

Análisis tecnoeconómico de una superestructura tecnológica para la monoincineración de biosólidos en Bogotá

Carlos Andrés Romero Ariza

Universidad Nacional de Colombia Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica Bogotá, Colombia 2023

Análisis tecnoeconómico de una superestructura tecnológica para la monoincineración de biosólidos en Bogotá

Carlos Andrés Romero Ariza

Tesis de grado presentada como requisito parcial para optar al título de: Magíster en Ingeniería - Ingeniería Mecánica

> Directora: Dr.-Ing. Sonia Lucia Rincón Prat

Línea de Investigación: Ingeniería Térmica y Fluidos Grupo de Investigación: Biomasa y Optimización Térmica de Procesos, BIOT

Universidad Nacional de Colombia Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica Bogotá, Colombia 2023

Dedicatoria

A mi madre Yaneth, lo merece todo.

A Mango, mi compañero infaltable de estudio.

Me enseñaron que el camino del progreso no es ni rápido ni fácil.

Marie Curie

Siempre parece imposible hasta que se logra.

Nelson Mandela

Agradecimientos

A la Universidad Nacional de Colombia donde no solo he crecido profesionalmente, sino también como un ser humano integral.

Al Dr.-Ing. Alexánder Goméz Mejía, por sus directrices y orientaciones durante el desarrollo de este proyecto.

A la Dr.-Ing. Sonia Lucía Rincón Prat, por su valiosa colaboración en el desarrollo de este proyecto.

A mis compañeros del grupo de investigación BIOT, por su apoyo y trabajo en equipo.

A todas las personas que contribuyeron directa y/o indirectamente en la ejecución de este trabajo.

A mi madre Yaneth, por su apoyo incondicional.

Resumen

Análisis tecnoeconómico de una superestructura tecnológica para la monoincineración de biosólidos en Bogotá

En el presente trabajo se realiza el análisis tecnoeconómico de una superestructura tecnológica para la monoincineración de biosólidos en reactores de lecho fluidizado. Para cumplir con este objetivo, se especifican las características de los biosólidos en Bogotá, y se realiza una revisión del estado del arte tecnológico. A partir de esta revisión se obtuvo: una base de datos con 100 plantas y una superestructura tecnológica conformada por 29 sistemas de incineración de biosólidos, compuestas por combinaciones de 29 tecnologías de procesamiento (subsistemas). Posteriormente, se establece una metodología para el desarrollo de un análisis tecnoeconómico, el cual se valida al estimar los costos de una planta base que funciona en Moerdijk, Holanda. Como resultado se obtiene que el costo real de la planta está entre el -15% al 30\% del valor estimado mediante el desarrollo del respectivo análisis tecnoeconómico. A continuación, se realiza un análisis comparativo entre sistemas teniendo en cuenta: rentabilidad, recuperación energética y emisiones de contaminantes. Se recomienda un sistema de incineración para Bogotá que incluya las siguientes tecnologías: secador de discos, incinerador de lecho fluidizado burbujeante, generador de vapor, precipitador electrostático, depurador húmedo de dos etapas y filtro de mangas. El costo de tratamiento de biosólidos para esta sistema con un tiempo de retorno de 16 años es de 73 USD/t.

Palabras clave: biosólidos, incineración, lecho fluidizado, análisis tecnoeconómico, superestructuras tecnológicas.

Abstract

Techno-economic assessment of a technological superstructure for biosolids' mono-incineration in Bogotá

The objective of this work is to perform a techno-economic assessment of biosolids' monoincineration systems in fluidized bed reactors. To carry out this objective, biosolids characteristics were specified and a state-of-the-art review was performed. The achieved review results were: a 100 plants database and a technological superstructure with 29 systems composed by 29 technologies (subsystems). Besides, a techno-economic assessment methodology was established and validated by estimating the costs of a base plant that operates at Moerdijk, Holanda, then a comparison with the actual costs was performed. As a result, the actual costs were between -15% to -30% in comparison with the estimated costs. Finally, a comparative analysis between incineration systems was developed, considering: profitability, energy recovery, and pollutants emissions. It is found that the recommended system includes the following technologies: disk dryer, bubbling fluidized bed incinerator, steam generator, two-stage scrubber, and bag filters. The biosolids treatment cost for the recommended system, with a 16 years payback period, is equal to 73 USD/t.

Keywords: sewage sludge, incineration, fluidized bed, techno-economic assessment, technologic superstructures.

Contenido

	Agra	decimientos	VII
	Resi	men	IX
	Lista	de símbolos x	IV
1.	Intro	ducción	1
2.	Plan	teamiento del problema	3
	2.1.	Tratamiento de biosólidos en Bogotá	3
	2.2.	Incineración de biosólidos	11
		2.2.1. Análisis tecnoeconómico	15
	2.3.	Metodología	16
3.	Cara	cterísticas de los biosólidos	19
	3.1.	Producción	19
	3.2.	Análisis próximo y último	24
	3.3.	Poder calorífico	27
	3.4.	Metales pesados	27
4.	Sup	erestructura tecnológica	29
	4.1.	Base de datos de la superestructura	29
	4.2.	Generación de la superestructura	29
		4.2.1. Pretratamiento	33
		4.2.2. Incineración	34
		4.2.3. Recuperación energética	35
		4.2.4. Limpieza de gases	36
5.	Bala	nces de masa y energía	39
	5.1.	Secado	40
	5.2.	Incineración	42
		5.2.1. Balance elemental	42
		5.2.2. Balances de energía	43
		5.2.3. Incineración a presión mayor que la atmosférica	48

	5.3.	Recup	eración energética	8
		5.3.1.	Precalentador de aire	8
		5.3.2.	Ciclo de vapor	0
		5.3.3.	Turbocompresor	3
	5.4.	Limpie	$za de gases \ldots 5$	5
		5.4.1.	Depurador húmedo para la remoción de gases	5
		5.4.2.	Sistema de prevención de humo blanco	1
		5.4.3.	Cámara de enfriamiento	2
		5.4.4.	Secador por atomización	2
		5.4.5.	Depurador húmedo tipo venturi	2
		5.4.6.	Limpieza en seco	3
		5.4.7.	Sistema SCR 64	5
		5.4.8.	Cámara de combustión secundaria	7
6.	Aná	lisis teo	noeconómico 69	9
	6.1.	Clases	de estimaciones de costos y precisión	9
	6.2.	Técnic	as de estimación de costos	0
	6.3.	Metod	ología de análisis TEA	3
		6.3.1.	Factores de locación	3
		6.3.2.	Índice de costo presente	4
		6.3.3.	Requerimiento de capital total	5
		6.3.4.	Costos totales de operación	3
	6.4.	Análisi	is financiero	5
		6.4.1.	Variables financieras	6
	6.5.	Análisi	is tecnoeconómico de la línea base	6
		6.5.1.	Costo total de planta	7
		6.5.2.	Costos totales de operación	0
		6.5.3.	Análisis financiero	4
7.	Aná	lisis coi	nparativo 90	6
	7.1.	Regula	ción ambiental	8
		7.1.1.	Concentraciones estándar de contaminantes	8
		7.1.2.	Índices de emisión de contaminantes 100	0
	7.2.	Tempe	ratura de llama adiabática 10	1
	7.3.	Costos	de capital y de operación	6
	7.4.	Análisi	is de sensibilidad $\ldots \ldots \ldots$	8
	7.5.	Rental	bilidad, emisiones de contaminantes y recuperación energética \ldots \ldots 110	0
	7.6.	Análisi	is financiero a planta recomendada	2
8.	Con	clusion	es y recomendaciones 11	5
	8.1.	Conclu	siones \ldots \ldots \ldots \ldots 11	5

	8.2. Recomendaciones	116
Α.	. Anexo: Características generales de plantas utilizadas para la revisión del es- tado del arte tecnológico.	118
В.	. Anexo: Constantes utilizadas en balances de masa y energía	131
C.	. Anexo: Factores y coeficientes para el análisis TEA	142
D.	. Anexo: Costos detallados por planta	155
	Bibliografía	167

Lista de símbolos

Símbolos con letras latinas

Símbolo	Término	Unidad SI	Definición
AF	Factor de absorción	1	Ecuación 5-61
b	Parámetro de empaque	1	Ecuación 5-64
с	Tasa de inflación	1	Ecuación 6-10
C_p	Calor específico a presión constante	$\frac{\mathrm{kJ}}{\mathrm{kgK}}$	$\left(\frac{\partial h}{\partial T}\right)_{\rm P}$
COR	Coeficiente de rentabilidad	1	Tabla 6-7
d	Tasa de descuento	1	Ecuación 6-10
D	Coeficiente de difusión	$\frac{\mathrm{m}^2}{\mathrm{s}}$	Ecuación 5-64
D	Diámetro	m	DF
D	Depreciación	USD	Ecuación 6-11
E	Energía	J	DF
Ė	Potencia	W	$\frac{E}{t}$
f	Factor de consumo o generación de residuos	$\frac{\text{kg}}{\text{kg}}$	$\frac{m}{m}$
f_a	Factor de ajuste	1	Ecuación 5-51
f_A	Relación gas-tela	$\frac{\mathrm{m}^3}{\mathrm{hm}^2}$	Ecuación 5-73
F_p	Factor de empaque	1	Ecuación 5-54
G	Flujo molar del solvente	$\frac{\mathrm{kmol}}{\mathrm{h}}$	$\frac{n}{t}$
g_c	Constante gravitacional	$\frac{\mathrm{ft}}{\mathrm{s}^2}$	$\frac{d^2 \overrightarrow{r}}{dt^2}$
h	Entalpía específica	$\frac{\mathrm{kJ}}{\mathrm{kg}}$	u + Pv
$\tilde{h}_{\rm i}({\rm T})$	Entalpía estandarizada	$\frac{kJ}{kmol}$	Ecuación 5-15
Н	Entalpía	J	U + PV
Н	Altura	m	DF
$\Delta \tilde{h}_{\rm s,i}$	Cambio de entalpía sensible	$\frac{kJ}{kmol}$	Ecuación 5-16

Símbolo	Término	Unidad SI	Definición
IT	Impuestos de la renta	USD	Ecuación 6-11
L	Flujo molar del solvente	$\frac{\mathrm{kmol}}{\mathrm{h}}$	$\frac{n}{t}$
М	Peso molecular	$rac{\mathrm{kg}}{\mathrm{kmol}}$	$\frac{m}{n}$
m	Masa	kg	DF
m	Pendiente de equilibrio	1	Ecuación 5-60
n	Número de moles	kmol	DF
n	Periodo de análisis	1	Ecuación 6-10
N_{tu}	Número de unidades de transferencia	1	Ecuación 5-62
Ν	Vida económica de la planta	Años	Ecuación 6-10
p	Presión	kPa	$rac{ ilde{F}\cdot ilde{n}}{A}$
Р	Pérdidas de energía	J	Ecuación 5-28
P_r	Presión relativa	1	$exp(\frac{s^o}{R})$
PM	Peso molecular	$\frac{\mathrm{kg}}{\mathrm{kmol}}$	$\frac{m}{n}$
\dot{Q}	Potencia térmica	W	$rac{E}{t}$
R	Constante de los gases ideales	$\frac{\mathrm{kJ}}{\mathrm{kgK}}$	$\frac{R_u}{M}$
S	Entropía	$\frac{kJ}{kgK}$	$\Delta S = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{int \ r}$
S	Área superficial	m^2	Ecuación 5-71
t	Tiempo	S	DF
Т	Temperatura	Κ	DF
TIR	Tasa interna de retorno	1	Tabla 6-7
ΔT	Cambio de temperatura	Κ	T_s - T_e
$\Delta T_{ m lm}$	Temperatura media logarítmica	Κ	Ecuación 5-37
v	Volumen específico	$\frac{\mathrm{m}^3}{\mathrm{kg}}$	$\frac{V}{m}$
V	Volumen	m^3	$\int dr^3$
VPN	Valor presente neto	USD	Ecuación 6-10
\dot{V}	Flujo volumétrico	$\frac{\mathrm{m}^3}{\mathrm{h}}$	$\frac{V}{t}$
\dot{W}	Potencia	W	$rac{E}{t}$
X	Fracción másica	$\frac{\text{kg}}{\text{kg}}$	$rac{m}{m}$
Х	Fracción molar	kmol kmol	$\frac{n_i}{n_m}$
у	Impuesto por flujo de caja	1	Ecuación 6-11

Símbolos con letras griegas

Símbolo	Término	Unidad SI	Definición
η	Eficiencia energética	$\frac{W}{W}$	$\frac{\dot{W}_s}{\dot{W}_e}$
ηr	Eficiencia de remoción	$\frac{\text{kg}}{\text{kg}}$	$rac{\dot{m}_s}{\dot{m}_e}$
ρ	Densidad	$\frac{\text{kg}}{\text{m}^3}$	$\frac{m}{V}$
μ	Viscosidad dinámica	$\frac{\text{kg}}{\text{ms}}$	Ecuación 5-67
α	Parámetro de empaque	1	Ecuación 5-63
β	Parámetro de empaque	1	Ecuación 5-63
Γ	Parámetro de empaque	1	Ecuación 5-63
ϕ	Parámetro de empaque	1	Ecuación 5-64
Ψ	Relación entre la densidad del solvente y el agua	1	Ecuación 5-54

Subíndices

Subíndice	Término
elec	Energía eléctrica
perd	Pérdidas de energía
e	Entrada
S	Salida
S	Estado isoentrópico
i	Especie
j	Tecnología
k	Material secundario
1	Residuo
f	Fluido
L	Lodos
L	Solvente
G	Gases de combustión
r	Especie removida
bs	Base seca

Contenido

Subíndice	Término
diff	Proceso por difusión
ref	Propiedad en el estado de referencia
STD	Propiedad a condiciones estándar
R	Reactantes
Р	Productos
VC	Volumen de control
с	Referente al proceso de combustión
gc	Gases de combustión
a	Aire
CZS	Cenizas
sfr	Superficial
tu	Unidades de transferencia

Superíndices

Superíndice	Término
0	Propiedad referente a la formación de la especie
*	Condición de equilibrio químico

Abreviaturas

Abreviatura	Término
PTAR	Planta de tratamiento de aguas residuales
ST	Sólidos totales
PCS	Poder calorífico superior
PCI	Poder calorífico inferior
LFB	Lecho fluidizado burbujeante
LFC	Lecho fluidizado circulante

A	breviatura	Término
A	previatura	1 erm

LFP	Lecho fluidizado a alta presión
HPM	Horno de pisos múltiples
ORC	Ciclo Rankine orgánico
DF	Dimensión fundamental
STR	Tasa térmica específica (por sus siglas en inglés)
EA	Exceso de aire
AF	Factor de absorción
GHSV	Velocidad espacial horaria del gas (por sus siglas en inglés)
LII	Límite de inflamabilidad inferior
TEA	Análisis tecnoeconómico
CAPEX	Gastos de capital (por sus siglas en inglés)
OPEX	Gastos de operación (por sus siglas en inglés)
CEPCI	Índice de costo de planta de ingeniería química (por sus siglas en inglés)
WtE	Conversión de residuos en energía (por sus siglas en inglés)
SD	Secador de discos
HRSG	Generador de vapor
CIV	Ciclo de vapor
PA	Precalentamiento de aire
ESP	Precipitador electrostático
IC_S	Intercambiador de calor previo al depurador húmedo
SHC	Depurador húmedo de HCl
SST	Depurador húmedo de SO_2
IAA	Inyección de adsorbentes
FM	Filtro de mangas
EPH	Precipitador electrostático húmedo
SA	Secado por atomización
\mathbf{FC}	Filtro cerámico
MC	Multiciclones
SCR_N	Sistema de iny ección de $\rm NH_3$
SCR_R	Reactor de sistema de reducción catalítica

Contenido

Abreviatura	Término
STV	Depurador húmedo tipo Venturi
HB	Sistema de prevención de humo blanco
CE	Cámara de enfriamiento
TC	Turbocompresor
FCA	Filtro de lecho fijo de carbón activado
CC2nd	Cámara de combustión secundaria
ORC	Ciclo Rankine orgánico
IC	intercambiador de calor gas-aceite
ST	Secador de tambor
SPD	Secador de película delgada.
S	Servicios
Q	Químicos
R	Residuos
SP	Subproductos
\mathbf{PR}	Pretratamiento
IN	Incineración
RE	Recuperación energética
LG	Limpieza de gases
a(1)	Costos de compra de equipos
А	Costo de capital de proceso
В	Costos de instalaciones generales
С	Costos administrativos e impuestos
D	Costos de contingencias
Ι	Costo total de planta

1. Introducción

El tratamiento de aguas residuales es un problema urbano importante. En Bogotá se experimentó una emergencia sanitaria que llevo a responsabilizar a entidades gubernamentales por la contaminación del río Bogotá y la implementación de su plan de saneamiento que incluye la puesta en marcha de dos PTAR (i.e. El Salitre y Canoas). Actualmente, la PTAR EL Salitre Fase II se encuentra en una etapa de puesta en marcha para una capacidad de tratamiento de 7.1 m³/s y la PTAR Canoas no ha iniciado su construcción aún, pero se proyecta una capacidad de 16 m³/s.

En el caso de la PTAR El Salitre se producen residuos y subproductos incluyendo los biosólidos de categoría B (i.e. lodos de aguas residuales que cumplen con las características del decreto 1287 de 2014) cuya disposición se da al utilizarlos como enmienda ambiental en el predio La Magdalena. Esta disposición es limitada y debe ir avalada por la ANLA (por sus siglas, Autoridad Nacional de Licencias Ambientales), lo que se debe principalmente a sus concentraciones de agentes microbiológicos y metales pesados. La principal limitante está relacionada con el volumen de biosólidos que se pueden utilizar en un terreno cuyo valor es limitado según el decreto, lo que resulta en la búsqueda de más terrenos a recuperar y su posible transporte a donde se dé el aval por la ANLA.

La disposición de los biosólidos ha sido un tema de estudio por parte del gobierno local en Bogotá, no solo por su situación actual, sino también por el aumento en la generación de estos residuos al implementar el plan de saneamiento en un 100 %. En el desarrollo de estos estudios, donde se evalúan otras alternativas de tratamiento, se excluye la incineración por ser costosa sin desarrollar un análisis profundo alrededor de esta alternativa de valorización energética. La incineración de biosólidos es una opción que se utiliza satisfactoriamente en diferentes ciudades alrededor del mundo principalmente por: su capacidad de tratar los biosólidos en periodos cortos de tiempo en comparación con otras metodologías, la posibilidad de recuperación energética y el cumplimiento de las correspondientes regulaciones ambientales.

La incineración de biosólidos se realizó inicialmente en reactores de pisos múltiples. Posteriormente, se han venido implementando reactores de lecho fluidizado debido a que presentan mejores tasas de transferencia de masa, transferencia de calor, menores emisiones de contaminantes a la atmósfera y mejores condiciones de control. Esto se ve reflejado en planes maestro de manejo de biosólidos en otras ciudades del mundo, donde esta tecnología resulta ser la más favorable considerando las respectivas condiciones locales.

Los reactores de lecho fluidizado pueden hacer parte de sistemas que incluyen diferentes tecnologías de pretratamiento, recuperación energética y limpieza de gases; esto hace que todo el sistema varíe y por lo tanto sus costos, emisiones de contaminantes y condiciones de operación sean diferentes entre sí.

De acuerdo con lo anterior, se plantea el objetivo del presente proyecto, que es realizar la evaluación tecnoeconómica de sistemas para la recuperación energética de los biosólidos producidos en la ciudad de Bogotá, mediante su monoincineración en reactores de lecho fluidizado. Para cumplir este objetivo, se propone seguir una metodología conformada por las siguientes fases:

- Caracterización de biosólidos. Incluye las cantidades de biosólidos que se producen actualmente y las que se proyectan, en el escenario donde las PTAR El Salitre y Canoas estén funcionando. Adicionalmente, se establecen las características de los biosólidos que se requieren para realizar los balances de masa y energía en líneas de procesamiento para su incineración en reactores de lecho fluidizado.
- Superestructura tecnológica. Desarrollo de una superestructura que integre los sistemas que representan el estado del arte tecnológico en cuanto a la recuperación energética de biosólidos mediante su monoincineración en reactores de lecho fluidizado.
- Análisis tecnoeconómico. Se exploran las metodologías de análisis TEA, y se detalla la metodología implementada. Al finalizar, se comparan los costos estimados con los costos reales de una planta base. En esta fase se incluyen los procedimientos para realizar los balances de masa y energía para las tecnologías identificadas.
- Análisis comparativo. Realización del análisis comparativo de las líneas de procesamiento identificadas, teniendo en cuenta criterios económicos, energéticos y de emisión de contaminantes.

La innovación del presente estudio se centra en la realización de un análisis tecnoeconómico a una superestructura tecnológica para la incineración de biosólidos en reactores de lecho fluidizado burbujeante, específicamente aplicado a las condiciones de desarrollo actuales de Bogotá, considerando la optimización de la PTAR El Salitre y la construcción proyectada de la PTAR Canoas.

2. Planteamiento del problema

Inicialmente se realiza una descripción de la problemática relacionada con el manejo de los biosólidos en la ciudad de Bogotá. A continuación, se identifica la incineración de biosólidos en reactores de lecho fluidizado como alternativa potencial de disposición en la ciudad. Posteriormente, el desarrollo de un estado del arte tecnológico, seguido de un análisis comparativo en términos económicos, de las líneas de procesamiento que cumplen con las regulaciones ambientales, es un procedimiento determinante para formular un proyecto de inversión de carácter gubernamental. Finalmente, se describe la metodología implementada en el presente estudio.

2.1. Tratamiento de biosólidos en Bogotá

Las aguas residuales (AR) se refieren a aquellas que una vez utilizadas en los hogares, el comercio, etc. son descargadas al alcantarillado de las grandes ciudades. Estas transportan una gran cantidad de contaminantes de distinta naturaleza, lo que hace de la mezcla un riesgo biológico y sanitario para cualquier población [69]. Dicho riesgo es una de las razones principales para tratar las AR, sin embargo, se resaltan los siguientes aspectos [69]:

- La escasez de agua, que en algunos lugares del mundo es crítica.
- La irrigación informal de cultivos con AR, principalmente en las periferias de las grandes ciudades.
- Riesgos biológicos y sanitarios, por altas cargas contaminantes de diferente naturaleza.
- El gran potencial de las AR como materia prima para la producción de agua tratada, nutrientes y energía.

Además de reducir los impactos negativos asociados con la escasez de agua, la irrigación informal, y los riesgos tanto biológicos como sanitarios, el tratamiento de AR ha tomado gran importancia porque permite visualizarlas no como residuo sino como una materia prima. De aquí que, el tratamiento de las AR sea de gran relevancia para el desarrollo de un país, tal y como se evidencia en la figura **2-1**, donde se muestran las tasas porcentuales del tratamiento de las AR en diversos países. En el caso de Colombia se tiene un crecimiento desde el 2008 con un porcentaje de aguas residuales urbanas tratadas del 27.5 % al 36.7 % para el 2014, y

como meta para el 2030, el 68% [199, 198, 200].

Figura 2-1.: Porcentaje de agua tratada y no tratada, con respecto a las aguas residuales en poblaciones urbanas [198, 11, 184].

En cuanto al tratamiento de las AR por cuencas hidrográficas del país (Figura 2-2), la Superintendencia de Servicios Públicos y Domiciliarios resalta que el Río Bogotá es el de mayor caudal vertido de aguas residuales con 19.44 m³/s, lo que sumado a su paso por el costado occidental de la ciudad de Bogotá, en donde se alcanza un grado VII de contaminación, representa un residuo de alto riesgo biológico y sanitario para la población. Es importante mencionar que el caudal vertido al río Bogotá proviene principalmente de los ríos Salitre, Fucha y Tunjuelo [60].

El alto grado de contaminación del río Bogotá provocó el fallo 01-479 del 25 de agosto del 2004 por parte del Tribunal Administrativo de Cundinamarca, al amparar los derechos colectivos de un ambiente sano, responsabilizando a entidades públicas y gubernamentales por la contaminación del río Bogotá y avalando el plan de saneamiento del río Bogotá [89].

El plan de saneamiento del río Bogotá fue presentado por la Empresa de Acueducto y Alcantarillado de Bogotá (EAAB), y el eje fundamental es la puesta en marcha de la Planta

Figura 2-2.: Caudales de aguas residuales vertidas y tratadas en Colombia por cuencas [67].

de Tratamiento de Aguas Residuales (PTAR) Canoas para tratar las AR provenientes de las cuencas Fucha y Tunjuelo, y la ampliación de la PTAR El Salitre para tratar las AR de la cuenca Salitre [89].

En la figura **2-3**, se observa el avance de las obras del plan de saneamiento en tres etapas (i.e. obras ejecutadas hasta el 2008, entre el 2006 y 2009, y desde el 2009).

Como se puede observar, hasta el 2008 se contaba con la PTAR El Salitre Fase I, los interceptores Salitre, Fucha y Río Bogotá. Entre el 2006 y 2009, se proyectaban las obras de colectores para los interceptores ya disponibles, además de los interceptores Engativa-Cortijo, Fucha (parte baja) y Fucha-Tunjuelo. Finalmente, desde el 2009 se proyectaron las obras de los interceptores Tunjuelo Bajo, Tunjuelo Canoas, la ampliación de la PTAR El Salitre y la construcción de la PTAR Canoas [72].

Actualmente la PTAR El Salitre se encuentra finalizando la construcción de su fase II y en etapa de puesta en marcha; se tiene proyectado que cuando la fase II ya se encuentre en plena operación, el caudal medio tratado sea de 7.1 m³/s [228, 59].

Como subproductos del tratamiento de las aguas residuales en la PTAR EL Salitre Fase I,

Figura 2-3.: Plan de saneamiento del río Bogotá [72, 228, 223].

se generan: biogás, residuos sólidos, arenas, grasas y biosólidos [72, 71]; valores de referencia en la tabla **2-1**.

Subproductos	Valores	
Biogás (m ³ /mes)	575483	
Residuos sólidos (e.g. llantas,	50	
plásticos, etc.) (t/mes)	50	
Arenas (m^3/mes)	8	
Grasas (m^3/mes)	45	
Biosólidos (t/mes)	4500	

Tabla 2-1.: Producción de suproductos en la PTAR El Salitre fase I [71].

Cabe resaltar que, las concentraciones de químicos, metales y microbiológicos de los lodos de la PTAR El Salitre permiten categorizarlos como biosólidos en Colombia, según el decreto 1287 del 10 de julio de 2014 del Ministerio de Vivienda, Ciudad, y Territorio [292].

En la tabla **2-2**, se puede observar que las concentraciones de metales pesados y agentes microbiológicos, de los biosólidos de la PTAR El Salitre son inferiores a las concentraciones máximas de biosólidos de categoría B establecidos en el decreto 1287 de 2014. De acuerdo a lo anterior, se evidencia por qué los lodos producidos en la PTAR EL Salitre se clasifican como biosólidos de categoría B, y tanto las alternativas de disposición, como sus restricciones

Tabla 2-2.: Comparación entre concentraciones del promedio ponderado de metales pesados y agentes micro biológicos de los biosólidos de la PTAR El Salitre y las concentraciones máximas permitidas [292, 124]. Abreviaciones: HH, huevos de helmintos; UFC, unidades formadoras de colonias; UFP, unidades formadoras de placas; nr, no reportado; a, ausencia.

	Variable	Unidad de medida		Límites (nites Colombia	
Criterio			Biosólido PTAR	decreto 1287 de 2014		
			El Salitre [124]	Categoría		
				А	В	
	Coliformes	UFC/g	1.94×10^{6}	$<1.00 \times 10^{3}$	$\sim 2.00 \times 10^{6}$	
	fecales	en base seca	1.24 X 10	<1.00 X 10	<2.00 X 10	
Biológicos	Virus	UFP/4g	pr	<1.00	nr	
	entéricos	en base seca	111	<1.00		
	HH viables	HH viables/4g	6.83×10^{0}	<1.00	<10.00	
		en base seca	0.05 X 10			
	Salmonella	$\rm UFC/25g$	nr	9	$<1.00 \times 10^{3}$	
	Samonena	en base seca	111	a	<1.00 x 10	
Metales	Arsénico		18.2	20	40	
	Cadmio		8.7	8	40	
	Cobre		188.4	1000	1750	
	Cromo	mg/lvg do biog	118.5	1000	1500	
	Mercurio	mg/kg de blos.	5.1	10	20	
	Níquel	en base seca	53.3	80	420	
	Plomo		79.9	300	400	
	Selenio		23.3	36	100	
	Zinc		1067	2000	2800	

de uso también están reguladas por el decreto 1287.

Dentro de las alternativas de utilización se destaca la restauración de suelos, sujeta a tasas anuales máximas de aplicación por año y tasa acumulativa de aplicación en el suelo según componente químico [292]. Teniendo en cuenta esta opción, la CAR (Corporación Autónoma Regional) mediante Resolución 3292 de 2006 aprobó el transporte y la disposición de los

biosólidos en el predio El Corzo ubicado al sur de Bogotá, entre las localidades de Kennedy y Bosa; en la figura **2-6**, se muestra el recorrido de los vehículos para transportar los biosólidos al predio El Corzo.

Recorrido de la PTAR EL Salitre al predio El Corzo.

Recorrido del predio EL Corzo al predio La Magadalena.

Figura 2-6.: Ubicación de la PTAR El Salitre, predio El Corzo, y el predio La Magdalena; recorridos realizados durante la disposición de los biosólidos [74].

Según el decreto 1287 de 2014 la recuperación de suelos es limitada y hasta el 2018, el predio El Corzo había sido el único lugar donde la EAAB disponía los biosólidos generados desde el mes de julio de 2007. En el año 2016 este predio estaba a punto de alcanzar su capacidad máxima, por ello la EAAB solicitó a la ANLA (Agencia Nacional de Licencias Ambientales), la licencia para evaluar la posibilidad de cambiar el lugar de disposición por el predio La

Magdalena, el cual se localiza a 4.7 km de El Corzo como se ve en la figura **2-6**(b) [15].

Considerando la necesidad de contar con otro predio para disponer los biosólidos y los tramites que venía adelantando la EAAB, se utilizó el predio El Corzo hasta diciembre de 2017 y desde enero de 2018 se viene utilizando el predio La Magdalena, el cual fue autorizado por la ANLA, mediante resolución 1301 de 2016; inicialmente los biosólidos son llevados al predio El Corzo para su acondicionamiento y luego al predio La Magdalena para cobertura de suelos [73, 75].

La disposición de los biosólidos para la restauración de suelos en los predios El Corzo y La Magdalena, ya se había tenido en cuenta como alternativa de manejo de los biosólidos producidos en la PTAR El Salitre en un estudio tecnoeconómico contratado por la Empresa de Acueducto y Alcantarillado de Bogotá, y desarrollado por GS Engineering Construction; este estudio fue realizado en julio del 2011 para servir de base en el establecimiento del Plan Maestro para el Manejo de los Biosólidos que se generarán en la ciudad de Bogotá. Una de las conclusiones de este trabajo fue no considerar la restauración de suelos como una alternativa de disposición, ya que la vida útil de los terrenos disponibles no superaba los 4 (cuatro) años [124].

Además de incluir la recuperación de suelos dentro de las alternativas para el manejo, aprovechamiento y disposición de los biosólidos de la PTAR El Salitre, Hazen y Sawyer tuvieron en cuenta la disposición de biosólidos en rellenos sanitarios; esto no resultó viable porque el Relleno Sanitario de Mondoñedo, cuyo cierre se ordenó mediante la resolución 1425 de 2005 del MAVDT [13], no contaba con licencia ambiental para la disposición de biosólidos, y el Relleno Sanitario Doña Juana, según Resolución 362 de 2001 del MAVDT, puede recibirlos únicamente con fines de investigación.

Las tecnologías de tratamiento para los lodos que se generan en las PTAR se pueden agrupar en las siguientes categorías: estabilización de lodos, deshidratación, secado y conversión, para obtener uno o más productos finales tal y como se evidencia en la figura **2-7**. La ejecución de estos procesos depende tanto de la aplicación que se requiera como de la naturaleza de los lodos, por lo que se van a presentar variaciones entre sistemas de tratamiento instalados en diferentes sitios.

Para la disposición de los lodos deshidratados se cuenta con varias estrategias de aprovechamiento incluyendo las alternativas bioquímicas como el compostaje y la codigestión, siendo este último el único de los procesos biológicos que da la posibilidad de generar energía a partir de los biosólidos. La digestión de lodos es un proceso de conversión muy común en PTAR para estabilizar lodos primarios y secundarios, como en el caso de la PTAR El Salitre Fase II, cuyo biogás producido se utiliza como combustible en un proceso de cogeneración. En

Figura 2-7.: Resumen de las tecnologías más utilizadas para el tratamiento de lodos generados en PTAR [5].

el caso de los biosólidos, estos también se pueden someter a biodigestión, pero en conjunto con otra materia prima de alto contenido orgánico como grasas animales, residuos sólidos orgánicos, etc. En comparación con los procesos termoquímicos, la biodigestión de lodos urbanos tiene las siguientes desventajas: tiempos de retención del sustrato elevados, grandes requerimientos de espacio para la instalación de los reactores, y baja variedad de productos [95].

Por otra parte, los procesos termoquímicos han resultado efectivos para tratar los lodos urbanos considerando su capacidad de: recuperación energética, reducción volumétrica rápida, destrucción de bacterias, y el potencial para producir materiales aprovechables. El potencial de recuperación energética se evidencia en el poder calorífico de lodos urbanos sin digerir y digeridos, con valores equivalentes a 23-29 MJ/kg y 16-23 MJ/kg, respectivamente [95].

Como se observa en la figura 2-7, los lodos deshidratados pueden ser tratados directamente mediante procesos termoquímicos como incineración, gasificación y pirólisis. Con respecto a la pirólisis de lodos urbanos, este proceso ha resultado favorable considerando que se han producido biocombustibles en formas de gas, líquido y sólido, con bajas emisiones de contaminantes en rangos de temperaturas de operación medias entre 400 y 600 °C. Adicionalmente,

se ha investigado la pirólisis lenta o torrefacción de lodos urbanos dando como resultado la producción de un biocarbón más denso. En cuanto a la gasificación, se ha estudiado su implementación para producir gas de síntesis utilizando como sustrato el biocarbón producido por torrefacción, pirólisis rápida y carbonización hidrotérmica (cuyo proceso tiende a ser más costoso debido a las presiones altas que se deben alcanzar en el reactor), así como los lodos deshidratados [95].

Con respecto a la incineración, esta es una de las alternativas de disposición más utilizadas a nivel global en cuanto al manejo de biosólidos [142]. Dentro de las ventajas de la incineración se resaltan: la tasa de reducción volumétrica de los biosólidos (hasta en un 95%, aproximadamente), la destrucción térmica de agentes orgánicos tóxicos, el potencial de recuperación energética y la madurez de sus tecnologías [235, 294, 95]. La madurez de las tecnologías es un aspecto clave en proyectos de inversión como lo es la instalación y puesta en marcha de una planta para el tratamiento de los biosólidos que se generan en Bogotá. De acuerdo con lo anterior, se han hecho estudios de madurez tecnológica aplicados a tecnologías de recuperación energética de lodos urbanos; a continuación se listan los resultados obtenidos según clasificación TRL (por sus siglas en inglés, Technology Readiness Level) [101]:

- Gasificación. TRL 6 a 7, donde 7 hace referencia, a la demostración de prototipos del sistema en entornos operativos.
- Pirólisis y carbonización hidrotérmica. TRL 4 a 5, donde 5 corresponde a tecnologías validadas mediante la construcción de prototipos en PTAR.

De los procesos termoquímicos discutidos previamente, el único que se clasifica en TRL 9 es la incineración, es decir que esta tecnología es la única que cuenta con aplicaciones comerciales completas y cuyas tecnologías están disponibles para los consumidores.

2.2. Incineración de biosólidos

Con respecto a la incineración de lodos urbanos en Bogotá, está alternativa de tratamiento ha sido considerada costosa, razón por la cual no ha sido tenida en cuenta como alternativa de disposición en la ciudad [124]. Por ello, es importante realizar un estudio de factibilidad detallado para su implementación en la ciudad considerando los beneficios que se han evidenciado en diferentes lugares del mundo . Por ejemplo, Alemania trató la mayor cantidad de lodos urbanos mediante su incineración en el año 2022 con 1803 kt en base seca, tal y como se observa en la figura **2-8**.

El avance en la implementación de tecnologías para la incineración de lodos en Alemania es consecuencia de los siguientes tres aspectos: higiene, protección del suelo y la recuperación

■ Incineración ■ Uso en agricultura ■ Compostaje ■ Relleno sanitario ■ Otros

Figura 2-8.: Lodos urbanos tratados en países pertenecientes a la Unión Europea, para el año 2020 [90].

del fósforo en los lodos. Con respecto a la recuperación de fósforo, esta práctica está debidamente regulada y es una exigencia por parte del gobierno alemán cuando los lodos tienen una concentración de fósforo superior a 20 g/kg de sólidos totales. Es importante mencionar que es posible recuperar el fósforo de los lodos mediante su uso directo como fertilizante, sin embargo para plantas de tratamiento con capacidades superiores a 50000 PE al menos el 50 % del fósforo en los lodos o el 80 % del fósforo en las cenizas debe ser recuperado [234].

En cuanto a las tecnologías de incineración utilizadas en Alemania, los reactores de lecho fluidizado burbujeante han sido los de mayor implementación en plantas para la monoincineración de lodos urbanos con una capacidad instalada, en el 2018, equivalente a 670 kt en base seca, mientras que otras tecnologías como los hornos rotatorios y reactores híbridos (lecho fluidizado burbujeante y pisos múltiples) no superaron las 144 kt en base seca. Con relación a la coincineración de los lodos con residuos sólidos urbanos y carbón, esta alternativa de tratamiento se restringirá teniendo en cuenta que las cenizas que se obtienen como subproducto de este proceso tienen menor cantidad de fósforo a recuperar debido a la integración de otros combustibles con bajas concentraciones de este metal [234].

Otro país donde se evidencia el uso de reactores de lecho fluidizado burbujeante para la incineración de lodos, es EUA (Estados Unidos de América). Si bien es cierto que en este país hay más plantas que utilizan hornos de pisos múltiples (HPM) para incinerar los lodos, se encuentra que esta tecnología emite más agentes contaminantes al aire en comparación con los lechos fluidizados [171]. La implementación de hornos de pisos múltiples en EUA se viene practicando desde el año 1935, esto teniendo en cuenta que para la época, esta tecnología se encontraba en una etapa madura. En el año 1962, en Lynnwood, Washington, se instaló el primer incinerador de lecho fluidizado burbujeante (LFB) para tratar lodos de PTAR. Finalmente y debido a las ventajas de los incineradores LFB, desde el año 1988 se han venido utilizando como reemplazo de los HPM; dentro de las ventajas reportadas por las plantas que reemplazaron los HPM por incineradores LFB se resaltan [62]:

- La instalación de sistemas de tratamientos de gases más pequeños debido a la reducción de formaciones de NO_x, CO e hidrocarburos totales, por efectos de una combustión completa, garantizada por la buena mezcla entre combustible y comburente en el lecho, así como la turbulencia que allí se presenta.
- La capacidad de operar de forma intermitente, con alimentación variable, con ocurrencia de choques térmicos, e incluso la fácil automatización y control del sistema, debido al comportamiento del lecho como fluido con una excelente transferencia de masa y calor, lo que le permite mantener su temperatura constante a lo largo del lecho.
- Menores costos de mantenimiento ya que su funcionamiento no requiere de elementos móviles.

Hay varios aspectos importantes a la hora de seleccionar y/o diseñar los reactores de incineración, entre los cuales se destaca la producción de gases de combustión con concentraciones de contaminantes lo suficientemente bajas para que cumplan con los límites establecidos en las regulaciones locales. Las características de mayor influencia en la concentración de contaminantes de los gases de combustión son: la naturaleza del combustible, la temperatura al interior del reactor, y la tasa de transferencia de calor, entre otras. Con respecto a la tasa de transferencia de calor, entre más alta se mejoran las etapas de secado, pirólisis y combustión lo que resulta en más generación de gases de combustión y menos producción de residuos sólidos. Para esta aplicación en particular, y como se ha discutido previamente, se ha reportado la implementación de reactores de lecho fluidizado tanto burbujeante como circulante, hornos de pisos múltiples, hornos rotatorios y otros que incluyen cámaras de combustión cicloide, hornos híbridos de lecho fluidizado y de pisos múltiples, etc. Teniendo en cuenta los reactores previamente discutidos se han realizado análisis comparativos cuyos resultados demuestran que el lecho fluidizado es mejor en términos de sostenibilidad ambiental, calidad de los gases de combustión, tasas de transferencia de calor y disposición de residuos sólidos [95].

El desarrollo de estudios de factibilidad y planes maestros para el manejo de biosólidos es una labor de responsabilidad gubernamental e incluyen la selección de las mejores alternativas de tratamiento considerando el estado del arte tecnológico y criterios económicos, ambientales, sociales y operacionales [283].

Por ejemplo el condado de Arlington, Virginia, EUA, junto con la compañía de consultoría CMD Smith, un comité de técnicos expertos y asociaciones, desarrollaron un plan maestro para el manejo de biosólidos del condado. Dentro del desarrollo de este plan, se tuvieron en cuenta los siguientes criterios [283]:

- Económico: costo de capital, costo anualizado, ciclo de vida de costos, rentabilidad y disposición final.
- Operacional: flexibilidad de implementación, seguridad operacional, confiabilidad de las tecnologías en cuanto a su operación e implementación.
- Ambiental: potencial de obtención de subproductos, eficiencia energética, emisiones de GEI (i.e. gases con efecto invernadero) y cumplimiento de límites de emisiones.
- Social: generación de olores, aceptación de la sociedad y perturbación de las comunidades cercanas.

Este componente es imprescindible dentro de los estudios de factibilidad porque busca encontrar las tecnologías que cumplan con varios criterios de evaluación como: confiabilidad de las tecnologías, cumplimiento de regulaciones ambientales, aceptación de comunidades, etc. En el caso del plan maestro de Arlington, el equipo de trabajo realizó un estado del arte tecnológico por tipo de proceso según los siguientes criterios [283]:

- Estado de desarrollo según estudios de niveles de desarrollo técnico.
- Capacidades típicas de tratamiento.
- Requerimientos de instalación.
- Análisis de costos.
- Regulaciones.

A partir de las tecnologías identificadas, se seleccionaron algunas según calificaciones asignadas por el equipo de trabajo. Con relación a los procesos termoquímicos, la incineración en reactores de lecho fluidizado burbujeante fue la única opción preseleccionada teniendo en cuenta que fue la tecnología más madura según el equipo de trabajo [283]. La incineración de biosólidos en reactores de lecho fluidizado burbujeante, es una alternativa recomendada por varios estudios de factibilidad, como el caso del plan maestro de manejo de biosólidos de la PTAR de Highland Creek, Canada. Al igual que en Arlington, este estudio consideró criterios ambientales, sociales y económicos [297].

Como referentes de otros casos donde se utilizan incineradores de lecho fluidizado burbujeante, en el plan maestro de la PTAR de Highland Creek se reporta que, en el plan maestro de manejo de biosólidos de Toronto, esta alternativa se formuló satisfactoriamente. Adicionalmente se hace referencia a 61 plantas de este tipo en los EUA, junto con las tecnologías de limpieza de gases que se han integrado para remover contaminantes específicos de la incineración de biosólidos [297].

