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Resumen
Esta tesis contempla la generalización de resultados de geomtría diferencial clásica en el contexto de los sistemas locales
homotópicos. En particular, se realiza la construcción del homomorfismo de Chern-Weil y el teorema equivariante de
de Rham en el contexto de las categorias diferenciales graduadas conformadas por los sistemas locales homotópicos.
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Abstract

Let G be a compact connected Lie group acting on a smooth manifold M. We show that the DG
categories Loc∞(BG) and Loc∞(MG) of ∞-local systems on the classifying space of G and the ho-
motopy quotient of M, respectively, can be described infinitesimally as the categories InfLoc∞(g)

of basic g-L∞ spaces and InfLoc∞(g,M) of g graded G-equivariant vector bundles, respectively.
Moreover, we show that, given a principal bundle π : P→ X with structure group G and any con-
nection θ on P, there are DG functors

C Wθ : InfLoc∞(g)−→ Loc∞(X),

and
Cθ : InfLoc∞(g,M)−→ Loc∞((P×M)/G),

that corresponds to the pullback functor by the classifying map of P. An A∞-natural isomorphism
relates the functors associated with different connections. This construction categorizes the Chern-
Weil homomorphism, which is recovered by applying the functor C Wθ to the endomorphisms of
the constant local system.

Finally, we obtain a categorification of the equivariant de Rham theorem for infinity local systems,
namely, the A∞-fuctor

DR : InfLoc∞(g,M)→ Loc∞(MG).
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Chapter 1

Introduction

The history of A∞-structures begins in 1957 with the work of Masahiro Sugawara [1]. An H-space
is a topological space X with a continuous multiplication m : X ×X → X with unit element e in X .
The H-space is homotopy associative if the two maps X ×X ×X → X given by the two ways of
associating are homotopic. Given a topological space X with a base point x0 in X , the based loop
space denoted by ΩX is the space of paths in X beginning and ending in x0. The concatenation of
paths ∗ : ΩX×ΩX→ΩX is a binary operation on ΩX . Sugawara defines a space F to be group-like
if it is a homotopy associative H-space satisfying some technical assumptions, which are satisfied
by loop spaces. He obtains a criterion for space F to be a group-like space.

Following the ideas of Sugawara, J. Stasheff in the 1960’s introduced the Stasheff polytopes or
associahedra {Kn}n≥2, where for any fixed n, the polytope Kn has dimension n−2, each vertex of
the polytope represents a different way of composing n paths in ΩX , and the edges are given by
the different homotopies between the ways of composing n paths. For example, for n = 3, K3 has
dimension 1 and consists of two vertices given by the two different ways of composing 3 paths
and one edge representing the unique homotopy between that compositions. Notice that for any
n≥ 2, the polytope Kn is a connected, orientable closed manifold; hence the top homology group is
Hn−2(Kn,Z)∼=Z. A choice of a generator of that homology is called the fundamental class denoted
by κn. Gluing together all homotopies for each n, we obtain the maps Mn : Kn× (ΩX)n→ΩX for
each n ≥ 2. Stasheff introduced A∞-spaces as a refinement of a homotopy associative H-space
taking into account higher coherences [2, 3]. An A∞-space is a topological space Y with operators
Mn : Kn×Y n→Y for n≥ 2 such that coherence conditions are satisfied encoding certain topological
homotopies. Given an A∞-space Y with operators Mn : Kn×Y n→ Y , let A =C•(Y ) be the singular
chain complex of Y with boundary operator ∂ : A→ A, which we denote m1. Taking push-forward
on the operators Mn, we obtain maps (Mn)# : C•(Kn)⊗ A⊗n → A, adn therefore we can define
operators mn : A⊗n→ A for n≥ 2, by the formula

mn(σ1⊗·· ·⊗σn) := (Mn)#(κn⊗σ1⊗·· ·⊗σn),

where κn ∈C•(Kn) is the fundamental class of Kn. The topological homotopies encoded by {Mn}
turn into algebraic homotopies encoded by {mn}. So, the concept of A∞-algebras come as linearized
versions of A∞-spaces, and this is the origin of the theory of A∞-algebras. These structures with their
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CHAPTER 1. INTRODUCTION 6

corresponding morphisms, namely A∞-morphisms, A∞-functors, and A∞-natural transformations,
are of special interest in the study of the Riemann-Hilbert correspondence and other results that we
will study in this thesis.

Jim Stasheff and Tom Lada introduced L∞-algebras in [4,5] based on the work of Barton Zwiebach
in [6]. A differential graded Lie algebra is a graded Lie algebra L =

⊕
i Li equipped with a differen-

tial that acts as a graded derivation with respect to the Lie bracket. The Chevalley-Eilenberg algebra
CE(g) of a Lie algebra g is a differential graded algebra of elements dual to g whose differential
encodes the Lie bracket on g. As in the case of the A∞-algebras where associativity is given up
to homotopy, the L∞-algebras are a higher generalization of differential graded Lie algebras, since
in an L∞-algebra the Jacobi identity is allowed to hold up to homotopy. The morphisms between
L∞-algebras are called L∞-morphisms. An element x of a differential graded Lie algebra with dif-

ferential d is said to be a Maurer-Cartan element if dx+
1
2
[x,x] = 0. The relationship between the

set of L∞-morphisms of two L∞-algebras L and L′ and the set of Maurer-Cartan elements of the
differential graded Lie algebra CE(L)⊗L′ will play an essential role in developing our theory.

A local system on a topological space X is a representation of the fundamental groupoid π1X of X .
The ∞-groupoid π∞(X•) of X is the simplicial set X•, where Xk is the set of smooth k-simplices in
X . A representation up to homotopy of the groupoid is a Z-graded vector bundle over X together
with a way to assign holonomies to simplices of all dimensions in a coherent manner. Replacing
the fundamental groupoid with the ∞-groupoid obtains the theory of ∞-local systems. An ∞-local
system on X is a representation up to homotopy of π∞(X•), which form a DG category denoted by
Rep∞(π∞(X)). Just like ordinary local systems can be described in several ways, such as flat vector
bundles, the DG category of ∞-local systems also admits various descriptions.

Point of view ∞-local system
Infinitesimal Flat superconnection
Simplicial Representation of π∞X•

Topological Representation of C•(ΩMX)

Here C•(ΩMX) denotes the algebra of singular chains on the based Moore loop space of X . Each
of these notions of ∞-local system can be organized into a DG category, and these categories are
quasi-equivalent. The proofs of these results can be found in [7–10]. The equivalence between
the “infinitesimal” and the “simplicial” points of view is known as the higher Riemann-Hilbert
correspondence.

From the infinitesimal point of view, an ∞-local system over X is a Z-graded vector bundle over
X of finite rank and a flat Z-graded connection. The DG category obtained in this way is de-
noted by Loc∞(X). In this setting, the higher Riemann-Hilbert correspondence states that there is
an A∞-equivalence Loc∞(X)→ Rep∞(π∞(X•)). In other words, a flat Z-graded connection over
X provides enough data to construct holonomies along simplices of all dimensions. The higher
Riemann-Hilbert correspondence can be thought of as a categorical generalization of the de Rham
theorem, where the last one states that the de Rham complex Ω

•(X) and the cochain complex C•(X)

are equivalent in the sense that both have isomorphic cohomologies. The equivalence is proven via
an integration map

∫
: Ω

•(X)→C•(X) that descends to an isomorphism of algebras in cohomology.
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Following the analogy between the de Rham complex Ω
•(X) and the category of ∞-local systems

Loc∞(X), in [11] one of the fundamental properties of de Rham’s cohomology is studied in the
context of ∞-local systems. Namely, two homotopical maps f ,g : X→Y induce the same morphism
in cohomology, i.e. f ∗ = g∗ : H(Y )→H(X). The ∞ version given in [11], states that if X and Y are
smooth manifolds and let f ,g : X → Y be smooth maps, if h : [0,1]×X → Y is a homotopy with
h ◦ i0 = f and h ◦ i1 = g, then there is an A∞-natural isomorphism hol : f ⇒ g which depends on
h. As a corollary of the previous result, in [11] is obtained an A∞ version of the Poincaré lemma.
This states that if X is contractible, then Loc∞(X) is equivalent to the category of ∞-local systems
over a point, which is the category DGVectR of differential graded vector spaces. These results are
essential for obtaining the categorification of the Chern-Weil homomorphism.

The Chern-Weil theory was developed in the late 1940s by Shiing-Shen Chern [12] and André Weil
[13] and gives us a bridge between the areas of algebraic topology and differential geometry. The
main result in Chern-Weil theory is the Chern-Weil homomorphism, which allows us to compute
topological invariants of vector bundles and principal bundles on a smooth manifold M in terms
of connections and curvature representing classes in the de Rham cohomology ring of M. These
classes are called the characteristic classes, and these have a large number of applications in both
mathematics and physics.

Let G be a compact connected Lie group with Lie algebra g, there exists a classifying space BG,
such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence
with the set of homotopy classes [X ,BG] . The correspondence is given by pulling back a universal
principal G-bundle over BG. When G is discrete, BG is an Eilenberg-Maclane space of type (G,1).
When G is the unitary group U(n), BG is homotopy equivalent to the infinite Grassmanian Gn(C∞).
Given a function f : X → BG in [X ,BG], taking cohomology we get a homomorphism of rings
f • : H•(BG)→ H•(X). The cohomology of the classifying space BG is isomorphic to the algebra
of invariant polynomials (S•g∗)inv on g. When we take G = U(n), we obtain the homomorphism
f • : H•(Gn(C∞))→ H•(X), where the cohomology of the infinite Grassmanian H•(Gn(C∞)) is the
polynomial ring C[x1, ...,xn], with the variables x1, ...,xn the Chern classes.

Let π : P→ X be a principal G-bundle with Lie algebra g and given any connection θ on P; the
Chern-Weil homomorphism is an algebra map

cθ∗ : (S•g∗)inv→ H•DR(X),

where (S•g∗)inv is the algebra of invariant polynomials on the symmetric algebra of g∗, which
can be described geometrically in terms of the curvature and corresponds to the map induced in
cohomology by the classifying map f : X → BG of P, previously discussed. Our first goal is to
categorify this construction by replacing the cohomology of BG with a more abstract invariant, the
DG category Loc∞(BG) of ∞-local systems on BG.

Given a topological group G, a G-manifold M is a manifold M with a left G-action. Equivariant
cohomology aims to compute the cohomology of a G-manifold M taking into account the sym-
metries of that space given by the action of the group G. In 1950, Cartan [14, 15] constructed a
differential complex ((S•g∗⊗Ω

•(M))inv,D) out of the differential forms on a G-manifold M, with
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G a compact, connected Lie group. Cartan’s complex computes the real equivariant cohomology of
a G-manifold M, in the same way that the de Rham complex of smooth differential forms computes
the real cohomology of a manifold M. In 1960, Borel [16] defined equivariant cohomology of a
smooth manifold M using the Borel construction. Let EG be the total space of the classifying space
BG; since EG is a contractible space on which the group G acts freely, the space EG×M will have
the same homotopy type as M and the diagonal action of G on EG×M will always be free. Hence
the Borel construction or homotopy quotient MG of the manifold M is defined to be the quotient of
EG×M by the diagonal action of G. The equivariant cohomology H•G(M) of the G-manifold M
is defined to be the cohomology H•(MG) of the homotopy quotient MG. The equivariant de Rham
theorem state that if G is a compact connected Lie group and M is a G-manifold, there is a graded-
algebra isomorphism between the equivariant cohomology of M and the cohomology of the Cartan
model (S•g∗⊗Ω

•(M))inv,
H•G(M)∼= H•((S•g∗⊗Ω

•(M))inv).

The second goal of this thesis is to show the equivariant de Rham theorem in the context of ∞-
local systems by replacing equivariant cohomology H•G(M) of a G-manifold M by the analog in the
context of ∞-local systems, the equivariant local systems Loc∞(MG), where MG is the homotopic
quotient of M.

In analogy with the Chern-Weil construction, we introduce a DG category InfLoc∞(g), which is
the infinitesimal counterpart of Loc∞(BG). This DG category is defined as follows. Given a Lie
algebra g, we consider the DG Lie algebra Tg universal for the Cartan relations. The DG category
InfLoc∞(g) is a certain subcategory of the DG category of L∞-representations of Tg.

Our main first result is the construction of a DG functor that extends the Chern-Weil homomor-
phism [17].

Theorem A. Let G be a Lie group and let π : P→ X be a principal bundle with structure group G.
Then, for any connection θ on P, there is a natural DG functor

C Wθ : InfLoc∞(g)−→ Loc∞(X).

Moreover, for any two connections θ and θ ′ on P, there is a A∞-natural isomorphism between
C Wθ and C Wθ ′ .

Our second result states that, as expected, the functor C Wθ corresponds to the pullback functor
by the classifying map [17].

Theorem B. Given a compact connected Lie group G, there is a natural A∞-functor

W : InfLoc∞(g)→ Loc∞(BG),

which is an A∞-quasi-equivalence. Moreover, if we let π : P→ X be a principal bundle with struc-
ture group G, θ be any connection on P, and f : X → BGn be the classifying map of P, then
there exists an A∞-natural isomorphism between the A∞-functors I ◦ C Wθ and (ϕn ◦ f )∗• ◦ W
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from InfLoc∞(g) to Rep∞(π∞X•). Here I is the integration A∞-functor provided by the higher
Riemann-Hilbert correspondence, and ϕn is the canonical map from BGn to BG.

In analogy with the equivariant de Rham theorem, we introduce a DG category InfLoc∞(g,M),
which is the infinitesimal counterpart of Loc∞(MG).

Our third result is the generalization of Theorem A [18].

Theorem C. Let G be a Lie group and let π : P→ X be a principal bundle with structure group G.
Then, for any connection θ on P, there is a natural DG functor

Cθ : InfLoc∞(g,M)→ Loc∞((P×M)/G).

Moreover, for any two connections θ and θ ′ on P, there is an A∞-natural isomorphism between Cθ

and Cθ ′ .

With this in hand, the last result is the construction of a DG functor that extends the equivariant de
Rham theorem in the context of ∞-local systems [18].

Theorem D. Given a compact connected Lie group G, the A∞-fuctor

DR : InfLoc∞(g,M)→ Loc∞(MG)

is an A∞-quasi-equivalence. In addition, for any principal G-bundle π : P→ X with connection θ

and classifying map f : P→ EGn, given a smooth G-manifold M simply connected, there exists an
A∞-natural isomorphism between the A∞-functors I◦ Cθ and (ϕn◦ f )∗• ◦DR from InfLoc∞(g,M)

to Rep∞(π∞((P×M)/G•). Here I is the integration A∞-functor provided by the higher Riemann-
Hilbert correspondence, and ϕn is the canonical map from EGn to EG.

Let us explain the relationship between our results and the DG category of modules over the algebra
C•(G) of singular chains on G. The correspondence between representations of Tg and modules
over C•(G) was studied in [19, 20]. In these works, it is proved that for a simply-connected group
G, the category of representations of Tg is equivalent to the category of “sufficiently smooth”
modules over C•(G). Moreover, if G is also compact, the DG enhancements of these categories are
also A∞-quasi-equivalent. Precisely, the following is proved in [19].

Theorem 1.1. Suppose that G is a compact and simply connected group. The DG categories
DGRep(Tg) of representations of Tg and DGMod(C•(G)) of modules over C•(G) are A∞-quasi-
equivalent.

Given that the DG category DGRep(Tg) is a subcategory of InfLoc∞(g), one concludes that the
category of modules over C•(G) consists of ∞-local systems on BG. This should be expected on
topological grounds because G is A∞ equivalent to ΩMBG, and therefore, C•(G) and C•(ΩMBG)

are homotopy equivalent. However, the argument is infinitesimal in terms of the Lie algebra g.



The structure of the thesis

In chapter 2, we will give the preliminary concepts for this thesis. In section 1, we have the basics
in A∞ and L∞-structures, namely, we review the basic concepts of L∞-algebras and the idea of DG
categories and their A∞-natural transformations. Section 2 is devoted to studying ∞-local systems,
and it is the principal object of the thesis. In section 2, we have the basics of iterated integrals and a
posterior discussion of the A∞ version of Poincare Lemma. Finally, this section reviews the notions
of representations up to homotopy and the higher Riemann-Hilbert correspondence.

Chapter 3 is devoted to defining the DG category Loc∞(g), which is the analog of the algebra of
invariant polynomials (S•g∗)inv. Subsequently, the Chern-Weil isomorphism for ∞-local systems
is proved [17]. The last section of this chapter proves that the DG category Loc∞(g) is A∞-quasi-
equivalent to the DG category Loc∞(BG) of ∞-local systems on the classifying space of G.

Finally, in chapter 4, we generalize the equivariant de Rham theorem for ∞-local systems [18],
which allows us to calculate ∞-local systems on the homotopy space MG of M. To show this
theorem, we define the DG category Loc∞(g,M) given an analog for the cohomology of the Weil
model of the Lie algebra g.

10



Chapter 2

Preliminaries

This chapter recalls some terminology and results concerning DG Lie algebras, DG categories,
and ∞-local systems. The books by Guillemin-Sternberg and Meinrenken [21, 22] discuss the
construction of the Weil algebra of a Lie algebra. For a detailed exposition of L∞-algebras and
morphisms, we recommend [23]. The paper by Keller [24] provides an excellent introduction to DG
categories. Our conventions on ∞-local systems and the higher Riemann-Hilbert correspondence
are taken from [8, 9, 25, 26]. For A∞ structures see [27].

2.1 A∞ and L∞-Structures

2.1.1 Graded Vector Spaces

This section will review the basic definitions of graded vector spaces and their respective mor-
phisms. The following section will use these definitions to abstract the algebraic idea behind the
geometric construction discussed. All vector spaces and algebras are defined over the field of real
numbers R. All cochain complexes are cohomologically graded; the differential increases the de-
gree by 1.

A Z-graded vector space V is a vector space which decomposes into a direct sum of vector spaces
over Z of the form

V =
⊕
n∈Z

V n,

where for every n ∈ Z, the elements of V n are called homogeneous elements of degree n, in this
case if v ∈V n, we write |v|= n.

The suspension of the Z-graded vector space V is denoted by sV , that is the same vector space with
a shift in degrees given by

(sV )n :=V n−1,

and by uV its unsuspension, which is the same graded vector space with grading defined by

(uV )n :=V n+1.

11



CHAPTER 2. PRELIMINARIES 12

A familiar example of graded vector space is the vector space of all polynomials in one or several
variables where the homogeneous elements of degree n are linear combinations of monomials of
degree n.

Let V and W be a Z-graded vector spaces. A homogeneous morphism of degree m is a linear map
f : V →W such that for any homogeneous element v ∈V with |v|= n, we have that | f (v)|= n+m,
i.e., the linear map f shifts the degree of the elements in V by m. In this case we write | f |= m and
f : V • →W •+m. For example the identity morphism denoted by 1V : V → V of a Z-graded vector
space V , is a homogeneous morphism of degree zero.

Let Vi be Z-graded vector spaces, with i = 1, ...,n, then the tensor product V1⊗ ·· ·⊗Vn is also a
Z-graded vector spaces with degree

(V1⊗·· ·⊗Vn)
m =

⊕
m1+···+mn=m

V m1
1 ⊗·· ·⊗V mn

n .

If we have homogeneous elements vi ∈ Vi, with i = 1, ...,n, then the tensor product element v1⊗
·· ·⊗ vn is homogeneous with degree

|v1⊗·· ·⊗ vn|= |v1|+ · · ·+ |vn|.

Let V and W be Z-graded vector spaces. For homogeneous elements v ∈V and w ∈W , the Koszul
sign convention states that when v moves past w, then a sign change of (−1)|v||w| is required.

Let f1 : V1→W1 and f2 : V2→W2 be homogeneous maps. Using the previous Koszul sign conven-
tion we define f1⊗ f2 : V1⊗V2→W1⊗W2 by

( f1⊗ f2)(v1⊗ v2) = (−1)|v1|| f2| f1(v1)⊗ f2(v2),

for any homogeneous elements v1 ∈ V1 and v2 ∈ V2. More generally, if fi : Vi→Wi are homoge-
neous, with i = 1, ...,n, then

( f1⊗·· ·⊗ fn)(v1⊗·· ·⊗ vn) = (−1)σ f1(v1)⊗·· ·⊗ fn(vn),

where σ = |v1|| f2|+ · · ·+(|v1⊗·· ·⊗ vn−1|)| fn|, for any homogeneous elements vi ∈ Vi, with i =
1, ...,n.

For homogeneous maps of the form f : V⊗m→W , taking suspensions on all factors we get a map
f̂ : (sV )⊗m→ sW . The following commutative diagram determines the relation between the degrees
| f | and | f̂ |

V⊗m W

(sV )⊗m sW,

f

s⊗m

f̂

u

therefore we get
| f |= 1+ | f̂ |−m.
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A differential graded vector space (DG vector space) or cochain complex is aZ-graded vector space
V with a homogeneous map dV : V • →V •+1 called a differential, such that d2

V = 0. The subscript in
dV will be dropped when V is clear from the context. Let (V,dV ) and (W,dW ) be DG vector spaces,
then the morphisms between V and W are the homogeneous maps for all degrees. Therefore the
DG vector spaces are the objects of the category denoted by DGVect, with morphisms given by

HomDGVect(V,W ) =
⊕

n
Homn

DGVect(V,W ),

where Homn
DGVect(V,W ) is the set of homogeneous maps of degree n.

Notice that the category DGVect is a monoidal category. Let (V,dV ) and (W,dW ) be DG vector
spaces, then the tensor product V ⊗W has a differential dV⊗W = dV ⊗ 1W + 1V ⊗ dW . Using the
Koszul sign convention we can check that d2

V⊗W = 0. More in general, let (Vi,dVi) be a DG vector
spaces, with i = 1, ...,n, then the tensor product V1⊗·· ·⊗Vn has a differential

n

∑
i=1

1V1⊗·· ·⊗1Vi−1⊗dVi⊗1Vi+1⊗·· ·⊗1Vn.

The condition d2 = 0 implies that

im(d: V n−1→Vn)⊂ ker(d: V n→V n+1),

for all n. Therefore we can define the cohomology of the DG vector space (V,d ) by

H•(V ) =
⊕

n
Hn(V ),

where

Hn(V ) :=
ker(d: V n→V n+1)

im(d: V n−1→V n)
.

Given v ∈ ker(d ), the class that it defines in cohomology is denoted by v.

A homogeneous morphism f : V →W is called a morphism of complexes if

dW ◦ f = (−1)| f | f ◦dV .

Hence, we have the category of cochain complexes denote by cCh, it is a subcategory of DGVect.
A morphism of complexes f : V →W induces a morphism of the same degree f : H•(V )→H•(W )

by the formula f (v) = f (v), for all v ∈ H•(V ). If the morphism of complexes f induces an iso-
morphism in cohommology, then f is called a quasi-isomorphism. Two homogeneous morphisms
of complexes f ,g : V →W of degrees | f | = |g| = n are homotopic if there is a morphism h (not
necessarily of complexes) of degree |h|= n−1, such that

f −g = dW ◦h− (−1)|h|h◦dV .
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If f and g are homotopic, then they define the same morphism in cohomology f = g.

HomDGVect(V,W ) is a DG vector space with differential denote by DV,W , given by

DV,W ( f ) = dW ◦ f − (−1)| f | f ◦dV ,

for all homogeneous morphism f . Notice that f is a morphism of complexes if and only if
DV,W ( f ) = 0 and | f | = 0. Two morphisms of complexes f and g are homotopic if and only if
there is h such that DV,W (h) = f − g, and therefore they define the same class in cohomology
H(HomDGVect(V,W )).

2.1.2 Differential Graded Lie Algebras and L∞-Algebras

We discuss in this section the concept of L∞-algebras. First, we introduce the more fundamental
idea of differential graded Lie algebra (DG Lie algebra in short) to motivate the definition of L∞-
algebra.

A differential graded Lie algebra (DG Lie algebra) is a Z-graded vector space L =
⊕

i Li, with a
linear map d : L→ L and a bilinear map [−,−] : L⊗L→ L called the bracket, such that:

• d is a differential of degree −1 that makes (L,d) into a chain complex, i.e., d2 = 0,

• d is a graded derivation of the bilinear pairing,

d[x1,x2] = [dx1,x2]+ (−1)|x1|[x1,dx2],

• the bilinear pairing is graded skew-symmetric,

[x1,x2] =−(−1)|x1||x2|[x2,x1],

• the bilinear pairing satisfies the graded Jacobi identity,

[x1, [x2,x3]] = [[x1,x2],x3]+ (−1)|x1||x2|[x2, [x1,x3]],

for all homogeneous elements x1,x2 and x3 of L.

A strict morphism of DG Lie algebras φ : L→ L′ is a homomorphism of graded Lie algebras with
φ ◦d = d′ ◦φ .

For the first example of DGLA, any DG algebra with the graded commutator is a DG Lie algebra.
Let V =

⊕
k∈ZV k be a graded vector space and (V,∂ ) a chain complex with differential ∂ : V k→

V k+1. Taking End(V ) =
⊕

k∈ZEndk(V ), where we denote by Endk(V ) the endomorphisms of V of
degree k. On End(V ) we define the bilinear map and the derivation respectively by

[ f ,g] = f g− (−1)| f ||g|g f ,



CHAPTER 2. PRELIMINARIES 15

d f = ∂ f − (−1)| f | f ∂ .

With these operations, End(V ) is a DGLA.

If g is a finite dimensional Lie algebra, the bracket [−,−] : Λ2g→ g is associate a dual map δ =

[−,−]∗ : g∗→ (Λ2g)∗ = Λ2(g∗). Since Λ2g∗ is a free algebra generated by g∗, we can extend the
map δ to a map δ̃ : Λg∗ → Λg∗. From the Jacobi equation for the bracket [−,−] we have that
δ̃ 2 = 0, and therefore we get the bijection{

δ̃ ∈ Der1 (Λg∗) |δ̃ 2 = 0
}
∼= {Lie brackets in g}.

The previous bijection gives us an alternative form to define a finite-dimensional Lie algebra, as a
finite-dimensional vector space g with a derivation δ : Λg∗→ Λg∗ of degree 1 such that δ 2 = 0.
But in the case of infinite-dimensional g we have some problems with the dual space of g, so to
avoid these problems, we will formulate the definition in terms of coalgebras.

Let K be a field. A graded K-coalgebra is defined to be a triple (C,∆,ε), where C =
⊕

k Ck is a
graded K-vector space and ∆ : C→C⊗C and ε : C→ K are K-linear maps, called the comultipli-
cation and counit of C, respectively, such that the following diagrams are commutative:

C C⊗C

C⊗C C⊗C⊗C

∆

∆ ∆⊗idC

idC⊗∆

and
C

K⊗C C⊗K,

C⊗C

∆

βC σC

ε⊗idC idC⊗ε

where βC : C → K ⊗C and σC : C → C⊗K are given by βC(x) = 1K ⊗ x and σC(x) = x⊗ 1K

respectively.

