
Formal verification of the high availability
quality attribute for software systems based

on microservices architectures

Camilo Andres Dajer Piñerez

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2023

Formal verification of the high availability
quality attribute for software systems based

on microservices architectures

Camilo Andres Dajer Piñerez

Thesis presented as a partial requirement for the degree of:
Master in Systems Engineering and Computer Science
«Magíster en Ingeniería - Ingeniería de Sistemas y Computación»

Advised by:
Jeisson Andrés Vergara Vargas, M.Sc.

Research Field:
Software Enginnering

Research Group:
ColSWE - Software Enginnering

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2023

Dedicated to my family.

Acknowledgments

Firstly, I would like to express my gratitude to the Universidad Nacional de Colombia for their
efforts in topics related to software engineering. I am especially grateful to all the professors
who played a vital role in my training process, particularly Professor Jeisson Vergara for his in-
valuable teaching of software architecture and his advice in completing this thesis.

I would also like to acknowledge my appreciation for my family, especially my mother, who
encouraged and supported me throughout the completion of this thesis. Additionally, I extend
my gratitude to all my friends who provided me with their unwavering support and guidance
throughout this process.

Finally, I would like to express my thanks to all the authors cited in this document. Their work
and contributions were critical to the successful completion of this thesis. Without them, this
project would not have been possible.

ix

Title in English

Formal verification of the high availability quality attribute for software systems based on mi-
croservices architectures.

Título en español

Verificación formal del atributo de calidad de alta disponibilidad para sistemas de software basa-
dos en arquitecturas de microservicios.

x

Abstract

The decisions made by software architects can have significant repercussions if they are made
incorrectly. Therefore, it is crucial to base such decisions on concrete evidence rather than
solely relying on heuristic experiences to determine if the architectural design decisions were
correct. This approach can help avoid incurring refactoring or reengineering costs in the future.

This work proposes a general model for the formal verification of software architectures and
presents a case study of an architecture based on microservices for ensuring high availability.
Through this thesis, the different steps of the model will be presented, and it will be demon-
strated how they should be applied to carry out a formal verification. This verification can guide
software architects in making decisions based on formal evidence using automatic verification
tools.

Keywords: Software architecture, quality attributes, formal methods, architectural tactics, formal ver-
ification, microservices architecture, high availability.

xi

Resumen

Las decisiones tomadas por los arquitectos de software pueden tener graves repercusiones si
se toman de manera incorrecta. Por lo tanto, es fundamental basar dichas decisiones en eviden-
cias concretas en lugar de depender únicamente de experiencias heurísticas para determinar si
las decisiones de diseño arquitectónico fueron correctas. Este enfoque puede ayudar a evitar
costos de refactorización o reingeniería en el futuro.

Este trabajo propone un modelo general de verificación formal para arquitecturas de software
y presenta un caso de estudio de una arquitectura basada en microservicios para asegurar el
atributo de calidad de disponibilidad. A lo largo de esta tesis se expondrán los diferentes pasos
necesarios para llevar a cabo una verificación formal y se explicará cómo deben aplicarse para
guiar a los arquitectos de software en la toma de decisiones basadas en evidencias formales,
utilizando herramientas de verificación automáticas.

Palabras clave: Arquitectura de software, atributos de calidad, métodos formales, tácticas arquitectóni-
cas, verificación formal, arquitectura de microservicios, alta disponibilidad.

This master’s thesis was defended on April 25, 2023 at 2:00 p.m.,
and was evaluated by the following juries:

Jorge Eliécer Camargo Mendoza, Ph.D.
Universidad Nacional de Colombia, Facultad de Ingeniería

Henry Roberto Umaña Acosta, M.Sc.
Universidad Nacional de Colombia, Facultad de Ingeniería

Contents

Acknowledgments vii

Abstract x

List of Figures xv

List of Tables 1

1 Introduction 2

2 Background 4
2.1 Software Architecture . 4
2.2 Microservices Architecture Style . 4
2.3 Availability Quality Attribute . 5

2.3.1 Availability Generalities . 6
2.3.2 Architectural Tactics in HA . 7

2.4 Formal Verification . 7

3 Related Work 10
3.1 High Availability in Microservices Architectures 10
3.2 Formal Methods in Software Architecture . 10
3.3 Gaps in Previous Work . 12

4 Analysis of Availability Tactics 14
4.1 Monitor . 15
4.2 Retry . 15
4.3 Functional redundancy . 15
4.4 Replication . 17
4.5 Exception handling . 17
4.6 Escalating restart . 18
4.7 Time stamp . 19
4.8 Transactions . 19
4.9 Ignore faulty behavior . 19
4.10 Self-test . 21

xiv Contents

5 Verification Model 22
5.1 System Specification . 22
5.2 Scenario . 23
5.3 System Properties . 24
5.4 Structural Definition . 24
5.5 Behavioural Definition . 25
5.6 Implementation . 26
5.7 Verification . 26

6 Case Study 27
6.1 Base Case Study . 27

6.1.1 System Specification . 27
6.1.2 Scenario . 28
6.1.3 System Properties . 28
6.1.4 Structural Definition . 29
6.1.5 Behavioural Definition . 31
6.1.6 Implementation . 31
6.1.7 Verification . 36

6.2 Study Case with Architectural Tactics . 37
6.2.1 System Specification . 37
6.2.2 Scenario . 37
6.2.3 System Properties . 38
6.2.4 Structural definition . 39
6.2.5 Behavioural definition . 41
6.2.6 Implementation . 41
6.2.7 Verification . 44

6.3 Results Comparison . 46

7 Conclusions and Future Work 48
7.1 Conclusions . 48
7.2 Future Work . 48

Bibliography 50

List of Figures

4-1 C&C view of base model. 14
4-2 C&C view of monitor tactic. 15
4-3 C&C view of retry tactic. 16
4-4 C&C view of functional redundancy tactic. 16
4-5 C&C view of replication tactic. 17
4-6 C&C view of exception handling tactic. 18
4-7 C&C view of escalating restart tactic. 18
4-8 C&C view of timestamp tactic. 19
4-9 C&C view of transactions tactic. 20
4-10 C&C view of ignore faulty behavior tactic. 20
4-11 C&C view of self-test tactic. 21

5-1 Verification model. 22
5-2 Components & Connectors View. 23

6-1 Case study - Components & Connectors View. 27
6-2 Case study - Sequence diagram . 29
6-3 Case study - Standard declarations - CPN Tools. 33
6-4 Case study - Implemented Model - CPN Tools. 35
6-5 Case study - Verification results. 36
6-6 Case study with tactics - Components & Connectors View. 37
6-7 Case study with tactics - Sequence diagram . 39
6-8 Case study with tactics - Standard declarations - CPN Tools. 42
6-9 Case study with tactics - Implemented Model - CPN Tools. 44
6-10 Case study with tactics- Verification results. 45
6-11 Case study with tactics- Liveness results. 46

List of Tables

3-1 Study categorization. 12

1 Introduction

The fourth industrial revolution has resulted in software systems becoming increasingly large
and complex. For this reason, carrying out a comprehensive design of the blueprints of the soft-
ware systems before implementing them has become an essential part of maintaining harmony
between the system’s components. This process is known as software architecture [13].

Due to the complexity of software systems and the criticality of their quality, both industry
and academia have dedicated significant effort to finding solutions to recurrent problems in the
design process. As a result, we can find different architectural patterns and styles in software
architecture that can be applied to the architectural design process [19].

Despite the inherent characteristics of architectural styles and patterns, it is necessary to be
certain about the architectural decision and the impact that is being made when choosing Mi-
croservices Architecture (MSA) as the architectural style to be implemented in a system. For
this, there are methodologies for making decisions on the architecture of a software system,
however, authors such as Li [25] and Salama [37] agree that it is necessary to carry out valida-
tions on the candidate software architecture to determine if the architectural design decisions
were correct, and not incur refactoring or reengineering costs in the future.

Currently, software architects use a heuristic method and their experiences to make architec-
tural decisions by applying informal checks on their software systems [34]. This means that
architects sometimes have to carry out refactoring or reengineering processes as they are not
sure that the architectural decision made meets the non-functional needs they need. With the
current trend of microservices architecture, some architects are migrating their systems to this
architecture without being clear about the advantages and disadvantages that this entails. For
this reason, it is necessary to have verifiers with formal methods [25] [37], which allow robust
architectural decision-making and be able to carry out the implementation safely. For this rea-
son, the research question posed is the following: How to formally verify the quality attribute
of high availability in a microservices architecture?

The main objective of this thesis is to discuss the work that has been carried out in the area of
implementing formal verifications on software architecture, with a particular emphasis on the
microservices style. To achieve this, the thesis will cover the main components of MSA, the
quality attributes associated with this architectural style, and the formal verification methods

3

that have been applied, with a special emphasis on Model Checking. By doing so, it will be
possible to select a set of mathematical elements to define the high availability quality attribute
and verify it in a microservices software architecture that has been designed specifically for this
thesis.

For this reason, the objective achieved is be to apply a formal verification method for the quality
attribute of high availability in software systems based on microservice architectures, through
the following specific objectives:

• To classify a set of high availability architectural tactics for microservices architectures.

• To define a set of elements that allow to formally specify software systems based on mi-
croservices from the point of view of high availability.

• To formally specify a software system as a case study, based on a microservices architec-
ture.

• To design a formal description model for the selected software system.

• To validate the formal model defined through formal verification processes.

Chapter 2 will provide the necessary background to understand the thesis development, in-
cluding topics such as software architecture, architectural styles and patterns, with a focus on
microservice architectures. Additionally, it will cover quality attributes and quality attribute
assurance tactics, as well as formal verification.

In chapter 3, an exploration will be made of the different works carried out to ensure quality
attributes through formal verifications focused on microservice architectures.

In chapter 4, a classification of architectural tactics used to ensure the high availability quality
attribute will be carried out, focused on which of them structurally modify a software system
using a base scenario.

Chapter 5 will propose the general verification model, and in Chapter 6, it will be applied to a
case study in two phases. The first phase will not implement any architectural tactics, and the
second phase will implement architectural tactics to ensure high availability. The formal verifi-
cation will then be applied to the case studies using the state space method.

Finally, in chapter 7 conclusions and future work will be presented.

