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Resumen

Ecuacién de dinamo cosmoldégica bajo teoria de perturbaciones cosmolégicas a
primer orden

En este trabajo se pretende dar una introduccion a las perturbaciones cosmoldgicas y aplica-
ciones desde el punto de vista de la Relatividad numérica, en particular se muestra como se
pueden aplicar estas perturbaciones al formalismo 3+1. Las perturbaciones cosmoldgicas se
dan a primer orden sobre la solucién espacialmente plana de Friedman-Lemaitre-Robertson-
Walker (FLRW), esto con miras a obtener la ecuacién de dinamo cosmoldgico, bajo la apro-
ximacién de dinamo cinematico, para poder estudiar la evolucion de los campos magnéticos
primordiales y su amplificacion. También se mostrara el estudio computacional de perturba-
ciones cosmologicas a partir de la Relatividad Numérica haciendo uso del software Einstein
Toolkit, se hace énfasis en FLRWSolver para la solucion numérica de las ecuaciones de cam-
po de Einstein desde el punto de vista cosmologico.

Palabras clave: Cosmologia, Relatividad numérica, Campos magnéticos cosmologicos, Eins-

tein Toolkit, FLRWSolver.

Abstract

Cosmic dynamo equation under cosmological perturbation theory at first order

This thesis aims to give an introduction to cosmological perturbations and their applications
from the point of view of numerical relativity, in particular it shows how these perturba-
tions can be applied to the 341 formalism. The cosmological perturbations are given up
to first order on the spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution,
this looking to obtaining the cosmological dynamo equation, under the kinematic-dynamo
approximation, in order to study the evolution of primordial magnetic fields and their ampli-
fication. The computational study of cosmological perturbations from Numerical Relativity
will also be shown using the Einstein Toolkit software, emphasizing FLRWSolver for the
numerical solution of the Einstein field equations from the cosmological point of view.

Keywords: Cosmology, Numerical relativity, Cosmological magnetic fields, Einstein Tool-
kit, FLRWSolver.
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Introduction

The study of magnetic fields has a broad spectrum, has been playing a role in astronomy and
cosmology. Magnetic field can be found on our solar system, planets, stars, galaxies, galaxy
clusters and in the voids of the Large-Scale Structure (LSS). In each case there is a broad
study of the magnetic fields, one example is the case of how the Earth’s magnetic field has
sustained for billion years [53], the study of magnetic cycles of the Sun [29], the micro-Gauss
magnetic fields host in spiral galaxies [20, 19], the stochastic magnetic field in galaxy clusters
and the origin and evolution of the weak magnetic field in the Intergalactic medium (IGM)
voids [116]. The relevance of the study of the magnetic field is increase if we also look into the
Hubble tension [117, 63], briefly speaking, the CMB and the standard candles measurements
of the Hubble factor do not match, but if we include primordial magnetic fields before
recombination, then recombination occurs much faster because magnetic pressure induced
by the magnetic field and there would be less time to Big Bag Nucleosynthesis (BBN) to
occur affecting the amount of primordial elements.

The case that we will work on this document are the magnetic fields present in the early
universe, and because is about the early universe that we are talking about, these fields must
be studied from the cosmology point of view. A first question that arise is how to determine
if the field is primordial or not? It is possible to find primordial magnetic fields at the voids
of the LSS as a relic from the early universe, and the primordial nature is conserved in these
places because the fields were present before structure formation and did not suffer to much
amplification [99]. After knowing if a field is primordial or not another question arises: How
magnetic fields were created in the early universe? The origin of magnetic fields can be given
by several causes and determining which each of cause is, or are, true, is extremely difficult.
Here we will mention a few mechanisms of generation of primordial magnetic fields, we are
clear that in this thesis we will not cover in full detail this topic, we will just mention it.
First, we must consider different stages in the evolution of the universe because in each could
be different phenomena that could induce the origin of the primordial magnetic fields. Let
us start with inflation, during this stage to generate magnetic fields one has either to couple
the electromagnetic field to the inflaton [82] or introduce another coupling which breaks
conformal invariance, for example couple the electromagnetic field to curvature or helical-
inflaton coupling [37]. Another possibility for creation of magnetic fields in the early universe
is given by charge separation or generation of vortical currents at the moment of cosmological
phase transitions, these transitions can be given by electroweak and QCD phase transitions
[115, 65, 109]. Another thing that could be consider for generation during recombination is
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that electron scattering is more efficient and feel a greater drag than do the protons prior
to recombination, this produces a net electric current that sources a magnetic field if there
is turbulence during cosmological recombination [51, 22, 42]. To determine if these origins
are possibly right, it is necessary to check if these effects leave a signature in the CMB to be
detected[59, 35, 58]

Next question about these fields is: How these fields evolve along the history the universe?
In this case the field is sustained by the dynamo action, these equations can be obtained
from the Maxwell equations and will tell how the field will evolve in time [33, 98, 64, 68].
In this document we will focus on the dynamo equation obtained using cosmological per-
turbation setting a spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution for
the Einstein’s fields equations (EFE) and perturbing a background magnetic field up to
first order [55]. The problem is that these equations need a magnetic seed, otherwise there
could not be magnetic field, that why first we needed to know first about the origin of the
magnetic field, origins that we mention earlier. The evolution of the field will be obtained,
in this case, from numerical solution of the dynamo equation, then we also have to evolve
Einstein’s field equations along with the full relativistic dynamo equation. The evolution of
cosmological perturbed EFE has been done before, for example codes like CAMB [73, 1] or
CLASS [72, 2], evolves background and first order perturbations in the Fourier space using
Boltzmann equations, there are several codes that also take this approach and even in mo-
dified theories of gravity [8, 94, 60, 61, 123]. Another evolution point of view is the evolution
of cosmological equations, in particular non-local inhomogeneity, using Numerical Relativity
(78, 62, 28, 21, 44, 45, 85, 119], there are several codes which already implement this ap-
proach like CosmoGraph [3], GRChombo [31], Einstein Toolkit [74, 46, 122, 15] and several
others, here reference of some of these codes [67, 7, 10, 50]. Here we will be using Einstein
Toolkit together with FLRWSolver [77] to set initial conditions for cosmological evolution
in Einstein Toolkit.

As mentioned above, in this document we will not worry about the origin of the magnetic
fields in the intergalactic medium (IGM) but keep in mind that it should have one, the real
target is to study the evolution of magnetic fields given a seed field, therefore our main
goal is to study the dynamo equation. To be able to achieve this, the present document
presents five chapters: chapter 1 gives a brief introduction to numerical relativity presenting
the 3+1 formalism and obtaining the Maxwell equations and the perfect fluid equations in
the context of 3+1 formalism; chapter 2 gives an introduction to the 143 formalism used
in cosmology, its most representative quantities and the Maxwell equations in this forma-
lism; chapter 3 introduces the cosmological perturbations, here the background solution is
set, spatially flat FLRW universe, together with the cosmological perturbations, then the
perturbation are introduced for 3+1 and 143 formalism and the perturbations relations bet-
ween both formalisms, some of the result here match with some previous works done on the
matter [38, 119]; in chapter 4 we present the dynamo equation for the presented formalisms
and also compare the equations with result already obtain other publications, we also see
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how the magnetic field decay when there are no perturbations, here is important to remark
that the dynamo equation must be set using Lagrangian observers (1+3 formalism), then an
equivalence between electromagnetic fields for both formalisms must be achieve to obtain a
dynamo equation in the 3+1 formalism [23, 26, 32]; in chapter 5 computational implementa-
tion is shown, Einstein Toolkit is used to evolve equations in the computational domain
setting initial conditions with FLRWSolver, the simulations implemented in this work start
in a redshift z &~ 1100 and ends at z ~ 534, this to keep the linearity in the perturbations
[77], in this chapter also evolve the dynamo equation obtained in chapter 4, we do it here
because it uses the velocity field obtained using Einstein Toolkit.

Along the text we will use natural units used in [18, 5] unless otherwise stated, then
G = ¢ = 1, for the Maxwell equation ¢y = 1, to be able to obtain the measurements of
the magnetic fields in Gauss units (G), a factor of 2,35537 x 10 G must be multiplied to
the magnetic fields. The tensor indices are given by Greek letters (a, 3, 7, ...) and will take
the values from zero (0) to three (3), sometimes Latin indices will be used (i, 7, k, ...) and
will take the values from one (1) to three (3).



1. Brief introduction to 341 Numerical
Relativity

This is the chapter where we introduce the 341 formalism of Numerical Relativity (NR), we
will foliate the spacetime and rewrite the Einstein equations in the main quantities of this
formalism. We also study the perfect fluid and the Maxwell’s equations in 3+1 formalism.
Here we follow mainly [103, 18, 47]

1.1. Einstein equations in 341 formalism

Here we will work under the General theory of Relativity (GR) given by E. Einstein, we will
take the Einsteins field equations as in (A-58) to be able to split them in the 341 formalism.

1.1.1. Foliation of spacetime

o~ 4+

Yt At B ™

D

t /

P I

P

Figure 1-1.: This is an scheme to be able to understand how the lapse function « and
the shift vector 3 are defined. The lapse function determines the physically

proper time between two points on two neighboring spatial hypersurfaces >3,
and ;4 A;. The shift vector is the relative velocity between eulerian observers
and the lines of constant spatial coordinates.

To write the Einstein field equations in the 3+1 formalism, we need first to take our spacetime
M, and make a foliation from a family of hypersurfaces, see appendix B, to be able to study
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the Einstein’s equations as a Cauchy problem, we will denote this hypersurfaces as ¥;, where
the parameter of the foliation ¢ corresponds to the coordinate time. From this we have a
normal vector to the hypersurfaces n, which is futurelike, and a projector to the hypersurfaces
~ inducing a spatial metric on each hypersurface!. For a timelike 4-vector ¢ on the spacetime
tangent to the time axis, t* = (9/0t)" and t*V,t = 1, then we project t along n and 4 in
the following way

a = —t"ng, B = tﬁfyg. (1-1)

The functions v and B¢ are called the lapse function and the shift vector, respectively, and
the observers which his 4-velocity is n are called eulerian observers. Let us set up an induced
coordinate system, taking a basis of spatial 3-vectors {E‘("l)} that reside on a particular time
slice ¥3;2, then EG) Vot = 0. We Lie dragg the spatial vectors along ¢,

£t ?éz) = 07 (1_2>

as a consequence, these basis vectors connect points with the same spatial coordinates on
neighboring slices and as a temporal basis 4-vector we take Efj) = t [18]. Let us consider
two adjacent hypersurfaces »; and >, as, given the induced coordinates we can write the
metric tensor components as follow

gaﬁ=(_a2+,ﬁk6k 67».)’ g (_1/“2 e ) (1-3)

/BZ 7@ ﬁi/aQ ’}/ij — Bjﬁi/aQ
where 3¢ = ~%3; we should keep in mind that latin indices goes from 1 to 3, with the metric
tensor components is possible to write the line element

ds® = o?dt* + 7 (da' + 'dt) (da’ + Fdt) (1-4)

where (z%) = (2!, 22, 23) represents the induced coordinate system over the hypersurfaces.
The lapse function o determines the physical proper time between two points on two neigh-
boring spatial hypersurfaces along am and the shift vector specifies the difference between
an and t which determines the direction of the time axis for each spatial point [103], a
scheme of the foliation is presented in figure 1-1. The normal vector can be written in terms
of o and B! as follows

nt — <1, —5—) , n = (—1,0,0,0). (1-5)

(67 0%

The role of extrinsic curvature K defined in (B-6) in the foliation of spacetime is denoting
the degree of difference of the normal vector field and its parallel transported version along
a spatial geodesic [103], the components of K can be written as

Kaﬁ = _’ngcnﬁ == (vanﬁ + nangvanﬂ) : (1_6>

!Take into account that the projector is the diffeomorphism of the induced metric . For details see appendix
B
2The subscript i = 1,2, 3 distinguishes the vectors
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From above’s expression we can see that K is purely spatial, this tensor is also symmetric,
K.5 = Kga.

1.1.2. Evolution and constrain equations

To write evolution equations we need first to decompose the energy-momentum tensor T" pro-
jecting it along the normal vector and along the hypersurfaces >;. For an Eulerian observer
with 4-velocity n, unit normal 4-vector to 3, the full projection of Talong n,

E=T(n,n)="T,n"n" (1-7)
is the matter energy density. Similarly, the mixed projection,
p=T(v(),n) = p, = —Tuhn”, (1-8)

is the matter momentum density measured by the Eulerian observer®. The full projection
along the hypersurface of T,

S 1= 4T = Sap = TuVh75, (1-9)
is the matter-stress tensor. We can rewrite T' as
T=En®n+np+pen+S, (1-10)
in terms of its components
Top = Engng + nopg + panip + Sap- (1-11)
From this, it is possible to write V, T* = 0 as follows [47]
V,.SE — Kpo + 1"V po + 1o V0" — p'Kpo — KEng + EDyIna +n#n,V,E =0. (1-12)
If we project (1-12) onto ¥4, using the induced coordinates, is obtained the expression
(8 — L3) pi + aD;S! + S;;Dia — aKp; + ED;a = 0, (1-13)

which is known as the momentum conservation. Now projecting along the normal vector to
> is obtained the expression

(0y — Lg) E+ o (Dip' — KE — K;;57) +2p'D;N = 0, (1-14)

which is known as the local energy conservation.

3Here we can also take T (m,~ (_)), this represents the energy flux 1-form measured by the Eulerian
observer, given the symmetry of T then ¢ = ¢*p
4The projector '\ is defined in appendix B
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Now we can obtain the Einstein fields equations in its 3 + 1 form. Let us star applying
the operator 4}, to the expression (A-58), then we fully project the equations over the
hypersurface 3J;, then we obtain

EmKaﬁ - _DaDBa + « {Raﬁ + KKaB - ZKOMKE + 4 [(S - E) Yap — 23&5]} ) (1_15>

where D is the covariant derivative given by -y, see appendix B. which can be obtain also
from the evolution equation (B-13), because (B-13) is the projection of the Riemann tensor
along the normal 4-vector. The fully projection perpendicular to ¥ is

R+ K? - K,sK* = 167E, (1-16)

known as the Hamiltonian constrain®, we have to take into account that this equation can
be obtain from the Gauss equation, because the Gauss equation is the full projection of the
Riemann tensor over the hypersurface. The mixed projection of the Einstein equations is

DsKP — DK = 87p,, (1-17)

known as the momentum constrain. Similar to the Hamiltonian constrain, it can be obtained
from the Codazzi equation which is the mixed projection of the Riemann tensor.

Now we can to obtain the evolution equations. In appendix B we obtain the evolution
equations (B-19) for the induced metric, then using the induced coordinate system we rewrite
equations (B-19), (1-15), (1-16) and (1-17) respectively in the following way [47, 18, 13]

Ovij = Lpvij — 20K, (1-18)
O Kij = LgKij — DiDja+ o {Rij + KK;j — 2Ky K§ + 47 [(S — E) yi; — 2S5]} ., (1-19)
R+ K? - K;; K" = 167E, (1-20)
D,K] — D;K = 8up;. (1-21)

This system of equations is known as the 341 Einstein system. This system of equations
is fulfilled in each of the hypersurfaces 3; for a time ¢, therefore it is also fulfilled in the
hypersurface >y, a; for a time ¢t + At. This because the Lie derivative guarantees that for
a vector field v evaluated at a time t lies into the tanget space of a point in ¥;, then v
evaluated at a time ¢t + At will lie into the tanget space of a point in ¥, A, [47], this can
also be seen in expression (1-2). Therefore we can evolve the equations (1-18) and (1-19),
but expressions (1-20) and (1-21) only have spatial derivatives but these still are fulfilled on
each ¥, and should evolve with expressions (1-18) and (1-19), if we take the derivatives of
the constrains (1-20) and (1-21) we find that if these are fulfilled for an initial hypersurface,
then they remain constant, therefore it not should be evolve with (1-18) and (1-19) [103].

5The name for this equations is because can be obtain from the ADM Hamiltonian formulation, its the
result of the variation of the Hamiltonian with respect the lapse function «.
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1.1.3. Choice of lapse and shift

Here we will impose coordinate conditions specifying the lapse function o and the shift vector
B. The lapse o determines how the shape of the hypersurfaces ¥, changes in time, since it
relates the advance of proper time to coordinate time along the normal vector n. The shift 3
determines how change spatial points at rest with respect to an Eulerian observer, then the
spatial gauge is determine by 3. The idea here is to mention a few choices. a full description
of these choices are given in [18, 103, 23].

Geodesic slicing

The geodesic slicing is given by

a=1, B=0. (1-22)

This means that the worldlines of the Eulerian observer are geodesics. The evolution equa-
tions in this case are given by

O, Iny"? = —K, (1-23)
0K = KK + 47 (E+ 9). (1-24)

Maximal slicing

The maximal slicing correspond to vanishing the mean curvature of the hypersurfaces
K =0, (1-25)

in this case the volume of spatial surfaces is extremized [47]. With this choice the evolution
equation for K becomes an elliptic equation for «

D’q = o (KK + 4w (E + S)) (1-26)

therefore it is possible to solve the lapse o independently of the shift 3.

