to Σt, we can write n = αt where

α = (−t · t)−1/2 , (B-15)

this function is known as the lapse function. With the lapse function we can define a normal

vector to Σt, called the normal evolution vector, as

m := αn. (B-16)
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Those observers which n is its 4-velocity are Eulerian observes. For a timelike 4-vector t on

the spacetime tangent to the time axis, tα = (∂/∂t)α and tα∇αt = 1, take into account that

t is not always normal to Σt, then we project t along n and γ in the following way

α = −tαnα, βα = tβγαβ . (B-17)

The vector βα is called the shift vector, respectively, then we can write t as

t = αn+ β. (B-18)

We are able to write the evolution equation for γ along m, this expression is given by

Lmγ = −2αK =⇒ K =
1

2
Lnγ, (B-19)

this allows to obtain the scalar curvature in terms of hypersurface quantities

(4)R = R +K2 +KµνK
µν − 2

α
LmK − 2

α
DµD

µα. (B-20)



C. Perturbation theory

The main idea of this appendix is to give a brief introduction into the mathematics of

cosmological perturbation theory, main references for this appendix are [91, 90, 25, 56, 55].

Here we need two different spacetimes, the real spacetime, or physical spacetime (Mp, gαβ)

and the background spacetime (M0, ḡαβ). The perturbation of any quantity T is the dif-

ference between the value that this quantity takes in real spacetime and the value in the

background spacetime at a given point. To do this we need a diffeomorphism ϕ between M0

and Mp, ϕ : M0 → Mp this is called a gauge choice, from this we can induce a pullback

ϕ∗ : T ∗
ϕ(p)Mp → T ∗

pM0 for p ∈ M. Let T 0 be a tensor defined on M0 and let T be a tensor

defined on Mp, then the perturbation ∆T is defined as

∆T = ϕ∗T |M0
− T 0, (C-1)

where it must be take in to account that this is given at each point of M0.

N

Mn

M1

M0

T0

∆T1

∆Tn

φλ

Figure C-1.: Scheme of sub-manifolds family Mλ in a five dimensional manifold N . The

comparison between manifolds is given by ϕλ.

Let us consider a 5 dimensional manifold N = Mp × R, in N is embedded the family of 4

dimensional sub-manifolds Mλ where λ ∈ R. A tensor T λ living on Mλ can be extended to

a tensor T on N evaluating in the point (p, λ), where p ∈ M, then T (p, λ) = T λ (p). Each

of these sub-manifolds represents a perturbed spacetime, for the background spacetime M0

corresponds λ = 0. To be able to compare a tensor in Mλ with a tensor in M0 it must be
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consider a flux ϕλ which is the integral curve of the vector field X, because we have a five

dimensional space, the components of the vector field are X = (X0, X1, X2, X3, X4) where

X4 = 1, so the points lie on the same manifold. It is possible to make a Taylor expansion

using ϕλ, the perturbation in this case is

∆T λ = ϕ∗
λT |M0

− T 0, (C-2)

and the expansion is given by

ϕ∗
λT |M0

=
∞∑
k=0

λk

k!
δ
(k)
ϕ T =

∞∑
k=0

λk

k!
LkX , (C-3)

where

δ
(k)
ϕ T =

dk

dλk
(ϕ∗

λT )

∣∣∣∣
λ=0,M0

. (C-4)

Therefore the perturbation is given by

∆T λ =
∞∑
k=1

λk

k!
δ
(k)
ϕ T (C-5)

Due to the covariance of General Relativity, it is possible to choose another diffeomorphism ψ

between M0 and Mp, the change between this diffeomorfism is called gauge transformation.

