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Abstract

We investigate different set-theoretic constructions in Residuated Logic based on Fitting’s
work on Intuitionistic Kripke models of Set Theory.

Firstly, we consider constructable sets within valued models of Set Theory. We present
two distinct constructions of the constructable universe: £8 and LB, and prove that the
they are isomorphic to V' (von Neumann universe) and L (Godel’s constructible universe),
respectively.

Secondly, we generalize Fitting’s work on Intuitionistic Kripke models of Set Theory using
Ono and Komori’s Residuated Kripke models. Based on these models, we provide a general-
ization of the von Neumann hierarchy in the context of Modal Residuated Logic and prove
a translation of formulas between it and a suited Heyting valued model. We also propose a
notion of universe of constructable sets in Modal Residuated Logic and discuss some aspects
of it.

Keywords: Valued models, abstract logics, residuated lattices, Kripke models, con-

structible sets



Resumen

Investigamos diferentes construcciones de la teoria de conjuntos en Logica Residual basados

en el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la Teoria de Conjuntos.

En primer lugar, consideramos conjuntos construibles dentro de modelos valuados de la
Teoria de Conjuntos. Presentamos dos construcciones distintas del universo construible:
£8 v LB y demostramos que son isomorfos a V' (universo von Neumann) y L (universo

construible de Godel), respectivamente.

En segundo lugar, generalizamos el trabajo de Fitting sobre los modelos intuicionistas de
Kripke de la teoria de conjuntos utilizando los modelos residuados de Kripke de Ono y
Komori. Con base en estos modelos, proporcionamos una generalizacion de la jerarquia de
von Neumann en el contexto de la Logica Modal Residuada y demostramos una traduccion de
férmulas entre ella y un modelo Heyting valuado adecuado. También proponemos una nocién
de universo de conjuntos construibles en Logica Modal Residuada y discutimos algunos

aspectos de la misma.

Palabras clave: Modelos valuados, légicas abstractas, reticulos residuales, modelos de

Kripke, conjuntos construibles
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Introduction

The notion of constructibility (in Set Theory) started with Gédel’s work [G6d38| on the con-
sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH).
Godel considers the class of definable sets in Classical first-order Logic in the language

of Set Theory, now called Gddel’s constructable universe.

At the beginning, Godel’s idea of considering definable sets in some logic was not widely
used in the construction of new inner models, but rather, using different set-theoretical tech-
niques, new inner models, such as HOD or L[U], were defined that allowed the advancement
of Set Theory, especially in the realm of independence results. Nonetheless, a couple of at-
tempts were made to generalize Godel’s idea of a class of definable sets: Scott and Myhill
[SMT71] showed that the well-known model HOD can be obtained as the definable sets in
second-order logic and Chang [Cha71| showed that if one considers the definable sets in
the infinitary logic L, ., , an inner model is obtained that is characterized by being the
smallest inner model that is closed under countable sequences. Although these results are
interesting, no meaningful study of inner models arising from different logics was considered

for a very long time.
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It was not until the work of Kennedy, Magidor and Véanénen [KMV20] that inner models of
Set Theory that arise when considering definable sets in generalized logics were systematically
studied. The logics considered were strengthenings of first-order logic constructed by using
generalized quantifiers or by allowing infinite disjunctions, conjunctions, or quantification.
Some notable examples include the Stationary Set Theory, logics with cofinality quantifiers,
the Hartig quantifier and the Magidor-Malitz quantifier. Such models made it possible to
study new independence results in Set Theory.

Therefore, one could ask if such constructions could be done in logics that are weakenings
(rather than strengthenings, as we just saw) of Classical first-order Logic. We would like to
study logics general enough to capture the most important logical examples, such as Intu-
itionistic and Fuzzy Logic, but not so general that we lose too many structural rules, such
as the commutativity of the premises in a deduction. Therefore, we are interested in studying
constructibility in the context of the so called substructural logics without contraction
(but with the exchange rule). Essentially, we consider a weakening of Intuitionistic Logic in
which we consider two types of conjunctions: & and A. The strong conjunction (denoted

&) is no longer idempotent, that is,
a — (aka)
no longer holds for all formulas «. The defining feature of this connective is that is the left
adjoint to the implication (just as A is for the classical and intuitionistic case),
a&f = v if and only if a = 8 — 7.

We also consider a weak conjunction (denoted A) closer to the intuitionistic one, but that

is not necessarily the adjoint to the implication.
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Therefore, in this logic, called Residuated Logic (also Monoidal Logic in [H6h94]), it
is the case that the strength of the premises changes depending on how many of the same
hypothesis we have (due to the lack of idempotency), such as it can be seen in the deduction

theorem for Residuated Propositional Logic (RPC):

Theorem 0.0.1 (Deduction theorem for RPC', [Mac96]). If there is a deduction in RPC
of 6 from the set of formulas «,f,...,7,d, and the deduction used § n-times, then there
is a deduction in RPC of (6™ — ) from «, f3,...,v (where 6" = §&d&...&¢ is the n-fold

conjunction of ¢ with itself).

Also in regards to the equality, we have that the usual substitution of equal elements

(z = y)&b(x) = 0(y)

is not going to hold in general, but rather, we have that

(z =y)"&b(z) = 0(y)

where n occurrences of z in §(z) that have been replaced by y to form 6(y).

With these key features in mind, one could ask what kind of models are we going to use to
study these logics, and more specifically, how do we can find natural models of Set Theory
for these logics. We do this in two ways: first by considering lattice-valued models and
then using Kripke-like models.

Lattice-valued models were first introduced by Scott and Solovay in [SS67]. They considered
Boolean-valued models of Set Theory in order to provide a more intuitive presentation

of Cohen’s forcing. To achieve this, they took a complete Boolean algebra B and built a
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“model” of Set Theory V® in which the truth values of formulas take values in B instead of

the trivial Boolean algebra {0, 1}.

Based on the construction of Scott and Solovay, several generalizations of the previous con-
struction have been considered by taking other lattices instead of Boolean algebras. For
example, Heyting lattices give rise to Intuitionist models of Set Theory |Gra79|, BLA-
algebras give rise to models of Fuzzy Set Theory in the Fuzzy Logic BLVA [HHO1, [HHO3|
and topological complete residuated lattices (i.e. topological commutative integral quantale)
give rise to Modal models of Residuated Set Theory [Lan92a]. These kind of valued

models serve as natural models of logics weaker than first-order.

Until now, as far as the author is aware, there has been no in-depth study of what would be a
“class of definable sets” in the context of valued models. The closest attempt to this was done
by Fitting [Fit69)], where, as motivation for his definition of class of constructable sets using
Kripke models, it was shown how to construct L (or more precisely a model “isomorphic” to

L) using two-valued characteristic functions that are definable by some formula.

Following Fitting’s idea, we propose new definitions of the notion of definable subset within
a Boolean-valued model of Set Theory and with them, we propose two new constructions
of the constructable universe: £8 and LE. Moreover, we prove that these models are, in
fact, two-valued, since our definition of definable is too restrictive and forces the models to
only take these values. Furthermore, we prove that £8 and P are “isomorphic” to V' (von

Neumann universe) and L (Godel’s constructible universe), respectively.

When trying to generalize these notions of definability to the context of quantale-valued

models, we found that the resulting classes of constructable sets are also two valued, and
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therefore are not suitable to study Residuated Logic. Hence, we instead focus on develop-
ing the notion of constructable sets in the realm of Kripke models, where these kind of

problems are avoided.

As it turns out, there is a precedent to the idea of considering constructable sets over
Kripke models: Fitting [Fit69] constructed several models of Intuitionistic Set Theory
generalizing both the universes of von Neumann and of Godel using Intuitionistic Kripke
models and then went on to show how these models can be used to obtain classical proofs

of independence in Set Theory.

Thus, since we would like to generalize Fitting’s Intuitionistic Kripke models of Set Theory,
we would need first a notion of Kripke models for Residuated Set Theory. Ono and Komori
[OK85| introduced the notion of semantics for substructural logics without contraction and
exchange. These models, that we call Residuated Kripke models (shortly, R-Kripke
models), generalize the notion of Intuitionistic Kripke models and then, following the ideas of
Lano [Lan92al, we further generalize these models to Mlodal Residuated Kripke models
(shortly, M R-Kripke models). The definition for the interpretation of the modality in our
definition is original, and allows for a suitable translation between Kripke models and lattice-
valued models. Moreover, using these M R-Kripke models together with Fitting’s ideas on

the intuitionistic case, we construct new Modal Residuated models of Set Theory.

We define the model V** (see Definition [3.2.18)), that generalizes the von Neumann hi-
erarchy for Modal Residuated Logic, and we prove, in Corollary [3.2.30 that there is a
Godel-McKinsey—Tarski-like translation between this model and a suited Heyting val-

ued model RY (see Definition [3.2.23). This translation is obtained by first constructing an
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“isomorphism” (see Theorem |3.2.29) between VP* and R™ and then proving how this result

implies that if ¢ is an Lc-sentence that is valid in R™, then Oy is valid in VF".

Then, we study superficially the notion of constructible set in the context of Modal Resid-
uated Kripke models of Set Theory. We only outline a propose for a construction in this

context.

In Chapter [1, we begin by providing some basic definitions and facts about models of Set
Theory. In particular, we introduce the von Neumann hierarchy of sets and Godel’s
hierarchy of constructable sets, since these are the key notions that we are interested
in studying in the context of Residuated Logic. In Section [1.2] we present some preliminary
concepts of lattice theory. We are especially interested in the study of Boolean and Heyt-
ing algebras, commutative integral quantale and modal operators (i.e., quantic nucleus) on
these lattices. In Section [I.3] we discuss some basic aspects of the logics that we encounter
throughout this work. Two concepts of note are the G6del-Kolmogorov translation be-
tween Classical and Intuitionistic Logic and the Godel-McKinsey-Tarski translation be-
tween Intuitionistic (Classical) Logic and Modal Logic Sy (S5), since our results in Chapter

are inspired by this kind of translation theorems between logics.

In Chapter [2, we start by introducing the notion of lattice-valued models for different lat-
tices (Boolean and Heyting algebras, and commutative integral quantale) and discuss their
relationship with several logics (Classical, Intuitionistic and Residuated Logic). In Section
we discuss the construction of valued models of Set Theory, and prove some basic results
about them. In Section, [2.3] we propose two definitions for the class of constructable sets in

the context of Boolean-valued models of Set Theory, £8 and L. We show that both B-valued
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models are in fact two-valued. Furthermore, we prove that £8 and LB are “isomorphic” to
V and L, respectively. At the end of the chapter, we remark that if we use our notion of
definable class for quantale-valued models, we obtain a model that is also two-valued and
thus not suitable for Residuated Logic.

In Chapter [3 we start by introducing different notions of Kripke model for the different
logics that we consider in this chapter. In Subsection we discuss some basic aspect of
the Intuitionistic Kripke models and then, in Subsection [3.1.2] we showcase some connections
between these models and Cohen’s forcing. In Subsection3.1.3] we discuss Ono and Komori’s
R-Kripke models and adapt some of their results in our context. Lastly, in Subsection
[B.1.4) we consider M R-Kripke models, whose definition is due to the author. These models
introduce a modal operator in the definition of Residuated Kripke models.

In Section , we start by discussing Fitting’s results [Fit69] and emphasizing some aspects
of his argument. This is done to make it clear how to generalize his results for Residuated
Logic. In Subsection [3.2.2] we propose a new definition for the von Neumann universe in the
context of Residuated Logic using the M R-Kripke models that we introduced in Subsection
[B.1.4f. We provide a translation between our M R-Kripke models and a suited Heyting valued
model via the possibility operator.

Finally, in Section we begin by discussing Fitting’s notion of class of constructable sets
in Intuitionistic Kripke models. In Subsection [3.3.2] we propose a notion for the class of
constructable sets in Modal Residuated Logic, and consider some properties that might be
necessary for proving results similar to the ones from [Fit69]. We finish by discussing some

open problems and conjectures.



1 Preliminaries

Throughout this document, we will work on ZFC', the Zermelo-Fraenkel axioms of Set
Theory including the Axiom of Choice.

The notation that we use in this work is standard: Given a set A, P(A) denotes the set of
subsets of A. If Bisalsoaset, X € Aand f: A — Bisa function, f|x denotes the function
that is obtain when the domain of f is restricted to X, dom(f) denotes the domain of f
and ran(f) denotes its range. ON denotes the class of all ordinals. We use the symbol ~
to denote an equivalence relation on A, |a| to denote the equivalence class of a € A modulo

~ and A/, to denote the set of ~-equivalence classes.

1.1 Models of Set Theory

In this work we are (for the most part) only interested in structures which carry one binary

relation € and that validate the axioms of ZFC (or some variation of them).

Definition 1.1.1. £, = {€} denotes the language of Set Theory, which consists of a binary

relation symbol €.
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Definition 1.1.2. We define the universe of sets as V. = {z : x = x}. From Russell’s

paradox, we know that V' is a proper class.

1.1.1 von Neumann Universe

Although this hierarchy carries his name, von Neumann was not the first mathematician to
investigate this hierarchy, but Ernst Zermelo in 1930 [Zer30]. This class can be understood
as the class of hereditary well-founded sets, which under the axiom of regularity, happens
to coincide with the class of all sets and therefore allows us to divide the set universe into

“levels” indexed by ordinals.

Definition 1.1.3 (von Neumann hierarchy of sets). We define by transfinite recursion over

the ordinals:

1. Vh:= .

2. Va_;,_]_ = P(Va)

3. Vo := | Vp, for o # 0 limit ordinal.

B<a
The von Neumann hierarchy allows us to see how every set can be obtained from the void

and the power set operation, as long as the axiom of regularity holds.

Proposition 1.1.4 (|Jec03|, Lemma 6.3). For every set = there is an ordinal a such that

x € V,,. Therefore, we can write V' = (] V, and we call V' the von Neumman universe.
aceON

Definition 1.1.5. Given a set z, we define the rank of x, rank(x), as the smallest ordinal

« such that x € V,,,1. Thus, we notice that from this definition V,, = {z : rank(z) < a}
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One of the goals of this work is to study some generalizations of the von Neumann hierarchy
for logics that are more general than first-order logic. That is, we want to generalize the
notion of subset, and we will do that by associating this concept to the notion of charac-

teristic function and then generalizing this notion to wider contexts.

1.1.2 Godel’s Universe

In [G6d38] Godel constructed a class model consisting of Lc-definable sets in Classical first-
order Logic and it was used to prove the consistency of the Axiom of Choice (AC) and
the Generalized Continuum Hypothesis (GCH). We present briefly those results on this
subsection, but for anyone interested in a more in depth discussion of this model and the

proofs for these theorems see [Kunll] or [Jec03].

Definition 1.1.6. Let us consider an Le-structure (M,€) and X < M. We say that X
is definable in (M,€) if there exists a (classical) first-order Lc-formula p(zq,...,z,) and

ai,...,a, € M such that

X ={zeM|(Me)E ola,... a,)}

Based on the above, we define Def(M) = {X < M | X is definable in (M,€)} < P(M).

Definition 1.1.7 (Godel’s hierarchy of constructible sets). We now define the hierarchy L,

recursively over the ordinals:

1. LQ = @

2. Lay1 := Def(Ly).
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3. Lo := |J Lg for a # 0 limit ordinal.
[B<a
Definition 1.1.8 (Gdédel’s constructible universe). Abusing the notation, we define the class

of Godel’s constructible sets as L := | J La.
aeON

The above is just shorthand for the Lc-formula p(z) = 3o € ON(z € L,). Thus, we say
that a € L if and only if ¢(a) holds. Notice that, strictly speaking, L is not a set, but
rather a proper class of sets that satisfy the property given by the formula ¢(z). We will use

shorthands like these throughout this work, so we will not mention this convention again.

Definition 1.1.9. We say that a set x is constructible if x € L.

We can view L as a more rigid and controlled version of the universe, where instead of
considering all subsets of a set in the successor step, we only consider definable subsets of
that set. This distinction allows us to control the cardinality of the power set in the L model,

as we see in the next theorem.

Proposition 1.1.10. (JJec03], Theorems 13.3, 13.16, 13.18, 13.20) Godel’s universe L is a

model of ZFC + GCH.

One goal of this work is to propose generalizations of Gdédel’s universe L in more general
contexts than Classical Logic. Therefore, we must first find natural models for logics weaker
than Classical Logic. This will be done in Chapter [2] by considering models valued on

different lattices, and in Chapter |3| with Kripke models and their generalizations.
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1.2 Lattices

Throughout this section, we present some preliminary concepts of lattice theory, as they will
be of use for the construction of models for different types of logics. For instance, lattices
are widely used in algebraic logic as they can be understood as models of most logics via a
construction similar to the Lindenbaum—Tarski algebra for Classical Logic.

Lattices are used for several reasons:

1. The notions of meet (A) and join (V) serve as natural interpretations of the conjunction

and disjunction, respectively.

2. The order in the lattice can be understood as formalizing the notion of “stronger than”

in the logical sense.

3. The operation of implication — in the lattice is usually defined in terms of an adjunc-
tion, usually to the operation of meet or to some product in the lattice. This is done

so that we can algebraically capture the logical rule of Modus Ponens.

1.2.1 Boolean and Heyting algebras.

Definition 1.2.1. Let (P, <) be a partially ordered set (or poset). We say that P is a lattice
if for every pair of elements x, y € IP there exists the supremum and infimum of the set {z, y}

and we denote

x vy :=sup{z,y} and z A y := inf{x, y}.

We say that a lattice P is distributive if
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zA(yvz)=(x Ay v(znz).

A lattice P is said to be bounded if there are elements 0, 1 € IP such that for all x € P

We say that a bounded lattice P is complemented if for all x € P, there exists y, € P such
that x vy, = 1 and z Ay, = 0 and we say P is pseudocomplemented if there exists a greatest
element y, € P with the property z Ay, = 0. In distributive lattices, complements are unique
and we denote them as —z := y,.

We say that P is a complete lattice if for all X < P, there exists sup X in P.

Definition 1.2.2. We say that B = (B, <, v, A,0,1,—) is a Boolean algebra if B is a dis-

tributive complemented lattice.
Example 1.2.3. The following are Boolean algebras:

1. The set {0,1} with the order 0 < 1 is a Boolean algebra, usually called the trivial

Boolean algebra. This algebra is used as the truth values for first-order Classical Logic.

2. If we take a set X and consider P(X) with the order € we get a complete Boolean

algebra.

3. Consider a topological space (X,€Q(X)). We say that a subset A € X is clopen if it
is both open and closed in (X, (X)) and we say that an open set U if regular if it is
equal to the interior of its closure, that is, U = U. The set of clopen sets C'(X) and of

regular open sets RO(X) form a Boolean algebra with the order <.
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Boolean algebras have an important role in Classical Logic given that the Lindenbaum-Tarski
algebra of a (classical) theory is a Boolean algebra and therefore is possible to form a link
between Classical Logic and Boolean algebras, in the sense that Boolean algebras can be
used as a semantical counterpart (i.e. models) to the syntactical axioms of Classical Logic.
We will study this link further in Section 2.2.1.

The next notion is crucial for the rest of the work, since it allows to characterize the notion
of implication as an adjoint to the conjunction, and so we can capture its fundamental

important properties.

Definition 1.2.4 (left and right adjoints). Let (A, <) and (B, <) be two partially ordered
sets and F': A - B and GG : B — A be two monotone functions. We say that F is a left

adjoint of G and G is a right adjoint of I, if for all a € A and b € B, we have

F(a) < b if and only if a < G(b),

we denote this by FF' 4G or G+ F.
We say that F' is a is a left adjoint if there exists a monotone function G : B — A such

that F' - G. Similarly, we say that G is a right adjoint if there exists a monotone function

F: A— B such that F 4 G.

Theorem 1.2.5 (Adjoint Functor Theorem for preorders, [DP02|, Proposition 7.34). Let
(A, <) and (B, <) be two partially ordered sets and F' : A — B and G : B — A two

monotone functions.

1. Suppose that (A, <) has all joins. Then, F preserves all joins if and only if F is a left

adjoint.



1.2 Lattices 15

2. Suppose that (B, <) has all meets. Then, G preserves all meets if and only if G is a

right adjoint.

Just as Boolean algebras semantically capture Classical Logic, Heyting algebras capture
Intuitionistic Logics. They were introduced by Arend Heyting in [Are30] to formalize Intu-

itionistic Logic.
Definition 1.2.6. We say that H = (H, A, v,—,0,1) is a Heyting algebra if:
1. (H, A, v,0,1) is a bounded distributive lattice.

2. For all x,y, z € H, we have
zanr<yifandonlyif z <x — y.

Thatis, Az -z — (_Axisaleft adjoint of 2 — ) forallzeH .

Remark 1.2.7. The condition 2. is key since it allows us to prove the inference rule Modus

Ponens when we translate this algebraic property into a logical one.

Fact 1.2.8. If H is a complete lattice, by Theorem [1.2.5] we could remove the operator —
together with the condition 2. from the Definition [I.2.6 and replaced them by the equivalent

condition

Z‘/\\/in\/(x/\yi) for all z,y; € H with i € I

i€l el
and — can be defined as z — y := \/{z € H: z A 2 < y} so that H with this implication

forms a Heyting algebra.

Definition 1.2.9. We define —: H — H as —x := = — 0 for every x € H. It is straightfor-

ward to show that — is a pseudocomplement on H.
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Example 1.2.10. From the definition, it is straightforward to prove that every Boolean

algebra B = (B, <, v, A,0, 1, —) is a Heyting algebra by defining a — b := —a v b.

Remark 1.2.11 (|[Bel05], Proposition 0.2). Let H be a Heyting algebra that satisfies one of

the following equivalent conditions.
1. The pseudocomplementation is of order 2: For every x € H, ——x = .
2. Pseudocomplements are complements: For every z € H, —x v = 1.
Then H is actually a Boolean algebra.

Example 1.2.12 ([Ros90|, Chapter 1, Example 1.). Let X be a topological space and let
(X)) denote the lattice of open subsets of X. Then, the distributive law for n and ] shows

that (X)) is a complete Heyting algebra. If U and V are open in X, then
LU-V=UWeQX):UnWcV}
2. =U = (X\U)°
3 —~U=T

Notice that an open set U is regular if and only if ——U = U.

1.2.2 Nuclei and filters on Heyting algebras

Throughout this subsection, H denotes a complete Heyting algebra. We will use filters
on Heyting algebras to construct new Heyting algebras (or even Boolean algebras) related

to the original in some crucial ways. These applications will be studied in subsection [3.2.]]
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Definition 1.2.13 ([RS63|, Chapter 1, Section 8). We say that a nonempty subset F of H

is called a filter if for every x,y € H

1. If x <y and x € F, then y € F.

2. fz,ye F,thenx Anye F.

A filter F is called proper if F' & H, that is, if 0 ¢ F.

Consider a filter F on H, then, the relation ~z defined on H by

r~ryifandonlyifr > yandy >z e F

is an equivalence relation on HI.

Definition 1.2.14 (JRS63|, Chapter 1, Section 13). The quotient algebra H/. ., denoted by
H/F, becomes a Heyting algebra in a natural way, with the operations induced from those of
H. For x € H we denote |z|# the congruence class of z modulo ~#. If there is no confusion,

we denote |z| := |z|#. The order relation on H/F is given by

|z| < |y|, if and only if, x — y e F

Notice that |z| = |1], if and only if, x € F. We call all subsets of the form H/F quotients of

H.

Nuclei on Heyting algebras, also known as modal operators, are closure operators that

respect the meet operation. Just as with filters, they allow us to create new Heyting algebras.

Definition 1.2.15 ([Ros90|, Definition 1.1.2). Let (P, <) be a poset. We say that a function

J P — Pis a closure operator if for every x,y € P, we have the following:
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1. Expansivity: = < j(x).
2. Idempotency with respect to compositions: j(j(x)) = j(x).
3. Monotonicity: If z <y, then j(x) < j(y).

