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Resumen y Abstract IX

Resumen (Abstract)

DIAGNOSTICO DE FALLAS INCIPIENTES EN RODAMIENTOS BAJO
CONDICIONES DE OPERACION NO ESTACIONARIAS MEDIANTE ANALISIS DE
VIBRACIONES.

Los rodamientos, son una parte fundamental de la mayoria de maquinas rotativas,
consecuentemente, la deteccion de fallas y el diagnéstico temprano de estos elementos son de gran
interés para incrementar los niveles de confiabilidad y mantenibilidad de los equipos rotativos. El
andlisis de vibraciones es la herramienta mas utilizada para el diagndstico de rodamientos. Pese a
los avances en los algoritmos y procesamiento digital de sefiales para el diagndstico, es comdn
encontrar grandes avances para casos en los cuales las condiciones operativas se mantienen
estacionarias. Este no es el caso de muchos equipos rotativos, donde la velocidad angular puede
resultar variable en el tiempo. En general, la operacién bajo condiciones de velocidad variable
genera respuestas vibratorias en las cuales se combinan fendmenos &ngulo-periédicos con

fendmenos tiempo-periddicos.

Este trabajo presenta un método para el diagnéstico de fallas en rodamientos, utilizando algoritmos
de “Computer Order Tracking”, andlisis de Ciclo-No-Estacionareidad y analisis de Kurtosis
Espectral. EI método fue evaluado utilizando una serie de sefiales capturadas bajo condiciones de
velocidad variable y una serie de sefiales simuladas, bajo diferentes condiciones de carga y
velocidad. Adicionalmente se propone una estrategia para la demodulacion de sefiales, y se presenta
un clasificador, entrenado con una combinacion entre sefiales simuladas y sefiales capturadas para

el diagnéstico de tipos de fallas.

Palabras clave: Rodamiento, Andlisis de Vibraciones, Velocidad variable, Cyclo-No

Estacionareidad, Order Tracking Computarizado, Kurtosis Espectral.
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Abstract

DIAGNOSIS OF INCIPIENT FAILURES IN ROLLING ELEMENT BEARINGS UNDER
NON-STATIONARY OPERATION CONDITIONS BY VIBRATION ANALYSIS.

Rolling Element Bearings —-REB are a fundamental part of most of rotating machines. Consequently,
their fault detection and timely diagnosis are of great interest to improve the reliability and
maintainability of rotational equipment. Vibration analysis is the most widely used tool for bearing
diagnostics. Despite advances in algorithms and digital signal processing for diagnosis, it is common
to find great advances for cases in which operating conditions remain stationary. This is not the case
with many rotating equipment, where the angular velocity can be variable over time. In general,
operation under variable speed conditions generates vibratory responses at which angle-periodic

phenomena are combined with time-periodic phenomena.

This work presents a method for the diagnosis of bearing failures, using "Computer Order Tracking"
algorithms, Cycle-Non-Stationarity analysis and Spectral Kurtosis analysis. The method was
evaluated using a series of signals captured under variable speed conditions and a series of simulated
signals, under different load and speed conditions. Additionally, a signal demodulation strategy is
proposed, and a classifier is presented, trained with a combination between simulated signals and

captured signals for the diagnosis of types of failures.

Keywords: Rolling Element Bearing, Vibration Analysis, non-stationary Speed, Cyclo-non-

stationary analysis, Computer order tracking, Spectral Kurtosis.
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1. Introduction

1.1 Background and Context

The Rolling Element Bearing (REB) diagnosis is of particular interest for condition based
maintenance. The aim of the diagnosis by mechanical vibrations consists in the identification of
anomalies in the vibratory response of a particular equipment, identifying if such anomaly comes
from a change in the driving source, or some physical change in the equipment of interest. The above
is illustrated in Equation 1-1, in this model the vibratory response x(t) results as the output of a
lineal time invariant system with time transfer response function h(t), when an external stimulus or
drive force f(t), taking into account the noise or others vibration sources n(t).

Equation 1-1 x(t) = h(t) * f(t) +n(t)

For the particular case of vibrations in rotary machinery, it is intuitive to assume that the external
driving force presents a periodic behavior as a function of the angular position of the shaft 4. As a
result, it is expected that the vibratory response will also show some kind of periodical behavior in
the angular domain. However, in most cases, the transfer function does not depend on the angular
position of the axis, therefore, without incurring in rigorous math’s, Equation 1-1 can be rewritten
as follows.

Equation 1-2 x(t,0) = h(t) * f(0) +n(t)

In order to express the vibratory response in the angular domain, different techniques have been
developed [1]-[4]. These authors have mainly taken advantage from the different advances in digital
signal processing. Among those techniques the Computer Order Tracking (COT) is maybe the most
used [5]. The Computer Order Tracking identify the angular position of the shaft by referencing in
the pulses series emitted by a tachometer or encoder. By this, is possible to obtain a signal sampled
at instants, which correspond to equally angular spans.

Particularly for the Rolling Element Bearing diagnosis, the interaction between time periodical and
angular periodical phenomenons has been exposed by different authors [2], [6]. To exemplify this,
consider the presence of a brief crack in the outer race of a bearing, as shown in Figure 1-1. This
crack will generate contact with the rolling elements as the shaft continues rotating. This situation
would be present at equally-spaced angular intervals according to the geometry of the bearing. In
this sense, the contacts will occur at periods dictated by the Fault Characteristics Frequencies —FCF
of the rolling element bearing, named BPFI, BPFO, BSF and FTF. Those frequencies are broadly
exposed and discussed in literature [7].

Each time crack and rolling elements are in contact, occurs an impulsive force, which generates a
vibration response in the resonance frequencies of the REB. Resonance frequencies usually belong
to 2000 — 10000 Hz [8], and they are dictated mainly by dynamic conditions, i.e. dictated by the
mass, restrictions, stiffness and damping characteristics of REB. This has an important implication,
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which is that instantaneous vibrational response generated by those impacts are mainly time-
dependent, as it is illustrated in Figure 1-1.

Figure 1-1. Vibration response in a faulty Rolling Element Bearing - Illustration.

Rolling Element

t REB Race

Incipient Fault
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. Failure Contact

Vibration Spike
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I {i""'.'*'
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The situation illustrated in Figure 1-1 and the previous paragraph, could be summarized by the fact
that the impacts periodicity are dictated by the geometry of the REB and the shaft rotational speed.
On the other hand, the behaviour of the vibrational response at impacts is mainly dictated by
dynamics characteristics and is usually associated with high frequencies energy.

The simplistic model of Equation 1-2, also could explain the situation previously seen. The impulsive
force generated by the contact between rolling elements and race is represented by the force f(6).
This force is dictated by the kinematic characteristics of the ensemble, i.e. geometry and rotational
speed. On the other side, the path between race and the vibration sensor corresponds to the function
h(t), which is a transfer function dictated by the dynamic characteristic i.e. mass, stiffness and
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damping, an consequently, will determine the resonance frequencies of the REB. In this sense, f(0)
represents the periodic forces while the h(t) represents the system dynamic.

The previous discussion shows the linkage between angular position dependency and time phenomes
dependency for REB diagnosis. The first one governs the periodicity forces while the second one
represents the system dynamics.

If the angular velocity keeps constant, the duality between time variable t and angular position 6 is
easily solved since the proportional relation for both variables. In this sense, the vibrational response
would have periodicity in both domains. In general is preferred to perform the REB diagnosis in
angular domain, analyzing the spectral behaviour of the signal envelope in terms of ‘orders’, which
is the analogues to frequency in time domain.

In many applications is reasonable to assume the angular velocity keeps stationary, i.e. nearly
constant. However, it is common to find diverse situations at which this assumption does not results
reasonable. In such situations, the interaction between kinematics (angular domain) and dynamics
(time domain) matter, since vibrational response signal contains valuable information in both
domains.

To explain the interaction between both domains, in nonstationary angular speed, let consider again
the rolling element bearing exposed in previous paragraphs and illustrated in Figure 1-1. Consider a
“run-up” situation at which the angular speed is increasing. Under this situation, the impulses
generated due to contact with failure surface conserves periodicity in angular domain. However, this
periodicity is not conserved in time domain since the time-intervals at which impacts are generated
would be reducing as angular velocity increases. Accordingly, this indicates that if the vibrational
response is expressed as a time function, the impacts would not seem periodical. This situation is
illustrated in Figure 1-2. On the other hand, the behaviour of the signal just at instants when impacts
occurs, is mainly governed by time domain, i.e. when vibrational response is represented in angular
domain, the time periodicities at impact instants do is loosed, as it is illustrated in the lower part of
Figure 1-2. From REB diagnostic perspective, this duality generates the necessity of implement a
method which allows to extract periodic information related with angular domain, but also, consider
the frequencies associated with the ensemble dynamics [9].
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Figure 1-2. lllustration for vibrational response in time domain and angular domain.
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Additionally to the duality on time and angular dependencies, it should be added that the
amplitude could be modulated as consequence of angular speed changes. From an energetic
perspective, this velocity increasing (decreasing) could be represented as an increase in kinetic
energy, transmitted to REB and generating increases (decreases) in the energy of elastic
deformation. To illustrate this, consider the model presented by [10], illustrated in Figure 1-3.
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Figure 1-3. Vibrational response in REB under variable speed [10].
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In this model the force is represented as an angular periodic pulse train &y ., which activate the REB

transfer function h(t). Those pulses are modulated in amplitude by the function 4,,, (t) because of
kinetic energy increasing.

This modulation A,,(t) could have other additional causes different from kinetic energy increase,
including for example natural frequencies excitations associated with shaft or rotors supported by
the REB. This excitations are probable because the temporal changes in the 1X during acceleration
run-up. Equally to resonance frequencies associated with REB, the resonance frequencies of the
shaft, rotor, and other elements present are mainly time dependent, establishing a linkage between
vibrational response of REB and dynamical behaviour of other elements arranged in the assembly.

Through this section, a general discussion of the aspects related with the diagnosis of REB under
variable speed has been discussed. As previously discussed, results important to build models which
results able to detect the presence of periodicity of vibration spikes while catching the dynamic
behaviour of the system.

For the following sections of this chapter, a brief justification of this work and a summary of the
research aim is presented.

1.2 Justification

The condition-based maintenance represents an interesting strategy for many of industrial and
productive process since their benefits in reducing operative costs and increase equipment’s
reliability. By this approximation many logistics and monetary benefits could be achieved [11], [12].
Particularly, the mechanical vibration analysis and vibration based condition monitoring are one of
the most useful techniques in CBM [13]. By vibration, analysis is possible to capture symptoms of
early failures, which could also aid the detection, diagnostic and eventual prognostic of the
indication.

Vibration-based condition monitoring is intended to capture the vibrational response of particular
equipment by the use of vibration sensors. This is done to identify if an eventual change in the
vibrational response is either due to any change in equipment structure or is due to any change in
excitation source or drive mechanism [14].

In some situations, the criticality of the equipment in question induces the need for permanent and
online monitoring of mechanical vibrations. A need that can be reinforced when the mechanisms
contain elements such as bearings, gears or blades, since detection under such conditions is made
more sensitive by using accelerometers [14], [15]. The above, in conjunction with the nowadays
context of Industry 4.0, the wide availability of sensors and acquisition systems at more accessible
prices, the accelerated increase in computing capacity, and the availability of algorithms and
frameworks for digital signal processing, lead the use of online vibration monitoring.

One of the great challenges for online vibration monitoring lies in the variability that can arise in the
operating conditions of the different rotating equipment. This gives rise to non-stationary vibrations
that can significantly alter the vibratory response and in consequently make it difficult to detect,
classify and diagnostic faults [16]. The non-stationarity of the vibratory response can occur by the
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variation in the operating speeds or external loads under which equipment is subject. In the first case,
the nature of the vibrations in the frequency domain is highly altered, and consequently, the fault
diagnosis may lose precision. Therefore, the analysis of vibrations in rotary machinery under variable
speed conditions is a problem of nowadays interest [17].