Let ψλ another gauge choice which is the integral curve of the vector Y , where X ̸= Y ,

then it is possible to have

ψ∗
λT |M0

=
∞∑
k=0

λk

k!
δ
(k)
ψ T =

∞∑
k=0

λk

k!
LkY , (C-6)

where

δ
(k)
ψ T =

dk

dλk
(ψ∗

λT )

∣∣∣∣
λ=0,M0

. (C-7)

If ϕ∗
λT = ψ∗

λT for any ϕ and ψ, then T is gauge invariant. This allows to mention the

Stewart-Walker lemma [105]: For every vector field X and k ≥ 1

LXδ
kT = 0, (C-8)

if and only if T is gauge invariant at order k. It is not always possible to have invariant

gauge quantities, in this case we must have a transformation between the gauge choices, this

is called a gauge transformation, which is given by

Φλ = ϕ−λ ◦ ψλ. (C-9)

This makes a difference between δ
(k)
ϕ T and δ

(k)
ψ T , for the case of first order perturbations

the difference is given by

δ
(1)
ψ T − δ

(1)
ϕ T = LξT 0, (C-10)

where

ξ = Y −X. (C-11)



D. General Relativistic Dynamo

Equation

In this appendix we will calculate the full dynamo equation in 1 + 3 formalism given at [83]

as equation (11), in [83] the steps of the calculations and geometrical properties used are

dismissed, but here we will show the properties and most of the steps for the calculations.

Here we will use the Maxwell equations obtained in chapter 2, but we want that the appendix

be complete as possible, then we will write Maxwell equations assuming quasi-neutrality

(ρcharge ≈ 0) and the Ohm’s law using the same notation as in [83],

Ḃ⟨a⟩ =

(
σab + ωab − 2

3
Θhab

)
Bb − curlEa − ϵabcEbu̇c, (D-1)

Ė⟨a⟩ =

(
σab + ωab − 2

3
Θhab

)
Eb + curlBa + ϵabcBbu̇c − 4πJ ⟨a⟩, (D-2)

DaE
a = −2ωaBa, DaB

a = 2ωEa, (D-3)

J ⟨a⟩ =
1

4πλ

(
Ea + ϵabcvbBc

)
(D-4)

where the 1+ 3 electric and magnetic fields in this appendix are written as E and B respec-

tively, X⟨a⟩ = habXb, curlX
a = ϵabcDbXc and Ẋ

a = ub∇bX
a, here D is the projection of the

covariant derivative ∇ under the projector h. The main idea is to calculate curl (curlB)a

from two different ways, from a physical and from a geometrical point of view. In the case

of the physical point of view is using Maxwell equations, form the geometrical point of view

is using geometrical properties that can be obtained from the 1+3 formalism. Therefore we

will divide this appendix in two sections: Geometry and Physics. In Geometry we will ob-

tain curl (curlB)a from the geometrical properties given by 1+3 formalism and also curlĖ⟨a⟩

which is given by equations (9) and (10) in [83]. In Physics we will obtain curl (curlB)a from

Maxwell equations and then the full dynamo equation is obtained.

D.1. Geometry

As mention before, we will obtain curl (curlB)a from the geometrical point of view. From

the definition of curl and using the fact that

ϵabcϵdec = δadδ
b
e − δbdδ

a
e , (D-5)
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then

curl (curlB)a = ϵabcϵcdeDbD
dBe = −D2Ba +DbD

aBb. (D-6)

Using the commutation of the D operator [111, 114]

2D[cDd]Ba = −2ϵcdbω
dḂ⟨a⟩ +RdabcB

d, (D-7)

then

curl (curlB)a = −D2Ba +Da
(
DbB

b
)
+ 2ϵcdbω

dḂ⟨a⟩ +RabBb. (D-8)

Now we need to find the expression forRab, for this we will use the contracted Gauss equation

obtained from (B-11), then we can decompose Rab as follows [111, 114]

Rab = hcah
d
bRcd +Racbdu

cud + (Dcua) (Dbu
c)−ΘDbua, (D-9)

using the Einstein Field equations decomposition in 1+3 formalism, from (A-58), using the

projector h is possible to obtain hcah
d
bRcd, which is given in (2-25), then using Racbdu

cud,

given in (2-32), together with the propagation equations and using the fact that

∇bu̇a−(∇bua)
· = ua

(
1

3
Θu̇b − σ̇bcu

c + ϵbcdω
cu̇d
)
+Dbu̇a−σ̇ab−ω̇ab−

1

3

(
Θ̇hab +Θḣab

)
+u̇au̇b,

(D-10)

after some calculations [112, 39, 113]

Rab =
2

3

(
ρ+ Λ− 1

3
Θ2 − σ2 + ω2

)
hab + πab − σ̇⟨ab⟩ +D⟨au b⟩ −

1

3
Θ (σab − ωab)