Definition 1.2.16 ([Ros90], Definition 3.1.1.). We say that a closure operator j : H — H is

a nucleus (or a modal operator) if for every z,y € H
J@ Ay) =) A jy)
and we denote
H; :={xeH:jx) =2}

Proposition 1.2.17 ([Ros90], Proposition 1.2.4.). If H is a complete Heyting algebra and

J is a nucleus on H, then Hj is a complete Heyting algebra with the order inherited from H.
J J

Furthermore, if \/ and /\ denote the supremums and infimums calculated in Hj, respectively,

then for every x; € H; with i e [

oy

iel ' el
J
Azi= Az
el el

Example 1.2.18 (|[Ros90|, Chapter 1, Examples (1)). Take a € H. Then, the following

functions are nucleus on H:
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3. wy := (_ — a) — a. An important example occurs when a = 0, since we obtain
the double negation operation —— on H. H,, = H__ is the largest Boolean algebra

quotient of H.

Let us examine the last point more closely. Recall than in Example [1.2.12] we said that an
open set U was regular if and only if U = U = ——U. Notice also that in the topological
context, a set is dense if and only if (X\U) = (J, that is, =U = ¢J. This motivates the

following definition.
Definition 1.2.19. We say that an element x € H is
1. regular if ——x = x.
2. dense if —z = 0, or equivalently, if ——z = 1.
Remark 1.2.20. Notice that the set
Foi={xeH: -z =1}
is a filter on H.

Now, with the following two theorems, it should be clear what we meant when we claimed

that H,,, is the largest Boolean algebra quotient of H.

Theorem 1.2.21 (|[RS63|, 5.8). If a filter G in a Heyting algebra H contains all the dense

elements, then H/G is a Boolean algebra.

Theorem 1.2.22 (JRS63|, 6.7). Let F__ be the filter of all dense elements in H. The

mapping
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h(a) := |a|z._ for a € H,,, = H__.

is a Boolean isomorphism from the Boolean algebra H__ onto the Boolean algebra H/F__.

1.2.3 Quantales

Structures like quantales (i.e. ordered monoids with a product that distributes over arbitrary
supremums) have been studied at least since Ward and Dilworth’s work on residuated lattices
[WD38, [Dil39, War38§|, where their motivations were more algebraic, since they were studying
the lattice of ideals in a ring: Given a ring R, the set of ideals of R, denoted as Id(R), forms
a complete lattice defining infimum and supremum as the intersection and sum of ideals,
respectively. The monoid operation - on this lattice would be given by multiplication of
ideals, and the element R in Id(R) would be the identity of this operation.

But it was not until the work of Mulvey [Mul86|, where the term quantale was coined as
a combination of “quantum” and “locale” and proposed their use for studying Quantum
Logic and non-commutative C*-algebras.

Our motivation for the study of quantales is somewhat different. We are not interested in
quantales that are non-commutative - as was the case for Mulvey - but rather quantales
that are not necessary idempotent. We are interested in studying quantales since they
semantically capture both intuitionistic and fuzzy logic, so we will focus on the study of
commutative integral quantales. This kind of structures are widely use in the field of

substructural logics as semantical counterparts for those logics.
Definition 1.2.23 (Quantale). We say that Q = (Q, A, v, -, —,, —, T, 1) is a quantale if:

1. (Q, A,v, T, 1) is a complete bounded lattice with T as top element and | as bottom



1.2 Lattices 21

element.
2. (Q,-) is a semigroup (that is, - is associative).

3. For all z,y, z € Q, we have the two conditions

x-z<yifandonlyif z <x —, y

z-rx<yifandonlyif z <z —;y

Thatis,z- Hxz—, and -x-Hx—; forallxeQ.

Fact 1.2.24. By Theorem we could remove the operators —, and —; together with

the condition 3. and replaced them by the equivalent conditions

z- (\/y,-) — \/(z-y) and (\/y,-) o =\/(y; ) forall w,y; € Q with i €

el el el el

and —, and —; could be defined as
r—,y:=\{zeQ:z z<ylandz - y:=\{zeQ: 2z z <y}
Definition 1.2.25. Let Q be a quantale. We say that
1. Q has an wunity if there exists 1 € Q such that (Q, -, 1) is a monoid.
2. Q is commutative if - is commutative.
3. Q is idempotent if x - x = x for all z € Q.
4. Q is integral if it has unit and 1 = T.

Remark 1.2.26. If Q is a commutative quantale, then —, and —; are the same, and we

denote them simply as —. If QQ is a integral quantale , we denote L as 0.
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We now proceed to define the notion of residuated lattice, that precedes the notion of quan-
tale by a few years. Although initially it was studied for its algebraic utility, nowadays
residuated lattices are widely used in the field of substructural logics for the construction of
semantical models.

These lattices have been known under many names: BCK-latices in [BP89], full BCK-
algebras in [Kru24|, F'L.,-algebras in [OT99|, and integral, residuated, commutative 1-
monoids in [H6h95| and, as we will see, commutative integral quantale (when the residuated

lattice is complete).

Definition 1.2.27 (Residuated lattice). We say that Q = (Q, A, v, -, —,1,0) is a residuated

lattice if:
1. (Q, A, v,1,0) is a bounded lattice.
2. (Q,-,1) is a commutativd]] monoid.
3. For all x,y, z € Q, we have that

r-z<yifandonlyif z <z —y

Thatis,z- —Hx — _forall zeQ.

Remark 1.2.28. Notice that a complete residuated lattice is just a commutative

integral quantale. We will use these notions interchangeably throughout this document.

We now introduce the notion of t-norms, which are a key example, since they are a funda-
mental operation in the context of fuzzy logics. Here [0, 1] denotes the subset of real numbers

between 0 and 1.

!Some authors do not include the commutativity in the definition of residuated lattice
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Definition 1.2.29. A function - : [0,1]* — [0, 1] is called t-norm if for all x,y,a,b € [0, 1]:
1. Commutativity: z-y =1y - z.
2. Associativity: (z-y)-z=x-(y- 2).
3. Monotonicity: If z <a and y < b, then -y < a-b.
4. Identity: z -1 = .
Definition 1.2.30. Let - : [0,1]*> — [0, 1] be a t-norm. Then, - is said to be

1. left continuous, if it is left continuous as a function from [0, 1]? to [0, 1] with the usual

metric.

2. continuous, if it is continuous as a function from [0, 1] to [0, 1] with the usual metric.
Example 1.2.31. The following operations are left continuous ¢-norms:

1. The Lukasiewicz t-norm: z -1, y = max{z +y — 1,0}.

2. The product ¢t-norm: z -, y = x - y, where - denotes the usual product on R.

3. The Godel-Dummett t-norm: = -gp y = min{z,y}.
Example 1.2.32. The following structures are commutative integral quantale:

1. Boolean algebras.

2. Heyting algebras.

3. The order ([0, 1], <) endowed with the t-norm of Lukasiewicz, Gédel-Dummett or the

product t-norm.
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4. More generally, every structure ([0, 1], < A, v,-,0,1), where < is the usual order and

- is any left continuous t-norm.

As we mentioned before, we focus on integral commutative quantales, since these structures
naturally generalize both to Heyting algebra (intuitionistic logic) and [0, 1] endowed with

some left continuous ¢-norm (fuzzy logics).

Theorem 1.2.33 (|[BP14], p. 2). Let Q be a commutative integral quantale and z,y,z € Q

with ¢ € I. Then:

1. x <y if and only if (x — y) = 1.

2.2 (z -y <v.

3. (I1—y) =y

5. (0> y) =1

6. f xr <y,thenz-z<y- 2

7. 2-Yy<xTAY.

8. Ifx <y,theny - 2 <2 — 2.

9. fxr <y, thenz -z < z—y.

10. (z-y) »z=2— (y — 2).

Definition 1.2.34. Let Q be a commutative integral quantale and =,y € Q. We define
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1. ~x:=x — 0 (negation),
2. x=y:=(r —>y)  (y — x) (equivalence),
3. 2% =1 and 2" = z - 2" for z € N (exponentiation).

Remark 1.2.35. Throughout this document, we make a distinction between the negation
(equivalence) in a quantale, denoted by ~ (=), and the negation (equivalence) in a Heyting

algebra, denoted by — («).

Theorem 1.2.36 (cf. [RS63|, Chapter IV., 7.2). Let Q be a commutative integral quantale

and z,y,y;, x; € Q with 7 € I. Then:

1¢p(A%)<A@4m

el iel

2xa(A%>=A@H%)

el iel

3. (\/x> -y =A@ —y).

el el

L~ (V) = Ao,

el el

Proof. 1. Notice that A y; < y; for all i € I. Then, by Theorem [1.2.33] item 6., we can

el

deduce that

el

Therefore, by definition of infimum, x - ( A yz> < Az - y).
el 1€l

2. Similarly as in the last item, /\ y; < y; for all i € I. Then, by Theorem [1.2.33]item 9.,

iel

we have
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r— Ay <z -y
el

That is, x — </\ yi) is an upper bound of {z — y; : i € I}. To see that it is the
iel
biggest upper bound, take z € Q such that

z < x —y; for every i € I.
Then, since x — _ is a right adjoint of - |

x -z <y, for every i € I.
Therefore, by definition of infimum z - 2 < A y; and since x — _ is a right adjoint of

el

x - _, we can conclude that

2<x— (/\y2>
el

3. It is proved similarly as the previous item.

4. Tt is a consequence of the previous item, when y = 0.

]

Theorem 1.2.37 (|[BP14], p. 2). Let Q = (Q, A, v,+,—,1,0) be a commutative integral

quantale and let x, vy, y;, x; € Q for i € I. Then:
1. - (~x) =0, but in general it is not true that zv ~ x = 1.
2. © < (~~ z), but in general it is not true that ~~ x < z.

3. ~ (xvy) = (~ z) (~ y) (De Morgan’s Law), but it is not generally true that

~(z-y)=(~z) v (~y).

4. f x <y, then (~y) < (~z) and (~~ z) < (~~ y).
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5. ~0=1and ~1=0.

6. z =y if and only if (z=y) = 1.

T (~~a) (v~ y) < (5~ (20 )

8 ~~~gp =~ 1.

If we consider a commutative integral quantale that is also idempotent, then the structure
collapses to a Heyting algebra. For this reason, we are interested in studying commutative

integral quantale that are not necessarily idempotent.

Theorem 1.2.38 (Folklore). If Q is a commutative idempotent integral quantale, then Q

is a Heyting algebra, where z -y = = A y for all z,y € Q.

Proof. By Theorem [1.2.33]item 7., we have that x -y < x A y. To see the other inequality,

notice that z A y < x and x A y < y. Therefore, since - is idempotent,

crny=(@nry)-(zry) <z y

and we can conclude that -y =2 A y. O

Theorem 1.2.39. Let Q = (Q, A, v,-,—,1,0) be a commutative integral. Then, if =,y €

{0,1},

1. x - ye{0,1}

2. z Ayef{0,1}

3. xvye{0,1}
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4. z-ye{0,1}
5. ~xe{0,1}.

Proof. 1. By Theorem [1.2.33| items 3. and 4., (0 — y) = 1 and (1 — y) = y for all

y € {0,1}, and this implies that z — y € {0, 1} for all z,y € {0, 1}.

2. Since 0 is the minimum and 1 the maximum of Q, we have x Ay =1 if x = y = 1 and

x Ay = 0 if any of them is equal to 0.
3. It is proved in a similar way as the previous item.

4. Since 1 is the module of the monoid (Q, -, 1), we have -1 = 1-2 = x for all z € {0, 1},
but on the other hand, by Theorem [1.2.33|6., we have z-0 = 0-z = 0 for all z € {0, 1}.

The above implies that x -y € {0, 1} for all z,y € {0, 1}.

5. By Theorem [1.2.37] 5., we have ~ 0 = 1 and ~ 1 = 0, which implies that ~ z € {0, 1}

for all z,y € {0, 1}.

Corollary 1.2.40. If Q = (Q, A, v,-,—,1,0) is a commutative integral quantale, then
{0,1} < Q is a Boolean algebra with the operations inherited from Q and = -y = = A y for

all x,y € {0, 1}.

1.2.4 Filters and nuclei on quantales

Throughout this subsection, Q denotes a commutative integral quantale. The goal of

this subsection is to generalize the results of Subsection [1.2.13|in the context of commutative
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integral quantale. That is, we use filters on quantales to construct new quantales (or even
Heyting algebras or Boolean algebras) related to the original in some crucial ways. These

applications will be studied in subsection [3.2.2

Definition 1.2.41 ([BP14|, Definition 2). A nonempty subset F of Q is said to be a filter

if for every x,y € Q

1. f x <y and x € F, then y € F.

2. fx,ye F, thenz -y e F.

A filter F is called proper if F + Q, that is, if 0 ¢ F.

Notice that if Q is a Heyting algebra, this definition coincides with Definition [1.2.13

Consider a filter F on Q. The relation ~ defined on Q by

r~ryifandonlyifx - yandy -z e F

is an equivalence relation on Q.

Definition 1.2.42 ([BP14], pp. 2 and 3). The quotient algebra Q/~,, denoted by Q/F,
becomes a complete residuated lattice in a natural way, with the operations induced from

those of Q. For z € Q, we denote by |z| := |z|# the congruence class of x modulo ~x. The

order relation on Q/F is defined by

|z| < |yl if and only if, x —> y € F

and the following equalities hold:
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[ Al ~ [Bl = [A A BJ,
Al v [Bl = [A v B,
Al = |B] = |A - B,

|~ Al =~ |A].

But with respect to quantic nucleus, our goal is to capture, as best as we can, all the
properties of the double negation —— so that we can replicate Fitting’s results [Fit69)] in the

context of residuated logics.

Definition 1.2.43 (JRos90|, Definition 3.1.1). We say that a closure operator 7 : Q — Q is

a quantic nucleus if for every z € Q

Y(x) - v(y) < (7 -y)

Lemma 1.2.44 ([Ros90], p. 29). If v : Q — Q is a quantic nucleus, then for every z,y € Q

V(- y) =v(y(w) - y(y) = v(v(x) - y) = v(x-y(y))

Lemma 1.2.45. [[Ros90|, Proposition 3.1.1] A function v : Q — Q is a quantic nucleus, if

and only if, for every x,y € Q, v(z) = v(y) = = — (y).

Theorem 1.2.46 (J[Ros90|, Theorem 3.1.1 + Lemma 3.2.1 + Lemma 3.2.2 ). Let v: Q - Q

be a quantic nucleus on Q. The set of fixed points of ~

Q,:={reQ:y(z) ==z}

is a commutative integral quantale with the order inherited from Q and the product

Ty =y y)



1.2 Lattices 31

gl v
Furthermore, if \/ and /\ represent the supremums and infimums calculated in Q,, respec-

tively, then for every z; € Q, with i e [

\7/»”31' =7 (Vl’z)

el iel

]\xi = N\

el el
Corollary 1.2.47 (JRos90], Chapter 3, Section 1, Corollary 1). If v : Q — Q is a quantic

nucleus, then for every x,y € Q

Y —y) <z —(y) =) =)

Theorem 1.2.48 ([Ros90], Proposition 3.1.2). If A < Q, then A = Q, for some quantic

nucleus ~y if and only if A is closed under infimums and if z € Q and y € A, then x — y € A.

Example 1.2.49. By Theorem [1.2.37| items 2., 4., 7. and 8., it is clear that the operator
~~ is a quantic nucleus on a Q. Furthermore, by Lemma [1.2.45] and Theorem we

have that
T o~~y=~~x o>~~yand ~~ (v~ T o~~ Y) =~~~ T o~y
Definition 1.2.50. We say that a quantic nucleus v : Q — Q respects implications if
v(z — y) = 1 if and only if y(x) — v(y) =1
Notice that by Lemma this condition is equivalent to
v(x - y) =11if and only if . — y(y) =1

Lemma 1.2.51 (cf. [Fit69] Lemma 5.3). Let v : Q — Q be a quantic nucleus that respects

implications. For every z;,y € Q, with 7 € I,
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Y(A(z; — y)) = 1if and only if A\ vy(z; > y) =1

el el

Proof. Notice that, since 7 respects implications,

L=7(Al@i = y)) =7((V i) > 9)

el el

holds, if and only if

1=(V ;) — v(y) holds.

el

But then, since ~ respects implications, the line given above is equivalent to

1L=~((Vz:) = y) = N — ().
iel el
Thus, by definition of infimum, the line given above holds, if and only if,
x; = y(y) =1 for every i € [
and since v respects implications, that is equivalent to
v(z; > y) =1 for every i € I.
which is just
N —y) =

iel

]

Definition 1.2.52 ([Ros90|, Definition 3.2.4.). We say that a quantic nucleus v : Q — Q is

tdempotent with respect to products if for every x € Q

Theorem 1.2.53 (cf. [Ros90|, Lemma 3.2.4.). If v is a quantic nucleus that is idempotent

with respect to products, then for every x,y € Q



1.2 Lattices 33

Yz -y) =y(x) Ay(y).
We call a quantic nucleus that satisfies the property above localic.

Proof. Since x -y < x -1 = x, we have y(z - y) < v(z). In a similar way we prove that
v(x - y) < v(y) and therefore y(x - y) is a lower bound of {y(z),~(y)}.

To see that it is the greatest lower bound, take ¢ € Q lower bound of {y(z),v(y)} that is
¢ <(x) and ¢ < ()

Therefore

and so

c<7(c) (v is expansive)
= v(c?) (v is idempotent with respect to products)

<7(y(x) -7(y)) (v is monotone)

=~(z-y) (by Theorem [1.2.44))

Theorem 1.2.54 ([Ros90|, Lemma 3.2.3). Let v : Q — Q be a quantic nucleus idempotent
with respect to products on Q. Then, Q, = {z € Q : v(x) = z} is a idempotent commutative

integral quantale, that is, by Theorem [1.2.38| Q, is a Heyting algebra.

Definition 1.2.55. We say that a quantic nucleus v : Q — Q respects the bottom element if
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7(0) = 0.

Lemma 1.2.56. Let v : Q — Q be a quantic nucleus that respects the bottom element.

Then,

~~ (@) =~~ (y(~~ (@),
that is, ~~ v is idempotent.

Proof. Notice that v(0) = 0 € Q, and by Theorem [1.2.48] we can deduce that for every

reQ,r—0=~2xecQ, and thus ~~ x € Q,, that is,
Y(~~x) =~~ .
Therefore,

~~ (Y~ (@) =~ (v~ () =~~ ().

]

Definition 1.2.57. We say that a quantic nucleus v : Q — Q is standard if v is idempotent

with respect to products, respects implications and the bottom element.

We introduce the new notion of standard quantic nucleus since it captures all the neces-
sary properties from the double negation operator that are used in Chapter |3 to generalize

Fitting’s results.
Theorem 1.2.58. Let v : Q — Q be a quantic nucleus on Q. The set
Fyi={reQ:vy(x)=1}

is a filter on Q.
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Proof. 1. Since v is expansive, 1 < y(1), and then 1 € F,

2. Take x € F,, and y € Q such that # < y. Since 7 is monotone function, vy(z) < v(y)

and since z € F,, v(z) = 1. Then, v(y) = 1 and y € F,.

3. Take z,y € F,, that is, y(z) = y(y) = 1.

y(x) - y(y) =1-1=1, thatis, z -y € F,.

Then, since v is a nucleus, y(z - y) >

For the rest of the section, |x| denotes the class of 2 € Q modulo ~x .

Theorem 1.2.59. Let v be a quantic nucleus that respects implications and take x,y € Q.

Then, x ~£ y if and only if v(z) = v(y).

Proof.

2] = |y| iff 2 — ye F,and y -z € F,
iff y(z —y)=1=7y— 2
iff y(z) = v(y) =1 ="(y) — 7(z)
iff v(2) < v(y) and v(y) < v(2)

iff v(x) = ~(y)

(by definition of ~£ )
(by definition of F.,)

(v respects implications)

(by Theorem [1.2.33|item 1.)

Corollary 1.2.60. If v is a quantic nucleus that respects implications and = € Q,

()] = .
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Theorem 1.2.61. Let v be a quantic nucleus idempotent with respects to products that

respects implications. Then, Q/F, is a Heyting algebra.

Proof. By Theorems [1.2.42| and [1.2.58, we know that Q/F, is a complete residuated lattice.

By Theorem |1.2.38| is enough to prove that the product in Q/F, is idempotent. If |z| € Q/F,,

then

|| - |z| = |z - 2| (by definition of - on Q/F,)

= |y(z - )| (by Corollary |1.2.60))

= |y(z)| (since v is idempotent with respect to products)

= |z| (by Corollary [1.2.60)

]

Theorem 1.2.62 (cf. [Fit69], Theorem 5.4). Let v be a quantic nucleus on Q that respects

implications. For every x; € Q with ¢ € I, we have that
el el

Proof. For every i € I, x; < \/ ;. Thus,

iel

l‘i—>\/[)’}z‘:1,

therefore,
’y(xl - \/‘TZ> = 17
el

and by definition of < we deduce that |z;| < |\/x;|. Thus, |\/ ;| is an upper bound of
iel

el
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To see that it is the smallest upper bound, take |b] € Q/F, an upper bound of {|z;| : i € I},

that is,

|z;| < |b] for every i€ I,

that implies, by definition of < on Q/F,,
v(x; — b) =1 for every i € I.
Therefore,

A((@i — b)) =1,

el

then, by Lemma [1.2.51

YA — b)) =1,

iel

hence, by Theorem [1.2.36]item 3,

WV wi) = b) =1,

iel

thus, by definition of <,

[V ai| < [b]

el

1.3 Substructural logics

Substructural logics are non-classical logics weaker than Classical Logic, notable for the
absence of structural rules present in Intuitionistic Logic when formulated as Gentzen-

style systems (we will not go over this kind of systems in this work, for an introduction to
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this topic see |[Ono03] or [GJKOQT]), such as weakening, contraction, exchange, commuta-
tivity or associativity. Substructural logics include, among other logics, Fuzzy Logics and

Intuitionistic Logics.

1.3.1 Intuitionistic Logic

Intuitionistic Logic is a product of Brouwer’s project of intuitionistic mathematics, whose
systematic formalization was started by Brouwer’s student, Arend Heyting, in 1928. One
can understand this logic as an attempt to formalize the notion of constructive proofs, so
the axioms of Classical Logic such as the principle of excluded middle, double negation
elimination and the Axiom of Choice are not valid.

Intuitionistic Logic is a weakening of Classical Logic where one of the following logical axioms

is not valid:

1. LEM (law of excluded middle) ¢ v —¢p

2. LDN (law of double negation) ——p — ¢

These axioms are intuitionistically equivalent and if we added one of these axioms to the
axioms of propositional Intuitionistic Logic, we would obtain an axiomatization of Proposi-
tional Classical Logic.

We will not provide an axiomatization of this logic, but one can be found in [vD04] Section
1.4 by eliminating the rule reductio ad absurdum (RAA) from the rules of Classical Logic

(see also [vD04], section 5.2 “Intuitionistic Propositional and Predicate Logic”).

Remark 1.3.1. To avoid any confusion, we denote by  deductions made by using the

axioms and inference rules of Classical Logic and +; for Intuitionistic Logic.
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In terms of lattices, we have that there is a fundamental relation with Heyting algebras and

Intuitionistic Logic, as we can see in the following example:

Example 1.3.2 (Lindenbaum-Tarski algebra). Let us consider a consistent theory 7" in an
Intuitionistic first-order language £ and consider the equivalence relation ~ on the set of
L-formulas by ¢ ~ ¢ if and only if T' ; ¢ < 1. Let H(T) be the set of equivalence
classes of L-formulas and consider the relation < on H(T') given by [¢] < [¢] if and only if
T ;@ — 1. Then, (H(T),<) is a Heyting algebra. In this sense, Heyting algebras are the

natural algebraic models for Intuitionistic Logic.