2 Background

2.1 Software Architecture

A system’s architecture is the set of principal design decisions made during it’s development
and any subsequent evolution [43], this implies a high-level abstraction that allows to describe
the elements and all the interactions of the system, including hardware and software [36]. Due
to this, the architecture is present in all the systems, including of course those which were not
done consciously, because it will have, whether contemplated or not, a structure.

2.2 Microservices Architecture Style

In software architecture we can find patterns and styles: An architectural style can be defined
as a set of reuse design decisions that can be applied to a software system design [7]. On the
other hand, an architectural pattern is a specific, well-established solution to a common design
problem that appears in particular design contexts [4]. It means that an architectural style is
a broad approach to solving architectural problems, while an architectural pattern is a specific
solution to a specific problem within that architectural style.

Choosing the wrong architectural pattern or style can result in unnecessary time and costs since
the process of changing it is known as the reengineering process. During the reengineering pro-
cess, the tech team may need to re-implement software components if the software system is
still under development or has already been finalized. Therefore, it is crucial to ensure that the
correct decision is made to avoid such additional costs and efforts.

One important architectural style is Microservices, which have received special attention from
researchers and private companies that have decided to implement it due to its characteristics
[1].

A microservices architecture (MSA) according to the authors Di Francesco [11], Magableh [27],
Zdun [50] y Newman [30] is a set of small services, each executing its own process and commu-
nicating by light mechanisms with each other.

2.3 Availability Quality Attribute 5

From an architectural perspective, the elements and relationships that compose MSA are mi-
croservices and connectors REST respectively. For this reason, in an abstract level, an architec-
ture can be taken as a graph, where each component is a node, and it’s communication methods
the connectors of the graph [49]. Likewise, it is possible to describe the structure of a system
that implements this architecture, using the components and connectors view [5].

In other hand, like all the architectural styles, MSA has some main characteristics, that compose
the main fundamentals, these are:

• Single responsibility principle: Each microservice should be restricted to performing the
specific tasks it was designed for, and should carry out these tasks in an effective and
efficient manner [30].

• Independent and cohesive process: The microservices should be designed to operate in-
dependently from one another, so that in the event of changes, only the microservice
responsible for the specific functionality would need to be modified [10].

• Heterogeneous technology: Even though each microservice is independent, it is possible
to select different technologies for each of them, based on their advantages and their
ability to meet the desired quality standards [30].

Despite these characteristics, developers have the freedom to implement the architecture apply-
ing different design decisions, trying to reinforce the robustness of their system, although these
decisions may not always be the best, in this way, many times they can fall into the called ”bad
smells” [29], which are bad practices applied in making decisions about the implementation of a
software architecture. Among the most common bad practices in the use of MSA, the literature
highlights the following:

• Do not use the Api Gateway component to perform orchestration on architecture compo-
nents.

• Forced use of static IP addresses.

• ”Woobly” interactions, which imply that, in the interaction of microservices, an error in
microservice-1 produces an error in microservice-2 [29].

This is why it is very important to follow the MSA standards, which will ensure the basic quality
attributes that are inherent to the architectural style.

2.3 Availability Quality Attribute

The quality attributes are properties that the software system has, through which a stakeholder
can rate the quality of the system [36]. The authors Tekinerdogan, Ozca [44], Magableh [27] and

6 2 Background

Kee Wook Rim [33] agree that the quality attributes that can be highlighted are interoperability,
performance, availability, recovery before failures, security, portability, usability and modifia-
bility. In this way, it means that a software system that does not have any quality attribute, even
though it functionally fulfills everything required, is low-quality software that may not function
properly. As an illustrative example, a bank information system can be taken, which performs
all reconciliation tasks correctly, but if the system remains down, is too delayed or insecure, it
may not fulfill what the bank needs or is expecting. to have. For this reason, it can be stated
that there is a significant relationship between the quality metrics of a product and the quality
metrics of a software architecture [17], and these must be built together when the system is
designed, do not analyze them at a later stage [41] [18].

As well as the different architectural styles and patterns, the microservices architecture, due
to its characteristics, allows ensuring quality attributes associated with low coupling, interop-
erability and the continuous provision of services [28]. The quality attribute to be work in this
thesis is high availability:

2.3.1 Availability Generalities

Availability can be defined as the system readiness to provide correct service. It corresponds to
the probability that the system is working within its specifications at a given instant. From soft-
ware architecture to analysis models and back: Model-driven refactoring aimed at availability
improvement. In availability, the cause of a failure is called a fault. A fault can be either internal
or external to the system under consideration. Intermediate states between the occurrence of
a fault and the occurrence of a failure are called errors. A failure is the deviation of the system
from its specification, where that deviation is externally visible. Determining that a failure has
occurred requires some external observer in the environment. For that reason, by Bass [4], avail-
ability is about minimizing service outage time by mitigating faults. Failure implies visibility to
a system or human observer in the environment. One of the most demanding tasks in building a
high-availability, fault-tolerant system is to understand the nature of the failures that can arise
during operation. Once those are understood, mitigation strategies can be designed into the
software.

The goal of availibility is to avoid single points of failure (SPOF), that is, eliminate all elements,
that if they fall, the systemwill not work correctly or even the entire systemwill fall. Due to that,
the availability of a system can be calculated as the probability that it will provide the specified
services within required bounds over a specified time interval. When referring to this quality
attribute, there is a well-known expression used to derive steady-state availability:

2.4 Formal Verification 7

MTBF

MTBF +MTTR

where:
MTBF: Refers to the mean time between failures
MTTR: Refers to the mean time to repair

Due to this, when a system should operate continuously, with minimal downtime, and to quickly
recover from failures is named High availability (HA). In other words, high availability is a level
of availability that ensures a system is always operational and accessible to users, with minimal
interruption.

2.3.2 Architectural Tactics in HA

An architectural tactic is defined as a characterization of an architectural decision that is neces-
sary to ensure a quality attribute [45] [24].

According to Bass, classification of architectural tactics to ensure high availability are based on
the moment where it is used, this classification is:

• Prevention: Due to availability want to avoid is the occurrence of a failure, these tactics
are focused on acting in such a way that failures are minimized.

• Detection: When a failure occurs, it is necessary that it be detected in such a way that
action can be taken, for this reason these tactics are focused on the early detection of
system failures.

• Recovery: Once the fault is detected, it is necessary to take action to solve it in the most
automatic way possible and in this way reduce the time of failure, these tactics are focused
on acting in case a fault occurs in order to eliminate it.

2.4 Formal Verification

Formal method is a method in which all its constituent techniques and tools are formal that
is given by a precise mathematical meaning, and the use of the techniques can be defined and
justified formally [35].

Formal verification is a part of formal methods, and refers to the process of validate a design
satisfies some requirements or properties [20]. In this way, to validate or verify a software de-
sign, it must be in a verifiable format, for that reason is important to define a language that is a

8 2 Background

set of operators and variables which can be expressed in a verification model.

Due to this, the first step in a verification process is the specification process, which consists of
obtaining a Finite State Machine description of the system. Finite State Machine is an abstract
machine that can be in exactly one of a finite number of states at any given time. The FSM
changes from one state to another in response to some inputs; the change from one state to
another is called a transition. An FSM is defined by a set of states, and the inputs that trigger
each transition [40]. The verification process is only one of the multiple sections of the formal
methods.

In the revision of the literature, two principal resources were identified. Petri Nets and Model
Checking. In this way, both can be used in the same process, so a software system can be de-
fined in Petri Nets, and you can verify the model using Model Checking.

Petri nets are a formal language to specify and verify concurrent system, that uses amathematical
representation of a discrete event system [6]. This language can be used to specify control, func-
tion and time problems [15]. Through automata theory, these networks allow the specification
of a distributed system in order to perform verifications on the structure based on a Bayesian
probabilistic model, which allows the dynamic study of the behavior of complex systems [42].

As for Model Checking, this has become one of the most used formal verifiers in the analysis of
complex system designs, because it is a fully automatic process [38], this being a significant ad-
vantage over the others checkers. Users who want to apply Model Checking must build a model
of the software system and specify which property to check, and then the checker will perform
property analysis on the proposed architecture [51]. Model Checking is an influential method
for verifying complex, concurrent, and distributed system interactions, because it builds a be-
havior model of a system using formal concepts such as operations, states, events, and actions.

The state space method is a mathematical approach that is used to analyze and understand the
behavior of systems. It involves representing the system as a set of states, and the transitions
between those states. The state space of a system is a representation of all possible states that
the system can be in, as well as the transitions between those states.

The state space method can be used to analyze a wide range of systems, including dynamical
systems, control systems, and computer systems. It is a powerful tool for understanding the
behavior of systems over time, and can be used to analyze both deterministic and probabilistic
systems.

In the state space method, the states of the system are represented as points in a state space,
and the transitions between states are represented as arrows between those points. The state

2.4 Formal Verification 9

space method can be used to analyze both the steady-state behavior of a system and its transient
behavior, and can provide insights into the stability, convergence, and other properties of the
system.

3 Related Work

3.1 High Availability in Microservices Architectures

Microservices architectures have been studied from different perspectives, such as security,
scalability and among others quality attributes, trying to compare the problems that other ar-
chitectures have in search of looking at what happens in those same situations in microservices
architectures. For example, in monolithic applications all modules run within hardware and ex-
ecution process, a bug in server or the execution process, such as a memory leak, can affect the
availability of all system [31], for that reason some authors like Torvekar [46] affirms that some
companies are migrating their systems to microservices architectures to improve their system’s
availability and meet the service-level agreement (SLAs). On the other hand, microservices can
increase complexity in system monitoring and detect faults for the different components [52].

In 2021, Shanshan Li [26], categorized availability tactics in MSA into four types, which are:

• Fault Monitor

• Service Registry

• Circuit Breaker

• Inconsistency Handler

3.2 Formal Methods in Software Architecture

There are some methodologies that are used to improve assertiveness in architectural decision
making, the authors Svahnberg, Wohlin (2003) and Kazman (2005) mention the ATAM method-
ology, which is a methodology to evaluate Software Architectures based on the attributes of
quality specified for the system [23][41]. After the definition of these methodologies, the au-
thors Ferrari and Madjavhi [14] conducted a study in 2008 in which they show that groups of
architects that use methodologies tend to perform better than those architects that do not.

Despite using these methodologies for decision making, both authors Li [25] and Salama [37]
agree that it is necessary to perform validations on the candidate software architecture to deter-
mine if the architectural design decisions were correct and not incur refactoring or reengineering

3.2 Formal Methods in Software Architecture 11

costs in the future.