In particular, bearing failure detection and diagnosis is one of the areas of greatest interest for
Vibration-based condition monitoring. These elements are of great interest since most rotating
machines are present but it is estimated that only 10% reach the L10 life expectancy [8]. In many
applications, REB are the components of major spare replacement and even with biggest failure rate
as illustrated by [18], where it is reported that REB cover until 6.77 % of electric motors. Being the
biggest percentage of mechanical failures. Other sources as [19], [20] indicate that 40 % of failures
of induction motors are associated with REB failures. Additionally, it is estimated than 76 % of wind
turbines fails in their gearbox as a consequence of REB failure [21]. This latter case resulting of
great interest as rotational speed presents high variation as consequence of wind currents
randomness.

1.3 Research Aim

In the present work, it is intended to give an evaluation of diagnosis process of rolling element
bearings when they are subjected to non-stationary conditions implying variable rotation speed.
Under those situations, the vibrational responses associated with failures in REB are of special
interest, by some important aspects such as the ones described in section 1.1.

In this sense, this work is aimed under the research question established as follows.

Under variable speed conditions, the presence of bearing failures and variable speed, added to
amplitude modulation, can be diagnosed through the following techniques: Envelope spectral
analysis, Order tracking techniques, Cycle stationarity analysis and Filtering for maximization of
spectral kurtosis?

Using the following hypothesis.

Early diagnosis of bearing failures can be made under variable speed conditions using techniques of
Spectral Envelope Analysis, Order Tracking Techniques, Cyclostationary Analysis and Filtering to
maximize spectral kurtosis.

Accordingly, this thesis is formulated by using the following objectives.

As general objective has been declared.

e Toevaluate the diagnosis of incipient failures in Rolling Element Bearings using mechanical
vibration analysis.

For specific objectives, it has been declared.

e To design strategy for the simulation and acquisition of signals with bearing failures
operating under variable speed conditions.
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e To develop a model for the diagnosis of incipient failures in bearings, under variable speed
conditions, using spectral envelope analysis, order tracking techniques, cyclo-stationarity
analysis and filtering to maximize spectral kurtuosis.

e To evaluate the detection capacity of Cyclo-stationarity models and spectral kurtuosis
filtering for cases of bearing failures.

During the development of this work, a model for the simulation of REB fault signals is used. Also,
a model for the REB diagnosis under non stationary rotational speed is proposed and the results of
their usage for simulated signals and experimental signals are shown. Also a learning algorithm for
the classification and diagnosis of REB faults is exposed. Accordingly, the document is organized
as follows. On chapter 2 a theoretical framework with the main algorithms available on literature is
exposed and their usage is briefly illustrated by a practical case. Section 3 describes the test rig used
for capturing experimental dataset. At chapter 4 the model proposed for REB diagnosis is presented.
The chapter 5 describes the model used for simulating REB fault signals. Finally, on chapter 6 the
experimental data is shown and the result of using the model proposed on chapter 4 is also exposed.
Chapter 7 presents conclusions and future works.



2. Theoretical Framework

2.1 Rolling Element Bearing Diagnosis — Benchmark
method

For REB failure diagnosis in past decades, important advances have been shown. Maybe the most
effective techniques to perform REB diagnosis is based on analyzing vibrational response envelope.
Specifically, this technique relies on take the spectral content of the signal envelope and verify if
there is information of Fault Characteristic Orders —FCO [2], [22]-[24]. The Fault Characteristic
Orders are based on kinematic relations between the different elements of the REB, and their
geometry. In the most common case, at which the outer race speed keeps static, the Table 2-1
summarize the relations for the FCO.

Table 2-1 Fault Characteristics Orders Relations

FAULT CHARACTERISTIC ORDER MATHEMATICAL RELATION
Ball-Pass Inner Race Order: BPOI % (1 + % cos(@))
Ball-Pass Outer Race Order: BPOO 3 (1 — % cos(@))

. d
Fundamental Train Order: FTO (1 — Bcos(e))
. D
Ball Spin Order: BSO ﬁ[ ( cos(@)) ]

N: Number of rolling elements.
d: Rolling Element Diameter.
D: Pitch Diameter.

#: Contact Angle.
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Typical vibrational response of incipient failures have been modeled for faults on different
components according to load distribution and kinematic relations. The most common patterns and
envelopes for incipient failures are briefly illustrated on Figure 2-1. Although those waveforms
correspond to most common failures, there are situation at which modulations could be different,
mainly depending on the loads imposed to REB. The relation between modulations and type of loads
are summarized on Table 2-2 [7].

Figure 2-1. Typical REB fault waveform and Envelope. Vibrational response against angular
position

1/FTO

1/BPOI 1/BP0O
1/BSO

Table 2-2. Periodic characteristics of bearings with defects under various loadings and path effect

CAUSE OF PRACTICAL | OUTER RACE | INNER RACE ERIE)ELI\hIIE’\liI(‘Br
PERIODICITY EXAMPLES DEFECT DEFECT
DEFECT
. . Misalignments.
Static Load Dead Weight No Effect 1x FTO
High
Unbalance
Shaft Unbalance High Speed 1x No Effect 1-FTO
Regimes
REB Diameter Mounting 1xFTO 1-FTO No Effect
Variations
Transmission Cracks on FTO
Path Effect shaft No Effect 1x BSO

“Static Load represents the case commonly exposed on literature and illustrated in Figure 2-1.

During the last decades, two methods for the analysis of the envelope have been highlighted, as
illustrated in Figure 2-2. To describe those methods consider the angular speed keeps near constant.
The first method consists of the use of a band-pass filter, which limits the content of the vibratory
response to the resonance frequencies of the bearing. Usually the band-pass frequencies lies in the
range of 2000 - 12000 Hz. Once the signal is filtered, an analytic version of this signal is obtained
by the use of Hilbert transform. By taking the square magnitude of analytic signal, the squared
envelope is obtained and results possible to analyze it, either in order or frequency domain.
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Figure 2-2. Rolling Element Bearing Diagnosis by Squared Envelope Spectral Analysis — Two
methods [25].
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The first method consists of the use of a band-pass filter, which limits the content of the vibratory
response to the resonance frequencies of the bearing. Usually the band-pass frequencies lies in the
range of 2000 - 12000 Hz. Once the signal is filtered, an analytic version of this signal is obtained
by the use of Hilbert transform. By taking the square magnitude of analytic signal, the squared
envelope is obtained and results possible to analyze it, either in order or frequency domain. The band
pass filter was usually selected by experience of analyst. However, some works describe a
benchmark method to select the range of filter. This is made based on the fact that resonance
frequencies are stimulated by impulsive forces resulting from contract with incipient fault, By the
fact statistical kurtosis is a clear descriptor for impulsive behaviour, this method relies in selecting
the range of frequencies for which kurtosis is maximized.

The second method uses the Cyclo-stationarity model. With this model, it is intended to extract the
periodic information of the variation of the vibratory response. Particularly, it has been shown REB
failure give rise to second order cyclostationary signals, which mean the autocorrelation function of
the vibrational response has a periodical behaviour with respect time delay. To describe the
behaviour of second order Cyclo-stationary the spectral correlation is an useful information. Spectral
correlation is a bi-variable function which would depend on the spectral frequency —f , and the cyclic
frequency —a. Broadly, for the REB diagnosis, the spectral frequency would contain the information
related with the dynamic characteristic of the ensemble, whereas the cyclic frequency would contains
the information related with the kinematics. By have estimating spectral correlation, the square
envelope spectrum could be obtained straightforward by averaging over the spectral frequency. Once
square envelope is plotted, the idea is to search peaks at fault characteristics orders. Spectral
correlation would be explained with more detail in section 2.3.

Recently other methods based on automatic learning algorithms has been [26]-[28]. Although there
are many advantages associated with their utilization, at industrial level, they are limited mainly by
the amount of failure data available, the labeling and the highlighted unbalance of failure data in
contrast to normal operation. These automatic learning diagnosis methods have enormous potential,
but results difficult to generalize at industrial environments.
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The strategies exposed on Figure 2-2 have been broadly studied and developed for the case at which
rotational speed keeps constant. For the case at which rotational speed does not keep constant, the
Squared Envelope Order Spectrum —SEQOS should be obtained instead of Squared Envelope
Spectrum —SES. To obtain the SEOS, some different process should be done for obtaining the
Squared Envelope Order Spectrum, such as order tracking, Cyclo non-stationarity analysis and
different approach for demodulation should be used, as it will be discussed on section 4.

2.2 Kurtosis, Spectral Kurtosis and Fast Kurtogram.

The kurtosis is a fourth moment descriptor for a random variable. It establish information related
with the shape of probability distribution function. It is generally expressed as the relation between
fourth moment and fourth power of standard deviation as it illustrated in Equation 2-1. Kurtosis is
commonly estimated by the sample kurtosis as defined in Equation 2-2, where X, S represent the
average and the sampled standard deviation, while x; and N represent the realizations and number
of realizations respectively.

04

Equation 2-1 Kurt[x] = SLEE0] 3
—\4

Equation 2-2 Rurt[X] = %Z’(’;‘—;X) -3

This definition is known as Pearson definition, also called excess kurtosis. The “3” scalar subtraction
is done with the aim a random variable X normally distributed have a null kurtosis. It should be
noticed than kurtosis takes measure of the weight of tails in the distribution of random variable X.
To further illustrates consider the realization of two simulated signals illustrated in Figure 2-3. Note
although both signals have the same range of numerical values, the backward signal, drawn with
gray tone, seems normally distributed as their tails are not far separated from the 1 standard
deviation region®, (drawn in shadow gray region in right plot of Figure 2-3). In fact, each realization
in signal 1 has been built as a stationary Gaussian noise, which explain the fact its sample kurtosis
iS near zero, as indicated by the labels of Figure 2-3.
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Figure 2-3. Sample kurtosis illustration
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On the other hand, signal 2 seems like if periodically, sudden transient events occurs and
consequently realizations reach a high numerical value. This behaviour is further illustrated in the
histogram of right side, since the major part of signal 2 realizations lies in a narrower region than
signal 1, although both have the same range. Signal 2 in fact simulates a REB faulty vibrational
response, as the transients previously discussed represents a periodical impact generated by faulty
surface contact. It should also noticed signal 2 reaches a higher kurtosis value than signal 1.

Discussion until now allow illustrating the concept of kurtosis and their appliance on temporal
realizations. It also illustrates the fact Gaussian distributed realizations are characterized by null
kurtosis. Also, for the REB fault signal, the kurtosis value could be considered as and indicative of
presence of anomalies which give raise to transients effects. Kurtosis in fact could be considered as
a valuable descriptor of transient anomalies, which for our interest is interesting to characterize in
frequency domain. To perform the characterization of transients in frequency domain, the spectral
kurtosis is defined as the relation between the fourth cumulant and the squared second moment of
signal at frequency f, i.e. equivalent to filter signal realizations at a particular frequency —f. Under
the assumption of ergodicity spectral kurtosis could be defined as indicates Equation 2-3, where
|H(t, f)|? is the power spectrum at time t, and the <-> indicates averaging along time. The
subtraction of “2” in contrast to “3” previously discussed is explained because H(t, ) represents a
complex envelope, as it was shown by [29].

, _(HENTH
Equation 2-3 SK[X](f) = HER P 2
Spectral kurtosis could be estimated from the Short Time Fourier Transform — STFT, by consider a
window slice tap along the time axis, taking the power spectrum at each tap and taking time averages
on windowing taps according to Equation 2-4. Where Nw represents the length of window and |Huw|
the windowed magnitude spectrum.

ion 2- SRIXI(F Ny = LHwEenN )
Equation 2-4 SKIXIU5 Nw) = (- Sy — 2
To illustrate the estimator of spectral kurtosis described by Equation 2-4, consider the STFT of
signal2 previously discussed, shown in Figure 2-4. In this figure a fraction of time has been plotted
to illustrate the windowing process (Figure 2-4 — A). By slice the windows, and taking the Fourier
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transform on each window the spectrogram is built as illustrates (Figure 2-4-B). Notice the
compromise between time and frequency resolution as well stablished by uncertainty principle. On
each row of the spectrogram averaging of the square magnitude and fourth power of magnitude are
computed as illustrates the gray tone curves of Figure 2-4 — C. By taking the division between both
curves, and subtracting 2 units, the spectral kurtosis is estimated, as illustrates the curve drawn in
black continuous line. This estimator in fact could be seen as a welch estimator, since it replaces the
ensemble averaging, by average over the time axis on STFT.