Harmonic slicing

Here the DeDonder gauge is used Ox® = 0, requiring that this condition holds for 2° = ¢
0t =0, (1-27)
this is rewritten in the following way [47]
(0 — Lg)a = —Ka*. (1-28)

Taking 8 =0
O = —Ka?, (1-29)
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then
a=C(2') /7, (1-30)

where C' (2%) is an arbitrary function of the spatial coordinates. Ir is possible to generalize
this slicing as follows
(O —Lp)a=—-Kf (o), (1-31)

taking f (o) = 2/« it is possible to write the shift as

a=1+In~. (1-32)

1.2. Perfect fluid in numerical relativity
Here we will take into account the energy momentum-tensor for a perfect fluid given by
T} = (p + p) u"u, + pdy, (1-33)

where p and p represent the energy matter density and the pressure, respectively, measure
by the fluid frame, and w represents the 4-velocity of the fluid which is timelike and unitary,
u - u = —1. Let us define the Lorentz factor as

W=-n-u (1-34)

which represents the proportionality of the proper time of the Eulerian observer and the
proper time of the observer. It is possible to make a 3+1 decomposition of the 4-velocity w
as follows

u=W(n+U), (1-35)

where n - U = 0, from above expression and using the normalization of u

1
W:——1—U-U' (1-36)

Another type of velocity is the fluid coordinate velocity v, which gives information about the
variation of displacement of the fluid worldline respect to the constant spatial coordinates.
This velocity fulfills two relations

vt = — (1-37)

and

U=a"'(v+0). (1-38)

From the decomposition of the energy-momentum tensor E = T,5n°n”, then

E=W*(p+p)—p, (1-39)
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for the case of p, = —T},,7An" and using coordinates
pi = (E+p)Us, (1-40)
and for Sap = T, 7575 also using coordinates
Sij =pvi; + (E+p) UiU;. (1-41)

From (1-13), using (1-14) and, because we already calculate p; and S;; for the perfect fluid
case, it is possible to obtain the relativistic Euler equation [47]

atUi+UijUi = —

(1-42)

1.3. Maxwell’s equations in 341 formalism

In this section we will follow mostly [47] for the deduction of Maxwell’s equations, but there
are also other references to follow this procedure like [18, 103]. The electromagnetic field is
represented by a 2-form F' which is antisymmetric, this tensor is called the Faraday tensor.
The electric field (E) and the magnetic field (B) measured by Eulerian observers defined in
terms of F' and the normal vector m is

—F(_n), (1-43)

E
B="F(n,.) (1-44)

where *F' is the Hodge dual of F' and is given by

* ]'4 ,LLVF

aff — § gag nz (1_45>

where *e is the space-time Levi-Civita tensor. The fields are tangent to the hypersurface,
then

n-E=0, (1-46)
n-B=0, (1-47)

this allow us to write the Faraday tensor as follows
F:ﬂ®ﬁ_ﬁ®ﬂ+4s(n737—v—)7 (1_48>
writing the Faraday tensor in terms of its components

Fop =noEs — Eang +* €,p05n" BY (1-49)
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and for the Hodge dual
F=-n@oB+Ban+'e(nE, __). (1-50)
The Maxwell equations in GR are given by

ViaFay =0, (1-51)
VP = 45, (1-52)

with j the 4-curren, using *F', the equation (1-51) can be written as
V5 F*P = 0. (1-53)

We must now perform the 341 split of the expressions (1-53) and (1-52). Let us start with
the decomposition of the 4-current
j=m+dJ, (1-54)

where p is the electric charge density and J is the electric current, from (1-54)

p=-m-j, (1-55)
J=7(5), (1-56)
n-J=0. (1-57)

From these expressions we can see that the electric charge p is the projection of the 4-
current along the normal vector, the electric current J is the projection of the 4-currrent on
the hypersurface, therefore the projection of J along m is zero.

We are going to start performing the 3+1 split of (1-53), first we will write this expression
in terms of the fields E and B

V. (—n®B* + B*n* + '¢"7*ngE,) = 0. (1-58)
Let us focus only on the magnetic field contribution, computing this contribution
V,(=n*B* 4+ B*n") = L, B* —n*V,B" — K, (1-59)

where
LnB® = 1"V, B* — B'V,n® and K = —BV,n". (1-60)

Introducing the normal evolution vector m = an
1
L,B*=—[(0,— Lg) B*+ B"aV,n"], (1-61)
«

where we used that B is tangent to the hypersurface and that V- B =D -B+ B-Dlna,
using

1
V,(—n*B" + B*n") = —L,,B* — KB* —n®D,B". (1-62)
o
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On the other hand
V. (*e"%n,E,) = =" n,E,D,In o + *e***n,V , E,, (1-63)

where K, appears, but because *e?** is antisymmetric and K, is symmetric *e??** K, = 0.
Now, 4eP?® has a temporal and a spatial orientation, the temporal induced orientation is
given by n, then

4€p°a“anuEU = 45“a”°nquEg, (1-64)

on the other hand D,E, = o ' [D, (aE,) — E,D,a], replacing this expression in (1-64) and
the resulting equation in (1-63)

1
V. (*e"n,E,) = —n,'e"** D, (aE,). (1-65)
[0
Defining € = e (n, _, _,_) and replacing (1-62) and (1-65) in (1-58)
L, B* — aKB* — aD,B"n® + ¢*** Ds (aE,) = 0. (1-66)

Taking the induced coordinates to the hypersurface, if we project the equation (1-66) along
the normal vector we obtain the divergence of the magnetic field for an Eulerian observer

D;B' =0 (1-67)

and projecting over the hypersurface, because we are using the induced coordinates to the
hypersurface m = 0; — 3, we obtain the 341 Faraday equation

(0, — Lg) B' — aKB' + 7" D; (aE},) = 0. (1-68)
Following the same procedure for (1-52), replacing the Faraday tensor in terms of E and B
V. (n*E" — E*n* +* €g50,n5By) = 110" (1-69)

Similar to the case of the homogeneous equations, the last expression can be rewritten as
— L E* + aKE“ 4+ ¢P? Dg (aB,) + an®D, E" = ppa (pen®™ + J*) (1-70)

under the induced coordinate system to the hypersurface, projecting (1-70) along n we obtain
the 3+1 Gauss equation

D;E" = jope, (1-71)

and projecting (1-70) over the hypersurface we obtain the 3+1 Ampere equation

(0, — Lg) B' — aKE" — €9*D; (aBy,) = —poaJ'. (1-72)
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1.4. Chapter conclusions

A brief introduction to the 3+1 formalism of general relativity was given where the spacetime
was foliated using a set of spatial hypersurfaces, with this set of quantities appear and just
like the metric tensor describe the spacetime, this new quantities will describe the spacetime
as well, these are: the lapse function «, the shift vector 3, the spatial metric v and the
extrinsic curvature K. Apart from these, the energy-momentum tensor was decomposed in
the 3+1 formalism together with V,T# = 0, obtaining new quantities and equations in the
3+1 formalism. The Einstein field equations were written in a set partial differential equations
involving the 3+1 quantities mention above: one set of this equations evolves respect to a
parameter foliation ¢, evolving the quantities 7;; and Kjj, the another two equations are
constrain equations that must be fulfilled in every hypersurface. Some choices for lapse and
shift were mention to evolve a and 3 together with the field equations. The perfect fluid case
was given for the energy-momentum tensor, and also the Maxwell equations where written
in the 3+1 formalism.



2. 143 Formalism

Before introducing cosmological perturbations, we will describe the spacetime geometry using
Lagrangian observers, which corresponds to the 143 formalism. As in the last chapter where
the 3+1 formalism was introduced, this is a general splitting of the spacetime, sometimes it
can match with the 3+1 but not always. Here we will mainly follow [41, 40].

2.1. Coordinates and 4-velocity

The coordinates taken are such that for a three dimensional hypersurface, wich will be
denoted as S, each the world line intersect the hypersurface only once, the values of the
spatial coordinates are maintained along each world line and the time coordinate increases
along each flow line, we label the spatial coordinates as . Let ¢ be the time coordinate along
the fluid, then the adapted coordinates to the flow lines (,4') are the comoving coordinates.
It can be taken a normalized time s = 7 + sg, where 7 is the time proper time measure by
the world lines from the taken hyprersurface and sq is an arbitrary constant. With the world
lines in terms of local coordinates z* such that x* = z# (7) where 7 is the proper time along
the world lines, the preferred 4-velocity is the unit timelike vector
o dx“

ut = where u/u,, = —1. (2-1)

In normalized comoving coordinates

ds dy’

# =} if and only if — =1, — = 0. 2-2
u o if and only if —— I (2-2)

This implies that the vector w is tangent to the direction where all the 3 are constant. Let
T be a type (2 ) tensor, the time derivative of T along the fluid lines is

Tl ar = w7V T 5. (2-3)

This determines the accelerations vector

u* = u’V,u®, (2-4)

and as a consequence u%u, = 0, giving in that way a projection contribution along the
4-velocity.
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2.2. Spatial projection

Similar to the 3+1 formalism, we have an induced metric tensor for the hypersurfaces S

defined as
hap = Gap + Ualis, (2-5)

this induced metric tensor is also a projector over S. Just as in 341 formalism, it is posible
to project along h and wu, let X be a 4-vector, then

X¢ = hgX" and Xjf = —uugX”, (2-6)

where X | is orthogonal to w and X is parallel to . From expression (2-5) we can write
the line elements as follows

ds? = — (6t)* + (1), (2-7)

where
ot = u,da*, (2-8)
0l = hydxtdx”. (2-9)

This is a decomposition of an arbitrary displacement into a time difference 0t and a spatial
distance 6/ measured by an observer moving with 4-velocity.

In the case of S the normal vector to the hypersurface is u and the observers with 4-velocity
u, observer along the fluid, are Lagrangian observers. Here we have to take into account that
the hypersurfaces S do not always match with the hypersurfaces ¥ from the 3+1 formalism,
then the normal vector n to X neither match with w. From the mathematical point of view,
the induced metric v from 3+1 formalism and h share several properties and the geometry
given in appendix B also applies for h.

Projections orthogonal to w which are also symmetric tracefree, for a two rank tensor T" are
given by

g 1 g
T(aﬁ) = {h?ahﬁ) — ghaﬁh’y }T’YU’ (2_10)

and we can use this to write any two rank tensor as follow

Top = (Rl + uqu”) (hg + uBu‘s) T.\s
1
= §ha5h76T,y5 + T(aﬁ)) + h’géh%Th,g] — hgTw;uéuﬁ — uauvahg + uau[ﬂﬂu‘;Tw. (2—11)
This expression will be useful in the next section. Similar to the derivative D in 3+1 for-

malism, the projector h induced an operator V, this operator it is also the projection of the
covariant derivative V along the hypersurfaces S, see appendix B.
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2.3. Kinematic quantities

Let us define V' as follows
Vi = hlhVsu, = Vgu,, (2-12)

we can split V' into its symmetric and skew-symmetric part
Vag = Viag) + Vos, (2-13)

let ©np = Viap) = V(pUa) and wes = Viag) = Vigua, the tensor ©,45 is known as the
expansion tensor and w,ps is known as the vorticity tensor. From (2-10)

1
@aﬂ = 0qap + g@hag, (2—14)
where 0,3 = G5 = ?wua) is known as the shear tensor and © is the expansion rate.
Given the spatial projection and the projection along w, it is possible to write the covariant
derivative of the 4-velocity in the following way [41]

Ve = hlhVsu, — taus
= Vg — Ualip. (2-15)

From (2-13) and the definitions of 0,43, wap and © the covariant derivative of w is written as
1 .
V,gua =048+ Wag + §@ha5 — Uq UG- (2—16)

Let us see how the terms ©, 0,3 and w,p behaves. Lets us consider how a sphere of fluid
particles changes during the elapse of s small increment in proper time, let us set the zero
coordinates in the center of the sphere, the figure 2-1 shows the action of each one of this
terms separately. The tensor ©,43 determines the rate of change of distance of neighboring
particles in the fluid and the volume expansion of the fluid is given by ©, the Hubble
parameter is defined therefore as

"= é@ (2-17)

for a pure expansion case. The shear tensor 0,4 leaves the volume invariant but determines
the distortion arising in the fluid flow, the directions that remains unchanged (principal
directions) are eigenvectors of o,4, other directions are changed. The vorticity tensor wygs
determines a rigid rotation preserving the relative distances, the magnitude of vorticity is
Vw*Pw,s. To determine the rotation axis its define the vorticity vector

1 afydé

w® = SWaply €, (2-18)

then the vorticity is also given by @/%wawa.
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D D @

Figure 2-1.: Here we consider how a sphere of fluid particles changes during the elapse of
a small increment in proper time. On the left is possible to see the action of
O, transforming the original sphere into a sphere of bigger volume but the
orientation does not change. In the center of the image can be seen how o,z
distorts the sphere, leaving the volume constant and the direction of the axes
remain unchained. On the right, the action of w,s alone is the rigid rotation
leaving one direction fixed. Reference image, figure 1 from [40)].

2.4. Energy-momentum tensor and propagation equations

In the case of 143 formalism it is possible to decompose the energy-momentum tensor as
follows [41]
Thg = puatg + gatig + uaqs + phag + Ilag, (2-19)

where
p = Tapuu’, (2-20)

is the energy density relative to u,
¢* = —Tpu’h?, (2-21)

is the relativistic momentum density, which is also the energy flux relative to u,

1
P=3 gh®? (2-22)
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is the isotropic preasure and
Mag = Tysh, b, (2-23)

is the anisotropic preasure. Taking the case of the perfect fluid g, = 0 and II,5 = 0, then

Top = puatp + phag, (2-24)

taking into account (2-5) we have the same expression as in (1-33).
The energy-momentum tensor written in 1+ 3 formalism allow us to write the Einstein Field
equations projections in this formalism, taking (A-58) and assuming A = 0 then [41]

hTRP DR s = 81 + dx (p — p) h*P, (2-25)
PR 5 = —8mq®, (2-26)
uuP YR, = 47 [p+ 3p)] . (2-27)

Now we are going to obtain the propagation equations, but before that we will obtain the
electric and magnetic Weyl parts, for this let us decompose the Riemann tensor in the
following way

1 1
(4)Ra6'y§ = Caﬁ76+_ (ga’y(4)R,35 + 9,36(4)Ro¢'y - 967(4)Ra6 - ga5(4)R57)+6(4)R (goc'yg,B(S - goa(sgﬁ’)/) ;

2
(2-28)
where C 45 is the Weyl tensor. It is possible to decompose the Weyl tensor into its irreducible
parts
V,,0 1 v e
Euop = Corypstu’, H,5 = 56(”50 5 (2-29)
this allows to write the Weyl tensor as
CF =4 <U[auh T hﬁ) Eﬁf] + €05l HOF + 2up, H g (2-30)

It is possible now to obtain the propagation equations, first let us use the commutation
relation

(VaVs — V5Va) uy = DRy 500, (2-31)

The expression (2-31) can be written in the following ways [86]

(Vaug) = Vaig + (Vu,) (Viug) = =Y Ryagsu’u’, (2-32)
(Vau®) — Vau® + (Vou?) (Vaua) = =Y Roguu”, (2-33)

from (2-33), using (2-27) and the kinematic decomposition of u we obtain

: 1 1
0= _592 -3 (p+3p) —2 (0 — w?) + D™ig + Uai” (2-34)
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which is the Raychaudhuri equation. If we obtain the symmetric trace-free part of (2-32)
and use expressions (2-28) and (2-30) we obtain the shear propagation equation [41, 40]

. 2 . o 1
O(aB) = —g@aaﬁ - O-WWO-’Y,B) — WWwp) + D<au5> + U Ugy — Eop + §Ha5, (2—35)

similarly, projecting (2-32) with €*?7, we obtain the vorticity propagation equation

2 1
Wiay = —g@wa — ieamDﬁiﬂ + aaﬁwﬁ. (2-36)

Just like the propagation equations it is also possible to obtain constrain equations, from
the (0, ) component of the projection of (2-31)

2
DBO'QB = gDag + Eaﬁ’yDﬁwv + Zeaﬁyuﬂw’y — Ga, (2_37>

the contraction of (2-31) with €7 give us
Dw® = w, (2-38)
and the contraction of the symmetric trace-free part of (2-32) with 7%

Haﬁ = curlaag -+ D<aw5> —+ 2’d<aw5>. (2—39)

2.5. Maxwell equations in 143 Formalism

Here we are going to consider the electromagnetic field from the point of view of Lagrangian
observers, this means that if we consider a perfect fluid with 4-velocitu w, the observer is
moving along the fluid with such velocity. The electric and magnetic fields measure by this
observer are going to be denoted by e and b respectively. The components of the Faraday
tensor for this case are given by

F, =uue, —eu, + eu,,(;,yb‘suV (2-40)
and the Hodge dual is given by
*Fl = byu, —uub, + ew,gveéuv. (2-41)

We are going to make the 1+3 splitting of the Maxwell equations, from Vg*F*? = 0,
projecting along u

