
Multiagent Control of Autonomous
Vehicles in Presence of

Non-Cooperative Agents using Game
Theory

Nestor Ivan Ospina Gaitan

Universidad Nacional de Colombia

Engineering Faculty, Electronic and Electric Engineering Department.

Bogotá, Colombia

Año 2023

Multiagent Control of Autonomous
Vehicles in Presence of

Non-Cooperative Agents using Game
Theory

Nestor Ivan Ospina Gaitan

Thesis presented as partial requirement for apply to the tittle of:

Master in Industrial Automation

Advisor:

Ph.D. Eduardo Alirio Mojica Nava

Co-Advisor:

Ph.D. Duván Andrés Téllez Castro

Research Line:

Control and Robotics

Research Group:

PAAS - Processing, Acquisition and Analysis of Signals

Universidad Nacional de Colombia

Engineering Faculty, Electronic and Electric Engineering Department

Bogotá, Colombia

Año 2023

iii

Acknowledgements

I want to thank Professor Eduardo Alirio Mojica and Co-advisor Duván Andrés Téllez Castro

for their unconditional help all these years. To Professor Juan Calderon and Ing. Gustavo

Cardona for their knowledge, motivation, and support in achieving this goal. Finally, to my

mother and brother for always being emotional and unconditional support.

v

Titulo en español: Control multiagente de veh́ıculos autónomos en presencia de

agentes no cooperativos utilizando teoŕıa de juegos

Resumen

Esta tesis propone una solución al problema de la conducción autónoma de veh́ıculos en un

entorno vial, concretamente en presencia de veh́ıculos conducidos por agentes con decisiones

egóıstas y maniobras agresivas. El controlador trata de resolver el problema de optimiza-

ción basado en un Control Predictivo de Modelo (MPC). Aprovechando la técnica anterior

de predicción de trayectoria, el controlador la utiliza para predecir mejor la posición de los

vecinos y planificar su trayectoria. Además, el modelo predictivo puede resolver el problema

de control óptimo al cumplir con las restricciones de seguridad, evitar obstáculos y lograr su

objetivo principal.

El problema de control óptimo tiene restricciones no convexas debido a las variables en-

teras mixtas en las que se basa. Mediante la creación de MPC no lineales que puedan lidiar

con el problema de las variables h́ıbridas, se busca resolver el problema de conducción de

veh́ıculos frente a decisiones agresivas y no cooperativas para la red.

Además, todos los agentes del sistema pueden controlarse mediante la creación de con-

troladores locales basados en Teoŕıa de Juegos. Analizamos dos métodos para encontrar una

solución óptima: centralizado y descentralizado. El controlador más eficaz y viable se elige

después de una investigación objetiva y la comparación de todos los demás. Dado que el

MPC proporciona la mejor solución para toda la planta, se utiliza como punto de referencia.

El primer algoritmo descompuesto es MPC centralizado, en el que los subsistemas vecinos

entregan la información al nodo central, calculan las nuevas rutas y transmiten en cada

iteración del controlador por MPC. El segundo enfoque se basa en MPC descentralizado

distribuido óptimo. Los coches se basan en la teoŕıa del Juego de Potencial Generalizado

en ambos casos. Cada agente resuelve su problema secuencialmente y comparte su próximo

movimiento con los vecinos, buscando un equilibrio ϵ-Nash. Ambos conductores pueden cal-

cular su trayectoria de manera factible confiando en restricciones adicionales mientras evitan

otros veh́ıculos.

Los controladores distribuidos se evalúan en tres escenarios diferentes, utilizando tres crite-

rios: la eficiencia del controlador global, el tiempo que tarda cada controlador en encontrar

una respuesta y la viabilidad del controlador con el aumento de pasos que el controlador

debe predecir. El primer escenario da una idea del comportamiento del controlador frente a

vi

agentes con maniobras desconocidas; el segundo muestra el comportamiento del controlador

frente a mayores restricciones y conexiones con vecinos, y el tercero prueba el controlador

reduciendo sus variables ambientales.

Palabras clave: Teoria de juegos potenciales con enteros mixtos, control óptimo, control

predictivo de modelo, conducción autónoma, red descentralizada .

vii

Abstract

This thesis proposes a solution to the problem of autonomous vehicle driving in a road

environment, specifically in the presence of agent-driven vehicles with selfish decisions and

aggressive maneuvers. The controller tries to solve the optimization problem using a Model

Predictive Control(MPC). Taking advantage of the previous technique for trajectory predic-

tion, the controller uses this to better predict the neighbors’ position and plan its trajectory.

In addition, the predictive model can solve the Optimal Control Problem by complying with

security restrictions, avoiding obstacles, and achieving its primary objective.

The Optimal Control Problem has non-convex constraints due to its based on mixed-integer

variables. By creating non-linear MPC that can deal with the problem of hybrid variables,

it is sought to solve the problem of driving vehicles against aggressive and non-cooperative

decisions for the network.

Furthermore, all agents in the system can be controlled by creating local controllers ba-

sed on Game Theory. We analyzed two methods to find an optimal solution: centralized and

decentralized. The most effective and viable controller is chosen after objective research and

comparison of all others. Since the centralized MPC provides the best solution for the entire

plant, it is used as a benchmark. The first decomposed algorithm is centralized MPC, in

which the neighboring subsystems give the information to the central node, calculate the

new routes and transmit in each iteration of the MPC. The second approach is based on

optimal distributed decentralized MPC. The cars are based on the Generalized Potential

Game theory in both cases. Each agent solves its problem sequentially and shares its next

move with neighbors, looking for a ϵ-Nash equilibrium. Both drivers can feasibly calculate

their trajectory by relying on additional constraints while avoiding other vehicles.

Distributed controllers are evaluated in three different scenarios, using three criteria: the

efficiency of the global controller, the time it takes for each controller to find an answer, and

the feasibility of the controller with the increase in steps that the controller must predict.

The first scenario gives an idea of the controller’s behavior against agents with unknown

maneuvers; the second shows the controller’s behavior against increased constraints and

connections with neighbors, and the third tests the controller by reducing its environmental

variables.

Keywords: Generalized Mixed-Integer Potential Game, Optimal Control, Model Pre-

dictive Control, Autonomous Driving, Decentralized Network

Figure List

2-1. Social Network. 5

2-2. Graph of Network system. 6

2-3. Control and state signals, First iteration. 10

2-4. Control and state signals, Second iteration. 11

2-5. Strategy in economics environment. 13

3-1. Linear model’s variables. 22

3-2. Relative distance between agents. 23

3-3. Lateral Distance. 24

3-4. Example of lateral collision. 26

3-5. Non-linear model of a differential robot. 29

3-6. System Architecture. 32

4-1. Control architecture. 34

4-2. Control architecture. 42

4-3. Control architecture for decentralized scheme. 45

4-4. Mid-Level model. 47

4-5. Low-level model. 49

4-6. Illustration of the interaction between the hierarchical levels. 50

5-1. Unrestricted scenario. 51

5-2. Obstacle avoidance scenario. 52

5-3. Reduced lane scenario. 52

6-1. MPC Iteration = 0. Initial conditions. 55

6-2. MPC Iteration = 10. Vh 2,3,4,6 change lanes. 56

6-3. MPC Iteration = 30. The overall goal of the network is achieved. 57

6-4. Trajectories of the entire network during the simulation time. 58

6-5. Step time. 58

6-6. Computation time vs Horizon . 59

6-7. Computation time [s] vs Number of vehicles. 59

6-8. MPC Iteration = 0. 60

6-9. MPC Iteration = 10. 61

6-10. MPC Iteration = 30. 62

Figure List ix

6-11. Trajectories of the entire network during the simulation time. 63

6-12. Step Time. 63

6-13. Computation time vs Horizon . 64

6-14. Computation time [s] vs Number of vehicles. 64

6-15. MPC Iteration = 0. Lane reduction scenario. 66

6-16. MPC Iteration = 10. Lane reduction scenario. 67

6-17. MPC Iteration = 30. Lane reduction scenario. 68

6-18. Trajectories of the entire network during the simulation time. 69

6-19. Step Time. 69

6-20. Computation time vs Horizon . 70

6-21. Computation time [s] vs Number of vehicles. 70

A-1. Vehicles used in the implementation. 74

A-2. Implementation at iteration 0. 75

A-3. Implementation at iteration 10. 76

A-4. Implementation at iteration 30. 77

A-5. Implementation at iteration 0. 78

A-6. Implementation at iteration 10. 79

A-7. Implementation at iteration 40. 80

A-8. Implementation at iteration 0. 81

A-9. Implementation at iteration 10. 82

A-10. Implementation at iteration 40. 83

Content

Acknowledgements iv

Figure list viii

Table List ix

Symbol List xii

1. Introduction 1

1.1. Automated Driving . 2

1.2. Control Strategies . 3

1.2.1. Model Predictive Control . 3

1.3. Game Theory . 3

2. Mathematical Background 5

2.1. Graph Theory . 5

2.2. Model Predictive Control . 9

2.2.1. Dynamic Prediction Model . 9

2.2.2. Objective Function . 11

2.2.3. Constraints . 12

2.3. Game Theory . 13

2.3.1. Basic Concepts . 15

2.3.2. Nash Equilibrium . 17

2.3.3. Generalized Nash Equilibrium Problem 18

3. Problem Statement 20

3.1. Automated driving . 21

3.2. Vehicle Model . 21

3.2.1. Linear Model System . 22

3.2.2. Non-Linear Model System . 27

3.2.3. Robot Model . 29

3.3. Platform Design . 30

3.3.1. Robot Processing System . 30

3.3.2. Communication System . 30

3.3.3. Global Position System . 31

Content xi

3.3.4. Power System . 31

3.3.5. The Interconnect System . 31

4. Controller Architecture 33

4.0.1. High-Level Controller . 33

4.0.2. Mixed-Integer Linear Constraints . 35

4.0.3. Generalized Mixed-Integer Potential Games 39

4.0.4. Centralize MPC . 40

4.0.5. Decentralized MPC . 42

4.0.6. Solution Method . 45

4.1. Mid-Level control . 47

4.1.1. Overview . 47

4.2. Low-Level control . 49

5. Controller Evaluation 51

5.1. Testing Scenarios . 51

5.1.1. Unrestricted Highway Scenario . 51

5.1.2. Obstacle Avoidance Scenario . 52

5.1.3. Reduced Lane Scenario . 52

5.2. Evaluation Criteria . 52

5.2.1. Feasibility . 53

6. Simulation 54

6.1. Unrestricted Scenario . 55

6.2. Obstacle Avoidance Scenario . 60

6.2.1. Conclusion Obstacle Avoidance Scenario 64

6.3. Reduced Scenario . 65

6.3.1. Conclusion Reduced Scenario . 71

7. Conclusions and Recommendations 72

7.1. Conclusions . 72

7.2. Future Work . 73

A. Annex: Implementation Images 74

A.1. Unrestricted Scenario . 75

A.2. Obstacle Avoidance . 78

A.3. Reduced Scenario . 81

Bibliography 84

Symbol List

Symbol Item

ai Game theory i-th action profile

Ai Vehicles states matrix of agent i-th

A Overall strategies set

Ai Strategies set of i-th agent

ai Aceleration of the agent i

aij Graph adjacency matrix

Am Reference state matrix

Ad Adjacency matrix graph representation

bi Input vector

bm Reference input vector

C Cooperative agents set

C̃ Non-Cooperative agents set

ci Vehicles output vector

d Disagreement point

D∫ Safety Distance to avoid collition longitudinal

D↕ Safety Distance to avoid collition lateral

dij Distance between the i’th and j’th vehicle

D Degree matrix graph representation

E Set of graph communication edge

ei Difference between disagreement point and cost function discrete Bargaining game

Ei i-th agent ADMM constraints matrix

Fi i-th agent model predictive control objective function weights matrix

G Game definition

Content xiii

Symbol Item

Hp Prediction Horizon

Hi i-th agent model predictive control hessian matrix

i Agent or player

J Cost function for optimization problems

j Neighbor agent

k Steptime

kmi Adaptive constant related to reference state matrix

kri Adaptive constant related to reference input vector

kmij Adaptive constant related to neighbors state matrix

krij Adaptive constant related to neighbors input vector

L Bargaining game collective

Mi Game theory fitness function

M̂i Excess payoff of i-th player strategy

M̄i Average payoff of i-th player strategy

Ni Group of agents in the highway

Nu control horizon

P Riccati equation solution matrix

P Game Theory population set

Q Weight variable associated with the states of the system for optimization

Quu Weighting matrix inputs optimization problem

Quui Weighting matrix inputs optimization problem for i-th agent

Quux Weighting matrix input-state optimization problem

Qxui Weighting matrix input-state optimization problem for i-th agent

Qxx Weighting matrix states optimization problem

R Weight variable associated with the inpuit of the system for optimization

S Game decision space

T Prediction Horizon of MPC

uad Optimal modification auxiliary variable

ui i-th control action

Ui Utility functions set

xiv Content

Symbol Item

vi Velocity of agent i

V Set of graph nodes

W Weakly pareto optimal subset

W Weights graph representation

Z Total amount of lanes

zi Current lane of the agent i

zi,j Lane difference of agent i to agent j

1. Introduction

With the coming of the Industrial Revolution, human beings started to use new machines for

transport, like vehicles powered by combustion engines. These efficient and versatile machi-

nes made more accessible and faster the transportation of people, animals, and commodities.

However, more than 200 years have passed since constructing the first automobile powered

by a vapor engine. Due to the success of this new machine, it has undergone many modifi-

cations and upgrades to increase its efficiency, speed, and security. Nevertheless, the most

crucial change in those vehicles is their energy source. The first mobile vehicles were powered

by carbon, making the use of wood or carbon necessary to power the engine. It could be a

great engine, but the massive load and space needed to store this material make it ineffi-

cient and annoying in its use. Later, the combustion engine was created by Étienne Lenoir

around 1860. It uses fossil fuels like gasoline, natural gas, or diesel as a power source and

fossil oils for its lubrication and maintenance. However the electric vehicle was invented in

the 19th century, but its battery autonomy and energy capacity were inefficient. Eventually,

the capacity and efficiency of electric engines and batteries have grown, making them more

accessible, efficient, and powerful battery electric vehicles than internal combustion ones.

Finally, the electric vehicle is manufactured and marketed in mass production by companies

like Tesla, Chevrolet, and BMW.

The use of electric energy is versatile because it can be transported and manipulated without

significant losses; in addition, its weight is insignificant compared to oil and carbon. Besides,

it can be easily transformed into multiple other kinds of energies, such as cinematic, thermic,

mechanic, and electromagnetic. Due to this facility, electric energy is the best way to get,

keep and use in different applications. It is advantageous to use this kind of energy as a

source of power in a vehicle, which can be equipped with many power tools that make it an

electric machine with many features. One of the great qualities is the automation system,

which allows it to autonomously make acceleration, braking, and steering decisions [10]. It

makes a technological leap in safety and efficiency. Self-driving is very important because it

will make changes in the actual way of transportation. A car will not need a human driver to

go from one point to another. It means that an artificial driver will make decisions instead

of a human. As a result, the artificial driver will drive efficiently, safely, cooperatively, and

smartly. In conclusion, humanity will enjoy revolutionary transportation with the benefits of

a car but without the disadvantages of the unsafely and the brain load of making decisions

independently.