Las plantas de los EUA, que se reportan en el plan maestro de Highland Creek, hacen parte de un estudio realizado por la Agencia de Protección Ambiental (EPA, por sus siglas en inglés). Este estudio evaluó las plantas destinadas a la incineración de lodos urbanos en los EUA considerando las tecnologías que conforman sus líneas de procesamiento y las emisiones de contaminantes. Esto con el fin de desarrollar los lineamientos para regular las emisiones de contaminantes de plantas de incineración de lodos urbanos, considerando su estado del arte tecnológico [81]; en la Unión Europea se desarrolla el mismo procedimiento [187].

2.2.1. Análisis tecnoeconómico

Una vez se desarrolla el estado del arte tecnológico, en los estudios de factibilidad se realizan análisis comparativos de líneas de procesamiento propuestas, en términos económicos, mediante análisis del ciclo de vida de costos y rentabilidad. Para realizar este tipo de evaluaciones, se realizan estimaciones de costos de las líneas de procesamiento, generalmente de clase 4 con un rango de precisión del -30 al +50 %, con respecto al costo real, según los lineamientos de la La Asociación para el Avance de la Ingeniería de Costos (AACE, por sus siglas en inglés) [58, 283].

Los análisis tecnoeconómicos se pueden clasificar según la madurez de los entregables, lo cual define la aplicación que se les da. Por ejemplo, la AACE ha establecido un sistema de clasificación desde la clase 5 hasta la clase 1, con rangos de madurez de los entregables del 0 al 2%, y del 65 al 100%, respectivamente. Con respecto a los análisis de clase 4 se evidencia un nivel de madurez de los entregables entre el 1 y 15%, que es suficiente para el desarrollo de estudios de factibilidad de proyectos de inversión [134].

El punto de partida para realizar la estimación de costos de clase 4, son los balances de masa y energía de las líneas de procesamiento consideradas, ya que de estos dependen las

especificaciones técnicas de las tecnologías y las cantidades de los materiales que definen los costos de compra y variables de operación, respectivamente. Con respecto a la fuente de los costos, los análisis comparativos utilizan datos históricos, referencias técnicas, y en algunos casos cotizaciones formales [58, 283, 297].

2.3. Metodología

El objetivo general de este estudio es:

 Realizar la evaluación tecnoeconómica de una superestructura tecnológica para la recuperación energética de los biosólidos producidos en la ciudad de Bogotá D.C. mediante su incineración en reactores de lecho fluidizado.

A partir del planteamiento del problema, y en aras de cumplir con el objetivo general, los objetivos específicos son:

- Establecer las cantidades generales de biosólidos producidos en la ciudad de Bogotá y su caracterización a partir de información disponible en agencias gubernamentales y en literatura especializada.
- Realizar una superestructura con las tecnologías requeridas y disponibles como estado del arte técnico para la incineración y recuperación de energía a partir de biosólidos generados en plantas de tratamiento de aguas residuales.
- Realizar un análisis tecnoeconómico según las tecnologías incluidas en la superestructura tecnológica planteada.
- Realizar un análisis comparativo a los sistemas de la superestructura en términos de recuperación energética, variables económicas y límites de emisiones de contaminantes al aire, para el tratamiento de biosólidos en Bogotá.

De acuerdo con el planteamiento del problema, en la figura **2-9** se representa la estructura de la metodología que se siguió en este estudio para cumplir con el objetivo general del mismo.

Cada fase de la metodología del presente estudio se desarrolla por capítulos, en el siguiente orden:

 Capítulos 1 y 2: introducción y planteamiento del problema. En estos capítulos se incluye una introducción del estudio realizado, así como los antecedentes, causas y consecuencias del problema, y el problema y la pregunta de investigación. Teniendo en cuenta estos capítulos se desarrolla la estructura de la metodología implementada en el presente estudio y documentada por capítulos.

2 Planteamiento del problema

1.1 Revisión de información	1.2 Consolidación de información	1.3 Análisis de la información	1.4 Análisis comparativo con otro lugar de generación	
se II: generación de una ara la incineración de bios	superestructura con los sis ólidos	stemas que representan el	estado del arte tecnológio	co
2.1 Revisión bibliográfica	2.2 Clasificación de tecnologías	2.3 Identificación de sistemas	2.4 Consolidación de parámetros técnicos	
se III: desarrollo de una n 3.1 Consolidación de	netodología para realizar an 3.2 Principios de	álisis tecnoeconómico de l 3.3 Análisis	a superestructura 3.4 Análisis de	-
parametros económicos	funcionamiento	comparativo con costos reales de planta base	rentabilidad a planta base	
ase IV: análisis comparativ	o de sistema incluidos en la	superestructura: Bogotá u	ın caso de estudio	k
4.1 Análisis de características de	4.2 Análisis de sistemas según emisiones	4.3 Clasificación de los CAPEX	4.4 Análisis de sensibilidad	4.5 Análisis d rentabilidad a sistem

Fase I: revisión de información sobre caracterización de biosólidos producidos en Bogotá

Figura 2-9.: Representación de la metodología de estudio agrupada según fases de investigación.

- Capítulo 3: caracterización de biosólidos. Incluye las cantidades de biosólidos que se producen actualmente y las que se proyectan, en el escenario donde el plan de saneamiento del río Bogotá esté completamente implementado. Adicionalmente, se establecen las características de los biosólidos que se requieren para realizar los balances de masa y energía en líneas de procesamiento para su incineración en reactores de lecho fluidizado.
- Capítulo 4: superestructura tecnológica. Representación gráfica de sistemas que representan el estado del arte tecnológico para la incineración de biosólidos y el análisis de las tecnologías que la conforman según tipo de proceso.
- Capítulo 5: balances de masa y energía. Incluye los procedimientos para realizar los balances de masa y energía para las tecnologías identificadas en el capítulo 4.
- Capítulo 6: análisis tecnoeconómico. Se exploran las metodologías de análisis TEA, y se detalla la metodología implementada. Al finalizar el capítulo se comparan los costos estimados con los costos reales de una planta base.
Capítulo 7: análisis comparativo. Realización del análisis comparativo de los sistemas identificados, teniendo en cuenta criterios económicos, energéticos y de emisión de contaminantes.

3. Características de los biosólidos

En este capítulo se realiza una descripción detallada de los procesos de producción de biosólidos, considerando las diferentes fases de construcción de las PTAR en Bogotá. Adicionalmente, se documentan los datos históricos en cuanto al tratamiento de aguas residuales, producción y humedad de los biosólidos de la PTAR El Salitre, así como la generación de biosólidos proyectada al implementar el plan de saneamiento del río Bogotá. Finalmente, se indican las características de los biosólidos, que se requieren para realizar los balances de masa y energía en líneas de procesamiento para su incineración en reactores de lecho fluidizado (i.e. análisis próximo, análisis último, poder calorífico y contenido de metales pesados).

3.1. Producción

En la figura **3-1** se representa el flujo de proceso de la PTAR El Salitre fase I y fase II, siendo los reactores biológicos, clarificadores secundarios y cloración, las unidades de procesamiento que se integran en la Fase II. La fase I está conformada por: (1) pretratamiento (i.e. captación, cribado, desarenado y desengrasado), (2) tratamiento primario químicamente asistido TPQA (i.e. coagulación, floculación y sedimentación) y (3) tratamiento secundario (i.e. tratamiento anaerobio y sedimentación), además de un tratamiento adicional a los lodos primarios para la obtención de biosólidos, biogás y una cantidad adicional de agua residual a ser tratada [110, 228].

Inicialmente las aguas residuales provenientes del interceptor Salitre son vertidas a la planta a través de una compuerta de 5 m de altura que puede controlar el caudal de agua a tratar mediante su cierre o apertura. A continuación, las AR se someten a un proceso de cribado grueso conformado por un grupo de rejas con 10 cm de separación entre barrotes, las cuales al pasar el fluido filtran residuos sólidos de gran tamaño como canecas, llantas, plásticos, etc. El agua que pasa a través de las rejas es transportada hasta 9.5 m de altura por efecto de dos (2) tornillos de Arquímedes de 3.10 m de diámetro con capacidad nominal de elevación de 2 m³/s para un total de 4 m³/s. Una vez elevadas las AR, se realiza el proceso de cribado delgado con 2 cm de separación entre barrotes para retirar residuos de menor tamaño [67, 110, 228].

Luego de retirar los residuos sólidos de las aguas, estas son sometidas al desarenado y desengrasado al retenerlas en 3 canales dobles durante un tiempo medio de 7.9 minutos, junto con inyección de aire para retirar las arenas por decantación y las grasas por flotación. Adicionalmente se agrega cloruro férrico como coagulante y polielectrolito aniónico como floculante, lo que acelera la decantación y flotación de algunos componentes [67, 110, 228].

El tratamiento continúa en ocho (8) tanques sedimentadores de 43 m de diámetro y 4 m de altura, con un tiempo de retención de 3 horas aproximadamente para que las partículas que aún flotan en el agua se sedimenten y así permitir el flujo de agua tratada al río Bogotá [67, 110, 228].

Las partículas que reposan en la base de los tanques de sedimentación se consideran lodos crudos, los cuales contienen una gran cantidad de materia orgánica, bacterias y parásitos, agentes de riesgo sanitario y ambiental si se llevaran directamente a los ríos, montañas, terrenos de recuperación, etc. Por ello los lodos crudos son transportados a dos (2) tanques espesadores donde se retira más agua, que como se indica en la figura **3-1** vuelve a ser tratada en la misma planta [67, 110, 228].

En el caso de la fase II, el agua tratada que sale de la sedimentación pasa por tratamiento secundario con el fin de reducir sus niveles de DBO₅ (Demanda Biológica de oxígeno medida a condiciones estándar durante 5 días a 20 °C), que de acuerdo con lo exigido por la Autoridad Nacional de Licencias Ambientales, ANLA, no deben superar el 40 %. En la PTAR El Salitre este tratamiento se realizará mediante la inyección de aire al agua previamente sedimentada con el fin de dispersar los microorganismos presentes en el agua, los cuales utilizarán la materia orgánica presente y el oxígeno del aire inyectado para producir CO_2 , H_2O y lodo activado [228].

Los lodos tanto activados como primarios serán espesados y transportados a 3 biodigestores que operan en ausencia de oxígeno, con un tiempo de retención de 17 a 22 días y a una temperatura de 35 °C, reduciendo de este modo el material patógeno y los parásitos que contienen los lodos crudos. A su vez se produce biogás (con 71.47 % de CH₄, 27.97 % de CO₂, 0.554 % de N₂ y 0.0009 % de H₂S [34]). En la PTAR EL Salitre fase I, este biogás es utilizado parcialmente para elevar la temperatura de los digestores mientras que la fracción restante es quemada en teas para reducir las emisiones de gases con efecto invernadero. Finalmente los lodos digeridos se hacen pasar por un sistema de filtros de banda donde se les retira el agua que a continuación, como se muestra en la figura **3-1**, es tratada en la misma planta [67, 110, 228]. Para el caso de la PTAR El Salitre fase II el biogás generado es refinado y enviado a un sistema de cogeneración (figura **3-1**) [231].

En la Figura **3-2** se muestran los valores promedio del caudal de agua tratada del año 2010 al 2022 (PTAR El Salitre). Con respecto al caudal tratado se puede observar que en los años 2011 y 2022 se presentan los valores máximos (i.e. 5.53 y 6.00 m³/s, correspondientemente) lo que se debe a una temporada de invierno en la ciudad, donde los eventos de lluvia generaron grandes caudales a tratar, y el inicio de operaciones de la PTAR EL Salitre fase II, respectivamente. Por el contrario, en el año 2021 se observa el valor mínimo de caudal tratado (i.e. 1.99 m³/s) debido a que los procesos de puesta en marcha de la PTAR EL Salitre fase II limitaron el caudal de ingreso a la planta [33].

Por otra parte, y al observar las figuras **3-2** y **3-3**, se evidencia una relación directa entre el caudal tratado y la producción de biosólidos, cuyos valores mínimo y máximo también se presentan en los años 2021 y 2022, respectivamente (i.e. 68 y 221 t/d, correspondientemente). Acá se evidencia que a menor caudal tratado, menor producción de biosólidos y otros residuos como arenas, grasas, etc. [33].

Figura 3-2.: Caudal promedio de agua tratada en la PTAR el Salitre y producción de biosólidos del año 2010 al 2022 [33]. Nota: datos del 2022 registrados hasta el mes de junio.

Además de la producción de biosólidos, su sequedad es una característica de gran importancia para el presente estudio, ya que es una variable de interés en procesos de recuperación energética. En la figura **3-3** se evidencia que en los años 2013 y 2022 se registran los valores mínimos de sequedad, equivalentes a 27.86 % y 25.73 %, respectivamente. En el caso del año 2013, la baja sequedad se le atribuyó a condiciones de operación de los filtros de

Figura 3-3.: Producción diaria promedio de biosólidos y su sequedad promedio entre el 2010 y 2022 [33]. Nota: datos del 2022 registrados hasta el mes de junio.

bandas y se propuso realizar actividades de control de dosificación del polímero catiónico [33].

La sequedad del 25.73% representa un avance importante en la puesta en marcha de la PTAR El Salitre fase II, ya que en el contrato de obra 803 de 2016 (i.e. Diseño detallado, construcción de las obras, suministro e instalación de equipos, puesta en marcha y operación asistida de la optimización y expansión de la planta de tratamiento de aguas residuales el Salitre), uno de los requisitos es la obtención de un biosólido con sequedad mínima del 23% [230]. Cabe resaltar que, la sequedad depende de la naturaleza del biosólido, por ejemplo si este se produce a partir de lodos digeridos, los cuales tienen una tendencia a la producción de biosólidos con menor humedad considerando que para su digestión, estos se someten a un proceso adicional de separación de agua en mesas espesadoras. En el caso de la PTAR EL Salitre Fase II, en algunas ocasiones se deshidrataron lodos sin digerir ya que apenas se estaban iniciando operaciones en los digestores. Es importante mencionar que, para llevar a cabo la deshidratación de los lodos digeridos en la PTAR El Salitre fase II se están utilizando 4 decantadores centrífugos marca Flottweg de origen alemán, a diferencia de la PTAR El Salitre fase I donde se utilizaban prensas de filtro de banda [230, 229].

Una vez se amplíe la PTAR El Salitre, la producción de biosólidos, que actualmente está en 220t/d podría aumentar hasta 285 t/d aproximadamente. Esta cantidad de biosólidos para la ciudad de Bogotá seguirá en aumento debido a la construcción de la PTAR Canoas que se realizará en dos fases, del mismo modo que se planteó la construcción de la PTAR El Salitre

[78]. Las fases de construcción de la PTAR Canoas se plantean así:

- Fase 1 con capacidad de tratamiento de 14 m³/s hasta TPQA (Tratamiento Primario Químicamente Asistido).
- Fase 2 con integración de reactores biológicos.

En la tabla **3-1**, se registran la expectativa de producción de biosólidos para cada PTAR de Bogotá, según sus respectivas fases de construcción.

Tabla 3-1.: Expectativa de generación de lodos de las PTAR en Bogotá. Abreviaciones: NA, No aplica. NOTAS: 1. Valores tomados de reportes publicados en la página de la EAAB. 2. Valores tomados del Plan de acción inmediato y alternativas futuras para el manejo de los biosólidos generados en el tratamiento de las aguas residuales de la ciudad de Bogotá [78, 33]

	Actual	Fase I	Fase II
PTAR El Salitre ¹	$116 \mathrm{t/d}$	$116 \mathrm{t/d}$	$220~{\rm t/d}$
PTAR $Canoas^2$	NA	472 t/d	$1.319 \ t/d$
\sum	116 t/d	NA	$1.539 \ {\rm t/d}$

Como se observa en la tabla **3-1**, la generación de biosólidos aumentaría 7 veces más, aproximadamente, en comparación con la situación actual, lo que lleva a evaluar otras alternativas de manejo de grandes volúmenes (diferentes a la actual, que realiza su disposición en la recuperación de terrenos) [78, 33].

3.2. Análisis próximo y último

El análisis de incineración incluye balances elemental, de masa y energía, que se realizan según las fracciones másicas de los componentes de la materia prima que va a reaccionar durante la incineración. En la figura **3-4**, se representan las fracciones de los análisis elemental y próximo que se utilizan en el presente estudio.

El análisis próximo mide los siguientes cuatro componentes: humedad, material volátil, carbono fijo y cenizas. Cabe resaltar que para realizar los cálculos de incineración se debe contar con la humedad total de la materia prima que corresponde a "toda la humedad entre y sobre la muestra", es decir que cubra todos los tipos de agua en la materia prima excluyendo el agua intracelular (i.e. agua libre, superficial e intersticial) [222, 284]. Teniendo en cuenta que, para la humedad utilizada como variable de entrada en el cálculo de incineración se consideran todas las formas de agua en la materia prima, excluyendo el agua intracelular, se asume que la fracción restante es material sólido que está conformado por: cenizas, materia volátil y carbono fijo. Las fracciones másicas de estos componentes que se implementan en este estudio se tomaron de la investigación desarrollada por Rincón et al. [223]. A continuación se presenta la definición de cada uno de los componentes y su metodología de medición según la investigación de referencia:

- Cenizas. Es la cantidad de masa que permanece luego de utilizar los biosólidos como combustible en un proceso de combustión. Se mide de conformidad con el procedimiento establecido en la norma DIN CEN/TS 14775:2004 que consiste en calentar muestras de 1 g de biosólidos con tamaño de grano inferior a 1 mm hasta 250 °C durante 50 min. A continuación, se incrementa la temperatura hasta 550 ± 10 °C en 60 min, para mantenerlo a estas condiciones durante 120 min. El contenido de cenizas representa la diferencia entre las masas final e inicial de la muestra de biosólidos.
- Materia volátil. Es la cantidad de masa que se volatiliza al elevar la temperatura de la materia prima por encima de los 500 °C en ausencia de aire. En el caso de la investigación de referencia, se eleva la temperatura de 1 g de biosólidos en base seca a 900 °C y se mantiene bajo estas condiciones durante 7 minutos (procedimiento según norma DIN 51720). La diferencia en masa de los biosólidos antes y después del proceso corresponde a la materia que se volatilizó.
- Carbono fijo. Es la cantidad de carbono no volátil en los biosólidos. Su magnitud corresponde a la diferencia entre la masa de los biosólidos y la sumatoria de sus correspondientes masas de materia volátil y cenizas.

Con respecto al análisis último, Rincón et al. [223] midieron los contenidos de carbono, hidrógeno y nitrógeno de los biosólidos de Bogotá en un analizador elemental por combustión de la marca Exeter Analytical referencia CE-440, el cual utiliza la técnica de detección por conductividad térmica. El contenido de azufre se midió a partir de la implementación de un análisis de espectroscopia de absorción atómica y el oxígeno se calculó por diferencia.

3.3. Poder calorífico

En algunos casos de estudio no se cuenta con la medición experimental del poder calorífico, sino con el análisis último y el análisis próximo, los cuales pueden ser utilizados para calcular la magnitud del poder calorífico mediante correlaciones [191]. Generalmente cuando se trata de combustibles sólidos como la biomasa, la estimación del poder calorífico mediante correlaciones tiene un margen de error menor, cuando se realiza a partir del análisis último, tal y como se evidencia en el estudio de correlaciones aplicados a biomasa realizado por Sheng et al. [245].

En el caso de correlaciones aplicadas a lodos urbanos y/o biosólidos, Rincón et al., realizaron un análisis comparativo entre el valor experimental del PCS (i.e. poder calorífico superior) en base seca de los biosólidos de la PTAR EL Salitre (i.e. 11.3 MJ/kg) y valores estimados mediante la aplicación de correlaciones empíricas que están en función del análisis próximo de los biosólidos, las correlaciones consideradas fueron las siguientes: Boie, Demirbas, Jenkins, Sheng, Tillman, IGT y Channiwala [223].

En el presente caso de estudio se utiliza la correlación de Channiwala (ecuación 3-1), teniendo en cuenta que presenta un error bajo en comparación con el experimental y es de mayor aplicación [223].

$$PCS = 349,1C + 1178,3H + 100,5S - 103,4O - 15,1N - 21,1A$$
(3-1)

Donde, el PCS en kJ/kg depende de las fracciones másicas en base seca de los elementos y las cenizas A. Es importante aclarar que, el PCS no considera la energía requerida para evaporar el agua en los productos de combustión. En los sistemas de incineración incluidos en el presente estudio debe haber vapor de agua en los productos de combustión para evitar la presencia de condensados que dan lugar a la formación de compuestos ácidos [223]. En consecuencia, para el presente estudio se partirá de la definición del PCI, que a su vez, depende del PCS y la concentración de agua en los productos de combustión tal y como se puede observar en la ecuación 5-26 que se discutirá con detalle en el capitulo 5.

3.4. Metales pesados

En la figura **3-5** se registra el contenido de los metales pesados de los biosólidos que se utilizan en este estudio, y los límites máximos permisibles en Colombia por categoría.

Como se observa en la figura **3-5**, los biosólidos de la PTAR EL Salitre cumplen con casi todos los límites a excepción del Zn. En comparación con los lodos de Moerdijk, Holanda, el Ni es el único metal pesado cuya concentración es menor.

Figura 3-5.: Contenido de los metales pesados de los biosólidos de la PTAR El Salitre, Moerdijk, y valores máximos permitidos según la normatividad vigente en Colombia (Decreto 1287 de 2014) [223, 292, 252]. Valores en mg/kg de biosólidos en base seca.

4. Superestructura tecnológica

En este capítulo se genera una superestructura a partir de una base de datos que sirve de referencia para identificar sistemas que representan el estado del arte tecnológico para la monoincineración de biosólidos en reactores de lecho fluidizado.

4.1. Base de datos de la superestructura

Para comenzar, se realizó una revisión bibliográfica teniendo en cuenta los sistemas y tecnologías que se utilizan actualmente en plantas de incineración de biosólidos, particularmente, en los siguientes países: Alemania, Holanda, Reino Unido, Francia, Suiza, España, Polonia, Turquía, Rusia, Estados Unidos de América y Japón (tabla **A-1** del Anexo A).

En la tabla A-1, se registran 110 plantas con la siguiente información:

- Número de planta.
- País y ciudad donde se instaló la planta.
- Capacidad de tratamiento en base húmeda.
- Año de inicio de operaciones.
- Tipo de incinerador.
- Referencias bibliográficas.

4.2. Generación de la superestructura

No todas las plantas incluidas en la base de datos se consideran para la generación de la superestructura. Se tienen en cuenta aquellas que integran reactores de lecho fluidizado de conformidad con los siguientes aspectos, que se trataron en el capítulo 2:

 La madurez de esta tecnología en cuanto a la incineración de biosólidos, ya que cuenta cuenta con aplicaciones comerciales completas y sus tecnologías están disponibles para los clientes finales.

- Las tasas de transferencia de calor y masa son las más altas en comparación con otros reactores. Como resultado, el proceso de incineración es más eficiente en todas sus etapas (i.e. secado, pirólisis y combustión), generando menor cantidad de residuos sólidos y mejorando la calidad de los gases de combustión, cuyas concentraciones de contaminantes son bajas.
- Los costos de operación son menores, ya que este tipo de reactores no integra el uso de mecanismos que implican partes móviles, lo que reduce los costos de mantenimiento.
- Su capacidad de controlar la temperatura que es una variable de operación importante para la generación de agentes contaminantes como los NO_x.

Adicionalmente, se considera el año de inicio de operaciones como característica de selección para incluirlas en la superestructura. Como referente para establecer este año, se considera el documento de referencia de las mejores técnicas disponibles para la incineración de residuos elaborado como guía para tomar decisiones de prevención y control de contaminantes en la Unión Europea. En este documento se registran las concentraciones de contaminantes de productos de combustión a la salida de plantas que representan el estado del arte con relación a sistemas para la incineración de residuos incluyendo los lodos urbanos cuya planta más antigua reporta su año de inicio de operaciones en 1993 [187]. De acuerdo con lo anterior, en el presente estudio se consideran plantas que hayan iniciado operaciones desde el año 1993 en adelante.

Con el objetivo de facilitar el estudio, se realiza una diferenciación de las tecnologías y componentes, de acuerdo con la figura **4-1**.

Figura 4-1.: Grupos tecnológicos y componentes para representación de sistemas; esquemas y un ejemplo.

Como se observa en la figura **4-1**, se consideran tres componentes: lodos deshidratados, lodos secos y gases de combustión. En cuanto a las tecnologías, estas se clasifican en los siguientes grupos tecnológicos:

- Pretratamiento: todas las tecnologías anteriores la incineración.
- Incineración: tecnologías involucradas en la monoincineración de la materia prima.
- Recuperación energética: tecnologías que transforman cualquier tipo de componente dentro de la superestructura en alguna forma útil de energía eléctrica o térmica.
- Limpieza de gases: tecnologías utilizadas para reducir la emisión de contaminantes en los productos de combustión que se generan en la incineración.

Cada una de las tecnologías incluidas en la superestructura tienen flujos secundarios (e.g. energía eléctrica, sustancias químicas, agua, subproductos, cenizas, etc.) que se consideran en los respectivos balances de masa, balances de energía y análisis tecnoeconómico. En el capítulo 5, se realiza una descripción detallada de los materiales secundarios y primarios que entran y salen de cada tecnología, según los respectivos principios de operación. En el capítulo 6 se reportan los costos asociados con estos materiales secundarios, tales como disposición de cenizas, costo de compra de sustancias químicas, entre otros.

Como resultado, se desarrolla la superestructura representada en la figura **4-2**. En esta representación gráfica se pueden identificar los sistemas que se han implementado, según la revisión del estado del arte del presente estudio, para la recuperación energética a partir de la monoincineración de biosólidos. En términos generales, esta superestructura está conformada por 29 sistemas de incineración, y a su vez, estos sistemas están constituidos por 29 tecnologías.

Figura 4-2.: Superestructura tecnológica para la recuperación energética a partir de la monoincineración de biosólidos en reactores de lecho fluidizado.

En la figura 4-2 se observa que, para más del 95% de los sistemas, hay una secuencia de tratamiento establecida (i.e. pretratamiento, incineración, recuperación energética y limpieza de gases). El único sistema que no cumple con dicha secuencia es el que integra una cámara de combustión de secundaria a la salida del incinerador.

Por otra parte, a medida que se avanza de izquierda a derecha en la secuencia de tratamiento de la superestructura, se observa que la cantidad de tecnologías que conforma cada grupo tecnológico aumenta. El análisis de este incremento se puede realizar por grupos así:

- Pretratamiento (3 tecnologías): conformado únicamente por el secado, que se puede realizar mediante la integración de secadores de discos, de tambor, y/o de película delgada.
- Incineración (3 tecnologías): que en este caso de estudio se consideran los reactores de lecho fluidizado burbujeante, circulante y a alta presión.
- Recuperación energética (5 tecnologías): en este grupo tecnológico se evidencia mayor disponibilidad de tecnologías para recuperar el contenido energético de los gases de combustión y mayor cantidad de posibles configuraciones que tienen en cuenta, por ejemplo, su localización dentro de la línea de procesamiento de cada sistema.
- Limpieza de gases (18 tecnologías): a diferencia de los otros grupos tecnológicos, estas tecnologías están enfocadas al tratamiento de componentes de un flujo principal dentro de la superestructura (i.e. productos de combustión), tal y como se evidencia en la figura 4-1). En consecuencia, se requiere de más tecnologías de tratamiento por componente.

Otro aspecto de gran importancia dentro de la superestructura, es que los lodos deshidratados se pueden incinerar, sin embargo, la viabilidad de estos sistemas depende de las características de los biosólidos como: su humedad (que entre más alta, se requiere mayor cantidad de energía en la etapa de secado durante la incineración) o su fracción de material volátil (que entre más alta, es más favorable para la producción de gas combustible en la etapa de pirólisis durante la incineración), entre otros.

A continuación, se realiza un análisis detallado de cada grupo tecnológico, dentro de la superestructura.

4.2.1. Pretratamiento

Las tecnologías dentro de este grupo definen la frontera a la entrada del análisis. En este caso de estudio se incluyen las tecnologías que se pueden integrar después de la deshidratación de los lodos, teniendo en cuenta que la PTAR El Salitre Fase I y II, producen lodos deshidratados, y en el caso de la PTAR Canoas su construcción se proyecta bajo las mismas condiciones [78, 33, 230].

Es posible que los lodos deshidratados sean incinerados directamente en los reactores o se sometan a un proceso de secado, para luego ser incinerados. Dentro de las líneas de procesamiento seleccionadas, solo dos reportan la inclusión de tecnologías de secado diferentes a los secadores de discos (secador de tambor y de película delgada).

La fuente de energía térmica que se utiliza para reducir la humedad de los lodos proviene de las tecnologías de recuperación energética, los cuales aprovechan la energía de los gases de combustión a la salida del incinerador.

4.2.2. Incineración

A continuación, se realiza un análisis con respecto a la capacidad de tratamiento de lodos por tipo de incinerador y planta (figura **4-3**).

Figura 4-3.: Capacidad de incineración en plantas de la base de datos y producción de lodos en PTAR de Bogotá, ambos en t de ST por año. Abreviaciones: LFB, reactor de lecho fluidizado burbujeante; LFP, reactor de lecho fluidizado a alta presión; LFC, reactor de lecho fluidizado circulante.

En la figura **4-3**, se registran capacidades mínima y máxima de los reactores que se han implementado hasta el momento para la monoincineración de biosólidos, así como la capacidad máxima de las plantas instaladas. Por ejemplo, la planta de incineración de lodos urbanos de Hong Kong es la de mayor capacidad de tratamiento de lodos con 730 kt/año y humedad del 30%, aproximadamente, para un total de 219 kt/año en base seca.

Cabe resaltar que, el aumento en la cantidad de los reactores es un método de escalamiento, otro, es resideñar el reactor para incrementar su capacidad. Por ejemplo, si se considera el aumento de capacidad de un incinerador LFC se debe tener en cuenta lo siguiente [149]:

- Fluidización en grandes áreas transversales.
- Eficiencia de separación en ciclones de alta capacidad y temperatura de operación.
- Distribución del combustible y aire en la parte baja del reactor.
- La ubicación del área de transferencia de calor.

De conformidad con lo anterior, y teniendo en cuenta la figura **4-3**, la capacidad de incineración máxima de los reactores considerados en este trabajo son: 95.0, 24.2 y 19.0 kt en base seca/año, para reactores LFB, LFP y LFC, respectivamente.

4.2.3. Recuperación energética

En este grupo se incluyen las tecnologías que permiten la recuperación de los gases de combustión, en una forma útil de energía. Las tecnologías de este tipo que más se han utilizado en plantas para la incineración de lodos son el precalentamiento de aire y los ciclos de vapor de agua (Figura **4-4**).

Figura 4-4.: Distribución de tecnologías de recuperación energética integradas a plantas de incineración de lodos urbanos y el respectivo año de instalación.

Hay tecnologías con una baja utilización para este tipo de aplicación como el caso de los ORC y turbocompresores que solo se integran cuando hay incineradores LFP.

4.2.4. Limpieza de gases

Como productos de la combustión se generan contaminantes que deben ser tratados para cumplir con límites de emisiones debidamente reglamentados. En el caso de Colombia dichos límites están regulados mediante la Resolución 909 de 2008, del Ministerio de Ambiente, Vivienda y Desarrollo Territorial [65].

En cuanto a la incineración de lodos urbanos, se identifican los siguientes contaminantes a remover: ácidos (i.e. HF, HCl, SO_2), metales (i.e. Hg, Cd, Pb), material particulado, compuestos de carbono orgánico, óxidos de nitrógeno y monóxido de carbono. La naturaleza de cada uno de estos contaminantes requiere la implementación de tecnologías específicas tal y como se evidencia en la figura **4-5**.

Para el tratamiento de contaminantes ácidos se pueden integrar tres posibles tipos de tec-

nologías: húmedas, semihúmedas y secas.

Las tecnologías húmedas utilizan depuradores húmedos, en los cuales los gases de combustión entran en contacto con soluciones que permiten la absorción de los ácidos a retirar. Es importante resaltar que, dependiendo del pH del contaminante, se utilizan soluciones ácidas o alcalinas que facilitan el proceso de absorción. Las tecnologías de limpieza húmeda varían principalmente dependiendo de su configuración, que a su vez depende de la superficie de contacto entre los gases de combustión y la solución absorbente.

Con respecto al proceso semihúmedo se identifica que el secado por atomización es la única tecnología que se basa en este principio, y que se utiliza en plantas para la monoincineración de lodos. En este tipo de tecnologías, se inyecta una solución con piedra caliza que sirve como absorbente, luego el contenido de agua se evapora y es arrastrado por los gases de combustión, mientras que los productos que reaccionaron con los ácidos caen al fondo del reactor [99].

Por otro lado, las tecnologías de limpieza secas se realizan en dos etapas. Inicialmente se inyectan adsorbentes a los gases de combustión (e.g. carbón activado) que luego pasan por tecnologías de filtración. Entre otras tecnologías secas se encuentran la inyección de piedra caliza al incinerador y el flujo de los gases de combustión a través de filtros con adsorbentes. Las tecnologías de filtración utilizadas en este caso son: precipitadores electrostáticos, filtros de mangas y filtros cerámicos; estas tecnologías junto con los multiciclones, ciclones y depuradores húmedos tipo venturi, también se utilizan para remover material particulado como las cenizas volantes.

Para la remoción de óxidos de nitrógeno se encuentran tecnologías primarias (i.e. control de variables de combustión como flujo de aire y puntos calientes durante la incineración) y tecnologías secundarias, que, en su mayoría, se basa en la adición de NH_3 o sus derivados. Teniendo en cuenta que los NO_x consisten principalmente en NO y NO_2 , las reacciones que se dan al inyectar el NH_3 son [187]:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
 (4-1)

$$2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$$
 (4-2)

Las tecnologías secundarias para remoción de NO_x se clasifican en SCR y SNCR (por sus siglas en inglés, reducción selectiva catalítica y no catalítica, respectivamente). En el proceso SCNR se inyectan agentes químicos en el incinerador para que reaccionen con los NO_x a temperaturas entre 850 y 1.000 °C. A diferencia del método SNCR, en los procesos SCR el agente reductor se inyecta en la corriente de los gases de combustión para que luego pasen a través de medios catalíticos (e.g. compuestos con platino, rodio, zeolitas, etc.) Al pasar por

estos medios, el NH_3 reacciona con los NO_x para obtener N_2 y vapor de agua. Cabe resaltar que, en los sistemas SCR también se da la destrucción de compuestos orgánicos de carbono [187].

En resumen, en este capítulo, se realizó una revisión bibliográfica para el desarrollo de una base de datos de 110 plantas para la monoincineración de lodos urbanos con su respectiva información general incluyendo las tecnologías que conforman sus respectivas líneas de procesamiento. En seguida, y a partir de la información de la base de datos, se desarrolló una superestructura tecnológica para la recuperación energética de lodos urbanos mediante su monoincineración en reactores de lecho fluidizado; está conformada por 29 sistemas y 29 tecnologías.

De conformidad con la superestructura, en el siguiente capítulo (capítulo 5), se documentan los principios de operación de cada una de las tecnologías identificadas, no solo para realizar balances de masa y energía, sino también para establecer las capacidades de tratamiento y flujos de materiales secundarios que se requieren para hacer los correspondientes análisis tecnoeconómicos.

5. Balances de masa y energía

En esta sección se describe la metodología utilizada para realizar los balances de masa y energía, de las tecnologías incluidas en la superestructura. Adicionalmente, se incluye el procedimiento para estimar las especificaciones técnicas de cada tecnología, sus flujos de materiales secundarios, consumos energéticos y producción de energía.

Estos balances se realizaron considerando las condiciones ambientales de referencia establecidas en la norma ISO 2533 (i.e. temperatura ambiente de 15 °C, presión de 1.013 bar y humedad relativa de 60%) [256].

Además de la formulación matemática, se utilizan factores de cálculo (e.g. eficiencias energéticas y de remoción de contaminantes, caídas de presión, consumos de energía, etc.), que se encuentran en literatura técnica y científica (tabla **B-1**).

Uno de los factores incluidos en la tabla **B-1**, son las caídas de presión Δp_j , que se presentan cuando los gases de combustión fluyen a través de las tecnologías incluidas en la superestructura. A partir del Δp_j , en kPa, se calcula la energía eléctrica consumida por los ventiladores para superar esta caída de presión (ecuación 5-1).

$$\dot{W}_{\rm elec} = \frac{\dot{V}\Delta p}{\eta_V} \frac{1}{3600} \frac{1}{1000} \tag{5-1}$$

Donde,

- \dot{W}_{elec} : potencia eléctrica, en MW.
- V: flujo volumétrico, en m³/h.
- $\eta_{\rm V}$: eficiencia del ventilador (tabla **B-1**).

Otros factores incluidos en la tabla **B-1**, son las eficiencias de remoción de contaminantes y recolección de cenizas. Para las cenizas y el mercurio, se utiliza la ecuación 5-2,

$$\eta_{\rm r,i} = \frac{m_{\rm i,s}}{m_{\rm i,e}}.\tag{5-2}$$

Donde,

■ *m*: masa.

- r: remoción o recolección.
- *i*: contaminante.

Para los otros contaminantes (i.e. NH_3 , HCl, HF y SO_2), se considera la eficiencia en base molar, siguiendo la guía de cálculo considerada por W. Niessen [191] (ecuación 5-3, donde *n* es el número de moles).

$$\eta_{\rm r,i} = \frac{n_{\rm i,s}}{n_{\rm i,e}} \tag{5-3}$$

Al igual que las eficiencias de remoción de contaminantes, en la tabla **B-1** se registran factores para calcular la generación de residuos, consumo de materiales secundarios y, en algunos casos, el consumo de energía eléctrica (ecuación 5-4).

$$f_{\rm j} = \frac{m_{\rm k,s}}{m_{\rm l,e}} \tag{5-4}$$

Donde,

- = f_j : factor de consumo o generación de residuos, de la tecnología j.
- los subíndices k y l, denotan el material secundario y/o residuo, y el componente de referencia (e.g. cantidad de contaminante, lodos a tratar, etc.), respectivamente.

5.1. Secado

En la figura 5-1, se representan los flujos considerados en el secador de discos.

Figura 5-1.: Esquema de planta del secador de discos incluyendo flujos principales (representados con círculos de color azul) y flujos de materiales secundarios.

Donde,

- $\dot{m}_{\rm L,e}$: flujo másico de la materia prima a la entrada del secador, en base húmeda.
-
 $\dot{m}_{\rm L,s}$: flujo másico de la materia prima a la salida del secador, en base húmeda.

- $\dot{m}_{\rm H_2O,r}$: flujo másico de agua retirada de los lodos.
- $\dot{m}_{\rm f}$: flujo másico del fluido que cumple la función de fuente de energía (i.e. vapor de agua o fluido térmico).
- \dot{Q}_{perd} : pérdidas de calor.
- W_{elec} : consumo de energía eléctrica.

El balance de masa del secador de discos, está dado por la ecuación 5-5.

$$\dot{m}_{\rm L,e} = \dot{m}_{\rm L,s} + \dot{m}_{\rm H_2O,r}$$
(5-5)

Al dejar la ecuación 5-5 en términos de la masa de materia prima en base seca se obtiene la siguiente expresión:

$$\frac{\dot{m}_{\rm L,d}}{x_{\rm ST,e}} = \frac{\dot{m}_{\rm L,d}}{x_{\rm ST,s}} + \dot{m}_{\rm L,d} \left[\frac{1 - x_{\rm ST,e}}{x_{\rm ST,e}} - \frac{1 - x_{\rm ST,s}}{x_{\rm ST,s}} \right].$$
(5-6)

Donde,

- $\dot{m}_{L,d}$: masa de lodos en base seca.
- $x_{ST,e}$: fracción de solidos totales a la entrada del secador (también se conoce en el sector del tratamiento de las aguas residuales como sequedad).
- $x_{\text{ST,s}}$: sequedad a la salida del secador.

El flujo másico del fluido se estima según la ecuación 5-7, donde STR_j (tasa térmica específica por sus siglas en inglés), representa la energía requerida, en kJ, para evaporar un kg de agua, según la tecnología j [102]. Este factor es experimental y depende de la tecnología de secado y el material a secar; considera no solo la entalpía de vaporización del agua sino también la energía requerida para elevar la temperatura de los biosólidos, entre otros.

$$STR_{\rm j} = \frac{\dot{m}_{\rm f}(h_{\rm f,e} - h_{\rm f,s})}{\dot{m}_{\rm H_2O,r}}$$
(5-7)

El balance de energía se realiza mediante la ecuación 5-8

$$\frac{dE_{\rm L}}{dt} + \dot{Q}_{\rm f} + \dot{Q}_{\rm diff} = \dot{m}_{\rm H_2O,r} h_{\rm fg} + \dot{Q}_{\rm perd}$$
(5-8)

Donde,

- $dE_{\rm L}/dt$: cambio del contenido energético de los lodos en el tiempo (ecuación 5-9).
- Q_f: calor entregado al sistema por el agua o el fluido térmico; equivalente al STRj.

- $\dot{m}_{\rm H_2O,r}$: flujo másico de agua retirada de los lodos.
- $h_{\rm fg}$: entalpía de vaporización del agua.
- \dot{Q}_{perd} : pérdidas de calor.
- \dot{Q}_{diff} : potencia requerida para que ocurra secado por difusión.

La energía asociada con la temperatura de los lodos, se calcula mediante la ecuación 5-9; se considera una magnitud del c_p (i.e. calor específico a presión constante) de los lodos en base seca, equivalente a 1.95 kJ/(kg·K)[17].

$$\dot{Q}_{\rm s} = c_{\rm p} \Delta T. \tag{5-9}$$

El secado de los biosólidos, ocurre en varias etapas. Inicialmente se retira el agua libre de la materia prima, en seguida, se da lugar a la remoción del agua intersticial y superficial [23]. Según J. Kraus, la remoción del agua intersticial y superficial comienza a ocurrir cuando se aumenta la sequedad de los lodos por encima de valores equivalentes a 0.84, donde se comienza a requerir cierta cantidad de energía adicional para que ocurra el secado por difusión del agua a través de la estructura general del lodo [152].

Para el caso de estudio de un secador en el que no hay difusión (i.e. la sequedad de la materia prima a la salida del proceso está por debajo de 0.84) y la fuente de energía para llevar a cabo el proceso es un flujo de vapor, dicha energía está dada por la ecuación 5-10:

$$\dot{Q}_{\rm f} = \dot{m}_{\rm f} \left(h_{\rm f,s} - h_{\rm f,e} \right).$$
 (5-10)

Donde, h representa la entalpía del fluido a la entrada o salida del proceso.

5.2. Incineración

5.2.1. Balance elemental

En la tabla **5-1** se registran los listados de elementos y especies que se consideran en la incineración.

Elementos	Especies	
С	$\rm CO_2$	
Н	H_2O	
0	O_2	
Ν	N_2	
S	SO_2	

Tabla 5-1.: Listado de elementos y especies que se consideran en el proceso de combustión.

Una vez realizados los listados de elementos y especies involucradas en la reacción, se realiza el balance elemental de la reacción entre la materia prima y el aire (considerando que está conformado por O_2 y N_2); la reacción de combustión está representada por la ecuación 5-11 [177]:

$$C_{t}H_{u}O_{v}N_{w}S_{x} + [(1 + EA)\alpha] (O_{2} + 3.76N_{2}) \rightarrow tCO_{2} + \frac{u}{2}H_{2}O + xSO_{2} + \alpha EAO_{2} + \left[\frac{w}{2} + 3.76\alpha(1 + EA)\right]N_{2}$$
(5-11)

Donde,

$$\alpha = t + \frac{u}{4} + x - \frac{v}{2} \tag{5-12}$$

El EA (i.e. exceso de aire) incluido en la ecuación 5-11 se determina mediante la ecuación 5-14 [177]:

$$\lambda = 1 + \mathrm{EA} \tag{5-13}$$

у

$$\mathbf{EA} = \frac{m_{\mathbf{a}}}{m_{\mathbf{as}}} - 1 \tag{5-14}$$

Donde,

- $m_{\rm a}$: masa de aire real.
- $m_{\rm as}$: masa de aire estequiométrico.

