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A B S T R A C T

This thesis explores the intersections between quantum computing, quantum physics
and machine learning. In the three fields, estimating probability distributions plays
a central role. In the case of quantum computing and quantum physics, a central
object of study is the quantum state of a system, which encodes a probability dis-
tribution (the converse is not true, however, as a quantum state is an object that
is more general than a classical probability distribution). In the case of machine
learning, most of supervised and unsupervised learning tasks can be seen as esti-
mating probability distributions from a training data set, which then can be used to
predict by sampling or evaluating such probability distribution. Due to the famous
curse of dimensionality, both present in machine learning but also in the natural
intractability of Hilbert spaces, it has been established that quantum theory and
machine learning have a lot to give and learn from each other.

The journey depicted in this thesis stems from quantum optics and its application
to modelling quantum devices for quantum computation or simulation, such as
quantum dots and their interaction with optical and acoustic cavities. Indeed, quan-
tum computation has long been sought by the physics community and stands–in
the collective imagination–as a “holy grail” to solve several problems in the indus-
try and science. Of particular interest of mine is the study of quantum many-body
problems themselves, which, in combination with quantum computing, establishes
an interesting circular set of resources: quantum computation to study quantum
systems that can be used for quantum computation.

Unfortunately, the promise of the “holy grail” of quantum computation has not
materialised to date (even though there are known applications which are expo-
nentially faster than any classical algorithm, e.g. the famous Deutsch-Jozsa algo-
rithm), which is why the best known approaches to studying quantum physics or
quantum chemistry are still classical algorithms. In particular, there are machine
learning models, known as neural quantum states, that can be used to study quan-
tum many-body problems. Neural quantum states are an application of machine
learning techniques for studying quantum physics. In this thesis, we show fruitful
approaches to studying ground states, steady-states and closed dynamics of quan-
tum systems through neural quantum states.

This knowledge transfer does not only occur in one direction: quantum physics
can also contribute to machine learning with quantum-inspired machine learning
methods. In this thesis, we also present a framework that establishes an analogy
between quantum state preparation and training, and also between quantum pro-
jective measurements and prediction. Our approach condenses classical data into
the quantum state of a system. We manage to show that arbitrary probability dis-
tributions can be encoded in such a quantum state to arbitrary precision, given
enough degrees of freedom of the quantum state. Moreover, we can condense ar-
bitrarily large data sets into quantum states, which allow us to have gradient-free
(actually, optimisation-free) training. This framework of ours was also put into
action by implementing it on a real quantum computer for toy data sets.

Finally, I also present applications of neural quantum states and quantum-inspired
generative modelling to industry problems such as the famous travelling salesman
problem, for which we propose a qudit-based Hamiltonian whose ground state en-
codes its solution; and other problems such as the portfolio optimisation problem
using tensor network generative models.
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RESUMEN

Esta tesis explora las intersecciones entre la computación cuántica, la fı́sica cuántica
y el aprendizaje automático. En los tres campos, la estimación de distribuciones de
probabilidad desempeña un papel central. En el caso de la computación cuántica
y la fı́sica cuántica, un objeto de estudio central es el estado cuántico de un sis-
tema, que codifica una distribución de probabilidad (sin embargo, lo contrario no
es cierto, ya que un estado cuántico es un objeto más general que una distribución
de probabilidad clásica). En el caso del aprendizaje automático, la mayorı́a de las
tareas de aprendizaje supervisado y no supervisado pueden considerarse como la
estimación de distribuciones de probabilidad a partir de un conjunto de datos de
entrenamiento, que luego pueden utilizarse para predecir mediante el muestreo o
la evaluación de dicha distribución de probabilidad. Debido a la famosa maldición
de la dimensionalidad, presente tanto en el aprendizaje automático como en la intrata-
bilidad natural de los espacios de Hilbert, se ha establecido que la teorı́a cuántica y
el aprendizaje automático tienen mucho que dar y aprender la una de la otra.

El viaje descrito en esta tesis parte de la óptica cuántica y su aplicación al mode-
lado de dispositivos cuánticos para la computación o la simulación cuánticas, como
los puntos cuánticos y su interacción con cavidades ópticas y acústicas. De hecho,
la comunidad de fı́sicos lleva mucho tiempo buscando la computación cuántica
y se erige–en el imaginario colectivo–como un “santo grial” para resolver varios
problemas de la industria y la ciencia. De particular interés para mı́ es el estu-
dio de los problemas cuánticos de muchos cuerpos, que, en combinación con la
computación cuántica, establece un interesante conjunto circular de recursos: com-
putación cuántica para estudiar sistemas cuánticos que pueden utilizarse para la
computación cuántica.

Por desgracia, la promesa del “santo grial” de la computación cuántica no se
ha materializado hasta la fecha (aunque se conocen aplicaciones exponencialmente
más rápidas que cualquier algoritmo clásico, por ejemplo, el famoso algoritmo
Deutsch-Jozsa), por lo que los enfoques más conocidos para estudiar la fı́sica o
la quı́mica cuánticas siguen siendo los algoritmos clásicos. En particular, existen
modelos de aprendizaje automático, conocidos como estados cuánticos neuronales,
que pueden utilizarse para estudiar problemas cuánticos de muchos cuerpos. Los
estados cuánticos neuronales son una aplicación de las técnicas de aprendizaje
automático para estudiar la fı́sica cuántica. En esta tesis, mostramos enfoques
fructı́feros para estudiar estados básicos, estados estacionarios y dinámicas cerradas
de sistemas cuánticos mediante estados cuánticos neuronales.

Esta transferencia de conocimientos no sólo se produce en una dirección: la fı́sica
cuántica también puede contribuir al aprendizaje automático con métodos de apren-
dizaje automático inspirados en la cuántica. En esta tesis también presentamos un
marco que establece una analogı́a entre la preparación del estado cuántico y el en-
trenamiento, y también entre las mediciones proyectivas cuánticas y la predicción.
Nuestro enfoque condensa los datos clásicos en el estado cuántico de un sistema.
Conseguimos demostrar que se pueden codificar distribuciones de probabilidad ar-
bitrarias en dicho estado cuántico con una precisión arbitraria, dados suficientes
grados de libertad del estado cuántico. Además, podemos condensar conjuntos de
datos arbitrariamente grandes en estados cuánticos, lo que nos permite tener un
entrenamiento sin gradiente (en realidad, sin optimización). Este marco nuestro
también se puso en práctica implementándolo en un ordenador cuántico real para
conjuntos de datos de juguete.

Por último, también presento aplicaciones de los estados cuánticos neuronales
y el modelado generativo de inspiración cuántica a problemas industriales como
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el famoso problema del viajante de comercio, para el que proponemos un Hamil-
toniano basado en el qudit cuyo estado fundamental codifica su solución; y otros
problemas como el de optimización de carteras mediante modelos generativos de
redes tensoriales.
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1 I N T R O D U C T I O N A N D M OT I VAT I O N

“What does a physicist do?” asked Fabio, my PhD co-advisor. I thought to myself:
“what a weird question.” I responded “I guess physicists perform experiments to
corroborate theories about fundamental stuff. These theories arise from sparks of
brilliancy in which a physicist is able to abstract laws from the behaviour of na-
ture.” By the time, I had learnt the main ideas of machine learning thanks to Jorge
Camargo (a former student of Fabio and co-worker of my father at a telecommuni-
cations company), and I had already started doing interesting research projects on
natural language processing with him. Fabio followed his question with another:
“What does machine learning do?.” I immediately knew where his thoughts were
leading: he wanted me to admit that, in the end, machine learning tried to do some-
thing similar to what physicists do. “Machine learning algorithms take a bunch of
data and find patterns in it to solve a learning task” I said. However, I told him
that I did not believe creativity could ever be mimicked from a computer. Today, I
refuse to believe that, despite huge progress in generative modelling of art (music,
literature with language models, paintings, etc.), computers will ever mimic true
intelligence. However, it is likely that our brains are just doing a bunch of compu-
tations that could be reproducible, and that is all there is. I leave this discussion to
another scenario, as I want to focus on physics and machine learning.

The aforementioned conversation took place in 2017, when I was already under
the guidance of Herbert, my PhD advisor, at the Quantum Optics and Quantum In-
formation group, and later on at the Superconductivity and Nanotechnology group
of the physics department of the Universidad Nacional de Colombia. With Herbert
I had started to learn about open quantum systems: real-world quantum systems
are never truly isolated (though there are experimental platforms where this ap-
proximation is not bad at all), and the interaction with the environment they are
embedded in must be taken into account to correctly predict properties of these
quantum mechanical systems. Why exactly open quantum systems? Herbert’s in-
terests, which became my interests as well, were studying physical systems that
could be used for different quantum technologies. In particular, he was very keen
in studying a type of physical system (semiconductor quantum dots and their in-
teraction with other devices) which is a promising platform to develop quantum
computation, an application envisioned by the great Richard P. Feynman.

In 2019, just as I was enrolling on the PhD program that culminated in this thesis,
I got to read a paper by Saito [2017], which was recommended by one of my friends
at Herbert’s group. For the first time, I saw a useful idea of applying machine
learning for quantum physics: a neural network can be used to parameterise the
wave function of a quantum system, and the parameters can be tuned so that the
neural network would express the ground state of said quantum system. I started
to reproduce the results from that paper, and I thought it would be very interesting
to discuss this with Fabio. He told me something unbelievable: he was leading
a seminar on machine learning and physics! At that time, Fabio’s interests were
different than mine. He wanted to use the mathematical framework of quantum
mechanics to propose novel machine learning methods. One of the most interesting
tools that were constantly discussed in that seminar were Penrose’s tensor networks,
which are widely used in physics, for instance, to find ground states of Hamiltoni-
ans through the density matrix renormalisation group method. In the seminar, a lot
of interest was devoted to works that used tensor networks to capture complicated
correlations in different data sets. Also, quantum computing was being intensively
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2 introduction and motivation

discussed in a more direct (a more engineering-like) manner than the quantum
physical device approach that I experienced in Herbert’s group.

These experiences and connections configured what have remained my academ-
ical interests since then: quantum devices for quantum computing, quantum com-
puting itself, quantum physics for machine learning and machine learning for quan-
tum physics. This thesis deals with these fields which lie in the intersection between
quantum physics and machine learning. Figure 1.1 shows a non-accurate meme of
this intersection, which, in fact, is not forceful at all. The reason why machine
learning and quantum physics have a lot to give to each other is the so-called curse
of dimensionality, a term used by the machine learning community to indicate the
difficulty of learning patterns from data which live in huge vector spaces. A typical
example of this is the space of an image such as the one in fig. 1.1: the image has W
pixels in the horizontal direction and H in the vertical direction. Each pixel is nor-
mally represented by three colour channels: red, green and blue, each of which can
have a brightness integer value from 0 to 255. This means that the image space has
a size of (3× 256)W×H , where W × H is the number of pixels in the image, normally
containing of the order of megapixels. It is clear that the space is intractable. Sim-
ilarly, quantum physics usually deals with objects that live in intractable Hilbert
spaces, whose size are also exponential with respect the number of components
of the system. In both quantum physics and machine learning, science and engi-
neering have refined methods to deal with objects described in these large spaces.
Therefore, as mentioned, success of lending techniques from one area onto the other
is not accidental: only benefit can be drawn from this exchange of ideas.

Now that the relation between machine learning and quantum physics is clearer, I
want to focus on the exact type of problems that each one deals with (or at least the
problems I’m mostly interested in). Let us start with quantum physics. A crucial
problem in quantum physics is the calculation of the ground state of a physical sys-
tem. Especially at low temperatures, a physical system tends to occupy its ground
state (and the low-excitation states). The structure of the ground state dictates its
properties, which are expected values of observables that characterise the behaviour
of the physical system. Particularly in the cases of controllable quantum systems,
i.e., quantum systems whose interactions can be tuned in the laboratory, it is very
important to understand the ground states of such systems in different configura-
tions of the interactions, as they will reveal behaviours that render useful for many
technological applications.

To be more specific, we introduce the usual quantum mechanical formalism of
a Hilbert space H, which is the space of all possible configurations of a quantum
system. Such quantum system is normally described, energetically, by a Hamilto-
nian Ĥ, which is an operator acting on the Hilbert space, with the property that
⟨ψ|Ĥ|ψ⟩ is the energy of the state |ψ⟩ ∈ H. H is usually written as a sum of k-local

Figure 1.1: A meme which adapts to me, Herbert and Fabio from High impact PhD memes.



introduction and motivation 3

terms in a particular basis of the Hilbert space, which is sometimes referred to as
the canonical basis. Therefore, the problem of finding the ground state of a physical
system described by the Hamiltonian Ĥ is the problem of finding coefficients {αj}
such that∣∣ψg

〉
= ∑

j
αj
∣∣αj
〉

(1.1)

gives the global minimum of
〈
ψg
∣∣Ĥ∣∣ψg

〉
, with a normalised state, i.e., ∑j

∣∣αj
∣∣2 = 1,

where αj is the coefficient of the ket
∣∣αj
〉

1. This means that the ground state coeffi-
cients that minimise the energy of the system induce a probability distribution over
the canonical basis of the Hilbert space. This is one of the most important features
of quantum mechanics and its use of complex numbers: algebra and geometry are
intertwined!

As mentioned before, in reality, systems are coupled to their environment, and
more complete descriptions of their physics are needed. The dynamics of these sys-
tems, under the Born-Markov approximation [Breuer et al., 2002] (my undergrad-
uate thesis contains a complete account of this approximation [Vargas-Calderón,
2018]), is not described by the Scrödinger equation. Instead, the dynamics of the
open quantum system is given by the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) equation [Lindblad, 1976; Gorini et al., 1976], which predicts the evolution
of the state of the system. A vector state can no longer describe the state of the
quantum system: a more general object is needed to describe classical uncertainty
at the same time that we describe quantum uncertainty. The state of the quantum
system is defined by a density matrix, which is given by some coefficients {ξ j,k}
such that

ρ = ∑
j,k

ξ j,k
∣∣αj
〉〈

αk
∣∣ (1.2)

is a trace-one, Hermitian, positive semi-definite operator. In contrast to the closed
quantum system case, the open quantum system exchanges energy with its environ-
ment, meaning that it can gain or lose energy during its evolution. However, there
is always a guaranteed steady-state [Hatano and Petrosky, 2015; Petrosky and Pri-
gogine, 1996] that does not change over time. In the language of the GKSL equation
(∂tρ = Lρ, where L is called the Liouvillian super-operator), one has that Lρ = 0
for the steady-state. Similar as the ground state for the closed quantum system
case, the steady-state is of paramount importance, as its structure is related to prop-
erties of the system that define its nature. Once again, the coefficients related to the
steady-state also induce a probability distribution over the canonical basis of the
doubled Hilbert space.

The ground-state problem and the steady-state problem become central tasks in
quantum mechanics for several applications, and are, therefore, central to this thesis.
Now, we will turn to a very general formulation of machine learning tasks, and will
see the immediate connection with these quantum mechanical problems.

Machine learning tasks can be very different, but they all try to inferr patterns
from a lot of data. In contrast with customary statistical techniques, machine learn-
ing is faced with data sets that depict complicated relations difficult to narrow down.
In other words, it is difficult to assume the functional form in which variables of
such data set are related. Therefore, machine learning disposes of quite general
functional approximation forms that can adapt to very complicated relations be-
tween data variables.

There are two main big classes of tasks in machine learning: supervised and
unsupervised learning [Bishop, 2006]. Supervised learning consists of learning how
to predict a variable y given some input features x from a data set {(xi, yi)}. In this
set up one normally defines a class of models parameterised by some parameters θ

1 The set of states {
∣∣αj
〉
} is assumed to be orthonormal.



4 introduction and motivation

Figure 1.2: Face of a human that does not exist. This picture was generated from sampling
the probability distribution of human faces encoded into a generative adversarial
network [Karras et al., 2019]. Taken from thispersondoesnotexist.com.

such that the class of models fθ is able to predict with great accuracy the dependent
variable, i.e., fθ(xi) ≈ yi. The process of finding an optimal set of parameters θ
is called training, and usually consists of minimising a cost function. For instance,
for regression problems one can use a cost function such as ∑i | fθ(xi)− yi|2. On
the other hand, unsupervised learning is concerned with ‘untagged‘ data, meaning
that the dataset consists only of input features {xi}. These features are assumed to
be drawn from a probability distribution P(x) that is to be approximated through
a machine learning model. Therefore, the approximated probability distribution is
also parameterised by some parameters θ, and looks like Pθ(x) (these are probability
distributions over spaces that can be intractable, such as the space of images and
the probability distribution of human faces, as shown in fig. 1.2). There are different
flavours to this general view of unsupervised learning, but, overall, they all consist
of the same: estimating a probability distribution. In fact, one can see supervised
learning as a probability distribution estimation problem as well. One can consider
learning the joint probability distribution P(x, y) and perform predictions as P(y|x).

The latest remarks on supervised and unsupervised learning build a clear bridge
with the quantum physics problems of finding ground-states or steady-states. This
means that a machine learning model can parameterise wave functions or den-
sity matrices. More explicitly, the coefficients αj in eq. (1.1), or the coefficients ζ j,k
in eq. (1.2), can be predicted by a machine learning model. A common choice for
doing this are artificial neural networks. These are layered models that combine
linear operations with non-linear transformations2.

Even though the young community in the intersection between quantum physics
and machine learning has focused on using neural networks, we emphasise that
there are many other machine learning models that can be used to estimate proba-

2 The most widely used neural network is the full-forward neural network, which defines a hidden state
as

hi = fi(Wihi−1 + bi). (1.3)

Here, hi is the hidden state of the i-th layer, which results from performing a linear transformation of
the i − 1-th hidden state through a matrix Wi , adding a bias term bi and computing an element-wise
non-linear function fi . The first hidden state is not hidden per se, and corresponds to the input features
h0 = x. The last hidden state corresponds to the output y.

thispersondoesnotexist.com
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bility distributions. Moreover, as I will show in this thesis, from the perspective of
quantum physics one can also propose machine learning models that take advan-
tage of the mathematical framework of quantum mechanics to express probability
density functions.

Before exposing the main quests of this thesis, I want to address a very impor-
tant topic which also lies at the heart of the intersection between quantum physics
and machine learning: quantum machine learning. Quantum computation is the
field of computing with quantum information, i.e., computing using the state of
quantum systems [Nielsen and Chuang, 2002]. Long story short, quantum com-
puting is a tool that has the potential to unveil unprecedented computing power
to solve central problems of humanity. However, the experimental challenge of
building a useful “fault-tolerant” quantum computer is huge, and is taking the ef-
fort of thousands of physicists and engineers around the world, both in academy
but also in the ever-growing quantum computing industry. So far, the quantum
computers that have been built are not fault-tolerant, meaning that levels of noise
and decoherence significantly damage the quantum information processed in quan-
tum computers. These devices are known as near-term intermediate-scale quantum
computers (NISQ) [Bharti et al., 2022].

A particular set of quantum algorithms, variational quantum algorithms, is re-
garded as the most promising area to achieve practical quantum advantage [Cerezo
et al., 2021] in the NISQ era, which differs from the famous quantum supremacy
experiments that have already demonstrated that quantum computers, even in the
NISQ era, are able to perform some computations that are not realisable with clas-
sical computers [Arute et al., 2019; Zhong et al., 2020; Madsen et al., 2022], but
are far from useful for science and technology3. Practical quantum advantage in-
volves problems that are actually useful in terms of further developing science (in
Feynman’s view, quantum computers can help the study of quantum mechanics
itself [Feynman, 1982]), or developing technology. Such problems are the ones tack-
led by regular machine learning, but also by quantum machine learning, which is
synonym to these variational quantum algorithms. Indeed, variational quantum
algorithms are based on variational quantum circuits, which are also known as
quantum neural networks. Variational quantum circuits are quantum circuits with
a given set of (generally), one- and two-qubit gates that induce general rotations
whose angles are treated as parameters that can be tuned to minimise a cost func-
tion that is calculated using the state of the quantum circuit after the quantum gates
have been applied. A great deal of research is currently being put forward on vari-
ational quantum circuits, but achieving practical quantum advantage is currently
hampered by several reasons. First, the study of variational quantum circuits has to
be done, today, using classical computers, which limits the size of the circuits that
can be simulated. In these studies, exact access to the state of the quantum circuit is
assumed, but in a real quantum device this is not possible. Second, in order to com-
pute any quantity using the state of the quantum circuit, one needs to measure the
circuit a large number of times to estimate said quantity. Finally, learning, as in reg-
ular neural networks, occurs through gradient-based algorithms. The estimation of
these gradients usually require further measurements of the quantum circuit, which
impose an important overhead. All these disadvantages are also accompanied by a
much more fundamental issue: training variational quantum circuits portrays dif-
ferent theoretical problems [Anschuetz and Kiani, 2022] such as the onset of barren
plateaus [McClean et al., 2018]. Nonetheless, the scientific community is investing
great resources to sort these issues out, or to find ways to bypass them.

For all these reasons, I believe that classical computing will continue (for a while)
to provide the best possible numerical methods to study optimisation problems and
quantum mechanical problems. Nonetheless, the development of quantum physics
(with its plethora of applications), machine learning and quantum computation

3 Actually, Google’s supremacy experiment has been already dismantled by classical computation [Pan
et al., 2021]
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Figure 1.3: Depiction of the different works carried out during my PhD work, all of which
lie in the intersections between quantum physics, machine learning and quantum
computing and simulation. The numbers refer to different works which are ex-
plained in detail in the main text. The arrows indicate that there are two groups of
works which particularly exploit quantum physics for machine learning (works
6 and 7), and machine learning for quantum physics (works 2, 3, 4 and 5).

is going and will go hand in hand in the near future: progress in any of these
fields will have implications in the others as the niche of people that work in this
intersection continues to grow. All of these topics, of dear interest to me, interleave
in this thesis. It must be understood that this thesis, unlike the usual doctoral thesis,
does not dwell on a singular problem, but is rather the result of the exploration4 of
these fields and their interactions. This is depicted in fig. 1.3, which now I explain
in detail.

First, it is important to understand the common object that is treated through-
out the thesis: (quantum) probability distributions. “Quantum” is in parenthesis
because most of the time we will deal with quantum states (pure or mixed), which
induce a probability distribution. We (you, the reader and I) will be concerned
with estimating, learning or calculating a quantum state of any sort at every single
section of this thesis, which will serve to study quantum physics, quantum compu-
tation or applications to data science.

This thesis is structured in chapters that develop the ten works shown in fig. 1.3.
Each chapter will present its own brief state of the art. An introduction to these
chapters, along with an introduction to the works is given next.

Chapter 2— The physical implementation of quantum computers/simulators re-
quires understanding and proposing quantum control techniques for different ex-
perimental physical platforms. Here, we investigate–in collaboration with José
Maria Villas-Bôas– an experimental platform that is a strong candidate for quan-
tum computation: semiconductor quantum dots. They are normally used as qubits
because single excitations (electron-hole pairs known as excitons) can be isolated.
Herbert’s group has a great tradition of studying light-matter interactions in these
kinds of systems, as light-matter interactions are a vehicle to control the state of

4 Exploration in the sense that we do not particularly focus on exploiting a technique, but we explore how
one field can lend ideas to the other fields.
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qubits by sending pulses of light. Lately, we have also been taking into consid-
eration matter-matter interactions through phonons in the dissipative case (my un-
dergraduate work revolved around this [Vargas-Calderón and Vinck-Posada, 2019]),
as it is necessary to understand how lattice vibrations can damage quantum infor-
mation stored in semiconductor quantum dot-based qubits [Vargas-Calderón and
Vinck-Posada, 2020]. Nonetheless, the development of acoustic cavities leverage the
possibility of coherently coupling phonons with excitons.

We studied an optomechanical setup where we were able to theoretically demon-
strate that dark excitons could be coupled with N-phonon bundle states in an acous-
tic cavity, which, due to a dissipative channel, was able to emit those N-phonon
bundles. This work (Work 1 in fig. 1.3) contributes to the understanding of multi-
phonon physics and puts on the table a tool that can be used in quantum informa-
tion protocols for quantum computation. This work is presented in the paper “Dark
Exciton Giant Rabi Oscillations with no External Magnetic Field” [Vargas-Calderón
et al., 2022].

Chapter 3— This chapter explores the right-to-left arrow shown in fig. 1.3, which
includes Works 2, 3, 4 & 5. We tackle a similar problem to the one considered
in chapter 2: we try finding ground-states and steady-states for lattices of interact-
ing systems. However, due to the size of the systems, we can no longer use exact
diagonalisation methods. Usually, large lattices of interacting systems are theoret-
ically treated using mean-field approximations. These approximations fall short
to explain different phenomena. We use neural quantum states to go well-beyond
such an approach using the so-called variational Monte Carlo method [Becca and
Sorella, 2017] that allows us to handle intractable Hilbert spaces such as the ones
characteristic of large bosonic lattices. A big portion of my PhD was devoted to
the development of numerical methods for finding ground states and steady-states.
This was particularly done through my participation of the NetKet project as a col-
laborator, which is an international effort to build and maintain a Python library
for large-scale and high-performance computing of neural quantum states [Carleo
et al., 2019a]. Our collaboration has shown this work (Work 2 of fig. 1.3) in the paper
“Netket 3: Machine learning toolbox for many-body quantum systems” [Vicentini
et al., 2021]. NetKet has become the de facto tool for research in neural quantum
states and the main tool for research in this chapter of the thesis.

With such a tool (and the familiarity only given by getting to know the inside
of the library), we turned our attention to one of the most interesting phenomena
in physics: phase transitions, which witness macroscopic changes in the behaviour
of physical systems. In quantum mechanics, phase transitions are characterised by
structural changes in the ground state of a closed system, or structural changes in
the steady-state of an open system [Minganti et al., 2018]. As an example, we take
as benchmark the widely known Bose-Hubbard model, which describes interacting
bosons that can occupy sites in a lattice. We study the phase transition of this
system, which involves the Mott insulator and superfluid phases, through the novel
neural quantum state approach whereby the wave function or density matrix are
described by neural networks.

As mentioned, with Netket, we have studied the Bose-Hubbard model from differ-
ent perspectives. We reconstructed the phase-diagram of the Bose-Hubbard model
for small lattices looking for differences between neural quantum states and ex-
act diagonalisation states, finding that, in general, neural quantum states provide
great accuracy for measuring observables of the Bose-Hubbard system, which show
the Mott-insulator-to-superfluid phase transition. However, near the phase bound-
ary, differences between exact states and neural quantum states become significant.
We reported these results in our work (Work 3 in fig. 1.3) “Phase diagram recon-
struction of the Bose-Hubbard model with a Restricted Boltzmann Machine Wave-
function” [Vargas-Calderón et al., 2020], which was also presented at the Quantum
Techniques in Machine Learning conference in 2020

5.

5 https://www.zapatacomputing.com/events/qtml-2020/

https://www.zapatacomputing.com/events/qtml-2020/
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In collaboration with Juan Pablo Restrepo Cuartas, another PhD student at Her-
bert’s group, by treating the Bose-Hubbard Hamiltonian in the momentum space,
we show that neural quantum states are also able to find the ground state in the su-
perfluid phase. This work was presented at the 2nd Colombian Meeting on Many-
Body Quantum Simulation under the title “Machine Learning the ground state of
the Bose-Hubbard model in momentum representation” in 2021

6.
We also used neural quantum states to study the time evolution of a system

through the Feynman-Kitaev formalism, which converts a time evolution prob-
lem into a ground state problem in the work (Work 4 in fig. 1.3) “An Empirical
Study of Quantum Dynamics as a Ground State Problem with Neural Quantum
States” [Vargas-Calderón et al., 2022]. By studying the exact ground state structure,
we use the Feynman-Kitaev formalism to create ever more difficult problems for
the neural quantum states. We conclude that neural quantum states are limited by
trainability, even though they are able to express the desired ground state. In other
words, neural quantum states are able to correctly describe the ground state of the
Feynman-Kitaev system, but learning the neural network parameters becomes dif-
ficult as the true ground state becomes entangled and spread through the Hilbert
space.

The difficulties of training neural quantum states are also seen on extensive exper-
iments on the driven-dissipative Bose-Hubbard system, which considers a coherent
boson pump as well as a dissipative boson escape mechanism (Work 5 of fig. 1.3).
The dissipation mechanism is further explored in two different setups. In the first
setup dissipation occurs at every site of the Bose-Hubbard lattice. The second setup
refers to localised dissipation, in which one can engineer dissipation at a particular
site of the lattice, causing controllable escape of particles, or controllable introduc-
tion of dephasing. We find a considerable difficulty in learning the steady-state of
this system, but we envision a path forward.

Chapter 4— The highway between quantum physics and machine learning is now
explored in the other direction. In chapter 3 we saw that neural quantum states are
neural networks from machine learning leveraged to solve quantum physics prob-
lems. Now we ask ourselves how can quantum physics, or rather, the mathematical
framework of quantum physics help solving problems in machine learning. This is
summarised in the left-to-right arrow that goes from quantum physics to machine
learning in fig. 1.3, which contains Works 6 & 7.

These works started to take form from my participation at the physics-machine
learning seminar led by Fabio, which decanted in discussions that established an
analogy between the experimental realisation of experiments in quantum physics
and the usual steps that one follows when doing machine learning. Let me explain.
In machine learning, one trains an algorithm using a data set, and then uses the
trained machine learning model to make predictions. Fabio compared the process
of training to the process of preparing a quantum state that encoded classical data
and the correlations in that data. Then, the process of prediction was equated
to performing a projective measurement using the previous quantum state. The
previous analogies are not merely for depiction. After plenty of discussion, we
took advantage of the concept of superposition in quantum mechanics to be able to
condense an arbitrarily large data set into the quantum state of a system (e.g. |Ψ⟩ =
∑i |ψ(xi)⟩ ⊗ |ϕ(yi)⟩, where |ψ(xi)⟩ ⊗ |ψ(yi)⟩ are states corresponding to individual
data points (xi, yi)). From such a data set quantum state, one can perform projective
measurements onto the x part of the quantum system, leaving a reduced density
matrix on the y part, which will contain the probabilities that each set of features x
assumes a value y.

This idea was used first to perform classification of data in our work (Work 6
in fig. 1.3)“Classification with quantum measurements” [González et al., 2021b].
Later on, in collaboration with other PhD students from Fabio’s group, the idea
was generalised to other learning tasks such as kernel density estimation, kernel

6 https://sites.google.com/correounivalle.edu.co/2ndcol-meeting-many-body-simul/home

https://sites.google.com/correounivalle.edu.co/2ndcol-meeting-many-body-simul/home


introduction and motivation 9

density classification, and quantum measurement regression. This work is pending
publication in the Quantum Machine Intelligence journal under the title “Learning
with Density Matrices” [González et al., 2021a] (Work 7 in fig. 1.3), and was also
presented at the Quantum Techniques in Machine Learning conference in 2021

7.
Since the mentioned machine learning models are based on ideas from quantum

mechanics, it was only natural to adapt them to actual quantum computers. For this
reason, a Python library was written to create quantum circuits where data set states
were prepared, and projective measurements were made in order to perform density
estimation and classification on real quantum devices from IBM. Results from this
work are presented in (Work 8 in fig. 1.3) “Optimisation-free Density Estimation
and Classification with Quantum Circuits” [Vargas-Calderón et al., 2022], which
were presented in the works “Optimisation-free classification with quantum circuit
measurements” and “Non-parametric multivariate continuous density estimation in
a quantum computer” at the Quantum Techniques in Machine Learning conference
in 2021

7.
Chapter 5— The last chapter of this thesis is focused on applications of the afore-

mentioned methods to the industry8. By combining the neural quantum state ap-
proach, along with Nicolás Parra, another PhD student at Herbert’s group and a
dear friend of mine, we show that we can find ground states that encode solutions
of combinatorial problems that have been historically studied for their applications
to industry, such as the travelling salesman problem. In “Many-Qudit Represen-
tation for the Travelling Salesman Problem Optimisation” [Vargas-Calderón et al.,
2021] (Work 9 in fig. 1.3), which was also presented at the Quantum Technology
International Conference9, we mapped the famous travelling salesman problem to
the Hamiltonian of a many-qudit system, and find its solution through ground state
search. We compare the solvability of the travelling salesman problem using our qu-
dit map to the usual approach which involves mapping the problem to a quadratic
unconstrained binary optimisation problem, that can be solved with a qubit simula-
tor. It was found that our approach was easier to solve using neural quantum states,
as expected, which motivates the development of quantum simulation based on qu-
dits. This work involved the largest simulation that we have carried out, where the
energy of a system composed of 1600 qubits was minimisied.

Finally, we also give a short discussion of Zapata Computing’s Generator-Enhanced
Optimisation © [Alcazar et al., 2021], which is a proprietary framework for which
I developed software for solving optimisation problems based on the generation of
solutions through classical and quantum generative models (Work 1010 in fig. 1.3).
This was part of my PhD internship at this company, which specialises in bringing
quantum-ready applications™ to its customers.

To conclude, this thesis will explore different ideas found in the conversation
between quantum physics, quantum computing/simulation and machine learning.
In chapter 6 I provide some conclusions and list in more succinct form the contribu-
tions of this thesis.