2 1 Introduction

The coming of electric vehicles into the world makes it possible to develop, build, and use

computer systems that let vehicles be driven autonomously without the supervision of a

human being, thus making human transportation safe, efficient, and optimal. However, the

advantage of 5G technology is that electric and autonomous vehicles can communicate with

others to achieve an individual goal cooperatively [11]. On the whole, self-driving currently

requires that vehicles cooperate, considering the presence of human drivers. The human dri-

ver performs unknown strategies that hinder interaction on the road and lead to unsafe or

inappropriate maneuvers. It is expected that autonomous driving will not need a human su-

pervisor for safe working in the future. Due to this reason, in this thesis, we model a human

driver as a selfish and non-cooperative agent who seeks their benefit. Simplifying autonomous

driving in a natural environment, we formulate an environment with autonomous agents that

share their physical variables (velocity, acceleration, lane number, and position) but ignore

the non-cooperative agent (human driver) strategy. We intend to solve this problem using a

novel method based on Nash equilibrium, which efficiently moves the cooperative agent to

a specific objective. It considers each of the different objectives and the different dynamics

of each agent. We also use “Mixed Integer” variables to change the behavior of each auto-

nomous agent in the presence of non-autonomous vehicles and ensure safety on the road.

Finally, we use a technique of control MPC to predict the states of each agent on the whole

network at a specific time in the future and decide the optimal strategy.

1.1. Automated Driving

Automated driving, also known as a self-driving car, is the action of a vehicle or machine

to move through an environment making the right decisions to achieve goal and objective

[41], [42]. Automated vehicles combine techniques and hardware tools to capture, process,

and control signals in their systems. Commonly, hardware tools allow it to sense the Envi-

ronment, e.g., GPS, LIDAR, radar, sonar, odometry, 3D vision, and cameras, among others.

Moreover, these vehicles can use multiple control hardware such as power systems, electric

engines, and actuators to interact with the environment [23], [21].

This technology has multiple applications in personal transportation, package delivery, Robo-

taxis, or platoons of connected vehicles transporting loads. It is worth mentioning that the

autonomous driving theory could be used in any other application that solves the problem of

driving through a place, avoiding collisions, and arriving somewhere. Some of those applica-

tions could be a waiter, a dispenser pills nurse, a coffee dispenser, a tool mechanic assistant,

among others [23],[40].

1.2 Control Strategies 3

1.2. Control Strategies

Autonomous driving is a challenging task to solve. Multiple solutions have been developed,

like artificial intelligence, adaptive control, machine learning algorithms, and non-linear con-

trol [1, 2]. As a result, new strategies make managing and controlling complex systems easier

with better accuracy and robustness than years before. Nevertheless, no one has an optimal

solution to this challenge [6].

The principal feature to consider to solve this challenge is the data environment. It could

give a controller enough information to achieve the desired position. Due to this, a suitable

control technique and a very well set of parameters are essential. The right strategy will

depend on what strategies are being used and when it could be better than any other. In

this thesis, the main focus is on control strategies of automated driving. We will explain some

control strategies for a specific job and how those are implemented in the specific problem

of automated driving.

1.2.1. Model Predictive Control

One of the most popular control theories implemented in non-linear systems is Model Predic-

tive Control (MPC). This control method used to optimize a cost function while satisfying

a set of constraints. In other words, MPC appears to be an optimal solution to predict fu-

ture states while applying constraints to achieve their primary objective. This optimization

requires advanced algorithms that solve quadratic problems with constraints [19].

In particular, MPC minimizes the value of a function representing the control problem’s

characteristics and objectives. Some could be power consumption, efficiency, precision, and

others. Furthermore, it is essential to obtain a dynamic model representing the entire sys-

tem’s behaviour. This model is the principal property needed for an MPC to do the control

task efficiently. Depending on the conditions and properties of the problem control, it is also

essential to implement some constraints that contain and restrain the entire system drop

under incorrect conditions [28].

1.3. Game Theory

Game theory is defined in [31] as “The study of mathematical models of conflict and coope-

ration between intelligent, rational decision-makers”. One way to analyze the control game

theory is in cooperative games, where Two or more players try to get the most benefit pos-

sible depending on neighbors’ decisions. Each agent has to take into account the action of

the others to make an optimal decision benefiting the whole group. The primary motivation

4 1 Introduction

of game theory is to achieve maximum profit to get close to or achieve the goal. Moreover, a

game theory is implemented from a cooperative perspective. There can be many agents with

the same objective function, and each cooperative agent must make the optimal decision

to achieve the global objective. Game theory is functional in environments with multiple

interacting controllers, and the decision of each one depends on the other.

2. Mathematical Background

Frequently multi-agent systems are modeled as a distributed optimization problem. Each

agent looks for an optimal solution to a specific task, and it could solve it with the coopera-

tion of its neighbors or without it. Indeed, it is essential to design and implement strategies

to manage communication and control the interconnect network optimally. This chapter

presents a brief explanation of different techniques used for this purpose. Some relate to

modeling, analyzing, and managing the entire network of agents. The control and commu-

nications techniques are shown in-depth in Chapter 4.

2.1. Graph Theory

A graph is defined as a mathematical and graphical representation of a network. Some of the

most common uses of graph representation are people’s social interaction in social networks,

interconnected networks of robots, servers connected to the internet, cellphones connected

to the telephone service, and much more, Fig. 2-1.

Fig. 2-1.: Social Network.

A graph G = (V , E ,W) consists of the joint of three fundamental parts. A set of vertices (or

nodes) V = {vo, v1, ...vn}, A set of edges (or links) E ⊆ V × V = {e1,2, e2,3, ..., ei,j}, and a

weight matrix W defined as:

6 2 Mathematical Background

W = Wi,j

 > 0 if(i; j) ∈ E ,

= 0 if(i; j) /∈ E .
(2-1)

Fig. 2-2.: Graph of Network system.

A set of vertices is a group of agents (or nodes) v = 1, ..., n, where each node is an information

source. It could be auto-generated or retransmitted by other nodes. In Fig. 2-2 the set of

vertices is V = {v1, v2, v3, v4, v5, v6, v7, v8, v9}. However, the edges (or links) are how the

information is shared. It could be directed or undirected depending on how the information

is transmitted if just a node can transmit or transmit-receive. In the previous example,

the set of edges is E = {e12, e13, e24, e34, e37, e45, e47, e49, e59, e68, e76, e78, e89}, and lastly the

weight matrix is an algebraic representation of the entire interconnected system. If exist a

connection between vertice i and j in the matrix, it will be 1; otherwise, it will be 0. In Fig.

2-2 the weight matrix is:

2.1 Graph Theory 7

W =



0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 0 1 0 0 1 0 0

0 1 1 0 1 0 1 0 1

0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1 0

0 0 1 1 0 1 0 1 0

0 0 0 0 0 1 1 0 1

0 0 0 1 1 0 0 1 0



The neighborhood of node vi is the set of nodes Ni ⊆ V that have a direct interaction with

agent i. This set of edges could be directed or undirected depending on their communication.

A graph G is connected if a connection exists between two or more nodes and there is a route

between all nodes in the set V . Finally, the set of nodes of a graph has a degree. It depends

on the number of neighbors of each node. If all graph nodes have the same degree, the graph

is called a regular graph.

A graph could be represented as a joint of multiple matrices. These matrices show information

about each node with the other.

Degree and Adjacency Matrix

The degree of a node vi is represented as d(vi), which is the name of the cardinality of a

node, and it represents the number of agents connected with node i. Therefore, the degree

matrix is a diagonal matrix with the degree values of each node:

∆(G) =


d(v1) 0 · · · 0

0 d(v2) · · · 0
...

...
. . .

...

0 0 · · · d(vn)

 (2-2)

In addition, an adjacency matrix exists where the relationship of each node with each other

is represented. Moreover, the adjacency matrix is defined as:

8 2 Mathematical Background

[Y (G)]ij =

1, if vivj ∈ E ,

0, Otherwise.
(2-3)

Incidence Matrix

There are directional or bidirectional graphics on its edges. If there is a graph with directed

edges, it is called a digraph D. Therefore, a digraph is described by its incidence matrix,

representing the orientation of each edge of the graph. With the previous information, it is

possible to analyze factors such as stability, network controllability, communication times,

and the sequence that the information follows to reach each agent. The incidence matrix is

defined as:

Iij(G) =


−1, if vi is the tail of vj,

1, if vi is the head of vj,

0, Otherwise.

(2-4)

A graph could also have weights in its connections, representing the importance of the neigh-

bour’s information on each node. If a graph has weighted edges, it is called a weight graph.

Consequently, in a weight graph, the adjacency matrix is built by the following definition:

Ad(G) =

ωij, if (vivj) ∈ E ,

0, Otherwise.
(2-5)

Laplacian

The Laplacian of a graph is another fundamental representation of a graph. The way of

representing the Laplacian of a graph G is by using the joint of adjacency and degree matrix

as follows:

L(G) = ∆(G)− Y (G) (2-6)

Laplacian matrix must be symmetric if it is a digraph or asymmetric otherwise.

2.2 Model Predictive Control 9

2.2. Model Predictive Control

The MPC is a control theory used to manage some variables optimally into a function looking

at a specific result. The main idea is to use a discrete model of the entire system to predict

future system states. With the capability of predicting future behaviours over a finite-time

prediction and control horizon Hu and Hp, depending on different inputs. It is possible to

optimize the input control to achieve an optimal solution. The process is to apply an optimal

input signal to the system and recalc the next optimal step. This process is repetitive, while

the system aims at the principal objective [3].

The first step measures the error of the actual and desired state and the amount of energy

implemented, as shown in Fig. 2-3. With this information, optimize the states error and

control input to achieve its objective Fig. 2-4. MPC benefits are achieving the main goal

while considering some constraints, the ease of design, simulation, and implementation in

different systems, and the powerful way to control linear and nonlinear systems. This section

describes the mathematical theory of an MPC and its applications in the described scenario.

2.2.1. Dynamic Prediction Model

Considering a discrete model system (2-7) and the observably output model (2-8), where

x(t) ∈ Rn represents the state values at time t, the u(t) ∈ Rm variable as the discrete control

input signal at the time t. The output is represented as y(t) ∈ Rp.

x(t+ 1) = f(x(t), u(t)), (2-7)

y(t) = g(x(t), u(t)). (2-8)

The dynamic Equation 2-7 express the evolution of the states f : Rn × Rm → Rn over the

horizon Hu and the output function shows the behavior g : Rn ×Rm → Rp over the horizon

Hp. In order to reduce computation load and time delays, a linearized prediction model can

be set up using the state evolution in 2-15. This thesis document linearized some convex

models; however, all dynamic models will be explained in-depth in the next chapter. While

the controller works, this linearization is processed in each iteration around the actual states.

Hence, a matrix E is added to the state matrix A and input matrix B. Future states are

predicted using the following iterative substitution:

10 2 Mathematical Background

x(t+ 1) = Ax(t) +Bu(t) + E (2-9)

x(t+ 2) = Ax(t+ 1) +Bu(t+ 1) + E (2-10)

= A2x(t) + ABu(t) + AE +Bu(t+ 1) + E (2-11)

... (2-12)

x(t+Hu) = AHux(t) + AHu−1Bu(t) + · · ·+Bu(t+Hu − 1) + AHu−1E + · · ·+ E (2-13)

... (2-14)

x(t+Hp) = AHpx(t) + AHp−1Bu(t) + · · ·+Bu(t+Hp − 1) + AHp−1E + · · ·+ E (2-15)

The resulting system is represented by matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n and

E(t) ∈ Rn after linearization. The previous predicted linear model is used when the dynamic

model, constraints, and objective function are nonlinear and the computing system has low

resources. If this linearization is avoided, the calculation could be slower, and the control

system could be unstable.

Fig. 2-3.: Control and state signals, First iteration.

2.2 Model Predictive Control 11

Fig. 2-4.: Control and state signals, Second iteration.

2.2.2. Objective Function

The objective function is the principal function representing the controller’s aim that needs

to be achieved. This function is also called the cost function. Generally, it is divided into

two parts: the Running cost and Terminal costs. The running cost penalizes the difference

between the actual and desired states and control inputs. It allows for tracking a reference and

optimizing the consumption of energy. The latter penalizes the weighted difference between

the final predicted and the final reference step x̃(Hp). The objective function is defined as:

Vi(x̃, ũ) =

Hp−1∑
k=1

x̃(k)TQix̃(k) +
Hu−1∑
k=1

ũ(k)TRiũ(k)︸ ︷︷ ︸
Running cost

+ x̃(Hp)
TPx̃(Hp)︸ ︷︷ ︸

Terminal cost

. (2-16)

Using 2-15 and replacing in 2-16, the objective function is now:

V (x, u) = xTQx+ uTRu. (2-17)

The terminal cost is augmented in the running cost using the subsequent definitions. The

weight matrix Q is represented using Q̃ = diag(Q1, · · · , QHp−1, P), and Qi, P ∈ Rn×n and

R ∈ Rm. The evolution of the states over the horizon Hp and Hu are denoted by the matrices

x̃ and ũ as follows:

12 2 Mathematical Background

x̃ =


x(1)− xref(1)

x(2)− xref(2)
...

x(Hp)−Xref (Hp)

 , ũ =


u(1)− uref(1)

u(2)− uref(2)
...

u(Hu)− uref (Hu)

 . (2-18)

If the MPC objective function is linearized, the number of variables to optimize will decrease,

redefining 2-17. This function only will depend on the control input variables. It will convert

the convex function into a Quadratic Problem (QP), where the variable to optimize is the

sequence of the predicted inputs. The optimization problems become as:

mı́nUHu
J

s.t. Au ≤ b.
:=

mı́nUHu

1
2
uTHu

PuHu = 1
2
QuHu + r0

s.t. AuHu ≤ b.
. (2-19)

Each term in 2-19 is defines as follows:

uHu =


u(1)

u(2)
...

u(Hu − 1)

 , P = ST ÃS +R, q =
[
x(k)T x̃THp

ũHu

]
ST Q̃T

QS

R

 , (2-20)

T and S are denoted by:

T =



I

A

A2

...

AN


, S =



0 0 · · · · · · · · · 0

B
. . .

AB
.

AB
...

. 0

AN−1B · · · A2B AB B 0


. (2-21)

2.2.3. Constraints

One of the advantages of MPC is the good handly management of constraints. The following

are the benefits of the use of an MPC controller with constraints

2.3 Game Theory 13

States, inputs, and dynamic model systems can implement constraints ensuring safety

control.

The use of constraints can guarantee stability and robustness to the whole system.

The MPC design could restrict the control input to ensure physical limitations on

actuators. However, the output or the system also could be constrained to represent a

limitation on the agent.

The input, state, and output variables are constrained, limiting the workspace across their

prediction horizon. On the whole, constraints results are represented as:

x(t+ k) ∈ X ⊆ Rn, k = 1, · · · , Hp, (2-22)

y(t+ k) ∈ Y ⊆ Rp, k = 1, · · · , Hp, (2-23)

u(t+ k) ∈ U ⊆ Rm, k = 0, · · · , Hu − 1. (2-24)

2.3. Game Theory

Fig. 2-5.: Strategy in economics environment.

Game theory is a mathematical method commonly used to analyze and achieve the best

decision in a multi-agent environment. It is highly used in cooperative or competitive games.

Nobel price John Nash originates it in [33, 32], which establishes the basis of this novel theory.

14 2 Mathematical Background

Nash developed the theory to be implemented in social sciences and economics fields. The

general idea in economics is to make decisions in a market, considering that the other agents’

decisions can affect the price of some commodity. A company or agent has to take action to

achieve the desired goal Fig. 2-5. Eventually, this theory has been proven in engineering,

computer science, philosophy, and many other fields [31], [24], [43].

From the control theory perspective, it is possible to interpret game theory law as a sort of

“intelligent, rational decision-maker”[27]. In other words, game theory is the study of conflict

and cooperation between interacting controllers, where success depends on the agents, the

preferences, and the settings.

