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Abstract

We investigate different set-theoretic constructions in Residuated Logic based on Fitting’s

work on Intuitionistic Kripke models of Set Theory.

Firstly, we consider constructable sets within valued models of Set Theory. We present

two distinct constructions of the constructable universe: LB and LB, and prove that the

they are isomorphic to V (von Neumann universe) and L (Gödel’s constructible universe),

respectively.

Secondly, we generalize Fitting’s work on Intuitionistic Kripke models of Set Theory using

Ono and Komori’s Residuated Kripke models. Based on these models, we provide a general-

ization of the von Neumann hierarchy in the context of Modal Residuated Logic and prove

a translation of formulas between it and a suited Heyting valued model. We also propose a

notion of universe of constructable sets in Modal Residuated Logic and discuss some aspects

of it.

Keywords: Valued models, abstract logics, residuated lattices, Kripke models, con-

structible sets



Resumen

Investigamos diferentes construcciones de la teoría de conjuntos en Lógica Residual basados

en el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la Teoría de Conjuntos.

En primer lugar, consideramos conjuntos construibles dentro de modelos valuados de la

Teoría de Conjuntos. Presentamos dos construcciones distintas del universo construible:

LB y LB, y demostramos que son isomorfos a V (universo von Neumann) y L (universo

construible de Gödel), respectivamente.

En segundo lugar, generalizamos el trabajo de Fitting sobre los modelos intuicionistas de

Kripke de la teoría de conjuntos utilizando los modelos residuados de Kripke de Ono y

Komori. Con base en estos modelos, proporcionamos una generalización de la jerarquía de

von Neumann en el contexto de la Lógica Modal Residuada y demostramos una traducción de

fórmulas entre ella y un modelo Heyting valuado adecuado. También proponemos una noción

de universo de conjuntos construibles en Lógica Modal Residuada y discutimos algunos

aspectos de la misma.

Palabras clave: Modelos valuados, lógicas abstractas, retículos residuales, modelos de

Kripke, conjuntos construibles
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Introduction

The notion of constructibility (in Set Theory) started with Gödel’s work [Göd38] on the con-

sistency of the Axiom of Choice (AC) and the Generalized Continuum Hypothesis (GCH).

Gödel considers the class of definable sets in Classical first-order Logic in the language

of Set Theory, now called Gödel’s constructable universe.

At the beginning, Gödel’s idea of considering definable sets in some logic was not widely

used in the construction of new inner models, but rather, using different set-theoretical tech-

niques, new inner models, such as HOD or LrUs, were defined that allowed the advancement

of Set Theory, especially in the realm of independence results. Nonetheless, a couple of at-

tempts were made to generalize Gödel’s idea of a class of definable sets: Scott and Myhill

[SM71] showed that the well-known model HOD can be obtained as the definable sets in

second-order logic and Chang [Cha71] showed that if one considers the definable sets in

the infinitary logic Lω1,ω1 , an inner model is obtained that is characterized by being the

smallest inner model that is closed under countable sequences. Although these results are

interesting, no meaningful study of inner models arising from different logics was considered

for a very long time.
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It was not until the work of Kennedy, Magidor and Väänänen [KMV20] that inner models of

Set Theory that arise when considering definable sets in generalized logics were systematically

studied. The logics considered were strengthenings of first-order logic constructed by using

generalized quantifiers or by allowing infinite disjunctions, conjunctions, or quantification.

Some notable examples include the Stationary Set Theory, logics with cofinality quantifiers,

the Härtig quantifier and the Magidor-Malitz quantifier. Such models made it possible to

study new independence results in Set Theory.

Therefore, one could ask if such constructions could be done in logics that are weakenings

(rather than strengthenings, as we just saw) of Classical first-order Logic. We would like to

study logics general enough to capture the most important logical examples, such as Intu-

itionistic and Fuzzy Logic, but not so general that we lose too many structural rules, such

as the commutativity of the premises in a deduction. Therefore, we are interested in studying

constructibility in the context of the so called substructural logics without contraction

(but with the exchange rule). Essentially, we consider a weakening of Intuitionistic Logic in

which we consider two types of conjunctions: & and ^. The strong conjunction (denoted

&) is no longer idempotent, that is,

αÑ pα&αq

no longer holds for all formulas α. The defining feature of this connective is that is the left

adjoint to the implication (just as ^ is for the classical and intuitionistic case),

α&β ñ γ if and only if αñ β Ñ γ.

We also consider a weak conjunction (denoted ^) closer to the intuitionistic one, but that

is not necessarily the adjoint to the implication.
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Therefore, in this logic, called Residuated Logic (also Monoidal Logic in [Höh94]), it

is the case that the strength of the premises changes depending on how many of the same

hypothesis we have (due to the lack of idempotency), such as it can be seen in the deduction

theorem for Residuated Propositional Logic (RPC):

Theorem 0.0.1 (Deduction theorem for RPC, [Mac96]). If there is a deduction in RPC

of θ from the set of formulas α, β, ..., γ, δ, and the deduction used δ n-times, then there

is a deduction in RPC of pδn Ñ θq from α, β, ..., γ (where δn “ δ&δ&...&δ is the n-fold

conjunction of δ with itself).

Also in regards to the equality, we have that the usual substitution of equal elements

px “ yq&θpxq ñ θpyq

is not going to hold in general, but rather, we have that

px “ yqn&θpxq ñ θpyq

where n occurrences of x in θpxq that have been replaced by y to form θpyq.

With these key features in mind, one could ask what kind of models are we going to use to

study these logics, and more specifically, how do we can find natural models of Set Theory

for these logics. We do this in two ways: first by considering lattice-valued models and

then using Kripke-like models.

Lattice-valued models were first introduced by Scott and Solovay in [SS67]. They considered

Boolean-valued models of Set Theory in order to provide a more intuitive presentation

of Cohen’s forcing. To achieve this, they took a complete Boolean algebra B and built a
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“model” of Set Theory V B in which the truth values of formulas take values in B instead of

the trivial Boolean algebra t0, 1u.

Based on the construction of Scott and Solovay, several generalizations of the previous con-

struction have been considered by taking other lattices instead of Boolean algebras. For

example, Heyting lattices give rise to Intuitionist models of Set Theory [Gra79], BL∆-

algebras give rise to models of Fuzzy Set Theory in the Fuzzy Logic BL@∆ [HH01, HH03]

and topological complete residuated lattices (i.e. topological commutative integral quantale)

give rise to Modal models of Residuated Set Theory [Lan92a]. These kind of valued

models serve as natural models of logics weaker than first-order.

Until now, as far as the author is aware, there has been no in-depth study of what would be a

“class of definable sets” in the context of valued models. The closest attempt to this was done

by Fitting [Fit69], where, as motivation for his definition of class of constructable sets using

Kripke models, it was shown how to construct L (or more precisely a model “isomorphic” to

L) using two-valued characteristic functions that are definable by some formula.

Following Fitting’s idea, we propose new definitions of the notion of definable subset within

a Boolean-valued model of Set Theory and with them, we propose two new constructions

of the constructable universe: LB and LB. Moreover, we prove that these models are, in

fact, two-valued, since our definition of definable is too restrictive and forces the models to

only take these values. Furthermore, we prove that LB and LB are “isomorphic” to V (von

Neumann universe) and L (Gödel’s constructible universe), respectively.

When trying to generalize these notions of definability to the context of quantale-valued

models, we found that the resulting classes of constructable sets are also two valued, and
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therefore are not suitable to study Residuated Logic. Hence, we instead focus on develop-

ing the notion of constructable sets in the realm of Kripke models, where these kind of

problems are avoided.

As it turns out, there is a precedent to the idea of considering constructable sets over

Kripke models: Fitting [Fit69] constructed several models of Intuitionistic Set Theory

generalizing both the universes of von Neumann and of Gödel using Intuitionistic Kripke

models and then went on to show how these models can be used to obtain classical proofs

of independence in Set Theory.

Thus, since we would like to generalize Fitting’s Intuitionistic Kripke models of Set Theory,

we would need first a notion of Kripke models for Residuated Set Theory. Ono and Komori

[OK85] introduced the notion of semantics for substructural logics without contraction and

exchange. These models, that we call Residuated Kripke models (shortly, R-Kripke

models), generalize the notion of Intuitionistic Kripke models and then, following the ideas of

Lano [Lan92a], we further generalize these models to Modal Residuated Kripke models

(shortly, MR-Kripke models). The definition for the interpretation of the modality in our

definition is original, and allows for a suitable translation between Kripke models and lattice-

valued models. Moreover, using these MR-Kripke models together with Fitting’s ideas on

the intuitionistic case, we construct new Modal Residuated models of Set Theory.

We define the model VP˚ (see Definition 3.2.18), that generalizes the von Neumann hi-

erarchy for Modal Residuated Logic, and we prove, in Corollary 3.2.30, that there is a

Gödel–McKinsey–Tarski-like translation between this model and a suited Heyting val-

ued model RH (see Definition 3.2.23). This translation is obtained by first constructing an
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“isomorphism” (see Theorem 3.2.29) between VP˚ and RH and then proving how this result

implies that if φ is an LP-sentence that is valid in RH, then ♢φ is valid in VP˚ .

Then, we study superficially the notion of constructible set in the context of Modal Resid-

uated Kripke models of Set Theory. We only outline a propose for a construction in this

context.

In Chapter 1, we begin by providing some basic definitions and facts about models of Set

Theory. In particular, we introduce the von Neumann hierarchy of sets and Gödel’s

hierarchy of constructable sets, since these are the key notions that we are interested

in studying in the context of Residuated Logic. In Section 1.2, we present some preliminary

concepts of lattice theory. We are especially interested in the study of Boolean and Heyt-

ing algebras, commutative integral quantale and modal operators (i.e., quantic nucleus) on

these lattices. In Section 1.3, we discuss some basic aspects of the logics that we encounter

throughout this work. Two concepts of note are the Gödel-Kolmogorov translation be-

tween Classical and Intuitionistic Logic and the Gödel-McKinsey-Tarski translation be-

tween Intuitionistic (Classical) Logic and Modal Logic S4 (S5), since our results in Chapter

3 are inspired by this kind of translation theorems between logics.

In Chapter 2, we start by introducing the notion of lattice-valued models for different lat-

tices (Boolean and Heyting algebras, and commutative integral quantale) and discuss their

relationship with several logics (Classical, Intuitionistic and Residuated Logic). In Section

2.2 we discuss the construction of valued models of Set Theory, and prove some basic results

about them. In Section, 2.3, we propose two definitions for the class of constructable sets in

the context of Boolean-valued models of Set Theory, LB and LB. We show that both B-valued
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models are in fact two-valued. Furthermore, we prove that LB and LB are “isomorphic” to

V and L, respectively. At the end of the chapter, we remark that if we use our notion of

definable class for quantale-valued models, we obtain a model that is also two-valued and

thus not suitable for Residuated Logic.

In Chapter 3, we start by introducing different notions of Kripke model for the different

logics that we consider in this chapter. In Subsection 3.1.1 we discuss some basic aspect of

the Intuitionistic Kripke models and then, in Subsection 3.1.2, we showcase some connections

between these models and Cohen’s forcing. In Subsection 3.1.3, we discuss Ono and Komori’s

R-Kripke models and adapt some of their results in our context. Lastly, in Subsection

3.1.4, we consider MR-Kripke models, whose definition is due to the author. These models

introduce a modal operator in the definition of Residuated Kripke models.

In Section 3.2, we start by discussing Fitting’s results [Fit69] and emphasizing some aspects

of his argument. This is done to make it clear how to generalize his results for Residuated

Logic. In Subsection 3.2.2, we propose a new definition for the von Neumann universe in the

context of Residuated Logic using the MR-Kripke models that we introduced in Subsection

3.1.4. We provide a translation between our MR-Kripke models and a suited Heyting valued

model via the possibility operator.

Finally, in Section 3.3 we begin by discussing Fitting’s notion of class of constructable sets

in Intuitionistic Kripke models. In Subsection 3.3.2, we propose a notion for the class of

constructable sets in Modal Residuated Logic, and consider some properties that might be

necessary for proving results similar to the ones from [Fit69]. We finish by discussing some

open problems and conjectures.



1 Preliminaries

Throughout this document, we will work on ZFC, the Zermelo-Fraenkel axioms of Set

Theory including the Axiom of Choice.

The notation that we use in this work is standard: Given a set A, PpAq denotes the set of

subsets of A. If B is also a set, X Ď A and f : AÑ B is a function, fæX denotes the function

that is obtain when the domain of f is restricted to X, dompfq denotes the domain of f

and ranpfq denotes its range. ON denotes the class of all ordinals. We use the symbol «

to denote an equivalence relation on A, |a|« to denote the equivalence class of a P A modulo

« and A{« to denote the set of «-equivalence classes.

1.1 Models of Set Theory

In this work we are (for the most part) only interested in structures which carry one binary

relation P and that validate the axioms of ZFC (or some variation of them).

Definition 1.1.1. LP “ tPu denotes the language of Set Theory, which consists of a binary

relation symbol P.
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Definition 1.1.2. We define the universe of sets as V “ tx : x “ xu. From Russell’s

paradox, we know that V is a proper class.

1.1.1 von Neumann Universe

Although this hierarchy carries his name, von Neumann was not the first mathematician to

investigate this hierarchy, but Ernst Zermelo in 1930 [Zer30]. This class can be understood

as the class of hereditary well-founded sets, which under the axiom of regularity, happens

to coincide with the class of all sets and therefore allows us to divide the set universe into

“levels” indexed by ordinals.

Definition 1.1.3 (von Neumann hierarchy of sets). We define by transfinite recursion over

the ordinals:

1. V0 :“ H.

2. Vα`1 :“ PpVαq.

3. Vα :“
Ť

βăα

Vβ, for α ­“ 0 limit ordinal.

The von Neumann hierarchy allows us to see how every set can be obtained from the void

and the power set operation, as long as the axiom of regularity holds.

Proposition 1.1.4 ([Jec03], Lemma 6.3). For every set x there is an ordinal α such that

x P Vα. Therefore, we can write V “
Ť

αPON

Vα and we call V the von Neumman universe.

Definition 1.1.5. Given a set x, we define the rank of x, rankpxq, as the smallest ordinal

α such that x P Vα`1. Thus, we notice that from this definition Vα “ tx : rankpxq ă αu
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One of the goals of this work is to study some generalizations of the von Neumann hierarchy

for logics that are more general than first-order logic. That is, we want to generalize the

notion of subset, and we will do that by associating this concept to the notion of charac-

teristic function and then generalizing this notion to wider contexts.

1.1.2 Gödel’s Universe

In [Göd38] Gödel constructed a class model consisting of LP-definable sets in Classical first-

order Logic and it was used to prove the consistency of the Axiom of Choice (AC) and

the Generalized Continuum Hypothesis (GCH). We present briefly those results on this

subsection, but for anyone interested in a more in depth discussion of this model and the

proofs for these theorems see [Kun11] or rJec03s.

Definition 1.1.6. Let us consider an LP-structure pM, Pq and X Ď M . We say that X

is definable in pM, Pq if there exists a (classical) first-order LP-formula φpx1, ..., xnq and

a1, . . . , an PM such that

X “ tx PM | pM, Pq ( φpx, a1, . . . , anqu

Based on the above, we define DefpMq “ tX ĎM | X is definable in pM, Pqu Ď PpMq.

Definition 1.1.7 (Gödel’s hierarchy of constructible sets). We now define the hierarchy Lα

recursively over the ordinals:

1. L0 :“ H.

2. Lα`1 :“ DefpLαq.
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3. Lα :“
Ť

βăα

Lβ for α ­“ 0 limit ordinal.

Definition 1.1.8 (Gödel’s constructible universe). Abusing the notation, we define the class

of Gödel’s constructible sets as L :“
Ť

αPON

Lα.

The above is just shorthand for the LP-formula φpxq “ Dα P ONpx P Lαq. Thus, we say

that a P L if and only if φpaq holds. Notice that, strictly speaking, L is not a set, but

rather a proper class of sets that satisfy the property given by the formula φpxq. We will use

shorthands like these throughout this work, so we will not mention this convention again.

Definition 1.1.9. We say that a set x is constructible if x P L.

We can view L as a more rigid and controlled version of the universe, where instead of

considering all subsets of a set in the successor step, we only consider definable subsets of

that set. This distinction allows us to control the cardinality of the power set in the L model,

as we see in the next theorem.

Proposition 1.1.10. ([Jec03], Theorems 13.3, 13.16, 13.18, 13.20) Gödel’s universe L is a

model of ZFC `GCH.

One goal of this work is to propose generalizations of Gödel’s universe L in more general

contexts than Classical Logic. Therefore, we must first find natural models for logics weaker

than Classical Logic. This will be done in Chapter 2 by considering models valued on

different lattices, and in Chapter 3 with Kripke models and their generalizations.
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1.2 Lattices

Throughout this section, we present some preliminary concepts of lattice theory, as they will

be of use for the construction of models for different types of logics. For instance, lattices

are widely used in algebraic logic as they can be understood as models of most logics via a

construction similar to the Lindenbaum–Tarski algebra for Classical Logic.

Lattices are used for several reasons:

1. The notions of meet (^) and join (_) serve as natural interpretations of the conjunction

and disjunction, respectively.

2. The order in the lattice can be understood as formalizing the notion of “stronger than”

in the logical sense.

3. The operation of implication Ñ in the lattice is usually defined in terms of an adjunc-

tion, usually to the operation of meet or to some product in the lattice. This is done

so that we can algebraically capture the logical rule of Modus Ponens.

1.2.1 Boolean and Heyting algebras.

Definition 1.2.1. Let pP,ďq be a partially ordered set (or poset). We say that P is a lattice

if for every pair of elements x, y P P there exists the supremum and infimum of the set tx, yu

and we denote

x_ y :“ suptx, yu and x^ y :“ inftx, yu.

We say that a lattice P is distributive if
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x^ py _ zq “ px^ yq _ px^ zq.

A lattice P is said to be bounded if there are elements 0, 1 P P such that for all x P P

0 ď x ď 1.

We say that a bounded lattice P is complemented if for all x P P, there exists yx P P such

that x_yx “ 1 and x^yx “ 0 and we say P is pseudocomplemented if there exists a greatest

element yx P P with the property x^yx “ 0. In distributive lattices, complements are unique

and we denote them as ␣x :“ yx.

We say that P is a complete lattice if for all X Ď P, there exists supX in P.

Definition 1.2.2. We say that B “ pB,ď,_,^, 0, 1,␣q is a Boolean algebra if B is a dis-

tributive complemented lattice.

Example 1.2.3. The following are Boolean algebras:

1. The set t0, 1u with the order 0 ď 1 is a Boolean algebra, usually called the trivial

Boolean algebra. This algebra is used as the truth values for first-order Classical Logic.

2. If we take a set X and consider PpXq with the order Ď we get a complete Boolean

algebra.

3. Consider a topological space pX,ΩpXqq. We say that a subset A Ď X is clopen if it

is both open and closed in pX,ΩpXqq and we say that an open set U if regular if it is

equal to the interior of its closure, that is,
˝

U “ U . The set of clopen sets CpXq and of

regular open sets ROpXq form a Boolean algebra with the order Ď.
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Boolean algebras have an important role in Classical Logic given that the Lindenbaum-Tarski

algebra of a (classical) theory is a Boolean algebra and therefore is possible to form a link

between Classical Logic and Boolean algebras, in the sense that Boolean algebras can be

used as a semantical counterpart (i.e. models) to the syntactical axioms of Classical Logic.

We will study this link further in Section 2.2.1.

The next notion is crucial for the rest of the work, since it allows to characterize the notion

of implication as an adjoint to the conjunction, and so we can capture its fundamental

important properties.

Definition 1.2.4 (left and right adjoints). Let pA,ďq and pB,ďq be two partially ordered

sets and F : A Ñ B and G : B Ñ A be two monotone functions. We say that F is a left

adjoint of G and G is a right adjoint of F , if for all a P A and b P B, we have

F paq ď b if and only if a ď Gpbq,

we denote this by F % G or G $ F .

We say that F is a is a left adjoint if there exists a monotone function G : B Ñ A such

that F % G. Similarly, we say that G is a right adjoint if there exists a monotone function

F : AÑ B such that F % G.

Theorem 1.2.5 (Adjoint Functor Theorem for preorders, [DP02], Proposition 7.34). Let

pA,ďq and pB,ďq be two partially ordered sets and F : A Ñ B and G : B Ñ A two

monotone functions.

1. Suppose that pA,ďq has all joins. Then, F preserves all joins if and only if F is a left

adjoint.
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2. Suppose that pB,ďq has all meets. Then, G preserves all meets if and only if G is a

right adjoint.

Just as Boolean algebras semantically capture Classical Logic, Heyting algebras capture

Intuitionistic Logics. They were introduced by Arend Heyting in [Are30] to formalize Intu-

itionistic Logic.

Definition 1.2.6. We say that H “ pH,^,_,Ñ, 0, 1q is a Heyting algebra if:

1. pH,^,_, 0, 1q is a bounded distributive lattice.

2. For all x, y, z P H, we have

z ^ x ď y if and only if z ď xÑ y.

That is, _^ x % xÑ _ (_^ x is a left adjoint of xÑ _) for all x P H .

Remark 1.2.7. The condition 2. is key since it allows us to prove the inference rule Modus

Ponens when we translate this algebraic property into a logical one.

Fact 1.2.8. If H is a complete lattice, by Theorem 1.2.5, we could remove the operator Ñ

together with the condition 2. from the Definition 1.2.6 and replaced them by the equivalent

condition

x^
ł

iPI

yi “
ł

iPI

px^ yiq for all x, yi P H with i P I

and Ñ can be defined as x Ñ y :“
Ž

tz P H : x ^ z ď yu so that H with this implication

forms a Heyting algebra.

Definition 1.2.9. We define ␣ : HÑ H as ␣x :“ xÑ 0 for every x P H. It is straightfor-

ward to show that ␣ is a pseudocomplement on H.
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Example 1.2.10. From the definition, it is straightforward to prove that every Boolean

algebra B “ pB,ď,_,^, 0, 1,␣q is a Heyting algebra by defining aÑ b :“ ␣a_ b.

Remark 1.2.11 ([Bel05], Proposition 0.2). Let H be a Heyting algebra that satisfies one of

the following equivalent conditions.

1. The pseudocomplementation is of order 2: For every x P H, ␣␣x “ x.

2. Pseudocomplements are complements: For every x P H, ␣x_ x “ 1.

Then H is actually a Boolean algebra.

Example 1.2.12 ([Ros90], Chapter 1, Example 1.). Let X be a topological space and let

ΩpXq denote the lattice of open subsets of X. Then, the distributive law for X and
Ť

shows

that ΩpXq is a complete Heyting algebra. If U and V are open in X, then

1. U Ñ V “
Ť

tW P ΩpXq : U XW Ď V u

2. ␣U “ pXzUq˝

3. ␣␣U “
˝

U

Notice that an open set U is regular if and only if ␣␣U “ U .

1.2.2 Nuclei and filters on Heyting algebras

Throughout this subsection, H denotes a complete Heyting algebra. We will use filters

on Heyting algebras to construct new Heyting algebras (or even Boolean algebras) related

to the original in some crucial ways. These applications will be studied in subsection 3.2.1
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Definition 1.2.13 ([RS63], Chapter 1, Section 8). We say that a nonempty subset F of H

is called a filter if for every x, y P H

1. If x ď y and x P F , then y P F .

2. If x, y P F , then x^ y P F .

A filter F is called proper if F ­“ H, that is, if 0 R F .

Consider a filter F on H, then, the relation «F defined on H by

x «F y if and only if xÑ y and y Ñ x P F

is an equivalence relation on H.

Definition 1.2.14 ([RS63], Chapter 1, Section 13). The quotient algebra H{«F , denoted by

H{F , becomes a Heyting algebra in a natural way, with the operations induced from those of

H. For x P H we denote |x|F the congruence class of x modulo «F . If there is no confusion,

we denote |x| :“ |x|F . The order relation on H{F is given by

|x| ď |y|, if and only if, xÑ y P F

Notice that |x| “ |1|, if and only if, x P F . We call all subsets of the form H{F quotients of

H.

Nuclei on Heyting algebras, also known as modal operators, are closure operators that

respect the meet operation. Just as with filters, they allow us to create new Heyting algebras.

Definition 1.2.15 ([Ros90], Definition 1.1.2). Let pP,ďq be a poset. We say that a function

j : PÑ P is a closure operator if for every x, y P P, we have the following:
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1. Expansivity: x ď jpxq.

2. Idempotency with respect to compositions: jpjpxqq “ jpxq.

3. Monotonicity: If x ď y, then jpxq ď jpyq.

Definition 1.2.16 ([Ros90], Definition 3.1.1.). We say that a closure operator j : HÑ H is

a nucleus (or a modal operator) if for every x, y P H

jpx^ yq “ jpxq ^ jpyq

and we denote

Hj :“ tx P H : jpxq “ xu

Proposition 1.2.17 ([Ros90], Proposition 1.2.4.). If H is a complete Heyting algebra and

j is a nucleus on H, then Hj is a complete Heyting algebra with the order inherited from H.

Furthermore, if
j

Ž

and
j

Ź

denote the supremums and infimums calculated in Hj, respectively,

then for every xi P Hj with i P I

j
Ž

iPI

xi “ j

ˆ

Ž

iPI

xi

˙

j
Ź

iPI

xi “
Ź

iPI

xi

Example 1.2.18 ([Ros90], Chapter 1, Examples (1)). Take a P H. Then, the following

functions are nucleus on H:

1. ca :“ a__

2. ua :“ aÑ _
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3. wa :“ p_ Ñ aq Ñ a. An important example occurs when a “ 0, since we obtain

the double negation operation ␣␣ on H. Hw0 “ H␣␣ is the largest Boolean algebra

quotient of H.

Let us examine the last point more closely. Recall than in Example 1.2.12, we said that an

open set U was regular if and only if U “

˝

U “ ␣␣U . Notice also that in the topological

context, a set is dense if and only if
˝

pXzUq “ H, that is, ␣U “ H. This motivates the

following definition.

Definition 1.2.19. We say that an element x P H is

1. regular if ␣␣x “ x.

2. dense if ␣x “ 0, or equivalently, if ␣␣x “ 1.

Remark 1.2.20. Notice that the set

F␣␣ :“ tx P H : ␣␣x “ 1u

is a filter on H.

Now, with the following two theorems, it should be clear what we meant when we claimed

that Hw0 is the largest Boolean algebra quotient of H.

Theorem 1.2.21 ([RS63], 5.8). If a filter G in a Heyting algebra H contains all the dense

elements, then H{G is a Boolean algebra.