Since Intuitionistic Logic is a weakening of Classical Logic, we have that every formula that

can be deduced in Intuitionistic Logic is also deducible in Classical Logic, that is

if -; ¢, then - .

The opposite implication is not true in general. But we do have a crucial connection from

(Classical Logic into Intuitionistic Logic via the double negation operator.

Theorem 1.3.3 (Glivenko’s theorem, [vD04], Theorem 5.2.10). If ¢ is a propositional for-

mula, then

- ¢ if and only if —; =—¢

Theorem 1.3.4 ([vD04], Theorem 5.2.6). If ¢ does not contain v or 3 and all atoms but

1 in ¢ are negated, then

i e ——p
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Furthermore, Gédel and Gentzen proved that by reinterpreting the classical disjunction and

existence quantifier, we can embed Classical Logic into Intuitionistic Logic.

Definition 1.3.5 (Gdodel-Gentzen translation). Given a formula ¢, we define its Géddel-

Gentzen translation o as follows:

1. 9% := ==y if ¢ is an atomic formula.

2. (p AYh) =% AC

3. (v 9) 1= ~(-% A )

4 (p—>9)% =% > ¢C

5. (=) = = (¢)

6. (Vop(r))? = Ya(p%(z))

7. (Qrp(x)) = —Va(=¢(z))

There exists another translation that makes the use of the double negation operator even

more explicit.

Definition 1.3.6 (Gédel-Kolmogorov translation). Given a formula ¢, we define its Gadel-

Kolmogorov translation ¢“¥ as follows:

1. K .= == if ¢ is an atomic formula.

2. (p A)EK =~ (K A yEK)

3. (o v )H 1= == (% v o)
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4 (o = ) 1= == (% = §oF)

5. (mp)F 1= == (= ("))

6. (Vap(z))“F = ==V (e (x))

7. (Qwp(x)) 1= ==z (e (7))

It is clear from these definitions that, classically speaking, the formulas ¢, ©% and ¢“¥ are
all logically equivalent. Intuitionistically though, only ¢“ and ¢“¥ are logically equivalent,
and only in some cases we have that ¢ is equivalent to ¢“ and ¥ as we see in the following

theorem.

Lemma 1.3.7 ([BN04], Lemma 0.9 and 0.10.). 1. ; ¢© if and only if - .

2. QOG > QOGK.

3. If every V in ¢ is followed by an —, then

i F o ——p

4. If ¢’ is the formula obtained from ¢ by replacing every occurrence of V by —3—, then

i K o !

The last item is key, since in Subsection we see how Fitting (see Corollary |3.2.12)) essen-
tially uses this fact to find a translation between intuitionistic Kripke models and Boolean

valued models.
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1.3.2 Modal Logics

The language of Classical Modal Logic has the same symbols as Classical Logic together
with a unary connective of necessity []. The formulas are constructed by recursion in the
same way as formulas in Classical Logic, but now we have that if ¢ is a formula, [y is
also a formula and we call them Modal formulas. We define the symbol of possibility as
Oy = —[J—p. In most modern presentations of Modal Logic, one takes the axioms as
(Classical Logic and augments them with some axioms that involve the operator of necessity

and possibility. Some of those axioms are:

1. N: If ¢ is a theorem, then [Jy is likewise a theorem, that is, if - ¢, then - [y

2. T: Clp — ¢,

3. K: O(p —v) = (e — )

4. 4: e = [y

5. 5: Qp = [10p.

If we add the axioms N, T, K, 4 to Classical Logic we obtain the (Classical) Modal Logic Sy
and if we add N, T, K,5 we obtain the (Classical) Modal Logic S5. We use the symbols g,
and g, to denote deductions made in the systems Sy and Ss, respectively.

Similarly as the translation between Classical and Intuitionistic Logic via the double negation

operator, one can find a suitable translation between Intuitionistic (Classical) Logic and the

Modal Logic Sy (S5).



1.3 Substructural logics 43

Definition 1.3.8 (Gédel-McKinsey—Tarski translation). Given a propositional Intuitionistic

GM

formula o, we can define its Géidel-McKinsey—Tarski translation o“M7T as follows:

1. p®MT — p if p is a propositional variable.

. LGMT _ |

[\

@

(o A B)GMT = qGMT , RGMT

4. (o v B)GMT = oGMT , GGMT

5. (o — B)FMT = [(aCMT _, BGMT)

6. (=) = O(~(a7)

Theorem 1.3.9 (JWZ14], p. 3). An Intuitionistic formula « is derivable in Intuitionistic
Propositional Logic if and only if a7 is derivable in the (Classical) Modal Logic Sy, that
is,

i a if and only if g, %M.

Theorem 1.3.10 ([WZ14], p. 3). A classical formula « is derivable in Classical Propositional

Logic if and only if a7 is derivable in the (Classical) Modal Logic Ss, that is,

 a if and only if g, a“MT,

1.3.3 Fuzzy Logic

Fuzzy Logics seek to capture imprecise, vague concepts, or situations where we have non-

numeric or partial information. We have that the propositions in these logics are true to a
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certain degree, varying from totally false to totally true, with a continuum of intermediate

values.

The first examples of Fuzzy Logics were studied by tukasiewicz and Tarski in the 1920s,
in their study of multivalued logics, but it was not until Lotfi Zadeh’s work on Fuzzy Set
Theory [Zad65] that Fuzzy Logics were really born as we know them today. In Zadeh’s work,
the set {0, 1} in the definition of the characteristic function was replaced by the interval of
real numbers [0, 1| and the properties of the resulting sets, called fuzzy sets, that is, sets in
which the membership takes as truth values real numbers in the interval [0, 1]. Similarly, in
later work on Fuzzy Logics, the idea of taking the additionally structured lattice [0, 1] as a
set of truth values for propositions in logic was continued. For a detailed historical treatment

of Fuzzy Logics see [BDK17].

Basic Fuzzy Logic (BL) is a multivalued logic introduced by Petr Hajek in [H4j98a] and
developed in [H&j98b|. This system seeks to capture the logic of continuous t-norms and
their adjoints in order to capture the most important examples in the field of fuzzy logics

up to that time: the logic of Lukasiewicz, Godel, and product.

On the other hand, Monoidal t-norm Based Logic (MTL) was introduced in [EGO01] in
order to capture the logic of left-continuous ¢-norms. The distinction between left continuous
and continuous is crucial, since left continuity is the necessary and sufficient condition for

the existence of an adjunction for the ¢-norm, and it is this adjunction that allows us to
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define the implication in the logic. MTL is weaker than the BL and stronger than the
Residuated Logic (or Hohle’s Monoidal Logic) and seeks to connect to the previous

logics to create a more compressible map of the Fuzzy Logics.

1.3.4 Residuated Logic (Monoidal Logic)

This logic was introduced by Ulrich Hohle [H6h94] under the name Monoidal Logic in order
to present a general framework for the study of Fuzzy Logics based on ¢-norms, Intuitionistic
Logic and Girard’s Linear Logic. In his article, Hohle considers residuated integral commu-
tative 1-monoids (i.e. complete residuated lattices in our terms) as a set of truth values of
his logic, presents a completeness and soundness theorem, and shows some interactions of it

with the other logics mentioned.

Throughout this work, we will call Hohle’s Monoidal Logic as Residuated Logic, following
Lano’s notation [Lan92al in his study of Residuated Logic and fuzzy sets, where this logic is
studied in its modal variant and is applied in the context of set-theoretic models valued on

residuated lattices.

Definition 1.3.11 (Logical symbols for the propositional case, [Lan92a]). The fundamental
difference between Classical (or Intuitionistic) Logic and Fuzzy (or Residuated) Logic is that
we consider different basic logical symbols, namely, in Residuated Logic, we consider two
types of conjunction, a weak conjunction (A) and a strong conjunction (&). With

that in mind, the basic symbols for the propositional case are the following:
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1. A countable set of propositional variables Var = {p; : i € w},

2. Strong conjunction & (binary),

3. Implication — (binary),

4. Weak conjunction A (binary),

5. Contradiction | (constant),

6. Disjunction v (binary),

and the following symbols that are definable, using the previous ones:

1. Equivalence ¢ = ¢ := (p — )& — ),

2. Negation ~ ¢ :=p — L,

3. Tautology T :=~ L.

Definition 1.3.12 (Propositional formulas, |[Lan92al). The construction of propositional
formulas is done by recursion on a manner analogous to how it is done in Classical Propo-
sitional Logic. To differentiate these formulas from formulas in Classical (or Intuitionistic)

Logic, we call them Residuated (Propositional) formulas, or R-formulas for short.

Definition 1.3.13 (Axioms of Residuated Propositional Logic, [Lan92al, pp. 203 and 204).
Let «, 8,7,0 be propositional R-formulas. The axioms of Propositional Residuated Logic

are:

1. (a&f) — a.
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2. (a&ef) = (B&a), ((a&ef)dey) — (ad&(B&a)).

@

((a&ef) = (adey)) — (a&e(P&7)).

4. ((a = B)&(B — 7)) — (a — 7).

5. 8 — (a— f).

6. (a&(a — B)) — B.

7. a— (avp)

8. (avp)—(Bva) ((avph)vy) —(av (V7).

9. ((a = &(B —7)) = (avp)—7).

10. ~a — (o — B).

11. a— (8 — (a&p)).

12. (a&e(B v 7)) = ((ader) v (adey)).

13. ((a&B) = 7) = (a — (B — 7).

14. (a = B)&(y = 8) — ((adey) — (8&9)).

15. (8 — (8&—B)) — —f.

The inference rule used is Modus Ponens.

Definition 1.3.14 (Axioms for the weak conjunction A, [Lan92al, p. 205). The following

are the axioms for the weak conjunction A:
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—_

. (a&f) — (a A B).

2. (a—=pB)A(a—7) = (a— (B A7)

3. (a—=pB)A(y—B) = ((avy) =)

4. A 1s commutative and associative.

5. (= B) = ((anry) = (Br7)

6. (A f) — a.

Remark 1.3.15 (|[Lan92al, p. 203). If we add the axiom

a — (a&a) for all o R-formulas,

to the axioms of Propositional Residuated Logic, we would obtain an axiomatization for

Propositional Intuitionistic Logic.

Definition 1.3.16 (|[Lan92al, p. 204). Just as in Classical Logic, we can add the quantifiers
V and 3 to construct the set of predicate formulas in a given (Classical first-order) language
L and we call them Residuated L-formulas or R — L-formulas, for short. Let ¢ and 1 be

R — L-formulas. The axioms of Residuated Predicate Logic are as follows:

1. Va(o — ¢) = (Vo — V).

2. (0 = 1&p(0)) — (1), where ¢ is atomic and there is at most one occurrence of = in

@.

3. dx(p — Y) —> (Vo — ).
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4. Yz(p — ) — (Jxp — ).
5. (Fzp — Vo) - Vo (p — ).
6. ¢ — Vxp, with non-free x in ¢.
7. 3x(o = x), with z not occurring in o.
8. Yxp — ¢(o/z), with o free for z in .
9. dxp — ¢, with non-free = in .
10. = is an equivalence relation.
11. p(o/x) — Jze, with o free for = in .
12. 3z(p&a) — ((Fzp)&a), with non-free z in a.
We consider the usual (classical) rules of inference for the introduction of V and 3.

Definition 1.3.17. We say that T is an R — L-theory is T is a set of R — L-sentences.
We say that ¢ is an R-logical consequence of T, denoted by T' . ¢, if there exists a deduction

from T of ¢ that uses the axioms and deduction rules given above.

1.3.5 t-norm Logics

By t-norm Logics we mean any logic whose semantic counterpart is based on some t-norm
over the interval [0, 1]. Since we want to ensure the existence of an adjoint — of the product
-, we require different forms of distributivity of the product with respect to arbitrary joins

(see Theorem [1.2.5)). The most important examples of this kind of logics are:
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1. Monoidal t-norm based Logic (MT'L) : This is the logic associated with left-continuous
t-norms (see Definition [1.2.30)), that is, the logic where the truth take values in [0, 1],
endowed of lattice structure with its usual order, a left-continuous ¢-norm. An ax-
iomatization of MTL can be obtained by taking the axioms of Residuated Logic and

adding the axiom scheme of prelinearity (Lin):
(o =) v (¥ —9)

2. Basic Fuzzy Logic (BL): This is the logic associated with the continuous ¢-norms
(see Definition [1.2.30)). An axiomatization of the logic BL can be obtained by taking

the axioms of MTL and adding the axiom scheme of divisibility (Div):
(p A1) = (pllp = ¥)).

3. Lukasiewicz Logic: This is a continuum-many valued generalization of the n-valued
Fukasiewicz Logic (see Example [1.2.31)). An axiomatization of the Lukasiewicz Logic
can be obtained by taking the axioms of BL and adding the axiom of double negation

(Inv)
(—=p) = .
4. Product Logic: This is the logic associated to the usual product of R. An axiomatiza-

tion of the Product Logic can be obtained by taking the axioms of BL and adding the

axiom scheme of weak contraction (Weak-Con)

(o A—p) — L

and the axiom scheme II;
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(—=)&(((p&)) — (p&x)) = (¥ — X))

5. Godel-Dummett Logic: In 1932, Godel [G6d32| introduces a family of n-valued logics
in his study of Intuitionistic Logic. Go6del shows that there is no finite structure of
truth values suitable for Heyting’s axiomatization of Intuitionistic Logic such that one
has a completeness-soundness theorem. That is, there might be n-valued models of

intuitionistic logic, but these models will not capture all the tautologies of this logic.

Continuing Gédel’s work, Dummett [Dumb9] proposes a generalization of Gédel’s Logic
that considers an infinite set of truth values. Dummett presents two logics, one that
has a countable set of truth values and one that has a continuum of truth values, and
then shows that the tautologies of both logics coincide. We focus on studying Godel’s

Logic for the case where the set of truth values is the interval [0,1] (see Example

T23).

An axiomatization of the Gédel-Dummett Logic can be obtained by taking the axioms

of BL and adding the axiom scheme of contraction (Con)

© — (p&ep).

Or equivalently, taking the axioms of Intuitionistic Logic and adding to them the axiom

of prelinearity (Lin)

(=) v (¥ — ).



59 1 Preliminaries

1.3.6 Modal Residuated Logic.

The language of Modal Residuated Logic has the same symbols as Residuated Logic together
with an unary connective of possibility ¢. The idea is to interpret some quantic nucleus
as the possibility operator when we deal with the semantics. The formulas in a given first-
order language L are constructed by recursion in the same way as for the residuated case
and we call them formulas Modal Residuated L-formulas, or M R — L-formulas, for short.
These formulas satisfy the same axioms as Residuated Logic does, but we need to add new
axiom schemes for the possibility operator. We do not have an axiomatization for the logic
of “complete residuated lattices with a quantic nucleus” (i.e. Modal Residuated Logic). Some

basic axioms schemes that are valid in the logic that we would like to axiomatize are

Lo —Qp

2. O0p — Qp

3. Olp = ¥) — (Op — OY)

4. 0p&y — Op&er)).

We will focus only on the semantical aspect of this logic; hence we will not prove a Soundness

and Completeness Theorem for this logic.



2 Constructions over valued models

Valued models substitute the standard set of logical values {0,1} of Classical Logic for
different lattices that carry with them logical properties via their algebraic properties.

It is known that it is enough to consider the trivial Boolean algebra {0, 1} to represent the
truth values of Classical Logic, so it is not required to study B-valued models for a every
Boolean algebra B to understand Classical Logic, we just need to focus on the two-valued
case.

On the other hand, Gdédel proved that Intuitionistic Propositional Logic cannot be repre-
sented as a finite many-valued logic [G6d32|. Since it is not so easy to represent Intuitionistic
Logic via an infinite many-valued logic, it has been a common practice to study Intuitionistic
Logic via Heyting valued models or Kripke models.

In this chapter, we focus on the study of valued models in different lattices and in construc-
tions that generalize von Neumann’s and Gddel’s hierarchy in these models.

First, in Section [2.1] we expose an overview of lattice-valued models. As set of truth values,
we consider Boolean algebras, Heyting algebras and commutative integral quantales with

and without a quantic nucleus, and then we show how sentences in their respective logics
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are interpreted.

Then, in Section [2.2] we construct set-theoretic lattice-valued models and discuss some essen-
tial facts about them. We focus on the proofs for some of the properties of quantale-valued
models of Set Theory for the following reason: Even though it is well known that these
models are quantale-valued models in the sense of Definition 2.1.8] there is no, as far as we

are aware, proof in the literature that justifies this fact, thus we will prove this in Theorem

2.2.31

Lastly, in the context of valued models, we adapt Fitting’s idea [Fit69)], where, as motiva-
tion for his definition of class of constructable sets using Kripke models, he showed how to
construct L (or more precisely a model “isomorphic” to L) using two-valued characteristic

functions that are definable by some formula.

We propose new definitions of the notion of definable subset within a Boolean-valued
model of Set Theory, and with these notions, we propose two new constructions of the
constructable universe: £ and L®. Moreover, we prove that these models are, in fact, two-
valued, since our definition of definable is too restrictive and forces the models to only take
these values. Furthermore, we prove that £% and L® are “isomorphic” to V' (von Neumann

universe) and L (Gddel’s constructible universe), respectively.

Then, we discuss the problem of trying to generalize these notions of definability to the
context of quantale-valued models. We found that the resulting classes of constructable
models are also two valued, and therefore are not suitable to study Residuated Logic.
Hence, in the next chapter, we instead focus on developing the notion of constructable

sets in the realm of Kripke models, where these kind of problems are avoided and the
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constructions seem more promising.

2.1 Preliminaries of valued models

Valued models are a natural and simple way to find a semantical interpretation for vari-
ous logics, as long as one can find a lattice (or some other algebraic or ordered structure)

associated to them.

2.1.1 Boolean models

As mentioned before, by the completeness theorem of first-order logic, one only really needs
two truth values to understand Classical Logic semantically. Regardless, we will study
Boolean models, since it was here where von Neumann'’s hierarchy was first generalized [SS67|
and also, since we are interested in generalizing Gédel’s constructions for these lattice-valued
models.

For the rest of the chapter, let £ denote a first-order language.

Definition 2.1.1. Given a complete Boolean algebra B = (B, <, v, A, 0,1, —), we say that

a B-valued L-structure M consists of:

1. A non-empty class M.

2. A function [- = -|#* : M? — B, which we call equality, such that for all f,g,h e M:
a. Reflexivity: [f = f]J3' = 1.
b. Symmetry: [f = I = [g = fI.

c. Transitivity [f = g]z' A [g = h]$* < [f = h]$.
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3. For each n—ary relational symbol R € £, a function RM™ : M™ — B such that for every

gi, fie M withi=1,...n
/_\1[[-]01 = glﬂﬁ/l A RM(fh 7fn) < RM<gl7 7gn)

4. For each m-ary function symbol f € £, a function f™ : M™ — M such that for every

gi, fi e M with 1 =1,...,m,
Al = 68 < LM s fn) = (01 g
5. For each constant symbol ¢ € £, an element in the universe ¢ e M.
Definition 2.1.2. Let M be a B-valued L-structure. We define the language
Ly =L U {c,:ae M} where ¢, is a constant symbol for each a € M.
and let
Sent(L )
denote the first-order (classical) sentences constructed in the language £ .

Definition 2.1.3. Given a B-valued L-structure M, we can define a valuation [-J3' :

Sent(L ) — B by recursion over the complexity of the £ -formula:
1. For atomic formulas we consider
a. [f = g]3t = [fM = g™, where f, g are closed L -terms.

b. [Rf1,..., fa]gt == BRM(M, ..., fM), where R is an n-ary relation, f; and g; are

closed L-terms and 1 =1,2,...,n.

2. Let ¢ and ¢ be Lp-sentences and 6(z) a L -formula with free variable .
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vl = -

&

=

Y = el = [V — [els’

@)

Y Aol = [0 A Telg!

o,

Y v el = [Y]E v [l

- [Bef(2)]g" ==V [0(ca) 5"

aeM

£ [Vab(z)]g" = aé}d[[e(ca)ﬂﬁA

)

Definition 2.1.4. If ¢ is a £ -sentence, we say that M |= ¢ if [¢[g! = 1.

Definition 2.1.5. Let T be a L-theory and ¢ be a L-sentence. we say that T |= ¢ if for

every complete Boolean algebra B and every B-valued L-structure M, if M |= T, then

M = o.
We say that T' - ¢, if ¢ is syntactically deducible from 7" and from the axioms of Classical

first-order Logic using the classical deduction rules.

Theorem 2.1.6 (Completeness and Soundness Theorem, [Bel05]). Given a £L-theory T and

¢ a L-sentence,

T pifand only if T+ .

2.1.2 Heyting-valued models

Definition 2.1.7. Given a complete Heyting algebra H = (H, <, v, A,0,1, —), we can define
the notion of a H-valued L-structure just as in the previous subsection, and we have a
Completeness and Soundness Theorem for these models and Intuitionistic Logic (see [Bel05],

Chapter 8 for more on these models).
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2.1.3 Quantale-valued models

The development of these models can be found in [Lan92a], where Lano mentions the Com-
pleteness and Soundness of these models (where he calls them residuated algebra valued
models) and then goes on to prove the Completeness Theorem for topological residuated
algebra valued models and Residuated Modal Logic RS5. In this subsection, we focus

on the constructions of these models without the use of modal operators.

Definition 2.1.8 (Q-valued models, [Lan92a]). Let Q = (Q, A, v, —,-,—,0,1) be a com-

mutative integral quantale. A Q-valued L-structure M consists of:

1. A non-empty class M.

2. An equality function [- = -J)" : M* — Q such that for all f,g,he M
a. Reflexivity: [f = fﬂaﬂ = 1.
b. Symmetry: [f = gJ3" = [g = FI5"
c. Transitivity: [f = g3 - [9 = A3 < [f = 5"
3. For each n—ary relational symbol R € £, a function R™ : M"™ — Q such that for every
gi, fie M withi=1,...n
Z-_ﬁlﬂfi = gId RM(fr o fa) < RM(gy, o ga).
4. For each m-ary function symbol f € £, a function f™ : M™ — M such that for every
gi, fie M withi=1,....m,

liﬂfz = glﬂé(t < [[fM<f17 7fm) = fM(gh ,gm>]]6/l
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5. For each constant symbol ¢ € £, an element in the universe c™ e M.

Remark 2.1.9. Notice that the only difference between Boolean models and quantale models

is that the operation of A is replaced by -.
Definition 2.1.10. We define the language
Ly =L U {c,:ae M} where ¢, is a constant symbol for each a € M.
and let
Sent™ (L)
denote the first-order Residuated sentences (R-sentences) constructed in the language £ .

Definition 2.1.11. Given a Q-valued L-structure M, we define the valuation [-[§* : Sent™ (L) —

Q by recursion on the complexity of the sentences.

1. For atomic sentences we consider
a. [f =glg" = [ = g™, where f, g are closed L py-terms.
b. [Rft, -, falg' == RM(M, ..., f;¥1), where f;, g; are closed Ly-terms for all i €
{1,2,...,n}.

2. Let ¢ and ¢ be R — L s-sentences and 0(z) an R — L -formula with free variable z.

a. [V&ply! = [v]g" - [l
b. [ — ¢]gt = [v]' — [#]}

c. [ Aol = [WIg" A Tel!
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d. [ v elg' = [¥]g" v [¢]g*

e. [[31:9(1:)]6’1 =V [[H(ca)]]g‘

aeM

£ [Vaf(z) 4t = /}4 [0(ca) ]!