− u̇⟨a u̇ b⟩ − 2
(
σc⟨aσ b⟩c + ω⟨aω b⟩

)
− 2σc[aω

c
b]. (D-11)

Let us now obtain curlĖ⟨a⟩, for this we will use the following property [76]

(DaXb)
· = DaẊb −

1

3
ΘDaXb − σcaDcXb +Hd

aϵdbcX
c, (D-12)

where Hab = curlσab +D⟨aω b⟩ + 2u̇⟨aω b⟩, then

curlĖ⟨a⟩ = ϵabc
[(
DbE⟨c⟩

)·
+

1

3
ΘDbEc + σdbDdEc −

(
curlσbd +D⟨bω d⟩ + 2u̇⟨bω d⟩) ϵdceEe

]
,

(D-13)

To compute this expression we used the following formulas together with the Maxwell equa-
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tions

ϵabc
(
DbE⟨c⟩

)·
=
(
ϵabcDbE⟨c⟩

)· − ϵ̇abcDbE⟨c⟩, (D-14)(
ϵabcDbE⟨c⟩

)·
= −B̈⟨a⟩ +

[(
σab + ωab − 2

3
Θhab

)
Bb

]·
− ϵ̇abcEbu̇c − ϵabcĖbu̇c − ϵabcEbüc,

(D-15)

ḣab = 2u(a u̇ b), (D-16)

ϵ̇abc = 3u[a ϵ bc]du̇
d, (D-17)

curlσab = ϵcd(aD
cσdb), (D-18)

Dbσab =
2

3
DaΘ+ curlωa + 2ϵabcu̇

bωc − qa, (D-19)

then

curlĖ⟨a⟩ = −B̈⟨a⟩ + Ξa (D-20)

where

Ξa =

(
σ̇ab + ω̇ab − 2

3
Θ̇hab

)
Bb +

(
σab + ωab − 2

3
Θhab

)
Ḃb +

1

3
Θ

(
σab + ωab − 2

3
Θhab

)
Bb

−ϵabcu̇c
[(
σbd + ωbd −

1

3
Θhbd

)
Ed + ϵbdeD

dBe + ϵbdeu̇
eBd − 4πJ⟨b⟩

]
+Eb

[
(curlσ)ab +D⟨aω b⟩ + 2u̇⟨aω b⟩

]
− EaϵdebD

dσeb − ϵabcqbEc + ϵabc
[
Dd (Ecσbd)−

2

3
EcDbΘ

]
− 2Eb

(
D[aω b] + u̇[aω b]

)
. (D-21)

D.2. Physics

Here we will calculate curl (curlB)a from Maxwell equations, let us start from the Ampère

equation

curlBa = Ė⟨a⟩ −
(
σab + ωab − 2

3
Θhab

)
Eb − ϵabcBbu̇c + 4πJ ⟨a⟩, (D-22)

taking the curl and using the Ohm’s law

curl (curlB)a = curlĖ⟨a⟩−ϵabcDb

[
ϵcdeu̇

eBd
]
+λ−1ϵabcϵcdeDb

(
vdBe

)
−ϵabcDb

[
σcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
−ϵabcDb

[
ωcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
+λ−1ϵabcDbEc+

2

3
ϵabcDb

[
4πλΘhcdJ

⟨d⟩ −Θhcdϵ
defveBf

]
,

(D-23)

in the second line of above equation, distributing the derivative, using Faraday’s equation

and using Ohm’s law we obtain

curl (curlB)a = curlĖ⟨a⟩−ϵabcDb

[
ϵcdeu̇

eBd
]
+λ−1ϵabcϵcdeDb

(
vdBe

)
−ϵabcDb

[
σcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
− ϵabcDb

[
ωcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
+

8π

3
λJ⟨c⟩ϵ

abcDbΘ− 2

3
ϵabcϵdefveBfhcdDbΘ

+

(
2

3
Θ + λ−1

)[
Ḃ⟨a⟩ −

(
σab + ωab − 2

3
Θhab

)
Bb + ϵabcu̇c

(
4πλJ⟨b⟩ − ϵbdev

dBe
)]
. (D-24)
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Now that we have curl (curlB)a obtained in a geometrical and in a physical way, let us equate