Figure 2-4 Illustration of Spectral Kurtosis Estimator
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In previous illustration, should be noticed an important detail which is related with the role of the
length of windows. The window length should be as short as possible to allow the correct
identification of two transient effects (refers to Figure 2-4A) but should also be large enough to
capture the entire transient effect. For the window illustrated in Figure 2-4A it could be noticed that
the window length selected allows to separately identify two transients but is no large to capture the
time duration of first transient. The so-called Kurtogram further explores the window length
dependence of spectral kurtosis estimator. In the Kurtogram, the spectral kurtosis is plotted against
the window length and spectral frequency, similar to the 3D projection plot illustrated in Figure 2-5.
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Figure 2-5. Window length dependence of spectral kurtosis.
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The interest of spectral kurtosis relies on the fact it could indicate at which range of frequency the
signal presents its maximum impulsiveness. The aforementioned results extremely useful for REB
diagnosis as it could separate the frequency at which transient occurs. This suggest spectral kurtosis
in fact could be taken as a filter which maximize the signal impulsivity, as it was demonstrated in

[30].

In fact, for practices, is desirable to generate a passband filter, which allows maximizing the kurtosis
of the resulting envelope. This filter should be centered in the frequency at which spectral kurtosis
is maximum. However, considering spectral kurtosis is window-length dependent, the bandwidth is
a parameter to concern. In this sense, to select the optimal filter, which maximizes the kurtosis of
envelope, a bi-map of spectral kurtosis against window length and center frequency is usually
plotted. The optimal filter to proceed the envelope spectrum analysis is selected as the combination
of frequency bandwidth —4f'~ Fs/Nw, and center frequency f.. This is illustrated in Figure 2-6.
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Figure 2-6. Kurtogram
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This indicates that a filter, which maximizes kurtosis of envelope, should be centered near 6000 Hz,
considering a window of near four (4) samples. Two appreciations should be considered, the first is
computation of Kurtogram results computational costly, since it is necessary to compute STFT by
each window length. Additionally, although it results clear the center frequency, the filter realization
results in a bandwidth near to 1.5x10% Hz, which is considerably wide, and do not result easy to
obtain such a narrow window without ripple effects.

In a manner to overcome those appreciations, the fast Kurtogram is defined by [31]. This Kurtogram
approximation is based on a binary tree search, partially inspired in Wavelet Packet transform. It
divides the bandwidths and center frequencies in a binary-three map such as the ones drawn in Figure
2-7, using a bank of filters separating detail and residuals for each level (i.e. to analyze higher
frequency resolution), instead of computing STFT for each window length.
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Figure 2-7. Kurtogram Binary Tree.
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The kurtosis of the envelope is represented by color map for each of pair of center frequency f; and
bandwidth Afrepresented by the binary-tree grid. The pass-band filter is selected by taking the couple
of center frequency and bandwidth, in which kurtosis rise is maximum value. As illustrated in Figure
2-2, once signal is filtered, the square envelope spectrum analysis proceeds. The fast Kurtogram for
the previous ‘Signal 2’ is drawn in Figure 2-8.

Figure 2-8. Fast Kurtogram.
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The Fast Kurtogram illustrated in Figure 2-8 highly coincides with the complete Kurtogram drawn
in Figure 2-6. Although there is more clear resolution in the complete Kurtogram, the simplicity of
the Fast Kurtogram and the savings in computational costs are extremely valuable for applications
in REB diagnosis.

2.3 Second-Order Cyclostationary Analysis for Rolling
Element Bearing.

As illustrated in Figure 2-2, the Square Envelope Spectrum, could be obtained by carrying a
cyclostationary analysis, as exposed in [32]. The cyclostationary analysis were applied to REB, near
two decades ago, where [33] shown that an anomaly in a REB give raise to a second order
cyclostationary signal. Accordingly, the vibration response of a REB fault is non-stationary but hides
a periodic behaviour in its variance. To characterize this, the Spectral Correlation representation has
been shown extremely useful. Usually a bi-spectrum map is analyzed, where the Spectral Correlation
(SC) is plotted against Spectral Frequency — f and Cyclic Frequency —a. The earlier represents the
dynamic characteristics of the REB i.e. their resonance frequencies, whereas the second one
represents the periodic behave of the fault [23].

To define the concept of second order cyclostationarity, it is important to define the autocorrelation
function, as it is defined in Equation 2-5, where E[ -/ denotes the expectancy operator and the *
indicates complex conjugate. In this equation results important to note the fact that autocorrelation
depends on two variables, the instantaneous time t, and time lag «.

Equation 2-5 R (t,7) = E[ x(6)x"(t — 7)]

A second order cyclostationary signal is defined as a signal in which their autocorrelation function
keeps periodical with respect instantaneous time, i.e. it should exist a fundamental period T', such as
R, (t+T,t) = R, (t 7). To characterize the spectrum of a second order cyclostationary signal,
Spectral Correlation is defined as the double Fourier transform of autocorrelation function as it is
expressed in Equation 2-6. Where a, and f, denote the Cyclic Frequency and Spectral Frequency.

Equation 2-6 SCZx(a' f) = %t—»a {?ﬁ'—)f {Rxx(t’ T) }}

Cyclic frequency —a, maps the instantaneous time, and usually contains information on modulation
frequencies. Spectral frequency maps the time delay to the spectral domain and represents the
spectral content of carrier frequencies. Particularly, for the case of REB fault signals, a is mainly
related to the periodicity of occurrence of impacts i.e. the cinematic characteristics of the REB
ensemble (as discussed in section 2.1). On the other hand, f details the dynamic characteristic of the
ensemble, which is contained in the carrier frequencies spectrum.

The name ‘Spectral Correlation’ is not fortuitous, in fact, from the previous definition expressed in
Equation 2-6, it has been shown that this expression could be transformed in a correlation between
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power spectral density of vibrational response, with their a — delayed version, as it is shown in
Equation 2-7.

Equation 2-7 SC,(f, ) =E[X( )X (f — a)]

In fact, when a signal is strictly second order cyclostationary, the spectral correlation would be zero
in whichever cyclic frequency, except in those in which the signal shows periodicity in its spectral

correlation. Accordingly, the spectral correlation bi-map would seem similar to the one illustrated in
Figure 2-9.

Figure 2-9. lllustration of Spectral Correlation for strictly Second-Order Cyclostationary.
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To illustrate the concept of spectral correlation, consider the simulated Outer Race Fault, named
‘Signal 1, which was previously analyzed in section 2.2. The power spectral density —PSD, is shown
in Figure 2-10. The power of the signal is mostly concentrated in the range of 3000 — 4000 Hz. In
fact, the zoomed region located at the upper right corner, plots the PSD in the range of 330-3800 Hz.

Figure 2-10. 'Signal 1' Power Spectral Density
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In Figure 2-10, the dotted cursor line, drawn in gray tone (Cursor 1) is located at 3437 Hz. The
cursors drawn in black dashed line (Cursor 2 and Cursor 3), are distanced by exactly 1XxBPOF and
2xBPOF from the Cursor 1. Now, let imagine he PSD curve is shifted by 1XxBPOF to the right, i.e.
consider the PSD displaced by BPOF. By doing this displacement, the peak marked with the Cursor
1 will lie in the position marked by Cursor 2. Similarly, the peak marked with Cursor 2 will coincide
with the position marked with Cursor 3. This situation is illustrated in Figure 2-11 A. where the
zoomed (3300 Hz to 3800 Hz) is drawn in gray tone, while the 1XBPFO shifted PSD is drawn in
black tone.

Figure 2-11. Power Spectral Density vs. a-shifted Power Spectral Density.

A. PSD (gray) vs BPFO-shifted PSD (black) C. PSD (gray) vs BPFI-shifted PSD (black)
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From the previous discussion, and the situation illustrated in Figure 2-11-A. and Figure 2-11-B., is
straightforward to notice that if the product of both curves is computed, it will rise a considerably
high value curve. To further discussion, consider the case where PSD is delayed by BPFI illustrated
in Figure 2-11-C. As could be noticed, the peaks previously marked by cursors, do not coincide and
subsequently, the product would of the PSD and BPFI-shifted PSD be a near to zero curve, as it is
shown in Figure 2-11-D.

As would be discussed in section 2.4, the fact that the curve in Figure 2-11-B is numerically greater
than Figure 2-11-D, indicates that high spectral correlation is raised when « is set equal to BPFO,
whereas is low when o is set to BPFI.

Spectral Correlation is the result to shift the Power Spectral Density among the a-axis, and so,
plotting the bi-spectral map f-a vs SC, in a similar manner as illustrated in Figure 2-9. For the
previous worked ‘signal 1°, the spectral correlation bi-map is shown in Figure 2-12. It is notorious
for the high value raised around a=1740 Hz, which is the value for BPFO in simulated signal.
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Figure 2-12. “Signal 1’ Simulated Outer Race Fault Spectral Correlation
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Usually, spectral correlation is plotted in a color-map, as the ones illustrated in Figure 2-13. As could
be noticed, the vertical line pattern highly marked inside the spectral frequency range of 3000 — 4000

Hz, is an indicative of high second order cyclostationary and consequently, indication of fault in
REB.

Figure 2-13 “Signal 1’ Simulated Outer Race Fault Spectral Correlation Color-map
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Some quotations should be done respecting the Spectral Correlation estimator. The illustration
worked on Figure 2-11 only intends to exemplify the principle of spectral correlation expressed in
Equation 2-7, but the estimator for the Spectral Correlation has been subject to diverse discussion as
has been synthetized by [34]. In Annex 9.1, the most common and useful estimators are listed.
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2.4 Analysis of Square Envelope Spectrum.

To explore the concept of envelope function, and discuss it as a demodulation tool, let consider the
analytic signal from x(t) as indicates Equation 2-8

Equation 2-8 xq(t) = x(t) + jxp(t)

Where x;,(t) is obtained from taking Hilbert transform on x(t). The analytic signal has the
interesting property of having zero spectrum at negative frequencies. By taking the magnitude of the
analytic signal, the envelope signal is obtained.

Equation 2-9 Env,(t) = [x2() + x (D)]?

To illustrate the role of the envelope, consider again the simulated REB Outer Race fault signal,
named ‘signal 1°. The waveform is illustrated in Figure 2-14 (as previously zoomed in Figure 2-3).
The black line represents the envelope of the signal, obtained as expressed in Equation 2-9.

Figure 2-14. simulated Outer Race Fault 'signal 1' Waveform
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As it could be seen, the envelope is manner to demodulate the spectrum of original signal x, since
the envelope draw the occurrence of impacts generated by contact with faulty surfaces. This in fact
is the reason why the Envelope Spectrum Analysis is the most widely tool used for REB diagnosis.
An important quotation should be mentioned, for smoothness in behaviour of spectrum, the Square
Envelope Spectrum — SES is preferred rather the Envelope Spectrum. ‘Signal 1’ Square Envelope

Spectrum is plotted in Figure 2-15.
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Figure 2-15. 'Signal 1' Squared Envelope Spectrum
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In fact, SES, could also be obtained from Spectral Correlation as it has been shown in. It is done by
taking the average of SC over the spectral frequency f axis, i.e. integrating over the vertical direction
in Figure 2-13. This idea is expressed in Equation 2-11, where Fs denotes the sampling frequency.
Figure 2-16 illustrates the SES obtained from averaging the spectral correlation.

Equation 2-10 SES,(a) = FlfOFSI SC(a,f) | df

Equation 2-11 SES.(@; fu f2) = = [1*| SC(a, ) | df

Figure 2-16. ‘Signal 1’ Spectral Correlation averaging over spectral frequency axis.

; R R 2xRPS: 60
0.004 BPFO-2xRPS: 87.0
---- BPFO: 147.0
0.003 BPFO+2xRPS: 207.0
@ 2xBPFO-2xRPS: 234.0
#0.002 ----  2xBPFO: 294.0
0.001 l
|
0.000 W‘HWM“ Moot Uittt chd ot ! WM I‘ta,
o 50 100 150 200 250 300

Cyclic Frequency a [Hz]

2.4.1. Demodulation Band

Notorious similitude is evidenced in Figure 2-15 and Figure 2-16. This in fact was previously
exposed in Figure 2-2, where both approaches ends up with the analysis of SES. In this particular
case, there is clear evidence of high peaks at the Fault Characteristic Frequency, i.e. BPFO,
indicating the presence of Outer Race in REB. However, the raw SES does not always reveal high
peaks at the fault characteristic frequency, even if the fault has occurred.