Definition 2.1.12. If M is a Q-valued L-structure and ¢ is an R — L -sentence, we say

that M =, ¢ if [e]§' = 1.

Definition 2.1.13. Let 7" be an R — L-theory and ¢ be an R — L-sentence.

1. We say that T |=, ¢ if for every complete residuated lattice Q and every Q-valued

L-structure M we have that M =, T, implies M =, ¢.

2. Recall that T' -, ¢ means that there exists a deduction from 7" of ¢ by using the

axioms and deduction rules given in Section [1.3.4]

Definition 2.1.14 (Completeness and Soundness Theorem, |[Lan92b|, p. 204). Given an

R — L-theory T and an R — L-sentence ¢,

T =, ¢ if and only if T |-, ¢.

2.1.4 Quantale-valued modal models

The following subsection is inspired in the ideas of Lano [Lan92al. These models are con-
structed just as the quantale-valued models of the previous subsection, but now we consider
a commutative integral quantale QQ together with a quantic nucleus v so that we can ex-
tend the valuation [-] of a Q-valued £-model M to all RM — L-sentences by interpreting

the symbol of possibility as follows:
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[Oe(z)] := v ([e(x)])
We call these structures Q-valued Modal models, or Q-valued M -models, for short.

Theorem 2.1.15. Every quantale-valued M-model M satisfies the axioms of Modal Resid-

uated Logic stated in Subsection That is, for every M R — L \4-sentence ¢

L[] < [O¢].
2. [00¢] < [O¢].
3. [0le = ¥)] < [0¢] — [O¢].
4. [0p&0y] < [O(p&ey))].
Proof. Ttems .1, 2. and 4. follow immediately from the definition of the interpretation of ¢

and the properties of the quantic nucleus . Item 3. follows from Corollary [1.2.47 O

2.2 Valued models of Set Theory

To understand the motivation behind the definition of valued models, it is convenient to
study their relation to characteristic functions: Let X be a set and let us take A € X. We

know that every subset A can be represented via its characteristic function y 4
Xa: X — {0,1}, where ya(z) = 1, if and only if, x € A.

Therefore, if one wanted to generalize the notion of a subset, a natural way would be to
change the notion of a characteristic function and use any Boolean algebra B instead of the
trivial Boolean algebra {0,1}. This is essentially what is done in the model proposed by

Scoot and Solovay [SS67].
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Although these models were first studied to find a simpler more intuitive way of understand-
ing Cohen’s forcing, now they are widely used as natural models for a variety of logics and set
theories within them, such as Heyting-valued models for Intuitionistic Logic [Gra79|, BLA-
algebra valued models for the Fuzzy Logic BLYA [HHO01, HHO3], and Topological Residuated

algebra valued models for Modal Residuated Logic [Lan92al, among many others.

2.2.1 Boolean models of Set Theory
Throughout this section, B denotes be a complete Boolean algebra

Definition 2.2.1 ([Bel05], p. 21, (1.4)). We define V,, by transfinite recursion over the

ordinals
LVy =g
2. VB :={feV: fisa function with dom(f) < V¥ and ran(f) < B}

3. V= |J V5 with a + 0 limit ordinal.

B<a

4. VE.= |J VE

acON
Fact 2.2.2 (|[Bel05], p. 21, (1.6)). From the definition, we have that f € V® if and only if f

is a function with dom(f) < V® and ran(f) < B.

Definition 2.2.3 (|[Bel07]). Given f € VE we define rankys(z) as the smallest ordinal «

such that f € V2 |, that is, the only ordinal such that f e V2 \V2.

Theorem 2.2.4 (Principle of induction for VE [Bel05] p. 21, 1.7). For every Classical

first-order Lc-formula p(z), we have
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Va e VE((Vy € dom(z)e(y)) — ¢(x)) — (Vo € VEp(z)).

Fact 2.2.5. If o € ON, then VE < VB

a+1-

Corollary 2.2.6. If a < 3€ ON, then VE < VéB.

Definition 2.2.7. We define the (class) language Ly as Lp := Lyz = Lo U {c, : a € VB,
where each ¢, is a constant symbol. From now on, we call Lg-sentences (formulas) to the

classical first-order sentences (formulas) constructed in the language Lg.

Definition 2.2.8 (|[Bel05], p. 23, (1.15) and (1.16)). We define interpretations of € and =

in VB as follows:

Lfcgle= A (f(@)—[reg]s)

zedom(f)

2. [f=gle=1fcolenloc fle= A (fl@)—[regls)r A () — [ye fs)

zedom(f) yedom(g)

3. [fegle= NV (W) Aly="fls)

yedom(g)

Remark 2.2.9 ([Bel05], p. 23). Notice that in order to define |- = |5 we are using [[- € -]
and vice versa. This is possible because we are defining both relations simultaneously by

recursion on a well-founded relation <: Given (x,y), (u,v) € VB x VB let
(x,y) < (u,v) if and only if either (z € dom(u) and y = v) or (z = v and y € dom(v))

Remark 2.2.10. We have that (VE [- € |, [ = -[p) is a B-valued Lc-structure (see Theo-

rem [2.2.14)) and thus we can define a valuation [-[p : Sent(Ls) — B as in Definition [2.1.3]

Remark 2.2.11 ([Bel05], Chapter 1, Remarks 1). Observe that there is a considerable

“duplication” of elements in the Boolean universe V2, that is, for every f € V2 there exist a
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proper class of elements g € VE such that [f = g]g = 1. For example, let us take « € ON
and define Z% = {(z,0) : = € V2}. It is easy to see that [J = Z%p = 1 for every
a € ON so each member of the proper class {Z% : & € ON} represents the empty set in
VE. Furthermore, given f € VB let us consider 8 = rankys(f), i.e. the ordinal 3 such
that f € VﬁBH\VﬁB. Then, for every a > /3 consider the function f® with dom(f®) = VE,
f*(z) = f(z) for z € dom(f) and f*(z) = Op for x € dom(f*)\dom(f). Then, for every
a > (3, we have that [f = f®]g = 1. Therefore, it is helpful to think of the members of V2

as ‘representatives or labels’ for sets (or even ‘potential’ sets), on which (Boolean-valued)

equality is defined as an equivalence relation with very big equivalence classes.
Definition 2.2.12. If ¢ is a Lg-sentence, we say that VE = ¢, if and only if, [p]s = 1.
Remark 2.2.13. In case it is clear from the context, we write [¢] instead of [¢]p.

Theorem 2.2.14 (|[Bel05], Theorem 1.17). All the axioms of first-order calculus with equal-
ity and first-order inference rules are valid on V. In particular, if f,g,h € VE and p(x) is

a Ly-formula:
1. Reflexivity: [f = f] = 1.

2. If x € dom(f), then f(z) < [x € f].

w

. Symmetry: [f =g] = [g = f].

W

. Transitivity: [f = g] A [[¢g = h] < [f = h].

ot

Lf=glalfehl<lgen].

D

g=h]Alfegl <[feh]
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T [f =gl A (D] < Te(a)] -

Theorem 2.2.15 ([Bel05], Corollary 1.18). If f € VB and p(z) are Lp-formulas:

L [Brefe@)] =V (f(@)nlp)]).

zedom(f)

2. [Vee fo@)] = A (f@) = [e@)]).

zedom(f)
Definition 2.2.16. Given any subclass M < VB, we can endow M with a Boolean model

structure by
L [-eg" =1 € lslmxm
2. [ =1 =01= Tslmxm

And we call all Boolean models of the form (M, [- € ‘[|glarxar [+ = [l arxar) submodels of

VE,

Remark 2.2.17. Recall that V' denotes the von Neumann universe (see Definition and

Proposition [1.1.4)).

Definition 2.2.18. Take B = 2. We define a class function > : V — V2 as follows: Given

x eV, take

T={(y,1):yex}.

This is a definition by recursion on the well-founded relation y € x. Notice that, for all

reV,

TeV2ic VB
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Theorem 2.2.19 ([Bel05|, Theorem 1.23). Let x,y,a4,...,a, € V and ¢(z1,...,z,) be a

Lc-formula. Then

3. [eldr, ..., an)]m, [p(di, ..., an)]2 € 2

4. * is injective.

5. s surjective in the following way: For every u € V2 there exists a unique a € V such
that V® = u = a.

6. - is an “isomorphism” in the following way

¢(ay,...,a,) holds in V, if and only if, [p(dy, ..., ay)]y2 = 1

7. If (a1, ..., x,) is an Lc-formula with bounded quantifiers (i.e. if each of its quantifiers

occurs in the form Vz € a or 3z € )

o(ay, ...,a,) holds in V| if and only if, [p(ay,...,a,)]ys =1

2.2.2 Heyting models of Set Theory

Heyting models of Set Theory were introduced by Grayson in [Gra79|, where he introduces
an Intuitionistic Zermelo-Fraenkel Set Theory (IZF') and proves the validity of this theory

in his Heyting-valued models.

Definition 2.2.20. Given a complete Heyting lattice H, we can construct V¥ and [-]g

analogously as in the complete Boolean algebras case (see Definition [2.2.1]).
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Definition 2.2.21 (Axioms of /ZF, [Bel05], pp. 158 and 163). The axioms of I ZF are just
the axioms of ZF'| with the caveat that we write the Axiom of Regularity in the following

way

Vo ((Vy € zp(y)) — ¢(x)) — Vop(z) (e-induction scheme)

This is done since the Axiom of Regularity in its usual form (existence of e-minimal elements)

implies the law of excluded middle (LEM).

Theorem 2.2.22 (|Bel05], Chapter 8, pp. 165 and 166). VH = ¢ for every axiom of
first-order Intuitionistic Logic, for every rule of inference, and for every axiom of IZF.
Furthermore, V¥ validates Zorn’s lemma, even though it does not generally validate the

Axiom of Choice.

Many interesting independence results from IZF can be proved by using these Heyting-

valued models. For instance, Fourman and Hyland [FH79| construct models such that

1. Every function from R to R is continuous.

2. The sets of Cauchy and Dedekind real numbers do not coincide.

3. The field of complex numbers is not algebraically closed.

2.2.3 Quantale-valued models of Set Theory

In [Lan92a), Lano studied Topological Residuated Algebra valued models for Mlodal Resid-
uated Logic. In this section, we aim to study these models without the modality (necessity)

that Lano used. In this subsection, we focus on the proofs for some of the properties of
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quantale-valued models of Set Theory for the following reason: Even though it is well known
that these models are quantale-valued models in the sense of Definition [2.1.8| there is not,

as far as we are aware, a prove in the literature that shows this fact, so we prove this in

Theorem 2.2.31]
Definition 2.2.23. We define V.2 by recursion on ordinals:
LV =g
2. V&, == {f: f is a function with dom(f) < V€ and ran(f) < Q}

3. Ve:= Vb@ with « % 0 limit ordinal.

B<a

4. V2= (J V2
acON

Definition 2.2.24. We define the language Lo as Lo := Lyo = Lc U {c, : a € V?}, where

each ¢, is a constant symbol.

Definition 2.2.25. Given x € V@, we define rankyo(x) as the smallest ordinal a such that

T € Vo(%rl.

Theorem 2.2.26 (Principle of induction for V@, cf. [Bel05], p. 21, 1.7). For every Classical

first-order Lc-formula p(z), we have
(Vo e VE((Vy € dom(z)p(y)) — ¢(x))) — (Vo € Viip(z))

Definition 2.2.27. We define interpretations of € and = in V? as

Lfcglo= A (flx)—[regl)

zedom(f)

2. [f=glo=1f<glo g < flo
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3. [feglo="V (@) [z=flo)

zedom(g)

Remark 2.2.28. We have that (V©, [- € o, [- = ‘Jo) is a Q-valued Lc-structure and thus

we can define a valuation [-]Jg : Sent®(Lg) — Q as in the Definition [2.1.11}
Definition 2.2.29. If p is an R — Lg-sentence, we say that V@ |= ¢ if [p]o = 1.
Remark 2.2.30. As long as it is clear from the context, we denote [-]g as [-]

Theorem 2.2.31 (cf. [Bel05], Theorem 1.17). Let f,g,h, h, fi, f2, 91,92 € V@ and o(x) be

an R — Lg-formula that does not contain the symbols & and —. Then:
1. Reflexivity: [f = f] = 1.
2. If x € dom(f), then f(z) < [z € f].
3. Symmetry: [f = g] = [g = f].
4. Transitivity: [f = g¢] - [g = ] < [f = R].
5. [f =gl -[fen] <lgeh]
6. [g=n]-[fegl <[fen]
T =al 12 =gl - [fr € fol < lgr € g2]-
8. [f =gl - [e(N] < [el9)] -
9. Brefe@] = V (@) [e@)])

zedom(f)

10. [Vze fo(x)] = A (fz) = [p()]).

zedom(f)



70 2 Constructions over valued models

Proof. 1. We prove it by induction on V¢ (see Theorem [2.2.26]).
Induction hypothesis: Suppose that [z = x] = 1 for all € dom(f).

Now, if z € dom(f), then

f@)=flz) 1= fla)-[e=a]< V fl)-[z=y]=]ve/[]

yedom(f)

i.e., f(z) < [z € f] and then, by Theorem |1.2.33| item 1., we have that (f(z) — [z €

f]) = 1. Then,

[f=r1= N (fl&)=[zef])- AN (fly)—lyefhH= A 1- A 1=

xedom(f) yedom(f) zedom(f) yedom(f)
1-1=1.

2. It is obtained by using Theorem [2.2.3T]item 1. and an argument similar to the previous

item.

3. It is immediately obtained by the commutativity of the product -:

[f=gl= N\ (@ —lzegDd /N () —lye )

xzedom(f) yedom(g)
- N\ W —-lyer) N\ (f@) —[regl) =1[g= /]
yedom(g) zedom(f)

4. We prove it by induction on V.

Induction hypothesis: Suppose that [z = ¢] - [¢ = h]] < [x = h] for all z € dom(f)

and g,h e VO

Then, in particular, for all y € dom(g) and z € dom(h) we have to [x = y] - [y = 2] <

[t = z] . Then, [x = y] [y = 2] - h(z2) < [x = 2] - h(z). Taking supremums over
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z € dom(h) we get that

V o le=yl-ly=2]-h(z) < V [r=2z] hz)=][zen]

zedom(h) zedom(h)

But we have

\ [e=yl-ly==]-hz) =[e=y]- \/ ly=z] h()

zedom(h) zedom(h)

=[z=y]-lyenr]

And putting all the previous results together, we get that

[z =yl-lyeh] <[zen]
On the other hand, we have to

g@)-lgchl=9@) - /\ (&)~ [y eh])

y'edom(g)

<g(y) - (9(y) — [y € h])

<[yeh] (by Theorem [1.2.33|item 2.)

ie., g(y)-[g = h] <[yeh]
And then,
[gch]-[x=y] gly) <[v=y] [yeh]

< [x € h].

ie, [gch]-[z=y] g(y) <[zen]
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Taking supremum over y € dom(g),

[gchl-[xegl=Tgchl- \/ (Iz=yv] 9(v)

yedom(g)
=\ lvshl-[z=y] 9
yedom(g)
< [z € h].

ie,[gcsh] [reg] <[zeh]

Given that [f < g] - f(x) < [z € g], using the result given above, we get

[f=gl-lgchl-fz)<[xeh]

And since - is left adjoint to —, we have for all x € dom(f)

[fegl-lgshl<flz)—lveh]

Hence, by definition of infimum

[fegl-logcshl< A (fl@)—[zeh])=[f<h](x)

xedom(f)

On the other hand, using the symmetry of |- = -], the induction hypothesis implies

that for all g, h € V@ and all z € dom(f)

[h=g] [g=2z] <[h=21]

Thus, using an argument similar to get (x), we arrive at

[hegl-locsfl< AN (h(z) = [z=fD) =1h< f] (=)

zedom(h)

Thus, using (*), (*x) and since - is monotone (Theorem [1.2.33] item 5.), we may say

that
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If =gl -lg="n]l<[f=nh]

5. If z € dom(h), then by the transitivity of [- = -] and the monotonicity of -, we have

[f =] [f =21 h(=) < [g = 2] - h(2)

Taking supremums on both sides over z € dom(h), we have

[f=gl-[ferl=1f=gl- \/ (If =2] h()) ( definition of [f € h])
zedom(h)
— \/ (If =g]-[f ==z] h(2)) (- distributes over \/)
zedom(h)

< lg==2] h(z) =geh]
(h)

zedom

6. If y € dom(g), then

lg="nh]-gy)=lg<h]-[h<sg] gy (definition of [g = h])
<[gch] gy

= N\ ) =y eh] g

y'edom(g)

< (9(y) = lyeh]) g(y)

< |y € y Theorem |1.2.33|1tem 2.
h by Th 1.2.33|1 2
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Therefore, by using the monotonicity of - and the item 5. on this theorem, we get

lg=nr]-1f=yl 9y) <lyeh] [f=y]
<[feh]

Taking the supremum over y € dom(g), we get

lg=nhl-[fegl=Tg=0]- \/ [f=vl 9(v) (- distributes over \/)

yedom(g)

=\ lg=n1-1f =yl 9y
yedom(g)

<[feh]

7. Tt follows from the previous items:

[fi=g] - [fo=gl [ficf] <[fi=an] [ficg] (by Theorem[2.2.31item 6.)
< [g1 € 92] (by Theorem item 5.)

8. We prove it by induction on the complexity of R — Lg-formulas
a. For the atomic case, it follows from items 4., 5. and 6 of this theorem.

b. Induction hypothesis 1: Let ¢(x) and ¢ (z) be R — Lgy-formulas such that

Lf = 9] - [v(f)] < [e(9)]
Lf =gl [¥(N)] < [¥(9)]
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i. Disjunction:

Lf =gl- I~ )N =1f =gl - (le(HI v [L(H])
= ([f =9l -TeOD v (If = gl - [¥(f)]) (- distributes over \/)

< [e(g)] v [¥(9)] (by the induction hypothesis 1)

= [(e v ¥)(9)]

ii. Conjunction:

[f =gl - [l A )N =1f =gl - (Te(H] A [L(N])

< (If = g1 [eH]) A (Lf = 9] - [¥(HD) (by Theorem item 1.)
< [e(9)] A [¥(9)] (by the induction hypothesis 1)
= [(e A ¥)(9)]

c. Induction hypothesis 2: Suppose that for all h e V@

Lf =gl -[e(h, )] < [e(h,g)]
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i. Universal quantifier:

[f =gl [Yop(z, Nl = [f = g]- \/ Te(h, /)] (by definition of [Vae(z, f)] )

heVQ
= \/ If = 9] [e(h, f)] (- distributes over \/)
hevQ
< \/ le(h, g)] (by induction hypothesis 2)
heVQ
= [Vzp(z, g)]

ii. Existential quantifier:

If =g - [Bog(x, ] = 1f =g]- /\le(h, £)]  (by definition of [Izep(x, f)])

heVQ

< /\ [f =g]-[e(h, f)]  (by Theorem [1.2.36]item 1.)

heVQ

< /\ le(h, 9)] (by induction hypothesis)

heVQ

= [Fzp(z, g9)]

9. Let us first see that for all z € V@

V [z =yl [e@)] = [¢(@)]-

yeV Q@

By item 8. of this theorem, we have that for all y € V@,

[z =y] - [e(y)] < [e@)].

Therefore,
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V [z =yl - [e(y)] < [p(2)]

yeVQ

But on the other hand,

[o(@)] = [p(@)] -1 = [w(@)] - [» = 2]

<\ Iz =yl [ew)] since z € V@

yeVQ

and thus [p(z)] = V [z = y] - [¢(y)]. Using the equality given above, we get
yeVQ

[z e fo(x)] = [Fz(x € f&p(x))] = \/ ly € f&p(y)] (by definition of 3)

yeVQ

= \/ [ye f1-[e(y)] (by definition of &)

yeVvQ

_ \/ \/ f@)-Tz=9] [eW)] (by definition of [y € f])

yeVQ zedom(f)

— \/ \/ fx) [z =y] [eW)] (by exchanging the supremums)

zedom(f) yeVQ

= \/ f \/ [z =1vy] - [ey)] (- distributes over \/)

xedom(f yeVQ

:\/f

xedom(f

10. In a similar fashion as the previous item, we can prove that

[e(@)] =V [z =yl = le(y)]

yeVQ
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[Vze fo(z)] = [Va(re f— @) = Nlyef—oew]l= N\lye fl— [ew)]

yeVQ yeVQ

- A | V (@) [z=y]) |- [e@)] (by definition of [y € f])

yeVQ \ zedom(f)

— /\ /\ =y]) = [e(y)]) (by Theorem item 3.)

zedom(f) yeVQ

- /\ /\ — ([r =y] = [¢(y)])) (by Theorem item 10.)

zedom(f) yeVQ

A f — Az =yl = [¢W)]) (by Theorem [[:2:38]item 2.)

zedom(f yeVQ

=/\f ()]

zedom(f

O

Corollary 2.2.32. V@ is a Q-valued model and therefore V2 is a model of all of the axioms

of Residuated Logic.

2.3 Constructible sets on valued models

There has not been a significant attempt at trying to generalize Godel’s universe within the
framework of valued models of Set Theory. The closest we found was Fitting’s work [Fit69]
in which he re-states the definition of L by using standard (i.e. two valued) characteristic
functions.

More precisely, Fitting takes a set M and v a truth function on the set of first-order formulas
with constants from M (here Fitting considers only two possible truth values) and then says

that a (characteristic) function f is definable over (M, v) if

1. dom(f) =M
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2. ran(f) < {T, F}

3. There exists some formula X (x) with one free variable and all constants from M such

that for all a € M

And then, with this notion of definable set, Fitting re-states the definition of G6del’s universe
in these terms. We adapt Fitting’s notion of definable sets in the context of Boolean valued
models and quantale valued models to propose some new versions of L. Although reasonable
at first, this attempt was not successful since the proposals for new models that we considered
ended up collapsing to two-valued universes, and therefore they are essentially classical

models.

2.3.1 Constructible sets in Boolean models.

We start by motivating our approach to constructible sets in Boolean models by stating
Godel’s construction in a very precise way, so that it is clear how we translate this definition

to the Boolean valued case.

1. LO = @,

2. Loi1 :={X C L, : there is a classical first-order Lc-formula ¢(z, ) and b e L such that

X ={aeLy: (Lo e l1,) Fola,b)},

3. Lo := |J Lg for a # 0 limit ordinal.

B<a

Let L:= |J La-
aeON
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Taking this into account, we start from a Boolean set-theoretic model

(VB7 [[ € ‘ﬂ]& [[ = ]]B)

and we take subsets (in the sense of V) LE < VB in order to take the restrictions of the
interpretations of € and = on the universe V® and then using them for the set L2 and

considering the “definable sets” in the Boolean submodel

(L[ e Jee, [ = Due) == (Lo, [- € Istee, [- = -Islie)

We propose two definitions of definable sets in this context: B*-definable and B-definable,
both inspired in [Fit70], and with those definitions we construct the models £¥ and L%,
respectively.

Throughout this subsection, B is going to denote a complete Boolean algebra.

Definition 2.3.1. Let M < VB be a subclass. Recall that we can view M as a B-valued
Lc-structure by taking the restrictions on M from the interpretations of € and = on V®. We

say that f is a B*—definable subset of M if:
1. feVB,
2. dom(f)< M.

3. There is a first-order Lc-formula ¢(x, %) and b e M7 such that for every a € dom(f)
fla) = [e(a, b)]ar
And we define the class of B*-definable subsets of M as

Def® (M) := {f e VB : f is a B*-definable subset of M}.
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Definition 2.3.2. We define £Z, by transfinite recursion over the ordinals, as follows
1. 28 =9

2. €8 = Def® (£B) = {f € VB : dom(f) < £F and there exist a Lc-formula o(z, )

and b € (£8)¥ such that for every a € dom(f), f(a) = [¢(a,b)]es}.