5.2.2. Balances de energía

Entalpía estandarizada o total

Inicialmente se define la entalpía estandarizada según la ecuación 5-15 [285].

$$\bar{h}_{i}(T) = \bar{h}_{f,i}^{0}(T_{ref}) + \Delta \bar{h}_{s,i}(T)$$
(5-15)
Dende

Donde,

- $\bar{h}_i(T)$: entalpía estandarizada en base molar de la especie i.
- $\bar{h}_{f,i}^{0}$: entalpía de formación en base molar de la especie i, en el estado de referencia del fluido ($T_{ref}=25 \text{ °C}$; $p_{ref}=1 \text{ atm}$). Diferente al condiciones ambientales de referencia establecidas para los balances de masa y energía.
- $\Delta \bar{h}_{s,i}(T)$: cambio de la entalpía sensible desde la temperatura de referencia T_{ref} hasta la temperatura T.

La $\bar{h}_i(T)$ se define como la energía requerida para la formación de la especie i a partir de la reacción de unas especies y/o elementos a condiciones estándar [285]. Por ejemplo, el O₂ tiene una entalpía de formación equivalente a 0, mientras que especies como radicales libres, su entalpía de formación tiene magnitudes positivas que cuantifican la cantidad de energía requerida para formar dicha especie (i.e. $\bar{h}_{f,O}^0(T_{ref}) = 249,195 \text{ kJ/kmol}$), lo que equivale a la cantidad de energía para disociar los enlaces del O₂ y formar O); valores negativos representan que, al formar dicha especie se liberó cierta cantidad de energía, como el CO₂ cuya entalpía de formación es de -393.522 kJ/kmol [285].

El cambio de entalpía sensible $\Delta \bar{h}_{s,i}(T)$, representa el cambio de energía de la especie i, debido a un cambio de temperatura desde la T_{ref} hasta la temperatura T; este cambio se puede calcular mediante la ecuación 5-16 [285]:

$$\Delta \bar{h}_{\rm s,i}(T) = \int_{T_{\rm ref}}^{T} \bar{C}_{\rm p,i} dT.$$
(5-16)

Donde,

$$\bar{C}_{\rm p,i} = a + bT + cT^2.$$
 (5-17)

En la ecuación 5-16, se evidencia que el $\bar{C}_{p,i}$ (i.e. calor específico de la especie i a presión constante), es función de la temperatura, y los coeficientes a, b y c, cuyo valor numérico dependen de la especie i, y de los rangos de temperatura que se van a estudiar; los valores de estos coeficientes se encuentran disponibles en las tablas termoquímicas de la guía de procesos de incineración de Walter R. Niessen, y tienen una precisión del $\pm 2\%$ en un rango de temperatura entre 20 y 1700 °C [191]. Al integrar la ecuación 5-16 se obtiene la ecuación 5-18:

$$\Delta \bar{h}_{\rm s,i}(T) = aT + \frac{b}{2}T^2 + \frac{c}{3}T^3 - \left[aT_{\rm ref} + \frac{b}{2}T_{\rm ref}^2 + \frac{c}{3}T_{\rm ref}^3\right].$$
(5-18)

Poder calorífico

El punto de partida en el balance de energía, es la energía que se puede aprovechar mediante la incineración de la materia prima, es decir, su entalpía de combustión. Para definir esta entalpía, se realiza el balance de energía a un volumen de control, donde el combustible se oxida completamente y los flujos de los reactantes y los productos, están a condiciones estándar (ecuación 5-19).

$$-Q_{\rm vc} = H_{\rm R} - H_{\rm P}.$$
 (5-19)

Donde,

- $Q_{\rm vc}$: calor que atraviesa las fronteras del volumen de control.
- $H_{\rm P}$: entalpía a condiciones estándar de los productos de combustión.
- $H_{\rm R}$: entalpía a condiciones estándar de los reactantes.

El $Q_{\rm vc}$ es equivalente a la entalpía de combustión, $\Delta h_{\rm c}$ [285]. En la ecuación 5-19, si se conoce que:

$$H = \sum_{i} n_i \bar{h}_i(T) \tag{5-20}$$

y se tiene en cuenta la definición de $h_i(T)$ (ecuación 5-15), el balance de energía del volumen de control es:

$$\Delta h_{\rm c} = \sum_{R} n_{\rm i} \left[\bar{h}_{\rm f,i}^{0} \left(T_{\rm ref} \right) + \Delta \bar{h}_{\rm s,i}(T) \right] - \sum_{P} n_{\rm i} \left[\bar{h}_{\rm f,i}^{0} \left(T_{\rm ref} \right) + \Delta \bar{h}_{\rm s,i}(T) \right].$$
(5-21)

Al expandir la ecuación 5-21 y agrupar los términos con las entalpías de formación y cambios en la entalpía sensible, se obtiene la ecuación 5-22

$$\Delta h_{\rm c} = \left[\sum_{R} n_{\rm i} \bar{h}_{\rm f,i}^{0}(T_{\rm ref}) - \sum_{P} n_{\rm i} \bar{h}_{\rm f,i}^{0}(T_{\rm ref})\right] + \left[\sum_{R} n_{\rm i} \Delta \bar{h}_{\rm s,i}(T) - \sum_{P} n_{\rm i} \Delta \bar{h}_{\rm s,i}(T)\right].$$
(5-22)

En la ecuación 5-22, si se considera que los productos y los reactantes están a condiciones estándar, y que las temperaturas T y $T_{\rm ref}$ son equivalentes, se obtiene la ecuación 5-23.

$$\Delta h_{\rm c} = \sum_{R} n_{\rm i} \bar{h}_{\rm f,i}^0 \left(T_{\rm ref} \right) - \sum_{P} n_{\rm i} \bar{h}_{\rm f,i}^0 \left(T_{\rm ref} \right).$$
(5-23)

Al dividir Δh_c entre la masa del combustible se obtiene el PCS (i.e. poder calorífico superior).

Por otra parte, el PCS representa un escenario donde se extrae la mayor cantidad de energía del sistema, de modo que el agua se condensa completamente. Por el contrario, el PCI (i.e. poder calorífico inferior), asume un escenario donde no se presentan condensados, sino vapor de agua [285], y es el que se toma como referencia para el desarrollo del presente estudio.

Temperatura de llama adiabática

La temperatura de llama adiabática es un concepto muy utilizado para caracterizar la máxima temperatura que pueden alcanzar los productos de combustión bajo condiciones de presión o volumen constante [285]; en este caso de estudio se asumen condiciones de presión constante para estimar la temperatura de los productos de combustión.

Para calcular la temperatura de llama adiabática se realiza un análisis de un volumen de control adiabático a presión constante donde la entalpía estandarizada de los reactantes es igual a la de los productos tal y como se puede observar en la figura **5-2**.

Figura 5-2.: Temperatura de llama adiabática a presión constante en el plano entalpía vs temperatura [285].

En la figura **5-2**, la temperatura de llama adiabática corresponde al punto donde las entalpías de los productos y reactantes, son iguales [285]. Esta igualdad, se puede dejar en términos de las entalpías de formación y cambios de entalpía sensible como se observa en la ecuación 5-24:

$$\sum_{R} n_{i} \left[\bar{h}_{f,i}^{0} \left(T_{ref} \right) + \Delta \bar{h}_{s,i}(T) \right] = \sum_{P} n_{i} \left[\bar{h}_{f,i}^{0} \left(T_{ref} \right) + \Delta \bar{h}_{s,i}(T) \right].$$
(5-24)

Al agrupar los términos de entalpías de formación y cambios de entalpía sensible se obtiene la ecuación 5-25:

$$\sum_{P} n_{i} \Delta \bar{h}_{s,i}(T) = \left[\sum_{R} n_{i} \bar{h}_{f,i}^{0}(T_{ref}) - \sum_{P} n_{i} \bar{h}_{f,i}^{0}(T_{ref}) \right] + \sum_{R} n_{i} \Delta \bar{h}_{s,i}(T).$$
(5-25)

A partir de la ecuación 5-25, y considerando que el PCS incluye la entalpía de vaporización del agua formada durante la combustión, se deduce la ecuación 5-26 [190]:

$$\sum_{P} n_{i} \Delta \bar{h}_{s,i}(T) = m_{c} PCS - m_{H_2O} h_{fg} + \sum_{R} n_{i} \Delta \bar{h}_{s,i}(T) - H_{perd}.$$
(5-26)

Donde,

- *m*_c: masa del combustible en base seca, en kg.
- $m_{\rm H_2O}$: masa de agua total al finalizar la combustión, en kg.
- $h_{\rm fg}$: cambio de entalpía a presión constante del agua desde un estado con calidad del 0 al 100 %.
- H_{perd} : pérdidas de energía en el incinerador, que incluyen pérdidas relacionadas con el proceso de combustión, transferencia de calor y control de temperatura de los gases a la salida del reactor (se trata con mayor detalle en la sección 5.2.2 del presente documento).

Finalmente, y teniendo en cuenta la definición del $\bar{c}_{p,i}$, se obtiene una ecuación de tercer orden (ecuación 5-27), cuya solución representa la temperatura de llama adiabática:

$$\sum_{P} n_{i} \left\{ aT + \frac{b}{2}T^{2} + \frac{c}{3}T^{3} - \left[aT_{ref} + \frac{b}{2}T_{ref}^{2} + \frac{c}{3}T_{ref}^{3} \right] \right\}$$

= $m_{c}PCS - m_{H_{2}O}h_{fg} + \sum_{R} n_{i}\Delta\bar{h}_{s,i}(T) - H_{perd}.$ (5-27)

Pérdidas de energía

Las pérdidas de energía consideradas son [20]:

- Pérdidas por la cantidad de agua en los productos de combustión (se estima teniendo en cuenta la entalpía de vaporización del agua como se observa en la ecuación 5-26).
- Pérdidas por calor sensible de las cenizas. Se incluye en los productos de combustión, y es calculado según la ecuación 5-9, asumiendo un c
 _{p,i}, M_i y temperatura, equivalentes a 4.184 kJ/kmol-K, 36.61 kg/kmol y 180 °C, respectivamente [110, 191].
- Pérdidas por combustión incompleta (se considera una pérdida del 1.24 % [289]).
- Pérdidas por transferencia de calor (se considera una pérdida del 0.8 % [20]).
- Pérdidas no contabilizadas (se considera una pérdida del 1.5 % [20]).

En consecuencia, las pérdidas de energía por combustión incompleta, transferencia de calor y no contabilizadas (i.e. ΣP que equivalen a 3.54%), se incluyen en el balance de energía según la ecuación 5-28:

$$\sum_{P} n_{i} \Delta \bar{h}_{s,i}(T) + m_{H_{2}O} h_{fg} = \left[m_{c} PCS + \sum_{R} n_{i} \Delta \bar{h}_{s,i}(T) \right] \left[1 - \sum P \right]$$
(5-28)

5.2.3. Incineración a presión mayor que la atmosférica

Para considerar la incineración de lodos a una presión mayor que la atmosférica, como el caso de la planta 56 (ver tabla A-1), se considera que el c_p de las especies en la reacción se calcula mediante la ecuación 5-29 [45].

$$c_{\rm p}^P = c_{\rm p}^0 - T \int_0^P \partial^2 V / \partial T^2 \, \mathrm{d}P \tag{5-29}$$

Donde, V, T y el subíndice 0, corresponden al volumen, temperatura y presión absoluta equivalente a 1 atm, respectivamente.

En el caso de los incineradores LFP incluidos en la superestructura, el máximo valor de presión absoluta es de 0.3 MPa [186]. Esta es una condición de operación, en la que los productos de combustión se comportan como un gas ideal, ya que su presión y temperatura, se encuentran por encima de los 1000 K y por debajo de los 20 MPa [21]. Como resultado, la derivada parcial de segundo orden al interior de la integral en la ecuación 5-29 es igual a 0. Por ello, es posible realizar los cálculos de incineración para incineradores LFP, como se plantearon para incineradores que funcionan a presión atmosférica.

5.3. Recuperación energética

5.3.1. Precalentador de aire

Figura 5-3.: Esquema de planta del precalentador de aire; flujos principales, representados con círculos de color azul.

Las ecuaciones 5-30, 5-31 y 5-32, corresponden a los balances de masa y energía del precalentador de aire.

$$\dot{m}_{\rm a,e} = \dot{m}_{\rm a,s} \tag{5-30}$$

$$\dot{m}_{\rm gc,e} = \dot{m}_{\rm gc,s} \tag{5-31}$$

$$\eta_{\rm PA} = \frac{\dot{m}_{\rm a} \Delta h_{\rm a}}{\dot{m}_{\rm gc} \Delta h_{\rm gc}}.$$
(5-32)

Donde,

- gc: gases de combustión.
- a: aire.
- η_{PA} : eficiencia energética del precalentador de aire (disponible en la tabla **B-1**).

Dentro de las especificaciones técnicas del precalentador de aire, su área de transferencia de calor es requerida para calcular su costo de compra, según la economía de escala (tabla C-1). Para su cálculo se debe definir el tipo de intercambiador de calor utilizado en aplicaciones para precalentar aire con los gases de combustión a la salida del incinerador.

A partir de la revisión de la base de datos, se identificó que, el intercambio de calor ocurre entre los gases de combustión y el aire, sin utilizar otro fluido intermedio como el caso de intercambiadores de calor con vapor. Adicionalmente, se encuentra que, para este tipo de aplicaciones se utilizan intercambiadores de calor en contraflujo de un solo paso (figura **5-4**). En seguida, se calcula el área de transferencia de calor de acuerdo con la ecuación 5-33 [44].

$$\dot{Q} = UA_{\rm s}\Delta T_{\rm lm} \tag{5-33}$$

Donde,

- \dot{Q} : corresponde al numerador de la ecuación 5-32.
- U: coeficiente global de transferencia de calor (tabla **B-1**).
- ΔT_{lm} : diferencia de temperatura media logarítmica, calculada mediante la ecuación 5-37.

$$\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\Delta T_1 / \Delta T_2\right)} \tag{5-34}$$

Donde,

$$\Delta T_1 = T_{\rm gc,e} - T_{\rm a,s} \tag{5-35}$$

$$\Delta T_2 = T_{\rm gc,s} - T_{\rm a,e} \tag{5-36}$$

Figura 5-4.: Precalentador de aire. a. instalación de un precalentador de aire de un incinerador de lodos urbanos; imagen reportada por la compañía Kuzu Grup como evidencia de avance del proyecto de instalación de la planta de incineración de lodos urbanos instalada en Bursa, Turquía [113]. b. esquema de funcionamiento realizado según ficha técnica de precalentadores marca Ekstrom & Son [19].

5.3.2. Ciclo de vapor

En el presente estudio, se aplica la economía de escala a un generador de vapor (HRSG por sus siglas en inglés) y al resto de los equipos que conforman un ciclo de vapor de agua por separado (i.e. turbina de contrapresión, condensador y bomba). Las ecuaciones 5-37, 5-38 y 5-39, representan los balances de masa y energía del HRSG:

$$\dot{m}_{\rm gc,e} = \dot{m}_{\rm gc,s} + \dot{m}_{\rm czs},\tag{5-37}$$

 $\dot{m}_{\rm f,2} = \dot{m}_{\rm f,3},$ (5-38)

$$\eta_{\rm HRSG} = \frac{\dot{m}_{\rm f} (h_3 - h_2)_{\rm f}}{(\dot{m}h)_{\rm gc,e} - (\dot{m}h)_{\rm gc,s}}.$$
(5-39)

Donde,

Figura 5-5.: Esquemas de planta de un generador de vapor y lo que se considera como ciclo de vapor en el presente estudio (i.e. bomba, condensador y turbina)

- \dot{m}_{czs} : cantidad de cenizas retiradas, según su respectivo factor de remoción (tabla **B-1**).
- $\dot{m}_{\rm f}$ y $\dot{m}_{\rm gc}$: cantidad del fluido de trabajo y gases de combustión, respectivamente (figura **5-5**).

A partir de la revisión bibliográfica realizada para generar la superestructura, se encuentra que las plantas para la monoincineración de lodos urbanos implementan ciclos de vapor simple. Por ejemplo, en la figura **5-6** se representa el ciclo de vapor correspondiente a la planta instalada en Moerdijk, Holanda.

Para el resto de equipos, estos se costean según la energía producida, que se calcula mediante las ecuaciones 5-40 y 5-44, y los valores de eficiencias consignados en la tabla **B-1** [183]:

$$\eta_{\rm s} = \frac{h_3 - h_4}{h_3 - h_{\rm 4s}} \tag{5-40}$$

$$\eta_{\rm mec}\eta_{\rm el} = \frac{\dot{W}_{\rm el}}{\dot{E}_{\rm f,3} - \dot{E}_{\rm f,4}} \tag{5-41}$$

Para los ciclos ORC, se utiliza el tolueno como fluido de trabajo debido a que los ciclos que utilizan este fluido permiten alcanzar una alta eficiencia energética [290]; los estados del ORC considerados en el presente estudio se representan en la figura 5-7.

Figura 5-6.: Estados del ciclo de vapor en el diagrama temperatura-entropía del agua, como funciona en la planta para la monoincineración de lodos urbanos de Moerdijk, en Holanda [252].

Figura 5-7.: Estados del ciclo de vapor en el diagrama temperatura-entropía del tolueno.

Por otra parte, hay sistemas que integran intercambiadores de calor con fluidos térmicos, en vez de generadores de vapor. En estos casos, su transferencia de calor se calcula según la ecuación 5-42:

$$\dot{Q}_{\rm IC} = \dot{m}_{\rm f} c_{\rm p,f} \Delta T. \tag{5-42}$$

Donde, $c_{\rm p,f}$ es el calor específico a presión constante del fluido térmico, y se calcula mediante

la ecuación 5-43 en kJ/kg-K, para un rango de temperaturas entre -28.98 y 359.66 °C [51].

 $c_{\rm p,f} = 0.003T + 1.6008 \tag{5-43}$

Donde, T es la temperatura del fluido en °C.

5.3.3. Turbocompresor

El turbocompresor es una tecnología que aumenta la presión del aire de combustión, utilizando parte del contenido energético de los productos de combustión. Para su análisis se consideran los balances de masa de energía de las etapas de compresión y expansión, por separado (figura **5-8**).

Figura 5-8.: Diagrama del turbocompresor integrado a plantas para la monoincineración de lodos urbanos.

La ecuación 5-44 corresponde al balance de energía del compresor. La lectura de las entalpías se puede realizar en las tablas de propiedades termodinámicas de gases ideales, siempre y cuando, haya disponibilidad de una propiedad de estado como temperatura, presión relativa, etc. [183].

$$\eta_C = \frac{h_{a,s,s} - h_{a,e}}{h_{a,s} - h_{a,e}} \tag{5-44}$$

Como se observa en la ecuación 5-44, se incluye el término $h_{a,s,s}$, que representa la entalpía isoentrópica del proceso de compresión (figura **5-9**). Para su cálculo, se debe conocer la presión del aire a la salida del compresor, que para estas aplicaciones alcanza un valor máximo de 3 bar [186]. A partir de esta presión, se estima la $p_{r,s}$ (i.e. presión relativa) mediante la ecuación 5-46, que es una variación de la ecuación 5-45, considerando que el fluido es aire.

$$p_{\rm s} = p_{\rm e} \exp\left[\frac{s^{\circ}\left(T_{\rm s}\right) - s^{\circ}\left(T_{\rm e}\right)}{R}\right]$$
(5-45)

Figura 5-9.: Estados de los gases, en el diagrama temperatura-entropía, durante la compresión de aire y expansión de los gases de combustión [183].

A partir de la magnitud de $h_{a,s,s}$ y el balance de energía (ecuación 5-44), se calcula la $h_{a,s}$ que sirve de propiedad de estado para obtener el valor de la temperatura del aire a la salida del compresor.

Con respecto a la expansión de los gases de combustión en la turbina, se busca calcular su temperatura a la salida. Este calculo se realiza mediante las ecuaciones 5-47 y 5-27:

$$\eta_T = \frac{E_{\rm a,s} - E_{\rm a,e}}{E_{\rm gc,e} - E_{\rm gc,s}}.$$
(5-47)

En seguida, se calcula la presión mediante la ecuación 5-45, donde los valores R (i.e. constante de gas ideal para la mezcla) y s^o(T) se calculan para la mezcla de los gases según las ecuaciones 5-48, 5-49 y 5-50. Los valores de s_i^o, para cada una de las especies, se toman de las tablas de propiedades termodinámicas para gases ideales [183]:

$$s^{\circ} = \sum_{i=1}^{j} x_i s_i^{\circ}, \tag{5-48}$$

$$M = \sum_{i}^{j} y_i M_i, \tag{5-49}$$

$$R = \frac{\bar{R}}{M}.$$

Donde,

- i: representa la especie i en la mezcla.
- x_i: fracción másica.
- y_i: fracción molar.
- M: peso molecular.
- \bar{R} : constante universal de los gases ideales, equivalente a 8.314 kJ/kmol-K [183].

5.4. Limpieza de gases

5.4.1. Depurador húmedo para la remoción de gases

Algunas plantas incluidas en la superestructura, utilizan sistemas de lavado de gases de dos etapas, como el que se representa en la figura 5-10, para la remoción de HCl, HF, y SO₂. Este tipo de sistemas resulta ser común en plantas WtE [1, 205].

Figura 5-10.: Representación de un depurador húmedo de dos etapas. Abreviaciones: IC_s : intercambiador de calor previo al depurador húmedo, SHC, depurador húmedo de HCl, SST: depurador húmedo de SO₂.

(5-50)

Inicialmente los gases de combustión circulan a través de un intercambiador de calor cuya función principal es aumentar la temperatura de los gases a la salida del sistema, de manera que a la salida de la chimenea, estos no tengan una apariencia de humo blanco. Esta apariencia, se genera cuando el agua en los gases de combustión se condensan al entrar en contacto con el aire en la atmósfera, que se encuentra a una temperatura menor [180]. A continuación, los gases pasan a través de una cámara de atomización y un lecho de empaques.

Este tipo de sistemas se aproxima a un saturador adiabático donde no hay intercambio de calor entre el sistema y su entorno. Sin embargo, y en el caso de los gases de combustión, su temperatura disminuye debido a que la concentración del agua aumenta. Junto con el aumento de concentración, ocurre un aumento de la presión parcial con su correspondiente temperatura de saturación adiabática; por debajo de está temperatura el agua se condensa (figura 5-11).

Figura 5-11.: Representación del proceso, en un diagrama temperatura-volumen específico, de la saturación adiabática de los gases de combustión en un depurador húmedo [183]. Abreviaciones: sa, saturación adiabática.

De acuerdo con lo anterior, la temperatura de los gases se calcula según la ecuación 5-27, al variar la concentración de agua y sin intercambio de calor con el entorno. Adicionalmente, se condiciona el cálculo para el escenario donde la temperatura a la salida del depurador húmedo es menor que la temperatura de saturación adiabática (figura **5-11**) [183].

En el caso específico del lecho de empaques, se sigue la metodología establecida por el manual de costos de la agencia de prtección ambiental (EPA por sus siglas en inglés) [8]. En este manual, el dimensionamiento de esta tecnología se realiza según la curva de equilibrio del sistema, que en esta aplicación representa la relación entre las concentraciones de SO₂ en el gas y el solvente en condiciones de equilibrio, y cuya dependencia con la temperatura se muestra en la figura **5-12**.

Figura 5-12.: Curvas de equilibrio para un sistema SO₂-agua, en función de la temperatura [214].

En este estudio se realiza el dimensionamiento del depurador húmedo, considerando la curva de equilibrio a 90 °C. A partir de esta curva, se estima la variable X_s^* que corresponde a la máxima fracción molar de SO₂ en el solvente cuando el sistema está en equilibrio con respecto a la fracción molar del contaminante en el gas, Y_e . En seguida, se calcula la relación entre los flujos molares del solvente y gas, a la entrada del sistema, y su respectiva línea de operación se representa en la figura **5-13**.

$$\left(\frac{L_{\rm s}}{G_{\rm s}}\right)_{\rm real} = f_a \frac{Y_{\rm e} - Y_{\rm s}}{X_{\rm s}^* - X_{\rm e}} \tag{5-51}$$

Donde,

• Y: fracción molar del contaminante en el gas.

- X: fracción molar del contaminante en el solvente.
- subíndices e y s, indican la variable a la entrada y salida de la tecnología, respectivamente.
- $L_{\rm S}$: flujo molar en kmol/s, libre del contaminante, del solvente.
- $G_{\rm S}$: flujo molar en kmol/s, libre del contaminante, del gas.
- $f_{\rm a}$: factor de ajuste equivalente a 1.35 [8].

Figura 5-13.: Curva de equilibrio para un sistema SO₂-agua a 90 °C, y línea de operación del depurador húmedo de la planta 55 según la base de datos elaborada en el capítulo 4.

Para considerar los flujos molares con contaminantes se utilizan las ecuaciones 5-52 y 5-53.

$$G_{\rm mol,e} = G_{\rm S} \left(1 + Y_{\rm e} \right),$$
 (5-52)

$$L_{\rm mol,e} = L_S \left(1 + X_{\rm e} \right). \tag{5-53}$$

Estos flujos molares se deben considerar para diseñar el depurador húmedo, de modo que al circular a través del lecho de empaques, el solvente no se desborde. De acuerdo con lo anterior, y mediante la ecuación 5-54, se calcula el flujo másico superficial $G_{\rm sfr,e}$ para evitar inundaciones al interior del depurador húmedo:

$$\frac{\left(\frac{G_{\rm sfr,e}^2}{23.84}\right)\Psi F_{\rm p}\left(\frac{\mu_{\rm L}}{0.001}\right)^{0.2}}{\left(\frac{\rho_{\rm L}\rho_{\rm G}g_{\rm C}}{32.34}\right)} = 10^{\left[-1.668 - 1.085\log\left(\frac{L_{\rm mol,e}}{G_{\rm mol,e}}\frac{PM_{\rm L}}{PM_{\rm G}}\sqrt{\frac{\rho_{\rm G}}{\rho_{\rm L}}}\right) - 0.297\left(\log\left(\frac{L_{\rm mol,e}}{G_{\rm mol,e}}\frac{PM_{\rm L}}{PM_{\rm G}}\sqrt{\frac{\rho_{\rm G}}{\rho_{\rm L}}}\right)\right)^2\right]}.$$
 (5-54)

Donde,

- $G_{\rm sfr.e}^2$: flujo másico superficial en kg/s-m².
- Ψ : relación entre la densidad del solvente y el agua.
- F_p: factor de empaque, según tipo. Para este caso se tienen en cuenta empaques cerámicos tipo sillas de montar de 0.0381 m.
- μ : viscosidad dinámica en Pa-s.
- ρ : densidad en kg/m³.
- g_c : constante gravitacional equivalente a 9.82 m/s².
- *PM*: masa molar.

A continuación, se estima el diámetro del depurador húmedo en m^2 según la ecuación 5-55.

$$D = \frac{G_{\rm mol,e} P M_{\rm G}}{G_{\rm sfr,e}} \sqrt{\frac{4}{\pi}}$$
(5-55)

Una vez se calcula el diámetro, se procede a estimar la altura del depurador húmedo; con este fin, se deben estimar las fracciones molares contaminantes del gas y líquido, en mol de SO_2 por mol del gas incluyendo el contaminante (ecuaciones 5-56: 5-57, 5-58 y 5-59):

$$x_{\rm e} = \frac{X_{\rm e}}{1 + X_{\rm e}} \tag{5-56}$$

$$x_{\rm s} = \frac{X_{\rm s}}{1 + X_{\rm s}} \tag{5-57}$$

$$y_{\rm e}^* = \frac{Y_{\rm e}^*}{1 + Y_{\rm e}^*} \tag{5-58}$$

$$y_{\rm s}^* = \frac{Y_{\rm s}^*}{1 + Y_{\rm s}^*}.\tag{5-59}$$

Donde, las concentraciones y_e^* y y_s^* , representan las fracciones molares del contaminante en el gas, con respecto a las concentraciones x_e y x_s , cuando el sistema está en equilibrio. Está condición de equilibrio está caracterizada por m, que se calcula mediante la ecuación 5-60:

$$m = \frac{y_{\rm s}^* - y_{\rm e}^*}{x_{\rm s} - x_{\rm e}}.$$
(5-60)

Para relacionar la condición de equilibrio con las condiciones de operación reales, se calcula el factor de absorción AF (ecuación 5-61):

$$AF = \frac{L_{\rm mol,e}}{mG_{\rm mol,e}} \tag{5-61}$$

Seguido, se calculan el número de unidades de transferencia, y las alturas H_G y H_L , mediante las ecuaciones 5-62, 5-63 y 5-64, respectivamente,

$$N_{\rm tu} = \frac{\ln\left[\left(\frac{y_{\rm e}-mx_{\rm e}}{y_{\rm s}-mx_{\rm e}}\right)\left(1-\frac{1}{AF}\right)+\frac{1}{AF}\right]}{1-\frac{1}{AF}},\tag{5-62}$$

$$H_{\rm G} = 3.28 \left[\alpha \frac{(737.34 f G_{\rm sfr,e})^{\beta}}{(0.207 L_{\rm sfr,e})^{\Gamma}} \right] \sqrt{\frac{\mu_{\rm G}}{\rho_{\rm G} D_{\rm G}}},\tag{5-63}$$

$$H_{\rm L} = 3.28\phi \left(\frac{L_{\rm sfr,e}}{11810\mu_{\rm L}}\right)^b \sqrt{\frac{\mu_{\rm L}}{\rho_{\rm L}D_{\rm L}}}.$$
(5-64)

Donde,

- f: factor de inundación, con un valor típico de 0.7 [8].
- α, β, Γ, φ y b, son constantes según tipo de empaque disponible en el manual de la EPA
 [8]. Los valores utilizados en el presente estudio se registran en la tabla B-1.
- μ: viscosidad dinámica cuya estimación, en el caso del gas, se realiza según la ecuación 5-66, en función de las viscosidades por cada especie i, que se calculan mediante la ecuación 5-67 [160].
- D_L y D_G, coeficientes de difusión del contaminante en el líquido y el gas, equivalentes a 2.61 m²/s y 1.32x10⁻⁵ m²/s, respectivamente [148, 27].
- $L_{\rm sfr,e}$: razón de flujo superficial del líquido entrando al depurador húmedo (ecuación 5-65). En esta ecuación, A corresponde al área transversal del scrubber calculada a partir del diámetro estimado previamente:

$$L_{\rm sfr,e} = \frac{L_{\rm mol,e} P M_{\rm L}}{A},\tag{5-65}$$

$$\mu_{\rm G} = \frac{\sum_{\rm i} \mu_{\rm i} y_{\rm i} \sqrt{PM_{\rm i}}}{\sum_{\rm i=1} y_{\rm i} \sqrt{PM_{\rm i}}},\tag{5-66}$$

$$\ln \mu_{\rm i} = A \ln T + \frac{B}{T} + \frac{C}{T^2} + D.$$
(5-67)

Los coeficientes de transporte $A, B, C \neq D$, para cada especie, se toman de la base de datos desarrollada por la Administración Nacional de Aeronáutica y el Espacio (NASA por sus siglas en inglés) [178]; temperatura T, en K.

Finalmente, se calcula la altura del depurador húmedo y su área superficial (ecuaciones 5-68, 5-69, 5-70 y 5-71):

$$H_{\rm tu} = H_G + \frac{1}{AF} H_{\rm L},\tag{5-68}$$

$$H_{\rm lecho} = N_{\rm tu} H_{\rm tu},\tag{5-69}$$

$$H_{\rm depurador} = 1,40 H_{\rm lecho} + 1,02D + 2,81, \tag{5-70}$$

$$S = \pi D \left(H_{\text{depurador}} + \frac{D}{2} \right).$$
(5-71)

5.4.2. Sistema de prevención de humo blanco

En algunos casos, los depuradores húmedos no cuentan con un intercambiador de calor como el representado en la figura **5-10**, sino que incluyen un sistema de prevención de humo blanco (figura **5-14**).

Figura 5-14.: Línea de procesamiento con sistema de prevención de humo blanco. Abreviaciones: INC, incineración; RE, recuperación energética; LG, limpieza de gases; HB, sistema de prevención de humo blanco; HB_IC, intercambiador de calor del HB; HB_M, reactor de mezcla del HB.

En este tipo de sistemas, los gases de combustión a la salida de las tecnologías de recuperación energética se utilizan como fuente de energía para elevar la temperatura del aire que se va a mezclar con los gases de combustión que salen del tren de limpieza; en la figura **5-14**, esta mezcla está representada por $\dot{m}_{gc,4}+\dot{m}_{a,s}$. La temperatura de esta mezcla se calcula solucionando la ecuación de temperatura de llama adiabática (ecuación 5-27).

5.4.3. Cámara de enfriamiento

Dentro de la base de datos, la única planta que incluye esta tecnología es la número 66 (tabla A-1). En esta planta, los gases a la salida del sistema de prevención de humo blanco son enfriados en un cámara de atomización donde se inyecta agua. En este caso, el principio de enfriamiento es el mismo que el de los depuradores húmedos donde, para un sistema donde no hay intercambio de calor con el entorno, el aumento en la concentración del agua en los gases reduce su temperatura. Adicionalmente, y teniendo que ambas tecnologías tienen las mismas características, se utilizan las mismas especificaciones y principio de operación del depurador húmedo para su estudio.

5.4.4. Secador por atomización

El secado por atomización incluye un sistema que prepara una mezcla de agua con piedra caliza (figura 5-15). En seguida, la mezcla se atomiza al interior del reactor, de modo que el $Ca(OH)_2$ (i.e. piedra caliza hidratada) reacciona con los contaminantes, formando residuos sólidos, que se decantan, y vapor de agua que aumenta la concentración de H₂O de los gases de combustión [38].

Al igual que los scrubber, el cálculo de la temperatura de los gases de combustión a la salida del secador, se realiza mediante la ecuación 5-27, teniendo en cuenta el aumento en la concentración de vapor de agua.

5.4.5. Depurador húmedo tipo venturi

Esta tecnología es utilizada para remover material particulado como las cenizas. Su principio de funcionamiento se basa en la inyección de agua, que al encontrarse con el material particulado, hace que este pierda energía cinética y se decante, y/o quede absorbido en las gotas de agua (figura **5-16**) [8].

Para un depurador húmedo tipo venturi, como el representado en la figura **5-16**, la cantidad de agua que recircula se calcula mediante la ecuación 5-72:

$$\left(\frac{L}{G}\right) = \frac{\dot{V}_{\rm H_2O}}{\dot{V}_{\rm gc}} \tag{5-72}$$

Figura 5-15.: Representación de un secador por atomización [99].

Donde,

- L/G: relación líquido-gas, disponible en la tabla **B-1**.
- *V*: flujo volumétrico.

Adicional a la cantidad de agua que se evapora en el proceso, la cual se calcula siguiendo el mismo procedimiento de los depuradores húmedos de gases aproximando el sistema a un saturador adiabático [8], se considera el agua que debe cambiarse cuando el contenido de cenizas en el agua de recirculación alcanza un valor del 25 %; esta cantidad de agua, con alta concentración de cenizas, se considera como agua residual que debe ser tratada posteriormente.

Con relación al consumo de energía eléctrica, se consideran las pérdidas por caída de presión del gas de combustión y la energía requerida para recircular el agua mediante la ecuación 5-1; los parámetros de cálculo están consignados en la tabla **B-1**.

5.4.6. Limpieza en seco

Como se menciona en la sección 4.2.4 del presente documento, las tecnologías de limpieza de gases en seco, ocurren en dos etapas: inyección de adsorbentes a los gases y su posterior circulación a través de tecnologías de filtración (figura 5-17).

Figura 5-16.: Esquema de planta de un depurador húmedo tipo venturi con sus respectivos flujos de materiales primarios y secundarios [8].

Con respecto a las tecnologías de filtración, su eficiencia de remoción de material particulado depende principalmente del tamaño de la partícula a remover. En la figura **5-18**, se representa la distribución acumulada del tamaño de partícula de cenizas de lodos incinerados en un LFB.

Como se observa en la figura **5-18**, se encuentran tamaños de partícula desde 0.5 µm hasta 870 µm, aproximadamente. Considerando el tamaño de partícula, y las curvas de eficiencia para las tecnologías de remoción utilizadas en plantas para la incineración de lodos (tabla **5-19**), se especifican las eficiencias de remoción consignadas en la tabla **B-1**.

En cuanto a los consumos de energía eléctrica, para todas las tecnologías de remoción, se considera la energía consumida por los ventiladores para superar la caída de presión de los gases de combustión al circular a través de las mismas. Adicionalmente, los precipitadores electrostáticos incluyen un consumo de energía adicional que se calcula mediante el factor de consumo incluido en la tabla **B-1**. A diferencia de los precipitadores, el consumo adicional de los filtros de mangas se calcula en función del área en bruto de la tela del filtro (ecuación 5-73); la relación entre el consumo de energía y la tela, está dada por la energía que requiere el sistema de remoción de residuos que quedan almacenados en la superficie de la tela [8]:

$$\frac{\dot{V}}{A} = f_{\rm A}.\tag{5-73}$$

Figura 5-17.: Representación de un sistema de limpeza de gases en seco.

Figura 5-18.: Distribución acumulada de tamaño de partícula de las cenizas en un incinerador LFB de lodos urbanos [155].

- V: flujo volumétrico de gases, en m³/h.
- A: área de la tela, en m^2 .
- f_A: relación gas-tela equivalente a 45.72 (m³/h)/m², asumiendo remoción de cenizas volantes y sistema de agitación para remoción de material particulado en la superficie [8].

5.4.7. Sistema SCR

Para evaluar el costo de un sistema SCR, se consideran dos componentes: el sistema de almacenamiento e inyección de amoniaco, y el reactor donde ocurre la reacción (plantas número 48 y 32, en la tabla A-1) [94]. A diferencia del costo del sistema de inyección, que

Figura 5-19.: Eficiencia de diferentes tipos de separadores de material particulado [174].

se calcula a partir del consumo de amoniaco, el costo del reactor se estima según el volumen de catalizador requerido, que se calcula mediante la ecuación 5-74:

$$V_{\text{catalizador}} = \frac{\dot{V}_{\text{gc,std}}}{\text{GHSV}_{\text{std}}}$$
(5-74)

Donde,

- El subíndice std, indica que debe calcularse a condiciones estándar (i.e. 0 °C y 1 atm).
- Velocidad espacial gas-horario (GHSV por sus siglas en inglés), es la relación entre el caudal de gas y el volumen de catalizador requerido. Su valor depende de la naturaleza del catalizador y se encuentra en (m³/h)/m³.

En sistemas SCR, es común que se utilicen catalizadores $TiO_2/V_2O_5/WO_3$ cuya eficiencia de remoción y GHSV, dependen de si estos se sintetizan con otros componentes como F, Na, K, Ca, Ce, etc.; generalmente la eficiencia de remoción de NO_x en los SCR se puede asumir con un valor equivalente al 80 % [42]. Por ejemplo, se ha evidenciado que los catalizadores $TiO_2/V_2O_5/WO_3$ sintetizados con Ce, tienen una eficiencia de remoción y GHSV equivalentes a 82.6 % y 28.000 h⁻¹ a 200 °C [309].

En consecuencia, para el presente estudio se asume que los sistemas SCR utilizan catalizadores $TiO_2/V_2O_5/WO_3$ sintetizados con Ce de acuerdo con los siguientes aspectos: las eficiencias de remoción de NO_x son acordes a valores comunes de líneas de limpieza de gases, la temperatura de los parámetros de operación se ajusta a la temperatura de las tecnologías de limpieza de gases del presente estudio y representan el estado del arte tecnológico para este tipo de aplicaciones.

5.4.8. Cámara de combustión secundaria

Esta tecnología se utiliza para reducir la concentración de CO y C_xH_y , mediante la integración de una cámara de combustión como la que se observa en la figura **5-20**.

Figura 5-20.: Representación de cámara de combustión secundaria.

Inicialmente se debe garantizar que las concentraciones de los contaminantes y el oxígeno en los gases de combustión sean suficientes para que ocurra la combustión. La concentración mínima de los contaminantes corresponde al límite de inflamabilidad inferior, y se calcula mediante la ecuación 5-75.

$$LII_{\text{mezcla}} = \left[\sum_{i=1}^{n} \frac{y_i}{\left(\sum_{i=1}^{n} y_i\right) LII_i}\right]^{-1}$$
(5-75)

Donde, y_i es la fracción volumétrica del contaminante combustible i. Los límites de inflamabilidad inferior para el CO y $C_x H_y$ que se consideraron en estudio son 12 y 5 %, respectivamente [310, 8].

En caso de que no se cumplan las condiciones relacionadas con las concentraciones, se deben adicionar las cantidades de aire y combustible, según los límites de inflamabilidad para mezclas de gases. El combustible utilizado en este tipo de aplicaciones es gas natural cuya composición de CH_4 en volumen supera el 97 % [82, 8]. De acuerdo con lo anterior, se toman como referencia los límites de inflamabilidad del CH_4 para realizar el respectivo modelamiento de los balances de esta tecnología (figura **5-21**).

Figura 5-21.: Límites de inflamabilidad para mezclas de metano, aire y otros gases, a 25°C y presión atmosférica [307].

Como se observa en la figura **5-21**, dependiendo del gas considerado, las concentraciones de aire y el límite de inflamabilidad inferior del CH_4 , varían. En el caso más extremo, la concentración de aire mínima requerida y el límite de inflamabilidad inferior equivalen al 77.2 y 7.2 % respectivamente.

En resumen, este capitulo documenta los principios de funcionamiento de las tecnologías de pretratamiento, incineración, recuperación energética y limpieza de gases, que conforman la superestructura; estos principios son fundamentales para la realización de balances de masa, balances de energía y la estimación de las especificaciones técnicas de las tecnologías.

Las especificaciones y flujos de materiales, primarios y secundarios, son fundamentales para realizar el análisis tecnoeconómico de los sistemas incluidos en la superestructura, tal y como se evidenciará en el capítulo 6 donde se establece la metodología de estimación de costos de operación y de inversión para sistemas de incineración de lodos.

6. Análisis tecnoeconómico

6.1. Clases de estimaciones de costos y precisión

La construcción de una planta de procesamiento pasa por varias etapas; según la revisión realizada por M.F. van Amsterdam [14], un proyecto se puede dividir en las siguientes 3 fases: concepción, definición y ejecución; siendo en las primeras dos fases donde se realizan análisis tecnoeconómicos para decidir si se construye la planta [14].

Hay diferentes tipos de análisis tecnoeconómicos, los cuáles se clasifican según el nivel de madurez de sus entregables y precisión. En la figura **6-1** se muestra la relación entre los indicadores mencionados previamente y la clasificación de costos establecida por la Asociación para el Mejoramiento de Ingeniería de Costos (AACE por sus siglas en inglés) [134].

Como se observa en la figura 6-1, a medida que los niveles de madurez de los entregables aumentan, los límites de variación en la precisión del análisis tecnoeconómico convergen hasta alcanzar valores de -3% a -10% y +3% a +15%, aproximadamente.