7 https://www.quantummachinelearning.org/qtml2021.html
8 I am now part of the evolving quantum computing/information/machine learning industry thanks to

my involvement in Zapata Computing Inc.
9 https://premc.org/conferences/qtech-quantum-technology/

10 I am not an author of this work, though I have been the main developer of a project that leverages
the Generator-Enhanced Optimisation for large-scale high-performance computing. Other efforts which
include a continuous version of it have also been developed under my lead, but I do not present those
results in this thesis due to patent filing paper-work that is due. Despite this, the general ideas of
Generator-Enhanced Optimisation prevail and are fully shown in this thesis.

https://www.quantummachinelearning.org/qtml2021.html
https://premc.org/conferences/qtech-quantum-technology/




2
P H Y S I C S O F Q U A N T U M D E V I C E S F O R
Q U A N T U M I N F O R M AT I O N
P R O C E S S I N G

In this chapter we will focus on multi-phonon physics, which deals with the manip-
ulation and control of quantum physical processes which involve many phonons.
Why? We will see in the chapter that this will constitute an option for controlling
the state of many-level systems or qudits for quantum computing or quantum simu-
lation. We will investigate a particular experimental set up which involves quantum
dots embedded in layers that interact with surface acoustic waves, and which can
be pumped coherently by fine-tuned lasers (see fig. 2.1). This set up is particu-
larly interesting because experiments are almost there, so our results become more
relevant.

2.1 state of the art
Let us first recall what a Rabi oscillation is. The Rabi model in quantum op-
tics [Gerry et al., 2005; Fox et al., 2006] is a rather simple semi-classical model of the
interaction between a two-level system (e.g. a bright exciton in a quantum dot) and
a classical field of light. The two levels of the system are the ground state |g⟩ and
an exciton state |e⟩. The energy of the two-level system is,

HA = h̄ωX |e⟩⟨e| . (2.1)

The interaction with the classical field of light is given by an dipole interaction term
of the form −d · E, where the electric field E is given by a forward and a backward
waves of the form Ωe±iωct. By considering the rotating wave approximation [Gerry
et al., 2005], one can write the dipole interaction term as

HAF =
h̄Ω
2

(σeiωct + σ†e−iωct), (2.2)

where σ := |g⟩⟨e| is the exciton lowering operator. The system described by the
Hamiltonian HA + HAF will undergo oscillations between the |g⟩ state and the |e⟩

Figure 2.1: Schematic drawing of semiconductor quantum dots embedded in a surface acous-
tic wave resonator device, and pumped by an external laser. Taken from [Wigger
et al., 2021].
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Figure 2.2: Probability of the system being excited when initialised at the ground state, de-
pending on the detuning value ∆ = ωc − ωX . Taken from [Steck, 2007].

state, known as Rabi oscillations. Most interestingly, the oscillation amplitudes will
depend on the value of detuning ∆ = ωc − ωX between the frequency of the laser
wc and the exciton frequency ωX , as shown in fig. 2.2. Precisely at resonance, the
excited and ground state will have the same energy, and the population transfer
will be maximised. This sole point is the whole key to producing Rabi oscillations
in any system. Now, let us turn to the actual experimental platform that interests
us.

Semiconductor quantum dots are one of the candidate platforms for quantum
computing due to the possibility of treating them as effective two-level systems such
as the ones we discussed previously. As shown in fig. 2.3, they are usually formed as
material impurities in the bulk of a semiconductor material, which confines charge
carriers within a very small volume that can be seen as a three dimensional quantum
well. The excitation that is considered in a quantum dot to form the two-level
system is the so-called exciton, formed by the Coulomb interaction between an
electron and a hole resulting from a jump by the electron from the valence band
to the conduction band. Both the electron and hole have different effective masses,
and their movement through the lens-like quantum dot is spatially restricted in a
different manner [Barker and O’Reilly, 2000]. The electron and the hole are confined
in separate parts of the quantum dot, which makes the exciton form an electric
dipole.

However, the so-called exchange interaction in a quantum dot produces a fine-
structure of the excitonic energies: electron-hole pairs with anti-parallel spins have
different energy from electron-hole pairs with parallel spins [Nomura et al., 1994;
Bayer et al., 2002]. Moreover, due to selection rules, electron-hole pairs with parallel
spins cannot trivially recombine to emit a photon. Thus, they receive the name of

Figure 2.3: Scanning tunnelling microscopy of an InAs/GaAs quantum dot. Taken
from [Eisele et al., 2008]
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dark excitons. The literature normally sweeps dark excitons under the rug: a “nor-
mal” bright exciton can be formed, and then, because of relaxation processes and
interaction with particles such as phonons, random spin flips may occur, converting
the bright exciton into a dark exciton. The opposite process can occur, converting
the dark exciton into the bright exciton. Flipping between bright and dark excitons
effectively increases the exciton lifetime, but the dynamics are certainly a bit more
complicated than this effective behaviour which allows people to treat an excitonic
system as a two-level system, instead of the “truer” five-level system that it is: a
ground state with no exciton, two bright exciton and two dark exciton states.

This quantum dot structure was ignored in Ref. [Bin et al., 2020], which is a
seminal paper for multi-phonon physics in a setup similar to the one that we present
in this chapter. Bin et al. [2020] consider a two-level system interacting with an
acoustic cavity, and pumped by an external laser, which is similar to our setup, with
the difference that we consider a five-level system. They showed how by fine tuning
the laser’s frequency, one is able to perform giant Rabi oscillations between a state of
zero phonons and a state of N phonons. Further, considering dissipative channels
such as exciton recombination due to spontaneous emission and phonon escape
from the cavity, they showed that the system is able to emit N-phonon bundles.

We will see that in our case we are also able to perform giant Rabi oscillations
and emission of N-phonon bundles, but we particularly couple to dark excitonic
states. The reason behind this is that dark excitons, as mentioned before, are more
robust because they do not recombine due to spontaneous emission, but they re-
quire a random spin flip before. However, we face the technical problem of using
the laser to couple to dark excitons, which at first seems counter-intuitive because
dark excitons do not interact with light fields. Therefore, we need to transfer the
population from bright excitons to dark excitons.

The control of population transfer to bright and dark excitons is usually achieved
by means of an external magnetic field [Neumann et al., 2021]. Herbert’s group
has significant experience in studying this problem, especially with the doctoral
work of Carlos Jiménez and Milton Linares [Jiménez-Orjuela et al., 2017; Jiménez-
Orjuela et al., 2018, 2020b,a; Linares et al., 2021]. An external magnetic field creates a

Figure 2.4: Quantum dot embedded in a micropillar acting as a double Bragg reflector that
forms an optical cavity with an external magnetic field. Mechanisms of pho-
ton escape with a rate κ, coherent photon pumping from an external laser Ω(t),
exciton recombination rate γ and light-matter coupling g are shown. Taken
from [Jiménez-Orjuela et al., 2017].
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Figure 2.5: Occupation of dark exciton states as a function of the external magnetic field tilt
and strength. ⟨σ11⟩, ⟨σ22⟩, ⟨σ33⟩, and ⟨σ44⟩ are the two bright excitons and the two
dark excitons populations, respectively. The plots are occupations taken a short
time after a laser pulse has struck the quantum dot. Taken from [Jiménez-Orjuela
et al., 2017], where more details can be found.

coherent interaction between bright and dark exciton states, allowing for population
transfer channels between them. A depiction of such a system can be seen in fig. 2.4.

The magnetic field can be tuned to maximise population transfer to dark exci-
tons which suffer a much smaller effective exciton recombination rate than bright
excitons. This effect can be seen in the occupation of each exciton state, shown
in fig. 2.5. The quantum dot is illuminated with a laser of a certain polarity that
pumps energy into the first bright exciton state for a finite amount of time. After
some time passes, and evolution of the exciton-optical microcavity takes place, oc-
cupations of excitonic states are measured, signalling that an important population
transfer towards one of the dark exciton states was carried out.

We will see that we do not need an external magnetic field to achieve population
transfer to dark exciton states next.

2.2 recipe for giant rabi oscillations

This section will give a general recipe for creating giant Rabi oscillations. From now
on, in this chapter, results and excerpts of Ref. [Vargas-Calderón et al., 2022] will be
shown.

With the advent of phonon control physics and the realisation of acoustic cavities,
we noticed that dark exciton population could also be controlled using population
transfer channels allowed by phonon interactions. In other words, in the work
shown in this chapter we avoid using of a magnetic field, which can be expen-
sive and experimentally challenging [Adambukulam et al., 2021]. In particular, we
consider the Bir-Pikus interaction [Bir et al., 1974], which takes into account the in-
teractions induced between exciton states due to a coherent intervention of phonons
of the strained lattice [Pikus and Bir, 1971]: strain/stress comes from the material
mismatch (the lattice mismatch) at the material boundary between the quantum dot
and its surroundings. However, not only do we aim to control the population of
dark exciton states, but we also consider the problem of phonon emission from an
open quantum system perspective.
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Particularly, we consider the physical system portrayed in fig. 2.1. A quantum dot
is immersed in an acoustic single-mode cavity such as in the experiment by Weiß
and Krenner [2018]. Also, an external laser is used to coherently pump the quan-
tum dot with a constant tone whose frequency can be tuned piezoelectrically [Wig-
ger et al., 2021]. The phonon mode will couple to the exciton states through the
Bir-Pikus interaction, and the dissipative channels will describe the way in which
particles escape the driven-dissipative physical system at hand. As we will see, we
were able to generate giant Rabi oscillations between the vacuum of the system and
a dark exciton state with N-phonons. Harvesting these giant Rabi oscillations were
also useful for creating the emission of N-phonon bundles, which are important
resources from multi-phonon physics.

Let us tackle the general problem of creating giant Rabi oscillations. For this,
consider a system that is not composed only of two-levels, but is composed of many
more (even an infinite amount of levels), can also be tuned through an external
laser frequency in order to match the energy of two bare states, bringing them to
resonance. By initialising the system in one of the matched bare states, the evolution
of its dynamics will be restrained to the resonant states. Let me explain how this
works in the case that interests us the most, i.e., the quantum dot embedded in an
acoustic cavity and pumped by an external laser, as shown in fig. 2.1.

The Hamiltonian that we consider is of the following form:

H = HQD + Hlaser + Hcav + Hel-ph. (2.3)

The quantum dot Hamiltonian is (h̄ = 1):

HQD = ωX(σ11 + σ22) + ωd(σ33 + σ44) +
δ1

2
(σ12 + σ21) +

δ2

2
(σ34 + σ43), (2.4)

where the bright excitons have energy ωX , and the dark excitons have a shifted en-
ergy ωd = ωX − δ0. Moreover, exchange interaction gives rise to coupling between
the bright states and coupling between the dark states through rates δ1 and δ2, re-
spectively. The operators σij are defined as the ladder operators |i⟩⟨j| for possible
states being: a valence state |v⟩, two bright exciton states |1⟩ and |2⟩ with anti-
parallel electron-hole spins, and two dark exciton states |3⟩ and |4⟩ with parallel
electron-hole spins. The laser Hamiltonian is given by

Hlaser = Ω1(e−iωLtσ1v + eiωLtσv1) + Ω2(e−iωLtσ2v + eiωLtσv2), (2.5)

where the laser can be polarised to pump both bright excitons with different ampli-
tudes Ω1 and Ω2 at a laser frequency ωL that can be fine-tuned piezoelectrically. The
time dependence of eq. (2.5) can be removed by performing a unitary transforma-
tion H → UHU† + i(∂tU)U† [Steck, 2007] with U = exp(iωLt[σ11 + σ22 + σ33 + σ44]).
The acoustic cavity Hamiltonian is simplified to a single mode because we consider
a model where this is the only mode that interacts with the excitons in the quantum
dot. Hence, this Hamiltonian is given by

Hcav = ωbb†b (2.6)

where b is the annihilation bosonic operator b = ∑n
√

n |n − 1⟩⟨n|, and ωb is the
energy of the confined phonon mode. Finally, we introduce the electron-phonon
interaction given by the Bir-Pikus interaction [Bir et al., 1974; Woods et al., 2004]:

Hel-ph =

{
gbd√

2
[(1 + i)(σ13 + σ14) + (1 − i)(σ23 + σ24)]

+ gbb[σ11 + σ22 + i(σ12 − σ21)]
}
(b† + b) + H.c.

(2.7)

where gbb(bd) are bright-bright(bright-dark) exciton coupling rates through phonons,
which results from the coupling of the hole spin to the strain tensor of the quantum
dot as well as the electron-hole exchange interaction [Takagahara, 1993].
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Figure 2.6: Eigenstates of eq. (2.3). The state |λ1(2)⟩ is mostly composed by the state

|2(3), d+⟩, where |d±⟩ = (|3⟩ ± |4⟩)/
√

2 is the dark exciton symmetric (+) or
anti-symmetric (−) state. Taken from [Vargas-Calderón et al., 2022].

The spectrum of the complete Hamiltonian in eq. (2.3) is rather complicated in
terms of all the Hamiltonian parameters. However, it is worth highlighting that the
laser energy can be fine-tuned in order to leave some states in resonance. All of
the interactions of eq. (2.3) are generally small in comparison to the higher energy
terms in HQD and Hcav, which count the number of excitations on the cavity and the
quantum dot and adds them up with the respective energy of each excitation. This
is important because in this limit of very small interaction energies, the Hamiltonian
can be seen as

ωX(σ11 + σ22) + ωd(σ33 + σ44) + ωbb†b (2.8)

with eigenstates |n, QD⟩, with n phonons and some state for the quantum dot. The
laser will essentially shift (in the laser rotating frame) the quantum dot’s energies, so
that |0, v⟩ can be put in resonance with another state |n, d⟩, where |d⟩ is some com-
bination of dark exciton states. When the states are put in resonance, they are no
longer eigenstates of the Hamiltonian by themselves. Instead, a linear combination
of them will be eigenstates. Numerically, the eigenspectrum were calculated con-
structing the Hamiltonian shown in eq. (2.3) using QuTiP [Johansson et al., 2013].
When the small interactions between phonons and excitons are turned on, the eigen-
states are no longer the basis states |n, QD⟩, but perturbations of them. For example,
fig. 2.6 shows the tomography of a couple of eigenstates of eq. (2.3). The eigen-
state |λ1⟩ is approximately |2, d+⟩, i.e., the dark exciton symmetric state with two
phonons. Notice that it is not exactly this state, as there is a contribution from
bright states and two phonons, as well as a smaller contribution from bright states
and one and three phonons. Something similar happens with the eigenstate |λ2⟩,
which largely approximates |3, d+⟩.

All that is needed to produce Rabi oscillations between two different states, or
giant Rabi oscillations, which are just Rabi oscillations between two states that dif-
fer in more than one excitation, is to tune the laser so that these two states are in
resonance, forming a linear combination that is an eigenstate of the whole Hamil-
tonian eq. (2.3). If we do this, we can produce giant Rabi oscillations on demand,
as we showed in fig. 2.7. Details for the parameter values in order to reproduce the
results are found in Ref. [Vargas-Calderón et al., 2022].

In fig. 2.7 one can see that the oscillations are almost perfectly achieved between
the vacuum state, which has zero phonons and the quantum dot is in the valence
state, and a higher-excited state with a lot of population in the dark exciton states.
The frequency of oscillation, however, becomes larger and larger as the number of
phonons in the targeted state increase.



2.3 quantum trajectories and the emission ofN -phonon bundles 17

0.0

0.5

1.0

P
ro

ba
bi

lit
y |〈Ψ(t)|0, v〉|2

|〈Ψ(t)|λ1〉|2
|〈Ψ(t)|2, d+〉|2

102 103 104 105

gt

0.0

0.5

1.0

P
ro

ba
bi

lit
y |〈Ψ(t)|0, v〉|2

|〈Ψ(t)|λ2〉|2
|〈Ψ(t)|3, d+〉|2

Figure 2.7: Giant Rabi oscillations between the 0-phonon valence state (solid line) and the
states shown in fig. 2.6 (dashed line). The dash-dotted line shows the evolution
of the |n, d+⟩ state for n = 2 (top panel) and n = 3 (bottom panel). Taken
from [Vargas-Calderón et al., 2022].

2.3 quantum trajectories and the emission of
N -phonon bundles

Real quantum systems are open quantum systems. One of the most accurate open
quantum systems theories is the so-called master equation [Breuer et al., 2002], or
the GKSL equation, which was introduced in chapter 1 which comes from consid-
ering the main system of interest immersed in a larger system referred to as a bath,
or as the environment. The main system of interest is assumed to be separable
from the environment at the beginning of time (Born approximation), and the infor-
mation flowing from the main system towards the environment is not allowed to
backflow into the system (Markov approximation), which result in rapidly decay-
ing correlation functions of the bath. Details of the derivation of the GKSL equation
can be found on the excellent book by Breuer et al. [2002], or in my undergraduate
thesis [Vargas-Calderón, 2018].

The GKSL equation is (h̄ = 1)

dρ

dt
= i[ρ, H]− 1

2 ∑
m

γm[A†
m Amρ + ρA†

m Am − 2AmρA†
m], (2.9)

where the operators Am are known as collapse or jump operators, and γm are
their associated jump rates. In this section, I will not focus on the right-hand side
of eq. (2.9), which is usually referred to as the Liouvillian. For the moment, I will
just mention that solving eq. (2.9) is generally difficult because of the effective size
of the density matrix, which is an object of size |H|2, where (recall) H is the Hilbert
space of the main system of interest.

A rather common way of solving eq. (2.9) is the quantum trajectory approach,
which takes advantage of the fact that a density matrix is an ensemble of vector
states. This means, that a density matrix can be approximated by considering an
ensemble of state vectors sampled from a probability distribution defined by the
density matrix itself. At first, this remark seems circular, but it is not: the probability
distribution can be sampled from simulating the “quantum jumps” induced by the
jump operators, which act as external measurements onto the system. To this end,
the GKSL equation can be re arranged as

dρ

dt
= −i(Heffρ − ρH†

eff) + ∑
m

AmρA†
m, (2.10)
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where the effective non-Hermitian Hamiltonian is

Heff = H − i
2 ∑

m
A†

m Am. (2.11)

Here we will explain a first-order approximation that gives rise to the quantum
jump approach, although it is possible to perform higher-order approximations of
it for numerical precision and stability. We follow the ideas by Daley [2014] next.
Some time δt after t, the quantum state of our system will be

|ψ̃(t + δt)⟩ = (1 − iHeffδt) |ψ(t)⟩ , (2.12)

where the system has evolved an infinitesimal time under the action of the effective
Hamiltonian. It is worth noting that the norm of this evolved state is not conserved
because, in general, the effective Hamiltonian is non-Hermitian. The norm of the
evolved state is 1 − δp, where

δp = δt ∑
m
⟨ψ(t)| A†

m Am |ψ(t)⟩ . (2.13)

Now, let us pull the string from the other side. Within this framework of an in-
finitesimal time δt, we can see the GKSL equation as

ρ(t + δt) = ρ(t)− iδt(Heffρ(t)− ρ(t)H†
eff) + δt ∑

m
Amρ(t)A†

m. (2.14)

From eq. (2.12) one can check that

|ψ̃(t + δt)⟩⟨ψ̃(t + δt)| = (1 − iHeff) |ψ(t)⟩ ⟨ψ(t)| (1 + iH†
eff)

= |ψ(t)⟩⟨ψ(t)| − iδt(Heff |ψ(t)⟩⟨ψ(t)| − |ψ(t)⟩⟨ψ(t)| H†
eff),

(2.15)

where the tilde indicates that the state does not satisfy the correct normalisation.
Since the norm is 1 − δp, we can choose the state to be described by eq. (2.15) with
probability 1 − δp, or with probability δp the state can be chosen to be “collapsed”
to Am |ψ(t)⟩, where a particular collapse operator indexed by m is chosen with
probability

Πm := δt ⟨ψ(t)|A†
m Am|ψ(t)⟩ /δp. (2.16)

As shown by Daley [2014], this results in an estimated state, whose average fol-
lows the GKSL equation, in the limit of infinite realisations, or infinite trajectories.
Explicitly, from eq. (2.14) one can write [Daley, 2014]

ρ(t + δt) = (1 − δp)
|ψ̃(t + δt)⟩ ⟨ψ̃(t + δt)|√

1 − δp
√

1 − δp
+ δp ∑

m
Am |ψ(t)⟩⟨ψ(t)| A†

m, (2.17)

for a pure state, but this is generalised to a mixed state by averaging over all possible
trajectories.

In practice, at each δt one would decide if evolve or collapse the quantum state
of the system. There are numerical methods that are more accurate, such as the
work by Steinbach et al. [1995], where the time line is not discretised. Rather, the
equation ∥exp(−iHefft1) |ψ(t0)⟩∥2 = r is solved for a random number r between 0

and 1. Between time t0 and t1 the state is evolved under the effective Hamiltonian,
and at time t1 a quantum jump is performed, using one of the quantum jump
operators.

We use this formalism to solve the GKSL equation that concerns our problem at
hand:

dρ

dt
= i[ρ, H] + κDb[ρ] + γb ∑

j=1,2
Dσvj [ρ] + γd ∑

j=3,4
Dσvj [ρ] + γϕ

4

∑
j=1

Dσjj [ρ], (2.18)
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where, for simplicity, we have used expressions for the dissipators DA[ρ] = AρA† −
1
2 ρA† A− 1

2 A† Aρ. The four dissipative channels considered in eq. (2.18) are: phonon
escape from the acoustic nanocavity at a rate κ with a collapse operator b due to
unwanted coupling with leaky modes [Perea et al., 2004; Pascual Winter et al., 2007],
spontaneous emission of the bright excitons at a rate γb with collapse operators σvj
for j = 1, 2, effective spontaneous emission of the dark excitons (hole or electron
spin flip followed by bright exciton spontaneous emission [Crooker et al., 2003]) at
a rate γd with collapse operators σvj for j = 3, 4, and pure dephasing of all exciton
states at a rate γϕ with collapse operators σjj [Takagahara, 2002].

An example of a trajectory is shown in fig. 2.8. First, there is a dephasing jump

(e)(b)(a) (c)(d)

(b) (c)

(d) (e)

Figure 2.8: Evolution of a quantum trajectory due to Hamiltonian dynamics and dissipation-
induced quantum jumps. (a) shows the occupation of the vacuum |0, v⟩ state,
and of the N-phonon states, i.e. the occupation of ∑i |N, i⟩. (b)-(d) show the
state composition of the system at the times pointed out by an arrow in panel (a).
Taken from Ref. [Vargas-Calderón et al., 2022].
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that collapses the system into a state of two phonons and a dark state, as shown
in fig. 2.8(c). Now, the phonon dissipative channel–with jump operator b–makes the
cavity emit a phonon, leaving the system in a dark state, but with only one phonon,
as shown in fig. 2.8(d). Another quantum jump occurs between the points (d) and (e)
due to pure dephasing. This jump, however, does not affect the phonon population.
Although the phonon-escape mechanism depletes the cavity phonon-by-phonon, it
is shortly after the emission of the first phonon that the second phonon is also emit-
ted due to the jump operator b, leaving the system in a dark excitonic state with zero
phonons, as shown in fig. 2.8(e). This is a process of a two-phonon bundle emis-
sion. After the point (e), there are a couple of further dephasing quantum jumps
that leave the phonon population unaffected because the exciton already occupies
the dark states. Finally, the QD emits a photon due to an effective recombination
of the dark exciton, i.e., a random spin flip followed by spontaneous emission, and
the system is allowed to transit the same process once again. The two-phonon bun-
dle emission process arises in all quantum trajectories, and becomes more common
when the electron-phonon coupling g is increased, at the cost of realising giant Rabi
oscillations between the vacuum and states that have a larger bright contribution.

2.4 correlation functions and “phonoluminiscence”
spectrum

There are some very important quantities in quantum optics which characterise the
kind of light that is emitted from dissipative processes. Of particular interest is the
possibility to distinguish bunched light from anti-bunched light [Gerry et al., 2005].
The latter can only be achieved with a quantum source of light. The witness quantity
that characterises this behaviour is a correlation function, namely the second-order
correlation function of light

g(n)(τ = 0) = ⟨b†nbn⟩ / ⟨b†b⟩n (2.19)

for n = 2, which can be measured with the famous Hanbury Brown and Twiss
interferometer [Brown and Twiss, 1956]. The second-order correlation function is
related to the co-occurrence of single phonon detection events in this interferome-
ter, as originally derived by Glauber [1963]. These correlation functions can also be
used with the phonon field of the acoustic cavity, so instead of talking about prop-
erties of photon emission, we talk about properties of phonon emission through the
dissipative channel of the acoustic cavity.

However, approaching multi-phonon physics through eq. (2.19) is inadecuate and
insufficient because they are, in the experimental scenario, related to single-phonon
events. Instead, we adopt the equal-time m-th order N-phonon bundle correlation
function, defined as

g(m)
N (τ = 0) = ⟨b†NmbNm⟩ / ⟨b†NbN⟩m . (2.20)

These generalised correlation functions correctly describe these multi-phonon prop-
erties because it treats the N-phonon bundle as a quasi-particle [Muñoz et al., 2014],
with associated creation and annihilation operators b†N and bN , respectively.

In fig. 2.9 we show that this generalised correlation function reaches the sub-
Poissonian anti-bunching regime for some values of the laser detuning [Zou and
Mandel, 1990]. In this regime, it is possible to produce single isolated N-phonon
bundles. The resonance associated to the dark symmetric with two phonons state
presents the lowest value of g(2)2 , which is located well within the anti-bunching
regime. Analysis of the second order N-phonon bundle correlation function shows
that the Bir-Pikus mechanism allows the generation of robust anti-bunching N-
phonon bundles when the laser frequency is tuned to target giant Rabi oscillations
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Figure 2.9: Equal-time one- and two-phonon bundle correlation functions. At ∆ ≈ −2ωb
there are dips in the super-bunching peak of the usual correlation function at reso-
nances corresponding to two-phonon states with bright (anti-)symmetric |b(−)+⟩,
and with the dark symmetric state |d+⟩. The red/green-shaded regions align
with sub-/super-Poissonian statistics regions. Taken from Ref.[Vargas-Calderón
et al., 2022].

with the dark symmetric state. In fact, the values of the second-order N-phonon
bundle correlation function are lower than those where the resonance involves the
usual bright states.

Finally, we can take a look at the Wiener-Khintchine theorem [Mollow, 1969; Perea
et al., 2004; Vargas-Calderón and Vinck-Posada, 2019], from which we calculate the
“phonoluminiscence” spectrum, in analogy to the photoluminiscence spectrum

I(ω) ∝
κ

π

∫ ∞

0

〈
b(t)b†(t + τ)

〉
eiωτ dτ. (2.21)

The phonoluminiscence spectrum tells us the intensity of emission of phonons at
every different frequency. In particular, we see in fig. 2.10(c) such an spectrum with
many different peaks. A more complete understanding of the Liouvillian is in place
now.

We can interpret every single peak through the spectral theory of the Liouvillian
superoperator L that satisfies eq. (2.18), written as dρ

dt = L[ρ] [Petrosky and Pri-
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(c)

(a) (b)

Figure 2.10: Phonon emission spectrum I(ω). Panels (a) and (b) show the elements
|⟨ψ| ϱ |ϕ⟩|2 of the Liouvillian eigenmatrices ϱ that match the peaks pointed in
the phonon emission spectrum in panel (c). The eigenmatrices show that the
peak (a) corresponds to a one phonon emission process, whereas the peak (b)
corresponds to two-phonon emission processes. Eigenstates |λ10⟩ and |λ11⟩ of
eq. (2.3) are superpositions of |0, v⟩ and |2, d+⟩, and eigenstates |λ15⟩ and |λ16⟩
are superpositions of |0, v⟩ and |3, d+⟩. Taken from Ref. [Vargas-Calderón et al.,
2022].

gogine, 1996; Petrosky, 2010; Manzano and Hurtado, 2018]. A formal solution of
this equation for a time-independent Liouvillian is

ρ(t) = ∑
k

eΛkt Tr[ϱkρ(0)]ϱk, (2.22)

where Λk are the complex eigenvalues of L with corresponding eigenmatrices
ϱk. The eigenvalues are associated to the emission peaks [Albert and Jiang, 2014;
Hatano and Petrosky, 2015; Vargas-Calderón and Vinck-Posada, 2020] as they show
both the peak location Im{Λk} and the full width at half maximum −Re{Λk}. On
the other hand, the eigenmatrices account for information about which states are
involved in each transition [Tay and Petrosky, 2008]. The examination of the eigen-
matrices matrix elements still shows which states are involved in the transitions, as
displayed in fig. 2.10(a) and (b).

Figure 2.10(a) shows that the most prominent peak of the spectrum matches tran-
sitions between dark states with one phonon and dark states with zero phonons. In
Ref. [Vargas-Calderón et al., 2022], we highlight the fact that the magnitude of the
matrix elements shown in fig. 2.10(a) and (b) does not indicate the contribution of
those transitions to the emission peak. Also, fig. 2.10(b) shows the allowed transi-
tions for another peak, at a frequency ω = 2ωb, which matches transitions between
dark states with two phonons decaying to dark states with no phonons, and also
dark states with three phonons decaying to dark states with one phonon. Here,
the emission peak coinciding with the two-phonon emission is significantly smaller
than the one-phonon emission peak. However, the corresponding transitions can be
differentiated due to the large energy difference in the spectrum.
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Again, we refer the reader to Ref. [Vargas-Calderón et al., 2022] for a complete
account of the parameters used in this work, as well as a discussion of experimental
feasibility given realistic parameters.

2.5 what is the relevance of giant rabi oscilla-
tions for quantum information processing?

So far, we have promoted the study of these sort of “fundamental” systems because
they serve as building blocks for quantum technologies that enable quantum infor-
mation processing. In this short section, we review the main ideas that allow us to
assert this; thus, putting our work in synchrony with the ultimate goal of enabling
(quantum) computational techniques to study quantum physics.

The principle under which current quantum computing technologies work is by
controlling the time during which a system undergoes Rabi oscillations. The Rabi
oscillations are induced by external electric and magnetic fields, applied during
some finite time. In what follows, I will give a short primer on controlling the
quantum state of this such system. However, the relevance of our work is that the
following procedure can also be used to produce giant Rabi oscillations between
states composed of N-phonon bundles. By varying the targeted N-phonon state,
we can promote the usual two-level system state to a qudit, or d-level system. Thus,
our work is useful for controlling the state of a system that is higher-dimensional
than a simple qubit. As we will see in section 5.2, having qudits instead of qubits
renders extremely useful for solving important problems with quantum computers.

We start off by discussing how the interaction between a classical field and a two-
level system is considered into a Hamiltonian such as eq. (2.5). This is the main
ingredient for quantum control: since we are able to cherry-pick the N-phonon
state that we want to couple to create giant Rabi oscillations, we can use the same
working principle of controlling a two-level system to perform operations with the
chosen N-phonon states. Therefore, we introduce the main tools to understand
these two-level system quantum control techniques, which require using external
fields to control the state of the two-level system.

2.5.1 The Bloch sphere

Usually, the Bloch sphere is introduced via the possible states a qubit (a two-level
system) which is characterised by the so-called Bloch sphere angles θ and φ:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ . (2.23)

The state can be visualised in the Bloch sphere, shown in fig. 2.11.
In our case, it is best to introduce the Feynman-Vernon-Hellwarth representation

of the qubit as a precessing spin [Feynman et al., 1957]. Let us do so by introducing
the Hamiltonian of a two-level system driven by an external laser. As before, in the
rotating frame of the laser at frequency ω, the Hamiltonian simply reads

∆σ†σ +
Ω
2
(σ† + σ). (2.24)

We consider the general state ρ̃ of the two-level system

ρ̃ =

[
ρ̃ee ρ̃eg
ρ̃ge ρ̃gg

]
(2.25)

where the tildes indicate that populations of the excited ρ̃ee and ground ρ̃gg states, as
well as the coherences ρ̃ge and ρ̃eg are in the rotating frame of the laser. Populations
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Figure 2.11: Bloch sphere representation of the state of a two-level system described
by eq. (2.23). Taken from Ref. [Nielsen and Chuang, 2002].

do not change in any frame: ρee = ρ̃ee and ρgg = ρ̃gg, but coherences rotate: ρge =

ρ̃gee−iωt and ρeg = ρ̃egeiωt.
It can be verified [Steck, 2007] that the following equation holds:

d ⟨σ⟩
dt

= P× ⟨σ⟩ , (2.26)

where ⟨σ⟩ = (⟨σx⟩ ,
〈
σy
〉

,
〈
σy
〉
)T = (ρ̃eg + ρ̃ge, i(ρ̃eg − ρ̃ge), ρee − ρgg)T and P =

(Ω, 0, ∆)T . Note that this equation is very similar to the angular momentum equa-
tion dL

dt = ω × L, where L is the angular momentum vector and ω is the angular
frequency vector.

Remarkably, since the rate of change of the vector ⟨σ⟩, which we now call the
Bloch vector [Bloch, 1946], is perpendicular to ⟨σ⟩ itself, the norm of ⟨σ⟩ will remain
constant. Therefore, if we have a pure state, it can be easily checked that the norm
of this vector is one, meaning that the Bloch vector in either the rotating frame of
the laser or in the canonical frame will be restricted to te surface of a sphere: the
Bloch sphere in fig. 2.11.