One set is a zero-sum game, where more than one player exists, and the profit of one player

is to the detriment of the other. That is, the sum of the profits is zero. It is common to use

this setting where the game has limited resources and the objective of each agent is the same.

Another setting is team games. In this setting, a group of agents looks for a cooperative

strategy to achieve the global objective. This kind of game’s architecture is commonly de-

centralized, and each agent has the same goal.

The third setting is where agents do not work cooperatively. Each agent tries to achieve

a local objective in an environment depending on the neighbors’ decisions, but each has a

different objective. This kind of setting is usually decentralized and non-cooperative.

This section gives a simple example of a discrete matrix game before explaining the elements

of a game theory in a continuous space. Finally, it is explained the third set of potential

games specifically. All information explained in this section is obtained from [15], [16], [17],

[25], [26], [43].

The discrete matrix form is the most simple and powerful representation of the perspective

and profit of each agent. A game written in matrix form shows all possible decisions of an

agent and its corresponding utility or cost. Next is explaining one of the most famous exam-

ples of matrix games.

2.3 Game Theory 15

Example 2.3.1 (Game Theory: Prisoner’s dilemma) Two criminal of a gang has been

arrested and imprisoned. Each prisoner is in a separate room, and no one knows about his

couple. Police admit they do not have enough evidence to sentence these criminals to jail.

They plan an strategy to get one of them to give enough information to solve the case. The

strategy is to inform them that both will be sentenced to a year in prison for the lesser charge.

Simultaneously, the police offer each prisoner a bargain. If one testifies against his partner,

he will go free, while the other will spend three years in prison on the main charge. However,

if both prisoners testify against each other, both will be sentenced to two years of prison.

Each criminal (agent) has to make a decision depending on the possible decision of the other

one. In matrix form, the prisoner’s dilemma game is:

B refuses deal B testify against his pair

A refuses deal 1 year, 1 year 3 years, 0 years

A testify against his pair 0 years, 3 years 2 years, 2 years

In the previous example, it is clear that the action of each prisoner would depend on the

decision of the other prisoner. In a game, each agent looks at its self-interest. by this, a

set of interconnected agents with knowledge of other’s decisions, and its self-profit for each

possible decision, can make optimal decisions to look at its interest. Game theory helps to

formulate this kind of problem mathematically.

2.3.1. Basic Concepts

We begin with a basic overview of game theory. Currently exist many texts explaining this

in-depth, including economics ([31], [18], [36]), computer science ([9], [25], [34]), and engi-

neering ([39], [4], [22]).

Game elements

Three elements fundamentally define a game. First is the set of players, P . Due to the

purpose of this thesis work, we limit the discussion to a finite set of players, i.e.,

P = {1, 2, ..., N} .

Second, for each player p ∈ P there is a set of strategy, Sp. The strategy set is

S = S1 × ...× Sp,

16 2 Mathematical Background

a joint strategy set s ∈ S is represented as

s = (s1, s2, ..., sp).

Also, the notation s−p denotes the set of strategies of players P\p, i.e., players other than

player p. Finally, for each player p ∈ P , there is a utility function

up : S → R.

This function expresses the player’s preferences over the strategies. For any two joint stra-

tegies, s, ś ∈ S, player p prefers s to ś if and only if

up(s) > up(ś).

In utility functions, bigger number is better. In case of up(s) = up(ś), the player p will be

indifferent between which strategy to choose. The vector utility function is denoted by

u, i.e.,

u = (u1, u2, ..., up) : S → RP .

Sometimes, it is better to express a game in terms of cost functions rather than utility

functions. In this case, a small number of the cost function is better. For each player p ∈ P ,

there is a cost function

cp : S → R

and player p will prefer the joint strategy s over ś if and only if,

cp(s) < cp(ś).

A general game can be represented by an optimization problems:

∀i ∈ P = {1, 2, ..., N} , mı́n
si∈Si

cp(si, s−i).

Where the solution to this optimization problem (OP) is called Nash Equilibrium (NE). We

will look at games from each agent’s point of view to get more knowledge of Nash equilibrium

problems. If an agent has information about the other agents’ strategy, his problem becomes

simple. Specifically, he would have to solve a problem of a unique agent, where the main

task is to choose the best action to get the best utility or minimum cost. However, if agents

−i were to commit to playing s−1, the agent i would face the problem of choosing the best

response depending on the possible decision of the other agents.

2.3 Game Theory 17

Best Response

The best response of the player i to the set of strategy s−i is a mixed strategy x∗i such as

cp(s
∗
i , s−i) < cp(si, s−i),

for all strategies si ∈ S.

Looking at the example of the prisoner dilemma. Suppose one prisoner knows that the other

prisoner will refuse the deal. His best response is turning state’s evidence. The best response

is not unique, and it is not a solution concept. However, it helps to understand arguably

the most crucial notion in game theory, the Nash equilibrium. The best response function

BRp : S−p → 2Sp is defined by

BRp(s−p) : {sp ∈ Sp : up(sp, s−p) ≥ up(śp, s−p) for all śp ∈ Sp} .

BRp(S−p) is the set of strategies where the maximum utility of the player p in response to

the other strategies s−p is achieved. Note that it does not need to be unique and could have

multiple best responses.

2.3.2. Nash Equilibrium

At Nash equilibrium, each player’s strategy is optimal concerning the other players’ strate-

gies. In other words, the set of strategies (s∗1, s
∗
1, ..., s

∗
P) ∈ S is a Nash equilibrium, if for each

p exist a strategy that accomplish

s∗p ∈ BRp(s
∗
−p)

Example 2.3.2 (Nash equilibrium) Two players in a game have one decision variable

(x, y) respectively; that means n1 = n2 = 1. Each decision variable x ∈ R and y ∈ R denote

the player’s strategies. The game problem is represented as

mı́ny y2 + xy mı́nx (y − x)2

s.t. : −1 ≤ y ≤ 1 s.t. : 0 ≤ x ≤ 1
, (2-25)

solving this optimization problem we get the optimal solution:

S1(x) =


1 : x < −2

−x/2 : −2 ≤ x ≤ 2

−1 : x > 2

, S2(y) =


0 : y < 0

y : 0 ≤ y ≤ 1

1 : y > 1

. (2-26)

18 2 Mathematical Background

We can check that exist a unique fixed point of the map S1 ×S2. In words, a pair (x, y) such

that x = S1(y) and y = S2(x) is (0, 0) which is the Nash Equilibrium of the above game.

A Nash Equilibrium is a stable strategy where any agent is interested in changing its strategy

due to it is the best to implement.

In some implementations, the change of strategy could represent a slight change in the cost

function. Due to this, players might not change their strategy to the best response, holding

in the actual profit. This concept allows to introduce of the idea of an ϵ-NE.

ϵ-Nash Equilibrium

Another concept is that players might not care about changing their strategies to a better

one when the amount of utility they could gain is larger than the actual one.

Definition 2.3.1 (ϵ-Nash Equilibrium) Fix ϵ > 0. A strategy profile s = (s1, ..., sn) is an

ϵ-Nash equilibrium if, for all agents i and for all strategies śi ̸= si , ui(si, s−i) ≥ ui(śi, s−i)−ϵ.

This concept has attractive properties. Due to the previous definition, ϵ-Nash always exists.

Note that, every Nash equilibrium is inside a ϵ-Nash equilibrium region for any ϵ > 0. The

argument that agents are indifferent to small gains is attractive and helpful. Computatio-

nally, a better and optimal solution is to search for a ϵ-Nash equilibrium in a finite set of

mixed-strategies space rather in an infinite continuous space. Usually, an algorithm starts

with common ϵ and continuously adapts the parameter to smaller values until they find

an acceptable ϵ-Nash equilibrium. However, ϵ-Nash equilibrium has some difficulties, one of

these is a Nash equilibrium is always surrounded by ϵ-Nash equilibrium, but the opposite is

not true. In words, a given Nash equilibrium can not be close to any Nash equilibrium. [25]

2.3.3. Generalized Nash Equilibrium Problem

The Generalized Nash Equilibrium Problem (GNEP) concept is an extention of the clasi-

cal nash equilibrium. The GNEP assums that each player in a game P has a finite set of

estrategies, but this set depends on the others player’s strategies.

Definition 2.3.2 (Generalized Nash Equilibrium Problem) If an agent’s feasible set

of strategies depends on the other player’s strategies, it is defined as Xi(xi) ⊆ Rni. Given

the other player’s strategies set, the objective of player i is to solve the main problem 2-27,

choosing an optimal strategy xi to minimize it.

mı́nxi∈Xi(x̄−i) Vi(xi, x−i)

s.t. xi ∈ Xi(x−i).
(2-27)

2.3 Game Theory 19

A collective strategy X̄ is called GNE if ∀i, exist a xi that solves the next minimization

problem, i,e,:

Vv(x̄i, x̄−i) ≤ Vv(yi, x̄−i), ∀yi ∈ Xi(x̄−i), ∀i ∈ V . (2-28)

A generalized Nash Equilibrium (GNE) is a point x̄ where each player can not decrease his

objective function by changing unilaterally x̄i unless the other player shifts their strategies.

An example of a GNEP is the following.

Example 2.3.3 (Generalized Nash Equilibrium) There is a game with presence of two

players. Each player can control one variable. The optimization problem for each players is:

mı́nx1

(
x2 − 1

2

)2
mı́nx2 (x2 − 1)

2

s.t. x1 + x2 ≤ 1 s.t. x1 + x2 ≤ 1
. (2-29)

The optimal solution of the above problem is:

S1(x
2) =

 1
2
, if x2 ≤ 1

2

1− x1, if x2 ≥ 1
2

and S2(x
1) =

 1, if x1 ≤ 0

1− x1, if x1 ≥ 0
. (2-30)

Note that the problem has infinite solutions. It is easy to check that the solution of this

problem is a generalized Nash Equilibrium given by (α, 1− α), ∀α ∈ [1
2
, 1]. Finally, Gene-

ralized Potential game (GPG) as an instance of the GNEP class. In a GNEP, all players are

minimizing the same function and where the feasible set is the product space R, [[17], [38]].

Definition 2.3.3 (Generalized Potential Game) a GNEP is a generalized potential ga-

me if exist two main conditions;

Exist a continuous function P (x) : Rn → R such that for all xi, for all i and for all

yi, zi ∈ Xi(x−i),

Vi(yi, x−i)− Vi(zi, x−i) > 0, (2-31)

implies

P (yi, x−i)− P (zi, x−i) ≥ σ(Vi(yi, x−i)− Vi(zi, x−i)). (2-32)

let σ : R+ → R+ be a forcing function ĺımk→∞ σ(tk) = 0 ⇒ ĺımk→∞ tk = 0.

Exist a closet and nonempty set X ⊆ Rn such that, for all i = 1, ..., N , exist a function

Xi(x−i) ≡ {xi ∈ Xi : (xi, x−i)} , (2-33)

where X ⊆ Rni are closed and nonempty set such that
∏N

i=1Xi ∩ X ̸= ∅.

3. Problem Statement

From the beginning of civilization, humans have been looking to transport from one place to

another more efficiently than walking. First, they started with horses and floats, but horses

had a brain and could make their own decisions; sometimes, those decisions were based on

an emotional reaction rather than intelligent choices. Moreover, it could not continuously

work for a long duty cycle, and its power was limited. Later in 1769, Nicolas-Joseph Cugnot

invented the first steam-powered vehicle. This incredible machine could load an extended

weight, and drivers could make their own driving decisions. Until now, this transportation

system is still working, unless the advantage of efficiency, power consumption, pollution, and

safety is not enough to be an optimal way to transport people and loads.

Research areas have made many efforts to achieve an optimal way of transportation to be

accessible, optimal, and safe for everybody. Some ideas have been proposed, like hydrogen,

diesel, and natural gas engines. Also, some nobel research about control safety systems li-

ke better and more powerful breaks, automated airbags, and good chassis material tries to

save more lives, but it is not enough. Unfortunately, all past advantages are focused on the

driver and vehicle users. Currently, no control system guarantees the security and integrity

of the other road authors. The human decision in a driving context frequently represents

a danger because it is based on emotion and natural reactions making no optimal driving.

Even though these options could improve the current vehicles, they may find a better and

cheapest solution to the main problem.

The research areas try to solve the safety driving problem with deep-learning, Recurrent

Neural Networks, machine learning, and other theories. However, using these theories only

guarantees stability and controllability in some scenarios. To get a closer solution to this

problem, we study one way of achieving security and efficiency in a particular method as a

highway area in this thesis. Currently, the experts on optimal control system areas rely on

automated driving. This technology could solve all of the problems mentioned above.

Some safety decision criteria that we take into account were the following:

Avoid obstacles that may be on the road.

Avoid a collision with other cars on the road regardless of whether it is a cooperative

or non-cooperative agent.

3.1 Automated driving 21

Make decisions in the presence of aggressive maneuvers by selfish or non-cooperative

agents on the road.

Therefore, designing and implementing different controllers with access to specific data sets

was necessary. It depends on each controller’s necessity. These decisions are based on logical

and optimal decision-maker control to achieve the desired goal. These decisions are based on

safety rules established for the users of any particular road.

3.1. Automated driving

The idea of automated driving is to safely and efficiently coordinate and synchronize several

autonomous vehicles (AV) safely and efficiently.

Managing many AVs requires an extensive network with high computational loads and ad-

vanced control techniques. Usually, in the research literature is implemented one control

algorithm is for an agent to achieve the objective. However, automated driving is an area

that must consider different scenarios and situations. Besides, it is essential to prove all pos-

sibilities to warrant security and entire controllability. The following are the control theories

used in this document.

Mixed-Integer Potential Game: uses integer and continuous variables in a cost

function to control the AV’s position and velocity on a highway optimally.

Model Predictive Control: uses information about the environment and local va-

riables to get the optimal decision avoiding near obstacles.

Alternating Direction Method of Multipliers: utilizes a linear model of the AV

and inequality constraints as possible to get a faster and more efficient solution to the

problem.

All the above controllers are explained in detail in chapter 4. In addition, the following

section describes how AV and collision avoidance are modeled.

3.2. Vehicle Model

The automated driving is complex task, and one model is not enough to represent the

behaviour of a vehicle around the environment. However, multiple controllers require multiple

models that give the correct information. We use three different controllers that have a

specific task. Each of them needs a particular model of vehicle. The high-level controller

takes the network’s information. For that reason, we implement a linear model. The middle-

level controller uses just the knowledge of the environment acquired by its sensors. Due to

22 3 Problem Statement

this reason, we implemented a unicycle model. Besides, the low-level control gets information

about the car and its decision-making behavior. Thus, we use a differential model in this

control section.

3.2.1. Linear Model System

For controllers based on game theory, convexity is the main prerequisite for convergence.

Therefore, the robot model and its constraints must be linear and convex. Due to this, the

system is based on a Mixed-Logical-Dynamical system [5]. We consider a set of vehicles

I := {1, ..., N} where N is the total number of vehicles interacting with the local agent in

a multi-lane environment. The set L := {1, ..., L} represents the set of current lines on the

highway, and the L variable is the maximum number of lines on the way. We assume that

each vehicle i can control its longitudinal speed vi ∈ Vi ⊂ R and can change lane zi ∈ L ⊂ N.
Over the prediction horizon T := {0, ..., T} , T ≥ 1. We use two different decision variables

to better represent an AV on a highway. Mixed logical variables can simplify, make linear,

and convex the entire system.

Fig. 3-1.: Linear model’s variables.