De acuerdo con la clase de análisis tecnoeconómico que se desarrolle, se sugieren ciertas metodologías de estimación de costos. A continuación se listan las metodologías de cálculo sugeridas por clase según la práctica No. 18R-97 de la AACE [134]:

- Clase 5 y 4: métodos estocásticos y paramétricos.
- Clase 3: involucra más métodos de estimación determinísticos que estocásticos. Se pueden utilizar métodos estocásticos en áreas de proceso que no son muy importantes en la planta.
- Clase 2: métodos de alto nivel determinístico. Se realizan en un nivel de detalle elevado dejando de lado el uso de métodos factoriales.
- Clase 1: involucran el más alto nivel determinístico. Se preparan con gran detalle y sus costos se basan en cantidades de diseño reales.

Figura 6-1.: Ejemplo de variabilidad de rangos de precisión y nivel de madurez de entregables, según clase para estimaciones de CAPEX en la industria de procesos [134]

6.2. Técnicas de estimación de costos

Como se mencionó previamente, hay diferentes tipos de metodologías de estimación de costos que se pueden implementar de acuerdo a su clase; a continuación, se listan dichas metodologías junto con su descripción general:

 Estimación factorizada de capacidad (CFE por sus siglas en inglés), se utiliza para dar una estimación rápida y lo suficiente aproximada para decidir si se continua con un análisis de costos más detallado. El costo de la planta se calcula según la ecuación 6-1 [206]:

$$\frac{\text{Costo}_2}{\text{Costo}_1} = \left(\frac{\text{Capacidad}_2}{\text{Capacidad}_1}\right)^r \tag{6-1}$$

El valor del exponente r, típicamente, toma valores entre $0.5 \ge 0.85$, dependiendo del tipo de planta a analizar. Este valor se determina al realizar una regresión lineal entre

los costos y capacidades de varias plantas, de acuerdo a la ecuación 6-2 [206]:

$$\ln (\text{Costo}_2) = r \left[\ln (\text{Capacidad}_2) - \ln (\text{Capacidad}_1) \right] + \ln (\text{Costo}_1).$$
(6-2)

 Modelos paramétricos, son aquellos que obtienen el costo de capital de una planta al sumar el costo estimado de las unidades funcionales (i.e. etapa significativa dentro de un proceso, e incluye todos los equipos y accesorios necesarios para su funcionamiento) que la conforman. Todas las metodologías propuestas por diferentes autores se pueden resumir en la ecuación 6-3 [14, 282]:

$$C = KNF. (6-3)$$

Donde: C es el costo capital, K es una constante, N es el número de unidades funcionales y F corresponde a factores que consideran parámetros operativos como presión, temperatura, etc.

 Modelos factoriales, se diferencian principalmente de los métodos paramétricos en el hecho de estimar los costos de los equipos que conforman la planta por separado y no por unidades funcionales que agrupan varios equipos. Una vez se estiman los costos por equipos, se utilizan factores para estimar costos directos e indirectos. Varios autores han publicado diferentes metodologías, y entre ellas se encuentra que éstas se pueden clasificar en aquellas que parten de los principios de Lang y Hand [14]; ecuaciones 6-4 y 6-5, respectivamente:

$$C = F \sum_{k=1}^{n} E_k, \tag{6-4}$$

$$C = \sum_{k=1}^{n} F_k E_k,\tag{6-5}$$

donde: E es el costo del equipo y F Factores que consideran parámetros operativos como presión, temperatura, etc.

Como se observa en las ecuaciones previas, el método de Lang multiplica un único factor por la sumatoria de los costos de los equipos, mientras que la metodología propuesta por Hand, el costo de capital corresponde a la sumatoria de los productos entre factores específicos y los costos de equipos. Estimaciones detalladas, son metodologías que, en vez de usar factores para estimar otros costos, además de los relacionados con los de los equipos, se utilizan documentos detallados, horas de mano de obra y otros datos técnicos para costear cada uno de los diferentes tipos de costos por separado.

En el caso del presente trabajo se propone implementar un análisis que sirva como estudio de factibilidad con madurez de los entregables entre el 1 % y el 15 %. Un ejemplo del uso de este tipo de metodología para estudios de factibilidad de clase 4 son: (a) análisis TEA, realizados por el Laboratorio Nacional de Tecnología Energética (NETL, por sus siglas en inglés), aplicados a plantas para la producción de energía que funcionan a partir de fuentes de combustibles fósiles y (b) análisis TEA, realizados por el Laboratorio Nacional de Energía Renovable (NREL, por sus siglas en inglés) aplicados a sistemas energéticos que contribuyen al uso eficiente de la energía e implementación de fuentes de energía renovable [192, 35].

Según metodologías sugeridas por clase, que se discutieron previamente, se pueden utilizar métodos estocásticos como CFE, métodos paramétricos y factoriales. Para este caso de estudio, se selecciona la implementación de métodos factoriales por tecnología, ya que las metodologías CFE y paramétricas no alcanzan el mismo nivel de detalle; en vez de estimar el costo de capital a partir de los costos de los equipos, se estima el costo capital de toda la planta según su capacidad o a partir de unidades funcionales.

Dentro de los métodos factoriales se dispone de una gran variedad de metodologías, entre las cuales se selecciona la práctica 16R-90 de la AACE ya que ésta fue desarrollada para realizar estudios de factibilidad de clase 4 con un rango de precisión del -15 al 30 % [133]. Cabe resaltar que la 16R-90 combina los métodos de estimación de Lang y Hand, ya que de acuerdo a las condiciones de operación de un equipo en particular se especifican factores de materiales y mano de obra que se pueden sintetizar en un único valor [14].

El desarrollo del análisis tecnoeconómico se lleva a cabo siguiendo la metodología propuesta por la AACE [133], la cual se representa en la figura **6-2**.

Como se puede observar en la figura **6-2**, el punto de partida para el análisis tecnoeconómico es: el desarrollo de la superestructura y las especificaciones técnicas de los equipos incluidos en la misma; dichas especificaciones deben ser las necesarias para poder determinar los costos de los equipos (e.g. temperatura y presión de operación, flujo de gases a tratar, cantidad de vapor a producir, etc.) y se establecen a partir de los respectivos balances de masa y energía para todas las unidades de procesamiento principales [133].

Seguido de las especificaciones técnicas se procede a realizar el análisis de costos y finalmente el análisis financiero. En la figura **6-2**, se muestra que el análisis de costos se realiza en dos

Figura 6-2.: Metodología general del análisis tecnoeconómico según metodología 16R-90 de la AACE [133].

etapas (i.e. requerimiento de capital total y costo total de operación).

6.3. Metodología de análisis TEA

De acuerdo a la metodología de análisis TEA seleccionada (16R-90 de la AACE), se desarrolló una hoja de cálculo en el grupo de investigación BIOT para su utilización principalmente en los estudios que se están desarrollando dentro del área de sistemas energéticos urbanos, SEU.

Esta hoja de cálculo sigue los lineamientos establecidos en la metodología 16R90 y el trabajo desarrollado por J. Kim et al. [146, 133]. Adicionalmente, esta herramienta de cálculo fue complementada con factores de locación para varias ciudades del mundo.

6.3.1. Factores de locación

Un aspecto a tener en cuenta a la hora de realizar una estimación de costos es la localización de la planta. Por ejemplo, cuando se aplica la de economía de escala para estimar los costos de compra de un equipo generalmente se determina para un lugar específico y en la mayoría de los casos se encuentra como un valor promedio para aplicaciones en los EUA. Adicionalmente, algunos costos como los relacionados con mano de obra de instalación de equipos, compra de equipos (considerando impuestos, transporte, etc.), terrenos, etc. dependen directamente de la ubicación geográfica de la planta [14, 96].

Para tener en cuenta la ubicación de la planta en la estimación de costos, se utilizan los factores de locación así [217]:

$$Costo_{lugarA} = Costo_{lugarB} \frac{Factor_{LugarA}}{Factor_{LugarB}}.$$
(6-6)

Hay diferentes fuentes de donde se pueden obtener estos factores, como las publicadas por Donald E. Garret [217], quien presenta un compilado de factores y advierte que su utilización apenas sirve para dar una idea de la estimación de costos debido a su imprecisión. Una estimación de factores más elaborada se encuentra disponible en reportes anuales como el Globlal Construction Costs Yearbook y el Richardson International Construction Factors Manual [217], que además de incluir dentro de sus reportes factores de locación, estos son utilizados como base de datos para análisis económicos en software especializados como el ACCE (por sus siglas en inglés, Aspen Capital Cost Estimator) [217].

Los factores de Richardson son determinados a partir de análisis de costos de construcción para plantas de procesamiento de químicos y refinerías [129]. Estos costos de construcción se dividen en costos de materiales y de mano de obra, los cuales están caracterizados por los siguientes índices:

- Materiales y equipos importados (IEM por sus siglas en inglés); porcentajes a agregar por efecto de aduanas, fletes e impuestos nacionales.
- Materiales y equipos suministrados localmente (LMI por sus siglas en inglés); fracción del costo a nivel local con respecto a la locación base.
- Factor de rendimiento (PF por sus siglas en inglés); es la relación entre unidades producidas en la locación de estudio y la locación de referencia. En términos generales un valor superior a la unidad quiere decir que hay mayor productividad.

Por ejemplo, en el caso de Colombia, si un equipo se importara su costo se aumentaría en un 36 % con respecto al costo base; si el equipo se fabricará en el país se consideraría un incremento del 10 % [129]. En este estudio se consideraron los factores de materiales y equipos importados, y el factor de rendimiento de Richardson para tener en cuenta cambios de localización geográfica. En el caso del escalamiento de materiales y equipos a nivel geográfico, se utiliza el factor de importados, al considerar un escenario donde los equipos deben importarse para instalar la planta en Colombia.

6.3.2. Índice de costo presente

En el caso de encontrar el costo del equipo en un año distinto al que se propone realizar el estudio, se utiliza la ecuación 6-7, que depende tanto del precio base como de índices que

correspondan tanto al año en el que se encontró el costo y el año al que se desea realizar el estudio:

$$\frac{\text{Costo}_{\text{presente}}}{\text{Costo}_{\text{original}}} = \frac{\text{Índice}_{\text{presente}}}{\text{Índice}_{\text{original}}}.$$
(6-7)

Hay varios índices que se pueden utilizar, dependiendo de la aplicación de la estimación de costos. Dentro de los diferentes tipos de índices que se encuentran disponibles, el índice de costos de plantas de ingeniería química (CEPCI por sus siglas en inglés) que es un indicador para caracterizar costos de construcción de plantas para tratamiento de productos químicos. Además es utilizado en la industria de procesos y considera fluctuaciones en costos de equipos, maquinaria, mano de obra, materiales de construcción, ingeniería y costos de supervisión [217]. En consecuencia, se incluye el CEPCI en el presente estudio, ya que es un índice que se ajusta las características de una planta para la incineración de biosólidos.

6.3.3. Requerimiento de capital total

En la figura **6-3**, se representan los niveles de costos y sus elementos, correspondientes al capital de inversión, según la 16R-90.

Como se puede observar en la figura **6-3** hay cuatro niveles de costos, siendo el costo total de planta el único ítem dentro del primer nivel que cuenta con subniveles. En el último nivel de las subdivisiones mencionadas previamente, se encuentra el costo de compra de equipos que es el punto de partida del análisis de costos.

Teniendo en cuenta que el cálculo del costo al final de la flecha depende de su punto de partida, se observa que el requerimiento total de inversión depende principalmente de los costos de compra de los equipos.

Cabe resaltar que algunos costos de primer nivel (i.e. costos de puesta en marcha, capital de trabajo e insumos iniciales), dependen de la estimación de los costos de operación.

Figura 6-3.: Niveles de costos del capital de inversión, según metodología No. 16R-90 de la AACE [133].

Costos totales de capital

Costos directos

Según la metodología 16R90 estos costos son los asociados con la compra de los equipos y material requerido para su instalación. Adicionalmente, se incluyen los costos de mano de obra relacionados con la entrega de los equipos en el lugar de operación y su puesta en marcha.

Los costos directos se agrupan en dos categorías: de base (i.e. estimación de los costos de compra de toda la planta incluyendo preparación de campo, edificaciones, instalaciones de servicios, almacenamiento y tratamiento de residuos) y de límites internos de la batería (ISBL por sus siglas en inglés) [282]. En la estimación de costos ISBL se estiman los costos de compra de los equipos principales de procesamiento (i.e. reactores, separadores, turbinas, etc.). Los costos que no están incluidos dentro de los límites se consideran como externos y se incluyen mediante el uso de factores que permiten estimar el total de los costos directos [282, 227].

Costos de compra de los equipos

Según la práctica 59R-10 de la AACE, la estimación de los costos de compra se puede realizar mediante la aplicación de estimaciones factorizadas de equipos (EFE por sus siglas en inglés), cuando se trata de una estimación de clase 4 tal y como se propone en el presente estudio. En esta metodología se aplica la economía de escala a equipos individuales y no a la planta en general [206].

Teniendo en cuenta la importancia que tiene su cálculo dentro del análisis tecnoeconómico, se realizó una revisión bibliográfica detallada para especificar los valores de los términos requeridos por tecnología según la ecuación 6-1 (i.e. factor de escala, capacidad y costo base); estos términos se registran en la tabla C-1. Además de dichos términos, los rangos de operación, referencias bibliográficas y observaciones importantes, que se consideraron para cada una de las tecnologías, se incluyen en la tabla C-2.

Cabe resaltar que la estimación de estos costos es muy importante para el proyecto ya que estos costos conforman del 18 al 35 % de los costos de una planta de procesamiento y un error en esta etapa del proyecto se puede magnificar de 3 a 5 veces al final del proyecto [133].

Teniendo en cuenta la importancia de estos costos dentro de la estimación y que estos están disponibles usualmente en bases de datos, se tuvieron en cuenta las siguientes características a la hora de incluirlos en el análisis tecnoeconómico [14]:

- Fuente de los datos como reportes de compañías, estudios de factibilidad, software, etc.
- Base de los costos, considerando qué componentes están incluidos y a qué tipo de costos se hace referencia.

- Fecha de los costos (i.e. año de referencia).
- Errores potenciales; si es posible caracterizarlos con variables como su desviación estándar, entre otras.
- Rangos de operación para los cuales fueron estimados.

Costos de mano de obra (entrega del equipo)

Dentro de los costos de compra de los equipos no se incluye la mano de obra requerida para entregar el equipo (i.e. transporte, desembalaje, descarga, conexión, almacenamiento, etc.), por lo que se deben considerar en alguna etapa del proyecto. De acuerdo con la metodología 16R90, estos costos dependen del tipo de equipo y se calculan al aplicar un factor al precio de compra del equipo.

Los factores de instalación se leen según el tipo de equipo, tal y como se observa en la tabla **6-1** donde se pueden tomar lecturas de factores como el caso de compresores con un factor de 0.25 [133].

Tipo de equipo	Factor de instalación
Unidad de absorción	0.20
Columna destilación de amoniaco	0.20
Molino de bolas	0.30
Ventilador	0.35
Peletizadora	0.25
Centrifugo	0.20
Clarificador	0.15
Cortador de coque	0.15
Tambor de coque	0.15
Compresor	0.25

 Tabla 6-1.:
 Factores de instalación por equipo
 [133]

Costos de materiales y mano de obra de instalación

Los costos de los materiales y mano de obra requeridos para poner en marcha las tecnologías, se estiman al aplicar factores a los costos de compra de los equipos y los costos de materiales de instalación, respectivamente. Estos factores se extraen de tablas según: el tipo de tecnología, sus condiciones de operación y la fase en la que se encuentra el material que

es procesado (tabla **6-2**).

Tipo de sistema	Proceso con materiales en fase gas-sólido			
Temperatura	$\leq 204 \text{ °C}$		> 204 °C	
Presión	$\leq 1034~{\rm kPa}$	> 1034 kPa	\leq 1034 kPa	> 1034 kPa
Cimentación	5	6	6	6
Acero estructural	4	4	5	6
Edificaciones	2	2	5	4
Aislamiento	1	1	2	2
Instrumentos	2	7	7	8
Eléctricos	6	8	7	8
Tubería	35	40	40	40
Pintura	0.5	0.5	0.5	0.5
Misceláneos	3.5	4	4	4.5

Tabla 6-2.: Factores de materiales de instalación, en %, según la metodología 16R-90 [133].

Costos indirectos

Los costos indirectos, según la 16R-90, no están relacionados directamente con la instalación de los equipos, pero son necesarios para completar la instalación de los mismos. Estos costos están conformados por: costos de mano de obra indirecta y costos indirectos de campo como herramientas, equipos y materiales requeridos para realizar la instalación de los equipos principales, así como la construcción de instalaciones temporales [133].

Los costos indirectos de mano de obra corresponden al producto entre los costos directos de mano de obra y un factor especifico. Según Weinheimer [133], la variación de este factor es inversamente proporcional al valor de los costos directos de mano de obra en campo tal y como se observa en la figura **6-4**.

Figura 6-4.: Costos indirectos de campo según costos de mano de obra directa; gráfica correspondiente a USD 20/hora de trabajo [133]

Para usar la figura **6-4** como referencia de cálculo, los costos directos estimados se recalculan tomando como referencia un valor de USD 20/hora de trabajo (Ecuación 6-8).

$$\frac{\text{CostoDirecto}_{20}}{20} = \frac{\text{CostoDirecto}_{x}}{x}$$
(6-8)

Donde x representa el costo de mano de obra por hora tenido en cuenta en el estudio a desarrollar, y depende del lugar donde se considere la instalación de la planta.

Los beneficios laborales que deben recibir los operarios involucrados en la instalación de los equipos (i.e. viajes, transporte diario, seguro social, viáticos, etc.), según la metodología 16R-90 corresponden al 35% de los costos totales de mano de obra tanto directa como indirecta.

Los costos indirectos de campo incluyen: (a) la instalación del campamento (i.e. suministro de servicios al campamento, instalaciones, operaciones, etc.), (b) apoyo para construcción (i.e. edificios temporales, vías, instalaciones de construcción, etc.), (c) consumibles (i.e. elementos de protección personal, electrodos para soldar, insumos de oficina, etc.) y (d) equipos y herramientas. Los costos (b) y (c), se calculan de acuerdo con la ecuación 6-9, donde se observa un factor de campo que se toma de la figura **6-4**:

 $CostoIndirecto = CostoIndirecto_x FactorIndirecto \frac{x}{20}.$ (6-9)

En cuanto a los costos de equipos y herramientas, estos corresponden a aquellos que cuestan menos de USD 500 y se calculan según los costos de labor directa de acuerdo con la Tabla **6-3**:

Costo de mano de obra directa	Porcentaje del costo directo total de mano de obra
(USD)	(%)
≤ 300000	5.0
$300000 < x \le 3000000$	3.5
3000000 <	2.0

Tabla 6-3.: Factores para costos de herramientas según la metodología 16R-90 [133].

Costos de instalaciones generales, sede principal y contingencias

Para completar la estimación de los costos totales de planta se deben aplicar algunos factores al costo total del proceso como (a) las instalaciones generales y (b) sede principal y nómina, que según la 16R-90 equivalen al 15 % de los costos totales de proceso (i.e. suma de los costos directos e indirectos).

Adicionalmente, deben tenerse en cuenta costos de imprevistos que pueden surgir durante la instalación de los equipos. Según la 16R-90, estos se clasifican en contingencias de proceso y proyecto, siendo estas últimas el 25 % se los costos totales de proceso, sede principal y nómina, y las contingencias de proceso.

Las contingencias de proceso dependen del grado de madurez tecnológica de una tecnología; esto es si una tecnología aún está en desarrollo hay más probabilidades de que presente inconvenientes a la hora de ponerla en marcha por lo que se aplica un porcentaje mayor. Por otro lado, si el equipo se consigue a nivel comercial quiere decir que es una tecnología madura y por lo tanto fiable con un costo de imprevistos menor. Por ello y considerando que las tecnologías incluidas en la superestructura no presentan incertidumbre tecnológica se asume un valor equivalente al 0 %.

Otros componentes del requerimiento de capital total

En la tabla **6-4** se registran los otros costos incluidos en la estimación del requerimiento de capital total, así como su descripción y método de integración.

Costo del terreno

Como se observa en la tabla **6-4**, se requiere estimar el área que ocuparía la planta de incineración. Para ello, se selecciona una planta de referencia dentro de la base de datos de

Componente	Descripción	Método de integración
Costo total de planta	Corresponde a la suma del capital de proceso, instalaciones generales, administración e impuestos y contingencias.	Cada uno de los ítems se calcula según las instrucciones previamente descritas.
Regalías prepagadas	Costos de derechos de autor sobre integración de procesos patentados.	0.5% del capital de proceso.
Costos de puesta en marcha	Costos para iniciar operaciones en la planta	Un mes de los costos totales de operación 25 % del costo de combustible
		para un mes de operación. 2% del costo total de planta No incluir ganancias por ingresos
Capital de trabajo	Mano de obra requerida para el funcionamiento de la planta	de subproductos. 2 meses de costos totales de operación
Repuestos	Inventario inicial de repuestos para minimizar paradas de planta por reparaciones	0.5% del costo total de planta
Insumos iniciales	Insumos requeridos para la operación de la planta	1 mes de los consumibles
Terreno	Los costos del terreno donde se instalaría la planta son fuertemente dependientes del lugar proyectado.	Producto entre el costo por m^2 y el área estimada de la planta.

Tabla 6-4.: Otros componentes del requerimiento de capital total [133].

acuerdo con los siguientes criterios:

 Representación del estado del arte tecnológico al estar incluida en la superestructura tecnológica.

- Alta capacidad de tratamiento de lodos deshidratados.
- Propiedades de los lodos tratados similares a las de los lodos generados en Bogotá

La planta número 26 incluida en la base de datos (tabla **A-1**) cumple con estas condiciones considerando: su capacidad de tratamiento superior a 400000 t de lodos deshidratados por año, su inclusión en la superestructura tecnológica y los lodos que se incineran son deshidratados con alto contenido de agua, como en el caso de Bogotá.

En consecuencia, se utiliza un factor de 0.13 m² por tonelada anual de biosólidos en base húmeda, el cual se obtiene al dividir el área que ocupa la planta 26 entre la cantidad de lodos tratados en la misma, para el año 2019; este factor de ocupación, se encuentra dentro de los rangos de requerimiento de área para instalaciones WtE reportados por RIS *et al.* [226] (0.10 a 0.25 m²/(t/año)), y por debajo de los reportados por DEFRA (0.68 m²/(t/año)) y Golder Associates Ltd (0.2 a 0.3 m²/(t/año)).

En cuanto a los costos por área, estos son altamente dependientes del lugar donde vaya a funcionar la planta. En el caso particular de Bogotá, se considera un promedio de los costos por área de predios localizados hacia el occidente de la ciudad, donde es más probable que se instale la planta de incineración, teniendo en cuenta que por ese costado de la ciudad funcionarán las PTAR El Salitre y Canoas; este costo equivale a 512.79 USD/m² en promedio, para el año 2017, según el análisis realizado a los datos reportados por Catastro Bogotá [32].

6.3.4. Costos totales de operación

El cálculo de los costos totales de operación está conformado principalmente por dos componentes: (a) costos variables y (b) costos fijos.

Costos variables

El cálculo de los costos variables se realiza a partir de los balances de masa y energía. En el presente estudio los flujos de materiales considerados en la estimación de los costos variables se clasifican así:

- Materia prima (*e.g.* biosólidos).
- Químicos (e.g. piedra caliza, soda cáustica, ácido clorhídrico, etc.)
- Servicios (*e.g.* agua potable, gas, electricidad, etc.).
- Subproductos (*e.g.* electricidad).
- Disposición de residuos (e.g. cenizas, material de lecho, residuos sólidos, etc.).

Los flujos másicos de dichos componentes se multiplican por sus costos unitarios. De este modo dependiendo de cuanto material se requiere por unidad de tiempo se cuantifica el costo variable anual. Los costos unitarios utilizados en el presente estudio se registran en la tabla C-3 junto con sus respectivas fuentes bibliográficas.

Costos de mano de obra

El punto de partida de los costos de mano de obra, es la estimación del costo de mano de obra directa, el cual considera los salarios de los operarios que estarían a cargo del funcionamiento de la planta. Como guía, se considera un factor de 50 horas de trabajo diarias por unidad operacional, que en este caso de estudio es considerada como la planta en conjunto [133].

A continuación, este factor se multiplica por el número de días calendario y el costo promedio por hora de la mano de obra, en USD/h. Este costo es una aproximación para plantas con capacidad de tratamiento de 100 t/d, por ello, y mediante la ecuación 6-1 se escala este costo, considerando un exponente equivalente a 0.25 [133]. Luego, se divide por el PF para considerar el impacto de la ubicación de la planta [129].

Con respecto a los costos de mano de obra promedio por hora, estos se tomaron de varios reportes gubernamentales de la comunidad europea, el gobierno de los EUA y el Banco de la República de Colombia [154, 49, 219].

Seguido del cálculo de los costos variables de operación, se estiman los costos fijos según lo establecido en la tabla 6-5:

Item	Metodología de cálculo
Mano de obra directa	Ecuación 6-1
Supervisión directa	15% de mano de obra directa
Mantenimiento, mano de obra	3% del costo total de planta
Total mano de obra directa	Sumatoria items previos
Mano de obra indirecta	75% del total mano de obra directa
Total mano de obra	Total mano de obra directa + Mano de obra indirecta

Tabla 6-5.: Factores de costos de mano de obra [133].

Otros costos de operación

En la tabla **6-6**, se considera el cálculo de otros costos que están incluidos en los costos de operación.

Item	Metodología de cálculo
Gastos generales de nómina	35% de total mano de obra
Mantenimiento, materiales	3% del costo total de planta
Materiales	25% de total mano de obra
Impuestos	2% del costo total de planta
Corporativos	60% de total mano de obra
Ventas	10% del total de ventas
Total otros costos	Sumatoria items previos

Tabla 6-6.: Factores de otros costos de operación [133].

6.4. Análisis financiero

La mayoría de análisis financieros utilizan concepto del valor temporal del dinero [96]. En términos generales, este concepto consiste en sumar los flujos anuales netos del proyecto, teniendo un año de referencia; tal y como se muestra en la ecuación 6-10 [133]:

$$VPN = IT + \sum_{n=1}^{N} (IN_n - OPEX_n - CIT_n) \frac{(1+c)^n}{(1+d)^n}.$$
(6-10)

Donde:

- VPN: valor presente neto.
- IT: impuestos de la renta.
- IN: ingresos.
- CIT: capital de inversión total.
- n: periodo de análisis
- N: vida económica de la planta.
- c: tasa de inflación

• d: tasa de descuento

Los impuestos a la renta se calculan según la ecuación 6-11.

$$IT = y \left[\sum_{n=1}^{N} \frac{D_n}{(1+d)^n} + \sum_{n=1}^{N} (IN_n - OPEX_n) \frac{(1+c)^n}{(1+d)^n} \right]$$
(6-11)

Donde:

- y: impuesto por flujo de caja (para el caso de Colombia equivale al 19%).
- D: depreciación.

Se considera la tasa de inflación, para tener en cuenta qué tanto se devalúa el flujo neto actual con respecto al tiempo. De este modo, la depreciación de la moneda, intereses, factores de riesgo, etc. [144]. En este caso de estudio, se tomó el promedio de variación del índice de precios del consumidor (CPI por sus siglas en inglés) de Bogotá del 2017 al 2020 (i.e. 3.48 %) [218].

6.4.1. Variables financieras

Las variables financieras incluidas en este estudio se registran en la tabla 6-7.

Con relación a la DT (i.e. depreciación total) se estima según la metodología del sistema de recuperación de costos acelerado modificado (MACRS por sus siglas en inglés), que es utilizada para determinar la vida útil de clase y el cronograma de depreciación. Para este caso de estudio se considera la vida útil para los bienes incluidos en sistemas para la generación y distribución de vapor (incluye equipos de plantas WtE) [136, 133].

Cabe resaltar que para el presente estudio se asume que las ganancias obtenidas del salvamiento (i.e. dinero recibido por vender las partes que quedan luego de desmantelar la planta) son iguales a los costos requeridos para desmantelar de la planta, por lo que este monto no se incluye dentro del análisis financiero.

6.5. Análisis tecnoeconómico de la línea base

Con el propósito de evaluar si la metodología propuesta logra la precisión de análisis tecnoeconómico de clase 4, en aplicaciones para evaluar sistemas para la incineración de biosólidos, se realiza la selección de un sistema de incineración existente. A esta sistema se le realizó el respectivo análisis tecnoeconómico, siguiendo la metodología descrita, para luego comparar los resultados con valores reales, de este modo se evalúa su precisión.

Variable	Descripción	Metodología de cálculo
VPN	Representa que tanto aumenta o disminuye la ganancia del proyecto.	Según valor temporal del dinero.
Coeficiente de rentabilidad	Valores elevados del coeficiente, representan proyectos de mayor rentabilidad.	Relación entre el VPN y el capital inicial.
TIR, tasa interna de reorno	Proyectos con mayores TIR son más viables en términos financieros	Es la tasa de descuento para la cual el VPN es igual a cero.
Periodo de recuperación con descuento	Se considera la tasa de descuento	Periodo en el cual se recupera la inversión, considerando la tasa de descuento

Tabla 6-7.: Variables financieras [133].

El sistema base seleccionado para el presente estudio es el referente a la planta número 26, de acuerdo a la tabla **A-1**, que se encuentra localizada en Moerdijk, Holanda. Su selección se realizó teniendo en cuenta que sus tecnologías representan el estado del arte tecnológico, en cuanto a la incineración de biosólidos, y su alta capacidad de tratamiento que supera las 400000 t de lodos deshidratados por año.

6.5.1. Costo total de planta

En la tabla **6-8** se registran los históricos financieros de los activos fijos relacionados con la maquinaria de la planta base. Cabe aclarar que, según el estándar de contabilidad AS10, el costo de un activo fijo incluye costos de compra, de importación, impuestos, y cualquier otro tipo de costos que lleven el equipo a su condición de operación [77].

Tabla 6-8.: Histórico de reportes financieros de los activos fijos relacionados con la maquinaria de la planta base. Los campos con el guión representan que la compañía operadora no reportó estos valores. Valores reportados en millones de

-135.93.30.7185.9-0.7 -7.1 19 ı ı 199.4-140.81.4-0.40.4-7.5 $\frac{1}{8}$ ı. ī -123.8 183.71.9-0.3 -6.5 0.317ī ı. -115.4178.64.2-0.3 -9.6 -0.3 16ı ı. -106.4175.215 ı. I ī ī ī ı. -103.210.56 <u>с</u> -12.1182. сi 12ı. ī I. -102.4192.111 I. ı ī ī ī I. -86.6192.4-8.9 1.060 ı ī ī т 201.8-82.3 -4.0 2.63.8-8.9 080ı ī 190.0-8.2 -72.1 3.7-3.3 3.307ı 173.9-61.606ı. ı ı. ī ı. ı. USD del 2001 al 2019 [252]. 120.4-24.7 0.6-10.6-5.00.202ı ı. -19.0115.101ı. ī ī ı ī ī Retiro de inversión Retiro de inversión (valor de compra) (valor de compra) Reclasificación Reclasificación Costo total de (depr. acum.) (depr. acum.) Depreciación Depreciación Ítem Inversiones acumulada planta

Como se evidencia en la tabla **6-8** el costo total de planta para el año 2019 es de 185.9 millones de dolares, y se tomará como referente para realizar el análisis comparativo con el costo calculado siguiendo la metodología 16R-90. Para realizar el análisis tecnoeconómico a la planta base se aplicó la metodología descrita en este capítulo y se considera lo siguiente:

- Lugar de operación: Holanda.
- Capacidad de tratamiento: 434771 t de lodos deshidratados por año.
- Humedad, análisis próximo y análisis elemental: como se reporta en la figura 3-4.

Una vez desarrollado el análisis tecnoeconómico, se encuentra que el costo total de planta es igual a 207.5 millones de USD, tal y como se observa en la tabla **D-2**, donde se pueden visualizar los costos totales de planta por grupo tecnológico (i.e. pretratamiento, incineración, recuperación energética y limpieza de gases).

A continuación se listan los costos para realizar su comparación:

- Costo total de planta real: 185.9 millones de USD.
- Costo total de planta calculado: 207.5 millones de USD.
- Rango de variación permisible del costo calculado según la metodología 16R-90 de la AACE (-15 % a 30 %): 176.4 a 269.8 millones de USD.

Como se puede observar el costo total de planta real está dentro de los límites de variación permisibles según la metodología 16R-90.

Para realizar un análisis más detallado del costo total de planta calculado, se calcularon porcentajes de costos totales de planta (sin costos de contingencias) por grupos tecnológicos, con respecto al requerimiento de capital total para compararlos con valores comunes de plantas para incineración con reactores de lecho fluidizado (tabla **6-9**).

Como se evidencia en la tabla **6-9**, aunque los porcentajes obtenidos son cercanos a los rangos reportados, algunos no se encuentran dentro de sus límites (i.e. incineración, recuperación energética y limpieza de gases). Este comportamiento se le puede atribuir a la naturaleza de las plantas del estudio de J. Koornneef *et al.* [149], ya que estas fueron diseñadas principalmente para la incineración de biomasas y carbón, mientras que el sistema analizado en el presente estudio corresponde al tratamiento de lodos urbanos, lo que varía la composición de la materia prima, y a su vez los flujos de materiales primarios y secundarios.
Tabla 6-9.: Rango de porcentajes con relación al costo de requerimiento de capital total (TCR por sus siglas en inglés), calculados según la planta base (TCR=335.07 millones de USD) y reportados por J. Koornneef et al. [149, 100], correspondientes a plantas de incineración con reactores de lecho fluidizado. Abreviaciones: CTP, costo total de planta. Notas: *, sin considerar costos de contingencias.

Crupo tocnológico	CTP^* (millones	Porcentaje del	Rangos o	comunes (%)
Grupo tecnologico	de USD)	TCR (%)	Inferior	Superior
Pretratamiento	62.15	18.55	4	23
Incineración	12.37	25.00	35	07
Recuperación energética	74.40	25.90	- 55	91
Limpieza de gases	37.84	11.29	2	6

6.5.2. Costos totales de operación

En cuanto a los costos de operación, se realizó un comparativo entre los costos reales de la planta y los obtenidos mediante la AACE 16R-90 (tabla **6-10**).

Tabla 6-10.:	Comparat	ivo entre	\cos	de ope	ración	reales,	reportados	s por	la	compañía
	operadora	ı de la pla	anta bas	se $[252]$, y los	obteni	dos mediar	nte la	me	etodología
	16R-90 (e	n millones	s de US	D). Ab	reviacio	ones: nr	, no report	ado.		

Ítom	Costos reales	Costos reales	Costos
Itelli	año 2017	año 2019	calculados
Consumibles, residuos y servicios públicos	6.54	3.14	10.37
Gas, agua y energía eléctrica	0.55	nr	4.17
Consumibles	1.63	nr	4.41
Residuos	3.62	nr	1.79
Mano de obra	5.26	4.34	8.66
Mantenimiento	3.51	0.00	3.69
Otros costos de operación	3.80	20.80	24.07
Impuestos	0.15	0.13	0.13

Una vez revisada la tabla **6-10**, se encuentra que los costos de los consumibles y servicios públicos, estimados mediante la metodología 16R-90 son mayores a los costos reales repor-

tados por la compañía operadora. De acuerdo con lo anterior se propone realizar un análisis más detallado para identificar si la diferencia radica en los flujos de materiales secundarios ó en los costos unitarios de los consumibles. Para ello, en la tabla **6-11** se registra un análisis comparativos de los flujos de materiales secundarios y energéticos, tanto reales como aquellos estimados en el presente análisis tecnoeconómico.

Tabla 6-11.: Cuadro comparativo de consumo de materiales secundarios y energía, calculados mediante la metodología 16R-90 y los reportados por la compañía operadora. Planta número: 26. Biosólidos a la entrada= 434771 t/año. Ubicación= Holanda.

Ē			Consu	mo diari	0
lecnologia	Componente	Tipo	AACE	Base	Unidades
Incinerador LFB	Piedra caliza	o	18.87	18.87	t
Incinerador LFB	Arena de lecho	ð	4.96	4.96	t
Depurador de HCl	Soda cáustica (NaOH)	ð	8.18	8.18	t
Depurador de SO2 con NaOH	Ácido clorhídrico (HCl)	ð	2.21	2.21	t
Inyección de carbón activado	Carbón activado	Q	2.43	2.43	t
Secador de discos	Agua residual	R	538.86	1.64	m^3
Precipitador electrostático	Cenizas	R	68.6	I	t
Filtros de mangas	Adsorbente residual	R	0.55	0.55	t
Filtros de mangas	Cenizas	R	0.69	I	t
Secador de discos	Energía eléctrica	S	46.88	I	MW-h
Incinerador LFB	Gas	S	12.8	12.8	MW-h
Incinerador LFB	Energía eléctrica	S	8.78	I	MW-h
HRSG	Cenizas	\mathbf{S}	29.7	I	t
HRSG	Energía eléctrica	\mathbf{v}	12.92	I	MW-h
Ciclo de vapor de agua	Energía eléctrica	S	2.75	I	MW-h
Precalentador de aire	Energía eléctrica	S	95.02	I	MW-h
Precipitador electrostático	Energía eléctrica	S	0.82	I	MW-h

6	Análisis	tecnoeconómico
---	----------	----------------

MW-h	m^3	MW-h	MW-h	MW-h	MW-h	MW-h	t	ı	t	
I	228.26	-	-	-	191.04	194.01	4.81	-	36.65	I
41.26	228.25	1.59	0.58	1.11	128.79	211.71	98.98	I	36.65	I
\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	SP	\mathbf{S}	R	\mathbf{S}	Q	R
Energía eléctrica	Agua de proceso	Energía eléctrica	Energía eléctrica	Energía eléctrica	Energía eléctrica producida	Energía eléctrica	Cenizas	Gas, agua y energía eléctrica	Consumibles	Residuos
Intercambiador de calor (dep.)	Depurador de SO2 con NaOH	Depurador de SO2 con NaOH	Inyección de carbón activado	Filtros de mangas	Ciclo de vapor de agua	Planta de incineración	Planta de incineración	Planta de incineración	Planta de incineración	Planta de incineración

En la tabla **6-11** se evidencia que los consumos reales de consumibles, gas natural y agua de proceso son equivalentes a los estimados, teniendo en cuenta que los factores de consumo se ajustaron con respecto a la planta base, por lo que las diferencias presentadas corresponden a los costos unitarios que para el caso de presente estudio se registran en la tabla **C-3** y los correspondientes a la planta base no son reportados por la compañía operadora.

En el caso de la energía eléctrica, se encuentra el mismo comportamiento y a su vez la mayor diferencia cuanto al costo en USD/MW-h considerando que a pesar de que sus consumos son similares (i.e. 211.71 y 194.01 MW-h/d, para los consumos calculados y los reportados por la compañía operadora, respectivamente.) la diferencia en costos es importante.

Con respecto a los costos de mantenimiento e impuestos, estos se ajustaron de conformidad con lo siguiente (para garantizar su correspondencia con los costos de la planta base):

- $\bullet~1.8\,\%$ del costo total de planta.
- 0.1 % del costo total de planta.

En cuanto a los costos de mano de obra y otros costos de operación, si bien se encuentra una diferencia, sus valores están cercanos a los costos reportados por la planta operadora. En caso de garantizar una mayor precisión, se deben evaluar otras metodologías más detalladas y que hacen parte de análisis tecnoeconómicos de menor clase al que se plantea en el presente estudio (clase 4).

6.5.3. Análisis financiero

Partiendo del costo de requerimiento de capital y los costos de operación calculados según la metodología AACE 16R-90, se realiza el análisis financiero de la planta base, considerando un tiempo de retorno común para plantas de incineración de lodos de 16 años [204] (figura **6-5**).

Como se observa en la figura **6-5**, en el periodo inicial se identifica la inversión del requerimiento de capital (barra de color naranja) y luego el VPN del flujo neto para cada uno de los periodos hasta que se cumpla el tiempo de vida útil de la planta (barras de color azul). Finalmente se representa el VPN total del proyecto (barra de color café), que es positivo, lo que representa la ganancia total del proyecto. La relación entre este VPN total y el requerimiento de capital total es el COR (coeficiente de rentabilidad), y en este caso es igual a 0.14.

En resumen, en este capítulo se documenta la guía para el desarrollo del análisis tecnoeconómico que se implementa en el presente estudio, y cuyos procedimientos están establecidos en la metodología 16R-90 de la AACE que esta orientada al desarrollo de análisis tecnoeconómicos de clase 4, con un rango de precisión entre el -15 % y 30 %. Adicionalmente, se realiza una validación de la metodología con una planta base localizada en Moerdijk,

Figura 6-5.: Análisis VPN de la planta base. Costo de tratamiento de lodos igual a 232.6 USD/t. TIR= 17%. Coeficiente de rentabilidad= 0.12

Holanda y que fue seleccionada considerando que: representa el estado del arte tecnológico del presente estudio, ya que integra tecnologías de recuperación energética de lodos deshidratados mediante su incineración en lechos fluidizados, y además fue diseñada para altas capacidades de tratamiento.

A partir del análisis tecnoeconómico realizado a la planta base y costos reales reportados por la respectiva compañía operadora, se encuentra que la metodología implementada está dentro de los rangos de precisión de costos totales de planta. En cuanto a los costos de operación se ajustaron factores de consumo de materiales secundarios y factores de cálculo de costos de mantenimiento y de impuestos, según los costos reales de la planta base. Todo esto con el propósito de establecer una guía metodológica para la realización de análisis tecnoeconómicos a sistemas para la recuperación energética de biosólidos, mediante su incineración en lechos fluidizados, y de este modo contar con una herramienta para realizar el análisis comparativo, en términos de variables económicas, de los sistemas incluidos en la superestructura para el caso de Bogotá D.C. considerando la composición y el contenido energético de los biosólidos que se generan en la ciudad (capítulo 7).

7. Análisis comparativo

Inicialmente se describen normas que regulan las emisiones de contaminantes al aire y su metodología de cálculo. Seguido, se realiza un análisis comparativo de la temperatura de llama adiabática en función de la humedad de los biosólidos como se incineran y el exceso de aire.

A continuación, se detallan los costos anualizados sistemas preseleccionados, y se realizan análisis de sensibilidad y rentabilidad. Finalmente, se muestra el detalle del análisis financiero para un sistema recomendado.

La implementación de los balances de masa y energía, así como el análisis tecnoeconómico a los sistemas incluidos en la superestructura (capítulos 5 y 6, respectivamente), se representa en la figura 7-1. En esta figura se toma como punto de partida las variables de entrada al modelo paramétrico que incluyen: el sistema de monoincineración conformado por tecnologías de procesamiento, lugar de operación, cantidad de biosólidos a incinerar, humedad de los biosólidos, análisis próximo, análisis último y composición de metales pesados.

Estas variables de entrada se configuran para el modelo formulado en una hoja de cálculo en Excel con macros donde se desarrollan balances de masa, balances de energía y análisis tecnoeconómico para cada sistema incluido en la superestructura. Todo esto, considerando parámetros fisicoquímicos, coeficientes de operación, parámetros de costos y condiciones de operación de los sistemas de monoincineración. Esta hoja de cálculo permite calcular las siguientes variables de salida: CAPEX, OPEX, coeficiente de rentabilidad, tasa interna de retorno y la relación entre la energía recuperada y la energía suministrada al incinerador debido al flujo másico de biosólidos y aire de combustión.