One way to improve the SES is to demodulate the signal. Whichever the two methods described in
Figure 2-2, contemplates this procedure. In the called benchmark method, demodulation is done by
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the use of Kurtogram, previously discussed in section 2.2. By the use of the Kurtogram is possible
to determine the most useful filter bandwidth in which kurtosis is maximized, i.e. the one which
maxims the signal impulsivity. To exemplify this, consider the simulated Outer Race Fault signal
named ‘Signal 2°, which was previously illustrated in gray tone in Figure 2-3. The raw envelope is
illustrated in Figure 2-17-A. Their corresponding raw SES is shown in Figure 2-17-B, the cursors
shown are set as in legend of Figure 2-15. By visualizing the SES, does not result possible to
diagnosis an Outer Race Fault, since there is no evidence of markable peaks in the at the BPFOO
(Black-dotted lines). The reason of this particular case is explained because originally ‘Signal 2’ is
highly corrupted by colored noise, further explained by its near zero kurtosis, as discussed in Figure
2-3.

By the use of fast Kurtogram (Not illustrated for ‘Signal 2’), is possible to determine the optimal
kurtosis bandwidth is estimated in the range of 5004 - 6000.0 Hz. By filtering the signal using a
linear FIR filter, the waveform shown in Figure 2-17-C is obtained. As it is illustrated, the kurtosis
of filtered signal is highly increased in comparison with the kurtosis of raw signal, reaching a
numerical value of 14.6. The demodulated waveform, shown a typical pattern of REB fault,
characterized by periodical impacts, where periodicity is governed by fault characteristic frequency
BPFO, as further shown in the SES of Figure 2-17-D. In this latter figure, noticeable peaks are
reached at BPFO and sideband modulations around the shaft speed rotation in revolution per second
(cursors set as in Figure 2-15).
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Figure 2-17. Simulated Outer Race Fault 'Signal 2' Kurtogram demodulation.
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Similarly, SES could also be obtained by averaging the Spectral Correlation over the spectral
frequency axis. However, a demodulated SES, could be obtained if the range of frequency being
averaged is selected, as expressed in Equation 2-11. By selecting a correct demodulation band,
clear symptoms of is second order cyclostationary at the specified Fault Characteristic Frequency,
i.e. REB fault symptoms, could be evidenced. To exemplify this idea, consider the Spectral
Correlation of simulated outer race fault ‘Signal 2°, shown in Figure 2-18 (Note the log-scale).
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Figure 2-18. Simulated Outer Race Fault 'Signal 2' Spectral Correlation

)]

(8]
=
=]

a

=y
=
=3
4

N
=
=]

o

S
|Sf)ectra| Correlation|

Spectral Frequency [kHz]
w

=

o

0 50 100 150 200 250 300
Cyclic Frequency a [Hz]

In the range of 500 - 1500 Hz (Grey dashed rectangle), a high spectral density is evidenced. However,
there in this region there is no vertical lines pattern, which indicates there is no evidence of second
order cyclostationary. This high spectral density is product of the colored noise corruption
intentionally added to ‘Signal 2°. However, in the range of 3000 — 4000 Hz (Black dashed rectangle),
notorious vertical patters are evidenced. This is even more clear by consider the SES shown in
Figure 2-19-A!, where the SC is averaged over the entire spectral frequency axis, i.e. 0 — 6000 Hz.
In the SES there is no evidence of peaks at BPFO. In contrast, consider the SES averaged over the
range 3000 — 4000 Hz shown in Figure 2-19-B. In this latter figure, clear evidence of Outer Race
REB fault is evidenced, in a similar manner than exposed in Figure 2-17-D.

Figure 2-19. Simulated Outer Race Fault 'Signal 2' Spectral Correlation Demodulation
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L Cursors are set as Figure 2-17
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2.5 Variable Speed Order Tracking

As discussed, the periodicity of occurrence of impacts generated by REB fault are linked to angular
shaft position, while the transient vibration at impact moments depends mainly to time domain. If
angular speed is constant, this duality is straightforward managed, because direct and proportional
relation between angular domain and time domain, as has been managed until now. However when
rotational speed do not keeps constant, approaches to solve this duality are necessary to achieve a
correct SES analysis, i.e. achieve a correct diagnosis.

Let classify the variable rotational speed in two categories. The first one, illustrated in Figure 2-20-
A, occurs when rotation speed keeps nominally constant, but suffer fluctuations, mainly due to
slippage, randomness, load changes, etc. As rotational fluctuations do not exceed 20% (1:5 relation)
[35], is possible to assume that vibrational response could be analyzed entirely in angular domain.
This implies that, by expressing the vibrational response in angular domain is possible to use the
techniques previously exemplified to manage REB diagnosis.

Consider the second variable rotational speed case, in which the speed changes their numerical
nominal value, as occurs in a run-up case, for example. In this case, illustrated in Figure 2-20-B,
the linkage between angle dependence and time dependence should be considered as would be
described in section 5.1.

Figure 2-20 Variable Speed Conceptualization.
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2.5.1. Order Tracking Approaches

In both variable rotational speed cases, illustrated in Figure 2-20, do result imperative get the
angular position, rotational speed and vibrational response as function of angular position. By
tacking the spectrum of vibrational response as function of orders, which is the equivalent to
frequency in angular domain (measured in event per revolution), the smearing of synchronous
components in vibrational response could be avoided. This process has been named Order Tracking
in literature. Usually, Order Tracking relies on the use of different approaches, which are briefly
illustrated in Figure 2-21.
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Figure 2-21 Illustration for Order Tracking Approaches
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The analog order tracking is the oldest approach. Consists in governing the sampling periods with a
key-phasor signal, which generates a synchronous pulse, each time the shaft position rotates a
constant angle. The sampling system then reads the numerical voltage of vibration sensor, generating
a signal sampled at equally spaced angular positions. This procedure however do not result totally
synchronous, since the lapses time between governing signal and sampling the sensor voltage could
lose information about random speed fluctuations. The use of analog devices would result in costly
devices and their use is fairly limited when there is no physical access to the rotor or the shaft to be
tracked.

Second approach, takes advantage of digital signal processing. The idea is to sample (at equi-spaced
times, as usual) the signal of vibration sensor and the signal generated by a tachometer or shaft
encoder. This latter allows knowing the angular shaft position sampled in time domain, and so, does
result possible to estimate the vibrational response at equally spaced angular periods. This approach
is usually referred as Digital Order Tracking, and since the evolution of digital systems, is the most
common used approach.

Digital Order Tracking techniques could be categorized in two approaches, Computed Order
Tracking, and Digital Resampling Method. Although apparently both techniques are apparently
equivalent, the procedure is slightly different.

e Computed Order Tracking - COT:

In Computed Order Tracking —COT, is done with the aid of a tacho or shaft encoder and the
usual accelerometer. Both signals, generated by accelerometer and tacho are sampled
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simultaneously at constant times, as usual in common ADC system. By the signal sampled
on the shaft encoder, is possible to determine the time in which shaft rotation advances by
the encoder ratio (A®). As it is illustrated in Figure 2-22.

Figure 2-22 Theoretical Tacho Encoder Signal for Increasing Rotational Speed
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Figure 2-22illustrates the usual tacho waveform when speed is variable. In this illustration,
the width of pulses is decreasing indicating the rotational speed increases. The “circular
marks” indicate the time arrivals at which shaft advances the angular position dictated by
the resolution of tacho (A®). Knowing three consecutive time arrivals, does result possible
to estimate a quadratic polynomial which interpolates angular position with time. This is
illustrated in Equation 2-12 and Equation 2-13.

Equation 2-12 6<t>(t) = bS™> + St + bS>t2

Where 6<%>(t) indicates the angular position as function of time, in the interval which lies in [
[0.5iA0 ; 1.5iA0]. The coefficients by, b;, b, are determined between three consecutive sections by
solving the equations shown in Equation 2-13.

<i>

(i—1A0] [l tieg tiq] b,
Equation 2-13 AYC) =1 ¢ t [bll
(l + 1)A@ 1 ti+1 ti2+1 b2

Determining angular position as function of time, it is also possible to establish the time as function
of angular positions. This could be estimated by the use of Equation 2-14.

Equation 2-14 3> = [i (\/blz — 4b,(6y — by)? — bl)]<l>
2

By taking a series of {8, } equally sampled, do result possible to interpolate the vibration amplitude
and so completing the COT process. This final step is easily done by the use of cubic splines. The
COT process is detailed discussed in [1], [36].

e Angular Digital Resampling:

This approach is quite similar to COT, however a difference should be remarked in the process. In
Digital Resampling the tacho signal is not used to estimate the angular positions, but is used to
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estimate the instantaneous angular speed —IAS curve. From the angular speed, the angular position
curve is determined (easily made by integration over time). With angular position as function of
time, is possible to determine the interpolation times, i.e. time instants at which angular increments
results constant. On the other hand, the vibration signal (sampled in time) is Up-sampled, to increase
time resolution. With the Up-sampled signal, the amplitude interpolation is achieved. To finish the
order tracking process, a down-sampling process is done in order to reduce unusable computational
cost. Up-sampling and Down-sampling process should be companied low pass-filter to avoid
aliasing. This process is further discussed in [37].

In the Digital Resampling Order Tracking, the Phase Demodulation Approach should be highlighted.
Phase demodulation has been reported as a valuable tool for Order Tracking, and is maybe the most
used technique to determine the instantaneous angular speed [5]. Phase demodulation relies on
extracting the phase of the first harmonic in the tachometer signal. Precisely, it extracts the phase of
first harmonic for analytic tacho signal. From the phase extracted, a curve for angular position vs
time is build and afterwards is used for determining the times to resample, such signal result sampled
at constant angular increments [35]. Phase demodulation process is briefly illustrated in Figure
2-23.

Figure 2-23 Phase demodulation illustration
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Phase demodulation process starts with the tacho signal sampled in time y(t). By the analysis of their
spectrum, the first harmonic is selected. Then a filter centered in the first harmonic is built (h(t)).
The bandwidth of the filter should not exceed the 20 % of nominal center frequency, since filter
could overlap with modulation side-bands or even higher harmonics. After the tacho signal is filtered
(wn(1), their analytic version is taken (wn.a(t)), i.e. one side spectrum is built. This step could be done
by taking Hilbert transform on filtered signal as defined in Equation 2-15.

Equation 2-15 Yha =Yu +iH[Pn]

where the sub-index h and a, denote the filtered version and the analytic version, j denotes the
imaginary part and H [-] denote the Hilbert Transform.

From the analytic filtered, does result possible to extract the phase, which could be seen as the
angular shaft position. At the same time, from the phase derivative, the instantaneous angular speed
could be estimated, as exposed in Equation 2-16 and Equation 2-17.

Equation 2-16 0 = arctan <_§[[1f’ph'a]]>
h,a
Equation 2-17 0(t) = i%

Does result important to annotate that correction from the quadrant on the use of arctan(-) function
should be taken. Also the unwrapped phase should be use when estimating instantaneous angular
speed, i.e. when the phase derivative is taken.

e Tacholess Digital Order Tracking

In some situations, the use of tachometer or shaft encoder would require a physical access to desired
shaft, increase the cost of acquisition system, or simply would be incompatible with operational
conditions such as dust, humidity or high temperatures. Even so, in many practical situations, Order
Tracking is a fundamental part of vibration monitoring. Recently high interest has been focus on
achieve order tracking by using the vibrational response itself instead of using an external reference
tacho. Tacholess order tracking could be applied where synchronous components are clearly
separated from the main signal, i.e. synchronous orders and their harmonics are strong enough in the
signal.

Tacholess order tracking could rely on diverse principles, such as, Time-Frequency representation,
Adaptive filters harmonics Tracking, Multi-harmonics Time-Frequency representation, Probabilistic
methods, Phase demodulation, Data-driven methods, among others [5], [38], [39]. Particularly,
results interesting to discuss in brief detail the Multi Order Probabilistic Analysis -MOPA and the
Phase demodulation approach.

e Multi Order Probabilistic Analysis.