In 2005 the authors Kazman, Bass and Klein [23] mentioned that there are two verification meth-
ods: formal and informal. Formal methods have a fairly strong mathematical foundation, how-
ever, the authors mention that there are few formal methods to determine if a software archi-
tecture is correct.

Throughout the 2000s, different authors such as Dobrica & Niemelä [12], Babar and Gorton [2],
Zhang, Pengcheng Muccini, Henry Li and Bixin [51] have mentioned the importance of software
architecture analysis methods and have carried out works comparing different methods to de-
termine their most important characteristics, similarities and differences, including the specific
objectives, the evaluation method, the quality attributes evaluated by each method and the val-
idation method. However, the authors Henry Li and Bixin focus on the techniques applied with
Model Checking, where they analyzed 16 techniques to evaluate software architectures.

The authors Pavel Parizek and Frantisek Plasil [32] mention that performing model checking of
isolated software components is not possible because the components do not form a complete
system with a specific starting point. In order to get around that pitfall, it is typically neces-
sary to create a component environment for the system on which you are trying to apply model
checking [32].

In 1999 Giannakopou [16] proposed a model checking approach to analyze the behavior of con-
current systems using FSP, later in 2001, Suzanne Barber and Thomas Graser [3] proposed Ar-
cade, an approach that allows timely feedback from the architecture designed through simulation
and model checking, these authors assure that Model checking is a very robust technique for
validating the quality attributes of availability and security.

In order to apply model checking in a software architecture, it is necessary to define the input
that the analyzer will receive, for this it is broken down into two main entities: the architecture
specifications, and the quality attributes. Different specification languages can be used for this
process, both formal and informal [51]. The most widely used specification is formal Architec-
ture Description Language (ADLs), although, with the CHARMY approach, UML can be used as
a notation to specify the architecture to be evaluated, since it is based on models [21]. Once the
architecture is specified, the quality attributes must be specified, for this, each of the approaches
uses its own tool, in which the CHARMY tool is highlighted, which provides a graphical tool [51].

Once the input parameters are defined, the model checking engine must be chosen. The authors
mention different engines like FDR, SPIN, PoliMC and SMV [47][51][8].

In this way, it is timely to emphasize the importance that the authors have given to the formal

12 3 Related Work

verifications of software architectures.

3.3 Gaps in Previous Work

A classification of the most relevant works for this thesis was carried out, where the categories
worked by each one of them are cataloged, the results were the following:

Table 3-1: Study categorization.
Study Software Architecture Architecture Evaluation Quality attributes Microservice Architecture Availability attribute Formal Methods

Ahmad, A., & Babar, M. A. (2016). Software architectures for robotic systems:
A systematic mapping study. Journal of Systems and Software, 122, 16–39.
https://doi.org/10.1016/j.jss.2016.08.039

x

Babar, M. A., Kitchenham, B., Zhu, L., Gorton, I., & Jeffery, R. (2006).
An empirical study of groupware support for distributed software architecture
evaluation process. Journal of Systems and Software, 79(7), 912–925.
https://doi.org/10.1016/j.jss.2005.06.043

x x

BARBER, K. S. ; GRASER, Thomas ; HOLT, Jim: Providing early feedback
in the development cycle through automated application of model checking to software architectures

x x x

Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice
Second Edition Third Edition. In Communication.
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/

x x x

Brito, P. H. S., De Lemos, R., Rubira, C. M. F., & Martins, E. (2009). Architecting
fault tolerance with exception handling: Verification and validation. Journal of Computer
Science and Technology, 24(2), 212–237. https://doi.org/10.1007/s11390-009-9219-2

x x x x

Camilli, M., Gargantini, A., Scandurra, P., & Bellettini, C. (2017). Event-based runtime
verification of temporal properties using time basic Petri nets. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10227 LNCS, 115–130. https://doi.org/10.1007/978-3-319-57288-8_8

x x

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003).
Documenting software architectures: Views and beyond. Proceedings -
International Conference on Software Engineering, 131, 740–741.
https://doi.org/10.1109/icse.2003.1201264

x x x

Czepa, C., Tran, H., Zdun, U., Tran, T., Weiss, E., & Ruhsam, C. (2017).
Reduction techniques for efficient behavioral model checking in adaptive case management.
Proceedings of the ACM Symposium on Applied Computing, Part F1280, 719–726.
https://doi.org/10.1145/3019612.3019617

x x x x

Dehkordi, Z. S., Harounabadi, A., & Parsa, S. (2013). Evaluation of software architecture using
fuzzy color Petri net. Management Science Letters, 3(2), 555–562.
https://doi.org/10.5267/J.MSL.2012.12.016

x x x x

Demirli, E., & Tekinerdogan, B. (2011). Software language engineering of architectural viewpoints.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6903 LNCS, 336–343.
https://doi.org/10.1007/978-3-642-23798-0_36

x

Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices:
A systematic mapping study. Journal of Systems and Software, 150, 77–97.
https://doi.org/10.1016/j.jss.2019.01.001

x x x

Dobrica, L., & Niemelá, E. (2002). A survey on software architecture analysis methods.
In IEEE Transactions on Software Engineering (Vol. 28, Issue 7, pp. 638–653).
Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TSE.2002.1019479

x x

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R.,
& Safina, L. (2017). Microservices: Yesterday, today, and tomorrow. In Present and
Ulterior Software Engineering (pp. 195–216).
Springer International Publishing. https://doi.org/10.1007/978-3-319-67425-4_12

x x x x

Ferrari, R., & Madhavji, N. H. (2008).
Software architecting without requirements knowledge and experience:
What are the repercussions? Journal of Systems and Software, 81(9), 1470–1490.
https://doi.org/10.1016/j.jss.2007.12.764

x x

Ghezzi, C., Mandrioli, D., Morasca, S., & Pezze, M. (1991). A unified high-level
Petri net formalism for time-critical systems. IEEE Transactions on Software Engineering,
17(2), 160–172. https://doi.org/10.1109/32.67597

x x

Giannakopoulou, D. (1998). Model Checking for Concurrent Software Architecutures.
Department of Computing, January.
http://www.doc.ic.ac.uk/∼dg1/tracta/papers/thesis.pdf

x x x x

Hansen, K. M., Jonasson, K., & Neukirchen, H. (2011).
An empirical study of software architectures’ effect on product quality.
Journal of Systems and Software, 84(7), 1233–1243.
https://doi.org/10.1016/j.jss.2011.02.037

x x x

Haoues, M., Sellami, A., Ben-Abdallah, H., & Cheikhi, L. (2017).
A guideline for software architecture selection based on ISO 25010 quality related characteristics.
International Journal of System Assurance Engineering and Management, 8, 886–909.
https://doi.org/10.1007/s13198-016-0546-8

x x x x x

Zhang, P., Muccini, H., & Li, B. (2010). A classification and comparison of model checking software
architecture techniques. Journal of Systems and Software, 83(5), 723–744.
https://doi.org/10.1016/j.jss.2009.11.709

x x x x

Li, J. J., & Horgan, J. R. (2000). Applying formal description techniques to software architectural design.
Computer Communications, 23(12), 1169–1178.
https://doi.org/10.1016/S0140-3664(99)00244-3

x x x x

Salama, M., & Bahsoon, R. (2017). Analysing and modelling runtime architectural stability for self-adaptive
software. Journal of Systems and Software, 133, 95–112.
https://doi.org/10.1016/j.jss.2017.07.041

x x x

After reviewing the previous work, it was found that some authors have contributed through
formal techniques for the assurance of quality attributes but focused on types of systems such

3.3 Gaps in Previous Work 13

as IOT or aerospace, however, given the important boom that microservices architectures have
had in the construction of systems, the opportunity was found to contribute to the scientific
community in the application of formal methods to ensure the high availability attribute in mi-
croservices architectures, and in this way help software architects to make decisions based on
formal results.

4 Analysis of Availability Tactics

To better illustrate the applicability of the proposed model, it is important to consider not only
architectural tactics that are based on the behavior of the system but also those that make struc-
tural modifications to the system. Since the focus of this thesis is on high availability, an analysis
of 10 architectural tactics is carried out to validate whether the tactic modifies the system struc-
turally.

Therefore, the selected architectural tactic will be applied to a system that has already been de-
signed, where the views of components and connectors have been established. This approach
will enable a comparison of the system before and after the tactic is applied to confirm that the
views of components and connectors remain unchanged.

The base system for the modification is based on an MSA that utilizes the orchester pattern:

Figure 4-1: C&C view of base model.

As can be seen in graph 4-1, the system will be made up of 8 components, of which Front-end-
comp corresponds to the component in charge of interacting with the user,Orchester to perform
the system orchestration,ms_1,ms_2 andms_3 will have specific logic system, and db_1, db_2
and db_3 responsible for system persistence.

4.1 Monitor 15

4.1 Monitor

Monitor is a external component that is used to keep track of the functioning of various com-
ponents within a system, such as processors, processes, input/output, memory, and so on. A
systemmonitor can identify issues or high levels of use in the network or other shared resources,
such as in the case of a denial-of-service attack [4].

Figure 4-2: C&C view of monitor tactic.

As can be seen, the monitor tactic introduces a new component in the system in charge of car-
rying out the analysis of the system variables, therefore it does structurally modify the system.

4.2 Retry

The retry tactic is based on the assumption that temporary issues are the cause of failures, and
that repeating the operation may result in success. This tactic is often used in networks and
server farms, where failures may be expected and frequent. It is important to set a limit on the
number of times an operation is retried before it is considered a permanent failure [4].
As can be seen in figure 4-3, the retry tactic does not introduce a new component into the system,
since retries only modify the behavior of the previously described components, therefore it does
not structurally modify the system.

4.3 Functional redundancy

In this tactic, the components are required to consistently provide the same output when given
the same input, even though they have been designed and implemented in different ways [4].
The functional replication tactic introduces new components into the system, since it is neces-
sary to implement the current components in different ways and deploy them to work together,
thus structurally modifying the system.

16 4 Analysis of Availability Tactics

Figure 4-3: C&C view of retry tactic.

Figure 4-4: C&C view of functional redundancy tactic.

4.4 Replication 17

4.4 Replication

This tactic involves using multiple copies of identical components. This approach can be ef-
fective in protecting against random hardware failures, but it cannot protect against design or
implementation errors in hardware or software because there is no diversity among the compo-
nents [4].