We can immediately see that the vector P is extremely important because it is
the precession vector that dictates the trajectory that the Bloch vector follows on
the surface of the Bloch sphere. In particular, if the laser is at resonance with the
two-level system, ∆ = 0, and in this condition, P points to the x axis, and the states
will follow circles perpendicular to the x axis, as shown in fig. 2.12.

The velocity of the rotation is related to the magnitude of the precession vector√
Ω2 + ∆2, which is the so-called Rabi frequency. You can start to see how control-

ling the state of the two-level system works: you turn on and off lasers with detun-
ings and powers that can be controlled with piezoelectrics and voltages, respectively,
which allows you to control the direction and magnitude of the precession vector.
Thus, manipulation of the state of the two-level system follows.

An important final remark is that finite pulses of lasers, unfortunately, do not
have a single frequency, as we have so far assumed. As you may know, the Fourier
transform of a time signal will give you its frequency spectrum. Very short signals
have a wide spectrum. What is the problem with this? For starters, the simplified
Hamiltonian in eq. (2.24) is not a physical Hamiltonian: it is an approximation of
an usually much more complicated Hamiltonian (say, a quantum harmonic oscilla-
tor). The more complicated Hamiltonian does not have two levels, but more (even
infinite), and having a short laser pulse means that some frequencies might excite
levels that are not of our interest. Pulse design is an entire area of research, which
has also received significant attention from the symbiosis between machine learning
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Figure 2.12: Trajectories of a state initially in the ground state (orange path) or in a superpo-
sition state (red path), when the laser is in resonance with the two-level system,
so that the precession vector P points in the x direction.

and quantum physics [Zahedinejad et al., 2016; Yang et al., 2018; Ding et al., 2019;
Dong et al., 2016]. Indeed, pulse design is a very interesting tool to suppress non
desirable resonances so that non-intended levels are never excited (see for instance
the derivative removal by adiabatic gate method [Motzoi et al., 2009; Gambetta et al.,
2011]).

2.6 summary and outlook
The take home message here is that our work gives a path way to couple two
states of a multi-level system through giant Rabi oscillations, which can be used
to effectively treat the system as a two-level system. Here, we took advantage of
a phonon cavity, which is difficult to control with current technology, but remains
an interesting platform as phonon control technology advances. Since said states
involve dark-exciton states, they are much more robust to spontaneous emission
(recombination). Combining giant Rabi oscillations with the usual quantum control
techniques can yield a toolbox for high-level (qudit) quantum computing. As we
later show in this thesis, qudit systems can be very beneficial for combinatorial
problems (see section 5.2), and, of course, it goes without saying that the possibility
of high-level quantum computing is an incredible asset per se, as we also show that
quantum neural networks might perform better than neural networks for quantum
problems, as we show in section 3.4.

Also, as we show in section 5.2, it is of the uttermost interest the ability to control
how quantum systems interact to be able to simulate different sorts of Hamiltonians
that not only allow an analogue (or even digital) processing of quantum information,
but also allow finding ground states through, for instance, quantum annealing of
such interaction-engineered systems.





3 N E U R A L Q U A N T U M S TAT E S A N D
P H A S E T R A N S I T I O N S

As mentioned in the introduction (cf. fig. 1.1), the space of pictures is huge. How-
ever, the space of images of memes, or human faces as in fig. 1.2, is much more
restricted: it is a manifold within the image space. Think about it... if the skin of a
person is of a given colour, all the pixels in this person’s cheeks will almost be of the
same colour: there is a restriction on the values that pixels can take because they de-
scribe an object that, most of the times, changes its colour smoothly with respect to
the position in the image. Something similar happens with many quantum physics
problems, where ground states or steady states tend to follow a particular structure.
In this chapter we will tackle three different problems: finding the ground state of a
Hamiltonian, finding the steady state of a GKSL equation (see eq. (2.9)), and finding
the time-evolution of a system described by a Hamiltonian. All of these problems
require to find a probability distribution defined over the Hilbert space, usually in
the canonical basis. This is analogous to finding the manifold in the image exam-
ple. In machine learning this is called, as we mentioned in chapter 1, the curse of
dimensionality. In quantum physics we refer to these problems as intractable, due
to the usually large Hilbert spaces involved. Our approach to these problems will
be neural quantum states or neural network ansätze [Carleo and Troyer, 2017].

With Herbert we were concerned with the limitations of using neural networks
as ansätze of the variational method (in its Monte Carlo flavour, of course), and
started to test the method with some models using systematic experiments. Along
with Fabio, we published another set of papers on these experiments, which we will
expose in this chapter.

Our work has opened a line of research mainly in the Superconductivity and Nan-
otechnology group, which is the line of artificial intelligence methods for quantum
physics (probably the first of its kind in Colombia). This is probably the legacy of
this thesis project that has been closely accompanied by Herbert and Fabio1. As
of now, our group has a PhD student who is working on machine learning tech-
niques for the preparation of states in qudit systems, and a masters student who is
working on an ansatz so far overlooked by the physics + machine learning commu-
nity (maybe because neural networks attract so much attention): gradient boosting
to represent ground states (and steady states in the future). There are also three
undergraduate students who work on open quantum system dynamics with quan-
tum computers, kernel methods in quantum computing for supervised and unsu-
pervised machine learning applications, and simulation of quantum circuits with
forests of decision trees.

In this chapter, an overview of the state of the art of neural quantum states will
be given in section 3.1. Then, in section 3.2, the NetKet project–an open source
platform for many-body physics with neural networks–will be presented. Finally,
applications to ground states, dynamics and steady states will be explored.

1 I should say that both Herbert and Fabio have exploited our collaboration in their respective groups
to open new lines of research. In the case of Fabio’s group there has been enormous work with many
students in the direction explored in chapter 4.
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Figure 3.1: Expressive power of classically tractable variational quantum states. Figure taken
from Ref. [Sharir et al., 2021]

3.1 state of the art

There is an inherent difficulty in quantum mechanics, but people have demon-
strated to be very recursive to handle intractable Hilbert spaces, by either taking
advantage of the Hamiltonian properties (usually its symmetries), or just by com-
ing up with clever ways of exploring a Hilbert space. As I mentioned in chapter 1,
I got close to one of such clever ways of exploring a large Hilbert space when I
read and reproduced the work by Saito [2017]. The method that was used in this
work is called variational Monte Carlo (I will talk about this method in detail in this
chapter), which leverages Monte Carlo methods to perform the variational method
of quantum mechanics. The variational method is a widely known method both
in physics education and research, and is introduced in early quantum mechanics
courses [Ballentine, 2014; Le Bellac, 2011]: a variational wave function (an ansatz)
has some parameters, and we minimise the expected energy with respect to such
variational wave function by calculating the gradients of this expected value with
respect to the variational parameters. A simple idea, a powerful idea, the idea of
optimising a lower-bounded function!

Modern research coarsely focuses on three “novel” ways to exploit variational
methods: tensor networks [Cirac et al., 2021], variational circuits [Cerezo et al.,
2021] and neural quantum states [Carleo et al., 2019b; Carrasquilla, 2020; Vivas
et al., 2022]. State of the art results, however, are achieved only through tensor net-
work approaches and neural quantum states, because variational circuits have to
be classically simulated, limiting the size of the problems that can be tackled. Ten-
sor networks are much more mature, and have been increasingly improving with
the availability of faster and larger classical computers. Moreover, there is a rather
good understanding of the most common tensor network architectures, which helps
in proving bounds for approximating ground states and observables [Zhou et al.,
2008; Huang, 2019]. Neural quantum states, on the other hand, are much younger,
but are showing promising results [Roth and MacDonald, 2021; Choo et al., 2019;
Chen et al., 2022; Vieijra and Nys, 2021], and are hypothesised to be able to repro-
duce tensor network states [Sharir et al., 2021] as shown in fig. 3.1. However, their
capabilities are not that well understood, which is a limitation inherited from the
deep learning area within machine learning: how neural networks learn is not well
understood yet.

In this chapter we focus on neural quantum states, which were introduced in
the work by Carleo and Troyer [2017]. Three years ago, I found a fantastic Python
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library called NetKet2 which allowed researchers to quickly prototype different neu-
ral network ansätze and play around minimising the expected energies of different
Hamiltonians. I became an official collaborator of NetKet, and we eventually pub-
lished a paper on NetKet 3 [Vicentini et al., 2021], which is the Python-only version
of NetKet3. This library is one of the central pieces of work of this thesis. For now,
let us introduce some concepts central to neural quantum states, and by extension,
central to NetKet. The rest of this short state of the art presents the variational
Monte Carlo method in section 3.1.1 and the so-called neural quantum states, or
neural network ansätze in section 3.1.2.

3.1.1 Variational Monte Carlo

Variational Monte Carlo is a method that allows the controlled exploration of an
intractable Hilbert space in order to carry out the variational method of quantum
mechanics. The variational method comes from the fact that the expected value of
a Hamiltonian with respect to any quantum state is always less or equal than the
ground state energy (it is only equal when said state is the ground state). Thus, the
variational condition is usually written as [Ballentine, 2014]

⟨ψ|H|ψ⟩ = ⟨H⟩ψ ≥ E0 (3.1)

where E0, also sometimes written Eg, is the ground state energy.
Now, the variational method requires a variational wave function, which is just

a parameterised quantum state. It can be written as |ψθ⟩, where θ is just a vector
of parameters. Let us denote a canonical orthonormal basis of the Hilbert space by
{|b⟩}, where |b⟩ serves as a place holder for an element of that basis. If we simply
write b, we are referring to a classical representation of a vector with the entries
of that element. This place holder is called a configuration of the system. To give
a concrete example, if the Hilbert space is that of 100 spins, then the spins can be
either up or down in this canonical basis. If we denote spins up by 1 and spins
down by 0, b are just bit strings of length 100. Since the basis is orthonormal, we
have that for every pair of different configurations of the Hilbert space |b⟩ ,

∣∣b′〉 ∈ H〈
b
∣∣b′〉 = ∏

i
δbi ,b′i

, (3.2)

where I have used the Kronecker delta.
With such a canonical basis, we can write the variational state |ψθ⟩ with the help

of the variational wave function ψθ : H → C as follows:

|ψθ⟩ = ∑
b

ψθ(b) |b⟩ , (3.3)

which results from multiplying the variational state by the identity written in the
given basis, so that ψθ(b) = ⟨b|ψθ⟩. This allows us to write the expectation value of
an operator A as [Becca and Sorella, 2017]

⟨ψθ|A|ψθ⟩ = ∑
b,b′

Pθ(b) ⟨b| A
∣∣b′〉 ψθ(b′)

ψθ(b)
, (3.4)

where Pθ(b) = |ψθ(b)|2/ ∑b′
∣∣ψθ(b′)

∣∣2 is the probability of the configuration b for
the induced probability distribution given by the variational state. You can see that

2 By the time, the library was written in C++, but there was a plan to use machine learning frameworks
written in Python, such as Pytorch from Facebook (now Meta), to make development of the library more
amenable. The parts that did not involve directly neural network operations were handled by numba’s
just-in-time compilation, which leveraged numpy code to C++ under the hood, making Python code
blazing fast. I happened to discover this library right on this transition, and I decided to learn software
development and quantum physics by involving myself in helping the NetKet team.

3 The team moved to Google’s JAX framework, which is based on functional programming in Python
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computing an expected value of some operator is very difficult: one needs to iterate
over all the elements of the basis b, and for each of them one needs to compute
some ratio of wave functions for every other element of the basis that is connected
to b. Running through all the elements of the basis is prohibitive because they are
usually intractable. The second sum, however, is not that problematic. Usually the
operator A will be the Hamiltonian, which tends to be sparse in the canonical basis.
Actually, this happens for almost every quantum operator that one handles on a
daily-basis because of the locality of interactions: particles that are far away from
each other do not directly interact (effectively). Sparsity mainly says that if you
fix b, then ⟨b| A

∣∣b′〉 will be almost always zero, except from some small set of b′s,
which are called the connected elements of b with respect to A.

To our rescue comes the probability term in eq. (3.4). Basically, it says that if,
somehow, we are able to efficiently build a sample M distributed according to
Pθ(b), we can approximate eq. (3.4) with

A⋆
θ =

〈
∑
b′

⟨b| A
∣∣b′〉 ψθ(b′)

ψθ(b)

〉
b∈M

, (3.5)

where A⋆
θ is just notation for an estimated value of the expected value of A with

respect to the variational state |ψθ⟩.
In particular, we can use Monte Carlo methods to sample from Pθ(b) in order to

get our desired sample of configurations M. Again, note that the sum in eq. (3.5)
is tractable, as most of the terms in the sum are just zero because of the assumed
sparsity of the Hamiltonian. Apart from this sparsity which we usually encounter
in Hamiltonians, there is a remarkable gift from nature: usually (YES, USUALLY!
but not always, as we show in section 3.4), ground states lie in a small corner of the
Hilbert space, meaning that the size of M need not be large: only a few number
of states is necessary to accurately describe the ground state of a Hamiltonian. The
problem, which is very challenging, is to find which states those might be!

A common Monte Carlo method for creating the sample is the Metropolis-Hastings
algorithm [Hastings, 1970], which goes like this. Unless you have any intuition
about the Hamiltonian (I will replace A with H from now on because our main
interest will be the Hamiltonian operator), you can randomly generate a configura-
tion b(0), where the (0) just denotes that we are at iteration 0. You need a detailed
balance-like probabilistic update rule, which is a probability map g from which you
can compute g(b′|b), namely, the probability that b gets updated to b′. The detailed
balance property is explicitly g(b′|b) = g(b|b′). At iteration t you do as follows.

• With the rule g you will sample a candidate sample b̃(t) from the previously
known configuration b(t−1).

• You will set b(t) to be the candidate b̃(t) with probability

min

1,
|ψθ(b̃

(t)
)|

2

|ψθ(b(t−1))| 2

 , (3.6)

otherwise you set b(t) := b(t−1).

By collecting configurations in this fashion, one is guaranteed to sample exactly
from Pθ(b). Therefore, we are able to efficiently compute expectation values of oper-
ators in intractable Hilbert spaces. All that is left is to minimise the expected value,
which can be done with gradient-based methods widely used in machine learning,
through either stochastic gradient descent or stochastic reconfiguration [Becca and
Sorella, 2017]. Iteratively, the variational energy in eq. (3.5) is minimised, produc-
ing a new set of parameters θ. This process resembles an Expectation Maximisation
algorithm [Dempster et al., 1977], or also a reinforcement learning algorithm where
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1st samp. step

1st opt. step

2nd samp. step

2nd opt. step

3rd samp. step

n-th opt. step

n-th samp. step

Figure 3.2: Representation of the variational Monte Carlo technique. With randomly ini-
tialised parameters θ, a set of states from the Hilbert space H is sampled. By
minimising the energy defined in eq. (3.5), the parameters θ are updated. These
two steps are repeated a number of times with the objective of sampling the
states (in the occupation basis) that are relevant for the ground state, depicted by
a blot at the bottom, with the correct probability distribution. Figure taken from
Ref. [Vargas-Calderón et al., 2020].

the agent is the Monte Carlo algorithm in charge of taking actions (picking new con-
figurations to form the sample) based on its brain which captures information about
the environment (the variational wave function that tells it where the ground state
might be). A schematic representation of the variational Monte Carlo technique is
shown in fig. 3.2.

The red blot at the bottom of fig. 3.2 depicts a region of the Hilbert space that
contains the most relevant states for the ground state of whatever Hamiltonian is
being studied. The Markov chain formed by the Metropolis-Hastings algorithm is
also portrayed here as a way to wander about the Hilbert space in search for this
red blot. In that regard, the region of relevant states can contain a variable number
of states depending on the parameters of the Hamiltonian that one is intending to
solve. Therefore, an issue immediately arises: for an unknown target probability
distribution |ψ(b)|2, the sampling can be too small or too large with respect to the
size of the region of relevant states. If it is small, important information about the
ground state might not be taken into account, whereas if it is large, noisy probability
from non-relevant states can be taken into account. This is unfortunate, but that is
what we have (and it works pretty well up to a point, as we show in this chapter).

3.1.2 Neural Quantum States

Neural quantum states were introduced by Carleo and Troyer [2017]. The name
“neural” quantum state comes from the fact that the variational wave function
in eq. (3.3), with which the variational energy estimation is computed in eq. (3.5),
is a neural network. In particular, Carleo and Troyer [2017] used a restricted Botlz-
mann machine. From now on, I will present the neural networks used as variational
wave functions in this work for closed quantum systems. In section 3.5 we will see
that we need a variational density matrix in order to model an open quantum sys-
tem, and the corresponding Deep Boltzmann Machine will be introduced there.
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Restricted Boltzmann Machine

We are interested in problems where bosons occupy sites on a lattice (note that the
lattice might be a real space lattice, or a momentum lattice too). This means that
the basis configurations b that we introduced previously are occupation vectors of
the form (n1, n2, . . .), where ni is the occupation (number of bosons) in the i-th site
of the lattice. Note that the vector can be infinitely long. In this Fock space basis,
the ground state of a boson model can be written as

|ψ⟩ =
∞

∑
n1=0,n2=0,...

ψ(n1, n2, . . .) |n1, n2, . . .⟩ , (3.7)

where |ψ(n1, n2, . . .)|2 are the probability amplitudes corresponding to the Fock
states |n1, n2, . . .⟩. In order to map the wave function to a computer, both the num-
ber of sites and the number of possible particles in each site have to be truncated.
We will refer to the number of sites as N and to the maximum number of particles
in each site as M − 1. The coefficients ψ(n1, n2, . . . , nN) are approximated by the
restricted Boltzmann machine (RBM).

RBMs are generative neural networks, formally described by a bipartite undi-
rected graph such as the one shown in fig. 3.3, where there is a layer of visible
neurons denoted by v that are used to input real data, and a layer of hidden neu-
rons denoted by h that are used as latent variables of the model [Smolensky, 1986].

In particular, the wave function coefficients take the form

ψ(n1, n2, . . . , nN) ≈ ψθ(n1, . . . , nN) = ∑
h

exp(−ERBM(v(n), h)), (3.8)

where ERBM(v(n), h) is the energy of the RBM [Smolensky, 1986], and θ are the
variational parameters of the RBM (I will specify these in a bit). As a short-hand
notation, an occupation configuration is denoted as n (yes, n is a bit more intuitive
than the previously used b for this particular case), and it is inputted to the visible
layer of the RBM. However, the configuration first needs to be one-hot encoded
as follows: each occupation ni is encoded into an M-component vector whose j-th
component is δj,ni , j = 0, 1, . . . , M − 1; then, the vectors for every occupation are
concatenated into v(n). In other words, the occupation of each site, say ni can take
M values, but the RBM is made to accept binary values only. Therefore, we convert
each occupation ni into a vector of length M for which all of its entries are −1 except
for the ni-th one, which is 1.

Figure 3.3: Illustration of the RBM, where each site occupation is one-hot encoded into M
visible neurons, depicted with different colours for different sites in the top layer.
There are NH hidden neurons in the bottom layer connected with the visible
neurons through weights Wℓ,j that connect the ℓ-th hidden neuron with the j-th
visible neuron. Taken from Ref. [Vargas-Calderón et al., 2020].
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Moreover, if the NH hidden neurons are restricted to binary values 1 or −1, then,
the approximated wave function coefficients can be written as [Carleo and Troyer,
2017]

ψθ(n) = e∑j ajvj(n)
NH

∏
ℓ=1

2 cosh

(
bℓ + ∑

j
Wℓ,jvj(n)

)
, (3.9)

where aj, bℓ and W are the complex-valued visible bias, hidden bias and connection
matrix of the RBM, respectively.

Thus, the approximation of the wave function coefficients is done by adjusting
the parameters θ : {aj, bℓ, Wℓ,j} that minimise the energy ⟨ψθ| H |ψθ⟩ for a given
boson Hamiltonian H.

Auto-regressive Neural Networks

Sampling in variational Monte Carlo can be a big problem because we need algo-
rithms that quickly converge to the desired probability distribution. Since we do
not know the desired probability distribution, measuring whether we are converg-
ing to it is impossible (though there are metrics for convergence of Markov chains
to some distribution [Roy, 2020], which can be a stationary probability distribution
and not the desired probability distribution per se). In practice, we know that the
Metropolis-Hastings algorithm that we described before can become stuck at sta-
tionary probability distributions which do not thermalise to the desired probability
distribution. Before discussing a possible remedy (auto-regressive sampling) for
this possible upset, let us discuss an interesting figure (fig. 3.4) from Vivas et al.
[2022], which shows a principal component analysis plot (this is a technique of
dimensionality reduction, which projects data in a high-dimensional space onto a
lower-dimensional space–2D in this case– by means of a linear map that maximises
the variance of the data on the lower-dimensional space) of data sampled using the
usual Markov chain Monte Carlo methods versus auto-regressive sampling.

Figure 3.4 gives a clear picture of what I am referring to. Sampling from Markov
chains inevitably leads to sampled configurations being correlated to one another.
This is a simple result because in order to get a new configuration, one applies
probabilistic rules to get the next configuration (Hamiltonian Markov chain Monte
Carlo is just another way of computing the acceptance probability, but falls within
the framework of the Metropolis-Hastings algorithm that I have explained previ-
ously). Therefore, the next configuration is correlated to the previous one. On the
other hand, as we will see, auto-regressive models sample exactly from Pθ(b), which
means that configurations are completely uncorrelated with one another, because
sampling a configuration does not require a seed configuration to begin with. This

Figure 3.4: Principal component analysis of samples obtained both by auto-regressive sam-
pling and a Hamiltonian Markov chain Monte Carlo chain for the ground-state
of a 100-long transverse-field Ising chain in the disordered phase. Taken from
Ref. [Vivas et al., 2022].



34 neural quantum states and phase transitions

is the take-home message. Now, I will explain the mathematical formulas of one
such auto-regressive models.

Let us start with a simple auto-regressive neural network such as the one shown
in fig. 3.5. The neural network has five neurons, and you can see that four of
them are used to compute the value of the fifth one. A normalisation function can
be added to what results from the operation of carrying information from the first
four neurons to the last one, so that the neural network can be thought of computing
q(n5|n1, . . . , n4), which stands for the conditional probability that n5 takes a specific
value given the first four values.

This auto-regressive model is called the chain-type Bayesian network [Frey, 1998;
Wu et al., 2019, 2021; Zhao et al., 2021], which we take as the building block of
the auto-regressive model. As an example, fig. 3.6 shows some auto-regressive
architectures for 1D and 2D data. The input is a set of configurations, and the
neural network is equipped with auto-regressive calculations. Because of the way
in which neurons are connected, the output n̂ will contain conditional probabilities,
as in fig. 3.5. In fig. 3.6, some output neuron is coloured, and its connections (also
known as the receptive field of the coloured output neuron) show that the value of
said neuron depends on the input neurons previous to that neuron, which is the
auto-regressive property.

Figure 3.5: Auto-regressive network that predicts the next value in a series given
the first four values. Taken from https://theblog.github.io/post/

convolution-in-autoregressive-neural-networks/

Figure 3.6: 1D and 2D architectures of auto-regressive networks. The occupation configu-
ration n is the input to the network, n̂ is the output of the network which con-
tains the conditional probabilities, and h denotes hidden layers. Adapted from
Ref. [Wu et al., 2019].

https://theblog.github.io/post/convolution-in-autoregressive-neural-networks/
https://theblog.github.io/post/convolution-in-autoregressive-neural-networks/


3.1 state of the art 35

With such a neural network, we can properly define the probability of a configu-
ration as the multiplication of the output neurons in fig. 3.6:

Pθ(n) = qθ(n1)
N

∏
i=2

qθ(ni|n1, . . . , ni−1). (3.10)

Here, qθ models the probability that the i-th occupation has a specified value con-
ditioned on the observed values for the previous occupations. These conditional
probabilities are connected to the quantum mechanical state vector through the
Born rule, i.e.

qθ(ni|n1, . . . , ni−1) ≡ |ψθ(ni|n1, . . . , ni−1)|2. (3.11)

The form of the actual wave function is an M-component conditional amplitude
vector (M stands for the number of internal levels of each site; for bosons it can be
any integer which truncates the maximum number of bosons per site, or for spins
it is just two)

η(ni|n1, . . . , ni−1) =


ηi

1
ηi

2
...

ηi
M

 , (3.12)

where η is an auto-regressive neural network with M complex outputs per occupa-

tion such that ∑M
j=1

∣∣∣ηi
j

∣∣∣2 = 1. Therefore, the actual amplitude of a configuration can
be simply found by considering the vector representation of the possible values for
a given occupation, which we denote as ni, which is a one-hot vector with all zeros
except for the position ni, which is one–or in the case of spins, it can be either (1, 0)T

for ni = +1 or (0, 1)T for ni = −1. Thus, we write the amplitude of a configuration
given by the model as

ψθ(n) =
N

∏
i=1

ni · η(ni|n1, . . . , ni−1). (3.13)

3.1.3 Variational Quantum Circuits (Quantum Neural Networks)

Another important neural quantum state (which is actually a quantum neural quan-
tum state... quantum, quantum, quantum!) is the so-called quantum neural net-
works, also known as variational quantum circuits [Peruzzo et al., 2014]. Variational
quantum circuits are circuits with some structure of quantum gates, but the gates
are parameterised by variational parameters. Essentially, the variational quantum
circuit provides a parameterised unitary transformation of the state of a number of
qubits (or maybe qudits in the future).

A quantum processing unit (QPU) can be composed of many individual vari-
ational quantum circuits, each of which computes the expected value of a local
operator. The whole Hamiltonian is a sum of these local operators. Each of these
individual variational quantum circuits are called quantum modules, and they are
used to compute the expected value of said local operators. Then, the whole in-
formation is passed to a classical computer, which adds the results to get the total
energy. Through the computation of gradients, the classical computer, which can be
thought of a CPU, updates the parameters of the quantum circuit so as to minimise
the estimated expected energy. The whole process is shown in fig. 3.7.

We did not not use variational quantum circuits, but it is important to know that
they exist and how they work because I will show some results of a paper that does
use them.
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Figure 3.7: Variational quantum eigensolver. Iteratively, variational quantum circuits are
used to compute expected values of local energy operators (and they can also
be used to compute gradients through the so-called parameter shift rule in quan-
tum computing [Mitarai et al., 2018]). These values are added in a CPU in order
to compute the total estimated expected energy. Through an optimisation rou-
tine, the CPU sets the new parameters of the variational quantum circuits.

3.2 netket

The NetKet project is a fabulous open-source project for prototyping neural quan-
tum states which has seen contributions of 43 people at the time of writing. Being
open-source, it has allowed me to become a collaborator [Vicentini et al., 2021],
which has taught me good scientific software development practices (for students
reading this thesis, this is a super important skill to develop, it opens a lot of doors!).
The idea behind NetKet is to facilitate researchers (condensed matter and also
machine learning-quantum physics researchers) the study of many-body physics
through neural quantum states. NetKet provides a platform for high-performance
computing, and leverages variational Monte Carlo to study intractable quantum
physics problems in devices such as laptops or clusters with hundreds or thou-
sands of cores as well as graphical processing units (GPUs) due to its native use of
JAX [Bradbury et al., 2018].

In this section, I will briefly explain the main components of NetKet, which allows
us to perform extensive and systematic studies using neural quantum systems–I
need to emphasise that, on top of NetKet, we use Optuna [Akiba et al., 2019] for
hyper-parameter tuning. For a lot of intriguing details, the interested reader is
encouraged to read our paper in Ref. [Vicentini et al., 2021].

3.2.1 Hilbert spaces

Hilbert spaces allow us to formally describe the state of a quantum system, from
a mathematical understanding point of view. In NetKet, we can define common
Hilbert spaces for several kinds of systems. For the purposes of this thesis, we
only deal with discrete Hilbert spaces, for which we can have spin, qubit, Fock and
fermionic orbitals Hilbert spaces. One can combine Hilbert spaces by considering
their tensor product. From Hilbert spaces one can draw random configurations,
which are random strings containing the occupation of each Hilbert space.

As an example, the system that we studied in chapter 2–a two-level system and
an acoustic cavity–can be described by the Hilbert space of a qubit (the two-level
system) and a Fock space, truncated to a number of maximum phonons.
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3.2.2 Local Operators

The vast majority of Hamiltonians in quantum mechanics are given by sums of
local operators because particle wave functions tend to be spatially localised, thus
restricting their interaction to particles close-by.

As we saw in section 3.1.1, we need to be able to quickly compute estimated
expectation values of operators, as in eq. (3.5). For this reason, NetKet supports
local operator objects from which one can, given an element of the basis b, obtain
the non-zero matrix elements ⟨b| A

∣∣b′〉 for every other basis element b′. These are
called connected elements with their respective matrix elements.

NetKet allows a seamless interface for operating operators: summing them, mul-
tiplying them by constants or by other operators, etc. Also, one can get sparse and
dense representations of these operators. The way in which operators are built is
an extremely efficient one. NetKet operators are ultra-sparse, meaning that they
occupy even less memory than sparse matrices. The reason behind this is that the
operator representation exploits the fact that many Hamiltonians are sums of local
operators, which allows the sectioning of configurations into small subsystems for
which connected elements can be computed very efficiently.

3.2.3 Variational Quantum States

There is a generic object, which works for closed and open systems called the varia-
tional state. It needs a set of parameters; it must have a method to compute expecta-
tion values of operators, i.e., it interfaces with local operators and neural networks;
and finally, it needs a method to compute gradients of expected values, which is
usually achieved through automatic differentiation (thanks to the native code in
JAX, which allows immediate automatic differentiation). Optionally, for stochastic
reconfiguration [Becca and Sorella, 2017] one might need to be able to compute the
quantum geometric tensor (see Ref. [Vicentini et al., 2021] for more details).

The neural networks that define the variational wave function are called varia-
tional ansätze, or simply models. For numerical stability reasons, these models are
built to compute the logarithm of the wave function instead of the wave function
itself.

3.2.4 Samplers

In order to build the sample with which expectation values are estimated, one needs
a sampler, which is an object that generates new configurations. There are two types
of samplers: Markov chain Monte Carlo samplers based on the Metropolis-Hastings
algorithm; or direct samplers such as an exact sampler which samples exactly from
the probability distribution (you can see that this is a greedy algorithm that needs
access to the whole Hilbert space), or an auto-regressive sampler, which needs an
auto-regressive model.

3.2.5 Drivers

On top of everything, there is a driver which orchestrates the whole process (see fig. 3.2):
it uses randomly generated configurations to estimate the energy through the ex-
pect method of the variational quantum state; then, through the gradient method
of the variational quantum state, gradients of the estimated expected energy are
computed in order to perform optimisation using some optimiser from machine
learning or stochastic reconfiguration; after this, configurations can be proposed to
build a new sample through the sampler, and the process repeats until convergence,
as depicted in fig. 3.8.
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Figure 3.8: General variational Monte Carlo process. Taken from Ref. [Vivas et al., 2022].

3.3 the ground state of the bose-hubbard model
Nature is benevolent: even though ground states can be complicated, they usually
lie on a small corner of the Hilbert space, i.e., the blot in fig. 3.2 is small. In this
section, we start the exploration of the Bose-Hubbard model. This section contains
excerpts and results from Ref. [Vargas-Calderón et al., 2020].

First, let us discuss the phases in the Bose-Hubbard model. The Bose-Hubbard
Hamiltonian describes the interactions between bosons that can occupy sites in
a d-dimensional lattice. The parameters of the model are the hopping energy t,
the on-site interaction U and the chemical potential µ, so that the grand-canonical
Hamiltonian reads (h̄ = 1) [Fisher et al., 1989]

H = −t ∑
⟨ij⟩

(a†
i aj + H.c.) +

U
2 ∑

i
ni(ni − 1)− µ ∑

i
ni, (3.14)

where ai is the annihilation operator at site i, and ni = a†
i ai is the number operator.

The notation ⟨ij⟩ indicates that the sum runs over pairs of neighbour sites in the
lattice, which has periodic boundary conditions.

A central issue is to calculate the quantum phase transition boundaries [Kühner
and Monien, 1998; Ejima et al., 2011; Kühner et al., 2000; Batrouni and Scalettar,
1992; Kashurnikov et al., 1996; Batrouni et al., 1990; Elstner and Monien, 1999; Koller
and Dupuis, 2006], whose precision has improved over the years with better calcu-
lation techniques and computing power, revealing features such as the re-entrance
phenomenon [Pino et al., 2013; Elstner and Monien, 1999], where for particular val-
ues of the chemical potential, the system switches between the Mott insulator phase
to the superfluid phase, and back to the Mott insulator phase before definitely en-
tering the superfluid phase after an increase of t/U. I will explain these phases in
a bit.