This approach results advantageous when a complex system with multiple harmonics is intend to be
analyzed. Whereas many of Tacholess order tracking approach require that the user select the correct
harmonic to be tracked, MOPA approach try to use the big part of synchronic harmonics available
information, avoiding the user necessity to select the suitable harmonic. This approach build a
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probability distribution function from the time frequency representation, as for example the classical
Short Time Fourier Transform —STFT.

In this section the concept behind MOPA approach would be illustrated, however the detail would
not be covered but could be found in the original paper [40]. Let consider the spectrogram shown in
Figure 2-24. This signal was built by adding a colored noise with spectral content in the bandwidth
[0.05; 0.25] Hz with a series of Synchronus harmonics with variable speed.

Figure 2-24. Simulated Spectrogram for illustration of MOPA
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Consider now the frequency magnitude spectrum at some time step ti. If the signal to noise ratio of
each Synchronus component is considerable high, a clear peak at the corresponding harmonic would
be noticeable, as illustrated in Figure 2-25.

Figure 2-25 Instantaneous Spectrum at time step t;
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Consider a set of order harmonics {#;} as for example illustrated in Figure 2-25, {0.5,1, 2, 3}.
If the magnitude spectrum is shrinked by each H;, a coincidence of peaks at 1X is expected.
This is illustrated in Figure 2-26. Given the coincidence of peaks at the corresponding
synchronous frequency (1x), if the multiplication of those shrinked spectrum is computed, a
high peak is expected as illustrates the bottom part of Figure 2-26.
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Figure 2-26 Shrinked Instantaneous Spectrum under the harmonics set H.
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Now, if the process illustrated above is made upon all the time steps, a time-frequency distribution
is obtained, where the synchronous 1x curve should be highlighted. This time frequency
representation could be seen as the evolution of probability distribution function —pdf, for angular
speed at each time step, and finally, instantaneous angular speed could be computed by tacking the
expectancy in such probability distribution function. Time-frequency probability density is
illustrated in Figure 2-27.
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Figure 2-27. Probability distribution map for instantaneous angular speed
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A note of caution should be made at this point. To build the mentioned probability distribution
function, a series of steps and mathematical rigor is needed. For example, normalization should be
made prior to shrunk spectrums multiplication in order to guarantee the resulting representation will
represent a probability. Additionally, a pre-whitening step is recommended in order to avoid
distortions in the resulting pdf. Another important point is to pre-select the maximum frequency to
be analyzed avoiding interferences with different spectral contents. All those details should be
carefully taken into account and are clearly defined and explained in the original paper. The reader
should be free to consult the original paper [40].

2.6 Variable Speed Bearing Diagnosis State of Art

Through sections 2.1 to 2.4 a series of algorithms and techniques related to REB diagnosis are
described. However, the REB diagnosis under variable speed suffer from different aspects worth to
mention.

As previously discussed, a simplistic model for REB- fault could be modeled as illustrated on
Equation 2-18. The vibrational response for a REB result from the response of a LTI system, until
the excitations generated periodically on angular domain.

Equation 2-18 x = h(t) x f(6)

In this sense, to achieve an adequate diagnosis, three aspects could result important. The first one,
as described in section 2.5, is the capability of identify a precise order tracking. The Order Tracking,
and the estimation of accurate instantaneous angular speed becomes an edge for REB diagnosis
under non-stationary conditions. As previously discussed, Tacholess order tracking are become the
most investigated approach. In such way, techniques such as MOPA and Phase Demodulation
becomes extremely useful for. However, as limitation of such techniques are related to large speed
fluctuations and crossing orders in time frequency representation.
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The discrete-random separation process is also an important part of the REB diagnosis. REB fault
generates vibrational responses characterized by the random occurrence of strikes. Thus, the
deterministic components speed should compromise the SES and the ability of achieve REB
diagnosis. Deterministic components are usually associated with gearboxes, misalignments,
unbalance, etc., synchronized with shaft speed orders and their respective harmonics, the table below
list some of the resent algorithms developed to achieve DRS.

Table 2-3. State of art strategies for discrete random separation

different from
zero and utilize it
as a whitening
factor.

band selection.

There is not
hyper-parameters
involved

Author Method Description Advantage Disadvantage
Abboud 2016 GSA - It takes Captures large Unstable at
[41] Generalized Synchronus fraction of energy | lower
Synchronus Average at on discrete rotational
Average defined rotational | components Speed.
speed regimes energy.
Inability to
Synchronus separate
components are discrete
almost removed components
from blind. present on
time
representation
(such as PWM
switching
frequency)
Borghesani 2013 | CEPSTRUM Removes Facilitates the Limited to
[42] Prewhitening. guefrencies demodulation fluctuating

speed cases.

Bonnardot 2004 | E-SANC Estimate the Easy Filter function
[3] deterministic part | implementation is mainly
of a signal by defined in
using a Self time domain
Adaptive filter but does not
after doing track
angular variations in
resampling. angular

domain.
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As the last point, a correct way to obtain the SES should be consider. The focus should be pointed
on the way that allows demodulating the signal in spectral frequency domain, in such a way the
periodicity of fault contact strikes could be observed on order domain. The table below summarize
the strategies most useful (According to author point of view).

Table 2-4. State of art for obtaining Squared Envelope Spectrum SES.

method extended

dictated by
Kurtogram on
time domain.
Followed by
Hilbert transform
SES

Author Method Description Advantage Disadvantage
Abboud 2015 OFSC-ACP It is defined as the | Captures the Computational
[43] double Fourier information cost.
transform on related to time
auto-correlation domain and Dependent on
function. Is an angular domain in | selection of
extension of a correct manner. | hyper
Spectral parameters
Correlation but
taking one of the
Fourier
transforms on
angular domain.

D’Elia [44] OFSC - CMS It is defined as the | Straightforward Limitation in
double Fourier to select the amount of
transform on frequency order to be
auto-correlation demodulation analyzed
function. Is an bands
extension of
Spectral
Correlation but Low
taking one of the | computational
Fourier Cost
transforms on
angular domain.

Smith 2015 [45] | Benchmark- Filter the signal as Kurtogram

could raise to
miss-
interpretation
of
demodulation
bands

Berntsen 2022
[46]

Demodulation
based on OMA
Analysis
(Operational
Mode Analysis)

Filter signal
according to the
pre-captured
resonance
frequencies

Implies prior
characterization
of all bearings
to be
diagnosed.
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frequency bands,
in a 1/3-binary

tree for convenient IES IES but the
maximizing a for a desirable magnitude at
metric fault desired Fault

Mauricio 2022 Generalization
[47] of indicators of
cyclo-
nonstationarity
Mauricio 2020 IESFOgram Represent the IES | Improves The metric
[48] demodulation as function of demodulations. proposed does

Allows getting

characteristic

not evaluate the
behaviour of

characteristic

order order.

In the literature described in this section, it is not exposed a structured method that explicitly
integrates the algorithms available for REB diagnosis in the case of variable speed conditions. It was
also difficult to find a clear guide for the tuning of the parameters implied at each one of those
algorithms. In this sense, the idea exposed in section 4 tries to structure some of the algorithms
available and bring an explanation for the parameter selections. A method for demodulation is also
exposed in section 4. From the author's perspective, the demodulation strategies could be susceptible
to improvements.

Finally, according to the literature search, it is not usual to find classification algorithms based
directly on the Improved Envelope Spectrum —IES (Or the similar version Improved Envelope Order
Spectrum). The use of IES as the input for a classification algorithm rises as an interesting strategy,
of the great understanding it brings about the vibrational response and could be interesting for the
generalization of classification algorithms.



3. Experimental Setup

Experimentation was conducted on Test-Rig SpectraQuest Bearing Balance Fault Simulator BBFS,
system shown in Figure 3-1. BBFS system consists of a 0.5 HP three phase induction motor with
VFD-Lenze ESV251. The motor is coupled to a 5/8” diameter steel shaft, supported on two REB,
with a span of 400 mm. In the middle of the span, a rotor of 5 kg weight is fit. Bearings with pre-
fabricated faults are originally installed. The faults were generated by the use of electro-erosion
methods. Commercial reference for bearing are Rexnord ER-16K.

Figure 3-1. Test Rig

Vibrations on horizontal and vertical direction were sampled in both REB pedestals. Signal were
record using a N19234 DAQ with a sampling frequency of 52 kHz. REB fault characteristic order
are as indicated by Table 3-1.

Table 3-1 Fault Characteristic Orders

REB COMMERCIAL REFERENCE: Rexnord ER-16K
ABREVIATION FAULT CHARACTERISTIC ORDER

Inner Race BPOI 5.430
Outer Race BPOO 3.572
Rolling Element BSO 2.322

Cage FTO 0.402
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3.1 Rolling Element Bearing Characterization

In order to achieve a first characterization of the vibrational response, the vibration signal
measured in the motor-side pedestal for a Healthy bearing and a Bearing with Outer-Race
induced fault are compared. The rotational speed keeps nominally constant at 45 Hz and both
measured are taken with the same charge. The magnitude spectrum of both cases is illustrated
in Figure 3-2.

Figure 3-2. Magnitude Spectrum Raw Vibration Response.
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It results notorious the rise in spectral energy contained in the range of 4500 — 10500 Hz, as it has
been highlighted on Figure 3-2. This effect can be seen with more detail in Figure 3-3 where the
magnitude spectrum is zoomed in regions between 1450-1850 Hz, 4500 — 6000 Hz and 8250 — 10500
Hz. In the 4500 — 6000 Hz and 8250 — 10500 Hz regions, the spectrum reach peaks at frequencies
equally spaced by entire multiples of the rotational speed — RPS. This behaviour is marked by the
Orange-continuous cursors.
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Figure 3-3 Modulations in resonance regions for Outer Race Fault REB 1450-1850 Hz.
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It results of particular interest the peak raised at 1634.4 Hz illustrated in Figure 3-3-A, since similar
test rig has been reported with REB resonance at 2000 Hz [49]. However, there is no clear evidence
of harmonics multiples of this discrete frequency. According to this reasoning, the understudy REB
appears to have resonance frequencies in some of the ranges marked previously discussed.

This is clarified if the waveform of the vibrational response is analyzed as it illustrated in Figure 3-4.
The waveform is composed by a series of vibrations generated by the contact of the outer race fault
surface and the rolling element, generating an impact on the REB body. Those impacts occurs
periodically according to the fault characteristic order (or similarly called Fault Characteristic
Frequency). Clearly, it indicates that the strong modulations occurring in the high frequency ranges,
previously analyzed in Figure 3-3, are explained by the contact of surface faults.
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Figure 3-4.0uter-Race Fault waveform.
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Although results evident the presence of high impulsivity modulated at the Fault Characteristic Order
BPOOQ, the focus in this section is to characterize the spectral behavior of the REB. For this reason,
it results important to determine in which of the frequency range belong the most impulsive
frequency i.e. tend to determine which is the most probable resonance frequency band excited by the
shocks generated by fault surfaces contact. To explore this, consider Figure 3-5, which illustrates the
fast Kurtogram. This is a representation of the spectral kurtosis by using a binary-three
representation. This representation allows for identifying the band in which the most impulsive noise
is generated.

Figure 3-5. Outer Race Faulty Bearing — Kurtogram.
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According to fast Kurtogram representation, the most impulsive bandwidth belongs to 9.600 — 12800

Hz. This is in accordance with the magnitude spectrum previously discussed. To discuss in more
detail this, consider Figure 3-6, which plots the raw signal waveform and the waveform of the signal
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filtered at the maximum kurtosis bandwidth. As can be seen, the filtered signal shows a more
impulsive behavior, dictated mainly by the occurrence of fault surfaces contact. This in fact is
emphasized by the kurtosis descriptor of this second case.