Figure 4-5: C&C view of replication tactic.

From component and connector view theory, multiple instances should not represent a new
component within the view. However, since it modifies the system behaviorally, it is necessary
to specify it for the proposed verification model, where additionally the new component known
as load balancer (lb) must be specified, in charge of balancing the requests between the different
instances of the component.
The replication tactic introduces new components into the system since it is necessary to de-
ploy the current components several times, in this way not leaving each component as a single
instance, and additionally it is necessary to deploy a new component called a load balancer that
allows distribute the loads depending on different factors such as the load, and the availability
of each one of them, therefore it structurally modifies the system.

4.5 Exception handling

When an exception is detected, the system must respond in some way. The simplest option
would be to crash, but this is not a good solution in terms QA. Instead, there are more pro-
ductive approaches that can be taken. The mechanism used for exception handling depends on
the programming environment being used, and can range from simple error codes returned by
functions to the use of exception classes that contain information about the exception, such as
its name, origin, and cause. This information can then be used by the software to address the
fault, often by correcting the cause of the exception and retrying the operation [4].

18 4 Analysis of Availability Tactics

Figure 4-6: C&C view of exception handling tactic.

The exception handling tactic does not introduce a new component into the system as the ex-
ception handling behavior is implemented within the components, such as the orchestrator, the
microservice, or the component where the error occurred, therefore it does not structurally
modify the system.

4.6 Escalating restart

The Escalating restart tactic is a method of recovery that allows the system to recover from faults
by starting again at different levels of granularity and minimizing the impact on service [4].

Figure 4-7: C&C view of escalating restart tactic.

This tactic is unique because it enables the execution of escalating restart behavior either by
the current components or a separate component. The first scenario, where this function is
assumed by the current components, is considered in this thesis. In this way, it is determined
that this tactic does not structurally modify the system.

4.7 Time stamp 19

4.7 Time stamp

This tactic is used to identify incorrect sequences of events, particularly in distributed systems
that rely on message passing. The time stamp of an event can be recorded by assigning the state
of a local clock to the event immediately after it occurs [4].

Figure 4-8: C&C view of timestamp tactic.

The timestamp tactic is implemented under the same components and the same connectors,
since it is not necessary to add new calls, instead it is necessary to add the data to each of the
requests in order to apply it. Therefore this tactic does not structurally modify the system.

4.8 Transactions

Systems that aim to provide high-availability services use transactional semantics to ensure that
the messages exchanged between distributed components are atomic, consistent, isolated, and
durable. These four properties, known as the ”ACID properties,” help to prevent race conditions
caused by two processes attempting to update the same data item at the same time [4].
The transaction tactic is implemented under the same components, and requires a logical im-
plementation in order to achieve the ACID principles for each operation. Therefore this tactic
does not structurally modify the system.

4.9 Ignore faulty behavior

This tactic involves disregarding messages that are sent from a specific source when it is deter-
mined that they are not valid. For example, this approach could be used to ignore messages from
an external component attempting to launch a denial-of-service attack by implementing Access
Control List (ACL) filters [4].

20 4 Analysis of Availability Tactics

Figure 4-9: C&C view of transactions tactic.

Figure 4-10: C&C view of ignore faulty behavior tactic.

4.10 Self-test 21

The ignore faulty behavior tactic is implemented under the same components, and requires an
implementation logic in order to achieve the behavior. Therefore this tactic does not structurally
modify the system.

4.10 Self-test

Components (or, more likely, entire subsystems) can run tests to verify that they are functioning
correctly. These self-test procedures can be initiated by the component itself or run periodically
by a system monitor. These tests may include techniques similar to those used in condition
monitoring [4].

Figure 4-11: C&C view of self-test tactic.

The self-test tactic is implemented under the same components, and requires a logical imple-
mentation to be able to achieve the necessary tests of each one of the components. Therefore
this tactic does not structurally modify the system.

5 Verification Model

Figure 5-1: Verification model.

The general verification model is important, because it allows determining the factors that must
be specified in order to later formally verify a software system. In the case of this study, it
was decided to use a model based on author Zhang [51]. For this, three initial components are
described to be defined in any system that wishes to use the formal modeling and verification
process proposed in this study. These components are:

5.1 System Specification

For the topological description of a software system, it is decided to use components and connec-
tors (C&C) view proposed by Clements [7], because it allows the abstraction of the architectural
structure of the system at runtime enough to be formally modeled later.

The Components and Connectors view are composed by:

• Components: Logical units in charge of process and data stores. It interacts with other
components using connectors.

• Connectors: Communication channel between components.

5.2 Scenario 23

For this need to be take into account:

• Determine the parts of the system: Begin by identifying the various components that
make up the system. A component is a standalone unit of functionality that performs a
particular task or fulfills a specific role within the system.

• Establish the connections between components: Next, determine the relationships be-
tween the components. This can include dependencies, in which one component depends
on another component to function, or collaborations, in which two or more components
work together to accomplish a shared objective.

Figure 5-2: Components & Connectors View.

Similarly, it is not necessary to make low-level specifications in the diagram, since these can be
specified in each of the scenarios as long as they have an effect on the variables that influence
the system. That is, if the programming language used has an influence on the number of errors
that appear, this will be a parameter to be defined in section 5.3.

Output: Components & connectors view of the system.

5.2 Scenario

The scenario is related to the different variables that can change during the simulation that is
carried out later. In this way, it refers to the different variables that can infer during the execu-
tion environment of the software system, such as: maximum repair time, number of requests
per second, probability of failure of a component, among others. They can be seen as assump-
tions during the modeling process.

24 5 Verification Model

It is necessary to make a list of the parameters that they want taken into account. Once this is
done, the number of scenarios to be tested must be created, assigning a quantitative or qualita-
tive value to each parameter described in the list made for each of them.

This approach allows us to be as specific in the variables as needed. For instance, for a specific
case, it may be enough to specify the probability error of a component. However, for other
cases, it may be necessary to specify more details of system parameters as long as they have an
impact on its behavior. This is crucial as it affects the results delivered by the verifier.

It is important to note that the type of verifier used can be influenced by these variables. There-
fore, it is crucial to select a verifier that is capable of defining the scenario as required and not
limited by the same verifier. It is therefore important to follow the order of the verification
model proposed in this thesis.

Output: List of scenarios with its respective value for each parameter & constraints to be eval-
uated.

5.3 System Properties

They refer to the system’s ability to act in a certain way, which in turn can affect each of the
system’s behaviors. They are generally defined as system restrictions, and can allow to ensure
or worsen the behavior of the system to maximize a quality attribute of the system.

In this way, in order to be defined, it must be clearly specified what the system is capable of
depending on each of the situations that occur. An example may be the way in which the system
behaves when a system failure occurs.

These must be described sequentially according to the operation of the described system. The
interaction of each component with another component, and the operation of each of them at
runtime.

Output: Sequence diagram of the system.
With these 3 initial components it is now possible to make a more formal definition of the
software system and its properties.

5.4 Structural Definition

Input: Components & connectors view of the system.

5.5 Behavioural Definition 25

The system specification refers to the structure of the system, and to achieve this, the following
factors must be taken into account:

• The components and connectors must be translated into a specific modeling language that
allows for the definition of each of the components and connectors.

• There is no restriction on the selected language as long as it allows for the syntactic and
semantic definition of the system in a previously defined structural way.

Output: Model language of list of components and their connections.

5.5 Behavioural Definition

Input: Sequence diagram of the system.

The behavior of the system will be defined by the different flows and actions that occur in the
system, as well as specific events that can or should occur in the system. In this way, it is im-
portant to detail all the actions that can occur so that later the results are the most accurate
possible, in the same way, this does not imply that some events may not be defined and even
then they will appear in the results, it all depends of the verifier selected later. For this reason,
the system operation flow should be listed together with the possible responses to be returned.

In the case of this thesis, the functions will be listed as follows:

functionName(component1, component2, object) = return(result1, result2, resultn)

where:

• functionName: It is the name of the function that is executed.

• component1: It is the component that makes the request.

• component2: It is the component that handles the request.

• object: It is the sent object that has the request information.

• result: It is the list that represents each of the possible objects that will return the response
of the request.

Output: Model language of system flow with its possible states.

26 5 Verification Model

5.6 Implementation

Input: Components & Components view, list of scenarios with its respective value for each pa-
rameter and sequence diagram of the system.

Each component and connector must be converted to the chosen modeling language that allows
defining each of them independently and which allow to model complex structures using the
types defined previously.

Likewise, it must be possible to implement the different previously defined flows in the selected
modeler in order to obtain in the results each one of them, the number of occurrences and the
necessary feedback to carry out the correct formal verification later. In chapter 6 an implemen-
tation will be carried out in a case study that will detail this process more.

Output: Mathematical representation of the system & requirement that want to check.

5.7 Verification

Input: Mathematical representation of the system & requirement that want to check.

Ensuring that a formal model meets certain properties or requirements involves verifying the
model. Use a verification tool to check whether the model satisfies the property. The verifier
will either return a result indicating that the property holds, then analyze the results, if the ver-
ifier returns a counterexample, analyze the counterexample to understand why the property is
violated and how to fix the issue. If the property holds, the verification process is complete.

Output: Results.

6 Case Study

6.1 Base Case Study

For the Case study, a basic transactional system will be defined that contains all the necessary
elements that can be implemented in real life. In this way, it is decided to use a system based on
the architectural style of microservices that contains a component in charge of the interaction
of the users, a component that performs the orchestration of the system, some components that
contain the specific logic of the business and finally some components responsible for managing
and storing information.

6.1.1 System Specification

The system will be defined according to the following view of components and connectors:

Figure 6-1: Case study - Components & Connectors View.

As shown in Graph 6-1, the system will consist of eight components, of which front_app corre-
sponds to the component in charge of interacting with the user, api_gw to perform the system
orchestration, users_ms, products_ms and transactions_ms will have specific logic system, and

28 6 Case Study

users_db, product_db and transactions_db responsible for system persistence.

6.1.2 Scenario

In this study, variables that directly affect the availability of the system will be taken into ac-
count. As it is a basic transactional system, it will consist of requests that must be resolved
correctly. Therefore, the variables that will be considered in this case study are as follows:

• Number of requests: These are the number of requests that the system should attend to.
• Probability of failure in users_ms: It is the probability that a request is not serviced cor-
rectly by the users_ms microservice.