3. £ = |J £5 for @ # 0 limit ordinal.

B<a

4. £B .= |J LB
aceON

Proposition 2.3.3. For all a € ON, £8 c VB,
Proof. A straightforward induction on « proves this claim. n
Theorem 2.3.4. For all « € ON, £8 c €8 .

Proof. We prove this by induction on a. The case a = 0 and « # 0 limit ordinal are simple,

so we only focus on the successor step. Let us assume that
£8 < ¢F | (induction hypothesis)
We have to prove that 2§+1 c E]EJFQ. Hence, take f € EEH, that is,
1. feVE,
2. dom(f) < £&,

3. there exist a classical first-order Lc-formula ¢(z,7) and b € (£8)/% such that for all

a € dom(f)

fla) = le(a,b)] ez
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By induction hypothesis, we have that dom(f) = £8 < €8, so all we need to do is to find

a Lc-formula with parameters from £, defines f . Consider the Lc-formula

b(x,y) =z ey,

since f € £2.,, we want to prove that 1 (z, f) defines f, that is, we want to prove that for

every a € dom(f),

[e(a,b)]ez = [ae fle

a+1 :

Notice that, for every a € dom(f),

l[ae fle.. = \/ flOrla=cle (by definition of [a € f] )
cedom(f)
= \/ [e(c,b)]e, A la=c]g . (by induction hypothesis).
cedom(f)
Hence,

[[90(%6)}}233; 1= [[@(aag)]]si% [a = aﬂ)ﬂg“

< V [eedlE, Ala=ds,,, (since a € dom(f))
cedom(f)

On the other hand, by Theorem item 7., for every ¢ € dom(f),
[e(e,0)]¢, A [a=clg,,, <[elab)]g,
Then, by definition of join,
V el )], Ala=clg,,, <lelab)]E,

cedom(f)

Therefore,
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[aefli.., = V Ied]g, rla=cli,., =led)], = fla)

cedom(f)

and thus, f e £8_,. O
Corollary 2.3.5. For all o, f € ON, if v < 3, then £ < £3.
Theorem 2.3.6. If f € £8 then ran(f) < {0,1} = 2.

Proof. We prove it by induction on ordinals, showing that for all « € ON, if f € £,, then
ran(f) < 2.

Induction hypothesis 1: Take o € ON such that for all a € £8, ran(a) < 2.

Let us see that if f € £8_,, then ran(f) < {0,1} = 2. Since f € £, there is a Lc-formula

¢(z,y) with |g| = n and b e (£E)" such that for all a € dom(f) < £E

fla) = Te(a,b)]es.

Notice that a, by, by, ..., b, € £8, so we can use the induction hypothesis 1 on them, so that
ran(a),ran(b;) < 2 for all 1 < i < n.

We will prove that if f € €8, then ran(f) < {0,1} = 2, using induction on formulas, where
the formulas can take parameters from £F.

We start with the atomic case. We want to prove that [a € 0], [b € a],[[a = 0] € 2 for all
a,be LB

We prove the statement given above by induction on the well-founded relation < on V¥ (see

Definition [2.2.9)), where

(v,w) < (a,b) if and only if (v = a and w € dom(b)) or (v € dom(a) and w = b), where

a7b’f7gEVB’
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Induction hypothesis 2: for all <-predecessors (v, w) of (f,g), we have that
[vew],[wev],[v=uw]e2.
Notice that the <-predecessors (v, w) of (a,b) have the form
(a,w) and (v, b), where v € dom(a) and w € dom(b).

Then, the induction hypothesis 2 means that for all v € dom(a) and w € dom(b) we have

that
[a € w],[w e a],[vebd],[bev],[a=w]]v=>]c€2.
Let us see then that
[ae€b],[beal,]a=0]e2

By definition of [- € -]¢z, we have that

[aebles =[aeb]ly = \/ bw)A[a=w]

wedom(b)
Given that b € £8 by induction hypothesis 1, we have that b(w) € 2. On the other hand, the
induction hypothesis 2 implies that [a = w] € 2, so b(w)Ala = w] € 2and \/ ( )b(w)/\[[a =
wedom(b
w] = [a € b]g € 2.

In a similar way as before, it is shown that [be a]ez € 2

By definition of [- = ]gr, we have that

[[a:b]]glgz[[a/:bﬂv:< /\()a(v)—>[vebﬂ>/\< A b(w)a[[weaﬂ)

vedom(a wedom/(b)

Since a,b € £2, by induction hypothesis 1, we have that a(v),b(w) € 2. On the other hand,

the induction hypothesis 2 implies that [v € b], [w € a] € 2, thus
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(a(v) — [v e b)), (b(w) — [w e a]) € 2.

Then,

AN alw)—>[ved], A bw)—[weada]ce?2.

vedom(a) wedom(b)

Therefore,

( A alv)—>Jvebl A A b(W)H[weaﬂ>:[[a:bﬂ£]E€2.

vedom(a) wedom(b)

Thus, by induction on the well-founded relation <, we have that [a € b], [b € a], [a = b] € 2
for all a,b e £8. this proves the case for atomic Lc-formulas.
By induction on Lc-formulas, it is straightforward to show that for every Lc-formula o(z, )

with |y| = n, be (£8)"y a € dom(f) < £E we have that

[o(a,b)]ez = f(a) €2,
since if Boolean combinations of formulas that only take values in {0, 1} are made, the result

of evaluating these formulas is 0 or 1.

Thus, we have that, for all f e £8, | ran(f) < 2.

a+1

Checking the limit ordinal case is straightforward. Then, by induction on the ordinals, we

have that for all f € £8 ran(f) < 2. O
Remark 2.3.7. The previous theorem tells us that £8 < V2.
Theorem 2.3.8. Forallz e V, 2 € £B.

Proof. We prove it by induction on the well-founded relation €.

Induction hypothesis: Suppose that for all y € x, § € £8. Take a € ON such that for all

y € x, J e L8, By definition of * (see Theorem [2.2.18)),
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r={(@1) yex}

Notice that dom(z) < £& and that if we take the formula ¢(v) : v = v, we have that for all

g € dom(z),

Therefore & € £2_ . O

Remark 2.3.9. Notice that the previous theorem tells us that the function * is such that
*:V — £8 < V2. Recall that - is an “isomorphism” between V and V2 (see Theorem.
We want to see that it is also an “isomorphism” between V' and £&.

We know that ° is injective by item 4. of Theorem . Since £8 € V2, and since for all
f € £ there exists a € V such that [a = f]] we have that *: V' — £® is also “surjective”. On

the other hand, by Theorem [2.2.19|item 6., we get that for all a4, ...,a, € V and Lc-formula

(1, ey Tp),
o(ay, ...,a,) holds in V', if and only if, [p(dy, ..., a,)]v2 = 1.
But we can prove that
lo(ay, ....;an)]es = [@(ar, ..., an)]ve

holds (we will not prove it here, since it is a standard, but long and tedious proof), so £F is

“isomorphic” to V.

Taking these results into account, we need to change our definition of definable set. We start

by changing the definition of definability as follows:
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Definition 2.3.10. Let M < VB We say that f € VB is a B—definable subset of M if f

satisfies the following
1. dom(f) = M (before it was dom(f) < M).

2. There is a classical first-order Lc-formula ¢(x,7) and b € MW such that for all a €

dom()
fla) = [(a,0)]ur
And we define the set of B-definable subsets of M as
DefB(M) := {f € VB : f is a B-definable subset of M}.

Definition 2.3.11. Given a complete Boolean algebra B, we define by transfinite recursion

over the ordinals
1. ILISB =

2. LB | := DefB(LE)ULE = {f € VB : dom(f) = LE and there exist a Lc-formula ¢(x, )

a+l =

and b € (LE)¥ such that for all a € dom(f), f(a) = [¢(a,b)]s} U LE

3. LY := |J Lj for & 0 limit ordinal.

B<a

4. LEB.= |J LE

acON
Notice that two changes were made to the original definition. First, the domain of functions
was changed, we went from considering functions with dom(f) < LE to dom(f) = LE. In
this way, it is not always the case that & € LB for all z € V. Second, the successor step was

defined so that
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LB < LE , holds for all « € ON.

a+1

These changes are very important on a technical level, since they make many proofs easier

later on.

Remark 2.3.12. We can prove that LB € V2 mimicking the argument that we used for the

model £8 in Theorem 2.3.6]
Theorem 2.3.13 (cf. Theorem [2.3.6). If f € LB, then ran(f) < {0,1} = 2.

Lemma 2.3.14. If M is a B-valued Lc-structure, then for all f,g e M, if [f = g]n = 1,

then, for all Lc-formula ¢(z,7) and @ € MY,

Proof. By Theorem [2.2.14] item 7., we have that

Lf = glm A [e(f,a)]m < [(g,a)]ar and [f = glar A [e(g,a) ] < [o(f, @)

And since [f = gy = 1, we have that

[o(f,a)lar < [w(g,@)]n and (g, a)|ar < [@(f;@)]ar, ie., [o(f,a)]ar = [w(g,a)]n

O

Lemma 2.3.15. Let f,g € VE. Suppose f is an extension of g, i.e. dom(g) < dom(f) and

[ aom(g) = 9- If f(a) =0 for all a € dom(f)\dom(g), then V® |= f = g.
Proof. We want to see that

[[f:=g]]=[[f£9ﬂA[[g£fﬂ:=< A f(a)ﬁ[[aeg]])A( A g(b)*[[bEfD:l-

acdom(f) bedom(g)
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Notice that

/\ f [a € ¢ (by definition of [f < ¢])

aedom(f

A f ) lbegln /N fla)—>[aeg] (dom(f)=dom() o (dom(g)\dom(g)))

bedom(g aedom(f)\dom(g)

= /\ gb)—[beg] A AN 0—Jaeg] (f(a) = 0 for all a € dom(f)\dom(g))

bedom(g) acdom(f)\dom(g)

= /\ gb) = [beg] Al (since 0 - z =1 for x € B)
bedom(g)

= A 9) —[begl
bedom(g)

=lg=gl=1

On the other hand, since dom(g) = dom(f) and f[4om(g) = g, we have for all b € dom(g)

besl= \/ f ) A Ja=10]

aedom(f

> f(b) A[b=0b] (since be dom(g))

=g(b) nl (since flaom(g) = 9)

= g(b).

Therefore, g(b) < [b e f] for all b € dom(g), i.e., (g(b) — [be f]) =1 and

lgsfl= AN g)—=lbefl= A 1=1

bedom(g) bedom(g)

From this, we conclude that

[f=gl=1fsglnlg=sfl=1r1=1
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]

The following theorem shows us that, for all Boolean algebras B, L is “isomorphic” to L® in

the following way:

Theorem 2.3.16. There exists a class function j : L — LL® such that for all « € ON, the

restriction 5l : L, — L? satisfies
1. ran(jlr,) < La.
2. jlL, is injective.
3. jlL, is surjective in the following sense: for all Y € LL,,, there exists X € L, such that
Lo =j(X) =Y.

4. jlr. is an elementary embedding in the following sense: For every Lc-formula ¢(z)

and a € Llf‘,
L, = ¢(a) if and only if [p(j(a))]L, = 1.

5. rankp(X) = rankpz(j(X)).

Proof. We prove this by induction on ordinals: The case a = 0 is trivial.
Suppose that we have already defined j I, and that it satisfies the conditions of the theorem
for all < «, where « € ON. We define j for L,i1\La: Given X € Lyy1\ L, we have that

X < L, and that there exists a first-order Lc-formula o(z, %) and b € L such that
X ={aeLy: Ly = plab))}

We define
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§(X) : Ly — B as j(X)(c) = [p(c,(b)]L, for all ce L,

Notice that, from the definition, j(X) € L,i1\La, and thus ran(jl.,,,) € L.y and

La+1
rankp(X) = rankpz(j(X)).
Let us see that the function j(X) is indeed well-defined, that is, that the function does not

depend on the choice of formulas and parameters.

Consider some Lc-formulas ¢(z,¥), ¥ (z,w) and parameters b € L and d e L™ such that

X={a€Ly: Ly Fyla,b)}={a€cLy: Ly =v(a,d)}.

From the previous equality, we have that for all a € L,,
Lo | ¢(a,b) if and only if L, = v(a,d).

But using the induction hypothesis item 4., we have that

Lo E o(a,b) if and only if [¢(j(a),j(b))]L, = 1 and

Lo = ¢(a,d) if and only if [¢(j(a), j(d))[L, =1

Combining these results, we get

[ (i(a), 5(b)]L, = 1 if and only if [¢(j(a), j(d))]L, = 1, namely,

[e(i(a), j(®)]e. = [¥(i(a), j(d)]w, for all a € Ly

And thus the function j(X) is well-defined for every c € j(L,) € L,.
To see that this is also true for all ¢ € L,, and not only for all j(a) € j(L,), we use
Lemma and the “surjectivity” of j. Given ¢ € L,, there exists a. € L, such that

[j(ac) = L, = 1. Then,
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[e(i(ac), j (b)), = 1if and only if [o(c, j(b)) ], = 1 and [¢(j(ac), j(d))]r, = 1 if and only

if [¥(c, j(d))]r. =1

we conclude that

[o(e, 7(b)]L. = 1 if and only if [¢(c, 5(d)) L. = 1, i.e., [¢(c, j(0)]L. = [¢(c,5(d))]L, for all

cel,.

And therefore the function j(X) is well-defined for X € L.

Let us see that j [, is injective.

If X,Y € L,, then, by induction hypothesis item 2., j(X) % j(Y') provided that X + Y.

If X € Lyys and Y € L,, then we have that there exists # < o such that Y € Lg;; and
therefore dom(X) = L, and dom(Y) = Lg, so we have j(X) + j(Y), since dom(j(X)) +

dom(j(Y)).

Let X,Y € Loi1\Ly be such that X Y. Thus, there are Lc-formulas ¢(z,y), (2, w) and

parameters b € L and d e L™ such that
X ={aeL,: Lo Eo(a,b)}andY ={ae L, : L, = v(a,d)}.

Since X + Y, we may assume, without loss of generality, that there exists a € L, such that

ae X anda¢V,ie.

Lo = ¢(a,b) and L, # ¥(a,d).
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Then,

J(X)(i(a) = [e(i(a), j(0)]r. = 1 and j(Y)(j(a)) = [¢(j(a), j(d))]r, = 0

e, 7(X) # j(Y) and j|p, is injective.

Let us now show that jlp_ is surjective in the sense of item 3. of this theorem. Let

[e3

Y € Loy1\Lo = DefB(LL,). Then, there is a Lc-formula ¢ (z,y) and parameters d € L

such that for all ¢ € L, = dom(Y)

Y(e) = [¥(c,d)],-

By the induction hypothesis item 3., there exists b € L7 such that L, = j(b) = d. Let us

define
X :={aeLy:LyE=v(a,b)} e Loy

We then have two cases:

1. Suppose that X € L,, then, we have that there is an ordinal 5 < a such that X € Lg.;.
Thus, we have that X < Lg and that there is a first-order Lc-formula ¢(w, Z) and

parameters f € Llf | such that

X:{eeLgiLg)Z(p(e,f_)}:{GELa:La):w<avl_)>}

Thus, since Lg < L,, we have that for all e € Lg,

Ls |= (e, f) if and only if L, = (e, b)

by the induction hypothesis item 4., we get
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Le(i(e), 5N, = [¥(i(e), i ()], = [ (i(e), d)], for all e € Ly

By using the “surjectivity” of j, we can generalize this to all g € dom(j(X)) = Lg,
obtaining

J(X)(9) = lelg, 5 (fN]e, = [(g, d)]L, =Y (g) for all g € dom(j(X))

In this way, we conclude that Y is an extension of j(X). Let us see how Y behaves in

Lo\Lg. Given a € L,\Lg, since a ¢ Lg and X < Lg, we have a ¢ X and therefore

La Eé w(eai))v i'e'v H¢(](e>7](6))ﬂla = H¢(](e>7d)ﬂla = 0.

By the “surjectivity” of j, we can generalize the equality given above to

J(Y) = [v(g,d)]L, = 0 for all g € L,\Lg.

In this way, since Y is an extension of j(X) such that for all g € dom(Y )\dom(j(X)),

Y (g) = 0, we conclude that the functions j(X) and Y are equal in the sense of [- = -]

by Lemma [2.3.15] i.e.,
Lo Fij(X)=Y
as we wanted.

2. Suppose X € L,.1\L,. In this case, we have j(X) = Y since dom(j(X)) = L, =

dom(Y) and for all c € L,,
§(X)(e) = [¥(e, (). = (e, D], =Y (), e, j(X) =Y
Let us see that we have the property 4 by induction on formulas:

1. e: Let X,Y € L,,1, we see that
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Loyn EXeYifand only if L,y E j(X) € 5(Y).
(=) Suppose Loy1 = X €Y. Thus, since X € Y < L,, we have X € L,. Consider an
Lc-formula v (x,y) and parameters b € L such that
Y ={a€Ly: Lo v(a,b)}
Then, since X € Y, we have L, = (X, b) and therefore, by the induction hypothesis,
Lo E¥(j(X),5(0), ie.,
JY)GX)) = [W((X, 5(0)]e, =1
And since [j(X) = j(X)]L, = 1, we have j(Y)(j(X)) A [(X) = j(X)]r, = 1 and

since j(X) € dom(Y) < L, we have

(X)) € i(Y)]u, = ) \{'(Y))j(Y)(C) Ale=5(X)l. =1

as desired.

(<) Let us suppose that

LX) eiM. = Vi) Ale=4i(X), =1

cedom(j(Y))
Thus, since j(Y)(¢) A e = j(X)]L, can only be 0 or 1, there exists ¢ € dom(j(Y)) < L,
such that
JY)(e) A fe= (X)L = 1,
then,
J(Y)(e) = Land [¢ = j(X)[w, =1

Since j(Y)(c) = [¥(c, j (b)), = 1 and [c = j(X)]L. = 1, we have that
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JYV)(G(X) = [(G(X), 5(0)]L, = 1.

By induction hypothesis, we have that

Lo = (X, )

and then X e Y.

. Equality: Let X,Y € Ly41\Lq. Let us see that
Lovi EX =Y ifand only if L, = j(X) = j(Y).
By definition, we have that there exist first-order L-formulas ¢(z,y), ¥(z,w) and
parameters b € Lf land d e L'f | such that
X ={a€Ly: Ly Ew(a,b)}andY ={ae L,: Ly, = ¥(a,d)}.
If X =Y, then, since j is a function, j(X) = j(Y) and therefore L,,1 = j(X) = j(Y).
Suppose now that X + Y. Without loss of generality, suppose there exists a € X with

a¢Y,ie.,

Lo = ¢(a,b) and L, ¥ 9¥(a,d)

By the induction hypothesis item 4., this means that

7(X)(i(a)) = [p(i(a), j(0)]r. = 1 and j(Y)(j(a)) = [¢(j(a),j(d))]r, + 1.

but since [(j(a),j(d))]L, can only take values in {0, 1}, we get

7(Y)(G(a) = [¢(i(a),5(d))]L. = 0.
Let us see that [j(a) € j(Y)]L, = 0.

Notice that
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J(X)(j(a)) =1 and [j(a) € j(Y)]L, = 0, ie., j(X)(j(a)) — [i(a) € j(Y)]L, =0
and therefore

X)) i, = A §(X)(e) = [ce i), =0

cedom(j(X))

and we have [j(X) = j(Y)]L, = 0, as desired.

The rest of the induction is straightforward, and therefore, by induction on formulas, we

have the theorem.

2.3.2 Constructible sets in quantale-valued models

Definition 2.3.17. Let M < V@ Notice that we can view M as a Q-valued model by
taking the restrictions on M from the interpretations of € and = on V2. We say that f € V¢

is a Q—definable (Q*—definable) subset of M if f satisfies the following:
1. dom(f) =M (dom(f) < M)
2. There is an R — Lc-formula ¢(z,%) and b e M such that for all a € dom(f)
fla) = [e(a,0)]ar-

Given a commutative integral quantale Q, we can define, by transfinite recursion on the

ordinals, the class models £2 and L2 in the same fashion as we did for the Boolean case

(see Definitions [2.3.2{ and [2.3.11]). Furthermore, by using Theorem [1.2.39 we can prove that

£2 < V2 and L@ < V2 by using a similar argument as in Theorem m
Since the logic for these models is two-valued, there is no reason to continue exploring this

definition of definability on Residuated Logic.
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As it was done in the previous chapter, we would like to generalize both the von Neumann’s
and Godel’s hierarchy, only that now out aim is to do it in the context of Kripke models.
Since in [Fit69] Fitting studied exactly these hierarchies for Intuitionistic Kripke models, we

generalize his results for a more general kind of Kripke models.

First, in Section [3.1], we start by overviewing the topic of Intuitionistic Kripke models and
showing some well-known relations between it and Cohen’s forcing. Then, we study Ono
and Komori’s notion of semantics for substructural logics without contraction and exchange
(see [OK85|). These models generalize the notion of Intuitionistic Kripke models and are
a suitable semantical counterpart for Residuated Logic. Then, following the ideas of
Lano [Lan92al, we further generalize Ono and Komori’s models to the context of Modal
Residuated Logic. The definition for the interpretation of the modality in our definition
is original, and allows for a smooth transition between Kripke models and lattice-valued

models.

Then, in Section we start by exposing Fitting’s results from [Fit69], where he constructs a

generalization of von Neumann’s hierarchy using Intuitionistic Kripke models. Then, using
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the notion of M R-Kripke models that we defined in the previous section, together with
Fitting’s ideas on the intuitionistic case, we construct new Modal Residuated model of
Set Theory.

We consider the model V¥* (see Definition , that generalizes the von Neumann hi-
erarchy for Modal Residuated Logic, and we prove, in Corollary [3.2.30] that there is a
Godel-McKinsey—Tarski-like translation between this model and a suited Heyting val-
ued model R¥ (see Definition . This translation is obtained by first constructing an
“isomorphism” (see Theorem between V' and R™ and then proving how this result
implies that if ¢ is an Lc-sentence that is valid in R®, then Oy is valid in VF*.

Finally, in Section [3.3] we start by stating Fitting’s main result for constructable sets in
Intuitionistic Kripke models, and then we proceed to superficially study the notion of con-
structible set in the context of Modal Residuated Kripke models of Set Theory. We only
outline a propose for a construction in this context and indicate some possible conditions

that we believe are necessary for the generalization of Fitting’s results.

3.1 Kripke models

Kripke models allow intuitive interpretations of different kinds of non-classical logics such as
Modal (see [Kri59, [Kri63b|) or Intuitionistic Logic (see [Kri63a]). Intuitively, this is done via
a collection of possible universes or states of knowledge connected by an accessibility relation
between them and a notion of local truth on each world represented by the forcing relation.
Although these models were originally used for Modal or Intuitionistic Logic, there are a lot

generalizations into different kind of logics such as Fuzzy Logics [SS18|, the Logic of Gelfand
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Quantales [AMO1] or, as we see in subsection Residuated Logic [Ono85l [OK85| Mac96]
(Ono and Komori call this logic Lgcr, which is essentially a substructural logic without the

contraction rule, but with the exchange rule).

3.1.1 Intuitionistic Kripke models

We do not follow Kripke’s original notation nor his definition for his models for Intuitionistic
Logic |[Kri63al, but rather Fitting’s definition [Fit69], but written in modern terms (such as
in [Caids)).

Throughout this chapter, £ denotes a first-order language.

Definition 3.1.1 (Intuitionistic Kripke Model, [Fit69], Chapter 4, Section 2). We say that

A= (P, <, I+, D) is an Intuitionistic Kripke L-model if
1. P4 ¢ and (P, <) is a partial order.
2. D is a function with domain P to non-empty sets of parameters

3. I is a relation between elements of P and atomic sentences in the language

La=L0u D).

pelP

where each element of | | D(p) is considered as a constant symbol. We denote (p, ¢) € I
pelP

by A I, ¢ and we say that ¢ is forced in A at p.