both expressions

−D2Ba +Da
(
DbB

b
)
+RabBb =

curlĖ⟨a⟩ − ϵabcDb

[
ϵcdeu̇

eBd
]
+ λ−1ϵabcϵcdeDb

(
vdBe

)
− ϵabcDb

[
σcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
− ϵabcDb

[
ωcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
+

8π

3
λJ⟨c⟩ϵ

abcDbΘ− 2

3
ϵabcϵdefveBfhcdDbΘ

+

(
2

3
Θ + λ−1

)[
Ḃ⟨a⟩ −

(
σab + ωab − 2

3
Θhab

)
Bb + ϵabcu̇c

(
4πλJ⟨b⟩ − ϵbdev

dBe
)]
, (D-25)

multiplying by λ and rearranging the terms in the equation we finally obtain

Ḃ⟨a⟩ + λD2Ba + ϵabcϵcdeDb

(
vdBe

)
=

− 2

3
λΘḂ⟨a⟩+2λDa

(
ωbEb

)
+λRabBb+λϵ

abcDb

[
σcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
+λϵabcDb

[
ϵcdeu̇

eBd
]

+

(
2

3
λΘ+ 1

)[
Ḃ⟨a⟩ −

(
σab + ωab − 2

3
Θhab

)
Bb + ϵabcu̇c

(
4πλJ⟨b⟩ − ϵbdev

dBe
)]

+λϵabcDb

[
ωcd
(
4πJ ⟨d⟩ − ϵdefveBf

)]
+
8π

3
λ2J⟨c⟩ϵ

abcDbΘ+
2

3
λϵabcϵdefveBfhcdDbΘ+λB̈⟨a⟩−Ξa.

(D-26)
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In this appendix it is shown some perturbed quantities at first order, in order to do this

we used Sagemanifolds[48, 49] and xPand [95]. Let us remember that H = a′/a where the

prime denotes the derivative respect to the conformal time.

E.1. Geometric quantities perturbed at first order

Christoffel symbols for the four dimensional spacetime can be written in the following way

Γαβγ = δ(0)Γαβγ + δ(1)Γαβγ, (E-1)

where δ(0)Γαβγ is the background contribution and δ(1)Γαβγ is the contribution at first order.

Therefore

δ(0)Γ0
00 = H, (E-2)

δ(0)Γi0j = Hδij, (E-3)

δ(0)Γ0
ij = Hδij, (E-4)

δ(0)Γi00 = δ(0)Γ0
0i = δ(0)Γikj = 0, (E-5)

and

δ(1)Γ0
00 = (ψ)′ , (E-6)

δ(1)Γi0j = − (ϕ)′ δij +
1

2

(
χij
)′
, (E-7)

δ(1)Γ0
ij = −∂iωj − 2Hϕδij − (ϕ)′ δij −Hχij +

1

2
(χij)

′ , (E-8)

δ(1)Γi00 = ∂iψ +Hωi +
(
ωi
)′
, (E-9)

δ(1)Γ0
0i = ∂iψ +Hωi, (E-10)

δ(1)Γikj = −∂jϕδik − ∂kϕδ
i
j + ∂iϕδjk −Hωiδjk +

1

2
∂jχ

i
k +

1

2
∂kχ

i
j −

1

2
∂iχjk. (E-11)
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The Ricci tensor in the background is given by

R
(0)
00 = −3

a′′

a
+ 3H, (E-12)

R
(0)
0i = 0, (E-13)

R
(0)
ij =

(
a′′

a
+H

)
δij. (E-14)

At first order

R
(1)
00 = H∂iωi + ∂i

(
ωi
)′
+ ∂i∂

iψ + 3 (ϕ)′′ + 3H (ϕ)′ + 3H (ψ)′ , (E-15)

R
(1)
0i =

a′′

a
ωi +H2ωi + 2∂i (ϕ)

′ + 2H∂iψ +
1

2
∂k
(
χki
)′
, (E-16)