Continuous Decision Variables

Each vehicle model has continuous variables that represent some physical features. Longitu-

dinal acceleration ai ∈ Ai :=
[
ai, ai

]
⊂ R, the variables

{
ai, ai

}
represent the minimum and

3.2 Vehicle Model 23

maximum acceleration allowed, with ai < 0 < ai, assuming that the ai is negative and is due

the break job of the i vehicle, as illustrated in Fig. . The longitudinal speed vi ∈ Vi ⊂ R is

determined by a standard Forward-Euler Scheme, i.e.,

vi(t+ 1) = vi(t) + τai(t), (3-1)

where τ > 0 denotes the time interval of each simulation step. Hence, the acceleration and

velocity longitudinal over the horizon T are:

ai := [ai(0); ...; ai(t− 1)] ∈ AT
i ,

vi := [vi(0); ...; vi(t− 1)] ∈ VT
i

Discrete Decision Variables

The lanes in a highway are predefined internationally as a space where vehicles can and

should travel. Thanks to this design, the agent will drive inside a lane unless the vehicle

needs to change to another one. That means the set of vehicles V needs to be modelled as

an integer variable that represents the actual and future travelling lane zi ∈ L. The discrete
decision variables over the horizon T are:

zi := [zi(0); ...; zi(t− 1)] ∈ ZT
i .

Coupling Variables

The control system requires different sense variables that allow knowing the actual and

future states of the agent i with its neighbours I−i. Therefore, we denote by di,j ∈ R as the

longitudinal distance between the connected vehicles i and j at the time t ∈ L as shown

Fig. 3-2.

Fig. 3-2.: Relative distance between agents.

24 3 Problem Statement

Over time, the equation of di,j evolves as a Forward-Euler function. In 3.2.1 the longitudinal

distance is over the axis x in the working environment. The difference in velocities is over

the current time t, and the τ is the controller’s step time at each iteration.

di,j(t+ 1) = di,j(t) + τ(vj(t)− vi(t)). (3-2)

It allows us to introduce the set of vehicles in the neighbourhood ofNi :=
{
j ∈ I| |di,j| ≤ d, t ∈ T

}
;

this data can be measured locally or globally, i.e., on the on-board sensors or with commu-

nication of a driving network. From now we refer to the variable j as a generic vehicle in the

set Ni. According to , each agent knowing the velocity of its neighbour vj(t), can estimate

the relative distance between each other. In addition, we implement a relative lane distance

zi,j. It represents the lateral distance of each vehicle from its neighbours. The difference of

lane between agent i with its neighbors Ni and is calculated by the following equation:

zi,j(t) = zj(t)− zi(t). (3-3)

Lateral distance is the difference between integer values. It means the space working is

N×N → N. The distance is calculated over the y axis.

Fig. 3-3.: Lateral Distance.

We assume that each agent makes decisions for their selfish interest, e.g., drive through

desired speed profile vdi ∈ VT
i or get into a lane zdi ∈ LT

i , Fig. 3-3. Each agent’s control

system considers its neighbors’ current and future states. Still, it does not provide information

about the targets of the other agents. As a result of this behavior, each agent takes a decision

seeking its individual goals through a sequence of hybrid decisions. With the previous model,

we formulate as a first step an MPC motion planning with mixed-integer variables:

3.2 Vehicle Model 25



mı́n
vi,ai,zi

Ji(vi, ai, zi)

s.t. vi(t+ 1) = vi(t) + τ ai(t), ∀t ∈ T
ai(t) ∈ Ai,

vi(t+ 1) ∈ Vi,

zi(t+ 1) ∈ Li,

(3-4)

The Ji cost function is a linear and convex objective function for each vehicle i where

Ji : VT
i × AT

i × LT
i −→ R. The sets Vi and Li ⊂ L shall be defined to restrict them to

possible values in the real environment. Given maximum and minimum acceleration
[
ai, ai

]
as also maximum and minimum velocity

[
vi, vi

]
, we can limit the sets as:

Vi(t) :=
[
0, vi(t)

]
∩
[
vi(t) + τai, vi(t) + τai

]
(3-5)

Li(t) := L ∩ [zi(t)− 1, zi(t) + 1] (3-6)

From 3-5, it is possible to limit the speed to legally possible values, and from 3-6 limits

the change of lane to just one per step. This restriction makes agents’ movement smoother

through lanes and allows lateral safety rules. The following section explains the rules to make

safer automated driving with selfish agents.

Collision Avoidance Rules

Human driving is usually unsafe; exist some rules established in each country, like speed li-

mits, preferential lanes, and safety distance. In this section, we postulate some safety rules to

avoid the collisions of the interconnected agents with the presence of non-cooperative agents.

Longitudinal rules

The main reason for a collision of two or more vehicles is that one of the vehicles violates the

safety distance. Due to this is implemented the following safety rule. If the lateral distance

between two agents is equal to zero zj(t) = zi(t) and the longitudinal distance is greater

or less than a safety distance |di,j(t)| > Ds, and the agents will continue in the same lane

zi(t + 1) = zi(t), zj(t + 1) = zj(t). The control system must ensure that the behind vehicle

maintains a safety distance |di,j(t)| > Ds how is shown in Algorithm 1, where Ds is a prede-

fined secure distance.

26 3 Problem Statement

Algorithm 1 Algorithm of longitudinal distance.

if zi,j(t) = 0 and zi,j(t+ 1) = 0 then

if di,j(t) > 0 then

dj(vj(t))− di(vi(t)) > Ds

else if di,j(t) < 0 then

dj(vj(t))− di(vi(t)) < −Ds

else

Continue normal driving

end if

end if

0 50 100 150 200

1

1.5

2

2.5

3

3.5

(a) Position of vehicles during the example.

7 8 9 10 11 12 13

time [s]

2

2.2

2.4

2.6

2.8

3

L
an

e

Lane Change

7 8 9 10 11 12 13

time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

d
i,

j [
m

]

Distance Plot

(b) Profiles of velocity and lanes over highway.

Fig. 3-4.: Example of lateral collision.

3.2 Vehicle Model 27

Lateral rules

There are other common collisions in a regular lane; those are lateral collisions, usually ge-

nerated by occlusion problems. This model does not have this issue thanks to interconnected

and full neighbor position knowledge. However, the controller solver could be in a position

where each vehicle decide to change at the same time the lane as Fig. 3-4 shows. Owing

to this, we implement the lateral rule for each vehicle i, j driving over the horizon T , if the

longitudinal distance di,j is less than a safe distance and the difference of lane position zi,j is

one |zi,j(t)| = 1, and the pair of agents will change the lane zi(t+1) ̸= zi(t), zj(t+1) ̸= zj(t),

the controller must constraint the change of lane as is explained in the next algorithm.

Algorithm 2 Algorithm of lateral distance.

if |zi,j(t)| = 1 and (zi(t+ 1) ̸= zi(t) or zj(t+ 1) ̸= zj(t)) then

if di,j(t) > 0 then

dj(vj(t))− di(vi(t)) > Ds

else if di,j(t) < 0 then

dj(vj(t))− di(vi(t)) < −Ds

else

Continue normal driving

end if

end if

Finally, the previous safety rules are executed in a mixed-integer decision-making framework

explained in-depth way in Chapter 3.2.2. Nevertheless, this thesis work does not focus on

the issue of communication among vehicles. Consequently, we assume that:

Vehicles can share data of their position, speed, current lane and future states planned.

Each vehicle is autonomous, therefore it has the capability to change its position and

velocity without the presence or intervention of a human being

3.2.2. Non-Linear Model System

Currently, there are several kinds of wheel robots used for mobile applications. Some of

them are unicycle, Ackerman, differential, and omnidirectional, among others. In [7] was

compared the two main ways to represent a dynamic system and the kinetic and kinematic

models were compared in the vehicle collision avoidance framework. Although the kinetic

model has more accuracy than the kinematic, the entire system implemented in an MPC

is faster with the kinematic model than with the kinetic model. Due to better prediction

accuracy and computational time in the established prediction horizon, we decided to use

the robot’s kinematic model.

The nonlinear kinematic unicycle model is one of the most popular models for automated

28 3 Problem Statement

driving in multiagent systems [8] and mobile robotics. Therefore, we designed, fine-tuned,

manufactured and implemented a linear unicycle model for the medium level of control. It

makes the following assumptions:

Into the prediction horizon of the MPC, the velocity V could change.

Forces are applied only in the lateral wheels, neither in the caster wheels.

The robot is not equipped with a steering wheel.

Aerodynamic drag and rolling resistance are ignored.

The position of the front and rear caster wheel does not matter.

The Center of Gravity (CG) position is assumed in the middle of the lateral wheels;

the height is assumed to be zero since the vehicle’s motion is planar.

Pitch and roll dynamics are neglected.

The electrical energy and forces applied to the traction wheels are neglected.

In order to specify the actual position of the robot within two-dimensional space, we use a

relationship between the robot’s global reference and the robot’s local reference, as shown in

Fig. 3-5. The Axis X and Y define the position related to an origin O : {X, Y }. The robot

position is specified by three coordinates, x, y, and θ, where θ is the angular position of the

robot referred to as the global reference. It is also possible to describe the robot position as

a vector of dimension three as follows.

Pi =


x

y

θ

 (3-7)

Kinematic model of a differential robot

Kinematics is one of the mechanic’s branches that describes a particle’s behavior in an

environment by the action of multiple forces regardless of its mass. Kinematic equations are

used to express the motion of a point after the act of a force. The inputs interacting with the

robot are the linear velocity V [cm/s] and the angular velocity w[rad/s]. The rate of change

of position of the vehicle in the x-direction and the y-direction are x and y, respectively and

are given by:

3.2 Vehicle Model 29

ẋ =v cos θ

ẏ =v sin θ

θ̇ =ω

(3-8)

Let xi, yi be the lateral and longitudinal position of agent i in the working space, and θi be

the agent orientation. The vi is the linear velocity, and wi is the angular velocity. The control

inputs are v and w and the output variables are the global position of the robot xi, yi and

θi. Fig. 3-5 shows the representation of the mentioned variables.

Fig. 3-5.: Non-linear model of a differential robot.

3.2.3. Robot Model

A unicycle model is unfeasible in the real world due to geometric constraints. However, it

is good to model and control a particle object in an environment. Due to this, the robot

uses a differential model in the low-level control architecture. This model allows calculating

the control action in each wheel with only the information of linear and angular velocity.

Equation (3-9) is the low-level model used to control each wheel’s speed. Where wr and wl

are the angular velocity of the right and left wheels, L is the distance in cm between the two

wheels, and R is the radius of both wheels.

ωr

ωl

 =
1

2R

2 −L

2 L

v
w

 . (3-9)

30 3 Problem Statement

In pursuit of faster computation time and easy processing, we use the above model for the

internal processing of the robot. The differential model is one of the most popular models

used to simulate autonomous vehicles used in robotics. It was selected for its simplicity and

the best results obtained. The actual robot uses this model to predict the position of the

robot, the microprocessor calculates the speed required for each wheel to take the robot to

a specific position.

3.3. Platform Design

A test system was designed, built, and implemented to test the control algorithms used in

this document in a real environment. The Section 3.2.3 explains the model that the test

robot uses in its control algorithm to find an optimal solution. This section will explain how

the complete system is built and how it works. The [37] document explains this test system

in deep. All the test simulations shown in Chapter 6 are implemented in this testbed and

are evidenced in the Annex 7.2.

3.3.1. Robot Processing System

The robot processing system was equipped with an Auriga board. This developing board

contains an Atmega 2560 microcontroller running at 16 MHZ speed clock. In addition, the

developing board has gyroscope, thermistor, and a sound sensor for perception applications.

Besides, it has a Bluetooth shield that allows microprocessor communication and program-

ming, but it can be replaced for RF or WiFi modules. Moreover, it has 9 I2C ports, 1 UART

port, and one port for “smart motor” applications. The mainboard controls the encoder mo-

tors with a TB6612 chip. With the integration of this chip, the microprocessor can control

with high precision the speed, direction and position of each wheel with an internal control

closed loop.

3.3.2. Communication System

The communication system considers the number of nodes and the bandwidth of the shared

information. As a result, the ESP 8266 module was chosen due to its easy programming,

powerful processing, economical and affordable. This communication system has a novel

protocol to share information with the other agents without needing an external router. It

can connect, transmit, and receive up to a 250-byte payload by WiFi network. This new

protocol supports unencrypted peers. However, their total number should be less than 20,

including encrypted peers. This protocol allows sharing information without requiring a WiFi

station or router as a principal interconnection module. Besides, with this protocol, if one

of the boards suddenly loses power or resets, it will automatically connect to its peer to

continue the communication when it restarts.

3.3 Platform Design 31

3.3.3. Global Position System

The robot swarm are equipped with a fiducial marker system for camera pose estimation

[20]. This system uses a web camera and system image processing to detect and estimate

the position of each robot. It is currently implemented using the OpenCV library in python

language. The system can calculate x, y, z, and θ position of each agent. The platform uses

as a visual sensor the Logitech C930 at a resolution of 1920x1080 pixels and a 90-degree

field-of-view. It can achieve frame rates of up to 30 fps. This library can detect up to 1000

Aruco tags in the same frame.

3.3.4. Power System

Each robot has a lithium-ion battery of 3000 mAh. It provides energy for about ten working

hours. Moreover, the charging system recharges the battery in about 2 hours. This battery

can provide up to 3 amps in a barrel and USB ports. The previous advantages make the

power system robust and valuable to implement with different development boards.

3.3.5. The Interconnect System

The testbed was built by gathering multiple communication, tracking, processing, and sen-

sing systems. All of them can be replaced in the future with better technologies or another

system with better results.

The process of operation of the testbed is the following. The tracking system uses the

OpenCV library and Aruco tags. The camera takes multiple frames to process the infor-

mation, estimating the positions x, y, and orientation θ. It gives a vector p ∈ R2,nr, where

nr is the number of robots in each experiment.

With this information, the central processing unit computes the value of the robot’s control

variables using the selected technique. Then it broadcasts this information to each mobile

robot via WiFi protocol. If the test needs feedback information, it will wait for it. Eventually,

each robot gets data from the server, processes it, and makes a decision.

The server can record, graph, and save all the information taken in each test. Additionally,

it could record videos and process the previous information to analyze the data accurately.

Fig. A-1 shows the connection of the entire testbed and how each section interacts.

32 3 Problem Statement

Fig. 3-6.: System Architecture.

4. Controller Architecture

In this chapter, we consider a hierarchical control architecture. First, each vehicle has an

embedded High-Level Controller (HLC). It has access to the internet and different kind

of services. Here, the goal is to manage the position of the vehicle on the highway, its

velocity, and the lane position it should use. Then using the previous information, a Mid-

Level Controller (MLC) takes as a reference and moves the vehicle avoiding obstacles that

could appear in automated driving. Finally, a Low-Level controller (LLC) is implemented to

generate the fair inputs of the vehicle’s actuators. It will calculate the power units required

to move the vehicle to the desired position. This control layer is simple, and we will not focus

on it. Fig. 4-1 shows the complete architecture.

4.0.1. High-Level Controller

A MPC controller with a Generalized Mixed-Integer Potential Game (GMIPG) framework

was designed and implemented for high-level control to guarantee that the vehicles follow the

basic traffic rules. MPC is helpful because it could prevent future issues and pre-correcting

signal inputs from achieving the main objective. The GMIPG is necessary to control the

vehicle in specific parameters. Each vehicle has to be in an integer number of the lane

(1,2,3,..., N) and use binary variables to activate some logical constraints; therefore, we

implement the Mixed Integer variables. Furthermore, finally, it is a multi-agent game where

each agent aims for a selfish objective. We use a generalized potential game structure to

achieve a global and fair solution.

Each vehicle has a solid and large number of variables of control and sense. The HLC uses a

set of network variables such as velocity, acceleration, lane position, and future states. Some

of them are part of the information shared by the other agents, and the users give the other

one. However, we assume that:

Each road user aims to pursue their selfish objective.