Figure 3-6. Raw signal vs Kurtogram filtered signal waveforms.
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The spectral content of the signal is also shown in the bi-spectral map shown in Figure 3-7. It displays
the spectral correlation of the faulty outer race REB as a function of the spectral frequency —f
(Vertical axis expressed in Hz) and the cyclic frequency —a (Horizontal axis expressed in orders).
The span cursors in the right part of the figure illustrate the spectral frequency bands analyzed
previously in Figure 3-3. In those ranges, a notorious increase in the spectral correlation is raised. In
the figures, a vertical line pattern is also notorious, especially in the cyclic frequencies a equivalent
to BPOO (nearest to 3x rotational speed harmonic). The beforehand described behavior indicates the
signal presents high cyclostationarity in the band selected, reinforcing the hypothesis of finding

spectral resonance in those ranges.

spectral Correlation [U%/Hz]

Figure 3-7. Spectral Correlation for Outer Race Fault Bearing
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3.2 Test Rig Critical Speed

In this section, a pre-characterization of the test-rig is achieved. This is done by a simplified model
and is also verified by a transient speed run-up vibration analysis. Both results are presented
separately.

3.2.1. Critical Speed Model Estimation

Considering the overall equivalent lumped mass on a simply rotor, located at the center of the shaft.
The critical speed is dictated by Equation 3-1.

Equation 3-1 W, = fW 95
TLOcc

Where &, represents the influence coefficient of a load located at the center of the rotor, in the
deflection measured at the center of the rotor. For a simple supported rotor, it is determined according
to Equation 3-2.

L4
5 L’

6EIL  48EI

Equation 3-2 Occ =

The Wy, stand for the total equivalent lumped weight, which results as an equivalent load located at
the center of the rotor. For this particular case, the rotor weight is located at the center of the shaft,
with a numerical value of 5kg. The terms of Equation 3-2, are summarized in Table 3-2. A critical
speed is estimated with a value of 1089.2 Hz.

Table 3-2 Numerical Estimation of Test Rig Critical Speed.

Shaft Diameter D m 0.0254
Shaft radius R m 0.0127
Aluminium Rotor Weight Mr kg 5.0
Young Modulus E Pa 2.00x10%
Area - Inertia Moment Ixx =1lyy| m4 2.04x10®
Span - Shaft supports distance L m 0.3966
Gravity acceleration g m.s-2 9.785
Total Lumped Weight WTL N 48.9
Influence coefficient cc occ m/N 3.18x107
Angular critical speed wc rad.s-1| 7.93x10?
Rotational critical frequency fc Hz 126.2
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3.3 Other notorious spectral components

As notated earlier, the AC motor is driving by a VFD. In those cases, they commonly produce
electromechanical interactions, which could even generates torsional vibrations. VFD system try to
control the phase frequency by switching the voltage and controlling the time-lapse of those switches
inside an alternator. The switching frequency can vary in the range of 2 kHz to 16 kHz depending of
the continuity required in the electrical connection. As more high, the switching frequency more
smoothness is perceived in the AC wave. This type of devices usually generates high impulsive noise
in a similar way than REB faults produce. In this sense, a prior identification of electromagnetic
interactions should be carried in the Test characterization. For this particular case, happens that
during the discrete random separation process, a notable peak is identified at the frequency of 12
kHz, as it is shown in Figure 3-8.

Figure 3-8. Discrete Random Separation filter magnitude spectrum.
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In Figure 3-8, the DRS process has been done for the case of a healthy bearing and a faulty bearing.
It is noticeable the 12000 Hz peak, which indicates the presence of a discrete component just in the
switching frequency of the VFM.

For the exposed in previous sections, some aspects should be highlighted. At first, the critical speed
is far from the speed ranges at which the experiments were done, as it will be exposed in section 6,
since the maximum rotational frequency is around 40 Hz while the critical speed is estimated at 126
Hz. There are three plausible ranges from resonance frequencies, i.e. (1.4-1.9 kHz, 4.5-6 kHz, and
8-11 kHz), which have been identified from the SC bi-spectral map and the Kurtogram. In addition,
there is evidence of discrete components dictated by interference with the VFM shifting frequency,
i.e. 12 kHz.



4.

In this chapter, a model for the REB diagnosis under variable speed is presented. Many of the
algorithms described in section 2 are integrated in the model presented. A particular case is exposed,
corresponding to a signal sampled on the test rig described in section 3, at which the bearing far from

Model for Rolling Element Bearing Diagnosis
under variable Speed

motor (B2) is subject to Inner Race Fault, while rotational speed varies in the range 15 — 30 Hz.

The procedure is briefly summarized in Figure 4-1, and is further illustrated on Figure 4-2. The
procedure is structured in four main steps, the capture of raw signal, computer order tracking,

discrete random separation and the order-frequency analysis.

Figure 4-1. Procedure for REB Diagnosis under variable speed.
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1 This would be referred as IEOS (Improved Envelope Order Spectrum) for the case at which a demodulation band has been previously selected. If the
demodulation band is selected as the entire frequency band [0; Fs/2] it would be referred as EEOS (Enhanced Envelope Spectrum).

2 At literature is sometimes common to omit the “Order label”, so, IES is used interchangeably with IEOS and similar occurs for EES and EEOS.
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Figure 4-2. Procedure for REB Diagnosis illustration.
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The method starts with the raw signal sampled in time domain, at a constant time step At = 1/Fs,
where Fs corresponds to the sampling frequency of the ADC system. To perform order tracking
using a Tacholess strategy, the Short Time Fourier Transform —STFT is used to obtain a time-
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frequency representation. Since the test rig do not owns element such as gears or blades, the
synchronous orders are located in the bottom part of spectrum. This explains why other time-
frequency representations such as wavelet transform was not considered for this case, once it would
imply lower time resolution.

An adequate trade-off between time resolution and frequency resolution should be established As a
good recommendation, it is not desirable to allow frequency resolution to exceed 10% of the nominal
speed (since speed variations between 10% to 25% could be predicted by time synchronous average
[35]). While the minimum speed during experimental practice is around 15 Hz, the frequency
resolution should not exceed 1.5 Hz.

From Time-Frequency representation and the use of Multi-Order-Probabilistic analysis, the
instantaneous Rotational speed is estimated. Once the instantaneous rotational speed is determined,
the MOPA strategy was used by the fact that no gears or blade elements are in the test rig, which
becomes difficult to track a particular order different from the synchronous ones. Also, the maximum
tracking of STFT usually generates distortions on the IRS[t;]. By the experimental result, MOPA
gives a good approximation during the experimental setup.

The reconstruction of instantaneous rotation speed IRS[ti] could be achieved by taking the expected
value of MOPA at each time step ¢;, as it is exposed on Equation 4-1.

Equation 4-1 IRS[t;] = E[ MOPA[w; t;] ]

By taking the value of IRS[ti], a band-pass filter centered at IRS[ti] is built. The previous time-
frequency representation X[fy, t;] could be filtered and consequently, a virtual tachometer tacho[n]
is obtained by synthesis. Popular synthesis method Overlap-add — OLA is adequate. OLA method
results appropriately since it's relative simply implementation. It is also important to argue that the
real attention for virtual tacho is focused on their phase, as is exposed in Figure 4-1and Figure 4-2.
Note that by using this procedure, virtual tacho is sampled on time domain, and consequently,
instantaneous phase ¢[n] and instantaneous rotational speed irs[n] are obtained on time domain.

For discrete random separation, the GSA method proposed on [41] is proposed. Mainly, the use of
GSA is preferred over the other methods exposed on Table 2-3 by the fact it could detect other
synchronous components different from the synchronous ones. GSA was used with a speed
resolution of 0.5 Hz, regimen increments of 0.5 Hz, and a kernel lambda 4 of 1.2x the speed
resolution.

However, some limitations have been recognized for the use of GSA. For example, at signals with
low rotational frequency, i.e. near 12-14 Hz, control over the frequency detail should be paid because
the method tends to be unstable. For those situations, longer processing times were expected. Even
an increase in frequency detail should be necessary. Additional steps are necessary from the use of
GSA since order tracking interpolation is necessary to change to angular domain sampling (i.e
x[m] = x(mA8), where ‘m’ indicates the index for angular domain sampling). This point is a future
work proposal, based on how to properly set a method, which allows discrete random separation at
variable speed conserving sampling on time domain.
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Finally, the order-frequency analysis is made based on Cyclo-Nonstationary Representation. The
OFSC bi-spectral map is obtained by the use of Average Cyclic Periodogram (Annex 4). This
representation is interesting since it allows to identify periodical information related with cyclic order
a and spectral frequency f. The OFSC map was generated using the parameters described on Table
4-1.

Hann window is used since the spectral content of the signal is for many cases unknown and it results
satisfactory for the major part of cases. In addition, Hann window owns good trade-off between
frequency and amplitude accuracy.

Table 4-1. Parameters for OFSC-ACP

SIGNAL

Sampling time Duration of signal in seconds 5s
Sampling Frequency | Fs 51200 Hz

DIGITAL SIGNAL PROCESSING
Window length N, Number of samples on window 21
Window Type of window used Hann
FFT length Nppr Number of samples to use in FFT 21
Cw Noise Bandwidth Correction Coefficient 15
Af Spectral frequency resolution: Fs/2Nw 12.5Hz
cwAf Effective Spectral Frequency 18.75 Hz
Overlap Percentage | Overlapping between consecutive windows 75 %
o' range Range of study for cyclic orders 0 — 12 [revolution]
o' resolution Space between consecutive a values 0.005

The next part of the section, the method is applied to a particular signal, which is the vibrational
response for an outer race fault case. All steps related in Figure 4-1 and Figure 4-2 are further
illustrated.

The Figure 4-3A illustrates the waveform of vibrational response sampled on test rig, while running
at a variable speed between 15 and 30 Hz. The corresponding spectrogram is illustrated on Figure
4-3B.

Figure 4-3 Waveform of variable speed vibration response.
A) Time domain signal. B) Short Time Fourier Representation.
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From the Multi-Order Probabilistic Analysis, a Probability Distribution Function — pdf for the
instantaneous rotational speed —IRS is obtained. The IRS is obtained for time steps t;, with a
resolution At; dictated by the time frequency representation previously discussed. In this sense, at
each time step a pdf for the IRS is represented (named IRS[f, ti] on Figure 4-2). By using of expected
operator the Instantaneous Rotation Speed could be estimated at time steps ti. This is illustrated in
Figure 4-4. The MOPA results shown utilizes the first 3 harmonics, with a time step of 0.06 s. The
hyper-parameters utilized are shown in Figure 4-4.

Figure 4-4. Instantaneous Rotational Speed from MOPA approach.
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Table 4-2. Hyper-Parameter used for MOPA.

Hyperparameter Nomenclature

Sampling Frequency Fs 51200 Hz
STFT window samples Nw 215

STFT Overlap Percentage [-] 90 %
STFT type window [-] Hanning
STFT num. of FFT samples | N 21
Harmonics {H} {1,2,3}
Dim. Kernel [] 28

Number of Kernels K 5

Gamma [-] 17438 Hz/s
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At each time step, a zero-phase filter is built. The filter is built with center frequency at the estimated
IRS, with a bandwidth of 10 % around IRS, i.e. [0.9-IRS;; 1.1-1RS;]. This filter is applied to
original Time Frequency representation followed by normalization step. This normalization is done
with the intention to avoid any kind of amplitude modulation in the virtual tacho signal but keeping
the phase modulations as desired in virtual tacho signal. The synthetized virtual tacho and the
subtracted phase and IRS are plotted in Figure 4-5.

Figure 4-5. Phase demodulation order tracking.
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The angle resampled signal and their order spectrum are shown in Figure 4-6. Clear peaks at shaft
rotation harmonics are revealed, which in fact indicates the resampling process has been achieved
correctly. A second phase demodulation is recommended in cases where clear peak at shaft rotation
harmonics are spread and do not result clear. This phase demodulation step could be made in angular
domain by a similar way than exposed in section 2.5.

Figure 4-6. Angle domain waveform.
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By the use of the Generalized Synchronus Average, a prior Discrete Random Separation could be
achieved. The use of GSA is illustrated in Figure 4-7. Does result evident the energy loosed at the
discrete synchronous orders 1x, 2x and 3x once the GSA is done.

Figure 4-7. GSA illustration
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By using the random component obtained after GSA process, the Order-Frequency Spectral
Coherence could be obtained as exposed in Figure 4-8. The parameters used were previously exposed
on Table 4-1. Clear vertical patterns are observed at fault characteristic order of BPOO, 2xBPOO
and 3xBPOO. Those vertical lines are visible on all the spectral frequency range between 0 to Fs/2
which makes it straightforward to establish a diagnosis (Outer Race Fault Diagnosis).