R
(1)
ij =

[
−Hψ′ − 5Hϕ′ − 2

a′′

a
ψ − 2H2ψ − 2

a′′

a
ϕ− 2H2ϕ− ϕ′′ + ∂k∂kϕ−H∂lωl

]
δij

− ∂i (ωj)
′ − 2H∂iωj +Hχ′

ij +
a′′

a
χij +H2χij +

1

2
χ′′
ij + ∂i∂j (ϕ− ψ) (E-17)

+
1

2
∂l
(
∂iχ

l
j + ∂jχ

l
i

)
− 1

2
∂l∂

lχij. (E-18)

The curvature scalar in the background is given by

R(0) =
6a′′

a3
. (E-19)

At first order

R(1) =
1

a2

[
−6H∂iωi − 2∂i

(
ωi
)′ − 2∂i∂

iψ − 6ϕ′′ − 6Hψ′ − 18Hϕ′ − 12
a′′

a
ψ + 4∂i∂

iϕ+ ∂l∂
iχli

]
.

(E-20)

The Einstein tensor in the background is given by(
G0

0

)(0)
= − 3

a2
, (E-21)(

G0
i

)(0)
=
(
Gi

0

)(0)
= 0, (E-22)(

Gj
i

)(0)
= − 1

a2

(
2
a′′

a
−H2

)
δji . (E-23)

At first order(
G0

0

)(1)
=

1

a2

(
6H2ϕ+ 6Hϕ′ + 2H∂iωi − 2∂i∂

iϕ− 1

2
∂k∂

iχki

)
, (E-24)

(
G0
i

)(1)
=

1

a2

[
−2∂i (2Hψ + ϕ′)− 1

2
∂kχ

k
i +

1

2
∂k∂

kωi

]
(E-25)

(
Gi
j

)(1)
=

1

a2

{[
2Hψ′ + 4

a′′

a
ψ − 2H2ψ + ∂l∂

lψ + 4Hϕ′ + 2ϕ′′ − ∂l∂
lϕ+ 2H∂lωl + ∂l

(
ωl
)′
+

1

2
∂k∂

lχkl

]
δij

+∂i∂j (ϕ− ψ)− ∂i
(
2Hωj + ω′

j

)
+

(
H
(
χij
)′
+

1

2

(
χij
)′′)

+
1

2
∂l∂

iχlj +
1

2
∂l∂jχ

il − 1

2
∂l∂

lχij

}
(E-26)
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The following Sagemath code calculates the Friedman equations, this also calculates the

lapse function, the shift vector, the extrinsic curvature, the induced metric and the normal

vector for the FLRW solution with conformal time

%display latex

Parallelism (). set(nproc =8)

M = Manifold(4, ’M’, structure =" Lorentzian ")

N = Manifold(3, ’N’, ambient=M, structure =" Riemannian ")

print(M)

print(N)

C.<eta ,x,y,z>=M.chart(r’eta:(-oo,oo):\eta x:(-oo,oo) y:(-oo,oo) z:(-oo,oo)’)

r=sqrt(x^2+y^2+z^2)

var(’k’, domain=’real ’); k=0

a = M.scalar_field(function(’a’)(eta),name=’a’)

rho = M.scalar_field(function(’rho ’)(eta), name=’rho ’)

p = M.scalar_field(function(’p’)(eta), name=’p’)

g = M.metric ()

g[0,0] = -a*a

g[1,1] = a*a/((1 + (k*r^2)/4)^2)

g[2,2] = a*a/((1 + (k*r^2)/4)^2)

g[3,3] = a*a/((1 + (k*r^2)/4)^2)

g.display ()

nabla = g.connection ()

g.christoffel_symbols_display ()

Ricci = nabla.ricci ()

Ricci.display_comp ()

Ricci_scalar = g.ricci_scalar ()

Ricci_scalar.display ()

u = M.vector_field(’u’)

u[0] = 1/a u.display ()

g(u,u).expr()
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u_form = u.down(g)

T = (rho+p)*( u_form*u_form) + p*g

T.set_name(’T’)

print(T)

T.display ()

Ttrace = g.inverse ()[’^ab ’]*T[’_ab ’]

Ttrace.display ()

E1 = Ricci - Ricci_scalar /2*g - (8*pi)*T

print(" First Friedmann equation :\n")

E1[0,0]. expr (). expand () == 0

E2 = Ricci - (8*pi)*(T - Ttrace /2*g)

print(" Second Friedmann equation :\n")