For simplicity, let us restrict our analyses to the d = 1 case, where only two
quantum phases are possible (Mott insulator and superfluid). When the on-site
interaction energy is much larger than the hopping energy, the latter becomes neg-
ligible, and the Hamiltonian is written as the sum of independent Hamiltonians for
each site:

U
2

ni(ni − 1)− µni. (3.15)

These one-particle Hamiltonians can be immediately diagonalised by the number
basis. The corresponding eigen-energies are U

2 ni(ni − 1)− µni, which reach mini-
mum values for fixed µ and U at ni = max{0, ⌈µ/U⌉} (note that all sites are indis-
tinguishable, and thus, equivalent). Moreover, in this regime, the expected variance
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of the local number operator is zero, i.e. ⟨n2
i ⟩ − ⟨ni⟩2 = 0. Physically, the bosons

are restrained to each lattice site, unable to move, with a well-defined number of
particles at each site. This regime characterises the Mott insulator phase. On the
other hand, when the hopping energy is much larger than the on-site interaction
energy, the latter becomes negligible. Thus, the Hamiltonian can also be written as
the sum of independent Hamiltonians, but in momentum space, where

ãk = N−1/2
N

∑
j=1

aje
−ixj pk/h̄ (3.16)

is the boson annihilation operator in the momentum representation. Here, xj =
c × j, where c is the lattice constant, and pk = 2πkh̄/(N × c). Each independent
Hamiltonian in momentum space becomes

∑
k
(−2t cos(2πk/N)− µ)ã†

k ãk (3.17)

and has eigen-energies −2t cos(2πk/N)− µ, which reach their minimum when all
bosons condense with 0 momenta. Note that the energies are independent of the
states’ occupation, meaning that the ground state is degenerate for any number
of particles. This regime is known as the superfluid phase, characterised by a de-
localised wave function (formally described by algebraic decaying spatial correla-
tions [Ejima et al., 2012; Pino et al., 2013], which is why the superfluid phase in
1D is not a true Bose-Einstein condensate). Thus, the ground state has a non-zero
expected variance of the local number operator. In fact, the probability distribution
for the local occupation is Poissonian, meaning that ⟨n2

i ⟩ − ⟨ni⟩2 = ⟨ni⟩ [Greiner
et al., 2003]. For a fixed chemical potential and an infinite number of sites, there
exists a continuous phase transition from the Mott insulator phase to the superfluid
phase as U decreases with respect to t (with the exception of a range of µ values in
the first Mott lobe, where re-entrance exists, as previously described).

In Ref. [Vargas-Calderón et al., 2020] (see this work for experimental details) we
performed a sweep of the Hamiltonian parameters in eq. (3.14) to reconstruct the
phase diagram of the Bose Hubbard model. The systems under study were: for 5

sites, we used 8 and 20 hidden neurons in the restricted Boltzmann machine, and
for 8 sites, we used 11 hidden neurons.

For the aforementioned three scenarios, the variance for the last 500 sampling-
optimisation steps for variational Monte Carlo is shown in fig. 3.9(a)-(c), and the
corresponding absolute errors with respect to the exact ground state energy are
shown in fig. 3.9(d)-(f). It is seen that in the Hamiltonian parameter space, the
majority of the energies have low-variance, showing convergence towards a value
that is in excellent agreement with the exact ground-state energies.

We can compute the expected value of any observable A exactly by accessing all
the probability amplitudes at every element of the canonical basis of the Hilbert
space. In particular, we show in fig. 3.10 the mean absolute error of the energy with
respect to the true ground state energy (notice that the difference with fig. 3.9 is
that in fig. 3.9 the energy is computed with a sample, and in fig. 3.10 the energy is
computed with the whole Hilbert space). It is clear that in the case of 5 sites and 20

neurons, a very large region both in the SF and MI phases shows a strong disagree-
ment between the exact and approximated energies, showing that even though the
energy converged, the state did not (correctly) converge. Another recurrent pattern
is an arc of high absolute errors formed on the left-most side of the Mott lobes,
which we will address in a while.

The lack of convergence of the restricted Boltzmann machine state for the case
of 5 sites and 20 hidden neurons is further confirmed when we measure the over-
lap between the exact ground state |ψexact⟩ and the restricted Boltzmann machine
ground state |ψθ⟩, shown in fig. 3.11(c). It is now clear why the expected energy
with respect to the complete variational state shown in fig. 3.10(c) presents large er-
rors when compared to the expected energy with respect to the exact ground state:
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it appears that the restricted Boltzmann machine has not learned the ground state
in the bottom-right region of the plot, which is a region that covers part of the Mott
lobe, as well as part of the superfluid phase region. Moreover, in the case of 5 sites
and 8 hidden neurons, and the case of 8 sites and 11 hidden neurons, the restricted
Boltzmann machine finds difficulty in learning the ground state in the limit between
the Mott insulator and the superfluid phase as shown in fig. 3.11(a) and (b).

If one pays very close attention to the energy absolute errors in fig. 3.9(d)-(f),
the lowest errors occur where the overlap in fig. 3.11(a)-(c) is lowest. Therefore,
even though the convergence in the energy is excellent, the state is not learned
correctly–a possible occurrence in any variational method!. This is essentially, what
also happened in section 3.4.4 when optimisation got stuck at excited states, even
though the energy was close to the ground state energy. This difficulty in learning
those states, and in general, in treating the ground state near the Mott insulator-
superfluid boundary mainly arises from a Hamiltonian gap issue. In particular, in
Kosterlitz-Thouless-like quantum phase transition in 1D systems [Giamarchi, 2003],
an exponentially small Mott gap exists [Ejima et al., 2012], which provokes the
possibility that variational methods go to the ground state energy, even when the
state does not correspond to the ground state.

We see once again that there are arcs of low overlap points formed in the left-
most side of the Mott lobes. Within the superfluid phase, there are also lines of
low overlap, which appear because of finite size effects. Note that there are as
many of these fictitious boundaries as there are sites in the periodic chain under
study. Nevertheless, when comparing the 5 sites cases, it is seen that for values
of µ/U > 1 the states at the Mott insulator-superfluid phases boundary are better
learned when 20 hidden neurons are used in the restricted Boltzmann machine (as
in [McBrian et al., 2019], cf. fig. 3.11(c)) than when only 8 hidden neurons are used
(see fig. 3.11(a)).

Since the advantage of variational Monte Carlo over exact diagonalization comes
for intractably large Hilbert spaces, it is not always possible to compute the prob-

Figure 3.9: Energy variance and absolute error of the last 500 sampling-optimisation steps.
Dashed lines show the phase boundaries computed for 128 sites with density
matrix renormalisation group by Ejima et al. [2011]. In (a), the two first Mott lobes
and the superfluid region are labelled explicitly. (a)-(c) show the variance for the
last 500 sampling-optimisation steps for the cases of 5 sites and 8 hidden neurons,
8 sites and 11 hidden neurons, and 5 sites and 20 hidden neurons, respectively.
(d)-(f) show the corresponding absolute errors between the average energy value
for the last 500 sampling-optimisation steps and the exact ground state energy.
Figure taken from Ref. [Vargas-Calderón et al., 2020].
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Figure 3.10: Absolute error between the RBM state expected energy and the exact ground
state energy for (a) 5 sites and 8 hidden neurons, (b) 8 sites and 11 hidden
neurons and (c) 5 sites and 20 hidden neurons. Dashed lines are the Mott
insulator-superfluid boundaries as in fig. 3.9. Figure taken from Ref. [Vargas-
Calderón et al., 2020].

ability amplitudes for all of the Fock states basis. In such a case, the restricted
Boltzmann state can be cleaned as

|ψ̃θ⟩ = ∑n∈M′ ψθ(n) |n⟩√
∑n∈M′ |ψθ(n)|2

, (3.18)

where M′ is a sample of Fock states sampled with the Metropolis-Hastings algo-
rithm, with an acceptance probability of min{1, pGC(ni+1)/pGC(ni)}, where pGC(n) =
Z−1 exp(− ⟨n|H|n⟩) is the probability associated with the grand canonical ensem-
ble (note that the term µ ⟨N⟩ has already been introduced in the Hamiltonian). This
strategy was used to generate a sample M′ of up to 2048 Fock states yielding a state
|ψ̃θ⟩ for every point in the phase diagram. The overlap between the exact ground
state |ψexact⟩ and the cleaned restricted Boltzmann machine ground state |ψ̃θ⟩ is
shown in fig. 3.12 for the three studied scenarios.

Comparing fig. 3.11 with fig. 3.12, it is seen that the retrieved sampled state
“cleans” the restricted Boltzmann machine state. In fact, the Fock states whose
probability amplitudes were badly learned were removed, and only the Fock states
relevant for the actual ground state were left. Despite this cleaning, the larger the
Hilbert space, the more states have to be sampled to consider all relevant Fock states,
as it is seen that 2048 Fock states are insufficient to capture the ground state in the
case of 8 sites shown in fig. 3.12(b). Nonetheless, note that the low overlap in the
arc from fig. 3.11(b) almost completely disappears after the cleaning, cf. fig. 3.12(b).

On the other hand, an important feature of fig. 3.12(b) is that the overlap of
the sampled restricted Boltzmann machine state diminishes as t gets larger. This
happens because larger values of t/U imply larger delocalisation of the ground
wave function, thus, involving more Fock states. Moreover, the Hilbert space size
for 8 sites consists of 58 = 390625 Fock states, which is why only sampling 2048 Fock

Figure 3.11: Overlap |⟨ψexact|ψθ⟩|2 between the exact and restricted Boltzmann machine
ground states for (a) 5 sites and 8 hidden neurons, (b) 8 sites and 11 neurons,
and (c) 5 sites and 20 neurons. Dashed lines are the Mott insulator-superfluid
boundaries as in fig. 3.9. Figure taken from Ref. [Vargas-Calderón et al., 2020].
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Figure 3.12: Overlap | ⟨ψexact|ψ̃θ⟩| 2 between the exact and cleaned restricted Boltzmann ma-
chine ground states for (a) 5 sites and 8 hidden neurons, (b) 8 sites and 11 hidden
neurons and (c) 5 sites and 20 hidden neurons, for a maximum of 2048 states
sampled from the Hilbert space. Dashed lines are the Mott insulator-superfluid
boundaries as in fig. 3.9. Figure taken from Ref. [Vargas-Calderón et al., 2020].

states results in poor representations of the ground state, especially in the superfluid
phase. Sampling more Fock states eventually reconstructs the exact ground state
with very high overlap, except at the boundary between the Mott insulator and
superfluid phases (data not shown).

Since we have shown that restricted Boltzmann machines can approximate the
ground state of the Bose-Hubbard Hamiltonian in eq. (3.14), we are confident that
order parameters/correlations and whatever observable comes to mind will fairly
agree with the values for the exact ground state. This is obvious, since for comput-
ing any of these quantities one only needs the quantum state, which is already quite
faithful. The interested reader is referred to Ref. [Vargas-Calderón et al., 2020] for
further discussion on the topic, and for a complete tomography of the variational
state.

3.3.1 Momentum Representation

An interesting application that we presented at the 2nd Colombian Meeting on
Many-Body Quantum Simulation under the title “Machine Learning the ground
state of the Bose-Hubbard model in momentum representation” in 2021 is the study
of the Bose-Hubbard Hamiltonian in the momentum representation, where the
Hamiltonian transforms to the form commonly encountered in second-quantisation
many-body problems. The transformation in eq. (3.16) transforms the Bose-Hubbard
Hamiltonian in eq. (3.14) as (we drop the tilde and just refer to momentum opera-
tors with the letters k and l)

H = −∑
k
(tk + µ)a†

k ak + U′ ∑
k,l,k′

a†
k a†

k′ alak+k′−l , (3.19)

where there is a single momentum summation term (which actually involves all
sites), and a four momentum interaction term with interaction constant U′ = U/(2N),
whose Feynman diagram is shown in fig. 3.13.

Figure 3.13: Feynman diagram for the process a†
k a†

k′ al ak+k′−l , where two particles of mo-
menta l and k + k′ − l interact and are scattered with momenta k and k′.
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Numerically, we saw that energy convergence is quicker (in terms of number of
iterations) in the momentum representation than in the direct space representation.
However, the Hamiltonian in eq. (3.19) is much more complicated (in terms of com-
puting its connected elements and matrix elements) than its direct space version
in eq. (3.14). In practice, this means that the current algorithms in NetKet run much
slower. Nonetheless, I want to stress in this section that the momentum represen-
tation is relevant because Fock states in momentum space are eigenstates of the
direct space translation operator. Since the system satisfies periodic boundary con-
ditions, any translation leaves the wave function unchanged (apart from a global
phase shift). Therefore, the momentum representation can naturally incorporate
symmetries of the system without having to learn them or represent them explicitly
in the ansatz.

Remarkably, the NetKet team has lately been keen on representation theory of
symmetry groups to incorporate symmetries in ansätze, particularly with graph
convolutional neural networks [Vicentini et al., 2021].

3.4 limitations of neural quantum states (dynam-
ical phase transitions)

Recently, Barison et al. [2022] published a fascinating work in which they used the
ideas by Feynman and Kitaev to pose the problem of finding the evolution of a
quantum system described by a Hamiltonian as the problem of finding the ground
state of a modified Hamiltonian. Barison et al. [2022] solved the problem using vari-
ational quantum circuits. We reproduced the results, but we used neural quantum
states. Let us first introduce how quantum dynamics can be approached from a
ground-state perspective. This section is based on our work [Vargas-Calderón et al.,
2022], and contains excerpts and results from it.

3.4.1 Feynman’s Quantum Clock

Suppose that we want to evolve the quantum state of a physical system |ψ(t0)⟩ to a
later time T. The formal solution of this problem is given by the Schrödinger equa-
tion, which asserts that |ψ(T)⟩ = U(T, t0) |ψ(t0)⟩, where U is the time evolution
operator that takes the form

T̂ exp
(
−i
∫ T

t0

H(t′)dt′
)

, (3.20)

with T̂ being the time ordering operator. If the Hamiltonian is time independent, it
is possible to write the time evolution operator simply as

U(T, t0) = U(T − t0) = exp(−iH(T − t0)). (3.21)

Let us set t0 = 0. It is worth highlighting that, even though H is usually sparse, U(T)
need not be sparse, especially for large values of T [Alhambra, 2022]. Therefore,
computing the matrix representation of U(T) involves a considerable computational
effort. It is much easier to compute U(∆t) for ∆t = T/N ≪ T for large N, as U(∆t)
becomes just a perturbation of the identity4.

One of the earliest proposals for performing a quantum computation was pre-
cisely that of the time evolution of a quantum system [Feynman, 1985]. The idea
behind this proposal is that the quantum state of a physical system can be described
along with the quantum state of a clock [McClean et al., 2013]. In particular, the

4 Notice that it is computationally simpler to compute U(∆t) than U(T). One can recover U(T) by mul-
tiplying N consecutive times U(∆t), but this multiplication matches the computational effort of directly
computing U(T)
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clock can be in the states |0⟩ , |1⟩ , . . . , |N⟩, i.e., it is a N + 1-level system in the
clock’s Hilbert space. We encode the N + 1-level system that describes the clock in
NT = ⌈log2(N + 1)⌉ spins. Thus, the system under consideration is enlarged with
spins representing the state of the clock.

McClean et al. [2013] showed that a variational principle can help in constructing
a Hamiltonian Ĥ of the whole system such that its ground state is precisely

|Ψ⟩ = 1√
N + 1

N

∑
t=0

|ψ(t)⟩ ⊗ |t⟩ . (3.22)

The Hamiltonian Ĥ of the whole system can be written as [McClean et al., 2013;
Caha et al., 2018; Barison et al., 2022]

Ĥ = Ĥ0 +
1
2

N−1

∑
t=0

[IP ⊗ (|t⟩⟨t|+ |t + 1⟩⟨t + 1|) + {U(∆t)⊗ |t + 1⟩⟨t|+ h.c.}] ,

(3.23)

where IP is the identity of the physical system’s Hilbert space P and Ĥ0 = H0 ⊗
|0⟩⟨0| is a term that breaks the degeneracy of the ground state by fixing the initial
state at t = 0. For instance, Barison et al. [2022] take H0 = I − |ψ(0)⟩⟨ψ(0)|, for any
desired initial state of the physical system |ψ(0)⟩. Remarkably, the ground state
of eq. (3.23) is exactly eq. (3.22), and its energy is ⟨Ψ|Ĥ|Ψ⟩ = 0. This property is
important because it allows us to quantify how close the algorithm is to converge
to the true ground state of the system.

3.4.2 Transverse Field Ising Model

We studied the dynamics of the prototypical TFIM Hamiltonian defined on a one-
dimensional chain of NS (ordered) spins:

H = J
NS−1

∑
i=1

σz
i σz

i+1 + h
NS

∑
i=1

σx
i , (3.24)

where σ
z(x)
i is the Z(X) Pauli operator acting only on spin i. Throughout this section,

we fix the following values: J = 0.25 and h = 1.
As mentioned, the physical spin chain described by the TFIM Hamiltonian is the

main system. It is enlarged by a set of spins that represent the quantum clock, as
shown in fig. 3.14(a).

(a)

(b)

(c) (d)

Figure 3.14: Representation of the physical spin chain enlargement with a clock state (a); and
properties of the ground state of the enlarged Hamiltonian in eq. (3.23) found
with exact diagonalisation. (b) shows the second Rényi entropy per spin of a
sub-chain of physical spins. (c) shows the Gini coefficient of the probability
distribution of the ground state, and (d) shows the ratio of the canonical basis
of the Hilbert space that is needed to explain 99% of the probability of the
ground state. The main text explains these plots in-depth. Figure taken from
Ref. [Vargas-Calderón et al., 2022].
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The ground state of eq. (3.23) encodes the time evolution of a system governed by
the TFIM Hamiltonian in eq. (3.24). The initial state is set as |↑, . . . , ↑⟩, achieved by
setting H0 = 1

2 ∑NS
i=1(1 − σz

i ). There is an intrinsic difficulty in the Feynman-Kitaev
Hamiltonian, which is that a lot of information (the quantum state of the Ising chain
at each time step) needs to be stored in the ground state. Such difficulty is evident
from analysing the structure of the ground state.

To this end, we consider a system where the total number of spins is NT + NS = 9,
which fixes the Hilbert space size to 29 (which is perfectly tractable on a classical
computer, making it easy to benchmark). We assign NS spins to the physical TFIM,
and NT spins to encode 2NT time steps, from zero to a time T = 3. Let |Φ(NS)⟩
be the ground state found through exact diagonalisation of eq. (3.23) (one actually
needs to specify NT and NS, but we drop this because we know that their sum is
9). We can quantify the entanglement scale of the system by measuring the second
Rényi entropy per physical spin − log

(
Tr
[
ρ2

NP

])
/NS [Torlai et al., 2018]. Here, ρP

is the reduced density matrix, which is obtained by tracing over all the spin degrees
of freedom except the first NP ≤ NS physical spins from the ground state, i.e,

ρNP = ∑
σNP+1,...,σNS+NT

〈
σNP+1, . . . , σNS+NT

∣∣Φ(NT)
〉 〈

Φ(NT)
∣∣σNP+1, . . . , σNS+NT

〉
.

(3.25)

Figure 3.14(b) shows the second Rényi entropy per physical spin, showing that
the entanglement increases between the first NP physical spins and the rest of the
system as more spins are dedicated to encode time steps. Indeed, the last point of
each curve in fig. 3.14(b) show that the entanglement between the time spins and
the physical spins increase as long as more spins are used to encode the quantum
state of the clock.

Another insightful analysis that summarises the complexity of the ground state
of eq. (3.23) is the Gini coefficient of the probability distribution [Gini, 1912]. The
Gini coefficient is normally used in the context of economics to assess the concen-
tration of wealth in a society: the highest the concentration of wealth in a few
individuals, the higher the Gini coefficient will be; on the other hand, it will tend
to zero if wealth is perfectly distributed among the population. If we think of prob-
ability as wealth and of elements of the canonical basis as individuals, the analogy
is clear. Therefore, we measure the Gini coefficient as

G =
∑σ,σ′

∣∣∣|⟨σ|Φ(NS)⟩|2 − |⟨σ′|Φ(NS)⟩|2
∣∣∣

2 × 29 ∑σ |⟨σ|Φ(NS)⟩|2
. (3.26)

We show in fig. 3.14(c) the Gini coefficient for different values of physical spins
NS and time spins NT . The most relevant reading of this plot for our work is
considering the diagonals of the plot where NS + NT is fixed. In such a case, we
see that the larger NT is, the smaller the Gini index is. This indicates that the
probability spreads across more elements of the canonical basis of the Hilbert space
as NT increases. Said fact is corroborated by fig. 3.14(d), which shows the ratio of the
canonical basis elements needed to capture 99% of the probability distribution given
by the ground state. More formally stated, let the canonical basis {σ} be indexed

such that
∣∣∣〈σ(i)

∣∣∣Φ(NS)
〉∣∣∣2 ≥

∣∣∣〈σ(i+1)
∣∣∣Φ(NS)

〉∣∣∣2. Then, fig. 3.14(d) shows the ratio

r/2NS+NT , where r is the smallest integer such that ∑r
i=1

∣∣∣〈σ(i)
∣∣∣Φ(NS)

〉∣∣∣2 < 0.99. It
is clear from fig. 3.14(d) that for a fixed number of total spins NS + NT , the larger
NT is, the highest the ratio of elements in the canonical basis needed to explain the
ground state is.

Figure 3.14 showed that the ground state, for large values of NT , is not anymore in
a “small corner” of the Hilbert space. Instead, a well-spread and highly entangled
ground state forms.
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Figure 3.15: Average magnetisation and infidelity of the “variational Feynman Kitaev” (VFK)
ansatz (the name that Barison et al. [2022] give to their variational quantum
circuit) for a different number of auxiliary qubits na, which induce 2na time
steps in the evolution. Figure adapted from Ref. [Barison et al., 2022].

3.4.3 Ground States and Dynamical Phase Transition by Quenching

We will now see how Barison et al. [2022] use variational quantum circuits to learn
said ground state, and, in the next subsection, how we use neural quantum states
to do the same. In essence, we see that both variational quantum circuits and neu-
ral quantum states are able to find the ground states. This representation ability
is referred to as expressivity. However, our large numerical experiments show that
neural quantum states are much more difficult to train, and that learning ground
states becomes a limitation of another aspect of machine learning models: train-
ability. We see that the models can be expressive enough, but training them is a
different story.

The reader is referred to Ref. [Barison et al., 2022] for the exact variational quan-
tum circuit used by them to simulate the ground state of eq. (3.23). Once this
ground state |Ψϑ⟩ is obtained, where, in this case, ϑ are the variational parameters
of the quantum circuit, one can obtain the state of the main spin chain by simply
projecting onto a particular clock time:

|ψ(t)⟩ =
√

N + 1 ⟨t|Ψ⟩ , (3.27)

which easily follows from eq. (3.22). From having the quantum state at different
points in time, we can measure any observable. In fig. 3.15, the average magneti-
sation and infidelity with respect to exact states5 are shown. You can see that
infidelities are pretty low and that the magnetisation curve matches perfectly with
the exact one.

With this setup, dynamical phase transitions [Heyl, 2018; Heyl et al., 2013] can be
studied through the formalism of Loschmidt echoes. The Loschmidt echo is defined
as

L(t) = |⟨ψ(0)|ψ(t)⟩|2, (3.28)

which allows us to identify dynamical quantum phase transitions through the rate
of change of the Loschmidt echo with respect to the system size:

λ(t) = − lim
NS→∞

1
NS

log L(t). (3.29)

In particular, dynamical quantum phase transitions can be identified by the non-
analytic behaviour of λ(t) at some particular time.

5 Exact actually refers to a simulation under the Trotter-Suzuki decomposition of time evolution, due
to reasons explained in Ref. [Barison et al., 2022]; in this thesis we assume that evolution under the
Trotter-Suzuki decomposition is exact, because it approximates the exact solution with great precision.
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Figure 3.16: Rate function of the Loschmidt echo for the TFIM in eq. (3.24) measured us-
ing the variational quantum circuit state with the Feynman Kitaev ansatz. The
plot shows a dynamical phase transition at t near π/2, which comes as a non-
analytic behaviour of the curves as the number of spins increases. Figure taken
from Ref. [Barison et al., 2022].

Barison et al. [2022] prepare the initial state to be the trivial all-spins-up state,
and, at time zero, they turn on the external magnetic field in eq. (3.24), letting the
system evolve, just as shown in fig. 3.15. They observe the scar of a dynamical
phase transition as they increase the number of spins in the spin chain of the TFIM,
as shown in fig. 3.16.

Training the variational circuits, at least for these system sizes, is quick and ac-
curate. However, we emphasise that these results were obtained through the sim-
ulation of the variational quantum circuit on a classical computer, which enables
the exact access to the variational state |ψϑ⟩. Therefore, the variational energy E⋆

ϑ
is not estimated, as it would be on a real quantum device, but can be computed
exactly. The same occurs with the gradients of the variational energy with respect
to variational parameters. On a real quantum device, however, these quantities
have to be estimated, which is both time-consuming and introduces inaccuracy.
Moreover, scalability of the variational quantum eigensolver setup to study large
spin chains might be endangered by trainability issues in variational quantum cir-
cuits [Anschuetz and Kiani, 2022] such as the onset of barren plateaus [McClean
et al., 2018].

3.4.4 Trainability Issues of Neural Quantum States

When trying to reproduce the results by Barison et al. [2022], but using neural
quantum states, we found a lot of difficulty. We decided to make extensive and sys-
tematic training of neural quantum states using restricted Boltzmann machines and
auto-regressive models. These extensive study was performed with Optuna [Akiba
et al., 2019] for hyper-parameter tuning.

Both variational Monte Carlo and the neural quantum state training have hyper-
parameters that dictate the behaviour of the variational energy optimisation. Hyper-
parameter tuning is a difficult meta-optimisation task that, in our case, thrives to
answer the questions: what is the best structure of the training algorithm, and
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what is the neural quantum state architecture that produces the lowest variational
energy?

The two main components of variational Monte Carlo (as presented in NetKet,
see section 3.2) are the sampler and the optimiser. The sampler dictates how the
sample M of eq. (3.5) is built, and the optimiser is a rule for updating the parame-
ters θ of the neural quantum state.

As mentioned in some parts of this chapter, it is common to find that stochas-
tic reconfiguration (SR) [Sorella et al., 2007] is used in combination with stochastic
gradient descent (SGD) as an optimiser. SR takes into account the geometry of the
variational energy landscape to update parameters in the directions that yield max-
imum descent. However, we experimented on optimisation instances that used the
restricted Boltzmann machine (eq. (3.9)) with different numbers of hidden neurons
using both SR+SGD and AdamW [Loshchilov and Hutter, 2017] and found no sig-
nificant difference in performance. On the contrary, AdamW was faster, which is
why we chose it as the optimisation method for all of the experiments shown in
the main text. We consider its learning rate as the only hyper-parameter of the op-
timiser. Regarding the sampler, we consider the number of parallel Markov chains
and the number of total samples as its two hyper-parameters. In the case of an
auto-regressive neural quantum state, no Markov chains are considered, and the
sampler only has the number of total samples hyper-parameter.

The hyper-parameters for the architecture of the neural quantum states are differ-
ent for the restricted Boltzmann machine and the auto-regressive ansätze. For the
restricted Boltzmann machine, the hyper-parameter is α := NH/(NS + NT), which
specifies the proportion of hidden neurons with respect to the visible neurons. For
the auto-regressive ansatz, the auto-regressive neural network η in eq. (3.12) has two
hyper-parameters: the number of layers NL, and the number of hidden neurons NH
of each layer, with the property that the layers are masked in such a way that the
conditional probability of a spin taking a value depends only on the values of the
previous spins. The hyper-parameter tuning algorithm that we used is the tree-
structured Parzen estimator (TSPE) [Bergstra et al., 2011] provided in the Optuna
package [Akiba et al., 2019]. The priors for each hyper-parameter are shown in ta-
ble 3.1. Hyper-parameter tuning was conducted for 100 different hyper-parameter
sets for each ansatz, and for each combination of number of physical spins NS and
number of time spins NT .

Figure 3.17 shows the increasing difficulty of training a restricted Boltzmann ma-
chine for the ground state of eq. (3.23) through variational Monte Carlo as the num-
ber of time spins NT grows. We fixed the total number of spins NS + NT = 9,
as in fig. 3.14(b). For each value of NT (between 1 and 4), we performed hyper-
parameter tuning for 100 iterations with Optuna [Akiba et al., 2019], aiming to min-
imise the variational energy in eq. (3.5). Figure 3.17(a)-(d) show the time evolution
of the spin chain for the hyper-parameters that produced the smallest infidelities.

Table 3.1: Prior distribution of hyper-parameters for the tree-structured Parzen estimator for
the restricted Boltzmann machine (RBM) and auto-regressive (AR) models. Table
taken from Ref. [Vargas-Calderón et al., 2022].

NQS Hyper-parameter Support Prior

RBM & AR
Number of samples [256, 2048] Uniform
Learning rate [10−4, 1] Loguniform

RBM
Number of Markov chains {4, 8, 16} Uniform
α {1, . . . , 5} Uniform

AR
NL {1, 2, 3} Uniform
NH {2, 4, 8, 16, 32} Uniform
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(a) (b)
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Infidelity

Figure 3.17: Time evolution approximated with a restricted Boltzmann machine. (a)-(d)
show the expected value of the average magnetisation ⟨σz⟩ = 1

NS
∑NS

i=1
〈
σz

i
〉
.

In each panel curves are shown for the average magnetisation obtained through
exact diagonalisation (ground state), estimation of the variational magnetisa-
tion with a sample M (RBM) and exact variational magnetisation (exact RBM),
which results from using the complete state vector instead of a sample. The
shaded region indicates the estimated fluctuations of magnetisation using the
sample M. The lines serve as guide for the eye only. (e) shows a box plot of infi-
delity (1 − |⟨Φ(NS)|ψθ⋆ ⟩|2) for the best 10 hyper-parameter experiments, where
|Φ(NS)⟩ is the exact ground state and θ⋆ indicates that parameters have been
optimised until convergence. Figure taken from [Vargas-Calderón et al., 2022].

It is seen in fig. 3.17(a)-(d) that, overall, the evolution of the average magnetisation
is in accordance to the average magnetisation obtained through exact diagonalisa-
tion for all the values of NT . In the plots, the exact RBM line refers to magnetisation
measured using the complete state vector from the restricted Boltzmann machine,
instead of estimating the magnetisation through a sample. However, the qualitative
agreement of magnetisation curves does not exhibit the difficulty of training the re-
stricted Boltzmann machine as NT increases. Indeed, the infidelities for fig. 3.17(a)-
(d) are 0.018, 0.032, 0.144 and 0.145, respectively. The increasing infidelity, as NT
grows, indicates that training becomes more difficult, despite the Hilbert space al-
ways having the same size. However, these are only the best states found after
hyper-parameter tuning. Figure 3.17(e) shows a box plot of the infidelities of the
best 10 hyper-parameter tuning states, where a clear trend appears: the larger NT
is, the more difficult it is to find the correct ground state.

Regarding the auto-regressive ansatz in eq. (3.13), we see in fig. 3.18 qualitatively
similar, but worse performance in terms of correctly describing the evolution of
magnetisation. This is further confirmed by poor infidelities when NT is large. The
lowest infidelities achieved after hyper-parameter tuning were 0.025, 0.063, 0.517

and 0.850 for fig. 3.18(a)-(d), respectively. Even though one can sample directly
from the probability distribution induced by the auto-regressive ansatz, avoiding
issues with the Markov chain sampling, it is clear that capturing the ground state
of eq. (3.23) is more challenging.

Compared to the variational quantum eigensolver method, variational Monte
Carlo struggles with finding an accurate approximation of the true ground state,
presenting infidelities at least one order of magnitude higher than infidelities re-
ported by Barison et al. [2022]. Unlike variational Monte Carlo, the variational
quantum eigensolver approach by Barison et al. [2022] directly handles a normalised
quantum state in the whole Hilbert space, and its parameterisation consists of lo-
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(a) (b)

(d)

(c)

(e)

Infidelity

Figure 3.18: Similar to fig. 3.17 but for the auto-regressive ansatz (ARNN) in eq. (3.13). Fig-
ure taken from Ref. [Vargas-Calderón et al., 2022].

cal transformations that preserve the norm. A natural set of questions that arise
are: what is it that makes neural quantum states have larger infidelities than the
variational quantum eigensolver? Is it expressivity? Is it trainability? [Wright and
McMahon, 2020; Abbas et al., 2021] If a neural quantum state can represent the
ground state of eq. (3.23) with low infidelity, it means that the neural quantum
state is expressive enough, but trainability hampers the possibility of describing the
correct ground state, as shown in fig. 3.17.

Considering the previous discussion, let us explore the expressivity of the re-
stricted Boltzmann machine. The most challenging experiment tackled in this sec-
tion is the one of NS = 5 and NT = 4, which is perfectly tractable for a classical com-
puter. We consider the problem of finding parameters for the restricted Boltzmann
machine ansatz that are able to faithfully describe the ground state of eq. (3.23).
To this end, we directly minimise the infidelity 1 − |⟨Φ(NS = 5)|ψθ⟩|2, where the
restricted Boltzmann machine state |ψθ⟩ is directly accessed, i.e., no sampling is
involved. Experimentation with the ansatz in eq. (3.9) shows that training leads
to local minima of the infidelity landscape, hinting convergence to stable excited
states of eq. (3.23). Therefore, we turned over to a similar restricted Boltzmann
machine ansatz, which defines one restricted Boltzmann machine for the modulus
of the wave function and another for the phase of the wave function, namely the
Modulus-Phase-RBM or MP-RBM [Torlai et al., 2018]

ψMP-RBM
θ = exp

(
ψθRe + iψθIm

)
, (3.30)

where ψθRe and ψθIm are restricted Boltzmann machines defined by eq. (3.9), with
real-only parameters θRe and θIm.