A morphism of K-coalgebras (C,∆C,εC)→ (D,∆D,εD) is a K-linear map g : C→ D such that the
following diagrams are commutative:

C C⊗C

D D⊗D,

∆C

g g⊗g

∆D
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and
C

K.

D

g

εC

εD

A coaugmentation of a K-coalgebra (C,∆,ε) is a morphism η : K→C. A K-coalgebra (C,∆,ε) is
said to be cocommutative if the diagram

C

C⊗C C⊗C

∆ ∆

TC,C

is commutative, where TC,C is the twist isomorphism on C⊗C given by TC,C(x⊗y) = (−1)|x||y|y⊗x.

We identify a K-coalgebra (C,∆,ε) with its underlying graded vector space C. A coderivation of
degree p ∈ Z on a coalgebra C, is a linear map δ : C → C of degree p such that the following
diagram commutes

C C⊗C

C C⊗C.

∆

δ δ⊗1+1⊗δ

∆

In addition, a coderivation δ of a coaugmented coalgebra (C,η) is a coderivation of C such that
δ ◦η = 0. A differential δ on a coalgebra C, is a coderivation of degree −1 such that δ ◦ δ = 0.
The pair (C,δ ) is called a differential graded coalgebra.

Given a commutative DG algebra A and a DG Lie algebra L, the tensor product A⊗ L has the
structure of a DG Lie algebra. The bracket operation and the differential on A⊗L are

[a⊗ x,b⊗ y] = (−1)|x||b|ab⊗ [x,y],

d(a⊗ x) = da⊗ x+(−1)|a|a⊗dx,

for homogeneous a,b ∈ A and x,y ∈ L.

The symmetric group on n letters is denoted by Sn. If i1 + · · ·+ id = n, then Si1,...,id is the set of
(i1, . . . , id)-shuffle permutations in Sn. That is, the set of permutations that preserve the order on
each block {i1 + · · ·+ il +1, . . . , i1 + · · ·+ il+1}.

The symmetric algebra S•V of a graded vector space V is the quotient of the tensor algebra T•V
by the graded ideal generated by elements of the form u⊗ v− (−1)|u||v|v⊗ u, for homogeneous
elements u,v ∈V . We write v1�·· ·�vk for the element represented by v1⊗·· ·⊗vk in the quotient
space SkV . Given a permutation σ ∈ Sn, we denote by ε(σ ;v1, . . . ,v1) the graded Koszul sign,
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which is defined via

vσ(1)�·· ·� vσ(n) = ε(σ ;v1, . . . ,vn)v1�·· ·� vn.

We denote by
⊙•V the cocommutative coalgebra whose underlying vector space is S•V and has

coproduct given by

∆(v1�·· ·� vn) = ∑
i+ j=n

∑
σ∈Si, j

ε(σ ;v1, . . . ,vn)vσ(1)�·· ·� vσ(i)⊗ vσ(i+1)�·· ·� vσ(n).

The coalgebra
⊙•V is cocommutative, counital and coaugmented, with coaugmentation c : R→⊙•V given by 1 7→ 1 ∈

⊙0V = R, and counit ε :
⊙•V → R given by the natural projection. We

will refer to the coalgebra
⊙•V as the cocommutative coalgebra cogenerated by V . Given another

graded vector space W and a linear map of degree zero ϕ :
⊙•W →V there is unique coaugmented

coalgebra map ϕ̄ :
⊙•W →

⊙•V such that the following diagram commutes:

⊙•W
ϕ̄ //

ϕ
$$

⊙•V

π

��
V.

Here π :
⊙•V →V is the natural projection map. The map ϕ is given explicitly by the formula

ϕ̄(v1�·· ·� vn)

= ∑
i1+···+ip=n

∑
σ∈Si1,...,ip

ε(σ ;v1, . . . ,vn)
1
p!

p

∏
k=1

ϕ(vσ(i1+···+ik−1+1)�·· ·� vσ(i1+···+ik)).

Let L be a DG Lie algebra and consider the cocommutative coalgebra
⊙•(uL). The differential and

the bracket of L can be encoded in a single coderivation D on
⊙•(uL). Explicitly, this coderivation

is defined by setting for x1, . . . ,xn ∈ L,

D(ux1�·· ·�uxn) =
n

∑
i=1

ε(σi,ux1, . . . ,uxn)u(dxi)�ux1�·· ·�uxi−1�uxi+1�·· ·�uxn+

∑
i< j

ε(σi j,ux1, . . . ,uxn)(−1)|vi|u[xi,x j]�ux1 · · ·�uxi−1�uxi+1�·· ·�ux j−1�ux j+1�·· ·�uxn,

where σi ∈ Sn is the permutation which sends 1 to i, subtracts one from the integers 2, . . . , i and
fixes the other integers, and σi j ∈Sn is the permutation which sends 1 to i, sends 2 to j, removes
two from the integers 2, . . . , i+ 1, removes one from the integers i+ 2, . . . , j and fixes the other
integers. This coderivation satisfies D2 = 0, so that the coalgebra

⊙•(uL) has the structure of
a differential graded coalgebra. Moreover, for any two DG Lie algebras L and L′, a linear map
φ : L→ L′ of degree 0 is a morphism of DG Lie algebras if and only if uφ ◦D = D′ ◦uφ , where D
and D′ are the codifferentials on

⊙•(uL) and
⊙•(uL′), respectively, and uφ :

⊙•(uL)→
⊙•(uL′)

is the coalgebra map associated to the linear map uφ : uL→ uL′.
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We will consider a more general notion of morphism between DG Lie algebras, that of L∞-morphism.
Let L and L′ be DG Lie algebras with corresponding codifferentials D and D′. A linear map
Φ :

⊙•(uL)→ uL′ of degree 0 is called an L∞-morphism between L and L′ if

Φ̄◦D = D′ ◦ Φ̄.

Such an L∞-morphism can be written as the sum

Φ = Φ1 +Φ2 +Φ3 + . . . ,

where Φk is the restriction of Φ to the vector space
⊙k(uL). Strict morphisms of DG Lie algebras

are a particular instance of L∞-morphisms that correspond the case where Φk = 0 for k > 1 .

Let L be a DG Lie algebra. An element x ∈ L of degree 1 is said to be a Maurer-Cartan element if

dx+
1
2
[x,x] = 0.

This equation, which describes an abstract form of “flatness”, is known as the Maurer-Cartan
equation. Given a differential graded Lie algebra L, the dual vector space of the differential graded
coalgebra

⊙•(uL) is a differential graded Lie algebra known as the Chevalley-Eilenberg DG alge-
bra of L. We shall denote it by CE(L) and write δCE = D∗ for the corresponding differential. In the
special case where L is a Lie algebra, the definition reduces to that of the usual Chevalley-Eilenberg
complex, which computes the Lie algebra cohomology of L.

The following result, which is a consequence of Proposition 3.3 of [28], will be used throughout
the text.

Proposition 2.1. Let L and L′ be DG Lie algebras, and suppose that L is finite-dimensional. Then,
there is a natural identification between the set of L∞-morphisms from L to L′ and the set of Maurer-
Cartan elements of CE(L)⊗L′.

The identification goes through the following sequence of isomorphisms of vector spaces:

[
CE(L)⊗L′

]1 ∼= [(⊕
k≥0

⊙k(uL)

)∗
⊗L′

]1

∼= ∏
k

[(⊙k(uL)
)∗
⊗L′

]1

∼= Hom1 (
⊙•(uL),L′)

∼= Hom0 (
⊙•(uL),uL′) .

Maurer-Cartan elements live on the space on the first vector space, L∞-morphisms live on the last
vector space, and the corresponding conditions map to one another.

The first example of L∞-algebra is the DGLA’s. Given a DGLA g with bracket [−,−] :
∨2(g[1])→∨1(g[1]) and derivation d :

∨1(g[1])→
∨1(g[1]), operations of degree 1. Taking the linear map
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d+[−,−] :
∨1(g[1])→ g[1], we extend this map to the unique coderivation δ :

∨1(g[1])→
∨1(g[1])

such that δ 2 = 0. The previous extension of d+[−,−] to δ , mean that if π1 :
∨•(g[1])→ g[1] is the

projection, then π1δ = d+[−,−]. Therefore the category of DGLA’s is a subcagory of the category
of L∞-algebras. This subcategory is not a full subcategory, so if g and h are DGLA’s, then

HomDGLA(g,h) HomL∞
(g,h).

2.1.3 DG Categories and A∞-Natural Transformations

In this section, we will review the basic concepts that will allow us to study one of the main
structures of the thesis, namely graded differential categories.

A differential graded algebra (DG algebra) is a DG vector space (A,d ) together with a degree zero
operator m : A⊗A→ A such that

• The Leibniz rule: for all a1⊗a2 ∈ A⊗A we have

d (m(a1⊗a2)) = m(d (a1)⊗a2)+(−1)|a1|m(a1⊗d (a2)).

• Associativity: For all a1⊗ a2⊗a3 ∈ A⊗A⊗A,

m(a1⊗m(a2⊗a3))−m(m(a1⊗a2)⊗a3) = 0.

To keep an example in mind throughout the section, consider the de Rham complex Ω
•(M) of a

manifold M.

Notice that the product m : A⊗A→ A induces an associative multiplication m : H•(A)⊗H•(A)→
H•(A) given by m(a1⊗a2) = m(a1⊗a2), for all a1,a2 ∈ H•(A).

A homogeneous morphism of DG algebras f : (A,dA,mA)→ (B,dB,mB) is a homogeneous linear
map f : A→ B of degree zero that is compatible with the DG algebra structures:

• The linear map f is a morphism of complexes

dB ◦ f = (−1)| f | f ◦dA.

• f (m) = m( f ⊗ f ).

Hence we have the category DGAlg with objects the DG algebras and morphisms given by

HomDGAlg(A,B) =
⊕
n∈Z

Homn
DGAlg(A,B),

for all DG algebras A and B, where Homn
DGAlg(A,B) is the set of all homogeneous DG algebra

morphisms of degree n. Given a morphism f : A→ B of DG algebras, we have the morphism
of associative algebras f : H•(A)→ H•(B) given by f (a) = f (a), with degree | f | = | f |, for all
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homogeneous morphism f . Notice that the category DGAlg is monoidal. Given DG algebras A and
B, the tensor product A⊗B has a differential

dA⊗B = dA⊗1B +1A⊗dB,

and a product

mA⊗B((a1⊗b1)⊗ (a2⊗b2)) = (−1)|a2||b1|mA(a1⊗a2)⊗mB(b1⊗b2),

for all a1,a2 ∈ A and b1,b2 ∈ B. Therefore (A⊗B,dA⊗B,mA⊗B) is a DG algebra.

A differential graded category (DG category) is a linear category C such that for every two objects
A and B the space of arrows HomC(A,B) is equipped with a structure of a cochain complex of vector
spaces, and for every three objects A, B and C the composition map HomC(B,C)⊗HomC(A,B)→
HomC(A,C) is a morphism of cochain complexes. Thus, by definition,

HomC(A,B) =
⊕
n∈Z

Homn
C(A,B)

is a graded vector space with a differential d : Homn
C(A,B)→ Homn+1

C (A,B). The elements f ∈
Homn

C(A,B) are called homogeneous of degree n, and we write | f |= n. We denote the set of objects
of C by ObC.

Notice that a DG category with a single object is the same as a DG algebra. The real example of a
DG category is the category of cochain complexes of vector spaces, which we denote by DGVect.
Its objects are cochain complexes of vector spaces, and the morphism spaces HomDGVect(V,W ) are
endowed with the differential defined as

d( f ) = δW ◦ f − (−1)n f ◦δV ,

for any homogeneous element f of degree n.

Let C be a DG category and let A ∈ ObC. Given a closed morphism f ∈ Hom0
C(B,C) we define

f∗ : HomC(A,B)→ HomC(A,C) by f∗(g) = f ◦g for g ∈ HomC(A,B). It is not difficult to see that
f∗ is a morphism of cochain complexes. Similarly, if we define f ∗ : HomC(C,A)→ HomC(B,A)
by f ∗(h) = h◦ f for h ∈ HomC(C,A), then f ∗ es a morphism of cochain complexes.

Given a DG category C, one defines an ordinary category Ho(C) by keeping the same set of objects
and replacing each Hom complex by its 0th cohomology. We call Ho(C) the homotopy category of
C.

If C and D are DG categories, a DG functor F : C→D is a linear functor whose associated map
for A,B ∈ ObC,

FA,B : HomC(A,B)→ HomD(F(A),F(B)),

is a morphism of cochain complexes. Notice that any DG functor F : C→D induces an ordinary
functor

Ho(F) : Ho(C)→Ho(D)



CHAPTER 2. PRELIMINARIES 21

between the corresponding homotopy categories. A DG functor F : C→ D is said to be quasi
fully faithful if for every pair of objects A,B ∈ ObC the morphism FA,B is a quasi-isomorphism.
Moreover, the DG functor F is said to be quasi essentially surjective if Ho(F) is essentially sur-
jective. A DG functor that is both quasi fully faithful and quasi essentially surjective is called a
quasi-equivalence.

A morphism f ∈ Hom0
C(B,C) is said to be a quasi-isomorphism if it is closed and its equivalence

class in Ho(C) is an isomorphism. The following lemma is an immediate consequence of the
definition.

Lemma 2.1. Let f ∈ Hom0
C(B,C) be a quasi-isomorphism. Then, for any object A ∈ ObC, both

f∗ : HomC(A,B)→ HomC(A,C) and f ∗ : HomC(C,A)→ HomC(B,A) are quasi-isomorphisms.

Proof. Let us write [ f ] for the equivalence class of f in Ho(C). Then, by assumption, [ f ] has an
inverse [g] ∈ HomHo(C)(C,B). Let g ∈ Hom0

C(C,B) be a representative of [g]. Then, there exists
x ∈ Hom−1

C (B,B) and y ∈ Hom−1
C (C,C) such that

g◦ f = idA +dx,

f ◦g = idB +dy.

This implies that

g∗ ◦ f∗ = (g◦ f )∗ = (idA +dx)∗,

f∗ ◦g∗ = ( f ◦g)∗ = (idB +dy)∗.

Since (idA + dx)∗ and (idB + dy)∗ induce the identity on cohomology, one concludes that f∗ is a
quasi-isomorphism. Similarly,

f ∗ ◦g∗ = (g◦ f )∗ = (idA +dx)∗,

g∗ ◦ f ∗ = ( f ◦g)∗ = (idB +dy)∗,

and since (idA + dx)∗ and (idB + dy)∗ induce the identity on cohomology, one gets that f ∗ is a
quasi-isomorphism.

There is a more general notion of a functor between DG categories, that of A∞-functor, where the
composition is preserved only up to an infinite sequence of coherence conditions. It will be helpful
to introduce first the Hochschild chain complex of a DG category.

Let C be a small DG category. The Hochschild cochain complex of C denoted HC(C) is the cochain
complex defined as follows. As a vector space

HC(C) =
⊕

A0,...,An

uHomC(An−1,An)⊗·· ·⊗uHomC(A0,A1),

where A0, . . . ,An range through the objects of C. The differential b is the sum of two components
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b1 and b2, which are given by the formulas

b1( fn−1⊗·· ·⊗ f0) =
n−1

∑
i=0

(−1)∑
n−1
j=i+1 | f j|+n−i−1 fn−1⊗·· ·⊗d fi⊗·· ·⊗ f0

and

b2( fn−1⊗·· ·⊗ f0) =
n−2

∑
i=0

(−1)∑
n−1
j=i+2 | f j|+n−i fn−1⊗·· ·⊗ ( fi+1 ◦ fi)⊗·· ·⊗ f0

for homogeneous elements f0 ∈ uHomC(A0,A1), . . . , fn−1 ∈ uHomC(An−1,An). Here d denotes
indistinctly the differential in any of the spaces HomC(Ai,Ai+1). It is easy to check that indeed
b2 = 0.

Let C and D be DG categories. An A∞-functor F : C→D is the datum of a map of sets F0 : ObC→
ObD and a collection of K-linear maps of degree 0

Fn : uHomC(An−1,An)⊗·· ·⊗uHomC(A0,A1)→ HomD(F0(A0),F0(An))

for every collection A0, . . . ,An ∈ ObC, such that the relation

b1 ◦Fn + ∑
i+ j=n

b2 ◦ (Fi⊗Fj) = ∑
i+ j+1=n

Fn ◦ (id⊗i⊗b1⊗ id⊗ j)+ ∑
i+ j+2=n

Fn−1 ◦ (id⊗i⊗b2⊗ id⊗ j)

is satisfied for any n ≥ 1. We also require that F1(idA) = idF0(A) for all objects A in C, as well as
Fn( fn−2⊗·· ·⊗ fi⊗ idAi ⊗ fi−1⊗·· ·⊗ f0) = 0 for any n ≥ 1, any 0 ≤ i ≤ n− 2, and any chain of
morphisms f0 ∈ uHomC(A0,A1), . . . , fn−2 ∈ uHomC(An−2,An−1).

The above relation when n = 1 implies that F1 is a morphism of cochain complexes. On the other
hand, for n = 2 we find that F1 preserves the compositions on C and D, up to a homotopy defined
by F2. In particular, a DG functor between C and D is identified with and A∞-functor having Fn = 0
for n≥ 2. It also follows that F1 induces an ordinary functor

Ho(F1) : Ho(C)→Ho(D).

An A∞-functor F : C→ D is called A∞-quasi fully faithfull if F1 is a quasi-isomorphism of each
pair of objects, F is called A∞-quasi essentially surjective if Ho(F1) is essentially surjective. More-
over, the A∞-functor F is called a A∞-quasi-equivalence if it is both quasi fully faithfull and quasi
essentially surjective.

We need one more notion. Let C and D be DG categories and let F : C→ D and G : C→ D

be DG functors. An A∞-natural transformation λ : F ⇒ G is the datum of a closed morphism
λ0(X) ∈ Hom0

D(F(A),G(A)) for each A ∈ ObC and a collection of K-linear maps of degree 0

λn : uHomC(An−1,An)⊗·· ·⊗uHomC(A0,A1)→ HomD(F(A0),G(An))

for every collection A0, . . . ,An ∈ ObC, such that for all composable chains of homogeneous mor-
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phisms f0 ∈ uHomC(A0,A1), . . . , fn−1 ∈ uHomC(An−1,An) the relation

G( fn−1)◦λn−1( fn−2⊗·· ·⊗ f0)− (−1)∑
n−1
i=1 | fi|−n+1

λn−1( fn−1⊗·· ·⊗ f1)◦F( f0)

= λ (b( fn−1⊗·· ·⊗ f0))−d (λn( fn−1⊗·· ·⊗ f0))

is satisfied for any n ≥ 1. The λ on the right denotes the direct sum of the various λn. For n = 1
this yields the condition

G( f0)◦λ0(A0)−λ0(A1)◦F( f0) = λ1 (d( f0))−d(λ1( f0)) .

Since the map λ1 : uHomC(A0,A1)→ HomD(F(A0),G(A1)) has degree −1 when considered as a
map defined over HomC(A0,A1), this implies that the diagram

F(A0)
λ0(A0)//

F( f0)
��

G(A0)

G( f0)
��

F(A1)
λ0(A1)

// G(A1)

commutes up to a homotopy given by λ1.

As usual, A∞-natural transformations can be composed: if F : C→D, G : C→D and H : C→D

are three DG functors from the DG category C to the DG category D, and λ : F⇒G and µ : G⇒H
are two A∞-natural transformations, then the formula

(µ ◦λ )n =
n

∑
i=0

µi ◦λn−i

defines a new A∞-natural transformation µ ◦ λ : F ⇒ H. An A∞-natural isomorphism between
functors from C to D is an A∞-natural transformation λ such that λ0(A) is an isomorphism for all
A ∈ ObC.

We close this subsection with the following observation.

Lemma 2.2. Let C, D and E be DG categories and let F : C→D, G : C→D and H : D→ E be
DG functors. Then for each A∞-natural transformation λ : F ⇒ G there is an induced A∞-natural
transformation H ◦λ : H ◦F ⇒ H ◦G. Moreover, if λ is an A∞-natural isomorphism, then H ◦λ is
an A∞-natural isomorphism.

Proof. The formula for H ◦λ reads

(H ◦λ )n =
n+2

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1)),

for any n ≥ 1. Let us check that this indeed defines an A∞-natural transformation between H ◦F
and H ◦G. For this purpose, let m indistinctly denote the composition operation in C, D or E. In
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this notation, what we need to show is that

m◦ ((H ◦G)⊗ (H ◦λ )n−1)− (−1)nm◦ ((H ◦λ )n−1⊗ (H ◦F)) = (H ◦λ )◦b−d◦ (H ◦λ )n,

wherein

b =
n−1

∑
i=1

(−1)n−i−1id⊗(n−i−1)⊗d⊗ id⊗i +
n−2

∑
i=0

(−1)n−iid⊗(n−i−2)⊗m⊗ id⊗i.

Let us start with the right-hand side. Using the definition of H ◦λ and the above expression for b,
this becomes

n−1

∑
l=0

(−1)n−l−1
n+2

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))◦ (id⊗(n−l−1)⊗d⊗ id⊗l)

+
n−2

∑
l=0

(−1)n−l
n+1

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))◦ (id⊗(n−l−2)⊗m⊗ id⊗l)

−d◦

[
n+2

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

]

=
n+2

∑
k=2

∑
i+ j=k

{
n−1

∑
l=0

(−1)n−l−1Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))◦ (id⊗(n−l−1)⊗d⊗ id⊗l)

+
n−2

∑
l=0

(−1)n−lHk−1 ◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))◦ (id⊗(n−l−2)⊗m⊗ id⊗l)

−d◦Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

}
.

If in the right-hand side of the last equality we separate out the term k = 2 and, in the first sum over
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l, the terms in which l varies over the set {i−1, . . . ,n− j}, we get

n−1

∑
l=0

(−1)n−l−1H1 ◦λn ◦ (id⊗(n−l−1)⊗d⊗ id⊗l)

+
n−2

∑
l=0

H1 ◦λn−1 ◦ (id⊗(n−l−1)⊗m⊗ id⊗l)+d◦H1 ◦λn

+
n+2

∑
k=3

∑
i+ j=k

{
n−2

∑
l=0

l 6∈{i−1,...,n− j}

(−1)n−l−1Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))◦ (id⊗(n−l−1)⊗d⊗ id⊗l)

+
n− j

∑
l=i−1

(−1)n−l−1Hk−1 ◦
[
G⊗(i−1)⊗ (λn+2−k ◦ (id⊗(n−l−i)⊗d⊗ id⊗l− j+1))⊗F⊗( j−1)

]
+

n−2

∑
l=0

(−1)n−lHk−1 ◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))◦ (id⊗(n−l−2)⊗m⊗ id⊗l)

−d◦Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

}
.

On the other hand, keeping in mind the previous writing, the condition that λ : F ⇒ G be an A∞-
natural transformation yields

λn ◦

(
n−1

∑
i=1

(−1)n−i−1id⊗(n−i−1)⊗d⊗ id⊗i

)

= m◦ (G⊗λn−1)− (−1)nm◦ (λn−1⊗F)+λn−1 ◦

(
n−2

∑
i=0

(−1)n−iid⊗(n−i−2)⊗m⊗ id⊗i

)
−d◦λn.

Using this in the terms of the second sum within the curly bracket gives,

H1 ◦m◦ (G⊗λn−1)− (−1)nH1 ◦m◦ (λn−1⊗F)

+
n+2

∑
k=3

∑
i+ j=k

{
n−2

∑
l=0

l 6∈{i−1,...,n− j}

(−1)n−l−1Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))◦ (id⊗(n−l−1)⊗d⊗ id⊗l)

+Hk−1 ◦
[
G⊗(i−1)⊗ (m◦ (G⊗λn+1−k)− (−1)nm◦ (λn+1−k⊗F)−d◦λn+2−k)⊗F( j−1)

]
+d◦Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

}
,



CHAPTER 2. PRELIMINARIES 26

and, after some reordering,

n+2

∑
k=2

∑
i+ j=k

{
k−2

∑
l=0

(−1)lHk−1 ◦ (id⊗(n−l−2)⊗d⊗ id⊗l)◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

+
k−3

∑
l=0

(−1)lHk−2 ◦ (id⊗(n−l−3)⊗m⊗ id⊗l)◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))

+d◦Hk−1 ◦ (G⊗(i−1)⊗λn+2−k⊗F⊗( j−1))

}
.

Now, we use the fact that H is a DG functor. This implies, in particular.

∑
p+q=k

Hp ◦Hq = ∑
p+q+1=k

Hk ◦ (id⊗p⊗d⊗ id⊗q)+ ∑
p+q+2=k

Hk ◦ (id⊗p⊗m⊗ id⊗q)+d◦Hk.

Plugging this back into the last expression above, we obtain

m◦

{
(m◦ (H⊗G))⊗

[
n+1

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))

]}

− (−1)nm◦

{[
n+1

∑
k=2

∑
i+ j=k

Hk−1 ◦ (G⊗(i−1)⊗λn+1−k⊗F⊗( j−1))

]
⊗ (m◦ (H⊗F))

}
,

which, attending to the definitions, gives the desired.

For the second part, we observe that (H ◦λ )0 = H1 ◦λ0 and, by our hypothesis on λ , we know that
λ0(A) is an isomorphism for all A ∈ ObC. Thus, for all A ∈ ObC,

H1(λ0(A))◦H1(λ0(A)−1) = H1(λ0(A)◦λ0(A)−1) = H1(idA) = idH0(A).

This implies that (H ◦λ )0(A) is an isomorphism for all A ∈ ObC, as shown.

2.2 Local Systems

2.2.1 ∞-Local Systems

Let E =
⊕

k∈ZEk be a Z-graded vector bundle over a manifold M. The space of E-valued differen-
tial forms on M,

Ω
•(M,E) = Γ(Λ•T ∗M⊗E),

is graded respect to the total degree, where a form ω ∈ Ωn(M,Ek) has form-degree n and inner-
degree k and therefore the total degree of ω is |ω| = n + k. A superconnection (or Z-graded
connection) on E is an operator

D : Ω
•(M,E)→Ω

•(M,E),
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of degree 1 which satisfies the Leibniz rule

D(α ∧β ) = dα ∧β +(−1)k
α ∧Dβ ,

for all α ∈ Ωk(M) and β ∈ Ω
•(M,E). The operator D2 is the curvature of D, which is an Ω

•(M)-
linear operator on Ω

•(M,E) of degree 2 which is given by multiplication by an element of

Ω
•(M,End(E)).