Vs ("F*) = Vg (ua"F*) —uaVs ("F*P) =0, (2-42)
replacing (2-41) in (2-42) we obtain

— Vgb® + (0%u” + °*Pesuy,) Vua = 0. (2-43)
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Using the general decomposition (2-16) and (2-18)
65u7675aBV5ua = 2we,. (2-44)
On the other side, because Vb = hhg'V,b” then
Vo™ = Vgb? —u’b"Vsu,, (2-45)
from equations (2-43),(2-44) and (2-45)
Vb = 2w%,, (2-46)

this is the divergence equation for the magnetic field in 143 formalism. Now we make a
spatial projection
hl Vg (—bo‘uﬁ + u®b’ + ¢ *Puye,) =0, (2-47)

then
— hlbo‘ — 67V5UB + hzbeV5ua + hge“”aﬁeVV5uu + hle“"o‘ﬁuuV@z@ = 0. (2-48)

We have that h20°Vgu® = b°Vzu?, then
2
VVgu’ =0Vl = — <ag +w) — 5@53) b7, (2-49)

On the other hand
h)e*Pe,N gu, = hle" e, (wus — Wuug) , (2-50)

because w,s and e, contribute only spatially hle***Pe,w,s = 0. Therefore we can rewrite
equation (2-48) as

, 2
h)b* = (ag +w) — 5@5;) b’ — Py, Ve, — hle™ P, uge,, (2-51)

the last equation is knows as the Faraday equation in 14-3 formalism.
Now we split the equation VgF*? = 475, therefore we need to decompose the 4-current,
this decomposition is given by

Jj=pau+Jy, (2-52)

where p, is the charge density and J is the electric current measure by the observer. These
quantities fulfill the following properties

pu=—u-J, (2-53)
Ju="h(7), (2-54)
w-J, =0. (2-55)
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Projecting over u
Vs F* =V (uaF*%) — F*V gu, = drugj”, (2-56)
replacing the Faraday expression
Vgeﬁ + (—eauﬁ + e”‘saﬁbtguw) Vs = 4mpy (2-57)

and following the procedure that was made when we obtained the expression for the diver-
gence of the magnetic field, we have

V.e* = 4mp, — 2w by, (2-58)

which is the Gauss equation in 143 formalism. Now projecting spatially, following the pro-
cedure to obtain the Faraday equation but adding the electric current we have

2
h) e = <ag +w) — g@(sg) e + P,V gb, + h)e" P, uh, — 4rJ), (2-59)
which is the Ampere equation in 143 formalism. Finally, the Ohm’s law is given by

Jv = 0€y, (2-60)

where we are considering only the isotropic part of the Ohm’s law, there are more terms
representing anisotropies due to the presence of the magnetic field [23].

2.6. Chapter conclusions

An introduction to the 1+ 3 formalism was given, this formalism is essential in the dynamo
approach. Similar to the 3 + 1 decomposition, here there is also a decomposition along an
hypersurface S through a projector h and along a 4-vector u normal to S. The difference
with the 3+1 formalism is that the observer with 4-velocity w, called Lagrangian observer, go
along the fluid, the decomposition of tensors here is a symmetric trace free projection and the
temporal derivative is the derivative along w. The covariant derivative of w is decomposed in
kinematic quantities that describe the actions over the fluid. The energy-momentum tensor
is also decompose in 1 4 3 formalism, also the Einstein field equations and the Weyl tensor,
together with the commutation relation of the covariant derivative applied to u, evolution
equations for the kinematic quantities and constrain equation are obtained. Finally the
Maxwell equations are presented together with the isotropic part of the Ohm’s law.
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In this chapter the cosmological perturbations are presented. We start by perturbing the
spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution, the 3+1 quantities
are obtain in the perturbed formalism, the Maxwell equations are also perturbed in the case
of 3+1 and 143 formalism.

3.1. Perturbed FLRW equations

To obtain the perturbed equations first we must to fix a background, in this case we assume
a spatially flat FLRW solution. After fixing the background solution it is possible to perturb
the geometric and matter quantities to obtain the desire equations.

3.1.1. Background equations

The line element for the FLRW metric is [88]

ds® = —dt* + (—Ek)) 5ijdxidxj7 (3'1)
1

where r? = 22 + y? + 2%, if k > 1 the solution represents a closed universe, if k < 1 the
solution represents an open universe and if £ = 0 the solutions represents a flat universe. In
this case we are taking a spatially flat universe, therefore the line element is given by

ds® = —dt* + a® (t) §;;dx'da’ . (3-2)

The line element can also be written in terms of the conformal time 7, which is define in
such a way that dn = a~'dt, this allow us to write the line element as

ds* = a® (n) (—dn* + 6;;dz'da’) . (3-3)

Given (3-3) we can calculate the geometric quantities associated to this solution, given in
Appendix E. In the background evolution, the energy-momentum tensor is taken as a perfect
fluid, the components of the tensor are given by

Tg = (p+p) u“us + pog, (3-4)
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Figure 3-1.: These graphics shows the evolution of a/ag and p/po respect to conformal time
7. The solution in the graphic, red line, is given by equations (3-10) and (3-11).
It is also shown, in blue dots, a numerical solution using Einstein Toolkit,
matching with the results obtained in [77]. The discussion of these results will

be one of the main topics of chapter 5.
where p is the energy density and p the pressure. In the rest of frame of the fluid
u* =(1,0,0,0) and ug = (—1,0,0,0), (3-5)

therefore

19 =—p(n), Ty =0, T! = p(n) 6. (3-6)
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Figure 3-2.: Evolution for the Hubble parameter for matter domination era, the red line
shown the evolution using expression (3-8). There is also a numerical evolution
obtained from the results of the numerical simulations in Einstein Toolkit,
using the fact that H = a’/a and that z = —1 + (zcump + 1)/a where zoup =
1100. The p used in this case is the same one that appears in figure 3-1.
Computational implementation will be discussed in chapter 5.

From the energy and momentum conservation V,T* = 0, setting o = 0 the conservation
equation is obtained
p+3H(p+p) =0, (3-7)

where H = a'/a, which is known as the Hubble parameter. Using (A-57) setting a = 0 and
£ = 0 the Friedman equation is obtained
8
H2 = " a?p, (3-8)
3
its evolution is shown in figure 3-2, and from the (i, j) components of (A-57) combined with

Friedman equation

a”  Arm

— =3 (pa® + 3p) . (3-9)

The solution for (3-7), (3-8), (3-9) is given by [79]

a = aoé?, (3-10)
p=po& ", (3-11)

/2
§ =1 + n g’ﬂ'poag, (3—12)
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where ag = a(ng) and pg = p(no) for the initial time 1y = 0, the evolution of a and p is
shown in figure 3-1. There is a redundancy given by the diffeomorphism invariance of GR,
therefore the system of equations (3-7), (3-8) and (3-9) is closed by the equation of state

pm)=wmn)p). (3-13)

Different values of w represents different epochs of the universe: w = 1/3 represents radiation
dominance epoch and w = 0 represents matter dominance epoch. Replacing the equation of
state in the Friedman equation

n?/(+3w) 4y constant and w # 1,
a(n) o 4 n? w = 0 (Matter dominance) , (3-14)

n w = 1/3 (Radiation dominance) .
The total energy density is given by

P = PR T PM, (3-15)
and the total pressure is
P =Dr +pM7 (3—16)

where the index R and M represents the radiation and matter term respectively. The present
value of the density, knows as the critical density, is given by

SHS
_ 2770 -1
Lo {7 ) (3 7)
in terms of conformal time - )
n
(& == ) 3‘18
() = i (319
then
pr (1) = poQra2 (n), par () = poSlara™ (n) (3-19)
where
pr(n) par (n)
e s Q = 5 3‘20
" e () M e () (3-20)

are values of energy fraction. This defined quantities allow us to rewrite the Friedman equa-

Qr  Qu

All the backgroud quantities were obtained using Sagemath and Sagemanifolds [48, 49] and

tion as

the codes are shown in appendix F.
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3.1.2. Perturbed equations

Here we will apply the perturbation theory shown in Appendix C. The metric tensor can be
split in a background plus a perturbed contribution

g=g-+dg, (3-22)

the term g in this case represents the FLRW metric tensor and dg are the perturbations of
the FLRW spacetime. The components of the metric tensor can be written in the following
way [25, 90]

X ™)
goo = —a* (1) (1 + QZ ¢n! ) 5 (3-23)

n=1
2 = w)")
goi = a* (n) Zl T (3-24)
2 WOV,
9ij =a (n) 1_22W 5z'j+27 : (3-25)
n=1 ’ n=1 '

where 1™ and ¢ are scalar perturbations, w§”) are vector perturbations and XE?) are tensor
perturbation all of order n. Writing the metric tensor components g,3 up to first order and

the contravariant metric tensor components ¢*’ in its matrix representation

oy (70 o) e (TOSW )

wj (1—2¢) i + Xy w’ (1+2¢) 67 — x¥
(3-26)

where, for simplicity, we removed the index (1), then the perturbations from now on are 1,
¢, w; and x;;.We will also consider perturbed matter quantities, therefore for the density p,
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the pressure p, the 4-velocity u, the electromagnetic field e and b and the 4-current 3

1
p =P+ Z P (3-27)
n=1 :
=1
P=po)+ Y 1P, (3-28)
n=1 :
(e} 1 « - 1 «
. 1 © 1
= —¢! 3-30
€= 2 1) (; n!e(")> ; (3-30)
. 1 =1
b = 3-31
20 (Z o <n>> ’ (3-31)
1 1 .
gt = —Jm | - (3-32)
7 (S )

The velocity v® is the peculiar velocity, we can obtain an expression for the peculiar velocity
using the fact that the norm of u® is constant

wuy, = u'u" gy, = —1, (3-33)
using (3-29) and (3-26)
vhy = —9, (3-34)
therefore
(u?) = (v, u') = a7 (1= 0f) (3-35)
(o) = (ug,w;) = a (—1 b wi + v§1)> . (3-36)
According to (1-37) and (1-38)
o' = vy, (3-37)
U'=a" (vfy) +w'), (3-38)

Using this expressions, it is possible to write the relativistic Euler equation perturbed at first
order

' 1
(U}”) R [au)&p(o) + a0 + U By + () + py) 04((»?(0)] ;o (3-39)

where we used the fact that it is possible to split the lapse function into a background and a
perturbed contribution, just like in (3-57). Keeping in mind that U is the spatial contribution
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of u, the equation is rewritten as
CORSI0) [a (wzm + vz-(l))} = agdip() + adipa) + a (%m + vf”) Ploy + (P +py) ap)-
(3-40)
From (3-26) it is possible to write the line element ds?, considering the conformal Newtonian
gauge [75]
ds* = a® (n) [— (1 +2¥) dn* + (1 — 2®) §;;dz'd2’] (3-41)

considering perturbations at first order

G — g7

= p s

where GE}V) and T;Ell,) are the Einstein tensor and the energy-momentum tensor at first order
respectively. It is possible to write this equations as follow! [77]

V20 — 3H (&' + HV) = drpda’, (3-42)
HONV + 0,0 = —4mpa’s;v], ), (3-43)
1
Q"+ H (V' +29") = 5v2 (®—U), (3-44)
1
{aiaj — gaijvz] (@ — ) =0, (3-45)
where
§=—1+p"/p, (3-46)

for p the background density, (3-42) and (3-43) are the Hamiltonian and the momentum
constrains respectively. From VT =0

§' = 30" — dvfy), (3-47)
(viy) = —0"W — Hujy). (3-48)

Taking the linear case ¥ = @, the potential takes the general form [36]

N g(a)
d=f(2")— , 3-49
) -2 (19
where the functions f and ¢ are spatially dependent, these represents the growing and
decaying modes of the density perturbations [36, 88]. From the Hamiltonian constrain we
obtain

§ = CLE2V2 f (:cl) —2f (xl) — Oy 3 (azl) — §£5g (azl) , (3-50)

1To write the equations in this way we followed [79] and used the Mathematica library xPand [95], the code
is shown in appendix F.
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where
1 1
— - = . -51
@ 4rpoad’ 27 20mpal (3-51)
From the momentum constrain
i i i 3 —dni (i
vy = C380' f (z') + 1—ng§ ‘0'g (2Y) (3-52)
where
[ 1
Cy = — . 3-53
’ 67 poao ( )
Taking only the growing modes
o=f (le) , (3-54)
6 =Ci&VAf (o) — 2f ('), (3-55)
vy = C5€0'f (%) (3-56)

last three equations will be useful in the computational results chapter.

3.2. Cosmological perturbations and Numerical Relativity

Given the cosmological perturbation theory, here we will apply it into NR, then we will
perturb 3 + 1 quantities at first order. For this we will make a direct comparison between
(1-3) and (3-26), but before this we need to take into account that it is possible to make
such an equality because it is possible to set up a set of basis in such a way that u and n are
perpendicular to the same hypersurface, it is possible to see that such bases exist because for
the FLRW background solution, four-vectors w and m match. We can decompose the lapse
function «, the shift vector 8 and the induced metric v in the background and in the first
order perturbation contribution [38]

a=a +al (3-57)
B =" + 8, (3-58)
Vi =g+ (3-59)

Comparing directly (1-3) and (3-26) the background and the perturbed quantities for the
metric are given by
a® =a(n), otV =a(n)v, (3-60)
8" =0, Y = a® ()wi (3-61)
vy =a® ()b, vy = a® () (=260, + X)) (3-62)
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Doing the same but with quantities with the covariant index
Bloy =0, By = w', (3-63)
Ay = a0, ) = (0) (2687 = x7). (364
This allow us to write the normal vector to the hypersurface perturbed at first order
() = a7 (1,0,0,0), () =a™t (—v, ~w), (3-65)
(nu)(O) = —CL(].,0,0,0) ; (nu)(l) = —a (¢a07070) . (3_66)

Let us calculate now the extrinsic curvature, from the evolution equation (1-19) we can

calculate Kj;;, but first we must calculate 0,7;; and Lgv;;, from (3-63) and (3-62)

Ovij = 2aa’ [(1 = 20) 6;; + xi] + a® (—26'6;; + xi;) (3-67)
Lgvij = 2a*0;w ), (3-68
therefore
Kij = —a'[(1 =20+ 9) 6 + xi5] + a [Qﬁl@j - %ng + 3(1‘%’)} : (3-69)
In a similar way we calculate K%, from (3-63) and (3-64)
07 = —2a 2H [(1+ 2¢) 67 — ] + a2 [2¢’ . (Xij)’} , (3-70)
Lgy = —2a7200 w9, (3-71)

therefore
K9 =a3|¢/§7 + HYs" — H (14 2¢) 65 + Hxij — %Xij + % (6" 0w’ + (5’“'8kwj)} . (3-72)
Now we can compute the extrinsic curvature trace K = 47 Kj;, from (3-64) and (3-69)
K=a"[3(-H+¢ +H)+70uwy] . (3-73)

We will compute now the Christoffel symbols for the Levi-Civita connection D associated
with the metric 7, we replace (3-64) and (3-62) in (A-46)

1

To be able to write all the quantities necessary to write Einstein field equations, the perturbed
quantities of the projected momentum energy tensor F, p, and S,3 must be calculated

E=E9 4+ ED, (3-75)
pa =+, (3-76)

Sas = S + 54, (3-77)
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then let us write the momentum-energy tensor in the following form

T =Tl + T (3-78)

We already calculate the perturbed induced metric and normal vector over an induced coor-
dinate system, then replacing (3-62) and (3-66) in (1-7), (1-8) and (1-9)

E© = a*T(, EW = a® (20T + T(1) , (3-79)

P = a1 5. pg . {T(OJ) (8 — 20) 615 + 5] + Tohws + Tgf)(sij} , (3-80)

SZ(]) = 4Tkl (5]%(5[]7 Sz(] = 4 {Tkl Xki — 2¢5kz) 5[_7 + (Xl] - 2¢5lj> (5]%] -+ T(kll)(skz(sl]} .
(3-81)

Let us see what happens with the Lorentz factor (1-34), if we equate the metric tensor
components written in terms of projectors h and < and normal vectors w and n then

hopg — UaUg = Yap — NaNa, (3-82)

if we take a look at perturbed expressions for u, (3-35) and (3-36), and perturbed equations
for n, (3-66) and (3-65)

uqaug and nyng ~ (Background) + (Second order terms) , (3-83)

as a consequence h,g and 7,3 are the same up to first order, then the foliation for both
formalism perturbing up to first order over a flat FLRW solution is the same, this implies
that n and u are co-lineal because both are perpendicular to the same foliation, but the are
not the same, this implies that W = 1. Another way to check this is looking at (1-34) and
using perturbed expressions for w and n directly in (1-34), then

naus ~ (Background) + (Second order terms), (3-84)

therefore W = 1 up to first order. Now let us calculate the energy-momentum tensor for the
perfect fluid case

5O _ P(0)s D — P(1)s (3-85)
r¥ =0, = a(po) +pey) (i +w), (3-86)
Sf?) = a2p(0)6ij, Si(;) =a’ {p(O) (Xij — 2¢05) + p(l)éij} ; (3-87)

taking into account that in this case W = 1, then matches with the perfect fluid quantities
obtained in expressions (1-39), (1-40) and (1-41).