Adicionalmente, y con el propósito de realizar los análisis comparativos y de sensibilidad, se generó un código de programación en Python para evaluar las variables de salida en el modelo según un sistema de monoincineración y un rango de cantidad de biosólidos a tratar. En la figura 7-2 se muestra el diagrama de flujo del código de programación que inicia al importar las bibliotecas pandas, numpy y xlwings. Seguido, se abre la hoja de cálculo y para cada sistema de incineración formulado en la hoja de Excel se varía la cantidad de biosólidos a tratar en un rango preestablecido. Al realizar estas variaciones se van registrando las variables de salida según sistema y cantidad de lodos a incinerar.

Figura 7-1.: Metodología para el desarrollo del análisis de sensibilidad mediante la implementación de balances de masa y análisis tecnoeconómico a los sistemas incluidos en la superestructura

Figura 7-2.: Diagrama de flujo correspondiente al código de programación en Python para el desarrollo de los análisis comparativos y de sensibilidad a partir de la hoja de cálculo en Excel con macros y formulada con el modelo paramétrico propuesto.

Finalmente, y cuando se consideraron los sistemas formulados en el rango de capacidad de tratamiento predefinido, con los datos guardados durante las variaciones se desarrollan los respectivos análisis comparativos y de sensibilidad.

7.1. Regulación ambiental

Para considerar la regulación ambiental dentro del presente estudio, se tienen en cuenta las emisiones, en los productos de combustión, de los siguientes contaminantes: cenizas, SO_2 , HCl, HF, NO_x , CO, C_xH_v y Hg.

7.1.1. Concentraciones estándar de contaminantes

Dependiendo de donde funcione una planta para la incineración de biosólidos, esta debe cumplir con la regulación ambiental vigente. Para el caso de plantas incluidas en la base de datos se identificó que estas se encuentran reguladas de acuerdo a alguna de las siguientes reglamentaciones:

- En los Estados Unidos de América, el código federal de regulaciones 40, parte 60, subpartes LLLL y MMMM, para incineradores de lodos nuevos y ya existentes, respectivamente [9, 10].
- En la comunidad europea, la directiva 2010/75/UE del parlamento y el consejo europeo del 24 de noviembre de 2010 [55].

Es importante mencionar que ambas regulaciones fueron desarrolladas a partir del estado del arte tecnológico de las plantas ya existentes, tomando como referencias las de mejor rendimiento en términos de emisiones de contaminantes y de acuerdo a ello se establecieron las concentraciones de contaminantes máximas que pueden emitir las plantas [9, 10, 55].

De acuerdo con lo anterior, se evidencia que estas regulaciones deben actualizarse constantemente dependiendo de la integración de nuevas tecnologías que busquen aumentar las eficiencias de remoción de contaminantes, reducir costos, aumentar su eficiencia energética, etc.

En el caso de la regulación estadounidense, el último documento que se identificó, en cuanto a la publicación de un inventario de emisiones para plantas de incineración de lodos tiene fecha del 3 de febrero de 2016 [118]. En este documento se reporta la fuente e inventario de emisiones, así como plantas que se han cerrado desde el 2011 y aquellas que se planean cerrar antes de marzo del 2016.

Con respecto a la regulación europea, el último documento que contiene el inventario de emisiones que representan el estado del arte tecnológico de plantas para la incineración de biosólidos tiene fecha del 12 de noviembre del 2019 [287]. En este documento se reporta que los algunos límites pueden ser menores en comparación con la directiva del 2010, conside-rando el respectivo estado del arte tecnológico (tabla **7-1**).

	.,			
	Estados Unidos	Unión Europea	Colombia	Unión Europea
Contaminante	$\operatorname{con}7\%\operatorname{de}\operatorname{O}_2$	$\operatorname{con}11\%\operatorname{de}O_2$	$\operatorname{con}11\%\operatorname{de}\operatorname{O}_2$	$\operatorname{con}11\%\operatorname{de}O_2$
	40 CFR 2011	Directive 2010	Res. 909 de 2008	BAT 2019
Cenizas	9.6	10	10	5
SO_2	5.3 ppmvd	50	50	30
HCl	0.24 ppmvd	10	10	6
HF	-	1	1	1
NO _x	30 ppmvd	200	200	120
СО	27 ppmvd	50	50	50
C_xH_y	_	10	10	10
Hg	0.001	0.05	0.03	0.02

Tabla 7-1.: Límites de concentraciones de emisiones por contaminante y regulación [9, 10, 55, 287, 65]; unidades de medida no especificadas, en mg/Nm³.

En la Tabla 7-1, no solo se incluyen las regulaciones estadounidense y europea, sino que también se considera la Resolución 909 de 2008, del Ministerio de Ambiente Vivienda y Desarrollo Territorial. Esta resolución regula los límites de emisión de contaminantes que se generarían por la incineración de biosólidos [65]; ésta resolución tiene los mismos valores, en cuanto límites de emisiones, que la directiva europea del 2010, con excepción del Hg que resulta ser menor.

En el marco de la Resolución 909 de 2008, los límites de emisiones al aire se estiman en masa del contaminante por volumen de los gases de combustión con las siguientes condiciones: gas seco a 273.15 K y 101.3 kPa, por ello se expresa como mg/Nm³ [65]. Adicionalmente, dichas emisiones se calculan a un nivel de referencia del O_2 según la ecuación 7-1 [287]:

$$E_{\rm R} = E_{\rm M} \frac{21 - O_{\rm R}}{21 - O_{\rm M}}.$$
(7-1)

Donde:

- E_R es la concentración de la emisión con el nivel de oxígeno O_R .
- $\bullet~{\rm O_R}$ es el nivel de oxígeno de referencia, en % de volumen.
- E_M es la concentración de la emisión medida.
- $\bullet~O_{\rm M}$ es el nivel de oxígeno medido, en % de volumen.

Teniendo en cuenta que el presente estudio busca un diseño conceptual de una planta de incineración que funcione en Bogotá, los análisis de concentraciones se realizaron según la resolución 909 del 2008, que consideran niveles de O_2 del 11 %.

7.1.2. Indices de emisión de contaminantes

Para consolidar el inventario de emisiones por planta, el cálculo de las concentraciones de NO_x , CO y C_xH_y se realiza utilizando factores de emisión estimados según el comportamiento real de la planta base, planta número 26 en la tabla A-1. Para estimar el valor numérico de estos factores, en kg del contaminante por t de biosólido en base seca, se realizaron los respectivos balances de masa y energía. A continuación, se encontraron los factores para que al incinerar lodos tratados en la planta, 411163 t/año con sequedad del 23%, se obtuvieran las respectivas emisiones reportadas para el año 2017 (ver tabla 7-2).

Tabla 7-2.: Emisie	ones de contami	nantes reales	de la p	lanta base	para el año	2017 y los
índice	s de emisión de c	ontaminantes	estimad	dos en el pre	esente estud	io. Notas: * ,
índice	estimado según	consumo real	de HCl.			

	Emisiones reales	Índias estimado
Contaminante	de la planta base	(lrg/t_ST)
	(kg/año) [252]	(Kg/USI)
$ m NH_3$	6000	2.12
NO _x	45000	0.45
СО	3895	0.04
C_xH_y	1832	0.02
HCl	439	0.15
HF^*	71	0.03

Es importante mencionar que para el resto de contaminantes incluidos en la tabla 7-1, la estimación de sus concentraciones se realiza teniendo en cuenta las eficiencias de remoción de contaminantes de las tecnologías incluidas en cada planta, y los análisis elemental, próximo y de cenizas, de los biosólidos.

Para reducir la concentración de C_xH_y y CO, los sistemas 18 y 21, son los únicos que incluyen cámaras de combustión secundaria. Sin embargo, estos no requieren la integración de este tipo de tecnologías, teniendo en cuenta que la concentración dichos contaminantes a la salida del incinerador es lo suficientemente baja para cumplir las regulaciones ambientales, y su reducción demanda la inyección de una gran cantidad de aire y combustible adicional, lo cual se ve reflejado al comparar el contenido energético del gas natural requerido y el de los gases de combustión para un escenario específico (tabla **7-3**).

Tabla 7-3.: Contenido energético del gas natural requerido en el proceso de poscombustión y de los gases de combustión al realizar el balance de masa y energía de los sistemas 18 y 21, en un escenario donde se incineran 561735 t/año de biosólidos generados en Bogotá con un contenido de humedad del 74.3%.

Línea	Gas natural (MW)	Gases de combustión (MW)
18	433.75	102.8
21	500.51	40.6

7.2. Temperatura de llama adiabática

Las plantas consideradas para establecer las líneas de proceso reportan temperaturas de los gases de combustión a la salida del incinerador entre 850 y 950 °C. Esto teniendo en cuenta que por debajo de los 850 °C, hay una mayor tendencia a la generación de NO_x [130], y por encima de los 950 °C puede ocurrir la sinterización de las cenizas, lo que afecta negativamente la fluidización del material de lecho y la calidad de transferencia de calor y masa dentro del reactor [248, 279].

Otra variable de interés en la combustión de lodos, es el exceso de aire cuyos valores comunes están entre el 20 y 50 % [86]. En una investigación realizada por D. Vamvuka *et al.* [289] se encontró que el exceso de aire óptimo para la combustión de lodos de aguas residuales en lechos fluidizados es del 50 %, razón por la cual este valor se tomará como referencia para realizar los análisis TEA en el presente estudio.

De acuerdo con lo anterior, un dato importante para el caso de la incineración de los biosólidos según su lugar de generación, es conocer el valor de humedad máximo para que los productos de combustión alcancen los 900 °C con un exceso de aire del 50%. Con este propósito se determinó la temperatura de llama adiabática en función de las variables discutidas previamente (ver figura **7-5**).

Figura 7-5.: Temperatura de llama adiabática en función del porcentaje de exceso de aire, %EA, y las propiedades fisicoquímicas de los biosólidos según su lugar de generación; sin precalentamiento de aire a una temperatura del aire de combustión equivalente a 20 °C.

En la figura **7-5**, se puede observar que hay una variación dependiendo del lugar de generación, siendo los lodos de Moerdijk los que alcanzan mayores temperaturas de llama adiabática debido a que éstos tienen mayor contenido de sustancia libre de agua y cenizas, y a su vez mayor contenido de carbono, en comparación con los lodos de Bogotá (ver figura **3-4**). En el caso de Bogotá, se evidencia que la humedad de sus biosólidos debe ser equivalente a 44.6 %, aproximadamente, para que los productos de combustión alcancen los 900 °C con un exceso de aire del 50 %, mientras que para Moerdijk podrían estar al 60 %, tal y como ocurre en la planta real [252].

Otra variable de interés durante la combustión es la temperatura del aire de combustión, ya que hay plantas que integran precalentadores de aire. En términos generales, la integración de estas tecnologías aumenta la eficiencia del proceso de combustión debido a que menor cantidad de energía liberada durante la combustión se utilizaría para elevar la temperatura del aire de combustión que normalmente estaría a la temperatura ambiente. Sin embargo, la magnitud de esta temperatura también influye en la temperatura de llama adiabática (ver figura **7-6**).

Figura 7-6.: Temperatura de llama adiabática en función de la temperatura del aire de combustión, para los biosólidos de Bogotá con un %EA equivalente al 50 %.

Como se observa en la figura **7-6**, la temperatura de llama adiabática aumenta si la temperatura del aire, como agente oxidante durante combustión, aumenta. Sin embargo, y como criterio de diseño conceptual se considera que la temperatura del aire a la salida del precalentador no puede ser mayor a la temperatura de los gases de combustión a la entrada de esta tecnología (ver figura **5-4**); el valor máximo de humedad para cumplir con esta condición de diseño es del 67 %.

De conformidad con las figuras **7-5** y **7-6**, independientemente de la integración de precalentadores de aire, el diseño conceptual de un sistema para la recuperación energética mediante la incineración de biosólidos en Bogotá debe incluir secadores para reducir su humedad desde 74.3% máximo hasta 67.00% o 44.6%, para el caso en el que el sistema integre precalentadores de aire o no, respectivamente.

Teniendo en cuenta que la humedad debe disminuir, se realizaron los balances de masa y energía a los sistemas de la superestructura que integran secadores considerando que la energía térmica disponible para recuperación se utiliza como fuente de energía en el proceso de secado (ver tabla 7-4).

En la tabla **7-4** se evidencia que, así se aproveche la mayor cantidad de energía térmica disponible en algunos sistemas, la humedad de los biosólidos a la entrada del incinerador no es suficiente para que los productos de combustión alcancen una temperatura de 900 °C. Al revisar las tecnologías que conforman dichos sistemas (ver tabla **A-2**), se evidencia que estos integran ciclos de vapor que resultan en la generación de energía eléctrica. Por otra parte, los gases de combustión a la salida del incinerador en sistemas que no integran ciclos de vapor si alcanzan los 900 °C, esto como resultado de recuperar la energía de gases de combustión en forma de energía térmica tanto en el secador como en el precalentador de aire, según la conformación de cada sistema. En la figura **7-7** se pueden visualizar los sistemas incluidos en la superestructura y que cumplen con las condiciones de operación previamente discutidas.

Codificación según base de datos

En consecuencia, para la recuperación energética de los biosólidos de Bogotá mediante su incineración en reactores de lecho fluidizado burbujeante, se realiza el análisis tecnoeconómico y de emisiones de contaminantes a la atmósfera a sistemas de la superestructura tecnológica Tabla 7-4.: Humedad de los biosólidos de Bogotá y temperatura de los gases de combustión en el incinerador para los sistemas en la superestructura que integran secadores. Valores calculados mediante la aplicación de los respectivos balances de masa y energía considerando las tecnologías que conforman cada sistema y que se pueden visualizar en la tabla A-2.

	Humedad de	Temperatura a
Sistema	biosólidos a la	la salida del
Sistema	entrada del	incinerador
	incinerador	(°C)
61	0.59	701
105	0.55	900
16	0.44	900
23	0.61	663
25	0.64	588
37	0.61	663
55	0.66	561
26	0.65	729
33	0.65	738
43	0.60	900
48	0.62	856
104	0.60	900
108	0.60	900

que integren secadores de discos y recuperen la energía de los gases de combustión en forma de energía térmica.

7.3. Costos de capital y de operación

Inicialmente se realiza un análisis comparativo de los costos de capital y los costos de operación para los sistemas de incineración que se pueden implementar en la ciudad de Bogotá (i.e. sistemas 105, 16, 43, 104 y 108). Con este propósito, se consideran dos tipos de costos: el CCA (i.e. costo de capital amortizado) y los costos totales de operación; el CCA se calcula, a partir del requerimiento de capital total (TCR por sus siglas en inglés), como se indica en la ecuación 7-2:

$$CCA = \frac{r(1+r)^n}{(1+r)^n - 1} TCR.$$
(7-2)

Donde, r es la tasa de interés y n es el tiempo de vida de la planta. Para el presente estudio se asumen los siguientes valores: 10 % (valor común en análisis financieros aplicados a sistemas para la recuperación energética de biomasa incluyendo aquellos que integran procesos de incineración de lodos urbanos [146, 25]) y 24 años (se encuentra evidencia que la planta base del presente estudio garantiza un tiempo de vida útil de 24 años lo cual se encuentra en rango típicos de plantas WtE entre 20 y 30 años [50]).

En seguida, el costo de capital amortizado y los cotos totales de operación se dividen por la cantidad de lodos tratados, en base húmeda y seca. Estos costos por t de lodo tratado, se calculan para el escenario donde las PTAR El Salitre y Canoas, se encuentran en funcionamiento, esto es, incineración de 561735 t/año de biosólidos (ver figura **7-8**).

En la figura **7-8** se observa que los sistemas 33 y 28 tienen los costos de capital y de operación más bajo, mientras que, a los sistemas 101 y 102 les corresponden los costos más altos. Para evaluar las causas de estos comportamientos se realiza un análisis comparativo de distribución de costos por grupo tecnológico (ver figura **7-9**).

Al revisar la figura 7-9, se identifican los siguientes comportamientos:

- Hay una variación de los costos de los secadores, lo que depende de la cantidad de agua retirada durante el proceso.
- Los sistemas que incluyen más de una tecnología de recuperación energética reportan los costos más elevados. Por ejemplo, el sistema número 16 es el de menor costo y sólo integra un generador de vapor como tecnología de recuperación energética.
- La limpieza de gases es el grupo de mayor influencia.

En base seca y con costos del terreno

Figura 7-8.: Costos de capital total anualizados, con y sin costos del terreno, y costos variables de operación, por t de biosólidos tratados en Bogotá, en base húmeda y base seca; sistemas: 105, 16, 43, 104 y 108, según tabla A-2.

Con respecto a las plantas que tienen un costo de limpieza de gases muy alto, la remoción de Hg ocurre inicialmente en tecnologías de limpieza seca, lo que aumenta significativamente el consumo de adsorbentes dentro del modelo. En consecuencia, y teniendo en cuenta los costos elevados del carbón activado (tabla **B-1**), el costo de la limpieza de gases se incrementa considerablemente.

Con respecto a la remoción de Hg, se resalta que, cuando ocurre la incineración de lodos, las emisiones de Hg se dan principalmente en las siguientes formas: particulado (Hg_p) , oxidado (Hg^{2+}) y elemental (Hg^o) . En términos generales, el Hg es un elemento muy volátil, por

Figura 7-9.: Costos de planta anualizados por grupo tecnológico de sistemas incluidos en la superestructura; escenario: incineración de 561735 t/año de biosólidos en Bogotá.

ello su transformación en Hg²⁺ y Hg^o, es mayor que en Hg_p que corresponde al 0.22 %, en promedio, del Hg en su forma original [212]. De acuerdo con lo anterior, se asume que el Hg está distribuido totalmente en los gases de combustión como Hg²⁺ y Hg^o.

7.4. Análisis de sensibilidad

Además de considerar la distribución de costos por grupo tecnológico, es importante tener en cuenta la variación de los costos, de capital y de operación, en función de la cantidad de biosólidos a incinerar a la entrada de cada planta (ver figura **7-10**).

Como se puede observar en la figura **7-10a**, el comportamiento de los costos de compra de los equipos en función de la capacidad de tratamiento tiende a ser una línea recta en escalas logarítmicas, con discontinuidades que ocurren debido a la formulación del análisis tecnoeconómico, específicamente cuando las cantidades de algunas tecnologías aumentan por las siguientes dos razones:

- Las condiciones de operación consideradas por cada tecnología superan su capacidad de tratamiento.
- Las condiciones de operación consideradas para el incinerador superan su capacidad de tratamiento. En este punto, se guarda una relación entre el incinerador con el resto de las tecnologías. Por ejemplo cuando la estrategia incluye un generador de vapor, siempre habrá uno por cada incinerador. En este caso de estudio, las discontinuidades más notorias ocurren cuando hay un incremento de tecnologías de recuperación energética.

Figura 7-10.: Análisis de sensibilidad con respecto a biosólidos en base húmeda a la entrada. Gráficas en escalas logarítmicas para los sistemas: 105, 16, 43, 104 y 108, según tabla A-2.

Al analizar la variación lineal en la escala logarítmica, y según la economía de escala (ver ecuación 6-2), por ejemplo, para el sistema número 43 el exponente de escalamiento equivale a 0.52; intervalo de análisis: 12.7 a 63.5 t/h, que es hasta donde se presenta la discontinuidad. Para este mismo sistema se encuentra el mismo comportamiento en cuanto al requerimiento de inversión total cuyo exponente es de 0.59 (ver figura **7-10b**), lo que demuestra que cada vez que se incluyen más factores de costos (e.g. costos indirectos, impuestos, entre otros.) la magnitud del exponente incrementa.

En cuanto a los costos de operación (ver figura 7-10c), no es observan discontinuidades teniendo en cuenta que estos no son altamente dependientes de la cantidad de tecnologías integradas en un sistema. Estos costos dependen principalmente de los costos variables de

operación que se obtienen mediante el desarrollo de balances de masa y energía. En este caso, y continuando con el análisis del caso del sistema número 43 su exponente de escalamiento es de 0.91.

Finalmente, y al considerar la suma de los costos de capital y los costos de operación se mantiene la tendencia de una variación lineal en la escala logarítmica con discontinuidades (ver figura 7-10d). Para el sistema 43 se encuentra un exponente de 0.86, el cual muestra un incremento en comparación con los costos de compra de los equipos debido a la influencia de los costos de operación.

7.5. Rentabilidad, emisiones de contaminantes y recuperación energética

Luego de realizar un análisis de costos, se realiza el análisis comparativo de los sistemas que se podrían implementar en la ciudad de Bogotá. Inicialmente se realiza la comparación en términos de variables financieras y energéticas, tal y como se definen a continuación:

- Variable financiera: coeficiente de rentabilidad que representa la relación entre el dinero obtenido durante el funcionamiento de la planta y el requerimiento de capital total.
- Variable energética: recuperación energética dada por el porcentaje de energía que se recupera en el sistema con la relación a l energía de entrada.

Una vez realizado: balance de masa, balance de energía y análisis tecnoeconómico a los sistemas 105, 16, 43, 104 y 108, se genera la figura **7-11** donde se comparan el coeficiente de rentabilidad y la recuperación energética.

En la figura **7-11** se evidencia que, acorde a lo evidencia en el análisis de costos por grupo tecnológico (ver figura **7-9**), los sistemas de mayor rentabilidad son el 16 y el 105. Adicionalmente, se encuentra que los sistemas más rentables no necesariamente son los de mayor porcentaje de recuperación energética (sistemas 104 y 108, que en vez de usar generadores de vapor integran intercambiadores de calor con aceite térmico como fluido de trabajo).

Además de estas variables de tipo financiero y energético, se debe evaluar si los sistemas estudiados cumplen con los límites máximos de emisiones de contaminantes a la atmósfera en Colombia (ver tabla 7-1). En la figura 7-5 se observan las concentraciones de estos contaminantes.

En la figura **7-5** se evidencia que ningún sistema cumple con los límites de emisiones de contaminantes. El contaminante más crítico para los sistemas estudiados es el mercurio teniendo en cuenta que solo el sistema número 16 reporta una concentración de este contaminante menor al límite máximo establecido por la resolución 909 de 2008 (ver figura

7 Análisis comparativo

Figura 7-11.: Comparativo entre el coeficiente de rentabilidad y la recuperación energética de los sistemas propuestos para la monoincineración de biosólidos de Bogotá en reactores de lecho fluidizado burbujeante; sistemas: 105, 16, 43, 104 y 108, según tabla A-2. Capacidad y costo de tratamiento de los biosólidos considerada: 561735 t/año y 164 USD/t.

7-5h). El sistema número 16 no cumple con la concentración máxima de cenizas permitida lo que se debe a la integración de solo una tecnología de remoción de cenizas; el precipitador electrostático cuya eficiencia de remoción es menor a la un filtro de mangas (ver figura **5-19**).

En el caso del sistema número 105, este no cumple con las emisiones de 3 contaminantes: mercurio, ácido clorhídrico y ácido fluorhídrico, debido a que en las tecnologías de limpieza de gases únicamente integra un depurador húmedo de una etapa.

En términos de rentabilidad y recuperación energética los sistemas 16 y 105 tienen indicadores sobresalientes en comparación con los demás sistemas estudiados. Sin embargo, ninguno de los dos cumple con los límites de emisiones. En el caso del sistema 105 se tendrían que integrar varias tecnologías de limpieza de gases, mientras que la planta 16 solo requiere de la inclusión de un filtro de mangas al final del tren de limpieza para alcanzar la concentración de cenizas deseada; al integrarlo el coeficiente de rentabilidad pasa de 2.47 a 2.44, y las emisiones de cenizas bajan de 572.34 a 0.02 mg/m^3 .

Como resultado, se recomienda que para la ciudad de Bogotá se implemente un sistema de recuperación energética mediante la monoincineración de biosólidos en reactores de lecho fluidizado, que este conformado por las tecnologías del sistema número 16 (ver tabla A-2). En este sistema, se evidencia que toda la energía liberada durante el proceso de incineración se recupera en un generador de vapor sobrecalentado que actúa como fuente de energía durante el proceso de secado. Adicionalmente, al complementar la línea de limpieza de gases

con un filtro de mangas, se encuentra que este sistema cumple con los límites de emisión de contaminantes máximos, incluyendo la concentración de cenizas en la chimenea. Asimismo, es el más rentable sin considerar el sistema número 105 cuyas tecnologías de limpieza de gases deben replantearse para cumplir con la regulación local (ver figura **7-12**).

Figura 7-12.: Análisis comparativo en términos de rentabilidad y concentración de cenizas de los sistemas 105, 16+FM, 43, 104 y 108, según tabla A-2; el sistema 16+FM hace referencia al sistema recomendado para la ciudad de Bogotá e incorpora las tecnologías de tratamiento que conforman el sistema número 16 más un filtro de mangas. (a) Comparativo entre el coeficiente de rentabilidad y la recuperación energética. Capacidad y costo de tratamiento de los biosólidos considerada: 561735 t/año y 164 USD/t. (b) Concentración de cenizas en la chimenea.

7.6. Análisis financiero a planta recomendada

Considerando un tiempo de retorno común para plantas de incineración de lodos, de 16 años, los costos de inversión total de la planta, los costos totales de operación, se realiza el análisis financiero del sistema número 16 complementado con un filtro de mangas (ver figura **7-13**).

Según el análisis financiero, el costo de tratamiento de lodos para el sistema número 16, modificado al integrar un filtro de mangas, es igual a 73 USD/t. Este valor se encuentra por debajo del rango del costo de tratamiento en Alemania (130-194 USD/t) [66]; los detalles de los costos de este sistema se incluyen en el anexo D.

Figura 7-13.: Análisis VPN del sistema número 16 modificado. Costo de tratamiento de lodos igual a 73 USD/t. TIR= 17%. Coeficiente de rentabilidad= 0.13

Tabla 7-5.: Emisión de contaminantes de los sistemas: 105, 16, 43, 104 y 108, según tabla A-2.

8. Conclusiones y recomendaciones

8.1. Conclusiones

La producción de biosólidos que se proyecta al implementar el plan de saneamiento del río Bogotá, aumentaría 13.27 veces más en comparación con la situación actual, lo que posiciona a la monoincineración de biosólidos como una alternativa de disposición potencial para la ciudad.

A partir de la revisión del estado del arte tecnológico se construye una base de datos conformada por 110 plantas para la monoincineración de lodos urbanos. A partir de esta base de datos, y considerando aquellas que integran incineradores de lecho fluidizado y que hayan iniciado operaciones desde el año 1993, se generó una superestructura para la recuperación energética mediante la monoincineración de biosólidos en reactores de lecho fluidizado. Esta superestructura está conformada por 29 sistemas, y 29 tecnologías diferentes, las cuales se clasifican en los siguientes grupos: pretratamiento, incineración, recuperación energética y limpieza de gases.

Dentro de las tecnologías de pretratamiento se incluyeron aquellas que se ubican entre el deshidratado de biosólidos y su incineración. Como resultado se identificaron las siguientes tecnologías de secado: secadores de discos, de película delgada y de horno rotatorio. Con respecto a las tecnologías de incineración, los reactores LFB se han utilizado en plantas con altas capacidades de tratamiento, mientras que los incineradores LFP y LFC, se han implementado en plantas de baja capacidad, específicamente en Japón. La temperatura de los gases de combustión se aprovecha en tecnologías de recuperación energética, principalmente en ciclos de vapor y precalentadores de aire, entre otras. Seguido de la recuperación energética los gases de combustión circulan a través de tecnologías para reducir la concentración de contaminantes específicos.

Con respecto al análisis tecnoeconómico, la metodología 16R-90 de la AACE resulta adecuada para realizar estimaciones de clase 4 a líneas de procesamiento para la monoincineración de biosólidos en lechos fluidizados, esto teniendo en cuenta que el costo total de planta de un sistema de referencia real resultó estar entre el rango de variación permisible calculado mediante la metodología mencionada previamente. En cuanto a los costos de operación se realizaron ajustes de algunos factores requeridos para el cálculo de costos mantenimiento e impuestos; los ajustes mencionados se realizaron según los costos reales reportados por la compañía operadora de la planta de referencia.

La humedad de los biosólidos es una propiedad determinante para establecer si el sistema de monoincineración debe integrar un proceso de secado. En el caso de los biosólidos de Bogotá, estos deben pasar por un proceso de secado antes de ser utilizados como combustible en el incinerador para lograr una temperatura de llama adiabática equivalente a 900 °C, valor requerido para garantizar el buen funcionamiento del reactor de lecho fluidizado y mantener los niveles de emisión de NO_x por debajo de los límites máximos permitidos. Por otra parte, el proceso de secado en sistemas de incineración de biosólidos utilizan el calor liberado durante la incineración como fuente de energía. En el caso de los biosólidos de Bogotá su humedad es tan alta, 74.3%, que el calor liberado durante la incineración debe ser recuperado como fuente de energía en el secado y no en la generación energía eléctrica, por ello los sistemas que integran ciclos de vapor no son adecuados para su aplicación en la ciudad de Bogotá.

La ubicación de las tecnologías en la línea de tratamiento, también es un factor importante en la limpieza de gases. Por ejemplo, los costos de este grupo tecnológico, son muy altos cuando la remoción de Hg ocurre principalmente en tecnologías de limpieza seca, ya que se incrementa significativamente el consumo de adsorbentes dentro del modelo.

A partir de los análisis tecnoeconómicos se identifica que la implementación de sistema es altamente dependiente de las características de los biosólidos. Por ejemplo, a pesar de desarrollar una superestructura con sistemas que funcionan satisfactoriamente en diferentes lugares del mundo, ninguno de estos cumple con los requerimientos de operación y emisiones de contaminantes. De conformidad con lo anterior, y considerando variables financieras, de recuperación energética y el cumplimiento de límites máximos de emisiones de contaminantes al aire se propone la implementación de un sistema para la monoincineración de los biosólidos de Bogotá que esté conformado por las siguientes tecnologías: secador de discos, incinerador de lecho fluidizado burbujeante, generador de vapor, precipitador electrostático, depurador húmedo de dos etapas y filtro de mangas.

8.2. Recomendaciones

A partir de la revisión bibliográfica, se encuentra que la monoincineración de biosólidos en lecho fluidizado burbujeante es una alternativa de tratamiento madura, que se ha implementado satisfactoriamente en otros lugares del mundo. Los resultados de este trabajo demuestran que los biosólidos de Bogotá se pueden incinerar en una planta de este tipo, siempre y cuando se tenga en cuenta que la integración de un precalentador de aire a la salida del incinerador es imprescindible. Adicionalmente, el tren de limpieza de gases debe incorporar tecnologías para la remoción de contaminantes de modo que se cumpla con los límites de emisiones de la Resolución 909 de 2008, del Ministerio de Ambiente Vivienda y Desarrollo Territorial.

De acuerdo con los análisis comparativos, se encuentra que el sistema número 16, complementado con la integración de filtros de mangas, cumple con los límites de emisiones, es de alta rentabilidad y recuperación energética. Por ello, se recomienda la posible puesta en marcha de sistema para la incineración de biosólidos de Bogotá, con las características de esta planta, cuyo costo de procesamiento, con un periodo de retorno de 16 años, es de 73 USD/t, aproximadamente.

El desarrollo de este estudio propone una herramienta técnica para la realización de análisis tecnoeconómicos de clase 4 a plantas para la monoincineración de biosólidos. Este tipo de análisis son un componente importante en estudios de factibilidad y planes maestros, no solo para el manejo de biosólidos sino también para otro tipo de estudios que involucren la incineración de residuos. Esta herramienta involucra la implementación de procedimientos técnicos para especificar las características de tecnologías de secado, incineración en lecho fluidizado, recuperación energética, y limpieza de gases, lo que implica la aplicación de un marco teórico en áreas de la ingeniería como termodinámica, termoquímica, transferencia de calor, entre otras. Estos procedimientos técnicos se conectaron con la estimación de costos y análisis de rentabilidad, mediante la economía de escala que tiene un gran impacto en los resultados.

Una de las mayores dificultades para el desarrollo de este estudio fue la disponibilidad de esta herramienta de análisis, debido a la integración de varias tecnologías, cada una con sus características, técnicas y económicas, así como sus procedimientos de cálculo particulares. De acuerdo con lo anterior, se recomienda tenerla en cuenta para estudios de factibilidad similares y complementarla con otro tipo de análisis como el ACV (análisis del ciclo de vida), que estudia con mayor detalle el impacto ambiental de un proyecto y, del mismo modo que el análisis tecnoeconómico, requiere la especificación de características ambientales específicas de las tecnologías. A. Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

Tabl	a A-	1.: Caracterís inicio de c	ticas generales de plant Abraviaciones Abraviacion	as identificad ¹ nes: ST (sólic	as para l los total	a monc	incineración d PR (Lacho Hui	le lodos urbanos; incluyendo año de dizado hurbuieante) HPM (Horno
		de pisos n	núltiples), HdP (Horno	de parrilla), l	LFC (Le	the flue	idizado circula	ante), LFP (Lecho fluidizado a alta
		presión), (se reporta:	CAR (Carbonización), G n con un guion medio el	AS (Gasificad in esta tabla (ción). NC -).)TA: La	os datos no enc	contrados en la revisión bibliográfica
	(- - - - - - - -	ر د د د د د	Capacidad	ST) ;; <	Tipo de	Defenseration
-1	.0	STB 1	Oludau	(t/año)	(%)	AIIO	incinerador	Deletericias
		EUA	Union Beach, New Jersey	29120	28	1974	LFB	[66, 117, 300, 166, 233, 139]
	2	Alemania	Düren	35000	40	1975	LFB	[99]
	3	Alemania	Wuppertal	128000	25	1977	LFB	[66, 117, 300]
	4	Alemania	Neu-Ulm	64000	25	1979	LFB	[99]
	5	Alemania	Bonn	29100	23.5	1981	LFB	[66, 166]
	9	Alemania	Frankfurt am Main	188000	28	1981	LFB/HPM	[66, 233]
	2	Alemania	Karlsruhe	80000	25	1982	LFB	[66, 166, 139]
	8	Suiza	Basel	I	I	1982	LFB	[39, 211, 210]
	9	Alemania	Berlin-Ruhleben	335000	25-33	1985	LFB	[66, 117, 295, 296]
	10	Francia	Strasbourg	I	I	1988	LFB	[41, 260]
	11	Alemania	Herne	50000	25 - 90	1990	LFB	[66]
	12	Reino Unido	Blackburn Meadows	I	I	1990	LFB	[116, 182, 280]
	13	Alemania	Bottrop	110000	40	1991	LFB	[66, 166]
	14	Austria	Viena	I	I	1992	LFB	[153, 76, 122, 30]

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

119

	inicio de c de pisos n	pperaciones. Abreviacion núltiples), HdP (Horno	nes: ST (sólic de parrilla),	dos tota LFC (Le	les), LH echo flu	⁷ B (Lecho flui idizado circul ⁵	dizado burbujeante), HPM (Hor ante), LFP (Lecho fluidizado a a	no lta
	presión), (se reportai	JAR (Carbonización), G n con un guion medio e:	AS (Gasificad n esta tabla (ción). N((-).)TA: L	os datos no enc	contrados en la revisión bibliográf	ica
Ŋ	Daís	Cindad	Capacidad	LS	Δñο	Tipo de	Referencias	
	CT102 T	Oludad	(t/año)	(%)		incinerador		
15	Holanda	Dordrecht	375000	23	1993	LFB	[117, 201, 176, 293, 105]	
16	España	Zaragoza	1	I	1993	LFB	[172, 308, 269]	
17	Holanda	Hengelo	35040	I	1994	HdP	[201]	
<u>~</u>	F.ITA	Pittsburgh,	53571	28	1994	LFB	[80 81 197 19]	
		$\operatorname{Pennsylvania}$	1 1000	0	TUUT			
19	Francia	Lyon St Fons	-	-	1995	LFB	[41, 269]	
20	Francia	Toulon	1	I	1996	ı	[41]	
91	F.ITA	Greensboro, North	64448	86	1006	LFR	[81 18 83 313 43]	
1		Carolina		0	000T		[01, 10, 00, 010 , 1 0]	
22	Alemania	Bitterfeld-Wolfen	50700	25 - 90	1997	LFB	[66, 117, 28]	
23	Alemania	Hamburg	197100	40	1997	LFB	[66, 117, 213, 279]	
24	Alemania	Lünen	235000	25 - 95	1997	LFB	[66, 166, 278]	
25	Alemania	München	88000	25	1997	LFB	[66, 166, 255]	
26	Holanda	Moerdijk	400000	25	1997	LFB	[117, 201, 252]	[

Tabla A-1.: Características generales de plantas identificadas para la monoincineración de lodos urbanos; incluyendo año de

А	Anexo:	Características	s generales	de	plantas	utilizadas	para	la	revisión	del	estado	del	arte
											tecr	noló	gico.

[41]

ı.

1997

ı.

ī

Rouen

Francia

27

	Tipo de	~ V	ST	Capacidad	- - 5	Ļ	Ļ
			-).	n esta tabla (n con un guion medio en	se reporta	
contrados en la revisión bibliográfica	os datos no en	DTA: L	sión). N(AS (Gasificad	CAR (Carbonización), G	presión), C	
ante), LFP (Lecho fluidizado a alta	uidizado circul	scho flı	LFC (Le	de parrilla),	núltiples), HdP (Horno	de pisos m	
idizado burbujeante), HPM (Horno	FB (Lecho flui	les), L	los tota	nes: ST (sólid	operaciones. Abreviacion	inicio de c	
le lodos urbanos; incluyendo año de	oincineración o	la mon	as para]	as identificad	ticas generales de plants	-1.: Caracterís	Tabla A

	Referencias		[253, 254, 291]	[116,288,163,269,106,22,68]	[116, 182, 288, 158]	[116,182,288,157,112,181]	[41, 269, 93, 92, 91]	[116, 112, 157, 250]	[66, 107, 247]	[81, 118, 126, 56, 57]	[66, 141, 140]	[117, 66, 120]	[202, 203, 304, 306, 304]	[254, 291, 271]	[253, 254, 291]	[66, 104, 103]
	Tipo de	incinerador	ΓFB	LFB	LFB	LFB	ΓFB	ΓFB	LFB	ΓFB	LFB	ΓFB	LFC	ΓFB	ΓFB	ЧdР
	Αñο		1997	1998	1998	1998	1998	1999	2002	2004	2006	2007	2007	2007	2007	2008
-).	ST	(%)	25-28	I	I	I	30	25	28-32	28	20 - 35	25	20-33	25-29	25-30	25 - 30
n esta tabla (Capacidad	(t/ano)	344339	I	I	I	262500	184000	200000	508392	40000	130000	73000	256188	121207	84000
n con un guion medio e	Cindad		St. Petersburgo	Widnes	Beckton	Crossness	Colombes	$\operatorname{Belfast}$	Elverlingsen/ Werdohl	St. Paul, Minnesota	Gendorf	Stuttgart (Linea 3)	Yokohama	St. Petersburgo	St. Petersburgo	Altenstadt
se reportar	País	CITO T	Rusia	Reino Unido	Reino Unido	Reino Unido	Francia	Reino Unido	Alemania	EUA	Alemania	Alemania	Japón	Rusia	Rusia	Alemania
	NO		28	29	30	31	32	33	34	35	36	37	38	39	40	41

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

121

	de pisos m presión), C se reportar	uúltiples), HdP (Horno ?AR (Carbonización), G a con un guion medio e	de parrilla), JAS (Gasifica) m esta tabla (LFC (Le ción). N((-).	scho flu JTA: Lo	idizado circula os datos no enc	ute), LFP (Lecho fluidizado a alt contrados en la revisión bibliográfic	lta ica
	Daía	Cindod	Capacidad	ST	Δñο	Tipo de	Roforonciae	
.01	CTP T	Aluad	(t/año)	(%)	OIIV	incinerador	I VETEL ETICIAS	
42	EUA	Atlanta, Georgia	49042	28	2008	LFB	[80, 81, 126, 315, 111, 277]	
43	Polonia	Kraków	100000	I	2010	LFB	[196, 150, 270, 151]	1
44	Polonia	Todz	ı	I	2010	LFB	[196, 273, 312, 26]	1
45	EUA	Cincinnati, Ohio	68635	28	2010	LFB	[80, 81, 127, 46, 47]	
46	Japón	Himeji	53000	20-33	2011	LFC	[209, 207, 48]	
47	Alemania	Straubing	9000	28	2012	HdP	[66, 276]	
48	Polonia	Warsaw	207333	30	2012	LFB	[268, 196, 61, 272]	1
49	Japón	Hino City, Tokyo	22000	I	2012	LFP	[261, 314]	1
50	Japón	Asakawa, Tokyo	21900	I	2012	LFP	[261, 314]	1
51	Japón	Koto-ku, Tokyo	110000	20-32	2013	LFB	[240]	
52	Japón	Kobe	73000	-	2013	1	[164, 165]	
53	Japón	Edogawa-ku, Tokwo	110000	22	2014	LFP	[238, 237, 169, 168]	r
54	Japón	Sagami-river, Kanagawa Pref.	36500		2014	LFP	[261]	

Tabla A-1.: Características generales de plantas identificadas para la monoincineración de lodos urbanos; incluyendo año de inicio de operaciones. Abreviaciones: ST (sólidos totales), LFB (Lecho fluidizado burbujeante), HPM (Horno

inicio de c de pisos m	operaciones. Abreviacio núltiples), HdP (Horno	mes: ST (sólic de parrilla), ¹	los tota LFC (Le	les), LH	⁷ B (Lecho flui idizado circul	idizado burbujeante), HPM (Hornc ante), LFP (Lecho fluidizado a alta	10
presión), C se reporta	CAR (Carbonización), C n con un guion medio e	3AS (Gasificad en esta tabla (ción). N(-).	DTA: L	os datos no en	contrados en la revisión bibliográfica	Sa
Daíe	لايام م	Capacidad	$^{\mathrm{TS}}$	Δñο	Tipo de	Roferenciae	
CTPD T	Ciuuau	(t/ano)	(%)		incinerador	INCICICITUUS	
Suiza	Zurich	100000	22-30	2015	LFB	[195, 311, 63]	
 Hong Kong	Lung Kwu Tan	730000	25-35	2015	LFB	[264, 265, 262, 274, 246]	
Japón	Itabashi-ku, Tokyo	92000	20-33	2015	LFP	[261, 314, 242, 236, 167, 243]	
 Janón	Aigawa-river,	36500	1	2015	ГFР		
modera	Osaka Pref.						
Turquía	Bursa	146000	22-26	2019	LFB	[114, 185, 115, 113]	
Japón	Ota-ku, Tokyo	110000	20-33	2019	LFB	[241, 52, 53, 275]	
Alemania	Mainz	37500	22-32	2020	LFB	[117, 108, 109, 131, 173]	
Japón	Itabashi-ku, Tokyo	92000	20-33	2020	LFB	[242, 243, 130, 6]	
Alemania	Bitterfeld-Wolfen	260000	I	2021	LFB	[29]	
Francia	Lyon Pierre Bénite	I	I	2006	LFB	[41, 260, 170, 232]	
Japón	Amagasaki	73000	20-33	NR	LFB	[209, 207, 208]	
Reino Unido	Brighouse	I	I	I	I	[116, 288]	
 Reino Unido	Knostrop	I	I	I	I	[116, 182]	

Tabla A-1.: Características generales de plantas identificadas para la monoincineración de lodos urbanos; incluyendo año de

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

[116, 182]

ı

ı

ī

I.