If D2 = 0, then the operator D is called flat superconnection. An ∞-local system on M is a graded
vector bundle E equipped with a flat superconnection D. We will denote such an ∞-local system
by (E,D).

Notice that the flatness condition makes (Ω•(M,E),D) into a DG vector space. Let (E,D) and
(E ′,D′) be ∞-local systems, we denote by Hom(E,E ′) the vector bundle morphism from E to E ′.
Taking homogeneous elements α⊗T ∈Ω

•(M)⊗C∞(M) Γ(Hom(E,E ′)) and ω⊗ s ∈Ω
•(M)⊗C∞(M)

Γ(E), we define

(α⊗T )(ω⊗ s) := (−1)|T ||ω|αω⊗T (s) ∈Ω
•(M)⊗C∞(M) Γ(E ′),

and therefore, forms in Ω
•(M,Hom(E,E ′)) define maps Ω

•(M,E)→Ω
•(M,E ′).

Given two ∞-local systems (E,D) and (E ′,D′), the space of morphisms is the graded vector space
Ω
•(M,Hom(E,E ′)) with the differential ∂D,D′ given by

∂D,D′ϕ = D′ϕ− (−1)k
ϕD,

for any homogeneous element ϕ ∈ Ω
•(M,Hom(E,E ′)) of degree k. The category of ∞-local sys-

tems is denoted by Loc∞(M).

A morphism from (E,D) to (E ′,D′) is called an isomorphism if the underlying map

Φ : Ω
•(M,E)→Ω

•(M,E ′)

is an isomorphism. Two ∞-local systems (E,D) and (E ′,D′) are said to be isomorphic if there is an
isomorphism from (E,D) to (E ′,D′).

If (E,D) and (E ′,D′) are trivialized over M as in the previous paragraph, then ∂D,D′ may be ex-
pressed by

∂D,D′ω = dω +α
′∧ω− (−1)k

ω ∧α.

Notice that what we call a morphism from (E,D) to (E ′,D′) is simply a closed element of Ω
•(M,Hom(E,E ′))

of degree 0.

Proposition 2.2. The map ∂D,D′ϕ : Ω
•(M,E)→Ω

•(M,E ′) satisfies ∂D,D′ϕ ∈Ω
•(M,Hom(E,E ′)).

Therefore the category Loc∞(M) is a DG category.
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Proof. Given f ∈C∞(M), by simple computation we have that

∂D,D′(ϕ)( f ω) = D′(ϕ( f ω))− (−1)|ϕ|ϕ(D( f ω))

= D′( f ϕ(ω))− (−1)|ϕ|ϕ(d( f ω)+ f d(ω))

= d f ϕ(ω)+ f D′(ϕ(ω))−d f ϕ(ω)− (−1)|ϕ| f ϕ(D(ω))

= f (D′(ϕ(ω))− (−1)|ϕ|ϕ(D(ω)))

= f ∂D,D′(ϕ)(ω),

As a simple example, consider a trivial vector bundle M×V where V is a complex of finite dimen-
sional vector spaces (

⊕
k∈ZV k,∂ ). The differential D = d+ ∂ gives the vector bundle M×V the

structure of a flat superconnection on M. We will refer to it as a constant ∞-local system on M.

Suppose that (E,D) is an ∞-local system on M. The Leibniz rule implies that D is completely
determined by its restriction to Ω0(M,E). Then we may decompose.

D = ∑
k≥0

Dk,

where Dk is of partial degree k with respect to the Z-grading on Ω
•(M). It is clear that each

Dk for k 6= 1 is Ω
•(M)-linear and therefore it is given by multiplication by an element αk ∈

Ωk(M,End(E)1−k) . On the contrary, D1 satisfies the Leibniz rule on each of the vector bun-
dles Ek, so it must be of the form d∇, where ∇ is an ordinary connection on E which preserves the
Z-grading. We can thus write

D = d∇ +α0 +α2 +α3 + · · · .

From this formula, it is straightforward to check that the flatness condition becomes equivalent to

α
2
0 = 0,

d∇α0 = 0,

[α0,α2]+F∇ = 0,

[α0,αn+1]+d∇αn +
n−1

∑
k=2

αk∧αn+1−k = 0, n≥ 2,

where F∇ is the curvature of the connection ∇. The first identity implies that we have a cochain
complex of vector bundles with differential α0. The second equation expresses that α0 is covari-
antly constant concerning the connection ∇. The third equation indicates that the connection ∇

fails to be flat up to terms involving the homotopy α2 and the differential α0.

The following lemma gives a formula for the differential of a morphism between trivial ∞-local
systems:

Lemma 2.3. Let (E,D) = (M×V,d+α) and (E ′,D′) = (M×W,d+β ) be trivial ∞-local systems.
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If ϕ : (E,D)→ (E ′,D′) is a homogenous morphism, then its differential is

DE,E ′(ϕ) = dϕ +α
′
ϕ− (−1)|ϕ|ϕα (2.2.1)

Proof. The proof is straight forward

DE,E ′(ϕ) = dE ′ϕ− (−1)|ϕ|ϕdE

= (d+α
′)ϕ− (−1)|ϕ|ϕ(d+α)

= d◦ϕ +α
′
ϕ− (−1)|ϕ|ϕ ◦d− (−1)|ϕ|ϕα

= dϕ +(−1)|ϕ|ϕ ◦d+α
′
ϕ− (−1)|ϕ|ϕ ◦d− (−1)|ϕ|ϕα

= dϕ +α
′
ϕ− (−1)|ϕ|ϕα.

Now let us assume that E is trivialized over M. This means that E = M×V for some Z-graded
vector space V =

⊕
k∈ZV k. In this case, we have αk ∈Ωk(M,End(V )1−k) for k 6= 1. Moreover, we

can write d∇ = d+α1 for some α1 ∈Ω1(M,End(V )0). Thus, the Z-graded superconnection D may
be expressed as D = d+α , where α ∈Ω

•(M,End(V )) is the homogeneous element of total degree
1 defined by α = ∑k≥0 αk. In addition, a straightforward calculation gives

D2 = dα +α ∧α.

Consequently, the totality of equations of the flatness condition is equivalent to the single statement
that α satisfies

dα +α ∧α = 0.

This is known as the Maurer-Cartan equation.

Suppose we have another trivialization of E over M such that E = M×W for some Z-graded vector
space W =

⊕
k∈ZW k and D = d+β for some homogeneous element β ∈ Ω

•(M,End(W )) of total
degree 1 satisfying the Maurer-Cartan equation. Then, we have a transition isomorphism between
the two trivializations, which is realised by a linear isomorphism g : Ω0(M,V )→ Ω0(M,W ) that
commutes with the operators d+α and d+β . If we think of g as an element of Ω0(M,Hom(V,W )),
the latter condition is equivalent to the requirement that

α = g−1
βg+g−1 dg.

The change from β to α given in this equation goes by the name of a gauge transformation.

For a pair of ∞-local systems (E,D) and (E ′,D′) there is a natural notion of a strict morphism from
(E,D) to (E ′,D′). Namely, such a morphism is a degree 0 linear map Φ : Ω

•(M,E)→ Ω
•(M,E ′)

which is Ω
•(M)-linear and commutes with the Z-graded superconnections D and D′. If both (E,D)

and (E ′,D′) are trivialized over M in such a way that E = M×V and E ′ = M×V ′ for some Z-
graded vector spaces V and V ′, and D= d+α and D′= d+α ′ for some homogeneous elements α ∈
Ω
•(M,End(V )) and α ′ ∈Ω

•(M,End(V ′)) of total degree 1 satisfying the Maurer-Cartan equation,
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then this condition is
(d+α

′)◦Φ = Φ◦ (d+α),

or, interpreting Φ as an element of Ω
•(M,Hom(V,V ′)),

dΦ = α ∧Φ−Φ∧α
′.

With the gauge equivalence relation at hand, we are ready to construct pullbacks of ∞-local sys-
tems. For a smooth map f : M → N between two manifolds M and N, there is a DG functor
f ∗ : Loc∞(N)→ Loc∞(M) which sends E with structure superconnection

D = d∇ +α0 +α2 +α3 + · · · ,

to f ∗E endowed with
f ∗D = d f ∗∇ + f ∗α0 + f ∗α2 + f ∗α3 + · · · ,

Let f : M→N be a smooth map between manifolds. Then f induces a DG functor f ∗ : Loc∞(N)→
Loc∞(M). Therefore the DG functor f ∗ is well defined. We refer to it as the pullback functor
induced by f .

2.2.2 Iterated integrals

For the present section we will adopt a slightly different notation for simplices. We will denote by
∆k(t) the k-simplex of width t for t ∈ [0,1], this is

∆k(t) = {(s1, · · · ,sk) ∈ R
∣∣ t ≥ s1 ≥ ·· · ≥ sk ≥ 0}.

The components of the boundary of ∆k(t) will be denoted ∂i∆k(t) where

∂0∆k(t) = {(s1, · · · ,sk) ∈ ∆k(t)
∣∣ s1 = t},

∂i∆k(t) = {(s1, · · · ,sk) ∈ ∆k(t)
∣∣ si = si+1}, i = 1, · · · ,k−1,

∂k∆k(t) = {(s1, · · · ,sk) ∈ ∆k(t)
∣∣ sk = 0}.

For any smooth manifold M we denote by πk,i,t : ∆k(t)×M→ [0, t]×M the projection onto the ith
component of the simplex. We will omit both k and t from the notation when the dimension and
width of the simplex are clear from the context.

Let V be a vector space and consider the trivial vector bundles ∆k×M×V and M×V . The push
forward

∫
∆k

: Ω
•(∆k×M)→Ω

•(M) defined locally by

f (t1, · · · , tn,x)dt1 · · ·dtndX 7→
(∫

∆n

f (t1, · · · , tn,x)dt1 · · ·dtn

)
dX ,
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is extended to forms with values in V by∫
∆k

⊗Id : Ω
•(∆k×M)⊗V →Ω

•(M)⊗V.

Lemma 2.4. The push forward
∫

∆k
: Ω

•(∆n×X)→Ω
•(X) is a morphism of left Ω

•(X)-modules of
degree −n. This is, fore every ω ∈Ω

•(X) and α ∈Ω
•(∆n×X) we have∫

∆k

(π∗(ω)∧α) = (−1)|ω|nω ∧
∫

∆k

(α).

Proof. First we check that the push forward is a morphism of Ω
•(X)-modules, notice that it is

enough to check this locally. Suppose (x1, · · · ,xm) are coordinates for X and write

ω = f dxi1 · · ·dxik ∈Ω
k(X)

α = gdt1 · · ·dtndx j1 · · ·dx jl ∈Ω
n+l(∆n×X).

Then we have ∫
∆n

π
∗(ω)∧α =

∫
∆n

f dxi1 · · ·dxikgdt1 · · ·dtndx j1 · · ·dx jl

= (−1)kn f
(∫

∆n

gdt1 · · ·dtn

)
dxi1 · · ·dxikdx j1 · · ·dx jl

= (−1)kn f dxi1 · · ·dxik

(∫
∆n

gdt1 · · ·dtn

)
dx j1 · · ·dx jl

= (−1)kn
ω ∧

∫
∆n

α.

The fact that π∗ has degree −n is also clear from the previous computation.

We will abuse the notation and just write
∫

∆k
for the map

∫
∆k
⊗Id. Now consider the case where V is

a graded vector space, and we take forms with values in End(V ). The vector space Ω
•(M,End(V ))

may be provided with a DG algebra structure with the product

(α⊗T )∧ (β ⊗S) = (−1)|β ||T |(α ∧β )⊗ (T ◦S) for α,β ∈Ω
•(M) and T,S ∈ End(V ).

In a similar way, the action Ω
•(M)�Ω

•(∆k×M) may be extended to an action

Ω
•(M,End(V ))�Ω

•(∆k×M,End(V )).

The Lemma 2.4 still holds in this context:

Lemma 2.5. The map
∫

∆k
: Ω

•(∆k×M,End(V ))→Ω
•(M,End(V )) is a morphism of Ω

•(M,End(V ))-
modules of degree −k.
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Proof. Take α ∈Ω
•(M), β ∈Ω

•(∆k×M) and T,S ∈ End(V ). Then∫
∆k

(α⊗T )∧ (β ⊗S) =(−1)|β ||T |
(∫

∆k

α ∧β

)
⊗ (T ◦S)

=(−1)|β ||T |−|α|k
(

α ∧
∫

∆k

β

)
⊗ (T ◦S)

=(−1)|β ||T |−|α|k+|T |(|β |−k)(α⊗T )∧
((∫

∆k

β

)
⊗S
)

=(−1)−(|α|+|T |)k(α⊗T )∧
((∫

∆k

β

)
⊗S
)
.

Notice that the sign obtained is given by the Kozsul convention when considering the total degree
of α⊗T , not just the form degree.

For each t ∈ [0,1] and a sequence of possibly non-homogeneous forms {θi}i≥1 ∈ Ω
•([0,1]×

M,End(V )) consider the series

ϕ(t) = id+ ∑
k≥1

∫ t

0
π
∗
1 (θ1)

∫ s1

0
π
∗
2 (θ2) · · ·

∫ sk−1

0
π
∗
k (θk). (2.2.2)

If the forms are homogeneous, then the previous iterated integrals can be written as integrals over
the simplices as follows:

ϕ(t) = id+ ∑
k≥1

(−1)(k−1)|θ1|+(k−2)|θ2|+···+|θk−1|
∫

∆k(t)
π
∗
1 (θ1) · · ·π∗k (θk). (2.2.3)

Notice that the sign (−1)(k−1)|θ1|+(k−2)|θ2|+···+|θk−1| is precisely the sign obtained when commuting
forms with integrals. The sum above is not finite and is not necessarily convergent, however it
will converge whenever the sequence of forms is uniformly bounded. Suppose each form can be
written locally as θi = fi(t,x)dtdXi. We say that the sequence {θi}i≥1 is uniformly bounded if there
is a function B : M→ R such that | fi(t,x)| ≤ B(x) for every i ≥ 1 and every t ∈ [0,1]. Notice in
particular that constant sequences and sequences with finitely many different forms are uniformly
bounded.

Lemma 2.6. Suppose the sequence {θi}i≥1 ∈ Ω
•([0,1]×M,End(V )) is uniformly bounded. Then

the series (2.2.3) is convergent.

Proof. The volume of the k-simplex of width t is tk/k!. If B(x) is a bound for the sequence, then
we have ∣∣∣∣∫

∆k(t)
f1(s1,x) · · · fk(sk,x)dsk · · ·ds1

∣∣∣∣≤ tk

k!
Bk(x).

The convergence of the series follows.

We are particularly interested in the case of constant sequences.
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Definition 2.1. Suppose θi = α for every i. Then (2.2.3) can be written as

ϕ(t) = id+ ∑
k≥1

(−1)σ(k)|α|
∫

∆k(t)
π
∗
1 (α) · · ·π∗k (α),

where σ(k) = 0+1+ · · ·+(k−1). Since the sequence is uniformly bounded, the series is conver-
gent and defines a form in Ω

•(M,End(V )) which we will denote ϕα(t). In fact we have a smooth
map ϕα : [0,1]→Ω

•(M,End(V )).

Next we prove some facts about the forms ϕα . We denote by ιt : M→ [0,1]×M the inclusion at
level t, this is, ιt(x) = (t,x). Also, let i ∂

∂ t
denote the contraction with the vector field ∂

∂ t . The first

result we prove is that ϕα(t) defines a solution for the parallel transport differential equation.

Proposition 2.3. ϕα(t) satisfies the following differential equation.{
dϕα

dt = ι∗t i ∂

∂ t
α ∧ϕα(t)

ϕα(0) = id
(2.2.4)

Proof. Clearly ϕα(0) = id. Let us compute the derivative.

dϕα

dt
=

d
dt

∫ t

0
π
∗
1 (α)+ ∑

k≥2

d
dt

∫ t

0
π
∗
1 (α)

∫ s1

0
π
∗
2 (α) · · ·

∫ sk−1

0
π
∗
k (α)

= ι
∗
t i ∂

∂ t
α + ι

∗
t i ∂

∂ t
α ∑

k≥2

∫ t

0
π
∗
2 (α)

∫ s2

0
π
∗
3 (α) · · ·

∫ sk−1

0
π
∗
k (α)

= ι
∗
t i ∂

∂ t
α

(
id+ ∑

k≥2

∫ t

0
π
∗
2 (α)

∫ s2

0
π
∗
3 (α) · · ·

∫ sk−1

0
π
∗
k (α)

)
= ι
∗
t i ∂

∂ t
αϕ

α(t).

Next we prove the gauge invariance property of iterated integrals.

Proposition 2.4. Let α ∈Ω
•([0,1]×M,End(V )) and β ∈Ω

•([0,1]×M,End(W )). If ψ ∈Ω0([0,1]×
M,Hom(V,W )) is invertible such that α = ψ−1βψ−ψ−1dψ , then the following equation holds:

ϕ
α(t) = (ι∗t ψ)−1

ϕ
β (t)(ι∗0 ψ). (2.2.5)

Proof. The strategy of the proof is to show that the right side of equation (2.2.5) satisfies the dif-
ferential equation (2.2.4). By Proposition 2.3, ϕα also satisfies the equation making both sides of
(2.2.5) equal.
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Let us compute the derivative of (ι∗t ψ)−1ϕβ (t)(ι∗0 ψ) with respect to t:

d
dt
(ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ) =
d
dt
(ι∗t ψ

−1)ϕβ (t)ι∗0 ψ + ι
∗
t ψ
−1 dϕβ

dt
ι
∗
0 ψ

=
d
dt
(ι∗t ψ

−1)ϕβ (t)ι∗0 ψ + ι
∗
t ψ
−1

ι
∗
t i ∂

∂ t
βϕ

β (t)ι∗0 ψ

=
d
dt
(ι∗t ψ

−1)ϕβ (t)ι∗0 ψ +(ι∗t ψ
−1

ι
∗
t i ∂

∂ t
βι
∗
t ψ)(ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ). (2.2.6)

Since α = ψ−1βψ−ψ−1dψ , we also have

ι
∗
t i ∂

∂ t
α = ι

∗
t ψ
−1

ι
∗
t i ∂

∂ t
βι
∗
t ψ− ι

∗
t ψ
−1 d

dt
(ι∗t ψ).

Replacing in (2.2.6) we get

d
dt
(ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ)

=
d
dt
(ι∗t ψ

−1)ϕβ (t)ι∗0 ψ + ι
∗
t i ∂

∂ t
αι
∗
t ψ
−1

ϕ
β (t)ι∗0 ψ + ι

∗
t ψ
−1 d

dt
(ι∗t ψ)ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ.

By the product rule we know that

d(ι∗t ψ
−1)/dt =−ι

∗
t ψ
−1(d(ι∗t ψ)/dt

)
ι
∗
t ψ
−1,

hence the first and last terms on the right cancel out, leaving us with

d
dt
(ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ) = i ∂

∂ t
α(t)ι∗t ψ

−1
ϕ

β (t)ι∗0 ψ,

completing the proof.

2.2.3 A∞ Version of Poincare Lemma

Having developed our primary tool for the section, we are ready to prove some theorems regarding
∞-local systems.

Lemma 2.7. Let E = [0,1]×M×V be a trivial graded vector bundle and α ∈Ω
•([0,1]×M,End(V ))

a Maurer-Cartan form so that D= d+α is a flat graded connection. The form ϕα(t)∈Ω
•(M,End(V ))

defines a zero degree, closed isomorphism of ∞-local systems ϕα(t) : ι∗0 (E,D)→ ι∗t (E,D).

Proof. ϕα(t) defines a morphism of ∞-local systems. Let us check that the following diagram is
commutative:

Ω
•(M,V )

d+ι∗0 α

−−−−→ Ω
•(M,V )

ϕα (t)
y yϕα (t)

Ω
•(M,V ) −−−−→

d+ι∗t α

Ω
•(M,V )
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We need to prove that ϕα(t)(d + ι∗0 α) = (d + ι∗t α)ϕα(t). The previous equation is equivalent to
dϕα(t) = ϕα(t)ι∗0 α− ι∗t αϕα(t), which is demonstrated in [11].

To see that ϕα(t) is an isomorphism we write α = ∑i αi where αi ∈Ωi([0,1]×M,End(V )). Recall
that α1 is an ordinary connection over E and, according to the classical case, the iterated integral
ϕα1(t) defines a parallel transport which is invertible. Now write ϕα(t) = ϕα

0 (t)+η where ϕα
0 (t)

is the component of form degree zero and η is the sum of the rest of the components. Notice that
ϕα

0 (t) = ϕα1(t) and η is a nilpotent form, thus ϕα(t) is the sum of an invertible element and a
nilpotent element, which means it is invertible.

With the interpretation of the iterated integral as an isomorphism of ∞-local systems, the gauge
invariance property given in the proposition 2.4 may be viewed as the commutativity of a diagram:

Lemma 2.8. Suppose (E1,D1) = ([0,1]×M×V,d+α) and (E2,D2) = ([0,1]×M×W,d+β ) are
∞-local systems and ψ ∈ Ω

•([0,1]×M,Hom(V,W )) is a closed isomorphism. Then the following
diagram is commutative

ι∗0 (E1,D1)
ι∗0 ψ

−−−→ ι∗0 (E2,D2)

ϕα (t)
y yϕβ (t)

ι∗t (E1,D1)
ι∗t ψ−−−→ ι∗t (E2,D2).

Now we aim to generalize lemma 2.7 to non-trivial ∞-local systems. As expected, we rely on the
gauge invariance property.

Theorem 2.1. Let (E,D) be an ∞-local system over [0,1]×M. Then for each t ∈ [0,1] there is a
closed isomorphism ϕ : ι∗0 (E,D)→ ι∗t (E,D).

Proof. Take an open covering {Ui} of M where each Ui is contractible so that

(Ei,Di) := (E,D)|[0,1]×Ui

is a trivial vector bundle. Let ϕi : ι∗0 (Ei,Di)→ ι∗t (Ei,Di) be the closed isomorphism from lemma
2.7. If ψi j : (Ei,Di)|[0,1]×(Ui∩U j)→ (E j,D j)|[0,1]×(Ui∩U j) is the transition function, then by lemma
2.8 we have the commutativity of the following diagram:

ι∗0 (Ei,Di)|[0,1]×(Ui∩U j)

ι∗0 ψi j−−−→ ι∗0 (E j,D j)|[0,1]×(Ui∩U j)

ϕi

y yϕ j

ι∗t (Ei,Di)|[0,1]×(Ui∩U j)

ι∗t ψi j−−−→ ι∗t (E j,D j)|[0,1]×(Ui∩U j).

Thus the morphisms ϕi can be glued together into a closed isomorphism ϕ : ι∗0 (E,D)→ ι∗t (E,D).

The correct statement is that the isomorphism ϕ of theorem 2.1 is the first component of an A∞-
natural isomorphism between the DG functors ι∗0 and ι∗t .
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Proposition 2.5. Let M be a smooth manifold, we denoted by ιs : M→M× [0,1] the inclusion at
height s given by ιs(x) = (x,s). Let ι∗0 , ι

∗
1 : Loc∞(M× [0,1])→ Loc∞(M) be the pullback functors

of the inclusions ι0 and ι1 respectively. Then there exists an A∞-natural isomorphism ρ : ι∗0 ⇒ ι∗1 .

Proof. Let ∆k(t) be the k-simplex of width t for t ∈ [0,1],

∆k(t) := {(t1, ..., tk) ∈ Rk | t ≥ t1 ≥ ·· · ≥ tk ≥ 0}.

We denoted by πk,i,t : ∆k(t)×M→ [0,1]×M the projection on the i-th component of the simplex.
If the dimension and width of the simplex are clear from the context, then we will omit both k and
t from the notation.

For each t ∈ [0,1] and a sequence of possibly non-homogeneous forms {θi}i≥1 of Ω
•([0,1]×

M,End(V )), we consider the series

ϕ(t) = id+ ∑
k≥1

∫ t

0
π
∗
1 (θ1)

∫ t1

0
π
∗
2 (θ2) · · ·

∫ tk−1

0
π
∗
k (θk).

In the case of homogeneous forms {θi}i≥1, the previous iterated integrals can be written as

ϕ(t) = id+ ∑
k≥1

(−1)z
∫

∆k(t)
π
∗
1 (θ1) · · ·π∗k (θk),

wherez= (k−1)|θ1|+(k−2)|θ2|+ · · ·+ |θk−1| is the sign obtained when commuting forms with
integrals. Now suppose that we have a constant sequences {α}, then the iterated integrals can be
written as

ϕ
α(t) = id+ ∑

k≥1
(−1)σ(k)|α|

∫
∆k(t)

π
∗
1 (α) · · ·π∗k (α),

where σ(k) = 0+1+ · · ·+(k−1). The previous series is convergent (see [11]) and defines a form
in Ω

•(M,End(V )), in fact a smooth map ϕα : [0,1]→Ω
•(M,End(V )).

Let (Ei,Di) be a trivialized local system on M× I, for i = 0,1, ...,n, then Ei = M× I ×Vi and
Di = d+αi with αi ∈Ω

•(M× I,End(Vi)) of total degree 1 satisfying dαi +α2
i = 0. We define

ρ
α
n (t) : Hom(En−1,En)⊗·· ·⊗Hom(E0,E1)→ Hom(ι∗0 (E0), ι

∗
t (En))

as follows. For homogeneous elements Ωi ∈ Hom(Ei,Ei+1) = Ω
•(M× I,Hom(Vi,Vi+1)), with

i = 0,1, ...,n− 1. Taking V =
⊕

iVi, then the forms {αi} and {ωi} can be seen as elements of
Ω
•(M× I,End(V )). Let η := Σiαi +Σiωi and define

ρ
α
n (t)(ω0, ...,ωn−1) := ϕ

η(t) ∈Ω
•(M,End(V )).

For the (0,n) component of this form which goes from V0 to Vn, we define

ρ
α
n (ωn−1, ...,ω0) := (ρα

n (t)(ωn−1, ...,ω0))0,n ∈Ω
•(M,Hom(V0,Vn)),
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where a general term of ρα
n is an integral∫

∆k(t)
αnπ

∗
in−1

(ωn−1)αn−1 · · ·α1π
∗
i0(ω0)λ0,

where α j = π∗i j−1+p j
(α j) · · ·π∗i j−1+1(α j). In words, the integrands contain pullbacks of all the

{ωi}n−1
i=0 as factors, ordered with descending indices from left to right. Furthermore, there may

be products of pullbacks of αi between ωi and ωi−1. Notice that since the amount of factors in the
integrand must equal k and all of the ωi appear in the product, the integrals relevant to us are over
∆k(t) with k ≥ n. Also notice that since the {αi} have total degree 1, the total degree of the forms
yielded by the integrals is ∑

n−1
i=0 |ωi|− n, which makes ρα

n a map of degree −n. Notice that ρα
0 is

just the isomorphism ϕ given in theorem 2.1, which we know is a closed isomorphism.