Now that we have the perturbed 3+1 expressions, we are able to write the Einstein’s field
equations perturbed in the 341 formalism. Something that we can immediately write are
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the background field equations using all the background quantities shown in this section and
the field equations (1-18), (1-19), (1-20) and (1-21). In the case of (1-18) and (1-21) the
background contribution is trivial?, in the case of (1-20) we obtain the Friedman equation
(3-8) and for (1-19) the expression (3-7). Let us see what we obtain at first order, in the case
of (1-21) we obtain

1 N 1 . ) )
Haﬂp + &gb’ + 18] (XZ) — Za]Xij — 038@ wi) + 5k18i8(kwl) = —47rp(0)a2(5,-jvj, (3—88)

in the case of the Newtonian gauge the expression coincides with (3-43). In the case of the
hamiltonian constrain (1-20) at first order

V264 10900 = 3H [ + o + 090w] = dma’pl), (3-89)

in the case of the Newtonian gauge the expression coincides with (3-42). The evolution
equation (1-19) is given by

¢"+H B + 1) +H [0 +2(0 — ) + av] + V* (¢ — ) = dmp(g) [a® (¥ — ) + 2a¢ + a*V)]

and (1-18) at first order due to the geometrical terms is trivial [103].

3.3. 341 Maxwell equations perturbed at first order

Here we will apply apply the perturbations of the electromagnetic field and obtain the 3+1
Maxwell equations at first order

N i N i
B'=- (Blo) + Blwy) - E=- (Efoy + Er)) » (3-90)
B, = a’ <B§°> + B§”> , E = a? (E§°) + Ef”) . (3-91)
For the 4-current 1
7 = o ity + ) where 3 = (p., 7). (3-92)

We will calculate the background and first order contribution from (1-67), then we need to
calculate the covariant derivative, which is function of I}, appears, using (3-74)

T, = —30,0. (3-93)
For (1-67) the background contribution is

2Trivial here means that the obtain expression is 0 = 0
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and the first order contribution is given by
9;B{y) — 3B, 0ip = 0. (3-95)

Before writing (1-68) up to first order, we have to calculate first the following quantities
LB = wka’Q(?kao) - a’2Bé“0)8kw", (3-96
OB = —2a"*H (B, + B{y)) +a 29, (B{y) + Bjy)) » (3-97
aKB'=a"'Bj, [3Ha " (Y —1) +a™' (3¢' + 00k w;))| — 3Ha ™ (Bfy) + ¥Bg), (3-98
(

ab), = d® (Efo) +EY + ¢E§°)> : 3-99

)
)
)
)
’LA‘ /L" m 1 m

EOkJF?l = EOkJ (5j55k 0m¢ - §5k amXﬂ) . (3—100)

For (1-68) the background contribution is
(Bly)) + HBjy) + a’c?0,E" =0, (3-101)

and the first order contribution is given by

(Bl1)) +HBy — Bo (3¢ + 0" w)) + By dww' — w0, By,
g 1
+a’ e | ;B + 0,1 + Efg, <5jlé’“mam¢> - §5kmamxﬂ)} =0. (3-102)
For (1-71), following a similar procedure to obtain (3-94) and (3-95), the background con-

tribution is given by
0;Efyy = admp, (3-103)

€

and the first order contribution is given by
0B,y — 3B}, 0 = 0. (3-104)

Finally, following a similar procedure to obtain (3-101) and (3-102) considering also the
4-current, the background contribution is given by

(Eéo))/ + HEéo) + asfijkasz(go) = _47m2‘](io)’ (3-105)

and the first order contribution is given by

(Ely) +HEL — Efgy (30" + 890;wr)) + Efp)Ohw' — w0 Efy,
y 1 . .
—a’¢" |9, B,y + 10; Bl — Bl <5jl5kmam¢ - 55’”"3ij1)1 = —dna® (Jh) + ¥ o))
(3-106)
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3.4. 143 Maxwell equations perturbed at first order

Here we will apply the perturbations of the electromagnetic field and obtain the 143 Maxwell
equations at first order, the field e and b perturbed at first order are given by

b = a™ (bo) + b)) » e =a (efo) +el) (3-107)
b = a2 (b§.°> + b§1>) , — (e§0> + e§1>) . (3-108)

For the 4-current
g =at (jég) —|—jé‘1)> where j* = (pu, J)) (3-109)
and for the 4-velocity of the fluid
= (1= ), up=a (1= 4,0 +0). (3-110)

First we calculate the vorticity perturbed at first order, from the general decomposition of
V,Bua

wiy = a () + 9p0)) (3-111)
a2
O'ij = a <8(Zw§1)) + 8(ngl))> — ? [(-H@/)(l) - gb(l)) 51']' + H <—2¢(1)(52] + XE?)} 5 (3—112)
O =3a""H+a" (90" —30). (3-113)
We must calculate also o7 and w?

wf = q 1§k <a[kw§]” + 8%1}5}1)) , (3-114)

ot = a0 () 0) — L [0 00 5 1 3 (2005 1 O)], 1)

now we are able to obtain the Maxwell equations perturbed at first order.
For (2-46), the background contribution is

;blg) = 0, (3-116)
and the first order contribution is
: N 1 . 1.
Iiblyy + boy | =30k — O — 2Hwy + éajxg — ééfﬁlxjk
+ b{o) [d (wj + ;) +a(w;+v;)] =0. (3-117)
For (2-51), the background contribution is

(blo))' + Hbjg) + a®c el = 0, (3-118)
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and the first order contribution is

v [2 o
(V)" + Hbyy + bloy {g (0" —39) — WH] +v70;bjg)
1

N |

j —1gi 1 i i i Y N gi
= b {a 16" (Okw; + Orvj) — 3 [H (200, — X)) — (HU+ )05 — 5 (X)) + (¢) 5j}
. 1
— aBelk {81:6;1) + el(o) (8j¢5kl — Hw;0m — 5 ijl>] . (3-119)
For (2-58), the background contribution is

Dsely) = admp), (3-120)

and the first order contribution is

8]6(1 + e’(“o) —300 — Optp — 2Hwy, + %@Xﬂ — %6ljalxjk
- e{o) @ (w; +v;) + a(w; +v))] = adrpM). (3-121)
For (2-59), the background contribution is
(elo)) + Helgy + e 9,0 = —a4mJi), (3-122)
and the first order contribution is
(e’@)/ + Hefl) + e’@ [§ (Opv* — 3¢) — @DH} — ¢a5eijkakbgo) + vjajel@
. {aldik (Ohsoy + Okvy) — [ (268}~ x3) — (W +0)8}) — 3 (1) + (&) 5;‘}
5%

1
5 ljk |:akb —+ bl(o) <8]¢5kl — ijdkl — —GXkl)l —a 471' (w u(0) + J ) . (3—123)

In the case of the Omh’s law the background equation is given by

Ju0) = €0y, (3-124)
and the first order contribution
Jooa (g —20.J: POy, = o | —2¢ ¢_% +ed el + ek (W, + ,)b(O)
u() T YumX uny ) =P = 0 | =2y 9 ) T X T ) T\ T ) Oy

(3-125)
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3.5. Chapter conclusions

In this chapter the cosmological perturbations were introduced fixing the background solution
with a spatially flat FLRW solution, where the background behavior is shown. Together with
appendix C, it was shown how it is possible to perturb the background FLRW solution and
obtain the Einstein field equations perturbed at first order, taking the Newtonian gauge
are shown the complete expressions for the potential and perturbed quantities. Then it is
shown how the 3 4 1 quantities are expressed in terms of the background and perturbations
quantities shown together with the 3+1 Einstein field perturbed equations and the perturbed
Maxwell equations in 3 + 1 and 1 + 3 formalism.



4. Cosmic dynamo equation

In this chapter we obtain the cosmic dynamo equation perturbed at first order, but first we
give a review on basics of dynamo theory. Because the approach of the dynamo equation is
given by the observer who goes along with the lines of the fluid, Lagrangian observer, then
the dynamo equation is first obtain in the 143 formalism and then, with the electromagnetic
field equivalence of the 3+ 1 and 1+ 3 formalism, it is possible to obtain the dynamo equation.

4.1. Dynamo theory and mean-field MHD

The dynamo theory takes care of the way that magnetic fields are generated and maintai-
ned in different systems of interest, this is equally valid for highly conducting fluids, metal
liquids or ionized gas, all under rotation effects and convective movement. A system that
can maintain its own magnetic field through self movements in electrically conducting fluids
its called an hydromagnetic dynamo. In what follows we will review the basic aspects of
dynamo theory under magnetohydrodynamics (MHD).

Let us consider a conductive fluid, in the fluid is possible to measure the electric and magnetic
fields E and B respectively. The relation of electric currents J and the electric field in the
local reference frame is given by the Ombh’s law

J=0FE, (4-1)

where o is the electric conductivity. The fluid can be accelerated , so in this local frame
the fluid is not inertial, then it is necessary to reformulate the Omh’s law in terms of fields
measure in an inertial field. Let us consider a medium with velocity w such that this is a
non-relativistic velocity, this means that |u| < 1. Transforming the electric field

E — E+uxB, (4-2)

where the right hand side represents the inertial fields. In the case of high conductivity there
is no electric field, this can be seen taking the limit o — oo in the equation (4-1), then

FE=—-uxB. (4-3)
In the case of the magnetic field, the transformation is given by

B - B+uxE. (4-4)
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As a consequence of (4-3) and the fact that w is non-relativistic, the transformation of the
magnetic field is given by

B — B. (4-5)
From the Maxwell equations
u
Pe ™~ §J7 (4_6>

where p. is the charge density. Transforming the current J
J = J + peu, (4-7)

together with (4-6)
J — J. (4-8)

From this, the Ohm’s law can be written as follows
J=0c(E+uxB). (4-9)
Using the Maxwell equations it is possible to obtain the induction equations [33, 110].
B =V x (ux B) + (4n0)"' V?B. (4-10)

To obtain the induction equation it is necessary to take into account that. If we take into
account the Lorentz force

1 1 9
F_E (B-V)B—§V|B\ ) (4-11)
The first part of the right hand side of Lorentz force equation is the magnetic tension, while
the second part is the magnetic pressure.

Now we will describe in brief the mean field MHD applied to the large scale dynamo [98],
here we must consider mean fields and also small fluctuations over the mean fields, then
we can split the magnetic field B as a mean contribution (B) and a deviation from this
mean B, this averaging (- - - ) must follow the Reynolds averaging rules. Let us see how this
averaging process works, if /' and G are fluctuating fields then

F = (F) + Fy, G = (G) + Gq. (4-12)

The Reynolds averaging rules are given by [68, 97]

({(F)) = (F), (Fa) =0, (4-13)
(F+G)=(F)+(G), (F)(G)) = (F)(G), (4-14)
(FG) = (F)(G) + (FaGa) , (F)Ga) =0 (4-15)
(OF) = 0, (F), (0:F) = 0 (F) (4-16)
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Then, the magnetic field B and the fluid velocity u are written as
B = (B) + By, (4-17)
u = (u) + ug. (4-18)

Let us substitute expressions (4-17) and (4-18) into the induction equation (4-10), we can
separate the induction equation into the following expressions

9 (B)

= (Vo (u) x (B) + (V x €) + (4n0) ™ (B), (4-19)
aaBt’d = (V xug x (B))+ (V x u, x By) + (V x (u) x By) — (V x E) + (470) " By,

(4-20)

where &€ = (u, X B,,) is the electromotive force caused by the fluctuating motions. This
leads to dynamos with turbulent motions and hence turbulent magnetic fields, therefore is
known as the theory of the turbulent dynamo.

4.2. Electromagnetic field equivalence between 3+1 and
143 formalism

In the case of 341 formalism we have Eulerian observers with 4-velocity m perpendicular to
the hypersurface, if we took the case of 1+3 formalism we have Lagrangian observers with
4-velocity u, which is also the velocity of the fluid, then these observers move along with
the fluid. The electromagnetic field measure for both observer is not necessarily the same,
then we must know how to express the Lagrangian observed fields in terms of the Eulerian
fields, we remark here that the physics describe in both cases is the same, even there is an
equivalence. The Faraday tensor for an observer moving with the fluid is

F. =uue, —euu, + qw,,u‘;b”, (4-21)
then the fields are given by
et = F"u, , b ="F"uy, (4-22)
where e*u, = b*u, = 0. On the other hand for the Eulerian observers
E., =n,E, — En, + ¢sy,n’ B (4-23)
and
Et = F"n,  BY="F'n,. (4-24)
From (4-22) and (4-23)
e = WE” — (E"u,)n* + €™ B nsu,, (4-25)

b = W B 4 (B"u,) n* + " E nsu,. (4-26)
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Now we must obtain the 3+1 decomposition from these fields, projecting along the normal
vector and the hypersurfaces

etn, = E"u,, Yuwe' =WE, + efﬂann(gua, (4-27)
v'n, = —B"u,, Ywb” =WB, + efﬂaEvn(;ua. (4-28)

Under the induced coordinate system over the hypersurfaces
eln, = Ejuj, e, =WE; + eszjuk, (4-29)
b“nu = —Bj’u]', bl = WBZ + engjuk. (4—30)

In chapter 2 we saw that the decomposition of the 4-current for a lagrangian observer is
given by 3 = p,u + J,, projecting along the normal vector and the hypersurface

p=—Wpy+Jiin, T = pu (V") + Yy (4-31)

4.3. Dynamo equation at first order

Here we will obtain the dynamo equation at first order, the steps that are going to be followed
here are given in [83] where the full dynamo equation for 143 formalism is shown, but in
this reference is not clear enough how several expressions were obtained, the steps to obtain
this expressions are shown in appendix D, therefore the dynamo equation obtained in this
section can be obtained also with the general dynamo equation (D-26), here we apply the
same steps shown in appendix D but taking the particular case where a FLRW flat solution
is perturbed up to first order. Let us obtain the dynamo equations, let us start from the
Maxwell equations (3-118) and (3-122), if we apply isotropy and homogeneity conditions into
the fields, which means that (‘)ibgo) = 81‘6;0) =0 and bl(-o) = b, the equation is given by

(b(o))/ + Hb) = 0, (4-32)

therefore by o< a™' in the background as is shown in figure 4-1. Usually the equation (4-32)
is written with a 2Hbg), this guaranties that the magnetic field decays as a™ [55, 57], for
this a frame choice is made and the field is written as b = (0, ab'), then replacing this field
in Faraday’s equation (1-68) then b* oc a=2 [37, 106, 107], therefore in this work the frame is
choosen in such a way that the field decay as a=!. Now let us obtain the first order dynamo
equation, before obtaining the curl of the curl of bél), following [83], let us write the curl of

bél), using the Maxwell equations, as follow

ij i\ i i s Loy i i a i 4
A b)) = (ely)' + Hely) — el [gb =3 (X)) + 0'w; + vy + 3 (HY — ¢+ 2H) 0 — ng}

) 1
— a’e'k [—bl@) <—25§jak)¢ + 050" — Hw'65 + 9y Xy — §alxjk) — (w;j +vj — ajzp)}

+ 47'['(12 (wJ;(O) —+ ij,(l)) y (4-33)
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Figure 4-1.: This figure shows the decay of the magnetic field in the background, it shows

the numerical evolution of (4-32) and the proportionality between the back-
ground magnetic field by and the scale factor a.

let us define the following tensors

; rei Lo i i a i A
1
Fjyy = =20;0000 + 0;40'6 — Hw'0j0 + 06 Xy — 50, (4-34)

this will help to reduce our calculations. Now let us obtain the curl of the curl of b21)

@700 = [T Omelyy] + HeTOmely) — €7D, <€€0)P Jl>
AL [—bg%jk — (w; +v; — O;1) e,ﬁ”] + AT Oy, (YT + Tir)) s (4-35)

after some calculations using Maxwell equations and the Ohm’s law then the dynamo equa-
tion is given by

—a?00ybty = 7K [0+ Mol |~ [010)" + Hte + 2 (0h0) + ¥ PE] =0 (e )
—a® {8’“6,@ (' + 0" = 0) + 6,(60)316 (W' 40" =) — & [ (' + 0" — 0Y)] }
.. / /
He [el(mFﬂék e (w; + v — 0) + Fy <e§0)> +(wj + v = 09) (615:0)> } '
+ 47a? {p(o)vi +o [621) + €% (w; + vj) b,(go)} } (4-36)

Now let us take into account the average, here the values in the background must respect
isotropy and homogeneity, in this case we supposed that the magnetic field béo) is homoge-
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neous and sufficiently random such that! <b’@> = 0 and <b§0)béo)> # 0 [16], this implies
that we have that the following terms are non-zero; b%o), e?o) and e’@. Because part of the
cosmological history the universe is conductor, at big scales, because is composed of charged
particles coupled by interactions, we must consider the Ohm’s law. Under these assumptions

-~ uo
lim —2 = lim e( 0 = 0. (4-37)

o—o0 O T—00

This does not implies that the current is zero, but if the current is not zero the charges

separate breaking homogeneity in the background therefore qu(o) = 0, also from the Gauss

law ,0&0) = (. Finally the only non zero term in the background is b%o) and

i 2 i 0) _

0 = €0 = €lo) = 0y = P = 0. (4-38)
Under conditions (4-38) the Ohm law is written in the following way

Jiy =0 [efl) + b (1w, 4 ;) b,@] . (4-39)

The Faraday and the Ampere expressions at first order in 143 formalism, (3-119) and (3-123)
respectively, rearranging indices take the form

(b)) + Hbyy + €90;¢l;, =0, (4-40)
(b)) + Hely) + €9.9;b) = —aP4n Tl (4-41)
Now let us obtain the curl of the curl of b(l) using (4-41) and (4—39)
€M eli%9,,0; b(1 e (el(o)) — " H@me 47ra2€i718m<]i(1), (4-42)
using (4-40) to obtain eijkake§l), the dynamo equation is given by [55]
(b)) = 0;0°bly, — [2H + dma’o] (b))  — [H' + H? + dma’o] by,

+ 4ma*cd; [b{o) (W' + ") = by (@ + vj)] . (4-43)
this equation will be studied from the numerical point of view in chapter 5. Now we want
to obtain the dynamo equation in the 341 formalism, for this we will use the equivalence
equations (4-29) and (4-30), because the electromagnetic fields are only on the hypersuface,

they do not have normal contribution, therefore we restrict to the spatial contribution of the
fields. The equivalence perturbed up to first order and under the conditions (4-38) are

el = By + e Bo) (wj +v)), (4-44)
by = Bl + a€L By (wj + ;) - (4-45)

IThe (---) is the expected value of the magnetic field
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Replacing these expressions in (4-43) we obtain the dynamo equation at first order in 3+1
formalism

. . . " . . ..
(le))” + € [aE{O) (v* + wk)] = 0;0" [Bjy) + e”kaEé“O) (vj +w;)] —
(2H + 4ma’o) [Bfl) + ei],;aEé“O) (v; + wj)}, — (H' 4+ H* + 4nd’o) [Bfl) + e”,;aEé“O) (v; + wj)]

+ 4ma*od; [bfo) (W' +0") = by (W' + vj)] . (4-46)

There are some things that should be point out, one of them is that these dynamo equations
do not have a gauge fixed, the information about how the perturbations affect the equation
are in v;, then given velocity field v;, it is possible to see how this velocity field affects the
magnetic field. This is what is called the kinetic dynamo [98, 33|, it is possible to apply
this type of regime because Lorentz force terms, that can be seen in (4-11) are second order
contributions to the field, then there is no need to solve the non-linear dynamo.