Coleshill

Reino Unido

69

	ר , עוטובטון se reporta	o con un guion medio e	n esta tabla (-	-).		os datos no en	contrados en la revisión diduogradica
No	País	Cindad	Capacidad	\mathbf{ST}	Αñο	Tipo de	Referencias
	CTID T		(t/ano)	(%)	0111.7	incinerador	
70	Reino Unido	Roundhill	I	ı	I	I	[116, 182]
71	Reino Unido	Esholt	I	-	I	I	[116, 182]
72	Japón	Kiyose	I	-	I	GAS	[220, 266]
73	Japón	Kunitachi-shi,	I	I	I	LFB	[241]
		lokyo					
74	Japón	Yokohama	I	-	I	CAR	[203, 302, 305, 303]
75	Japón	Kanagawa	65700	-	I	LF	[54]
76	Japón	I	7.300	-	I	LFC	[54]
77	F,I I A	Mattabassett,	I	I	I	I.F.R	[80] 81] 83]
-		Connecticut					
78	F,I I A	Naugatuck,	I	I	I	I.F.R	[80] 81] 83]
-		Connecticut					
70	F,I I A	Waterbury,	I	I	I	I.F.R	[80] 81] 83]
-	;	Connecticut				1	

auta A	arracuerta caracterta c	oncas generates ue pratio	as identificada nes: ST (sólic	as para . los tota	la mone les), LF	B (Lecho flui	idizado burbujeante), HPM (Horno	D F
	de pisos n presión). C	uíltiples), HdP (Horno CAR (Carbonización), G	de parrilla), ¹ AS (Gasificae	LFC (Le	scho flu DTA: Lo	idizado circul os datos no en	ante), LFP (Lecho fluidizado a alta contrados en la revisión bibliográfica	ia Ea
	se reporta	n con un guion medio e	n esta tabla ((-)·			0	
N	Daie	Cinded.	Capacidad	\mathbf{ST}	ΔñΩ	Tipo de	Roferenciae	
	CTID T	Oluuau	(t/año)	(%)		incinerador	TRATCI CITICIDS	
80	F.ITA	West Haven,				I.FR	[80_81_83]	
8		Connecticut				1		
<u>~</u>	E.IT∆	New Orleans,				I FR	[80_81_83]	
10		Los Angeles	1	I	I	C TT	[00, 01, 0J]	
82	EUA	Lynn, Massachusetts	I	I	I	LFB	[80, 81, 83]	
83	EUA	Ypsilanti, Michigan	I	I	2006	LFB	[80, 81, 83]	
x	F.ITA	Little Blue Valley,				I.FR	[80_81_83]	
F 0		Missouri	I	I	I	C TT	[00, 01, 09]	
о С	FIIA	Rock Creek,				I FR	[80_81_82]	
n		Missouri	1	I	I	C TT	[00, 01, 09]	
86 86	F11 A	Asheville,				I FR	[80_81_83]	
00	COT COT	North Carolina	I	I	I		[00, 01, 09]	
84	FTT A	Manchester,				I FR	[80_81_83]	
0	V D T	New Hampshire	1	I	1	ח ח ח	[00, 01, 0 <u>0]</u>	

incluvendo año de noincineración de lodos urbanos. Ę nara la erales de nlantas identificadas 000 Tabla A-1.: Característicae

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.
Tabla A-1.	. Características generales de plantas identificadas para la monoincineración de lodos urbanos; incluyendo año de inicio de operaciones. Abreviaciones: ST (sólidos totales), LFB (Lecho fluidizado burbujeante), HPM (Horno
	de pisos múltiples), HdP (Horno de parrilla), LFC (Lecho fluidizado circulante), LFP (Lecho fluidizado a alta
	presión), CAR (Carbonización), GAS (Gasificación). NOTA: Los datos no encontrados en la revisión bibliográfica
	computer con un muior modio en este tello ()

	Dofenencies	TREFERENCES	[80 81 83]		[80_81_83]		[80 81 83]		[80 81 83]		[80, 81, 83]	[80, 81, 83]	[80, 81, 83]	[80, 81, 83]	[80] 81_83]	
	Tipo de	incinerador	LFR		LFR		LFR		LFR		LFB	LFB	LFB	LFB	LFR	
	νõ		-	I			I	I	I	I	-	I	I	I	I	
-).	ST	(%)				I		I		I	ı	I	I	ı	ı	
n esta tabla (·	Capacidad	(t/año)	-	I		I		1		1	1	I	1	1	1	
1 con un guion medio en	C::.dod	Viuuau	Gloucester,	New Jersey	Bergen,	New Jersey	Raritan,	New Jersey	Arlington,	New York	Erie, New York	Oneida, New York	Hamilton, Ohio	Cuyahoga, Ohio	Allegheny,	Pennsylvania
se reportar	$D_{\alpha i \alpha}$	CIPD T	F.I I A		E,IT∆	1101	E:I⊺∆		EITA		EUA	EUA	EUA	EUA	EIIA	
	N.S.	.04	XX	0	80	20	00	2	01	ч С	92	93	94	95	96	0

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

abla A	 A-1.: Caracterís inicio de c de pisos m 	tticas generales de plant. operaciones. Abreviacio. míltinles). HdP (Horno.	as identificads nes: ST (sólic de narrilla.) I	as para la los totale .FC (Lee	a monc es), LF cho fhi	incineración e B (Lecho flui idizado circul	le lodos urbanos; incluyendo año d idizado burbujeante), HPM (Horn ante), LFP (Lecho fluidizado a alti	de no
	presión), (se reporta	CAR (Carbonización), G n con un guion medio e	AS (Gasificac in esta tabla (ión). NC -).	TA: Lo	os datos no en	contrados en la revisión bibliográfic	Ica
Ň	Daío	C:dod	Capacidad	$^{\mathrm{ST}}$	۸ ño	Tipo de	Rofewanaiaa	
	CTD 1	Oluuau	(t/año)	(%)	OIIV	incinerador	INCICICITION	
04	FIIA	Puerto Nuevo,				I FR	[80 81 83]	
0		Puerto Rico	I	I	I		[00, 01, 0 9]	
80	FII A	Blacksburg,				I FR	[80 81 82]	
06	PO-T	Virginia	I	I	I	C TT	00, 01, 09]	
00	FII A	Woodbridge,				I FR	[80 81 82]	
n n	PO-T	Virginia	I	I	I	C TT	00, 01, 09]	
1001	БТТ Л	Anacortes,				I GD	[60 01 09]	1
TUU	EUA	Washington	1	1	I	цгр	00, 01, 00]	
101	ЕТТ A	Edmonds,				I FR	[20] 21 22]	
TOT	PO-T	Washington	I	I	I	CL TH	[00, 01, 0J]	
10.9	FII A	Lynnwood,				I FR	[80 81 83]	
701		Washington	1	I	I	C TT	[00, 01, 0 9]	
103	F.I.I.A	Vancouver,				I.FR	[80 81 83]	
001		Washington						
104	Polonia	Gdansk	63.636	22	2013	LFB	[251, 194]	1

<u>ر</u> Č Tabla

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

Tabla A-1 .: Características generales de plantas identificadas para la monoincineración de lodos urbanos; incluyendo año de inicio de operaciones. Abreviaciones: ST (sólidos totales), LFB (Lecho fluidizado burbujeante), HPM (Horno	de pisos múltiples), HdP (Horno de parrilla), LFC (Lecho fluidizado circulante), LFP (Lecho fluidizado a alta moción) CAP (Carbonizoción) CAS (Cocificoción) MOTA. Les detecno concentrados en la moción biblicarófico	presidely, $\nabla AIV (\nabla at DOURZACIOII)$, $\nabla AO (\nabla asilicacioii)$, INO LA. LOS UAVOS IIO EUCOLINTAUOS EIL LA LEVISIOII DIDUDGLALICA
---	---	--

I								
	Rafaranciae	1010101000	[251, 98]	[251, 40]	[251, 263]	[251, 145]	[251, 137]	[251, 193]
	Tipo de	incinerador	LFB	LFB	HdP	LFB	HdP	HdP
	ΔñΔ		1997	2012	2010	2011	2010	2012
-).	ST	(%)	25	-	I	I	I	ı
n esta tabla (·	Capacidad	(t/año)	36.000	T	I	I	I	ı
n con un guion medio e	Cinded		Gdynia	Bydgoszcz	Szczecin	Kielce	Olsztyn	Zielona Góra
se reportal	Daís	CTD T	Polonia	Polonia	Polonia	Polonia	Polonia	Polonia
	No	.0.1	105	106	107	108	109	110

0	a A-Z.: 1	ecnologias c	que contori	nan los su	stemas en	la super	estructura	tecnológica	l.	
			Tec	mologías e	que integr	an el sist	ema			
)						
LFB10 HRSG1	HRSG1	l	CIV8	ESP11	IC_S16	SHC16	SST21	IAA15	FM19	
LFB9 HRSG10	HRSG10		PA11	FM18	IC_S15	SST19				
LFB1 HRSG1	HRSG1		ESP10	IC_S16	SHC15	SST20				
LFB1 HRSG1	HRSG1		CIV1	ESP1	IC_S1	SHC1	1TSS	IAA1	FM1	
LFB1 HRSG1	HRSG1		CIV1	ESP1	IAA2	FM2	IC_S2	SHC2	SST2	EPH1
LFB1 HRSG1	HRSG1		CIV1	ESP1	SA1	IAA3	ESP2	IC_S3	SHC3	SST3
LFB1 HRSG1	HRSG1		CIV1	ESP1	SA1	IAA3	FM3	IC_S4	SHC4	SST4
LFB2 HRSG2	HRSG2		CIV2	PA1	ESP3	IC_{S5}	SHC5	2TSS	IAA4	FM4
LFB2 HRSG2	HRSG2	•	CIV2	PA1	ESP3	IC_S5	SHC5	3ST5	FCA1	
LFB3 PA2 H	PA2 I	щ	IRSG3	MC1	ESP4	IAA5	FM5			
LFB3 PA2 H	PA2 H	Η	RSG4	CIV3	MC2	IAA6	FM6	SCR_N1	SCR_R1	
LFB3 PA2 I	PA2 I		C	MC8	IAA14	FM16				
LFB3 PA2 I	PA2 I	Γ	C	FM17	IAA14	FM16				
LFB3 CC2nd1 I	CC2nd1 I	I	6A9	HRSG9	CIV7	MC6	IC_S13	SHC13	SST16	
4 HRSG5 CIV4 N	CIV4 N		$\Lambda C3$	IAA7	FM7					
4 HRSG5 CIV4 I	CIV4 I		ESP5	SA2	IAA8	FM8	IC_S6	SHC6	9TSS	
5 HRSG6 CIV5	CIV5	1	PA3	ESP6	IC_S7	SHC7	$2 \mathrm{LSS}$			
5 HRSG6 CIV5	CIV5	1	PA3	ESP6	IAA9	FC2				

A Anexo: Características generales de plantas utilizadas para la revisión del estado del arte tecnológico.

				SST8									
cernológica.				SHC8	EPH2	SST10	SCR_R2						
estructura t	eme.	3	SST17	IC_S8	6LSS	IC_S10	SCR_N2						
la supere	an el siste		SHC14	FM10	IC_S9	FM12	FM13			SST14	MC7		SST15
stemas en	me inteor	100000 on 1	IC_S13	IAA10	FM11	IAA12	SST11		SST13	SHC11	SST17		SHC12
man los sis	nologías c	- mrQ	ESP9	SA3	IAA11	MC4	SHC9	SST12	SHC10	FM14	SHC14		HB2
que confori	Tec	1	PA9	ESP7	CIV6	CIV6	IC_S11	STV	FM13	CE1	STV1	FC3	TC
enologías c			ORC	PA4	HRSG8	HRSG8	ESP8	IC_S12	HB1	HB1	CC2nd2	IAA13	FC4
а А-2 .: Те			HRSG6	HRSG7	PA5	PA5	PA6	PA6	PA6	PA6	PA6	PA7	PA8
Tabl			LFB5	LFB6	LFB7	LFB7	LFB8	LFB8	LFB8	LFB8	LFB8	LFC	LFP
	Designación	de sistemas	62	34	35	59	32	45	09	66	21	38	53

B. Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tecn	tología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	0.990	[259]
de calor			
Eficiencia de la bomba	Secado por atomización	0.700	[8]
Eficiencia de la bomba	Ciclo de vapor de agua	0.510	[215]
Eficiencia de la bomba	Depurador húmedo de dos etapas	0.700	[8]
Eficiencia térmica	Caldera de AP	0.990	[215]
Eficiencia térmica	Caldera ORC	1.000	[290]
Eficiencia térmica	Compresor (Turbocompresor)	0.850	[183]
Eficiencia isentrópica	Turbinas de vapor (agua)	0.798	[31]
Eficiencia mecánica	Turbinas de vapor (agua)	0.980	[31]
Eficiencia eléctrica	Turbinas de vapor (agua)	0.940	[31]
Eficiencia isentrópica	Bomba (agua)	0.850	[183]
Eficiencia isentrópica	Turbinas de vapor (tolueno)	0.750	[290]
Eficiencia mecánica	Turbinas de vapor (tolueno)	1.000	[290]
Eficiencia eléctrica	Turbinas de vapor (tolueno)	0.950	[290]
Eficiencia globlal	Ventiladores, incineración	0.790	[24]
Eficiencia de remoción de HCl	Depurador húmedo de dos etapas	0.970	[252]
Eficiencia de remoción de HF	Depurador húmedo de dos etapas	1.000	[252]
Eficiencia de remoción de $\rm NH_3$	Depurador húmedo de dos etapas	0.970	[252]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	nología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio de calor	Precalentador de aire	0.090	[259]
Eficiencia de remoción de HCl	Secado por atomización	0.999	[66]
Eficiencia de remoción de HF	Secado por atomización	0.999	[66]
Eficiencia de remoción de dioxinas	Secado por atomización	0.999	[66]
Eficiencia de remoción de Hg	Secado por atomización	0.980	[66]
Eficiencia de remoción de SO_2	Secado por atomización	0.990	[66]
Eficiencia de remoción de HCl	Filtro de mangas	0.999	[1]
Eficiencia de remoción de HF	Filtro de mangas	0.999	[1]
Eficiencia de remoción de SO ₂	Filtro de mangas	0.990	[1]
Eficiencia de remoción de Hg	Depurador húmedo de dos etapas	0.750	[1]
Eficiencia de remoción de Hg	Filtro de mangas	0.700	[221]
Eficiencia de remoción de Hg	Precipitador electrostático	0.700	[221]
Eficiencia de remoción de Hg	Filtro de lecho fijo de carbón activado	0.923	[221]
Eficiencia de remoción de SO ₂	Depurador húmedo de dos etapas	0.987	[252]
Eficiencia de remoción de SO_2	Incinerador LFB	0.700	[252]
Eficiencia de conversión de NO_{x}	Reactor SCR	0.800	[42]
Eficiencia recolección de cenizas	Multiciclones	0.950	[61]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	mología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	0.090	[259]
de calor			,
Eficiencia recolección de cenizas	Precipitador electrostático	0.990	[299]
Eficiencia recolección de cenizas	Precipitador electrostático	0 800	[85]
	húmedo	0000	
Eficiencia recolección de cenizas	Calderas de vapor	0.300	[252]
Eficiencia recolección de cenizas	Filtro de mangas	0.999	[299]
Eficiencia recolección de cenizas	Filtros cerámicos	0.999	[298]
Eficiencia recolección de cenizas	Precalentador de aire	0.300	[252]
Effeiencia racolacción da canizas	Depurador húmedo	0 500	8
	[Tipo venturi]	000.0	<u>5</u>
Eficiencia recolección de cenizas	Ciclón	0.800	[174]
Eficiencia intercambio de calor	Depurador húmedo de dos etapas	0.990	[259]
Eficiencia intercambio de calor	Secado por atomización	1.000	[259]
Eficiencia de remoción de SO ₂	Incinerador LFC	0.900	[162]
Eficiencia de remoción de SO ₂	Incinerador LFP	0.780	[125]
σ	Depurador húmedo de dos etapas	5.050	[8]
β	Depurador húmedo de dos etapas	0.320	[8]
λ	Depurador húmedo de dos etapas	0.450	[8]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	nología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	0.990	[259]
de calor			-
ð	Depurador húmedo de dos etapas	0.006	[8]
b	Depurador húmedo de dos etapas	0.800	[8]
Pérdidas de calor	Cámara de combustión secundaria	0.050	[224]
Consumo de energía térmica	Secador de discos	2900 kJ/kg-K	[5]
Consumo de energía térmica	Secador de tambor rotatorio	3060 kJ/kg-K	[5]
Consumo de energía térmica	Secador de película delgada	2600 kJ/kg-K	[2]
Caída de presión	Ciclo de vapor de agua AP	2.98 kPa	[88]
Caída de presión	ORC	$2.98 \ \mathrm{kPa}$	[88]
Caída de presión	Multiciclones	$1.49 \ \mathrm{kPa}$	[84]
Caída de presión	Secado por atomización	2.98 kPa	[38]
Caída de presión	Filtros de mangas	$0.75 \ \mathrm{kPa}$	[8]
Caída de presión	Filtros cerámicos	$3.6 \mathrm{ kPa}$	[121]
Caída de presión	Precipitador electrostático	$0.095 \ \mathrm{kPa}$	[8]
Caída de mesión	Precipitador electrostático	0.095 kPa	X
	húmedo		<u>)</u>
Caída de mesión	Depurador húmedo de SO_2 con NaOH	0.4 kPa	[990]
	[Torre de empaques]	5 TH E-0	

B Anexo: Constantes utilizadas en balances de masa y energía

.

135

	Tabla B-1.: Parámetros técnicos, por tecno	ología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio de calor	Precalentador de aire	066.0	[259]
Caída de presión	Caldera (Bomba centrífuga)	$2.98 \mathrm{kPa}$	[88]
Caída de presión	Precalentador de aire	30.0 kPa	[36]
Caída de presión	Incinerador LFB	13.0 kPa	[20]
Caída de presión	Sistema de ductos y chimenea	5.5 kPa	[8]
Caída de presión	Reactor SCR	$2.74 \mathrm{~kPa}$	[94]
Caida de presión por altura de lecho	Filtro de lecho fijo de carbón activado	1.22 kPa/m	[2]
Caída de presión	Sistema prevención de humo blanco	30.0 kPa	[36]
Caída de presión	Cámara de enfriamiento	1.75 kPa	[8]
Caída de presión	Depurador húmedo [Tipo venturi]	6.0 kPa	[299]
Caida de presión	Incinerador LFC	$7.5 \ \mathrm{kPa}$	[156]
Caida de presión	Ciclón	$1.6 \mathrm{ kPa}$	[299]
Caida de presión	Cámara de combustión secundaria	$0.25~{ m kPa}$	[26]
Consumo de energia eléctrica	Filtro de mangas	$0.0~{ m MW/m^2}$	[8]
Consumo de energia eléctrica	Inyección de carbón activado	$0.237 \ MW/(t/h)$	[2]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	enología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	0.090	[259]
de calor			-
Consumo de energia eléctrica	Precipitador electrostático	$0.295 \text{ W}/(\text{m}^3/\text{h})$	[128]
Consumo de enervia eléctrica	Precipitador electrostático	$0.205 W/(m^3/h)$	[198]
	húmedo	(II / III) / M 007.0	
Consumo de energia eléctrica	Secador de discos	87.0 Wh/kg de agua retirada	[2]
Consumo de energia eléctrica	Secador de tambor	50.0 Wh/kg de agua retirada	[2]
Consumo de energia eléctrica	Secador de película delgada	75.0 Wh/kg de agua retirada	[2]
Consumo da anarria alántrica	Depurador húmedo de SO $_2$ con NaOH	0.6.1.W//(m ³ /s)	[900]
COMPANYO NG GUGI STA GIGONING	[Torre de empaques]		[662]
Consumo de enervia eléctrica	Depurador húmedo de HCl	$0.5 {\rm kW}/({ m m}^3/{ m s})$	[900]
Constitute de citer Sta creentea	[Cámara de atomización]		[007]
Relación estequiométrica $Ca(OH)_2$	Secado por atomización	2.5 (-)	[1]
Consumo de $Ca(OH)_2$	Secado por atomización	2.47 kg/kg de HCl	[1]
Consumo de $Ca(OH)_2$	Secado por atomización	4.625 kg/kg de HF	[1]
Consumo de $Ca(OH)_2$	Secado por atomización	$2.891~{\rm kg/kg}$ de ${\rm SO}_2$	[1]
Consumo de $Ca(OH)_2$	Secado por atomización	0.925 kg/kg de Hg	[1]
Consumo de agua	Secado por atomización	19.0 kg/kg de $Ca(OH)_2$	[1]
Consumo de adsorbentes	Filtro de mangas	296.1 t/kg de Hg	[252]

` È

 $\underline{\mathbf{B}}$ Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	cnología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio de calor	Precalentador de aire	066.0	[259]
Cambio de presión en bomba	Depurador húmedo de dos etapas	180.0 kPa	8
Cambio de presión en bomba	Secado por atomización	180.0 kPa	8
Cambio de presión en bomba	Depurador húmedo [Tipo venturi]	138.0 kPa	[8]
Relación L/G	Depurador húmedo [Tipo venturi]	$0.001~{ m m}^3/{ m m}^3$	[8]
Fracción de cenizas en agua de recirculación	Depurador húmedo [Tipo venturi]	$0.25~\mathrm{kg/kg}$	[8]
Consumo de HCl	Depurador húmedo de HCl [Cámara de atomización]	70.603 t/t	[252]
Consumo de NH ₃	Depurador húmedo de HCl [Cámara de atomización]	0.433 kg/t de lodos incinerados	[252]
Consumo de NaOH	Depurador húmedo de SO ₂ con NaOH [Torre de empaques]	$5.724 \text{ t/t} \text{ de SO}_2$	[252]
Consumo de piedra caliza	Incinerador LFB	5.587 t/t de SO ₂	[252]
Consumo de gas natural	Incinerador LFB	0.079 GJ/t de lodos incinerados	[252]
Consumo de arena	Incinerador LFB	$8.522~\mathrm{kg/t}$ de lodos incinerados	[252]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por te	cnología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio de calor	Precalentador de aire	0.990	[259]
Consumo de petroleo crudo	Incinerador LFP	$0.389 \text{ m}^3/\text{t}$ de lodos incinerados	[186]
Consumo de dolomita	Incinerador LFP	$2.9 t/t de SO_2$	[125]
Consumo de $Ca(OH)_2$	Filtro de mangas	2.766 kg/kg de HCl	[1]
Consumo de $Ca(OH)_2$	Filtro de mangas	5.18 kg/kg de HF	[1]
Consumo de $Ca(OH)_2$	Filtro de mangas	$3.238 \text{ kg/kg de } \mathrm{SO}_2$	[1]
Consumo de NaHCO ₃	Filtro de mangas	6.28 kg/kg de HCl	[1]
Consumo de NaHCO ₃	Filtro de mangas	11.76 kg/kg de HF	[1]
Consumo de NaHCO ₃	Filtro de mangas	7.35 kg/kg de SO ₂	[1]
Consumo de NH_3	Reactor SCR	0.623 kg/kg de $\rm NO_x$	[42]
Velocidad espacial	Reactor SCR	17347.987 1/h	[309]
Consumo de agua	Precipitador electrostático húmedo	$0.001~{ m m}^3/{ m m}^3$	[8]
Velocidad del gas	Filtro de lecho fijo de carbón activado	0.6 m/s	[2]
Tiempo de cambio de material de lecho	Filtro de lecho fijo de carbón activado	2.0 años	[225]

B Anexo: Constantes utilizadas en balances de masa y energía

139

_

	Tabla B-1.: Parámetros técnicos, por te	cnología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	U66 U	[259]
de calor			
Densidad dal material da lecho	Filtro de lecho fijo de	$A81.0$ k a/m^3	8
	carbón activado	TTT / Str O.TOL	<u> </u>
Consumo de diesel	Incinerador LFC	28.037 kg/t de lodos incinerados	[159]
Densidad del diesel	Incinerador LFC	$0.85~{ m t/m^3}$	[143]
Consumo de piedra caliza	Incinerador LFC	$3.594 \text{ t/t} \text{ de SO}_2$	[156]
Generación de residuo sólido	Secado por atomización	3.702 kg/kg de HCl	[1]
Generación de residuo sólido	Secado por atomización	4.875 kg/kg de HF	[1]
Generación de residuo sólido	Secado por atomización	$5.312 \text{ kg/kg de SO}_2$	[1]
Generación de residuo sólido	Secado por atomización	$2.925 \text{ kg/kg de SO}_2$	[1]
Generación de residuo sólido	Filtro de mangas	34.385 t/kg de Hg	[252]
Generación de residuo sólido	Filtro de manças	Λ 1Λ6 kα/kα do HCl	[1]
$con Ca(OH)_2$		TOTI ON Su /Su OLITI	[+]
Generación de residuo sólido	Filtro do monços	ג אה ו <i>רה ו</i> אם אוד	[1]
$con Ca(OH)_2$		TTI ON SU /SU OF O	[+]
Generación de residuo sólido	Eiltno de menaec	ג 05 <i>15</i> מ/12מ da SO.	[1]
$con Ca(OH)_2$		0.00 mg/ mg m 0.02	[+]

B Anexo: Constantes utilizadas en balances de masa y energía

	Tabla B-1.: Parámetros técnicos, por tec	cnología	
Constante	Tecnología	Magnitud	Referencia
Eficiencia intercambio	Precalentador de aire	066 0	[250]
de calor)) 1
Generación de residuo sólido	Eiltro do manass	م 100 ایم /ایم طن HCI	[1]
con NaHCO ₃	TIND OF ITANBAS	4.020 AB/ AB UE 11.01	[T]
Generación de residuo sólido	Filtro de manças	ג ה <i>ויה ו</i> אה אם אד	[1]
$con NaHCO_3$	TIMO AC III AIR SAS	TTI ON SA AS U.O.	[+]
Generación de residuo sólido	Filtro de manças	1 656 ba /ba da SO.	[1]
con NaHCO ₃	TIMO AC III AIR SAS	1.000 AS/AS 40 0.02	[+]
Coeficiente globlal de	Secador de discos	$109.0 \text{ W}/\text{m}^2$ -K	[967]
transferencia de calor			
Coeficiente globlal de	Secador de nelícula delvada	$109.0 \text{ W}/\text{m}^2$ -K	[767 907]
transferencia de calor	occarot ac betterna actigana		[201, 201]
Coeficiente globlal de	Secador de tambor	$87 \text{ 5 W}/\text{m}^2\text{-}\text{W}$	[193]
transferencia de calor			[07]
Coeficiente globlal de	Precalentador de aire	$99 5 { m W/m^2-K}$	[139]
transferencia de calor			

B Anexo: Constantes utilizadas en balances de masa y energía

C. Anexo: Factores y coeficientes para el análisis TEA

						· - -	
(210, 10)	0107	07.0	1.00	TTT	1.01	de calor	sough an ionada
[316, 70]	2013	0.45	1.05	m^2	2.62	Área de transferencia	Secador de discos
		-	(MUSD)				
	Αñο	٤	Costo base	Unidades	V_{alor}	Descrinción)
Rafarancias	cala	t de es	Economía		d base	Capacida	Taenología
ma como referencia	SD se to	o en U	a guía el cost	no. Para est	o más cerca	ostos de entrega en el puert valente a 1000.	incluyendo los co un CEPCI equiv
uidas en la superes- el costo del equipo	gías inclu oard, es	ecnolog On B	ia para las te en inglés Free) de referenc : sus siglas e	escala y añc a; FOB, por	, factores de economía de ϵ iaciones: r , factor de escala	Tabla C-1 .: Capacidad base, tructura. Abrevi

un CEPCI equi	valente a 1000.						
Tomolomía	Capacida	d base		Economía	de esc	ala	Rofommiae
Teurorgia	Descripción	Valor	Unidades	Costo base (MUSD)	r	Año	TREFERENCES
Secador de discos	Área de transferencia de calor	7.67	m ²	1.05	0.45	2013	[216, 70]
Secador de película delgada	Área de transferencia de calor	18.0	m ²	1.06	0.45	2010	[249]
Secador de tambor	Área de transferencia de calor	80.7	m ²	0.13	09.0	2009	[257]
Ciclo de vapor de agua	Energía eléctrica producida	12.3	MWe	4.06	0.70	1999	[189]
ORC	Energía eléctrica producida	12.3	MWe	4.06	0.70	1999	[189, 179]
Precalentador de aire	Área de transferencia de calor	79.05	m^2	0.022	0.59	1968	[197, 147]
Precipitador electrostático	Flujo volumétrico del gas a la entrada	100	Nm^3/s	0.90	0.39	FOB	[299]

C Anexo: Factores y coeficientes para el análisis TEA

tructura. Abreviaciones: r, factor de escala; FOB, por sus siglas en inglés Free On Board, es el costo del equipo incluyendo los costos de entrega en el puerto más cercano. Para esta guía el costo en USD se toma como referencia Tabla C-1.: Capacidad base, factores de economía de escala y año de referencia para las tecnologías incluidas en la superesun CEPCI equivalente a 1000.

Taenalomía	Capacida	d base		Economís	a de esc	ala	Rafaranciae
Technologia	Descripción	Valor	Unidades	Costo base (MUSD)	r	Año	TREFERENCES
Precipitador	Flujo volumétrico del	100	Nm ³ /s	00.0	0.80	FOR	[900]
electrostático	gas a la entrada	001		0.2.0	00.0		
Depurador húmedo de HCl	Flujo volumétrico del	10	Nm ³ /c	0 U37	0.70	FOR	[900]
(Cámara de atomización)	gas a la entrada	0T		100.0	0		
Depurador húmedo de SO_2							
con NaOH	Área superficial	Ц	m^2	0.001	1.00	1991	[8]
(Torre de empaques)							
Filtros de manœas	Flujo volumétrico del	10	Nm ³ /s	0.05	02.0	FOR	[900]
	gas a la entrada	OT		00.0			
Filtros de mangas	Flujo volumétrico del	10	Nm^3/s	0 08	1.7.0	FOB	[666]
	gas a la entrada	0					
Filtros cerámicos	Flujo volumétrico del	10	$ m Nm^3/s$	0 11	12 0	FOR	[900]
	gas a la entrada	0			-		
Sistema prevención de	Área de transferencia	20.05	²	0.09	0 20	1068	[107 177]
humo blanco	de calor	00.2-	H	70.0	20.0		[101, 11]

						_
iidas en la superes- el costo del equipo ma como referencia	Rafaranciae	C01010101001		[900]		
ías inclu bard, es SD se to	ala	Año		FOR		
croolog On Bc o en US	t de esc	r		039	10.0	
ia para las te n inglés Free a guía el cost	Economía	Costo base	(MUSD)	0.09	70.0	
) de referenc : sus siglas e mo. Para est		Unidades		dm ³ /c	e/ mm	
escala y añc a; FOB, poi o más cerca	d base	Valor		70	2	
factores de economía de ϵ aciones: r , factor de escals stos de entrega en el puert alente a 1000.	Capacida	Descripción		Flujo volumétrico del	gas a la entrada	
Fabla C-1 .: Capacidad base, tructura. Abrevi incluyendo los co un CEPCI equiv	Temolomía	TCORDER		Filtro de lecho fijo de	carbón activado	

	de escala Boformeios		OTTE .1	0.3.0 F/OR [200]		0.70 1006 [7]		0.71 1982 [216, 38]	0.66 1004 [107 986]		0.49 1989 [94]	0.48 1989 [94]	0.98 1000 [8]		0.78 1000 [8]			
	Economía o	Costo base	(MUSD)	60.0	70.0	00.0	60.0	2.90	0.01	10.0	0.00002	0.00005	0 30	70.0	0 0003	00000	0.07	±0.0
		IInidadae	sangniiio	dm ³ /s		m3 /6	c/ 111	$ m Nm^3/s$	m ³ /c	c / 111	Nm^3	t/h	m ³ /h	TT / TTT	m ³ /s	c / 111	$ m Nm^3/s$	
	d base	$V_{\alpha}]_{\alpha r}$	ΛαΙΟΙ	02	2	02 02		460	7	н.н.	0.028	0.00045	16000 11	TTOCCOT	0.016	01000	10	01
alente a 1000.	Capacida	Docerinaión	TRADITIONI	Flujo volumétrico del	gas a la entrada	لالمانية والمستحدثة		Flujo volumétrico	Flujo volumétrico del	gas a la entrada	Volumen de catalizador	$\rm NH_3$ consumido	Flujo volumétrico del	gas a la entrada	Área superficial del	reactor	Flujo volumétrico del	gas a la entrada
un CEPCI equiv	Tomolomía	Technologia		Filtro de lecho fijo de	carbón activado	Inyección de carbón	activado	Secado por atomización	Multiciones	TAT ITT DICTOROTORS	Reactor SCR	Inyección de $\rm NH_3$	Precipitador	electrostático húmedo	Filtro de lecho fijo	de carbón activado	Cámara da anfriamianto	

tructura. Abreviaciones: r, factor de escala; FOB, por sus siglas en inglés Free On Board, es el costo del equipo incluyendo los costos de entrega en el puerto más cercano. Para esta guía el costo en USD se toma como referencia Tabla C-1.: Capacidad base, factores de economía de escala y año de referencia para las tecnologías incluidas en la superesun CEPCI equivalente a 1000.

Imbo io ino in	monto a 1000.						
Tomologia	Capacida	d base		Economía	de esc	ala	Rofommine
recitotogra		1.7.1		Costo base		ž	TRATETETICIOS
	Descripcion	Valor	Unidades	(MUSD)	r	Ano	
Intercambiador de	Área de transferencia	70.05	²	60.0	0.50	1068	[107 172]
calor (Depurador húmedo)	de calor	00.61	Ħ	70.0	0.00	00001	[101, 171]
Depurador húmedo	Flujo volumétrico del	10	Nm ³ /c	60.0	88 0	FOR	[900]
(Tipo venturi)	gas a la entrada	01		70.0	00.0	I CD	[007]
HRSG	Potencia a la entrada	73.25	MW	4.44	0.62	1994	[188, 189, 64]
Incinerador LFC	Potencia a la entrada	106.93	MW	4.60	0.62	1994	[149, 188, 189]
Incinerador LFB	Potencia a la entrada	106.93	MM	1.21	0.64	1994	[149, 188, 189]
Incinerador LFP	Potencia a la entrada	151.00	MW	4.17	0.67	1977	[125]
Turbocompresor	Potencia del compresor	5.00	MW	4.00	0.55	FOB	[299]
Cámara de combustión	Flujo volumétrico del	0 0036	Nm^3/s	0.010	06 U	1 990	[900]
secundaria	gas a la entrada	0000.0		010.0	07:0	10001	
Intercambiador de calor	Dotonoio o lo ontrodo	73 95	MTW	VV V	0.69	1007	[188 180 64 981]
(gas-aceite)	I OVERICIA A LA ELIVI AUA	07.01	A A TAT	11.1	70.0	FULT	[100, 100, 01, 201]

el símbolo (-) repr	resentan va	alores no rep	ortados.	
المعمادين	Rango d	e operación		Doferencied
recitotogia	Inferior	Superior	ODSET VACIONES	neterettcias
			Incluye solo costo de equipo del secador.	
			Se toma los costos base de un secador de	
			lodos de paletas, el cual pertenece a	
Secador de discos	I	ı	secadores de tornillo con el mismo	[216, 70]
			principio de funcionamiento que	
			secadores de discos. Se incluye factor de	
			escala para secadores en general.	
			Rango de operación no definido por el autor.	
Secador de película delgada	I	ı	Se incluye factor de escala para secadores en	[249]
			general.	
Secador de tambor	46.45	1672	Se realiza conversión de ft 2 a m 2 .	[257]
			Rango de operación no definido por el	
Ciclo de vapor de agua	I	I	autor. Incluye turbina de vapor y	[189]
			condensador.	
CBC			Se asume economía de escala equivalente al	[180 170]
	I	I	ciclo de vapor de agua convencional.	[103, 113]

Tabla C-2.: Rangos de operación y observaciones, correspondientes a tecnologías incluidas en la Tabla C-1. Las casillas con

el símbolo (-) repr	esentan v	alores no rep	ortados.	
Tranología	Rango d	e operación	Observation	Boforonoioe
TECHNOLOGIA	Inferior	Superior	Obset vaciones	INCIDE CHICIDS
			Según Arsenyeva los intercambiadores	
			de calor de placas soldadas tipo bloque	
Precalentador de aire	1.9	1860	tienen el mismo comportamiento capacidad	[197, 147]
			versus costos que los intercambiadores de	
			tubo y coraza (con placa de tubo fija).	
Precipitador	и С	100	Incluye placas de recolección,	[ວິດດ[
electrostático	0.0	OOT	transformador y rectificador mecánico.	[007]
Precipitador	100	600	Incluye placas de recolección,	[200]
electrostático		000	transformador y rectificador mecánico.	[007]
Depurador húmedo de HCl	0.3	130	De carga liviana. Incluye carcaza y	[006]
(Cámara de atomización)	0.0	OPT	boquillas de aspersión.	[667]
Depurador húmedo de SO_2				
con NaOH	6.41	140	No incluye lecho de empaques.	[8]
(Torre de empaques)				
			De agitación. Incluye motor y actuadores	
Filtros de mangas	0.2	2.5	de agitación, y tolva para recolección de	[299]
			ceniza.	

Tabla C-2.: Rangos de operación y observaciones, correspondientes a tecnologías incluidas en la Tabla C-1. Las casillas con

s casillas con		eferencias
nes, correspondientes a tecnologías incluidas en la Tabla C-1 . Las	no reportados.	ación Observaciones Re
ión y observacior	resentan valores	Rango de opera
Tabla C-2.: Rangos de operac	el símbolo (-) rep	Tecnología

el simbolo (-) rep:	resentan v	alores no rep	ortados.	
Tecnoloría	Rango d	e operación	Ohsemaciones	Referencias
rectionogia	Inferior	Superior		Tratet etteras
			De chorro inverso. No incluye sistema	
Filtros de mangas	2.5	30	auxiliar de compresión ni mecanismo	[299]
			de chorro.	
			De chorro inverso. No incluye sistema	
Filtros cerámicos	2.5	30	auxiliar de compresión ni mecanismo	[299]
			de chorro.	
			Según Arsenyeva los intercambiadores de	
Cictomo marinaión do			calor de placas soldadas tipo bloque tienen	
buing prevention de	1.9	1860	el mismo comportamiento capacidad	[197, 147]
			versus costos que los intercambiadores de	
			tubo y coraza (con placa de tubo fija).	
Filtro de lecho fijo de carbón activado	I	ı	Rango de operación no definido.	[299]
			Rango de operación no definido. Incluye	
Inmaaión da aanhán			silo de almacenamiento, recipiente de	
niyeccion de carbon	I	I	alimentación, sistema de alimentación	[2]
00011000			gravimétrico y neumático, y puertos de	
			inyección.	

Tecnología Rango de operación Inferior Superior Rango Superior Secado por atomización - Reactor Secado - Reactor SCR - Inyección de NH3 - Reactor Secado - Reactor Secado - Inyección de NH3 -	
Inferior Superior Rango Rango Rango Rango Secado por atomización Secado por atomización de NH3 Secado por atomización Secado por atomización Secado por atomización Secado por atomización de NH3 Secado por atomización Secado por atomización Secado por atomización de NH3 Secado por atomización	ración Observaciones Referen
Rango Rango Rango Secado por atomización -	Derior
Secado por atomización - - encuen Secado por atomización - - Se tom Multiciclones 0.47 70.8 solidos Multiciclones 0.47 70.8 el valoi Reactor SCR - - calcula Inyección de NH ₃ - - calcula	Rango de operación no definido. Se
Secado por atomización - - referen Secado por atomización - - Se tom Secado por atomización - - Se tom Secado por atomización - - estudic Multiciones 0.47 70.8 el valo Multiciclones 0.47 70.8 el valo Reactor SCR - - - Inyección de NH3 - - -	encuentran dos factores en la misma
Secado por atomización - - Ba más Secado por atomización - - Se tom Secado por atomización - - Se tom Secado por atomización - - Se tom Multiciclones 0.47 70.8 el valor Multiciclones 0.47 70.8 el valor Reactor SCR - - calcula Inyección de NH3 - - calcula	referencia (Remer & Chai); se selecciona
Secado por atomización - - Se tom Secado por atomización - - estudic materia - - -	la más cercana al factor de escala 0.68.
Decende por automización - estudio materix materix materix estudio materix conside sólidos sólidos sólidos sólidos sólidos sólidos sólidos sólidos sólidos sólidos materix sólidos sólidos secadol secadol secadol Multiciclones 0.47 Multiciclones 0.47 Reactor SCR - Inyección de NH3 - Decention de NH3 -	Se toman los costos y capacidad base del
materia materia conside solidos solidos solidos solidos solidos Multiciclones 0.47 70.8 el valor Reactor SCR r Inyección de NH3 burbicitado	estudio de la EPA asumiendo un factor de
multiciclones 0.47 70.8 el valor Multiciclones 0.47 70.8 el valor Reactor SCR - - calcula Invección de NH3 - - calcula	materiales de instalación de 0.77. Se
Multiciclones 0.47 70.8 el valor Multiciclones 0.47 70.8 el valor Reactor SCR - - - Inyección de NH3 - - column	consideran los sistemas de manejo de
Multiciclones 0.47 70.8 el valor Multiciclones 0.47 70.8 el valor Reactor SCR - - - Inyección de NH3 - - -	sólidos, preparación de la solución y
Multiciclones 0.47 70.8 el valor Multiciclones 0.47 70.8 el valor Reactor SCR - - calcula Inyección de NH3 - - - calcula	secador por atomización.
Multiciclones 0.47 70.8 el valo Reactor SCR - - calcula Inyección de NH3 - - calcula	Costos para índice M&S de 1000, que es
Reactor SCR - - calcula Inyección de NH3 - - -	0.8 el valor que alcanza en 1994 por ello se [197, 2
Reactor SCR - - Inyección de NH ₃ - -	calcula según CEPCI de ese año.
Inyección de NH ₃ G	- [94]
	-
Frecipitador 1600 50/65 De real	Se realizó regresión para precipitadores
electrostático húmedo con 80	con 80 % de eficiencia de remoción.

an la Tabla **C**-1 Las rnolomíae incluidae + 2 , ((ζ Tahla C-2 · Ban

el símbolo (-) replace	resentan v	alores no rep	ortados.	TION CONTIGON CONT.
Tomolowie	Rango d	e operación	Obcontraciona	Boforonoioa
rectionara	Inferior	Superior	ODSET VACIOILES	Inerer enclass
Filtro de lecho fijo	c	55	Co formula on función dol condal v on m ³ /c	Ĩ
de carbón activado	4	00	De lotinuia en funcion del caudal y en mi /5.	0
			Se asumen los mismos parámetros de un	
Cémere de onfriente	6 U	130	Depurador húmedo por atomización por tratarse de	[ວິດດ
	0.0	00T	un equipo con las mismas características	[007]
			de operación.	
			Según Arsenyeva los intercambiadores de	
Tatomoond and			calor de placas soldadas tipo bloque tienen	
muercannolauor de	1.9	1860	el mismo comportamiento capacidad	[197, 147]
caror (Deputator Intilieno)			versus costos que los intercambiadores de	
			tubo y coraza (con placa de tubo fija).	
Depurador húmedo	6 U	Uy	Do una otana valta oficionaia	[ວິດດ[
(Tipo venturi)	7.0	00	De una crapa y arra currenta.	[007]
			Se calcula para el año 1999 y 81.54 t/h de	
			vapor (60 bar, 450 °C, 73.25 MW), calculado	
HRSG	I	ı	según condiciones de operación planta SNB	[188, 189, 64]
			base. Eficiencias tomadas del estudio de	
			incineradores de biomasa.	

racillas ron U C F enologías incluidas en la Tahla **C-1** + G Ş and iont č ç servarion γ Ω eración ζ Tahla C-2.: Ran

uc		
sillas co		
Las ca		
C-1.		
t Tabla		
s en la		
ncluida		
ogías ii		
tecnol		
entes a		
spondie	ados.	
corres	reporta	
ciones,	res no	
bserva	n valo	-
ión y c	resenta	¢
operac	(-) rep	
gos de	mbolo	
.: Ran{	el síı	
a C-2		
Tabl		

Idat (-) ninninis ia	A TRATIDED.	לאז חוו כאוחוש	JUI LAUUS.	
Teenoloaía	Rango d	e operación	Ohservasiones	Rafarancias
TCCIIOIOSIA	Inferior	Superior		
			Incluye incinerador . Escalado según costos	
			directos. Como costo base se específica	
			costo del equipo asumiendo un factor de costos	
Incinerador LFC	20	25.5	de materiales de instalación equivalente a 0.77,	[149, 188, 189]
			según propio análisis económico. Se asume	
			factor de escala del incinerador. Se resta costo	
			del HRSG.	
			Incluye incinerador . Escalado según costos	
			directos. Como costo base se específica	
			costo del equipo asumiendo un factor de costos	
Incinerador LFB	7	65.4	de materiales de instalación equivalente a 0.77,	[149, 188, 189]
			según propio análisis económico. Se asume	
			factor de escala del incinerador. Se resta costo	
			del HRSG.	
			Incluye incinerador. Se calcula considerando los	
Incinerador LFP	I	41.7	flujos de carbón y aire precalentado a la entrada	[125]
			de los incineradores PFB.	

el símbolo (-) rep	resentan v	alores no rep	ortados.	
Toenclowie	Rango d	e operación	Observations	Roforonoiae
rectionsta	Inferior	Superior	Obset vaciones	TREE CITCIDS
			Incluye sistema de entrada de aire, compresor,	
Turbocompresor	0.65	15	cámara de combustión, encendido, turbina,	[299]
			sistema de arranque y escape.	
Cámara de combustión	66 U	95 GG	Ca ainstaron unidadas da SCFM a ${ m Nm}^3$ /s	[000]
secundaria	77.0	00.77	oc alubratoni unitraries de DOLIM a MITI /	[007]
Intercambiador de calor			So acrimo acomón do accele dol HBSC	[981]
(gas-aceite)	I	I	De abuille ecollolilla de escala del III.000.	[107]

C Anexo: Factores y coeficientes para el análisis TEA

Tabla C-3.: Costos unitarios de materiales según país de referencia; en el desarrollo del análisis tecnoeconómico se adaptan según el país de estudio. El del año 1984 se escala al año 2015. El costo del tanque de aireación se calcula para una capacidad de 500 m³/día (valor muy cercano a lo requerido) y (2) Promedio del año 2017.