• Probability of failure in auth_ms: It is the probability that a request is not handled cor-
rectly by the auth_ms microservice.

• Probability of failure in transactions_ms: It is the probability that a request is not ser-
viced correctly by the transactions_ms microservice.

For illustrative purposes, a single scenario will be carried out to be verified by the proposed
model, the above with the objective of emphasizing the results. Thus, the scenario to be tested
is the following:

Scenario 1:

• Number of requests: 5
• Probability of failure in users_ms: 25%.
• Probability of failure in products_ms: 0%.
• Probability of failure in transactions_ms: 0%.

Constraints to validate:

• Failure transaction always at 0.

6.1.3 System Properties

The system will allow you to carry out a transaction using the following flow:

6.1 Base Case Study 29

Figure 6-2: Case study - Sequence diagram

As can be seen in image 6.2, the functionality in user_ms can fail generating a complete failure
of the operation, therefore, the desired state is that all requests are resolved correctly.

6.1.4 Structural Definition

The system components are as follows:

• front_app: Will be the component in charge of making the requests to the system, because
it is the component through which the users of the system make use of it.

• api_gw: Will be in charge of managing the orchestration of each of the system requests
between the different microservices.

• users_ms: Will be in charge of managing user information.

• product_ms: Will be in charge of managing product information.

• transactions_ms: It will be in charge of carrying out the transactional operations of the
system.

• users_db: Will be in charge of the persistence of system user data.

• products_db: Will be in charge of the persistence of system product data.

30 6 Case Study

• transactions_db: It will be in charge of the persistence of the transactions carried out in
the system.

It has been decided to use the Sarch language [48], due to it allows the structural definition of a
software system from different architectural views. However, in the case of this thesis, it will be
carried out as mentioned in the previous chapter through the definition of the components and
connectors of the system. Therefore, this is the implementation of the selected software system:

architecture {
software_system : CaseStudy;
author : CamiloDajer;
architectural_views{

component_and_connector_view ::
elements {

component_types{
front; orchestrator; logical; db;

}
component front front_ms ;
component orchestrator api_gw ;
component logical users_ms ;
component logical products_ms ;
component logical transactions_ms ;
component db users_db ;
component db products_db ;
component db transactions_db ;
connector purchase ;
connector validateUser ;
connector validateProduct ;
connector generateTransaction ;
connector validateUserInformation ;
connector validateProductInformation ;
connector performTransaction ;

}
relations {

attachment(purchase:front_ms,api_gw);
attachment(validateUser:api_gw,users_ms);
attachment(validateProduct:api_gw,products_ms);
attachment(generateTransaction:api_gw,transactions_ms);
attachment(validateUserInformation:users_ms,users_db);
attachment(validateProductInformation:products_ms,products_db);
attachment(performTransaction:transactions_ms,transactions_db);

}::

6.1 Base Case Study 31

}
}

6.1.5 Behavioural Definition

The defined functions of the behavior of the system are as follows:

• purchase(front_app, api_gw, req) = return(success_transaction, failure_transaction)

• validateUser(api_gw, users_ms, req) = return(success, failure)

• validateUserInformation(users_ms, users_db, req) = return(success)

• validateProduct(api_gw, products_ms, req) = return(success)

• validateProductInformation(products_ms, products_ms, req) = return(success)

• generateTransaction(api_hw, transactions_ms, req) = return(success)

• performTransaction(transactions_ms, transactions_db, req) = return(success)

6.1.6 Implementation

6.1.6.1 Petri Nets in MSA

Just like all the standar in concurrent applications [39], microservices architectures allow design
concurrent systems due to their advantages in receiving and process request in high scalable
environments. For that reason, Petri nets are chosen to model a microservices architecture for
the easy model process of places and transitions, allowing represent the different components
in an actual microservices architectures using api gateway pattern such as:

1. Load balancers

2. Security components (WAFs, IPS/IDS, etc)

3. Api Gateway

4. Microservices and their communication with Api Gateway

5. Database

6. Storage components

32 6 Case Study

As a result, in this thesis Colored Petri will be used, due to Coloured Petri nets allow model
different behaviors in transitions where contrary to Petri net this allows defining variables and
data types that are very useful in the case of modeling. For that reason is possible model quality
attributes in software systems, such as high scalability, thanks to the functions that allow set
constraints when the model is evaluated.

6.1.6.2 CPN Tools

CPN Tools is an important tool that allow modeling and verifying petri nets [22]. CPN Tools
makes it possible to study the behavior of the modeled system using a simulation to verify
properties by means of state space methods and model checking, and to conduct a simulation-
based performance analysis [9].

For the purpose of this thesis, the CPN Tools is being used as a modeling and verification tool
for the case study.

6.1.6.3 Case Study Implementation

As previously mentioned, in the case of this thesis, Petri Nets is being used to model the case
study, in this way, the components and connectors will be mapped as states and transitions of
the Petri Nets respectively. Additionally, 2 new states will be generated, successful_transaction and
failure_transaction, which will correspond to the 2 final states of each of the requests that will be
sent.

Petri Nets also allow the creation of tokens, which are those that allow a transition to be acti-
vated as long as its requirements are met. For our case, these tokens will be the requests that
will travel through the states and transitions to finally end up in one of the two final states.

Therefore, we proceed to create the petri nets in the selected program called CPN Tools, imple-
menting the following declarations in the system:

6.1 Base Case Study 33

Figure 6-3: Case study - Standard declarations - CPN Tools.

34 6 Case Study

In this way, the types, variables, and functions are declared and supported in a colored Petri net.

6.1.6.4 Types:

• REQUEST: It will be composed of a set of integers from 1 to 10, in this way each number
will represent the state of the request and who will be the next component to process the
request.

• RESPONSE: It will be composed of 2 types, success and failure, which will represent the
final status of the request.

6.1.6.5 Variables:

• req: Represents each of the requests made by the system.

6.1.6.6 Functions:

• validateUser(req): It will be the function in charge of validating that the request must be
processed by users_ms, therefore it will send the token to the corresponding state.

• validateProduct (req): It will be the function in charge of validating that the request must
be processed by products_ms, therefore it will send the token to the corresponding state.

• generateTransaction (req): It will be the function in charge of validating that the request
must be processed by transactions_ms, therefore it will send the token to the correspond-
ing state.

• validateUserInformation (req): It will be the function in charge of validating that the re-
questmust be processed by users_db, therefore it will send the token to the corresponding
state.

• validateProductInformation(req): It will be the function in charge of validating that the
request must be processed by products_db, therefore it will send the token to the corre-
sponding state.

• performTransaction(req): It will be the function in charge of validating that the request
must be processed by transactions_db, therefore it will send the token to the correspond-
ing state.

• users_response(req): It will be the function in charge of returning the response from
users_ms to the api_gw, therefore it will send the token to the corresponding state.

• products_response(req): It will be the function in charge of returning the response from
products_ms to api_gw, therefore it will send the token to the corresponding state.

6.1 Base Case Study 35

• transactions_response(req): It will be the function in charge of returning the response
from transactions_ms to the api_gw, therefore it will send the token to the corresponding
state.

• success_transaction(req): It will be the function in charge of validating that the request
is completed successfully and triggers the transition to the success_transaction state.

• failure_transaction(req): It will be the function in charge of validating that the request has
been completed in a failed manner and triggers the transition to the failure_transaction
state.

As can be seen, all the functions receive as a parameter the req variable that represents the cur-
rent value of the request in order to execute the corresponding logic.

Therefore, the finally implemented model can be seen in Figure 6-4:

Figure 6-4: Case study - Implemented Model - CPN Tools.

36 6 Case Study

6.1.7 Verification

The verification used is the one provided by the CPN Tools tool called State Space. CPN Tools
provides the complete execution performing verification through the possible states of the sys-
tem.

In our case, the validation was executed for a period of 2 hours, and the maximum number
reached by the failure_transaction status was also determined. In this way, the ideal scenario is
that the number of times that state is reached is 0, if it is at least 1, it implies that one of the
requests was not answered correctly.

When carrying out the execution, the following results were obtained:

Figure 6-5: Case study - Verification results.

As can be seen in the results, the state of failure_transaction reached a maximum of 3 requests in
its state, therefore it can be determined that with the error that occurs in user_ms it is affecting
the availability of the system, therefore the proposed architecture, in the proposed scenarios,
the quality attribute of high availability is not ensured.

6.2 Study Case with Architectural Tactics 37

6.2 Study Case with Architectural Tactics

In this case, it is decided to use the same base case study, applying architectural tactics in order
to validate the results and compare them to demonstrate the effectiveness of the applied tactics.
In this way, it is necessary to perform the same steps illustrated in the verification model with
the proposed new software system.

In this case, 2 architectural tactics will be applied: Replication and Retry.

6.2.1 System Specification

The system will be defined according to the following view of components and connectors:

Figure 6-6: Case study with tactics - Components & Connectors View.

As shown in Graph 6-6, the system will consist of eight components, front_app corresponds to
the component in charge of interacting with the user, api_gw to perform the system orches-
tration, users_ms, products_ms and transactions_ms will have specific logic system, users_db,
product_db and transactions_db responsible for system persistence and users_lb in charge of
balancing the loads of users_ms.

6.2.2 Scenario

In the case of this study, variables that are directly carried out with the availability of the system
will be taken into account. For this, being a basic transactional system, it will be composed of
requests that must be resolved correctly, in this way the variables that will be taken into account

38 6 Case Study

in this case study are the following:

• Number of requests: These are the number of requests that the system should attend to.
• Probability of failure in users_ms: It is the probability that a request is not serviced cor-
rectly by the users_ms microservice.

• Probability of failure in auth_ms: It is the probability that a request is not handled cor-
rectly by the auth_ms microservice.

• Probability of failure in transactions_ms: It is the probability that a request is not serviced
correctly by the transactions_ms microservice.

• Number of retries: It is the number of times that the orchester will resend the requests
to the microservices when they are not resolved correctly.

For illustrative purposes, a single scenario will be carried out to be verified by the proposed
model, the above with the objective of emphasizing the results. Thus, the scenario to be tested
is the following:

Scenario 1:

• Number of requests: 5
• Probability of failure in users_ms_1: 25%.
• Probability of failure in users_ms_2: 0%.
• Probability of failure in products_ms: 0%.
• Probability of failure in transactions_ms: 0%.
• Number of retries: n

where n implies an unlimited number.