4. Given p,q € P and ¢ an atomic L 4-sentence, we require that D and |- satisfy the

following conditions:

a. If p < ¢, then D(p) < D(q).
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b. If p<qand Al-, ¢, then A I, ¢.

c. If AlF, ¢, then p € Sent(L v D(p)).

Definition 3.1.2 (Intuitionistic Kripke forcing, [Fit69], Chapter 4, Section 2). Given A =
(P, <, I+, D) a Kripke £-model, we can extend the forcing relation A |-, ¢ to all £ 4-sentences

by recursion on the complexity of ¢

1. Alkp (@ v 1), if and only if, A |-, ¢ or A |-, .

2. A, (@ Av), if and only if, A I, ¢ and A I, .

3. Al (¢ — 9), if and only if, for all g€ P, if ¢ = p and A |-, ¢, then A I, 9.

4. A, —o, if and only if, for all g € P, if ¢ > p, then A I, ¢.

5. Al Jzp(z), if and only if, there exists a € D(p) such that A -, ¢(a).

6. Al-, Yo(x), if and only if, for all ¢ € P, if ¢ = p and Vb € D(q), then A I, p(b).

Definition 3.1.3 (|Fit69], Chapter 4, Section 2). Given A = (P, <, I, D) a Kripke £-model
and an L-sentence o, we say that ¢ is true in the structure A ( and we denote it by A = @)

if for all pe P, A, ¢.

Definition 3.1.4. Given (P, <) a partial order and A € P a non-empty set, we say that A

is hereditary, if and only if,

whenever pe A and ¢ > p,qge A

and we denote the collection of hereditary subsets of P by P*.
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Theorem 3.1.5 (Folklore). The set P* with the order € is a complete Heyting algebra.

Proof. Since the order considered is the set the subset relation, it is enough to prove that
the intersection and union of a collection of hereditary sets is hereditary. We only prove the

case for intersection, since the case for the union is proved in a similar way. Let us consider

A; € P for i € I and take z € A\ A; = [ A; and y € P such that x < y. Then, for every

el el

i€, x e A; and since A; is hereditary and x < y, y € A;. Therefore, y € [ A;, that is, ] A;

iel el
is hereditary. O

The set P* is used as a set of truth values once we define the notion of generalized subsets

in a Kripke model.

Theorem 3.1.6 ([Fit69|, Chapter 4, Theorem 4.2). Given A = (P, <, I, D) a Kripke £-
model, p € P and an £ 4-sentence ¢, we have that if A |-, ¢ and ¢ € P is such that p < ¢,

then A I, ¢. That is, the set

{pelP: Al o}

is hereditary.

Definition 3.1.7. Given A = (P, <, I, D) a Kripke £-model, we denote the universe of the

Kripke £-model A as |A| := | D(p).

peP
Theorem 3.1.8 ([Fit69], Chapter 6, Theorem 6.1). If ¢ is a L-sentence with no universal
quantifiers and £; ¢, then there is a model A = (P, <, I, D) in which ¢ is not true and D

is a constant function.
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Definition 3.1.9. If A = (P, <, I, D) is a Kripke £-model where D is a constant function
(i.e. ran(D) = {D}), we denote (P, <, I, D) := (P, <, I, D) and we call them Kripke models

with constant universe.

3.1.2 Connections with Cohen’s forcing and valued models.

Now we present a well-known connection between Intuitionistic Kripke models and valued-
models that is going to be useful later. We present it first in the context of Cohen’s
forcing and then show how it can be altered into the context of Kripke models. For a
thorough treatment of set theoretical forcing, see [Kunli].

Given a partial order P, we can construct a complete Boolean algebra B and a dense embed-
ding i : P — B. The Boolean algebra B is called the completion of P and it is unique up to
isomorphism. Thus, if we need to force with a poset P, we could take its Boolean completion
B and force with it instead.

Now, let us consider a complete Boolean algebra B and consider Cohen’s forcing relation |-
on B, where B is viewed as a forcing poset. Then, if ¢ is any Lc-sentence, the truth value

of ¢ can be defined as

[e]le = VipeB:pl- ¢}

and we have that the following holds:

Theorem 3.1.10 ([Kunll], Lemma IV.4.19). For every p € B

p I @, if and only if, p < [¢]s.
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Furthermore, by [Kunll] Exercise 1V.4.20, IV.4.21 and 1V.4.24, it is clear that the valuation

that we defined satisfies the conditions of Definition [2.1.1] and [2.1.3]

The only problem with this definition is that in Cohen’s forcing the order relation works
in the opposite way as with Kripke models, that is, p < ¢ is understood as “p has more
information than ¢” rather than the other way around. Or in a more formal way, in the
context of Cohen’s forcing we have that if ¢ I ¢ and p < ¢, then p |- ¢. Therefore, since
Cohen’s forcing preserves truth downwards and Kripke’s forcing preserves truth upwards,
if we want to formulate Theorem [3.1.10]in the context of Kripke’s forcing, we have to consider

the opposite order on the Kripke model. Therefore, we would expect to have the following:

Remark 3.1.11. Consider a Kripke model A = (B, <, |, M) and the Boolean valued

model M = (M, [-]) determined by A. Then, for every p € B,

Ak, o iff p <[]

In this way, we could construct valued models from a given Kripke model using

[¢]s = V{peB :pl v}

as a definition for the valuation.

A similar process can be considered and we can take a valued model and from it construct
a Kripke model. Given that constructing valued models is simpler than defining Kripke
models, we may use valued models together with the relation given in Theorem to
generate new definitions for Kripke models.

We will see an example of that in the Subsection [3.1.4] where we propose a definition of the

modal operator of possibility on Kripke models using this relation.
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3.1.3 Residuated Kripke models

In [OKS85], Ono and Komori generalize the notion of Intuitionistic Kripke models for (propo-
sitional) logics without contraction, that is, substructural logics without the idempotency of
the conjunction. Then, in [Ono85|, Ono defines the notion of Kripke models for the predicate
case. For the most part, we follow their notation and conventions, but with small variations,
since we are not interested in working with Gentzen-style sequences. Even though these
models were initially used for the study of substructural logics, MacCaull [Mac96] showed
how the models in [OK85| can be seen as models for Residuated Logic.

Since we are working in the context of Residuated Logic, we need a more robust structure
than just a poset (P, <) in order to properly interpret the operation of strong conjunction &
and to capture the subtleties of the Residuated Logic, so it would be natural to work with
some kind of ordered monoid, just as quantales are defined. But there is a small issue:
in the Kripke semantics convention, we would expect the forcing relation to preserve truth

upwards, that is:

if a sentence ¢ is forced at p and p < ¢, then the sentence is forced at ¢, where p, q € P.

So if we were to consider the order as we have been doing it with quantales, this property
would hold backwards (i.e. there would be truth preservation downwards). That is why
some of the properties that we require for our orders in this section are the dual ones of the

properties of quantales.

Definition 3.1.12 (JOKS85|, Section 3). We say that (P, <,-, 1) is a partially ordered com-

mutative monoid if



106 3 Constructions over Kripke models

1. (P, <,1) is a partial order with 1 as the bottom element.
2. (P,-,1) is a commutative monoid.
3. Forall a,b,ceP,ifa <b,thena-c<b-c.

Definition 3.1.13 (JOKS85|, Section 3). We say that (P, <, A,-,1) is an SO-commutative

monoid if
1. (P, A, <) is a meet-semilattice.
2. (P, <, 1) is a partially ordered commutative monoid.

Definition 3.1.14 ([Ono85|, p. 189). We say that an SO-commutative monoid (P, <, A, -, 1)

is complete if
1. (P, A) is a complete meet-semilattice (thus, P has a top element, denoted by o)

2. For every a,b; e M withie I, a- \bi= A(a-b)

1€l el
Remark 3.1.15. Notice that since a_ - preserves arbitrary meets, by the Adjoint Functor
Theorem for preorders (Theorem [1.2.5)), a-  is a right adjoint, that is, there exists a function

a — _ : [P — P such that for all b,ce P
a—c<b, if and only if, c < a-b
Furthermore, this implication allow us to define a negation on P by taking
~a:=a— ®©

Notice that we take a — o0 as the definition of ~ a since oo is the top element of P, and the

definitions and properties on this order are the duals of those in the context of quantales.
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Theorem 3.1.16. Take an SO-commutative complete monoid P = (P, <, A,+,1,00). Then,

IP satisfies (for the most part) the dual properties of Q (see Theorems [1.2.33] [1.2.36| and

1.2.37). More specifically, if a,b,c € P with ¢ € I, then:

1. a < b, if and only if, (b — a) = 1.

2. b<a-(a—b).

3. Ifa<b thenb—->c<a—c

4. If a < b, then ¢ > a < c—0b.

5. (a-b) > c=a— (b—c).

6. a-(~a)=o0.

We focus on Residuated Kripke models with constant universe (i.e. D(p) = D for all p € P).
We follow the presentation of [Ono85|, where he calls this kind of models total strong frame
with constant domain or simply total CD-frame. Since all the Residuated Kripke models

that we consider have constant universe, we will not call attention on this fact from now on.

Definition 3.1.17 (Residuated Kripke Model, [Ono85|, p. 189). We say that A = (P, <, |-

, D) is a Residuated Kripke L-model (or R-Kripke L-model for short) if

1. P= (P, <, A,-,1,00) is a complete SO-commutative monoid.

2. | is a relation between elements of P and atomic sentences in the language

£A=£UD,
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where each element of D is considered as a constant symbol. We denote (p, ¢) € I- by
A |-, ¢ and we say that ¢ is forced in A at p.
3. Given p;,q € P, with ¢ € [ and ¢ an atomic L 4-sentence, we require that |- satisfies
the following conditions:
a. If A p;i<qandforeachiel A, ¢, then A I, ¢.
iel
b. A Iy ¢ for every atomic R — L 4-sentence .
c. Al-, L if and only if p = o0. Recall that L is the symbol of contradiction.
Definition 3.1.18 (Residuated Kripke forcing [Ono853|, p. 189). Given A = (P, <, I, D) a
Residuated Kripke £-model, p € P and an R — L 4-sentence ¢, we can extend the forcing

relation A I, ¢ to all R — L 4-sentences by recursion on the complexity of ¢

1. A, (p&), if and only if, there are ¢, € P such that p > ¢-r, A, ¢ and A |-, 9.

2. Al (p v 1), if and only if, there are ¢,r € P such that p > g A r, and both (A I, ¢

or A, ¢) and (A I, ¢ or A -, 9) hold.
3. Al (¢ A @), if and only if, A Ik, ¢ and A |-, 9.
4. Al (p — 1), if and only if, for all ¢,r € P if A, ¢ and p- ¢ < r, then A I, .
5. A I, Jzp(x) if and only there exist an index set I such that for every i € I, there

exists d; € D and ¢; € P such that A ¢; < p and A I, ©(d;)

el

6. A, Vo(z), if and only if, for all be D, A I, ¢(b).

Remark 3.1.19. By definition of ~ ¢, it is straightforward to prove that
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A IF,~ ¢, if and only if, for all ¢,r e Pif A -, ¢ and p- g < r, then r = oo.

Remark 3.1.20. Ono and Komori (see [OK85| Section 6) proved that the propositional

version of these models generalizes the usual Intuitionistic Propositional Kripke Models.

Definition 3.1.21 ([Ono85|, p. 189). Given A = (P, <, I, D) an R-Kripke £-model and an
R — L 4-sentence ¢, we say that ¢ is true in the structure A (denoted by A |= ) if for all

pE]P)aAH_pSD'

Theorem 3.1.22 (Completeness and Soundness Theorem for the Kripke semantics, [Ono85|
Lemma 2.2 and Theorem 2.3). Given an R — L-theory T" and ¢ an R — L-sentence, we have

that T+, ¢, if and only if, for every R-Kripke £-model A, if A =T, then A = .

Now we proceed to analyze the behavior of the sets of conditions that force a given formula

in the context of these models.

Definition 3.1.23 (JOK85|, p. 194). We say that A < P is n-closed A if A is hereditary

and closed under (finite) meets, that is:

1. Forallae Aand be P, if a < b, then b e A.

2. Foralla,be A, a A be A.

We denote

D(P):={AcP:Ais n-closed}

Ono and Komori work with the notion of n-closed in [OKS85] for the propositional case.

Since we work in the predicate version of this kind of logics, we have to change the notion
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of n-closed to a new notion that we called strongly hereditary set. This had to be done,
since in the case of the Predicate Logic the set of elements of P that force a formula are

characterized by a stronger assumption.

Definition 3.1.24. We say that a non-empty set A < P is strongly hereditary if for all

cie Aand dePforie I, if \¢; <d, then d e A. Notice that from the definition is clear

el

that is A is strongly hereditary, then A is hereditary. We denote

P* .= {A < P: A is strongly hereditary}

As we mentioned before, we need to work with the notion of strongly hereditary and not

with Ono’s notion of n-closed since the set

{peP: A, ¢}

is strongly hereditary and not just n-closed for a given R — L-sentence .

Definition 3.1.25 (cf. [OKS85], p. 194). Let (P, <, A, -, 1,0) be a complete SO-commutative

monoid. Take A, B, A; € P, with ¢ € I and x € P. We define

A-B:={ceP: there exist a € A,be B such that ¢ > a - b}
r-A:={z} - A={ceP: there exists a € A such that ¢ > a -z}

A—>B:={ceP:c-Ac B}

Av B:={ceP: there exist a,b € A U B such that ¢ > a A b}

AAB:=An B.
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\ A; :={ceP: there exists an index set J such that for all j € J, there are a; €
el

J A such that A a; < ¢}

iel jed
el el

Our definition of the arbitrary join differs from the one given in J[OK85|]. Ono and Komori

defined the arbitrary join operation as follows:

\V A; :={ceP: there exists a finite index set J such that for all j € J, there are a; €

i€l
J A such that A a; < ¢}
el jed

We had to change this, since we are working on the set P* and not on the set D(IP), which

happens to be larger, and therefore the definition of joins might not coincide.

On the other hand, Ono and Komori proved that D(P) is a complete full BCK-algebra (see
[OKS85]| for a definition of this algebra) with the operations they defined. Since a complete
full BCK-algebra happens to be a complete Residuated Lattice, we use their ideas to prove

that the set P* is a complete Residuated Lattice with the operations that we defined above.

Theorem 3.1.26 (cf. [OK85], Lemma 8.3). Let (P, <, A, -, 1, 00) be a complete SO-commutative
monoid. Then, P* endowed with the operations of Definition [3.1.25| and the order < forms

a complete Residuated Lattice.

Proof. We start by showing that P* is closed under the operations we defined in Definition

3.1.25l Consider A, B, A; € P*, with i € I.

1. Take ¢; € A- B, d € P for i € I and assume that /\ ¢; < d. Since ¢; € A - B, there

el

are a; € A and b; € B such that a; - b; < ¢;. Then, A(a; - b;) < /\ ¢; < d. Notice that

el el
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(/\ ai) : (/\ bi) < Al(a; - b;), since, by monotonicity, (/\ ai> : </\ bz-) < (a; - b;) for

el iel el iel el
all i € I. Now, since A and B are strongly hereditary, we have that A a; € A and
el

/A b; € B and we can conclude that d € A - B.

el
2. Take ¢c; € A — B for i € I, d € P and assume that /\Ici < d. Since ¢; € A — B,
i€
¢, A< B. Take ¢ € d- A, and a € A such that d-a < ¢. Then, /\I(cl--a) =
i€
(/> ci> ca=<d-a < c, that is, /\I(cl -a) < c. Notice that ¢;-a € ¢;- A € B and since
i€ i€
B is strongly hereditary and /\I(cZ -a) < ¢, we can conclude that ¢ € B. This shows
i€

that ce d- A < B and therefore d€ A — B.

3. Take ¢; € A A; =) Ai, dePfor j e J and assume that A ¢; < d. Since ¢; € 4; and

el iel jedJ
A; is strongly hereditary for each ¢ € I, we have that d € A; for every ¢ € I, that is,
de m AZ

el
4. Take ¢; € \/ A;, d € P for j € J and assume that /A ¢; < d. Since ¢; € \/ 4;, there
iel jed iel
exists K such that for all k € K, there is a;, € | J 4; such that A a; < ¢;. Consider

el keK;
K :=J K, then, A a; < /\ ¢; < d and we conclude that d € \/ A;.
el keK jed iel

By the definition of P* and since the order is <, is clear that Opx := {0} and lpx := P. Let
us see that (P*, -, P) is a commutative monoid. The commutativity of (P*, -) follows from the
commutativity of (P, -). The identity of (P*,-) is IP, since 1 € P. For the associativity of the
product, take z € A- (B - C), therefore, there exist a € A and y € (B - C) such that z > a - y.
Then, by definition of B - C', there exist b € B,c € C such that y > b - ¢, by monotonicity,
we get 2 = a-y = a-b-c, then, if we take x = a - b, we have that x € A - B and then,

ze(A-B)-C,ie. A-(B-C)< (A-B)-C. The converse is proved similarly.
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To see the adjunction condition, we have to prove that

A-Bc (C,ifand only if, Ac B—C

1. Assume that A- B < C and take x € A. Notice that the hypothesis implies that

z - B < C and therefore z e B — C

2. Assume that A € B — C and take x € A - B. Then, there are a € A and b € B such
that a-b < 2. Since a € A and A € B — C, we deduce that a € B — (|, that is,

a - B < C. Therefore, since x € a - B, be conclude that x € C.

All we have left to see is that

\/ A; = {ce P: there exists an index set J such that for all j € J, there are a; €

el
J A such that A a; < ¢}
iel jeJ
is in fact the S-supremum of the set {4; : i € I}. Clearly, A; < \/ A; for every i € I. Now,
el

take B € P* an c-upper bound for {A; : i € I}. Let x € \/ A;, then, there exists J such that

el

for each j € J there is a; € | J A; such that A\ a; < . Since a; € | J A; € B, if follows that
iel jedJ el
aj € B and since B is strongly hereditary, we conclude that x € B. Thus, \/ A; < B.
iel

[
Lemma 3.1.27 ([Ono85|, Lemma 2.1). For every R — L 4-sentence ¢ and a;,b € P, with
iel. If Al ¢ for every i € I and A a; < b, then A |-, ¢. Notice that this lemma implies

iel

that the set {p e P: A I, ¢} is strongly hereditary.

Theorem 3.1.28 (cf. [Fit69]). Take a R-Kripke £-model A = (P, <, |-, D). If ¢ and v are

R — L g-sentences and 0(x) is an R — L 4-formula, then
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{peP: Al o} - {peP: Ay} = {peP: Al p&ip}
{peP: Al ot vipeP: Al ¢ ={peP: Al ¢ v ¢}
{peP: A, o} n{peP: A, ¢} ={peP: A, p A9}
{peP: Al o} > {peP: Al v} ={peP: A, ¢ — ¥}

~{peP: Ak pt ={peP: A~ ¢}
N{peP: Ak, 0(d)} ={peP: A, Vob(z)}

deD

Vi{peP: A, 0d)} ={peP: Al, Iz0(z)}

Proof. Take p € P.

1. Suppose that A I, p&1), that is, there are ¢, € P such that p > ¢ -7, A I, ¢ and

A |-, 1, but this is equivalent to pe {peP: A, p} - {peP: A, ¢}.

2. Suppose that A |-, ¢ v 9, that is, there are ¢,r € P such that p > ¢ A r and both
(A, por Al ¢) and (A I ¢ or A I, ), that is, both (¢ e {p e P: A I,
ptu{peP: A, v} )and (re {peP: A, pu{peP: A, ¥}),
that is, g e {peP: A, o} u{p e P: A I, ¢} and this the definition of

pe{pelP: Ayt vipelP: Ak, ¢}
3. The conjunction and universal quantifier cases are straightforward.

4. Suppose that A |-, (¢ — ), that is, for all ¢,r € P if A |-, ¢ and p- ¢ < r, then
A |-, . This means that for all gr e Pifge {peP: A, ¢} and p-¢q < 1,
then r € {pe P: A I, ¢}, that is, for all r e P, if re p- {p € P : A I, ¢}, then
re{peP: Al, ¢}, but this is equivalent to p- {peP: A, o} S {peP: A, ¥},

but this is equivalent tope {peP: A, o} - {peP: A, ¢}.
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5. By the previous item, if we take ¢ = |, we get
{peP: Al o} = {peP: A, L} ={peP: Ak, p — L}
Then, by Definition item 3. a., and by definition of ~ ¢, we have
{peP: Al p} = {0} ={peP: Ak~ ¢},
but {oo} = Op«. Thus

~{peP: A, o} ={peP: Al,~ ¢}

6. Suppose that A I, 3z6(x), that is, there exists an index set I such that for for every
i € I, there exists d; € D and ¢; € P such that A ¢; < p and A |-, 6(d;), that is, for
el

every i € I, there are ¢; € (J{p e P: A I, 6(d)} such that A ¢ < p but this the
deD el

definition of pe \/{peP: A, 0(d)}.

deD

3.1.4 Residuated Kripke models with modal operators

Throughout this subsection, Q denotes a complete Residuated Lattice.

This section is inspired in the work of Lano [Lan92al, where he considers a special kind of
interior operator I on a residuated lattice (structure that he calls Topological Resid-
uated Lattice) and constructs models of Residuated Modal Set Theory. He introduces an
operator of necessity (denoted [J) to be interpreted by an interior operator I and then
provides an axiomatization of this logic and proves some results for the model of Set Theory

that he constructs.
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Unlike Lano, we consider a special kind of closure operator (a standard quantic nu-
cleus) on our residuated lattice and develop a similar kind of model where we augment
the logic with a possibility operator (denoted ¢). This is done since the order that Lano
considers for his models preserves truth downwards (following Cohen’s convention) and not
upwards (following Kripke’s). See Subsection for a more in-depth discussion.

Thus, we would like to extend the definition of Kripke model so that we can interpret
formulas of the form {¢. To get an idea of how we should define them, we start from the
more natural definition of {y in a valued model. So consider a Q-valued modal model M

and a quantic nucleus v on Q (see Definition [1.2.43)).

Then, by definition (see Subsection [2.1.4)), we have that

[Ow] := v([])-

Let us assume that the formula ¢ satisfies the relation

A -, ¢ iff p < [¢] (induction hypothesis)

and let us try to define A |-, ¢ using only the forcing relation |- and the quantic nucleus on

~ by using the relation given by Theorem [3.1.11} Therefore, we want to prove the following

equivalences:
A, Op iff p < [O] (we want Thm. to hold)
iff p <~([¢]) (by definition of [O¢])

iff there exists ¢ € P such that p < v(¢) and g < [¢] (since 7 is monotone)

iff there exists ¢ € P such that p < (¢) and A I, ¢ (by induction hypothesis)
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Therefore, we can define A |-, Q¢ only in terms of forcing and some nucleus v on P. But
since the order of the underlining order of the Kripke model is reversed in Theorem [3.1.11],
we need to reverse the order in last line of equivalences above. Also, we have to reverse the

order in the conditions defining a quantic nucleus. That lead us to the following definition.

Definition 3.1.29. We say that a function 6 : P — P is a conucleus on a complete SO-
monoid (P, <, ) if for all p,q,p; € P with i € [
1. 4(p) <p.

2. If p < ¢, then d(p) < d(q).

4. 5(p-q) < d(p)-d(q).

d. 5(/\171‘) = /\5(1%)

i€l el
Remark 3.1.30. Notice that the conditions 1 — 4 are the dual ones of the conditions in
the definition of a quantic nucleus (see Definitions [1.2.15| and [1.2.43)) and therefore § is a

interior operator rather than a closure one. The condition 5 was added to been able to

prove that:

1. The set {pe P: A, o} is strongly hereditary for every M R-formula ¢,

2. the operation 5 (we will define this operation in Theorem [3.1.37) is well defined on

the set P*.