Theorem 1.2.22 ([RS63], 6.7). Let F␣␣ be the filter of all dense elements in H. The

mapping
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hpaq :“ |a|F␣␣ for a P Hw0 “ H␣␣.

is a Boolean isomorphism from the Boolean algebra H␣␣ onto the Boolean algebra H{F␣␣.

1.2.3 Quantales

Structures like quantales (i.e. ordered monoids with a product that distributes over arbitrary

supremums) have been studied at least since Ward and Dilworth’s work on residuated lattices

[WD38, Dil39, War38], where their motivations were more algebraic, since they were studying

the lattice of ideals in a ring: Given a ring R, the set of ideals of R, denoted as IdpRq, forms

a complete lattice defining infimum and supremum as the intersection and sum of ideals,

respectively. The monoid operation ¨ on this lattice would be given by multiplication of

ideals, and the element R in IdpRq would be the identity of this operation.

But it was not until the work of Mulvey [Mul86], where the term quantale was coined as

a combination of “quantum” and “locale” and proposed their use for studying Quantum

Logic and non-commutative C˚-algebras.

Our motivation for the study of quantales is somewhat different. We are not interested in

quantales that are non-commutative - as was the case for Mulvey - but rather quantales

that are not necessary idempotent. We are interested in studying quantales since they

semantically capture both intuitionistic and fuzzy logic, so we will focus on the study of

commutative integral quantales. This kind of structures are widely use in the field of

substructural logics as semantical counterparts for those logics.

Definition 1.2.23 (Quantale). We say that Q “ pQ,^,_, ¨,Ñr,Ñl,J,Kq is a quantale if:

1. pQ,^,_,J,Kq is a complete bounded lattice with J as top element and K as bottom
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element.

2. pQ, ¨q is a semigroup (that is, ¨ is associative).

3. For all x, y, z P Q, we have the two conditions

x ¨ z ď y if and only if z ď xÑr y

z ¨ x ď y if and only if z ď xÑl y

That is, x ¨_ % xÑr _ and _ ¨ x % xÑl _ for all x P Q.

Fact 1.2.24. By Theorem 1.2.5, we could remove the operators Ñr and Ñl together with

the condition 3. and replaced them by the equivalent conditions

x ¨

ˆ

Ž

iPI

yi

˙

“
Ž

iPI

px ¨ yiq and
ˆ

Ž

iPI

yi

˙

¨ x “
Ž

iPI

pyi ¨ xq for all x, yi P Q with i P I

and Ñr and Ñl could be defined as

xÑr y :“
Ž

tz P Q : x ¨ z ď yu and xÑl y :“
Ž

tz P Q : z ¨ x ď yu

Definition 1.2.25. Let Q be a quantale. We say that

1. Q has an unity if there exists 1 P Q such that pQ, ¨, 1q is a monoid.

2. Q is commutative if ¨ is commutative.

3. Q is idempotent if x ¨ x “ x for all x P Q.

4. Q is integral if it has unit and 1 “ J.

Remark 1.2.26. If Q is a commutative quantale, then Ñr and Ñl are the same, and we

denote them simply as Ñ. If Q is a integral quantale , we denote K as 0.
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We now proceed to define the notion of residuated lattice, that precedes the notion of quan-

tale by a few years. Although initially it was studied for its algebraic utility, nowadays

residuated lattices are widely used in the field of substructural logics for the construction of

semantical models.

These lattices have been known under many names: BCK-latices in [BP89], full BCK-

algebras in [Kru24], FLew-algebras in [OT99], and integral, residuated, commutative l-

monoids in [Höh95] and, as we will see, commutative integral quantale (when the residuated

lattice is complete).

Definition 1.2.27 (Residuated lattice). We say that Q “ pQ,^,_, ¨,Ñ, 1, 0q is a residuated

lattice if:

1. pQ,^,_, 1, 0q is a bounded lattice.

2. pQ, ¨, 1q is a commutative1 monoid.

3. For all x, y, z P Q, we have that

x ¨ z ď y if and only if z ď xÑ y

That is, x ¨_ % xÑ _ for all x P Q.

Remark 1.2.28. Notice that a complete residuated lattice is just a commutative

integral quantale. We will use these notions interchangeably throughout this document.

We now introduce the notion of t-norms, which are a key example, since they are a funda-

mental operation in the context of fuzzy logics. Here r0, 1s denotes the subset of real numbers

between 0 and 1.
1Some authors do not include the commutativity in the definition of residuated lattice
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Definition 1.2.29. A function ¨ : r0, 1s2 Ñ r0, 1s is called t-norm if for all x, y, a, b P r0, 1s:

1. Commutativity: x ¨ y “ y ¨ x.

2. Associativity: px ¨ yq ¨ z “ x ¨ py ¨ zq.

3. Monotonicity: If x ď a and y ď b, then x ¨ y ď a ¨ b.

4. Identity: x ¨ 1 “ x.

Definition 1.2.30. Let ¨ : r0, 1s2 Ñ r0, 1s be a t-norm. Then, ¨ is said to be

1. left continuous, if it is left continuous as a function from r0, 1s2 to r0, 1s with the usual

metric.

2. continuous, if it is continuous as a function from r0, 1s2 to r0, 1s with the usual metric.

Example 1.2.31. The following operations are left continuous t-norms:

1. The Łukasiewicz t-norm: x ¨L y “ maxtx` y ´ 1, 0u.

2. The product t-norm: x ¨p y “ x ¨ y, where ¨ denotes the usual product on R.

3. The Gödel-Dummett t-norm: x ¨GD y “ mintx, yu.

Example 1.2.32. The following structures are commutative integral quantale:

1. Boolean algebras.

2. Heyting algebras.

3. The order pr0, 1s,ďq endowed with the t-norm of Łukasiewicz, Gödel-Dummett or the

product t-norm.
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4. More generally, every structure pr0, 1s,ď ^,_, ¨, 0, 1q, where ď is the usual order and

¨ is any left continuous t-norm.

As we mentioned before, we focus on integral commutative quantales, since these structures

naturally generalize both to Heyting algebra (intuitionistic logic) and r0, 1s endowed with

some left continuous t-norm (fuzzy logics).

Theorem 1.2.33 ([BP14], p. 2). Let Q be a commutative integral quantale and x, y, z P Q

with i P I. Then:

1. x ď y if and only if pxÑ yq “ 1.

2. x ¨ pxÑ yq ď y.

3. p1Ñ yq “ y

4. 0 “ x ¨ 0 “ 0 ¨ x.

5. p0Ñ yq “ 1

6. If x ď y, then x ¨ z ď y ¨ z.

7. x ¨ y ď x^ y.

8. If x ď y, then y Ñ z ď xÑ z.

9. If x ď y, then z Ñ x ď z Ñ y.

10. px ¨ yq Ñ z “ xÑ py Ñ zq.

Definition 1.2.34. Let Q be a commutative integral quantale and x, y P Q. We define
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1. „ x :“ xÑ 0 (negation),

2. x ” y :“ pxÑ yq ¨ py Ñ xq (equivalence),

3. x0 “ 1 and xn`1 “ x ¨ xn for x P N (exponentiation).

Remark 1.2.35. Throughout this document, we make a distinction between the negation

(equivalence) in a quantale, denoted by „ (”), and the negation (equivalence) in a Heyting

algebra, denoted by ␣ (Ø).

Theorem 1.2.36 (cf. [RS63], Chapter IV., 7.2). Let Q be a commutative integral quantale

and x, y, yi, xi P Q with i P I. Then:

1. x ¨
ˆ

Ź

iPI

yi

˙

ď
Ź

iPI

px ¨ yiq

2. xÑ
ˆ

Ź

iPI

yi

˙

“
Ź

iPI

pxÑ yiq.

3.
ˆ

Ž

iPI

xi

˙

Ñ y “
Ź

iPI

pxi Ñ yq.

4. „
ˆ

Ž

iPI

xi

˙

“
Ź

iPI

p„ xiq.

Proof. 1. Notice that
Ź

iPI

yi ď yi for all i P I. Then, by Theorem 1.2.33 item 6., we can

deduce that

x ¨
Ź

iPI

yi ď x ¨ yi.

Therefore, by definition of infimum, x ¨
ˆ

Ź

iPI

yi

˙

ď
Ź

iPI

px ¨ yiq.

2. Similarly as in the last item,
Ź

iPI

yi ď yi for all i P I. Then, by Theorem 1.2.33 item 9.,

we have
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xÑ
Ź

iPI

yi ď xÑ yi.

That is, x Ñ
ˆ

Ź

iPI

yi

˙

is an upper bound of tx Ñ yi : i P Iu. To see that it is the

biggest upper bound, take z P Q such that

z ď xÑ yi for every i P I.

Then, since xÑ _ is a right adjoint of x ¨_,

x ¨ z ď yi for every i P I.

Therefore, by definition of infimum x ¨ z ď
Ź

iPI

yi and since x Ñ _ is a right adjoint of

x ¨_, we can conclude that

z ď xÑ

ˆ

Ź

iPI

yi

˙

3. It is proved similarly as the previous item.

4. It is a consequence of the previous item, when y “ 0.

Theorem 1.2.37 ([BP14], p. 2). Let Q “ pQ,^,_, ¨,Ñ, 1, 0q be a commutative integral

quantale and let x, y, yi, xi P Q for i P I. Then:

1. x ¨ p„ xq “ 0, but in general it is not true that x_ „ x “ 1.

2. x ď p„„ xq, but in general it is not true that „„ x ď x.

3. „ px _ yq “ p„ xq ¨ p„ yq (De Morgan’s Law), but it is not generally true that

„ px ¨ yq “ p„ xq _ p„ yq.

4. If x ď y, then p„ yq ď p„ xq and p„„ xq ď p„„ yq.
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5. „ 0 “ 1 and „ 1 “ 0.

6. x “ y if and only if px ” yq “ 1.

7. p„„ xq ¨ p„„ yq ď p„„ px ¨ yqq.

8. „„„ x “„ x.

If we consider a commutative integral quantale that is also idempotent, then the structure

collapses to a Heyting algebra. For this reason, we are interested in studying commutative

integral quantale that are not necessarily idempotent.

Theorem 1.2.38 (Folklore). If Q is a commutative idempotent integral quantale, then Q

is a Heyting algebra, where x ¨ y “ x^ y for all x, y P Q.

Proof. By Theorem 1.2.33 item 7., we have that x ¨ y ď x ^ y. To see the other inequality,

notice that x^ y ď x and x^ y ď y. Therefore, since ¨ is idempotent,

x^ y “ px^ yq ¨ px^ yq ď x ¨ y

and we can conclude that x ¨ y “ x^ y.

Theorem 1.2.39. Let Q “ pQ,^,_, ¨,Ñ, 1, 0q be a commutative integral. Then, if x, y P

t0, 1u,

1. xÑ y P t0, 1u

2. x^ y P t0, 1u

3. x_ y P t0, 1u
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4. x ¨ y P t0, 1u

5. „ x P t0, 1u.

Proof. 1. By Theorem 1.2.33 items 3. and 4., p0 Ñ yq “ 1 and p1 Ñ yq “ y for all

y P t0, 1u, and this implies that xÑ y P t0, 1u for all x, y P t0, 1u.

2. Since 0 is the minimum and 1 the maximum of Q, we have x^ y “ 1 if x “ y “ 1 and

x^ y “ 0 if any of them is equal to 0.

3. It is proved in a similar way as the previous item.

4. Since 1 is the module of the monoid (Q, ¨, 1), we have x ¨ 1 “ 1 ¨x “ x for all x P t0, 1u,

but on the other hand, by Theorem 1.2.33 6., we have x ¨0 “ 0 ¨x “ 0 for all x P t0, 1u.

The above implies that x ¨ y P t0, 1u for all x, y P t0, 1u.

5. By Theorem 1.2.37 5., we have „ 0 “ 1 and „ 1 “ 0, which implies that „ x P t0, 1u

for all x, y P t0, 1u.

Corollary 1.2.40. If Q “ pQ,^,_, ¨,Ñ, 1, 0q is a commutative integral quantale, then

t0, 1u Ď Q is a Boolean algebra with the operations inherited from Q and x ¨ y “ x ^ y for

all x, y P t0, 1u.

1.2.4 Filters and nuclei on quantales

Throughout this subsection, Q denotes a commutative integral quantale. The goal of

this subsection is to generalize the results of Subsection 1.2.13 in the context of commutative
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integral quantale. That is, we use filters on quantales to construct new quantales (or even

Heyting algebras or Boolean algebras) related to the original in some crucial ways. These

applications will be studied in subsection 3.2.2

Definition 1.2.41 ([BP14], Definition 2). A nonempty subset F of Q is said to be a filter

if for every x, y P Q

1. If x ď y and x P F , then y P F .

2. If x, y P F , then x ¨ y P F .

A filter F is called proper if F ­“ Q, that is, if 0 R F .

Notice that if Q is a Heyting algebra, this definition coincides with Definition 1.2.13.

Consider a filter F on Q. The relation «F defined on Q by

x «F y if and only if xÑ y and y Ñ x P F

is an equivalence relation on Q.

Definition 1.2.42 ([BP14], pp. 2 and 3). The quotient algebra Q{«F , denoted by Q{F ,

becomes a complete residuated lattice in a natural way, with the operations induced from

those of Q. For x P Q, we denote by |x| :“ |x|F the congruence class of x modulo «F . The

order relation on Q{F is defined by

|x| ď |y|, if and only if, xÑ y P F

and the following equalities hold:
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|A| ^ |B| “ |A^B|,

|A| _ |B| “ |A_B|,

|A| Ñ |B| “ |AÑ B|,

| „ A| “„ |A|.

But with respect to quantic nucleus, our goal is to capture, as best as we can, all the

properties of the double negation ␣␣ so that we can replicate Fitting’s results [Fit69] in the

context of residuated logics.

Definition 1.2.43 ([Ros90], Definition 3.1.1). We say that a closure operator γ : QÑ Q is

a quantic nucleus if for every x P Q

γpxq ¨ γpyq ď γpx ¨ yq

Lemma 1.2.44 ([Ros90], p. 29). If γ : QÑ Q is a quantic nucleus, then for every x, y P Q

γpx ¨ yq “ γpγpxq ¨ γpyqq “ γpγpxq ¨ yq “ γpx ¨ γpyqq

Lemma 1.2.45. [[Ros90], Proposition 3.1.1] A function γ : Q Ñ Q is a quantic nucleus, if

and only if, for every x, y P Q, γpxq Ñ γpyq “ xÑ γpyq.

Theorem 1.2.46 ([Ros90], Theorem 3.1.1 + Lemma 3.2.1 + Lemma 3.2.2 ). Let γ : QÑ Q

be a quantic nucleus on Q. The set of fixed points of γ

Qγ :“ tx P Q : γpxq “ xu

is a commutative integral quantale with the order inherited from Q and the product

x ¨γ y “ γpx ¨ yq.
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Furthermore, if
γ

Ž

and
γ

Ź

represent the supremums and infimums calculated in Qγ, respec-

tively, then for every xi P Qγ with i P I

γ
Ž

iPI

xi “ γ

ˆ

Ž

iPI

xi

˙

γ
Ź

iPI

xi “
Ź

iPI

xi

Corollary 1.2.47 ([Ros90], Chapter 3, Section 1, Corollary 1). If γ : Q Ñ Q is a quantic

nucleus, then for every x, y P Q

γpxÑ yq ď xÑ γpyq “ γpxq Ñ γpyq

Theorem 1.2.48 ([Ros90], Proposition 3.1.2). If A Ď Q, then A “ Qγ for some quantic

nucleus γ if and only if A is closed under infimums and if x P Q and y P A, then xÑ y P A.

Example 1.2.49. By Theorem 1.2.37 items 2., 4., 7. and 8., it is clear that the operator

„„ is a quantic nucleus on a Q. Furthermore, by Lemma 1.2.45 and Theorem 1.2.48, we

have that

xÑ„„ y “„„ xÑ„„ y and „„ p„„ xÑ„„ yq “„„ xÑ„„ y

Definition 1.2.50. We say that a quantic nucleus γ : QÑ Q respects implications if

γpxÑ yq “ 1 if and only if γpxq Ñ γpyq “ 1

Notice that by Lemma 1.2.45, this condition is equivalent to

γpxÑ yq “ 1 if and only if xÑ γpyq “ 1

Lemma 1.2.51 (cf. [Fit69] Lemma 5.3). Let γ : QÑ Q be a quantic nucleus that respects

implications. For every xi, y P Q, with i P I,
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γp
Ź

iPI

pxi Ñ yqq “ 1 if and only if
Ź

iPI

γpxi Ñ yq “ 1

Proof. Notice that, since γ respects implications,

1 “ γp
Ź

iPI

pxi Ñ yqq “ γpp
Ž

iPI

xiq Ñ yq

holds, if and only if

1 “ p
Ž

iPI

xiq Ñ γpyq holds.

But then, since γ respects implications, the line given above is equivalent to

1 “ γpp
Ž

iPI

xiq Ñ yq “
Ź

iPI

pxi Ñ γpyqq.

Thus, by definition of infimum, the line given above holds, if and only if,

xi Ñ γpyq “ 1 for every i P I

and since γ respects implications, that is equivalent to

γpxi Ñ yq “ 1 for every i P I.

which is just

Ź

iPI

γpxi Ñ yq “ 1

Definition 1.2.52 ([Ros90], Definition 3.2.4.). We say that a quantic nucleus γ : QÑ Q is

idempotent with respect to products if for every x P Q

γpx2q “ γpxq

Theorem 1.2.53 (cf. [Ros90], Lemma 3.2.4.). If γ is a quantic nucleus that is idempotent

with respect to products, then for every x, y P Q
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γpx ¨ yq “ γpxq ^ γpyq.

We call a quantic nucleus that satisfies the property above localic.

Proof. Since x ¨ y ď x ¨ 1 “ x, we have γpx ¨ yq ď γpxq. In a similar way we prove that

γpx ¨ yq ď γpyq and therefore γpx ¨ yq is a lower bound of tγpxq, γpyqu.

To see that it is the greatest lower bound, take c P Q lower bound of tγpxq, γpyqu that is

c ď γpxq and c ď γpyq

Therefore

c2 ď γpxq ¨ γpyq

and so

c ď γpcq (γ is expansive)

“ γpc2q (γ is idempotent with respect to products)

ď γpγpxq ¨ γpyqq (γ is monotone)

“ γpx ¨ yq (by Theorem 1.2.44)

Theorem 1.2.54 ([Ros90], Lemma 3.2.3). Let γ : QÑ Q be a quantic nucleus idempotent

with respect to products on Q. Then, Qγ “ tx P Q : γpxq “ xu is a idempotent commutative

integral quantale, that is, by Theorem 1.2.38, Qγ is a Heyting algebra.

Definition 1.2.55. We say that a quantic nucleus γ : QÑ Q respects the bottom element if
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γp0q “ 0.

Lemma 1.2.56. Let γ : Q Ñ Q be a quantic nucleus that respects the bottom element.

Then,

„„ γpxq “„„ pγp„„ γpxqq,

that is, „„ γ is idempotent.

Proof. Notice that γp0q “ 0 P Qγ and by Theorem 1.2.48, we can deduce that for every

x P Q, xÑ 0 “„ x P Qγ and thus „„ x P Qγ, that is,

γp„„ xq “„„ x.

Therefore,

„„ pγp„„ γpxqq “„„ p„„ γpxqq “„„ γpxq.

Definition 1.2.57. We say that a quantic nucleus γ : QÑ Q is standard if γ is idempotent

with respect to products, respects implications and the bottom element.

We introduce the new notion of standard quantic nucleus since it captures all the neces-

sary properties from the double negation operator that are used in Chapter 3 to generalize

Fitting’s results.

Theorem 1.2.58. Let γ : QÑ Q be a quantic nucleus on Q. The set

Fγ :“ tx P Q : γpxq “ 1u

is a filter on Q.
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Proof. 1. Since γ is expansive, 1 ď γp1q, and then 1 P Fγ

2. Take x P Fγ and y P Q such that x ď y. Since γ is monotone function, γpxq ď γpyq

and since x P Fγ, γpxq “ 1. Then, γpyq “ 1 and y P Fγ.

3. Take x, y P Fγ, that is, γpxq “ γpyq “ 1. Then, since γ is a nucleus, γpx ¨ yq ě

γpxq ¨ γpyq “ 1 ¨ 1 “ 1, that is, x ¨ y P Fγ.

For the rest of the section, |x| denotes the class of x P Q modulo «Fγ .

Theorem 1.2.59. Let γ be a quantic nucleus that respects implications and take x, y P Q.

Then, x «Fγ y if and only if γpxq “ γpyq.

Proof.

|x| “ |y| iff xÑ y P Fγ and y Ñ x P Fγ (by definition of «Fγ )

iff γpxÑ yq “ 1 “ γpy Ñ xq (by definition of Fγ)

iff γpxq Ñ γpyq “ 1 “ γpyq Ñ γpxq (γ respects implications)

iff γpxq ď γpyq and γpyq ď γpxq (by Theorem 1.2.33 item 1.)

iff γpxq “ γpyq

Corollary 1.2.60. If γ is a quantic nucleus that respects implications and x P Q,

|γpxq| “ |x|.
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Theorem 1.2.61. Let γ be a quantic nucleus idempotent with respects to products that

respects implications. Then, Q{Fγ is a Heyting algebra.

Proof. By Theorems 1.2.42 and 1.2.58, we know that Q{Fγ is a complete residuated lattice.

By Theorem 1.2.38, is enough to prove that the product in Q{Fγ is idempotent. If |x| P Q{Fγ,

then

|x| ¨ |x| “ |x ¨ x| (by definition of ¨ on Q{Fγq

“ |γpx ¨ xq| (by Corollary 1.2.60q

“ |γpxq| (since γ is idempotent with respect to productsq

“ |x| (by Corollary 1.2.60q

Theorem 1.2.62 (cf. [Fit69], Theorem 5.4). Let γ be a quantic nucleus on Q that respects

implications. For every xi P Q with i P I, we have that

|
Ž

iPI

xi| “
Ž

iPI

|xi|

Proof. For every i P I, xi ď
Ž

iPI

xi. Thus,

xi Ñ
Ž

iPI

xi “ 1,

therefore,

γpxi Ñ
Ž

iPI

xiq “ 1,

and by definition of ď we deduce that |xi| ď |
Ž

iPI

xi|. Thus, |
Ž

iPI

xi| is an upper bound of

t|xi| : i P Iu.
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To see that it is the smallest upper bound, take |b| P Q{Fγ an upper bound of t|xi| : i P Iu,

that is,

|xi| ď |b| for every i P I,

that implies, by definition of ď on Q{Fγ,

γpxi Ñ bq “ 1 for every i P I.

Therefore,

Ź

iPI

pγpxi Ñ bqq “ 1,

then, by Lemma 1.2.51

γp
Ź

iPI

pxi Ñ bqq “ 1,

hence, by Theorem 1.2.36 item 3,

γpp
Ž

iPI

xiq Ñ bq “ 1,

thus, by definition of ď,

|
Ž

iPI

xi| ď |b|

1.3 Substructural logics

Substructural logics are non-classical logics weaker than Classical Logic, notable for the

absence of structural rules present in Intuitionistic Logic when formulated as Gentzen-

style systems (we will not go over this kind of systems in this work, for an introduction to
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this topic see [Ono03] or [GJKO07]), such as weakening, contraction, exchange, commuta-

tivity or associativity. Substructural logics include, among other logics, Fuzzy Logics and

Intuitionistic Logics.

1.3.1 Intuitionistic Logic

Intuitionistic Logic is a product of Brouwer’s project of intuitionistic mathematics, whose

systematic formalization was started by Brouwer’s student, Arend Heyting, in 1928. One

can understand this logic as an attempt to formalize the notion of constructive proofs, so

the axioms of Classical Logic such as the principle of excluded middle, double negation

elimination and the Axiom of Choice are not valid.

Intuitionistic Logic is a weakening of Classical Logic where one of the following logical axioms

is not valid:

1. LEM (law of excluded middle) φ_␣φ

2. LDN (law of double negation) ␣␣φÑ φ

These axioms are intuitionistically equivalent and if we added one of these axioms to the

axioms of propositional Intuitionistic Logic, we would obtain an axiomatization of Proposi-

tional Classical Logic.

We will not provide an axiomatization of this logic, but one can be found in [vD04] Section

1.4 by eliminating the rule reductio ad absurdum (RAA) from the rules of Classical Logic

(see also [vD04], section 5.2 “Intuitionistic Propositional and Predicate Logic”).

Remark 1.3.1. To avoid any confusion, we denote by $ deductions made by using the

axioms and inference rules of Classical Logic and $i for Intuitionistic Logic.
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In terms of lattices, we have that there is a fundamental relation with Heyting algebras and

Intuitionistic Logic, as we can see in the following example:

Example 1.3.2 (Lindenbaum-Tarski algebra). Let us consider a consistent theory T in an

Intuitionistic first-order language L and consider the equivalence relation « on the set of

L-formulas by φ « ψ if and only if T $i φ Ø ψ. Let HpT q be the set of equivalence

classes of L-formulas and consider the relation ď on HpT q given by rφs ď rψs if and only if

T $i φÑ ψ. Then, pHpT q,ďq is a Heyting algebra. In this sense, Heyting algebras are the

natural algebraic models for Intuitionistic Logic.

Since Intuitionistic Logic is a weakening of Classical Logic, we have that every formula that

can be deduced in Intuitionistic Logic is also deducible in Classical Logic, that is

if $i φ, then $ φ.

The opposite implication is not true in general. But we do have a crucial connection from

Classical Logic into Intuitionistic Logic via the double negation operator.

Theorem 1.3.3 (Glivenko’s theorem, [vD04], Theorem 5.2.10). If φ is a propositional for-

mula, then

$ φ if and only if $i ␣␣φ

Theorem 1.3.4 ([vD04], Theorem 5.2.6). If φ does not contain _ or D and all atoms but

K in φ are negated, then

$i φØ ␣␣φ
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Furthermore, Gödel and Gentzen proved that by reinterpreting the classical disjunction and

existence quantifier, we can embed Classical Logic into Intuitionistic Logic.

Definition 1.3.5 (Gödel-Gentzen translation). Given a formula φ, we define its Gödel-

Gentzen translation φG as follows:

1. φG :“ ␣␣φ if φ is an atomic formula.

2. pφ^ ψqG :“ φG ^ ψG

3. pφ_ ψqG :“ ␣p␣φG ^␣ψGq

4. pφÑ ψqG :“ φG Ñ ψG

5. p␣φqG :“ ␣pφGq

6. p@xφpxqqG :“ @xpφGpxqq

7. pDxφpxqqG :“ ␣@xp␣φGpxqq

There exists another translation that makes the use of the double negation operator even

more explicit.

Definition 1.3.6 (Gödel-Kolmogorov translation). Given a formula φ, we define its Gödel-

Kolmogorov translation φGK as follows:

1. φGK :“ ␣␣φ if φ is an atomic formula.