Figure 4-8. Order-Frequency Spectral Coherence - OFSCoh
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For the most part of cases, it results more convenient to analyze the Squared Envelope Order
Spectrum (as discussed on section 2.4). At this point, there are many ways to buid SEOS versions.
For example, from OFSCoh map the Enhanced Envelope Order Spectrum could be obtained by
averaging the OSFCoh map over the vertical axis. Former, mean integrating over the vertical axis
and plotting the result as a function of a. This is plotted on Figure 4-9. Dashed blue line stands for
the statistical threshold, with a 95% Confidence Interval, for which the signal could be considered
to own second-order cyclo-stationarity. To make the previous statement clear, consider the 1XXxBPOO
cyclic order (a =BPOO). Since the EEOS overcome the statistical threshold represented by dashed
blue line, it could be considered that signal owns a second order cyclostationary component at
BPOO. Similar cases for orders such as 2x, 2xBPOO, and 3xBPOO. With previous results, it is clear
the diagnosis of outer race fault.

Figure 4-9. Enhanced Envelope Order Spectrum

Enhanced Envelope Order Spectrum EEOS
0 2 4 6 8 10 12

EEOS [U2/HZz]

(=]
a8

(=]
=

(=]
o

1xFTO
2XFTO |
1x 4

2%
BPOO -
2%xBSO |

BPOI
xBPOO -

4xBSO
3xBPOO -

o~
Cyclic Frequency a [event/rev]

For the particular case studied on previous paragraph (case exposed on Figure 4-9) results in a clear
diagnosis using EEOS, i.e. averaging over the spectral frequency range. However, this is not the
general case. In many situations is not as straightforwardly as the case previously illustrated.
Demodulation is usually necessary for obtaining convenient Order Spectrum, i.e, an order-spectrum
useful for diagnosis. By the use of OFSCoh map, demodulation could be achieved by averaging
(integrating) over a convenient spectral frequency band. When a particular spectral frequency band
is selected, the result is usually called as IEQOS, which stands for Improved Envelope Order
Spectrum. For example, if a spectral frequency band comprehended

For this particular case, application of model previously summarized on Figure 4-lallows to
determine the Instantaneous rotational speed, separate the Random and Deterministic parts and so,
obtain cyclic frequency representation by the use of Enhanced Envelope Spectrum. At EES clears
peaks at Fault Characteristic Frequency could be obtained and so generate a Diagnosis. This
procedure would be followed by the rest experimental setups.

In this section, the method NewlESfogram [50] is exposed. The NewlESfrogram is a strategy for
demodulation, i.e. selecting a convenient spectral frequency range to analyze the resulting IES. The
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main idea with his method is to define a new metric, which can measure the convenience of selecting
a spectral range to generate an IES and subsequently made a diagnosis based on such IES. The metric
is exposed as a function of spectral frequency band.

The results exposed in [50] show that for the case of a constant speed, the diagnosis process could
be improved with respect to similar strategy previously exposed on [48]. In section 6, the extension
of that method for the case of variable speed would be exposed.

4.1 NewlESfogram

As it was mentioned, usually is common to try to represent the cyclic frequencies on a one-
dimensional spectrogram. In fact, the IES has been proved to represent a valuable tool for REB fault
diagnosis. The use of Improved Envelope (Order) Spectrum in place of Enhanced Envelope (Order)
Spectrum , stands by the fact that commonly the fault characteristic frequencies do not modulate all
the spectral content, but modulates selected frequency ranges. The latter indicates that an adequate
selection of f, and Af for the IES determination could improve notoriously the one-dimensional
spectrum representation, and so on the diagnosis process.

Recently, [51] has proposed a method for the semi-automatic selection of the optimal frequency band
for the IES computation. The resulting IES is namely IESFO standing for Improved Envelope
Spectrum Frequency Optimization. This method was applied to REB diagnosis under high impulsive
noise coming for Pulse-Width Modulation (PWM). In this approach, a metric is represented as a
function of the spectral frequency band. The metric selected in this proposed method correspond to
the sum of the IES evaluated over a set of cyclic frequencies previously selected, as it is shown in
Equation 4-2.

Equation 4-2 Ind = Y, [ES(ay; fo, Af)

where a;, could represents the k™ candidate of cyclic frequency in which a track of fault should

appear. It is important to mention that probably the set of cyclic frequencies correspond to the
harmonics of the fault characteristic frequency prior selected.

In this sense, optimal frequency band is done by representing the Ind-metric in a 1/3-binary tree, in
a similar manner as Kurtogram is presented. The optimal spectral frequency band is then selected by
maximum value observing in which center frequency and frequency bandwidth the Ind-metric
reaches the. This approach has been named IESFOgram.

To further exploration of IES computation from the use of IESFOgram and the Ind computation let’s
analyze the Figure 4-9. A set of three cyclic frequencies are prior selected {a, a,, a3}. Additionally
let’s suppose that a spectral frequency band (f; and f2) is also prior selected by the use of IESFOgram.
From the Spectral Coherence (refer to Figure 2-18) the Improved Envelope Spectrum is computed
by the integration between f; and f, over the f-axis as it is illustrated on Equation 4-3.
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Equation 4-3 IES(a; £, , Af) = A—lf [}? scon(a, f) df

The IES is then evaluated at the set of cyclic frequencies, and the magnitudes obtained are added to
compute the Ind metric as it is shown in Equation 4-2 process is schematized in the Figure 4-10.b.

Figure 4-10. lllustration of IES and Ind-metric computation. A) Spectral Coherence
Representation. B) IES representation.
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For REB diagnosis, it is desirable to obtain a spectrogram where the magnitude of the IES looks as
close as possible to delta functions in the FCF. It means the desired shape of the IES is reaches high
magnitude value in those FCF frequencies whereas the neighbor magnitudes keep close to zero.
From the last idea, it results important to explore the nature of the metric used in the IESFOgram.
Although the metric intends to maximize the amplitude on the selected FCF, it do not evaluate the
IES on the neighbor cyclic frequencies. This is illustrated in Figure 4-11, where two IES generates
the same Ind despite of their noticeable differences on their behaviour. In Figure 4-11.a. the IES do
not keep zero at the neighbors of the selected fault characteristics frequencies, whereas the IES
shown in Figure 4-11.b does.



Chapter 4 — Model for Rolling Element Bearing Diagnosis Under Variable Speed 73

Figure 4-11. Ind-metric computation comparison. A) ind illustration for low SNR Improved
Envelope Specturm. B) ind illustration for high SNR Improved Envelope Specturm
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In order to generate another metric, which evaluates a high peak in the selected FCF, but at the same
time valuates the neighbor behave, the Sample Correlation Coefficient between the IES and a
hypothetic IES equivalent to the sum of delta functions on the FCF is proposed. This idea is
illustrated in Figure 4-12 and described by Equation 4-4. In Figure 4-12.a, an IES have small sample
correlation with respect to the hypothetic IES, this is because the magnitude of IES on neighbor
cyclic frequencies have considerable magnitude. In contrast, Figure 4-12.b have big sample
correlation because of their similitude with the desire delta function.

Figure 4-12 Sample correlation computation comparison.
A) Low sample correlation case. B) High sample correlation case.
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Equation 4-4

where the ~ stands for the mean operator.

The optimal spectral frequency band could also by obtained by the 1/3-binary tree search in a similar
way than an IESFOgram or a Kurtogram. With the only aim of simplicity, this approach is named
newlESFOgram. The resulting IES generated is named newlESFO in analogous manner.

During this chapter, the method proposed has been described and exemplified. The algorithm's
parameters employed in each of the steps of the method are exposed and their selection has been
briefly discussed. Some improvement points on the method was mentioned and some control aspects
have been exposed. Finally, in section 4.1 a new method for demodulation based on OFSCoh is
introduced in a previous author’s work.



5. Simulated Experimental Results

For validation of method exposed on section 4, a series of experiments are proposed. At first, a series
of simulated signals are considered. The model for simulating those signals is described on section
5.1, and the different considerations for each of the type of failure are detailed in sections 5.1.1 to
5.1.4. In section 5.2 results of experiments on simulated signals are exposed and discussed for the
different type of faults and the loads applied. Additionally, on section 5.3 the effect of random
slippage, Signal to Noise Ratio and the spread on impulses are analyzed.

5.1 Simulation Model

From this point, the interest is to achieve a classification according to angular acceleration and
diverse type of charges. In this sense, an incipient fault in a REB could be simulated as a discrete
train pulse, modulated by the load according to the nature of them. To further consider the behaviour
and relations between the type of loads, modulations and pulse trains, consider the Equation 5-1.

Equation 5-1 x(t) = [A(O()) X 6% (6()] * h(t)

0y _ 1 lf 9 = k@o
8 (6) = { 0 ; otherwise

Where x(t) denotes the acceleration, the * operator denotes the convolution, h(t) represents the
impulse response of REB body, A(6(t)) represent the amplitude modulation function, and
6,?0 (6(t)) represent an impulse located at an entire multiple of angular periodicity ©,. Angular
periodicity 0, results as the inverse of Fault Characteristic Orders (BPOO, BPOI, BSO), depending
of type of fault to be simulated. The terms of Equation 5-1 are illustrated on Figure 5-1.
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Figure 5-1. Amplitude Modulation Function

RRIRREARE

!

For convenience, 4 and 6,?" would be expressed as function of angular domain, since it represents
the direct relation between input force and angular position. On the other hand, the impulse response
h(t) is strictly time dependent as described on section 1. Note the similarity between Equation 5-1
and Equation 1-2.

The modulation function A(t) would result from the combination of different load, as exposed on
Table 2-2. Similar models were presented by [52], for the case of Outer Race and Inner Race defects,
under constant speed regime. For the purpose of this section the amplitude load would be described
for the three types of faults and a discussion about the implications of variable speed on their
behaviour. For the rest of the chapter, the results of apply the method proposed on section 4 are
exposed. Additionally, the effect of randomness are briefly discussed. For the particular analysis of
this section, only radial loads are considered, and axial load effect is discarded.
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Table 5-1 Factor and levels from simulated signals.

FACTOR SYMBOL | LOW LEVEL | HIGH LEVEL
Dynamic Load (unbalance) me 0.00015 kg'm | 0.015 kg:m
Static Load (Dead weight) Mg 1 kg (9.8 N) 6 kg (58.8 N)
Rotational Speed Run up: 0 to 5 seconds. 9 10 - 25Hz 10 - 40 Hz
Fault type [-] IR — OR — BF — Healthy

5.1.1.0uter Race Amplitude Modulation Function

As most common case, the Outer race is fixed without movement, whereas inner race rotates at
synchronous speed with shaft at the Instantaneous Rotation Speed. Consequently, If a small defect
is present on the outer race, it would keep on the same position, usually located on the bottom part
of Outer Race. The Static load and dynamic loads are illustrated on Figure 5-2.

Figure 5-2. Loads for the case of localized faulty on outer race
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As rolling element pass through the load zone and the defect, an impact would be generated. Note
the static load does not generate any modulation as the distance between defect and static load keeps
constant. On the other hand, dynamic load is synchronous with inner race and their effect would be
seen as a modulation at the IRS frequency. The Equation 5-2 summarizes this situation [52].
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Equation 5-2 A(O(t)) = p[Mg cosy + med(t)? cos(2mO(t))]

1

0

~ BPOO

Notice the static load component does not have any relation with the angular domain. In fact, if static
load is considerable with respect dynamic load a constant modulation function is expected. On the
other hand, the dynamic load would not only depend on the angular position, but also would be
amplified by the rotational speed. This situation results from particular interest on the case of variable
speed, since the ration between static load and dynamic load changes over time. If the dynamic load
is considerable, the envelope spectrum should be composed of discrete peaks at BPOO and
harmonics of BPOO, accompanied with sidebands at 1x.

5.1.2.Inner Race Amplitude Modulation Function

In contrast to the Outer Race Fault case, if a small defect were present on the inner race, the location
of defect would be displacing synchronously with shaft. This situation is illustrated on Figure 5-3.