4.4. Chapter conclusions

The dynamo theory and mean-field approximation of MHD helped us to obtain the dynamo
equation through the induction equation. Before obtaining the dynamo equation, the equi-
valence of 3 4+ 1 and 1 4 3 formalism was obtained, this equivalence plays the same role of
the reference frames transformations given in section 4.1. Finally, using the background and
perturbed Maxwell equations with the Reynolds averaging rules, it is possible to obtain the
dynamo equation.
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Here we will show the computational results together with the implementation of the software
Einstein Toolkit. Also, we will review some hyperbolic partial differential equations and
BSSN formalism, this because BSSN formalism is the one used by Einstein Toolkit, and
part of its numerical success is supported by the hyperbolic partial differential equations
theory.

5.1. Hyperbolic partial differential equations

The 3+1 evolution equations is known in mathematics as a set of hyperbolic PDEs, but the
problem of these equations is that do not behave well in the numerical simulations, this can
be seen from the mathematical properties of PDEs that we will show here and after that we
can see how this could be applied to the 3+1 evolution equations. A system of hyperbolic
PDEs at first order can be written in general as follow

du+d M -du=S(u), (5-1)

where u is an n dimensional column vector known as solution vector, M are n x n matrices
known as the velocity matrices, in this case with constant components, and S is an n
dimensional columns vector known as the source vector. Another way to write this system,
applying the sum convention, is as follow

ou+ O;F (u) = S (u), (5-2)
where .
. _OF

ab — aub ) (5_3)

here we will stick to the first case. Let us consider S = 0, then
ou+M" - du = 0. (5-4)

The system of equations (5-4) is said to be well-posed if it is possible to define a norm ||-||
such that

e (#2)[ < Rae® e (0,2%) (5-5)
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where k; and ky are constants independent of the initial conditions w (0, z")'.
Let m and unitary arbitrary vector and let P be defined as follow

P = Min;, (5-6)

this matrix is known as the principal symbol. The hyperbolocity is defined as follows, the
system is called

= Symmetric hyperbolic if P can be symmetrized in a way independent of n,

= Strongly hyperbolic if, for all unit vectors m, P has a set of real eigenvalues and a
complete set of eigenvectors,

= and Weakly hyperbolic if P has real eigenvalues but not a complete set of eigenvectors.

Let us take the eigenvalues and eigenvectors for P
Pe, = \j€q, (5-7)

where {e,} is the set of eigenvectors and A, are the eigenvalues. Let us define the matrix E
such that the columns of the matrix are the eigenvectors e,

E=(e,es - ,e,). (5-8)
From this a new matrix H, called the symmetrizator, is defined as follow
H=E") E", (5-9)

which is hermetic and defined positive. If H is independent of n, then the system is symmetric
hyperbolic. From H it is possible to define an inner product and a norm as follow

(u,v) = u'Ho, (5-10)
|u|® = (u,u) = u'Hu. (5-11)

This norm will be the norm that is used in the well-posed system, this because the system
is well-posed if and only if the system of PDEs is strongly hyperbolic [54]. If we want to
apply this to the evolution equations in the 3+1 formalism (1-18) and (1-19) there is a
problem, these equations have second order terms, but its is possible to rewrite this system
as a first order hyperbolic PDE. This allows to show that the 3-+1 evolution system is weakly
hyperbolic [66], therefore the idea is to rewrite the 341 formalism such that the evolution
PDEs are strongly hyperbolic.

'If we consider S # 0 we can also apply this definition of well-posedness, however it must be take into
account that this is valid only if S is linear, then S = Su where S is constant in space and time.
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5.2. BSSN formalism

Here we will show in brief one of several formalisms used to evolve Einstein’s equation, this
formalism is called BSSN (Baumgarte-Shapiro-Shibata-Nakamura) developed by Baumgarte
and Shapiro [17] and Shibata and Nakamura [104]. Let us take the spatial metric v and
decomposed into a conformal metric 4 and a conformal factor as follow

Vij = 64%@‘- (5-12)

The extrinsic curvature tensor is decompose into its trace and traceless part
1
Kij = Aij + 37K, (5-13)

where A;; is traceless. Because the conformal factor

A/ij = 6_4¢A2‘j, (5—14)
then

<1
Ky = A + g K. (5-15)

Under 4 we have a covariante derivative D such that D4 = 0, this allow to write the
Hamiltonian and momentum constrains as follow, respectively

’_}/Z]DiDjed) — gR + ?AijAw — EKZ + 27T€5¢E = O, (5—16)
_ ~ 2 _ . .
D, <66¢Azj) — S DK — 8me®p’ =0, (5-17)

The evolution equation for = is splitted in two equations, an evolution equation for ¢ and
another one for 4

06 =~ ok + 800+ 0. (5-15)
0y = —20 A + BEOTi; + 70 B + 108" — ;%‘jakﬁk' (5-19)
Similar to the case of 4, in the case of Kthe evolution equations are for K and /Lj
@szqW%ma+a<&ﬂﬁ+%Kﬁ44muE+S%H%@K (5-20)
OAij = e (~(DiDja)™ + a(RLF — 8751F)) + o (KA — 24, 41)
+ Bkakgij + Iziz‘kajﬁk + gkjaiﬁk - glziijﬁkﬁk; (5-21)

where the TF means Trace-Free. On the other hand, 4 allows to write the Ricci tensor as
follow

Ry =Ry + R’ (5-22)

17
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where RZ-]- is given by 4 for R;; and Rf’j by ¢, these terms are written explicitly as follow

Rf)j = -2 (Dz‘Dij + %ﬂlleDmﬁb) +4 ((Di¢)(Dj¢) - %ﬂlm(Dlﬁb)(Dme)) ) (5-23)

_ 1oy o e I o

Ri; = —§7l OmOij + TrOnT* + T e + 3" (20T jykm + TinLij) (5-24)
where T, are the Christoffel symbols given by 4 and I = 47*T%, = —8;7%. The term I is

taken as an independent function, then we have a new constrain equation
'+ 0,97 =0 (5-25)
and an evolution equation for I
_ . ~. . o~ 2 - ~. .
atI‘Z = —2A”8ja + 2a ( ;kAkj — 57”8]-[( — 877"7”}9]' + 6A”8j¢>
S _ . . 2_. ) 1 .. . . .
+ oI =1Y0,8" + gfzﬁjﬁj + g*_ylzﬁlﬁjﬂj + 590,08 (5-26)

The constrains equations (5-16), (5-17) and (5-25) together with (5-18), (5-19), (5-20), (5-21)
and (5-26) form the BSSN equations. The advantage of these set of evolution equations are
strongly hyperbolic PDEs [100].

5.3. Einstein Toolkit

In chapter 1 we presented the Einstein’s field equations written in a hyperbolic form, this
allows that the equations can evolve in a computational way, which is known as the Einstein’s
equations in the 3+1 formalism. The main problem of this set of equations is that is weakly
hyperbolic, therefore these equations are rewritten in what is known as the BSSN formalism.
The main problem now is how to evolve the equations in a computational way, it must be
taken into account that these equations are computationally demanding [14]. This leads
to the development of code made to evolve efficiently the Eintein’s field equations. There
are several options available for free download used for the evolution of the equations, [71]
mentions a few useful codes in section four, GRChombo [31] and Dendro-GR [92, 43] are other
example of this kind of codes.

To evolve the Einstein equations we used the free open-source code Einstein Toolkit (ET)
(74,122, 15]. The ET perform high-level numerical-relativity simulations, even while operating
within the constraints of desktop-level computational power, some examples of its success
are simulations on binary black hole merger [96, 120], binary neutron stars merger [80, 81]
among others. ET uses a set of core modules that provide the infrastructure to build complex
simulations codes, this is done using the Cactus framework [46] with a central core known
as the “flesh”, this provides the interaction between modules to be able to compile, the
modules are called “thorns”. Several thorn are used in each simulation on the ET, here we
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will mentions just a few used in this thesis given their importance. Here we will not focus
on installation and use of ET, for this we recommend the ET tutorial for new users?, the
videos on ET youtube channel® and [30]. Let us mention some of the most relevant thorns
used in this Thesis: McLachlan [6] are a set of thorns used to evolve the spacetime using the
BSSN formalism, GRHydro [87] is used to evolve MHD quantities in flat and curve spaces,
to implement the evolution GRHydro uses the thorn MoL [11] which implements the method
of lines to evolve partial differential equations. For analyzing the output the typical thorns
used are CarpetIOASCII and CarpetIOScalar, which writes .asc or .xg files of the values
of specified variables, and also CarpetI0OHDF5 which writes outputs in .h5 files, these torns
belongs to the Carpet arrangement, Carpet [101, 102] is a mesh refinement driver for Cactus
framework capable to run with multiple grid patches.

There are several works which applied numerical relativity to cosmology using cosmological
perturbation and evolving the field equations using ET [21, 119]. In this case we will focus our
attention in a particular thorn called FLRWSolver [77], this thorn is written in fortran90
which sets initial conditions for cosmological perturbations at first order using a FLRW flat
background using the Newtonian gauge*. The cosmological perturbation can be turn-off,
then it could be used for the evolution of the background field equations for the FLRW
solution.

Here we will briefly show how to run a simulation using ET assuming that is already installed,
first we need to initialized it with SimFactory [12]. and for this it is necessary to run the
following command in the Carpet directory, which is created during the installation

./simfactory/bin/sim setup-silent

After running this command it is possible to star running our simulations. To run it we need
first a parameter file, these files end with .par and a few examples can be found in the par
directory inside /Cactus directory, these files have all the necessary parameters to run a
simulation in ET. We also need a name for the simulation, let us assume that the parameter
file that we need to use is called parameters.par and it is located on the /par directory, the
name that we want to give to our simulation is MySimulation, then to run the simulation
the following command have to be written on the terminal

./simfactory/bin/sim create MySimulation --configuration sim
--parfile=par/parameters.par

the command create creates the directory where the results of the simulation will be stored,
this directory is created in the /simulations directory, /simulations is created in the same
directory where /Cactus is, also after ——parfile the location of the parameter file must be
specified. To be able to finally execute our simulation we need to run the following command

2This tutorial can be found on https://einsteintoolkit.org/documentation/new-user-tutorial.
html

3ET youtube channel https://www.youtube.com/channel/UC8I0bWZ7_wEbWnbIKVIQRYQ/featured

4We will work only under this gauge, but this does not mean that other gauge can be taken, for example
in [119] tensor perturbation are included to the study gravitational waves
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./simfactory/bin/sim MySimulation --cores=2 --num-threads=1
--walltime=0:20:00

here another options appears, cores is related to the amount of cores of the computer,
--num-threads is the number of threads per process to use and walltime is the limit
amount of time for the implementation of our simulation. These two lines can be written as
one without problems in the following way

./simfactory/bin/sim create-sumit MySimulation --parfile=par/parameters.par
--cores=2 --num-threads=1 --walltime=0:20:00

this is possible because the command create-sumit. This commands will not show the
status of the simulation, to be able to see itwe need to rnu the command

./simfactory/bin/sim list-simulations MySimulation

if the simulation ended running we will see [ACTIVE (FINISHED), or [ACTIVE (RUNNING) if
it is still running. Using only list-simulations will show the status of all the simulations
in the local machine, but does not follow the simulation, for this it is possible to use the
following command

./simfactory/bin/sim show-output --follow MySimulation

and if we do not want to keep following the simulation we must interrupt the kernel, this
will not interrupt our simulation®.

To analyze the files obtained in the simulation several tools can be used, for .dat files pyhton
can be used, the difficulties are in the .hdf5 files, these can be read using the h5py library,
but even with this library the handling of these kind of files could turn out very difficult. To
be able to handle with all the different types of files that produces ET are tools made specially
for this purpose, one of them is the library SimulationTools [9] made for Mathematica, the
one that are going to use is called kuibit [24], a free pyhton library for ET post-processing.
Before analysing the simulations that will be presented, we will show how to include FLRWSolver,
this because this thorn is not (yet) included with the default thorns that came with ETS. First
it must be downloaded from https://github.com/hayleyjm/FLRWSolver_public, after
cloning the repository it must be placed in /Cactus/arragements/EinsteinInitialData
and change directory’s name to FLRWSolver, then we need to include FLRWSolver to the list
of thorns that are going to be compiled, this list is in the file einsteintoolkit.th used for
the ET installation, what should be added is the line EinsteinInitialData/FLRWSolver
at the end of the list coresponding to the EinsteinInitialData thorns. Finally we must
rebuild ET with the following command

5The list of all SimFactory commands that can be used can be found on http://simfactory.org/info/
documentation/userguide/commands.html

6Here we will show how to install a version of FLRWSolver which only includes the necessary files to solve
the FLRW spacetime with no perturbations and with a sinlge mode linear perturbation, currently there
is a version of FLRWSolver which includes gaussian random linear perturbations but this did not worked
for us.
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./simfactory/bin/sim build -j2 --thornlist ../einsteintoolkit.th

Sometimes Meudon_BH or Lorene thorns does not allow to build FLRWSolver, therefore these
must be comented in the einsteintoolkit.th file if necessary. Inside the FLRWSolver is
a directory called /par, here are some parameter files to check if everything went the right
way.

Before showing some results obtained with FLRWSolver some comments, first we need to call
FLRWSolver in order to use it, solve the FLRW background equations we must specify that
we do not want perturbations in our simulation, this is done in the parameter file that we
are going to use, this is done by witting

ActiveThorns = "FLRWSolver"

FLRWSolver::FLRW_perturb = "no"

In case that we want to perform a simulation including single-mode perturbations

ActiveThorns = "FLRWSolver"

FLRWSolver::FLRW_perturb = "single_mode"
FLRWSolver::FLRW_perturb_direction = "all"
FLRWSolver::single_perturb_wavelength = 1.0
FLRWSolver ::phi_perturb_amplitude = 1l.e-6

As can be seen, the second line of the above code includes the single-mode perturbations,
FLRW_perturb_direction indicates the spatial direction of the perturbation, could be x,
y, z or all. The parameter single perturb wavelength is the wavelength of the scalar
perturbation mode and phi_perturb_amplitude is the amplitude of the perturbation.