2. pφ^ ψqGK :“ ␣␣pφGK ^ ψGKq

3. pφ_ ψqGK :“ ␣␣pφGK _ ψGKq
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4. pφÑ ψqGK :“ ␣␣pφGK Ñ ψGKq

5. p␣φqGK :“ ␣␣p␣pφGKqq

6. p@xφpxqqGK :“ ␣␣@xpφGKpxqq

7. pDxφpxqqGK :“ ␣␣DxpφGKpxqq

It is clear from these definitions that, classically speaking, the formulas φ, φG and φGK are

all logically equivalent. Intuitionistically though, only φG and φGK are logically equivalent,

and only in some cases we have that φ is equivalent to φG and φGK , as we see in the following

theorem.

Lemma 1.3.7 ([BN04], Lemma 0.9 and 0.10.). 1. $i φ
G if and only if $ φ.

2. $i φ
G Ø φGK .

3. If every @ in φ is followed by an ␣, then

$i φ
GK Ø ␣␣φ

4. If φ1 is the formula obtained from φ by replacing every occurrence of @ by ␣D␣, then

$i φ
GK Ø φ1

The last item is key, since in Subsection 3.2.1 we see how Fitting (see Corollary 3.2.12) essen-

tially uses this fact to find a translation between intuitionistic Kripke models and Boolean

valued models.
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1.3.2 Modal Logics

The language of Classical Modal Logic has the same symbols as Classical Logic together

with a unary connective of necessity l. The formulas are constructed by recursion in the

same way as formulas in Classical Logic, but now we have that if φ is a formula, lφ is

also a formula and we call them Modal formulas. We define the symbol of possibility as

♢φ :“ ␣l␣φ. In most modern presentations of Modal Logic, one takes the axioms as

Classical Logic and augments them with some axioms that involve the operator of necessity

and possibility. Some of those axioms are:

1. N : If φ is a theorem, then lφ is likewise a theorem, that is, if $ φ, then $ lφ

2. T : lφÑ φ,

3. K: lpφÑ ψq ñ plφÑ lψq

4. 4: lφñ llφ

5. 5: ♢φñ l♢φ.

If we add the axioms N, T,K, 4 to Classical Logic we obtain the (Classical) Modal Logic S4

and if we add N, T,K, 5 we obtain the (Classical) Modal Logic S5. We use the symbols $S4

and $S5 to denote deductions made in the systems S4 and S5, respectively.

Similarly as the translation between Classical and Intuitionistic Logic via the double negation

operator, one can find a suitable translation between Intuitionistic (Classical) Logic and the

Modal Logic S4 (S5).
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Definition 1.3.8 (Gödel–McKinsey–Tarski translation). Given a propositional Intuitionistic

formula α, we can define its Gödel–McKinsey–Tarski translation αGMT as follows:

1. pGMT “ lp if p is a propositional variable.

2. KGMT “ K.

3. pα ^ βqGMT “ αGMT ^ βGMT

4. pα _ βqGMT “ αGMT ^ βGMT

5. pαÑ βqGMT “ lpαGMT Ñ βGMT q

6. p␣αqGMT “ lp␣pαGMT qq

Theorem 1.3.9 ([WZ14], p. 3). An Intuitionistic formula α is derivable in Intuitionistic

Propositional Logic if and only if αGMT is derivable in the (Classical) Modal Logic S4, that

is,

$i α if and only if $S4 α
GMT .

Theorem 1.3.10 ([WZ14], p. 3). A classical formula α is derivable in Classical Propositional

Logic if and only if αGMT is derivable in the (Classical) Modal Logic S5, that is,

$ α if and only if $S5 α
GMT .

1.3.3 Fuzzy Logic

Fuzzy Logics seek to capture imprecise, vague concepts, or situations where we have non-

numeric or partial information. We have that the propositions in these logics are true to a
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certain degree, varying from totally false to totally true, with a continuum of intermediate

values.

The first examples of Fuzzy Logics were studied by Łukasiewicz and Tarski in the 1920s,

in their study of multivalued logics, but it was not until Lotfi Zadeh’s work on Fuzzy Set

Theory [Zad65] that Fuzzy Logics were really born as we know them today. In Zadeh’s work,

the set t0, 1u in the definition of the characteristic function was replaced by the interval of

real numbers r0, 1s and the properties of the resulting sets, called fuzzy sets, that is, sets in

which the membership takes as truth values real numbers in the interval r0, 1s. Similarly, in

later work on Fuzzy Logics, the idea of taking the additionally structured lattice r0, 1s as a

set of truth values for propositions in logic was continued. For a detailed historical treatment

of Fuzzy Logics see [BDK17].

Basic Fuzzy Logic (BL) is a multivalued logic introduced by Petr Hájek in [Háj98a] and

developed in [Háj98b]. This system seeks to capture the logic of continuous t-norms and

their adjoints in order to capture the most important examples in the field of fuzzy logics

up to that time: the logic of Łukasiewicz, Gödel, and product.

On the other hand, Monoidal t-norm Based Logic (MTL) was introduced in [EG01] in

order to capture the logic of left-continuous t-norms. The distinction between left continuous

and continuous is crucial, since left continuity is the necessary and sufficient condition for

the existence of an adjunction for the t-norm, and it is this adjunction that allows us to
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define the implication in the logic. MTL is weaker than the BL and stronger than the

Residuated Logic (or Höhle’s Monoidal Logic) and seeks to connect to the previous

logics to create a more compressible map of the Fuzzy Logics.

1.3.4 Residuated Logic (Monoidal Logic)

This logic was introduced by Ulrich Höhle [Höh94] under the name Monoidal Logic in order

to present a general framework for the study of Fuzzy Logics based on t-norms, Intuitionistic

Logic and Girard’s Linear Logic. In his article, Höhle considers residuated integral commu-

tative 1-monoids (i.e. complete residuated lattices in our terms) as a set of truth values of

his logic, presents a completeness and soundness theorem, and shows some interactions of it

with the other logics mentioned.

Throughout this work, we will call Höhle’s Monoidal Logic as Residuated Logic, following

Lano’s notation [Lan92a] in his study of Residuated Logic and fuzzy sets, where this logic is

studied in its modal variant and is applied in the context of set-theoretic models valued on

residuated lattices.

Definition 1.3.11 (Logical symbols for the propositional case, [Lan92a]). The fundamental

difference between Classical (or Intuitionistic) Logic and Fuzzy (or Residuated) Logic is that

we consider different basic logical symbols, namely, in Residuated Logic, we consider two

types of conjunction, a weak conjunction (^) and a strong conjunction (&). With

that in mind, the basic symbols for the propositional case are the following:
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1. A countable set of propositional variables V ar “ tpi : i P ωu,

2. Strong conjunction & (binary),

3. Implication Ñ (binary),

4. Weak conjunction ^ (binary),

5. Contradiction K (constant),

6. Disjunction _ (binary),

and the following symbols that are definable, using the previous ones:

1. Equivalence φ ” ψ :“ pφÑ ψq&pψ Ñ φq,

2. Negation „ φ :“ φÑ K,

3. Tautology J :“„ K.

Definition 1.3.12 (Propositional formulas, [Lan92a]). The construction of propositional

formulas is done by recursion on a manner analogous to how it is done in Classical Propo-

sitional Logic. To differentiate these formulas from formulas in Classical (or Intuitionistic)

Logic, we call them Residuated (Propositional) formulas, or R-formulas for short.

Definition 1.3.13 (Axioms of Residuated Propositional Logic, [Lan92a], pp. 203 and 204).

Let α, β, γ, δ be propositional R-formulas. The axioms of Propositional Residuated Logic

are:

1. pα&βq Ñ α.
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2. pα&βq Ñ pβ&αq, ppα&βq&γq Ñ pα&pβ&αqq.

3. ppα&βq Ñ pα&γqq Ñ pα&pβ&γqq.

4. ppαÑ βq&pβ Ñ γqq Ñ pαÑ γq.

5. β Ñ pαÑ βq.

6. pα&pαÑ βqq Ñ β.

7. αÑ pα _ βq

8. pα _ βq Ñ pβ _ αq, ppα _ βq _ γq Ñ pα _ pβ _ γqq.

9. ppαÑ γq&pβ Ñ γqq Ñ ppα _ βq Ñ γq.

10. ␣αÑ pαÑ βq.

11. αÑ pβ Ñ pα&βqq.

12. pα&pβ _ γqq Ñ ppα&γq _ pα&γqq.

13. ppα&βq Ñ γq ” pαÑ pβ Ñ γqq.

14. pαÑ βq&pγ Ñ δq Ñ ppα&γq Ñ pβ&δqq.

15. pβ Ñ pβ&␣βqq Ñ ␣β.

The inference rule used is Modus Ponens.

Definition 1.3.14 (Axioms for the weak conjunction ^, [Lan92a], p. 205). The following

are the axioms for the weak conjunction ^:
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1. pα&βq Ñ pα ^ βq.

2. pαÑ βq ^ pαÑ γq Ñ pαÑ pβ ^ γqq.

3. pαÑ βq ^ pγ Ñ βq Ñ ppα _ γq Ñ δq.

4. ^ is commutative and associative.

5. pαÑ βq Ñ ppα ^ γq Ñ pβ ^ γqq.

6. pα ^ βq Ñ α.

Remark 1.3.15 ([Lan92a], p. 203). If we add the axiom

αÑ pα&αq for all α R-formulas,

to the axioms of Propositional Residuated Logic, we would obtain an axiomatization for

Propositional Intuitionistic Logic.

Definition 1.3.16 ([Lan92a], p. 204). Just as in Classical Logic, we can add the quantifiers

@ and D to construct the set of predicate formulas in a given (Classical first-order) language

L and we call them Residuated L-formulas or R ´ L-formulas, for short. Let φ and ψ be

R ´ L-formulas. The axioms of Residuated Predicate Logic are as follows:

1. @xpφÑ ψq Ñ p@xφÑ @xψq.

2. pσ “ τ&φpσqq Ñ φpτq, where φ is atomic and there is at most one occurrence of x in

φ.

3. DxpφÑ ψq Ñ p@xφÑ Dxψq.
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4. @xpφÑ ψq Ñ pDxφÑ Dxψq.

5. pDxφÑ @xψq Ñ @xpφÑ ψq.

6. φÑ @xφ, with non-free x in φ.

7. Dxpσ “ xq, with x not occurring in σ.

8. @xφÑ φpσ{xq, with σ free for x in φ.

9. DxφÑ φ, with non-free x in φ.

10. “ is an equivalence relation.

11. φpσ{xq Ñ Dxφ, with σ free for x in φ.

12. Dxpφ&αq Ñ ppDxφq&αq, with non-free x in α.

We consider the usual (classical) rules of inference for the introduction of @ and D.

Definition 1.3.17. We say that T is an R ´ L-theory is T is a set of R ´ L-sentences.

We say that φ is an R-logical consequence of T , denoted by T $r φ, if there exists a deduction

from T of φ that uses the axioms and deduction rules given above.

1.3.5 t-norm Logics

By t-norm Logics we mean any logic whose semantic counterpart is based on some t-norm

over the interval r0, 1s. Since we want to ensure the existence of an adjoint Ñ of the product

¨, we require different forms of distributivity of the product with respect to arbitrary joins

(see Theorem 1.2.5). The most important examples of this kind of logics are:
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1. Monoidal t-norm based Logic pMTLq : This is the logic associated with left-continuous

t-norms (see Definition 1.2.30), that is, the logic where the truth take values in r0, 1s,

endowed of lattice structure with its usual order, a left-continuous t-norm. An ax-

iomatization of MTL can be obtained by taking the axioms of Residuated Logic and

adding the axiom scheme of prelinearity (Lin):

pφÑ ψq _ pψ Ñ φq.

2. Basic Fuzzy Logic pBLq: This is the logic associated with the continuous t-norms

(see Definition 1.2.30). An axiomatization of the logic BL can be obtained by taking

the axioms of MTL and adding the axiom scheme of divisibility (Div):

pφ^ ψq Ñ pφ&pφÑ ψqq.

3. Łukasiewicz Logic: This is a continuum-many valued generalization of the n-valued

Łukasiewicz Logic (see Example 1.2.31). An axiomatization of the Łukasiewicz Logic

can be obtained by taking the axioms of BL and adding the axiom of double negation

(Inv)

p␣␣φq Ñ φ.

4. Product Logic: This is the logic associated to the usual product of R. An axiomatiza-

tion of the Product Logic can be obtained by taking the axioms of BL and adding the

axiom scheme of weak contraction (Weak-Con)

pφ^␣φq Ñ K.

and the axiom scheme Π1
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p␣␣φq&pppφ&ψq Ñ pφ&χqq Ñ pψ Ñ χqq.

5. Gödel-Dummett Logic: In 1932, Gödel [Göd32] introduces a family of n-valued logics

in his study of Intuitionistic Logic. Gödel shows that there is no finite structure of

truth values suitable for Heyting’s axiomatization of Intuitionistic Logic such that one

has a completeness-soundness theorem. That is, there might be n-valued models of

intuitionistic logic, but these models will not capture all the tautologies of this logic.

Continuing Gödel’s work, Dummett [Dum59] proposes a generalization of Gödel’s Logic

that considers an infinite set of truth values. Dummett presents two logics, one that

has a countable set of truth values and one that has a continuum of truth values, and

then shows that the tautologies of both logics coincide. We focus on studying Gödel’s

Logic for the case where the set of truth values is the interval r0, 1s (see Example

1.2.31).

An axiomatization of the Gödel-Dummett Logic can be obtained by taking the axioms

of BL and adding the axiom scheme of contraction (Con)

φÑ pφ&φq.

Or equivalently, taking the axioms of Intuitionistic Logic and adding to them the axiom

of prelinearity (Lin)

pφÑ ψq _ pψ Ñ φq.
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1.3.6 Modal Residuated Logic.

The language of Modal Residuated Logic has the same symbols as Residuated Logic together

with an unary connective of possibility ♢. The idea is to interpret some quantic nucleus

as the possibility operator when we deal with the semantics. The formulas in a given first-

order language L are constructed by recursion in the same way as for the residuated case

and we call them formulas Modal Residuated L-formulas, or MR ´ L-formulas, for short.

These formulas satisfy the same axioms as Residuated Logic does, but we need to add new

axiom schemes for the possibility operator. We do not have an axiomatization for the logic

of “complete residuated lattices with a quantic nucleus” (i.e. Modal Residuated Logic). Some

basic axioms schemes that are valid in the logic that we would like to axiomatize are

1. φÑ ♢φ

2. ♢♢φÑ ♢φ

3. ♢pφÑ ψq Ñ p♢φÑ ♢ψq

4. ♢φ&♢ψ Ñ ♢pφ&ψq.

We will focus only on the semantical aspect of this logic; hence we will not prove a Soundness

and Completeness Theorem for this logic.



2 Constructions over valued models

Valued models substitute the standard set of logical values t0, 1u of Classical Logic for

different lattices that carry with them logical properties via their algebraic properties.

It is known that it is enough to consider the trivial Boolean algebra t0, 1u to represent the

truth values of Classical Logic, so it is not required to study B-valued models for a every

Boolean algebra B to understand Classical Logic, we just need to focus on the two-valued

case.

On the other hand, Gödel proved that Intuitionistic Propositional Logic cannot be repre-

sented as a finite many-valued logic [Göd32]. Since it is not so easy to represent Intuitionistic

Logic via an infinite many-valued logic, it has been a common practice to study Intuitionistic

Logic via Heyting valued models or Kripke models.

In this chapter, we focus on the study of valued models in different lattices and in construc-

tions that generalize von Neumann’s and Gödel’s hierarchy in these models.

First, in Section 2.1, we expose an overview of lattice-valued models. As set of truth values,

we consider Boolean algebras, Heyting algebras and commutative integral quantales with

and without a quantic nucleus, and then we show how sentences in their respective logics
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are interpreted.

Then, in Section 2.2 we construct set-theoretic lattice-valued models and discuss some essen-

tial facts about them. We focus on the proofs for some of the properties of quantale-valued

models of Set Theory for the following reason: Even though it is well known that these

models are quantale-valued models in the sense of Definition 2.1.8, there is no, as far as we

are aware, proof in the literature that justifies this fact, thus we will prove this in Theorem

2.2.31.

Lastly, in the context of valued models, we adapt Fitting’s idea [Fit69], where, as motiva-

tion for his definition of class of constructable sets using Kripke models, he showed how to

construct L (or more precisely a model “isomorphic” to L) using two-valued characteristic

functions that are definable by some formula.

We propose new definitions of the notion of definable subset within a Boolean-valued

model of Set Theory, and with these notions, we propose two new constructions of the

constructable universe: LB and LB. Moreover, we prove that these models are, in fact, two-

valued, since our definition of definable is too restrictive and forces the models to only take

these values. Furthermore, we prove that LB and LB are “isomorphic” to V (von Neumann

universe) and L (Gödel’s constructible universe), respectively.

Then, we discuss the problem of trying to generalize these notions of definability to the

context of quantale-valued models. We found that the resulting classes of constructable

models are also two valued, and therefore are not suitable to study Residuated Logic.

Hence, in the next chapter, we instead focus on developing the notion of constructable

sets in the realm of Kripke models, where these kind of problems are avoided and the
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constructions seem more promising.

2.1 Preliminaries of valued models

Valued models are a natural and simple way to find a semantical interpretation for vari-

ous logics, as long as one can find a lattice (or some other algebraic or ordered structure)

associated to them.

2.1.1 Boolean models

As mentioned before, by the completeness theorem of first-order logic, one only really needs

two truth values to understand Classical Logic semantically. Regardless, we will study

Boolean models, since it was here where von Neumann’s hierarchy was first generalized [SS67]

and also, since we are interested in generalizing Gödel’s constructions for these lattice-valued

models.

For the rest of the chapter, let L denote a first-order language.

Definition 2.1.1. Given a complete Boolean algebra B “ pB,ď,_,^, 0, 1,␣q, we say that

a B-valued L-structure M consists of:

1. A non-empty class M .

2. A function v¨ “ ¨wMB :M2 Ñ B, which we call equality, such that for all f, g, h PM :

a. Reflexivity: vf “ fwMB “ 1.

b. Symmetry: vf “ gwMB “ vg “ fwMB .

c. Transitivity vf “ gwMB ^ vg “ hwMB ď vf “ hwMB .
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3. For each n´ary relational symbol R P L, a function RM :Mn Ñ B such that for every

gi, fi PM with i “ 1, ..., n

n
Ź

i“1

vfi “ giw
M
B ^RMpf1, ..., fnq ď RMpg1, ..., gnq.

4. For each m-ary function symbol f P L, a function fM :Mm ÑM such that for every

gi, fi PM with i “ 1, ...,m,

m
Ź

i“1

vfi “ giw
M
B ď vfMpf1, ..., fmq “ fMpg1, ..., gmqw

M
B .

5. For each constant symbol c P L, an element in the universe cM PM .

Definition 2.1.2. Let M be a B-valued L-structure. We define the language

LM “ LY tca : a PMu where ca is a constant symbol for each a PM .

and let

SentpLMq

denote the first-order (classical) sentences constructed in the language LM.

Definition 2.1.3. Given a B-valued L-structure M, we can define a valuation v¨wMB :

SentpLMq Ñ B by recursion over the complexity of the LM-formula:

1. For atomic formulas we consider

a. vf “ gwMB :“ vfM “ gMwMB , where f, g are closed LM-terms.

b. vRf1, ..., fnwMB :“ RMpfM
1 , ..., fM

n q, where R is an n-ary relation, fi and gi are

closed LM-terms and i “ 1, 2, ..., n.

2. Let ψ and φ be LM-sentences and θpxq a LM-formula with free variable x.
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a. v␣ψwMB :“ ␣vψwMB

b. vψ Ñ φwMB :“ vψwMB Ñ vφwMB

c. vψ ^ φwMB :“ vψwMB ^ vφwMB

d. vψ _ φwMB :“ vψwMB _ vφwMB

e. vDxθpxqwMB :“
Ž

aPM

vθpcaqw
M
B

f. v@xθpxqwMB :“
Ź

aPM

vθpcaqw
M
B

Definition 2.1.4. If φ is a LM-sentence, we say that M |ù φ if vφwMB “ 1.

Definition 2.1.5. Let T be a L-theory and φ be a L-sentence. we say that T |ù φ if for

every complete Boolean algebra B and every B-valued L-structure M, if M |ù T , then

M |ù φ.

We say that T $ φ, if φ is syntactically deducible from T and from the axioms of Classical

first-order Logic using the classical deduction rules.

Theorem 2.1.6 (Completeness and Soundness Theorem, [Bel05]). Given a L-theory T and

φ a L-sentence,

T |ù φ if and only if T $ φ.

2.1.2 Heyting-valued models

Definition 2.1.7. Given a complete Heyting algebra H “ pH,ď,_,^, 0, 1,␣q, we can define

the notion of a H-valued L-structure just as in the previous subsection, and we have a

Completeness and Soundness Theorem for these models and Intuitionistic Logic (see [Bel05],

Chapter 8 for more on these models).



58 2 Constructions over valued models

2.1.3 Quantale-valued models

The development of these models can be found in [Lan92a], where Lano mentions the Com-

pleteness and Soundness of these models (where he calls them residuated algebra valued

models) and then goes on to prove the Completeness Theorem for topological residuated

algebra valued models and Residuated Modal Logic RS5. In this subsection, we focus

on the constructions of these models without the use of modal operators.

Definition 2.1.8 (Q-valued models, [Lan92a]). Let Q “ pQ,^,_,␣, ¨,Ñ, 0, 1q be a com-

mutative integral quantale. A Q-valued L-structure M consists of:

1. A non-empty class M .

2. An equality function v¨ “ ¨wMQ :M2 Ñ Q such that for all f, g, h PM

a. Reflexivity: vf “ fwMQ “ 1.

b. Symmetry: vf “ gwMQ “ vg “ fwMQ .

c. Transitivity: vf “ gwMQ ¨ vg “ hwMQ ď vf “ hwMQ .

3. For each n´ary relational symbol R P L, a function RM :Mn Ñ Q such that for every

gi, fi PM with i “ 1, ..., n

n
ś

i“1

vfi “ giw
M
Q ¨RMpf1, ..., fnq ď RMpg1, ..., gnq.

4. For each m-ary function symbol f P L, a function fM :Mm ÑM such that for every

gi, fi PM with i “ 1, ...,m,

m
ś

i“1

vfi “ giw
M
Q ď vfMpf1, ..., fmq “ fMpg1, ..., gmqw

M
Q .
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5. For each constant symbol c P L, an element in the universe cM PM .

Remark 2.1.9. Notice that the only difference between Boolean models and quantale models

is that the operation of ^ is replaced by ¨.

Definition 2.1.10. We define the language

LM “ LY tca : a PMu where ca is a constant symbol for each a PM .

and let

SentRpLMq

denote the first-order Residuated sentences (R-sentences) constructed in the language LM.

Definition 2.1.11. Given a Q-valued L-structure M, we define the valuation v¨wMQ : SentRpLMq Ñ

Q by recursion on the complexity of the sentences.

1. For atomic sentences we consider

a. vf “ gwMQ :“ vfM “ gMwMQ , where f, g are closed LM-terms.

b. vRf1, ..., fnwMQ :“ RMpfM
1 , ..., fM

n q, where fi, gi are closed LM-terms for all i P

t1, 2, ..., nu.

2. Let ψ and φ be R ´ LM-sentences and θpxq an R ´ LM-formula with free variable x.

a. vψ&φwMQ :“ vψwMQ ¨ vφwMQ

b. vψ Ñ φwMQ :“ vψwMQ Ñ vφwMQ

c. vψ ^ φwMQ :“ vψwMQ ^ vφwMQ
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d. vψ _ φwMQ :“ vψwMQ _ vφwMQ

e. vDxθpxqwMQ :“
Ž

aPM

vθpcaqw
M
Q

f. v@xθpxqwMQ :“
Ź

aPM

vθpcaqw
M
Q

Definition 2.1.12. If M is a Q-valued L-structure and φ is an R ´ LM-sentence, we say

that M |ùr φ if vφwMQ “ 1.

Definition 2.1.13. Let T be an R ´ L-theory and φ be an R ´ L-sentence.

1. We say that T |ùr φ if for every complete residuated lattice Q and every Q-valued

L-structure M we have that M |ùr T , implies M |ùr φ.

2. Recall that T $r φ means that there exists a deduction from T of φ by using the

axioms and deduction rules given in Section 1.3.4.

Definition 2.1.14 (Completeness and Soundness Theorem, [Lan92b], p. 204). Given an

R ´ L-theory T and an R ´ L-sentence φ,

T |ùr φ if and only if T $r φ.

2.1.4 Quantale-valued modal models

The following subsection is inspired in the ideas of Lano [Lan92a]. These models are con-

structed just as the quantale-valued models of the previous subsection, but now we consider

a commutative integral quantale Q together with a quantic nucleus γ so that we can ex-

tend the valuation v¨w of a Q-valued L-model M to all RM ´ L-sentences by interpreting

the symbol of possibility as follows:
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v♢φpxqw :“ γ pvφpxqwq

We call these structures Q-valued Modal models, or Q-valued M-models, for short.

Theorem 2.1.15. Every quantale-valued M -model M satisfies the axioms of Modal Resid-

uated Logic stated in Subsection 1.3.6. That is, for every MR ´ LM-sentence φ

1. vφw ď v♢φw.

2. v♢♢φw ď v♢φw.

3. v♢pφÑ ψqw ď v♢φw Ñ v♢ψw.

4. v♢φ&♢ψw ď v♢pφ&ψqw.

Proof. Items .1, 2. and 4. follow immediately from the definition of the interpretation of ♢

and the properties of the quantic nucleus γ. Item 3. follows from Corollary 1.2.47.

2.2 Valued models of Set Theory

To understand the motivation behind the definition of valued models, it is convenient to

study their relation to characteristic functions: Let X be a set and let us take A Ď X. We

know that every subset A can be represented via its characteristic function χA

χA : X Ñ t0, 1u, where χApxq “ 1, if and only if, x P A.

Therefore, if one wanted to generalize the notion of a subset, a natural way would be to

change the notion of a characteristic function and use any Boolean algebra B instead of the

trivial Boolean algebra t0, 1u. This is essentially what is done in the model proposed by

Scoot and Solovay [SS67].
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Although these models were first studied to find a simpler more intuitive way of understand-

ing Cohen’s forcing, now they are widely used as natural models for a variety of logics and set

theories within them, such as Heyting-valued models for Intuitionistic Logic [Gra79], BL∆-

algebra valued models for the Fuzzy Logic BL@∆ [HH01, HH03], and Topological Residuated

algebra valued models for Modal Residuated Logic [Lan92a], among many others.