Training the MP-RBM ansatz in eq. (3.30) to minimise the estimated variational
energy (see eq. (3.5)) with variational Monte Carlo yields similar infidelities than
the restricted Boltzmann machine ansatz after hyper-parameter tuning (0.160 for
the NS = 5, NT = 4 case). However, it is easier to train the MP-RBM when min-
imising the infidelity (even without hyper-parameter tuning). In fact, we see that
the MP-RBM is capable of learning the ground state with an infidelity of 2 × 10−3,
as depicted by the excellent agreement between the MP-RBM magnetisation curve
and the exact one in fig. 3.19.

Figure 3.19 exhibits the probability distribution of each state induced onto the
canonical basis of the Hilbert space. Since the infidelity-optimised MP-RBM leads
to a very low infidelity, differences between its distribution (top middle panel) and
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Exact Infidelity MP-RBM

Figure 3.19: Probability of each element of the canonical basis of the Hilbert space and time
evolution of magnetisation for an MP-RBM ansatz. The top panel shows the 29

probabilities associated to each element of the canonical basis for the ground
states obtained through exact diagonalisation, through variational minimisation
of the infidelity, and through variational minimisation of the estimated energy in
the left, middle and right sub-panels, respectively. The bottom panel shows the
average magnetisation obtained with each of these states, where the “ground
state” line corresponds to the magnetisation obtained with exact diagonalisa-
tion, the “MP-RBM” line is obtained through variational minimisation of the
estimated energy, and the “infidelity MP-RBM” is obtained through variational
minimisation of the infidelity. Figure taken from Ref. [Vargas-Calderón et al.,
2022].

the exact ground state distribution (top left panel) are minimal. However, differ-
ences with the MP-RBM obtained through VMC are larger. This is reflected onto
the average magnetisation curves, shown in the bottom panel of fig. 3.19. These
results are in agreement with the study by Deng et al. [2017], who show that neural
quantum states based on restricted Boltzmann machines have a wide expressivity,
able to represent many highly entangled quantum states.

Similar results are obtained for the auto-regressive model. Again, we find that
optimising the infidelity for the ansatz in eq. (3.13) traps the neural quantum state
into an excited state of eq. (3.23), which is why we turned over to an auto-regressive
ansatz that explicitly divides the modulus and phase of the wave function, similar
to the works by Hibat-Allah et al. [2020] and Barrett et al. [2022]. In this setup, we di-
vide the auto-regressive neural network η into two auto-regressive neural networks,
one for the modulus, and the other for the phase of the wave function. Training this
ansatz to minimise the estimated variational energy with variational Monte Carlo,
yields high infidelity of 0.920 after hyper-parameter tuning for the NS = 5, NT = 4
case, which is a similar infidelity to the one obtained by the ansatz in eq. (3.13). On
the other hand, the direct optimisation of infidelity (without any hyper-parameter
tuning) yields an infidelity of 3.5 × 10−3, comparable to that of the MP-RBM. This
result further supports the fact that neural quantum states are able to accurately
approximate highly entangled ground states with widely-spread probability distri-
butions. The problem, however, resides on trainability when performing VMC. An
important final remark is that knowing the reason why infidelity optimisation con-
sistently fails for neural quantum states with complex-only parameters remains an
open question.
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3.5 the steady-state of the driven-dissipative
bose-hubbard model

Common experimental setups that show a Bose-Hubbard-type Hamiltonian, are
ions in optical traps or photons in arrays of Kerr resonators. In this section we need
a clear experimental setup in mind to be able to relate to all the different processes
that I am going to be talking about.

Each site of the Bose-Hubbard model in a lattice can be one of such Kerr resonator
cavities, which corresponds to a physical system that holds a bosonic mode. The
Hamiltonian of such a system (a single cavity) is

H0 = ωcn +
U
2

n(n + 1), (3.31)

where ωc is the characteristic energy of the cavity, U is the boson-boson interaction
inside the cavity, and n is the number operator. We further consider a pumping
mechanism whereby bosons are injected coherently into the cavity, with an associ-
ated Hamiltonian

ĤP = F(eiωpt â† + eiωpt â), (3.32)

where F is the amplitude of the pump6. We restrict ourselves to a one-dimensional
linear lattice of N cavities, so we index each bosonic operator by i to refer to each
cavity. Since bosons can hop between neighbouring positions of the lattice, we
consider a characteristic hopping energy t, so that the complete Hamiltonian, in the
rotating frame of the pump, is written as

H =
N

∑
i=1

(
−∆ni +

U
2

ni(ni + 1) + F(a†
i + ai)

)
+

t
2

N−1

∑
i=1

(
a†

i ai+1 + a†
i+1ai

)
.

(3.33)

In eq. (3.33), the parameter ∆ is a detuning between the pump frequency ωp
and the cavity frequency, i.e., ∆ = ωp − ωc. Furthermore, we consider Markovian
dissipative channels with one-particle decay collapse operators. Thus, the density
operator is described by the GKSL equation [Lindblad, 1976; Gorini et al., 1976]

dρ

dt
= Lρ = −i[H, ρ] + γ ∑

i∈D

(
aiρa†

i −
1
2

{
a†

i ai, ρ
})

, (3.34)

where L is the Liouvillian super-operator. D ⊆ {1, . . . , N} is a set that selects
the cavities onto which dissipation acts with a rate γ. Experimentally, this can
be achieved by means of controlling the coupling of each cavity to the environ-
ment [Barontini et al., 2013; Dogra et al., 2019]. In this section we consider odd
N, and we focus on global dissipation (DG = {1, . . . , N}) and local dissipation
(DL = {(N + 1)/2}).

Before jumping in to see some results about this exploration with neural quan-
tum states, let us take a look at fig. 3.20. This is the phase diagram of the mean
field version of eq. (3.34), when considering global dissipation. The mean field
approximation transforms the Hamiltonian to

HMF = −∆a†a +
U
2

a†a†aa + (F − tϕ)a† + (F − tϕ∗)a, (3.35)

where ϕ = ⟨a⟩ is the so-called superfluid parameter.
Figure 3.20 shows that there are structures similar to the Mott lobes, which do

not become as well defined as in the closed case. The figure, however, points us to
a nice region where we can study the problem beyond mean field approximations.

6 For simplicity, we take the pump amplitude F to be real.
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Figure 3.20: Phase diagram of the mean field driven-dissipative Bose-Hubbard showing the
expected number of photons for F/∆ = 0.4 and γ/∆ = 0.2. The number of
photons has been truncated to a maximum of three, for clarity. Left panel shows
the so-called low-density phase, and right panel shows the high-density phase,
which are the two solutions for the bi stability that comes from the mean field
equations. Figure adapted from [Le Boité et al., 2013].

In particular, we chose U = 1.5∆, and we vary the tunnelling rate t, where for
small t we can go from a Mott insulator-like phase to a superfluid-like phase in the
high-density phase or in between Mott-like lobes.

Regarding neural quantum states, it is clear that in the context of open quantum
systems, the Hamiltonian can no longer be studied independently from the dissipa-
tive channels. Instead, the central object that describes the quantum system is the
Liouvillian shown in eq. (3.34). Similarly, the ground state is no longer well-defined
because the state of the system is not a state vector anymore, but a density ma-
trix. In this sense, the ground state delegates its central role to the non-equilibrium
steady state (NESS) of the system, which is crucial to investigate several properties
of the quantum mechanical system [Breuer et al., 2002], as well as phenomena such
as open quantum phase transitions [Minganti et al., 2018].

The Liouvillian is a completely positive and trace-preserving map, but is, in gen-
eral, non-unitary [Albert and Jiang, 2014; Manzano and Hurtado, 2018]. The theo-
retical study of the Liouvillian has established that its complex spectrum is bound
to the left quadrants of the complex plane, indicating that the real part of the eigen-
values is always negative or 0 [Spohn, 1976, 1977]. In particular, there is always an
eigenvalue which is exactly 0, and its corresponding eigenmatrix is the NESS of the
physical system [Baumgartner and Narnhofer, 2008].

The seminal papers that introduced neural quantum states for NESS search [Nagy
and Savona, 2019; Vicentini et al., 2019; Yoshioka and Hamazaki, 2019] exploit the
spectral structure of the Liouvillian to define the optimisation problem to solve.
A neural quantum state that models the NESS of a quantum mechanical system
described by the Liouvillian L is ρNESS ≈ minθ Tr

[
ρ†

θL†Lρθ

]
.

Thus, we can describe how to use variational Monte Carlo to estimate the NESS of
an open quantum system by making an analogy with the closed quantum system
case: L†L takes the place of the Hamiltonian Â and the neural quantum state is
now a density matrix ρθ. More explicitly, we can estimate Tr

[
ρ†

θL†Lρθ

]
as a cost

function [Vicentini et al., 2019]

C(θ) =

〈
∑

n′ ,ñ′

∣∣∣∣L(n, ñ; n′, ñ′)
ρθ(n′, ñ′)
ρθ(n, ñ)

∣∣∣∣2
〉

(n,ñ)∈M
. (3.36)

In eq. (3.36) we keep the indices n to denote elements of the canonical basis of the
Hilbert space H, but we promote these indices to (n, ñ), which denote elements of
the doubled Hilbert space H = H⊗H. Therefore, we refer to the matrix elements
of ρθ as ρθ(n, ñ). Similarly, the Liouvillian L : B(H) → B(H) is a super-operator
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which acts on the space of density matrices B(H), and its elements are referred to as
L(n, ñ; n′, ñ′). Finally, as in the closed quantum system case, we build a sample M ∈
H that can be obtained, for instance, through MCMC, and is distributed according
to |ρθ(n, ñ)|2.

Now, let us focus on the neural quantum state that will be used to approximate
the NESS. We consider the ansatz proposed by Torlai and Melko [2018], which is
based on the idea that a (mixed) density matrix can always be obtained by tracing
out degrees of freedom of a system. In spite of being applicable for spin Hilbert
spaces, we leverage this ansatz to higher-dimensional Hilbert spaces such as the
ones needed to describe boson occupations in the Bose-Hubbard model.

Our Hilbert space can be written as H =
⊗N

i=1 F , where F is the Fock space of a
single cavity. Computationally, we truncate the Fock space to allow for a maximum
number of bosons nmax. Similarly as in Ref. [Vargas-Calderón et al., 2020], as we
explained in section 3.3 we encode the occupation of each cavity to a set of spins.
In this section, we use binary encoding, which uses ⌈log2 nmax⌉ spins to describe
the occupation of each cavity. Then, our transformed Hilbert space is HB =

⊗NS
i=1 S ,

where S = {α1 |↑⟩ + α2 |↓⟩ : |α1|2 + |α2|2 = 1} is the Hilbert space of a spin and
NS = N⌈log2 nmax⌉ is the total number of physical spins.

Now, we apply the ideas of Torlai and Melko [2018] by enlarging the Hilbert space
of the physical system with the Hilbert space HA =

⊗na
i=1 S of an auxiliary set of

na spins. The state of the enlarged system is described by a pure neural quantum
state given by a (tripartite) restricted Boltzmann machine (RBM) [Torlai et al., 2018;
Torlai and Melko, 2018], so that ρ

HB⊗HA
θ = |ψθ⟩⟨ψθ|, where |ψθ⟩ takes the explicit

form of

∑
σ,a

ψθ(σ, a) |σ⟩ ⊗ |a⟩ . (3.37)

Here, σ is the spin configuration corresponding to the binarisation n 7→ σ of the
elements of the canonical basis of H; and a denotes the elements of the canonical
basis of HA.

The mixed state of the physical system can be found by tracing out the auxiliary
degrees of freedom, which can be done analytically due to the structure of the
tripartite RBM [Torlai and Melko, 2018; Vicentini et al., 2019]:

ρθ(σ, σ̃) = exp
(

Γ+
λ (σ, σ̃) + iΓ−

µ (σ, σ̃) + Πθ(σ, σ̃)
)

. (3.38)

The parameters θ consist of {Wη
j,ℓ, Uη

j,ςbη
j , cη

j , dς}, for η = λ, µ. The index j runs
from 1 to the number of physical spins NS, and the indices ℓ and ς run from 1 to the
number of hidden spins NB

H =: αNS and NA
H =: βNS, respectively, where we also

defined the proportions of hidden spins α and β [Vicentini et al., 2019]. The neural
networks in eq. (3.38) are given by [Torlai and Melko, 2018; Vicentini et al., 2019]

Γ±
η (σ, σ̃) =

1
2

 NS

∑
j=1

bη
j (σj ± σ̃j) +

NB
H

∑
ℓ=1

log cosh

(
cη
ℓ +

NS

∑
j=1

Wη
j,ℓσj

)

±
NB

H

∑
ℓ=1

log cosh

(
cη
ℓ +

NS

∑
j=1

Wη
j,ℓσ̃j

) ,

(3.39)

Πθ(σ, σ̃) =
NA

H

∑
ς=1

log cosh

(
dς +

1
2

NS

∑
j=1

Uλ
j,ς(σj + σ̃j) +

i
2

NS

∑
j=1

Uµ
j,ς(σj − σ̃j)

)
. (3.40)

We can study eq. (3.34) with exact methods, but only with 3 cavities and a max-
imum of 4 photons per cavity, otherwise our 1/4 terabyte RAM nodes run out of
memory and calculations become incredibly slow. The case of global dissipation is
shown in fig. 3.21. In comparison with fig. 3.20, it looks like the system (beyond the
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Figure 3.21: Mean occupation for first and second cavity in a line of three cavities for varying
tunnelling rate in the steady state obtained through exact diagonalisation.

mean field approximation) resembles a low-density phase, where the occupation
grows as the tunnelling increases, but then it goes down again, as the tunnelling
keeps increasing, depleting the system from particles. Note that only cavity 1 and
cavity 2 occupations are shown because cavity 1 and 3 are completely equivalent,
but 2 is not, as it has two neighbours instead of just one. Also, in all cases, the
occupation of cavity 2 is lower than that of cavity 1.

The case of local dissipation is much more complicated. Using an exact solver
yields disparate occupations. The reasons for numerical instability are unknown.
Therefore, we did not find the steady state through exact diagonalisation, but we
did so through the rather normal strategy of evolving the state until it no longer
changes, namely, we impose the condition that the Hilbert distance between 10

different states in the last 1000 time steps must not be larger than a threshold set to
10−6. fig. 3.22 shows the evolution of the mean number of particles for small and
large values of t. It can be seen that a large value of t stabilises the evolution much
faster than a small value of t.

By considering the same sampled points of t in fig. 3.21, we plot the mean number
of particles in the steady state for local dissipation in fig. 3.23. For low values of t,
there are some small inaccuracies, but overall the side cavities have more particles
than the cavity in the middle. This is to be expected, as for low tunnelling, the side
cavities receive photons from the pumping laser, but they cannot transfer those to
the central cavity, which is the only particle sink in the system. However, after a
given tunnelling rate, photons start to flood the middle cavity from the sides and
from the laser that pumps photons into it: the photon escape mechanism can no
longer keep up, and the mean number of photons in the middle cavity become
larger than in the side cavities, as is also the case for global dissipation.

Figure 3.22: Evolution of the mean number of particles for t/∆ = 0.01 (left) and t/∆ = 1.5
(right).
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Figure 3.23: Mean occupation for first and second cavity in a line of three cavities for vary-
ing tunnelling rate in the steady state obtained through evolution of the trivial
|0, 0, 0⟩ state.

We performed extensive numerical experiments in the low tunnelling regime
(t = 0.01∆) and high tunnelling regime (t = 1.5∆) using the neural quantum
state eq. (3.38). For each of these cases, hyper-parameter tuning with Optuna [Ak-
iba et al., 2019] was carried out. Before delving into the results, I need to express
that this problem is way more difficult than the closed case, and choosing a right
optimiser can make the difference (even though in the end it did not make the
difference in terms of the neural quantum state quality).

Since the introduction of neural quantum states [Carleo and Troyer, 2017], stochas-
tic reconfiguration (SR, also known as natural gradient in the machine learning com-
munity) has been the de facto approach to train these variational ansätze. Despite its
conceptual clarity, SR is costly with respect other baseline optimisation algorithms,
which is why optimisation methods that perform well, such as AdamW [Loshchilov
and Hutter, 2017], are very popular in the machine learning community. On the
other hand, the physics community is mostly interested in using algorithms that
find lower minima. In principle, if SR offers such an advantage, we should choose
it as the optimisation strategy over other options. However, as we show next, we see
no evidence that SR offers lower minima with respect to AdamW. In fact, AdamW
achieves similar performance as SR, but is generally faster.

The experiment that we performed for our particular problem at hand is the fol-
lowing. We generated 100 random driven-dissipative Bose-Hubbard systems charac-
terised by the following parameters. The number of cavities N was chosen between
3 and 8. The onsite interaction U, the hopping interaction t, the pump amplitude
F and the dissipative rate γ were chosen uniformly between [0.1, 4], [0.01, 2], [0.1, 1]
and [0.01, 0.4], respectively. Parameters regarding variational Monte Carlo with the
neural quantum state as a variational ansatz were chosen as follows. The size of
the neural quantum state was determined by α and β (the ratio of visible and aux-
illiary neurons in the deep Boltzmann machine defined by eq. (3.38)), which were
selected from the set {1, 2, 3}, with the restriction that α + β ≤ 4. The learning rate
and standard deviation of the initial parameters were generated from a log-uniform
distribution on [10−4, 0.5] and [10−5, 1], respectively. Other parameters were fixed:
the detuning ∆ = 1, the diagonal shift for stochastic reconfiguration was 0.01, the
number of samples and diagonal samples for the variational Monte Carlo iterations
were 200N and 75N, respectively. Once a set of parameters was defined, the opti-
misation was performed 5 times for different random seeds. Figure 3.24 shows the
performance and duration differences between experiments using SR and AdamW.
It is clear that AdamW is, in general, considerably faster than SR. Despite being
more experiments for which SR outperforms AdamW, the difference is negligible
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Figure 3.24: Performance difference versus duration difference between stochastic gradi-
ent descent with SR and AdamW. The performance difference is defined as
C(θSR)− C(θAdamW) (see eq. (3.36)). The duration difference is defined as the
time took by SR experiments minus the time took by AdamW experiments, in
seconds. Kernel density estimation plots are shown for both performance and
duration differences. Percentages of experiments on each quadrant are also
shown.

(note that fig. 3.24 is in logarithmic scale). Thus, we use AdamW throughout this
section.

Now, as mentioned earlier, we performed hyper-parameter tuning to find the
steady state of the system in eq. (3.33) for a number of cavities. We can visualise
two-dimensional cuts of the explored hyper-parameter space, to give a taste of how
these experiments are carried out. In particular, since training is a stochastic process,
we collected a small, but telling sample of 5 different training curves for each hyper-
parameter set. We show in fig. 3.25 this visualisation example for the simpler case of
three cavities. It can be seen that only the learning rate defines a clear region where
results are better. The rest of the parameters interact in complicated manners.

Table 3.2 presents the mean occupations of the left-most cavity and the middle
cavity in one-dimensional chains of cavities described under the driven-dissipative
Bose Hubbard model in eq. (3.33) for a low value of tunnelling. When comparing

Table 3.2: Mean occupation of the side left-most cavity and the middle cavity for different
chain sizes with local and global dissipation from the best neural quantum state
after hyper-parameter tuning, when t = 0.01∆. The confidence interval is in paren-
thesis.

Number of cavities

Local Dissipation 3 5 7

Side cavity 3.0078(78) 3.039(17) 2.097(25)
Middle cavity 2.254(205) 0.117(51) 0.047(33)

Global Dissipation 3 5 7

Side Cavity 0.238(50) 1.46(16) 0.99(12)
Middle cavity 0.227(41) 1.45(16) 0.85(13)
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Figure 3.25: Two-dimensional cuts of the hyper-parameter space for three cavities. The scale
shows the logarithm in base 10 of the average cost in eq. (3.36) in 5 realisations
of training with different initial random seeds. The yellow star indicates the best
set of hyper-parameters. The hyper-parameters under consideration are (from
top to bottom, and from left to right without repetitions) the ratio of auxilliary
units in the deep Boltzmann machine, the logarithm of the standard deviation
of the initial parameters of the deep Boltzmann machine, the learning rate, the
number of samples and number of diagonal samples at each variational Monte
Carlo iteration, and the ratio of hidden units in the deep Boltzmann machine.

these values for 3 cavities with figs. 3.21 and 3.23 it is clear that they are not com-
patible, signalling the lack of quality of the neural quantum state. The fact that
for local dissipation the occupation of the side cavity is very near an integer might

Table 3.3: Mean occupation of the side left-most cavity and the middle cavity for two chain
sizes with local and global dissipation from the best neural quantum state after
hyper-parameter tuning, when t = 1.5∆. The confidence interval is in parenthesis.

Number of cavities

Local Dissipation 3 5

Side cavity 0.48(11) 2.30(17)
Middle cavity 0.57(11) 1.80(13)

Global Dissipation 3 5

Side Cavity 0.96(15) 2.76(16)
Middle cavity 1.07(15) 2.15(13)
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suggest the collapse of the neural quantum state to a particular sector of the Hilbert
space, which traps the probability distribution and does not let it explore the com-
plete space. Furthermore, no trends arise apart from the decreasing mean number
of photons in the middle cavity when local dissipation is present.

In the case of high tunnelling (see table 3.3), the situation does not change much:
neither local nor global dissipation are well approximated by the neural quantum
state as can be seen solely from the expected number of photons in the cavities.

These drawbacks from the neural quantum states for open quantum systems are
far worse than the errors found in the spin systems that were considered in the
seminal papers of Yoshioka and Hamazaki [2019]; Vicentini et al. [2019]; Nagy and
Savona [2019]. It might be the case that open bosonic problems are too hard for this
neural quantum state, or it might also be the case that minimising eq. (3.36) is not
the best approach to the problem. In any case, this exploration of ours is an impor-
tant piece of evidence that points at a limitation of the ansatz in eq. (3.38). Even
though other neural quantum states can be used, we believe that another approach
is desirable. Why? From the theory of open quantum phase transitions [Minganti
et al., 2018] we know that the Liouvillian gap closes at critical points (see fig. 3.26),
which will make minimising eq. (3.38) exponentially difficult (with respect to the
inverse size of the gap). Therefore, other approaches–such as the one we took with
the exact study of the three cavity case for local dissipation–are needed. In particu-
lar, we believe that time evolution is a promising alternative. However, approaches
such as the time-dependent variational Monte Carlo [Carleo et al., 2017; Hartmann
and Carleo, 2019], which is already experimentally available in NetKet7, does not
perform well for states that are highly peaked (i.e. their probability is highly concen-
trated on one or very few elements of the canonical basis of the Hilbert space). The
reason for this is that equations do not allow a clean transport of the probability.

What other options do we have? This is actually the motivation for our work
in section 3.4. We want to perform short time evolution in order to leverage the
quantum trajectories technique (see section 2.3). To do this, we lay out two long-
term projects for future research:

• Construct a Computer Algebra System that facilitates performing symbolic
quantum mechanical operations in a computer. As of now, NetKet deals with
local operators, but the Feynman-Kitaev approach requires the use of projec-
tors. A projector is an operator far away from a local operator, which is why
NetKet’s interface renders insufficient. With a computer algebra system we
would be able to deal with local operators as in NetKet, but we could also eas-
ily handle projectors in the canonical basis. The development of this project is
already being carried out by myself at Zapata Computing Inc, but escapes the
scope of this doctoral work.

• The ability to use neural quantum states to find ground states of non-hermitian
operators. As you recall from section 2.3, one needs to evolve a system with a
non-hermitian operator. Whatever ansatz is used for this purpose, one must
be able to also collapse the wave function with a measurement (given by the
collapse operator), which means that clever updates of parameters need to be
done to reflect the action of collapse operators on the neural quantum state a
la Jonsson et al. [2018].

3.6 summary and outlook
This chapter has shown how machine learning can help solving difficult problems
in quantum mechanics. The great expressivity and variability of ansätze based
on neural networks has been so far used to provide accurate approximations of

7 https://netket.readthedocs.io/en/latest/api/api-experimental.html

https://netket.readthedocs.io/en/latest/api/api-experimental.html
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ground states. However, we see that trainability remains an issue for very difficult
ground states where the probability is spread through the entire Hilbert space, or in
cases such as open quantum systems, where the number of configurations is truly
intractable.

Nonetheless, we point out the fact that neural quantum states become impor-
tant alternatives to quantum computers in the task of studying quantum mechanics
computationally. Even with the presence of fault-tolerant quantum computers, al-
gorithms for estimating energies (or Liouvillian real spectra) still require an unfea-
sible number of measurements. We urge the community of neural quantum states
to formally and experimentally investigate the scaling of sample complexity and
error. Also more diverse models with new takes on handling intractable Hilbert
spaces are needed to overcome the current difficulties of studying ground states
and steady states in closed and open quantum systems, respectively. This thesis
contributes to the advancement of understanding the field and reflecting on the
capabilities of neural quantum states. We are optimistic that the collaboration of
tens, hopefully hundreds of physicists around the world will continue advancing
neural quantum states further as a tool to study quantum phase transitions in the
usual set up of a closed system, dynamical quantum phase transitions, and open
quantum phase transitions. This progress will also likely advance understanding
in machine learning. As mentioned before, Herbert’s group is already working to-
wards these goals with another PhD student and a master’s student. This research
line will probably continue to grow, as more physics students become interested in
data science and thus their knowledge of machine learning is ever increasing.
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Figure 3.26: Eigenvalues of the Liouvillian. All eigenvalues satisfy Re(λi) ≤ 0 [Evans, 1976].
Blue points are eigenvalues whose corresponding eigenmatrix will have an os-
cillating, yet decaying behaviour as time evolves. Red points are eigenvalues
whose corresponding eigenmatrix will only damp as time evolves. White points
with blue edges are steady-state coherences, which oscillate with frequency
Im(λi). Finally, white points with red edges are steady-states, and represent
the eigenmatrices that span the null-space of the Liouvillian. The Liouvillian
gap ∆ measures a characteristic decay time that separates any initial state of the
system from the final steady-state. The larger the gap is, the faster the system’s
state converges to the steady-state. Figure taken from [Albert and Jiang, 2014].





4 Q U A N T U M - I N S P I R E D M A C H I N E
L E A R N I N G

In this chapter we explore the other direction of the machine learning-quantum
physics avenue. In chapter 3 we used machine learning for quantum physics, now
we use quantum physics for machine learning. This chapter presents a framework
for performing machine learning tasks using the mathematical tools normally used
in quantum mechanics. The idea underneath is simple: quantum mechanics’ central
object is the wave function, which describes the state of a physical system by taking
into account its (quantum) probabilistic nature. In this part of the thesis, we pro-
pose such a framework that uses the way in which quantum mechanics expresses
probability distributions to model classical probability distributions, which are at
the core of machine learning and the statistical sciences. Importantly, our frame-
work defines composable and differentiable blocks, which will come in handy for
research in future years in many areas of the data sciences because we can combine
our approach with deep learning models.

After the presentation of the state of the art, in section 4.2 I explain the rudiments
of our framework for supervised learning problems. This approach was extended
to unsupervised learning problems in section 4.3, and finally, I show in section 4.4
how we implemented all of our framework in real quantum circuits using IBM’s
quantum computers named “Lima” and “Bogotá”.

4.1 state of the art

The works that we will present in this chapter approach the task of learning from
classical data using mathematics from quantum mechanics. Mainly, we focus on
algorithms that are optimised to run on classical computers. But, as we will show,
our framework can be also run on quantum devices. Nonetheless, we make the
distinction that we will always deal with classical data and our framework is quan-
tum mechanical regardless of it running on a classical or a quantum computer. In
a broad sense, our work belongs to the area of quantum machine learning, which
is the combination of data generated by either quantum or classical experiments
and algorithms which are quantum in the sense that they are either inspired by
quantum mechanics or they naturally run on quantum devices. Some authors, such
as Schuld and Petruccione [2018], prefer to restrict quantum machine learning as
algorithms that purely run on quantum computers (or are devised to be run on
quantum computers), but we consider that any algorithm strongly based on quan-
tum mechanics but runs on a classical computer is also a quantum machine learning
algorithm. We can see a depiction of the division between different approaches to
quantum machine learning in fig. 4.1.

The combination of classical methods and quantum methods for machine learn-
ing has been almost exclusively focused on the application of classical optimisa-
tion strategies to parameterised operations in quantum hardware [Cerezo et al.,
2021]. However, there is a largely unexplored area: classical machine learning meth-
ods which are quantum-inspired, which our work addresses. This area is mainly
bounded by the interpretation of probability theory in light of quantum mechan-
ics [Fine, 1973; Wilce, 2021]. One of the principal discussions addressed by Wilce
[2021] is that projections in quantum mechanics are operations that allow the com-
putation of probabilities, thus providing a way to perform probability calculations

63



64 quantum-inspired machine learning

with projection operators. This will be the departure point and a central theme in
the framework that we develop in this chapter.

I need to mention that during discussions and research with Fabio, other groups
were also looking at the specific problem of classification with a framework similar
to ours. Such is the work of Sergioli et al. [2021]; Tang [2019]; Tiwari and Melucci
[2019]; Giuntini et al. [2021], which is essentially based on the idea that data of differ-
ent classes can be mapped to quantum states such that quantum states of different
classes are distinguishable. Classification is thus performed through quantum state
discrimination.

Our approach is novel within the field of quantum machine learning, particu-
larly because, as we will see, its formulation allows a completely optimisation-free
approach to learning tasks. This is of paramount importance, because there are
many examples of both quantum machine learning and regular machine learning
algorithms, where learning is heavily hampered by theoretical reasons. Let me ex-
plain this. The most popular approach to learning is gradient-based optimisation
of a cost function that one wishes to minimise. Under usual circumstances, one
has a parameterised model, which is a function with parameters that can be tuned
to solve a problem which involves a cost function. What is normally done is that
the cost function depends on values of said parameterised model. It follows from
calculus that the minimum of the cost function can be reached when the gradients
of the cost function with respect to the parameters of the model are zero.

However, models can involve thousands, millions, or more parameters, with the
additional difficulty that models can be highly non-linear. Therefore, finding a set of
parameters for which the gradients of the cost function are zero is practically impos-
sible because of the intractability of the problem. Nonetheless, the machine learning
community has developed, for decades, impressive optimisation algorithms that are
able to reach very good parameters that minimise (at least locally) the cost function.
The algorithms that update the parameters depend on the magnitude (and also vari-
ance) of the gradients. It is the case that in many scenarios in both regular machine
learning and quantum machine learning, gradients become prohibitively small, ren-
dering optimisation algorithms completely useless. This is particularly pervasive in
quantum machine learning through the phenomenon of barren plateaus [McClean
et al., 2018], whereby gradients become exponentially small with respect to the size
of the quantum circuit at hand. Our work, on the other hand, has the possibility of
not involving gradient-based optimisation at all, and as we will show, this results
in perfectly fine results. Nonetheless, we easily extend the framework to having

Figure 4.1: Quantum machine learning subdivision. The chart shows combinations of classi-
cal/quantum data and classical/quantum device where algorithms are run. Our
work belongs to the top row, where we deal with classical data and we run al-
gorithms on either classical or quantum computers, but the algorithms are fully
quantum mechanical-inspired. Taken from Ref. [Schuld and Petruccione, 2018].
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gradient-based optimisation components which can improve performance in many
applications, as we also show.

Before presenting the framework, which explores the fertile and largely unex-
plored field of quantum-inspired machine learning, we present the usual tasks that
are solved in machine learning.

4.1.1 The Problem of Learning

Commonly, machine learning problems are divided in supervised and unsuper-
vised problems. Supervised problems are those in which one wants to predict a
property of an object or an entity, and is given a data set of objects for which such
property is known. The job in supervised learning is to find patterns in the data set
that allows a high-quality prediction of the property under consideration for some
object from which we know its properties but the property under consideration. For
example, one can be given a data set containing the following features

• Waist perimeter (cm)

• Chest perimeter(cm)

• Thighs perimeter (cm)

• Height (cm)

• Weight (kg)

• Age (years)

• Biological sex

for a population of human beings. Now, one can ask, what is the biological sex
of a new human being for which all the properties but sex are previously known?
This problem is known as a (binary) classification problem, where an instance is
required to be classified into one of two classes: male and female.

Also, one can ask, what is the age of a new human being for which all the proper-
ties but age are previously known? This problem is known as a regression problem,
where an instance is required to be assigned a number in a continuous interval.
These sort of problems where one asks a value for a feature which is known for a
population are supervised problems because we have a reference value for which
we can measure the errors in our prediction. These data sets are known as train-
ing data sets, because they allow to train a model or an algorithm that learns how
the feature in question is related to the other features, and how can the other fea-
tures be used and combined to yield an accurate prediction of the feature under
consideration.