Remark 3.1.31. Notice that since § distributes over arbitrary meets, by the Adjoint Functor

Theorem for preorders (Theorem [1.2.5]), there exists an operator p : P — P that is the left
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adjoint of §. As it is usual in Modal Logic (for example in Ss), the necessity and the
possibility form an adjoint pair. Therefore, we may use the operator p to define a notion of
necessity in our Kripke models. We will not do so in our work, since there is no real need

for this operator for our results.

Remark 3.1.32. This notion of conucleus is different the notion defined by Rosenthal in

[Ros90]. A conucleus in [Ros90)] is an interior operator that satisfies the condition
o(p) - 6(q) < o(p-q).
which is the opposite of what we require.

Definition 3.1.33. We say that P = (P, <, A, -, 1,00,6) is a complete modal SO-commutative

monoid if

1. (P, <, A, -, 1,00) is a complete SO-commutative monoid.

2. § is a conucleus on (P, <, ).

Definition 3.1.34 (Modal Residuated Kripke model, cf. [Ono85| p. 189). We say that
A = (P, <,6,I-, D) is a Modal Residuated Kripke L-model (or M R-Kripke L£-model, for

short) if
1. P=(P,<, A, 1,00,0) is a complete modal SO-commutative monoid.

2. | is a relation between elements of P and atomic sentences in the language
L A= Ly D,

where each element of D is considered as a constant symbol. We denote (p, ) € |- as

Alp .
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3. Given p;,q € P, with ¢ € I and ¢ an atomic £ 4-sentence, we require that |- satisfy the

following conditions:

a. If A\ pi < qand for each i € I Al-p, ¢, then A -, .

el

b. A Iy ¢ for every atomic L 4-sentence.
c. Al-, L, if and only if, p = 0. Recall that L is the symbol of contradiction.

We propose now an extension of the forcing relation based on the ideas we exposed in the

introduction of this subsection.

Definition 3.1.35 (Modal Residuated Kripke forcing). Given A = (P, <, 6,1, D) a MR-
Kripke £-model, p € P and an M R — L 4-sentence ¢, we can extend the forcing relation
A I, ¢ to all MR — L s-sentences by recursion on the complexity of ¢. The definition of |-

for the usual symbols is the same as in Definition [3.1.1§], so we only define .

1. A, Ogp, if and only if, there exists ¢ € P such that A I-, ¢ and 0(q) < p.

Notice that the definition of { depends on 4, so if we change the conucleus 9§, we would

obtain different notions of possibility ¢.

Lemma 3.1.36 (cf. [Ono85] Lemma 2.1). Let ¢ be an MR — L 4-sentence and a;, b € P,

with i € I. If A I, ¢ for every i € I and A a; < b, then A |-, . Notice that this lemma

el

implies that the set

{peP: A, ¢}

is strongly hereditary.
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Proof. By Lemma [3.1.27] we just need to see what happens with (¢ for a given ¢ such that

for all p,p; e P with i e I, if Ay, ¢ and A p; < p, then A |-, ¢ (induction hypothesis).

el
Take p,p; € P with ¢ € I such that A I-,, O0¢ and /\ p; < p. By definition of |-, there exists
el

q; € P such that
6(q:) < pi and Ak, ¢

By the induction hypothesis, we have A |-, ¢, where ¢ = /\ ¢;. Notice that

iel

dg) =19 (/\ qi> = /\5(qi) (by Definition item 5.)

el

< /\pz- (since 6(q;) < p; for all i € I)

el

sPp

Then, by definition of |-, we conclude that A |-, O¢ O
Theorem 3.1.37. The operation vs : P* — P* defined as

vs(A) := {p € P : there is ¢ € A such that §(q) < p}
is a quantic nucleus on (P*, <, ). If there is no ambiguity, we denote v := ;.

Proof. Take A € P*. We want to see that v(A) € P*, so let us take b; € y(A) with ¢ € I and

p € P such that A b; < p. Then, by definition of v, there exists a; € A such that §(a;) < b;.

iel

Then, by monotonicity and idempotence of ¢, d(a;) = 0(d(a;)) < d(b;). Notice now that
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5 (/\ai> = N\ d(a;)

el el

< N\ o)

el

=3(/\ b)

el

Since A is strongly hereditary, A a; € A. Therefore, it follows that p € y(A) and we conclude

(by Definition [3.1.29|item 5.)

(since 6(a;) < 6(b;) for all i € I)

(by Definition [3.1.29|item 5.)

(since /\ b; < p and § is a monotone function)
i€l

(by Definition [3.1.29|item 1.)

that y(A) € P*. We proceed to prove that v is a quantic nucleus:

1. We want to see that A < v(A). Take p € A. Since d(p) < p and by definition of ~,

pe(A).

2. We want to see that if A < B, then v(A) < ~(B).

p € 7(A). Then, there exists ¢ € A such that §(¢) < p, but since A € B we have that

q € B and this implies that p € y(B).

3. We want to see that vy(y(A))

To see the other inequality, take p € y(7(A)). Then, there exists ¢ € v(A) with 6(q) < p,

= 7(A). By the item 1. on this list,

7(A4) = v1(v(A4)).

and thus there exists r € A with 6(r) < ¢. Therefore,

Assume that A < B and take
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that is, d(r) < p and we conclude that p € y(A).

4. We want to see that v(A)-v(B) < v(A- B) so let us take p € y(A) - y(B). Then, there
exists a € y(A) and b € y(B) such that a - b < p. Thus, there exists ¢, € A and ¢, € B

such that §(q,) < a and §(g,) < b. Notice that, by the monotonicity of -,

5(qa- @) < 0(qa) - 0(q) <a-b<p

and since ¢, - g, € A - B, we conclude that p € y(A - B)

Lemma 3.1.38. Let A; € P* for i € I. The quantic nucleus v satisfies
TV Ai) = V(4)
1€l i€l

Proof. Take p € v(\/ 4;). Therefore,

el

there exists ¢ € \/ A; such that d(¢q) < p.

el

And then, by definition of \/ (see Definition [3.1.25), we have that

there exists an index set J such that for all j € J there exists a; € | J 4; such that A a; < ¢.
el jed

Now, since A a; < ¢ and by Definition [3.1.29] item 5., we have that
jedJ

A d(a;) =6(Na;) <dlg) <p

jedJ jedJ
Therefore, since d(a;) € | Jv(A;), we conclude that p € \/ v(A4;).
i€l i€l

On the other hand, if p € \/ 7(4;), we have that

i€l
there exists an index set J such that for all j € J there exists a; € [ ) 7(A;) such that
iel

N a;<p
jed



3.1 Kripke models 123

Then, for every j € J, there exist i; € I such that a; € y(A;;). Then, by definition of v, there

exist ¢; € A;; such that (g;) < a; for every j € J. This implies that

5(/\ q) = /\ 6(g;)  (by Definition item 5.)

J€J J€J

< /\ a; (since 6(g;) < a; for every j € J)

Notice that A ¢; € \/ A;, and therefore p € y(\/ 4;).

Jj€T iel iel

O

Remark 3.1.39. Notice that this lemma implies, by the Adjoint Functor Theorem for

preorders (Theorem [1.2.5)), that v has a right adjoint. This adjoint may be used to define a

notion of necessity just as we mentioned before.

Definition 3.1.40. Let ¢ : P — P be a conucleus.
1. ¢ is said to be idempotent if §(p?) := d(p - p) = d(p), for every p € P.
2. § is said to respects the top element if §(0) = o0.

3. § is said to respect implications if §(p — ¢q) = 1, if and only if, p — d(q) = 1 for every

p,q € P (see Remark [3.1.15| for the definition of —).
Theorem 3.1.41. Let ¢ : P — P be a conucleus.
1. If 6 is idempotent, then v is idempotent.

2. If § respects the top element, then v respects the bottom element.
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3. If 6 respects implications, then v respects implications.

Proof. Take A, B € P*.

1. Assume that 0 is idempotent. We want to see that y(A- A) = v(A). Since (P*, <, ") is
a commutative integral quantale, by Theorem [1.2.33]item 6, A- A < A and then, since

~ is monotone,
V(A A) S 4(A).

Now take p € y(A). Then, there exists ¢ € A such that d(q) < p. Since ¢ is idempotent,

d(q - q) = 0(q) < p. Therefore, since ¢ - g€ A- A, we have that p e y(A - A), that is,

1(A) S y(A- A).

2. Recall that Opx = {c0}, therefore

v({oo}) = {p e P: there exists g € {0}(0(q) < p)} ={peP:d(w) < p}

={peP:w<p} (since § respects the top element)

- (=)

3. Assume now that 0 respects implications. Since 1px = P, we want to prove that
v(A — B) =P, if and only if, A — v(B) = P.
Since 7 is a quantic nucleus on P*, by Corollary [1.2.47] we have that
(A — B) < A—~(B).

And therefore v(A — B) = P implies that A — ~v(B) = P.
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Let us see converse. Let us assume that A — v(B) = P.

Take ce P = A — ~(B), that is, ¢- A € v(B). This means that for every a € A, there

exists b, € B such that §(b,) < ¢ a. Notice now that

d(by) < (c-a)-1iff (c-a) > d(b,) <1 (by Theorem [3.1.16] item 1.)
iff 5((c-a) > b,) =1 (since 0 respects implications)

iff 6(c — (@ —by)) =1 (by Theorem [3.1.16] item 5.)

iff c > d0(a—b,) =1 (since 0 respects implications)
iff 6(a — b,) < ¢ (by Theorem [3.1.16|item 1.)

If we find some a € A such that a — b, € A — B, we get that ¢ € y(A — B). Thus,

take an enumeration A = {a; : i € I} and define

a=/a.

iel

Since A is strongly hereditary, a € A. Let us see that a — b, € A — B, that is,

(@ = b,) - A< B. So take any j € I and let us show that (a — b,) - a; € B.

Since a = A a; < a;, by Theorem [3.1.16]item 3., we deduce that a; — b, < a — b,.
el

Therefore,

ba < (a; > b,) - a; (by Theorem [3.1.16|item 2.)

< (a—by)-a; (-is a monotone function)

and since B is strongly hereditary and b, € B, we deduce (a — b,) - a; € B. Then,

since a — b, € A — B, we conclude that c € y(A — B).
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]

Theorem 3.1.42. Take A = (P, <, 9, -, D) a Modal Residuated Kripke £-model, and an

MR — L 4-sentence ¢. Then,

T{pelP: Al }) = {peP: Al Op)

Proof. Take p € P, thus

pe{pelP: Al, Op} iff thereis ¢ € P such that §(q) < p and A, ¢ (by definition of |)
iff there is ¢ € P such that 6(¢) < pand ge {peP: A, o}

if pey({peP: Al ¢}) (by definition of )

3.2 Kripke models of Set Theory

Fitting [Fit69] constructed several models of Set Theory generalizing both the universes of
von Neumann and of Gédel using Kripke models and then went on to show how these models

can be used to obtain classical proofs of independence in Set Theory.

In this section, we aim to expose Fitting’s results and then to propose some generalizations

in the context of Modal Residuated Kripke models.
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3.2.1 Intuitionistic Kripke models of set theory

This subsection focuses on Chapter 14 of [Fit69] “Additional classical model generalizations
”. Our goal is to highlight some crucial points in Fitting’s results so that we can generalize
them in the next subsection in the context of Residuated Kripke models. One key aspect
to notice on Fitting’s results is the use of the double negation modal operator —— to
translate sentences from Classical Logic into Intuitionistic Logic (see Definition |1.3.5)).

The notion of subset in these models is similar to the notion of generalized subsets we studied
in Section 2.2l The key difference is that since we are working with a order P, we need to
find a suited Heyting algebra to take as a set of truth values. This is done via the Heyting

algebra of hereditary subsets of P.

Definition 3.2.1 ([Fit69], p. 166). Given A = (P, <, -, D) an Intuitionistic Kripke Lc-

model with constant universe. We say that a function f is a P*-subset of A if
1. Dom(f)< D
2. Ran(f) < P* = {A < P: A is hereditary}

Recall that P is a Heyting algebra with the order .

Definition 3.2.2 (|Fit69], p. 166). Recall that an element A € P* is called regular if
——A = A (see Definition [1.2.19)), where — is the operation of P* as a Heyting algebra. We

call a function with range Pt regular if every member of its range is regular.

Remark 3.2.3. Recall that if H is a Heyting algebra, then the set B = {Ae H: ——A = A}

is a Boolean algebra.
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Definition 3.2.4 (|Fit69], p. 166). Given A = (P, <, I, D) a Intuitionistic Kripke Lc-model,
we say that a function from D to P* is extensional if, for each g, h € D

flo)nfpeP: Al ((Fx)—(xeg—azeh)) n(=(Ez)~(zeh—rzeg)}< f(h)
and we denote

PP (D) := {f: f is a regular and extensional P*-subset of A}

Definition 3.2.5 (|Fit69], p. 166). We now define on induction over the ordinals a class
of Intuitionistic Kripke models VEJr = (P, <, IF, RH;), all with the same underlying order

(P, <), but changing the universe for each .
1L VI = (P, <, I, RY") where R} := (.

VP = (P, <, I-, REL,) where REL | := RET O PP (RE") and VP, I, ¢ is defined as

a+1

follows: If pe P and f,g e R". o+1 then we have the following cases:
a. If f,ge RY", then
VL by (f € g), if and only if, V™ |-, (f € g)
b. If fe RY" and g€ RE, \RE" = PP"(RE"), then
VEL I, (f € g), if and only if, p € g(f).
c. If fe RELA\RE = PP(REY), then VI I, (f € g), if and only if, there exist
h € dom(g) such that

peg(h)and pe (f(x) < {geP: VI |-, =—(x € h)}) for every x € RE"

3. If @ # 0 is a limit ordinal, then let R." := | Rg+ and given f,g € R.' take any

B<a

1 < « such that f, g e RE and let
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VE' I, (f € 9), if and only if, V,%” I, (f € 9).

Remark 3.2.6 (|Fit69], Remark 4.2). The expression

f@) = {geP:VE Iy =—(z € h)}
is an element in the Heyting algebra P, where < is the operation in PT.
Definition 3.2.7 (|Fit69], p. 166). Consider the Intuitionistic Kripke (class) Lc-model

VE' .= (P, <, R""), where R¥" := |J RY,
aeON

and given f,ge R*" take any n € ON such that f,g e R, and let

VI I, (f € g), if and only if, Vg” I, (f € 9).

We now construct a Boolean valued model (RE [-]¥) that is deeply related with

VI = (P, <, I, RY).

Definition 3.2.8 ([Fit69], p. 164). Given a Boolean valued model (R, [-]®), we say that a

function f : R — B is extensional if for all g,h € R,

flg) A (Vo) (x € g o xeh)]* < f(h)

Definition 3.2.9 (|Fit69], p. 165). We define on induction on ordinals a class of Boolean

valued models (RE [-]%) as follows:
1. RE := & with [-]¢ .= &.

2. RE.,:=REuU{f:RE—B: fisextensional} and given f,g € R |, we have, for the

definition of [f € g]2, the following cases:
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a. If f,g € R, then [f € gq, == [f € gla.
b. If f e R® and g € RE_|\RE, then [f € ]2, := g(f).

c. If fe RE,\RZ, then

[fegloi=V {gh)n A\ (fz) o [zeh]d)}

hedom(g) zeRE

d. If a # 0 is a limit ordinal, then let R := J Rj and given f,g € R take any

B<a

1 < o such that f,g € Ry and let [f € g]s := [f € g}
Now let

R¥:= |J RE
aeON

and given f, g € R® take any n < a such that f,g € Ry and let [f € g[® := [f € g}

Remark 3.2.10. Recall that an element of A € P* is called dense if ——A =1 = P. Let
F__ be the collection of all dense elements of PT. We know that F__ is a filter and that

the relation ~z  given by
A~z B,ifandonlyif, A—>BeF._and B— Ae F__
is an equivalence relation. With that in mind, let us denote
B:=Pt/F._:=P"/., ={Al:AeP"},
where

|A| := |A|~,__ is the ~x__ - equivalence class of A.

Recall that by Theorem [1.2.21} B := P*/F__ is a complete Boolean algebra. This Boolean

algebra determines a sequence of valued models (RE, [-]%) that is isomorphic to the sequence

V£+ = (P, <, IF, RT) in the following way:
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Theorem 3.2.11 ([Fit69], Chapter 15, Theorem 5.5). For every a € ON, there exist a
bijection j, : RY" — R such that for every classical first-order Lc-formula with no universal

. P+
quantifiers ¢(z1, ..., x,) and every ay, ...,a, € R, ,

[{peP: Ve Iy plar, oy an)}] = [p(falar), ..., jalan)) ]G

Corollary 3.2.12 ([Fit69], Chapter 15, Corollary 5.6). If ¢ is an Lc-sentence with no
universal quantifiers, then ¢ is valid in the model R? (that is [¢]2 = 1), if and only if, ——¢

is valid in (P, <, I, RY") (that is RY |-, ¢ for every p e P.)

Remark 3.2.13. Since in Classical Logic there is an equivalence between universal and

existential quantifiers given by
— Vazp(z), if and only if, - —=3—p(x)

we can always write a formula in such a way that it has no universal quantifiers. We use

this rewriting in the following theorem.

Corollary 3.2.14 ([Fit69], Chapter 15, Corollary 5.7). (P, <, -, RY") is an Intuitionistic
Z F'C' model, that is, classical equivalents of all the axioms of Zermelo-Fraenkel with choice,

expressed without the use of the universal quantifier, are valid in the model.

3.2.2 Modal Residuated Kripke models of Set Theory

The goal of this section is to generalize Fitting’s results on Intuitionistic Kripke models that

we presented in last subsection. Specifically, we want to prove analogs of Theorem [3.2.11]and

Corollaries [3.2.12 and [3.2.14l
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We were able to find a suitable generalization of Fitting model in the context of Residuated
Logic (see Definition such that there exists an isomorphism (see Theorem
between it and an appropriate Heyting valued model (see Definition . Furthermore,
in Corollary [3.2.30] we find if ¢ is an M R — Lc-sentence that is valid in the Heyting model,
then (¢ is valid in the Residuated Kripke model.

We show now the general structure of this subsection and how it relates to Fitting’s original
construction. We start by noticing that the double negation operator —— is a modal (clo-
sure) operator on a Heyting algebra, and it is used to translate sentences (see Deﬁnitionm
or Corollary from the Boolean valued model R® (see Definition [3.2.9) into the Intu-
itionistic Kripke model VE” (see Definition . The key points to notice are as follows:

We start with an Intuitionistic Kripke model with constant universe A = (P, <, |-, D).
1. The set PT = {A < P: A is hereditary} is a Heyting algebra (see Theorem [3.1.5)).

2. The operator double negation —— is a modal operator on a Heyting algebra (See

Example |1.2.18]).

3. ——1isused to translate sentences from the Boolean valued model into the intuitionistic

Kripke models (see Corollary 3.2.12f and Lemma items 1. and 4. ).

4. The set F__ := {z € PT : =—x = 1} is a filter on P* such that P*/F__ is a Boolean

algebra (see Theorem [1.2.21]).

Therefore, one could wonder if this kind of results can be obtain by starting with some

M R-Kripke £-model A = (P, <, 0, I, D) and then finding a suitable valued model such that
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an analogous of Corollary [3.2.12] holds.

Throughout this subsection, fix a Residuated Kripke Modal £-model A = (P, <, 4, I, D)

with § : P — P an idempotent conucleus that respects implications and the top element.
Definition 3.2.15 (cf. [Fit69], p. 166). We say that a function f is a P*-subset of A if
1. Dom(f)< D
2. Ran(f) < P* = {A < P: A is strongly hereditary}

Recall Theorem [3.1.26| proved that P* is a Residuated Lattice with the order < and the

product
A-B={ceP: there exist a € A,be B such that ¢ > a - b}, where A, B € P*.

and that Theorems [3.1.37] and [3.1.41] state that v : P* — P* defined by

Y(A) :={peP:3qe A(d(q) <p)}

is an idempotent quantic nucleus that respects implications and the bottom element, that

is, v is a standard quantic nucleus on P*.

Definition 3.2.16 (cf. [Fit69], p. 166). Let Q be any complete Residuated Lattice and ~y
be any standard quantic nucleus on Q. We call an element x € Q y-regular if ~~ ~(x) = x.
This definition generalizes the notion of regular sets in a Heyting algebra (see Definition

1.2.19). We call a function with range Q v-regular, if every member of its range is y-regular.

Definition 3.2.17 (cf. [Fit69], p. 166). We say that a function from D to P* is extensional

if, for each g,h € D
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flg)-{pelP: Alp(g="n)}< fh)
where (g = h) is an abbreviation defined by:
(g=h)=0~x)~(reg—->xeh)&(0 ~ (3x) ~(xeh—zxeyg)).
And we denote
PP*(D) := {f : f is a y-regular and extensional P*-subset of A}

Definition 3.2.18 (cf. [Fit69], p. 166). We now define on induction on ordinals a class
of M R-Kripke Le-models VE* := (P, <, 6, I, RY”) all with the same underlying order (P, <)

but changing the universe for each ordinal « as follows:
1L VE" = (P,<,4,I, RE") where RS™ := .

2. VI = (P,<,0, -, B2 ) where RY" | := RE* OPP*(RE") and V27| I, f € g is defined
as follows:

IfpePand f,g€ jol then we have the following cases:
a. If f,ge RE*, then
VE I, (f € g), if and only if, VE* |-, (f € g).
b. If f e RE" and g € RY \RY" = P (RP™), then
Vaii Iy (f € g). if and only if, p € g(f).

c. If fe REL \RE" = PP(REY), then VE7, I, (f € g), if and only if,

pe V D

hedom(g)
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where

Py = g(h) : (Pfgh : Phgf)

and

Prep = () (f(2) > {geP: V" by~~ Oz € h)})

3. If @ % 0 is a limit ordinal, then let RE* = U RE* and given f, g € RE* take any 1 < «

B<a

such that f,g € R, and let
VE* I, (f € g), if and only if, V}f* -, (f € g).
For every a we also define
18 I, L, if and only if, p = 0.
Remark 3.2.19 (cf. [Fit69], Remark 4.2). The expression

() (@) = fge PV bg~n Owe W)Y - () (fl@) — fge PV Ieg~~ Ow e B)})

Pk P
reRY, TER,,

is an element in the Residuated Lattice P*, where -, —, < and ("] are the operations on P*
as a Residuated Lattice (see Definition (3.1.25]).
Definition 3.2.20 (cf. [Fit69], p. 166). Consider the M R-Kripke (class) Lc-model
VP = (P, <, 0, -, R™), where RF* := |J RF”
aceON

and given f,g e R"", take any nn € ON such that f,g € R;P; and define
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VP I, (f € g), if and only if, VE* -, (f € g).