2.2.1 Boolean models of Set Theory

Throughout this section, B denotes be a complete Boolean algebra

Definition 2.2.1 ([Bel05], p. 21, (1.4)). We define Vα by transfinite recursion over the

ordinals

1. V B
0 :“ H

2. V B
α`1 :“ tf P V : f is a function with dompfq Ď V B

α and ranpfq Ď Bu

3. V B
α :“

Ť

βăα

V B
β with α ­“ 0 limit ordinal.

4. V B :“
Ť

αPON

V B
α .

Fact 2.2.2 ([Bel05], p. 21, (1.6)). From the definition, we have that f P V B if and only if f

is a function with dompfq Ď V B and ranpfq Ď B.

Definition 2.2.3 ([Bel05]). Given f P V B, we define rankV Bpxq as the smallest ordinal α

such that f P V B
α`1, that is, the only ordinal such that f P V B

α`1zV
B
α .

Theorem 2.2.4 (Principle of induction for V B, [Bel05] p. 21, 1.7). For every Classical

first-order LP-formula φpxq, we have
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@x P V Bpp@y P dompxqφpyqq Ñ φpxqq Ñ p@x P V Bφpxqq.

Fact 2.2.5. If α P ON , then V B
α Ď V B

α`1.

Corollary 2.2.6. If α ă β P ON , then V B
α Ď V B

β .

Definition 2.2.7. We define the (class) language LB as LB :“ LV B “ LP Y tca : a P V Bu,

where each ca is a constant symbol. From now on, we call LB-sentences (formulas) to the

classical first-order sentences (formulas) constructed in the language LB.

Definition 2.2.8 ([Bel05], p. 23, (1.15) and (1.16)). We define interpretations of P and “

in V B as follows:

1. vf Ď gwB “
Ź

xPdompfq

pfpxq Ñ vx P gwBq

2. vf “ gwB “ vf Ď gwB^vg Ď fwB “
Ź

xPdompfq

pfpxq Ñ vx P gwBq^
Ź

yPdompgq

pgpyq Ñ vy P fwBq

3. vf P gwB “
Ž

yPdompgq

pgpyq ^ vy “ fwBq

Remark 2.2.9 ([Bel05], p. 23). Notice that in order to define v¨ “ ¨wB we are using v¨ P ¨wB

and vice versa. This is possible because we are defining both relations simultaneously by

recursion on a well-founded relation ă: Given px, yq, pu, vq P V B ˆ V B, let

px, yq ă pu, vq if and only if either (x P dompuq and y “ v) or (x “ u and y P dompvq)

Remark 2.2.10. We have that pV B, v¨ P ¨wB, v¨ “ ¨wBq is a B-valued LP-structure (see Theo-

rem 2.2.14) and thus we can define a valuation v¨wB : SentpLBq Ñ B as in Definition 2.1.3.

Remark 2.2.11 ([Bel05], Chapter 1, Remarks 1). Observe that there is a considerable

“duplication” of elements in the Boolean universe V B, that is, for every f P V B there exist a
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proper class of elements g P V B such that vf “ gwB “ 1. For example, let us take α P ON

and define Zα “ tpx, 0Bq : x P V B
α u. It is easy to see that vH “ ZαwB “ 1 for every

α P ON so each member of the proper class tZα : α P ONu represents the empty set in

V B. Furthermore, given f P V B, let us consider β “ rankV Bpfq, i.e. the ordinal β such

that f P V B
β`1zV

B
β . Then, for every α ą β consider the function fα with dompfαq “ V B

α ,

fαpxq “ fpxq for x P dompfq and fαpxq “ 0B for x P dompfαqzdompfq. Then, for every

α ą β, we have that vf “ fαwB “ 1. Therefore, it is helpful to think of the members of V B

as ‘representatives or labels’ for sets (or even ‘potential’ sets), on which (Boolean-valued)

equality is defined as an equivalence relation with very big equivalence classes.

Definition 2.2.12. If φ is a LB-sentence, we say that V B |ù φ, if and only if, vφwB “ 1.

Remark 2.2.13. In case it is clear from the context, we write vψw instead of vψwB.

Theorem 2.2.14 ([Bel05], Theorem 1.17). All the axioms of first-order calculus with equal-

ity and first-order inference rules are valid on V B. In particular, if f, g, h P V B and φpxq is

a LB-formula:

1. Reflexivity: vf “ fw “ 1.

2. If x P dompfq, then fpxq ď vx P fw.

3. Symmetry: vf “ gw “ vg “ fw.

4. Transitivity: vf “ gw ^ vg “ hw ď vf “ hw.

5. vf “ gw ^ vf P hw ď vg P hw.

6. vg “ hw ^ vf P gw ď vf P hw.



2.2 Valued models of Set Theory 65

7. vf “ gw ^ vφpfqw ď vφpgqw .

Theorem 2.2.15 ([Bel05], Corollary 1.18). If f P V B and φpxq are LB-formulas:

1. vDx P fφpxqw “
Ž

xPdompfq

pfpxq ^ vφpxqwq.

2. v@x P fφpxqw “
Ź

xPdompfq

pfpxq Ñ vφpxqwq.

Definition 2.2.16. Given any subclass M Ď V B, we can endow M with a Boolean model

structure by

1. v¨ P ¨wMB “ v¨ P ¨wBæMˆM

2. v¨ “ ¨wMB “ v¨ “ ¨wBæMˆM

And we call all Boolean models of the form pM, v¨ P ¨wBæMˆM , v¨ “ ¨wBæMˆMq submodels of

V B.

Remark 2.2.17. Recall that V denotes the von Neumann universe (see Definition 1.1.2 and

Proposition 1.1.4).

Definition 2.2.18. Take B “ 2. We define a class function ˆ̈ : V Ñ V 2 as follows: Given

x P V , take

x̂ “ tpŷ, 1q : y P xu.

This is a definition by recursion on the well-founded relation y P x. Notice that, for all

x P V ,

x̂ P V 2 Ď V B.
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Theorem 2.2.19 ([Bel05], Theorem 1.23). Let x, y, a1, ..., an P V and φpx1, ..., xnq be a

LP-formula. Then

1. vx̂ “ ŷwB “ vx̂ “ ŷw2 P 2.

2. vx̂ P ŷwB “ vx̂ P ŷw2 P 2.

3. vφpâ1, ..., ânqwB, vφpâ1, ..., ânqw2 P 2

4. ˆ̈ is injective.

5. ˆ̈ is surjective in the following way: For every u P V 2 there exists a unique a P V such

that V B |ù u “ â.

6. ˆ̈ is an “isomorphism” in the following way

φpa1, ..., anq holds in V , if and only if, vφpâ1, ..., ânqwV 2 “ 1

7. If φpx1, ..., xnq is an LP-formula with bounded quantifiers (i.e. if each of its quantifiers

occurs in the form @x P a or Dx P b)

φpa1, ..., anq holds in V , if and only if, vφpâ1, ..., ânqwV B “ 1

2.2.2 Heyting models of Set Theory

Heyting models of Set Theory were introduced by Grayson in [Gra79], where he introduces

an Intuitionistic Zermelo-Fraenkel Set Theory (IZF ) and proves the validity of this theory

in his Heyting-valued models.

Definition 2.2.20. Given a complete Heyting lattice H, we can construct V H and v¨wH

analogously as in the complete Boolean algebras case (see Definition 2.2.1).
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Definition 2.2.21 (Axioms of IZF , [Bel05], pp. 158 and 163). The axioms of IZF are just

the axioms of ZF , with the caveat that we write the Axiom of Regularity in the following

way

@xpp@y P xφpyqq Ñ φpxqq Ñ @xφpxq (P-induction scheme)

This is done since the Axiom of Regularity in its usual form (existence of P-minimal elements)

implies the law of excluded middle (LEM).

Theorem 2.2.22 ([Bel05], Chapter 8, pp. 165 and 166). V H |ù φ for every axiom of

first-order Intuitionistic Logic, for every rule of inference, and for every axiom of IZF .

Furthermore, V H validates Zorn’s lemma, even though it does not generally validate the

Axiom of Choice.

Many interesting independence results from IZF can be proved by using these Heyting-

valued models. For instance, Fourman and Hyland [FH79] construct models such that

1. Every function from R to R is continuous.

2. The sets of Cauchy and Dedekind real numbers do not coincide.

3. The field of complex numbers is not algebraically closed.

2.2.3 Quantale-valued models of Set Theory

In [Lan92a], Lano studied Topological Residuated Algebra valued models for Modal Resid-

uated Logic. In this section, we aim to study these models without the modality (necessity)

that Lano used. In this subsection, we focus on the proofs for some of the properties of
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quantale-valued models of Set Theory for the following reason: Even though it is well known

that these models are quantale-valued models in the sense of Definition 2.1.8, there is not,

as far as we are aware, a prove in the literature that shows this fact, so we prove this in

Theorem 2.2.31.

Definition 2.2.23. We define V Q
α by recursion on ordinals:

1. V Q
0 :“ H

2. V Q
α`1 :“ tf : f is a function with dompfq Ď V Q

α and ranpfq Ď Qu

3. V Q
α :“

Ť

βăα

V Q
β with α ­“ 0 limit ordinal.

4. V Q :“
Ť

αPON

V Q
α .

Definition 2.2.24. We define the language LQ as LQ :“ LV Q “ LP Y tca : a P V Qu, where

each ca is a constant symbol.

Definition 2.2.25. Given x P V Q, we define rankV Qpxq as the smallest ordinal α such that

x P V Q
α`1.

Theorem 2.2.26 (Principle of induction for V Q, cf. [Bel05], p. 21, 1.7). For every Classical

first-order LP-formula φpxq, we have

p@x P V Qpp@y P dompxqφpyqq Ñ φpxqqq Ñ p@x P V Qφpxqq

Definition 2.2.27. We define interpretations of P and “ in V Q as

1. vf Ď gwQ :“
Ź

xPdompfq

pfpxq Ñ vx P gwQq

2. vf “ gwQ :“ vf Ď gwQ ¨ vg Ď fwQ
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3. vf P gwQ :“
Ž

xPdompgq

pgpxq ¨ vx “ fwQq

Remark 2.2.28. We have that pV Q, v¨ P ¨wQ, v¨ “ ¨wQq is a Q-valued LP-structure and thus

we can define a valuation v¨wQ : SentRpLQq Ñ Q as in the Definition 2.1.11.

Definition 2.2.29. If φ is an R ´ LQ-sentence, we say that V Q |ù φ if vφwQ “ 1.

Remark 2.2.30. As long as it is clear from the context, we denote v¨wQ as v¨w

Theorem 2.2.31 (cf. [Bel05], Theorem 1.17). Let f, g, h, h, f1, f2, g1, g2 P V Q and φpxq be

an R ´ LQ-formula that does not contain the symbols & and Ñ. Then:

1. Reflexivity: vf “ fw “ 1.

2. If x P dompfq, then fpxq ď vx P fw.

3. Symmetry: vf “ gw “ vg “ fw.

4. Transitivity: vf “ gw ¨ vg “ hw ď vf “ hw.

5. vf “ gw ¨ vf P hw ď vg P hw.

6. vg “ hw ¨ vf P gw ď vf P hw.

7. vf1 “ g1w ¨ vf2 “ g2w ¨ vf1 P f2w ď vg1 P g2w.

8. vf “ gw ¨ vφpfqw ď vφpgqw .

9. vDx P fφpxqw “
Ž

xPdompfq

pfpxq ¨ vφpxqwq.

10. v@x P fφpxqw “
Ź

xPdompfq

pfpxq Ñ vφpxqwq.
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Proof. 1. We prove it by induction on V Q (see Theorem 2.2.26).

Induction hypothesis: Suppose that vx “ xw “ 1 for all x P dompfq.

Now, if x P dompfq, then

fpxq “ fpxq ¨ 1 “ fpxq ¨ vx “ xw ď
Ž

yPdompfq

fpyq ¨ vx “ yw “ vx P fw.

i.e., fpxq ď vx P fw and then, by Theorem 1.2.33 item 1., we have that pfpxq Ñ vx P

fwq “ 1. Then,

vf “ fw “
Ź

xPdompfq

pfpxq Ñ vx P fwq ¨
Ź

yPdompfq

pfpyq Ñwy P fwq “
Ź

xPdompfq

1 ¨
Ź

yPdompfq

1 “

1 ¨ 1 “ 1.

2. It is obtained by using Theorem 2.2.31 item 1. and an argument similar to the previous

item.

3. It is immediately obtained by the commutativity of the product ¨:

vf “ gw “
ľ

xPdompfq

pfpxq Ñ vx P gwq ¨
ľ

yPdompgq

pgpyq Ñ vy P fwq

“
ľ

yPdompgq

pgpyq Ñ vy P fwq ¨
ľ

xPdompfq

pfpxq Ñ vx P gwq “ vg “ fw

4. We prove it by induction on V Q.

Induction hypothesis: Suppose that vx “ gw ¨ vg “ hw ď vx “ hw for all x P dompfq

and g, h P V Q.

Then, in particular, for all y P dompgq and z P domphq we have to vx “ yw ¨ vy “ zw ď

vx “ zw . Then, vx “ yw ¨ vy “ zw ¨ hpzq ď vx “ zw ¨ hpzq. Taking supremums over



2.2 Valued models of Set Theory 71

z P domphq we get that

Ž

zPdomphq

vx “ yw ¨ vy “ zw ¨ hpzq ď
Ž

zPdomphq

vx “ zw ¨ hpzq “ vx P hw.

But we have

ł

zPdomphq

vx “ yw ¨ vy “ zw ¨ hpzq “ vx “ yw ¨
ł

zPdomphq

vy “ zw ¨ hpzq

“ vx “ yw ¨ vy P hw.

And putting all the previous results together, we get that

vx “ yw ¨ vy P hw ď vx P hw

On the other hand, we have to

gpyq ¨ vg Ď hw “ gpyq ¨
ľ

y1Pdompgq

pgpy1q Ñ vy1 P hwq

ď gpyq ¨ pgpyq Ñ vy P hwq

ď vy P hw (by Theorem 1.2.33 item 2.)

i.e., gpyq ¨ vg Ď hw ď vy P hw.

And then,

vg Ď hw ¨ vx “ yw ¨ gpyq ď vx “ yw ¨ vy P hw

ď vx P hw.

i.e., vg Ď hw ¨ vx “ yw ¨ gpyq ď vx P hw.
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Taking supremum over y P dompgq,

vg Ď hw ¨ vx P gw “ vg Ď hw ¨
ł

yPdompgq

pvx “ yw ¨ gpyqq

“
ł

yPdompgq

vg Ď hw ¨ vx “ yw ¨ gpyq

ď vx P hw.

i.e., vg Ď hw ¨ vx P gw ď vx P hw

Given that vf Ď gw ¨ fpxq ď vx P gw, using the result given above, we get

vf Ď gw ¨ vg Ď hw ¨ fpxq ď vx P hw.

And since ¨ is left adjoint to Ñ, we have for all x P dompfq

vf Ď gw ¨ vg Ď hw ď fpxq Ñ vx P hw

Hence, by definition of infimum

vf Ď gw ¨ vg Ď hw ď
Ź

xPdompfq

pfpxq Ñ vx P hwq “ vf Ď hw (˚)

On the other hand, using the symmetry of v¨ “ ¨w, the induction hypothesis implies

that for all g, h P V Q and all x P dompfq

vh “ gw ¨ vg “ xw ď vh “ xw

Thus, using an argument similar to get p˚q, we arrive at

vh Ď gw ¨ vg Ď fw ď
Ź

zPdomphq

phpzq Ñ vz “ fwq “ vh Ď fw (˚˚)

Thus, using p˚q, p˚˚q and since ¨ is monotone (Theorem 1.2.33 item 5.), we may say

that
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vf “ gw ¨ vg “ hw ď vf “ hw.

5. If z P domphq, then by the transitivity of v¨ “ ¨w and the monotonicity of ¨, we have

vf “ gw ¨ vf “ zw ¨ hpzq ď vg “ zw ¨ hpzq

Taking supremums on both sides over z P domphq, we have

vf “ gw ¨ vf P hw “ vf “ gw ¨
ł

zPdomphq

pvf “ zw ¨ hpzqq ( definition of vf P hw)

“
ł

zPdomphq

pvf “ gw ¨ vf “ zw ¨ hpzqq (¨ distributes over
Ž

)

ď
ł

zPdomphq

vg “ zw ¨ hpzq “ vg P hw

6. If y P dompgq, then

vg “ hw ¨ gpyq “ vg Ď hw ¨ vh Ď gw ¨ gpyq (definition of vg “ hw)

ď vg Ď hw ¨ gpyq

“
ľ

y1Pdompgq

pgpy1qq Ñ vy1 P hwq ¨ gpyq

ď pgpyqq Ñ vy P hwq ¨ gpyq

ď vy P hw (by Theorem 1.2.33 item 2.)
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Therefore, by using the monotonicity of ¨ and the item 5. on this theorem, we get

vg “ hw ¨ vf “ yw ¨ gpyq ď vy P hw ¨ vf “ yw

ď vf P hw

Taking the supremum over y P dompgq, we get

vg “ hw ¨ vf P gw “ vg “ hw ¨
ł

yPdompgq

vf “ yw ¨ gpyq (¨ distributes over
Ž

)

“
ł

yPdompgq

vg “ hw ¨ vf “ yw ¨ gpyq

ď vf P hw

7. It follows from the previous items:

vf1 “ g1w ¨ vf2 “ g2w ¨ vf1 P f2w ď vf1 “ g1w ¨ vf1 P g2w (by Theorem 2.2.31 item 6.)

ď vg1 P g2w (by Theorem 2.2.31 item 5.)

8. We prove it by induction on the complexity of R ´ LQ-formulas

a. For the atomic case, it follows from items 4., 5. and 6 of this theorem.

b. Induction hypothesis 1: Let φpxq and ψpxq be R ´ LQ-formulas such that

vf “ gw ¨ vφpfqw ď vφpgqw

vf “ gw ¨ vψpfqw ď vψpgqw



2.2 Valued models of Set Theory 75

i. Disjunction:

vf “ gw ¨ vpφ_ ψqpfqw “ vf “ gw ¨ pvφpfqw _ vψpfqwq

“ pvf “ gw ¨ vφpfqwq _ pvf “ gw ¨ vψpfqwq (¨ distributes over
Ž

)

ď vφpgqw _ vψpgqw (by the induction hypothesis 1)

“ vpφ_ ψqpgqw

ii. Conjunction:

vf “ gw ¨ vpφ^ ψqpfqw “ vf “ gw ¨ pvφpfqw ^ vψpfqwq

ď pvf “ gw ¨ vφpfqwq ^ pvf “ gw ¨ vψpfqwq (by Theorem 1.2.36 item 1.)

ď vφpgqw ^ vψpgqw (by the induction hypothesis 1)

“ vpφ^ ψqpgqw

c. Induction hypothesis 2: Suppose that for all h P V Q

vf “ gw ¨ vφph, fqw ď vφph, gqw
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i. Universal quantifier:

vf “ gw ¨ v@xφpx, fqw “ vf “ gw ¨
ł

hPV Q

vφph, fqw (by definition of v@xφpx, fqw )

“
ł

hPV Q

vf “ gw ¨ vφph, fqw (¨ distributes over
Ž

)

ď
ł

hPV Q

vφph, gqw (by induction hypothesis 2)

“ v@xφpx, gqw

ii. Existential quantifier:

vf “ gw ¨ vDxφpx, fqw “ vf “ gw ¨
ľ

hPV Q

vφph, fqw (by definition of vDxφpx, fqw)

ď
ľ

hPV Q

vf “ gw ¨ vφph, fqw (by Theorem 1.2.36 item 1.)

ď
ľ

hPV Q

vφph, gqw (by induction hypothesis)

“ vDxφpx, gqw

9. Let us first see that for all x P V Q

Ž

yPV Q
vx “ yw ¨ vφpyqw “ vφpxqw.

By item 8. of this theorem, we have that for all y P V Q,

vx “ yw ¨ vφpyqw ď vφpxqw.

Therefore,
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Ž

yPV Q
vx “ yw ¨ vφpyqw ď vφpxqw

But on the other hand,

vφpxqw “ vφpxqw ¨ 1 “ vφpxqw ¨ vx “ xw

ď
ł

yPV Q

vx “ yw ¨ vφpyqw since x P V Q

and thus vφpxqw “
Ž

yPV Q
vx “ yw ¨ vφpyqw. Using the equality given above, we get

vDx P fφpxqw “ vDxpx P f&φpxqqw “
ł

yPV Q

vy P f&φpyqw (by definition of D)

“
ł

yPV Q

vy P fw ¨ vφpyqw (by definition of &)

“
ł

yPV Q

ł

xPdompfq

fpxq ¨ vx “ yw ¨ vφpyqw (by definition of vy P fw)

“
ł

xPdompfq

ł

yPV Q

fpxq ¨ vx “ yw ¨ vφpyqw (by exchanging the supremums)

“
ł

xPdompfq

fpxq ¨
ł

yPV Q

vx “ yw ¨ vφpyqw (¨ distributes over
Ž

)

“
ł

xPdompfq

fpxq ¨ vφpxqw

10. In a similar fashion as the previous item, we can prove that

vφpxqw “
Ž

yPV Q
vx “ yw Ñ vφpyqw
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v@x P fφpxqw “ v@xpx P f Ñ φpxqqw “
ľ

yPV Q

vy P f Ñ φpyqw “
ľ

yPV Q

vy P fw Ñ vφpyqw

“
ľ

yPV Q

¨

˝

ł

xPdompfq

pfpxqq ¨ vx “ ywq

˛

‚Ñ vφpyqw (by definition of vy P fw)

“
ľ

xPdompfq

ľ

yPV Q

ppfpxqq ¨ vx “ ywq Ñ vφpyqwq (by Theorem 1.2.36 item 3.)

“
ľ

xPdompfq

ľ

yPV Q

pfpxq Ñ pvx “ yw Ñ vφpyqwqq (by Theorem 1.2.33 item 10.)

“
ľ

xPdompfq

fpxq Ñ
ľ

yPV Q

pvx “ yw Ñ vφpyqwq (by Theorem 1.2.36 item 2.)

“
ľ

xPdompfq

fpxq Ñ vφpxqw

Corollary 2.2.32. V Q is a Q-valued model and therefore V Q is a model of all of the axioms

of Residuated Logic.

2.3 Constructible sets on valued models

There has not been a significant attempt at trying to generalize Gödel’s universe within the

framework of valued models of Set Theory. The closest we found was Fitting’s work [Fit69]

in which he re-states the definition of L by using standard (i.e. two valued) characteristic

functions.

More precisely, Fitting takes a set M and v a truth function on the set of first-order formulas

with constants from M (here Fitting considers only two possible truth values) and then says

that a (characteristic) function f is definable over pM, vq if

1. dompfq “M
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2. ranpfq Ď tT, F u

3. There exists some formula Xpxq with one free variable and all constants from M such

that for all a PM

fpaq “ vpXpaqq

And then, with this notion of definable set, Fitting re-states the definition of Gödel’s universe

in these terms. We adapt Fitting’s notion of definable sets in the context of Boolean valued

models and quantale valued models to propose some new versions of L. Although reasonable

at first, this attempt was not successful since the proposals for new models that we considered

ended up collapsing to two-valued universes, and therefore they are essentially classical

models.

2.3.1 Constructible sets in Boolean models.

We start by motivating our approach to constructible sets in Boolean models by stating

Gödel’s construction in a very precise way, so that it is clear how we translate this definition

to the Boolean valued case.

1. L0 :“ H,

2. Lα`1 :“ tX Ď Lα : there is a classical first-order LP-formula φpx, ȳq and b̄ P L|ȳ|α such that

X “ ta P Lα : pLα, P æLαq |ù φpa, b̄qu,

3. Lα :“
Ť

βăα

Lβ for α ‰ 0 limit ordinal.

Let L :“
Ť

αPON

Lα.
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Taking this into account, we start from a Boolean set-theoretic model

pV B, v¨ P ¨wB, v¨ “ ¨wBq

and we take subsets (in the sense of V ) LB
α Ď V B in order to take the restrictions of the

interpretations of P and “ on the universe V B and then using them for the set LB
α and

considering the “definable sets” in the Boolean submodel

pLB
α, v¨ P ¨wLB

α
, v¨ “ ¨wLB

α
q :“ pLB

α, v¨ P ¨wBæLB
α
, v¨ “ ¨wBæLB

α
q.

We propose two definitions of definable sets in this context: B˚-definable and B-definable,

both inspired in [Fit70], and with those definitions we construct the models LB and LB,

respectively.

Throughout this subsection, B is going to denote a complete Boolean algebra.

Definition 2.3.1. Let M Ď V B be a subclass. Recall that we can view M as a B-valued

LP-structure by taking the restrictions on M from the interpretations of P and “ on V B. We

say that f is a B˚´definable subset of M if:

1. f P V B.

2. dompfq ĎM .

3. There is a first-order LP-formula φpx, ȳq and b̄ PM |ȳ| such that for every a P dompfq

fpaq “ vφpa, b̄qwM .

And we define the class of B˚-definable subsets of M as

DefB˚pMq :“ tf P V B : f is a B˚-definable subset of Mu.
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Definition 2.3.2. We define LB
α, by transfinite recursion over the ordinals, as follows

1. LB
0 :“ H.

2. LB
α`1 :“ DefB˚pLB

αq “ tf P V B : dompfq Ď LB
α and there exist a LP-formula φpx, ȳq

and b̄ P pLB
αq
|ȳ| such that for every a P dompfq, fpaq “ vφpa, b̄qwLB

α
u.

3. LB
α :“

Ť

βăα

LB
β for α ­“ 0 limit ordinal.

4. LB :“
Ť

αPON

LB
α.

Proposition 2.3.3. For all α P ON , LB
α Ď V B

α .

Proof. A straightforward induction on α proves this claim.

Theorem 2.3.4. For all α P ON , LB
α Ď LB

α`1.

Proof. We prove this by induction on α. The case α “ 0 and α ­“ 0 limit ordinal are simple,

so we only focus on the successor step. Let us assume that

LB
α Ď LB

α`1 (induction hypothesis)

We have to prove that LB
α`1 Ď LB

α`2. Hence, take f P LB
α`1, that is,

1. f P V B,

2. dompfq Ď LB
α,

3. there exist a classical first-order LP-formula φpx, ȳq and b̄ P pLB
αq
|ȳ| such that for all

a P dompfq

fpaq “ vφpa, b̄qwLB
α
.
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By induction hypothesis, we have that dompfq Ď LB
α Ď LB

α`1, so all we need to do is to find

a LP-formula with parameters from LB
α`1 defines f . Consider the LP-formula

ψpx, yq :“ x P y,

since f P LB
α`1, we want to prove that ψpx, fq defines f , that is, we want to prove that for

every a P dompfq,

vφpa, b̄qwLB
α
“ va P fwLB

α`1
.