Next we prove that this construction does not depend on the trivializations chosen for each Ei.
Suppose that (Ei,Di) is trivialized both as ([0,1]×M×Vi,d+αi) and ([0,1]×M×Wi,d+βi), and
for each i let ψi ∈ Ω0([0,1]×M,Hom(Vi,Wi)) be an isomorphism between trivializations. Take
ωi ∈ Ω

•([0,1]×M,Hom(Vi,Vi+1)) and define µi ∈ Ω
•([0,1]×M,Hom(Wi,Wi+1)) by the formula

ωi = ψ
−1
i+1µiψi. We want to prove the following equation

ρ
α
n (ωn−1, · · · ,ω0) = (i∗t ψn)

−1
ρ

β
n (µn−1, · · · ,µ0)(i∗0ψ0). (2.2.7)

Consider the direct sums V =
⊕

Vi and W =
⊕

Wi. Then we have an isomorphism ψ =
⊕

ψi : V →
W . Furthermore, if we call η = ∑αi +∑ωi and θ = ∑βi +∑ µi, then the forms are gauge equiv-
alent, i.e., η = ψ−1θψ −ψ−1dψ . By Proposition 2.4, for every t ∈ [0,1] the following equation
holds

ϕ
η(t) = (i∗t ψ)−1

ϕ
θ (t)(i∗0ψ).

In particular this implies that the (0,n) components are equal. That is precisely equation (2.2.7).

Finally we check that the A∞ relations are satisfied. It is enough to check the relations locally, hence
we need to verify that

ι
∗
t ωn−1∧ρ

α
n−1(ωn−2⊗·· ·⊗ω0)−(−1)∑

n−1
j=1 |ω j|−n+1

ρ
α
n−1(ωn−1⊗·· ·⊗ω1)∧ ι

∗
0 ω0

= ρ
α(b(ωn−1⊗·· ·⊗ω0))+Dρ

α
n (ωn−1⊗·· ·⊗ω0),

Using equation (2.2.1) we can write the differential D in the previous relation as follows:

Dρ
α
n (ωn−1, · · · ,ω0)

= dρ
α
n (ωn−1, · · · ,ω0)− i∗t (αn)ρ

α
n (ωn−1, · · · ,ω0)+(−1)|ωn−1|+···+|ω0|−n

ρ
α
n (ωn−1, · · · ,ω0)i∗0(α0).



CHAPTER 2. PRELIMINARIES 38

Therefore the equation we need to verify is

dρ
α
n (ωn−1⊗·· ·⊗ω0)

= ι
∗
t ωn−1∧ρ

α
n−1(ωn−2⊗·· ·⊗ω0)− (−1)∑

n−1
j=1 |ω j|−n+1

ρ
α
n−1(ωn−1⊗·· ·⊗ω1)∧ ι

∗
0 ω0

+ ι
∗
t αn∧ρ

α
n (ωn−1⊗·· ·⊗ω0)− (−1)∑

n−1
j=0 |ω j|−n

ρ
α
n (ωn−1⊗·· ·⊗ω0)∧ ι

∗
0 α0

−ρ
α(b(ωn−1⊗·· ·⊗ω0)),

Therefore this construction does not depend on the trivializations chosen for each Ei and in addition
ρα

n satisfies the A∞ relations. See [11] for more details.

2.2.4 The higher Riemann-Hilbert correspondence

This subsection reviews the higher Riemann-Hilbert correspondence, which relates ∞-local systems
on X to representations up to homotopy of the smooth ∞-groupoid of X . Intuitively, the higher
Riemann-Hilbert correspondence is the statement that, just as a flat connection can be integrated
into a representation of the fundamental groupoid, a flat superconnection can be integrated into a
representation of the ∞-groupoid. The details of the proof can be found in [8, 9].

For every k≥ 0 we denote [k] = {0, · · · ,k}. The simplex category, denoted ∆, is the category whose
objects are the sets [k] for k ≥ 0. A morphism f : [k]→ [l] is a function that preserves the order,
i.e. if m,n ∈ [k] with m≤ n, then f (m)≤ f (n). Among the morphisms there are some particularly
important ones:

• The co-face morphisms are maps p̃k
i : [k]→ [k+1], with i ∈ [k+1]. The map p̃k

i is the only
injective, order preserving map whose image does not contain the element i.

• The co-degeneracy morphisms are maps s̃k
i : [k]→ [k−1], with i ∈ [k−1]. The map s̃k

i is the
only surjective, order preserving map such that s̃k

i (i) = s̃k
i (i+1).

• The k+1 possible ways to include [0] in [k] which we denote by ṽk
i : [0]→ [k] with i ∈ [k].

The simplex category has a geometrical realization that will be convenient for our purposes. How-
ever, it is to be noted that the relevance of the simplex category lies in its combinatorial properties,
not the geometric properties that may arise from the geometric description.

Let k be a non-negative integer, the k-dimensional simplex, denoted ∆k, is the set

∆k := {(t1, · · · , tk) ∈ Rk ∣∣ 1≥ t1 ≥ ·· · ≥ tk ≥ 0}

The 0-simplex ∆0 is merely the single point space {0}. The k-simplex may be included in the k+1-
simplex as a face in k+2 different ways. This inclusions are denoted p̂k

i : ∆k→ ∆k+1 for i ∈ [k+1]
and are defined by the formula

p̂k
i (t1, · · · , tk) =


(1, t1, · · · , tk) if i = 0
(t1, · · · , ti−1, ti, ti, ti+1, · · · , tk) if 1≤ i≤ k
(t1, · · · , tk,0) if i = k+1
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The components of the boundary of ∆k+1 will be denoted ∂i∆k+1 where

∂0∆k+1 = p̂k
0(∆k) = {(1, t1, · · · , tk)

∣∣ (t1, · · · , tk) ∈ ∆k}
∂i∆k+1 = p̂k

i (∆k) = {(t1, · · · , ti−1, ti, ti, ti+1, · · · , tk)
∣∣ (t1, · · · , tk) ∈ ∆k}

∂k+1∆k+1 = p̂k
k+1(∆k) = {(t1, · · · , tk,0)

∣∣ (t1, · · · , tk) ∈ ∆k}

On the other hand we have k projection maps ŝk
i : ∆k → ∆k−1 for i ∈ [k− 1] that collapse the k-

simplex onto one of its faces. The projections are defined by

ŝk
i (t1, · · · , tk) = (t1, · · · , ti, ti+2, · · · , tk)

The k+ 1 different ways of including the 0-simplex as a vertex in the k simplex will be denoted
v̂k

i : ∆0→ ∆k for i ∈ [k]. These inclusions may be obtained as compositions of the p̂k
i as follows

v̂k
i = pk−1

k · · · pi
i+1 pi−1

0 · · · p0
0.

Put simply, v̂k
i (0) = (1, · · · ,1,0, · · · ,0) where the tuple has i ones and k− i zeroes.

The correspondence between the combinatorial and geometric descriptions of the simplex category
is straightforward: the set [k] maps to the simplex ∆k. If f̃ : [k]→ [n] is an order-preserving map,
then we have a corresponding function f̂ : ∆k → ∆n mapping the i-th vertex of ∆k into the f̃ (i)-th
vertex of ∆n. This assignment maps p̃k

i , s̃k
i and ṽk

i into p̂k
i , ŝk

i and v̂k
i respectively.

A simplicial set is a contravariant functor X : ∆→ Set from the simplex category to the category of
sets. We usually denote the set X(∆k) by Xk and the whole simplicial set by X•. The co-face and
co-degeneracy maps turn into face and degeneracy maps, respectively

X(p̂k
i ) = pk

i : Xk+1→ Xk, X(ŝk
i ) = sk

i : Xk−1→ Xk.

The vertex maps turn into constant functions vk
i : Xk → X0. When the simplex dimension is clear

from the context we will simply write pi, si and vi for the face, degeneracy and vertex maps.

The face and degeneracy maps satisfy the following relations called the simplicial identities:

1. pk−1
i pk

j = pk−1
j−1 pk

i if i < j.

2. sk+1
i sk

j = sk+1
j+1sk

i if i≤ j.

3. pk−1
i sk

j = sk−1
j−1 pk−2

i if i < j.

4. pk−1
i sk

j = Id if i = j or i = j+1.

5. pk−1
i sk

j = sk−1
j pk−2

i−1 if i > j+1.

Let M be a smooth manifold. We define a simplicial set X• by Xk = HomSmooth(∆k,M), the set of
smooth maps from ∆k to M. The whole simplicial set is called the infinity groupoid of M and is
denoted π∞(M).
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We aim to define representations up to homotopy of simplicial sets; for this purpose, we need the
following: Let A be an algebra and X• a simplicial set. A cochain of degree k with values in A is a
map F : Xk→ A.

The algebra structure in A allows us to provide the set of cochains with some extra structure. First,
we need some notation. There is a map Pr

k : Xk→ Xr called the r-dimensional frontal face map. For
an element x ∈ Xk, we define

Pr
k (x) = pr

r−1 · · · pk−2
k−1 pk−1

k (x).

Similarly, the r-dimensional back face is Qr
k : Xk→ Xr is defined by

Qr
k(x) = pr

0 · · · pk−1
0 (x).

We use the front and back maps to define the cup product of cochains with values in A. Let F and
G be cochains with degrees k and l respectively. The cup product, denoted F ∪G, is a cochain of
degree k+ l defined by the formula

F ∪G(x) = F(Pk
k+l(x))G(Ql

k+l(x)), x ∈ Xk+l.

In the case of the infinity groupoid, the back and frontal face maps are the pullbacks of the following
maps, respectively:

Ui : ∆i→ ∆n, (t1 · · · , ti) 7→ (1, · · · ,1, t1 · · · , ti)
Vi : ∆i→ ∆n, (t1 · · · , ti) 7→ (t1 · · · , ti,0, · · · ,0).

Let X• be a simplicial set. A representation up to homotopy of X• is comprised of

• A Z-graded vector space Ex =
⊕

k Ek
x for each 0-simplex x ∈ X0.

• A sequence of cochains {Fk}k≥0 such that Fk is a cochain of degree k with

Fk(x) ∈ Hom1−k(Evk(x),Ev0(x)),

for x ∈ Xk.

For each k ≥ 0 we require the following relation to be satisfied:

k−1

∑
j=1

(−1) jFk−1(p j(x))−
k

∑
j=0

(−1) j(Fj∪Fk− j)(x) = 0. (2.2.8)

The cup product used in relation (2.2.8) is defined with compositions. Explicitly we have

(Fj∪Fk− j)(x) = Fj(P
j

k (x))◦Fk− j(Q
k− j
k (x)),

Evk(x)
Fk− j(Q

k− j
k (x))
−→ Ev jx

Fj(P
j

k (x))−→ Ev0(x).
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As usual we will explore the meaning of the relations for low values of k.

• For k = 0 we have a point x ∈ X0 and a linear map F0(x) : Ex → Ex of degree 1 with the
property F0(x)◦F0(x) = 0. Therefore (Ex,F0(x)) is a cochain complex.

• For k = 1 we have that a 1-simplex γ is a path in M from x0 to x1. F1(γ) is a morphism
Hom0(Ex1,Ex0) such that

F0(x0)◦F1(γ) = F1(γ)◦F0(x1).

In other words, F1(γ) is a morphism of cochain complexes.

• For k = 2 consider a 2-simplex σ with vertices x0,x1,x2 and edges γi, j connecting vertex xi

to x j. The relation reads

F1(γ0,1)◦F1(γ1,2)−F1(γ0,2) = F0(x0)◦F2(σ)+F2(σ)◦F1(x2)

This means that the cochain complex morphisms going from Ex2 to Ex0 defined by applying
F1 to the edges of σ are homotopic via a homotopy given by F2(σ).

When the simplicial set is the infinity groupoid of a manifold, a representation up to homotopy is
the assignment of holonomies for simplices of all dimensions in a coherent manner. In this case we
have the following pictorial representation of the first three relations. A shaded face of a simplex
represents the holonomy assigned to it:

• For a path we have .

This relation states that the holonomy assigned to a path is a morphism between the cochain
complexes lying over the path’s endpoints.

• For the triangle we get ,

which means that the holonomy assigned to a 2-simplex is an (algebraic) homotopy between
the cochain maps assigned to its edges.

• For the tetrahedron the relation is
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Let X• be a simplicial set and (E,F•),(E ′,F ′• ) representations up to homotopy of X•. A morphism of
representations of degree n is a sequence ϕ = {ϕk}k≥0 with ϕk a k-cochain such that for a k-simplex
σ ∈ Xk, we have

ϕk(σ) ∈ Homn−k(Evk(σ),E
′
v0(σ)).

The identity morphism is the sequence ϕ0 = Id and ϕk = 0 for k ≥ 1.

If ϕ : (E,F)→ (E ′,F ′) and ϕ ′ : (E ′,F ′)→ (E ′′,F ′′) are morphisms, then the composition is the
sequence {(ϕ ′ ◦ϕ)k}k≥0 where

(ϕ ′ ◦ϕ)k := ∑
i+ j=k

(−1) jn(ϕ ′j∪ϕi)

The differential of ϕ is the sequence {D(ϕ)k}k≥0 where

D(ϕ)k(σ) := ∑
i+ j=k

(−1) jnF ′j ∪ϕi(σ)+ ∑
i+ j=k

(−1)n+ j+1
ϕ jFi(σ)+

k−1

∑
i=1

(−1) j+n
ϕk−1(pi(σ)).

Proposition 2.6. Representations up to homotopy of X• form a DG category.

The category of representations up to homotopy of X• will be denoted Rep∞(X•). We should remark
that the DG category Rep∞(X•) is functorial with respect to simplicial maps. More precisely,
for a simplicial map f• : K• → L• between two simplicial sets K• and L•, there is a DG functor
f ∗• : Rep∞(L•)→ Rep∞(K•) which sends (E,F•) to ( f ∗0 E,F• ◦ f•). It is straightforward to check
that the latter is indeed a representation up to homotopy of K•, so that the DG functor f ∗• is well
defined. We call it the pullback functor induced by f•.

Let X be a smooth manifold. The simplicial set π∞X•, called the smooth fundamental ∞-groupoid
of X , is defined by setting π∞Xp to be the set of smooth maps from the standard p-simplex ∆p to
X . The simplicial maps are defined by pulling back along with the cosimplicial maps between the
simplices.

It turns out that the DG category Rep∞(π∞X•) is a global version of the DG category Loc∞(X) of
∞-local systems on X . This is the content of the higher Riemann-Hilbert correspondence, which is
the following result, proved in [8].

Theorem 2.2. There exists an integration A∞-functor

I : Loc∞(X)−→ Rep∞(π∞X•),

which is an A∞-quasi-equivalence of DG categories.
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2.3 The equivariant de Rham Theorem

2.3.1 Equivariant Cohomology

Equivariant cohomology is a cohomology theory that considers the symmetries of space. From
now on, we will denote the identity element of a group by e.

A left action (or G-action) of a topological group G on a topological space X is a continuous map
ϕ : G×X → X , written ϕ(g,x) = g · x, such that

(i) e · x = x,

(ii) g · (h · x) = (gh) · x, for all g,h ∈ G and x ∈ X .

A right action is defined similarly but with (x ·h) ·g = x · (hg) instead of (ii). Any left action can be
turned into a right action and vice versa via g · x = x · g−1. For an action of a group G on a set X ,
the stabilizer of a point x ∈ X is

Stab(x) = {g ∈ G|g · x = x}.

The action is said to be free if Stab(x) = {e}, for every x ∈ X .

As an example, given the unit sphere S2 in R3 defined by x2 + y2 + z2 = 1, rotation of S2 about the
z-axis is an action of the circle S1 on the sphere S1×S2→ S2, given explicitly by

eit ·

x
y
z

=

cost −sint 0
sint cost 0
0 0 1

x
y
z

 , t ∈ [0,2π]. (2.3.1)

A G-space X , is a topological space X with a continuous action of a topological group G. A G-
equivariant map is a continuous map f : X→Y between two G-spaces X and Y such that f (g ·x) =
g · f (x), for all x ∈ X and g ∈G. For a given group G, the collection of G-spaces and G-maps forms
a category. Let’s take the smooth manifolds category instead of the topological spaces category. A
smooth manifold M with a smooth action of a Lie group G is called a G-manifold. For a given Lie
group G, the collection of smooth G-manifolds and smooth G-maps also forms a category.

Let G be a compact Lie group acting on a smooth manifold M. If the G-action is free, then the
quotient M/G is a smooth manifold, in which case we can define the equivariant cohomology of M
as the singular cohomology of M/G by

H•G(M) := H•(M/G).

But if the action is not free, then the quotient M/G can be non-Hausdorff in general, so M/G is not
a manifold again. In that case, if we take the same definition for equivariant cohomology for the
manifold M, namely H•G(M) :=H•(M/G), then this construction will give us less information about
the action of the group G on the manifold M, in particular, the information about the stabilizer is
lost. For example, if G is the circle group S1 acting on the sphere M = S2 by rotation about
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the z-axis as before, then the poles of S2 remain fixed by the S1 action. Therefore this action is
not free with the two poles of the sphere having non-trivial stabilizers. The quotient S2/S1 can
be identified with a closed interval [−1,1], which is contractible and hence their cohomology is
trivial, H•S1(S2) = {0}. The problem then is that we lose the information about the stabilizers of
the G-action on M. Equivariant cohomology aims to keep some trace of the non-trivial stabilizers
of the G-action.

Before presenting the definition of equivariant cohomology, we will see some essential preliminar-
ies.

A principal G-bundle π : EG→ BG is called a universal G-bundle if the following conditions are
satisfied:

1. For any principal G-bundle P over a CW complex X , a continuous map f : X → BG exists
such that P is isomorphic to the pullback f ∗EG over X .

2. If f ,g : X → BG pull EG back to isomorphic bundles f ∗EG∼= g∗EG over a CW complex X ,
then f and g are homotopic.

By a construction due to Milnor, for any topological space G, we can construct a universal G-bundle
EG→ BG, where the base space BG is called a classifying space for G, and EG is a weakly con-
tractible space. If the topological group G is a CW complex and the group operations are cellular,
the areas EG and BG coming from the Milnor construction are CW complexes. By Whitehead’s
theorem, in the case of CW complexes, weakly contractible is the same as contractible.

If a group G acts on a space E freely, then no matter how G acts on a space M, we know that
the diagonal action of G on E ×M given by g · (x,y) = (g · x,g · y), is free. Since EG→ BG is a
principal G-bundle, the group G acts freely on the right on EG, and given a smooth G-manifold M
(left-action as before), the diagonal action on EG×M given by g · (x,y) = (xg−1,gx), will be free.
In addition, if EG is a contractible space, then EG×M will have the same homotopy type as M.
The homotopy quotient of M by G, denoted by MG, is defined to be the orbit space of EG×M by
the diagonal action of G.

Given a smooth G-manifold M, the equivariant cohomology of M by G is defined to be the singular
cohomology of the homotopy quotient MG,

H•G(M,R) := H•(MG,R),

where R is any coefficient ring. This definition is independent of the choice of the contractible
space EG on which G acts freely. For more details see [29]. For a given topological group G,
equivariant cohomology will be a contravariant functor

H•G(−) : {G− spaces}→ {rings}.

For example, the equivariant cohomology of a compact Lie group G with action given by left
multiplication is H•G(G) := H•(G/G) = H•(∗), the singular cohomology of a point. If M = {∗},
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then we have that
HG(∗) = H•((∗×EG)/G) = H•(BG).

So the equivariant cohomology of a point is the singular cohomology of the classifying space BG.
Let G a compact group, if M is a G-space given by the trivial action g ·m = m, for all g ∈ G
and m ∈ M, then the homotopy quotient MG is the cartesian product BG×M and therefore the
equivariant cohomology of M with real coefficients is H•G(M,R) = H•(BG,R)⊗H•(M,R).

For example, if G is the infinite cyclic group Z, then the classifying space and total space are
BG = S1 and EG = R respectively. Therefore Hk

Z(∗,R) = Hk(S1,R) = R, for k = 1,2.

Consider again the example of S1 acting on S2 by rotating about the z-axis. The homotopy quotient
S2
S1 is a fiber bundle over BS1 = CP∞ with fiber S2. The spectral sequence of this fiber bundle

degenerates at the second page E2, so that the additive structure of H•S1(S2) is

H•S1(S2,R) = H•(S2
S1,R) = E∞ = E2

∼= H•(BS1,R)⊗H•(S2,R)
∼= R[u]⊗ (R[ω]/(ω2))

= R[u]⊗ (R⊕Rω)

∼= R[u]⊕R[u]ω,

where ω is the volume form on S2 and degu = 2. For more details on this computation see [29].
Therefore, the equivariant cohomology H•S1(S2,R) is a free R[u]-module of rank 2, with one gen-
erator in degree 0 and one generator in degree 2.

We end the section with a result on G-principal bundles used in future sections.

Proposition 2.7. If P→ X is a principal G-bundle and M is a left G-manifold, then under the
diagonal action (p,m) ·g= (pg,g−1m), the projection P×M→ (P×M)/G is a principal G-bundle.

2.3.2 The equivariant de Rham Theorem

This section outlines the more significant results in equivariant cohomology, which will give us a
route to obtain the respective theorems in the case of ∞-local systems.

Let g be the Lie algebra of the compact Lie group G be a Lie group. The most explicit realization
of the Weil algebra Wg is as follows. The underlying graded commutative algebra of Wg is the
tensor product

Wg= Λ
•g∗⊗S•g∗,

where S•g∗ is the symmetric algebra of g∗ and where we associate to each ξ ∈ g∗ the degree
1 generators t(ξ ) ∈ Λ1g∗ and the degree 2 generators w(ξ ) ∈ S1g∗. The differential on Wg is
characterised by the formulas

dW(t(ξ )) = w(ξ )+δCE(t(ξ )),

dW(w(ξ )) = δCE(w(ξ )),
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where δCE is the differential of the Chevalley-Eilenberg complex CE(g) of g. The operators ix and
Lx are given on generators by

ix(t(ξ )) = 〈t(ξ ),x〉,
ix(w(ξ )) = 0,

Lx(t(ξ )) = ad∗x(t(ξ )),

Lx(w(ξ )) = ad∗x(w(ξ )),

for ξ ∈ g∗, and extended uniquely as derivations.

It will be useful to express the differential dW and the operator ix and Lx in terms of a dual basis
ea of g∗ and the structure constants f a

bc of g. If we write ta = t(ea) and wa = w(ea), they are as
follows:

dWta = wa− 1
2

f a
bct

btc,

dWwa = f a
bcwbtc,

ibta = δ
a

b ,

ibwa = 0,

Lbta =− f a
bct

c,

Lbwa =− f a
bcwc.

It is clear that the Weil algebra is freely generated by ta and dWta. This implies that Wg is acyclic
concerning dW.

Let M be a G-manifold and let g be the Lie algebra of G. An element α ∈Wg⊗Ω
•(M) is basic if

and only if for all x ∈ g we have that
ixα = 0,

Lxα = 0,

where ix = ix ⊗ 1 + 1⊗ ix, Lx = Lx ⊗ 1 + 1⊗ Lx. The Weil model is given by the DG algebra
(Wg⊗Ω

•(M))bas of basic elements of Wg⊗Ω
•(M), with differential given by δ = dW⊗1+1⊗dM.

We are now ready to state the main theorems that we will obtain for the case of ∞-local systems.

Theorem 2.3. Let G be a connected Lie group with Lie algebra g, and let π : M→ X be a smooth
G-principal bundle. Then there is an algebra isomorphism

H•(X)∼= H•((Wg⊗Ω
•(M))bas,δ ).

Proof. More than a complete demonstration, we will give an outline of it (For a complete demon-
stration see [29]).

1. Since the principal G-bundle is surjective, then π∗ : Ω
•(X)→Ω

•(M) is injective.
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2. The image π∗(Ω•(X)) is the basic subcomplex of Ω
•(M), hence

Ω
•(M)bas = π

∗(Ω•(X))∼= Ω
•(X).

3. By the Rham theorem, there are algebra isomorphisms

H•(X)∼= H•(Ω•(X))∼= H•(Ω•(M)bas).

4. Let i : Ω
•(M)→Wg⊗Ω

•(M) be the inclusion map given by ω 7→ 1⊗ω . Notice that i commutes
with δ , ix and Lx for all x ∈ g. Therefore i is a morphism of g-differential graded algebras. As
such, it takes basic elements to basic elements

i : Ω
•(M)bas→ (Wg⊗Ω

•(M))bas .

5. The morphism of g-differential graded algebras i is a quasi-isomorphism. Taking B = Ω
•(M)bas

and B̃ = (Wg⊗Ω
•(M))bas, and looking at the short exact sequence of complexes

0→ B i−→ B̃→ B̃/B→ 0,

it is shown that H•(B̃/B) = 0, and then the long exact sequence in cohomology will give an
isomorphism

i∗ : H•(B)→ H•(B̃).

6. Taking the two isomorphisms of 3 and 5, we obtain the desired isomorphism

H•(X)∼= H•(Ω•(M)bas)∼= H•((Wg⊗Ω
•(M))bas ,δ ).

The following lemma marks the transition from the Weil model (Wg⊗Ω
•(M))bas and the Cartan

model.

Lemma 2.9. Let G be a connected Lie group with Lie algebra g and let M be a G-manifold.
There is a graded-algebra isomorphism F : (Wg⊗Ω

•(M))hor→ S•g∗⊗Ω
•(M), which induces an

isomorphism on the basic sub algebras F : (Wg⊗Ω
•(M))bas→ (S•g∗⊗Ω

•(M))inv.

The complex (S•g∗⊗Ω
•(M))inv is called the Cartan model, and the map F the Weil-Cartan iso-

morphism. The previous isomorphism F carries the Weil differential δ to a differential D on the
Cartan model, defined by the following commutative diagram:

(Wg⊗Ω
•(M))bas

δ

��

(S•g∗⊗Ω
•(M))inv.

Hoo

D
��

(Wg⊗Ω
•(M))bas F

// (S•g∗⊗Ω
•(M))inv

,

where H is the inverse map of F .
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Finally, we have the equivariant de Rham theorem, which will be demonstrated for the case of
∞-local systems.

Theorem 2.4 (Equivariant de Rham Theorem). Suppose a compact connected Lie group G with Lie
algebra g acts on a smooth manifold M, there is a graded-algebra isomorphism between equivariant
cohomology and the cohomology of the Cartan model,

H•G(M)∼= H•((S•g∗⊗Ω
•(M))inv,D).