5.4. Results

First we will show the evolution of FLRW spacetime without perturbation and then with
perturbations, it is possible to compare the numerical and the analytical results using the
expressions obtained in section 3.1. In this case we ran a simulation over a 40% grid in a 1
Gpc size box, the simulation starts from a redshift z = 1100, which corresponds to CMB
photon decoupling [88, 78], the final redshift is z &~ 534, which corresponds to n ~ 3000, we
decide to evolve up to this point because beyond n ~ 10* the difference between solutions
and numerical results start to differ significantly [77]. For both cases, background and per-
turbations, the equation of state is given by (3-13). According to the thorn documentation
of EOS_Omni [4], thorn used to provided the equation of state for the ET simulations, it is
possible to implement the polytropic equation

p = Kpoyp’ (5-27)

where we fix values to Kpoy and «. Looking at (3-13) then Kpqy = 0 and v = 1, but in
ET is not possible to assign zero to Koy, therefore we assign a value close to zero, in this
case Kpoy = 107, lowest values lead to NaN values in the simulation. Using this values for
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simulations in ET with FLRWSolver will result problemati, because assigning v = 1 lead to
NaN values, just like in Kpoly case, then the value assign is v = 2, therefore the equation of
state for the simulations is the polytropic equation

b= Kpolyp2- (5—28)

The form to include this values in the parameter file is as follows:

ActiveThorns = "EOS_Omni"
EO0OS_Omni::poly_k = 1l.e-4
EOS_Omni::poly_gamma = 2.0

Now let us see the backgroung evolution results. In figure 3-1 it is shown the evolution
for a/ag and p/py, as can be seen analytical results match with the numerical results, the
maximum relative error for a was 0,005 % and for p was 0,016 %, the minimum relative error
was 0,004 % and 0,011 % respectively [77, 79]. After the evolution of a and p is obtained, we
proceed to calculate the Hubble parameter with the numerical values of the scale factor a
obtained with ET, because H = a'/a then it is possible to use finite center-differences [70]
and then compare with expression (3-8). This comparison is shown in figure 3-2, just like
in the case of a and p there is a good match between the numeric solution and the analytic
solution, the maximum relative error in this case was 0,008 % and the minimum was 0,006 %.
If we look now at the perturbed EFE, we must compare the quantities § and v, the solutions
for these quantities are given by (3-54), (3-55) and (3-56). The initial conditions are set up
by FLRWSolver [77] with the following spatial function

3
2
¢ =) sin (T%) , (5-29)

i=1

which is a solution for the perturbed EFE, with the solutions (3-55) and (3-56) for § and v,
respectively, then

s— o () _2le i in (27 (5-30)
= — | - sin | —ux; |, -
1 L 0 - L
9 2
Vi = %03% cos (%x) . (5-31)

To compare this solutions with the numerical results given by ET we used the background
solutions, using (3-46) it is possible to obtain ¢. In the case of the velocity ET gives the
projected four velocity, which is given by (3-38), taking w® = 0, it is possible to obtain the
velocity (3-37) in terms of (3-38). The comparison between the numerical and the analytical
solutions are given by figures 5-1, which corresponds to the ¢ case solution, and 5-2 for the
velocity solution case, for the simulations it was always used a wavelength of value 1. In
figures 5-1 and 5-2 we show two types of figures, the first one is fixing a point and then see
how this point evolves in time, the other type of figure is fixing a space slice, in this case
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Figure 5-1.: Evolution for § with respect the conformal time and how evolves along the x
coordinate in different times, in both cases analytic and numeric solutions are
presented, the points represent the numeric solution.

along x axis and see how numerical solutions evolve in time. For both cases the numerical
solution matches with the analytic solutions (3-55) and (3-56), the maximum relative error
for the velocity was 0,026 %, in the case of ¢ the maximum relative error is 0,007 %. As we
can see in figure 5-1, the modes of § increase, beside the close numerical error, this is a
expected behaviour for 9.

Let us now check how linear was the performed simulation, for this we have to check how
the difference between the potential ¢ and 1 evolve along the simulation, to obtain this
quantities in terms of 3 4+ 1 quantities we used equations (3-60) and (3-62), the result of the
difference between the potential is given in figure 5-3. The linearity is given in the initial
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Figure 5-2.: Evolution for § with respect the conformal time and how evolves along the x
coordinate in different times, in both cases analytic and numeric solutions are
presented, the points represent the numeric solution.

conditions, where the difference between the potentials is zero, along the simulation, due to
numerical dissipation, the difference between both potential increases, according to [77] this
difference will lead to a maximum of 6,5 x 1075, according to figure 5-3 this difference is
much bigger than the one reported, in the final time reached in the simulation the difference
was almost |¢ — 9| ~ 0,5, which differs from the value reported in [77], this means that the
deviation from linearity do not start in times around 10* like [77], in this case the deviation
from linearity started at orders of 10? in time.

Now we will evolve equation (4-43) from the numerical point of view, let use the following
notation to be brief b = bél), we will discretize this equation spatially and temporally, for
the temporal evolution the discretization, using the index n for time discretizaton with a
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Figure 5-3.: Evolution of the difference between the potentials ¢ and v along the simulation,
at the beginning of the simulation the linearity is maintained, but during the
evolution of the simulation this difference increase almost to 0,5.

time step An, is given by [70]

(1)~ (blyr = b,) /A0 + O (An), (5-32)
()" & (bhyy — 26, — Bl y) / (AN)* + O (An)?, (5-33)

replacing this in (4-43), the time evolution discretization is given by

;4—1 ~ (14 AnDl)_l X

{be + (1= Ap?Dy) b, + APPOb, + ArPara’o [aj <b{0)vi>n ~ 9, (bﬁo)vf)n] } . (5-34)
where

Dy = 2M,, + 47 (a,)* o (5-35)
Dy = (M), + (Hy)* + 47 (a,)" 0 (5-36)

n

there is also an spatial derivative that must be solved, in this case finite center-differences
is used for first and second derivatives. The discretization was done this way because, be-
fore using expression (5-34) the fourth order Runge-Kutta method was used [70], but the
numerical evolution after a few iterations did not converge, then the numerical result were
to much higger that usual.

To evolve (5-34) first we need to obtain the background quantities, H and a, these were
obtain using FLRWSolver, then we add perturbations to the simulation, this give us the
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Figure 5-4.: Growth of magnetic field b; given by the numerical solution of the equation
(4-43), the conductivity for this case is 0 = 0,01. What it is assumed here is
that the average field is constant in the spatial domain.

velocity field that is shown in (4-43) and (5-34). Therefore, with the results obtained with
ET and FLRWSolver it is possible to solve (4-43), then we notice how the magnetic field is
affected given a velocity field, this is known as the kinematic dynamo [98, 33], it is possible
to evolve the field in this way because Lorentz force terms, as can be seen in (4-11), are given
by second order contributions. The results of the evolution using the discretization (5-34)
are shown in figure 5-4, in this case we are assuming that the initial average magnetic field
is constant and that the conductivity is ¢ = 0,01, we set up this value because it was used in
[83], the evolution shows is a growing magnetic field, as longer the time in the simulation, the
growth of the field start to decrease, we need to take into account that this is only applied to
the matter domination era after CMB photon decoupling, then cosmological constant effects
and higher order effects are missing here.
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In this work we presented two broad formalism of GR, each one of these can be really wide
by their own. For the case of the 3 + 1 formalism, presented in Chapter 1, the spacetime
is foliated with spatial hypersurfaces, the observers which its four velocity is the normal
vector to this surfaces are called Eulerian observers. The foliation of the spacetime allows to
define a spatial projector, that also works as a metric for the hypersurfaces, in such a way
that geometric quantities can be decompose in contributions along the normal vector and
over the hypersurfaces. The decomposition let write the Einstein field equations into a set
of hyperbolic partial differential equations to be evolve numerically. The particular case of
the perfect fluid was presented in this formalism and also the Maxwell equations.

In chapter 2 the second mentioned formalism was presented, this is the 1+ 3 formalism. From
the mathematical point of view, it is just like 3+ 1 formalism, because it also implements the
geometry of foliations and hypersurfaces. The main difference is that the observer in the 1+3
formalism, called Lagrangian observer, goes along the lines of fluid, and the four velocity of
the fluid is the normal vector to the hypersurfaces in this particular case. This four velocity
allows to obtain certain kinematic quantities that describe the cosmological fluid, how this
quantities act over the fluid is shown in figure 2-1. In this formalism it is also possible to
decompose the Einstein’s field equations, just like 3 + 1 formalism, and together with the
commutation of covariant derivative, the propagation equations of the mentioned kinematic
quantities are obtained together with the Maxwell equations in this formalism.

Now that the two formalism were introduced, then it is possible to perturbed the main
quantities for both formalism through cosmological perturbations, this was done in chapter
3. First, the background was fixed, it was used a flat FLRW solution, and then this solution
was perturbed up to first order. This enables to show the perturbed 3 + 1 Einstein field
equations together with perturbed Maxwell equations in both formalism, this includes the
Ohm’s law.

Before setting up the cosmological dynamo equation, main goal of chapter 4, a review on
classical dynamo theory is made starting from pre-Maxwell equations, the induction equation
is obtained and then, with the averaging process the turbulent dynamo equation is obtain.
Because the approach of the dynamo equation is along the Lagrangian observer, to know
how the 3+ 1 electromagnetic fields behaves in terms of the 14 3 fields, then an equivalence
between both electromagnetic fields is shown. Finally, the cosmological dynamo equation,
with and with out average, is obtained, in the case of the averaged equation it should be
keep in mind that this average process follows the average Reynolds rules. It was checked
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that the field decays as a~! in the absence of perturbations.

Finally, in chapter 5, it is shown how the software Einstein Toolkit (ET) was implemented,
specially the thorn FLRWSolver which sets up initial conditions to the EFE, in such a way
that these equations could evolve using the numerical methods already implemented in ET.
The formalism used to evolve the EFE is the BSSN formalism, which is based on the 3 + 1
formalism, what makes the BSSN formalism and optimal way to evolve the equations is that
it is possible to write the EFE in a set of strongly hyperbolic partial differential equations,
therefore a review on hyperbolic partial differential equations is made together with the fo-
rementioned BSSN formalism. After that, a quick introduction on ET is made, emphasizing
on how to include FLRWSolver, this because till the date, FLRWSolver is freely available
but not included on the ET. Then FLRWSolver was used to solve numerically the Friedmann
equations, which correspond to the background solution, and also the perturbed Einstein
field equations for a sinusoidal form of the perturbations in the Newtonian gauge. For the
background case the maximum relative error found, comparing to the analytical solution,
for the scale factor a of 0,004 % and p of 0,016 %, in the case of the perturbations some of
the figures shown in [77] where reproduced using the functions § and the velocity v¢, in this
case the maximum relative error for the velocity was 0,026 %, in the case of 0 the maximum
relative error was 0,007 %, the difference between the potentials along the simulations was
almost 0,5. This implementation using ET with the low values in the relative error shows
that ET is capable of maintain the linearity of the perturbations § and v up to times of order
~ 103. The linearity is measure by the gravitational slip |® — ¥| and according to [77] the
linearity is maintained up to ~ 10* order, where the evolution of the equations should show
a deviation from the linear regime, but in this work that was not the case, at a time of order
10? the code start to show deviations, around a time of 1500 the deviation was almost 0,2
and at time order of 10% the deviation from linear regime was almost 0,5.

The dynamo equation (4-43) was evolved numerically, for this the background results were
obtained with FLRWSolver together with the velocity field, where the perturbation infor-
mation is. The value assigned to the conductivity was ¢ = 0,01, value used in [83], the
discretization used is shown in (5-34) and the results of this discretization are shown in fi-
gure 5-4, then the field is amplified but as long as the time increase, the increase of the field
decay, then it tends to a certain value, after that start to decree but really slowly, still the
field is higher than the initial field. This lead to future work of solving the dynamo equation
in a non linear way, this mean to be able to set up initial conditions in ET to see how differ
the kinematic dynamo from the non linear dynamo, also work with the dynamo equation in
higher orders setting initial conditions for the magnetic field in a similar way than SONG does
[8]. This is not limited to General Relativity, this also could be done in modified theories
of gravity like f(R) theories of gravity where a 3 + 1 scheme is well stablish, see [27, 84],
making possible a general evolution of the magnetic field.
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This appendix is a brief review of differential geometry needed to study General Relativity,
along this appendix some references are given to a deeper study of the subject.

A.1. Differential Manifolds

The mathematical language of General Relativity (GR) is the differential geometry. In this
section we are going to give some of the main geometric definitions and properties used in
GR. For further details see [108, 89, 52].

Let M be a topological space, a coordinate chart C, = (¢4, U, ) over M is a homeomorphism
Yo Uy CTM — R, (A-1)

where U, is an open set over M. We call a C"-atlas over M to a chart collection {Cy, = (@, Us) }
such that

ael

M=]u., (A-2)
ael
and if U, (U # 0 then
P50 Pa" 1 Pa <Ua N Uﬁ) CR" = g (Ua f UB) CR" (A-3)

is a C" diffeomorfism. Two C" atlas over a topological space M are compatible if the union
of the atlas is a new atlas, then, the union of all compatible atlas over a topological space
forms an equivalence class atlas, or a maximal altas. Then, a C" differentiable manifold M
is a Haurdorff topological space with a maximal atlas.

A manifold is orientable if there is an atlas {¢n,Us},; such that, in every no-empty inter-
section U, [\ Up of open sets, the determinant of the matrix dz’/dz"” is greater than zero,
where 2 are U, coordinates and z* are U coordinates. An atlas is locally finite, if every
point in the manifold has an open neighborhood that intercepts only a finite number of

neighborhood Uz. A manifold M is paracompact if for every atlas {¢n, U, } exist a a

acl
locally finite atlas {tg, Vs} 4., with each Vj contained in some U,.
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Tangent space , Dual space and Tensors

Tangent space

Let us define the set of all real value functions over a manifold M as
F(M,R):={f: M — R}, (A-4)

where for f,g € F (M,R) we have a vector space structure and if f is differentiable respect
to a chart (¢, U,), it is also differentiable respect to (¢, Ug). A tangent vector v, to the
manifold in a point p is a function
v,: FIM,R) - R
f = v (f)

such that v, is lineal in R and meets the Leibniz product property. The space of all tangent

(A-5)

vectors at the point p, denoted by T, M, is a vector real space. The partial derivatives,
denoted as 0, where i = 1,2,...,n and n is the manifolds dimension, are tanget vectors
in 7, M and form a base for the tangent space. Then, for v, € T, M and introducing the
Einsten sum convention

v, = Zvﬁ@a = vgf)a‘p. (A-6)
@ p

Dual space

A one-form w in the point p is a real function over 7, M

w: ToM — R

v = w) = (w,v), (A-7)

such that w is linear in R. The space of all one-forms, denoted by 7y M, is called the dual

vector space. Every function f € F (M, R) defines a one-form df in p, this one.form is called

the differential of f in p. For the local coordinates ¢,(p) = (z!, 2%, ..., 2™) we have that the

set of differentials

{dxl, daz?, ..., d:pn} (A-8)
in p forms a base for the dual vector space, then
w = wydz®. (A-9)

This space meets the condition
(d2®, 95) = . (A-10)

where {0, } is a base of T, M.
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Tensors
Let II7 be defined as
I :={(n" .0 Y,...Y,)—n' e CMY,; e LM}, (A-11)

then a tensor T of type (: is a multilinear function over 1I;

T 1 — R

A-12
(m',..,n"Y,..Y) — T(n',...n", Y., Y,). ( )
The space of all tensors, denoted as 717, is called the tensor product
=T M@ TMTM - @TiM, (A-13)
r-t?:nes S—t?I:leS
this is a vector real space of dimension r + s. Given T' € 17 it can be written as
T=T5"50,® Q0 @d™ @ ®da™, (A-14)

where T 5‘11,::'6? are the components of T', we call the index ay - - - v, contravariant and Sy - - - 3
covariant, then the components of the tensor T related to to the contravariant index are called
contravariant components and the ones related to the covariant index are called covariant
components. Under a change of coordinates the tensor components, the vector and the
one-foms components as well, transform acording to

ox'Mm oz 9z Oz’

l'y Y L. L Qe Qo _
TO'i’“O'S - axoa axar axlo'l axlo's Tﬁlﬁs : (A 15)

Transformation between manifolds

Let M and N be two manifolds. We can define a diffeomorfism between these manifolds
o M—N. (A-16)

From this, we can induce a new function

¢: F(M) = F(M)
foo= o) (A17)
defined as [& (f )} (p) = f(¢(p)), where p € M. We induce now the function
gb* : Tp./\/l — T¢(p)N (A—18)

X = ¢ (X)

such that
O (X (f)ypy = X (fo9)l,, (A-19)
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M N

¢
s
¢>X<

F (M)
T,M
T* M

FWN)
TN
TN

Figure A-1.: Diffeomorphism between the manifolds M and N

the function ¢, is known as pushforward. Now, from the definition of ¢,, we define the

function
o* Tq’;(p)./\f - oM i
D o o (w) (A-20)
given by
(9" (W), X) = (w, 0. (X)), (A-21)

the function ¢* is known as pullback. These functions extends to tensors of type (0, s) and
(r,0), then extends to (7, s) tensors, a scheme of the diffeomorphism are in figure A-1.