Notice that, for every a P dompfq,

va P fwBLα`1
“

ł

cPdompfq

fpcq ^ va “ cwLB
α`1

(by definition of va P fwBLα
q

“
ł

cPdompfq

vφpc, b̄qwBLα
^ va “ cwBLα`1

(by induction hypothesis).

Hence,

vφpa, b̄qwLB
α
¨ 1 “ vφpa, b̄qwLB

α
¨ va “ awLB

α`1

ď
ł

cPdompfq

vφpc, b̄qwBLα
^ va “ cwBLα`1

(since a P dompfq)

On the other hand, by Theorem 2.2.14 item 7., for every c P dompfq,

vφpc, b̄qwBLα
^ va “ cwBLα`1

ď vφpa, b̄qwBLα

Then, by definition of join,

Ž

cPdompfq

vφpc, b̄qwBLα
^ va “ cwBLα`1

ď vφpa, b̄qwBLα

Therefore,
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va P fwBLα`1
“

Ž

cPdompfq

vφpc, b̄qwBLα
^ va “ cwBLα`1

“ vφpa, b̄qwBLα
“ fpaq

and thus, f P LB
α`2.

Corollary 2.3.5. For all α, β P ON , if α ă β, then LB
α Ď LB

β .

Theorem 2.3.6. If f P LB, then ranpfq Ď t0, 1u “ 2.

Proof. We prove it by induction on ordinals, showing that for all α P ON , if f P Lα, then

ranpfq Ď 2.

Induction hypothesis 1: Take α P ON such that for all a P LB
α, ranpaq Ď 2.

Let us see that if f P LB
α`1, then ranpfq Ď t0, 1u “ 2. Since f P LB

α`1, there is a LP-formula

φpx, ȳq with |ȳ| “ n and b̄ P pLB
αq

n such that for all a P dompfq Ď LB
α

fpaq “ vφpa, b̄qwLB
α
.

Notice that a, b1, b2, ..., bn P LB
α, so we can use the induction hypothesis 1 on them, so that

ranpaq, ranpbiq Ď 2 for all 1 ď i ď n.

We will prove that if f P LB
α`1, then ranpfq Ď t0, 1u “ 2, using induction on formulas, where

the formulas can take parameters from LB
α.

We start with the atomic case. We want to prove that va P bw, vb P aw, va “ bw P 2 for all

a, b P LB
α.

We prove the statement given above by induction on the well-founded relation ă on V B (see

Definition 2.2.9), where

pv, wq ă pa, bq if and only if pv “ a and w P dompbqq or pv P dompaq and w “ bq, where

a, b, f, g P V B.
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Induction hypothesis 2: for all ă-predecessors pv, wq of pf, gq, we have that

vv P ww, vw P vw, vv “ ww P 2.

Notice that the ă-predecessors pv, wq of pa, bq have the form

pa, wq and pv, bq, where v P dompaq and w P dompbq.

Then, the induction hypothesis 2 means that for all v P dompaq and w P dompbq we have

that

va P ww, vw P aw, vv P bw, vb P vw, va “ ww, vv “ bw P 2.

Let us see then that

va P bw, vb P aw, va “ bw P 2

By definition of v¨ P ¨wLB
α
, we have that

va P bwLB
α
“ va P bwV “

Ž

wPdompbq

bpwq ^ va “ ww

Given that b P LB
α, by induction hypothesis 1, we have that bpwq P 2. On the other hand, the

induction hypothesis 2 implies that va “ ww P 2, so bpwq^va “ ww P 2 and
Ž

wPdompbq

bpwq^va “

ww “ va P bwLB
α
P 2.

In a similar way as before, it is shown that vb P awLB
α
P 2

By definition of v¨ “ ¨wLB
α
, we have that

va “ bwLB
α
“ va “ bwV “

˜

Ź

vPdompaq

apvq Ñ vv P bw

¸

^

˜

Ź

wPdompbq

bpwq Ñ vw P aw

¸

Since a, b P LB
α, by induction hypothesis 1, we have that apvq, bpwq P 2. On the other hand,

the induction hypothesis 2 implies that vv P bw, vw P aw P 2, thus
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papvq Ñ vv P bwq, pbpwq Ñ vw P awq P 2.

Then,

Ź

vPdompaq

apvq Ñ vv P bw,
Ź

wPdompbq

bpwq Ñ vw P aw P 2.

Therefore,
˜

Ź

vPdompaq

apvq Ñ vv P bw ^
Ź

wPdompbq

bpwq Ñ vw P aw

¸

“ va “ bwLB
α
P 2.

Thus, by induction on the well-founded relation ă, we have that va P bw, vb P aw, va “ bw P 2

for all a, b P LB
α. this proves the case for atomic LP-formulas.

By induction on LP-formulas, it is straightforward to show that for every LP-formula φpx, ȳq

with |y| “ n, b̄ P pLB
αq

ny a P dompfq Ď LB
α we have that

vφpa, b̄qwLB
α
“ fpaq P 2,

since if Boolean combinations of formulas that only take values in t0, 1u are made, the result

of evaluating these formulas is 0 or 1.

Thus, we have that, for all f P LB
α`1, ranpfq Ď 2.

Checking the limit ordinal case is straightforward. Then, by induction on the ordinals, we

have that for all f P LB, ranpfq Ď 2.

Remark 2.3.7. The previous theorem tells us that LB Ď V 2.

Theorem 2.3.8. For all x P V , x̂ P LB.

Proof. We prove it by induction on the well-founded relation P.

Induction hypothesis: Suppose that for all y P x, ŷ P LB. Take α P ON such that for all

y P x, ŷ P LB
α. By definition of ˆ̈ (see Theorem 2.2.18),
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x̂ “ tpŷ, 1q : y P xu

Notice that dompx̂q Ď LB
α and that if we take the formula φpvq : v “ v, we have that for all

ŷ P dompx̂q,

vφpŷqwLB
α
“ vŷ “ ŷwLB

α
“ 1 “ x̂pŷq.

Therefore x̂ P LB
α`1.

Remark 2.3.9. Notice that the previous theorem tells us that the function ˆ̈ is such that

ˆ̈ : V Ñ LB Ď V 2. Recall that ˆ̈ is an “isomorphism” between V and V 2 (see Theorem 2.2.19).

We want to see that it is also an “isomorphism” between V and LB.

We know that ˆ̈ is injective by item 4. of Theorem 2.2.19. Since LB Ď V 2, and since for all

f P LB, there exists a P V such that vâ “ fw we have that ˆ̈ : V Ñ LB is also “surjective”. On

the other hand, by Theorem 2.2.19 item 6., we get that for all a1, ..., an P V and LP-formula

φpx1, ..., xnq,

φpa1, ..., anq holds in V , if and only if, vφpâ1, ..., ânqwV 2 “ 1.

But we can prove that

vφpâ1, ..., ânqwLB “ vφpâ1, ..., ânqwV 2

holds (we will not prove it here, since it is a standard, but long and tedious proof), so LB is

“isomorphic” to V .

Taking these results into account, we need to change our definition of definable set. We start

by changing the definition of definability as follows:
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Definition 2.3.10. Let M Ď V B. We say that f P V B is a B´definable subset of M if f

satisfies the following

1. dompfq “M (before it was dompfq ĎM).

2. There is a classical first-order LP-formula φpx, ȳq and b̄ P M |ȳ| such that for all a P

dompfq

fpaq “ vφpa, b̄qwM

And we define the set of B-definable subsets of M as

DefBpMq :“ tf P V B : f is a B-definable subset of Mu.

Definition 2.3.11. Given a complete Boolean algebra B, we define by transfinite recursion

over the ordinals

1. LB
0 :“ H

2. LB
α`1 :“ DefBpLB

αqYLB
α “ tf P V

B : dompfq “ LB
α and there exist a LP-formula φpx, ȳq

and b̄ P pLB
αq
|ȳ| such that for all a P dompfq, fpaq “ vφpa, b̄qwLB

α
u Y LB

α

3. LB
α :“

Ť

βăα

LB
β for α ­“0 limit ordinal.

4. LB :“
Ť

αPON

LB
α.

Notice that two changes were made to the original definition. First, the domain of functions

was changed, we went from considering functions with dompfq Ď LB
α to dompfq “ LB

α. In

this way, it is not always the case that x̂ P LB for all x P V . Second, the successor step was

defined so that
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LB
α Ď LB

α`1 holds for all α P ON .

These changes are very important on a technical level, since they make many proofs easier

later on.

Remark 2.3.12. We can prove that LB Ď V 2 mimicking the argument that we used for the

model LB in Theorem 2.3.6.

Theorem 2.3.13 (cf. Theorem 2.3.6). If f P LB, then ranpfq Ď t0, 1u “ 2.

Lemma 2.3.14. If M is a B-valued LP-structure, then for all f, g P M , if vf “ gwM “ 1,

then, for all LP-formula φpx, ȳq and ā PM |ȳ|,

vφpf, āqwM “ vφpg, āqwM .

Proof. By Theorem 2.2.14 item 7., we have that

vf “ gwM ^ vφpf, āqwM ď vφpg, āqwM and vf “ gwM ^ vφpg, āqwM ď vφpf, āqwM

And since vf “ gwM “ 1, we have that

vφpf, āqwM ď vφpg, āqwM and vφpg, āqwM ď vφpf, āqwM , i.e., vφpf, āqwM “ vφpg, āqwM

Lemma 2.3.15. Let f, g P V B. Suppose f is an extension of g, i.e. dompgq Ď dompfq and

fædompgq “ g. If fpaq “ 0 for all a P dompfqzdompgq, then V B |ù f “ g.

Proof. We want to see that

vf :“ gw “ vf Ď gw ^ vg Ď fw :“

˜

Ź

aPdompfq

fpaq Ñ va P gw

¸

^

˜

Ź

bPdompgq

gpbq Ñ vb P fw

¸

“ 1.
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Notice that

vf Ď gw :“
ľ

aPdompfq

fpaq Ñ va P gw (by definition of vf Ď gw)

“
ľ

bPdompgq

fpbq Ñ vb P gw ^
ľ

aPdompfqzdompgq

fpaq Ñ va P gw (dompfq “ dompfq Y pdompgqzdompgqq)

“
ľ

bPdompgq

gpbq Ñ vb P gw ^
ľ

aPdompfqzdompgq

0Ñ va P gw (fpaq “ 0 for all a P dompfqzdompgqq

“
ľ

bPdompgq

gpbq Ñ vb P gw ^ 1 (since 0Ñ x “ 1 for x P B)

“
ľ

bPdompgq

gpbq Ñ vb P gw

“ vg Ď gw “ 1

On the other hand, since dompgq Ď dompfq and fædompgq “ g, we have for all b P dompgq

vb P fw :“
ł

aPdompfq

fpaq ^ va “ bw

ě fpbq ^ vb “ bw (since b P dompgq)

“ gpbq ^ 1 (since fædompgq “ g)

“ gpbq.

Therefore, gpbq ď vb P fw for all b P dompgq, i.e., pgpbq Ñ vb P fwq “ 1 and

vg Ď fw “
Ź

bPdompgq

gpbq Ñ vb P fw “
Ź

bPdompgq

1 “ 1

From this, we conclude that

vf “ gw “ vf Ď gw ^ vg Ď fw “ 1^ 1 “ 1.



90 2 Constructions over valued models

The following theorem shows us that, for all Boolean algebras B, L is “isomorphic” to LB in

the following way:

Theorem 2.3.16. There exists a class function j : L Ñ LB such that for all α P ON , the

restriction jæLα : Lα Ñ LB satisfies

1. ranpjæLαq Ď Lα.

2. jæLα is injective.

3. jæLα is surjective in the following sense: for all Y P Lα, there exists X P Lα such that

Lα |ù jpXq “ Y .

4. jæLα is an elementary embedding in the following sense: For every LP-formula φpx̄q

and ā P L|x̄|α ,

Lα |ù φpāq if and only if vφpjpāqqwLα “ 1.

5. rankLpXq “ rankLBpjpXqq.

Proof. We prove this by induction on ordinals: The case α “ 0 is trivial.

Suppose that we have already defined jæLβ
and that it satisfies the conditions of the theorem

for all β ď α, where α P ON . We define j for Lα`1zLα: Given X P Lα`1zLα, we have that

X Ď Lα and that there exists a first-order LP-formula φpx, ȳq and b̄ P L|ȳ|α such that

X “ ta P Lα : Lα |ù φpa, b̄qu.

We define
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jpXq : Lα Ñ B as jpXqpcq “ vφpc, jpb̄qqwLα for all c P Lα

Notice that, from the definition, jpXq P Lα`1zLα, and thus ranpjæLα`1q Ď Lα`1 and

rankLpXq “ rankLBpjpXqq.

Let us see that the function jpXq is indeed well-defined, that is, that the function does not

depend on the choice of formulas and parameters.

Consider some LP-formulas φpx, ȳq, ψpz, w̄q and parameters b̄ P L|ȳ|α and d̄ P L|w̄|α such that

X “ ta P Lα : Lα |ù φpa, b̄qu “ ta P Lα : Lα |ù ψpa, d̄qu.

From the previous equality, we have that for all a P Lα,

Lα |ù φpa, b̄q if and only if Lα |ù ψpa, d̄q.

But using the induction hypothesis item 4., we have that

Lα |ù φpa, b̄q if and only if vφpjpaq, jpb̄qqwLα “ 1 and

Lα |ù ψpa, d̄q if and only if vψpjpaq, jpd̄qqwLα “ 1

Combining these results, we get

vφpjpaq, jpb̄qqwLα “ 1 if and only if vψpjpaq, jpd̄qqwLα “ 1, namely,

vφpjpaq, jpb̄qqwLα “ vψpjpaq, jpd̄qqwLα for all a P Lα

And thus the function jpXq is well-defined for every c P jpLαq Ď Lα.

To see that this is also true for all c P Lα, and not only for all jpaq P jpLαq, we use

Lemma 2.3.14 and the “surjectivity” of j. Given c P Lα, there exists ac P Lα such that

vjpacq “ cwLα “ 1. Then,
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vφpjpacq, jpb̄qqwLα “ 1 if and only if vφpc, jpb̄qqwLα “ 1 and vψpjpacq, jpd̄qqwLα “ 1 if and only

if vψpc, jpd̄qqwLα “ 1

we conclude that

vφpc, jpb̄qqwLα “ 1 if and only if vψpc, jpd̄qqwLα “ 1, i.e., vφpc, jpb̄qqwLα “ vψpc, jpd̄qqwLα for all

c P Lα.

And therefore the function jpXq is well-defined for X P Lα`1.

Let us see that jæLα is injective.

If X, Y P Lα, then, by induction hypothesis item 2., jpXq ­“ jpY q provided that X ­“ Y .

If X P Lα`1 and Y P Lα, then we have that there exists β ă α such that Y P Lβ`1 and

therefore dompXq “ Lα and dompY q “ Lβ, so we have jpXq ­“ jpY q, since dompjpXqq ­“

dompjpY qq.

Let X, Y P Lα`1zLα be such that X ­“ Y . Thus, there are LP-formulas φpx, ȳq, ψpz, w̄q and

parameters b̄ P L|x̄|α and d̄ P L|w̄|α such that

X “ ta P Lα : Lα |ù φpa, b̄qu and Y “ ta P Lα : Lα |ù ψpa, d̄qu.

Since X ­“ Y , we may assume, without loss of generality, that there exists a P Lα such that

a P X and a R Y , i.e.

Lα |ù φpa, b̄q and Lα * ψpa, d̄q.
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Then,

jpXqpjpaqq “ vφpjpaq, jpb̄qqwLα “ 1 and jpY qpjpaqq “ vψpjpaq, jpd̄qqwLα “ 0

i.e., jpXq ­“ jpY q and jæLα is injective.

Let us now show that jæLα is surjective in the sense of item 3. of this theorem. Let

Y P Lα`1zLα “ DefBpLαq. Then, there is a LP-formula ψpx, ȳq and parameters d̄ P L|x̄|α

such that for all c P Lα “ dompY q

Y pcq “ vψpc, d̄qwLα .

By the induction hypothesis item 3., there exists b̄ P L|ȳ|α such that Lα |ù jpb̄q “ d̄. Let us

define

X :“ ta P Lα : Lα |ù ψpa, b̄qu P Lα`1.

We then have two cases:

1. Suppose that X P Lα, then, we have that there is an ordinal β ă α such that X P Lβ`1.

Thus, we have that X Ď Lβ and that there is a first-order LP-formula φpw, z̄q and

parameters f̄ P L|z̄|α such that

X “ te P Lβ : Lβ |ù φpe, f̄qu “ ta P Lα : Lα |ù ψpa, b̄qu

Thus, since Lβ Ď Lα, we have that for all e P Lβ,

Lβ |ù φpe, f̄q if and only if Lα |ù ψpe, b̄q

by the induction hypothesis item 4., we get
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vφpjpeq, jpf̄qqwLβ
“ vψpjpeq, jpb̄qqwLα “ vψpjpeq, d̄qwLα for all e P Lβ

By using the “surjectivity” of j, we can generalize this to all g P dompjpXqq “ Lβ,

obtaining

jpXqpgq “ vφpg, jpf̄qqwLβ
“ vψpg, d̄qwLα “ Y pgq for all g P dompjpXqq

In this way, we conclude that Y is an extension of jpXq. Let us see how Y behaves in

LαzLβ. Given a P LαzLβ, since a R Lβ and X Ď Lβ, we have a R X and therefore

Lα * ψpe, b̄q, i.e., vψpjpeq, jpb̄qqwLα “ vψpjpeq, d̄qwLα “ 0.

By the “surjectivity” of j, we can generalize the equality given above to

jpY q “ vψpg, d̄qwLα “ 0 for all g P LαzLβ.

In this way, since Y is an extension of jpXq such that for all g P dompY qzdompjpXqq,

Y pgq “ 0, we conclude that the functions jpXq and Y are equal in the sense of v¨ “ ¨w

by Lemma 2.3.15, i.e.,

Lα |ù jpXq “ Y

as we wanted.

2. Suppose X P Lα`1zLα. In this case, we have jpXq “ Y since dompjpXqq “ Lα “

dompY q and for all c P Lα,

jpXqpcq “ vψpc, jpb̄qqwLα “ vψpc, d̄qwLα “ Y pcq, i.e., jpXq “ Y

Let us see that we have the property 4 by induction on formulas:

1. P: Let X, Y P Lα`1, we see that
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Lα`1 |ù X P Y if and only if Lα`1 |ù jpXq P jpY q.

pñq Suppose Lα`1 |ù X P Y . Thus, since X P Y Ď Lα, we have X P Lα. Consider an

LP-formula ψpx, ȳq and parameters b̄ P L|x̄|α such that

Y “ ta P Lα : Lα |ù ψpa, b̄qu

Then, since X P Y , we have Lα |ù ψpX, b̄q and therefore, by the induction hypothesis,

Lα |ù ψpjpXq, jpb̄qq, i.e.,

jpY qpjpXqq “ vψpjpX, jpb̄qqwLα “ 1

And since vjpXq “ jpXqwLα “ 1, we have jpY qpjpXqq ^ vjpXq “ jpXqwLα “ 1 and

since jpXq P dompY q Ď Lα, we have

vjpXq P jpY qwLα “
Ž

cPdompjpY qq

jpY qpcq ^ vc “ jpXqwLα “ 1

as desired.

pðq Let us suppose that

vjpXq P jpY qwLα “
Ž

cPdompjpY qq

jpY qpcq ^ vc “ jpXqwLα “ 1

Thus, since jpY qpcq^vc “ jpXqwLα can only be 0 or 1, there exists c P dompjpY qq Ď Lα

such that

jpY qpcq ^ vc “ jpXqwLα “ 1,

then,

jpY qpcq “ 1 and vc “ jpXqwLα “ 1

Since jpY qpcq “ vψpc, jpb̄qqwLα “ 1 and vc “ jpXqwLα “ 1, we have that
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jpY qpjpXqq “ vψpjpXq, jpb̄qqwLα “ 1.

By induction hypothesis, we have that

Lα |ù ψpX, b̄q

and then X P Y .

2. Equality: Let X, Y P Lα`1zLα. Let us see that

Lα`1 |ù X “ Y if and only if Lα`1 |ù jpXq “ jpY q.

By definition, we have that there exist first-order LP-formulas φpx, ȳq, ψpz, w̄q and

parameters b̄ P L|x̄|α and d̄ P L|w̄|α such that

X “ ta P Lα : Lα |ù φpa, b̄qu and Y “ ta P Lα : Lα |ù ψpa, d̄qu.

If X “ Y , then, since j is a function, jpXq “ jpY q and therefore Lα`1 |ù jpXq “ jpY q.

Suppose now that X ­“ Y . Without loss of generality, suppose there exists a P X with

a R Y , i.e.,

Lα |ù φpa, b̄q and Lα * ψpa, d̄q

By the induction hypothesis item 4., this means that

jpXqpjpaqq “ vφpjpaq, jpb̄qqwLα “ 1 and jpY qpjpaqq “ vψpjpaq, jpd̄qqwLα ­“ 1.

but since vψpjpaq, jpd̄qqwLα can only take values in t0, 1u, we get

jpY qpjpaqq “ vψpjpaq, jpd̄qqwLα “ 0.

Let us see that vjpaq P jpY qwLα “ 0.

Notice that



2.3 Constructible sets on valued models 97

jpXqpjpaqq “ 1 and vjpaq P jpY qwLα “ 0, i.e., jpXqpjpaqq Ñ vjpaq P jpY qwLα “ 0

and therefore

vjpXq Ď jpY qwLα “
Ź

cPdompjpXqq

jpXqpcq Ñ vc P jpY qwLα “ 0

and we have vjpXq “ jpY qwLα “ 0, as desired.

The rest of the induction is straightforward, and therefore, by induction on formulas, we

have the theorem.

2.3.2 Constructible sets in quantale-valued models

Definition 2.3.17. Let M Ď V Q. Notice that we can view M as a Q-valued model by

taking the restrictions on M from the interpretations of P and “ on V Q. We say that f P V Q

is a Q´definable (Q˚´definable) subset of M if f satisfies the following:

1. dompfq “M (dompfq ĎM)

2. There is an R ´ LP-formula φpx, ȳq and b̄ PM |ȳ| such that for all a P dompfq

fpaq “ vφpa, b̄qwM .

Given a commutative integral quantale Q, we can define, by transfinite recursion on the

ordinals, the class models LQ and LQ in the same fashion as we did for the Boolean case

(see Definitions 2.3.2 and 2.3.11). Furthermore, by using Theorem 1.2.39, we can prove that

LQ Ď V 2 and LQ Ď V 2 by using a similar argument as in Theorem 2.3.6.

Since the logic for these models is two-valued, there is no reason to continue exploring this

definition of definability on Residuated Logic.
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As it was done in the previous chapter, we would like to generalize both the von Neumann’s

and Gödel’s hierarchy, only that now out aim is to do it in the context of Kripke models.

Since in [Fit69] Fitting studied exactly these hierarchies for Intuitionistic Kripke models, we

generalize his results for a more general kind of Kripke models.

First, in Section 3.1, we start by overviewing the topic of Intuitionistic Kripke models and

showing some well-known relations between it and Cohen’s forcing. Then, we study Ono

and Komori’s notion of semantics for substructural logics without contraction and exchange

(see [OK85]). These models generalize the notion of Intuitionistic Kripke models and are

a suitable semantical counterpart for Residuated Logic. Then, following the ideas of

Lano [Lan92a], we further generalize Ono and Komori’s models to the context of Modal

Residuated Logic. The definition for the interpretation of the modality in our definition

is original, and allows for a smooth transition between Kripke models and lattice-valued

models.

Then, in Section 3.2, we start by exposing Fitting’s results from [Fit69], where he constructs a

generalization of von Neumann’s hierarchy using Intuitionistic Kripke models. Then, using
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the notion of MR-Kripke models that we defined in the previous section, together with

Fitting’s ideas on the intuitionistic case, we construct new Modal Residuated model of

Set Theory.

We consider the model VP˚ (see Definition 3.2.18), that generalizes the von Neumann hi-

erarchy for Modal Residuated Logic, and we prove, in Corollary 3.2.30, that there is a

Gödel–McKinsey–Tarski-like translation between this model and a suited Heyting val-

ued model RH (see Definition 3.2.23). This translation is obtained by first constructing an

“isomorphism” (see Theorem 3.2.29) between VP˚ and RH and then proving how this result

implies that if φ is an LP-sentence that is valid in RH, then ♢φ is valid in VP˚ .

Finally, in Section 3.3, we start by stating Fitting’s main result for constructable sets in

Intuitionistic Kripke models, and then we proceed to superficially study the notion of con-

structible set in the context of Modal Residuated Kripke models of Set Theory. We only

outline a propose for a construction in this context and indicate some possible conditions

that we believe are necessary for the generalization of Fitting’s results.

3.1 Kripke models

Kripke models allow intuitive interpretations of different kinds of non-classical logics such as

Modal (see [Kri59, Kri63b]) or Intuitionistic Logic (see [Kri63a]). Intuitively, this is done via

a collection of possible universes or states of knowledge connected by an accessibility relation

between them and a notion of local truth on each world represented by the forcing relation.

Although these models were originally used for Modal or Intuitionistic Logic, there are a lot

generalizations into different kind of logics such as Fuzzy Logics [SS18], the Logic of Gelfand
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Quantales [AM01] or, as we see in subsection 3.1.3, Residuated Logic [Ono85, OK85, Mac96]

(Ono and Komori call this logic LBCK , which is essentially a substructural logic without the

contraction rule, but with the exchange rule).

3.1.1 Intuitionistic Kripke models

We do not follow Kripke’s original notation nor his definition for his models for Intuitionistic

Logic [Kri63a], but rather Fitting’s definition [Fit69], but written in modern terms (such as

in [Cai95]).

Throughout this chapter, L denotes a first-order language.

Definition 3.1.1 (Intuitionistic Kripke Model, [Fit69], Chapter 4, Section 2). We say that

A “ pP,ď,,,Dq is an Intuitionistic Kripke L-model if

1. P ­“ H and pP,ďq is a partial order.

2. D is a function with domain P to non-empty sets of parameters

3. , is a relation between elements of P and atomic sentences in the language

LA “ LY
Ť

pPP
Dppq.

where each element of
Ť

pPP
Dppq is considered as a constant symbol. We denote pp, φq P ,

by A ,p φ and we say that φ is forced in A at p.

4. Given p, q P P and φ an atomic LA-sentence, we require that D and , satisfy the

following conditions:

a. If p ď q, then Dppq Ď Dpqq.
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b. If p ď q and A ,p φ, then A ,q φ.

c. If A ,p φ, then φ P SentpLYDppqq.