Proof. We will give a sketch of the proof, for more details see [29].

1. By Theorem 2.3, if P→ N is a principal G-bundle, then

H•(N)∼= H•((Wg⊗Ω
•(P))bas,δ ).

2. For a connected Lie group G, by Weil-Cartan isomorphism there is an algebra isomorphism

(Wg⊗Ω
•(P))bas ∼= (S•g∗⊗Ω

•(P))inv.

3. For a compact connected Lie group G, the total space is the infinite Stiefel variety Vk(C∞) for
some k. It can be approximated by

EGn = Vk(Cn+k+1), for n� 0

in the sense that
Hq(Vk(Cn+k+1)) = Hq(Vk(C∞)),

for all q≤ n. Similarly, the homotopy quotient MG = (EG×M)/G can be approximated by

MGn = (EGn×M)/G,

so that
Hq(MGn) = Hq(MG),

for all q≤ n.

4. Let N and M be G-manifolds and let f : N→M be a G-equivariant map. If f : N→M induces

an isomorphism in cohomology up to a certain dimension m := n+
1
2
(n+ 1)n, then it induces

an isomorphism in

H•((S•g∗⊗Ω
•(−))inv) (2.3.2)

up to dimension n.

Since EGn is a manifold, so is EGn×M and therefore the de Rham complex Ω
•(EGn×M) makes
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sense. So we have that for q≤ n and by Theorem 2.3, for EGn×M→MGn ,

Hq
G(M) = Hq(MG)∼= Hq(MGn)

∼= Hq((Wg⊗Ω
•(EGn×M))bas).

By Weil-Cartan isomorphism and 2.3.2 we have that

Hq
G(M)∼= Hq((Wg⊗Ω

•(EGn×M))bas)∼= Hq((S•g∗⊗Ω
•(EGn×M))inv)

= Hq((S•g∗⊗Ω
•(M))inv).

From now on, this will be what we refer to as the equivariant de Rham Theorem. The sketch of
the previous proofs will be used fundamentally in the proofs of our results for the case of ∞-local
systems.

As an important consequence is the cohomology of a classifying space.

Corollary 2.1. Let G be a compact connected Lie group with Lie algebra g. Then the cohomology
of its classifying space BG is

H•(BG,R) = (S•g∗)inv.

Given a complex finite dimensional vector space V with basis {e1, ...,en}, and letC[x1, ...,xn] be the
polynomial ring in the variables x1, ...,xn, we know that there is an isomorphism of rings S•V ∗→
C[x1, ...,xn] given by P 7→ P̃(x1, ...,xn) = P(v, ...,v), where v = ∑

n
i=1 xiei.

Next, we will give one example of classifying space. If G is the unitary group U(n) with Lie
algebra the skew-Hermitian matrices u(n), the classifying space is the Grassmannian of n-planes
in C∞, BG = Gn(C∞), and the total space is EG = Vn(C∞), the Stiefel manifold of n-dimensional
orthonormal frames in C∞. Taking a basis {e1, ...,en} of u(n), by Corollary 2.1 and the previous
isomorphism, we know that

H•U(n)(∗) = H•(Gn(C∞))

= (S•(u(n))∗)inv

= C[x1, ...,xn],

where C[x1, ...,xn] is the ring of invariant polynomials under the action of U(n) in the variables
x1, ...,xn. Finally, notice that for the Chern-Weil homomorphism, the variables xi are the Chern
classes of the tautological bundle.
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Chern-Weil theory for ∞-local systems and
Weil A∞-functor

3.1 Chern-Weil theory for ∞-local systems

In this section we show that, given a principal bundle π : P→ X with structure group G and any
connection θ on P, there is DG functor C Wθ : InfLoc∞(g)→ Loc∞(X), where InfLoc∞(g) is a
the DG category of basic g-L∞ spaces. Moreover, we show that, given a different connection θ ′, the
functors C Wθ and C Wθ ′ are related by an A∞-natural isomorphism. This construction provides
a categorification of the Chern-Weil homomorphism.

3.1.1 g-DG spaces and g-L∞ spaces

Let G be a connected Lie group with Lie algebra g. Consider the DG Lie algebra Tg defined as
follows. As a vector space, Tg= ug⊕g. For x ∈ g, we denote by i(x) ∈ Tg−1 and L(x) ∈ Tg0 the
corresponding generators. The Lie bracket of Tg is given by the Cartan relations

[i(x), i(y)] = 0,

[L(x),L(y)] = L([x,y]),

[L(x), i(y)] = i([x,y]).

The differential is defined by

d(i(x)) = L(x),

d(L(x)) = 0.

By a g-DG space we mean a cochain complex V together with a DG Lie algebra homomorphism
ρ : Tg→ End(V ). That is, it consists of a representation of Tg on V , where the operators ix ∈
End(V )−1 and Lx ∈ End(V )0 correspond to i(x) and L(x), respectively. The operators ix are called
contractions and the operators Lx are called Lie derivatives. Given a g-DG space V , one defines the

50
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basic subspace Vbas to be the cochain subcomplex consisting of all v ∈V with ixv = 0 and Lxv = 0
for all x ∈ g. Equivalently, Vbas is the subspace fixed by the action of Tg.

If V and W are g-DG spaces, a homomorphism f : V →W is just a morphism of cochain complexes
commuting with the operators ix and Lx. Such a homomorphism induces a morphism between the
corresponding basic subspaces Vbas and Wbas.

We also need to consider g-DG algebras. A g-DG algebra is a g-DG space A endowed with the
structure of DG algebra such that the action of Tg is by derivations. Homomorphisms of g-DG
algebras are homomorphisms of g-DG spaces, which are also homomorphisms of graded algebras.

The canonical example of a g-DG algebra is the De Rham complex Ω
•(P) of a principal bundle P

over a smooth manifold X with structure group G. Here the differential is the exterior derivative of
forms dP, and, if we let ρ denote the infinitesimal action of the Lie algebra g on P, ix is the inner
product of a form with ρ(x), and Lx is the Lie derivative of the form along with ρ(x).

Another example of a g-DG algebra is the Chevalley-Eilenberg algebra CE(g) of the Lie algebra g.
Even though we already gave a general description of the Chevalley-Eilenberg algebra of a DG Lie
algebra, we will also use the following, more explicit description in the case of a Lie algebra. As
a graded algebra it is the exterior algebra Λ

•g∗, where g∗ has degree 1. For ξ ∈ Λ1g∗, δCEξ is the
element in Λ2g∗ defined by

(δCEξ )(x,y) =−ξ ([x,y]),

for all x,y ∈ g; δCE is then canonically extended to a derivation on Λ
•g∗. It follows from the Jacobi

identity that δCE defined in this manner squares to zero. The derivations ix and Lx are defined on
generators ξ ∈ Λ1g∗, by

ixξ = 〈ξ ,x〉,
Lxξ = ad∗x ξ ,

where ad∗x denotes the infinitesimal coadjoint action of the element x. Both are then canonically
extended as derivations of degree −1 and 0, respectively, to all of Λ

•g∗.

Explicit formulas for these various maps, which will be useful later on, are obtained by introducing
a basis for g∗. Let ea be a basis for g with dual basis ea and structure constants f a

bc = 〈e
a, [eb,ec]〉,

and write ia and La for the contraction iea and the Lie derivative Lea acting on CE(g). Then the
explicit formulas for δCE, ia and La are the following:

δCEea =−1
2

f a
bceb∧ ec,

ibea = δ
a

b ,

Lbea =− f a
bcec,

where δ a
b is the Dirac function. Here and throughout the text, the convention that repeated indices

are summed over is in place.

Given a commutative g-DG algebra A, an algebraic connection is a map θ : g∗→A1, which satisfies
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the relations

ix(θ(ξ )) = 〈ξ ,x〉,
Lx(θ(ξ )) = θ(ad∗x ξ ),

for all x ∈ g and ξ ∈ g∗. Given a principal bundle P over a smooth manifold X with structure group
G and setting A = Ω

•(P), this is equivalent to the usual definition of a connection on P.

The Weil algebra Wg, associated to the Lie algebra g, is the universal commutative g-DG algebra,
with a connection ι : g∗→W1g. Thus, given a commutative g-DG algebra A, with connection θ ,
there exists a unique g-DG algebra homomorphism cθ : Wg→ A such that cθ ◦ ι = θ . We will refer
to cθ as the characteristic homomorphism for the connection θ .

Finally, given a commutative g-DG algebra A and a connection θ : g∗ → A1, the characteristic
homomorphism cθ : Wg→ A is defined on the generators of Wg, as follows:

cθ (t(ξ )) = θ(ξ ),

cθ (w(ξ )) = δA(θ(ξ ))−θ(δCE(t(ξ ))).

Checking the definitions shows that cθ is a chain map concerning the differential dW of Wg.

For example, if we let θ be any connection on a principal bundle P→ X with structure group
G, then, by assigning to each ξ ∈ g∗ the form ξ ◦ θ ∈ Ω1(P), we obtain a linear map g∗ →
Ω1(P); in view of the above, this map can be canonically extended to a g-DG homomorphism
cθ : Wg→Ω

•(P), which in turn induces a morphism of cochain complexes on the basic subspaces
cθ : (Wg)bas→Ω

•
bas(P). As S•g∗ is precisely the set of elements in Wg killed by ix for x ∈ g, it fol-

lows that (Wg)bas coincides with the algebra of invariant polynomials (S•g∗)inv on g. On the target
complex we have on the other hand that Ω

•
bas(P) is canonically isomorphic to Ω

•(X), so that in fact
cθ : (S•g∗)inv→ Ω

•(X). Since the differential dW vanishes on (Wg)bas = (S•g∗)inv, it follows that
cθ induces a cohomology map cθ∗ : (S•g∗)inv→ H•DR(X). This is the Chern-Weil homomorphism
for the principal bundle P→ X .

We conclude this subsection by introducing a generalization of the notion of g-DG space which
will play a key role in the sequel. By a g-L∞ space we mean a cochain complex V together with
an L∞-morphism Φ : Tg→ End(V ). To contrast this notion with that g-DG space, recall from
§ 2.1.2 that such a morphism corresponds to a collection of linear maps Φn :

⊙n(uTg)→ uEnd(V )

of degree zero which satisfy the constraints coming from the condition that Φ̄ commutes with
the codifferentials of

⊙n(uTg) and
⊙n(uEnd(V )). Upon setting ix = Φ1(i(x)) ∈ End(V )−1 and
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Lx = Φ1(L(x)) ∈ End(V )0, for low values of n, the constraints read

[ix,δV ] = Lx,

[Lx,δV ] = 0,

[ix, iy] = Φ2(i(x),L(y))−Φ2(L(x), i(y))−δV (Φ2(i(x), i(y))),

L[x,y]− [Lx,Ly] = δV (Φ2(L(x),L(y))),

i[x,y]− [Lx, iy] = Φ2(L(x),L(y))+δV (Φ2(L(x), i(y))).

From there, we gather that g-L∞ spaces are generalizations of g-DG spaces where the higher maps
Φn are homotopical corrections to the failure of the Cartan relations.

It is clear from the definitions that the Weil DG algebra Wg of g is isomorphic to the Chevalley-
Eilenberg DG algebra of Tg. In view of Proposition 2.1, one concludes that a g-L∞ space can be
equivalently specified by a cochain complex V together with a Maurer-Cartan element of Wg⊗
End(V ). This fact will be used throughout the text.

3.1.2 Basic ∞-local systems

Assume that π : P→ X is a principal bundle with structure group G and E =
⊕

k∈ZEk is a graded
G-equivariant vector bundle on P. By the latter we mean a graded vector bundle E =

⊕
k∈ZEk on

P together with a right action of G on E that preserves the decomposition for which the projection
from E to P is G-equivariant and G acts linearly on the fibers. Such an action induces a right action
of G on Λ

•T ∗P⊗E turning it into graded G-equivariant vector bundle on P. Thus we get a natural
left action of G on the space of E-valued differential forms Ω

•(P,E): if ϕ ∈ Ωr(P,E) and g ∈ G,
then ϕ ·g is the element of Ωr(P,E) whose value at any p ∈ P and any v1, . . . ,vr ∈ TpP is

(g ·ϕ)p(v1, . . . ,vr) = ϕp·g
(
(dσg)p(v1), . . . ,(dσg)p(vr)

)
·g−1.

Let g be the Lie algebra of G. For x ∈ g, we write iEx for the contraction operator on Ω
•(P,E). We

also denote by LE
x the corresponding infinitesimal action on Ω

•(P,E). An element ϕ ∈ Ω
•(P,E) is

called basic if it satisfies

iEx ϕ = 0,

LE
x ϕ = 0,

for all x ∈ g. Since each iEx and LE
x are derivations, the basic elements are a graded subspace of

Ω
•(P,E). This subspace will be denoted by Ω

•
bas(P,E).

A special case which will be important for us occurs when E is trivialised over P in such a way
that E = P×V for some graded vector space V =

⊕
k∈ZV k together with a representation ρ of G

on V that preserves the decomposition. In this case, Ω
•(P,E) coincides with the space of V -valued

differential forms Ω
•(P,V ) = Ω

•(P)⊗V , and if for each x ∈ g, we write ix for the contraction
operator on Ω

•(P) and Lx for both the contraction operator acting on Ω
•(P) and that acting on V ,
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we have that iEx = ix⊗1 and LE
x = Lx⊗1+1⊗Lx.

Next we consider the homomorphism π∗ : Ω
•(X ,E/G)→ Ω

•(P,π∗(E/G)) and the isomorphism
Φ : Ω

•(P,E)→Ω
•(P,π∗(E/G)) induced by the natural isomorphism E→ π∗(E/G). We define

π
# : Ω

•(X ,E/G)→Ω
•(P,E)

to be the composition π# = Φ−1 ◦π∗. The following result is standard.

Proposition 3.1. The homomorphism π# is injective. The image of π# consists precisely of the
basic elements.

This proposition shows that π# can be considered as an isomorphism

π
# : Ω

•(X ,E/G)−→∼=Ω
•
bas(P,E).

If E is trivialized over P as in the previous paragraph, then

π
# : Ω

•(X ,P×ρ V )−→∼=Ω
•
bas(P,V ),

where P×ρ V is the associated vector bundle determined by ρ .

Now we come to the definition of basic superconnection. Let π : P→ X be a principal bundle
with structure group G and let E =

⊕
k∈ZEk be a graded G-equivariant vector bundle on P. A basic

superconnection on P is a superconnection D on E which is G-equivariant and satisfies the property
that

[D, iEx ] = LE
x ,

for all x ∈ g. The reason for this definition is made clear by the following result.

Lemma 3.1. If D is a basic superconnection on E, then D preserves the graded subspace Ω
•
bas(P,E).

Proof. Since D is a superconnection on E which commutes with the action of G on Ω
•(P,E), we

see that
[D,LE

x ] = 0,

for all x ∈ g. This, combined with the defining relation, implies that if ϕ ∈ Ω
•
bas(P,E) then Dϕ ∈

Ω
•
bas(P,E).

If D is a basic superconnection on E, we will also denote its restriction to the graded subspace
Ω
•
bas(P,E) by D. By a basic ∞-local system on P we mean a graded G-equivariant vector bundle E

on P endowed with a flat basic superconnection D. As usual, we will denote such a basic ∞-local
system as a pair (E,D).

Just as with ordinary ∞-local systems, all basic ∞-local system on a principal bundle π : P→ X can
be naturally organised into a DG category, we denote by [Loc∞(P)]bas. Its objects are, of course,
basic ∞-local systems (E,D) on P. Given two basic ∞-local systems (E,D) and (E ′,D′) we define
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the space of morphism to be the graded vector space Ω
•
bas(P,Hom(E,E ′)) with the differential ∂D,D′

acting as
∂D,D′ϕ = D′∧ϕ− (−1)k

ϕ ∧D,

for any homogeneous basic element ϕ of degree k. It is important to note that [Loc∞(P)]bas is a non
full DG subcategory of Loc∞(P).

We discuss next the geometric significance of [Loc∞(P)]bas. For this purpose, consider the pullback
DG functor π∗ : Loc∞(X)→ Loc∞(P). We have the following fundamental result.

Proposition 3.2. For every object (E,D) in [Loc∞(P)]bas there is an isomorphism between (E,D)

and an object of the form π∗(Ē, D̄) with (Ē, D̄) in Loc∞(X).

Proof. Let (E,D) be an object in [Loc∞(P)]bas. We know from Lemma 3.1 that D preserves the
graded subspace Ω

•
bas(P,E). Set Ē = E/G and define an operator D̄ : Ω

•(X , Ē)→ Ω
•(X , Ē) by

means of the diagram

Ω
•(X , Ē) D̄ //

∼=π#

��

Ω
•(X , Ē)

∼= π#

��
Ω
•
bas(P,E)

D // Ω•bas(P,E).

Then, it is immediate to verify that D̄ is a flat superconnection on Ē. Thus, the pair (Ē, D̄) defines an
object in Loc∞(X). Now consider the isomorphism Φ : Ω

•(P,E)→ Ω
•(P,π∗Ē) defined as above.

Since the isomorphism E → π∗Ē is G-equivariant and the contraction operator iEx only acts on
Ω
•(P), it follows that Φ restricts to an isomorphism from Ω

•
bas(P,E) to Ω

•
bas(P,π

∗Ē), which we
also denote by Φ. Notice that this isomorphism is of degree 0. Moreover, bearing in mind the
definition of D̄, we obtain the commutative diagram

Ω
•
bas(P,E)

D //

Φ

��

Ω
•
bas(P,E)

Φ

��
Ω
•
bas(P,π

∗Ē) π∗D̄ // Ω•bas(P,π
∗Ē).

This shows that Φ is an isomorphism from (E,D) to π∗(Ē, D̄).

The previous proposition shows that π∗ can be considered as a DG functor

π
∗ : Loc∞(X)→ [Loc∞(P)]bas.

We obtain a lot more.

Proposition 3.3. The DG functor π∗ : Loc∞(X)→ [Loc∞(P)]bas is a quasi-equivalence.

Proof. By virtue of Proposition 3.2, we only have to show that π∗ : Loc∞(X) → [Loc∞(P)]bas

is quasi fully faithful. So for any pair of objects (Ē, D̄) and (Ē ′, D̄′) in Loc∞(X) consider the
associated map

π
∗ : Ω

•(X ,Hom(Ē, Ē ′))−→Ω
•
bas(P,Hom(π∗Ē,π∗Ē ′)).
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Then, if Ψ : Ω
•(X ,Hom((π∗Ē)/G,(π∗Ē ′)/G))→Ω

•(X ,Hom(Ē, Ē ′)) denotes the isomorphism in-
duced by the natural isomorphisms (π∗Ē)/G→ Ē and (π∗Ē ′)/G→ Ē ′, is not hard to check that
π∗ ◦Ψ = π#. This shows that π∗ is an isomorphism. On the other hand, if ω ∈Ω

•(X ,Hom(Ē, Ē ′))
is a homogeneous element of degree k, we have

π
∗(∂D̄,D̄′ω) = π

∗(D̄′∧ω− (−1)k
ω ∧ D̄) = π

∗D̄′∧π
∗
ω− (−1)k

π
∗
ω ∧π

∗D̄ = ∂π∗D̄,π∗D̄′(π
∗
ω).

It follows that π∗ is, in fact, an isomorphism of cochain complexes and, thus, in particular, a quasi-
isomorphism.

We shall see the importance of Proposition 3.3 in the following section.

3.1.3 The Chern-Weil DG functor

This part describes the construction of a characteristic DG functor that extends the Chern-Weil
homomorphism for principal bundles to the realm of ∞-local systems. We begin by recording
several preliminary observations.

Let G be a connected Lie group with Lie algebra g and let V be a g-L∞ space. For x ∈ g, by a
slight abuse of notation, we will indistinctly write ix and Lx for the contraction and Lie derivative
operators acting on Wg or V . With this caveat, it is a fact that Wg⊗V acquires the structure of
a g-L∞ space, where the differential, contraction and Lie derivative operators are dW⊗1+1⊗δV ,
ix⊗1 and Lx⊗1+1⊗Lx, respectively. Thus, we may consider the basic subspace (Wg⊗V )bas.

On the other hand, recall from the remark made at the end of §3.1.1 that the g-L∞ space V deter-
mines and is determined by a Maurer-Cartan element of Wg⊗End(V ), which we write as αV . We
shall say that V is basic if the following identities are satisfied

[αV , ix⊗1] = 1⊗Lx,

[αV ,Lx⊗1+1⊗Lx] = 0,

for all x ∈ g. This definition is justified by the following construction.

We wish to construct a derivation D : Wg⊗V → Wg⊗V of homogeneous degree 1, such that
D2 = 0. To do so, we may simply define

D = dW⊗1+1⊗δV +αV .

That D2 is zero, followed by a straightforward calculation. Also, the following property holds.

Lemma 3.2. If V is a basic g-L∞ space, then D preserves the graded subspace (Wg⊗V )bas.

Proof. We wish to show that if ϕ ∈ (Wg⊗V )bas then Dϕ ∈ (Wg⊗V )bas. For this, it will be enough
to verify that

[D,Lc⊗1+1⊗Lc] = 0,
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and
[D, ic⊗1] = Lc⊗1+1⊗Lc.

Fix an element of Wg⊗V of the form ϕ⊗ v. Then a straightforward computation gives

D((Lc⊗1+1⊗Lc)(ϕ⊗ v)) = dW(Lcϕ)⊗ v+(−1)|ϕ|Lcϕ⊗δV v

+dWϕ⊗Lcv+(−1)|ϕ|ϕ⊗δV (Lcv)

+αV ((Lc⊗1+1⊗Lc)(ϕ⊗ v)) ,

and

(Lc⊗1+1⊗Lc)(D(ϕ⊗ v)) = Lc(dWϕ)⊗ v+(−1)|ϕ|Lcϕ⊗δV v

+dWϕ⊗Lcv+(−1)|ϕ|ϕ⊗Lc(δV v)

+(Lc⊗1+1⊗Lc)(αV (ϕ⊗ v)) .

Therefore,

[D,Lc⊗1+1⊗Lc](ϕ⊗ v) = [dW,Lc]ϕ⊗ v+(−1)|ϕ|ϕ⊗ [δV ,Lc]v

+[αV ,Lc⊗1+1⊗Lc](ϕ⊗ v)

= 0.

Thus the first identity is established. On the other hand, again, by direct computation,

D((ic⊗1)(ϕ⊗ v)) = dW(icϕ)⊗ v− (−1)|ϕ|icϕ⊗δV v

+αV ((ic⊗1)(ϕ⊗ v)) ,

and

(ic⊗1)(D(ϕ⊗ v)) = ic(dWϕ)⊗ v+(−1)|ϕ|icϕ⊗δV v

+(ic⊗1)(αV (ϕ⊗ v)) .

Hence,

[D, ic⊗1](ϕ⊗ v) = [dW, ic]ϕ⊗ v+[αV , ic⊗1](ϕ⊗ v)

= Lcϕ⊗ v+(1⊗Lc)(ϕ⊗ v)

= (Lc⊗1+1⊗Lc)(ϕ⊗ v),

and, consequently, the second identity also holds.

The content of the previous discussion is that, provided V is a basic g-L∞ space, the differential D
can be regarded as a flat basic superconnection on the graded vector bundle EG×V . As a result,
ignoring the technical problem with infinite dimensionality, the pair (EG×V,D) defines a basic
∞-local system on EG in the sense of §3.1.2.
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The preceding discussion allows us to define a DG category, which we call the DG category of
infinitesimal ∞-local systems on g, by the following data. The objects of this DG category are all
basic g-L∞ spaces. For any two g-L∞ spaces V and V ′, with corresponding differentials D and D′,
the space of morphisms is the graded vector space (Wg⊗Hom(V,V ′))bas with the differential ∂D,D′

acting according to the formula

∂D,D′ϕ = D′ ◦ϕ− (−1)k
ϕ ◦D,

for any homogeneous element ϕ of degree k. The DG category given by this data will be denoted
by InfLoc∞(g).

We are now in a position to state and prove the main result of this section.

Theorem A. Let G be a Lie group and let π : P→ X be a principal bundle with structure group G.
Then, for any connection θ on P, there is a natural DG functor

C Wθ : InfLoc∞(g)−→ Loc∞(X).

Moreover, for any two connections θ and θ ′ on P, there is an A∞-natural isomorphism between
C Wθ and C Wθ ′ .

Proof. In view of Proposition 3.3, the pullback DG functor π∗ : Loc∞(X)→ [Loc∞(P)]bas is a
quasi-equivalence. Hence, it will suffice to show that for any connection θ on P, there is a natural
DG functor

C Wθ : InfLoc∞(g)−→ [Loc∞(P)]bas.

Let us thus fix a connection θ on P and keep the notation as above. We define the DG functor
C Wθ : InfLoc∞(g)→ [Loc∞(P)]bas as follows. For each object V in InfLoc∞(g) consider the
operator Dθ : Ω

•(P,V )→Ω
•(P,V ) determined by the formula

Dθ = dP⊗1+1⊗δV +(cθ ⊗1)αV ,

where as usual cθ : Wg→ Ω
•(P) is the characteristic homomorphism for the connection θ . Here

we note that the fact that cθ is a g-DG algebra homomorphism implies that (cθ ⊗1)αV is a Maurer-
Cartan element of Ω

•
bas(P,End(V )). Then the argument given in the proof of Lemma3.2 can be

repeated to show that Dθ defines a flat basic superconnection on P×V . That being the case, we
define C Wθ (V ) to be the basic ∞-local system (P×V,Dθ ). On the other hand, suppose ϕ ∈
(Wg⊗Hom(V,V ′))bas is an arbitrary morphism between two objects V and V ′ in InfLoc∞(g).
Then, by the foregoing remark, we again have that (cθ ⊗ 1)ϕ ∈ Ω

•
bas(P,Hom(V,V ′)). In this way

we get a morphism of graded vector spaces

C Wθ : (Wg⊗Hom(V,V ′))bas −→Ω
•
bas(P,Hom(V,V ′)).

We may note further that, since cθ commutes with the differentials dW and dP, this morphism is a
cochain map with respect to both differentials ∂D,D′ and ∂Dθ ,D′θ

. It is a straightforward exercise to

check that this data defines a DG functor C Wθ : InfLoc∞(g)→ [Loc∞(P)]bas.