We need to see that this definition provides indeed a Modal Residuated Kripke model, that
is, it satisfies the Definition [3.1.34] item 3. sub-items a., b. and c.. By definition of |-, the
model VI satisfies condition c. and since oo is an element of every strongly hereditary set
(see Definition it is straightforward to see that condition b. also holds. Therefore,

we just need to check that a. holds.
Theorem 3.2.21. For every a € ON, we have that if p;,q € P with i € I,

if VI |, (f € g) for every i € I and A pi < ¢, then VE* I, (f € g).

el
Proof. We prove this by transfinite induction. Since the cases for @ = 0 and « a limit

ordinal are trivial, we only consider what happens at the successor step, so let us suppose

the following holds at a:

if VP I, (feg) forie I and Ap; <gq, then V2 |-, (f € ) (induction hypothesis),

el

and let us prove it at o + 1. Assume that

VEL Ip; (f €g) foriel and Ap; <q.

el

We have three cases:
1. If f,g e RY", then we have the result by the induction hypothesis.
2. If fe R and g e R™% \RE" = PP*(RE™), then
VE Iy, (f € g) means that p; € g(f).

but by definition of g € P*"(R"") we know that the codomain of g is P* and so g(f) is

«

strongly hereditary. Therefore, ¢ € g(f) and thus
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Viii g (f € 9)
3. If fe RY, \RY" = P**(RE"), then
VEL IFp; (f € g) means that p;e  \/ P,= \/ ¢g(h): (Psch - Pucy)

hedom(g) hedom(g)

but

Preni= () (f(2) = {g e P: VI lg~~ Oz € b))

P
reR,

= ﬂ (f(z) >~~v{geP: V¥ |, (z e h)}) (by Theorems[3.1.42/and [3.1.28).

P¥
TeER,

By the induction hypothesis, the set {g € P : VE* |-, (x € h)} is strongly hereditary, and
since f € PP*(RE"), f(x) is also strongly hereditary for every z € dom(g). Therefore,
since the operations ~,—, -7 and () are all closed in P* (see Theorems and
, we have that Prcj, € P*. By using a similar argument, we can show that P,cs €
P* and since g(h) € P*, we have that \/ P, is strongly hereditary. Therefore,

hedom(g)
ge \/ P, and thus

hedom(g)
Vaii o (f € 9)
[

We now construct a Heyting valued model (R™, [-]%) that is related with V** = (P, <, R™™),

in a similar way as in Definition [3.2.9

Definition 3.2.22 (cf. [Fit69], p. 164). Given a Heyting valued model (R, [-]%), we say

that a function f : R — H is extensional if for all g,h € R,

f@) A[-Ex)~(zeg—>aeh)F A[-Ez)~(reg—zeh)" < f(h)
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and we say that a function f : R — H is regular if ——f(x) = f(z) for every x € R.

Definition 3.2.23 (cf. [Fit69], p. 165). We now define on induction over the ordinals a

class of Heyting valued models (R, [-]H)
1. R = & with [[[5 = &.

2. RE ;= REU{f:RY > H: fis extensional and regular} and given f,g € RL, |, we

have, for the definition of [f € g]%, the following cases:
a. If f,g € Ry, define [f € g[,, := [f € g]5.
b. If fe R and g € RE |\RY, define [f € g]=,, := g(f).
c. If fe RE, \RY define

[feglan= V ){g(h) ~n N (@) o [==(z e h)]d)}

hedom(g xeRH

d. If @ % 0 is a limit ordinal, then let RY := | J REI and given f,g € R take any

B<a

n < a such that f,g e R and let [f € ] := [f € g],).
Now let
R¥:.= |J RE
aeON

and given f, g € R" take any n < o such that f,g € R;" and let [f € g]* := [f € g].

Remark 3.2.24. The construction given above mimics Definition but with two main

differences:

1. Instead of using a Boolean algebra, we consider a Heyting algebra.
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2. In condition 2. c., we consider the term [——(z € h)]¥ rather than [z € h]. Clearly, in
the Classical (Boolean) case, these expressions are equivalent, but in the Intuitionistic

case they are not.

Definition 3.2.25. Let Q be any complete residuated lattice and v be any quantic nucleus

on Q. An element of z € Q is called y-dense if y(x) = 1q.

Remark 3.2.26. The definition given above generalizes the notion of dense sets in a Heyt-
ing algebra (see Definition [1.2.19). We focus on the case where QQ = P* and ~ is the quantic

nucleus determined by ¢. Let F,, be the collection of all -dense elements of P*. By Theorems

1.2.58/and |[1.2.61| F, is a filter such that P*/F, is a Heyting algebra.
gl g

Remark 3.2.27. Recall (see Definition (1.2.42{ and Theorem [1.2.61)) that the relation ~x

given by
A~z B,ifand only if, A— Be F,and B —» Ae F,
is an equivalence relation. Also, we have that
H:=P*/F, = IP’*/%H = {|A| : AeP*}
is a complete Heyting algebra. Furthermore, if |A|, |B| € H

A <|B|iff A—> BeF,
[A[ A [B| = [AA Bl =|A-B| =|A]-|B]|
[A[ v |B| = |A v B
Al = |B] = |[A - B|

|~ Al = =[A]
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|A| = |7(A)| (see Corollary [1.2.60))

1\ Ai| =V |Ai| (see Theorem [1.2.62

iel iel

Remark 3.2.28 (cf. [Fit69], Remark 5.1). The equality | A A;] = A|Ai| is not true in
i€l el
general, and thus M R-formulas with universal quantifiers behave poorly (since, in valued

models, we usually interpret universal quantifiers as meets). This explains why we do not

consider formulas with universal quantifiers in the following theorem.

The Heyting algebra H := P*/F. determines a sequence of valued models (RY, [-]5) that is

isomorphic to the sequence V2* = (P, <, 6, -, RE") in the following way:

Theorem 3.2.29 (cf. [Fit69], Chapter 15, Theorem 5.5). For every a € ON, there exist
a bijection between Rz* and R (where if f € RE*, f' denotes the image of f via this
bijection) such that for every Lc-formula with no universal quantifiers p(z1, ..., z,,) and every

]P)*
Ay, ...,0n € RS,

{peP:VE Iy glar, ..,an)}| = [plal, .., )2

Proof. We show this by induction on a. R and Rf are the same, so it holds for a.
Assume that there exists such a bijection ' between RE* and RY (induction hypothesis 1).
Take g € R®\RY" = P™(RE") and define the function ¢’ : R — H in the following way:
Since / : RE" — RY is onto, every element F € R has the form F = f’ for some f € RY".

Therefore, we can define ¢’ by
J(f") :=19(f)| € H =P*/F, for every f' € RE.

For now we assume that ¢ is extensional if and only if ¢’ is extensional. This will be proved

at the end of this theorem.
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Let us see that this map is injective. Take g,h € REL

\RE* = PP*(RE*) such that |g(f)| =

h for every f € RE". Then, by definition of = in P*/F.,, we have, in particular
o ol

g(f) = h(f) e F;
that is, by definition of F.,

g(f) = h(f)) =1
and since by Corollary Y(g(f) = h(f)) < g(f) = v(h(f)), we have that
9(f) = (h(f)) =1
By Theorem item 2., v(h(f)) < (~~ vy(h(f))) and by Theorem item 9.,

9(f) = (~~~(h(f))) =1

But h is a y-regular function, so

g(f) = h(f) =1

which implies, by Theorem item 1., that g(f) < h(f). In a similar fashion we can
show that h(f) < g(f) and therefore we conclude g(f) = h(f) for every f € RE", that is,
g = h.

To see that the map is surjective, let us take h € R, \RY = PH(RM) that is, h : R — H

a+1

is a regular and extensional function. We will construct a function g € P**(RE") such that

g = h, that is, ¢’(f') = h(f’) for every f’ € R¥. Let s be any function from R." to P* such

that

for f € RY”, s(f) is a representative of the class h(f’) e H = P*/F,,
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that is, h(f’) = |s(f)|. Let g be the function defined by

g(f) =~~(s(f)) for f e R

Then, by Theorem [1.2.56, g is ~-regular and since its domain is RE*, we have that ¢ €

REYA\RE® = PP (RE™). We want to see that ¢’ = h, so let us take f’ e R .

g = lg(f) (by definition of ¢')
= | ~~(s(f))] (by definition of g)
= ——|ys(f)| (by definition of —)

= ——|s(f)] (by Corollary |1.2.60)

= —=h(f") (s(f) is a representative of the class h(f’))

= h(f") (h is regular function).

Then, ¢’ = h and the function ’ is surjective.
By the induction hypothesis 1, we may assume that for every M R — Lc-formula with no

. . *
universal quantifiers p(zy, ..., z,) and every ay, ..., a, € R.

{p e P VI Iy @lar, -y an)}] = [p(d, o )]

We will show that this result also holds for RE by induction on formulas. We start with

the atomic case. Let f,g € REL. We have three cases:

1. If f,ge RE*, then we have the result by the induction hypothesis 1.
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2. If fe R'" and g € R \R"", then

a+1

[f € g'la = 9'(f) (by definition of [- € -[7;)
= |g(f)| (by definition of ¢')
=[{peP:peg(f)} (by definition of g(f))
={peP:VE, Ik, feg) (by definition of V27, I, f € g)

3. If f € BT, |, recall that we denote

Py :=g(h) - (Pyen - Pacy)

i=g(h) - ( () (@) = {ge PV bg~~ Owe )} - [ (f(2) — {aeP: VS hp~~ Ofwe h)})>

Pk Pk
TER TER

and notice that

peP: Vi, (feg)t= \V P

hedom(g)

Furthermore,

Pren = () (f(z) > {ge P VE" Irg~~ Oz € 1)}

zeRP*
= ﬂ (f(x) 5>~~~{qeP: VE* I (z € h)}) (by Theorems [3.1.42f and [3.1.28))
zeRP*
- ﬂ (~~ Y (f(x) >~~{geP V2 -4 (x € h)}) (since f is y-regular)
zeRP*
=[] ~~ (~~ @) >~~ g PV Iy (e h)})  (by Example[[2.49)
zeRP*

=~ \/ ~ (~~y(f(x)) >~~~{qeP: VE* -4 (x € h)}) (by Theorem item 4.)

Pk
zeR,
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Thus,

Prenl = | [ (f(2) = {g € P VE bg~n Oz € 1))

Pk
TeRE,

=~V ~ (@) >~ g € BVE 1y (re b))

P*
TER,

- - U —(—==|y(f(x))] - ——|{qgeP: V]P I (x € h)}|) (by Remark [3.2.27

:):ER]P*

= () (= (f@) = —=l{ge P: V" Ik, (€ h)}|) (by Theorem [[2.36 item 4.)

e RE*

=[] ~—h(f@)l - ——HacP: V" Iy (we b} (by Example [[.2.49)
xeRP¥

= ﬂ | ~~y(f(z)| = ——l{qgeP: VE* I (z € h)}| (by definition of —)
xeRg*

= () If@) = ——l{geP:VE" I, (z e b)) (f is y-regular)
weRE*

= ﬂ f'(z") — ==[2" € K']® (by the induction hypothesis and the definition of f)

Pk
reR,

= ﬂ f’(gg’) N [ﬁﬁ(x’ c h’)]]]l;I (by definition of —)

Pk
reRS,

In a similar way we can prove that

1Prcsl = | [) (f(@) = {qgeP:VE bpnn O(@e W)Y = [ f(&) < [-—(a’ e W)]2

J:ER[(P;* JZER]P*

Thus,
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1Pul = lg(h) - (Pren - Pacyp)l = lg(R)| - (|Prenl - [Pacyl) (by Remark [3.2.27)

( ﬂ @) — [-—(' e n)]E- ﬂ fi(z) — [-—(z € h’)]]]g) (by the previous computations)

zeRE* weRE¥

N ( ﬂ @) — [-—(2" e N]E ﬂ f(@) —[-—(2" € h')ﬂH) (since N = - in P*/F,)

IERH;* 1ER]P*

=4 M)n ﬂ (f'(z) & [-=(2" € W) (properties of A and definition of ¢')

Pk
zeRE,

Therefore,

[Fedlivi= U @m) o [)(F@) o[-~ el  (by definition of [- € [, )

h'edom(g’) weRE¥

U 1Pl

h'’edom(g’)

\/ Py (by Theorem [1.2.62))

hedom(g)

{peP: VI I, (f € 9)}

Now we have the result for atomic M R-formulas. Hence, it is straightforward to prove
the result for the rest of M R-formulas by induction on formulas and by using Theorems
[3.1.28 and [3.1.42] For this reason, we show it only for the product and the existential
quantifier: Assume that ¢(zq,...,2,) and ¢¥(x1,...,x,) are M R — Lc-formulas such that for

ES
all ay, ...,a, € RY

{peP: VE Iy olar, . an)}| = [¢(a}, ... ap)]54,, and

{peP: VI Ik, ¥(ay, ..., an)}| = [¥(a), ...,a,)]E,, (induction hypothesis 2).
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Then,

[[(90&1/})(@/17"'7a;) Hc-yHJrl = [[90(&/17' ) n) a+1 [[1/1(@17- ) n) Hc-vﬂJrl

={peP: VI Ik (ar,....an)} - [{p e P: VI, Ik (ay, ..., an)}] (by induction hypothesis 2)

= e P VI 1y (0t (ar, )} (by Theorem B128)

Take an M R—Lc-formula (21, ..., v,) and ay, ..., a, € RE, . Assume that for every a € RV, |,

o(aq, ..., an, a) satisfies

{peP VI Ik, w(ar, ..., an, )} = [(p(d), ..., dl, a2, (induction hypothesis 3).

Then,

[Bzp(d), ..., a,, x)]5 = \/ [(p(d),...;al,d)]e,,  (by definition of [3zp(al, ..., al, z)]E, )

H
a ERa+1

\/ HpelP: VEL I-p @(a, ..., an,a)}|  (by induction hypothesis 3)
@ERG

{peP: VI Ik, Jzp(an, ..., an, 7)}| (by Theorem [3.1.28)

Let us see that ¢ is extensional if and only if ¢’ is extensional.

If g is extensional, then, for every f, h e RE", we have that
9(f) {p e P VI Iy (f = h)} < g(h),
this implies, by Theorem [1.2.33|item 1., that

(9(f) {p P VI Iy (f = )}) — g(h) = 1.
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Thus,
(9(f) - {peP: VI Iy (f = R)}) — g(h) € F,.
By definition of < on P*/F,, we get
9(f) {p e PV Iy (f = R} < lg(n)|
by Remark 3227 this implies that
9Ol A Hpe PV Iy (f = W)} < g(h)].
Recall that
(G=h) =0~ (F2) ~ (wegoreh)&(d~(z)~ (@eh—zeg).

Thus, by Theorems [3.1.28] and [3.1.42]

{peP: VI Ik, (f = h)}]
={peP: VI, (O~ (32) ~ (xeg > 1 h)&(O ~ (32) ~ (xeh—z€Q)))}

=P eP: VI Iy (~ (B2) ~ (xeg—aeh)}] - Iy{peP: Vo Iy (~ Go) ~ (ze g —aeh))

Notice that

ip P Ve Iy (~ (32) ~ (e g —>a e h)))

=[{peP: VY Iy (~ (32) ~ (e g -z eh)) (by Corollary [L.2.60)
=[~@z)~(xreg—azeh)] (by induction hypothesis 1.)

In a similar way, we prove that
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MpeP:VE Iy (~ (31) ~ (re g —xeh)}| = [~ (32) ~ (re g — x e h)]E
Therefore,
{peP:VE Iy (F = W)l = [~ Go) ~ (e g— e I A~ (Ga) ~ (e h — zeg)]
Thus, by definition of ¢’
J() A~ (o) ~ (weg—aeW)EA [~ (o) ~ (weh e g)lf < g(K)

which proves that ¢’ is extensional.
On the other hand, if ¢’ is extensional, by using (backwards) the argument given above, we

get that
(9(f) - {peP:VE I, (f = h)}) — g(h) € F.
which means
Y((g(f) {peP:VE Ik, (f = h)}) — g(h)) =1
but, since v respects implications, we get
(g(f) - {peP:VE I, (f = h)}) — v(g(h)) = 1.

Hence, by Theorem [1.2.37|item 2., v(g(h)) < (~~ v(g(h))) and by Theorem [1.2.33|item 9.,

we have

(9(f) e PV Iy (f = B)}) = (~~7(g(h))) = 1,

but g is a y-regular function,

(9(f) {peP VI Iy (f = )}) — g(h) = 1

which implies, by Theorem [1.2.33]item 1., that
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9(f) {peP:VE I, (f = h)}) < g(h)

That is, g is extensional.

Corollary 3.2.30. If ¢ is an Lc-sentence with no universal quantifiers, then ¢ is valid in
the model RY (that is [¢]T = 1g), if and only if, Q¢ is valid in (P, <, 6, |-, RY") (that is

R |1, Oy for every p e P.)

Proof. We have that

[]2 = 1w iff []" = |P| (by definition of 1y = lpx/7 )
iff [{peP: VI I, ¢} = |P| (by Theorem [3.2.29)

iff v {peP: V" |, o} = 4(P)  (by Theorem [1.2.59)

iff {peP: VI |-, Op}] =P (by Theorem [3.1.42 and since v is expansive)

3.3 Constructible sets over Kripke models

We now study the notion of constructibility in the context of Kripke models of Set Theory.
We start with a review of Fitting’s results [Fit69] and then proceed to outline a propose for
a generalization of those results in the context of Residuated Models of Set Theory, using

the tools that we develop in the prior section.
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3.3.1 Intuitionistic Constructible sets.
Let us take an Intuitionistic Kripke model A = (P, <, -, D). Recall that
Pt :={A < P: Ais hereditary}

is a Heyting algebra. Thus, it is natural to consider P* as a set of truth values for the notion

of definability.

Definition 3.3.1 ([Fit69], p. 94). We say that a function f is a P*-definable subset of

A= (P, <, I+ D) if
1. Dom(f)=D
2. Ran(f) < P*

3. There exists some (classical) first-order £ 4-formula ¢(x) with no universal quantifiers

such that for any a € D
fla)={peP: Alr, ¢(a)}
and let us define
DefP (D) := {f : f is a P*-definable subset of (P, <, D)}

Definition 3.3.2 (The derived model [Fit69], pp. 94 and 95). Let D’ = D U Def*" (D) and

let us extend the forcing relation to the model A" = (P, <, I, D)
1. If f,ge D, then A" I, (f € g), if and only if, A, I, (f € 9)

2. If fe D and ge D'\D = Def"" (D), then A I, (f € g), if and only if, p € g(f).
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3. If f € D'\D = Def"" (D), and ¢(x) is one formula that defines f over A, then we say

that A’ I, (f € g), if and only if, there exist h € D such that

A, ~3z)—(z € h < p(x)) and A |, (h € g)
Let Ay = (P, <, I, Dy) be any Intuitionistic Kripke Model satisfying the following conditions:
1. (P, <, Ik, D) is a set.
2. Dy is a collection of functions such that if f € Dy, Dom(f) € Dy and Ran(f) < P*
3. For f,ge Dy, Ao I, (f € g), if and only if, p € g(f)

4. For f.g,h € Dy, if Ay I+, —~(Fx)—(z € f < = € g) and Ay I+, —(f € h), then

AO “_p _‘(g € h)

5. Dy is well-founded with respect to the relation z € dom(y).

Next, let Ayy1 := (P, <, I, Day1) be the derived model of A, = (P, <, I, D,).

If a £ 0 is a limit ordinal, let
Ay = (P, <, I+, D,) be defined by D, := |J Dg

B<a

and if f,g € D,, take any n < o such that f,g e D, and let
Ao I, (f € g), if and only if, A, I, (f € g).
Let
A:= (P,<,IF, D) where D := |J D,
acON

and if f,g € D, take any n € ON such that f,g € D, and let
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Al (f €g), if and only if, A, I, (f € g).

Theorem 3.3.3 ([Fit69], Chapter 7, Theorem 3.2). A = (P, <, I, D) is an Intuitionistic
Z FC model, that is, classical equivalents of all the axioms of Zermelo-Fraenkel with choice,

expressed without the use of the universal quantifier, are valid in the model.

Lemma 3.3.4 ([vD04], Lemma 5.2.1 (19)). It is a theorem of Intuitionistic Logic that for

every formula ¢(z)

=i ~(Qzp(r)) < (Vo—p(r))

Thus, we could change the expressions

Ay, ~(3z)=(z € h < ¢(z))

Al (Vo) =—(z € h < ¢(x))

And still get the same results of this section. This will be of use in the next section, where

we consider { as a generalization of ——.

3.3.2 Residuated Constructible sets.

We propose a notion of class of constructable sets in the context of Modal Residuated Kripke
models of Set Theory that generalizes Fitting’s construction. We only outline a propose for
this construction and indicate some possible conditions that we believe are necessary for the
generalization of Fitting’s results.

Take an M R—Kripke model A = (P, <, 4, I, D).
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Definition 3.3.5 (cf. [Fit69], p. 94). We say that a function f is a P*-definable subset of

A= (P, <9, D) if
1. Dom(f)=D
2. Ran(f) < P* = {A < P*: A isstrongly hereditary}

3. There exist some MR — L 4-formula ¢(z) with no universal quantifiers such that for

allae D
fla) ={peP: Al pla)},
and denote
Def™ (D) := {f : f is a P*-definable subset of A}

Definition 3.3.6 (cf. [Fit69] pp. 94 and 95). Let D’ = D U Def"* (D) and let us extend

the forcing relation to the model A" = (P, <, 6, I, D’) as follows:
1. If f,ge D, then A" I, (f € g), if and only if, A, I, (f € g)

2. If fe D and g€ D'\D = Def" (D), then

A" -, (f € g), if and only if, p € g(f).

3. If f e D'\D = Def™ (D), and ¢(z) is an MR — Lc-formula that defines f over A,

then we say that A’ Ik, (f € g), if and only if, there exist h € D such that

Ay (Vo) ~~ Oz € h = ¢()))&((V2) ~~ Oz € h — ¢(x))) and A1k, (h € g)

Let Ay = (P, <, 0,1, Dy) be any M R-Kripke Lc.-Model satisfying the following conditions:
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1. (P, <, 0,1k, Do) is a set.

2. Dy is a collection of functions such that if f € Dy, Dom(f) < Dy and Ran(f) < P*

3. For f,g€ Dy, Ao I, (f € g), if and only if, p € g(f)

4. For f.g,h € Dy, if Ay I, —~(3Fx)—(z € f < = € g) and Ay I+, —(f € h), then

Ao I —(g € h)

5. Dy is well-founded with respect to the relation z € dom(y).

Let Apt1 := (P, <, I+, Day1) be the derived model of A, = (P, <, I, D,,).

If a £ 0 is a limit ordinal, let
A, = (P, <, -, D,) be defined by D, := | Dg

B<a

and if f,g € D,, take any n < a such that f,ge D, and let
Au Ik (f € g), if and only if, A, I-, (f € g).
Let
A:=(P,<, -, D), where D := |J D,
aeON

and if f,g € D, take any n € ON such that f,g € D, and let

A, (f € g), if and only if, A, I, (f € g).
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3.3.3 Further work

We would like to make some concluding remarks and talk about some open questions and

conjectures.

1. We wonder what kind of axioms of Set Theory are valid in the model R™ (see Definition
. We expect this structure to be a model of Intuitionistic Set Theory, or a
transformed version of it, via a Godel-Kolmogorov-like translation. We believe that
there must be some kind of isomorphism between R and the usual valued model V2,

where B = H/F_ .

2. We proposed a version of Godel’s universe in Subsection [3.3.2l We wonder if the
conditions that we proposed for our Residuated model are enough to prove a result
similar to Theorem [3.3.3. We believe that some translated version of the axioms of

IZF is valid in this model, via some kind of G6édel-McKinsey—Tarski translation.

3. In Section we proposed two definitions of class of constructible sets in the context
of Boolean-valued models and quantale-valued models. These definitions ended up
collapsing to two valued models, but we wonder if there exists a variation of these

definitions of constructibility in which the resulting model is not two valued.

4. We wonder what kind of independence results in Set Theory can be achieved with
our Modal Residuated models of Set Theory that are not achievable with Intuitionistic

models.

5. We would like to find an axiomatization for the logic of “complete residuated lattices
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with a quantic nucleus”. Furthermore, we would like to find a proper axiomatization
for these modal logics when we consider additional properties for our quantic nucleus,

such as respecting implications or idempotency with respect to products.
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