In many natural sciences, the most common supervised learning problem is the
so-called curve fitting problem (one can argue that most problems are curve fitting
problems), where one has a data set {(xi, yi)}N

i=1 of N data points and one wants
to find a function f such that f (xi) = yi. Of course, there are infinitely many such
functions, which is why methods such as cross-validation are useful to measure
the generalisation capability of a model f . Generalisation is a very complicated
philosophical problem, but we have some tools to deal with it. Essentially, we can
split our data set into a purely training data set and a testing data set: consider
the disjoint sets I and J so that I ∪ J = {1, . . . , N}, then the training data set is
{(xi, yi)}i∈I and the testing data set is {(xj, yj)}j∈J . One trains a model f using the
information of the training data set so that for i ∈ I one has f (xi) ≈ yi (in reality
we thrive for ≈ → = ) such that f (xj) ≈ yj for j ∈ J. This means that we want
to keep the error of predicting the training data set small while at the same time
having a model f that “generalises” to unseen (by the model) data, which are in the
testing data set.
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One normally defines a parameterised model fθ(x), where θ is a vector of pa-
rameters of the model. An easy example is a linear regression model. Say that
we promote the variable x to a vector in Rd, so that in our data set xi → xi. A
linear regression model is fθ(x) = θ1x1 + θ2x2 + . . . + θdxd + θd+1, where we have
abused the notation a bit, and xk here are the components of the vector x. A lo-
gistic regression model, for instance, applies a non-linearity to the linear regression
model, wrapping it with a sigmoid function. You can see that any model restricts
the behaviour of the function: the functional form of the model defines a subset
of functions in the function space of all functions from Rd to R. Going back to no
vectors, i.e., restoring the training and testing data sets, we can measure the errors
in the training and testing data sets as

Etrain = ∑
i∈I

L(xi, yi), Etest = ∑
j∈J

L(xj, yj), (4.1)

with, for example, L(x, y) = ∥ fθ(x)− y∥2. As mentioned, we want to have a model
that performs well (low Etrain), but generalises (low Etest).

Now let us turn our attention to unsupervised learning. In unsupervised learn-
ing we do not have access to a known feature to predict in the training data set.
Instead, we want to learn probability distributions of data to solve problems such
as generating new data, or grouping data. For instance, in our previous list of fea-
tures regarding the human body, let us discard the biological sex, age, height and
weight and focus on all the other continuous (perimeter) variables. Let us also as-
sume that we have only children and mid-30 adults in our data set. A priori, these
two groups of people have very different features because of the changes that the
human body undergoes through puberty. In unsupervised learning we would learn
the probability distribution of the data set and use this compact representation of
the probability distribution to, for example, group individuals into (hopefully) chil-
dren and adults. We do not know a priori if an individual is a children or an adult.
It can be possible, however, that if we find two clear groups, they do not relate to
children and adults, but maybe to regular weight people and overweight people.
From the lack of knowledge about the error that we are making, since we are not
able to quantify prediction errors, a much more difficult approach to the concept
of generalisation is laid out. Let us consider an extremely simple case to explain
how difficult generalising is in unsupervised learning. A coin is flipped 100 times,
yielding 53 heads and 47 tails. We want to calculate the probability that the coin
is going to yield heads in flip 101. A frequentist will most certainly predict heads
with 53% probability. A more conservative Bayesian would find the results consis-
tent with a fair coin, and would (maybe, let us just imagine...) predict heads with
50% probability. Now, we operate and make predictions only with the knowledge
we have, but nothing prevents the results of flipping the coin to be tails 47 times
and then heads 53 times for a starter. Thus, it is obvious that this coin is not a fair
coin, but a weird coin–weird with respect to our human experience standard.

What lies underneath this reflection on the coin experiment is that different reali-
ties can lead to the same results and that we are ignorant of those realities because
all that we have is partial knowledge derived from certain measurements. Thus, if
we wanted to generalise and predict the result of the next flip of the coin–or, in other
words, if we wanted to model the probability distribution of the coin flips we must
assume something about reality. This point is one of the main differences between
the physical sciences and the data sciences: in physics we believe (yes, believe!) in
natural laws. We believe that God (or whatever metaphysical entity) itself is a math-
ematician, and we believe that God wrote some equations and made the Universe in
their image. In Stephen Hawking’s words: what is it that breathes fire into the equa-
tions and makes a Universe for them to describe? The last centuries have shown
that the induction process that physicists follow through their lives holds true for
most of the phenomena that we see, as if, in reality, there was a God that wrote the
equations of quantum mechanics and what not. Natural physical laws, then, are
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our belief that Nature behaves following these universal laws. Indeed, experiments
are consistent with these laws on a daily basis. However, experiments in data sci-
ence come from processes much more complicated (not from first principles) than
controlled physical experiments. Thus, data scientists have to make leaps of faith
that are incorrect more often than not. But as Kierkegaard said–in other context–one
must take leaps of faith and deal with the consequences to become a true individual,
so does the scientific community have to take (methodic) leaps of faith for science
to advance.

Anyhow, unsupervised learning is different in nature to supervised learning, be-
cause it deals with learning probability distributions. A Bayesian look of the world,
however, brings supervised learning to the language of probability distributions in
a simple way [Bishop, 2006]. A prediction can be seen simply as

pθ(y|x), (4.2)

which can be obtained, for instance, through Bayes rule

pθ(y|x) =
pφ(x, y)
pϑ(x)

, (4.3)

where we have split θ into φ and ϑ. This leverages supervised learning to the
language of probabilities, which will come in handy for the framework that we
propose, which deals all the time with probability distributions described by density
matrices.

Finally, let us give a short explanation on a third branch of machine learning,
which is usually regarded as different from either supervised and unsupervised
learning: reinforcement learning. Reinforcement learning consists of a learning
paradigm whereby an agent can sense its environment, and will take decisions
from a subset of previously established automaton decisions given its interaction
with the environment. After a series of decisions, the agent will be rewarded or
punished.

As an example, let us consider AlphaZero, which is a reinforcement learning al-
gorithm that learns how to play complete-information board games such as chess
and Go [Silver et al., 2018]. Complete-information or perfect-information just means
that these two-player games provide the whole information to either player, as they
both have access to all the information there is to play: the position on the board.
In chess, AlphaZero consistently beat the best known chess engine (Stockfish1), and
most impressively, it was the first Go computer engine to beat the world Go cham-
pion, a feat regarded as one of the most important milestones of artificial intelli-
gence. Through Monte Carlo tree search, AlphaZero searched the space of possible
moves using a deep convolutional neural network [LeCun et al., 1989; Lecun et al.,
1998] for predicting the probability that a move will result in a win/draw/loss for
the artificial player.

Again, probability distributions are parameterised by complex machine learning
algorithms that model the probability of winning given a chess or Go move. In
the end, every machine learning task can be seen from Bayes’ view of the world,
in which we discover underlying probability distributions from which phenomena
arise as the outcome of experiments. To reiterate, in the physical sciences we be-
lieve in first principles and natural laws that the outcome of physical experiments
must follow. But, in the general look of data science (not only data from physical
experiments), we assume that the models that we build generalise sufficiently well
to unseen data. The fact that we treat the problem of learning as the problem of
estimating probability distributions, joint with the fact that quantum mechanics is
a probabilistic theory for the state of physical systems makes the marriage between
quantum mechanics (as a mathematical framework) and machine learning, at least,
interesting; and as we will see in this chapter, it is useful not only conceptually but
in terms of having very good machine learning models.

1 https://stockfishchess.org/

https://stockfishchess.org/


68 quantum-inspired machine learning

4.2 quantum measurements for supervised learn-
ing

As mentioned before, supervised learning consists of discovering patterns in a set of
features in order to predict another feature (a dependent variable) using a training
data set. In other words, we try to find complicated correlations (if they exist) be-
tween features, and then we use those correlations to predict the dependent variable.
We exploit the fact that quantum states allow us to capture probability distributions
and correlations between parts of the quantum mechanical system under considera-
tion to prepare a quantum state that holds the information of the training data set. I
will introduce our optimisation-free approach first, as it is more intuitive, and later
on we will move on to the general gradient-based approach.

Building or preparing the training data set quantum state is easy. In Ref. [González
et al., 2021b], we explore three different ways of doing this but in this thesis I will fo-
cus on only two strategies: pure and mixed states. Before jumping in, let us formally
define the problem that we want to solve. We kick off with the problem of classifi-
cation, that is, we want to have a function fθ : Rd → K, where K = {1, 2, . . . , K} is
a set of K labels or K classes. The vector of input features consists of d components,
or d dimensions. We have at our disposal a training data set {(xi, yi)}N

i=1 that can
be split to have a testing data set, where xi ∈ Rd and yi ∈ K.

We focus on modelling the joint probability distribution of features and labels
p(x, y), and later on I will explain how we use this to actually make predictions.
First things first, we need a way to map classical data to the quantum state of
some system. This is achieved with the so-called quantum feature maps [Schuld
and Killoran, 2019] (the name comes from kernel theory [Bishop, 2006]), which can
be written as follows. The quantum feature map for the feature vectors x can be
defined as the function

ψX : Rd → HX
x 7→ |ψX (x)⟩ ,

(4.4)

where HX is the Hilbert space of some physical system. Similarly, we define a
quantum feature map for the labels

ψY : K → HY
y 7→ |ψY (y)⟩ ,

(4.5)

where, again, HY is the Hilbert space of some other physical system.
With these quantum feature maps, we can map a sample point of the data set

with the complete quantum feature map

ψ : Rd × K → HX ×HY
(x, y) 7→ |ψX (x)⟩ ⊗ |ψY (y)⟩ .

(4.6)

Quantum feature maps will, hopefully, place data into different regions of the
feature Hilbert space HX as shown in fig. 4.2. Essentially, we look for quantum
feature maps that are able to separate the Hilbert space in a simple way, such that
the decision boundary between different classes is as easy as possible.

Let us build the training data set using the two strategies mentioned before. A
pure data set state is

|Ψ⟩ = N−1
N

∑
i=1

|ψX (xi)⟩ ⊗ |ψY (yi)⟩ , (4.7)

where N is a normalisation constant. The data set quantum state is simple to
understand: it is just a superposition of each and every quantum state of every data
point.
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Figure 4.2: Representation of how quantum feature maps take classical data to the Hilbert
space of a physical system. Images of ants and bees are depicted as populating
different places of the Hilbert space. Such separation (exemplified by the red
dashed line, the decision boundary) will later on be used to perform classification.
In red, a new ant picture with unknown label (but will be classified as an ant) is
shown. Taken from Ref. [Lloyd et al., 2020].

On the other hand, a mixed data set state is

ρ = N−1
N

∑
i=1

|ψX (xi)⟩⟨ψX (xi)| ⊗ |ψY (yi)⟩⟨ψY (yi)| , (4.8)

where, again, N−1 stands for a normalisation constant.
Correlations captured by eqs. (4.7) and (4.8) are quite different because eq. (4.7)

expresses only quantum uncertainty, whereas eq. (4.8) can also express classical
uncertainty [Luo, 2005]. The diagram flow for preparing the training quantum state
is given in fig. 4.3.

The preparation of the training quantum state yields a quantum mechanical ob-
ject (a state) that contains the correlations of the data set, as mentioned, in the corre-
lations of the respective quantum state. Of course, the quantum feature map plays
a central role in this framework, as it promotes classical data to “quantum data”,
which is just a quantum mechanical state. Before worrying ourselves with what
the quantum feature map should be, let us introduce the protocol for classifying
a new data point x⋆. The new set of features x⋆ will have a corresponding quan-
tum state given simply by the quantum feature map |ψX (x⋆)⟩, or, more generally
ρ⋆ = |ψX (x⋆)⟩⟨ψX (x⋆)|.

Predicting the class of a new data point is done by projecting the training state
ρtrain onto the state of the new data point. This operation, which is a projective
quantum measurement, results in a collapse of the training state onto the new data
point state. In terms of probability, we are collapsing the probability distribution

Figure 4.3: Diagram flow of the preparation of the training state, where training samples are
represented as quantum states of a bipartite system. ρtrain can be either given by
the pure state density matrix |Ψ⟩⟨Ψ| in eq. (4.7) or by the mixed density matrix
itself in eq. (4.8). Taken from Ref. [González et al., 2021b].
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of the training state onto a marginalised probability distribution, because we have
essentially got rid of any uncertainty about the state of the train state in the X part:
we know for sure, because of the state collapse, that the state must be completely
compatible with the new data point.

We formalise this operation by creating the projector

π⋆ ≡ π(x⋆) = |ψX (x⋆)⟩⟨ψX (x⋆)| ⊗ IdY , (4.9)

which projects only the X part of the system, whereas the Y part is left untouched
due to the identity operator IdY .

Now, the projection that takes place is

ρ′ =
π⋆ρtrainπ⋆

Tr[π⋆ρtrainπ⋆]
, (4.10)

where we have normalised the state adequately. This new object, ρ′ contains all
the necessary information that correlates the state of the new data point to the
classes. In fact, we can access this information by simply tracing out the degrees of
freedom of part X . We are left with a reduced density matrix that contains all the
information about the classes only.

ρY = TrX [ρ′]. (4.11)

This whole process can be seen in fig. 4.4.
The reduced density matrix will have, in its diagonal, the probabilities that the

new data point corresponds to each class in K. More precisely,

p(y = k|x⋆) = ⟨ψY (k)|ρ′Y |ψY (k)⟩ . (4.12)

Our framework is potent in many ways, as we will show throughout the chapter.
But, there are two results which are outstanding for the mixed state choice. I will
mention them next, but you can find the formal proof in Ref. [González et al., 2021b].
If the quantum feature maps are one-hot maps (for example the class k is assigned
the state |k⟩, and similarly for features, which are assumed to be ordinal), then, our
framework is equivalent to Bayesian inference, i.e.,

p(y = k|x⋆) = p(x⋆|y = k)p(y = k)
p(x⋆)

= ⟨k|ρ′Y |k⟩ . (4.13)

The second important result is that, regardless of the quantum feature map, our
approach is equivalent to a kernel method (see other results on this for general

Figure 4.4: Diagram flow of the projection of the training state ρtrain onto the new data point
state ρ⋆. Then, degrees of freedom corresponding to the features are traced
out, leaving a reduced density matrix with information about classes only, as
in eq. (4.11). Taken from Ref. [González et al., 2021b].
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quantum machine learning models defined with quantum circuits in Refs. [Schuld
and Petruccione, 2021; Schuld, 2021]), meaning that

ρ′Y = M
N

∑
i=1

|k(x⋆, xi)|2 |ψY (yi)⟩ ⟨ψY (yi)| , (4.14)

where k(x⋆, xi) = ⟨ψX (x⋆)|ψX (xi)⟩ is the quantum kernel and M−1 is just a normal-
isation constant equal to Tr[π(x⋆)ρtrainπ(x⋆)].

In Ref. [González et al., 2021b] we introduce some quantum feature maps, some
of which were seen in the literature before, and we also include a couple of new
ones: the softmax quantum feature map, and the random Fourier features quan-
tum feature map, which will come in very handy to prove important generalisation
claims that we will make, namely, our framework is able to approximate, to ar-
bitrary precision, any probability distribution. These quantum feature maps are
introduced next.

4.2.1 Softmax encoding

We generalise the sine-cosine quantum feature map, which takes variables from
[0, 1] and defines the quantum feature map as ϕ : x 7→ sin (2πx) |0⟩+ cos (2πx) |1⟩,
which creates a superposition in a qubit. The softmax quantum encoding extends
this approach from a two-level system (the qubit) to a many-level system (a qudit).
In particular, we will use m levels.

First, we define a probability encoding for real values P : [0, 1] → Rm via:

Pi(x) =

(
exp

{
−β∥x − αi∥2}

∑m
i=1 exp{−β∥x − αi∥2}

)
i=1...m

, (4.15)

where αi =
i−1
m−1 . Here, β is a hyper-parameter. Using these probabilities we build a

quantum state representing a real number

|φ(x)⟩ =
m

∑
j=1

√
Pi(x) |j⟩ . (4.16)

The quantum state corresponding to a vector xi ∈ Rn is defined as

|ψX (xi)⟩ = |φ(xi,1)⟩ ⊗ · · · ⊗ |φ(xi,n)⟩ . (4.17)

4.2.2 One-hot encoding

This representation corresponds to a basis encoding for discrete variables with m
possible values, X = {1, . . . , m}. The encoding for x = j is given by

ψX (j) = |j⟩ . (4.18)

4.2.3 Squeezed states

Recently, Schuld and Killoran [2019] proposed to encode data to the phase of a light
squeezed state

|(r, φ)⟩ = 1√
cosh(r)

∞

∑
n=0

√
(2n)!

2nn!
(ei(φ+π) tanh(r))n |2n⟩ , (4.19)

so that a vector xi ∈ [0, π]n is mapped to ψX (c, xi) = |(c, xi,1)⟩ ⊗ . . . ⊗ |(c, xi,n)⟩.



72 quantum-inspired machine learning

4.2.4 Coherent states

Data can also be encoded into the average number of photons of a canonical coher-
ent state [Chatterjee and Yu, 2017]:

|(α, γ)⟩ = e−
γ|α|2

2

∞

∑
n=0

αnγn/2
√

n!
|n⟩ (4.20)

where a scaling characterized by γ has been introduced so that the dot product
of the two states corresponds to a Gaussian kernel with γ parameter. The mapping
from a real data sample xj ∈ Rn to the complex α is done as follows. An auxiliary
variable θj is built through a min-max scaling of the data set to [0, π]n, so that
xj,ℓ 7→ xj,ℓe

iθj,ℓ . Therefore, a data point xj is mapped to the quantum feature space
through

ψX (xj, γ) =
∣∣∣(xj,1eiθj,1 , γ)

〉
⊗ . . . ⊗

∣∣∣(xj,neiθj,n , γ)
〉

(4.21)

which induces a kernel∣∣kγ(xk, xj)
∣∣2 =

n

∏
ℓ=1

exp
(
−γ|xk,ℓeiθk,ℓ − xj,ℓe

iθj,ℓ |2
)

, (4.22)

where the argument of the exponential is explicitly −γ(x2
k,ℓ+ x2

j,ℓ− 2xk,ℓxj,ℓ cos
(

θk,ℓ − θj,ℓ

)
),

which imposes a higher distance penalty in the feature space for distant data points
in the original space Rn than the usual Gaussian kernel.

4.2.5 Random Fourier Features

As in quantum state representations, the feature space of kernel methods is a Hilbert
space. This means that a quantum feature map implicitly defines a kernel. A natu-
ral question is whether the opposite conversion also works, i.e., given a particular
kernel function, can we find a quantum feature map to a finite-dimensional Hilbert
space such that its inner product corresponds to the kernel? In general, the answer
is no; however, it is possible to find an approximation for certain kernels. Random
Fourier features (RFF) [Rahimi and Recht, 2008a] provides a technique that finds an
explicit finite-dimensional Hilbert space such that the inner product in this space ap-
proximates a shift-invariant kernel. Specifically, for a given kernel k : Rd ×Rd → R,
RFF finds a map z : Rd → RD such that k(x, y) ≈ z(x) · z(y).

The quantum state corresponding to a vector xi ∈ Rd is defined as

|ψX (xi)⟩ =
1

||z(xi)||
D

∑
j=1

zj(xi) |j⟩ . (4.23)

We will expand this definition in the future, when we need it, to specify how the
map z is constructed. The important point is that we can, for example, approximate
a kernel such as the Gaussian kernel with a number of finite terms, as in a Fourier
series.

4.2.6 Classification

Each quantum feature map leads to a different kernel in the mixed training state
representation of eq. (4.8). We can see the action of previously mentioned quantum
feature maps for a classification problem in fig. 4.5.

You can see that, in general, classification is very good for this toy data set. The
data set serves as a proof of concept for the framework that we have exposed so far,
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Figure 4.5: Decision heatmap for the two-moons dataset. Panels show classification for the
softmax, coherent, squeezed, and random Fourier features states-based feature
maps truncated at 20 Fock states. The regularisation parameters (or hyper-
parameters) were β = 70 for the softmax state, γ = 70 for the coherent state,
r = 2.5 for the squeezed state, and γ = 20 for the random Fourier features state.
In all four cases, a mixed training state was used. The white boxes show the
train/test accuracy of the classifier. Taken from Ref. [González et al., 2021b].

but certainly there are more challenging data sets to perform classification, which
we will explore in a while. Before doing that, let us check another toy data set,
the spirals data set, by fixing the quantum feature map but varying the approach,
with either the pure training data set state in eq. (4.7), the mixed training data
set state in eq. (4.8), or a type of state which we call a classical training data set
state, which doesn’t exploit the correlations that can be induced by the quantum
formalism (details about this state can be found in [González et al., 2021b]. Results
for classification using the coherent state quantum feature map are shown in fig. 4.6

It is worth emphasising that, for the coherent quantum feature map, which maps
classical data to coherent states of light (or bosons, in general), the regularisation
parameter γ can greatly impact the quality of classification. Indeed, the parameter
γ, as can be seen from eq. (4.20) simply re-scales the number of mean photons
of the coherent state. The central part of the figures really show that the mixed
training quantum state in eq. (4.8) better captures the relation between classes and
(feature) space with respect to the pure training quantum state in eq. (4.7). This is
further confirmed when we use other toy data set such as concentric circles with the
squeezed-light quantum feature map, shown in fig. 4.7. It is clear that the mixed
state is able to better capture the spatial correlation with the class.

Of course we are not restricted to toy data sets, but can look at more challeng-
ing ones. In Ref. [González et al., 2021a] we evaluated other data sets which have
many more classes, and the dimensionality of the feature space is much greater. In
particular, we used the data sets shown in table 4.1. The Letters data set uses 16 dif-
ferent engineered features from hand-written images of the English alphabet [Frey
and Slate, 1991]. The USPS is a digit data set of hand-written digits from letters
from the United States Postal Service [Hull, 1994]. The Forest data set introduces
engineered features to detect different types of forest coverage [Blackard and Dean,
1999]. The MNIST digit data set is probably one of the most famous ones, which
includes 28x28 pixels images of digits [Lecun et al., 1998]. The Gisette data set
specifically consists of images of the digits 4 and 9, as they are usually confused by
classifiers [Guyon et al., 2007]. Finally, we also explore the CIFAR data set which
contains tiny coloured images of 32x32 pixels of different objects such as airplanes,
dogs, ships, among others [Krizhevsky et al., 2009].
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Figure 4.6: Classification accuracy as a function of the regularisation parameter γ on a spirals
dataset for mixed, pure and classical training quantum states built with the co-
herent state encoding truncated at 32 Fock states. Decision heatmaps are shown
for the three training schemes at γ = 70. Figure taken from Ref. [González et al.,
2021b].

Figure 4.7: Decision heatmap for the concentric circles dataset of the squeezed state quantum
feature map with pure and mixed training states. Squeezed states were truncated
to the first 10 contributing Fock states, and a value of r = 2.5 was used, as in
[Schuld and Killoran, 2019]. Taken from Ref. [González et al., 2021b].

Let us start introducing the gradient-based version of the measured classifica-
tion so far presented, where we ignore the specification of a quantum feature map.
Instead, we parameterise the density matrix with a reduced rank factorisation

ρtrain = VTΛV, (4.24)

where, in general V ∈ Cr×|HX ||HY | and Λ ∈ Cr×r. This approach is equivalent to
kernel density classification [Hastie et al., 2009], and therefore receives the name
of density matrix kernel density classification (DMKDC), or (DMKDC-SGD) in its
stochastic gradient descent (SGD) version, which allows for a learnable density ma-
trix with no explicit quantum feature map. Using the datasets in table 4.1 we com-
pare different methods: a support vector machine over random Fourier features
extracted from the data sets (SVM-RFF), the raw DMKDC and DMKDC-SGD al-
gorithms, and also, in the case of explicit images given in the MNIST and CIFAR
data sets, we compare the results with the famous LeNet [LeCun et al., 1989] con-
volutional neural network, and also we use the LeNet neural network as a feature
extractor so that features from the LeNet neural network are passed as input to the
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Table 4.1: Data sets used for classification evaluation. Taken from Ref. [González et al.,
2021a].

Data set Attributes Classes Train-Test

Letters 16 26 14000-6000

Usps 256 10 7291-2007

Forest 54 3 70-30

Mnist 784 10 60000-10000

Gisette 5000 2 4200-1800

Cifar 3072 10 60000-10000

DMKDC algorithm (which is parameter-less). The interested reader is referred to
Ref. [González et al., 2021b] for further details. Results are seen in table 4.2.

Table 4.2: Accuracy test results for DMKDC and DMKDC-SGD compared against a linear
support vector machine over RFF (SVM-RFF). Two deep learning models are also
evaluated on the two image datasets: a convolutional neural network (LeNet) and
its combination with DMKDC-SGD (LeNet DMKDC). Taken from Ref. [González
et al., 2021a].

Data Set SVM-RFF DMKDC DMKDC-SGD LeNet LeNet DMKDC

Letters 0.924±0.0016 0.918±0.0025 0.9436±0.0021 - -
USPS 0.94±0.0012 0.8061±0.0045 0.9671±0.0018 - -
Forest 0.6969±0.0462 0.7272±0.0024 0.8763±0 - -
Gisette 0.9437±0.0032 0.836±0.0035 0.957±0.0015 - -
Mnist 0.9503±0.0062 0.8111±0.0013 0.9516±0.0038 0.989±0.00024 0.9892±0.00010
Cifar 0.453±0.0032 0.271±0.005 0.4836±0.0059 0.6162±0.00034 0.628±0.00015

4.2.7 Regression

Another supervised learning branch is concerned with regression. So far, we have
figured out a way to perform regression using our framework, but regression is
restricted to be in a bounded domain. Essentially, we use the same approach of
classification, but we separate the bounded space in a grid using the softmax quan-
tum feature map introduced in section 4.2.1.

We place some landmarks at points αi, which establish a grid (in one dimension)
for a continuous variable y, which is the dependent variable. The quantum feature
map for the independent variables, or features, can be given or learned. In any case,
it can be easily seen that one can estimate the dependent variable to be

ŷ = EρY [α] =
m

∑
i=1

⟨i|ρY |i⟩ αi. (4.25)

We highlight that this approach not only allows us to estimate the value of the
dependent variable, but also confidence intervals, as our approach is completely
probabilistic.

We test our regression framework using ordinal regression data sets, which can
be seen as problems where labels not only indicate class membership, but also an
order. In table 4.3 we summarise the data sets used to evaluate our regression
framework, normally referred as quantum measurement regression (QMR). The di-
abetes data set consists of glucose measurements in a time-series where events are
categorised in different measurements that predict the values obtained in said mea-
surements [Dua and Graff, 2017]. The pyrimidines data set creates the task of pre-
dicting the value of the inhibition of dihydrofolate reductase by pyrimidines, where
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Table 4.3: Specifications of the data sets used for ordinal regression evaluation. Train and
Test indicate the number of samples, which is the same for all the twenty parti-
tions.

Data set Attributes Train Test

Diabetes 2 30 13

Pyrimidines 27 50 24

Triazines 60 100 86

Wisconsin 32 130 64

Machine CPU 6 150 59

Auto MPG 7 200 192

Boston Housing 13 300 206

Stock Domain 9 600 350

Abalone 8 1000 3177

there are three positions in the molecule where chemical activity occurs, and there
are nine different attributes per position [King et al., 1995; Larry and Shibin, 2005].
The triazines data set is also related with the geometry of different chemical com-
pounds and relates them to their chemical activity with the so-called quantitative
structure-activity relationship for the inhibition of Escherichia coli dihydrofolate re-
ductase rat tumour by triazines [King et al., 1995]. The Wisconsin dataset includes
data about breast cancer, where features are characteristics of a fine needle aspirate
of a breast mass taken from an image, which characterise the cell nuclei present in
that image [Mangasarian et al., 1995]. The Machine CPU dataset contains features
of processing cores and also measures the relative performance of a CPU with re-
spect to the vendor’s reported performance [Kibler et al., 1989]. The Auto MPG, the
data set uses car features to estimate their city-cycle fuel consumption in miles per
gallon [Quinlan, 1993]. The famous Boston Housing real estate data set is also used,
where one predicts the mean value of houses in a town given socio-economical fea-
tures of the given town [Harrison and Rubinfeld, 1978]. The stock price data set is
a time series data set of daily stock prices from January 1988 through October 1991,
for ten aerospace companies [Guvenir and Uysal, 2000]. Finally, the Abalone data
set poses the question of predicting the age of abalone from several “easy” physical
measurements instead of the time-consuming approach of cutting the shell through
the cone, staining it, and counting the number of rings using a microscope [Waugh,
1995].

As can be seen, we used a wide variety of data sets for testing both classification
and regression, as shown in tables 4.1 and 4.3. We present the results of regression
in table 4.4, where, for comparison reasons, we included an ordinal regression neu-
ral network (ORNN), an ordinal extreme learning machine (ORLEM) [Deng et al.,
2010], a neural network rank for ordinal regression [Cheng et al., 2008], gaussian
processes (GP) and support vector machines (SVM).

We see that in most of the tasks, the learnable version of quantum measurement
regression is able to outperform the other methods, while the gradient-free version
remains competitive in many cases.

4.3 quantum measurements for unsupervised learn-
ing

So far, we have approached supervised learning tasks using the probabilistic view
provided by the framework that we introduced mainly in Ref. [González et al.,
2021b]. However, since the approach is intrinsically probabilistic, we can easily
extend it to estimate probability distributions only, instead of also estimating classes
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Table 4.4: Mean absolute error (MAE) test results for QMR, QMR-SGD and different base-
line methods: support vector machines (SVM), Gaussian Processes (GP), Neural
Network Rank (NNRank), Ordinal Extreme Learning Machines (ORELM) and Or-
dinal Regression Neural Network (ORNN). The results are the mean and standard
deviation of the MAE for the twenty partitions of each dataset. The best result for
each data set is in bold face. Taken from Ref. [González et al., 2021a].

Data set QMR-SGD QMR ORNN ORELM NNRank GP SVM

Diabetes 0.5115±0.067 0.6115±0.0172 – 0.608 0.546±0.15 0.662±0.14 0.746±0.14

Pyrimidines 0.4083±0.072 0.9458±0.0664 0.677±0.20 0.567 0.450±0.10 0.392±0.07 0.450±0.11

Triazines 0.6738±0.018 0.6953±0.0061 – 0.706 0.730±0.07 0.687±0.02 0.698±0.03

Wisconsin 0.9848±0.039 1.1141±0.0403 – 1.041 – 1.010±0.09 1.003±0.07

Machine 0.1712±0.031 0.9949±0.0665 0.451±0.03 0.202 0.186±0.04 0.185±0.04 0.192±0.04

Auto 0.2302±0.020 0.7104±0.0229 – 0.256 0.281±0.02 0.241±0.02 0.260±0.02

Boston 0.2704±0.025 0.6786±0.0183 – 0.322 0.295±0.04 0.259±0.02 0.267±0.02

Stocks 0.1029±0.011 0.9714±0.0000 0.127±0.01 0.111 0.127±0.02 0.120±0.02 0.108±0.02

Abalone 0.2329±0.004 0.3069±0.0000 0.635±0.01 0.233 0.226±0.01 0.232±0.00 0.229±0.00

or dependent continuous (ordinal) variables. I will introduce these ideas a bit more
formally than before, because there is a very strong result regarding our ability to
approximate arbitrary probability distributions using our framework. Let us kick-
off with a complete account of random Fourier features, which extends the ideas
of section 4.2.5 by specifying how the random features are actually computed.

4.3.1 Random Fourier Features (Revisited)

Random Fourier features (RFF) [Rahimi and Recht, 2008a] is a method that builds
an embedding z : Rd → RD given a shift-invariant kernel k : Rd × Rd → R such
that ∀x, y ∈ Rd, k(x, y) ≈ z(x) · z(y). One of the main applications of RFF is to
speedup kernel methods, being data independence one of its advantages.

The RFF method is based on the Bochner’s theorem. In layman’s terms, Bochner’s
theorem shows that a shift invariant positive-definite kernel k(•) is the Fourier
transform of a probability measure p(w). Rahimi and Recht [2008a] use this re-
sult to approximate the kernel function by designing a sample procedure that esti-
mates the integral of the Fourier transform. The first step is to draw D iid samples
{w1, . . . wD} from p and D iid samples {b1, . . . bD} from a uniform distribution in
[0, 2π]. Then, define:

z : Rd → RD

x 7→
√

2
D

(
cos
(

wT
1 x + b1

)
, . . . , cos

(
wT

Dx + bD

))
.

(4.26)

Rahimi and Recht [2008a] showed that the expected value of z(x) · z(y) uniformly
converges to k(x, y):

Theorem 1. (Rahimi and Recht [2008a]) Let M be a compact subset of Rd with a
diameter diam(M). Then for the mapping z defined above, we have

Pr

[
sup

x,y∈M
|z(x) · z(y)− k(x, y)| ≥ ϵ

]
≤

28
(

σpdiam(M)

ϵ

)2

exp
(
− Dϵ2

4(d + 2)

)
,

(4.27)

where, σ2
p is the second momentum of the Fourier transform of the kernel k. In

particular, for the Gaussian kernel σ2
p = 2dγ, where γ is the spread parameter.