CHAPTER 3. CHERN-WEIL THEORY FOR ∞-LOCAL SYSTEMS AND WEIL A∞-FUNCTOR59

To show the second part, suppose that θ and θ ′ are two different connections on P. Define an
interpolating connection θt by

θt = θ + t(θ −θ
′)

so that θ0 = θ and θ1 = θ ′. Then, if we let pr1 : P× [0,1]→ P be the projection onto the first
factor, we have that θ̂ = pr∗1θt defines a connection on P× [0,1]. Hence, by the foregoing, we get a
DG functor C W

θ̂
: InfLoc∞(g)→ [Loc∞(P× [0,1])]bas. If, on the other hand, ιt : P→ P× [0,1]

denotes the inclusion of height t, then the pullback DG functor ι∗t : Loc∞(P× [0,1])→Loc∞(P) in-
duces DG functors between the DG subcategories [Loc∞(P× [0,1])]bas and [Loc∞(P)]bas, which we
denote by the same symbol, and further we have that C Wθ = ι∗0 ◦ C W

θ̂
and C Wθ ′ = ι∗1 ◦ C W

θ̂
.

In addition, by virtue of Proposition 2.5, there exists an A∞-natural isomorphism between ι∗0 and ι∗1 .
By restricting the latter to the full DG subcategory of [Loc∞(P× [0,1])]bas consisting of objects of
the form C W

θ̂
(V ) with V an object of InfLoc∞(g), we obtain an A∞-natural isomorphism between

C Wθ , C Wθ ′ : InfLoc∞(g)→ [Loc∞(P)]bas, as wished.

We shall henceforth refer to the DG functor C Wθ : InfLoc∞(g)→ Loc∞(X) induced by a con-
nection θ on P as the Chern-Weil DG functor of P.

3.1.4 An example: the Gauss-Manin ∞-local system

In the following we conserve the notations of §3.1.1. Let g be a Lie algebra and consider the DG
Lie algebra Wg⊗End(CE(g)). Fix a basis ea of g with structure constants f a

bc and recall that ta

stands for the degree 1 generators of Λ1g∗ and wa stands for the degree 2 generators of S1g∗.

Our starting point is the following observation.

Lemma 3.3. The element αCE = ta⊗La−wa⊗ ia is a Maurer-Cartan element of Wg⊗End(CE(g)).

Proof. On the one hand,

(dW⊗1)αCE = (dW⊗1)(ta⊗La−wa⊗ ia)

= dWta⊗La−dWwa⊗ ia

= wa⊗La−
1
2

f a
bct

btc⊗La− f a
bcwbtc⊗ ia,

and

(1⊗δCE)αCE = (1⊗δCE)(ta⊗La−wa⊗ ia)

=−ta⊗ [δCE,La]−wa⊗ [δCE, ia]

=−wa⊗La.

Hence,

(dW⊗1+1⊗δCE)αCE =− f a
bcwbtc⊗ ia−

1
2

f a
bct

btc⊗La



CHAPTER 3. CHERN-WEIL THEORY FOR ∞-LOCAL SYSTEMS AND WEIL A∞-FUNCTOR60

On the other hand,

[αCE,αCE] = [tb⊗Lb−wb⊗ ib, tc⊗Lc−wc⊗ ic]

= tbtc⊗ [Lb,Lc]− tbwc⊗ [Lb, ic]+wbtc⊗ [ib,Lc]+wbwc⊗ [ib, ic]

= f a
bct

btc⊗La− f a
bct

bwc⊗ ia− f a
cbwbtc⊗ ia

= f a
bct

btc⊗La +2 f a
bcwbtc⊗ ia.

In conclusion, we obtain

(dW⊗1+1⊗δCE)αCE +
1
2
[αCE,αCE] = 0,

as required.

By the discussion of the preceding section, the Maurer-Cartan element αCE endows the Chevalley-
Eilenberg algebra CE(g) with the structure of a g-L∞ space. The following lemma deals with the
basicness of such g-L∞ space.

Lemma 3.4. The g-L∞ space CE(g) is basic.

Proof. It suffices to show that
[αCE, ic⊗1] = 1⊗Lc,

and
[αCE,Lc⊗1+1⊗Lc] = 0.

So fix an element of Wg⊗CE(g) of the form ϕ⊗ξ . A simple calculation shows that

αCE((ic⊗1)(ϕ⊗ξ )) = (taicϕ)⊗Laξ +(−1)|ϕ|(waicϕ)⊗ iaξ ,

and

(ic⊗1)(αCE(ϕ⊗ξ )) = δ
a
c ϕ⊗Laξ − (taicϕ)⊗Laξ − (−1)|ϕ|(waicϕ)⊗ iaξ .

Thus,

[αCE, ic⊗1](ϕ⊗ξ ) = δ
a
c ϕ⊗Laξ = ϕ⊗Lcξ = (1⊗Lc)(ϕ⊗ξ ).

Hence the first identity holds. Furthermore, another straightforward calculation shows that

αCE((Lc⊗1+1⊗Lc)(ϕ⊗ξ )) = (taLcϕ)⊗Laξ − (−1)|ϕ|(waLcϕ)⊗ iaξ

+(ta
ϕ)⊗La(Lcξ )− (−1)|ϕ|(wa

ϕ)⊗ ia(Lcξ ),
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and

(Lc⊗1+1⊗Lc)(αCE(ϕ⊗ξ )) =−( f a
bct

b
ϕ)⊗Laξ +(taLcϕ)⊗Laξ

+(−1)|ϕ|( f a
cbwb

ϕ)⊗ iaξ − (−1)|ϕ|(waLcϕ)⊗ iaξ

+(ta
ϕ)⊗Lc(Laξ )− (−1)|ϕ|(wa

ϕ)⊗Lc(iaξ ).

Consequently,

[αCE,Lc⊗1+1⊗Lc] = ( f a
cbtb

ϕ)⊗Laξ − (−1)|ϕ|( f a
cbwb

ϕ)⊗ iaξ

+(ta
ϕ)⊗ [La,Lc]ξ +(−1)|ϕ|(wa

ϕ)⊗ [Lc, ia]ξ

= ( f a
cbtb

ϕ)⊗Laξ − (−1)|ϕ|( f a
cbwb

ϕ)⊗ iaξ

+( f b
act

a
ϕ)⊗Lbξ +(−1)|ϕ|( f b

cawa
ϕ)⊗ ibξ

= 0,

implying that the second identity also holds.

In view of this result, the g-L∞ space CE(g) defines an object of the DG category InfLoc∞(g). The
corresponding differential takes the form

D = dW⊗1+1⊗δCE +αCE = dW⊗1+1⊗δCE + ta⊗La−wa⊗ ia.

As pointed out in the previous section, in the case in which g is the Lie algebra of a connected
Lie group, D can be thought of as a flat superconnection on the graded vector bundle EG×CE(g).
Thus, ignoring the issue of infinite dimensionality, the pair (EG×CE(g),D) defines an ∞-local
system on EG, which we will call the universal Weil ∞-local system.

Let now π : P→ X be a principal bundle with structure group G and consider the coadjoint action
ad∗ of G on g∗. This action extends uniquely to a representation of G on CE(g), turning P×CE(g)
into a graded G-equivariant vector bundle on P. Choose a connection θ on P with curvature Ω

and write θ = θ a⊗ ea and Ω = Ωa⊗ ea. By following the construction presented in the proof of
Theorem A, the operator Dθ : Ω

•(P,CE(g))→Ω
•(P,CE(g)) given by

Dθ = dP⊗1+1⊗δCE +(cθ ⊗1)αCE = dP⊗1+1⊗δCE +θ
a⊗La−Ω

a⊗ ia,

defines a flat basic superconnection on P×CE(g). In other words, we obtain a basic ∞-local
system (P×CE(g),Dθ ), which is nothing but the image C Wθ (CE(g)) through the DG functor
C Wθ : InfLoc∞(g)→ [Loc∞(P)]bas of CE(g).

Next we consider the graded vector bundle CE(P) = P×ad∗ CE(g) associated with P and the coad-
joint action ad∗ of G on CE(g). On account of Proposition 3.2, the flat basic superconnection Dθ

defined above induces a flat superconnection D̄θ on CE(P). Thus, the pair (CE(P), D̄θ ) consti-
tutes an ∞-local system on the base manifold X , which again by the argument given in the proof
of Theorem A, is exactly the image of the image C Wθ (CE(g)) under the Chern-Weil DG functor
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C Wθ : InfLoc∞(g)→ Loc∞(X) of CE(g). We call it the Gauss-Manin ∞-local system for θ .

We close with the following result.

Proposition 3.4. Let G be a compact connected Lie group and let π : P→ X be a principal bundle
with structure group G. Then, for any connection θ on P, the cohomology of the corresponding
Gauss-Manin ∞-local system (CE(P), D̄θ ) is isomorphic to H•DR(P).

Proof. Let us denote by Ω
•(P)G the subspace of G-invariant elements of Ω

•(P), and writeR for the
constant ∞-local system (X ×R,d). We will prove a stronger result, namely that the space of mor-
phisms Hom(R,(CE(P), D̄θ )) is isomorphic as a cochain complex to Ω

•(P)G. That this implies our
desired result is a consequence of the fact that the cohomology of (CE(P), D̄θ ) isomorphic to that to
that of Hom(R,(CE(P), D̄θ )), and that, since G is compact and connected, the inclusion Ω

•(P)G→
Ω
•(P) is a quasi-isomorphism. By the preceding remark, we know that (CE(P), D̄θ ) coincides with

the image of CE(g) under the Chern-Weil DG functor C Wθ : InfLoc∞(g)→ Loc∞(X). Thus, by
the construction of the latter, Hom(R,(CE(P), D̄θ )) is isomorphic to (Ω•(P)⊗CE(g))bas. Thus,
it will be enough to show that (Ω•(P)⊗CE(g))bas is isomorphic to Ω

•(P)G. For this, let us con-
sider the subspace (Ω•(P)⊗CE(g))hor consisting of all the elements of Ω

•(P)⊗CE(g) that are
sent to zero by the contraction ix⊗1 for all x ∈ g. Then the connection θ induces an isomorphism
of cochain complexes between (Ω•(P)⊗CE(g))hor and Ω

•(P). The result we are after follows
immediately from the fact that this isomorphism is G-equivariant.

3.2 ∞-Local systems and classifying spaces

In this section we prove our second main result. This states that if G is a compact connected Lie
group with Lie algebra g, then, the DG category InfLoc∞(g) is A∞-quasi-equivalent to the DG
category Loc∞(BG) of ∞-local systems on the classifying space of G. Moreover, given a principal
bundle π : P→ X with structure group G and any connection θ on P, the Chern-Weil functor
C Wθ : InfLoc∞(g)→ Loc∞(X) corresponds to the pullback functor associated to the classifying
map of P.

3.2.1 Canonical connections on Stiefel bundles

Here we recall the existence of canonical connections on Stiefel bundles which will be needed in
the text below. Although the results are well-known, proofs will be given for completeness.
For nonnegative integers k ≤ n, let Vk(Cn) denote the Stiefel manifold which parametrises or-
thonormal k-frames in Ck. It can be thought of as a set of n× k matrices by writing a k-frame as
a matrix of k column vectors in Cn. The orthonormality condition is expressed by A∗A = Ik where
A∗ denotes the conjugate transpose of A and Ik denotes the k× k identity matrix. The topology
on Vk(Cn) is the subspace topology inherited from Cn×k. With this topology Vk(Cn) is a com-
pact manifold whose dimension is (2n− k)k. There is a natural projection π : Vk(Cn)→ Gk(Cn)

from the Stiefel manifold Vk(Cn) to the Grassmannian of k-planes in Cn which sends a k-frame
to the subspace spanned by that frame. The fiber over a given point W in Gk(Cn) is the set of
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all orthonormal k-frames contained in the space W . There is also a natural right action of U(k)
on Vk(Cn) which rotates a k-frame in the space it spans. This action is free and the quotient is
precisely Gk(Cn). It follows that π : Vk(Cn)→ Gk(Cn) is indeed a principal bundle with structure
group U(k).

There are natural inclusions in : Gk(Cn)→ Gk(Cn+1) and jn : Vk(Cn)→ Vk(Cn+1) induced by the
standard inclusion Cn ⊂ Cn+1. Moreover, the latter is equivariant, so that we have a commutative
diagram of inclusions and principal bundles with structure group U(k),

· · · // Vk(Cn−1)
jn−1 //

π

��

Vk(Cn)
jn //

π

��

Vk(Cn+1) //

π

��

· · ·

· · · // Gk(Cn−1)
in−1 // Gk(Cn)

in // Gk(Cn+1) // · · · .

In the following, we shall write simply j to denote any of the inclusions in the upper line of the
diagram.

Proposition 3.5. The principal bundles π : Vk(Cn)→ Gk(Cn) admit a canonical connection ωc

such that j∗ωc = ωc.

Proof. We first identify Vk(Cn) with n× k matrices A satisfying A∗A = Ik. Then the tangent space
of Vk(Cn) at A identified with the space of all n× k matrices M such that

M∗A+A∗M = 0.

For each point A in Vk(Cn) and for each tangent vector M of Vk(Cn) at A, we consider the k× k
matrix-valued 1-form ωc on Vk(Cn) defined as

[ωc(A)](M) = A∗M.

Because of the above condition, it is clear that ωc takes actually values in the Lie algebra u(k) of
U(k). We claim that ωc is a connection form. In fact, if u∈U(k) and ru denotes the right translation,
then for each point A in Vk(Cn) and for each tangent vector M of Vk(Cn) at A,

[r∗uωc(A)](M) = [ωc(Au)](Mu) = u∗A∗Mu = u−1A∗Mu = Adu−1[ωc(A)](M).

On the other hand, if x ∈ u(k) and x] denotes the fundamental vector field generated by x, then for
each point A in Vk(Cn),

[ωc(A)](x](A)) = [ωc(A)]
(

d
dt

∣∣∣∣
t=0

Aexp(tx)
)
= A∗Ax = x.

Finally, the condition j∗ωc = ωc follows immediately from the fact that j is linear.

Now recall that every compact Lie group is isomorphic to a compact subgroup of U(k). Therefore,
given such a Lie group G, one can fix an embedding G ⊂ U(k) and restrict the action of U(k) on
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Vk(Cn) to G. The quotient of Vk(Cn) by this action is a set BGn, which can be given the structure
of a smooth manifold. Thus we get a new principal bundle π : Vk(Cn)→ BGn with structure group
G.

The inclusions Cn ⊂ Cn+1 ⊂ ·· · give inclusions BGn→ BGn+1→ ·· · and taking the direct limit
we arrive at the classifying space BG. Furthermore, as before, we have a commutative diagram of
inclusions and principal bundles with structure group G,

· · · // Vk(Cn−1)
jn−1 //

π

��

Vk(Cn)
jn //

π

��

Vk(Cn+1) //

π

��

· · ·

· · · // BGn−1
in−1 // BGn

in // BGn+1 // · · · .

Keeping the notation introduced above, we have the following result.

Proposition 3.6. The principal bundles π : Vk(Cn)→ BGn admit a canonical connection ωG such
that j∗ωG = ωG.

Proof. Pick an Ad-invariant inner product on the Lie algebra u(k) of U(k). Then we have a direct
sum decomposition

u(k) = g⊕g⊥,

where g is the Lie algebra of G and g⊥ is its orthogonal complement concerning this inner product.
We put

ωG = prg ◦ωc,

where prg is the canonical projection onto the first summand of the above decomposition and ωc

is the canonical connection of Proposition 3.5. We claim that ωG satisfies the required conditions.
Indeed, since the inner product on u(k) is Ad-invariant, we have that prg ◦Adu = Adu ◦ prg for all
u ∈ U(k). Thus, if u ∈ U(k), then for each point A in Vk(Cn) and for each tangent vector M of
Vk(Cn) at A,

[r∗uωG(A)](M) = [ωG(Au)](Mu) = prg{[ωc(Au)](Mu)}= prg{Adu−1[ωc(A)](M)}
= Adu−1prg{[ωc(A)](M)}= Adu−1[ωG(A)](M).

On the other hand, if x ∈ g, then for each point A in Vk(Cn),

[ωG(A)](x](A)) = prg{[ωc(A)](x](A))}= prgx = x.

Finally, the condition j∗ωG = ωG follows by a straightforward calculation.

3.2.2 Smooth approximation for classifying spaces

We prove a smooth approximation result for the classifying space of a compact Lie group. We start
by summarizing some of the necessary definitions.
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Let G be any compact Lie group, which we may suppose to be embedded in U(k) for some k, and
let BG denote its classifying space. As discussed in the previous section, BG is the direct limit of
finite-dimensional manifolds BGn concerning natural inclusions. We may thus consider the smooth
fundamental ∞-groupoid π∞BGn• of each BGn, and define the smooth fundamental ∞-groupoid
π∞BG• of BG to be the direct limit of these simplicial sets overall n. On the other hand, if BG is
regarded as a topological space with the direct limit topology, we may also consider the continuous
fundamental ∞-groupoid of BG, which we denote by πc

∞BG•. This is defined by setting πc
∞BGp to

be the set of continuous maps from the standard p-simplex ∆p to BG. By the universal property
of direct limits, there is a map of simplicial sets j• : π∞BG• → πc

∞BG•. The proof of the following
result uses an argument we learned from Neil Strickland’s answer to a question on MathOverflow
(see [30]).

Proposition 3.7. The map j• : π∞BG• → πc
∞BG• is a weak equivalence.

Proof. Let |π∞BG•| and |πc
∞BG•| be the geometric realisations of the simplicial sets π∞BG• and

πc
∞BG•, and let | j•| : |π∞BG•| → |πc

∞BG•| be the continuous map induced by j•. We must show that
| j•| is a weak homotopy equivalence. To this end, we consider the evaluation maps ev: |π∞BG•| →
BG and evc : |πc

∞BG•| → BG. Then clearly there is a commutative diagram

|π∞BG•|
| j•| //

ev $$

|πc
∞BG•|

evczz
BG.

We know that evc is a weak homotopy equivalence, therefore, it will be enough to show that ev is a
weak homotopy equivalence. For this let η : BG→|π∞BG•| be the natural map which sends x∈BG
to the equivalence class [σx,0], where σx is the zero simplex mapping to the point x. It is immediate
to check that ev ◦η = idBG. On the other hand, consider the map F : |π∞BG•|× [0,1]→ |π∞BG•|
defined for σ ∈ π∞BGp, t ∈ ∆p and λ ∈ [0,1] by

F([σ , t],λ ) = [σt,λ , t],

where σt,λ ∈ π∞BGp here is given by σt,λ (s) = σ((1− λ )s+ λ t). Then F is continuous and is
clearly a homotopy between idBG and η ◦ ev. This shows the desired assertion.

We also note the following general result by Holstein [7, Corollary 20].

Lemma 3.5. Let f• : K• → L• be a weak equivalence of simplicial sets. Then the pull-back functor
f ∗• : Rep∞(L•)→ Rep∞(K•) is a quasi-equivalence.

Combining this lemma with Proposition 3.7, we have the following.

Proposition 3.8. The pullback functor j∗• : Rep∞(π
c
∞BG•)→Rep∞(π∞BG•) is a quasi-equivalence.

We conclude that the DG category Rep∞(π∞BG•) can be thought of as the category of ∞-local
systems on BG. We will therefore abuse notation and write Loc∞(BG) instead of Rep∞(π∞BG•).
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3.2.3 Auxiliary lemmas

In this part, we prove several technical results that will be crucial in our arguments later on, but
the reader only interested in the main results might omit on the first reading. We use freely the
notation, terminology and definitions of §2.2.1, §2.2.4 and §3.1.

Let X be a smooth manifold and let (E,D) be an ∞-local system on X . We know already that D can
be expanded as

D = d∇ +α0 +α2 +α3 + · · · ,

where αk ∈Ωk(X ,End(E)1−k). Also, recall that α2
0 = 0. We will write H•(E) for the cohomology

of the graded vector bundle E with respect to α0. We also remark here that for a pair of objects
(E,D) and (E ′,D′) in Loc∞(X) a quasi-isomorphism from (E,D) to (E ′,D′) is precisely a closed
element of Ω

•(X ,Hom(E,E ′)) of degree 0 for which its homogeneous component of partial degree
0 is a quasi-isomorphism of cochain complexes. The following result is a direct translation of
Theorem 4.13 in [26].

Lemma 3.6. The complex H•(E) can be given the structure of a flat superconnection D such that
there is an isomorphism of ∞-local systems from (H•(E),D) onto (E,D). Moreover, there is a
spectral sequence with second page E

p,q
2 = Hp(X ,Hq(E)) and which converges to Hp+q(X ,E).

We consider the full DG subcategory Loc0
∞(X) of Loc∞(X) consisting of those ∞-local systems

(E,D) for which α0 = 0. The next result is an immediate consequence of the preceding lemma.

Lemma 3.7. The natural inclusion DG functor Loc0
∞(X)→ Loc∞(X) is a quasi-equivalence.

Next, let us make an observation that will be helpful later.

Lemma 3.8. Let (E,D) and (E ′,D′) be two ∞-local systems on X. Then the space of morphism
Ω
•(X ,Hom(E,E ′)) in the DG category Loc∞(X) carries a canonical decreasing filtration by par-

tial degree. This filtration induces a spectral sequence with second page Ep,q
2 =Hp(X ,Hq(Hom(E,E ′)))

and which converges to Hp+q(Ω•(X ,Hom(E,E ′))).

Proof. Explicitly, the filtration is

F p
Ω
•(X ,Hom(E,E ′)) =

⊕
k≥p

Ω
k(X ,Hom(E,E ′)).

The zeroth page of the spectral sequence is E
p,q
0 = Ωp(X ,Hom(E,E ′)q), where the differential

is precisely the one induced by the differential on Hom(E,E ′). Therefore the first page of the
spectral sequence is E

p,q
1 = Ωp(X ,Hq(Hom(E,E ′))), with first page differential given by the flat

connection induced on H•(Hom(E,E ′)). Thus, the second page of the spectral sequence becomes
E

p,q
2 = Hp(X ,Hq(Hom(E,E ′))).

We also wish to consider a canonical filtration of the DG category Loc∞(X). If m ∈ N, we let
FmLoc∞(X) be the full DG subcategory of Loc∞(X) consisting of ∞-local systems (E,D) for which
Ek = 0 for all k ∈ Z such that |k|> m. Then it is obvious that FmLoc∞(X)⊂ FnLoc∞(X) whenever
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m≤ n, and any object of Loc∞(X) is contained in some FmLoc∞(X). This means that Loc∞(X) is
an N-filtered DG category.

Now let Y be another smooth manifold and let f : X → Y be a smooth map. Consider the pull-
back DG functor f ∗ : Loc∞(Y ) → Loc∞(X). Then it can easily be seen that, for any m ∈ N,
f ∗(FmLoc∞(Y )) is a full DG subcategory of FmLoc∞(X). Thus f ∗ is an N-filtered DG functor.

For the following discussion, let us write R for both the trivial vector bundle X×R of rank one and
the constant ∞-local system (X ×R,d). Also, let (E,D) be an ∞-local system on X and let ξ be a
closed element of Ωk(X ,Hom(E,R)l−k) for some k ≥ 0 and some l ≥ 0. The extension of (E,D)

by ξ , which we denote by (E,D)oξ R, is the ∞-local system on X whose underlying graded vector
bundle is the direct sum E⊕R[1− l] and whose flat graded superconnection is Dξ = D+ξ .

Lemma 3.9. Let (E,D) and (E ′,D′) be two ∞-local systems on X and let Φ be a quasi-isomorphism
from (E,D) onto (E ′,D′). If ξ ′ is a closed element of Ωk(X ,Hom(E ′,R)l−k) for some k ≥ 1 and
some l ≥ 0, then Φ+ idR[1−l] defines a quasi-isomorphism from (E,D)oξ ′◦ΦR onto (E ′,D′)oξ ′R.

Proof. Since, by definition, Φ is an element of Ω
•(X ,Hom(E,E ′)) of degree 0, so is Φ+ idR[1−l]

viewed as an element of Ω
•(X ,Hom(E⊕R[1− l],E ′⊕R[1− l])). We must show that Φ+ idR[1−l]

commutes with the graded superconnections Dξ ′◦Φ and D′
ξ ′ . For this we simply compute:

D′
ξ ′ ◦ (Φ+ idR[1−l]) = (D′+ξ

′)◦ (Φ+ idR[1−l])

= D′ ◦Φ+ξ
′ ◦Φ

= Φ◦D+ξ
′ ◦Φ

= (Φ+ idR[1−l])◦ (D+ξ
′ ◦Φ)

= (Φ+ idR[1−l])◦Dξ ′◦Φ.

Finally, Φ+ idR[1−l] is a quasi-isomorphism because its homogeneous component of partial degree
0 is Φ0 + idR[1−l].

Lemma 3.10. Let (E,D) be an ∞-local system on X. If ξ is a closed element of Ωk(X ,Hom(E,R)l−k)

and η is an element of Ωk(X ,Hom(E,R)l−1−k) for some k ≥ 0 and some l ≥ 0, then idR[1−l]−η

defines a quasi-isomorphism from (E,D)oξ R onto (E,D)oξ+Dη R.

Proof. It is clear that idR[1−l]−η viewed as an element of Ω
•(X ,Hom(E⊕R[1− l],E ′⊕R[1− l]))

has degree 0. We need to check that idR[1−l]−η commutes with the graded superconnections Dξ

and Dξ+Dη . Again, we simply compute:

Dξ+Dη ◦ (idR[1−l]−η) = (D+ξ +Dη)◦ (idR[1−l]−η)

= D+ξ +Dη−D◦η

= D+ξ −η ◦D

= (idR[1−l]−η)◦ (D+ξ )

= (idR[1−l]−η)◦Dξ .
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Finally, notice that idR[1−l]−η is invertible with inverse idR[1−l]+η .

Let K• be a simplicial set and let (E,F•) be a representation up to homotopy of K•. In keeping with
the notation used above, we will write H•(E) to represent the cohomology of the graded vector
bundle E with respect to F0. We will also say that (E,F•) is normalized if each cochain Fp vanishes
on degenerate simplices. The following result is analogous to Lemma 3.8.

Lemma 3.11. Let (E,F•) and (E ′,F ′• ) be two normalized representations up to homotopy of K•.
Then the space of morphism Hom•((E,F•),(E ′,F ′• )) in the DG category Rep∞(K•) carries a de-
creasing filtration by cochain degree. This filtration induces a spectral sequence with second page
E

p,q
2 = Hp(K•,Hq(Hom(E,E ′))) and which converges to Hp+q(Hom•((E,F•),(E ′,F ′• ))).

Proof. The zeroth page of the spectral sequence E
p,q
0 is given by the space of singular p-cochains

on K• with values in Hom(E,E ′)q with the differential induced by that of Hom(E,E ′). Thus the first
page of the spectral sequence E

p,q
1 is the space p-cochains on K• with values in Hq(Hom(E,E ′)),

with the first page differential given by the induced one from H•(Hom(E,E ′)). Hence, the second
page of the spectral sequence is indeed E

p,q
2 = Hp(K•,Hq(Hom(E,E ′))).