Constraints to validate:

• failure transaction always at 0.

6.2.3 System Properties

In the event of a failure, the api_gw component will forward the request again to users_ms in
order to be processed correctly.

The system will allow you to carry out a transaction using the following flow:

6.2 Study Case with Architectural Tactics 39

Figure 6-7: Case study with tactics - Sequence diagram

6.2.4 Structural definition

The system components are as follows:

• front_app: Will be the component in charge of making the requests to the system, because
it is the component through which the users of the system make use of it.

• api_gw: Will be in charge of managing the orchestration of each of the system requests
between the different microservices.

• users_ms: Will be in charge of managing user information.

• users_lb: It will be in charge of balancing the loads of users_ms.

• product_ms: Will be in charge of managing product information.

• transactions_ms: It will be in charge of carrying out the transactional operations of the
system.

• users_db: Will be in charge of the persistence of system user data.

• products_db: Will be in charge of the persistence of system product data.

40 6 Case Study

• transactions_db: It will be in charge of the persistence of the transactions carried out in
the system.

The implementation of the system in Sarch would be the following:

architecture {
software_system : CaseStudyWithTactics;
author : CamiloDajer;
architectural_views{

component_and_connector_view ::
elements {

component_types{
front; orchestrator; logical; db; lb;

}
component front front_ms ;
component orchestrator api_gw ;
component logical users_ms ;
component logical products_ms ;
component logical transactions_ms ;
component db users_db ;
component db products_db ;
component db transactions_db ;
component lb users_lb;
connector purchase ;
connector validateUser ;
connector validateProduct ;
connector generateTransaction ;
connector validateUserInformation ;
connector validateProductInformation ;
connector performTransaction ;
connector balance ;

}
relations {

attachment(purchase:front_ms,api_gw);
attachment(validateUser:api_gw,users_lb);
attachment(validateProduct:api_gw,products_ms);
attachment(generateTransaction:api_gw,transactions_ms);
attachment(validateUserInformation:users_ms,users_db);
attachment(validateProductInformation:products_ms,products_db);
attachment(performTransaction:transactions_ms,transactions_db);
attachment(balance:users_lb,users_ms);

}::

6.2 Study Case with Architectural Tactics 41

}
}

6.2.5 Behavioural definition

The defined functions of the behavior of the system will be the following:

• purchase(front_app, api_gw, req) = return(success_transaction, failure_transaction)

• validateUser(api_gw, users_lb, req) = return(success, failure)

• validateUserInformation(users_ms, users_db, req) = return(success)

• validateProduct(api_gw, products_ms, req) = return(success)

• validateProductInformation(products_ms, products_ms, req) = return(success)

• generateTransaction(api_hw, transactions_ms, req) = return(success)

• performTransaction(transactions_ms, transactions_db, req) = return(success)

• balance(users_lb, users_ms, req) = return(success, failure)

• retry(api_gw, users_lb, req) = return(success)

6.2.6 Implementation

We proceed to create the petri nets in CPN Tools, implementing the following declarations in
the system:

42 6 Case Study

Figure 6-8: Case study with tactics - Standard declarations - CPN Tools.

In this way, the types, variables, and functions are declared and supported in a colored Petri net.

6.2.6.1 Types:

• REQUEST: It will be composed of a set of integers from 1 to 10, in this way each number
will represent the state of the request and who will be the next component to process the
request.

• RESPONSE: It will be composed of 2 types, success and failure, which will represent the
final status of the request.

6.2 Study Case with Architectural Tactics 43

6.2.6.2 Variables:

• req: Represents each of the requests made by the system.

6.2.6.3 Functions:

• validateUser(req): It will be the function in charge of validating that the request must be
processed by users_ms, therefore it will send the token to the corresponding state.

• validateProduct (req): It will be the function in charge of validating that the request must
be processed by products_ms, therefore it will send the token to the corresponding state.

• generateTransaction (req): It will be the function in charge of validating that the request
must be processed by transactions_ms, therefore it will send the token to the correspond-
ing state.

• validateUserInformation (req): It will be the function in charge of validating that the re-
questmust be processed by users_db, therefore it will send the token to the corresponding
state.

• validateProductInformation(req): It will be the function in charge of validating that the
request must be processed by products_db, therefore it will send the token to the corre-
sponding state.

• performTransaction(req): It will be the function in charge of validating that the request
must be processed by transactions_db, therefore it will send the token to the correspond-
ing state.

• users_response(req): It will be the function in charge of returning the response from
users_ms to the api_gw, therefore it will send the token to the corresponding state.

• products_response(req): It will be the function in charge of returning the response from
products_ms to api_gw, therefore it will send the token to the corresponding state.

• transactions_response(req): It will be the function in charge of returning the response
from transactions_ms to the api_gw, therefore it will send the token to the corresponding
state.

• success_transaction(req): It will be the function in charge of validating that the request
is completed successfully and triggers the transition to the success_transaction state.

• failure_transaction(req): It will be the function in charge of validating that the request
has been completed in a failed wat and triggers the transition to the failure_transaction
state.

44 6 Case Study

• balance(req): It will be the function in charge of balancing the requests between the 2
instances of the users_ms component.

• retry(req): Will be the function in charge of forwarding the negative requests fromusers_-
ms_1 to users_ms_2.

Finally implemented model can be seen in Figure 6-9:

Figure 6-9: Case study with tactics - Implemented Model - CPN Tools.

6.2.7 Verification

The verification used will be the one provided by the CPN Tools tool called State Space. CPN
Tools provides the complete execution performing verification through the possible states of
the system.

In our case, the validation was executed for a period of 2 hours, and the maximum number
reached by the failure_transaction status was also determined. In this way, the ideal scenario is
that the number of times that state is reached is 0, if it is at least 1, it implies that one of the
requests was not answered correctly breaching the restriction.

When carrying out the execution, the following results were obtained:

As can be seen in the results, the state of failure_transaction reached a maximum of 0 requests in
its state. Additionally, the analysis of state spaces allows us to determine transitions that cannot

6.2 Study Case with Architectural Tactics 45

Figure 6-10: Case study with tactics- Verification results.

46 6 Case Study

be reached no matter how many iterations are carried out. For this verification, the results were
the following:

Figure 6-11: Case study with tactics- Liveness results.

In this way, it can be determined that the implemented architectural tactics will not allow a
request to reach the failure_transaction state, ensuring the high availability quality attribute
under the assumed scenario and properties.

6.3 Results Comparison

The comparison of verification results can be observed in Table 6-1:

Base Study Case Study Case with Architectural Tactics
Scenario

Number of Request 5 5
Probability of failure

in users_ms
25% 25%

Probability of failure
in products_ms:

0% 0%

Probability of failure
in transactions_ms:

0% 0%

Number of retries 0 n
Results

Max Failure Requests 3 0
Dead Transaction Instances None StudyCase’failure_api_response
Ensure High Availability No Yes

The results obtained by the verification through the state space graph allowed to determine the
maximum number of requests that were incorrectly resulted in the software system proposed
under similar conditions, where one had not implemented high availability architectural tactics
and the other implemented 2 tactics: Replication and Retry.

Both scenarios had a probability of failure in the users_ms component of 25%. The first pro-
posed architecture did not handle the error and that is why in one of the scenarios simulated

6.3 Results Comparison 47

by the tool, the maximum number of failed requests was 3. On the other hand, the architecture
proposed with the architectural tactics of ensuring high availability allowed not only to have a
replica of the microservice that presented failures, but also to retry the failed requests and thus
resolve all of them correctly. For this reason it can be observed that in the simulation executed
the maximum number of failed requests in the explored spaces was 0.

In this degree, it is possible to ensure that the architecture with architectural tactics presents
a more suitable structure, behavior and properties than the architecture without architectural
tactics for the assurance of the quality attribute of high availability.

Finally, the liveness property through Dead Transition Instances allows us to be sure about the
results delivered because it allows us to determine those transitions that will not be executed
and in this way to have, through simulation and formal verification, support for architectural
decision-making based on formal results.

7 Conclusions and Future Work

7.1 Conclusions

Based on this work and related works, a formal verification approach was proposed for the assur-
ance of quality attributes in software architectures. First, an analysis approach was carried out
for the availability tactics that structurally modify the system to determine the architectural im-
plications of each tactic when implemented. On the other hand, a formal verification approach
was proposed and tested by implementing a case study in a software system that employed
a microservices architecture. The architecture used some tactics to ensure high availability in
specific scenarios. Through Coloured Petri Nets, formal verification was achieved through an
exploration of state spaces. This way, it was determined that a condition of a software system
is correctly satisfied.

Therefore, this thesis, through the proposed model, allows for:

• Define a set of elements that allow to formally specify software systems.

• Formally specify a software system.

• Design a formal description model.

• Validate the formal model defined through formal verification processes.

This model is extensible beyond MSA because the steps for generating the model do not have
any specific restrictions on the architecture. Any architecture can be defined through a view
of components and connectors. However, the validation of quality attributes may be limited if
the quality attributes are subjective properties. Thus, a model is provided that allows software
systems to be defined using formal resources and their formal verification. This way, it can
contribute to architectural decision-making through formal support.

7.2 Future Work

As future work, there is the possibility of working on different sections through what is pre-
sented in this thesis. First, the implementation of models and case studies can be carried out
where the assurance of other quality attributes can be validated. Second, the use of petri nets in

7.2 Future Work 49

other contexts is software architecture that allows the analysis and verification of properties of
different architectural styles and patterns. Third, an extension of the Sarch language is proposed
to be able to support formal verifications, and from the structural and behavioral definition, an-
alyze software architectures from a perspective of quality attributes, or specific properties of
the software system.