Componente	Tipo	Valor	Unidades	Año	País	Referencia
Agua potable	S	0.89	$\rm USD/m^3$	2016	EUA	[37]
Agua de proceso	S	0.89	$\rm USD/m^3$	2016	EUA	[37]
Energía eléctrica	S	68.8	USD/MW-h	2017	EUA	[2]
Piedra caliza	Q	15	USD/t	1998	EUA	[301]
Gas	S	36	USD/MW-h	2017	EUA	[3]
Arena de lecho	Q	53	USD/t	2017	EUA	[258]
Cenizas	S	45	USD/t	2012	EUA	[87]
Soda cáustica (NaOH)	Q	125	USD/t	2010	EUA	[175]
Ácido clorhídrico (HCl)	Q	94	USD/t	FOB	EUA	[299]
Adsorbentes (Carbón activado)	Q	2094	USD/t	2005	EUA	[138]
Bicarbonato de sodio (NaHCO ₃)	Q	450	USD/t	2007	EUA	[135]
Hidróxido de calcio (CaOH ₂)	Q	130	USD/t	2017	EUA	[16]
Adsorbente residual	R	45	$\rm USD/t$	2012	EUA	[87]
Lodos a la entrada	SP	71	$\rm USD/t$	2007	EUA	[79]
Agua residual ¹	R	0.35	$\rm USD/m^3$	2015	EUA	[119, 161]
Energía eléctrica producida	SP	68.8	USD/MW-h	2017	EUA	[2]
Amoníaco (NH ₃)	Q	150	USD/t	1989	EUA	[94]
Diesel	S	808	$\rm USD/m^3$	2019	EUA	[4]
Petroleo crudo ₂	S	264	$\rm USD/m^3$	2017	EUA	[4]
Dolomita	Q	7	USD/t	1977	EUA	[125]

D. Anexo: Costos detallados por planta

En este anexo se incluyen las tablas que contienen los costos detallados de cada una de las plantas consideradas en la superestructura. Los costos se reportan en USD del 2019. Nota aclaratoria: los costos lodos a la entrada se tienen en cuenta como un ingreso monetario al sistema considerando que se realiza un pago por tratarlos. De conformidad con lo anterior, en las tablas de costos de esta sección este costo tiene un signo negativo representando que entra al sistema como ingreso.

rada = 434771 t/año.	
: 26. Biosólidos a la ent	
USD. Sistema número	
quipos, en millones de	
Costos de compra por e	Ubicación= Holanda
Tabla D-1.:	

Tecnología	Grupo	Descripción	Valor	Unidades	Cantidad	Costo
Secador de discos	PR	Área de transferencia de calor	737.11	m^2	4	17.18
Incinerador LFB	IN	Potencia a la entrada	37.23	MW	2	2.87
HRSG	RE	Potencia a la salida	15.63	MW	2	7.92
Ciclo de vapor de agua AP	RE	Energía eléctrica producida	2.98	MWe	2	6.60
Precalentador de aire	RE	Área de transferencia de calor	1212.44	m^2	4	3.27
Precipitador electrostático	LG	Flujo volumétrico de gas	16.66	$ m Nm^3/s$	2	0.77
Intercambiador de calor	LG	Área de transferencia de calor	986.12	m^2	4	2.90
Depurador de HCl	LG	Flujo volumétrico de gas	16.66	${ m Nm^3/s}$	2	0.09
Depurador de SO ₂ con NaOH	LG	Área superficial	138.11	m^2	2	0.82
Inyección de carbón activado	LG	Flujo volumétrico de gas	32.68	m^3/s	2	0.24
Filtros de mangas	LG	Flujo volumétrico de gas	24.45	$\mathrm{Nm^3/s}$	2	0.27

	Costos totales	de nlanta		75.90	15.11	90.85	46.21	228.07
		Contingencias		13.75	2.74	16.45	8.37	41.30
	Administrativos	e impuestos		7.17	1.43	8.58	4.37	21.55
	Instalaciones	oenerales		7.17	1.43	8.58	4.37	21.55
olanda	Costos de	canital	mardan	47.81	9.52	57.23	29.11	143.66
icación= Hol	Costos de	compra	de equipos	17.18	2.87	17.80	9.42	47.27
t/año. Ub		Grupo		PR	IN	RE	LG	Subtotales

4771	
= 43 ²	
ntrada=	
, la e	
Biosólidos a	
26. I	
Sistema número:	
USD.	
en millones de	
ales de planta,	olanda.
tota	Ξ
costos	icación
le de	l Th
Detali	t. /a.ño
D-2.:	
Tabla	

año.	
434771 t/s	
entrada=	
ólidos a la	
: 26. Biose	
a número	
D. Sistem	
nes de US	
, en millo	
operación	đ
iables de	= Holand
Costos var	Ubicación
a D-3.: (1
Tabl	

Tecnología	Componente	Tipo	Consumo diario	Costo anual
Secador de discos	Energía eléctrica	\mathbf{S}	46.88 MW-h	1.75
Secador de discos	Agua residual	R	$538.86~\mathrm{m}^3$	0.11
Incinerador LFB	Piedra caliza	Q	18.87 t	0.23
Incinerador LFB	Gas	∞	12.8 MW-h	0.25
Incinerador LFB	Arena de lecho	Q	4.96 t	0.14
Incinerador LFB	Energía eléctrica	\mathbf{S}	8.78 MW-h	0.33
HRSG	Cenizas	\mathbf{S}	29.7 t	0.71
HRSG	Energía eléctrica	\mathbf{S}	12.92 MW-h	0.48
Ciclo de vapor de agua AP	Energía eléctrica producida	SP	128.79 MW-h	-4.80
Ciclo de vapor de agua AP	Energía eléctrica	\mathbf{S}	2.75 MW-h	0.10
Precalentador de aire	Energía eléctrica	\mathbf{S}	95.02 MW-h	3.54
Precipitador electrostático	Cenizas	R	68.6 t	1.65
Precipitador electrostático	Energía eléctrica	S	0.82 MW-h	0.03
Intercambiador de calor (Depurador)	Energía eléctrica	\mathbf{S}	41.26 MW-h	1.54
Depurador de HCl	Soda cáustica (NaOH)	Q	8.18 t	0.58
Depurador de SO_2 con NaOH	Ácido clorhídrico (HCl)	Q	2.21 t	0.06
Depurador de SO_2 con NaOH	Agua de proceso	\mathbf{N}	$228.25~\mathrm{m}^3$	0.11
Depurador de SO_2 con NaOH	Energía eléctrica	\mathbf{S}	1.59 MW-h	0.06
Inyección de carbón activado	Adsorbentes [Carbón activado]	ç	2.43 t	3.40

Inyección de carbón activado	Energía eléctrica	\mathbf{S}	0.58 MW-h	0.02
Filtros de mangas	Adsorbente residual [Adsorción]	R	0.55 t	0.01
Filtros de mangas	Energía eléctrica	\mathbf{S}	1.11 MW-h	0.04
Filtros de mangas	Cenizas	R	0.69 t	0.02

Tabla D-4.: Componentes del requerimiento de capital total, en millones de USD. Sistema número: 26. Biosólidos a la entrada= 434771 t/año. Ubicación= Holanda. Costo de tratamiento: 232 USD/t.

Ítem	Costos
I. Costo total de planta	228.07
A. Capital de proceso	143.66
i. Costos directos	81.20
a. Costos de materiales	81.20
(1a) Costos de compra de equipos	47.27
(2a) Costos de material de instalación	33.92
b. Costos de mano de obra	27.46
(1b) Costos de mano de obra y entrega	9.25
(2b) Costos de instalación	18.21
c. Instalaciones de servicios	0.00
ii. Costos indirectos	35.00
a. Costos de mano de obra	4.59
b. Beneficios laborales	9.62
c. Instalaciones de servicios	20.79
B. Instalaciones generales	21.55
C. Administración e impuestos	21.55
D. Contingencias	41.30
II. Regalias prepagadas	1.44
III. Costos de puesta en marcha	9.05
IV. Capital de trabajo	8.93
V. Repuestos	2.28
VI. Insumos iniciales	1.26
VII. Terreno	84.04
Requerimiento de capital total	335.07

Tabla D-5.: Resumen	costos de operación,	en millones de	e dolares.	Sistema	número:	26.
Biosólidos	a la entrada $= 43477$	1 t/año. Ubicad	ción= Hol	anda. Co	sto de tra	ata-
miento: 23	32 USD/t.					
	τ.		C I			

Item	Costos
Energía eléctrica producida	-4.80
Lodos a la entrada	-142.60
Total subproductos	-147.40
Consumibles	15.17
Mano de obra directa	1.09
Supervisión directa	0.16
Mantenimiento, mano de obra	4.06
Total mano de obra directa	5.32
Mano de obra indirecta	3.99
Total mano de obra	9.30
Gastos generales de nómina	3.26
Mantenimiento, materiales	4.06
Materiales	1.33
Impuestos	0.14
Corporativos	5.58
Ventas (10% del total de ventas)	14.74
Total otros costos	29.11
Costos totales de operación	-93.82
ío.	
----------------------	-------
t/aî	
735	
561°	
a=	
trad	
a ent	
$a l_{\delta}$	
idos	
osól	
. Bi	
: 16	
lero	
nún	
ma	
diste	
D.	
\mathbf{US}	
s de	
lone	
mil	
, en	
ipos	
edu	
por	hia
pra	nolo
Com	2
de (- uçi
stos	บธอบ
Co	411
-6.:	
a D	
abl	

Tecnología	Grupo	Descripción	Valor	Unidades	Cantidad	Costo
Secador de discos	\mathbf{PR}	Área de transferencia de calor	761.84	m^2	2	8.41
Incinerador LFB	IN	Potencia a la entrada	58.93	MW	1	1.86
HRSG	RE	Potencia a la salida	37.74	MW	1	6.60
Precipitador electrostático	ГG	Flujo volumétrico de gas	32.12	Nm^3/s	1	0.48
Intercambiador de calor	ГG	Área de transferencia de calor	1692.43	m^2	S	2.88
Depurador de HCl	ГG	Flujo volumétrico de gas	32.12	Nm^3/s	1	0.07
Depurador de SO ₂ con NaOH	LG	Área superficial	105.46	m^2	3	0.91
Filtros de mangas	LG	Flujo volumétrico de gas	21.59	Nm^3/s	2	0.23

7.: Detalle de	e costos total	les de planta	, en millones de) USD. Sistema nú	mero: 16. Biosól	idos a la entrada	= 561735
t/año. Ut	oicación= Col	lombia					
	Costos de						
Grupo	compra	COSTOS	Instalaciones	Administrativos	Contingencias	COSTOS TOTALES	
	and the op	de capital	generales	e impuestos	0	de planta	
_	sodmba an						
PR	8.41	17.86	2.68	2.68	5.13	28.35	
IN	1.86	4.42	0.66	0.66	1.27	7.02	
RE	6.60	15.45	2.32	2.32	4.44	24.53	
LG	4.57	10.50	1.57	1.57	3.02	16.67	
Subtotales	21.44	48.23	7.23	7.23	13.87	76.56	

56	
Biosólidos a la entrada=	
16.	
ma número:	
Siste	
USD. 9	
de	
en millones	
planta,	ď
de	nhi
totales	= Color
$\cos tos$	cación=
de	ithi
Detalle	t./a.ño.
7	
Ū.	
Tabla	

/año.	
: 561735 t	
entrada=	
dos a la	
Biosóli	
ero: 16.	
na núm	
). Sister	
le USD	
n millones o	
peración, e	a a
es de o	olombi
s variabl	ción = O
.: Costo	Thicad
1 D-8.	
Tabla	

Tecnología	Componente	Tipo	Consumo diario	Costo anual
Secador de discos	Energía eléctrica	\mathbf{v}	41.33 MW-h	1.48
Secador de discos	Agua residual	Я	826.53 m^3	0.16
Incinerador LFB	Piedra caliza	ç	60.13 t	0.70
Incinerador LFB	Gas	\mathbf{v}	30.2 MW-h	0.57
Incinerador LFB	Arena de lecho	Q	11.7 t	0.33
Incinerador LFB	Energía eléctrica	\mathbf{v}	8.67 MW-h	0.31
HRSG	Cenizas	\mathbf{v}	60.94 t	1.41
HRSG	Energía eléctrica	\mathbf{v}	10.76 MW-h	0.39
Precipitador electrostático	Cenizas	Я	0.0 t	00.00
Precipitador electrostático	Energía eléctrica	\mathbf{v}	0.78 MW-h	0.03
Intercambiador de calor (Depurador)	Energía eléctrica	\mathbf{v}	38.89 MW-h	1.40
Depurador de HCl	Soda cáustica (NaOH)	Q	26.06 t	1.78
Depurador de SO_2 con NaOH	Ácido clorhídrico (HCl)	Q	3.19 t	0.09
Depurador de SO_2 con NaOH	Agua de proceso	\mathbf{v}	644.46 m^3	0.30
Depurador de SO_2 con NaOH	Energía eléctrica	\mathbf{v}	1.39 MW-h	0.05
Filtros de mangas	Energía eléctrica	\mathbf{v}	1.19 MW-h	0.04
Filtros de mangas	Cenizas	Я	1.42 t	0.03

Tabla D-9.: Componentes del requerimiento de capital total, en millones de USD. Sistema número: 16. Biosólidos a la entrada= 561735 t/año. Ubicación= Colombia. Costo de tratamiento: 73 USD/t.

Ítem	Costos
I. Costo total de planta	76.56
A. Capital de proceso	48.23
i. Costos directos	36.38
a. Costos de materiales	36.38
(1a) Costos de compra de equipos	21.44
(2a) Costos de material de instalación	14.94
b. Costos de mano de obra	8.20
(1b) Costos de mano de obra y entrega	2.95
(2b) Costos de instalación	5.25
c. Instalaciones de servicios	0.00
ii. Costos indirectos	3.64
a. Costos de mano de obra	0.92
b. Beneficios laborales	2.74
c. Instalaciones de servicios	-0.02
B. Instalaciones generales	7.23
C. Administración e impuestos	7.23
D. Contingencias	13.87
II. Regalias prepagadas	0.48
III. Costos de puesta en marcha	3.37
IV. Capital de trabajo	3.56
V. Repuestos	0.77
VI. Insumos iniciales	0.76
VII. Terreno	40.01
Requerimiento de capital total	125.51

Tabla D-10.: Resumen costos de operación, en millones de dolares. Planta número: 16. Biosólidos a la entrada= 561735 t/año. Ubicación= Colombia. Costo de tratamiento: 73 USD/t.

Item	Costos
Lodos a la entrada	-55.77
Total subproductos	-55.77
Consumibles	9.08
Mano de obra directa	0.07
Supervisión directa	0.01
Mantenimiento, mano de obra	1.36
Total mano de obra directa	1.44
Mano de obra indirecta	1.08
Total mano de obra	2.53
Gastos generales de nómina	0.88
Mantenimiento, materiales	1.36
Materiales	0.36
Impuestos	0.05
Corporativos	1.52
Ventas (10% del total de ventas)	5.58
Total otros costos	9.75
Costos totales de operación	-34.41

Bibliografía

- ACHTERNBOSCH, M.; RICHERS, U.: Material flows and investment costs of flue gas cleaning systems of municipal solids waste. En: Karlsruhe Institute of Technology (KIT) [Online] https://publikationen.bibliothek.kit.edu/270052511/3814247 (2002)
- [2] U.S. ENERGY INFORMATION ADMINISTRATION: *Electricity data browser*. https://www.eia.gov/electricity/data/browser/. fecha de acceso 31 de mayo de 2021
- [3] U.S. ENERGY INFORMATION ADMINISTRATION: *Natural gas prices*. https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_a.htm. fecha de acceso 31 de mayo de 2021
- [4] U.S. ENERGY INFORMATION ADMINISTRATION: Petroleum & other liquids report. https: //www.eia.gov/petroleum/reports.cfm. - fecha de acceso 31 de mayo de 2021
- [5] INTECUS GMBH: Technical Guide on the treatment and recycling techniques for sludge from municipal waste water treatment. En: Umwelt Bundesamt [Online] https://www. umweltbundesamt.de/publikationen/technical-guide-on-the-treatment-recycling-0 (2016)
- [6] JAPAN SEWAGE WORK AGENCY: New technology meeting your needs. https://www.jswa.go.jp/e/pr/pdf/newtech_2019.pdf. fecha de acceso 16 de febrero de 2021
- [7] U.S. ENVIRONMENTAL PROTECTION AGENCY: Draft Technical Support Document for HWC MACT Standards - Volume V: Main Report - Engineering Costs. En: U.S. Environmental protection agency (EPA) [Online] https://archive.epa.gov/epawaste/hazard/tsd/ td/web/pdf/v5a.pdf (1996)
- [8] U.S. Environmental EPA Air Pollution Con-PROTECTION AGENCY: trol Cost Manual. En: U.S.Environmental protection agency (EPA)/Onlinehttps://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/ cost-reports-and-guidance-air-pollution (2002)
- [9] U.S. ENVIRONMENTAL PROTECTION AGENCY: Subpart LLLL Standards of Performance for New Sewage Sludge Incineration Units. En: U.S. Code of federal regulations system [Online] https://www.ecfr.gov/current/title-40/part-60/subpart-LLLL (2015)
- [10] U.S. ENVIRONMENTAL PROTECTION AGENCY: Subpart MMMM Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units. En: U.S. Code

of federal regulations system [Online] https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-60/subpart-MMMM (2015)

- [11] ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICUL-TURA: Base de datos: agua residual producida, recolectada y tratada. http://www.fao.org/ nr/water/aquastat/main/indexfra.stm. - fecha de acceso 04 de marzo de 2017
- [12] ALLEGHENY COUNTY SANITARY AUTHORITY: Wastewater treatment. https://www.alcosan.org/what-we-do/wastewater-treatment. fecha de acceso 13 de marzo de 2020
- [13] MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL: Resolución 1425 de 2005. En: Ministerio de Ambiente, Vivienda y Desarrollo Territorial [Online] http://www.minambiente.gov.co/images/normativa/resoluciones/2005/res_ 1425_2005.pdf (2005)
- [14] VAN AMSTERDAM, M.F.: Factorial techniques applied in chemical plant cost estimation: a comparative study based on literature and cases. Delft, Universidad Técnica de Delft, Tesis de Maestría, 2018
- [15] AUTORIDAD NACIONAL DE LICENCIAS AMBIENTALES: Resolución 1301 de 2016. En: Autoridad Nacional de Licencias Ambientales [Online] http://www.anla.gov.co/sites/ default/files/res_1301_31102016_d.pdf (2016)
- [16] APODACA, L.E.; CORATHERS, L.A.: 2017 Minerals Yearbook. U.S. Geological Survey, 2017
- [17] ARADELLI, P.; CANTÚ, G.: Sewage sludge disposal routes: thermal treatments and energy recovery. Milan, Politecnico di Milano, Tesis de Maestría, 2016
- [18] EASTERN RESEARCH GROUP INC.: Revised MACT Floor Analysis for the Sewage Sludge Incinerator Source Category. En: *Regulations.gov [Online]* https://www.regulations. gov/document/EPA-HQ-OAR-2009-0559-0157 (2011)
- [19] KA EKSTROM & SON AB: Heat up your business: Carbon Black air preheaters. Kristianstad: KA Ekstrom & Son AB
- [20] BASU, P.: Combustion and gasification of fluidized beds. Taylor Francis Group, LLC., 2006
- [21] BELOV, G.V.: Thermodynamic analysis of combustion products at high temperature and pressure. En: *Journal of Propellants, Explosives, Pyrotechnics* 23 (1998), p. 86-89
- [22] BELSHAW, C.: The Mersey valley sludge story: from sea to Shell Green. En: Water and Environment Journal 14 (2000), p. 193-199

- [23] BENNAMOUN, L.: Solar drying of wastewater sludge: A review. En: Renewable and Sustainable Energy Reviews 16 (2012), p. 1061-1073
- [24] BHOWMICK, M.S.; BERA, S.C.: Study the performances of induced fans and design of new induced fan for the efficiency improvement of a thermal power plant. En: *IEEE Region 10 and the Third international Conference on Industrial and Information Systems* (2008)
- [25] BIANCHINI, A.; BONFIGLIOLI, L.; PELLEGRINI, M.; SACCANI, C.: Sewage sludge drying process integration with a waste-to-energy power plant. En: *Waste Management Journal* 42 (2015), p. 159-165
- [26] BIEDRZYCKA, A.: Sewage sludge utilization. En: Nowoczesne Budownictwo Inżynieryjne [Online] http://www.nbi.com.pl/assets/NBI-pdf/2008/3_18_2008/pdf/4_ utylizacja_osadow_sciekowych.pdf (2008)
- [27] BIRNEY, R.; DURHAM, J.: Diffusion coefficient of SO₂ in air. En: *Environmental Letters* 2 (1971), p. 13-21
- [28] GKW BITTERFELD-WOLFEN: *Klärschlammbehandlung*. Bitterfeld-Wolfen: GKW Bitterfeld-Wolfen, 2012
- [29] CHEMIE PARK BITTERFIELD-WOLFEN: New sewage sludge treatment plant. https://www.chemiepark.de/das-unternehmen/news/news-einzelansicht/news/ neue-klaerschlamm-verwertungsanlage/. - fecha de acceso 31 de marzo de 2020
- [30] BUNDESMINISTERIUM FÜR LAND- UND FORSTWIRTSCHAFT, UMWELT UND WASSER-WIRTSCHAFT: Stand der Technik bei Abfallverbrennungsanlagen. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 2002
- [31] BLOCH, H.P.; SINGH, M.P.: Steam turbines: design, applications, and rerating. Mc-Graw Hill, 2009
- [32] CATASTRO BOGOTÁ: Valor de Referencia (metro cuadrado de terreno) por Manzana. Bogotá D.C. Año 2017. https://mapas.bogota.gov.co/?l=650. - fecha de acceso 26 de septiembre de 2021
- [33] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: PTAR Salitre. https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/saneamiento/ rio-bogota/ptar-salitre. - fecha de acceso 28 de octubre de 2020
- [34] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Productos de la PTAR Salitre - Biogás. https://www.acueducto.com.co/wps/portal/EAB2/Home/ ambiente/saneamiento/rio-bogota/ptar-salitre/productos-de-la-ptar-salitre/biogas. - fecha de acceso 16 de octubre de 2022

- [35] BRASINGTON, R.D.; HASLBECK, J.L.; KUEHN, N.J.; LEWIS, E.G.; PINKERTON, L.L.; TURNER, M.; VARGHESE, E.; WOODS, M.: Cost and performance baseline for fossil energy plants, volume 2: coal to synthetic natural gas and ammonia. National Energy Technology Laboratory, 2011
- [36] BRENNAN, D.: Sustainable process engineering. Pan Stanford Publishing, 2012
- [37] FEDERAL ENERGY MANAGEMENT PROGRAM: Water and wastewater annual price escalation rates for selected cities across the United States. En: U.S. Department of Energy [Online] https://www.energy.gov/sites/prod/files/2017/10/f38/water_ wastewater_escalation_rate_study.pdf (2017)
- [38] BURNETT, T.A.; O'BRIEN, W.E.: Preliminary economic analysis of a lime spray dryer FGD system. Washington: U.S. Environmental Protection Agency, 1980
- [39] DAS BUNDESAMT FÜR UMWELT: *Klärschlammentsorgung in der Schweiz*. Bern: Das Bundesamt für Umwelt, 2012
- [40] MWIK WODA BYDGOSKA: Installation of thermal transforming sediment. http: //www.mwik.bydgoszcz.pl/index.php/instalacja-termicznego-pzeksztalcania-osadow. - fecha de acceso 06 de marzo de 2021
- [41] DE CAEVEL, B.; DE VOS, M.; CHABRIER, J.-P.; POLLET, O.: Revue des filières de traitement/valorisation des boues. En: International Nuclear Information System [Online] https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/106/47106362.pdf? r=1&r=1 (2007)
- [42] CANEGHEM, J.V.; DE GREEF, J.; BLOCK, C.; VANDECASTEELE, C.: NO_x reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study. En: *Journal* of Cleaner Production 112 (2015), p. 4452-4460
- [43] WATER RESOURCES DEPARTMENT OF GREENSBORO NORTH CAROLINA: Greensboro wastewater treatment timeline. https://www.greensboro-nc.gov/departments/ water-resources/wastewater-system/history. - fecha de acceso 13 de marzo de 2020
- [44] CENGEL, Y.: Heat transfer: A practical approach. McGraw Hill, 2002
- [45] CHEN, C.-T.A.: High-pressure specific heat capacities of pure water and seawater. En: Journal of Chemical & Engineering Data 32 (1987), p. 469–472
- [46] METROPOLITAN SEWER DISTRICT OF CINCINNATI: Operational and Environmental Performance. http://msdgc.org/about_msd/index.html. - fecha de acceso 29 de marzo de 2020

- [47] METROPOLITAN SEWER DISTRICT OF CINCINNATI: 2010 Sustainability Report. Cincinnati: Metropolitan Sewer District of Cincinnati, 2010
- [48] KOBELCO ECO-SOLUTIONS CO., LTD.: Completion of sewage sludge incineration and melting facility for Hyogo west basin sewage sludge wide-area treatment plant Shinko Environmental Solutions Co., Ltd. En: Kobelco eco-solutions co., Ltd. [Online] https: //www.kobelco-eco.co.jp/topics/pdf/2011/20110421hyougonishi.pdf (2011)
- [49] EUROPEAN COMISSION: Labour productivity and unit labour costs. https://ec.europa. eu/eurostat/databrowser/view/nama_10_lp_ulc/default/table?lang=en. - fecha de acceso 26 de septiembre de 2021
- [50] EUROPEAN COMISSION: The role of waste-to-energy in the circular economy. Budapest: European Comission, 2017
- [51] DOW CHEMICAL COMPANY: Dowtherm Q heat transfer fluid. En: Dow Chemical Company [Online] https://www.dow.com/content/dam/dcc/documents/en-us/ app-tech-guide/176/176-01407-01-dowtherm-q-heat-transfer-fluid-technical-manual.pdf? iframe=true (1997)
- [52] METAWATER CORP.: Multi-layer combustion fluidized bed furnace. https://www. metawater.co.jp/solution/product/sewer/multi_layer_burning/. - fecha de acceso 30 de marzo de 2020
- [53] METAWATER CORP.: Held a ceremony to ignite the new No. 3 reactor of the southern sludge incineration plant. https://www.metawater.co.jp/news/2019/05/post-34.html. - fecha de acceso 30 de marzo de 2020
- [54] JFE ENGINEERING CORPORATION: *Sludge incineration facility*. https://www.jfe-eng. co.jp/en/products/aqua/aqua16.html. - fecha de acceso 31 de marzo de 2020
- [55] EUROPEAN COUNCIL: Directive 2010/75/EU Industrial Emissions. En: EUR-Lex [Online] http://europa.eu/legislation_summaries/environment/air_pollution/ev0027_ en.htm (2010)
- [56] METROPOLITAN COUNCIL OF THE SEVEN-COUNTY TWIN CITIES: Metropolitan Wastewater Treatment Plant. En: Metropolitan Council of the seven-county Twin Cities [Online] https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/ WASTEWATER/TREATMENT-PLANTS/Metropolitan-Wastewater-Treatment-Plant. aspx
- [57] METROPOLITAN COUNCIL OF THE SEVEN-COUNTY TWIN CITIES: Capturing steam at metro plant facts. En: Metropolitan Council of the seven-county Twin Cities [Online] https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/

WASTEWATER/TREATMENT-PLANTS/Capturing-Steam-at-Metro-Plant-Facts.aspx (2013)

- [58] BLACK & VEATCH CONSTRUCTION, INC.; BROWN AND CALDWELL: Orange county sanitation district biosolids master plan. Orange County: Orange County Sanitation District, 2017
- [59] CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA: Avance proyecto PTAR Salitre. Bogotá: PTAR Salitre, 2021
- [60] CORPORACIÓN Αυτόνομα REGIONAL CUNDINAMARCA: Ade-DE у cuación hidráulica recuperación ambiental del Río Bogotá. En: Observatorio Regional Ambiental \boldsymbol{y} deDesarrollo Sostenible del Río Boqotá (Orarbo) [Online] https://orarbo.gov.co/es/el-observatorio-y-los-municipios/ adecuacion-hidraulica-y-recuperacion-ambiental-del-rio-bogota (2007)
- [61] CYGANECKA, A.; MAJSZCZYK, I.: Sewage Sludge Treatment in Warsaw. En: Waste Management 10 (2011), p. 699-712
- [62] DANGTRAN, K.; MULLEN, J.F.; MAYROSE, D.T.: A comparison of fluid bed and multiple hearth biosolids incineration. En: 14th Annual Residuals Sludge Management Conference (2000)
- [63] DECKER, R.; AKAY, O.: Outotec thermal processing. Estambul: Outotec Machine Industry Company, 2017
- [64] TENNESSE VALLEY AUTHORITY BIOTECHNICAL RESEARCH DEPARTMENT: Fluidized bed combustion and gasification: A guide for biomass waste users. Muscle Shoals: Tennesse Valley Authority, 1994
- [65] MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL: Resolución 909 de 2008. En: Instituto de Hidrología, Meteorología y Estudios Ambientales [Online] http://www.ideam.gov.co/documents/51310/527650/Resolucion+909+de+2008.pdf/ a3bcdf0d-f1ee-4871-91b9-18eac559dbd9 (2008)
- [66] UMWELT BUNDESAMT: Sewage sludge management in Germany. En: Umwelt Bundesamt [Online] https://www.umweltbundesamt.de/sites/default/files/medien/378/ publikationen/sewage_sludge_management_in_germany.pdf (2013)
- [67] SUPERINTENDENCIA DE SERVICIOS PÚBLICOS Y DOMICILIARIOS: Informe técnico sobre sistemas de tratamiento de aguas residuales en Colombia. Bogotá: Superintendencia de Servicios Públicos y Domiciliarios, 2012

- [68] DONATELLO, S.: Characteristics of incinerated sewage sludge ashes : Potential for phosphate extraction and re-use as a pozzolanic material in construction products. Londres, Universidad Imperial de Londres, Tesis de Doctorado, 2009
- [69] DRECHSEL, P.; QADIR, M.; WICHELNS, D.: Wastewater Economic asset in an urbanizing world. Springer, 2015
- [70] DUCKER, M.; COLEMAN, C.: Technical memorandum Biosolids Dryer Improvement. Brentwood: City of Brentwood WWTP, 2015
- [71] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Plegable Técnico PTAR Salitre. https://www.acueducto.com.co/guatoc/Archivos/PLEGABLE_ TECNICO_PTAR_SALITRE.pdf. - fecha de acceso 27 de octubre de 2020
- [72] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Planta de Tratamiento PTAR Salitre. https://www.youtube.com/watch?v=m4IKVyzjmzs. - fecha de acceso 27 de febrero de 2017
- [73] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Informe mensual de actividades Diciembre 2017. En: Empresa de Acueducto y Alcantarillado de Bogotá ESP [Online] https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/ saneamiento/rio-bogota/ptar-salitre/informes-de-actividades-ptar-salitre (2017)
- [74] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Informe mensual de actividades Enero 2017. En: Empresa de Acueducto y Alcantarillado de Bogotá ESP [Online] https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/ saneamiento/rio-bogota/ptar-salitre/informes-de-actividades-ptar-salitre (2017)
- [75] EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ ESP: Informe mensual de actividades Diciembre 2020. En: Empresa de Acueducto y Alcantarillado de Bogotá ESP [Online] https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/ saneamiento/rio-bogota/ptar-salitre/informes-de-actividades-ptar-salitre (2020)
- [76] ECO-MANAGEMENT AND AUDIT SCHEME: Müllverbrennungsanlage ein Zehntel Kraftwerk Simmeringer Haide in Zahlen. https://pagestrip.com/de/wien-energie-umwelt-2018/ POFFBoh1/simmeringer-haide/. - fecha de acceso 13 de marzo de 2020
- [77] U.S. DEPARTMENT OF ENERGY: Accounting for property, plant, and equipment. En: Financial Management Handbook (2015)
- [78] GS ENGINEERING AND CONSTRUCTION: Plan de acción inmediato y alternativas futuras para el manejo de los biosólidos generados en el tratamiento de las aguas residuales de la ciudad de Bogotá. En: Observatorio Regional Ambiental y de Desarrollo Sostenible del Río Bogotá (Orarbo) [Online] https://orarbo.gov.co/es/el-observatorio-y-los-municipios/ (2010)

- [79] NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES: Wastewater treatment report. https://www.des.nh.gov/organization/commissioner/pip/publications/wd/ documents/hb699report.pdf. - fecha de acceso 14 de febrero de 2020
- [80] U.S. ENVIRONMENTAL PROTECTION AGENCY: Good practices manual for delegation of NSPS and NESHAPS. En: *Regulations.gov* [Online] https://www.regulations.gov/ document?D=EPA-HQ-OAR-2012-0319-0022 (1983)
- [81] U.S. ENVIRONMENTAL PROTECTION AGENCY: Final: Sewage sludge incineration units (SSI) promulgation inventory and database. En: U.S. Environmental Protection Agency [Online] https://www.epa.gov/sites/production/files/2016-09/2010_ssi_database_ promulgation.accdb (2011)
- [82] U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF AIR QUALITY PLANNING AND STANDARDS: Parameters for properly designed and operated flares. U.S. Environmental Protection Agency, 2012
- [83] U.S. ENVIRONMENTAL PROTECTION AGENCY: Status of state plans for sewage sludge incineration units under the march 21, 2011 emissions guidelines. U.S. Environmental Protection Agency, 2016
- [84] U.S. ENVIRONMENTAL PROTECTION AGENCY: Air pollution control technology fact sheet (cyclones). En: U.S. Environmental Protection Agency [Online] https://www.epa. gov/catc/clean-air-technology-center-products (2003)
- [85] U.S. ENVIRONMENTAL PROTECTION AGENCY: Air pollution control technology fact sheet (wet electrostatic precipitator (ESP)). En: U.S. Environmental Protection Agency [Online] https://www.epa.gov/catc/clean-air-technology-center-products (2003)
- [86] U.S. ENVIRONMENTAL PROTECTION AGENCY: Sewage Sludge Incineration. En: Compilation of Air Pollutant Emissions Factors (AP-42) 2 (1995)
- [87] U.S. ENVIRONMENTAL PROTECTION AGENCY: Municipal solid waste landfills: Economic impact analysis for the proposed new subpart to the new source performance standards. U.S. Environmental Protection Agency, 2014
- [88] ERIKSEN, V.: *Heat recovery steam generator technology*. Woodhead Publishing Series in Energy, 2017
- [89] CONSEJO DE ESTADO: Sentencia de segunda instancia acción popular Río Bogotá. Bogotá: Consejo de Estado, 2014
- [90] EUROSTAT THE STATISTICAL OFFICE OF THE EUROPEAN UNION: Sewage sludge production and disposal from urban wastewater (in dry substance (d.s)). https://ec.europa.

eu/eurostat/databrowser/view/ENV_WW_SPD/default/table?lang=en. - fecha de acceso 20 de septiembre de 2022

- [91] SERVICE PUBLIC DE L'ASSAINISSEMENT FRANCILIEN: L'assainissement des eaux usées en agglomération parisienne: principes et procédés. Service public de l'assainissement francilien, 2012
- [92] SERVICE PUBLIC DE L'ASSAINISSEMENT FRANCILIEN: Seine centre, une usine située sur un site historique. https://www.siaap.fr/equipements/les-usines/seine-centre/. - fecha de acceso 28 de marzo de 2020
- [93] SERVICE PUBLIC DE L'ASSAINISSEMENT FRANCILIEN: Usine d'épuration Seine centre. En: Service public de l'assainissement francilien [Online] https://www.siaap.fr/fileadmin/ user_upload/Siaap/3_Equipements/Les_usines/Seine_centre/Fiche_usines_SEC_2013.pdf (2013)
- [94] FREY, H.C.; RUBIN, E.S.: Development of the integrated environmental control model. Pittsburgh: Pittsburgh Energy Technology Center, 1993
- [95] GAO, N.; KAMRAN, K.; QUAN, C.; WILLIAMS, P.T.: Thermochemical conversion of sewage sludge: A critical review. En: *Progress in Energy and Combustion Science* 79 (2020)
- [96] GARRET, D.E.: Chemical engineering economics. Springer Dordrecht, 1989
- [97] GARRET, D.E.: Appendix 1: equipment cost estimates. En: Chemical engineering economics (1989), p. 255-353
- [98] PEWIK, G.: Sewage treatment plant. https://www.pewik.gdynia.pl/o-spolce/ podstawowe-informacje/ochrona-srodowiska/oczyszczalnia-sciekow. - fecha de acceso 06 de marzo de 2021
- [99] GEA PROCESS ENGINEERING A/S: Spray drying absorption. Søborg: GEA Process Engineering A/S
- [100] GERDES, K.; SUMMERS, W.M.; WIMER, J.: Cost estimation methodology for NETL assessments of power plant performance. National Energy Technology Laboratory, 2011
- [101] GHERGHEL, A.; TEODOSIU, C.; DE GISI, S.: A review on wastewater sludge valorisation and its challenges in the context of circular economy. En: *Journal of Cleaner Production* 228 (2019), p. 244-263
- [102] GIROVICH, M.J.; FORSTE, J.B.; KUKENBERGER, R.J.; NAYLOR, L.M.; SNOW, K.J.: *Biosolids treatment and management.* CRC Press, 1996

- [103] EMTER GMBH: *Thermal recovery*. https://emter-gmbh.de/termverwertung.html. fecha de acceso 28 de marzo de 2020
- [104] EMTER GMBH: Thermische Klärschlammentsorgungsanlagen. En: Bayerisches Landesamt für Umwelt [Online] https://www.lfu.bayern.de/_data_extern/abfall/alle_ behandlungsanlagen/sk_e_altenstadt.pdf (2019)
- [105] ENVIROTHERM GMBH: Dordrecht. https://www.envirotherm.de/project/dordrecht/.- fecha de acceso 13 de marzo de 2020
- [106] ENVIROTHERM GMBH: Clean energy selected references. Dortmund: Envirotherm GmbH, 2015
- [107] WFA ELVERLINGSEN GMBH: Herzlich Willkommen bei der WFA Elverlingsen. https://www.wfa-elverlingsen.de/. fecha de acceso 28 de marzo de 2020
- [108] WVE GMBH: Construction of a process water treatment plant. https: //www.wve-kl.de/index.php?id=80&tx_ttnews%5Btt_news%5D=91&cHash= abff46a7be6ebe62fca2aa506d9e3abd. - fecha de acceso 30 de marzo de 2020
- [109] WVE GMBH: Beteiligungen: TVM Thermische Verwertung Mainz GmbH. https:// www.wve-kl.de/index.php?id=156. - fecha de acceso 30 de marzo de 2020
- [110] ARAGONEZ GONZÁLEZ, M.P.: Análisis termogravimétrico de la pirólisis de biosólidos de la planta de tratamiento de agua residual El Salitre. Bogotá, Universidad Nacional de Colombia, Tesis de Maestría, 2015
- [111] COBB COUNTY GOVERNMENT: Sutton Water Reclamation Facility History. En: Sutton Water Reclamation Facility [Online] https://s3.us-west-2.amazonaws.com/ cobbcounty.org.if-us-west-2/prod/2019-12/Sutton-Tour-Guide.pdf (2018)
- [112] GREIL, C.: Sewage sludge, a renewable biomass. Utilisation in modern sludge incineration plants. European Commission, 2006
- [113] KUZU GRUP: BUSKI fluidized bed sludge incineration and energy production plant. https://www.kuzugrup.com/en/proje/ buski-fluidized-bed-sludge-incineration-and-energy-production-plant/. - fecha de acceso 30 de marzo de 2020
- BUSKI [114] Kuzu GRUP: fluidized sludge bed treatment combustion and power generation plant. https://www.kuzugrup.com/proje/ buski-akiskan-yatakli-aritma-camuru-yakma-ve-enerji-uretim-tesisi-2/. fecha de acceso 30 de marzo de 2020