Each control system has a partial connection to the entire network, and can access to

the entire network if it needs.

The communication does not have lags or problems in sharing the desired information.

The selfish objective of each vehicle could be a result of a personal decision o a result

of an intelligent algorithm., e.g., maps, Waze, or some traffic and routing algorithm.

34 4 Controller Architecture

Fig. 4-1.: Control architecture.

35

Crossroads, traffic lights, or intersections are not part of the experimental environment.

This thesis document aims to manage, control and guarantee safe automated driving in the

most common situation a vehicle can face on a highway against agents who make selfish

decisions. Specially, we focus on the mixed-integer decision-maker layer for motion planning

of the vehicles.

4.0.2. Mixed-Integer Linear Constraints

Chapter 3.2.1 explains the autonomous driving rules to make driving safe without affecting

the objective of each agent. In this section, we will convert the above rules into linear logical

constraints. Due to the previous, the control algorithm can constrain the solution space to

one that is safe for the environment. Two different types of constraints will be discussed:

lateral and longitudinal.

Longitudinal Constraints

Let us consider the safety rules in Section 3.2.1 where it should be fulfilled that if a pair of

vehicles circulated in the same lane and with a distance greater than zero, a safety distance

should be observed:

[zi,j(t) = 0] ∧ [|dij(t)| ≥ 0] ⇒ [|dij(t)| ≥ Ds
i] (4-2)

We introduce two logical and binary variables, α, β ∈ B := {0, 1}. The variable α discri-

minates between vehicles travelling in the same lane at the same time (li,j = 0), and β

discriminates between vehicles ahead (β = 1) or behind (β = 0), no matter what lane they

are on

[αi,j(t) = 1] ⇔ [zi,j(t) ≤ 0] ∧ [zi,j(t) ≥ 0] (4-3)

[βi,j(t) = 1] ⇔ [di,j(t) ≥ 0] (4-4)

Therefore, the equations 4-3 and 4-4 can be written as nonlinear inequalities:

αi,j(t)[βi,j(t)(d
s
i (t)− di,j(t)) + (1− βi,j(t))(d

s
i (t) + di,j(t))] ≤ 0, (4-5)

Relying on the pattern of inequalities summarized in Table 4-1, we will use it to handle the

logical implications and nonlinear constraints. Therefore, let us consider the right-hand side

of the Equation 4-3. Introducing η and θ ∈ B, where if zi,j ≤ 0 implies ηi,j = 1 :

36 4 Controller Architecture

[ηi,j(t) = 1] ⇔ [zi,j(t) ≤ 0]

and it is translated into S≤(ηi,j(t), zi,j(t), 0). Same way if θi,j = 1 implies zi,j ≥ 0 :

[θi,j(t) = 1] ⇔ [zi,j(t) ≥ 0]

and is translates into S≥(θi,j(t), zi,j(t), 0). Finally 4-3 is represented as follows:

(4-3) ⇒


S≤(ηi,j(t), zi,j(t), 0),

S≥(θi,j(t), zi,j(t), 0),

S∧(αi,j(t), ηi,j(t), θi,j(t)).

(4-6)

The same procedure is used to transform 4-4 in a mixed-integer linear constraint:

(4-4) ⇒ S≥(βi,j(t), di,j(t), 0). (4-7)

Now let me factor 4-5 into a reduced non-linear equation.

−2 αi,j(t)βi,j(t)︸ ︷︷ ︸
ξi,j(t)

di,j(t) + αi,j(t) d
s
i (t) + α di,j(t) ≤ 0. (4-8)

As we can see, the equation is nonlinear and is composed of binary and integer variables. In

4-8 we transform αi,j(t)βi,j(t) into ξi,j(t) to linearize the equation.

S∧(ξi,j(t), αi,j(t), βi,j(t)).

The next and last step to linearize the equation is to transform the multiplication of a binary

variable and integer variable into real auxiliary variables. We define fi,j(t) := ξi,j(t)di,j(t) ,

gi,j(t) := αi,j(t)d
s
i (t) , and hi,j(t) := αi,j(t), di,j(t) that shall satisfy S⇒ in the Table 4-1 as

follows:

S⇒(fi,j(t), di,j(t), ξi,j(t)). (4-9)

S⇒(gi,j(t), d
s
i (t), αi,j(t)). (4-10)

S⇒(hi,j(t), di,j(t), αi,j(t)). (4-11)

Finally, 4-5 is expressed as a linear mixed integer constraint equation:

−2fi,j(t) + gi,j(t) + hi,j(t) ≤ 0. (4-12)

37

Lateral Constraints

Let us consider the scenario in Fig. 3-4 where two vehicles are side by side. The second

Mixed-Integer coupling constraint we introduce is about avoiding collision between vehicles

driving next to each other on a highway. It was explained in the Algorithm 2 in Section

3.2.1 how each agent’s restrictions must avoid a lateral collision. Therefore, we implement the

same transformation as in the previous section. The main idea is to linearize a logical cons-

traint equation into a set of Mixed-Integer Linear Constraints that can avoid lateral vehicles

regardless of the situation. Algorithm 2 can be transformed first as a logical implication

form

[|zi,j(t)| = 1] ∧ [|dij(t)| ≤ d̂] ∧
{
[lri (t) = 1] ∨ [lli(t) = 1]

}
⇒ [zi,j(t+ 1)− zi,j(t) = 0]. (4-13)

It represents the behaviour that each agent should have in a collision risk situation. However,

the logical constraints model cannot be solved by MPC due to non-linearities and non-

convexity. Therefore, we transform the previous equation into multiple linear inequalities

that will allow the controller to find an optimal answer. As in the previous transformations,

let us consider three auxiliary variables γl, γr and ζ ∈ B :

[γli,j(t) = 1] ⇔[zi,j(t) ≤ 1] ∧ [zi,j(t) ≥ 1]

[γri,j(t) = 1] ⇔[zi,j(t) ≤ −1] ∧ [zi,j(t) ≥ −1]

[ζi,j(t) = 1] ⇔[di,j(t) ≤ d̂] ∧ [di,j(t) ≥ −d̂]

then, 4-13 can be reformulated as:

ζi,j(t)[l
l
i(t)γ

l
i,j(t) + lri (t)γ

r
i,j(t)](zi,j(t+ 1)− zi,j(t)) = 0. (4-14)

Hence, it is rewritten in reduced form :

ζi,j(t) l
l
i(t) γ

l
i,j(t) zi,j(t+ 1) + ζi,j(t) l

r
i (t) γ

r
i,j(t) zi,j(t+ 1)

− ζi,j(t) l
l
i(t) γ

l
i,j(t) zi,j(t) − ζi,j(t) l

r
i (t) γ

r
i,j(t) zi,j(t) = 0 (4-15)

Next, we add four auxiliar variables to remove nonlinearities ϖi,j, λi,j, ρi,j and ϱi,j ∈ B.
In 4-15 are reformulated into a linear form using both real and binary auxiliary variables

following the linearization steps above. We define ϖi,j := ζi,j(t) l
l
i(t), λi,j := ζi,j(t) l

r
i (t),

ρi,j := ζi,j(t) l
l
i(t), and ϱi,j := ζi,j(t) l

r
i (t) as binary variables which satisfy the next system

of inequalities

38 4 Controller Architecture

S∧(ϖi,j(t), ζi,j(t), l
l
i,j(t)), (4-16)

S∧(λi,j(t), ζi,j(t), l
r
i,j(t)), (4-17)

S∧(ρi,j(t), ϖi,j(t), γ
l
i,j(t)), (4-18)

S∧(ϱi,j(t), λi,j(t), γ
r
i,j(t)). (4-19)

We also define real variables ψi,j := z(t+ 1), ϕi,j := z(t+ 1), φi,j := z(t),and ιi,j := z(t) that

must satisfy S⇒ in Table 4-1 as follows:

S⇒(ψi,j(t), zi,j(t+ 1), ρi,j(t)). (4-20)

S⇒(ϕi,j(t), zi,j(t+ 1), ϱi,j(t)). (4-21)

S⇒(φi,j(t), zi,j(t), ρi,j(t)). (4-22)

S⇒(ιi,j(t), zi,j(t), ϱi,j(t)). (4-23)

Finally, 4-13 was reduced to a system of equations where the following pair of inequalities

must be fulfilled.

ψi,j(t)− φi,j(t) + ϕi,j(t)− ιi,j(t) ≤ 0

ψi,j(t)− φi,j(t) + ϕi,j(t)− ιi,j(t) ≥ 0
(4-24)

All the previous Mixed-Integer linear inequalities are organized to obtain the final reference

frame for each agent.



mı́n
v,a,z,lli,l

r
i

Ji (vi, ai, zi)

s.t. vi(t+ 1) = vi(t) + τai(t), ∀t ∈ T
zi(t+ 1) = zi(t) + lli(t)− lri (t),

ai(t) ∈ A,
vi(t) ∈ Vi,

lli(t), l
r
i (t) ∈ B,

lli(t) + lri (t) ≤ 1,

(4-6)− (4-24) ∀j ∈ Ni,∀t ∈ T

(4-25)

Each agent has ci := (75Ni+7) constraints, whereas the entire network has c := (
∑

j∈Ni
cj)+

ci constraints. Note that the strategies of the neighbours are contained in the coupling cons-

traints in (4-6)–(4-24) as affine, provided terms. Let x−i ∈ Rn−ni stacks the variables of the

neighbours, we define xi := [vi; ai; ...; si] ∈ Rni , ni := (28|Ni|+ 5)T as the ith vector of deci-

sion variables and the vector that represent all the decision variables in the neighbourhood

is n := (
∑

j∈Ni
nj) + ni. Finally, the portable hybrid motion planner is

39

∀i ∈ I :

 mı́nxi
Ji(xi)

s.t. Ax+ b,
(4-26)

where A ∈ Rc×n, b ∈ Rc.

Name Logical Implication System Inequalities

S≥(η, f(x), c) [η = 1] ⇔ [f(x) ≥ c]

 (c−m)η ≤ f(x)−m

(M − c+ ϵ)η ≥ f(x)− c+ ϵ

S≤(η, f(x), c) [η = 1] ⇔ [f(x) ≤ c]

 (M − c)η ≤M − f(x)

(c+ ϵ−m)η ≥ ϵ+ c− f(x)

S∧(η, α, γ) [η = 1] ⇔ [α = 1] ∧ [γ = 1]


−α + η ≤ 0

−γ + η ≤ 0

α + γ − η ≤ 1

S∨(η, α, γ) [η = 1] ⇔ [α = 1] ∨ [γ = 1]


α− η ≤ 0

γ − η ≤ 0

−α− γ + η ≤ 0

S⇒(g, f(x), η) [η = 0] ⇒ [g = 0], [η = 1] ⇒ [g = f(x)]

 mη ≤ g ≤Mη

−M(1− η) ≤ g − f(x) ≤ −m(1− η)

Table 4-1.: Basic Logical Implications and associated system of inequalities. (f : R −→ R
Linear Function, M := Maxx∈Xf(x),m := Minx∈Xf(x), XCompactSet; c ∈
R, η, γ, α ∈ B).

4.0.3. Generalized Mixed-Integer Potential Games

In theory, every selfish road user i ∈ I can compute the solution of optimization problem

4-25. However, the linear constraints that were added earlier couple the dynamics of the

vehicles, making the solutions strategies interdependent. Furthermore, each controller takes

into account the strategies of the other agents. Therefore, if an agent does not share her stra-

tegy, it can make non-optimal or unsafe decisions. In addition, this interconnected problem

cannot be solved by traditional optimization methods. Thus, we focus on designing a robust

and interconnected controller to deal with decision-making and communication problems

with other agents. To achieve the objective, we propose to formalize the autonomous driving

40 4 Controller Architecture

problem as a GNEP [15].

First, we define the feasible set of each agent (i.e., automated vehicles) Xi(x−i) := {xi ∈ Rni|A(xi, x−i ≤ b)},
where X := {x ∈ Rn|Ax ≤ b}. However, each Ji(xi) depends only to the local states xi, due

this we introduce the function P : Rn → R defined as P (x) :=
∑

i∈I Ji(xi) satisfying:

P (xi, x−i)− P (yi, x−i) = Ji(xi)− Ji(yi)

for all i ∈ I, for all x−i and for all xi, yi ∈ Xi(x−i).

P is an exact potential function in the Multi Vehicle Automated Driven framework [17]. Let

me introduce the mixed-integer response for each player i taking into account the strategies

of its neighbors xi:

x∗i (x−i) ≤

 argmı́nxi
Ji(xi)

s.t.(xi, x−i) ∈ X .
(4-27)

4.0.4. Centralize MPC

Centralized control has been used for decades as a solution to multi-agent problems. A node

is responsible for calculating the decisions to be made by other agents taking into account

all the information on the network. In Fig. 4-2 is possible to see how the central compu-

ting node (CMPC) receives the information from each agent and gives a control signal as

a response. This control is mostly used in networks with communication problems or slave

nodes that do not have computing capacity. Centralized systems have some benefits over

interconnected networks, although they are not the most used for this purpose. This section

will introduce the Centralized Model Predictive Control (C-MPC), which leads to an optimal

solution for the entire network.

The dynamics of the vehicles are represented by a monocycle model 3-5. The vehicles’ dy-

namics are combined to create a dynamic of the entire network. For simplicity, we represent

the network model as a discrete, non-linear model of the form:

x(t+ 1) =


f1(x1(t), u1(t))

...

f1(xN(t), uN(t))

 (4-28)

A standard quadratic cost function MPC is defined. The objective is to follow a reference

ri(t+ k). The controller avoids collisions with other vehicles and at the same time achieves

its safety constraints. The resulting MPC is:

41

V ∗(x(·), u(·)) = mı́n
x(·),u(·)

N∑
i=1

(
Hp−1∑
k=1

ℓxi
(xi(t+ k), ri(t+ k)) + Vif (xi(Hp)) +

Hu−1∑
k=1

ℓui
(ui(t+ k))

)
,

(4-29)

s.t. (∀i,j ∈ V):

xi(t+ 1 + k) = fi(xi(t+ k), ui(t+ k)), k = 0, ..., Hp, (4-30)

xi(t+ k) ∈ Xi, k = 0, ..., Hp, (4-31)

ui(t+Hp) ∈ Ui, k = 0, ..., Hu − 1, (4-32)

c(i,j)c.a. (xi(t+ k), xj(t+ j)) ≤ 0, k = 1, .., Hp. (4-33)

The objective function is defined as follows:

ℓxi
: Rni×Rni → R is a function that represents the error between the desired trajectory

ri(t+k) of the vehicle i and its current state xi(t+k). The following quadratic function

represents the tracking error, where Qi(k) is the weighted matrix

ℓxi
(xi(t+ k), ri(t+ k)) = ∥xi(t+ k)− ri(t+ k)∥2Qi

. (4-34)

ℓui
: Rmi → R is the control input at each step for each vehicle i over the prediction

horizon Hp. Using Ri(k) as weighted matrix, ℓui
is defined as:

ℓui
(ui(t+ k)) = ∥ui(t+ k)∥2Ri

. (4-35)

Finally, the definition of the restrictions of each vehicle are:

xi(t+ k) ∈ Xi ⊆ Rni represents the states of each vehicle i for k = 1, ..., Hp.

ui(t + k) ∈ Ui ⊆ Rmi represents the control inputs of each vehicle i. Ui represents the

set of restrictions that each vehicle i has in its control signal.

fi : Rni × Rmi → Rni describes the dynamic model of each vehicle i connected to the

MVAD network.

ci,jc.a. : Rni ×Rnj → R represents the coupling Mixed-Integer linear constraints between

agent i and j (from 4-6 to 4-24).