Bibliography

[1] AHMAD, Aakash ; BABAR, Muhammad A.: Software architectures for robotic systems: A
systematic mapping study. In: Journal of Systems and Software 122 (2016), dec, S. 16–39.
http://dx.doi.org/10.1016/j.jss.2016.08.039. – DOI 10.1016/j.jss.2016.08.039. –
ISSN 01641212

[2] BABAR, Muhammad A. ; KITCHENHAM, Barbara ; ZHU, Liming ; GORTON, Ian ; JEFFERY, Ross:
An empirical study of groupware support for distributed software architecture evaluation
process. In: Journal of Systems and Software 79 (2006), jul, Nr. 7, S. 912–925. http://dx.doi.
org/10.1016/j.jss.2005.06.043. – DOI 10.1016/j.jss.2005.06.043. – ISSN 01641212

[3] BARBER, K. S. ; GRASER, Thomas ; HOLT, Jim: Providing early feedback in the develop-
ment cycle through automated application of model checking to software architectures.
In: Proceedings - 16th Annual International Conference on Automated Software Engineering, ASE 2001,
Institute of Electrical and Electronics Engineers (IEEE), aug 2001. – ISBN 076951426X, S.
341–345

[4] BASS, Len ; CLEMENTS, Paul ; KAZMAN, Rick: Software Architecture in Practice Second
Edition Third Edition. 2013. – 576 S. https://www.oreilly.com/library/view/
software-architecture-in/9780132942799/. – ISBN 0321815736

[5] BRITO, Patrick H. ; DE LEMOS, Rogério ; RUBIRA, Cecília M.F. ; MARTINS, Eliane: Architecting
fault tolerance with exception handling: Verification and validation. In: Journal of Computer
Science and Technology 24 (2009), mar, Nr. 2, S. 212–237. http://dx.doi.org/10.1007/
s11390-009-9219-2. – DOI 10.1007/s11390–009–9219–2. – ISSN 10009000

[6] CAMILLI, Matteo ; GARGANTINI, Angelo ; SCANDURRA, Patrizia ; BELLETTINI, Carlo: Event-
based runtime verification of temporal properties using time basic Petri nets. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) Bd. 10227 LNCS, Springer Verlag, 2017. – ISBN 9783319572871, S. 115–130

[7] CLEMENTS, Paul ; GARLAN, David ; LITTLE, Reed ; NORD, Robert ; STAFFORD, Judith: Docu-
menting software architectures: Views and beyond. In: Proceedings - International Conference
on Software Engineering, 2003. – ISBN 978–1–491–95035–7, 740–741

[8] CZEPA, Christoph ; TRAN, Huy ; ZDUN, Uwe ; TRAN, Thanh ; WEISS, Erhard ; RUHSAM,
Christoph: Reduction techniques for efficient behavioral model checking in adaptive case

http://dx.doi.org/10.1016/j.jss.2016.08.039
http://dx.doi.org/10.1016/j.jss.2005.06.043
http://dx.doi.org/10.1016/j.jss.2005.06.043
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
http://dx.doi.org/10.1007/s11390-009-9219-2
http://dx.doi.org/10.1007/s11390-009-9219-2

51

management. In: Proceedings of the ACM Symposium on Applied Computing Bd. Part F1280, As-
sociation for Computing Machinery, apr 2017. – ISBN 9781450344869, S. 719–726

[9] DEHKORDI, Zohreh S. ; HAROUNABADI, Ali ; PARSA, Saeed: Evaluation of software architec-
ture using fuzzy color Petri net. In: Management Science Letters 3 (2013), feb, Nr. 2, S. 555–562.
http://dx.doi.org/10.5267/J.MSL.2012.12.016. – DOI 10.5267/J.MSL.2012.12.016.
– ISSN 19239335

[10] DEMIRLI, Elif ; TEKINERDOGAN, Bedir: Software language engineering of architectural view-
points. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) Bd. 6903 LNCS, AMSE Press, mar 2011. – ISBN
9783642237973, S. 336–343

[11] DI FRANCESCO, Paolo ; LAGO, Patricia ; MALAVOLTA, Ivano: Architecting with microservices:
A systematic mapping study. In: Journal of Systems and Software 150 (2019), apr, S. 77–97.
http://dx.doi.org/10.1016/j.jss.2019.01.001. – DOI 10.1016/j.jss.2019.01.001. –
ISSN 01641212

[12] DOBRICA, Liliana ; NIEMELÁ, Eila: A survey on software architecture analysis methods

[13] DRAGONI, Nicola ; GIALLORENZO, Saverio ; LAFUENTE, Alberto L. ; MAZZARA, Manuel ; MON-
TESI, Fabrizio ; MUSTAFIN, Ruslan ; SAFINA, Larisa: Microservices: Yesterday, today, and
tomorrow. Version: nov 2017. http://dx.doi.org/10.1007/978-3-319-67425-4_12.
In: Present and Ulterior Software Engineering. Springer International Publishing, nov 2017. – DOI
10.1007/978–3–319–67425–4_12. – ISBN 9783319674254, S. 195–216

[14] FERRARI, Remo ; MADHAVJI, Nazim H.: Software architecting without requirements knowl-
edge and experience: What are the repercussions? In: Journal of Systems and Software 81
(2008), sep, Nr. 9, S. 1470–1490. http://dx.doi.org/10.1016/j.jss.2007.12.764. –
DOI 10.1016/j.jss.2007.12.764. – ISSN 01641212

[15] GHEZZI, Carlo ; MANDRIOLI, Dino ; MORASCA, Sandro ; PEZZE, Maura: A unified high-
level Petri net formalism for time-critical systems. In: IEEE Transactions on Software Engi-
neering 17 (1991), feb, Nr. 2, S. 160–172. http://dx.doi.org/10.1109/32.67597. – DOI
10.1109/32.67597. – ISSN 00985589

[16] GIANNAKOPOULOU, Dimitra: Model Checking for Concurrent Software Architecutures.
In: Department of Computing (1998), Nr. January. http://www.doc.ic.ac.uk/{~}dg1/
tracta/papers/thesis.pdf

[17] HANSEN, Klaus M. ; JONASSON, Kristjan ; NEUKIRCHEN, Helmut: An empirical study of
software architectures’ effect on product quality. In: Journal of Systems and Software 84
(2011), jul, Nr. 7, S. 1233–1243. http://dx.doi.org/10.1016/j.jss.2011.02.037. –
DOI 10.1016/j.jss.2011.02.037. – ISSN 01641212

http://dx.doi.org/10.5267/J.MSL.2012.12.016
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1016/j.jss.2007.12.764
http://dx.doi.org/10.1109/32.67597
http://www.doc.ic.ac.uk/{~}dg1/tracta/papers/thesis.pdf
http://www.doc.ic.ac.uk/{~}dg1/tracta/papers/thesis.pdf
http://dx.doi.org/10.1016/j.jss.2011.02.037

52 7 Bibliography

[18] HAOUES, Mariem ; SELLAMI, Asma ; BEN-ABDALLAH, Hanêne ; CHEIKHI, Laila: A guideline
for software architecture selection based on ISO 25010 quality related characteristics. In:
International Journal of System Assurance Engineering and Management 8 (2017), nov, S. 886–909.
http://dx.doi.org/10.1007/s13198-016-0546-8. – DOI 10.1007/s13198–016–0546–
8. – ISSN 09764348

[19] HARRISON, Neil B. ; AVGERIOU, Paris: How do architecture patterns and tactics interact? A
model and annotation. In: Journal of Systems and Software 83 (2010), oct, Nr. 10, S. 1735–1758.
http://dx.doi.org/10.1016/j.jss.2010.04.067. – DOI 10.1016/j.jss.2010.04.067. –
ISSN 01641212

[20] HOCKING, Ashlie B. ; KNIGHT, John C. ; AIELLO, M. A. ; SHIRAISHI, Shin’Ichi: Formal Veri-
fication in Model Based Development. In: SAE Technical Papers 2015-April (2015), apr, Nr.
April. http://dx.doi.org/10.4271/2015-01-0260. – DOI 10.4271/2015–01–0260. –
ISSN 01487191

[21] INVERARDI, Paola ; MUCCINI, Henry ; PELLICCIONE, Patrizio: Automated check of archi-
tectural models consistency using SPIN. In: Proceedings - 16th Annual International Conference
on Automated Software Engineering, ASE 2001, Institute of Electrical and Electronics Engineers
(IEEE), aug 2001. – ISBN 076951426X, S. 346–349

[22] JENSEN, Kurt ; KRISTENSEN, Lars M.: Coloured Petri Nets: Modelling and validation of
concurrent systems. In: Coloured Petri Nets: Modelling and Validation of Concurrent Systems
(2009), 1–384. http://dx.doi.org/10.1007/B95112. – DOI 10.1007/B95112. ISBN
9783642002830

[23] KAZMAN, Rick ; BASS, Len ; KLEIN, Mark ; LATTANZE, Tony ; NORTHROP, Linda: A basis for
analyzing software architecture analysis methods

[24] LEWIS, Grace ; LAGO, Patricia ; ECHEVERRÍA, Sebastián ; SIMOENS, Pieter: A tale of three sys-
tems: Case studies on the application of architectural tactics for cyber-foraging. In: Future
Generation Computer Systems 96 (2019), jul, S. 119–147. http://dx.doi.org/10.1016/j.
future.2019.01.052. – DOI 10.1016/j.future.2019.01.052. – ISSN 0167739X

[25] LI, J. J. ; HORGAN, J. R.: Applying formal description techniques to software architectural
design. In: Computer Communications 23 (2000), jul, Nr. 12, S. 1169–1178. http://dx.doi.
org/10.1016/S0140-3664(99)00244-3. – DOI 10.1016/S0140–3664(99)00244–3. – ISSN
01403664

[26] LI, Shanshan ; ZHANG, He ; JIA, Zijia ; ZHONG, Chenxing ; ZHANG, Cheng ; SHAN, Zhihao ;
SHEN, Jinfeng ; BABAR, Muhammad A.: Understanding and addressing quality attributes of mi-
croservices architecture: A Systematic literature review

http://dx.doi.org/10.1007/s13198-016-0546-8
http://dx.doi.org/10.1016/j.jss.2010.04.067
http://dx.doi.org/10.4271/2015-01-0260
http://dx.doi.org/10.1007/B95112
http://dx.doi.org/10.1016/j.future.2019.01.052
http://dx.doi.org/10.1016/j.future.2019.01.052
http://dx.doi.org/10.1016/S0140-3664(99)00244-3
http://dx.doi.org/10.1016/S0140-3664(99)00244-3

53

[27] MAGABLEH, Basel ; ALMIANI, Muder: A Self Healing Microservices Architecture: A Case
Study in Docker Swarm Cluster. In: Advances in Intelligent Systems and Computing Bd. 926,
Springer Verlag, 2020. – ISBN 9783030150310, S. 846–858