E2[0,0]. expr (). expand () == 0

tau = var(r’tau ’)

CN.<x0 ,y0 ,z0 > = N.chart(r’x0:(-oo ,oo) y0:(-oo ,oo) z0:(-oo ,oo)’)

phi = N.diff_map(M, {(CN ,C):[tau ,x0 ,y0 ,z0]})

phi.display ()

phi_inv = M.diff_map(N, {(C,CN):[x,y,z]})

phi_inv.display ()

phi_inv_tau = M.scalar_field ({C:eta})

phi_inv_tau.display ()

N.set_embedding(phi , inverse=phi_inv , var=tau , t_inverse ={tau: phi_inv_tau })

T = N.adapted_chart ()

T

N.induced_metric (). display ()

N.induced_metric (). inverse ()[:]

N.normal (). display ()

g(N.normal(), N.normal ()). display ()

N.lapse (). display ()

N.shift (). display ()
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N.second_fundamental_form (). display ()

K = N.induced_metric (). inverse ()[’^ab ’]*N.second_fundamental_form ()[’_ab ’]

K.display ()

N.induced_metric (). connection (). ricci (). display_comp ()

The following is a Mathematica code which calculates the Einstein field equations pertubed

at first order on the Newtonian Gauge, this are the equations (7) on [77]

<< xAct ‘xPand ‘;

DefManifold[M, 4, {\[ Alpha], \[Beta], \[Gamma], \[Mu], \[Nu], \[ Lambda],

\[ Sigma ]}];

DefMetric[-1, g[-\[Alpha], -\[Beta]], CD, {";", "\[Del ]"}];

DefMetricPerturbation[g, dg];

SetSlicing[g, n, h, cd, {"|", "D"}, "FLFlat "];

MyToxPand[expr_ , gauge_ , order_] := ToxPand[expr , dg, u, du, h, gauge ,

order]

$FirstOrderVectorPerturbations = False;

$FirstOrderTensorPerturbations = False;

MyToxPand[EinsteinCD [-\[Mu], -\[Nu]], "NewtonGauge", 1]

ExtractComponents [%, h, {"Time", "Time "}]

ExtractComponents [%%, h, {"Time", "Space "}]

ExtractComponents[MyToxPand[EinsteinCD [-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {" Space", "Space "}] // Simplify

DefTensor[Tmunu [-\[Mu], -\[Nu]], M] Tmunu [\[Mu]_, \[Nu]_] := (\[Rho][u][])

u[\[Mu]] u[\[Nu]]

MyToxPand[Tmunu [-\[Mu], -\[Nu]], "NewtonGauge", 1]

ExtractComponents[MyToxPand[Tmunu [-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {"Time", "Time "}]

ExtractComponents[MyToxPand[Tmunu [-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {"Time", "Space "}]

ExtractComponents[MyToxPand[Tmunu [-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {" Space", "Space "}]

MyGR [\[Mu]_, \[Nu]_] := EinsteinCD [\[Mu], \[Nu]] - 8*Pi*Tmunu [\[Mu],

\[Nu]];

ExtractComponents[MyToxPand[MyGR[-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {"Time", "Time "}] == 0 // Simplify
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ExtractComponents[MyToxPand[MyGR[-\[Mu], -\[Nu]], "NewtonGauge", 1],

h, {"Time", "Space "}] == 0 // Simplify

ExtractComponents[STFPart[MyToxPand[EinsteinCD [-\[Mu], -\[Nu]],

"NewtonGauge", 1], h],

h, {"Space", "Space "}] // Simplify

MyToxPand[EinsteinCD [\[Mu], -\[Mu]], "NewtonGauge", 1]

MyToxPand[CD[-\[Mu]] @Tmunu [\[Mu], \[Nu]], "NewtonGauge", 1]

ExtractComponents[MyToxPand[CD[-\[Mu]] @Tmunu [\[Mu], \[Nu]], "NewtonGauge",

1], h, {"Time "}] == 0 // FullSimplify

ExtractComponents[MyToxPand[CD[-\[Mu]] @Tmunu [\[Mu], \[Nu]], "NewtonGauge",

1], h, {" Space "}] == 0 // FullSimplify
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