In our implementation, a solution algorithm called Branch and bound was used. The Optimal

Control Problem OCP is solved with the Gurobi framework [35] with a student license in

MatLab software.

42 4 Controller Architecture

Fig. 4-2.: Control architecture.

4.0.5. Decentralized MPC

In centralized systems, the entire network relies on a single control node. However, as the

network grows, the computation and synchronization of the agents become exponentially

more difficult. However, suppose we decompose the whole network optimization problem

into subproblems and rely on the communication between the neighbours. In that case, each

subsystem will be able to obtain its own control input and achieve its goal even when some

of the nodes are disconnected from the network. The architecture of the complete network

can be seen in Fig. 4-3. This method is adopted from [13, 29].

Neighbors Ni

Two or more vehicles are considered neighbors if:

∥pi(t)− pj(t)∥ ≤ αdcovered (4-36)

where dcovered = vi h means the distance that each vehicle covers in order to take into

account other agents around it. pi(t) =
√
x2i (t) + y2i (t) and α ∈ (1, 2). A pair of vehicles are

considered neighbors if:

|xi(t+ k)− xj(t+ k)| ≤ dcovered & |yi(t+ k)− yj(t+ k)| ≤ µ. (4-37)

where µ means the road-width of a single lane.

In the literature, the previous method is referred to as nonlinear distributed cooperative

43

control [12, 13, 29, 45]. However, this method is not based on distributed optimization. The-

refore, to avoid confusion, it will be called decentralized MPC (Dec. MPC).

All subsystems solve their optimization problem. Therefore, each vehicle i ∈ V must know

the trajectories predicted by its neighbours j ∈ Ni, which are considered optimal and ob-

tained in the previous iteration. In the first step t = 0, the Optimal control problem OCP

has not been resolved; therefore it has to be initialized. This starts with choosing a feasible

value for the estimated control variable ûi.

Initialization of estimated control

At every step of time the instance τ in interval [t, t+Hp], the estimated control ûi for each

vehicle is defined as:

 ûi(τ, t) = u∗i (τ ; (t− 1)) if τ ∈ [τ , (t− 1) +Hp]

ûi(τ, t) = 0, if xi(t) = ri(Hp) or if τ ∈ [(t− 1) +Hp , t+Hp]
(4-38)

u∗i (τ ; (t − 1)) denotes the optimal solution to the OCP of the previous MPC iteration with

initial state xi(t− 1). However, sometimes for the first step to the OCP has not been solved,

and it is required to have an optimal solution already established. We propose the following

algorithm where a solution to the problem is defined in the interval [(t0 − 1), (t0 − 1) +Hp]

Algorithm 3 OCP initialization.

if τ ∈ (t0 − 1) then

for ∀τ ∈ [(t0 − 1), (t0 − 1) +Hp] do

solve 4-40 with the initial state xi(t0 − 1), xj(t0 − 1) and ûj(τ ;xj(t0 − 1)) = 0.

end for

end if

The result obtained by Algorithm 3 is the optimal solution given the previously named

initial conditions in the interval [t0, t0 +Hp].

During each MPC iteration, the states and control signal obtained at (to − 1) over the

interval τ ∈ [(t0 − 1), (t0 − 1) +Hp] are defined by x∗i (τ ;xi(t0 − 1)) as current states and the

control signal as u∗i (τ ;xi(t0−1). u∗i is applied to each vehicle i over time [(t0−1), (t0−1)+Hp].

Again, the Decentralized Nonlinear MPC for Vehicle Collision Avoidance Problem use a

nonlinear bicycle model 3-8 to represent the dynamics of the vehicles i ∈ V at time t in the

decentralized network:

44 4 Controller Architecture

V ∗
i (x(0), x̂j(·), ui(·)) = mı́n

x(·),u(·)

(
Hp−1∑
k=1

ℓxi
(xi(t+ k), ri(t+ k)) + Vif (xi(Hp))+

Hu−1∑
k=1

ℓui
(ui(t+ k)) +

∑
j∈Ni,j ̸=i

Hp−1∑
k=1

γ ∥Lcol(µi,j(xi, x̂j))∥2
 , (4-39)

s.t. (∀i,j ∈ Ni) :

xi(t+ 1 + k) = fi(xi(t+ k), ui(t+ k)), k = 0, ..., Hp, (4-40)

x̂j(t+ 1 + k) ∈ Xi, k = 0, ..., Hp, (4-41)

xi(t+ k) ∈ Xi, k = 1, ..., Hp, (4-42)

ui(t+Hp) ∈ Ui, k = 0, ..., Hu − 1, (4-43)

∥xi(t+ k)− x̂i(t+ k)∥ ≤ h2K (4-44)

The objective function in 4-44 is equivalent to the Equation 4-33. However, many constraints

have been modified for the decentralized controller. Each of them is explained in more detail

below.

Lcol(µi,j(xi, x̂j)) : Rni × Rnj → R describes the cost it would have on the OCP for

vehicle i to have a collision with vehicle j ∈ Ni :

∑
j∈N ,j ̸=i

Hp−1∑
k=1

γ ∥Lcol(µi,j(t+ k))∥2Where, Lcol(t) =

 1
∥xi(t)−xj(t)∥−2Di

: if j ∈ Ni

0 : if j /∈ Ni

fj : Rnj × Rmj → Rnj describes the prediction model of the other vehicles j in the

neighborhood Ni.

x̂j(t+k) : Rnj represents the states that were communicated from the previous iteration

of the MPC.

∥xi(t+ k)− x̂i(t+ k)∥ ≤ h2K : Rni × Rnj → R denotes the compatibility of agent i

constraints with its previous results. Here, h2K is close to zero, meaning feasibility for

each computed control input.

In the same way as in C-MPC, the OCP in 4-44 is solved with the Gurobi optimizer.

45

Fig. 4-3.: Control architecture for decentralized scheme.

4.0.6. Solution Method

Solving a GNEP is challenging even when only continuous variables are used. Our Opti-

mization problem is a GNEP with mixed integer variables, and although it is used in both

centralized and decentralized networks, its solution demands a large amount of computation.

Therefore, we use the Gauss-seidel method to calculate the ϵ-MINE of the MVAD problem

through iterations [15]. This method solves the GNEP despite the mixed nature of 4-25.

We will refer to the algorithmic step as an iteration to compute the solution; and the ti-

me step as a sample step of the decision variables. Let xi(k) denotes the decision vector

of the agent i at the k-th step of the algorithm. Moreover, the xi(t|k) as the k-th step

at time t of the i-th agent in the solution algorithm. Finally, the cost variance will be

∆Ji(k) := Ji(xi(k))−Ji(x∗i (k)), where x∗i (k) ∈ x∗i (x−i(k)) will be the optimal decision vector

of the i-th agent concerning its neighbours.

Gauss-Seidel Algorithm

We use a gauss seidel method from [14] for solution of the problem 4-25 we use a gauss

seidel method of [14]. The algorithm follows a consecutive and ordered sequence to solve the

optimization problem for each agent in the decentralized network and the entire network

simultaneously in the centralized network. In Algorithm 4 the steps that the controller

follows to compute the equilibrium of the GMIPG are detailed.

46 4 Controller Architecture

Algorithm 4 Gauss-Seidel Method for Centralized Networks.

for all i ∈ I do

The controller choose a feasible state x ∈ X̂t for the whole network at time t = 0 and set

k := 0

while x(k) is not an ϵ-MINE do

Load x(t+ 1|k)

for all i ∈ O do

xi(k + 1) :=

 x∗i (k) if ∆Ji(k) ≤ ϵ

xi(k) Otherwise

Load xi(t+ 1|k + 1) to be use in the next step.

Set k := k + 1

Thus, for each time step t ∈ T we define an ordered and closed set of neighbors. In the

centralized network, the set of neighbours is complete and is always of the same size.

Algorithm 5 Gauss-Seidel Method for Decentralized Networks.

for all i ∈ I do

Each agent i choose a feasible state x(0) ∈ X̂t and set k := 0

while x(k) is not an ϵ-MINE do

Broadcast xi(t+ 1|k)

for all i ∈ O do

xi(k + 1) :=

 x∗i (k) if∆Ji(k) ≤ ϵ

xi(k) Otherwise

Broadcast xi(t+ 1|k + 1) to all j ≻t i

Set k := k + 1

In the decentralized network, the ordered neighbor group differs from the previous method.

Given a pair of vehicles (i, j), the algorithm considers them neighbors if di,j ≤ Dcovered orde-

ring and selecting the closest ones. The Algorithm 5 gives an initial condition to each subsys-

tem. Then each subsystem shares its states and predicted trajectories with its neighbors Ot.

Each controller, with the information obtained from its neighbors and its current conditions,

calculates a solution to 4-25. The last step is to share the new trajectories x(t+ 1|k + 1) to

the neighbors.

4.1 Mid-Level control 47

4.1. Mid-Level control

Fig. 4-4.: Mid-Level model.

A non-interconnected MPC was chosen for the Mid-Level controller. This method was chosen

for its ease and robustness with nonlinear models. To set up this controller, we took into

account the following features:

The mid-level controller will not have a connection with the other agents, only with

the high and low-level controller of each vehicle.

The reference trajectory is given as the predicted trajectories of the upper high-level

controller.

The result chosen by the mid-level controller is the linear speed v and angular speed

ω of the vehicle in its environment.

The controller will have sensors that will detect if another obstacle, such as vehicles,

people, or obstructions, is in the way.

Fig. 4-4 shows a brief idea of how the mid-level works, the variables it controls, and how it

moves in the environment. Continuously will be given more information in detail about the

mid-level model. We will not go deep into detail because the main contribution of this thesis

is found in the high-level controller.

4.1.1. Overview

The main goal of any MPC is to solve an optimization problem with some constraints by

minimizing certain control variables. Introducing the cost function J(xp, yp), which we want

to minimize, being f(x, y) the nonlinear model of the Section 3.2.2 and G(x, y) the constraint

function, within the range of {glb, gub}.

48 4 Controller Architecture


mı́n
v,ω

J (xp, yp)

s.t. llb ≤ f(x, y) ≤ lup
glb ≤ G(x, y) ≤ gup

(4-45)

Since the solution of the algorithm is discrete, it is necessary to discretize the nonlinear

model. From [44] we discretize 3.2.2 as shown in 4-46.

ẋẏ
θ̇

 =

v cos θv sin θ

ω

 Euler Discretization−→

x(k + 1)

y(k + 1)

θ(k + 1)

 =

x(k)y(k)

θ(k)

+∆T

v(k) cos θ(k)v(k) sin θ(k)

ω(k)

 (4-46)

The objective function as a standard MPC is defined as the square of the difference between

the desired position and the vehicle’s current position, adding the magnitude of the control

variables. The first term punishes the error between the desired state and the current state.

The second term seeks to use the least number of control units to reach the objective. The

following equation describes the objective function to minimize:

f(x, u) =
∥∥xo − xref

∥∥2
Q
+ ∥u∥2R (4-47)

Finally, the set of constraints is composed of the discretized dynamic model f(x(k), u(k)),

the constraints of the control variable u(k)∀k ∈ [0, Hp − 1] and the spatial constraints of the

highway x(k)∀k ∈ [0, Hp]

The objective OCP that each controller must solve at each iteration does not have dynamics

or restrictions coupled with its other neighbours.



mı́n
v,ω

J (x, u) =

Hp−1∑
k=0

f(x(k), u(k))

s.t. x(k + 1) = f(x(k), u(k)),

x(0) = x0,

u(k) ∈ U,∀k ∈ [0, Hp − 1],

x(k) ∈ X, ∀k ∈ [0, Hp].

(4-48)

In the implementation, the Python programming language was used together with the AR-

GroHBotS [37] test lab. The GUROBI library was used to be able to provide faster solutions

when it was implemented in real-time.

4.2 Low-Level control 49

4.2. Low-Level control

Fig. 4-5.: Low-level model.

A Proportional Integral Differential controller (PID) was implemented for the controller

integrated into the robot. This was chosen for its ease, low computation level, and easy

adjustment. Each agent has a microchip with a low level of processing, so it is necessary to

have solution algorithms with low computational consumption, see subsection 3.3.1. However,

it is enough to give a sufficiently optimal solution to the problem. The controller receives the

reference position delivered by the mid-level controller and transforms it into the angular

velocity of each wheel. Fig. 4-5 shows how the low-level model works in the vehicle. The

low level is controlled by a microcontroller embedded inside each car. Moreover, with some

actuators, it can move each motor to give movement to the vehicle finally.

We define the control signal as the solution to the following mathematical equation:

u(t) = kpe(t) + ki

∫ t

0

e(τ) dτ + kd
de(t)

dt
, (4-49)

where the proportional gain Kp = 30, the integral gain ki = 0,1 and the differential gain

kd = 1.

In Fig. 4-6, each controller delivers a response at a different time. This is due to the com-

plexity, high computational load and the communication level that each level handles. The

simulation results will be discussed in the next chapter.

50 4 Controller Architecture

Fig. 4-6.: Illustration of the interaction between the hierarchical levels.

5. Controller Evaluation

This chapter presents the three main scenarios to test the algorithms. The primary purpose

is to evaluate the efficiency and viability of the system in adverse conditions. In addition,

in a simulated way, it seeks to demonstrate that the algorithms work. Later in the Annex

7.2, the same tests will be shown in a real test environment. Each scenario studied and the

evaluation criteria used to evaluate each controller are explained below.

5.1. Testing Scenarios

We implement three main scenarios; the first one is selected to see how each agent works in

a selfish environment to achieve its goal. The second one tests how well the whole group can

avoid an obstacle. They have to synchronize with each other and avoid obstacles without

changing their goals. Moreover, the third one is selected to see how the controller works by

changing the environment variables restricting the scenario and seeing how it will deal with

this situation.

5.1.1. Unrestricted Highway Scenario

In the first scenario, we consider a highway with L lanes and N vehicles driven parallel. They

can be in front, behind, or to the sides. Each vehicle follows its own goal. In this section

there are no restrictions or obstructions.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

Fig. 5-1.: Unrestricted scenario.

52 5 Controller Evaluation

5.1.2. Obstacle Avoidance Scenario

In the Obstacle Avoidance Scenario, we consider the previous scenario with the same number

of lanes and vehicles. Moreover, it also has an obstacle represented as a broken-down car

in the middle of the road. The high-level system can detect the position of vehicles and

variables in the environment. Thus a possible obstacle is a slow-moving or broken-down car.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

Fig. 5-2.: Obstacle avoidance scenario.

5.1.3. Reduced Lane Scenario

In the restricted scenario, we consider a restriction of the environment variables. Due to work

on the road, the highway is reduced to the third lane, going from 5 lanes to 1. Each vehicle

will have to slow down and synchronize to be able to share a single lane. The main idea of

this scenario is to check how the system behaves in the face of an aggressive variation of the

environment variables.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

Fig. 5-3.: Reduced lane scenario.

5.2. Evaluation Criteria

The controller’s effectiveness and the possible strategies’ feasibility established the evalua-

tion criterion. Effectiveness focuses on the quality of the trajectory and how each agent

5.2 Evaluation Criteria 53

achieves its goal. Further, feasibility focuses on the computation time and the algorithm’s

synchronization with the other agent’s controllers.

5.2.1. Feasibility

Feasibility is one of the most essential qualities in an interconnected vehicle control system.

The controller must find a control response within the sampling time. Security will be com-

promised if the response time is greater. We seek to obtain an algorithm with a response as

fast as possible.