[28] MOHSIN, Ahmad ; JANJUA, NaeemK.: A review and future directions of SOA-based software
architecture modeling approaches for System of Systems. In: Service Oriented Computing and
Applications Bd. 12, Springer London, dec 2018. – ISSN 18632394, S. 183–200

[29] NERI, Davide ; SOLDANI, Jacopo ; ZIMMERMANN, Olaf ; BROGI, Antonio: Design principles,
architectural smells and refactorings for microservices: a multivocal review. In: Software-
Intensive Cyber-Physical Systems Bd. 35, Springer Science and Business Media LLC, sep 2020. –
ISSN 25248529, S. 3–15

[30] NEWMAN, Sam ; .: Building microservices: Designing fine-grained systems (second edition).
(2021), S. 1–10. ISBN 9781492034025

[31] NOYLE, Brian (DTS A. ; BOUWMAN, Dave (DTS A.: From Design to Deployment. In: ArcUser
(2010), S. 45–47

[32] PARIZEK, Pavel ; PLASIL, Frantisek: Specification and Generation of Environment for Model
Checking of Software Components. In: Electronic Notes in Theoretical Computer Science 176
(2007), may, Nr. 2, S. 143–154. http://dx.doi.org/10.1016/j.entcs.2006.02.036. –
DOI 10.1016/j.entcs.2006.02.036. – ISSN 15710661

[33] RIM, Kee W. ; MIN, Byoung J. ; SHIN, Sang S.: An Architecture for High Availability Multi-
user Systems. In: Computer Communications 20 (1997), may, Nr. 3, S. 197–205. http://dx.
doi.org/10.1016/S0140-3664(97)00007-8. – DOI 10.1016/S0140–3664(97)00007–8. –
ISSN 01403664

[34] RODANO, Matthew ; GIAMMARCO, Kristin: A formal method for evaluation of a modeled
system architecture. In: Procedia Computer Science Bd. 20, Elsevier, 2013. – ISSN 18770509,
S. 210–215

[35] ROGGENBACH, Markus ; CERONE, Antonio ; SCHLINGLOFF, Bernd-Holger ; SCHNEIDER, Ger-
ardo ; SHAIKH, Siraj A.: Formal methods for software engineering : languages, methods,
application domains. ISBN 3030387992

[36] SABRY, Ahmed E.: Decision Model for Software Architectural Tactics Selection Based on
Quality Attributes Requirements. In: Procedia Computer Science Bd. 65, Elsevier, 2015. – ISSN
18770509, S. 422–431

[37] SALAMA, Maria ; BAHSOON, Rami: Analysing and modelling runtime architectural stability
for self-adaptive software. In: Journal of Systems and Software 133 (2017), nov, S. 95–112.
http://dx.doi.org/10.1016/j.jss.2017.07.041. – DOI 10.1016/j.jss.2017.07.041. –
ISSN 01641212

http://dx.doi.org/10.1016/j.entcs.2006.02.036
http://dx.doi.org/10.1016/S0140-3664(97)00007-8
http://dx.doi.org/10.1016/S0140-3664(97)00007-8
http://dx.doi.org/10.1016/j.jss.2017.07.041

54 7 Bibliography

[38] SIDDIQUI, Junaid H. ; RAUF, Affan ; GHAFOOR, Maryam A.: Advances in Software
Model Checking. Version: jan 2018. http://dx.doi.org/10.1016/bs.adcom.2017.
11.001. In: Advances in Computers Bd. 108. Academic Press Inc., jan 2018. – DOI
10.1016/bs.adcom.2017.11.001. – ISBN 9780128151198, S. 59–89

[39] SIEGEL, Stephen F. ; AVRUNIN, George S.: MODELINGMPI PROGRAMS FOR VERIFICATION.

[40] SIPSER, Michael: Introduction to the Theory of Computation. In: ACM SIGACT News
27 (1996), Nr. 1, S. 27–29. http://dx.doi.org/10.1145/230514.571645. – DOI
10.1145/230514.571645. – ISBN 9788131525296

[41] SVAHNBERG, Mikael ; WOHLIN, Claes ; LUNDBERG, Lars ; MATTSSON, Michael: A
quality-driven decision-support method for identifying software architecture candi-
dates. In: International Journal of Software Engineering and Knowledge Engineering 13 (2003),
oct, Nr. 5, S. 547–573. http://dx.doi.org/10.1142/S0218194003001421. – DOI
10.1142/S0218194003001421. – ISSN 02181940

[42] TALEB-BERROUANE, Mohammed ; KHAN, Faisal ; AMYOTTE, Paul: Bayesian Stochastic Petri
Nets (BSPN) - A newmodelling tool for dynamic safety and reliability analysis. In: Reliability
Engineering and System Safety 193 (2020), jan, S. 106587. http://dx.doi.org/10.1016/j.
ress.2019.106587. – DOI 10.1016/j.ress.2019.106587. – ISSN 09518320

[43] TARULLO, Michael: Software architecture theory and practice. In: CrossTalk 24 (2011), Nr.
6, S. 11–15. ISBN 0470167742

[44] TEKINERDOGAN, B. ; OZCAN, O.: Architectural Perspective for Design and Analysis of Scal-
able Software as a Service Architectures. Version: 2017. http://dx.doi.org/10.1016/
B978-0-12-802855-1.00010-1. In: Managing Trade-offs in Adaptable Software Architectures.
Elsevier, 2017. – DOI 10.1016/B978–0–12–802855–1.00010–1. – ISBN 9780128028551, S.
223–245

[45] TEKINERDOGAN, Bedir ; SOZER, Hasan ; AKSIT, Mehmet: Software architecture reli-
ability analysis using failure scenarios. In: Journal of Systems and Software 81 (2008),
apr, Nr. 4, S. 558–575. http://dx.doi.org/10.1016/j.jss.2007.10.029. – DOI
10.1016/j.jss.2007.10.029. – ISSN 01641212

[46] TORVEKAR, Nupura ; GAME, Pravin S.: Microservices and Its Applications An Overview.
In: International Journal of Computer Sciences and Engineering 7 (2019), apr, Nr. 4, S. 803–809.
http://dx.doi.org/10.26438/ijcse/v7i4.803809. – DOI 10.26438/ijcse/v7i4.803809

[47] ULMURAM, Faiz ; TRAN, Huy ; ZDUN, Uwe: Supporting automated containment checking of
software behavioural models usingmodel transformations andmodel checking. In: Science of
Computer Programming 174 (2019), apr, S. 38–71. http://dx.doi.org/10.1016/j.scico.
2019.01.005. – DOI 10.1016/j.scico.2019.01.005. – ISSN 01676423

http://dx.doi.org/10.1016/bs.adcom.2017.11.001
http://dx.doi.org/10.1016/bs.adcom.2017.11.001
http://dx.doi.org/10.1145/230514.571645
http://dx.doi.org/10.1142/S0218194003001421
http://dx.doi.org/10.1016/j.ress.2019.106587
http://dx.doi.org/10.1016/j.ress.2019.106587
http://dx.doi.org/10.1016/B978-0-12-802855-1.00010-1
http://dx.doi.org/10.1016/B978-0-12-802855-1.00010-1
http://dx.doi.org/10.1016/j.jss.2007.10.029
http://dx.doi.org/10.26438/ijcse/v7i4.803809
http://dx.doi.org/10.1016/j.scico.2019.01.005
http://dx.doi.org/10.1016/j.scico.2019.01.005

55

[48] VERGARA-VARGAS, Jeisson ; UMANA-ACOSTA, Henry: A model-driven deployment approach
for scaling distributed software architectures on a cloud computing platform. In: Pro-
ceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS
2017-November (2018), apr, S. 99–103. http://dx.doi.org/10.1109/ICSESS.2017.
8342873. – DOI 10.1109/ICSESS.2017.8342873. – ISBN 9781538645703

[49] ZDUN, Uwe ; NAVARRO, Elena ; LEYMANN, Frank: Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10601 LNCS,
Springer Verlag, 2017. – ISBN 9783319690346, S. 411–429

[50] ZDUN, Uwe ; STOCKER, Mirko ; ZIMMERMANN, Olaf ; PAUTASSO, Cesare ; LÜBKE, Daniel:
Guiding architectural decision making on quality aspects in microservice APIs. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) Bd. 11236 LNCS, Springer Verlag, 2018. – ISBN 9783030035952, S. 73–89

[51] ZHANG, Pengcheng ; MUCCINI, Henry ; LI, Bixin: A classification and comparison of model
checking software architecture techniques. In: Journal of Systems and Software 83 (2010),
may, Nr. 5, S. 723–744. http://dx.doi.org/10.1016/j.jss.2009.11.709. – DOI
10.1016/j.jss.2009.11.709. – ISSN 01641212

[52] ZHOU, Xin ; LI, Shanshan ; CAO, Lingli ; ZHANG, He ; JIA, Zijia ; ZHONG, Chenxing ; SHAN,
Zhihao ; BABAR, Muhammad A.: Revisiting the practices and pains of microservice architec-
ture in reality: An industrial inquiry. In: Journal of Systems and Software 195 (2023), 111521.
http://dx.doi.org/10.1016/j.jss.2022.111521. – DOI 10.1016/j.jss.2022.111521. –
ISSN 01641212

http://dx.doi.org/10.1109/ICSESS.2017.8342873
http://dx.doi.org/10.1109/ICSESS.2017.8342873
http://dx.doi.org/10.1016/j.jss.2009.11.709
http://dx.doi.org/10.1016/j.jss.2022.111521

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Software Architecture
	Microservices Architecture Style
	Availability Quality Attribute
	Availability Generalities
	Architectural Tactics in HA

	Formal Verification

	Related Work
	High Availability in Microservices Architectures
	Formal Methods in Software Architecture
	Gaps in Previous Work

	Analysis of Availability Tactics
	Monitor
	Retry
	Functional redundancy
	Replication
	Exception handling
	Escalating restart
	Time stamp
	Transactions
	Ignore faulty behavior
	Self-test

	Verification Model
	System Specification
	Scenario
	System Properties
	Structural Definition
	Behavioural Definition
	Implementation
	Verification

	Case Study
	Base Case Study
	System Specification
	Scenario
	System Properties
	Structural Definition
	Behavioural Definition
	Implementation
	Verification

	Study Case with Architectural Tactics
	System Specification
	Scenario
	System Properties
	Structural definition
	Behavioural definition
	Implementation
	Verification

	Results Comparison

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