- [115] KUZU GRUP: BUSKI 400 ton/day capacity fluidized bed sludge incineration and energy production plant. https://www.youtube.com/watch?v=vYxz1n7yzNk. - fecha de acceso 30 de marzo de 2020
- [116] GUNN, A.P.; DEWHURST, R.E.; GIORGETTI, A.; GILLOTT, N.L.; WISHART, S.J.W.; PEDLEY, S.: Use of sewage sludge in construction. Construction Industry Research Information Association (CIRIA), 2006
- [117] GUTJAHR, M.; NIEMANN, K.: Abgasreinigung für Mono-Klärschlammverbrennungsanlagen. En: Energie aus Abfall 11 (2014), p. 693-712
- [118] HAMBRICK, A.: Final emissions and unit inventory for federal plan requirements for sewage sludge incineration units constructed on or before october 14, 2010. En: *Regulations.gov* [Online] https://www.regulations.gov/document/ EPA-HQ-OAR-2012-0319-0020 (2016)
- [119] HAND, D.W.; CRITTENDEN, J.C.; GEHIN, J.L.; BENJAMIN W.L.: Design and evaluation of an air-stripping tower for removing VOCs from groundwater. En: American Water Works Association 78 (1986), p. 87-97
- [120] HASLWIMMER, T.: Monoverbrennung in Stuttgart. Stuttgart: Landesverband Baden-Württemberg, 2018
- [121] HATA, M.; FURUUCHI, M.; KANAOKA, C.; KUROSE, R.; MAKINO, H.: Observation of dust release behavior from ceramic filter elements. En: Advanced Powder Technology 14 (2003), p. 719-734
- [122] EBSWIEN HAUPTKLÄRANLAGE: Zahlen, daten, fakten. https://www.ebswien.at/ hauptklaeranlage/hauptklaeranlage/zahlen/. - fecha de acceso 13 de marzo de 2020
- [123] HAVLÍK, J.; DLOUHÝ, T.: Indirect dryers for biomass drying—comparison of experimental characteristics for drum and rotary configurations. En: *ChemEngineering* 4 (2020), p. 1-11
- [124] HAZEN AND SAWYER; NIPPON KOEI: Producto final Anexo no . 20 alternativas para el manejo y disposición de biosólidos de la PTAR Salitre. Corporación Autónoma Regional de Cundinamarca (CAR), 2011
- [125] HUBER, D.A.; COSTELLO, R.M.; SAHA, A.K.; SALVIANI, J.; SMITH, J.W.; WOJ-CEHOWICZ, M.P.; MAY, M.P.; HORGAN, J.J.; GIRAMONTI, A.J.; SADALA, R.L.: Evaluation of a pressurized-fluidized bed combistion (PFBC) combined cycle power plant conceptual design - Subtask 1.2. Paramus: Burns and Roe Industrial Services Corporation, 1978

- [126] EASTERN RESEARCH GROUP INC.: Post-proposal SSI database revisions and data gap filling methodology. En: *Regulations.gov* [Online] https://www.regulations.gov/ document?D=EPA-HQ-OAR-2009-0559-0156 (2011)
- [127] EASTERN RESEARCH GROUP INC.: Revised estimation of impacts for new units constructed within five years after promulgation of the SSI NSPS. En: *Regulations.gov [Online]* https://www.regulations.gov/document?D=EPA-HQ-OAR-2009-0559-0158 (2011)
- [128] NEUNDORFER INC.: ESP design parameters and their effects on collection efficiency. PPC Industries, 1990
- [129] RICHARDSON PRODUCTS COST DATA ON LINE INC.: ESP design parameters and their effects on collection efficiency Richardson international construction factors manual. En: *Richardson Products Cost Data On Line Inc. [Online]* http://www.icoste.org/Book_ Reviews/CFM-Info.pdf (2008)
- [130] MITSUBISHI HEAVY INDUSTRIES: *Sludge treatment system*. https://www.mhiec.co.jp/ products/water/index.html. - fecha de acceso 02 de junio de 2020
- [131] BORN ERMEL INGENIEURE: Sewage sludge treatment Mainz (TVM). https:// born-ermel.eu/ueber-uns/struktur.html. - fecha de acceso 30 de marzo de 2020
- [132] VEREIN DEUTSCHER INGENIEURE: VDI Heat Atlas. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, 2010
- [133] THE ASSOCIATION FOR THE ADVANCEMENT OF COST ENGINEERING: Conducting technical and economic evaluations – As applied for the process and utility industries. The Association for the Advancement of Cost Engineering, 1990
- [134] THE ASSOCIATION FOR THE ADVANCEMENT OF COST ENGINEERING: Cost estimate classification system as applied in engineering, procurement, and construction for the process industries. The Association for the Advancement of Cost Engineering, 2011
- [135] INTRATEC: Sodium bicarbonate prices current. https://www.intratec.us/C-markets/ sodium-bicarbonate-price. - fecha de acceso 06 de junio de 2020
- [136] U.S. DEPARTMENT OF THE TREASURY: How to depreciate property. En: U.S. Department of the Treasury [Online] https://www.irs.gov/pub/irs-pdf/p946.pdf (2015)
- [137] JOLANTA, F.; GAWRÓNSKI, A.; RYSZARD, M.: Osady Ś Ciekowe I Ich Utylizacja. En: Journal of Civil Engineering, Environment and Architecture 61 (2014), p. 121-132
- [138] JONES, A.P.; HOFFMANN, J.W.; SMITH, D.N.; FEELEY, T.J.; MURPHY, J.T.: DOE/NETL's phase II mercury control technology field testing program: Preliminary economic analysis of activated carbon injection. En: *Environmental Science and Technology* 41 (2007), p. 1365-1371

- [139] STADT KARLSRUHE: Die Stadtentwässerung in Karlsruhe. Karlsruhe: Stadt Karlsruhe
- [140] INFRASERV GMBH CO. GENDORF KG: Entsorgung. https://www.infraserv.gendorf. de/CP-NachhaltigesWachstumamChemieparkGENDORF/B-507Entsorgung?id=E-507. fecha de acceso 28 de marzo de 2020
- Co. [141] INFRASERV GMBH GENDORF KG: InfraServ Gen*dorf:* Neue Klärschlammentsorgungsanlage kurz Inbetriebnahme. vorhttps://www.pressebox.de/pressemitteilung/infraserv-gmbh-co-gendorf-kg/ InfraServ-Gendorf-Neue-Klaerschlammentsorgungsanlage-kurz-vor-Inbetriebnahme/ boxid/66618. - fecha de acceso 28 de marzo de 2020
- [142] KHALIL, R.; JONASSEN, O.; BUGGE, M.: Options for the treatment of organic sludge
 The move towards thermal processing. SINTEF Energy Research, 2007
- [143] KHAN, M.R.: Advances in clean hydrocarbon fuel processing. Woodhead Publishing, 2011
- [144] KHATIB, H.: Economic evaluation of projects in the electricity supply industry. IET Power and Energy, 2014
- [145] WODOCIAGI KIELECKIE: Prezentacja Instalacji Termicznej Utylizacji Sitkówce k_kielc.
 Kielce: Wodociagi Kieleckie, 2004
- [146] KIM, J.; SEN, S.M.; MARAVELIAS, C.T.: An optimization-based assessment framework for biomass-to-fuel conversion strategies. En: *Energy Environmental Science* 6 (2013), p. 1093–1104
- [147] KLEMES, J.J.; ARSENYEVA, O.; KAPUSTENKO, P.; TOVAZHNYANSKYY, L.: Compact heat exchangers for energy transfer intensification. CRC Press, 2015
- [148] KOLIADIMA, A.; KAPOLOS, J.; FARMAKIS, L.: Diffusion coefficients of SO₂ in water and partition coefficients of SO₂ in water-air interface at different temperature and pH values. En: *Instrumentation Science and Technology* 37 (2009), p. 274–283
- [149] KOORNNEEF, J.; JUNGINGER, M.; FAAIJ, A.: Development of fluidized bed combustion-An overview of trends, performance and cost. En: Progress in Energy and Combustion Science 33 (2007), p. 19-55
- [150] WODOCIAGI MIASTA KRAKOWA: Oczyszczalnia Ścieków Płaszów II w Krakowie. https://wodociagi.krakow.pl/o-firmie/projekty-unijne/ oczyszczalnia-sciekow-plaszow-ii-w-krakowie/realizacje-projektu.html. - fecha de acceso 28 de marzo de 2020

- [151] WODOCIAGI MIASTA KRAKOWA: Sludge Thermal Utilization Station at the Płaszów sewage treatment plant construction, commissioning, operation. Kraków: Wodociagi Miasta Krakowa, 2012
- [152] KRAUS, J.: Herstellung von Leichtzuschlagstoffen aus Klärschlamm. Karlsruhe, Instituto Tecnológico de Karlsruhe, Tesis, 2003
- [153] KRETSCHMER, F.; ZINGERLE, T.; ERTL, T.: Perspektiven der künftigen Klärschlammbewirtschaftung in Österreich. En: Österreichische Wasser- und Abfallwirtschaft 70 (2018), p. 579-587
- [154] U.S. BUREAU OF LABOR STATISTICS: Average hourly earnings of all employees, machinery, seasonally adjusted. https://beta.bls.gov/dataViewer/view/timeseries/ CES3133300003. - fecha de acceso 26 de septiembre de 2021
- [155] LATOSIŃSKA, J.; GAWDZIK, J.: The impact of combustion technology of sewage sludge on mobility of heavy metals in sewage sludge ash. En: *Ecological Chemistry and Engineering* 21 (2014), p. 465-475
- [156] LECKNER, B.; ÅMAND, L.E.; LÜCKE, K.; WERTHER, J.: Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. En: *Fuel* 83 (2004), p. 477-486
- [157] DOOSAN LENTJES: Reliable sewage sludge disposal for more than 20 years. En: *Doosan Lentjes [Online]* http://www.doosanlentjes.com/download/pdf/sstt/Belfast_en.pdf
- [158] DOOSAN LENTJES: Reliable sewage sludge disposal in Greater London area. En: *Doo-san Lentjes [Online]* http://www.doosanlentjes.com/download/pdf/sstt/Crossness_en.pdf
- [159] LI, S.; LI, Y.; LU, Q.; ZHU, J.; YAO, Y.; BAO, S.: Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units. En: Waste Management 34 (2014), p. 2561-2566
- [160] LIU, H.: Pipeline Engineering. CRC Press LLC., 2003
- [161] LO, C. H.; MCADAM, E.; JUDD, S.: The cost of a small membrane bioreactor. En: Water Science and Technology 72 (2015), p. 1739-1746
- [162] LOCKWOOD, T.: Techno-economic analysis of PC versus CFB combustion. International Energy Agency, 2013
- [163] ALPHA PLUS LTD.: The Mersey Valley processing centre. https://www.alphaplusltd. co.uk/casestudy/the-mersey-valley-processing-centreshell-green-united-utilities/. - fecha de acceso 24 de marzo de 2020

- [164] KOBELCO ECO-SOLUTIONS CO LTD.: Completion of sludge incineration facility in Kobe eastern sludge center - Renewal of sludge incineration facility that is eco-friendly. https://www.kobelco-eco.co.jp/topics/news/2013/20130514.html. - fecha de acceso 29 de marzo de 2020
- [165] KOBELCO ECO-SOLUTIONS CO LTD.: Renewal of sludge incineration equipment that is friendly to the global environment. https://www.kobelco-eco.co.jp/topics/pdf/2013/ 20130514.pdf. - fecha de acceso 29 de marzo de 2020
- [166] RASCHKA ENGINEERING LTD.: Fluidized bed incineration systems Case of studies. En: Raschka Engineering Ltd. [Online] http://www.raschka-engineering.com/Upload/ EditorFiles/case_studies_1602.pdf
- [167] SANKI ENGINEERING CO. LTD.: The world's first supercharged (turbo) fluidized incinerator goes into operation - Asakawa Water Reclamation Center. En: Sanki Engineering Co. Ltd. [Online] https://www.sanki.co.jp/service/technology/article/doc/ detail109_relation_03.pdf (2013)
- [168] TSUKISHIMA KIKAI CO. LTD.: Pressurized fluidized bed incineration system. https://www.tsk-g.co.jp/en/tech/water-environmental/supercharged-fluidized-combustion.html.
 fecha de acceso 29 de marzo de 2020
- [169] TSUKISHIMA KIKAI CO. LTD.: Notice of order for new sludge incineration system for Tokyo Metropolitan Sewerage Bureau. En: *Tsukishima Kikai Co. Ltd. [Online]* https: //www.tsk-g.co.jp/up_pdf/201103101132.pdf (2011)
- [170] MÉTROPOLE DE LYON: Visite de la station d'épuration. En: Métropole de Lyon [Online] https://www.grandlyon.com/fileadmin/user_upload/media/pdf/eau/assainissement/ 20180412_gl_step-pb_guide.pdf (2018)
- [171] MA, P.; ROSEN, C.: Land application of sewage sludge incinerator ash for phosphorus recovery: A review. En: *Chemosphere* 274 (2021)
- [172] MINISTERIO DE MEDIO AMBIENTE, Y MEDIO RURAL Y MARINO: Caracterización de los lodos de depuradoras generados en España. En: Ministerio para la Transición Ecológica y el Reto Demográfico [Online] https://www.miteco.gob.es/es/ calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/Caracterizaci% C3%B3n%20de%20los%20lodos%20de%20depuradoras%20generados%20en%20Espa% C3%B1a%20(NIPO%20770-10-256-5)_tcm30-170350.pdf (2009)
- [173] MANN, M.: Mehrstufiges Wirbelschichtverfahren zur Mono-Klärschlammverbrennung am Beispiel Mainz. En: Verwertung von Klärschlamm (2018), p. 217-225

- [174] MARGRAF, R.: Flue gas treatment for sewage sludge incinerators concepts and first results from plants in operation. En: *Waste Management* 9 (2019), p. 531-547
- [175] MARKESTAH, J.; RENOLDS, K.; LARSEN, D.: Sodium hydroxide (NaOH) practicality study. The Glosten Associates, Inc., 2010
- [176] TE MARVELDE, J.H.B.; VAN DER LANS, W.C.; VERBEEK, E.: Slibverbrandingsinstallatie Dordrecht, een technische uitdaging. Dordrecht, 1994
- [177] MCALLISTER, S.; CHEN, J.-Y.; FERNANDEZ-PELLO, A.C.: Fundamentals of combustion processes. Springer, 2011
- [178] MCBRIDE, B.J.; GORDON, S.; RENO, M.A.: Coefficients for calculating thermodynamic and transport properties of individual species. Cleveland: National Aeronautics and Space Administration, 1993
- [179] MEINEL, D.; WIELAND, C.; SPLIETHOFF, H.: Economic comparison of ORC (Organic Rankine cycle) processes at different scales. En: *Energy* 74 (2014), p. 694-706
- [180] MENG, S.; QI, X.; YAO, W.; YAO, Y.: 2×130t/h Coal-fired Boiler white plumes removal solution. En: *IOP Conference Series: Earth and Environmental Science* 300 (2019)
- [181] MILLS, N.; PERRAULT, A.; PEARCE, P.; THORPE, R.: Granular renewable solid fuel trials in a fluidised bed incinerator. En: 17th European Biosolids and Organic Resources Conference (2015)
- [182] MILLS, N.: Unlocking the full energy potential of sewage sludge. Guildfor, Universidad de Surrey, Tesis de Doctorado, 2015
- [183] MORAN, M.J.; SHAPIRO, H.N.; BOETTNER, D.D.; BAILEY, M.B.: Fundamentals of Engineering Thermodynamics. John Wiley Sons, Inc., 2010
- [184] BANCO MUNDIAL: Población urbana. http://datos.bancomundial.org/indicador/SP. URB.TOTL?year_high_desc=true. - fecha de acceso 04 de marzo de 2017
- [185] BURSA METROPOLITAN MUNICIPALITY: BUSKI generates electricity from sludge. http://www.buski.gov.tr/tr/haber/buski_camurdan_elektrik_uretiyor_1159. - fecha de acceso 30 de marzo de 2020
- [186] MURAKAMI, T.; SUZUKI, Y.; NAGASAWA, H.; YAMAMOTO, T.; KOSEKI, T.: Combustion characteristics of sewage sludge in an incineration plant for energy recovery. En: *Fuel Processing Technology* 90 (2009), p. 778–783
- [187] NEUWAHL, F.; CUSANO, G.; BENAVIDES, J.G.; HOLBROOK, S.; SERGE, R.: Best available techniques (BAT) reference document for waste treatment industries. Luxemburgo: Publications Office of the European Union, 2019

- [188] NG, K.S.; SADHUKHAN, J.: Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. En: *Biomass and Bioenergy* 35 (2011), p. 1153-1169
- [189] NG, K.S.; SADHUKHAN, J.: Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform. En: *Biomass and Bioenergy* 35 (2011), p. 3218-3234
- [190] NIESSEN, W.R.: Combustion and Incineration Engineering. En: Biosolids Engineering and Management (2008), p. 479-605
- [191] NIESSEN, W.R.: Combustion and incineration processes. Taylor Francis Group, 2010
- [192] NATIONAL RENEWABLE ENERGY LABORATORY: Oxygen-enriched coincineration of MSW and sewage sludge. En: U.S. Department of Energy, Office of Scientific and Technical Information [Online] https://www.osti.gov/biblio/ 10120421-oxygen-enriched-coincineration-msw-sewage-sludge-final-report (1994)
- [193] "ZIELONOGÓRSKIE WODOCIAGI I KANALIZACJA" SP. Z O. O: Wastewater treatment technology. https://www.zwik.zgora.pl/woda-i-scieki/scieki/ technologia-oczyszczania-sciekow/. - fecha de acceso 06 de marzo de 2021
- [194] OSTOJSKI, A.: Znaczenie potencjału energetycznego osadów ściekowych w aspekcie gospodarki o obiegu zamknietym – przykład oczyszczalni w Gdańsku. En: Środkowo-Pomorskie towarzystwo naukowe ochrony środowiska 20 (2018), p. 1252-1268
- [195] OUTOTEC: Outotec sludge incineration. https://www.outotec.com/ products-and-services/technologies/energy-production/sludge-incineration-plant/. fecha de acceso 29 de marzo de 2020
- [196] PAJAK, T.: Thermal treatment as sustainable sewage sludge management. En: Environment Protection Engineering 39 (2013), p. 41-53
- [197] PERRY, R.H.; GREEN, D.W.: Chemical Engineers' Hanbook. McGraw Hill, 1997
- [198] DEPARTAMENTO NACIONAL DE PLANEACIÓN: Plan nacional de desarrollo, todos por un nuevo país 2014-2018. En: Departamento Nacional de Planeación [Online] https:// colaboracion.dnp.gov.co/CDT/PND/PND2010-2014%20Tomo%20I%20CD.pdf (2015)
- [199] DEPARTAMENTO NACIONAL DE PLANEACIÓN: Plan nacional de desarrollo 2010-2014. En: Departamento Nacional de Planeación [Online] https://colaboracion.dnp.gov. co/CDT/PND/PND2010-2014%20Tomo%20I%20CD.pdf (2011)

- [200] DEPARTAMENTO NACIONAL DE PLANEACIÓN: Medida 4, alcanzar 68% del tratamiento de aguas residuales urbanas domésticas (2030). En: Departamento Nacional de Planeación [Online] https://colaboracion.dnp.gov.co/CDT/Ambiente/Medida_4_% 20Aguas_Residuales.pdf (2020)
- [201] MINISTRY OF HOUSING SPATIAL PLANNING AND THE ENVIRONMENT: Dutch notes on BAT for the incineration of waste. En: Associação de Combate aos Poluentes [Online] https://acpo.org.br/arquivos/pagina-biblioteca/agenda-marrom/ incineracao-e-aterros/incineracao/14-incinerador-holanda.pdf (2002)
- [202] YOKOHAMA ENVIRONMENTAL PLANNING BUREAU SEWERAGE PLANNING AND COORDINATION DEPARTMENT: Yokohama water business association. En: Yokohama Environmental Planning Bureau Sewerage Planning and Coordination Department [Online] https://www.city.yokohama.lg.jp/lang/overseas/yport/water_business/members-en. files/0001_20180920.pdf (2012)
- [203] YOKOHAMA ENVIRONMENTAL PLANNING BUREAU SEWERAGE PLANNING AND COORDINATION DEPARTMENT: Sludge treatment and effective utilization business. En: Yokohama Environmental Planning Bureau Sewerage Planning and Coordination Department [Online] https://www.city.yokohama.lg.jp/kurashi/machizukuri-kankyo/ kasen-gesuido/gesuido/torikumi/PFI/sludgeyukopfi.files/0024_20180824.pdf (2014)
- [204] PLYASKINA, N.I.: Energy potential of wastewater sludge: Economic and ecological efficiency. En: Journal of Physics: Conference Series 1677 (2020)
- [205] DAL POZZO, A.; COZZANI, V.: Wastewater management of wet scrubbers in waste-toenergy facilities: A life cycle analysis. En: *Chemical Engineering Transactions* 86 (2021), p. 619-624
- [206] THE ASSOCIATION FOR THE ADVANCEMENT OF COST ENGINEERING: Development of factored cost estimates – As applied in engineering, procurement, and construction for the process industries. The Association for the Advancement of Cost Engineering, 2011
- [207] HYOGO PREFECTURE: Hyogo west basin sewage sludge wide area treatment plant
 Melting furnace renovation work. En: Ministry of Land, Infrastructure, Transport and Tourism [Online] https://www.mlit.go.jp/common/001221463.pdf
- [208] HYOGO PREFECTURE: Sewer system and sewage sludge treatment. https://web.pref. hyogo.lg.jp/ks16/wd18_000000045.html. - fecha de acceso 31 de marzo de 2020
- [209] HYOGO PREFECTURE: Hyogo east basin sewage sludge wide-area treatment plant. https://web.pref.hyogo.lg.jp/ks16/wd18_000000031.html. - fecha de acceso 29 de marzo de 2020

- [210] PRORHENO: *ProRheno Geschichte*. https://www.prorheno.ch/prorheno-ag/geschichte. fecha de acceso 31 de marzo de 2020
- [211] PRORHENO: *ProRheno-Schlammbehandlung*. https://www.prorheno.ch/anlagen/ schlammbehandlung. - fecha de acceso 30 de marzo de 2020
- [212] PUDASAINEE, D.; SEO, Y.C.; KIM, J.H.; JANG, H.N.: Fate and behavior of selected heavy metals with mercury mass distribution in a fluidized bed sewage sludge incinerator. En: Journal of Material Cycles and Waste Management 15 (2013), p. 202-209
- [213] PROJECT ON URBAN REDUCTION OF EUTROPHICATION: Bewährte verfahren in der schlammbehandlung. Project on Urban Reduction of Eutrophication, 2012
- [214] RABE, A.E.; HARRIS, J.F.: Vapor liquid equilibrium data for the binary system, sulfur dioxide and water. En: *Journal of Chemical and Engineering Data* 8 (1963), p. 333-336
- [215] RAVAL, T.N.; PATEL, R.N.: Optimization of auxiliary power consumption of combined cycle power plant. En: Procedia Engineering 51 (2013), p. 751-757
- [216] REMER, D.S.; CHAI, L.H.: Process equipment, cost scale-up. En: Encyclopedia of Chemical Processing and Design (1993), p. 306-317
- [217] REMER, D.S.; LIN, S.; YU, N.; HSIN, K.: An update on cost and scale-up factors, international inflation indexes and location factors. En: *International Journal of Production Economics* 114 (2008), p. 333-346
- [218] BANCO DE LA REPÚBLICA: Consumer Price Index. https://www.banrep.gov.co/en/ consumer-price-index. - fecha de acceso 17 de octubre de 2020
- [219] BANCO DE LA REPÚBLICA: Wage Index. https://www.banrep.gov.co/en/wage-index.
 fecha de acceso 26 de septiembre de 2021
- [220] GREENHOUSE GAS TECHNOLOGY CENTER: Technology assessment report: Aqueous sludge gasification technologies. En: U.S. Environmental Protection Agency [Online] https: //nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100EM1Q.TXT (2012)
- [221] RHEE, S.-W.: Control of mercury emissions: policies, technologies, and future trends. En: *Energy and Emission Control Technologies* (2015)
- [222] RILEY, J.T.: Routine coal and coke analysis: collection, interpretation, and use of analytical data, 2nd edition. En: ASTM International [Online] https://www.astm.org/ mnl57-2nd-eb.html (2014)

- [223] RINCÓN, S.; MENDOZA, L.; GÓMEZ, A.: Tratamiento térmico de biosólidos para aplicaciones energéticas - Pirólisis y conversión de sus alquitranes. kassel university press, 2019
- [224] ROLKE, R.W.; HAWTHORNE, R.D.; GARBETT, C.R.; SLATER, E.R.; PHILLIPS, T.T.; TOWELL, G.D.: Afterburner systems study. En: U.S. Environmental Protection Agency [Online] https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9101N7F2.TXT (1972)
- [225] RUTKOWSKI, M.D.; KLETT, M.G.; MAXWELL, R.C.: The cost of mercury removal in an IGCC plant acknowledgments. Washington: Gasification Technologies Public Policy Workshop, 2002
- [226] EPEM; THE WASTE MANAGEMENT AUTHORITY OF EASTERN MACEDONIA AND THRACE; THE WASTE MANAGEMENT SYSTEM OF WESTERN MACEDONIA; THE TRANS-MUNICIPAL ENTERPRISE OF SOLID WASTE MANAGEMENT OF CHANIA: Database of waste management technologies. En: *EPEM* [Online] http://www.epem.gr/ waste-c-control/database/html/WtE-02.htm
- [227] SADHUKHAN, J.; NG, K.S.; MARTINEZ, E.: Biorefineries and chemical processes. John Wiley Sons, Ltd., 2013
- [228] CONSORCIO EXPANSIÓN PTAR SALITRE: Plan de gestión social para el proyecto de ampliación y optimización de la planta de tratamiento de aguas residuales El Salitre. Bogotá: Empresa de Acueducto y Alcantarillado de Bogotá ESP, 2017
- [229] CONSORCIO EXPANSIÓN PTAR SALITRE; CORPORACIÓN AUTONOMA REGIONAL DE CUNDINAMARCA; CORPORACIÓN AUTONOMA REGIONAL DE CUNDINAMARCA; BANCO MUNDIAL: Estado de equipos puesta en marcha PTAR Salitre Fase II. Bogotá: Consorcio Expansión PTAR Salitre, 2021
- [230] CONSORCIO EXPANSIÓN PTAR SALITRE: Presentación avance en fase de puesta en marcha de la PTAR El Salitre fase II. Bogotá: Consorcio Expansión PTAR Salitre, 2021
- [231] CONSORCIO EXPANSIÓN PTAR SALITRE: Puesta en marcha Boletín PTAR Salitre. En: Consorcio Expansión PTAR Salitre [Online] https://ptarsalitre.com.co/wp-content/ uploads/2021/04/Boletin-Puesta-en-Marcha.pdf (2020)
- [232] SAUR: Principales références Eaux Résiduaires. En: Saur [Online] https://www.saur. com/wp-content/uploads/2015/05/Stereau_Ref_Eaux_Usees_mars_2011.pdf (2011)
- [233] SCHMID, S.: Zukünftige Klärschlammverbrennung der Stadtentwässerung Frankfurt am Main. En: Verwertung von Klärschlamm (2018), p. 259-273

- [234] SCHNELL, M.; HORST, T.; QUICKER, P.: Thermal treatment of sewage sludge in Germany: A review. En: Journal of Environmental Management 263 (2020)
- [235] SELIVANOVSKAYA, S.Y.; ZARIPOVA, S.K.; LATYPOVA, V.Z.; HUNG, Y.-T.: Treatment and disposal of biosolids. En: *Environmental Bioengineering* (2014), p. 1-51
- [236] TOKYO METROPOLITAN SEWERAGE SERVICE: Sludge treatment business. https:// www.tgs-sw.co.jp/company/c02/. - fecha de acceso 29 de marzo de 2020
- [237] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: 300-ton Turbo Incinerator. En: Sewerage mechanism information 10, p. 28-30
- [238] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: About Kasai Water Reclamation Center. Kasai: Japan Construction Engineers' Association
- [239] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: Asakawa Water Reclamation Center. https://www.gesui.metro.tokyo.lg.jp/about/index.html. - fecha de acceso 29 de marzo de 2020
- [240] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: Eastern sludge plant. https://www.gesui.metro.tokyo.lg.jp/living/tour/guide/sise-list/05-01/. - fecha de acceso 29 de marzo de 2020
- [241] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: Kitatama No . 2 Water Reclamation Center. https://www.gesui.metro.tokyo.lg.jp/living/tour/guide/ sise-list/04-02/index.html. - fecha de acceso 31 de marzo de 2020
- [242] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: New riverbank water reclamation center. https://www.gesui.metro.tokyo.lg.jp/living/tour/guide/sise-list/ 03-05/index.html. - fecha de acceso 29 de marzo de 2020
- [243] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: Sludge incineration facilities at the Shin-Kaigan Water Reclamation Center - Design of reconstruction work. En: Bureau of Sewerage Tokyo Metropolitan Government [Online] https://www.gesui. metro.tokyo.lg.jp/business/pdf/1-1-7_2013.pdf (2013)
- [244] SHARMA, H.: Life-Cycle Assessment of different technologies to process sewage sludge. Delft, Universidad Técnica de Delft, Tesis de Maestría, 2017
- [245] SHENG, C.; AZEVEDO, J.L.T.: Estimating the higher heating value of biomass fuels from basic analysis data. En: *Biomass and Bioenergy* 28 (2005), p. 499-507
- [246] SHIH, K.: Incinerating Hong Kong water treatment sludge: the potential of ash reuse and recycling. En: *Kadoorie Institute Symposium* (2009)

- [247] SIX, J.: 80.000 Stunden Betriebserfahrung mit einer Monoklärschlammverbrennungsanlage – anlagentechnische, energetische und wirtschaftliche Optimierung. En: VDI Wissensforum (2013), p. 1-10
- [248] SKRIFVARS, B.J.; HUPA, M.; HILTUNEN, M.: Sintering of ash during fluidized bed combustion. En: *Industrial and Engineering Chemistry Research* 31 (1992), p. 1026-1030
- [249] DE SMIDT, R.P.; WEMMERS, A.K.; SPOELSTRA, S.: Thin Film Drying Processes 'Energy-and economic aspects compared to spray drying'. En: *Energy research Centre* of the Netherlands [Online] https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--17-084 (2017)
- [250] SMITH, R.J.: Project Omega Sludge Disposal Solution. En: Wastewater Treatment & Sewerage (2002)
- [251] SMOL, M.: Inventory of wastes generated in polish sewage sludge incineration plants and their possible circular management directions. En: *Resources* 9 (2020), p. 1-23
- [252] SLIBVERWERKING NOORD-BRABANT (SNB): Slibverwerking Noord-Brabant. https: //www.snb.nl/. - fecha de acceso 13 de marzo de 2020
- [253] VODOKANAL OF ST. PETERSBURG: Structure of sewerage. http://www.vodokanal. spb.ru/kanalizovanie/struktura_kanalizovaniya/. - fecha de acceso 13 de marzo de 2020
- [254] VODOKANAL OF ST. PETERSBURG: Technologies and methods of sewage sludge treatment. https://ppt-online.org/120488. - fecha de acceso 13 de marzo de 2020
- [255] MUNCHER STADTENTWÄSSERUNG: Klärwerk Gut Großlappen neues Bild. En: Muncher Stadtentwässerung [Online] https://www.muenchen.de/rathaus/dam/jcr: b03530df-a2ba-493a-90a5-aea7d779a934/KLW_1.pdf (2013)
- [256] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO 2533 Standard Atmosphere. International Organization for Standardization, 1978
- [257] COUPER, J.R.; PENNEY, W.R.; FAIR, J.R.; WALAS, S.M.: Chemical process equipment - Selection and design. Elsevier, 2012
- [258] STATISTA: Average price of sand and gravel in the U.S. from 2010 to 2020. https:// www.statista.com/statistics/219381/sand-and-gravel-prices-in-the-us/. - fecha de acceso 31 de mayo de 2021
- [259] STICHTING TOEGEPAST ONDERZOEK WATERBEHEER: Slinketenstudie Onderzoek Naar de Energie- en Kostenaspecten in de Water- en Slibketen. Stichting Toegepast Onderzoek Waterbeheer, 2005

- [260] VILLE ET EUROMÉTROPOLE DE STRASBOURG: Le petit guide du traitement des eaux usées. En: Ville et eurométropole de Strasbourg [Online] https://www.strasbourg.eu/documents/976405/1614688/guide-traitement-eaux-usees. pdf/2c272bf9-133c-c0d2-30f8-e1c652d7a8a6
- [261] SUZUKI, Y.; MURAKAMI, T.; KITAJIMA, A.: Development of an advanced sewage sludge incinerator, "turbocharged fluidized bed incinerator". En: Synthesiology English Edition 7 (2014), p. 12-21
- [262] SWANN, L.; DOWNS, D.; WAYE, M.: Waste to energy solution The sludge treatment facility in Tuen Mun, Hong Kong. En: *Energy Proceedia* 143 (2017), p. 500-505
- [263] ZWIK SZCZECIN: Oczyszczalnia Ś cieków Pomorzany w Szczecinie informacje szczegó ł owe -. En: ZWiK Szczecin [Online] http://zwik.szczecin.pl/uploads/dokumenty/ opis_Oczyszczalni_Pomorzany.pdf
- [264] T-PARK: Waste-to-Energy. https://www.tpark.hk/en/story/. fecha de acceso 29 de marzo de 2020
- [265] T-PARK: A Waste-to-Energy journey. http://www.news.gov.hk/en/categories/ environment/html/2016/07/20160715_155245.shtml. - fecha de acceso 29 de marzo de 2020
- [266] TAKAHASHI, H.: Study on sewage sludge gasification. En: Tokyo Metropolitan Sewerage Service [Online] https://www.gesui.metro.tokyo.lg.jp/english/pdf/tp0702.pdf
- [267] WAJE, S.S.; THORAT, B.N.; MUJUMDAR, A.S.: Screw conveyor dryer: Process and equipment design. En: Drying Technology 25 (2007), p. 241-247
- [268] VEOLIA WATER SOLUTION & TECHNOLOGIES: Pyrofluid. https://www. veoliawatertechnologies.com/en/solutions/products/pyrofluid. - fecha de acceso 13 de marzo de 2020
- [269] VEOLIA WATER SOLUTION & TECHNOLOGIES: Shell Green Mersey Valley processing centre extension. En: ESI.info [Online] https://cms.esi.info/Media/documents/134247_ 1313501399175.pdf
- [270] VEOLIA WATER SOLUTION & TECHNOLOGIES: Termiczna utylizacja osadów ściekowych. Varsovia: Veolia Water Solution, 2005
- [271] VEOLIA WATER SOLUTION & TECHNOLOGIES: North Aeration Station. Saint-Petersburg: Veolia Water Solution & Technologies, 2007

- [272] VEOLIA WATER SOLUTION & TECHNOLOGIES: Sewage sludge thermal utilization station at the Czajka sewage treatment plant, Warsaw. Varsovia: Veolia Water Solution & Technologies, 2017
- [273] VEOLIA WATER SOLUTION & TECHNOLOGIES: Sewage sludge thermal utilization station for GOŚ LAM in Łódź. Lodz: Veolia Water Solution & Technologies, 2017
- [274] VEOLIA WATER SOLUTION & TECHNOLOGIES: Sludge Treatment. https://www. veolia.cn/en/about-us/veolia-china/waste-activity/sludge-treatment. - fecha de acceso 29 de marzo de 2020
- [275] YAMAMOTO, M.: Combustion technology of the sewage sludge. En: Journal of the Combustion Society of Japan 53 (2011), p. 91-96
- [276] HUBER TECHNOLOGY: sludge2energy: A way to an energy self-sufficient wastewater treatment plant. En: *Huber Technology [Online]* https://www.huber.de/fileadmin/ 08_HUBER_Report/03_nach_Ausgabe/de_Report_2011-01.pdf (2011)
- [277] WATER TECHNOLOGY MAGAZINE: Infilco Degremont wins incineration order for Georgia wastewater plant. https://www.watertechonline.com/water-reuse/article/ 16199075/infilco-degremont-wins-incineration-order-for-georgia-wastewater-plant. - fecha de acceso 28 de marzo de 2020
- [278] INNOVA THERM: Stromerzeugung aus klärschlamm. https://innovatherm.eu/ stromerzeugung-aus-klaerschlamm/. - fecha de acceso 13 de marzo de 2020
- [279] THOMÉ-KOZMIENSKY, K.J.: Verbrennung in Wirbelschichtreaktoren. En: Energie aus Abfall 10 (2013), p. 3-94
- [280] TOLAN, D.J.; BENNETT, D.; KWIECINSKI, J.V.: Blackburn Meadows sewagetreatment works: sludge incineration into the 1990s. En: The Water and Environment Journal 5 (1992), p. 239-248
- [281] BUTTNER ENERGIE- UND TROCKNUNGSTECHNIK GMBH: Experts in energy and drying. Experts in energy and drying
- [282] TSAGKARI, M.; COUTURIER, J.L.; KOKOSSIS, A.; DUBOIS, J.L.: Early-stage capital cost estimation of biorefinery processes: A comparative study of heuristic techniques. En: *ChemSusChem* 9 (2016), p. 2284-2297
- [283] TSANG, K.R.: Arlington WPCP solids master plan. Arlington: CDM Smith, 2018
- [284] TSOTSAS, E.; MUJUMDAR, A.S.: Modern Drying Technology. Wiley [U+2010] VCH Verlag GmbH Co. KGaA, 2014

- [285] TURNS, S.R.: An introduction to combustion concepts and applications. McGraw Hill, 2012
- [286] ULRICH, G.: History of selected cost indices pertinent to chemical processing. http: //www.ulrichvasudesign.com/CEPCI.pdf. - fecha de acceso 15 de marzo de 2020
- [287] EUROPEAN COMMISSION: establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for waste incineration. En: Official Journal of the European Union (2019), p. 55-92
- [288] GOVERNMENT OF THE UNITED KINGDOM: Waste Management Information 2014. https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/470476/Waste_management_2014_England_data_tables.xlsx. - fecha de acceso 24 de marzo de 2020
- [289] VAMVUKA, D.; ALEXANDRAKIS, S.; GALETAKIS, M.: Combustion performance of sludge from a wastewater treatment plant in fluidized bed. Factorial modeling and optimization of emissions. En: *Frontiers in Energy Research* 7 (2019), p. 1-10
- [290] VANKEIRSBILCK, I.; GUSEV, S.; VANSLAMBROUCK, B.; DE PAEPE, M.: Organic Rankine Cycle as efficient alternative to steam cycle for small scale power generation. En: 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (2011)
- [291] VIKTOROVICH, B.V.; NIKOLAYEVNA, O.R.; VLADIMIROVICH, L.L.: Treatment and disposal of sewage sludge in St. Petersburg. En: Water And Environment: Problems And Solutions (2012)
- [292] MINISTERIO DE VIVIENDA, CIUDAD Y TERRITORIO: Decreto 1287 de 2014. En: Sistema Único de Información Normativa [Online] https://www.suin-juriscol.gov.co/ viewDocument.asp?id=1259502 (2014)
- [293] VAN DER VLIES, A.W.; BRESTERS, A.R.; TE MARVELDE, J.H.B.: Slibverbrandingsinstallatie Dordrecht; van mogelijkheid tot realisatie. En: Wageningen University and Research eDepot [Online] https://edepot.wur.nl/370855 (1993)
- [294] WANG, L.K.; SHAMMAS, N.K.; HUNG, Y.-T.: Biosolids Treatment Processes. Humana Press Inc., 2007
- [295] BERLINER WASSERBETRIEBE: Vom Schmutzwasser zum Spreewasser. https://www. bwb.de/de/981.php. - fecha de acceso 13 de marzo de 2020
- [296] BERLINER WASSERBETRIEBE: Klärwerk Ruhleben Datenblatt. https://www.bwb.de/ de/assets/downloads/20170731_Infoblatt_KW-Ruhleben_web.pdf. - fecha de acceso 31 de marzo de 2020 TorontoWater2011

- [297] TORONTO WATER: Biosolids master plan update-Highland Creek Treatment Plant. Highland Creek Treatment Plant, 2011
- [298] WHITE, L.R.; TOMPKINS, T.L.; HSIEH, K.C.; JOHNSON, D.D.: Ceramic filters for hot gas cleanup. En: ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition 3 (1992), p. 1-8
- [299] WOODS, D.R.: Rules of thumb in engineering practice. Wiley [U+2010] VCH Verlag GmbH Co. KGaA, 2007
- [300] WUPPERVERBRAND: Moderne Klärschlammentsorgung. Wupperverbrand, 2002
- [301] YELVERTON, W.H.: CUECost workbook development documentation. Washington: U.S. Environmental Protection Agency, 2009
- [302] CITY OF YOKOHAMA: PFI business for sewage sludge fuel conversion. https://www.city.yokohama.lg.jp/kurashi/machizukuri-kankyo/kasen-gesuido/gesuido/ torikumi/PFI/sludgepfi.html. - fecha de acceso 31 de marzo de 2020
- [303] CITY OF YOKOHAMA: Southern Sludge Recycling Center Operation and management of sewage sludge fuel conversion facility. https://www.city.yokohama.lg.jp/ kurashi/machizukuri-kankyo/kasen-gesuido/gesuido/torikumi/happyo/R01happyoukai. files/ronbun2019-24.pdf. - fecha de acceso 31 de marzo de 2020
- [304] CITY OF YOKOHAMA. http://m-kajimura.com/pdf/20150408newsreport_1.pdf. fecha de acceso 28 de marzo de 2020
- [305] CITY OF YOKOHAMA: Introduction of Nambu sludge recycling center. https://www.city.yokohama.lg.jp/kurashi/machizukuri-kankyo/kasen-gesuido/gesuido/ center/saisei_center/odei-s/13src.html. - fecha de acceso 31 de marzo de 2020
- [306] CITY OF YOKOHAMA: Sludge treatment and effective use PFI business. https://www.city.yokohama.lg.jp/kurashi/machizukuri-kankyo/kasen-gesuido/gesuido/ torikumi/PFI/sludgeyukopfi.html. - fecha de acceso 28 de marzo de 2020
- [307] ZABETAKIS, M.G.: Flammability characteristics of combustible gases and vapors. Washington: U.S. Bureau of Mines, 1924
- [308] AYUNTAMIENTO ZARAGOZA: Estación depuradora de aguas residuales de la Cartuja. En: Ayuntamiento Zaragoza [Online] https://www.zaragoza.es/contenidos/medioambiente/materialesdidacticos/depuradora/DepuradoraCartuja.pdf
- [309] ZHANG, W.; QI, S.; PANTALEO, G.: WO₃-V₂O₅ active oxides for NO_x SCR by NH₃: Preparation methods, catalysts' composition, and deactivation mechanism—A review. En: *catalysts* (2019), p. 1-30

- [310] ZLOCHOWER, I.A.; GREEN, G.M.: The limiting oxygen concentration and flammability limits of gases and gas mixtures. En: Journal of Loss Prevention in the Process Industries 22 (2009), p. 499-505
- [311] CANTON OF ZURICH: Sewage sludge treatment. https://awel.zh.ch/ internet/baudirektion/awel/de/betriebe_anlagen_baustellen/abfallanlagen/ klaerschlammbehandlung.html#title-content-internet-baudirektion-awel-de-betriebe_ anlagen_baustellen-abfallanlagen-klaerschlammbehandlung-jcr-content-contentPar-text. fecha de acceso 29 de marzo de 2020
- [312] GROUP SEWAGE TREATMENT PLANT OF ŁÓDŹ: Sewage treatment plant. http:// www.gos.lodz.pl/oczyszczalnia/. - fecha de acceso 29 de marzo de 2020
- [313] CITY OF GREENSBORO WATER RESOURCES: Greensboro Water Reclamation. En: *City of Greensboro [Online]* https://www.greensboro-nc.gov/home/showdocument?id= 4109 (2003)
- [314] BUREAU OF SEWERAGE TOKYO METROPOLITAN GOVERNMENT: Asakawa Water Reclamation Center - Turbo type fluidized incinerator. En: Bureau of Sewerage Tokyo Metropolitan Government [Online] https://www.sanki.co.jp/news/release/doc/ article082_pdf_01.pdf
- [315] COBB COUNTY GOVERNMENT: Sutton Wastewater Reclamation Facility. https:// www.cobbcounty.org/water/water-sewer/wastewater-treatment/sutton. - fecha de acceso 28 de marzo de 2020