Computation Time

Computation time is crucial for the feasibility analysis of a control algorithm. A critical aspect

of implementing the MPC algorithm is the sample time. The most important requirement is

that the control variable’s value is found within the sampling time. In centralized systems, the

increase in control agents increases computing time exponentially. In decentralized systems,

the computation time is held regardless of the number of agents; therefore, the following

equation must be maintained: Tsol ≤ h, where Tsol is the solution time it takes for the entire

system to solve, and h is the sampling time.

The computation time is evaluated by computing the mean, maximum, and minimum over

the entire simulation time.

Robustness to Hardware Failure

Robustness is the second most important aspect of autonomous driving vehicle. A central

node makes control decisions for all agents in centralized control networks. When there are

connection problems, the agents cannot act due to the lack of a control signal. Each agent

calculates its control response in distributed networks with information from its environ-

ment. If there are connection or communication problems, agents can still make decisions

without having information about their neighbours.

The proposed system is decentralized; each agent receives information from its environment,

finds the optimal solution in the solution space, and calculates the best control signal given

the present conditions. It is sought through the simulations to see the system’s robustness

in the face of disconnections, network variations, and aggressive and selfish maneuvers of its

neighbours.

6. Simulation

This chapter presents the results obtained in simulation for the MPC problem of path plan-

ning according to the parameters and conditions mentioned in Chapter 5. In an unrestricted

scenario with no change in environmental conditions or road conditions.

For the simulation, the following assumptions are taken:

All vehicles have the same dimensions.

All vehicles have the same dynamic model, and there is no difference between them.

The highway environment has no curves or intersections.

The target speed and the desired lane are adjusted according to the interest of each

driver.

The figures shown below are from different times. The initial time step shows the desired

location and trajectories when t0 = 0. In the time step, it is possible to see the most diffi-

cult maneuver to perform for some of the network agents. Finally, it is possible to see that

everyone achieves their goal at the end of the control solution.

Colored squares represent vehicles, and circles represent possible crash risk areas. Colo-

red dotted lines represent the predicted trajectories according to the agent to which they

correspond. A final plot will be shown with as much information as possible in order to

interpret the movement that the vehicles would have in a real scenario.

The main simulations were carried out with N = 12 vehicles. However, simulations were

made to analyze computation time with N = {2, 10} vehicles. First, the three most essen-

tial times in the simulation are shown, and then the quality and feasibility of each of the

controllers will be discussed. In decentralized and centralized controllers, the trajectories are

similar because the intention is to have the same working conditions. After a centralized and

decentralized controller simulation, it is presented an analytic analysis. The analysis is based

on the computation time as a function of the number of vehicles, the time per iteration of

each controller, the increment of the computation time as a function of the prediction hori-

zon, and the total simulation time as a function of the number of vehicles connected to the

network at the end of each section, a conclusion of each scenario will be given.

6.1 Unrestricted Scenario 55

The solution algorithm is solved in MATLAB [30]. OCPs are solved using the GUROBI

mathematical optimization engine with the YALMIP programming interface. GUROBI op-

timization engine is chosen to solve most problems due to its powerful branch and bound

algorithm. With this, it is possible to solve Mixed-Integer Quadratic Programming (MIQP)

problems in the presence of non-linear models. This section of the document seeks to eva-

luate the behavior of vehicles in a selfish environment dealing with selfish agents and trying

to reach their goal.

6.1. Unrestricted Scenario

The unrestricted scenario is designed with 12 vehicles on the same road. It also has six lanes

in line, and the road is one-way. There are no intersections, traffic lights, obstacles, crossings,

or any obstructions in the simulation environment.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

Fig. 6-1.: MPC Iteration = 0. Initial conditions.

56 6 Simulation

At the beginning of the simulation, the vehicles are adjusted to an initial position and speed,

as explained in more detail in Chapter 4.0.5. As seen in Fig. 6-1 in the first step, each of

the agents has a predicted trajectory taking into account the predicted trajectories of its

neighbors.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-2.: MPC Iteration = 10. Vh 2,3,4,6 change lanes.

In the first scenario, the centralized and decentralized controllers achieve the main objective

of each of the agents. The trajectories travelled during the simulation time in both cases are

the same because the initial conditions and the main objective are the same. Therefore, the

paths shown are equivalent for both network architectures, Fig. 6-2.

6.1 Unrestricted Scenario 57

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position at first position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-3.: MPC Iteration = 30. The overall goal of the network is achieved.

In the Fig. 6-3 we can see how the entire network can achieve its main objective without

any collision with their neighbors. The trajectory traveled by each of the vehicles can be

seen in Fig. 6-4

The computation time of D-MPC during the entire simulation is computed with the mean

of each step sample. In Fig. 6-5, it can see the average time that the network takes to solve

each step k of the solution algorithm. In addition, the time taken by the fastest controller

(lower barrier) and the slower controller (upper barrier) is shown. The time it takes for each

agent to resolve its OCP depends on the environmental conditions and the main objective

it is looking for.

58 6 Simulation

−40 −20 0 20 40
Pos

1

2

3

4

5

6
Ze

l

agent
robot 1
robot 2
robot 3
robot 4
robot 5
robot 6
robot 7
robot 8
robot 9
robot 10
robot 11
robot 12

Fig. 6-4.: Trajectories of the entire network during the simulation time.

Fig. 6-5.: Step time.

Additionally, an analysis was made of how the prediction horizon affected the response time

of each controller. We choose of having a prediction horizon of 10. Although this is large,

it is not enough to affect the reliability of the system Fig. 6-6. Finally, an analysis of the

time difference in the architectures is made. It is remarkable to see the improvement of the

D-MPC networks. However, for real-time driving, the solution time is not enough 6-7.

6.1 Unrestricted Scenario 59

4 5 6 7 8 9 10
horizon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e

Fig. 6-6.: Computation time vs Horizon

2 3 4 5 6 7 8 9 10
NumberVehicles

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

tim
e

Method
time_Centralized
time_Descentralized

Fig. 6-7.: Computation time [s] vs Number of vehicles.

Conclusion Unrestricted Scenario

Both control structures (C-MPC and D-MPC) show that autonomous driving is possible in

a highway environment. The potential game’s framework allows the controller to take into

account the conditions of others and make the optimal decisions in selfish scenarios.

Given the time results, it can be concluded that in a highway scenario, it is not possible

to drive a vehicle with the centralized technique due to the lack of computing power that

we currently have to be able to solve this problem in a specific time. Solution times in D-

MPC are much lower than what is seen in C-MPC. The C-MPC manages to give an optimal

solution, but its solution takes a long time. Also, sometimes the controller falls into local

60 6 Simulation

minimums but fails to reach a global minimum.

6.2. Obstacle Avoidance Scenario

The obstacle avoidance scenario was designed with 12 vehicles on the same road. It also

has six lanes in line, and the road is one-way. There is one vehicle in the lane L = 3 with

no movement, Fig. 6-8. It represents an obstacle that the controller’s vision system could

recognize. The main objective is to prevent the damaged vehicle from achieving its objective

speed and lane.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane profiles.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-8.: MPC Iteration = 0.

In iteration 0, the controller adjusts the initial positions of all the vehicles. The scenario

poses a vehicle blocked on the road so that the vehicle detection system can detect this new

obstacle. It is essential to mention that in the first step, three vehicles are planning in their

6.2 Obstacle Avoidance Scenario 61

path plans to change lanes. Those are the only vehicles that can change lanes. In addition,

the rest of the neighbors do not plan to change lanes because they have vehicles around them.

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-9.: MPC Iteration = 10.

In Fig. 6-9a, it is possible to notice how vehicle number 3 (green color) has a trajectory

prediction avoiding the obstacle. In addition, the other vehicles have changed lanes avoiding

the obstacle. The vehicles V = {4, 2, 5} (color red, purple, yellow) have already reached their

desired lane without colliding with the others. In Fig. 6-9b, the vehicles are not planning

to change lanes because the majority have achieved their lane goal.

62 6 Simulation

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position at first position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-10.: MPC Iteration = 30.

In the Fig. 6-10 we can see how the entire network can achieve its main objective without

any collision with their neighbors. The trajectory traveled by each of the vehicles can be

seen in Fig. 6-11

6.2 Obstacle Avoidance Scenario 63

−60 −40 −20 0 20 40
Pos

1

2

3

4

5

6

Ze
l

agent
robot 1
robot 2
robot 3
robot 4
robot 5
robot 6
robot 7
robot 8
robot 9
robot 10
robot 11
robot 12

Fig. 6-11.: Trajectories of the entire network during the simulation time.

The simulation results show that the controller can provide a solution to obstacles that may

arise Fig. 6-12. Also, the solution time of each of the sample steps is less in this scenario

compared to the unconstrained scenario. This is due to the few interactions they have to do

between vehicles after avoiding the obstacle vehicle. In addition, near step 10, it is possible

to analyze the increase in solution time because in this step, the vehicles are dealing with

the obstacle on the road.

Fig. 6-12.: Step Time.

In the time analysis, depending on the prediction horizon, it can be seen that despite reaching

12 prediction steps, the system can provide a reasonable solution with a good time. In any

case, the controller sometimes fails to find a minimum due to the big number of constraints.

64 6 Simulation

4 5 6 7 8 9 10
horizon

0.0

0.1

0.2

0.3

0.4

0.5

tim
e

Fig. 6-13.: Computation time vs Horizon

Additionally, an analysis was made of how the prediction horizon affected the response time

of each controller. We choose of having a prediction horizon of 10. Although this is large,

it is not enough to affect the reliability of the system Fig. 6-13. Finally, as in the previous

scenario, the difference in solving time is appreciated as the number of agents in the network

increases. However, unlike the previous scenario, the D-MPC increases its duration with

more vehicles, Fig. 6-14.

2 3 4 5 6 7 8 9 10
NumberVehicles

0

2

4

6

8

tim
e

Method
time_Centralized
time_Descentralized

Fig. 6-14.: Computation time [s] vs Number of vehicles.

6.2.1. Conclusion Obstacle Avoidance Scenario

In a real highway environment, if a vehicle or other obstacle appears on the road, the de-

cisions made by other vehicles are crucial. For this reason, this scenario of obstacles on the

6.3 Reduced Scenario 65

road was analyzed. With this new scenario, the number of constraints and the number of

communications that each of the vehicles must deal with is greater than usual.

The obstacle avoidance scenario simulation shows that both C-MPC and D-MPC mana-

ge to solve the autonomous driving problem despite the increase in its constraints and a

significant increase in communications between vehicles for the D-MPC case. However, the

C-MPC continues to have difficulties providing an optimal solution in many evaluation ca-

ses. The system fell into an unfeasible position causing the entire network to crash. This is

because the algorithm, that is used by the optimization engine (branch and bound), solves

the problem by trying multiple possible solutions. While this is powerful, it can also be

marginally unstable. The D-MPC manages to deal with the increase in constraints properly.

However, more than the solution time is needed to be able to be implemented in real-time.

6.3. Reduced Scenario

The reduced avoidance scenario was designed with 12 vehicles on the same road. It also

has six lanes in line, and the road is one-way. There is a reduction in the number of lanes

from 6 to 1. At a distance of 150 cm, the change starts. The main objective is to emulate

a scenario where construction or change of the highway could happen. Moreover, it is an

excellent opportunity to test the controller’s behavior in the presence of a drastic change in

its solution space, Fig. 6-15.

66 6 Simulation

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane profiles.

2 4 6 8 10 12

Prediction Horizon Hp

0

5

10

15

20

25

30

35

40

45

50

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-15.: MPC Iteration = 0. Lane reduction scenario.

Step 10 of the simulation in the reduced scenario shows how the vehicles have managed to

occupy three lanes without colliding. In addition, Fig. 6-16a shows seven vehicles that have

managed to occupy the central lane and five planning to occupy it. Moreover, it shows how

they consider the speed, current position, and current lane to predict the future where they

can enter lane three without colliding with the others.

6.3 Reduced Scenario 67

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-16.: MPC Iteration = 10. Lane reduction scenario.

In Fig. 6-16c, it is seen how most do not change their speed even though they may have

different target speeds. This consensus is defined by the Game Theory Controller, where it

is of greater importance to comply with the security regulations than to achieve the main

objective for the controller.

68 6 Simulation

-150 -100 -50 0 50 100 150 200 250 300

0

1

2

3

4

5

6

7

(a) Predicted position at first position.

0 2 4 6 8 10 12

Prediction Horizon Hp

0

1

2

3

4

5

6

7

L
an

e
N

u
m

b
er

(b) Predicted lane positions.

0 2 4 6 8 10 12

Prediction Horizon Hp

5

10

15

20

25

30

35

40

45

50

55

V
el

o
ci

ty
 [

k
m

/h
]

(c) Predicted velocity profiles.

Fig. 6-17.: MPC Iteration = 30. Lane reduction scenario.

In Fig. 6-17 show how the entire network can achieve lane 3 without collision and fulfilling

the restriction of the number of lanes. Fig. 6-17b and Fig. 6-17c are constant. It shows

how the vehicles do not need to accelerate or make a lane change.

6.3 Reduced Scenario 69

−50 0 50 100 150 200
Pos

1

2

3

4

5

6

Ze
l

agent
robot 1
robot 2
robot 3
robot 4
robot 5
robot 6
robot 7
robot 8
robot 9
robot 10
robot 11
robot 12

Fig. 6-18.: Trajectories of the entire network during the simulation time.

Fig. 6-18 shows the trajectories travelled by vehicles as a result of a Generalized Potential

Game control repeatedly solved by D-MPC for 12 vehicles. It is interesting to see how,

despite the short space and time, 12 vehicles manage to synchronize to be able to enter the

same lane without colliding and taking into account the decisions of the others. Also, the

last vehicle i = 12, is the last one that manages to join the lane. This is due to the initial

conditions.

Fig. 6-19.: Step Time.

Fig. 6-19 shows how the average solution time of the D-MPC is reduced by the reduction of

restrictions and by the limited solution space. The network is at its maximum computation

level at the simulation’s beginning. This is due to the beginning, exist 12 vehicles trying to

synchronize in order to be all on the same line.

70 6 Simulation

4 5 6 7 8 9 10
horizon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

tim
e

Fig. 6-20.: Computation time vs Horizon

The same feasibility analysis was performed by increasing the prediction horizon, and the D-

MPC was able to solve the OCP without problems, Fig. 6-20. This system does not represent

an effort to the Generalized Potential games theorem due to its low level of interactions

between vehicles at the end of the simulation.

2 3 4 5 6 7 8 9 10
NumberVehicles

0

5

10

15

20

25

30

35

tim
e

Method
time_Centralized
time_Descentralized

Fig. 6-21.: Computation time [s] vs Number of vehicles.

Finally, in the comparison of the times of each of the architectures, the C-MPC has an

exponential increase in its solution time. The reduction of interactions does not significantly

favor the centralized architecture Fig. 6-21. However, the D-MPC manages to maintain the

average time of the complete simulation regardless of the increase in vehicles. This is due to

the fact that the ϵ-Nash equilibrium can be solved more quickly, and the OCP problem is

reduced to the interaction of each vehicle with the vehicle in front and behind.

6.3 Reduced Scenario 71

6.3.1. Conclusion Reduced Scenario

One of the scenarios that a vehicle could face on a highway would be that of construction

on the road. This new change in the road conditions would be reflected in the set of spatial

variables L, which would be reduced from 6 to 1. We trust that the GMIPG in a D-MPC

architecture shown in this thesis document can deal with this problem.

In C-MPC, when vehicles are merging into a single lane, it is difficult for them to find an op-

timal decision to avoid colliding with each other. With an increase in the prediction horizon,

this inconvenience could be solved. In D-MPC, the solution was always possible regardless

of the prediction horizon used. In addition, the solution time could be reduced as each of

the vehicles adhered to the single lane. This is because there are fewer connections that each

agent must take into account to provide an optimal solution.