A.2. Curvature

References for this section are [108, 93, 121]

Lie derivative, connection and covariant derivative

Let A(t) be a curve over a manifold M, there exist only one maximal curve A(t) over M
that goes through each p € M such that A\(0) = p and its tangent vector in the point A(t)
is the vector X[, ). The flux of a vector field X over M is a transformation

O MxR — M

(1) — d(p,t) = Ni(p) (A-22)

if we fix ¢ then we define a diffeomorfism that sends a point p in M to a point ¢;(p). With
this we can define the Lie derivative of a tensor T with respect to a vector field X in the
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point p is
1
Lx T|, = Lim (T, = (#), T1,) (A-23)
Given the fact that under the change of coordinates de partial derivative is not invariant, we
need to generalize this concept over a manifold. This generalization is given by the covariant

derivative VxY', where XY € T, M. Because VxY is a tensor, we can write it using the
bases {0, } and {dx“}, then the components of this tensor, denoted as VgY*, are

VY =05V + 15 Y7, (A-24)
The terms I'g, are called Christoffel symbols of the second kind, these symbols are given by
5y = {4z, Vo,0a) (A-25)

Just like the partial derivative, it is linear and meets the Leibniz product property.
We extend the covariant derivative to arbitrary tensor. If T' € T)?, then VT € T)7 |, where
the components of VT are
QpQp Qe oy P OQ2 Q10
VoTgl g = 0I5 s + 156 T50 2 o + 15T s,
- f7’-61 :512a§s - gﬁs glla?gsfl’ <A_26)
where it is still linear and meets the Leibniz product property. Given that is a tensor this

have to transform like in (A-15), from this we can see that the transformation rule for the
Christoffel symbols is given by

o 02" 0P Ox° N o' dzr dx™
57 0ae 9P 0x'POx T Oae 9P Ox T

(A-27)

With the covariant derivative and the Lie derivative defined, given T' € T7 (M), we can
write the components of LxT in terms of partial derivatives

(LXT)5 5 = X705 5 — T3 0, X0 — o T80, X

B1-+Bs B1+-Bs
o o o1 O o
+ T(Tﬁz-"ﬁsaﬁlX 4+ -4 Tﬁl--~55,10a35X , (A—28)
and in terms of covariant derivatives
Qrop o o O T QU 67 Q1 Qp—10 Qo
(LXT)ﬂl...BS - X vngll...gs - Tﬁr-'ﬁs VO'X T—-.. 'Tgl...ﬁs VO'X

+ T Vi, X4+ TG Vs, X7, (A-29)

We need to keep in mind that in general relativity we work with a free torsion connection,
a consequence of this is that the Christoffel symbols are symmetric in its index, i.e.

re =12 (A-30)
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Parallel transport

Let T a tensor field and A(¢) a curve over a manifold M!, let us define the covariant
derivative along the curve as Vy, T, then if X is the tangent vector to the curve A(¢) then
the components of the covariant derivative along the curve is VVTE“IHEQ’"X 7. We said that a
vector is parallel transport along a curve A(t) if V5, T' = 0. In the particular case of a vector
Y we choose a curve A(t) such that we have a coordinate system z*(t) and X = %= We
said that the curve is a geodesic curve if the tangent vector is parallel transported along the

curve, this means that
VxX =0. (A-31)

For the basis {0,} and {dx®} we can write this condition in the following way

d?x” dzP dx?

_ e A-32
a R a ( )
Riemann tensor and metric tensor

In a euclidian space we have that we can commute the derivatives without problems, but
this does not happens in a curve space. A measure of this non-commutativity is given by
the Riemann tensor, the components of this tensor are given by

these components have de following properties

RO&B’WS = _Rﬁaw = RO&,B(H = R’yéa,@a (A-34)
RCXﬁW& + RCVB’Y(; + Raﬁfy& = 07 (A—35)
VRS + VRS, + Vo RSs = 0. (A-36)

From a contraction we define the Ricei tensor as
Raﬁ = ZUB' (A_37)

Over a manifold M we define the metric tensor as a symmetric tensor field of the type T5.
Given the basis {dz*} we have that

g = Gapdz® ® dz”, (A-38)

with the metric tensor we can define a norm, the cosine of an “angle” for two given vectors
and the lenght of a path between two points, this allow us to write the distance along a
curve of two infinitesimal close points as

ds?® = gapdrda’. (A-39)

LA curve ) is a function such that A : I € R — M where R are the real numbers
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We said that the metric is not degenerated if the determinant of the metric is dinstict from
zero, det |gas| # 0. This condition over the metric allows to define T¢ tensor type g*’ such
that

§*g5, = 52, (A-40)

From this we can built an isomorphism such that we can relate the covariant and contravari-
ant index components of the tensors, if we take a vector with components X< then

Xo = goz,BX/B (A_41)

and using (A-40)
X* =g Xy, (A-42)

We can generalize this to tensor components, for example, for a tensor T' with components
TaBy

TP = g,, T (A-43)
T/?v = g’YUlgﬁUzTaUQUl (A—44)
Taﬁv :nglgﬂ@gacrsTagowl (A—45)

in a similar way we do this for T3, .

Let us define the signature of of the metric tensor as the number of positive eigenvalues less
the number of negative eigenvalues. A particular case is the signature n — 2, this is the
case of a Minkowskian or Lorenzian metric, from here we are going to assume a lorenzian
signature. A consequence of this is the values that can take the inner product of a vector
defined by the metric tensor, we are going to divide this cases in three. For a vector X we
said that this vector is

- Nullif g (X, X) =0
» Timelike if g (X, X) <0
» Spacelike if g (X, X) >0

To get a relation between the metric tensor components we use variational calculus?, with this
we get the geodesic equation but in terms of the components of the metric tensor, this gives
the following relation between the Christoffel symbols and the metric tensor components

1
g”/ = §gw 9890y + 04908 — OsGpy) - (A-46)

With this in mind we can write the equation (A-26) in terms of the metric tensor components,
a consequence of this is that

V.gas = 0 and V. g*" = 0. (A-47)

2For details see [93]
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Killing vector field

The metric, or the metric tensor components, g,z is a form invariant under a transformation
from z to 2'* if ¢’ 5 (2') is the same fuction of 2’ as gap(x) is of 2%, We know that g.s
transform as a tensor, then if the metric is a form invariant

ox'? 0x'? ,
gaﬁ(‘r> - %nga(x )a (A—48)

any transformation x — 2’ that satisfies (A-48) is called an isometry. Let us consider an
infinitesimal coordinate transformation
2% = 2% + ™ with |e| < 1, (A-49)

to first order in € we have that g,s(7') & gus(z) + €£*0rgas(z), then we can write (A-48) as
follows
9a00E” + 9p30aE" + £ 0rgas = 0. (A-50)

This can be rewritten in terms of derivatives of the covariant components &, = gq,&", then

0 = GaoOE” + 9ps0al” + £ Orgap
= D€ + Oabs — £ (Fpgar + 0agpr — Orgap)
= 0pla + Oulp — 26305
therefore
Vg€a +Vaés = 0. (A-51)

This is the Killing equation, every vector that satisfies this equation is called a Killing vector.
The problem of determining all infinitesimal isometries of a given metric is now reduce to
determining the Killing vectors. Any linear combination of Killing vectors, with constant
coefficients, is a Killing vector. For more details see [121].

A.3. General relativity

Here we are going to name the postulates of general relativity and see which are the equations
that rules the dynamics of the spacetime.

Postulates of General Relativity theory

This postulates are a motivation of the geometrization of the gravity force in classical me-
chanics.

Postulate 1 The spacetime is the collection of all events, it is described by the pair (M, g),
where M is a Hausdorff smooth four-dimensional manifold and g is a lorenzian metric over
M.

Now let us introduce the postulates that involves the matter fields in the theory.
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Postulate 2 The equations that satisfy the matter fields must fulfill that if, for U C M is
convex and p,q € U, then a signal can be send in U between p and ¢ if and only if p and
gcan be join by a c'-curve contained in U, which tangent vector everywhere is non-zero and
timelike or null.

Postulate 3

There exist a symmetric tensor
Top = Tha = Top (V;, V), (A-52)

where VU, are the matter fields and ¢ index the different matter field, such that the depence
of the matter fields is finite and

» Tog =0 over U C M and open set, if and only if ¥; = 0 for every ¢ over U.
» VT =0

For a further discussion of the postulates see [52].

Einstein Field Equations

The gravitational action is

S = Sg+ Sy + Sa, (A—53)
where ;
c
= WR—gd* A-54
Sr 167G / Rv=gd (A-54)
is the Einstein action, Y R is the Ricci scalar, Sy is the contribution due to the cosmological
constant X
c 2A
= — —/=gd* A-
SA 167G 2 ga'z, ( 55)

and Sy, the matter action. From the matter action we can define the energy-momentum
tensor T", and because the matter action is a function of the Lagrange density £, which is
also function of matter fields ¥;, then [69, 34]

oL
70 =N VA, - gfe, A-
Xi:a(va%)v i— gL (A-56)

Taking the variation of the total action with respect to g, one finds the Einstein field
equations with cosmological constant

G

1
(4)Raﬂ — 5(4)Rga5 + Aga/g = —7Ta5, (A—57)
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from now on we will use the natural unit system, therefore G = ¢ = 1. The set of equations
(A-57) can be written as

1
(4)Raﬁ = 8w (Taﬁ - éTga/J’) + Agozﬁ' (A'58>

We can deduce the Einstein field equations in vacuum from an action this action is called
the Einstein-Hilbert action, taking A = 0 this action is given by

1 4
SEH = w R\/ —gd Z, (A—59)

making 6Sggy = 0 leads to
1
Rap = 5 Rgas = 0. (A-60)

If we want to include the matter contribution to the field equations, we must add the following
term to the Einstein-Hilbert action

Sy = /ﬁ(\l}i) V—gd'z, (A-61)

where £ is a lagrangian density. Making 0 (Sgg + Sar) = 0 we obtain
8rG

1
Rop — §Rga6 = ?Tam (A-62)

these are ten non-linear coupled partial differential equations. For details see [89, 52, 108].
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This appendix attempt to give some highlights in geometry of hypersurfaces and foliations.
We start considering a spacetime (M, g) which is time orientable. For this appendix we will
mainly follow [47, 103, 18].

B.1. Geometry of hypersurfaces
A hypersurface of M is the image > of a 3-dimansional manifold )y by an embedding
D3 — M, (B-1)

then
Y= (2) . (B-2)

A hypersurface can be defined locally as the set of point for which a scalar field on M is
constant. Let t be a scalar field over M, setting the constant to zero, for all p € M, if
p € 3 if and only if ¢(p) = 0. From Appendix A, the pullback ®* is defined in the following
domains

A

" TIM — TJY, (B-3)
this allows to define the induced metric on ¥ as
v = d*g, (B-4)
which is also called the first fundamental form of ¥. The hypersurface is said to be
» Spacelike if and only if 4 has signature (+ + +);
» Timelike if and only if 4 has signature (— + +);
= Null if and only if 4 has signature (0 + +).

If ¥ is a spacelike or timelike hypersurface, then the induced metric v is not degenerate.
This implies that there is a unique connection (covariant derivative) D on the manifold %
that is torsion-free and satisfies

D~ =0. (B-5)
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Let u,v € T, M, the extrinsic curvature tensor of ¥, or second fundamental form of the

hypersurface ¥, is
K:T,YXxxT,YX — R

(u,v) — —u-(Vyn), (B-6)

where mn is a vector normal to X.

Given a scalar field t on M such that the hypersurface X is defined as a level surface of
t, the 1-form of the gradient of ¢ is normal to X, the vector ¢ = Vi satisfies the following
properties

s ¢t is timelike if and only if ¥ is spacelike;
= ¢ is spacelike if and only if 3 is timelike;
= ¢t is null if and only if ¥ is null.

In the case where X is not null, it can be define a unit vector by setting

where
» n-n = —1if ¥ is spacelike,
s n-n=11i ¥ is timelike.

From now on we focus on hypersurfaces ¥ such that the induced metric is defined positive,
which will represents the spatial role of the physical system [13]. To be able to project any
quantity over Y, we define the orthogonal projector onto X as

y:ToM — T,%

B-8
v — v+ (n-v)n. (B-8)
As a direct consequence of n-m = —1, 4 satisfies 4(n) = 0. It is possible to generalize
aboves expression to 1-forms, even to any multilinear form A in the following way
Y (M) — T8 (B-9)
(U1, .,0,) — A (FUy, ..., YV,).
Given (B-9), if vy,v, € T,X then 7%, [v (v1,v2)] = 7 (v1,v2) , therefore from now on

~ = Y (7), similarly K := 4}, (K). For the case of a tensor T of type (5) on M, the
projection is denoted as 4%, (T') , then for any basis {E,} of T, M the projection of T onto
M is

VT3 5y = Yk Wl Vo - Vo T (B-10)
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Now that we are able to project onto X, it must be possible to relate somehow the curvature
quantities of M with the ones of ¥, the relations that make this possible are the Gauss-
Codazzi relations, which are the full projection of the Riemann tensor in the hypersuface
and one index projection in to the normal vector, respectively [18]. The Gauss relations is
given by

g VR, = Ry + K Kss — KK, (B-11)

ouy

where WR is the Riemann tensor in M and R is the Riemann tensor in ¥. The Codazzi
relation is given by

Ve W RE n” = DsK) — Do K. (B-12)
The Riemann tensor R is function of vy, then what Gauss-Codazzi relations says is that the
choice of v and K cannot be arbitary, these must fullfill the relations (B-11) and (B-12).
We can also project two indices of the Riemann tensor along the normal vector, from this
we obtain the evolution equation

LnKap =109 Rspo — 0 ' Do Do — K} Ko, (B-13)

B.2. Geometry of foliations

The 3+1 formalism is based on a foliation on spacetime by a 1-parameter family of spacelike
hypersurfaces, this is possible for the globally hyperbolic spaces [118]. A Cauchy surface is
a spacelike hypersurface ¥ in M such that each causal curve without end points intersects
Y. once and only once. A spacetime (M, g) that admits a Cauchy surface 3 is said to be
globally hyperbolic. Any hyperbolic spacetime (M, g) can be foliated by a family of spacelike

hypersurfaces (%) a foliation or slicing meant that there exist a smooth scalar field # on

teR>
M, which is regular, such that its gradient never vanishes and

ViR, T, = {p e Mli(p) =t}. (B-14)
This hypersurfaces fulfill that
» X,NYy =0 and t # ¢,
s M = Ueryy.
Since we have a future directed unit vector normal to ¥;, we can write n = at where
a=(—t-t)"?, (B-15)

this function is known as the lapse function. With the lapse function we can define a normal
vector to X, called the normal evolution vector, as

m = an. (B-16)
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Those observers which m is its 4-velocity are Eulerian observes. For a timelike 4-vector ¢ on
the spacetime tangent to the time axis, t* = (9/0t)" and t*V,t = 1, take into account that
t is not always normal to 3;, then we project t along n and ~ in the following way

a = —t"ng,, g = tﬂyg. (B-17)
The vector B¢ is called the shift vector, respectively, then we can write t as
t=an+ 0. (B-18)
We are able to write the evolution equation for  along m, this expression is given by
Ly =-20K = K = %En’y, (B-19)
this allows to obtain the scalar curvature in terms of hypersurface quantities

2 2
@WR=R+ K>+ K,, K" — =L,,K — =D, D"a. (B-20)
(6% «



C. Perturbation theory

The main idea of this appendix is to give a brief introduction into the mathematics of
cosmological perturbation theory, main references for this appendix are [91, 90, 25, 56, 55].
Here we need two different spacetimes, the real spacetime, or physical spacetime (M,, gas)
and the background spacetime (Mo, gog). The perturbation of any quantity T is the dif-
ference between the value that this quantity takes in real spacetime and the value in the
background spacetime at a given point. To do this we need a diffeomorphism ¢ between M,
and M, ¢ : My — M, this is called a gauge choice, from this we can induce a pullback
o - T(;(p)./\/lp — Ty M for p € M. Let Ty be a tensor defined on M, and let T" be a tensor
defined on M,,, then the perturbation AT is defined as

AT = ¢'T),, — T, (C-1)

where it must be take in to account that this is given at each point of M.

M,

N

Figure C-1.: Scheme of sub-manifolds family M, in a five dimensional manifold /. The
comparison between manifolds is given by ¢,.