Definition 3.1.2 (Intuitionistic Kripke forcing, [Fit69], Chapter 4, Section 2). Given A “

pP,ď,,,Dq a Kripke L-model, we can extend the forcing relation A ,p φ to all LA-sentences

by recursion on the complexity of φ

1. A ,p pφ_ ψq, if and only if, A ,p φ or A ,p ψ.

2. A ,p pφ^ ψq, if and only if, A ,p φ and A ,p ψ.

3. A ,p pφÑ ψq, if and only if, for all q P P, if q ě p and A ,q φ, then A ,q ψ.

4. A ,p ␣φ, if and only if, for all q P P, if q ě p, then A .q φ.

5. A ,p Dxφpxq, if and only if, there exists a P Dppq such that A ,p φpaq.

6. A ,p @φpxq, if and only if, for all q P P, if q ě p and @b P Dpqq, then A ,q φpbq.

Definition 3.1.3 ([Fit69], Chapter 4, Section 2). Given A “ pP,ď,,,Dq a Kripke L-model

and an L-sentence φ, we say that φ is true in the structure A ( and we denote it by A |ù φ)

if for all p P P, A ,p φ.

Definition 3.1.4. Given pP,ďq a partial order and A Ď P a non-empty set, we say that A

is hereditary, if and only if,

whenever p P A and q ě p, q P A

and we denote the collection of hereditary subsets of P by P`.
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Theorem 3.1.5 (Folklore). The set P` with the order Ď is a complete Heyting algebra.

Proof. Since the order considered is the set the subset relation, it is enough to prove that

the intersection and union of a collection of hereditary sets is hereditary. We only prove the

case for intersection, since the case for the union is proved in a similar way. Let us consider

Ai P P` for i P I and take x P
Ź

iPI

Ai “
Ş

iPI

Ai and y P P such that x ď y. Then, for every

i P I, x P Ai and since Ai is hereditary and x ď y, y P Ai. Therefore, y P
Ş

iPI

Ai, that is,
Ş

iPI

Ai

is hereditary.

The set P` is used as a set of truth values once we define the notion of generalized subsets

in a Kripke model.

Theorem 3.1.6 ([Fit69], Chapter 4, Theorem 4.2). Given A “ pP,ď,,,Dq a Kripke L-

model, p P P and an LA-sentence φ, we have that if A ,p φ and q P P is such that p ď q,

then A ,q φ. That is, the set

tp P P : A ,p φu

is hereditary.

Definition 3.1.7. Given A “ pP,ď,,,Dq a Kripke L-model, we denote the universe of the

Kripke L-model A as |A| :“
Ť

pPP
Dppq.

Theorem 3.1.8 ([Fit69], Chapter 6, Theorem 6.1). If φ is a L-sentence with no universal

quantifiers and &i φ, then there is a model A “ pP,ď,,,Dq in which φ is not true and D

is a constant function.
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Definition 3.1.9. If A “ pP,ď,,,Dq is a Kripke L-model where D is a constant function

(i.e. ranpDq “ tDu), we denote pP,ď,,, Dq :“ pP,ď,,,Dq and we call them Kripke models

with constant universe.

3.1.2 Connections with Cohen’s forcing and valued models.

Now we present a well-known connection between Intuitionistic Kripke models and valued-

models that is going to be useful later. We present it first in the context of Cohen’s

forcing and then show how it can be altered into the context of Kripke models. For a

thorough treatment of set theoretical forcing, see [Kun11].

Given a partial order P, we can construct a complete Boolean algebra B and a dense embed-

ding i : P Ñ B. The Boolean algebra B is called the completion of P and it is unique up to

isomorphism. Thus, if we need to force with a poset P, we could take its Boolean completion

B and force with it instead.

Now, let us consider a complete Boolean algebra B and consider Cohen’s forcing relation ,

on B, where B is viewed as a forcing poset. Then, if φ is any LP-sentence, the truth value

of φ can be defined as

vφwB “
Ž

tp P B : p , φu

and we have that the following holds:

Theorem 3.1.10 ([Kun11], Lemma IV.4.19). For every p P B

p , φ, if and only if, p ď vφwB.
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Furthermore, by [Kun11] Exercise IV.4.20, IV.4.21 and IV.4.24, it is clear that the valuation

that we defined satisfies the conditions of Definition 2.1.1 and 2.1.3.

The only problem with this definition is that in Cohen’s forcing the order relation works

in the opposite way as with Kripke models, that is, p ď q is understood as “p has more

information than q” rather than the other way around. Or in a more formal way, in the

context of Cohen’s forcing we have that if q , φ and p ď q, then p , φ. Therefore, since

Cohen’s forcing preserves truth downwards and Kripke’s forcing preserves truth upwards,

if we want to formulate Theorem 3.1.10 in the context of Kripke’s forcing, we have to consider

the opposite order on the Kripke model. Therefore, we would expect to have the following:

Remark 3.1.11. Consider a Kripke model A “ pB,ďop, ,,Mq and the Boolean valued

model M “ pM, v¨wq determined by A. Then, for every p P B,

A ,p φ iff p ď vφw

In this way, we could construct valued models from a given Kripke model using

vφwB :“
Ž

tp P B : p , φu

as a definition for the valuation.

A similar process can be considered and we can take a valued model and from it construct

a Kripke model. Given that constructing valued models is simpler than defining Kripke

models, we may use valued models together with the relation given in Theorem 3.1.11 to

generate new definitions for Kripke models.

We will see an example of that in the Subsection 3.1.4, where we propose a definition of the

modal operator of possibility on Kripke models using this relation.
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3.1.3 Residuated Kripke models

In [OK85], Ono and Komori generalize the notion of Intuitionistic Kripke models for (propo-

sitional) logics without contraction, that is, substructural logics without the idempotency of

the conjunction. Then, in [Ono85], Ono defines the notion of Kripke models for the predicate

case. For the most part, we follow their notation and conventions, but with small variations,

since we are not interested in working with Gentzen-style sequences. Even though these

models were initially used for the study of substructural logics, MacCaull [Mac96] showed

how the models in [OK85] can be seen as models for Residuated Logic.

Since we are working in the context of Residuated Logic, we need a more robust structure

than just a poset pP,ďq in order to properly interpret the operation of strong conjunction &

and to capture the subtleties of the Residuated Logic, so it would be natural to work with

some kind of ordered monoid, just as quantales are defined. But there is a small issue:

in the Kripke semantics convention, we would expect the forcing relation to preserve truth

upwards, that is:

if a sentence φ is forced at p and p ď q, then the sentence is forced at q, where p, q P P.

So if we were to consider the order as we have been doing it with quantales, this property

would hold backwards (i.e. there would be truth preservation downwards). That is why

some of the properties that we require for our orders in this section are the dual ones of the

properties of quantales.

Definition 3.1.12 ([OK85], Section 3). We say that pP,ď, ¨, 1q is a partially ordered com-

mutative monoid if
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1. pP,ď, 1q is a partial order with 1 as the bottom element.

2. pP, ¨, 1q is a commutative monoid.

3. For all a, b, c P P, if a ď b, then a ¨ c ď b ¨ c.

Definition 3.1.13 ([OK85], Section 3). We say that pP,ď,^, ¨, 1q is an SO-commutative

monoid if

1. pP,^,ďq is a meet-semilattice.

2. pP,ď, ¨, 1q is a partially ordered commutative monoid.

Definition 3.1.14 ([Ono85], p. 189). We say that an SO-commutative monoid pP,ď,^, ¨, 1q

is complete if

1. pP,^q is a complete meet-semilattice (thus, P has a top element, denoted by 8)

2. For every a, bi PM with i P I, a ¨
Ź

iPI

bi “
Ź

iPI

pa ¨ biq

Remark 3.1.15. Notice that since a_¨ preserves arbitrary meets, by the Adjoint Functor

Theorem for preorders (Theorem 1.2.5), a¨_ is a right adjoint, that is, there exists a function

aÑ _ : PÑ P such that for all b, c P P

aÑ c ď b, if and only if, c ď a ¨ b

Furthermore, this implication allow us to define a negation on P by taking

„ a :“ aÑ 8

Notice that we take aÑ 8 as the definition of „ a since 8 is the top element of P, and the

definitions and properties on this order are the duals of those in the context of quantales.
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Theorem 3.1.16. Take an SO-commutative complete monoid P “ pP,ď,^, ¨, 1,8q. Then,

P satisfies (for the most part) the dual properties of Q (see Theorems 1.2.33, 1.2.36 and

1.2.37). More specifically, if a, b, c P P with i P I, then:

1. a ď b, if and only if, pbÑ aq “ 1.

2. b ď a ¨ paÑ bq.

3. If a ď b, then bÑ c ď aÑ c.

4. If a ď b, then cÑ a ď cÑ b.

5. pa ¨ bq Ñ c “ aÑ pbÑ cq.

6. a ¨ p„ aq “ 8.

We focus on Residuated Kripke models with constant universe (i.e. Dppq “ D for all p P P).

We follow the presentation of [Ono85], where he calls this kind of models total strong frame

with constant domain or simply total CD-frame. Since all the Residuated Kripke models

that we consider have constant universe, we will not call attention on this fact from now on.

Definition 3.1.17 (Residuated Kripke Model, [Ono85], p. 189). We say that A “ pP,ď,,

, Dq is a Residuated Kripke L-model (or R-Kripke L-model for short) if

1. P “ pP,ď,^, ¨, 1,8q is a complete SO-commutative monoid.

2. , is a relation between elements of P and atomic sentences in the language

LA “ LYD,
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where each element of D is considered as a constant symbol. We denote pp, φq P , by

A ,p φ and we say that φ is forced in A at p.

3. Given pi, q P P, with i P I and φ an atomic LA-sentence, we require that , satisfies

the following conditions:

a. If
Ź

iPI

pi ď q and for each i P I A ,pi φ, then A ,q φ.

b. A ,8 φ for every atomic R ´ LA-sentence φ.

c. A ,p K if and only if p “ 8. Recall that K is the symbol of contradiction.

Definition 3.1.18 (Residuated Kripke forcing [Ono85], p. 189). Given A “ pP,ď,,, Dq a

Residuated Kripke L-model, p P P and an R ´ LA-sentence φ, we can extend the forcing

relation A ,p φ to all R ´ LA-sentences by recursion on the complexity of φ

1. A ,p pφ&ψq, if and only if, there are q, r P P such that p ě q ¨ r, A ,q φ and A ,r ψ.

2. A ,p pφ_ ψq, if and only if, there are q, r P P such that p ě q ^ r, and both (A ,q φ

or A ,q ψ) and (A ,r φ or A ,r ψ) hold.

3. A ,p pφ^ ψq, if and only if, A ,p φ and A ,p ψ.

4. A ,p pφÑ ψq, if and only if, for all q, r P P if A ,q φ and p ¨ q ď r, then A ,r ψ.

5. A ,p Dxφpxq if and only there exist an index set I such that for every i P I, there

exists di P D and qi P P such that
Ź

iPI

qi ď p and A ,qi φpdiq

6. A ,p @φpxq, if and only if, for all b P D, A ,p φpbq.

Remark 3.1.19. By definition of „ φ, it is straightforward to prove that
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A ,p„ φ, if and only if, for all q, r P P if A ,q φ and p ¨ q ď r, then r “ 8.

Remark 3.1.20. Ono and Komori (see [OK85] Section 6) proved that the propositional

version of these models generalizes the usual Intuitionistic Propositional Kripke Models.

Definition 3.1.21 ([Ono85], p. 189). Given A “ pP,ď,,, Dq an R-Kripke L-model and an

R ´ LA-sentence φ, we say that φ is true in the structure A (denoted by A |ù φ) if for all

p P P, A ,p φ.

Theorem 3.1.22 (Completeness and Soundness Theorem for the Kripke semantics, [Ono85]

Lemma 2.2 and Theorem 2.3). Given an R´L-theory T and φ an R´L-sentence, we have

that T $r φ, if and only if, for every R-Kripke L-model A, if A |ù T , then A |ù φ.

Now we proceed to analyze the behavior of the sets of conditions that force a given formula

in the context of these models.

Definition 3.1.23 ([OK85], p. 194). We say that A Ď P is X-closed A if A is hereditary

and closed under (finite) meets, that is:

1. For all a P A and b P P, if a ď b, then b P A.

2. For all a, b P A, a^ b P A.

We denote

DpPq :“ tA Ď P : A is X -closedu

Ono and Komori work with the notion of X-closed in [OK85] for the propositional case.

Since we work in the predicate version of this kind of logics, we have to change the notion
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of X-closed to a new notion that we called strongly hereditary set. This had to be done,

since in the case of the Predicate Logic the set of elements of P that force a formula are

characterized by a stronger assumption.

Definition 3.1.24. We say that a non-empty set A Ď P is strongly hereditary if for all

ci P A and d P P for i P I, if
Ź

iPI

ci ď d, then d P A. Notice that from the definition is clear

that is A is strongly hereditary, then A is hereditary. We denote

P˚ :“ tA Ď P : A is strongly hereditaryu

As we mentioned before, we need to work with the notion of strongly hereditary and not

with Ono’s notion of X-closed since the set

tp P P : A ,p φu

is strongly hereditary and not just X-closed for a given R ´ L-sentence φ.

Definition 3.1.25 (cf. [OK85], p. 194). Let pP,ď,^, ¨, 1,8q be a complete SO-commutative

monoid. Take A,B,Ai Ď P, with i P I and x P P. We define

A ¨B :“ tc P P : there exist a P A, b P B such that c ě a ¨ bu

x ¨ A :“ txu ¨ A “ tc P P : there exists a P A such that c ě a ¨ xu

AÑ B :“ tc P P : c ¨ A Ď Bu

0P˚ :“ t8u.

1P˚ :“ P.

A_B :“ tc P P : there exist a, b P AYB such that c ě a^ bu

A^B :“ AXB.
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Ž

iPI

Ai :“ tc P P : there exists an index set J such that for all j P J, there are aj P

Ť

iPI

Ai such that
Ź

jPJ

aj ď cu

Ź

iPI

Ai :“
Ş

iPI

Ai

Our definition of the arbitrary join differs from the one given in [OK85]. Ono and Komori

defined the arbitrary join operation as follows:

Ž

iPI

Ai :“ tc P P : there exists a finite index set J such that for all j P J, there are aj P

Ť

iPI

Ai such that
Ź

jPJ

aj ď cu

We had to change this, since we are working on the set P˚ and not on the set DpPq, which

happens to be larger, and therefore the definition of joins might not coincide.

On the other hand, Ono and Komori proved that DpPq is a complete full BCK-algebra (see

[OK85] for a definition of this algebra) with the operations they defined. Since a complete

full BCK-algebra happens to be a complete Residuated Lattice, we use their ideas to prove

that the set P˚ is a complete Residuated Lattice with the operations that we defined above.

Theorem 3.1.26 (cf. [OK85], Lemma 8.3). Let pP,ď,^, ¨, 1,8q be a complete SO-commutative

monoid. Then, P˚ endowed with the operations of Definition 3.1.25 and the order Ď forms

a complete Residuated Lattice.

Proof. We start by showing that P˚ is closed under the operations we defined in Definition

3.1.25. Consider A,B,Ai P P˚, with i P I.

1. Take ci P A ¨ B, d P P for i P I and assume that
Ź

iPI

ci ď d. Since ci P A ¨ B, there

are ai P A and bi P B such that ai ¨ bi ď ci. Then,
Ź

iPI

pai ¨ biq ď
Ź

iPI

ci ď d. Notice that
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ˆ

Ź

iPI

ai

˙

¨

ˆ

Ź

iPI

bi

˙

ď
Ź

iPI

pai ¨ bi), since, by monotonicity,
ˆ

Ź

iPI

ai

˙

¨

ˆ

Ź

iPI

bi

˙

ď pai ¨ biq for

all i P I. Now, since A and B are strongly hereditary, we have that
Ź

iPI

ai P A and

Ź

iPI

bi P B and we can conclude that d P A ¨B.

2. Take ci P A Ñ B for i P I, d P P and assume that
Ź

iPI

ci ď d. Since ci P A Ñ B,

ci ¨ A Ď B. Take c P d ¨ A, and a P A such that d ¨ a ď c. Then,
Ź

iPI

pci ¨ aq “
ˆ

Ź

iPI

ci

˙

¨ a “ď d ¨ a ď c, that is,
Ź

iPI

pci ¨ aq ď c. Notice that ci ¨ a P ci ¨A Ď B and since

B is strongly hereditary and
Ź

iPI

pci ¨ aq ď c, we can conclude that c P B. This shows

that c P d ¨ A Ď B and therefore d P AÑ B.

3. Take cj P
Ź

iPI

Ai “
Ş

iPI

Ai, d P P for j P J and assume that
Ź

jPJ

cj ď d. Since cj P Ai and

Ai is strongly hereditary for each i P I, we have that d P Ai for every i P I, that is,

d P
Ş

iPI

Ai.

4. Take cj P
Ž

iPI

Ai, d P P for j P J and assume that
Ź

jPJ

cj ď d. Since cj P
Ž

iPI

Ai, there

exists Kj such that for all k P Kj, there is ak P
Ť

iPI

Ai such that
Ź

kPKi

ak ď cj. Consider

K :“
Ť

iPI

Ki, then,
Ź

kPK

ak ď
Ź

jPJ

cj ď d and we conclude that d P
Ž

iPI

Ai.

By the definition of P˚ and since the order is Ď, is clear that 0P˚ :“ t8u and 1P˚ :“ P. Let

us see that pP˚, ¨,Pq is a commutative monoid. The commutativity of pP˚, ¨q follows from the

commutativity of pP, ¨q. The identity of pP˚, ¨q is P, since 1 P P. For the associativity of the

product, take z P A ¨ pB ¨Cq, therefore, there exist a P A and y P pB ¨Cq such that z ě a ¨ y.

Then, by definition of B ¨ C, there exist b P B, c P C such that y ě b ¨ c, by monotonicity,

we get z ě a ¨ y ě a ¨ b ¨ c, then, if we take x “ a ¨ b, we have that x P A ¨ B and then,

z P pA ¨Bq ¨ C, i.e. A ¨ pB ¨ Cq Ď pA ¨Bq ¨ C. The converse is proved similarly.
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To see the adjunction condition, we have to prove that

A ¨B Ď C, if and only if, A Ď B Ñ C

1. Assume that A ¨ B Ď C and take x P A. Notice that the hypothesis implies that

x ¨B Ď C and therefore x P B Ñ C

2. Assume that A Ď B Ñ C and take x P A ¨ B. Then, there are a P A and b P B such

that a ¨ b ď x. Since a P A and A Ď B Ñ C, we deduce that a P B Ñ C, that is,

a ¨B Ď C. Therefore, since x P a ¨B, be conclude that x P C.

All we have left to see is that

Ž

iPI

Ai “ tc P P : there exists an index set J such that for all j P J, there are aj P

Ť

iPI

Ai such that
Ź

jPJ

aj ď cu

is in fact the Ď-supremum of the set tAi : i P Iu. Clearly, Ai Ď
Ž

iPI

Ai for every i P I. Now,

take B P P˚ an Ď-upper bound for tAi : i P Iu. Let x P
Ž

iPI

Ai, then, there exists J such that

for each j P J there is aj P
Ť

iPI

Ai such that
Ź

jPJ

aj ď x. Since aj P
Ť

iPI

Ai Ď B, if follows that

aj P B and since B is strongly hereditary, we conclude that x P B. Thus,
Ž

iPI

Ai Ď B.

Lemma 3.1.27 ([Ono85], Lemma 2.1). For every R ´ LA-sentence φ and ai, b P P, with

i P I. If A ,ai φ for every i P I and
Ź

iPI

ai ď b, then A ,b φ. Notice that this lemma implies

that the set tp P P : A ,p φu is strongly hereditary.

Theorem 3.1.28 (cf. [Fit69]). Take a R-Kripke L-model A “ pP,ď,,, Dq. If φ and ψ are

R ´ LA-sentences and θpxq is an R ´ LA-formula, then
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tp P P : A ,p φu ¨ tp P P : A ,p ψu “ tp P P : A ,p φ&ψu

tp P P : A ,p φu _ tp P P : A ,p ψu “ tp P P : A ,p φ_ ψu

tp P P : A ,p φu X tp P P : A ,p ψu “ tp P P : A ,p φ^ ψu

tp P P : A ,p φu Ñ tp P P : A ,p ψu “ tp P P : A ,p φÑ ψu

„ tp P P : A ,p φu “ tp P P : A ,p„ φu

Ş

dPD

tp P P : A ,p θpdqu “ tp P P : A ,p @xθpxqu

Ž

dPD

tp P P : A ,p θpdqu “ tp P P : A ,p Dxθpxqu

Proof. Take p P P.

1. Suppose that A ,p φ&ψ, that is, there are q, r P P such that p ě q ¨ r, A ,q φ and

A ,r ψ, but this is equivalent to p P tp P P : A ,p φu ¨ tp P P : A ,p ψu.

2. Suppose that A ,p φ _ ψ, that is, there are q, r P P such that p ě q ^ r and both

(A ,q φ or A ,q ψ) and (A ,r φ or A ,r ψ), that is, both (q P tp P P : A ,p

φu Y tp P P : A ,p ψu ) and (r P tp P P : A ,p φu Y tp P P : A ,p ψu ),

that is, r, q P tp P P : A ,p φu Y tp P P : A ,p ψu and this the definition of

p P tp P P : A ,p φu _ tp P P : A ,p ψu.

3. The conjunction and universal quantifier cases are straightforward.

4. Suppose that A ,p pφ Ñ ψq, that is, for all q, r P P if A ,q φ and p ¨ q ď r, then

A ,r ψ. This means that for all q, r P P if q P tp P P : A ,p φu and p ¨ q ď r,

then r P tp P P : A ,p ψu, that is, for all r P P, if r P p ¨ tp P P : A ,p φu, then

r P tp P P : A ,p ψu, but this is equivalent to p ¨ tp P P : A ,p φu Ď tp P P : A ,p ψu,

but this is equivalent to p P tp P P : A ,p φu Ñ tp P P : A ,p ψu.
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5. By the previous item, if we take ψ “ K, we get

tp P P : A ,p φu Ñ tp P P : A ,p Ku “ tp P P : A ,p φÑ Ku.

Then, by Definition 3.1.17 item 3. a., and by definition of „ φ, we have

tp P P : A ,p φu Ñ t8u “ tp P P : A ,p„ φu,

but t8u “ 0P˚ . Thus

„ tp P P : A ,p φu “ tp P P : A ,p„ φu

6. Suppose that A ,p Dxθpxq, that is, there exists an index set I such that for for every

i P I, there exists di P D and qi P P such that
Ź

iPI

qi ď p and A ,qi θpdiq, that is, for

every i P I, there are qi P
Ť

dPD

tp P P : A ,p θpdqu such that
Ź

iPI

qi ď p but this the

definition of p P
Ž

dPD

tp P P : A ,p θpdqu.

3.1.4 Residuated Kripke models with modal operators

Throughout this subsection, Q denotes a complete Residuated Lattice.

This section is inspired in the work of Lano [Lan92a], where he considers a special kind of

interior operator I on a residuated lattice (structure that he calls Topological Resid-

uated Lattice) and constructs models of Residuated Modal Set Theory. He introduces an

operator of necessity (denoted l) to be interpreted by an interior operator I and then

provides an axiomatization of this logic and proves some results for the model of Set Theory

that he constructs.
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Unlike Lano, we consider a special kind of closure operator (a standard quantic nu-

cleus) on our residuated lattice and develop a similar kind of model where we augment

the logic with a possibility operator (denoted ♢). This is done since the order that Lano

considers for his models preserves truth downwards (following Cohen’s convention) and not

upwards (following Kripke’s). See Subsection 3.1.2 for a more in-depth discussion.

Thus, we would like to extend the definition of Kripke model so that we can interpret

formulas of the form ♢φ. To get an idea of how we should define them, we start from the

more natural definition of ♢φ in a valued model. So consider a Q-valued modal model M

and a quantic nucleus γ on Q (see Definition 1.2.43).

Then, by definition (see Subsection 2.1.4), we have that

v♢φw :“ γpvφwq.

Let us assume that the formula φ satisfies the relation

A ,p φ iff p ď vφw (induction hypothesis)

and let us try to define A ,p ♢φ using only the forcing relation , and the quantic nucleus on

γ by using the relation given by Theorem 3.1.11. Therefore, we want to prove the following

equivalences:

A ,p ♢φ iff p ď v♢φw (we want Thm. 3.1.10 to hold)

iff p ď γpvφwq (by definition of v♢φwq

iff there exists q P P such that p ď γpqq and q ď vφw (since γ is monotone)

iff there exists q P P such that p ď γpqq and A ,q φ (by induction hypothesis)
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Therefore, we can define A ,p ♢φ only in terms of forcing and some nucleus γ on P. But

since the order of the underlining order of the Kripke model is reversed in Theorem 3.1.11,

we need to reverse the order in last line of equivalences above. Also, we have to reverse the

order in the conditions defining a quantic nucleus. That lead us to the following definition.

Definition 3.1.29. We say that a function δ : P Ñ P is a conucleus on a complete SO-

monoid pP,ď, ¨q if for all p, q, pi P P with i P I

1. δppq ď p.

2. If p ď q, then δppq ď δpqq.

3. δpδppqq “ δppq.

4. δpp ¨ qq ď δppq ¨ δpqq.

5. δp
Ź

iPI

piq “
Ź

iPI

δppiq

Remark 3.1.30. Notice that the conditions 1 ´ 4 are the dual ones of the conditions in

the definition of a quantic nucleus (see Definitions 1.2.15 and 1.2.43) and therefore δ is a

interior operator rather than a closure one. The condition 5 was added to been able to

prove that:

1. The set tp P P : A ,p φu is strongly hereditary for every MR-formula φ,

2. the operation γδ (we will define this operation in Theorem 3.1.37) is well defined on

the set P˚.

Remark 3.1.31. Notice that since δ distributes over arbitrary meets, by the Adjoint Functor

Theorem for preorders (Theorem 1.2.5), there exists an operator ρ : P Ñ P that is the left
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adjoint of δ. As it is usual in Modal Logic (for example in S5), the necessity and the

possibility form an adjoint pair. Therefore, we may use the operator ρ to define a notion of

necessity in our Kripke models. We will not do so in our work, since there is no real need

for this operator for our results.

Remark 3.1.32. This notion of conucleus is different the notion defined by Rosenthal in

[Ros90]. A conucleus in [Ros90] is an interior operator that satisfies the condition

δppq ¨ δpqq ď δpp ¨ qq.

which is the opposite of what we require.

Definition 3.1.33. We say that P “ pP,ď,^, ¨, 1,8, δq is a complete modal SO-commutative

monoid if

1. pP,ď,^, ¨, 1,8q is a complete SO-commutative monoid.

2. δ is a conucleus on pP,ď, ¨q.