In short, the C-MPC fails to give an adequate response to the problem of driving on a freeway

with a lane reduction and in front of selfish agents trying to join the same lane. The D-MPC

controller manages to deal with this task with improved solution time and does not have

problems with the solutions. See Fig. 6-19 . The reduced scenario was chosen to analyze the

behavior of both drivers in the face of a sudden reduction, such as the lanes of a highway.

See Fig. 6-18. All vehicles manage to synchronize to be able to stay in a single lane.

7. Conclusions and Recommendations

7.1. Conclusions

This thesis document compares the results obtained by a centralized system versus a de-

centralized system. In both cases, the complete network solves the problem of autonomous

driving of multiple vehicles as a generalized mixed-integer potential game problem. Centrali-

zed networks solved with a C-MPC can give enough results to solve the problem. Moreover,

they depend on a single central node, besides being slow and requiring large amounts of

computational power to solve the problem. Decentralized networks solved with a D-MPC

provide a faster and more feasible solution to the same problem without requiring a cen-

tral node to solve the main problem. Those are more robust because the solution is not

entrusted to a single node. It means communication problems will not break the network

like they would on the C-MPC. Despite all these advantages, this method relies completely

on efficient communication. The network will only be the most appropriate if the latter exists.

The generalized mixed-integer potential games framework offers excellent results in solving

problems with mixed-integer variables and dynamic graph topology. The use of game theory

substantially improves the solution to the problem, by taking into account the decisions of

others, make your own. It allows each vehicle to anticipate an unsafe maneuver for the driver

or his neighbors on the highway.

The use of mixed integer variables converts the model to a simple system. The previous

theory is an advantage of making the problem solvable and improveing safety. Unfortuna-

tely, it is currently impossible to implement this kind of algorithm in production vehicles

due to technological shortcomings in communication and computing power.

The solution proposed in this thesis is restricted only to road scenarios with vehicle detection

systems. It does not consider the other scenarios and conditions a real driver may face. In

addition, it assumes that the communication and identification of the vehicles around it are

optimal and that there will be no delays, miscommunications, or communication problems

between drivers. The calculation time of each of the controllers is different. The high-level

controller was simulated in a virtual environment, and the result was used as a reference for

the medium and low-level controllers.

7.2 Future Work 73

In Appendix 7.2, the images collected from the implementation of the controller proposed

in this thesis in a real environment of vehicles used in mobile robotics were added. The envi-

ronment was designed, programmed, and built to implement this control system efficiently.

However, that doesn’t limit you to other possible controllers.

7.2. Future Work

For future studies, it is recommended to investigate further solutions to the problem of low

computational power that an electric vehicle can have. since large amounts of computation

are required that translate to large hardware and high energy consumption. Finally, it is

important to investigate in depth the use of better sensors to identify any reactive mobile

agent that may appear.

A. Annex: Implementation Images

In addition to simulations, the complete system was implemented in a testbed system [37].

Below are the images taken in the implementation of each of the scenarios analyzed in this

document.

Fig. A-1.: Vehicles used in the implementation.

A.1 Unrestricted Scenario 75

A.1. Unrestricted Scenario

For the unrestricted scenario, we use 12 vehicles in the laboratory. It was necessary to mark

off the lanes on the floor. Like the simulation, we use a scenario with six lanes. Fig. A-2a

shows the video used for the pc to calculate the position of each robot in the environment.

Fig. A-2b shows a frontal vision of the scenary. Finally the Fig. A-2c shows the vision of

the vehicles horizontally.

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-2.: Implementation at iteration 0.

The first part for implementing unrestricted scenario vehicles is positioned in the initial

conditions established in the simulation already carried out in Chapter 6. Each vehicle has

a different goal, and the whole group will try to fulfill its objective avoiding the agents.

76 A Annex: Implementation Images

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-3.: Implementation at iteration 10.

In iteration 10, we can see how each car tries to change lanes, but some of them keep its

lane due to safety restrictions, Fig. A-3. For example, the white car keeps going in the same

lane z = 2 because a change of lane could be represented in a collision.

A.1 Unrestricted Scenario 77

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-4.: Implementation at iteration 30.

How it was predicted and simulated, the entire network can achieve its primary goal without

a critical collision, Fig. A-4. The vehicles fulfil the lane at an speed desired previously.

78 A Annex: Implementation Images

A.2. Obstacle Avoidance

In Obstacle avoidance implementation, we use a vehicle with a cone on top as an obstacle.

The objective was to simulate what could happen if an obstacle appeared on the highway

and how the network could deal with it.

(a) Controller vision.

(b) Front vision.

Fig. A-5.: Implementation at iteration 0.

We placed 12 vehicles in the initial condition, and we also used some cones as a sign of

a wrecked car, Fig. A-5. All vehicles will try to avoid it but simultaneously achieve their

primary goal.

A.2 Obstacle Avoidance 79

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-6.: Implementation at iteration 10.

In Fig. A-6 is possible to see that all cars are changing lanes, but the white vehicle i = 3 is

dealing with the obstacle in front. In the implementation, we can see how the white vehicle

reduces its speed, waiting for the other lanes to change and then pursuing its goal.

80 A Annex: Implementation Images

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-7.: Implementation at iteration 40.

Finally, the agents can cross the obstacle and then look for its objective but deal with it

beforehand. The white car could avoid the wrecked car and now is achieving its objective,

Fig. A-7. The implementation shows the expected results in the simulations, and it is

possible to be replicated in a laboratory.

A.3 Reduced Scenario 81

A.3. Reduced Scenario

For the reduced scenario, we place some cones to represent a highway where any kind of

construction or accident reduces the lanes. The six lanes are reduced just to one looking at

an extreme change in its environment. This reduction represents a change in the possible

solution to each agent, reducing L = 6 lanes to a L = 1, Fig. A-8. The main objective is to

observe the behavior of the whole network in a challenging environment and how they deal

with it. The yellow vehicle does not interact with each other and represents a construction

vehicle in the scenario. It is not taken into account by the control system.

(a) Controller vision.

(b) Front vision.

Fig. A-8.: Implementation at iteration 0.

In the beginning, the vehicles are placed in the initial condition established in Chapter 6.

The whole network will try to change to a lane L = 3, avoiding collisions and fulfilling the

82 A Annex: Implementation Images

lane objective before crashing with the cones.

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-9.: Implementation at iteration 10.

In iteration 10, some agents have managed to reach lane 3, Fig. A-9. However, some are

already trying to get into it. Vehicle 1 is entering lane 3 thanks to vehicle 11 reducing its

velocity allowing it to enter.

A.3 Reduced Scenario 83

(a) Controller vision.

(b) Front vision. (c) Lateral vision.

Fig. A-10.: Implementation at iteration 40.

Finally, the entire network achieves to get into lane three without collision. Although the

scenario was challenging, the implementation showed a good result, Fig. A-10. The im-

plementation had some problems with the vision system, but it could be solved, and the

implementation was successful.

Bibliography

[1] Alrifaee, Bassam: Networked Model Predictive Control for Vehicle Collision Avoidan-

ce, Tesis de Grado, 05 2017

[2] Alrifaee, Bassam ; Ghanbarpour, Masoumeh ; Abel, Dirk: Centralized Non-

Convex Model Predictive Control for Cooperative Collision Avoidance of Networked

Vehicles, 2014

[3] Alrifaee, Bassam ; Maczijewski, Janis ; Abel, Dirk: Sequential Convex Program-

ming MPC for Dynamic Vehicle Collision Avoidance, 2017

[4] Bauso, Dario: Game Theory: Models, Numerical Methods and Applications. En:

Foundations and Trends in Systems and Control 1 (2014), 10, p. 379–522

[5] Bemporad, Alberto ; Morari, Manfred: Control of systems integrating logic, dyna-

mics, and constraints. En: Automatica 35 (1999), Nr. 3, p. 407–427. – ISSN 0005–1098

[6] Bennett, S.: A brief history of automatic control. En: IEEE Control Systems Magazine

16 (1996), Nr. 3, p. 17–25

[7] Brock, Oliver ; Khatib, Oussama: High-Speed Navigation Using the Global Dynamic

Window Approach. (2000), 01

[8] Carona, Ricardo ; Aguiar, A P. ; Gaspar, Jose: Control of unicycle type robots

tracking, path following and point stabilization. (2008)

[9] Cesa-Bianchi, Nicolò ; Lugosi, Gábor: Prediction, Learning, and Games. 2006. –

ISBN 978–0–521–84108–5

[10] Cheng, Shuo ; Li, Liang ; Chen, Xiang ; nan Fang, Sheng ; yu Wang, Xiang ; heng

Wu, Xiu ; bing Li, Wei: Longitudinal autonomous driving based on game theory for

intelligent hybrid electric vehicles with connectivity. En: Applied Energy 268 (2020), p.

115030. – ISSN 0306–2619

[11] Dogra, Anutusha ; Jha, Rakesh K. ; Jain, Shubha: A Survey on Beyond 5G Network

With the Advent of 6G: Architecture and Emerging Technologies. En: IEEE Access 9

(2021), p. 67512–67547

Bibliography 85

[12] Dunbar, William: Distributed Receding Horizon Control of Multiagent Systems.

(2004), 01

[13] Dunbar, William ; Murray, Richard: Distributed receding horizon control for multi-

vehicle formation stabilization. En: Automatica 42 (2006), 04, p. 549–558

[14] Fabiani, Filippo ; Grammatico, Sergio: Multi-Vehicle Automated Driving as a Ge-

neralized Mixed-Integer Potential Game. En: IEEE Transactions on Intelligent Trans-

portation Systems PP (2019), 03, p. 1–10

[15] Facchinei, F. ; Kanzow, Christian: Generalized Nash equilibrium problems. En:

Annals of Operations Research 175 (2010), 02, p. 177–211

[16] Facchinei, Francisco ; Pang, Jong-Shi: Nash equilibria: The variational approach.

En: Convex Optimization in Signal Processing and Communications (2009), 01. ISBN

9780511804458

[17] Facchinei, Francisco ; Piccialli, Veronica: Decomposition algorithms for generalized

potential games. En: Computational Optimization and Applications 50 (2011), 10, p.

237–262

[18] Fudenberg, Drew ; Tirole, Jean: Game Theory. Cambridge, MA : MIT Press, 1991.

– Translated into Chinesse by Renin University Press, Bejing: China.

[19] Garćıa, Carlos E. ; Prett, David M. ; Morari, Manfred: Model predictive control:

Theory and practice—A survey. En: Automatica 25 (1989), Nr. 3, p. 335–348. – ISSN

0005–1098

[20] Garrido-Jurado, Sergio ; Muñoz-Salinas, Rafael ; Madrid-Cuevas, Francisco J.

; Maŕın-Jiménez, Manuel J.: Automatic generation and detection of highly reliable

fiducial markers under occlusion. En: Pattern Recognition 47 (2014), Nr. 6, p. 2280–2292

[21] Gehrig, S. K. ; Stein, F. J.: Dead reckoning and cartography using stereo vision

for an autonomous car. En: Proceedings 1999 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Human and Environment Friendly Robots with High

Intelligence and Emotional Quotients (Cat. No.99CH36289) Vol. 3, 1999, p. 1507–1512

vol.3

[22] Hespanha, Joao: Noncooperative Game Theory: An Introduction for Engineers and

Computer Scientists. 2017. – ISBN 9781400885442

[23] Hu, J. ; Bhowmick, P. ;Arvin, F. ; Lanzon, A. ; Lennox, B.: Cooperative Control of

Heterogeneous Connected Vehicle Platoons: An Adaptive Leader-Following Approach.

En: IEEE Robotics and Automation Letters 5 (2020), Nr. 2, p. 977–984

86 Bibliography

[24] Jr, John ; Nash, John: Two-Person Cooperative Game. En: Econometrica 21 (1953),

02, p. 128–140

[25] Leyton-Brown, Kevin ; Shoham, Yoav: Essentials of Game Theory: A Concise

Multidisciplinary Introduction. Vol. 2. 2008. – ISBN 978–1598295931

[26] Maestre, J.M.: Distributed Model Predictive Control Based on Game Theory, Tesis

de Grado, 10 2010

[27] Marden, Jason R. ; Shamma, Jeff S.: Game Theory and Control. En: Annual Review

of Control, Robotics, and Autonomous Systems 1 (2018), Nr. 1, p. 105–134. – ISSN

2573–5144

[28] Mayne, D.Q. ; Rawlings, J.B. ; Rao, C.V. ; Scokaert, P.O.M.: Constrained model

predictive control: Stability and optimality. En: Automatica 36 (2000), Nr. 6, p. 789–

814. – ISSN 0005–1098

[29] Mohseni, Fatemeh ; Frisk, Erik ; Åslund, Jan ; Nielsen, Lars: Distributed Model

Predictive Control for Highway Maneuvers. En: IFAC-PapersOnLine 50 (2017), 07, p.

8531–8536

[30] Moler., Clever: Matlab Optimizacion Toolbox,. (2022)

[31] MYERSON, ROGER B.: Game Theory: Analysis of Conflict. Harvard University

Press, 1991. – ISBN 9780674341166

[32] Nash, John: Equilibrium Points in N-Person Games. En: Proceedings of the National

Academy of Sciences of the United States of America 36 (1950), 02, p. 48–9

[33] In: Nash, John: THE BARGAINING PROBLEM. 2020, p. 5–13. – ISBN

9780691011929

[34] Nisan, Noam ; Roughgarden, Tim ; Tardos, Éva ; Vazirani, Vijay: Algorithmic

Game Theory. 2007

[35] Optimization., LLC G.: gurobi optimizer reference manual,. (2021)

[36] Osborne, Martin ; Rubinstein, Ariel: A course in Game Theory. Vol. 63. 1994

[37] Ospina Gaitan, Nestor ; Mojica-Nava, Eduardo ; Jaimes, L.G. ; Calderon, Juan:

ARGroHBotS: An Affordable and Replicable Ground Homogeneous Robot Swarm Test-

bed. En: IFAC-PapersOnLine 54 (2021), 01, p. 256–261

[38] Sagratella, Simone: Algorithms for generalized potential games with mixed-integer

variables. En: Computational Optimization and Applications 68 (2017), 12

Bibliography 87

[39] sar, Tamer ; Olsder, G.J.: Dynamic Noncooperative Game Theory. 1995

[40] Shakey, Peter H.: the world’s first mobile, intelligent robot. 2015

[41] Taeihagh, Araz ; Lim, Hazel Si M.: Governing autonomous vehicles: emerging respon-

ses for safety, liability, privacy, cybersecurity, and industry risks. En: Transport Reviews

39 (2018), Jul, Nr. 1, p. 103–128. – ISSN 1464–5327

[42] Thrun, S.: Toward robotic cars. En: Commun. ACM 53 (2010), p. 99–106

[43] Valencia, Felipe ; Patiño, Julian: Game Theory Based Distributed Model Predictive

Control for a Hydro-Power Valley Control, 2013. – ISBN 9783902823397, p. 538–544

[44] Worthmann, Karl ; Mehrez, Mohamed ; Zanon, Mario ; Mann, G.K.I. ; Gosi-

ne, Ray ; Diehl, Moritz: Model Predictive Control of Nonholonomic Mobile Robots

Without Stabilizing Constraints and Costs. En: IEEE Transactions on Control Systems

Technology 24 (2015), 10, p. 1–13

[45] Yang, Xue ; Liu, Jie ; Zhao, Feng ; Vaidya, Nitin: A Vehicle-to-Vehicle Communi-

cation Protocol for Cooperative Collision Warning., 2004, p. 114–123