78 quantum-inspired machine learning

RFF may be used to formulate a non-memory based version of kernel density
estimation. For the Gaussian kernel we have an estimation for the density at a point
x:

f̂γ(x) =
1

NMγ

N

∑
i=1

kγ(xi, x)

≈ 1
NMγ

N

∑
i=1

⟨z(xi), z(x)⟩

=
1

Mγ

〈
1
N

N

∑
i=1

z(xi), z(x)
〉

=
1

Mγ
⟨Φtrain, z(x)⟩

=
1

Mγ
Φtrain · z(x),

(4.28)

where Mγ is a normalisation constant. Φtrain in eq. (4.28) can be efficiently calcu-
lated during training time, since it is just an average of the RFF embeddings of the
training samples. The time complexity of prediction, eq. (4.28), is constant on the
size of the training dataset. The price of this efficiency improvement is a loss in
precision, since we are using an approximation of the Gaussian kernel.

4.3.2 Probability Density Estimation

Now, we turn our attention to how to estimate the probability density using the
previously introduced density matrices composed of quantum feature maps. Of
course, we focus on the random Fourier feature quantum feature map in eq. (4.23).
We tweak eq. (4.28) in the following manner using the fact that the density matrix
predictions are equivalent to a kernel method:

f̂γ(x) =
1

NMγ

N

∑
i=1

kγ(xi, x)

=
1

NMγ

N

∑
i=1

k2
γ/2(xi, x)

≈ 1
NMγ

N

∑
i=1

⟨z(xi), z(x)⟩2

=
1

NMγ

N

∑
i=1

⟨z(x), z(xi)⟩⟨z(xi), z(x)⟩

=
1

NMγ

N

∑
i=1

⟨ψX (x)|ψX (xi)⟩ ⟨ψX (xi)|ψX (x)⟩

=
1

Mγ
⟨ψX (x)|

(
1
N

N

∑
i=1

|ψX (xi)⟩⟨ψX (xi)|
)
|ψX (x⟩

=
1

Mγ
⟨ψX (x)|ρtrain|ψX (x)⟩ =: f̂ρtrain(x),

(4.29)

which can also be seen as a projective measurement of ρtrain onto the state of the
new data point.

With this result, combined with theorem 1 we can show immediately that f̂ρtrain , as
defined in eq. (4.29), uniformly converges to the Gaussian kernel Parzen’s estimator
f̂γ:

Proposition 1. Let M be a compact subset of Rd with a diameter diam(M), let
X = {xi}i=1...N ⊂ M a set of iid samples, then f̂ρtrain (eq. (4.29)) and f̂γ satisfy:
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Pr

[
sup
x∈M

| f̂ρtrain(x)− f̂γ(x)| ≥ ϵ

]
≤

28

(√
2dγdiam(M)

3MγNϵ

)2

exp

(
−D(3MγNϵ)2

4(d + 2)

)
.

(4.30)

The proof of this proposition can be found in the supplementary material of our
work [González et al., 2021a]. The f̂ρtrain estimator has an important advantage over
the usual Parzen’s estimator: its computational complexity. The time to calculate
the Parzen’s estimator is O(dN) while the time to estimate the density based on the
density matrix ρtrain is O(D2), which (remarkably!) is constant on the size of the
training dataset.

This last feature is one of the most relevant of our framework: the training data
set can be arbitrarily large and the complexity of predicting remains constant. Once
the training data set quantum state is estimated, our method is computationally
cheap.

Now, we can, again, express the density matrix through a reduced rank factorisa-
tion as in eq. (4.24). When this happens, we can avoid building the density matrix
to make predictions simply as

f̂ρtrain(x) =
1

Mγ

∥∥∥Λ
1
2 V |ψX (x)⟩

∥∥∥2
, (4.31)

where we effectively treat Λ
1
2 V as an operator that can act on the given ket.

For a toy data set of two Gaussian distributions in one dimension, we can see that,
as predicted the estimation of the density through density matrix kernel density
estimation (DMKDE) is equivalent to kernel density estimation with a Parzen’s
estimator using the Gaussian kernel. This result is shown in fig. 4.8

Of course, the estimated density also follows the same beaviour in higher-dimensional
and more complicated data sets. Another example is a spiral galaxy data set with
three arms, as shown in fig. 4.9

Interestingly, we can also learn the random Fourier feature representation. The
hyperparameters of the model are the dimension of the RFF representation D, the
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Figure 4.8: 1-D synthetic dataset. The gray zone is the area of the true density. The estimated
pdf by DMKDE (γ = 2) and KDE (γ = 4) is shown. Taken from Ref. [González
et al., 2021a].
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Figure 4.9: 2-D spirals dataset (left) and the density estimation of both KDE (center) and
DMKDE (right). Taken from Ref. [González et al., 2021a].

spread parameter γ of the Gaussian kernel and the rank r of the density matrix fac-
torisation. On the other hand, the learnable parameters are the weights and biases
of the RFF, Wrff ∈ RD×d and brff ∈ Rd, and the components of the factorisation,
V ∈ Cr×D and λ ∈ Cr, the vector with the elements in the diagonal of Λ.

Therefore, since the operations involved in estimating the density of a point x are
differentiable, it is possible to use gradient descent to minimise an appropriate loss
function, such as the negative log-likelihood:

L = −
K

∑
i=1

log
(∥∥∥Λ

1
2 V |ψX (x)⟩

∥∥∥2
)

(4.32)

In contrast with the learning procedure based on density matrix estimation, using
stochastic gradient descent does not guarantee that we will approximate the real
density function. If we train all the parameters, maximising the likelihood becomes
an ill-posed problem because of singularities (a Gaussian with arbitrary small vari-
ance centered in one training point) Bishop [2006]. Keeping fixed the RFF param-
eters and optimising the parameters of the density matrix, V and λ, has shown a
good experimental performance. The version of the model trained with gradient
descent is called density matrix kernel density estimation with stochastic gradient
descent, or DMKDE-SGD.

4.4 using a real quantum computer for machine
learning

Now, we get to one of the most interesting (and cool) parts of this chapter. So
far, I have presented a framework for performing machine learning tasks, both in
the supervised and unsupervised setups, based on the mathematical structure of
quantum mechanics. We have seen, in particular with proposition 1, that we can
approximate arbitrary probability distributions (but this holds not only for the task
of kernel density estimation: it extends to the supervised setup, as we are basically
estimating the joint density of features and dependent variables). These results
mainly hold for the mixed training data set states shown in eq. (4.8).

In this section, I show how we demonstrated that real quantum computers can
be used to implement our proposal. However, we do not use the mixed training
data set states (eq. (4.8)). We use pure training data set states (eq. (4.7)). The reason
behind this is because of practical difficulties. Next, I will give a short explanation
about quantum computing (from a computer science perspective), and also about
devices (such as the one seen in chapter 2) that are currently being used to build
quantum computers.
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Figure 4.10: Common quantum gates, their quantum circuit diagram representation and
their matrix representation, given that |0⟩ = (1, 0)T and |1⟩ = (0, 1)T . Taken
from Ref. [Nielsen and Chuang, 2002].

4.4.1 Short Introduction to Quantum Computing

Quantum computers are machines that enable the manipulation of the state of a
quantum system. We restrict ourselves to quantum computing with qubits, which is
the quantum analogue of classical computing with bits. In classical computing, one
applies computational gates to bits to change their state. In quantum computing,
one applies quantum gates to qubits to change their state. We have already seen
in section 2.5 that external fields can be used on a physical device to change the
state of a two-level system (a qubit). If one can apply a universal set of quantum
gates, one can prepare any state of a system of N qubits. In general, a universal set
of quantum gates can be given by a set of single-qubit gates plus the CNOT gate
(more on this in a while) [Williams, 2011]. An example of the set of single-qubit
gates are the H, S and T gates, whose representation is

H =
1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) (4.33)

S = P(π/2) (4.34)

T = P(π/4) (4.35)

CNOT = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11| , (4.36)

where |ij⟩ = |i⟩ ⊗ |j⟩ is a two-qubit state, and

P(φ) = |0⟩⟨0|+ eiφ |1⟩⟨1| (4.37)

is the single-qubit phase gate. In general, quantum gates are just unitary transfor-
mations of the quantum state of qubits.

A quantum computer can reset the state of its N qubits to the trivial state |0⟩⊗N .
The action of a gate on a qubit or a set of qubits is usually written in terms of a
quantum circuit diagram (like a pentagram for quantum computing). In fig. 4.10 I
show some common gates and how they are written inside a quantum circuit.

These quantum gates can be combined in complicated quantum circuits that per-
form different operations, as shown in fig. 4.11. I stress that the input of the quan-
tum gate can be whatever qubit state. However, in the beginning of a quantum
circuit, one normally assumes that one deals with the trivial state |0⟩⊗N , which one
can prepare by “resetting” the quantum computer state.

An important ingredient in quantum computing is not only the ability to manip-
ulate the state of a multi-qubit system. The state is completely inaccessible to us
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Figure 4.11: Decomposition of a three-qubit gate called the Toffoli gate into one- and two-
qubit gates. Taken from Ref. [Nielsen and Chuang, 2002].

if we do not measure. Therefore, we can measure a la Stern-Gerlach at the end
of the circuit. An example of the measurements “boxes”, which represent readout
operations, is given in fig. 4.12.

In general, when we measure, we collapse the state of the qubits to the computa-
tional basis (the computational basis is a tensor product state of single-qubit states
|0⟩ and |1⟩), which can be simply read as classical bit strings. Therefore, in order to
extract useful information from the quantum circuit, we need to experimentally re-
alise the quantum circuit many times, with the goal of obtaining statistics from the
output. This makes quantum computing clearly different from classical computing:
quantum computers are not Turing machines, but probabilistic Turing machines.

4.4.2 Relevance of Quantum Computing

Why is a large part of the scientific community both in academia and the industry
pursuing quantum computers for decades? There are many problems in our human
existence which are solved computationally. We tend to separate problems by how
hard it is to solve them. Problems usually have an intrinsic “size”. For example,
in the problem “sort these N numbers”, the intrinsic size is N. Hard problems are
those for which the time that it takes to solve them grows exponentially with respect
to their size. Practical solutions to the problems, on the other hand, can be solved in
a polynomial time with respect to their size. In reality, we wish to get the solution
of the problems, but most of the time we are happy with an approximate solution.
Quantum computing not only comes as a hope to getting better approximate solu-
tions exponentially faster than classical computing, but comes as a hope to actually
solve problems in polynomial time which can only be solved in exponential time
with regular classical computers.

This is all the motivation we need to tackle important problems for our society, as
well as quantum mechanics problems (many of which are also very important for
human kind, beyond philosophical considerations).

Figure 4.12: Teleportation circuit. Alice owns the first two qubits and Bob owns the last one.
Alice wants to teleport the state |ψ⟩ of her first qubit to Bob (notice that |ψ⟩
might be completely unknown to Alice, as it’s the only qubit she has with that
state, which prevents her to perform quantum tomography). Bob’s qubit and
Alice’s second qubit are initialised in an entangled state 1√

2
(|00⟩+ |11⟩) = |β00⟩.

See Ref. [Nielsen and Chuang, 2002] for a complete discussion of the quantum
teleportation protocol, from which this figure was taken.
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We note that this comparison between classical computers and quantum comput-
ers is only an illusion because the two are very different: classical computers are
deterministic machines, but quantum computers are probabilistic in their nature.
Indeed, classical computation usually puts on the complexity theory table a set of
complexity classes (which determine how hard it is to solve problems belonging to
such classes), which are different from the complexity classes that quantum compu-
tation offers. Probably, the two most famous complexity classes are P and NP, which
roughly define the “polynomial”-scaling algorithms and the “exponential”-scaling
algorithms, respectively (additionally, solutions to NP problems are easily verified,
meaning that polynomial resources are known to be needed to verify a solution, but
exponential resources are needed to get a solution). Note that, of course, this dis-
tinction is only theoretical and based on our ability to invent algorithms. Usually,
people write P ⊆ NP, meaning that NP is a more general class than P. We know
problems for which no known algorithm is able to solve them in polynomial time,
so that we classify the problem as being in NP. But, it can be perfectly possible that,
in reality, P = NP, which means that we have not discovered efficient algorithms to
solve some of the “exponential”-scaling problems. We just do not know.

Our interest is particularly on a complexity class called the bounded-error quan-
tum polynomial time (BQP) complexity class. Bounded-error probabilistic polyno-
mial time (BPP) is the classical counterpart of BQP, which is just the class that can
solve a problem with a given probability in polynomial time. Of course, algorithms
of quantum computers can only be probabilistic (which is not in detriment to the
practical quality of the solutions that one can get with a quantum computer). This
means that we (hopefully) create algorithms that have very high lower-bound suc-
cess rates, so that the probability of failing is very small. So, is quantum computing
the panacea? People believe so. A historical break-through milestone is the Deutsch-
Jozsa algorithm, which shows that a quantum algorithm can be exponentially faster
than any possible deterministic classical algorithm [Deutsch and Jozsa, 1992; Shor,
1999]. The remaining question is, is there a probabilistic classical algorithm which
can also be exponentially faster than any possible deterministic classical algorithm?
This is the question of whether BPP = BQP. All this discussion can be summarised
in a diagram such as the one shown in fig. 4.13.

4.4.3 Decoherence and the Difficulty of Preparing Mixed States

This subsection is devoted to answering the question: why do we implement in a
quantum computer our quantum-inspired machine learning framework using the
pure training states of eq. (4.7) instead of the more appealing mixed training states
of eq. (4.8)? For a starters, we saw in section 4.4.1 that quantum gates are unitary

Figure 4.13: Visual summary of the ideas discussed in the main text. BQP is drawn with
dashed lines, as we only suspect that it contains BPP and it is the central class
of interest. However, all the relations are only a suspicion.
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transformations, and, since the initial state of the qubits that compose a quantum
computer is the trivial |0⟩⊗N tensor product state, which is pure, then the state of
the quantum computer will always remain pure. This is in theory. In practice gates
are not perfect, and qubits are not perfectly isolated either.

Because qubits are in constant interaction with their environment, the quantum
state of the qubit system will be a mixed quantum state. This might be just what we
are looking for, but it is not. Our mixed state of eq. (4.8) is a precise one: we need
to have complete control over the quantum dissipative channels (each of which is
represented by a collapse operator in the GSKL eq. (2.9)) so that we can prepare
exactly the mixed state that we want. However, we do not have control over the
quantum dissipative channels. We can engineer some quantum dissipative chan-
nels (see Ref. [Labouvie et al., 2016] for an example), but not have complete control
over them. However, if we had a fault-tolerant quantum computer, i.e., a quantum
computer where the state of qubits can be preserved regardless of dissipative chan-
nels (because error correction/mitigation methods allow the preservation of such
states) and where quantum gates can be applied perfectly, then we could prepare
the mixed state in eq. (4.8). An example of how to prepare a mixed state in one
qubit is the following, but we require having another ancillary qubit2. Consider the
state

ρ =
1
d

d

∑
i
|i⟩⟨i| . (4.38)

Then, one can prepare a maximally entangled pure state of two qubits

|ϕ⟩ 1√
d

d

∑
i
|i⟩ ⊗ |i⟩ , (4.39)

with an associated density matrix is

ϱ = |ϕ⟩⟨ϕ| =
d

∑
i

d

∑
j
|i⟩⟨j| ⊗ |i⟩⟨j| . (4.40)

One can verify that tracing the ancillary qubit (the second one, one gets

Tr2[ϱ] = ρ. (4.41)

In current quantum computers from the so-called noisy-intermediate scale quan-
tum computers (NISQ) era, we do not have many qubits available to prepare mixed
states, nor we have fault-tolerant quantum computers, meaning that we cannot ef-
fectively control the dissipative channels to which qubits are subjected. Therefore,
we decided to directly use the pure training states in eq. (4.7) to demonstrate our
framework on real quantum computers from IBM, as we show next.

4.4.4 Density Estimation on an IBM Quantum Computer

For estimating probability densities, we will use a simplified notation for the quan-
tum feature map ψ : X → HX , where X is the space of classical data features, and
HX is the Hilbert space of some physical system, as we introduced before. The
map, therefore, just looks like ψ : xi 7→ |ψi⟩ = ψ(xi). Thus, the pure training state
for density estimation takes the form

|Ψ⟩ = N−1
N

∑
i=1

|ψi⟩ . (4.42)

2 This example is taken from https://quantumcomputing.stackexchange.com/a/12539/13291.

https://quantumcomputing.stackexchange.com/a/12539/13291
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Figure 4.14: Quantum circuit for density estimation, on the left panel, and toy data set used
to demonstrate density estimation in a real quantum device, on the right panel.
Taken from Ref. [Vargas-Calderón et al., 2022].

For a new data point x⋆ ∈ X , the estimated probability density is

f̂ (x⋆) = |⟨Ψ|ψ(x⋆)|2 = |⟨Ψ|ψ⋆⟩|2. (4.43)

The quantum circuit for probability density estimation is given in the left panel
of fig. 4.14. The quantum circuit UD, which acts as a multi-qubit gate, prepares the
data set quantum state |Ψ⟩ = UD |0⟩⊗NX , where D is just notation for the training
data set; and from right to left, the unitary U⋆ prepares the quantum state that
corresponds to the point at which we want to estimate the density |ψ⋆⟩ = U⋆ |0⟩⊗NX .
Here, NX is the number of qubits used to represent the data features. Thus, the
complete circuit prepares the state U†

⋆UD |0⟩⊗NX , whose projection onto |0⟩⊗NX

gives the probability density at x⋆, i.e., we compute exactly eq. (4.43).
The way in which we actually compute eq. (4.43) is the following: we make M

measurements of the quantum circuit and then, we compute f̂ (x⋆) = M0/M, where
M0 is the number of times that the 0 bit string is measured. Explicitly, the complete
protocol can be carried out as follows3 [Vargas-Calderón et al., 2022]:

1. Given a QFM ψ, compute |ψi⟩ = ψ(xi) for each data sample in D.

2. Compute the training data set using eq. (4.42).

3. Use an arbitrary state preparation algorithm to get the circuit UD that pre-
pares the state in eq. (4.42) on a quantum computer.

4. Compute ψ(x⋆) for a new data point x⋆.

5. Use the arbitrary state preparation algorithm in step 3 to get the circuit U⋆

that prepares ψ(x⋆).

6. Run the circuit depicted in fig. 4.14 M times to estimate M0/M with whatever
required precision you need.

Note that once the state in eq. (4.42) has been computed, there is no need to
perform steps 1-3 to estimate the density of new data points.

Step 3 involves using an arbitrary state preparation algorithm. Most current quan-
tum computers have primitive one- and two-qubit gates that allow universal quan-
tum computation. Therefore, even though the general unitary UX is known, we
need to decompose it into the primitive quantum gates of a quantum computer.

Several algorithms for arbitrary unitary decomposition have been suggested [Barenco
et al., 1995; Möttönen et al., 2004; Krol et al., 2022; Li et al., 2013]. In this work, we
use the algorithm proposed in Ref. [Shende et al., 2006], that offers a preparation
of an n-qubit state using at most 2n+1 − 2n CNOT gates. This algorithm is imple-
mented in the popular library for quantum computing Qiskit [Treinish et al., 2022],
which we used to connect to publicly available quantum computers from IBM.

3 See https://gitlab.com/ml-physics-unal/qcm for the public library that we released on these circuits,
including the protocol in section 4.4.5.

https://gitlab.com/ml-physics-unal/qcm
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On the right panel of fig. 4.14 you can see a data set that is used to test the density
estimation algorithm on a real quantum computer, namely IBM Lima. The quantum
feature map used for this task is the random Fourier feature in eq. (4.23):

ψ(x) =
D−1

∑
i=0

zi+1(x)
∣∣ĩ〉 , (4.44)

where
∣∣ĩ〉 is the decimal representation of a bit string of length log2 D (in this work,

D = 8. Thus,
∣∣0̃〉 = |0, 0, 0⟩ ,

∣∣1̃〉 = |0, 0, 1⟩ , . . . ,
∣∣7̃〉 = |1, 1, 1⟩. If D is increased,

more qubits will be needed, and the depth of the circuit will increase. This will be
reflected in a much noisier estimation of the density.). Remarkably, as we proved
in [González et al., 2021a], this technique enables the approximation of any proba-
bility distribution using finite-dimensional density matrices at the core of the algo-
rithm.

We chose the random Fourier feature quantum feature map to approximate the
Gaussian kernel, with a given parameter γ = 80, such that z(x) · z(x′) ≈ e−γ(x−x′)2

[Rahimi
and Recht, 2008b]. A total of eight random Fourier features were used so that the
quantum circuit in fig. 4.14 consisted of three qubits.

In fig. 4.15 we show the density estimation carried out in three different ways. The
three panels correspond to a classical simulation of the density estimation quantum
circuit on the left, a classical simulation of the density estimation noisy quantum cir-
cuit on the middle (see the next paragraph for an explanation of the noise model),
and the density estimation carried out on the IBM Lima quantum device on the
right. In the three cases we get a good approximation of the probability density
function from which training data was sampled. The discrepancy between the ker-
nel density estimation lines and the quantum circuit ones, even in the ideal case
(right panel of fig. 4.15), comes from approximating the Gaussian kernel with a
small number of random Fourier features. Finally, we see that the noise model pro-
vided by IBM is far from simulating the actual behaviour of the quantum circuit.

The noise model for the quantum circuit, as modelled by IBM’s Qiskit [Treinish
et al., 2022], simulates imperfect gates that have been fit to experimental measure-
ments to a Krauss noise model [Bogdanov et al., 2013]. It is worth noting that the
state of a noisy quantum circuit is never described by a state vector. Instead, it is
described by a density matrix. However, this is not exactly how noise is modelled in
Qiskit. Imperfect gates are applied instead of the ideal ones with a previously mea-
sured probability distribution for selecting the gate to apply. This way of applying
noisy gates is analogous to the quantum trajectory approach [Dalibard et al., 1992;
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Figure 4.15: Density estimation (blue points) of bi-Gaussian-distributed data with exact cir-
cuit simulation (left), noisy circuit simulation (middle, see main text for details
on the noise model) and run on the IBM Lima quantum computer. Orange lines
are computed through regular Gaussian kernel density estimation. 1024 shots
were used to estimate every point on a (simulated or real) quantum computer.
Confidence intervals are computed with the asymptotic normal approximation
of the Bernoulli distribution from which measurements are sampled. Taken
from Ref. [Vargas-Calderón et al., 2022].
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Mølmer et al., 1993], where the state vector of the quantum circuit is updated with
the application of gates, as we saw in section 2.3. The true quantum state, described
by a density matrix, can be recovered by averaging many realisations of the noisy
quantum circuit, which is done by running the stochastic quantum circuit many
times. The noisy processes that are taken into account are single-qubit readout er-
rors, reset errors, single-qubit Pauli- and

√
S-gate errors and, two-qubit C-NOT gate

errors [Chow et al., 2015]. It is clear from the middle and right panels of fig. 4.15

that the used noise model is not able to simulate the real noisy quantum circuit,
most likely because such a simplified noise model does not account for the complex
dynamics that the quantum circuit undergoes as an open quantum system [Berg
et al., 2022].

4.4.5 Classification on an IBM Quantum Computer

Classification makes use of the complete notation that we had in eq. (4.7) for a
pure training data set state. Figure 4.16 shows the quantum circuit that performs
classification using a labelled training data set C. From left to right, the unitary
UC prepares the quantum state of the data set C: |Ψ⟩ = UC |0⟩⊗NX+NY , where NY
is the number of qubits used to represent the data labels. From right to left, the
unitary U⋆ ⊗ Uk prepares the quantum state of the new data point along the k-th
class direction: |ψ⋆⟩ ⊗ |ϕk⟩ = U⋆ ⊗ Uk |0⟩⊗NX+NY . Therefore, the quantum circuit
prepares a state (U†

⋆ ⊗ U†
k )UC |0⟩⊗NX+NY such that its projection onto |0⟩⊗NX+NY

gives the probability of x⋆ being classified in class k, which is completely equivalent
to eq. (4.13) when the initial training density matrix is pure.

As in the case of density estimation, the classification probability can be estimated
by sampling the quantum circuit M times and counting the number of times M0 that
the 0 bit string is measured, so that the estimated probability is P̂(k|x⋆) = M0/M.

To summarise, this is the recipe to perform classification:

1. Given a pair of QFMs ψX and ψY for data features and labels, compute ψX (xi)
and ψY (yi) for every pair in the classification data set C.

2. Compute the training data set using eq. (4.7).

3. Use an arbitrary state preparation algorithm to get the circuit UC that prepares
the state in eq. (4.7) on a quantum computer.

4. Compute ψX (x⋆) for a new data point x⋆.

5. Use the arbitrary state preparation algorithm in step 3 to get the circuit U⋆

that prepares ψX (x⋆).

6. Run the circuit depicted in fig. 4.16, where Uk is not required if ψY is the one-
hot encoding (as explained in the appendix of Ref. [Vargas-Calderón et al.,
2022].). This circuit has to be run M times to estimate p(k|x⋆) as in eq. (4.13)
with a desired precision.

As in the case of density estimation, once the state in eq. (4.7) has been computed,
there is no need to perform steps 1–3 to classify a new data point.

The quantum circuit shown in the left panel of fig. 4.16 was used to classify data
in a XOR disposition, as shown in the right panel of fig. 4.16. Such toy data set is
able to tell apart linear classifiers from non-linear classifiers because it is impossible
for a linear classifier to achieve high accuracy. In our case, non-linearity is induced
by the quantum feature map. As an example, we consider the cosine-sine quantum
feature map:

ψ(x) = ψ(x1, x2) =
2⊗

i=1

(sin πxi |0⟩+ cos πxi |1⟩), (4.45)
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Figure 4.16: Quantum circuit for classification, on the left panel, and toy data set used to
demonstrate classification in a real quantum device, on the right panel. Taken
from Ref. [Vargas-Calderón et al., 2022].

which ensures that the induced kernel |⟨ψ(x)|ψ(x′)⟩|2 is a pairwise cosine-like simi-
larity measure cos π(x1 − x′1) cos π(x2 − x′2). Regarding class labels, we selected the
one-hot encoding as the quantum feature map, such that red points are mapped to
|0⟩ and blue points are mapped to |1⟩. Thus, a total of three qubits are used to per-
form the classification quantum circuit, with two qubits encoding the data features,
and the remaining one encoding the class label.

Figure 4.17 shows three panels that display the probability that a point placed
in [0, 1] × [0, 1] is assigned to the red class or the blue class. The three panels
correspond to a classical simulation of the classification quantum circuit on the left,
a classical simulation of the corresponding noisy quantum circuit on the middle,
and the classification carried out on the IBM Bogotá quantum device on the right.

4.5 summary and outlook
This chapter has shown that the mathematical structure exploited in quantum me-
chanics serves good purpose for machine learning. As a matter of fact, quantum
mechanics constantly uses the bridge between geometry and probability laid out by
the complex plane (or in general, vectors of complex numbers), which makes it, at
the very least, an interesting tool to describe probability distributions which are at
the core of machine learning. Our contribution has been to provide a framework
that is inspired on the preparation and measurement of physical systems to mimic
training and prediction (or data generation), respectively, tasks which cover the
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Figure 4.17: Predictions (background colour) of exact circuit simulation (left), noisy circuit
simulation (middle) and circuit on the IBM Bogotá quantum device (right) for
a XOR data set (points). The colour indicates the probability that a point is
classified in the blue class, as shown by the colour bar. The area under the the
receiver operating characteristic curve was 99.93%, 99.82% and 95.83% for the
predictions of the exact simulation, noisy simulation, and real quantum device,
respectively. Taken from Ref. [Vargas-Calderón et al., 2022].
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spectrum of supervised and unsupervised learning tasks in the machine learning
domain.

Our work has outlined the use of quantum computers (both simulated and real)
to perform machine learning tasks using our quantum-inspired framework. This
creates a clear pathway of using and studying the physics of quantum devices
for clear quantum information processing tasks (chapter 2) which include machine
learning. I emphasise that this integration of our quantum-inspired framework with
quantum computers is not restricted at all to qubit-based quantum computation. As
other students of Fabio’s group showed, our framework is (of course!) compatible
with qudit-based quantum computation [Useche et al., 2021].

Future investigations will include how to mix the differentiable components of
our framework with other classical differentiable components from the field of deep
learning in order to perform several machine learning tasks. Of particular interest
is multi-modal learning, as our differentiable components are able to condense and
represent data from different sources (audio, video, text, tables, etc) in a single
format: that of the state of a quantum system.





5 A P P L I C AT I O N S TO I N D U S T R Y
P R O B L E M S

This chapter is dedicated to applications in the industry, which mainly include com-
binatorial optimisation problems, but also continuous domain optimisation prob-
lems. Such problems are usually NP-hard, meaning that there is no known algo-
rithm that is able to solve them in polynomial time with respect to their character-
istic size. Of course we do not provide methods to solve combinatorial problems
in polynomial time (this would prove that P = NP), but we use quantum-inspired
machine learning techniques to provide algorithms that approximate the solutions
of such combinatorial problems.

In section 5.1, a short review is given about the travelling salesman problem and
the portfolio optimisation problem, as well as their representation for binary-based
solvers. Then, section 5.2 shows how neural quantum states can be used to solve
the travelling salesman problem, whereas in section 5.3 a description of generative
modelling for optimisation problems is given in the portfolio optimisation problem.

5.1 state of the art
In this chapter I will focus on two combinatorial problems. The first one is not par-
ticularly interesting for the industry, but tweaking it a bit makes it extremely useful
for the industry: the travelling salesman problem. A salesman needs to visit each
city, in a given set of cities, exactly once, and return to the city of origin. Of course,
this is an interesting problem in operational research, which aims to optimise the
time/distance or resources for the salesman in their trip. Routing problems stem
from this rather simple, but extremely complicated problem. We propose to solve
this problem by mapping it to a Hamiltonian, and then we use neural quantum
states to find the ground state of such Hamiltonian. The ground state encodes
the solution to the problem. Here, we performed the experiments with the largest
Hilbert spaces in this thesis, using systems of almost 100 100-level systems (yes,
huge!) [Vargas-Calderón et al., 2021]. The second problem is portfolio optimisation,
which aims to, for instance, maximise expected revenue given some willingness to
take risks by investing in a portfolio of stock. This problem was tackled by the
team at Zapata Computing Inc. before my arrival to the company [Alcazar et al.,
2021]. My involvement was in scaling the code for high-performance computing.
The centre of this problem is the ability to use generative models that can be clas-
sical, quantum-inspired or purely quantum, to propose solutions for the portfolio
optimisation problem at hand. The method is called generator-enhanced optimisa-
tion, which proposes clever tricks to exploit and explore the solution space of the
problem.

The examples shown in this chapter showcase the ability, competition and prospect
of quantum computing-related generative modelling to solve real industry prob-
lems, which is the business core of the company in which I made my PhD intern-
ship, and to which I am engaged nowadays.

5.1.1 Quantum Simulation and the Travelling Salesman Problem

The travelling salesman problem is one of the most studied combinatorial problems.
The travelling salesman problem can be mapped to a quadratic unconstrained bi-
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nary optimisation (QUBO) problem, which is then straight-forwardly mapped to
an Ising Hamiltonian [Smelyanskiy et al., 2012; Someya et al., 2016; Minamisawa
et al., 2019; Hertz et al., 1991; Kastner, 2005; Warren, 2013; Lucas, 2014]. We use the
approach by Smelyanskiy et al. [2012] where binary variables of the form ziα are
defined. These binary variables are 1 if the i-th city is the α-th location visited in a
tour, and is 0 otherwise.

The length of the tour is

∑
i,j,α

di,jzi,αzj,α+1, (5.1)

where di,j is the distance between the i-th an the j-th city. We must also impose
that ∑i zi,α = 1 for any α and ∑α zi,α = 1 for any i to ensure that every city is
visited exactly once, creating a so-called valid tour. These constraints, however, are
only useful conceptually, as they are not of the QUBO form. They can be rewritten
as (∑i zi,α − 1)2 = 0 for each α and (∑α zi,α − 1)2 for each i, so that finding the
minimum-length tour of the TSP is equivalent to minimising the quantity

∑
i,j,α

di,jzi,αzj,α+1

+∑
α

(
∑

i
zi,α − 1

)2

+ ∑
i

(
∑
α

zi,α − 1

)2

,
(5.2)

which is a QUBO problem. It is customary to use penalty coefficients, which mul-
tiply the last two terms of eq. (5.2), as explained by Lucas [2014]; Tanahashi et al.
[2019]. The reasoning behind adding those penalty coefficients is that the min-
imisation of eq. (5.2) might get stuck on local minima (with classical optimisation
algorithms or quantum annealing setups), and modifying the so-called energy land-
scape can improve convergence towards the global minimum. However, in our
approach we will only sample valid tours, so we will not be worried about the
penalty terms at any point.