Definition 3.1.34 (Modal Residuated Kripke model, cf. [Ono85] p. 189). We say that

A “ pP,ď, δ,,, Dq is a Modal Residuated Kripke L-model (or MR-Kripke L-model, for

short) if

1. P “ pP,ď,^, ¨, 1,8, δq is a complete modal SO-commutative monoid.

2. , is a relation between elements of P and atomic sentences in the language

LA “ LYD,

where each element of D is considered as a constant symbol. We denote pp, φq P , as

A ,p φ.
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3. Given pi, q P P, with i P I and φ an atomic LA-sentence, we require that , satisfy the

following conditions:

a. If
Ź

iPI

pi ď q and for each i P I A ,pi φ, then A ,q φ.

b. A ,8 φ for every atomic LA-sentence.

c. A ,p K, if and only if, p “ 8. Recall that K is the symbol of contradiction.

We propose now an extension of the forcing relation based on the ideas we exposed in the

introduction of this subsection.

Definition 3.1.35 (Modal Residuated Kripke forcing). Given A “ pP,ď, δ,,, Dq a MR-

Kripke L-model, p P P and an MR ´ LA-sentence φ, we can extend the forcing relation

A ,p φ to all MR´ LA-sentences by recursion on the complexity of φ. The definition of ,

for the usual symbols is the same as in Definition 3.1.18, so we only define ♢.

1. A ,p ♢φ, if and only if, there exists q P P such that A ,q φ and δpqq ď p.

Notice that the definition of ♢ depends on δ, so if we change the conucleus δ, we would

obtain different notions of possibility ♢.

Lemma 3.1.36 (cf. [Ono85] Lemma 2.1). Let φ be an MR ´ LA-sentence and ai, b P P,

with i P I. If A ,ai φ for every i P I and
Ź

iPI

ai ď b, then A ,b φ. Notice that this lemma

implies that the set

tp P P : A ,p φu

is strongly hereditary.
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Proof. By Lemma 3.1.27, we just need to see what happens with ♢φ for a given φ such that

for all p, pi P P with i P I, if A ,pi φ and
Ź

iPI

pi ď p, then A ,p φ (induction hypothesis).

Take p, pi P P with i P I such that A ,pi ♢φ and
Ź

iPI

pi ď p. By definition of ,, there exists

qi P P such that

δpqiq ď pi and A ,qi φ

By the induction hypothesis, we have A ,q φ, where q “
Ź

iPI

qi. Notice that

δpqq “ δ

˜

ľ

iPI

qi

¸

“
ľ

iPI

δpqiq (by Definition 3.1.29 item 5.)

ď
ľ

iPI

pi (since δpqiq ď pi for all i P Iq

ď p

Then, by definition of ,, we conclude that A ,p ♢φ

Theorem 3.1.37. The operation γδ : P˚ Ñ P˚ defined as

γδpAq :“ tp P P : there is q P A such that δpqq ď pu

is a quantic nucleus on pP˚,Ď, ¨q. If there is no ambiguity, we denote γ :“ γδ.

Proof. Take A P P˚. We want to see that γpAq P P˚, so let us take bi P γpAq with i P I and

p P P such that
Ź

iPI

bi ď p. Then, by definition of γ, there exists ai P A such that δpaiq ď bi.

Then, by monotonicity and idempotence of δ, δpaiq “ δpδpaiqq ď δpbiq. Notice now that
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δ

˜

ľ

iPI

ai

¸

“
ľ

iPI

δpaiq (by Definition 3.1.29 item 5.)

ď
ľ

iPI

δpbiq (since δpaiq ď δpbiq for all i P Iq

“ δp
ľ

iPI

biq (by Definition 3.1.29 item 5.)

ď δppq (since
Ź

iPI

bi ď p and δ is a monotone function)

ď p (by Definition 3.1.29 item 1.)

Since A is strongly hereditary,
Ź

iPI

ai P A. Therefore, it follows that p P γpAq and we conclude

that γpAq P P˚. We proceed to prove that γ is a quantic nucleus:

1. We want to see that A Ď γpAq. Take p P A. Since δppq ď p and by definition of γ,

p P γpAq.

2. We want to see that if A Ď B, then γpAq Ď γpBq. Assume that A Ď B and take

p P γpAq. Then, there exists q P A such that δpqq ď p, but since A Ď B we have that

q P B and this implies that p P γpBq.

3. We want to see that γpγpAqq “ γpAq. By the item 1. on this list,

γpAq Ď γpγpAqq.

To see the other inequality, take p P γpγpAqq. Then, there exists q P γpAq with δpqq ď p,

and thus there exists r P A with δprq ď q. Therefore,

δprq “ δpδprqq ď δpqq ď p,
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that is, δprq ď p and we conclude that p P γpAq.

4. We want to see that γpAq ¨ γpBq Ď γpA ¨Bq so let us take p P γpAq ¨ γpBq. Then, there

exists a P γpAq and b P γpBq such that a ¨ b ď p. Thus, there exists qa P A and qb P B

such that δpqaq ď a and δpqbq ď b. Notice that, by the monotonicity of ¨,

δpqa ¨ qbq ď δpqaq ¨ δpqbq ď a ¨ b ď p

and since qa ¨ qb P A ¨B, we conclude that p P γpA ¨Bq

Lemma 3.1.38. Let Ai P P˚ for i P I. The quantic nucleus γ satisfies

γp
Ž

iPI

Aiq “
Ž

iPI

γpAiq

Proof. Take p P γp
Ž

iPI

Aiq. Therefore,

there exists q P
Ž

iPI

Ai such that δpqq ď p.

And then, by definition of
Ž

(see Definition 3.1.25), we have that

there exists an index set J such that for all j P J there exists aj P
Ť

iPI

Ai such that
Ź

jPJ

aj ď q.

Now, since
Ź

jPJ

aj ď q and by Definition 3.1.29 item 5., we have that

Ź

jPJ

δpajq “ δp
Ź

jPJ

ajq ď δpqq ď p

Therefore, since δpajq P
Ť

iPI

γpAiq, we conclude that p P
Ž

iPI

γpAiq.

On the other hand, if p P
Ž

iPI

γpAiq, we have that

there exists an index set J such that for all j P J there exists aj P
Ť

iPI

γpAiq such that

Ź

jPJ

aj ď p
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Then, for every j P J , there exist ij P I such that aj P γpAijq. Then, by definition of γ, there

exist qj P Aij such that δpqjq ď aj for every j P J . This implies that

δp
ľ

jPj

qjq “
ľ

jPj

δpqjq (by Definition 3.1.29 item 5.)

ď
ľ

jPj

aj (since δpqjq ď aj for every j P Jq

ď p.

Notice that
Ź

jPj

qj P
Ž

iPI

Ai, and therefore p P γp
Ž

iPI

Aiq.

Remark 3.1.39. Notice that this lemma implies, by the Adjoint Functor Theorem for

preorders (Theorem 1.2.5), that γ has a right adjoint. This adjoint may be used to define a

notion of necessity just as we mentioned before.

Definition 3.1.40. Let δ : PÑ P be a conucleus.

1. δ is said to be idempotent if δpp2q :“ δpp ¨ pq “ δppq, for every p P P.

2. δ is said to respects the top element if δp8q “ 8.

3. δ is said to respect implications if δppÑ qq “ 1, if and only if, pÑ δpqq “ 1 for every

p, q P P (see Remark 3.1.15 for the definition of Ñ).

Theorem 3.1.41. Let δ : PÑ P be a conucleus.

1. If δ is idempotent, then γ is idempotent.

2. If δ respects the top element, then γ respects the bottom element.
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3. If δ respects implications, then γ respects implications.

Proof. Take A,B P P˚.

1. Assume that δ is idempotent. We want to see that γpA ¨Aq “ γpAq. Since pP˚,Ď, ¨q is

a commutative integral quantale, by Theorem 1.2.33 item 6, A ¨A Ď A and then, since

γ is monotone,

γpA ¨ Aq Ď γpAq.

Now take p P γpAq. Then, there exists q P A such that δpqq ď p. Since δ is idempotent,

δpq ¨ qq “ δpqq ď p. Therefore, since q ¨ q P A ¨ A, we have that p P γpA ¨ Aq, that is,

γpAq Ď γpA ¨ Aq.

2. Recall that 0P˚ “ t8u, therefore

γpt8uq “ tp P P : there exists q P t8upδpqq ď pqu “ tp P P : δp8q ď pu

“ tp P P : 8 ď pu (since δ respects the top element)

“ t8u

3. Assume now that δ respects implications. Since 1P˚ “ P, we want to prove that

γpAÑ Bq “ P, if and only if, AÑ γpBq “ P.

Since γ is a quantic nucleus on P˚, by Corollary 1.2.47, we have that

γpAÑ Bq Ď AÑ γpBq.

And therefore γpAÑ Bq “ P implies that AÑ γpBq “ P.
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Let us see converse. Let us assume that AÑ γpBq “ P.

Take c P P “ AÑ γpBq, that is, c ¨A Ď γpBq. This means that for every a P A, there

exists ba P B such that δpbaq ď c ¨ a. Notice now that

δpbaq ď pc ¨ aq ¨ 1 iff pc ¨ aq Ñ δpbaq ď 1 (by Theorem 3.1.16 item 1.)

iff δppc ¨ aq Ñ baq “ 1 (since δ respects implications)

iff δpcÑ paÑ baqq “ 1 (by Theorem 3.1.16 item 5.)

iff cÑ δpaÑ baq “ 1 (since δ respects implications)

iff δpaÑ baq ď c (by Theorem 3.1.16 item 1.)

If we find some a P A such that a Ñ ba P A Ñ B, we get that c P γpA Ñ Bq. Thus,

take an enumeration A “ tai : i P Iu and define

a “
Ź

iPI

ai.

Since A is strongly hereditary, a P A. Let us see that a Ñ ba P A Ñ B, that is,

paÑ baq ¨ A Ď B. So take any j P I and let us show that paÑ baq ¨ aj P B.

Since a “
Ź

iPI

ai ď aj, by Theorem 3.1.16 item 3., we deduce that aj Ñ ba ď aÑ ba.

Therefore,

ba ď paj Ñ baq ¨ aj (by Theorem 3.1.16 item 2.)

ď paÑ baq ¨ aj (¨ is a monotone function)

and since B is strongly hereditary and ba P B, we deduce pa Ñ baq ¨ aj P B. Then,

since aÑ ba P AÑ B, we conclude that c P γpAÑ Bq.
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Theorem 3.1.42. Take A “ pP,ď, δ,,, Dq a Modal Residuated Kripke L-model, and an

MR ´ LA-sentence φ. Then,

γptp P P : A ,p φuq “ tp P P : A ,p ♢φu

Proof. Take p P P, thus

p P tp P P : A ,p ♢φu iff there is q P P such that δpqq ď p and A ,p φ (by definition of ,)

iff there is q P P such that δpqq ď p and q P tp P P : A ,p φu

iff p P γptp P P : A ,p φuq (by definition of γ)

3.2 Kripke models of Set Theory

Fitting [Fit69] constructed several models of Set Theory generalizing both the universes of

von Neumann and of Gödel using Kripke models and then went on to show how these models

can be used to obtain classical proofs of independence in Set Theory.

In this section, we aim to expose Fitting’s results and then to propose some generalizations

in the context of Modal Residuated Kripke models.
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3.2.1 Intuitionistic Kripke models of set theory

This subsection focuses on Chapter 14 of [Fit69] “Additional classical model generalizations

”. Our goal is to highlight some crucial points in Fitting’s results so that we can generalize

them in the next subsection in the context of Residuated Kripke models. One key aspect

to notice on Fitting’s results is the use of the double negation modal operator ␣␣ to

translate sentences from Classical Logic into Intuitionistic Logic (see Definition 1.3.5).

The notion of subset in these models is similar to the notion of generalized subsets we studied

in Section 2.2. The key difference is that since we are working with a order P, we need to

find a suited Heyting algebra to take as a set of truth values. This is done via the Heyting

algebra of hereditary subsets of P.

Definition 3.2.1 ([Fit69], p. 166). Given A “ pP,ď,,, Dq an Intuitionistic Kripke LP-

model with constant universe. We say that a function f is a P`-subset of A if

1. Dompfq Ď D

2. Ranpfq Ď P` “ tA Ď P : A is hereditaryu

Recall that P` is a Heyting algebra with the order Ď.

Definition 3.2.2 ([Fit69], p. 166). Recall that an element A P P` is called regular if

␣␣A “ A (see Definition 1.2.19), where ␣ is the operation of P` as a Heyting algebra. We

call a function with range P` regular if every member of its range is regular.

Remark 3.2.3. Recall that if H is a Heyting algebra, then the set B “ tA P H : ␣␣A “ Au

is a Boolean algebra.
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Definition 3.2.4 ([Fit69], p. 166). Given A “ pP,ď,,, Dq a Intuitionistic Kripke LP-model,

we say that a function from D to P` is extensional if, for each g, h P D

fpgq X tp P P : A ,p p␣pDxq␣px P g Ñ x P hqq ^ p␣pDxq␣px P hÑ x P gqqu Ď fphq

and we denote

PP`pDq :“ tf : f is a regular and extensional P`-subset of Au

Definition 3.2.5 ([Fit69], p. 166). We now define on induction over the ordinals a class

of Intuitionistic Kripke models VP`
α :“ pP,ď,,, RP`

α q, all with the same underlying order

pP,ďq, but changing the universe for each α.

1. VP`
0 :“ pP,ď,,, RP`

0 q where RP`
0 :“ H.

2. VP`
α`1 :“ pP,ď,,, RP`

α`1q where RP`
α`1 :“ RP`

α Y PP`pRP`
α q and VP`

α`1 ,p φ is defined as

follows: If p P P and f, g P RP`
α`1 then we have the following cases:

a. If f, g P RP`
α , then

VP`
α`1 ,p pf P gq, if and only if, VP`

α ,p pf P gq

b. If f P RP`
α and g P RP`

α`1zR
P`
α “ PP`pRP`

α q, then

VP`
α`1 ,p pf P gq, if and only if, p P gpfq.

c. If f P RP`
α`1zR

P`
α “ PP`pRP`

α q, then VP`
α`1 ,p pf P gq, if and only if, there exist

h P dompgq such that

p P gphq and p P pfpxq Ø tq P P : VP`
α ,q ␣␣px P hquq for every x P RP`

α

3. If α ­“ 0 is a limit ordinal, then let RP`
α :“

Ť

βăα

RP`
β and given f, g P RP`

α take any

η ă α such that f, g P RP
η and let
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VP`
α ,p pf P gq, if and only if, VP`

η ,p pf P gq.

Remark 3.2.6 ([Fit69], Remark 4.2). The expression

fpxq Ø tq P P : VP`
α ,q ␣␣px P hqu

is an element in the Heyting algebra P`, where Ø is the operation in P`.

Definition 3.2.7 ([Fit69], p. 166). Consider the Intuitionistic Kripke (class) LP-model

VP` :“ pP,ď, RP`q, where RP` :“
Ť

αPON

RP`
α ,

and given f, g P RP` take any η P ON such that f, g P RP
η and let

VP` ,p pf P gq, if and only if, VP`
η ,p pf P gq.

We now construct a Boolean valued model pRB, v¨wBq that is deeply related with

VP` “ pP,ď,,, RP`q.

Definition 3.2.8 ([Fit69], p. 164). Given a Boolean valued model pR, v¨wBq, we say that a

function f : RÑ B is extensional if for all g, h P R,

fpgq ^ vp@xqpx P g Ø x P hqwB ď fphq

Definition 3.2.9 ([Fit69], p. 165). We define on induction on ordinals a class of Boolean

valued models pRB
α, v¨w

B
αq as follows:

1. RB
0 :“ H with v¨wB0 :“ H.

2. RB
α`1 :“ RB

α Y tf : RB
α Ñ B : f is extensionalu and given f, g P RB

α`1, we have, for the

definition of vf P gwBα, the following cases:
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a. If f, g P RB
α, then vf P gwBα`1 :“ vf P gwBα.

b. If f P RB
α and g P RB

α`1zR
B
α, then vf P gwBα`1 :“ gpfq.

c. If f P RB
α`1zR

B
α, then

vf P gwBα`1 :“
Ž

hPdompgq

tgphq ^
Ź

xPRB
α

pfpxq Ø vx P hwBαqu

d. If α ­“ 0 is a limit ordinal, then let RB
α :“

Ť

βăα

RB
β and given f, g P RB

α take any

η ă α such that f, g P RB
η and let vf P gwBα :“ vf P gwBη .

Now let

RB :“
Ť

αPON

RB
α

and given f, g P RB take any η ă α such that f, g P RB
η and let vf P gwB :“ vf P gwBη .

Remark 3.2.10. Recall that an element of A P P` is called dense if ␣␣A “ 1 “ P. Let

F␣␣ be the collection of all dense elements of P`. We know that F␣␣ is a filter and that

the relation «F␣␣ given by

A «F␣␣ B, if and only if, AÑ B P F␣␣ and B Ñ A P F␣␣

is an equivalence relation. With that in mind, let us denote

B :“ P`{F␣␣ :“ P`{«F␣␣
“ t|A| : A P P`u,

where

|A| :“ |A|«F␣␣
is the «F␣␣ - equivalence class of A.

Recall that by Theorem 1.2.21, B :“ P`{F␣␣ is a complete Boolean algebra. This Boolean

algebra determines a sequence of valued models pRB
α, v¨w

B
αq that is isomorphic to the sequence

VP`
α “ pP,ď,,, RP`

α q in the following way:
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Theorem 3.2.11 ([Fit69], Chapter 15, Theorem 5.5). For every α P ON , there exist a

bijection jα : RP`
α Ñ RB

α such that for every classical first-order LP-formula with no universal

quantifiers φpx1, ..., xnq and every a1, ..., an P RP`
α ,

rtp P P : VP`
α ,p φpa1, ..., anqus “ vφpjαpa1q, ..., jαpanqqw

B
α

Corollary 3.2.12 ([Fit69], Chapter 15, Corollary 5.6). If φ is an LP-sentence with no

universal quantifiers, then φ is valid in the model RB
α (that is vφwBα “ 1), if and only if, ␣␣φ

is valid in pP,ď,,, RP`
α q (that is RP`

α ,p φ for every p P P.)

Remark 3.2.13. Since in Classical Logic there is an equivalence between universal and

existential quantifiers given by

$ @xφpxq, if and only if, $ ␣D␣φpxq

we can always write a formula in such a way that it has no universal quantifiers. We use

this rewriting in the following theorem.

Corollary 3.2.14 ([Fit69], Chapter 15, Corollary 5.7). pP,ď,,, RP`
α q is an Intuitionistic

ZFC model, that is, classical equivalents of all the axioms of Zermelo-Fraenkel with choice,

expressed without the use of the universal quantifier, are valid in the model.

3.2.2 Modal Residuated Kripke models of Set Theory

The goal of this section is to generalize Fitting’s results on Intuitionistic Kripke models that

we presented in last subsection. Specifically, we want to prove analogs of Theorem 3.2.11 and

Corollaries 3.2.12 and 3.2.14.
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We were able to find a suitable generalization of Fitting model in the context of Residuated

Logic (see Definition 3.2.18) such that there exists an isomorphism (see Theorem 3.2.29)

between it and an appropriate Heyting valued model (see Definition 3.2.23). Furthermore,

in Corollary 3.2.30, we find if φ is an MR´LP-sentence that is valid in the Heyting model,

then ♢φ is valid in the Residuated Kripke model.

We show now the general structure of this subsection and how it relates to Fitting’s original

construction. We start by noticing that the double negation operator ␣␣ is a modal (clo-

sure) operator on a Heyting algebra, and it is used to translate sentences (see Definition 1.3.6

or Corollary 3.2.12) from the Boolean valued model RB (see Definition 3.2.9) into the Intu-

itionistic Kripke model VP` (see Definition 3.2.5). The key points to notice are as follows:

We start with an Intuitionistic Kripke model with constant universe A “ pP,ď,,, Dq.

1. The set P` “ tA Ď P : A is hereditaryu is a Heyting algebra (see Theorem 3.1.5).

2. The operator double negation ␣␣ is a modal operator on a Heyting algebra (See

Example 1.2.18).

3. ␣␣ is used to translate sentences from the Boolean valued model into the intuitionistic

Kripke models (see Corollary 3.2.12 and Lemma 1.3.7 items 1. and 4. ).

4. The set F␣␣ :“ tx P P` : ␣␣x “ 1u is a filter on P` such that P`{F␣␣ is a Boolean

algebra (see Theorem 1.2.21).

Therefore, one could wonder if this kind of results can be obtain by starting with some

MR-Kripke L-model A “ pP,ď, δ,,, Dq and then finding a suitable valued model such that
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an analogous of Corollary 3.2.12 holds.

Throughout this subsection, fix a Residuated Kripke Modal L-model A “ pP,ď, δ,,, Dq

with δ : PÑ P an idempotent conucleus that respects implications and the top element.

Definition 3.2.15 (cf. [Fit69], p. 166). We say that a function f is a P˚-subset of A if

1. Dompfq Ď D

2. Ranpfq Ď P˚ “ tA Ď P : A is strongly hereditaryu

Recall Theorem 3.1.26 proved that P˚ is a Residuated Lattice with the order Ď and the

product

A ¨B “ tc P P : there exist a P A, b P B such that c ě a ¨ bu, where A,B P P˚.

and that Theorems 3.1.37 and 3.1.41 state that γ : P˚ Ñ P˚ defined by

γpAq :“ tp P P : Dq P Apδpqq ď pqu

is an idempotent quantic nucleus that respects implications and the bottom element, that

is, γ is a standard quantic nucleus on P˚.

Definition 3.2.16 (cf. [Fit69], p. 166). Let Q be any complete Residuated Lattice and γ

be any standard quantic nucleus on Q. We call an element x P Q γ-regular if „„ γpxq “ x.

This definition generalizes the notion of regular sets in a Heyting algebra (see Definition

1.2.19). We call a function with range Q γ-regular, if every member of its range is γ-regular.

Definition 3.2.17 (cf. [Fit69], p. 166). We say that a function from D to P˚ is extensional

if, for each g, h P D



134 3 Constructions over Kripke models

fpgq ¨ tp P P : A ,p pg “ hqu Ď fphq

where pg “ hq is an abbreviation defined by:

pg “ hq :“ ♢ „ pDxq „ px P g Ñ x P hqq&p♢ „ pDxq „ px P hÐ x P gqq.

And we denote

PP˚pDq :“ tf : f is a γ-regular and extensional P˚-subset of Au

Definition 3.2.18 (cf. [Fit69], p. 166). We now define on induction on ordinals a class

of MR-Kripke LP-models VP˚
α :“ pP,ď, δ,,, RP˚

α q all with the same underlying order pP,ďq

but changing the universe for each ordinal α as follows:

1. VP˚
0 :“ pP,ď, δ,,, RP˚

0 q where RP˚
0 :“ H.

2. VP˚
α`1 :“ pP,ď, δ,,, RP˚

α`1q where RP˚
α`1 :“ RP˚

α YPP˚pRP˚
α q and VP˚

α`1 ,p f P g is defined

as follows:

If p P P and f, g P RP˚
α`1 then we have the following cases:

a. If f, g P RP˚
α , then

VP˚
α`1 ,p pf P gq, if and only if, VP˚

α ,p pf P gq.

b. If f P RP˚
α and g P RP˚

α`1zR
P˚
α “ PP˚pRP˚

α q, then

VP˚
α`1 ,p pf P gq, if and only if, p P gpfq.

c. If f P RP˚
α`1zR

P˚
α “ PP˚pRP˚

α q, then VP˚
α`1 ,p pf P gq, if and only if,

p P
Ž

hPdompgq

Ph
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where

Ph :“ gphq ¨ pPfĎh ¨ PhĎf q

and

PfĎh :“
č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq

PhĎf :“
č

xPRP˚
α

pfpxq Ð tq P P : VP˚
α ,q„„ ♢px P hquq.

3. If α ­“ 0 is a limit ordinal, then let RP˚
α :“

Ť

βăα

RP˚
β and given f, g P RP˚

α take any η ă α

such that f, g P RP
η and let

VP˚
α ,p pf P gq, if and only if, VP˚

η ,p pf P gq.

For every α we also define

VP˚
α ,p K, if and only if, p “ 8.

Remark 3.2.19 (cf. [Fit69], Remark 4.2). The expression

č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq ¨

č

xPRP˚
α

pfpxq Ð tq P P : VP˚
α ,q„„ ♢px P hquq

is an element in the Residuated Lattice P˚, where ¨,Ñ,Ð and
Ş

are the operations on P˚

as a Residuated Lattice (see Definition 3.1.25).

Definition 3.2.20 (cf. [Fit69], p. 166). Consider the MR-Kripke (class) LP-model

VP˚ :“ pP,ď, δ,,, RP˚q, where RP˚ :“
Ť

αPON

RP˚
α

and given f, g P RP˚ , take any η P ON such that f, g P RP
η and define
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VP˚ ,p pf P gq, if and only if, VP˚
η ,p pf P gq.

We need to see that this definition provides indeed a Modal Residuated Kripke model, that

is, it satisfies the Definition 3.1.34 item 3. sub-items a., b. and c.. By definition of ,, the

model VP˚
α satisfies condition c. and since 8 is an element of every strongly hereditary set

(see Definition 3.1.24) it is straightforward to see that condition b. also holds. Therefore,

we just need to check that a. holds.

Theorem 3.2.21. For every α P ON , we have that if pi, q P P with i P I,

if VP˚
α ,pi pf P gq for every i P I and

Ź

iPI

pi ď q, then VP˚
α ,q pf P gq.

Proof. We prove this by transfinite induction. Since the cases for α “ 0 and α a limit

ordinal are trivial, we only consider what happens at the successor step, so let us suppose

the following holds at α:

if VP˚
α ,pi pf P gq for i P I and

Ź

iPI

pi ď q, then VP˚
α ,q pf P gq (induction hypothesis),

and let us prove it at α ` 1. Assume that

VP˚
α`1 ,pi pf P gq for i P I and

Ź

iPI

pi ď q.

We have three cases:

1. If f, g P RP˚
α , then we have the result by the induction hypothesis.

2. If f P RP˚
α and g P RP˚

α`1zR
P˚
α “ PP˚pRP˚

α q, then

VP˚
α`1 ,pi pf P gq means that pi P gpfq.

but by definition of g P PP˚pRP˚
α q we know that the codomain of g is P˚ and so gpfq is

strongly hereditary. Therefore, q P gpfq and thus
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VP˚
α`1 ,q pf P gq

3. If f P RP˚
α`1zR

P˚
α “ PP˚pRP˚

α q, then

VP˚
α`1 ,pi pf P gq means that pi P

Ž

hPdompgq

Ph “
Ž

hPdompgq

gphq ¨ pPfĎh ¨ PhĎf q

but

PfĎh :“
č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq

“
č

xPRP˚
α

pfpxq Ñ„„ γtq P P : VP˚
α ,q px P hquq (by Theorems 3.1.42 and 3.1.28q.