Next we wish to consider a canonical filtration of Rep∞(K•), just as we did for the DG cate-
gory of ∞-local systems. Thus, if m ∈ N, we set FmRep∞(K•) to be the full DG subcategory of
Rep∞(K•) consisting of all representations up to homotopy (E,F•) for which Ek = 0 for all k ∈ Z
such that |k|> m. This turns Rep∞(K•) into an N-filtered DG category. Moreover, if L• is another
simplicial set and f• : K• → L• is a simplicial map, then, for any m ∈ N, the pullback DG functor
f ∗• : Rep∞(L•)→Rep∞(K•) sends FmRep∞(L•) to a full DG subcategory of FmRep∞(K•). In other
words, f ∗• is an N-filtered DG functor.

Before moving on, we introduce some terminology and notation regarding simplicial sets. Denoting
the usual category of finite ordinals by ∆∆∆, we obtain for each n≥ 0, a subcategory ∆∆∆≤n determined
by the objects [k] of ∆∆∆ with k ≤ n. A n-truncated simplicial set is a contravariant functor from ∆∆∆≤n

to the category of sets Set. We denote the category of simplicial sets by sSet and the category of n-
truncated simplicial sets by sSet≤n. Restriction gives a truncation functor trn : sSet→ sSet≤n which
admits a right adjoint coskn : sSet≤n→ sSet called the n-coskeleton functor. By abuse of language,
one refers to the composite functor Coskn = coskn ◦ trn also as the n-coskeleton functor. It can be
shown that, given an object K• in sSet, the unit of the adjunction ηK : K• → Coskn(K•) induces a
bijection on simplices of dimension k≤ n. Furthermore, if K• and L• are two objects in sSet which
in addition are Kan complexes, and f• : K• → L• is a morphism that induces an isomorphism in
homotopy groups up to degree k < n, then the morphism Coskn( f•) : Coskn(K•)→ Coskn(L•) is a
weak equivalence. For details of these constructions, we refer the reader to [31–33].

Lemma 3.12. Let K• and L• be simplicial sets and let f• : K• → L• be a simplicial map that induces
an isomorphism in homotopy groups up to degree 2m. Then the pullback functor f ∗• : Rep∞(L•)→
Rep∞(K•) induces a quasi-equivalence between FmRep∞(L•) and FmRep∞(K•).

Proof. The proof makes use of Kan’s fibrant replacement functor Ex∞ : sSet→ sSet (see for in-
stance §3 of [34]). There are natural maps νK : K• → Ex∞(K•) and νL : L• → Ex∞(L•) which are
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weak equivalences. Moreover, as the name suggests, Ex∞(K•) and Ex∞(L•) are Kan complexes.
Consider the following commutative diagram

K•
f• //

νK
��

L•
νL
��

Ex∞(K•)

ηEx∞(K)

��

Ex∞(L•)

ηEx∞(L)
��

Cosk2m+1(Ex∞(K•))
Cosk2m+1(Ex∞( f•)) // Cosk2m+1(Ex∞(L•)).

In order to show that f ∗• induces an equivalence on homotopy categories, it suffices to show
that the pullback functor associated to all the other maps in the diagram have the correspond-
ing property. Using Lemma 3.5, we observe that, being weak equivalences, the pullback func-
tors associated to νK and νL induce quasi-equivalences between Rep∞(Ex∞(K•)) and Rep∞(K•),
and between Rep∞(Ex∞(L•)) and Rep∞(L•), respectively. On the other hand, in view of our
previous remarks, we know that the maps ηEx∞(K) and ηEx∞(L) are bijections on simplices of di-
mension k ≤ 2m+1 and therefore their associated pullback functors induce equivalences between
the homotopy categories of FmRep∞(Cosk2m+1(Ex∞(K•))) and FmRep∞(Ex∞(K•)), and those of
FmRep∞(Cosk2m+1(Ex∞(L•))) and FmRep∞(Ex∞(L•)), respectively. Besides, by our hypothesis
on f•, the map Ex∞( f•) induces an isomorphism in homotopy groups up to degree 2m. One con-
cludes that Cosk2m+1(Ex∞( f•)) is a weak equivalence, using again Lemma 3.5, one concludes
that its associated pullback functor induces an equivalence between the homotopy categories of
FmRep∞(Cosk2m+1(Ex∞(K•))) and FmRep∞(Cosk2m+1(Ex∞(L•))). This completes the proof of
the lemma.

Now let G be a compact and simply connected Lie group with Lie algebra g. If V is a g-L∞ space,
we shall write H•(V ) for the cohomology of the graded vector space V concerning the zeroth
component of its corresponding Maurer-Cartan element αV . A result analogous to Lemmas 3.8 and
3.11 is as follows.

Lemma 3.13. Let V and V ′ be two objects in InfLoc∞(g). Then the space of morphisms (Wg⊗
Hom(V,V ′))bas carries a canonical decreasing filtration by the degree in the Weil algebra Wg. This
filtration induces a spectral sequence with second page Ep,q

2 =Hp((Wg)bas)⊗Hq(Hom(V,V ′)) and
which converges to Hp+q((Wg⊗Hom(V,V ′))bas).

Proof. The zeroth page of the spectral sequence is

E
p,q
0 = (Wpg⊗Hom(V,V ′)q)bas = (Sp/2g∗⊗Hom(V,V ′)q)inv,

where the differential is induced by Hom(V,V ′), since G is compact, we know that taking cohomol-
ogy commutes with taking invariants. Moreover, since V and V ′ are basic g-L∞-spaces, the action
of g on H•(Hom(V,V ′)) is trivial. Therefore,

E
p,q
1 = (Sp/2g∗)inv⊗Hq(Hom(V,V ′)) = Hp((Wg)bas)⊗Hq(Hom(V,V ′)).
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As for the first page differential, it vanishes for degree reasons. We therefore conclude that the
second page of the spectral sequence is Ep,q

2 = Hp((Wg)bas)⊗Hq(Hom(V,V ′)), as asserted.

It should also be apparent that, just as for the DG categories of ∞-local systems and representations
up to homotopy, there is a canonical filtration FmInfLoc∞(g) of InfLoc∞(g) consisting of all g-L∞

spaces V for which V k = 0 for all k ∈ Z such that |k| > m. This makes InfLoc∞(g) into a filtered
DG category.

There is one more result that will be useful as we go forward.

Lemma 3.14. Let G be a compact connected Lie group, π : P→ X be a principal G-bundle and θ

a connection on P. Then, for any pair of objects V and V ′ of InfLoc∞(g), the morphism of cochain
complexes

C Wθ : (Wg⊗Hom(V,V ′))bas −→Ω
•(X ,Hom(C Wθ (V ), C Wθ (V ′))),

determined by the Chern-Weil DG functor of P, is compatible with the filtrations described in
Lemmas 3.11 and 3.13, and induces a morphism of spectral sequences. Moreover, if X is simply
connected, this morphism is identified with the Chern-Weil homomorphism of P tensored with the
identity on H•(Hom(V,V ′)).

Proof. The first part follows immediately from the definition of the Chern-Weil DG functor of P.
To prove the second part, we note that, since G acts trivially on cohomology, the graded vector
bundle H•(Hom(C Wθ (V ), C Wθ (V ′))) is trivial, so if we look at the first pages of the associated
spectral sequences, we get the morphism

C Wθ : Hp((Wg)bas)⊗Hq(Hom(V,V ′))−→Ω
p(X ,Hq(Hom(V,V ′))),

and this is simply the tensor product of the characteristic homomorphism of P with the identity
on Hq(Hom(V,V ′)). Furthermore, by the hypothesis that X is simply connected, we have that the
graded vector bundle H•(Hom(C Wθ (V ), C Wθ (V ′))) is trivialized by the flat connection induced
on it so that the induced morphism between the second pages of the spectral sequences is

C Wθ : Hp((Wg)bas)⊗Hq(Hom(V,V ′))−→ Hp
DR(X)⊗Hq(Hom(V,V ′)),

and it is given by the tensor product of the Chern-Weil homomorphism of P with the identity on
Hq(Hom(V,V ′)), as claimed.

We close by mentioning that a construction analogous to that of an extension of an ∞-local system
can be carried out for basic g-L∞ spaces. Let us write R for the trivial representation of Tg. We
further let V be a basic g-L∞ space and γ be a closed element of (Wg⊗Hom(V,R))bas of degree l.
Then the extension of V by γ , denoted by V oγ R, is the basic g-L∞ space whose underlying graded
vector space is the direct sum V ⊕R[1− l] and whose corresponding Maurer-Cartan element is
αV + γ .
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3.2.4 The Weil A∞-functor for classifying spaces

This subsection proves an infinitesimal description of the ∞-local systems category on the classi-
fying space BG of a compact connected Lie group G with Lie algebra g. First, let us recall our
situation.

We consider a compact and simply connected Lie group G with Lie algebra g. For nonnegative
integers k ≤ n, we let π : Vk(Cn)→ BGn be the principal bundle with structure group G described
in §3.2.1. The canonical connection on Vk(Cn) constructed in Proposition 3.6 we denote simply
by ω in this discussion. We recall that it satisfies j∗ω = ω , where j : Vk(Cn)→ Vk(Cn+1) is the
natural inclusion. We also write ϕn : BGn → BG for the canonical map obtained from the direct
limit construction.

We will now proceed to construct the A∞-functor that connects the DG categories InfLoc∞(g)

and Loc∞(BG). By Theorem A, we know that for each n ≥ k, there is a Chern-Weil DG functor
C W(n)

ω : InfLoc∞(g)→ Loc∞(BGn). Because of the naturallity of the connection ω , these DG
functors fit into a commutative diagram

Loc∞(BGn) Loc∞(BGn+1)
i∗oo

InfLoc∞(g)
C W(n)

ω

gg

C W(n+1)
ω

66

where i : BGn→ BGn+1 is the natural inclusion. On the other hand, by the higher Riemann-Hilbert
correspondence, for each n, there is an integration A∞-functor I(n) : Loc∞(BGn)→Rep∞(π∞BGn•),
which is in addition an A∞-quasi-equivalence. By the naturality of the construction, all these A∞-
functors fit into the following commutative diagram:

Rep∞(π∞BGn•) Rep∞(π∞BGn+1•).
i∗•oo

Loc∞(BGn)

I(n)

OO

Loc∞(BGn+1)

I(n+1)

OO

i∗oo

For each n ≥ 0, we let W(n) : InfLoc∞(g)→ Rep∞(π∞BGn•) be the A∞-functor defined as the
composition

W(n) = I(n) ◦ C W(n)
ω .

It follows from the above discussion that these A∞-functors fit into a commutative diagram

Rep∞(π∞BGn•) Rep∞(π∞BGn+1•)
i∗•oo

InfLoc∞(g).
W(n)

hh

W(n+1)

55

Taking note of the definition of the DG category Loc∞(BG) := Rep∞(π∞BG) given at the end
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of §3.2.2, and recalling that, for each n ≥ 0, integrating an ∞-local system on BGn amounts to
assigning holonomies to smooth maps from the standard simplices to BGn, we deduce the existence
of an A∞-functor

W : InfLoc∞(g)−→ Loc∞(BG).

Our goal is to show that W is, in fact, an A∞-quasi-equivalence. The following two preliminary
results will clear our path.

Proposition 3.9. Let V and V ′ be two objects in FmInfLoc∞(g) and put N = 1
2(2k+ l+6m). Then,

for each n≥ N, the morphism of cochain complexes

C W(n)
ω : (Wg⊗Hom(V,V ′))bas −→Ω

•(BGn,Hom(C W(n)
ω (V ), C W(n)

ω (V ′)))

induces an isomorphism in cohomology up to degree l.

Proof. To start with, since n ≥ N, it follows that Vk(Cn) is 2(N− k)-connected, see for instance
[35] page 382. As a consequence, employing the long exact homotopy sequence, we deduce that the
canonical map ϕn : BGn→ BG induces an isomorphism in homotopy groups up to degree 2(N−k).
This in turn implies that the characteristic map cω : (Wg)bas→ Ω

•(BGn) induces an isomorphism
in cohomology up to degree 2(N − k). On the other hand, by virtue of Lemma 3.14, the mor-
phism of cochain complexes C W(n)

ω is compatible with the canonical decreasing filtrations on
(Wg⊗Hom(V,V ′))bas and Ω

•(BGn,Hom(C W(n)
ω (V ), C W(n)

ω (V ′))), and induces a morphism be-
tween the corresponding spectral sequences, whose rth pages we write respectively as E

p,q
r and

E
′p,q
r . Moreover, since BGn is simply connected, this morphism is identified with the Chern-Weil

homomorphism of Vk(Cn) tensored with the identity of H•(Hom(V,V ′)). These facts, together
with Lemmas 3.8 and 3.13, imply that the induced morphism between the second pages of the
spectral sequences

C W(n)
ω : Ep,q

2 −→ E
′p,q
2

is an isomorphism for all p ≤ 2(N − k). But, by our hypothesis on V and V ′, it results that
Hq(Hom(V,V ′)) = 0 if q + 2m < 0. Thus, the above induced morphism is an isomorphism if
p+q≤ 2(N− k)−2m. From this, by induction on r, we infer that the induced morphism between
the rth pages of the spectral sequences

C W(n)
ω : Ep,q

r −→ E′p,qr

is an isomorphism if p+q ≤ 2(N− k)−2m− r+2. In particular, if we take r = 4m+2, then the
induced morphism

C W(n)
ω : Ep,q

4m+2 −→ E
′p,q
4m+2

is an isomorphism if p+ q ≤ 2(N − k)− 6m = l. At the same time, under this assumption on
p+q, the rth page differentials vanish for all r ≥ 4m+2. We therefore conclude that the induced
morphism between the limiting spectral sequences

C W(n)
ω : Ep,q

∞ −→ E′p,q∞
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is an isomorphism if p+ q ≤ l. Appealing again to Lemmas 3.8 and 3.13, we get the desired
conclusion.

Proposition 3.10. Given m ≥ 0, there exists a sufficiently large integer n > 0 such that the corre-
sponding Chern-Weil DG funtor C W(n)

ω : InfLoc∞(g)→ Loc∞(BGn) induces a quasi essentially
surjective DG functor between FmInfLoc∞(g) and FmLoc∞(BGn).

Proof. Pick n sufficiently large so that Vk(Cn) is 2m-connected and BGn is simply connected. We
must show that for any object (E,D) of FmLoc∞(BGn), an object V of FmInfLoc∞(g) can be found
such that (E,D) is quasi-isomorphic to C W(n)

ω (V ). Thus, let us fix such an object (E,D). Notice
that, by Lemma 3.7, we may assume that (E,D) is in fact an object of FmLoc0

∞(BGn). Moreover,
since BGn is simply connected, we may further assume that (E,D) is trivialized over BGn, that
is to say, E = BGn×W for some graded vector space W =

⊕q
i=pW i with −m ≤ p ≤ q ≤ m, and

D = d +α for some Maurer-Cartan element α ∈ Ω
•(BGn,End(W )). We will therefore argue by

induction on the dimension of W . If this dimension is equal to 0, the result clearly holds. The
result also holds if p = q, since in this case (E,D) is isomorphic to the constant ∞-local system
(BGn×R,d). Suppose, then, that p < q and that the result is true for all objects of FmLoc0

∞(BGn)

arising from a graded vector space of dimension less than the dimension of W . Pick a nonzero
vector in W p and consider the one-dimensional subspace U spanned by this vector. We also fix
an inner product on W p and write U⊥ for the orthogonal complement of U in W p. Set W ′ =
U⊥⊕

(⊕q
i=p+1W i

)
so that W =U ⊕W ′. Then the Maurer-Cartan element α can be decomposed

as α = α ′+ ξ , where α ′ ∈ Ω
•(BGn,End(W ′)) and ξ ∈ Ω

•(BGn,Hom(W ′,U)) are homogeneous
elements of total degree 1. In terms of this decomposition, the Maurer-Cartan equation for α

becomes
0 = dα +α ∧α = dα

′+dξ +α
′∧α

′+ξ ∧α
′,

which can be decoupled into two independent equations

dα
′+α

′∧α
′ = 0,

dξ +ξ ∧α
′ = 0.

Hence, if we put E ′ = BGn×W ′ and D′ = d +α ′, the first of these equations implies that (E ′,D′)
defines an object of FmLoc∞(BGn). And since the dimension of W ′ is less than the dimension
of W , our induction hypothesis ensures the existence of an object V ′ of FmInfLoc∞(g) together
with a quasi-isomorphism Φ from C W(n)

θ
(V ′) onto (E ′,D′). In addition to this, it is clear from the

construction above that there is an isomorphism of ∞-local systems from (E,D) onto the central
extension (E ′,D′)oξ R. Therefore, by applying Lemma 3.10, we determine the existence of an

isomorphism of ∞-local systems from (E,D) onto C W(n)
ω (V ′)oξ◦ΦR. On the other hand, because

V ′ is an object of FmInfLoc∞(g), by virtue of Proposition 3.9, we know that, if n≥ 1
2(2k+1− p+

6m), the morphism of cochain complexes

C W(n)
ω : (Wg⊗Hom(V ′,R))bas −→Ω

•(BGn,Hom(C W(n)
ω (V ′),R))

induces an isomorphism in cohomology up to degree 1− p. This means, in particular, that we can
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find a closed element γ of (Wg⊗Hom(V ′,R))bas of degree 1 such that

C W(n)
ω (γ) = ξ ◦Φ+Dη ,

for some homogeneous element η of Ω
•(BGn,Hom(C W(n)

ω (V ′),R)) of degree 0. Therefore, com-
bining the foregoing with Lemma 3.9, we obtain an isomorphism of ∞-local systems from (E,D)

onto C W(n)
ω (V ′)o

C W(n)
ω (γ)

R. But it is not hard to check that C W(n)
ω (V ′)o

C W(n)
ω (γ)

R, as an object

of FmLoc∞(BGn), is isomorphic to C W(n)
ω (V ′oγ R), where V ′oγ R is the extension of V ′ by γ .

Hence the desired conclusion follows by taking V =V ′oγ R.

Now we can state and prove the general theorem we have been looking for.

Theorem B. Given a compact connected Lie group G, the A∞-functor

W : InfLoc∞(g)−→ Loc∞(BG)

is a A∞-quasi-equivalence. Moreover, for any principal G-bundle π : P→ X with connection θ

and classifying map f : X → BGn, there there exists an A∞-natural isomorphism between the A∞-
functors I◦ C Wθ and (ϕn ◦ f )∗• ◦ W from InfLoc∞(g) to Rep∞(π∞X•). Here I is the integration
A∞-functor provided by the higher Riemann-Hilbert correspondence, and ϕn is the canonical map
from BGn to BG.

Proof. We first prove that the functor A∞-functor W : InfLoc∞(g)→ Loc∞(BG) is A∞-quasi fully
faithful. Let V and V ′ two objects of InfLoc∞(g). By definition, we have to show that

W : (Wg⊗Hom(V,V ′))bas −→ Hom•(W(V ), W(V ′)),

is a quasi-isomorphism. Notice that this morphism is compatible with the canonical filtrations
on (Wg⊗Hom(V,V ′))bas and Hom•(W(V ), W(V ′)), and induces a morphism between their as-
sociated spectral sequences. It, therefore, suffices to verify that the induced morphism between
the second pages of the spectral sequences is an isomorphism. On the one hand, recall from
Lemma 3.13 that the second page of the spectral sequence associated with the canonical filtration
on (Wg⊗Hom(V,V ′))bas is

E
p,q
2 = Hp((Wg)bas)⊗Hq(Hom(V,V ′)).

On the other hand, Lemma 3.11 says that the second page of the spectral sequence associated with
the canonical filtration on Hom•(W(V ), W(V ′)) is

E
′p,q
2 = Hp(π∞BG•,Hq(W(V ), W(V ′))).

In addition, since BG is simply connected, the graded vector bundle H•(W(V ), W(V ′)) is trivial
with fiber H•(Hom(V,V ′)), from which it follows that

E
′p,q
2
∼= Hp(π∞BG•)⊗Hq(Hom(V,V ′)) = Hp(BG)⊗Hq(Hom(V,V ′)).
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Consequently, the induced morphism between the second pages of the spectral sequence is

W : Hp((Wg)bas)⊗Hq(Hom(V,V ′))−→ Hp(BG)⊗Hq(Hom(V,V ′)),

and it is given by the tensor product of the universal Weil homomorphism for BG with the identity
on Hq(Hom(V,V ′)). Since the former is an isomorphism, the desired assertion follows.

We next show that the A∞-functor W : InfLoc∞(g)→Loc∞(BG) is A∞-quasi essentially surjective.
Let us fix an object (E,F•) of Loc∞(BG). Then there exists a sufficiently large integer m > 0 such
that (E,F•) belongs to FmLoc∞(BG). Since Vk(Cn) is 2(n− k)-connected, from the long exact
homotopy sequence, we infer that, if 2m < 2(n− k), the canonical map ϕn : BGn → BG induces
an isomorphism in homotopy group up to degree 2m. Invoking Lemma 3.12, we conclude that the
pullback functor ϕ∗n• : Loc∞(BG)→Rep∞(π∞BGn•) induces an equivalence between the homotopy
categories of FmLoc∞(BG) and FmRep∞(π∞BGn•). On the other hand, by construction, we have
the following commutative diagram of A∞-functors

FmInfLoc∞(g)
W //

C W(n)
ω
��

FmLoc∞(BG)

ϕ∗n•
��

FmLoc∞(BGn)
I(n)

// FmRep∞(π∞BGn•)

where ϕ∗n• is the pullback DG functor along the induced simplicial map ϕn• : π∞BGn• → π∞BG•.
Thus, since I(n) is an A∞-quasi-equivalence, it will be enough to show that C W(n)

ω is a quasi-
essentially surjective. But, if n is sufficiently large, this is true by Proposition 3.10.

Finally, we prove the second assertion. To this end, we first notice that by the naturality of the
integration A∞-functors I(n) and I, the following diagram commutes

Loc∞(BGn)
f ∗ //

I(n)

��

Loc∞(X)

I
��

Rep∞(π∞BGn•)
f ∗• // Rep∞(π∞X•),

where f ∗• is the pullback DG functor along the induced simplicial map f• : π∞X• → π∞BGn•. Be-
sides, by the naturality of the connection ω , we get a commutative diagram

Loc∞(BGn)
f ∗ // Loc∞(X)

InfLoc∞(g).
C W(n)

ω

gg

C W f∗ω

77

Combining these last two with the above commutative diagram gives

(ϕn ◦ f )∗• ◦ W = f ∗• ◦ϕ
∗
n• ◦ W = f ∗• ◦I(n) ◦ C W(n)

ω = I◦ f ∗ ◦ C W(n)
ω = I◦ C W f ∗ω .
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On the other hand, according to Theorem A, there is an A∞-natural isomorphism between C Wθ

and C W f ∗ω . Since I is an A∞-quasi-equivalence, the desired conclusion now follows from
Lemma 2.2.



Chapter 4

Equivariant de Rham Theorem for ∞-local
systems

4.1 Infinitesimal ∞-local systems

Given a left G-manifold M and a principal bundle π : P→ X with structure group G, we consider
the orbit space (P×M)/G under the diagonal action given by

(p,m) ·g = (pg,g−1m).

The main topic of this section is to show that, given any connection θ on P there is a DG functor

Cθ : InfLoc∞(g,M)→ Loc∞((P×M)/G),

where InfLoc∞(g,M) is the DG category of basic g graded G-equivariant vector bundles. More-
over, we show that, given a different connection θ ′, the functors Cθ and Cθ ′ are related by an
A∞-natural isomorphism.

We start by defining the analogous of the infinitesimal version of the equivariant ∞-local system.
Let G be a connected Lie group with Lie algebra g. By a g graded G-equivariant vector bundle
we mean a graded G-equivariant vector bundle E =

⊕
k∈ZEk over a manifold M, with differential

δ E : Ek→ Ek+1 such that commutes with the Lie derivative LE
x : Γ(M,E)→ Γ(M,E),

[δ E ,LE
x ] = 0.

For each x ∈ g, we will write ix and Lx for the contraction and Lie derivative operators acting
on the Weil algebra Wg or the g-L∞ space Ω

•(M,E). Notice that Wg⊗Ω
•(M,E) acquires the

structure of a g-L∞ space with differential, contraction and Lie derivative operators dW ⊗1+1⊗δE ,
ix⊗1+1⊗ ix and Lx⊗1+1⊗Lx respectively, where δE , ix and Lx are the differential, contraction
and Lie derivative operators of Ω

•(M,E) given by dM ⊗ 1+ 1⊗ δ E , ix⊗ 1 and Lx⊗ 1+ 1⊗ LE
x ,

respectively. Thus, we may consider the basic subspace (Wg⊗Ω
•(M,E))bas.

From §3.1.1, we know that a g-L∞ space V determines and is determined by a Maurer-Cartan

77
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element of Wg⊗End(V ). Given a g graded G-equivariant vector bundle E, the corresponding g-L∞

space Ω
•(M,E) give us a Maurer-Cartan element of Wg⊗End(Ω•(M,E)), that we denoted by αE .

We shall say that E is basic if the following identities are satisfied

[αE , ix⊗1+1⊗ ix] = 1⊗1⊗LE
x ,

[αE ,Lx⊗1+1⊗Lx] = 0,

for all x ∈ g.

Lemma 4.1. Let E be a basic g graded G-equivariant vector bundle. The operator

D : Wg⊗Ω
•(M,E)→Wg⊗Ω

•(M,E)

defined by
D = dW⊗1⊗1+1⊗dM⊗1+1⊗1⊗δ

E +αE ,

defines a flat basic super connection on EG×E.

Proof. As αE is a Maurer-Cartan element of Wg⊗End(Ω•(M,E)), it follows that D2 = 0. We just
need to proof that D is basic. Fix an element η⊗ϕ⊗ξ in Wg⊗Ω

•(M,E). Then we have

D((Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )(η⊗ϕ⊗ξ ))

= (dW⊗1⊗1+1⊗dM⊗1+1⊗1⊗δ
E +αE)

(Lxη⊗ϕ⊗ξ +η⊗Lxϕ⊗ξ +η⊗ϕ⊗LE
x ξ )

= dW(Lxη)⊗ϕ⊗ξ +dWη⊗Lxϕ⊗ξ +dWη⊗ϕ⊗LE
x ξ

+(−1)|η |Lxη⊗dMϕ⊗ξ +(−1)|η |η⊗dM(Lxϕ)⊗ξ +(−1)|η |η⊗dMϕ⊗LE
x ξ

+(−1)|η |+|ϕ|Lxη⊗ϕ⊗δ
E

ξ +(−1)|η |+|ϕ|η⊗Lxϕ⊗δ
E

ξ +(−1)|η |+|ϕ|η⊗ϕ⊗δ
E(LE

x ξ )

+αE((Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )(η⊗ϕ⊗ξ )).