If we map the binary variable to a spin/qubit σ via z 7→ σ = 2z − 1, we ob-
tain the expression of an Ising spin-glass Hamiltonian. Moreover, the ground state
of the Hamiltonian is the solution of the TSP, and the corresponding ground en-
ergy matches the length of the solution tour by construction. This approach takes
N2 qubits, meaning that the Hilbert space’s size is 2N2

. However, in this case we
would require 2N2(N − 1) spin-spin couplings (each spin is connected to 4(N − 1)
other spins). In fig. 5.1 we depict this situation for a four-city tour example (we
change spins by qubits), where the QUBO mapping induces qubit-qubit interac-
tions between qubits that represent a single city (connections between qubits of
the same colour) and between qubits that represent different cities (connections be-
tween qubits of different colours). The interpretation of these interactions becomes
cumbersome. Instead, our proposal in section 5.2 is more naturally related to repre-
senting the cities in a tour and their interactions, but also has other benefits which
I will present in a while.

5.1.2 Portfolio Optimisation

The other industry application that will be treated here is portfolio optimisation,
which is a finance problem that aims to select the best investment strategy with
limited resources and a given risk aversion.

Let w be a vector of positive components that add up to one, each of which
indicates the proportion of an investment in an asset, meaning that we will invest
wi on asset i. We consider N possible assets. Moreover, we are able to calculate the
function of expected return ⟨r(w)⟩ and the risk function σ(w). Given a fixed level
of expected return ρ, we aim to minimise the risk, i.e., we will solve

min
w

σ2(w)| ⟨r(w)⟩ = ρ, (5.3)
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1 23 4

Qubits Qudits

Figure 5.1: Pictorial representation of the TSP map to a system of 42 qubits as a QUBO prob-
lem and a system of 4 4-level qudits of a toy-example tour with four cities. The
top arrow diagram shows a tour starting at city 1. Colours encode the position
of a city in the tour. Lines connecting physical sub-systems represent that they
are coupled. The binary variables corresponding to each spin can be read in
the order z1,1, z2,1, . . . , z4,1, z1,2, . . . , z4,2, . . ., starting from the green spin pointing
downwards and in clockwise direction. The last index corresponds to the colour
or tour position, whereas the first index corresponds to the city label. Figure
taken from Ref. [Vargas-Calderón et al., 2021].

where we use the square of the risk function because we compute it as the quadratic
form wT · Σ · w. The expected return is computed as w · r.

In the previous definitions, Σ is the covariance matrix of daily return time series
of different assets, and r is the vector of average return for each asset, i.e. in average,
how much the price of the asset increases or decreases.

In fact, any quadratic programming solver is very efficient in solving eq. (5.3).
However, solving eq. (5.3) yields to a well-known problem in portfolio optimisation
problems: over-diversification. This means that one does not put all eggs in one
basket: instead, one invests small amounts in many different assets. To avoid this,
we impose the so-called cardinality constraint in which we choose only a number κ
of assets out of the N total available assets. It means that we need to solve eq. (5.3)
with only κ non-zero components in w. This is a combinatorial optimisation prob-
lem much harder than the previous one, of course.

One can impose other conditions, for instance, that one does not want to invest
more than a certain percentage of one’s money in a given asset, or invest less than
a certain percentage of one’s money in the same asset: imposing lower and upper
bounds for investment in each asset.

This problem has been historically studied by finance professionals, although
it has also caught the attention of statisticians, mathematicians, physicists, and
of course engineers. Many different algorithms have been proposed and imple-
mented to solve this problem, but the following are the most relevant. Chang et al.
[2000] apply genetic algorithms, tabu search and simulated annealing to portfolio
optimisation. Also, improved versions of particle swarm optimisation have been
used by Deng et al. [2010], and has been also combined with simulated annealing
by Mozafari et al. [2011]. Other population evolution algorithms such as artificial
bee colony algorithms [Kalayci et al., 2017, 2020; Cura, 2021] or based on incre-
mental learning have also been proposed for this problem [Lwin and Qu, 2013].
Furthermore, Akbay et al. [2020] use a variable neighbourhood search algorithm
combined with quadratic programming solvers. These state of the art results point
towards algorithms that are able to explore the feasible solution space with cooper-
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Figure 5.2: Diagram of the matrix product state. The wave function with legs i1, . . . , ıN can
be factorised in terms of a tensor train (right hand side of the diagram).

ative agents. In our work, we believe that generative modelling can boost and be
on pair (even outperform) these classical proposals.

5.1.3 Tensor Network Generative Modelling: Matrix Product States

The generative model that is mainly used in the Generator-Enhanced Optimisation
paper [Alcazar et al., 2021] is the one proposed by [Han et al., 2018]. It consists of
one of the most common tensor networks that is a smart factorisation of a tensor
consisting of N indices, i.e., an N-rank tensor. The factorisation is

∑
α1,...,αN−1

A(1)
i1α1

A(2)
i2α1,α2

A(3)
i3α2,α3 · · · A(N−1)

iN−1αN−2αN−1
A(N)

iN αN−1
, (5.4)

which has free physical indices i1, . . . , iN . The indices αj are contracted, and each of
them runs from 1 to χj, which is called the bond dimension of that specific tensor
connection.

In our case, since we will be dealing with binary variables, all the physical indices
(also known as legs of the matrix product state) run from 1 to 2, or if we want, from
0 to 1 (just to match binary values).

Again, as in the case of neural quantum states in section 3.1.2, we compute the
probability of a bit string b as in quantum mechanics:

p(b) =
|ψθ(b)|2

Z
, (5.5)

where ψθ is the wave function induced by the matrix product state and Z is the
partition function. How does the matrix product state induce a wave function?
This is a bit cumbersome, but let’s start introducing the tensor network diagrams.
A tensor can be drawn by an object such as an oval, or a square, with some legs
which represent indices. Our particular parameterisation of a matrix product state
is shown in fig. 5.2.

With such a diagram, it is easier to explain how to get the wave function for a
particular bit string b. The bit string has N components which can be all 0 or 1. It’s
corresponding quantum state, is |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bN⟩, which in vector explicit
notation can also be looked as another tensor. This is depicted in fig. 5.3. I drew
the bit string tensor as separate boxes because even though the bit string is a 2N-
component vector, we can think of it also as a consecutive set of bits. Now, if we
have a training data set T , we are just able to adjust the parameters of the model by
minimising a cost function. What are the parameters of the model? The tensors A

Figure 5.3: Contraction of a matrix product state and a bit string. The physical legs of the
matrix product states are contracted with the two-component vectors of each bit
in the bit string.
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Figure 5.4: Negative log likelihood of an MPS trained with the MNIST digit data set as a
function of the maximum bond dimension allowed. Samples are also shown.
Figure taken from Ref. [Han et al., 2018].

of the matrix product state have matrix (or rather, tensor) elements, each of which
is a free parameter that can be tuned. So, since we maximise the log likelihood, we
define the cost function to be the negative log likelihood:

L = − 1
|T | ∑

b∈T
log p(b). (5.6)

Han et al. [2018] give an example by training on 1000 random digit images from
the MNIST digit data set, shown in fig. 5.4. A maximum bond dimension of Dmax
for each contracted index is allowed. We see that as this number is increased the
negative lok likelihood lowers, and the quality of generated digit images increase.

5.2 the travelling salesman problem
Given this fact, we only provide a proof of concept of using neural quantum states,
and hopefully in the future quantum simulators, to find the solution of this com-
plicated and famous problem. In other words, we did not intend to compete with
current solvers, but we make a strong case that neural quantum states (and quan-
tum computing) will be serious candidates for tackling combinatorial problems of
the sort. This section presents the results of our work [Vargas-Calderón et al., 2021]
and shows some excerpts of it.

Let us now get into our proposal to solve the travelling salesman problem using
qudits instead of qubits, as it is customarily done. We propose to use N N-level
systems or qudits of N dimensions to map the travelling salesman problem of N
cities to the Hamiltonian of a physical system. The corresponding Hilbert space
size is NN = 2N log2 N , which provides an advantage over the qubit proposal.

Take a look at the four-city example shown in fig. 5.1. We can use four 4-level
qudits to encode any tour of four cities. Essentially, the tour, which can be described
by a string of consecutive cities to be visited 1 → 3 → 2 → 4 → 1, can be encoded
in an ordered set of four 4-level qudits, where the first qudit is in the first-level
state, the second qudit is in the third-level state, the third qudit is in the second-
level state, and the fourth qudit is in the fourth-level state. This is a more natural
representation of the tour than the one-hot encoding into qubits produced by the
QUBO representation. In fact, from the string representation of the tour, we can
assume a quantum analogue problem where the tour is simply depicted as the
pure state |1⟩ ⊗ |3⟩ ⊗ |2⟩ ⊗ |4⟩, which is a tensor product of the 4-level occupation
of each of the four qudits.

This is easily generalised to a TSP of N cities: let |ni⟩ be the state of the i-th qudit.
In this setup, the i-th qudit occupation refers to the i-th visited city. Therefore, any
tour can be represented by a vector (n1, n2, . . . , nN), where ni ̸= nj for i ̸= j, which
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states that the tour begins at city n1, then continues to city n2, and so on, reaching
city nN and then returns to city n1. As discussed, we assume a quantum analogue
problem where the tour vector can be represented as a pure state of N qudits,
depicted by a tensor product state of the form

⊗
i |ni⟩ ≡ |n1, n2, . . . , nN⟩ ≡ |n⟩. This

allows us to define the Hamiltonian via its element matrices as

⟨n| Ĥ |n⟩ =
{

dn1,n2 + dn2,n3 + . . . + dnN ,n1 if (n1, . . . , nN) is a permutation of (1, 2, . . . , N),

p otherwise,

(5.7)

where p ≫ max{di,j} is a term that penalises configurations that do not correspond
to valid tours. Such a penalty term can be compared to an effective exclusion
principle, where invalid tours cannot exist. Moreover, ⟨n| Ĥ |n′⟩ = p for n ̸= n′,
which will add energy to the system if the ground state is not a pure tensor state.

A Hamiltonian of this form may arise from a sum of local Hamiltonians (which is
helpful if we want to use NetKet to solve it!), which are two-qudit operators, whose
matrix elements are

⟨i, j| D̂ |ℓ, m⟩ = di,jδi,ℓδj,m + p′(2 − δi,ℓ − δj,m), (5.8)

where δi,j is the Kronecker delta and p′ ≫ max{di,j}. Thus, the Hamiltonian of the
N-qudits system would be

Ĥ = D̂(H1⊗H2) + D̂(H2⊗H3) + . . . + D̂(HN⊗H1), (5.9)

where Hi is the Hilbert space of the i-th qudit and D̂(Hi⊗Hj) is the operator in eq. (5.8)
acting on the space Hi ⊗ Hj. Notice that the Hamiltonian in eq. (5.9) is slightly
different than the one presented in eq. (5.7) because the penalty term becomes a
collection of penalty terms, depending on how many repeated occupations there
are in the state. Again, by construction, any state |n⟩ corresponding to a valid city
tour will have an energy equal to the tour distance, which is why minimising the
energy yields the ground state of the Hamiltonian in eq. (5.9), which corresponds
to the travelling salesman problem solution.

Not only is the Hilbert space of the qudit system much smaller than the qubit
system, there is also a decrease in the possible physical implementation of the qu-
dit chip, as the graph connecting different qudits becomes highly sparse. In fact,
the form of eq. (5.9) shows a nearest-neighbour Hamiltonian of a 1D system with
periodic boundary conditions, which makes it explicit that only N qudit-qudit cou-
plings are needed (in contrast to O(N3) qubit-qubit couplings). Thus, in future
qudit-based quantum computers, this problem can be solved using qudits arranged
in a ring. Also, each qudit must only be connected to a constant number of two
other qudits (in contrast to O(N) for the qubit case).

We performed variational Monte Carlo experiments on two different setups using
the restricted Boltzmann machine neural quantum state for the qubits case, and a
convolutional neural network quantum state for the qudits case.

The first setup corresponds to the QUBO representation of the travelling sales-
man problem, mapped to an Ising Hamiltonian, i.e. a qubit Hamiltonian as shown
in eq. (5.2). For this representation, we use a restricted Boltzmann machine as the
neural quantum state because it naturally takes as input binary variables. The sec-
ond setup corresponds to our many-qudit representation of the travelling salesman
problem as shown in eq. (5.9). In this case, we use a convolutional neural network
(CNN) as the neural quantum state because it naturally expresses translational sym-
metry, which exists in the travelling salesman problem 1.

For each setup, we consider a toy-travelling salesman problem, where cities are
placed on a line with coordinates xn = n. This class of travelling salesman problem

1 It does not matter which city is the first one to be visited, the tour length will be the same if we shift the
positions of the tour.
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Figure 5.5: Percentage of experiments that converged to the desired solution for the many-
qubit (red) versus the many-qudit (blue) representation of the travelling salesman
problem, as a function of the number of cities. The lines are shown to guide the
eye only. Figure taken from Ref. [Vargas-Calderón et al., 2021].

allows us to quickly benchmark the solutions obtained because the minimum tour
length is 2(N − 1), where N is the total number of cities considered in the city
chain. As it has become customary in this thesis, we perform extensive experiments
covering a large range of different hyper-parameters with Optuna [Akiba et al.,
2019]. In total, we consider 400 sets of hyper-parameters for each of the two setups.
The interested reader might find the experimental details in Ref. [Vargas-Calderón
et al., 2021].

Figure 5.5 shows the percentage of experiments that correctly converge to the
ground energy as a function of the number of cities considered in the linear lay-
out. Interestingly, we see a significant drop in the percentage of experiments that
converged to the expected solution around 40 cities for the qubit representation
of the travelling salesman problem (notice that this corresponds to a system with
1600 qubits, which is indeed a very challenging problem). In contrast, the drop
is located at around 70 cities for the qudit representation. Such a drop indicates
how rapidly the travelling salesman problem solvability decreases with the num-
ber of cities, exposing its computational hardness. Moreover, we hypothesise that
this drop might be connected to a phase transition of the variational Monte Carlo +
neural quantum state algorithm when exposed to the travelling salesman problem,
as this behaviour has previously been seen in other algorithms for the travelling
salesman problem [Gent and Walsh, 1996].

Another essential feature of the experiments carried out is that experiments that
converge take less time in the many-qudit representation than in the many-qubit
representation. In fig. 5.6 we exemplify this fact for some number of cities, where
the convergence of the best (most accurate and fast) experiments of the qubit (or-
ange) and qudit (blue) representations of the TSP are shown. Not only are the best
experiments of the qudit representation better than those of the qubit representa-
tion (except in the case of 16 and 22 cities2), but the difference in performance also
grows as the number of cities grows.

Our work paves the way towards the exploitation of future qudit-based quantum
computers for solving combinatorial problems such as the famous NP-complete
travelling salesman problem, whose solution is based on a many-qudit Hamiltonian
that could be implemented in such computers.

2 Note that the experiments shown in fig. 5.6 are those that are in a local minimum of the hyper-parameter
space.
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Figure 5.6: Energy convergence as a function of processing time in seconds. The first two
rows show the energy convergence of the best experiment for the qubit (orange)
and the qudit (blue) representations of the travelling salesman problem, with re-
spect to the baseline energy, which is 2(N − 1) for N cities. The bottom panel
shows the energy convergence of the best experiments for the qudit representa-
tion of the travelling salesman problem for several other number of cities. In
all plots, the shaded areas correspond to 2 standard deviations of the energy of
each Metropolis-Hastings sample. Figure taken from Ref. [Vargas-Calderón et al.,
2021].

5.3 portfolio optimisation through generative
modelling

As explained in section 4.1.1, machine learning targets the problem of creating com-
pact representations of probability distributions in any given space. In this section
I will present one of the main applications of the Quantum Artificial Intelligence
team at Zapata Computing Inc.3, which is used to solve difficult optimisation prob-
lems. As I mentioned earlier, I have been part of a team which has leveraged this
algorithm for high-performance computing, which is included in a private suite for
quantum machine learning, to which Zapata Computing Inc. clients will have ac-
cess to. In particular, I will dedicate this section to explain the ideas of Ref. [Alcazar
et al., 2021].

The proprietary framework called generator-enhanced optimisation (GEO) is a
combination of heuristic rules that guide a generative model in order to look for so-
lutions of challenging optimisation problems. The framework is depicted in fig. 5.7.

3 https://www.zapatacomputing.com/team/vladimir-vargas-calderon/

https://www.zapatacomputing.com/team/vladimir-vargas-calderon/
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Figure 5.7: Diagram of the generator-enhanced optimisation framework. Explanation is in
the main text. Figure taken from Ref.[Alcazar et al., 2021].

Originally, GEO has been applied to combinatorial problems defined on binary
variables. That is, we want to find a bit string b ∈ BN of length N that minimises
a certain objective function O : BN → R. In step 0 of fig. 5.7 we have optional seed
data consisting of bit strings b and their respective objective or cost value O(b).
Such seed data might come from other classical optimiser, or from some systematic
way to initially sample the solution space.

In step 1, there is a construction of a map from cost values to probability values.
Basically, we will assume that there is an underlying probability distribution of the
bit strings so that observed bit strings with lower cost will have an associated higher
probability, and viceversa. This will induce, in the future, the notion of being able
to generate new data which will be more “probable”, and hopefully will have an
even lower cost. For example, if we have a set of costs {yi = O(bi)}, we can use the
softmax function to produce a vector of probabilities p such that

pi =
exp(βyi)

∑j exp
(

βyj
) . (5.10)

In step two we assign the probabilities to each bit string in the data set. With such
data set, one can train a generative model in step 3. These generative models can
be classical, such as generative adversarial networks [Goodfellow et al., 2014], re-
stricted Boltzmann machines [Smolensky, 1986], variational autoencoders [Kingma
and Welling, 2013], among others; quantum inspired, such as tensor network gen-
erative models [Han et al., 2018]; or purely quantum, such as quantum circuit Born
machines [Cheng et al., 2018].

After the generative model is trained, one can use it to generate new data in step
4, meaning that one has new candidate bit strings. In step 5, under some heuristic
rule, one selects a subset of the generated bit strings so that in step 6, we measure
the cost value of each of those post-selected bit strings.

In step 7, the latest data set used to train the generative model is enlarged with
the new bit strings and their respective costs to form a new initial data set, shown
in step 8. All these steps form a single iteration of GEO. GEO is repeated until one
improves on the minimum possible cost that we find.

Now that the GEO strategy has been laid out, I will explain both the example
problem of portfolio optimisation and also the tensor network generative model.
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5.3.1 Results

GEO can act as a booster or as a stand-alone component. This means that it can take
bit strings and cost values explored by other classical solver (booster mode), or it can
start from zero knowledge of the cost landscape (stand-alone mode). In the booster
mode, Alcazar et al. [2021] used simulated annealing [Pincus, 1970] to get seed data
so that GEO could improve upon it by generating new, better bit strings with lower
costs. The results are shown in fig. 5.8. We can see that there are outstanding bit
strings generated by GEO with lower costs than simulated annealing-generated bit
strings. In particular, we find that for the case of a total universe of 50 assets, GEO
finds 31 outstanding bit strings, whereas in the case of 100 assets, GEO finds 349

outstanding assets.
In the stand-alone mode, Alcazar et al. [2021] compare the evolution of the min-

imum observed cost between different classical solvers compared with the tensor-
network GEO (TN-GEO). The following solvers are considered. First, a random
solver, which fully randomly searches the space of all possible asset configurations
(binary search) and then uses quadratic programming to minimise the risk. The
conditioned random solver is practically the same as the random solver, but it uses
the fact that only 50% of the assets can be used to minimise the risk. Simulated
annealing is also considered, as well as Bayesian optimisation using the library
GPyOpt [The GPyOpt authors, 2016]. Results show that TN-GEO consistently out-
performs the other solvers, as shown in fig. 5.9..

The interested reader is referred to Ref. [Alcazar et al., 2021] where other ex-
tensive comparisons against state of the art solvers for the portfolio optimisation
problem are shown with different asset indices.

5.4 summary and outlook

This section presented applications of generating data to solve combinatorial opti-
misation problems. In particular, the travelling salesman problem and the portfolio
optimisation problems were explored by using neural quantum states and Zap-
ata’s proprietary generator-enhanced optimisation. Quantum-inspired generation
of possible solutions has shown outstanding capability in the case of the travelling
salesman problem, being able to find solutions for systems of 96 qudits, each with
96 levels, which makes up a huge Hilbert space, as well as solutions of up to 1600

Figure 5.8: Seed data from simulated annealing (blue histogram) is used for GEO as a booster
in the cases of N = 50 possible assets (left panel) and N = 100 possible assets
(right panel). Costs obtained with GEO using a matrix product state (MPS) gen-
erative model are shown in the orange histograms. The vertical green dashed
line indicates the position of the best cost obtained through simulated annealing.
The cardinality constraint was set to N/2.
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Figure 5.9: Comparison between different classical solvers and the TN-GEO solver, where
the former clearly outperforms the rest for different sizes of the asset universe.

qubits. Also, in the case of portfolio optimisation, matrix product states have shown
the ability to approximate probability distributions, and to act as generative models
that provide generated bit strings which consistently improve upon the bit strings
found by other classical solvers in order to find the best strategies for investment
given a universe of assets.

So far, the ability to map combinatorial problems to quantum physics problems
has shown to be crucial in order to use quantum simulators (and why not quan-
tum computers) to find the solution to such combinatorial problems. This ability
is, for the time being, human. Our novel approach to mapping the travelling sales-
man problem not to the usual quadratic unconstrained binary optimisation prob-
lem, but to a problem of sparsely interacting qudits was fruitful. Ways to map
different combinatorial problems to physical systems need to be devised (especially
for known NP-complete problems, which are completely equivalent to other NP-
complete problems) in order to propose experimental platforms to solve them.

Also, exploration of different heuristics and generative models (which we already
do at Zapata through adversarial networks with Born machine priors [Rudolph
et al., 2022], among other quantum-inspired and quantum generative models) will
improve the generator-enhanced optimisation framework to solve industry-scale
problems such as the portfolio optimisation one. Their extension to problems de-
fined in the continuous domain is also central for many other problems in the in-
dustry 4.

4 No details are given in this regard as we (Zapata Computing Inc.) are at the moment of writing in patent
filing paperwork.





6 C O N C L U S I O N S

This thesis has mainly explored a two-way avenue in which machine learning and
the study of quantum physics coexist and improve each other: the symbiosis of
machine learning and quantum physics. The most natural connection between these
two fields is quantum machine learning, which studies quantum algorithms to solve
machine learning tasks (supervised and unsupervised). However, throughout this
thesis, we show that the connection between these two fields goes far beyond, and
connects quantum computing, quantum physics theory and machine learning.

So far, quantum computing has been widely concerned with qubit-based compu-
tation. However, there is an ever growing community that researches on alternative
approaches to using quantum physical systems to perform quantum information
processing operations. I have dedicated chapter 2 to the development of one such
alternatives: quantum control of many-level systems through giant Rabi oscillations
in an optomechanical experimental setup. From the quantum optics perspective,
we have shown that the use of novel interfaces between quantum emitters, acoustic
cavities and driving lasers, one can precisely control the occupation and interaction
between pairs of states. All this work–which is a continuation of my undergradu-
ate work–in combination with the rest of the projects contained in this thesis, point
towards the need to further explore physical platforms for quantum simulation
and quantum computation. Most likely, the superconductivity and nanotechnol-
ogy group led by Herbert will continue to study this platform with more advanced
control techniques, for instance involving external magnetic fields. The code base
that is left for the group1 to use already has all the interfaces necessary to perform
extensive and systematic numerical experiments with an external magnetic field as
the one modelled by Jiménez-Orjuela et al. [2017].

Later on, in chapter 5 we showed that qudit-based quantum simulators/com-
puters can greatly simplify the experimental realisation of mapping the travelling
salesman problem to a quantum computer. This highlights the importance of ex-
ploring quantum control in realistic physical devices (from the theoretical point of
view, but of course from the experimental point of view as well). We proposed a
novel approach to mapping the travelling salesman problem to the ground state of
a sparse many-qudit Hamiltonian. Most remarkably, our approach requires a con-
stant and very sparse connectivity between qudits, whereas its qubit counterpart
connectivity scales with the total number of cities under consideration by the trav-
elling salesman problem. From current quantum computing architecture, the qubit
alternative is unfeasible, but our proposal could be achieved by placing qudits in a
ring setup, where qudits interact only with their two nearest neighbours.

With the travelling salesman problem, it was exemplified how the simpler many-
qudit Hamiltonian provided an advantage over the usual map of the travelling sales-
man problem to a quadratic unconstrained binary optimisation problem (which can
use qubit-based simulators). To find the ground state of these Hamiltonians, we
employed the variational Monte Carlo method with a neural quantum state, featur-
ing solutions to the travelling salesman problem of up to 96 cities. With this, we
witness one of the main contributions from machine learning to the study of quan-
tum physics: the ability to represent a quantum state through a neural network,
as we saw in chapter 3. Neural quantum states are expressive approximations of

1 I would say that a large part of the contribution of this thesis for our group is the quantity and diversity
of code (mainly written in the Python and Julia languages) with high scientific software development
standards, which can seamlessly be used in the future for further research.
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the quantum wave function, which serve good as variational wave functions for
the variational Monte Carlo method, which allows us to handle intractable Hilbert
spaces.

In this thesis, we explain how variational Monte Carlo uses neural quantum states
to find ground states of Hamiltonians. However, throughout the PhD work we fo-
cused also on exploring the limitations of this approach. In the closed quantum
case, we find that the method encounters difficulty very near quantum phase tran-
sitions (as all variational methods do). However, we pinpoint that trainability of
neural quantum states might be the main weakness of the method. We discov-
ered this when studying quantum dynamics as a ground state problem using the
Feynman-Kitaev formalism. In this formalism, a quantum clock is added to the
system of interest, and the Hamiltonian is modified in such a way that the quan-
tum clock’s state entangles with the system’s state at every single discrete time of
the quantum clock. We showed that this problem is particularly difficult because
the probability was spread across the whole Hilbert space, making it difficult for
the neural quantum state to really learn all of the wave function. Consistently, we
found that neural quantum states struggled to correctly learn the ground state of
this difficult problem. But further investigation revealed that neural quantum states
are able to represent correctly the ground state of the Feynman-Kitaev Hamiltonian.
This means that neural quantum states are expressive enough; the big problem is
training them.

We also studied the Bose-Hubbard model using neural quantum states in the
closed case and in the driven-dissipative case. Repeatedly we found that neural
quantum states excelled at representing the ground state of the closed case, but
failed in the open quantum case. To our knowledge, this is the first application of
neural quantum states to open quantum systems made of bosonic particles (previ-
ous attempts were focused on spin systems only). The larger Hilbert space of a
truncated bosonic system proved to be very difficult to current approaches of neu-
ral quantum states, by failing to reproduce the expected values of the number of
bosons per cavity in the few-cavity regime (which is the only regime that can be
compared with exact numerical calculations). Despite the current difficulties, we
foresee a way forward.

The problem at hand is very difficult. If L is the Liouvillian of the open quantum
system, one tries to find a neural quantum state ρθ that minimises Tr

[
ρθL†Lρθ

]
.

Such a problem is very difficult because Liouvillian gaps can close especially near
an open quantum phase transition. An alternative is time-evolution, but so far
time-evolution has been restricted to neural quantum states of closed systems, and
they have serious drawbacks such as not being able to correctly evolve a quantum
state with a spiked probability distribution. However, it might be possible to use
the Feynman-Kitaev formalism (for neural quantum states or variational circuits) to
perform short time evolutions so that we can apply the theory of quantum trajecto-
ries to simulate the open quantum system. To do this, a couple of difficult long-term
projects are needed. First, a Computer Algebra System needs to be developed in
order to handle quantum mechanical operators as one does in the whiteboard, to al-
low for arbitrary symbolic manipulation of operators in quantum mechanics2. With
this computer algebra system one is able to approximate short time evolution oper-
ators through Chebysheb operator polynomials (computing the polynomials needs
the computer algebra system). Second, since the quantum trajectory theory needs
the application of collapse operators onto the quantum state, we need to figure out
how parameters are updated when certain collapse operators act on them. This has
only been done for simple restricted Boltzmann machines that simulate quantum
circuits. With these two projects, one would be able to tackle finding steady states

2 Having a computer algebra system is not entirely necessary, but it is a key component for a flexible
library that allows the study of any Hamiltonian. At the moment of writing, I am developing one such
system at Zapata Computing Inc.
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from a different perspective (in my opinion with good chances of success) than the
one used in this thesis.

Furthermore, ground states of Hamiltonians, or in general, quantum states, natu-
rally encode probability distributions, which are the central object in machine learn-
ing. Here we explored the other direction of the machine learning-quantum physics
avenue in chapter 4. We used the mathematical framework provided by quantum
mechanics to perform machine learning tasks. In particular, quantum feature maps
allow the creation of quantum states from classical data, which are later processed
to create quantum states that represent entire data sets. Training corresponds to
preparing a quantum state. Then, we were able to perform both supervised and
unsupervised machine learning tasks: classification, regression and probability den-
sity estimation. The prediction phase corresponds to further preparing a quantum
state for the data point to be predicted, and a projective measurement that acts
as the prediction operation. Our framework provides two main ways of doing all
these steps (preparation of states and measurements): using density matrices, or
using pure states as quantum states. We used density matrices for all of the appli-
cations carried out in a classical computer. Here, our framework takes the form of
a quantum-inspired classical machine learning set of algorithms. We showed that
our framework is competitive with many classical machine learning methods, with
the impressive advantage that we can condense arbitrary probability distributions
of arbitrarily large training data sets within a density matrix. On the other hand,
we also used pure states in order to leverage our framework to a purely quantum
machine learning framework. This means that we were able to use real quantum
circuits (with the Bogotá and Lima IBM quantum computers) to perform classifi-
cation and density estimation tasks on toy data sets. An important feature of this
framework is that density matrices could be learnt as well, meaning that they act as
modular differentiable components that can be combined with other components
of the deep learning field to perform several machine learning tasks. This holds
great promise in tackling challenging problems in data science such as multi-modal
learning, which is the ability to learn probability distributions from data that comes
from many different sources (audio, text, video, etc) in order to perform a wide
variety of tasks.

In summary, we leave interesting research prospects that are naturally born out
of the opportunities and difficulties encountered in the research projects carried out
throughout my doctoral studies. Our contributions to the community are encapsu-
lated in the following bullet points:

• Giant Rabi oscillation control in quantum dots embedded in acoustic cavities
for the prospect of qudit-based quantum computing [Vargas-Calderón et al.,
2022].

• Qudit-based approach to the travelling salesman problem solved through vari-
ational Monte Carlo and neural quantum states [Vargas-Calderón et al., 2021],
with an open-source library https://gitlab.com/ml-physics-unal/htsp.

• Development of numerical tools [Vicentini et al., 2021] (https://www.netket.
org/) for many-body studies to find ground states [Vargas-Calderón et al.,
2020] of Hamiltonians and perform time evolution of physical systems [Vargas-
Calderón et al., 2022].

• A quantum-inspired framework to perform supervised and unsupervised ma-
chine learning tasks [González et al., 2021b,a; Vargas-Calderón et al., 2022]
with an open-source library for its implementation on real quantum comput-
ers https://gitlab.com/ml-physics-unal/qcm.

https://gitlab.com/ml-physics-unal/htsp
https://www.netket.org/
https://www.netket.org/
https://gitlab.com/ml-physics-unal/qcm
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Bloch, I. (2003). Quantum phase transition from a superfluid to a Mott insulator
in an ultracold gas of atoms. Physica B: Condensed Matter, 329-333:11–12.

Guvenir, H. A. and Uysal, I. (2000). Bilkent university function approximation repos-
itory.



112 BIBLIOGRAPHY

Guyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider, G., and Uhr, M. (2007). Com-
petitive baseline methods set new standards for the nips 2003 feature selection
benchmark. Pattern Recognition Letters, 28(12):1438–1444.

Han, Z.-Y., Wang, J., Fan, H., Wang, L., and Zhang, P. (2018). Unsupervised genera-
tive modeling using matrix product states. Phys. Rev. X, 8:031012.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand
for clean air. Journal of Environmental Economics and Management, 5(1):81–102.

Hartmann, M. J. and Carleo, G. (2019). Neural-network approach to dissipative
quantum many-body dynamics. Phys. Rev. Lett., 122:250502.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109.

Hatano, N. and Petrosky, T. (2015). Eigenvalue problem of the liouvillian of open
quantum systems. AIP Conference Proceedings, 1648(1):200005.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the theory of neural
computation. Santa Fe Institute Studies in the Sciences of Complexity; Lecture Notes.

Heyl, M. (2018). Dynamical quantum phase transitions: a review. Reports on Progress
in Physics, 81(5):054001.

Heyl, M., Polkovnikov, A., and Kehrein, S. (2013). Dynamical quantum phase tran-
sitions in the transverse-field ising model. Phys. Rev. Lett., 110:135704.

Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G., and Carrasquilla, J.
(2020). Recurrent neural network wave functions. Physical Review Research,
2(2):023358.

Huang, Y. (2019). Approximating local properties by tensor network states with
constant bond dimension.

Hull, J. (1994). A database for handwritten text recognition research. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(5):550–554.
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