By the induction hypothesis, the set tq P P : VP˚
α ,q px P hqu is strongly hereditary, and

since f P PP˚pRP˚
α q, fpxq is also strongly hereditary for every x P dompgq. Therefore,

since the operations „,Ñ, ¨, γ and
Ş

are all closed in P˚ (see Theorems 3.1.26 and

3.1.37), we have that PfĎh P P˚. By using a similar argument, we can show that PhĎf P

P˚ and since gphq P P˚, we have that
Ž

hPdompgq

Ph is strongly hereditary. Therefore,

q P
Ž

hPdompgq

Ph and thus

VP˚
α`1 ,q pf P gq

We now construct a Heyting valued model pRH, v¨wHq that is related with VP˚ “ pP,ď, RP˚q,

in a similar way as in Definition 3.2.9.

Definition 3.2.22 (cf. [Fit69], p. 164). Given a Heyting valued model pR, v¨wHq, we say

that a function f : RÑ H is extensional if for all g, h P R,

fpgq ^ v␣pDxq␣px P g Ñ x P hqwH ^ v␣pDxq␣px P g Ð x P hqwH ď fphq
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and we say that a function f : RÑ H is regular if ␣␣fpxq “ fpxq for every x P R.

Definition 3.2.23 (cf. [Fit69], p. 165). We now define on induction over the ordinals a

class of Heyting valued models pRH
α , v¨w

H
αq

1. RH
0 :“ H with v¨wH0 :“ H.

2. RH
α`1 :“ RH

α Y tf : RH
α Ñ H : f is extensional and regularu and given f, g P RH

α`1, we

have, for the definition of vf P gwHα , the following cases:

a. If f, g P RH
α , define vf P gwHα`1 :“ vf P gwHα .

b. If f P RH
α and g P RH

α`1zR
H
α , define vf P gwHα`1 :“ gpfq.

c. If f P RH
α`1zR

H
α , define

vf P gwHα`1 :“
Ž

hPdompgq

tgphq ^
Ź

xPRH
α

pfpxq Ø v␣␣px P hqwHαqu

d. If α ­“ 0 is a limit ordinal, then let RH
α :“

Ť

βăα

RH
β and given f, g P RH

α take any

η ă α such that f, g P RH
η and let vf P gwHα :“ vf P gwHη .

Now let

RH :“
Ť

αPON

RH
α

and given f, g P RH take any η ă α such that f, g P RH
η and let vf P gwH :“ vf P gwHη .

Remark 3.2.24. The construction given above mimics Definition 3.2.9 but with two main

differences:

1. Instead of using a Boolean algebra, we consider a Heyting algebra.
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2. In condition 2. c., we consider the term v␣␣px P hqwHα rather than vx P hwHα . Clearly, in

the Classical (Boolean) case, these expressions are equivalent, but in the Intuitionistic

case they are not.

Definition 3.2.25. Let Q be any complete residuated lattice and γ be any quantic nucleus

on Q. An element of x P Q is called γ-dense if γpxq “ 1Q.

Remark 3.2.26. The definition given above generalizes the notion of dense sets in a Heyt-

ing algebra (see Definition 1.2.19). We focus on the case where Q “ P˚ and γ is the quantic

nucleus determined by δ. Let Fγ be the collection of all γ-dense elements of P˚. By Theorems

1.2.58 and 1.2.61 Fγ is a filter such that P˚{Fγ is a Heyting algebra.

Remark 3.2.27. Recall (see Definition 1.2.42 and Theorem 1.2.61) that the relation «Fγ

given by

A «Fγ B, if and only if, AÑ B P Fγ and B Ñ A P Fγ

is an equivalence relation. Also, we have that

H :“ P˚{Fγ “ P˚{«Fγ
“ t|A| : A P P˚u

is a complete Heyting algebra. Furthermore, if |A|, |B| P H

|A| ď |B| iff AÑ B P Fγ

|A| ^ |B| “ |A^B| “ |A ¨B| “ |A| ¨ |B|

|A| _ |B| “ |A_B|

|A| Ñ |B| “ |AÑ B|

| „ A| “ ␣|A|
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|A| “ |γpAq| (see Corollary 1.2.60)

|
Ž

iPI

Ai| “
Ž

iPI

|Ai| (see Theorem 1.2.62)

Remark 3.2.28 (cf. [Fit69], Remark 5.1). The equality |
Ź

iPI

Ai| “
Ź

iPI

|Ai| is not true in

general, and thus MR-formulas with universal quantifiers behave poorly (since, in valued

models, we usually interpret universal quantifiers as meets). This explains why we do not

consider formulas with universal quantifiers in the following theorem.

The Heyting algebra H :“ P˚{Fγ determines a sequence of valued models pRH
α , v¨w

H
αq that is

isomorphic to the sequence VP˚
α “ pP,ď, δ,,, RP˚

α q in the following way:

Theorem 3.2.29 (cf. [Fit69], Chapter 15, Theorem 5.5). For every α P ON , there exist

a bijection between RP˚
α and RH

α (where if f P RP˚
α , f 1 denotes the image of f via this

bijection) such that for every LP-formula with no universal quantifiers φpx1, ..., xnq and every

a1, ..., an P R
P˚
α ,

|tp P P : VP˚
α ,p φpa1, ..., anqu| “ vφpa

1
1, ..., a

1
nqw

H
α

Proof. We show this by induction on α. RP˚
0 and RH

0 are the same, so it holds for α.

Assume that there exists such a bijection 1 between RP˚
α and RH

α (induction hypothesis 1).

Take g P RP˚
α`1zR

P˚
α “ PP˚pRP˚

α q and define the function g1 : RH
α Ñ H in the following way:

Since 1 : RP˚
α Ñ RH

α is onto, every element F P RH
α has the form F “ f 1 for some f P RP˚

α .

Therefore, we can define g1 by

g1pf 1q :“ |gpfq| P H “ P˚{Fγ for every f 1 P RH
α .

For now we assume that g is extensional if and only if g1 is extensional. This will be proved

at the end of this theorem.
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Let us see that this map is injective. Take g, h P RP˚
α`1zR

P˚
α “ PP˚pRP˚

α q such that |gpfq| “

|hpfq| for every f P RP˚
α . Then, by definition of “ in P˚{Fγ, we have, in particular

gpfq Ñ hpfq P Fγ

that is, by definition of Fγ,

γpgpfq Ñ hpfqq “ 1

and since by Corollary 1.2.47, γpgpfq Ñ hpfqq ď gpfq Ñ γphpfqq, we have that

gpfq Ñ γphpfqq “ 1

By Theorem 1.2.37 item 2., γphpfqq ď p„„ γphpfqqq and by Theorem 1.2.33 item 9.,

gpfq Ñ p„„ γphpfqqq “ 1

But h is a γ-regular function, so

gpfq Ñ hpfq “ 1

which implies, by Theorem 1.2.33 item 1., that gpfq Ď hpfq. In a similar fashion we can

show that hpfq Ď gpfq and therefore we conclude gpfq “ hpfq for every f P RP˚
α , that is,

g “ h.

To see that the map is surjective, let us take h P RH
α`1zR

H
α “ PHpRH

αq, that is, h : RH
α Ñ H

is a regular and extensional function. We will construct a function g P PP˚pRP˚
α q such that

g1 “ h, that is, g1pf 1q “ hpf 1q for every f 1 P RH
α . Let s be any function from RP˚

α to P˚ such

that

for f P RP˚
α , spfq is a representative of the class hpf 1q P H “ P˚{Fγ,
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that is, hpf 1q “ |spfq|. Let g be the function defined by

gpfq “„„ γpspfqq for f P RP˚
α .

Then, by Theorem 1.2.56, g is γ-regular and since its domain is RP˚
α , we have that g P

RP˚
α`1zR

P˚
α “ PP˚pRP˚

α q. We want to see that g1 “ h, so let us take f 1 P RH
α .

g1pf 1q “ |gpfq| (by definition of g1)

“ | „„ γpspfqq| (by definition of g)

“ ␣␣|γspfq| (by definition of ␣)

“ ␣␣|spfq| (by Corollary 1.2.60)

“ ␣␣hpf 1q (spfq is a representative of the class hpf 1q)

“ hpf 1q (h is regular function).

Then, g1 “ h and the function 1 is surjective.

By the induction hypothesis 1, we may assume that for every MR ´ LP-formula with no

universal quantifiers φpx1, ..., xnq and every a1, ..., an P RP˚
α ,

|tp P P : VP˚
α ,p φpa1, ..., anqu| “ vφpa

1
1, ..., a

1
nqw

H
α

We will show that this result also holds for RP˚
α`1 by induction on formulas. We start with

the atomic case. Let f, g P RP˚
α`1. We have three cases:

1. If f, g P RP˚
α , then we have the result by the induction hypothesis 1.
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2. If f P RP˚
α and g P RP˚

α`1zR
P˚
α , then

vf 1 P g1wHα`1 “ g1pf 1q (by definition of v¨ P ¨wHα`1)

“ |gpfq| (by definition of g1)

“ |tp P P : p P gpfqu| (by definition of gpfq)

“ |tp P P : VP
α`1 ,p f P gu| (by definition of VP˚

α`1 ,p f P g)

3. If f P RP˚
α`1, recall that we denote

Ph :“ gphq ¨ pPfĎh ¨ PhĎf q

:“ gphq ¨

¨

˝

č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq ¨

č

xPRP˚
α

pfpxq Ð tq P P : VP˚
α ,q„„ ♢px P hquq

˛

‚

and notice that

tp P P : VP˚
α`1 ,p pf P gqu “

Ž

hPdompgq

Ph.

Furthermore,

PfĎh “
č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq

“
č

xPRP˚
α

pfpxq Ñ„„ γtq P P : VP˚
α ,q px P hquq (by Theorems 3.1.42 and 3.1.28q

“
č

xPRP˚
α

p„„ γpfpxqq Ñ„„ γtq P P : VP˚
α ,q px P hquq (since f is γ-regular)

“
č

xPRP˚
α

„„ p„„ γpfpxqq Ñ„„ γtq P P : VP˚
α ,q px P hquq (by Example 1.2.49)

“„
ł

xPRP˚
α

„ p„„ γpfpxqq Ñ„„ γtq P P : VP˚
α ,q px P hquq (by Theorem 1.2.36 item 4.)
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Thus,

|PfĎh| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

č

xPRP˚
α

pfpxq Ñ tq P P : VP˚
α ,q„„ ♢px P hquq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

„
ł

xPRP˚
α

„ p„„ γpfpxqq Ñ„„ γtq P P : VP˚
α ,q px P hquq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ␣
ď

xPRP˚
α

␣p␣␣|γpfpxqq| Ñ ␣␣|tq P P : VP˚
α ,q px P hqu|q (by Remark 3.2.27q

“
č

xPRP˚
α

␣␣p␣␣|γpfpxqq| Ñ ␣␣|tq P P : VP˚
α ,q px P hqu|q (by Theorem 1.2.36 item 4.)

“
č

xPRP˚
α

␣␣|γpfpxqq| Ñ ␣␣|tq P P : VP˚
α ,q px P hqu| (by Example 1.2.49)

“
č

xPRP˚
α

| „„ γpfpxqq| Ñ ␣␣|tq P P : VP˚
α ,q px P hqu| (by definition of ␣)

“
č

xPRP˚
α

|fpxq| Ñ ␣␣|tq P P : VP˚
α ,q px P hqu| (f is γ-regular)

“
č

xPRP˚
α

f 1px1q Ñ ␣␣vx1 P h1wHα (by the induction hypothesis and the definition of f 1)

“
č

xPRP˚
α

f 1px1q Ñ v␣␣px1 P h1qwHα (by definition of ␣)

In a similar way we can prove that

|PhĎf | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

č

xPRP˚
α

pfpxq Ð tq P P : VP˚
α ,q„„ ♢px P hquq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
č

xPRP˚
α

f 1px1q Ð v␣␣px1 P h1qwHα

Thus,
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|Ph| “ |gphq ¨ pPfĎh ¨ PhĎf q| “ |gphq| ¨ p|PfĎh| ¨ |PhĎf |q (by Remark 3.2.27)

“ |gphq| ¨

¨

˝

č

xPRP˚
α

f 1px1q Ñ v␣␣px1 P h1qwHα ¨
č

xPRP˚
α

f 1px1q Ð v␣␣px1 P h1qwHα

˛

‚ (by the previous computations)

“ |gphq| X

¨

˝

č

xPRP˚
α

f 1px1q Ñ v␣␣px1 P h1qwHα X
č

xPRP˚
α

f 1px1q Ð v␣␣px1 P h1qwHα

˛

‚ (since X “ ¨ in P˚{Fγ)

“ g1ph1q X
č

xPRP˚
α

pf 1px1q Ø v␣␣px1 P h1qwHαq (properties of ^ and definition of g1)

Therefore,

vf 1 P g1wHα`1 “
ď

h1Pdompg1q

pg1ph1q X
č

xPRP˚
α

pf 1px1q Ø v␣␣px1 P h1qwHαq (by definition of v¨ P ¨wHα`1)

“
ď

h1Pdompg1q

|Ph|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ł

hPdompgq

Ph

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(by Theorem 1.2.62)

“ |tp P P : VP˚
α`1 ,p pf P gqu|

Now we have the result for atomic MR-formulas. Hence, it is straightforward to prove

the result for the rest of MR-formulas by induction on formulas and by using Theorems

3.1.28 and 3.1.42. For this reason, we show it only for the product and the existential

quantifier: Assume that φpx1, ..., xnq and ψpx1, ..., xnq are MR ´ LP-formulas such that for

all a1, ..., an P RP˚
α

|tp P P : VP˚
α`1 ,p φpa1, ..., anqu| “ vφpa

1
1, ..., a

1
nqw

H
α`1 and

|tp P P : VP˚
α`1 ,p ψpa1, ..., anqu| “ vψpa

1
1, ..., a

1
nqw

H
α`1 (induction hypothesis 2).
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Then,

vpφ&ψqpa11, ..., a
1
nqw

H
α`1 “ vφpa

1
1, ..., a

1
nqw

H
α`1 ¨ vψpa

1
1, ..., a

1
nqw

H
α`1

“ |tp P P : VP˚
α`1 ,p φpa1, ..., anqu| ¨ |tp P P : VP˚

α`1 ,p ψpa1, ..., anqu| (by induction hypothesis 2)

“ |tp P P : VP˚
α`1 ,p pφ&ψqpa1, ..., anqu| (by Theorem 3.1.28)

Take anMR´LP-formula φpx1, ..., xnq and a1, ..., an P RP˚
α`1. Assume that for every a P RP˚

α`1,

φpa1, ..., an, aq satisfies

|tp P P : VP˚
α`1 ,p φpa1, ..., an, aqu| “ vpφpa

1
1, ..., a

1
n, a

1qwHα`1 (induction hypothesis 3).

Then,

vDxφpa11, ..., a
1
n, xqw

H
α`1 “

ł

a1PRH
α`1

vpφpa11, ..., a
1
n, a

1
qw

H
α`1 (by definition of vDxφpa11, ..., a1n, xqwHα`1)

“
ł

a1PRH
α`1

|tp P P : VP˚
α`1 ,p φpa1, ..., an, aqu| (by induction hypothesis 3)

“ |tp P P : VP˚
α`1 ,p Dxφpa1, ..., an, xqu| (by Theorem 3.1.28)

Let us see that g is extensional if and only if g1 is extensional.

If g is extensional, then, for every f, h P RP˚
α , we have that

gpfq ¨ tp P P : VP˚
α ,p pf “ hqu Ď gphq,

this implies, by Theorem 1.2.33 item 1., that

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ gphq “ 1.
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Thus,

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ gphq P Fγ.

By definition of ď on P˚{Fγ, we get

|gpfq ¨ tp P P : VP˚
α ,p pf “ hqu| ď |gphq|

by Remark 3.2.27, this implies that

|gpfq| ^ |tp P P : VP˚
α ,p pf “ hqu| ď |gphq|.

Recall that

pg “ hq :“ ♢ „ pDxq „ px P g Ñ x P hqq&p♢ „ pDxq „ px P hÐ x P gqq.

Thus, by Theorems 3.1.28 and 3.1.42,

|tp P P : VP˚
α ,p pf “ hqu|

“ |tp P P : VP˚
α ,p p♢ „ pDxq „ px P g Ñ x P hqq&p♢ „ pDxq „ px P hÐ x P gqqqu|

“ |γtp P P : VP˚
α ,p p„ pDxq „ px P g Ñ x P hqqu| ¨ |γtp P P : VP˚

α ,p p„ pDxq „ px P g Ð x P hqqu|

Notice that

|γtp P P : VP˚
α ,p p„ pDxq „ px P g Ñ x P hqqu|

“ |tp P P : VP˚
α ,p p„ pDxq „ px P g Ñ x P hqqu| (by Corollary 1.2.60)

“ v„ pDxq „ px P g Ñ x P hqqwHα (by induction hypothesis 1.)

In a similar way, we prove that
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|γtp P P : VP˚
α ,p p„ pDxq „ px P g Ð x P hqqu| “ v„ pDxq „ px P g Ð x P hqqwHα

Therefore,

|tp P P : VP˚
α ,p pf “ hqu| “ v„ pDxq „ px P g Ñ x P hqqwHα ^ v„ pDxq „ px P hÐ x P gqwHα

Thus, by definition of g1

g1pf 1q ^ v„ pDxq „ px P g Ñ x P hqqwHα ^ v„ pDxq „ px P hÐ x P gqwHα ď g1ph1q

which proves that g1 is extensional.

On the other hand, if g1 is extensional, by using (backwards) the argument given above, we

get that

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ gphq P Fγ.

which means

γppgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ gphqq “ 1

but, since γ respects implications, we get

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ γpgphqq “ 1.

Hence, by Theorem 1.2.37 item 2., γpgphqq ď p„„ γpgphqqq and by Theorem 1.2.33 item 9.,

we have

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ p„„ γpgphqqq “ 1,

but g is a γ-regular function,

pgpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ñ gphq “ 1

which implies, by Theorem 1.2.33 item 1., that
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gpfq ¨ tp P P : VP˚
α ,p pf “ hquq Ď gphq

That is, g is extensional.

Corollary 3.2.30. If φ is an LP-sentence with no universal quantifiers, then φ is valid in

the model RH
α (that is vφwHα “ 1H), if and only if, ♢φ is valid in pP,ď, δ,,, RP˚

α q (that is

RP˚
α ,p ♢φ for every p P P.)

Proof. We have that

vφwHα “ 1H iff vφwHα “ |P| (by definition of 1H “ 1P˚{Fγ )

iff |tp P P : VP˚
α ,p φu| “ |P| (by Theorem 3.2.29)

iff γtp P P : VP˚
α ,p φu “ γpPq (by Theorem 1.2.59)

iff tp P P : VP˚
α ,p ♢φus “ P (by Theorem 3.1.42 and since γ is expansive)

3.3 Constructible sets over Kripke models

We now study the notion of constructibility in the context of Kripke models of Set Theory.

We start with a review of Fitting’s results [Fit69] and then proceed to outline a propose for

a generalization of those results in the context of Residuated Models of Set Theory, using

the tools that we develop in the prior section.
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3.3.1 Intuitionistic Constructible sets.

Let us take an Intuitionistic Kripke model A “ pP,ď,,, Dq. Recall that

P` :“ tA Ď P : A is hereditaryu

is a Heyting algebra. Thus, it is natural to consider P` as a set of truth values for the notion

of definability.

Definition 3.3.1 ([Fit69], p. 94). We say that a function f is a P`-definable subset of

A “ pP,ď,,, Dq if

1. Dompfq “ D

2. Ranpfq Ď P`

3. There exists some (classical) first-order LA-formula φpxq with no universal quantifiers

such that for any a P D

fpaq “ tp P P : A ,p φpaqu

and let us define

DefP`pDq :“ tf : f is a P`-definable subset of pP,ď, Dqu

Definition 3.3.2 (The derived model [Fit69], pp. 94 and 95). Let D1 “ DYDefP`pDq and

let us extend the forcing relation to the model A1 “ pP,ď,,, D1q

1. If f, g P D, then A1 ,p pf P gq, if and only if, Aα ,p pf P gq

2. If f P D and g P D1zD “ DefP`pDq, then A1 ,p pf P gq, if and only if, p P gpfq.
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3. If f P D1zD “ DefP`pDq, and φpxq is one formula that defines f over A, then we say

that A1 ,p pf P gq, if and only if, there exist h P D such that

A ,p ␣pDxq␣px P hØ φpxqq and A1 ,p ph P gq

Let A0 “ pP,ď,,, D0q be any Intuitionistic Kripke Model satisfying the following conditions:

1. pP,ď,,, D0q is a set.

2. D0 is a collection of functions such that if f P D0, Dompfq Ď D0 and Ranpfq Ď P`

3. For f, g P D0, A0 ,p pf P gq, if and only if, p P gpfq

4. For f, g, h P D0, if A0 ,p ␣pDxq␣px P f Ø x P gq and A0 ,p ␣pf P hq, then

A0 ,p ␣pg P hq

5. D0 is well-founded with respect to the relation x P dompyq.

Next, let Aα`1 :“ pP,ď,,, Dα`1q be the derived model of Aα “ pP,ď,,, Dαq.

If α ­“ 0 is a limit ordinal, let

Aα :“ pP,ď,,, Dαq be defined by Dα :“
Ť

βăα

Dβ

and if f, g P Dα, take any η ă α such that f, g P Dη and let

Aα ,p pf P gq, if and only if, Aη ,p pf P gq.

Let

A :“ pP,ď,,, Dq where D :“
Ť

αPON

Dα

and if f, g P D, take any η P ON such that f, g P Dη and let
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A ,p pf P gq, if and only if, Aη ,p pf P gq.

Theorem 3.3.3 ([Fit69], Chapter 7, Theorem 3.2). A “ pP,ď,,, Dq is an Intuitionistic

ZFC model, that is, classical equivalents of all the axioms of Zermelo-Fraenkel with choice,

expressed without the use of the universal quantifier, are valid in the model.

Lemma 3.3.4 ([vD04], Lemma 5.2.1 (19)). It is a theorem of Intuitionistic Logic that for

every formula φpxq

$i ␣pDxφpxqq Ø p@x␣φpxqq

Thus, we could change the expressions

A ,p ␣pDxq␣px P hØ φpxqq

by

A ,p p@xq␣␣px P hØ φpxqq

And still get the same results of this section. This will be of use in the next section, where

we consider ♢ as a generalization of ␣␣.

3.3.2 Residuated Constructible sets.

We propose a notion of class of constructable sets in the context of Modal Residuated Kripke

models of Set Theory that generalizes Fitting’s construction. We only outline a propose for

this construction and indicate some possible conditions that we believe are necessary for the

generalization of Fitting’s results.

Take an MR´Kripke model A “ pP,ď, δ,,, Dq.
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Definition 3.3.5 (cf. [Fit69], p. 94). We say that a function f is a P˚-definable subset of

A “ pP,ď, δ,,, Dq if

1. Dompfq “ D

2. Ranpfq Ď P˚ “ tA Ď P˚ : A is strongly hereditaryu

3. There exist some MR ´ LA-formula φpxq with no universal quantifiers such that for

all a P D

fpaq “ tp P P : A ,p φpaqu,

and denote

DefP˚pDq :“ tf : f is a P˚-definable subset of Au

Definition 3.3.6 (cf. [Fit69] pp. 94 and 95). Let D1 “ D Y DefP˚pDq and let us extend

the forcing relation to the model A1 “ pP,ď, δ,,, D1q as follows:

1. If f, g P D, then A1 ,p pf P gq, if and only if, Aα ,p pf P gq

2. If f P D and g P D1zD “ DefP˚pDq, then

A1 ,p pf P gq, if and only if, p P gpfq.

3. If f P D1zD “ DefP˚pDq, and φpxq is an MR ´ LP-formula that defines f over A,

then we say that A1 ,p pf P gq, if and only if, there exist h P D such that

A ,p pp@xq „„ ♢px P hÑ φpxqqq&pp@xq „„ ♢px P hÐ φpxqqq and A1 ,p ph P gq

Let A0 “ pP,ď, δ,,, D0q be any MR-Kripke LP-Model satisfying the following conditions:
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1. pP,ď, δ,,, D0q is a set.

2. D0 is a collection of functions such that if f P D0, Dompfq Ď D0 and Ranpfq Ď P˚

3. For f, g P D0, A0 ,p pf P gq, if and only if, p P gpfq

4. For f, g, h P D0, if A0 ,p ␣pDxq␣px P f Ø x P gq and A0 ,p ␣pf P hq, then

A0 ,p ␣pg P hq

5. D0 is well-founded with respect to the relation x P dompyq.

Let Aα`1 :“ pP,ď,,, Dα`1q be the derived model of Aα “ pP,ď,,, Dαq.

If α ­“ 0 is a limit ordinal, let

Aα :“ pP,ď,,, Dαq be defined by Dα :“
Ť

βăα

Dβ

and if f, g P Dα, take any η ă α such that f, g P Dη and let

Aα ,p pf P gq, if and only if, Aη ,p pf P gq.

Let

A :“ pP,ď,,, Dq, where D :“
Ť

αPON

Dα

and if f, g P D, take any η P ON such that f, g P Dη and let

A ,p pf P gq, if and only if, Aη ,p pf P gq.
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3.3.3 Further work

We would like to make some concluding remarks and talk about some open questions and

conjectures.

1. We wonder what kind of axioms of Set Theory are valid in the model RH (see Definition

3.2.23). We expect this structure to be a model of Intuitionistic Set Theory, or a

transformed version of it, via a Gödel-Kolmogorov-like translation. We believe that

there must be some kind of isomorphism between RH and the usual valued model V B,

where B “ H{F␣␣.

2. We proposed a version of Gödel’s universe in Subsection 3.3.2. We wonder if the

conditions that we proposed for our Residuated model are enough to prove a result

similar to Theorem 3.3.3. We believe that some translated version of the axioms of

IZF is valid in this model, via some kind of Gödel–McKinsey–Tarski translation.

3. In Section 2.3, we proposed two definitions of class of constructible sets in the context

of Boolean-valued models and quantale-valued models. These definitions ended up

collapsing to two valued models, but we wonder if there exists a variation of these

definitions of constructibility in which the resulting model is not two valued.

4. We wonder what kind of independence results in Set Theory can be achieved with

our Modal Residuated models of Set Theory that are not achievable with Intuitionistic

models.

5. We would like to find an axiomatization for the logic of “complete residuated lattices



156 3 Constructions over Kripke models

with a quantic nucleus”. Furthermore, we would like to find a proper axiomatization

for these modal logics when we consider additional properties for our quantic nucleus,

such as respecting implications or idempotency with respect to products.
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