On the other hand,

(Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )

((dW⊗1⊗1+1⊗dM⊗1+1⊗1⊗δ
E +αE)(η⊗ϕ⊗ξ ))

= (Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )

(dWη⊗ϕ⊗ξ +(−1)|η |η⊗dMϕ⊗ξ +(−1)|η |+|ϕ|η⊗ϕ⊗δ
E

ξ +αE(η⊗ϕ⊗ξ )

= Lx(dWη)⊗ϕ⊗ξ +(−1)|η |Lxη⊗dMϕ⊗ξ +(−1)|η |+|ϕ|Lxη⊗ϕ⊗δ
E

ξ

+dWη⊗Lxϕ⊗ξ +(−1)|η |η⊗Lx(dMϕ)⊗ξ +(−1)|η |+|ϕ|η⊗Lxϕ⊗δ
E

ξ

+dWη⊗ϕ⊗LE
x ξ +(−1)|η |η⊗dMϕ⊗LE

x ξ +(−1)|η |+|ϕ|η⊗ϕ⊗LE
x (δ

E
ξ )

+(Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )(αE(η⊗ϕ⊗ξ )).
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Then

[D, Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x ](η⊗ϕ⊗ξ )

= [dW,Lx]η⊗ϕ⊗ξ +(−1)|η |η⊗ [dM,Lx]ϕ⊗ξ +(−1)|η |+|ϕ|η⊗ϕ⊗ [δ E ,LE
x ]ξ

+[αE ,Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x ](η⊗ϕ⊗ξ )

= 0.

Also,

D((ix⊗1⊗1+1⊗ ix⊗1)(η⊗ϕ⊗ξ ))

= (dW⊗1⊗1+1⊗dM⊗1+1⊗1⊗δ
E +αE)(ixη⊗ϕ⊗ξ +(−1)|η |η⊗ ixϕ⊗ξ )

= dW(ixη)⊗ϕ⊗ξ +(−1)|η |dWη⊗ ixϕ⊗ξ +(−1)|η |−1ixη⊗dMϕ⊗ξ +η⊗dM(ixϕ)⊗ξ

+(−1)|η |+|ϕ|−1ixη⊗ϕ⊗δ
E

ξ +(−1)|ϕ|−1
η⊗ ixϕ⊗δ

E
ξ+

+αE((ix⊗1⊗1+1⊗ ix⊗1)(η⊗ϕ⊗ξ )),

and

(ix⊗1⊗1+1⊗ ix⊗1)((dW⊗1⊗1+1⊗dM⊗1+1⊗1⊗δ
E +αE)(η⊗ϕ⊗ξ ))

= (ix⊗1⊗1+1⊗ ix⊗1)(dWη⊗ϕ⊗ξ +(−1)|η |η⊗dMϕ⊗ξ +(−1)|η |+|ϕ|η⊗ϕ⊗δ
E

ξ

+αE(η⊗ϕ⊗ξ ))

= ix(dWη)⊗ϕ⊗ξ +(−1)|η |ixη⊗dMϕ⊗ξ +(−1)|η |+|ϕ|ixη⊗ϕ⊗δ
E

ξ

+(−1)|η |+1dWη⊗ ixϕ⊗ξ +η⊗ ix(dMϕ)⊗ξ +(−1)|ϕ|η⊗ ixϕ⊗δ
E

ξ

+(ix⊗1⊗1+1⊗ ix⊗1)(αE(η⊗ϕ⊗ξ )).

Therefore,

[D,ix⊗1⊗1+1⊗ ix⊗1](η⊗ϕ⊗ξ )

= [dW, ix]η⊗ϕ⊗ξ +η⊗ [dM, ix]ϕ⊗ξ +αE((ix⊗1⊗1+1⊗ ix⊗1)(η⊗ϕ⊗ξ ))

= Lxη⊗ϕ⊗ξ +η⊗Lxϕ⊗ξ +[αE , ix⊗1⊗1+1⊗ ix⊗1](η⊗ϕ⊗ξ )

= Lxη⊗ϕ⊗ξ +η⊗Lxϕ⊗ξ +η⊗ϕ⊗LE
x ξ

= (Lx⊗1⊗1+1⊗Lx⊗1+1⊗1⊗LE
x )(η⊗ϕ⊗ξ ),

as desired.

By the previous result, the pair (EG×E,D) defines a basic ∞-local system on EG×M.

Let M be a G-manifold and let g be the Lie algebra of G. With the previous discussion, we can
define the DG category of infinitesimal ∞-local systems on M, denoted by InfLoc∞(g,M), by the
following data. The objects of this DG category are all basic g graded G-equivariant vector bundles
E → M. For any two basic g graded G-equivariant vector bundles E and E ′ with corresponding
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differentials DE and DE ′ , the space of morphisms is the graded vector space

(Wg⊗Ω
•(M,Hom(E,E ′)))bas,

with the differential ∂DE ,DE′ given by the formula

∂DE ,DE′ϕ = DE ′ ◦ϕ− (−1)k
ϕ ◦DE ,

for any homogeneous element ϕ of degree k.

Next, we have the main result of this section.

Theorem C. Let G be a Lie group and let π : P→ X be a principal bundle with structure group G.
Then, for any connection θ on P, there is a natural DG functor

Cθ : InfLoc∞(g,M)→ Loc∞((P×M)/G).

Moreover, for any two connections θ and θ ′ on P, there is an A∞-natural isomorphism between Cθ

and Cθ ′ .

Proof. Given a connection θ on P, this connection can be extended to a connection θ on P×M.
By Proposition 3.3 it is suffice to show that there is a natural DG functor

Cθ : InfLoc∞(g,M)→ [Loc∞(P×M)]bas.

Given a fixed connection θ on P×M, for each object E in InfLoc∞(g,M) consider the operator

Dθ : Ω
•(P)⊗Ω

•(M,E)→Ω
•(P)⊗Ω

•(M,E)

given by the formula

Dθ = dP⊗1⊗1+1⊗dM⊗1+1⊗1⊗δE +(cθ ⊗1)αE ,

where (cθ ⊗1)αE is a Maurer-Cartan element of (Ω•(P)⊗Ω
•(M,E))bas. Using the same argument

given in the proof of Lemma 4.1, we can show that Dθ defines a flat basic superconnection on
P×E, defining Cθ (E) to be the basic ∞-local system (P×E,Dθ ). By the same arguments as
Lemma 4.1, given a morphism ϕ ∈ (Wg⊗Ω

•(M,Hom(E,E ′)))bas, we get a cochain map

Cθ : (Wg⊗Ω
•(M,Hom(E,E ′)))bas→ (Ω•(P)⊗Ω

•(M,Hom(E,E ′)))bas,

with respect to both differentials ∂D,D′ and ∂Dθ ,D′θ
, concluding that Cθ is a DG functor.

Finally, given two connections θ and θ ′ on P×M, we have the interpolating connection θt =

θ + t(θ −θ ′), where θ0 = θ and θ1 = θ ′. We define Cθ = ι∗0 ◦ C
θ̂

and Cθ ′ = ι∗1 ◦ C
θ̂

, where

C
θ̂

: InfLoc∞(g,M)→ [Loc∞(P×M× [0,1])]bas,
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is the DG functor given by the connection θ̂ = pr∗1θt on P×M× [0,1], with pr1 : P×M× [0,1]→
P×M, and

ι
∗
t : Loc∞(P×M× [0,1])→ Loc∞(P×M),

is the pullback DG functor of the inclusion ιt : P×M→ P×M× [0,1] of height t. By virtue of
proposition 2.5, there exists an A∞-natural isomorphism between ι∗0 and ι∗1 . By restricting the latter
to the full DG subcategory of [Loc∞(P×M× [0,1])]bas consisting of objects of the form C

θ̂
(E)

with E an object of InfLoc∞(g,M), we obtain an A∞-natural isomorphism between

Cθ , Cθ ′ : InfLoc∞(g,M)→ [Loc∞(P×M)]bas

as wished.

Finally, notice that in the particular case of the previous result when M is a point, we get the
Chern-Weil DG functor C Wθ : InfLoc∞ g→ Loc∞(X).

Before going to the central result in the following section, we will summarize some results. The
first of these is the Weil-Cartan isomorphism for the complex Wg⊗Ω

•(M,E).

Lemma 4.2. Let G be a connected Lie group with Lie algebra g and let M be a G-manifold. There
is a graded-algebra isomorphism F : (Wg⊗Ω

•(M,E))hor→ S•g∗⊗Ω
•(M,E). This isomorphism

induce an isomorphism on the basic sub algebras F : (Wg⊗Ω
•(M,E))bas→ (S•g∗⊗Ω

•(M,E))inv.

Proof. Taking in account the same notation of §3.1.1, let ea be a basis for g, ta the dual basis for
g∗ in the exterior algebra Λ

•g∗, and wa the dual basis for g∗ in the symmetric algebra S•g∗. As
shorthand, we write

xA = xa1···ar ∈Ω
•(M,E)[w1, ...,wn],

ia = iea , La = Lea,

tA = ta1 · · · tar = ta1 ∧·· ·∧ tar .

Notice that
Wg⊗Ω

•(M,E) = Λ(t1, ..., tn)⊗Ω
•(M,E)[w1, ...,wn].

Thus, an element α of Wg⊗Ω
•(M,E) can be written as a linear combination of monomials

ta1 · · · tar , with 1≤ a1 < · · ·< ar ≤ n, with coefficients in Ω
•(M,E)[w1, ...,wn],

α = x+∑
A

tA⊗ xA, xA ∈Ω
•(M,E)[w1, ...,wn].

We define F : (Wg⊗Ω
•(M,E))hor→ S•g∗⊗Ω

•(M,E) as

α = x+∑
A

tA⊗ xA 7→ x.
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First, we will verify that F commutes with the Lie derivative La. So we have that

(F ◦La)(α) = F
(

La

(
x+∑

A
tA⊗ xA

))
= F

(
Lax+∑

A
(LatA)⊗ xA +∑

A
tA⊗LaxA

)
.

Since Latc = −∑b cc
abtb, each term of (LatA)⊗ xA is either 0 or has positive degree in the ta’s.

Therefore
(F ◦La)(α) = Lax = (La ◦F)(α).

This shows that if α is invariant, then F(α) is also invariant.

To prove that F is a graded-algebra isomorphism, let K = S•g∗⊗Ω
•(M,E) be the graded algebra

with ia = ia⊗1+1⊗ ia, where i2a = 0 for all a ∈ g. We define

Ha := 1− ta⊗ ia : Λ
•g∗⊗K→ Λ

•g∗⊗K

and

H = ∏Ha : Λ
•g∗⊗K→ Λ

•g∗⊗K.

Here the product ∏ is in the sense of composition of functions, so

H = H1 ◦H2 ◦ · ◦Hn

and ia acts by the diagonal action on Λ
•g∗⊗K. Let

J :=
⋂
a

ker ia = (Λ•g∗⊗K)hor

We show that H|K : K→ J is the map inverse to F . On the generators of Λ
•g∗, we have that

Ha(tb) = tb− ta⊗ ia(tb) = tb− ta
δab.

Therefore Ha(tb) is 0 if b = a and tb if b 6= a. In order to show that H|K is the map inverse to F , we
need the following results:

1. First we show that Ha is a ring map, hence H is a ring map.

Ha(xy) = xy− ta⊗ ia(xy)

= xy− ta⊗ ((iax)y+(−1)|x|x(iay))

= xy− (ta⊗ iax)y− x(ta⊗ iay).
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Ha(x)Hb(y) = (x− ta⊗ iax)(y− ta⊗ iay)

= xy− (ta⊗ iax)y− x(ta⊗ iay)+(ta⊗ iax)(ta⊗ iay).

These two expressions are equal since tata = 0.

2. On the other hand, let us see that HaHb = HbHa. Assume a 6= b. Then

HaHb = (1− ta⊗ ia)(1− tb⊗ ib)

= 1− ta⊗ ia− tb⊗ ib + ta⊗ ia(tb⊗ ib)

= 1− ta⊗ ia− tb⊗ ib− tatb⊗ iaib.

In the calculation above,

ta⊗ ia(tb⊗ ib) = ta⊗ (iatb)ib− tatb⊗ iaib
= 0− tatb⊗ iaib, since for a 6= b, iatb = δab = 0.

Inverting a and b leaves the expression 1− ta⊗ ia− tb⊗ ib− tatb⊗ iaib invariant, since

tbta =−tatb and ibia =−iaib.

Thus, HaHb = HbHa.

3. Next, we show that iaHa = 0, therefore im Ha ⊂ ker ia.

iaHa = ia(1− ta⊗ ia) = ia− (iata)⊗ ia = ia− ia = 0,

because iata = ta(ea) = 1 and i2a = 0. Thus, im Ha ⊂ ker ia. By (2), im H ⊂ im Ha ⊂ ker ia.
So im H ⊂ J := ∩a ker ia.

4. Also, notice that H|J = 1J . H|J = ∏(1−ta⊗ ia)|J = 1J , since ia|J = 0. Thus, H : Λ
•g∗⊗K→

J is surjective.

5. Finally, notice that Ha(ta) = 0 and H(K) = J. Notice that H vanishes on ta. Since H is a ring
map, it vanishes on the ideal (t1, ..., tn). By (4),

J = im H = H(Λ•g∗⊗K) = H(K).

Therefore H|K : K→ J is surjective onto J.

Since H(x) is of the form x+∑ tA⊗ xA, where x,xA ∈ K and tA⊗ xA has positive degree in the ta’s,
if H(x) = H(y), then x+∑ tA⊗ xA = y+∑ tA⊗ yA. By comparing terms of degree 0 in the ta’s, we
get x = y. Therefore H|K : K→ J is injective. By (5),

H|K : S•g∗⊗Ω
•(M,E)→ (Λ•g∗⊗S•g∗⊗Ω

•(M,E))hor = (Wg⊗Ω
•(M,E))hor
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is an isomorphism.

Let G be a compact and connected Lie group with Lie algebra g. If E is a g graded G-equivariant
vector bundle, we shall write H•(E) for the cohomology of the graded vector space E concerning
the zeroth component of its corresponding Maurer-Cartan element αE . The following result is
analogous to Lemma 3.13.

Lemma 4.3. Let E and E ′ be two objects in InfLoc∞(g,M). Then the space of morphisms (Wg⊗
Ω
•(M,Hom(E,E ′)))bas carries a canonical decreasing filtration by the degree in the Weil algebra

Wg and in the differential forms Ω
•(M). This filtration induces a spectral sequence with sec-

ond page E
p,q
2 = Hp((Wg⊗Ω

•(M))bas)⊗Hq(Hom(E,E ′)) and which converges to Hp+q((Wg⊗
Ω
•(M,Hom(E,E ′)))bas).

Proof. We only show the second part. By Lemma 4.2, the zeroth page of the spectral sequence is

E
p,q
0 = (Wrg⊗Ω

s(M,Hom(E,E ′)q))bas = (Sr/2g∗⊗Ω
s(M)⊗C∞(M) Hom(E,E ′)q)inv

with r+ s = p and differential induced by that of Hom(E,E ′). We know that taking cohomology
commutes with taking invariants by the compactness of G, and therefore

E
p,q
1 =

(
H•
(

Sr/2g∗⊗Ω
s(M)⊗C∞(M) Hom(E,E ′)q

))
inv

.

Since, the ring C∞(M) is semisimple, then the C∞(M)-modules Ω
•(M) and Hom(E,E ′) are pro-

jective, and hence that modules are flat. In that case, we have the Kunneth theorem, and therefore
using also the fact that the differential acts only on the last component, the first page of the spectral
sequence is

E
p,q
1 = (Sr/2g∗⊗Ω

s(M))inv⊗Hq(Hom(E,E ′)) = Hp((Wg⊗Ω
•(M))bas)⊗Hq(Hom(E,E ′)).

For degree reasons the first page differential vanishes, so we conclude that the second page of the
spectral sequence is Ep,q

2 = Hp((Wg⊗Ω
•(M))bas)⊗Hq(Hom(E,E ′)), as asserted.

Notice that, as for the DG category InfLoc∞(g) there is a canonical filtration, the DG category
InfLoc∞(g,M) has a canonical filtration F pInfLoc∞(g,M) consisting of all g graded G-equivariant
vector bundles E for which Ek = 0 for all k ∈ Z such that |k|> p.

The following result is similar to Lemma 3.14 and its proof runs along the same lines.

Lemma 4.4. Let G be a compact connected Lie group, π : P→ X be a principal G-bundle and
θ a connection on P. Then, for any pair of objects E and E ′ of InfLoc∞(g,M), the morphism of
cochain complexes

Cθ : (Wg⊗Ω
•(M,Hom(E,E ′)))bas −→Ω

•(X ,Ω•(M,Hom(Cθ (E), Cθ (E ′))))

determined by the Cartan’s DG functor of P, is compatible with the filtrations described in Lemmas
3.11 and 4.3, and induces a morphism of spectral sequences. Moreover, if X and M are simply
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connected, this morphism is identified with the Chern-Weil homomorphism of P tensored with the
identity on H•DR(M)⊗H•(Hom(E,E ′)).

4.2 Equivariant ∞-Local systems

We will now proceed to construct the A∞-functor that connects the DG categories InfLoc∞(g,M)

and Loc∞(MG), where the last DG category will be defined in the process. Let G be a Lie group,
given the principal G-bundle EGn → BGn and a left G-manifold M, by Proposition 2.7, the pro-
jection EGn×M→ (EGn×M)/G is a principal G-bundle. In addition, given a connection θ on
EGn, this connection can be extended naturally to EGn×M. Therefore, by Theorem C, we know
that for each n ≥ 0, there is a DG functor C(n)

θ
: InfLoc∞(g,M)→ Loc∞((EGn×M)/G). By

the higher Riemann-Hilbert correspondence 2.2.4, for each n, there is an A∞-quasi-equivalence
I(n) : Loc∞((EGn×M)/G)→ Rep∞(π∞((EGn×M)/G•)), and then by the naturality of the con-
struction, all these A∞-functors fit into the following commutative diagram:

Rep∞(π∞((EGn×M)/G•)) Rep∞(π∞((EGn+1×M)/G•)).
i∗•oo

Loc∞((EGn×M)/G)

I(n)

OO

Loc∞((EGn+1×M)/G)

I(n+1)

OO

i∗oo

InfLoc∞(g,M)
C(n)

θ

jj

C(n+1)
θ

44

where i : EGn → EGn+1 is the natural inclusion. Therefore, for each n ≥ 0, we define the A∞-
functor DR(n) : InfLoc∞(g,M)→ Rep∞(π∞((EGn×M)/G•)) as the composition

DR(n) = I(n) ◦ C(n)
θ

.

Notice that these A∞-functors fit into a commutative diagram

Rep∞(π∞((EGn×M)/G•)) Rep∞(π∞((EGn+1×M)/G•))
i∗•oo

InfLoc∞(g,M).
DR(n)

jj

DR(n+1)

44

Since for a compact connected Lie group G, the total space EG is the infinite Stiefel variety
Vk(C∞), for some integer k, then we can approximate EGn by Vk(Cn+k+1), for n sufficiently
large. Similarly, notice that the homotopy quotient MG = (EG×M)/G can be approximated
by MGn = (Vk(Cn+k+1)×M)/G. Therefore, taking note of the definition of the DG category
Loc∞(BG) given at the end of §3.2.2, using the same arguments for the previous approximation of
MG we define the DG category Loc∞(MG) by

Loc∞(MG) := Rep∞(π∞((EG×M)/G•))
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called the equivariant ∞-local systems of M, and recalling that, for each n ≥ 0, integrating an ∞-
local system on (EGn×M)/G• amounts to assigning holonomies to smooth maps from the standard
simplices to (EGn×M)/G•, we deduce the existence of an A∞-functor

DR : InfLoc∞(g,M)−→ Loc∞(MG),

that we will call the equivariant De Rham A∞-functor, our goal is to show that DR is, in fact,
an A∞-quasi-equivalence, the following two preliminary results will clear our path. From now, we
denote by MGn the space (EGn×M)/G.

Proposition 4.1. Let M be simply connected. Let E and E ′ be two objects in FmInfLoc∞(g,M)

and put N = 1
2(2k+ l +6m). Then, for each n≥ N, the morphism of cochain complexes

C(n)
θ

: (Wg⊗Ω
•(M,Hom(E,E ′)))bas −→Ω

•(MGn ,Ω
•(M,Hom(C(n)

θ
(E), C(n)

θ
(E ′))))

induces an isomorphism in cohomology up to degree l.

Proof. Following the same lines of reasoning as Proposition 3.9, we know that the characteristic
map cω : (Wg)bas→ Ω

•(BGn) induces an isomorphism in cohomology up to degree 2(N− k). On
the other hand, by virtue of Lemma 4.4, the morphism of cochain complexes C(n)

θ
is compatible

with the canonical decreasing filtrations on (Wg⊗Ω
•(M,Hom(E,E ′)))bas and

Ω
•(MGn,Ω

•(M,Hom(C(n)
θ
(E), C(n)

θ
(E ′)))),

and induces a morphism between the corresponding spectral sequences, whose rth pages we write
respectively as E

p,q
r and E

′p,q
r . Moreover, since MGn is simply connected, this morphism is iden-

tified with the Chern-Weil homomorphism of Vk(Cn) tensored with the identity of H•DR(M)⊗
H•(Hom(E,E ′)). Following the same lines of reasoning as in Proposition 3.9 together with Lem-
mas 3.8 and 4.3, we get the desired conclusion.

As in the case of ∞-local systems, the concept of central extension can be carried out for a g graded
G-equivariant vector bundles. Let us writeR for the trivial representation of Tg. We further let E be
a g graded G-equivariant vector bundle and γ be a closed element of (Wg⊗Ω

•(M,Hom(E,R)))bas

of degree p. Then the central extension of E by γ , denoted by Eoγ R, is the g graded G-equivariant
vector bundle whose underlying graded vector space is the direct sum E ⊕R[1− p] and whose
corresponding Maurer-Cartan element is αE + γ .

Proposition 4.2. Let M be simply connected G-manifold. Given m≥ 0, there exists a sufficiently
large integer n > 0 such that the corresponding Cartan’s DG funtor

C(n)
θ

: InfLoc∞(g,M)→ Loc∞(MGn)

induces a quasi essentially surjective DG functor between FmInfLoc∞(g,M) and FmLoc∞(MGn).

Proof. Using the fact that MGn is simply connected since M is simply connected, together with
Proposition 4.1, the result is obtained following the same arguments of Proposition 3.10.
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With all the previous results, we are prepared to state and prove the general theorem we have been
looking for, which is a generalization of the classical equivariant de Rham theorem 2.4.

Theorem D. Let M be simply connected G-manifold. Given a compact connected Lie group G, the
A∞-fuctor

DR : InfLoc∞(g,M)→ Loc∞(MG)

is an A∞-quasi-equivalence. In addition, for any principal G-bundle π : P→ X with connection θ

and classifying map f : P→ EGn, given a smooth G-manifold M simply connected, there exists an
A∞-natural isomorphism between the A∞-functors I◦ Cθ and (ϕn◦ f )∗• ◦DR from InfLoc∞(g,M)

to Rep∞(π∞((P×M)/G•). Here I is the integration A∞-functor provided by the higher Riemann-
Hilbert correspondence, and ϕn is the canonical map from EGn to EG.

Proof. Prove that the A∞-functor DR : InfLoc∞(g,M)→ Loc∞(MG) is A∞-quasi fully faithful, is
equivalent to show that

DR : (Wg⊗Ω
•(M,Hom(E,E ′)))bas −→ Hom•(DR(E),DR(E ′))

is a quasi-isomorphism, for E and E ′ two objects of InfLoc∞(g,M). This morphism is compatible
with the canonical filtrations on (Wg⊗Ω

•(M,Hom(E,E ′)))bas and Hom•(DR(E),DR(E ′)), and
induces a morphism between their associated spectral sequences.

From Lemma 4.3 and Lemma 3.11, we know that the second page of the spectral sequence associ-
ated with the canonical filtrations on (Wg⊗Ω

•(M,Hom(E,E ′)))bas and on Hom•(DR(E),DR(E ′))
are

E
p,q
2 = Hp((Wg⊗Ω

•(M))bas)⊗Hq(Hom(E,E ′)),

and
E
′p,q
2 = Hp(π∞((EG×M)/G•),Hq(DR(E),DR(E ′))),

respectively. Since MG is simply connected, then the graded vector bundle H•(DR(E),DR(E ′))
is trivial with fiber H•(Hom(E,E ′)), and then

E
′p,q
2
∼= Hp(π∞((EG×M)/G)•)⊗Hq(Hom(E,E ′)) = Hp(MG)⊗Hq(Hom(E,E ′)).

From which, we get the induced morphism between the second pages of the spectral sequence

DR : Hp((Wg⊗Ω
•(M))bas)⊗Hq(Hom(E,E ′))−→ Hp(MG)⊗Hq(Hom(E,E ′)),

and it is given by the tensor product of the equivariant De Rham isomorphism with the identity on
Hq(Hom(E,E ′)).

Using the same arguments as Theorem B and invoking Lemma 3.12, we get an equivalence between
the homotopy categories ϕ∗n• : FmLoc∞(MG)→ FmRep∞(π∞((EGn×M)/G•)), where ϕ∗n• is the
pullback DG functor along the induced simplicial map ϕn• : π∞((EGn ×M)/G•) → π∞((EG×
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M)/G•). In addition by construction, we have the following commutative diagram of A∞-functors

FmInfLoc∞(g,M)
DR //

C(n)
θ
��

FmLoc∞(MG)

ϕ∗n•
��

FmLoc∞((EGn×M)/G)
I(n)

// FmRep∞(π∞((EGn×M)/G•))

Thus, in order to show that the A∞-functor DR : InfLoc∞(g,M)→Loc∞(MG) is A∞-quasi-essentially
surjective, since I(n) is an A∞-quasi-equivalence, it will be enough to show that C(n)

θ
is a quasi-

essentially surjective. But, if n is sufficiently large, this is true by Proposition 4.2.

Finally, combining the commutative diagrams

Loc∞(EGn)
f ∗ // Loc∞(P)

InfLoc∞(g,M).
C(n)

θ

hh

C f∗θ

66
,

and

Loc∞(EGn)
f ∗ //

I(n)

��

Loc∞(P)

I
��

Rep∞(π∞EGn•)
( f •)∗ // Rep∞(π∞P•),

where ( f •)∗ is the pullback DG functor along the induced simplicial map f • : π∞P• → π∞EGn•, and
using the same calculation as Theorem B, we get the second assertion.
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[15] H. Cartan. Notions d’algèbre différentiel le; application aux groupes de Lie et aux variétés où opère un groupe de
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