Let us consider a 5 dimensional manifold N'= M, x R, in N is embedded the family of 4
dimensional sub-manifolds M, where A € R. A tensor T’y living on M can be extended to
a tensor T on N evaluating in the point (p, \), where p € M, then T (p,\) = T (p). Each
of these sub-manifolds represents a perturbed spacetime, for the background spacetime M,
corresponds A = 0. To be able to compare a tensor in M, with a tensor in M, it must be
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consider a flux ¢, which is the integral curve of the vector field X, because we have a five
dimensional space, the components of the vector field are X = (X% X' X2 X3 X*) where
X* =1, so the points lie on the same manifold. It is possible to make a Taylor expansion
using ¢, the perturbation in this case is

ATy = T, — T (C-2)

and the expansion is given by

AT |, = Z W = Zk,ﬁ’;{, (C-3)

k=0
where
Wp_ A"
0y T = —35 (&5T) (C-4)
A=0,Mp
Therefore the perturbation is given by
)\k
AT, = o 5 (C-5)
k=1

Due to the covariance of General Relativity, it is possible to choose another diffeomorphism
between M, and M, the change between this diffeomorfism is called gauge transformation.
Let v, another gauge choice which is the integral curve of the vector Y, where X # Y,
then it is possible to have

. o )\k o )\k
BTl = 3 0T =30 78k o
k=0 k=0
where o
sET C-7
P d)\k (w)\ ))\:07/\40 ( )

If 93T = 3T for any ¢ and v, then T is gauge invariant. This allows to mention the
Stewart-Walker lemma [105]: For every vector field X and k£ > 1

Lx0"T =0, (C-8)

if and only if T is gauge invariant at order k. It is not always possible to have invariant
gauge quantities, in this case we must have a transformation between the gauge choices, this
is called a gauge transformation, which is given by

D) = p_r oYy (C-9)

This makes a difference between §ék)T and 5$)T, for the case of first order perturbations
the difference is given by
1 1
00T — 00T = LT, (C-10)

where

E=Y - X. (C-11)



D. General Relativistic Dynamo
Equation

In this appendix we will calculate the full dynamo equation in 1 + 3 formalism given at [83]
as equation (11), in [83] the steps of the calculations and geometrical properties used are
dismissed, but here we will show the properties and most of the steps for the calculations.
Here we will use the Maxwell equations obtained in chapter 2, but we want that the appendix
be complete as possible, then we will write Maxwell equations assuming quasi-neutrality
(Pcharge =~ 0) and the Ohm’s law using the same notation as in [83],

: 2
Bla) — (gab 4o g@h“”) By — curlE® — € By, (D-1)

. 2
ila) — (gab +w® — §@h“b) By + curl B® + €™ By, — 4mwJ', (D-2)
DaEa = —2waBa7 DaBa = QWECH (D_3)

1

Jla) — E® + €%y, B, D-4
AT\ ( e ) >y

where the 1+ 3 electric and magnetic fields in this appendix are written as E and B respec-
tively, X% = h*X,, curlX® = ¢®* Dy X, and X =PV, X here D is the projection of the
covariant derivative V under the projector h. The main idea is to calculate curl (curlB)"
from two different ways, from a physical and from a geometrical point of view. In the case
of the physical point of view is using Maxwell equations, form the geometrical point of view
is using geometrical properties that can be obtained from the 14 3 formalism. Therefore we
will divide this appendix in two sections: Geometry and Physics. In Geometry we will ob-
tain curl (curl B)” from the geometrical properties given by 1+ 3 formalism and also curl B{@)
which is given by equations (9) and (10) in [83]. In Physics we will obtain curl (curl B)* from
Maxwell equations and then the full dynamo equation is obtained.

D.1. Geometry

As mention before, we will obtain curl (curlB)* from the geometrical point of view. From
the definition of curl and using the fact that

€ goe = 0500 — 8567, (D-5)
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then
curl (curl B)* = ¢ 4. DyD*B® = —D*B* + D, DB, (D-6)

Using the commutation of the D operator [111, 114]
2D Dy Bo = —2€capw Bray + Raave B, (D-7)
then
curl (curlB)* = —D?B® + D* (DyB®) + 2€caw Bay + R™ By, (D-8)

Now we need to find the expression for R4, for this we will use the contracted Gauss equation
obtained from (B-11), then we can decompose R, as follows [111, 114]

Rap = heh§ Reg + Rocpauu® + (Deug) (Dyu’) — © Dy, (D-9)

using the Einstein Field equations decomposition in 143 formalism, from (A-58), using the

projector h is possible to obtain hthZRcd, which is given in (2-25), then using Repquu?,

given in (2-32), together with the propagation equations and using the fact that
. . L. L e c-d L ) L. ; .
Vitta—(Vyta) = tq §9Ub — Opell” + €peaw U +Dbua—0ab—wab—§ <@hab + @hab> +1g Uy,
(D-10)
after some calculations [112; 39, 113]

1 1
Rap = (p—|— A— 582 — o2 +w2> hap + Tap — d(ab) + D<aub> — §@ (Uab — wab)

2
3

— u<a’db> -2 (Ofa(f@c + w<awb>) — QOC[aw%}. (D—ll)
Let us now obtain curl B4, for this we will use the following property [76]

|
(Do X)) = Do Xy — g@DaXb — 0D Xy + Hle g X, (D-12)

where H,, = curlog, + D qwyy + 21wy, then

. |
curl (@ = ¢abe (DbE(C>) + g@DbEc + JZDdEC — (curlabd + D®yd 4+ 2u<bwd>) €ace B
(D-13)

To compute this expression we used the following formulas together with the Maxwell equa-
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tions

€ (DyEry) = (" DyEry) — e DyEyy, (D-14)

(EabCDbE<C>) — _B<a> + |:(O.ab + wab _ g@hab> Bb:| _ éabchuc _ GabCEb'Z:LC . eabchuC’

(D-15)
ha = 2u(a i), (D-16)
Eape = Ul €pgatt’, (D-17)
curlog, = €cq(a Dca%), (D-18)
Db, = gDa@ + curlw, + 2€4p. 0w — g, (D-19)
then

curl B9 = —Bl@ 4 =¢ (D-20)

where
2 = (aab + " — gé)h“b) By + (a“b +w® — g@h“b> By + %@ (aab + W — §®h“b> By

1
e Kabd + Wiy — §®hbd) E? + €. DB + €pq.1° B — 47TJ<b>} +Eb [(Curlg)ab +Dw? + 200w

2
— E%4 D0 — gy E, 4 {Dd (E.obq) — 5ECD,,@} — 2B, (Dw +alw) . (D-21)

D.2. Physics

Here we will calculate curl (curlB)* from Maxwell equations, let us start from the Ampere

equation
curlB* = B — (a“b 4w — ;@W’) Ey — €™ By, + 47.J'Y, (D-22)
taking the curl and using the Ohm’s law
curl (curlB)* = curl (@ —eate p, [ecdeueBd} +2 1%, . Dy (vdBe) —e® D, [acd (47TJ<d> — edefver)}
—e%e D, [wcd (47?J<d> - edefver)} +)\_1e“bcDbEc+§e“bcDb [47T)\@hch<d> — @hcdedefver] ,
(D-23)

in the second line of above equation, distributing the derivative, using Faraday’s equation
and using Ohm’s law we obtain

curl (curl B)* = curl B{® —eote D, [ecdeueBd} +A"te%e 4. Dy, (vdBe) —e® D, [acd (47TJ () _ cdefyy B f)}

8 2
— €D, [wcd (47rJ<d> — edefver)} + EW/\J@G“I’CDI,@ — geabcedefverhcdDb@

2 : 2
+ (56 + /\‘1> {BW — <0“b +w® — §®h‘“’) By + €t (47N Ty — €paev?B) | . (D-24)
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Now that we have curl (curl B)* obtained in a geometrical and in a physical way, let us equate

both expressions

— D’B*+ D* (DyB") + R*B,, =
curl B9 — e D, [ecdeueBd} + A te®e 0. Dy (vdBe) — €D, [acd (47?J<d> — edefver)]

8 2
— %D, [wcd (47TJ<d> — edefver)} + ?WAJ@e“bcDb@ — ge“bcedefverhcdDb@
2 . 2
+ (g@ + )\_1) {B@ — (U“b +w® — g@h“b> By, + €%, (47r)\J<b> — ebdevdBe) , (D-25)
multiplying by A and rearranging the terms in the equation we finally obtain

B + AD*B® + ¢"“€cqe Dy, (v'B°) =

9 .
— g)\@BW +2XAD" (W Ey) + AR™ By + Ae™ Dy [00q (47T — €0, By)] + Xe™ Dy [€qett® B
2 : 2
+ (5)\@ + 1) [B“) - (a“b +w® — g@hab) By + €t (47N J by — €pacvB°)

FA Dy [wea (4m T — e¥fv,By) ] —1—?ﬁ)\2J<c>€abCDb@+§A6abcedefvethcdDb@+>\B<a>—Ea-
(D-26)



E. Geometric quantities

In this appendix it is shown some perturbed quantities at first order, in order to do this
we used Sagemanifolds[48, 49] and xPand [95]. Let us remember that H = a’/a where the
prime denotes the derivative respect to the conformal time.

E.1. Geometric quantities perturbed at first order

Christoffel symbols for the four dimensional spacetime can be written in the following way
0 1
rg, =601, +60r%,, (E-1)

where 5(0)11‘57 is the background contribution and 6T’ is the contribution at first order.
Therefore

5019, = H, (E-2)
00Ty, = Hdl, (E-3)
5(0)F?] = H(Sij, (E_4>
§OTY, = 60T, =0T, =0, (E-5)
and
s, = (), (E-6)
i ¢ 1 i/
0Ty, = — () 85 + 3 (x5) (E-7)
/ 1 /
5(1)ng = —0iw; — 2Hpd;; — (¢) 0ij — Hxuj + 3 (xi5) 5 (E-8)
dWThy = 0" + Hw' + (w')', (E-9)
MY = i + Huw, (E-10)
‘ . S . 1. . 1. . 1.
(5(1)sz = —8J¢6}€ — 0@6; + 8Z¢(3jk - leéjk + §an;€ + 56}0{3 — §aZXjk. (E—ll)
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The Ricci tensor in the background is given by
R(O) - _3@_ + 3N, (E-12)
(E-13)

0,
— (a_ ) " (E-14)
a
At first order

R\ = Hawi +0; (W) + 0,07 +3 ()" + 3H () + 3H (v) (B-15)

/ 1 !/
Rfy = —wz + HPw; + 20, () + 2HO + 30 (xi) (E-16)
//

/ / CL” "
R = | =My = 5HY' — 2 = 21 = 256 — 2H — ¢ + 0" 0 — HOW!| 6,

a” 1
— 0 (wy)" — 2HOw; + HX}; + X T H2xi; + 2ng + 0;0; (¢ — 1) (E-17)
1 1
+ 581 (@Xé + (9jx§) — 58{86{@'. (E—lg)
The curvature scalar in the background is given by
6 "
RO = ; . (E-19)

At first order

RW = ;2 —6HOw' — 20; (W) — 20,0') — 6¢" — 6HyY — 18H — 12%¢ +49,0'¢ + alaixg] _
(E-20)
The Einstein tensor in the background is given by
©) 3
(Gg) _;7 (E_21)
(@) = (@) =0, (E-22)
(e a— (2— - H2) 5. (E-23)
a
At first order
1 1
(G?) (6%%5 + 61 + 2HOW' — 20;0'p — —akale) , (E-24)
1
(@)= [ 2, (2H + &) — S0k + aka’m} (E-25)
(@)Y = " { 2HY" + 4—w — 2H2 + 9,04 + AHY + 2¢" — 0,06 + 2HIW' + 9y (W) + éakalxﬂ 5

i i / i 1 i\ i i 1 i
—1—8’8]- (¢ — w) -0 (Zij + wj) + (H (Xj)/ + 5 (X])/> + 58[8 Xé + 5(?18le — 58181)(3-}
(E-26)
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The following Sagemath code calculates the Friedman equations, this also calculates the
lapse function, the shift vector, the extrinsic curvature, the induced metric and the normal
vector for the FLRW solution with conformal time

%display latex
Parallelism().set (nproc=8)

M = Manifold(4, ’M’, structure="Lorentzian")

N = Manifold(3, ’N’, ambient=M, structure="Riemannian")
print (M)

print (N)

C.<eta,x,y,z>=M.chart(r’eta:(-00,00):\eta x:(-00,00) y:(-00,00) z:(-00,00)"°)
r=sqrt(x"2+y~2+z°2)

var (’k’, domain=’real’); k=0
a = M.scalar_field(function(’a’)(eta),name=’a’)
rho = M.scalar_field(function(’rho’)(eta), name=’rho’)

p = M.scalar_field(function(’p’) (eta), name=’p’)

g = M.metric()

gl[0,0] = -a*a

gli,1] = a*xa/((1 + (k*xr~2)/4)°2)
gl2,2] = axa/((1 + (k*xr~2)/4)°2)
gl[3,3] = a*xa/((1 + (k*r~2)/4)°2)

g.display ()

nabla = g.connection ()
g.christoffel_symbols_display ()

Ricci = nabla.ricci()
Ricci.display_comp ()

Ricci_scalar = g.ricci_scalar ()
Ricci_scalar.display ()

u = M.vector_field(’u’)
ul0] = 1/a u.display ()

g(u,u).expr ()
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u_form = u.down(g)

T = (rho+p)*(u_form*u_form) + pxg
T.set_name (’T’)

print (T)

T.display ()

Ttrace = g.inverse()[’~ab’]*T[’_ab’]
Ttrace.display ()

El = Ricci - Ricci_scalar/2*xg - (8xpi)x*T

print ("First Friedmann equation:\n")
E1[0,0].expr().expand() == 0

E2 = Ricci - (8xpi)*(T - Ttrace/2xg)
print ("Second Friedmann equation:\n")
E2[0,0].expr().expand() == 0

tau = var(r’tau’)

CN.<x0,y0,z0> = N.chart(r’x0:(-00,00) yO:(-00,00) z0:(-00,00)°)

phi = N.diff_map(M, {(CN,C):[tau,x0,y0,z0]13})
phi.display ()

phi_inv = M.diff_map(N, {(C,CN):[x,y,z]1})
phi_inv.display ()

phi_inv_tau = M.scalar_field({C:eta})
phi_inv_tau.display ()

N.set_embedding(phi, inverse=phi_inv, var=tau, t_inverse={tau: phi_inv_taul})
T = N.adapted_chart ()

T

N.induced_metric () .display ()

N.induced_metric().inverse () [:]

N.normal () .display ()

g(N.normal (), N.normal()).display()

N.lapse().display ()

N.shift ().display ()
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N.second_fundamental_form().display ()

~

= N.induced_metric().inverse()[’>"ab’]*N.second_fundamental_form()[’_ab’]
.display ()

=~

N.induced_metric().connection().ricci().display_comp ()

The following is a Mathematica code which calculates the Einstein field equations pertubed
at first order on the Newtonian Gauge, this are the equations (7) on [77]

<< xAct ‘xPand ¢;

DefManifold [M, 4, {\[Alpha], \[Betal, \[Gamma], \[Mul, \[Nul], \[Lambdal,

\[Sigmal}];
DefMetric[-1, g[-\[Alphal, -\[Betall, CD, {";", "\[Dell"}];
DefMetricPerturbation([g, dgl;
SetSlicing[g, n, h, cd, {"|", "D"}, "FLFlat"];
MyToxPand [expr_, gauge_, order_] := ToxPand[expr, dg, u, du, h, gauge,

order]

$FirstOrderVectorPerturbations = False;
$FirstOrderTensorPerturbations = False;

MyToxPand [EinsteinCD [-\[Mul], -\[Nul], "NewtonGauge", 1]

ExtractComponents [%, h, {"Time", "Time"}]
ExtractComponents [%%, h, {"Time", "Space"}]

ExtractComponents [MyToxPand [EinsteinCD [-\[Mu], -\[Null, "NewtonGauge", 1],
h, {"Space", "Space"}] // Simplify

DefTensor [Tmunu [-\[Mu], -\[Null, M] Tmunul[\[Mul_, \[Nul_] := (\[Rho]([ull[])
ul\[Mul]l ul\[Null
MyToxPand [Tmunu [-\[Mu]l, -\[Null, "NewtonGauge", 1]

ExtractComponents [MyToxPand [Tmunu [-\[Mu]l, -\[Nul]l, "NewtonGauge", 1],

h, {"Time", "Time"}]
ExtractComponents [MyToxPand [Tmunu [-\[Mu]l, -\[Nul]l, "NewtonGauge", 1],
h, {"Time", "Space"}]
ExtractComponents [MyToxPand [Tmunu [-\[Mu], -\[Nul]l, "NewtonGauge", 1],
h, {"Space", "Space"}]
MyGR [\ [Mul_, \[Nul_] := EinsteinCD[\[Mu], \[Nul]]l - 8*Pi*Tmunul[\[Mu],

\[Nul]l;
ExtractComponents [MyToxPand [MyGR [-\[Mul, -\[Null, "NewtonGauge", 1],
h, {"Time", "Time"}] == 0 // Simplify
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ExtractComponents [MyToxPand [MyGR [-\[Mul, -\[Null], "NewtonGauge", 1],
h, {"Time", "Space"}] == 0 // Simplify
ExtractComponents [STFPart [MyToxPand [EinsteinCD [-\[Mu], -\[Null,
"NewtonGauge", 1], h],
h, {"Space", "Space"}] // Simplify

MyToxPand [EinsteinCD [\ [Mu]l, -\[Mul]l, "NewtonGauge", 1]
MyToxPand [CD [-\[Mu]] @Tmunu [\ [Mu], \[Nu]l, "NewtonGauge", 1]

ExtractComponents [MyToxPand [CD[-\[Mul] @Tmunu [\ [Mu], \[Null, "NewtonGauge",
1], h, {"Time"}] == 0 // FullSimplify
ExtractComponents [MyToxPand [CD [-\[Mul]] @Tmunu [\ [Mu]l, \[Null, "NewtonGauge",
1], h, {"Space"}] == 0 // FullSimplify
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