Figure 5-3. Loads for the case of localized faulty on inner race
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The static load would generate an amplitude modulation dictated by the difference between angular
position of defect and static load. As angular position of the defect is displacing at shaft speed, a
modulation of 1x is expected for the case of static load. On the other hand, as both, dynamic load
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and defect position, rotates at the same angular speed (shaft speed), their relative position does not
change and consequently any modulation is expected. The impact periodicity, is dictated by the Ball
Pass Inner Race Order BPOI. The amplitude modulation function is expressed in Equation 5-3 [52].

Equation 5-3 A(6(D) = p[Mgcos(2mB(t)) + 4n*med (t)? cos(y)]

0 _ 1
BPOI

It is important to annotate that although in previous paragraph it has been said that any modulation
is expected from dynamic load, it is only true for the case of constant angular speed. Notice the
amplitude of dynamic load is proportional to square of Instantaneous Rotational Speed. The latter
means for the case of variable speed, an amplitude modulation is expected from the increase in
kinetic energy of the system.

5.1.3.Rolling Element Amplitude Modulation Function

For the case of rolling element failure, various modulations are expected. First, consider the situation
illustrated on Figure 5-4 at which a fault is drawn in one of the rolling elements. The figure illustrates

that the rolling element rotates at a speed equivalent to the product of BSO and shaft speed (6 x
BS0). Whereas, the cage is rotating at an angular speed equivalent to the product of FTO and shaft
speed (6 x FT0). As usual, the dynamic load is rotating synchronously with the shaft, i.e. at an
angular speed of & whereas the static load does not move.

Figure 5-4 Loads for the case of localized faulty on rolling element
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To understand the model proposed, it is important to describe the effect of static load. The rolling
element with failure would be located at the static load zone once per rotation of the cage. This
means an amplitude modulation is expected in function of the angular distance between static load
and the position of the cage with the rolling element failed rolling. The former, means that static load
would generate an amplitude modulation at FTO order.

On the other hand, it is important to note the dynamic load rotates at different angular speed than the
cage. In this sense, a modulation is expected from the relative positions between the faulty rolling,
and the dynamic load. The before mentioned implies that a modulation is expected at (1-FTO) order
as consequence of dynamic load. The magnitude of dynamic load could be modeled as proportional
to square instantaneous angular speed. The Equation 5-4 models the vibrational response for the case
of a localized fault on a rolling element.

Equation 5-4  A(6(¢)) = p[Mg cos(2nFTO 6(t)) + meb? cos(2m(1 — FT0)O(t) + )]
0° = 1/BSO

Notice in this case, amplitude modulations are expected from both contributions, static and dynamic
load. Similar to previous cases, the dependence between dynamic load and angular speed generates
additional amplitude modulation from the variations of the kinetic energy of the ensemble.

5.1.4.Nominal Parameters for Simulated Signals.

Signals for different type of faults were simulated according to amplitude modulation functions
exposed through sections 5.1.1 to 5.1.4 and the model exposed on Equation 5-1. The impulse
response function h(t) was modeled as an all poles, second order, 1 DOF system, with a damping
coefficient ¢ = 0.01, a natural frequency of Qy = 8000w rads™!. The equivalent impulse
response on digital domain was obtained by impulse invariance method.

Rotational speed was set as a linear-run up. With an initial rotation frequency of 10 Hz and an
acceleration was a factor with levels at 3 Hz/s and 6 Hz/s. 5 seconds signals where simulated, at a
sampling frequency of 25600 Hz.

The fault characteristic orders are set equal to the ones of the Test Rig described on section 3, in
Table 3-1. To simulate the effect of progressive faults, and the randomness associated with strikes
generated by the contact between faulty surfaces, a random slippage was added to the angular
distance between pulses. This slippage is set as a random value in the range of -5% and 5% for each
pulse, with an uniform probability distribution. This situation is illustrated on Figure 5-5.
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Figure 5-5 Illustration of slippage
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Figure 5-5-A illustrates the nominal position of pulse and the possible range at with the impulse
could lie. As there is no information of probability of slippage, an uniform probability distribution
is considered between the limits previously discussed (x5 %). Figure 5-5-B schematize a realization
of the process and the multiplication with the corresponding amplitude modulation functionA(6(t)),
as previously discussed.

For making the simulation process more realistic, additional signals are added to built the simulated
signal y(t). The output signal is estimated as the sum of three different signals. The non-
cyclostationarity signal, x(t), simulated with the model exposed on Equation 5-1, additive white
Gaussian noise, n(t), and the effect of some discrete components d(t). Each of the one signals are
normalized between -0.5 and 0.5, and weighted prior to summation. This is exposed on Equation
5-5, and summarized on Table 5-2.

Equation 5-5 y(6,t) = x(6,t) + n(t) + d(6(t))
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Table 5-2 Composition of simulated signals

TYPE OF SIGNAL | RELATION WEIGTH FACTOR
Cyclo-Non Stationary x(0,6) = [A(G(t)) Z 5% (e(t))] « h() cx = 0.40
k
Additive White Noise nt) ; nt)~Nw=0,0= 0.) Ch=0.55
Discrete components d(t) =
ch=0.05

0.15sin (276(t) + % ) +
0.105in (4m6(t) + 7 ) +
0.05 sin (670 (t) + - )+
0.05 sin (86 (t) + % )+
0.05sin (1076(t) + g) +

0.05sin(60 x 2mt) +
0.05sin(6000 X 27t)

To exemplify the previous paragraphs, consider a fault on Outer Race, for the case of low angular
acceleration. The cyclo-nonstationary part, the white noise and discrete contributions are illustrated
on Figure 5-6-A. The Figure 5-6-B illustrates the instantaneous angular speed.

y(t) [ms~?]

Figure 5-6. Components of simulated signals and rotation speed.
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The parameters for static load, unbalance, acceleration and dynamic load range are summarized on
Table 5-3. For each case, the signal was scaled between 0 and 1. Those parameters have been selected
aiming to simulate the conditions of test rig exposed on section 3.

Table 5-3. Parameters for Simulation Signals

Static Load | Unbalance Acceleration D Range Ef d
IN] [kg m] ynamic Loa
Freq. range [N]
3Hzs?
Run 1 9.8 1.5x10* 06-3.7
10-25Hz
3Hzs?
Run 2 58.8 1.5x10* 0.6-3.7
10 - 25 Hz
3Hzs?
Run 3 9.8 0.015 59.2-370.1
10-25Hz
3Hzs?
Run 4 58.8 0.015 59.2 -370.1
10-25Hz
6 Hz s
Run 5 9.8 1.5x10* 06-9.5
10 - 40 Hz
6 Hzs*
Run 6 58.8 1.5x10* 06-9.5
10 - 40 Hz
6 Hzs?
Run 7 9.8 0.015 59.2 -947.5
10-40 Hz
6 Hzs?
Run 8 58.8 0.015 59.2-947.5
10-40 Hz

5.2 Simulated Faults Results

In this section, the simulated signals results are illustrated for each case of fault, with the parameters
previously exposed on Table 5-3. The combination fault case is also considered. In general, after
applying the model described on section 4, the diagnosis results satisfactory. In addition, the relation
between dynamic loads and static loads results important for the behaviour on the Envelope Order
Spectrum analysis.

The discrete components at IES are compared with respect to statistical threshold. In this sense, if a
discrete cyclic frequency overcomes the statistical threshold is it possible to affirm that at such
discrete cyclic frequency the signal has a second order cyclo-stationary behavior, with a p-value of
95% [34]. The statistical threshold comes from the Equation 9-8 described on annex 9.2
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5.2.1.0uter Race Simulated Fault

Table 5-4 summarizes the result obtained on the different experimental simulations for the case of
Outer Race Fault. In the last columns (shadow columns), the discrete cyclic orders of a =
1,2,BP00, and 2 X BPOO were labeled as ‘N’ or ‘Y’ as follows. If those discrete components
exceed the statistical threshold they were labeled as Y, in the opposite case were labeled as N.

A high correlation between the discrete components exceeding the statistical threshold and the
modulation coefficient (Column R) is observed. The mean modulation coefficient R is defined from
the Amplitude modulation function, exposed on section 5.1.1. In the case of Outer Race Fault, it
becomes the relation between static load M gcos (1) and dynamic load me8?2. As shaft rotation speed
does not keep constant, the modulation coefficient does not keep constant. For the previous reason,
an average modulation coefficient is taken, as it is exposed on Equation 5-6.

Mg cos(y)
4m2meb, 0,

Equation 5-6 R=

where Mg stands for the Rotor and shaft weight, me stands for the unbalance charge, and 6 stands
for instantaneous rotational speed, as it was exposed on Table 5-1.

Table 5-4. Summary of loads for Outer Race Simulated signals.

Static Static Acceleration Range (.)f R £ 2 IFRID) | AEHOD)
Run Load | Unbalance Dynamic
Label Load
[N] [kg m] Freq. range IN]
3 rev/s? N N Y N
S-OR-1 9.8 1.5%x10* 0.6-3.7 5.85
10 - 25 Hz
3 rev/s? N N Y Y
S-OR-2 58.8 1.5%x10* 0.6-3.7 35.10
10 - 25 Hz
3 rev/s? N N N N
S-OR-3 9.8 0.015 59.2-370.1 0.06
10 - 25 Hz
3 rev/s? N N N N
S-OR-4 58.8 0.015 59.2-370.1 0.35
10 - 25 Hz
6 rev/s? N N N N
S-OR-5 9.8 1.5%x10* 0.6-9.5 3.66
10 - 40 Hz
6 rev/s? N N Y Y
S-OR-6 58.8 1.5x10* 0.6-9.5 21.94
10 - 40 Hz
6 rev/s? N N N N
S-OR-7 9.8 0.015 59.2 9475 0.04
10 - 40 Hz
6 rev/s? N N N N
S-OR-8 58.8 0.015 59.2 -947.5 0.22
10-40 Hz
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Figure 5-7 illustrates the IES obtained from signals S-OR-1 to S-OR-8. Similarly. The statistical
threshold (95% CI) is plotted for each case with a dashed line. Additional view of those results are
presented on annex of section 9.3.

Figure 5-7. Simulated Signals for OR fault.
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In general, for the case of Outer Race fault, when the dynamic load is considerably stronger than
static load, the diagnosis process is difficult since the modulation generated by synchronous
components spread the energy of strikes. On the other hand, when static load is the dominant
component, diagnosis is more straightforward and the peaks at BPOO exceed statistical threshold.

To further illustrates this idea, let consider the signal S-OR-7, which is the one with the minimum
modulation coefficient. The OFSC map is shown in Figure 5-8-A. The Figure 5-8-B, shows the IES
estimated from the spectral range between 2 and 6 kHz. Although a clear discrete component is
observed at cyclic frequency of BPOO, the energy of this discrete component does not overcome the
hypothesis threshold. It is worth to note the presence of some discrete peaks on the at cyclic order
2%, and modulation sidebands at BPOO — 2x. Although his energy is so low, there are an effect of
Synchronus modulations (Dynamic Load Effect). The fact it appears at 2x, instead of 1x, is
explainable given the extreme low modulation coefficient. The reader could be free to consult the
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Appendix 9.2 and see the IES for the signal S-OR-4 and 5, in such cases modulations at 1x occurs,
maybe because modulation coefficient are near to 1.

Figure 5-8. 'S-OR7' signal OFSC and IES
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Now, consider the results for Signal S-OR-2, which is the case one with major modulation
coefficient, this is illustrated on Figure 5-9, which illustrates the Order Frequency Spectral
Correlation and the IES estimated at a spectral frequency between 2 and 6 kHz. A clear diagnosis
could be established from the results shown in Figure 5-9, since clear peaks at BPOO are evidenced.
Also is noticeable that those peaks exceed statistical threshold.



86 Diagnosis Of Incipient Failures In Rolling Element Bearings Un Non-Stationary Operation Conditions By

Vibration Analysis.

Figure 5-9. ‘'S-OR2’signal OFSC and IES.
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In contrast with the exposed on Figure 5-8, for the IES in Figure 5-9 there is no evidence of peaks at
any synchronous discrete component (1x or 2x), neither any modulation sideband. The former is in
accordance with the exposed on Equation 5-2, since the static load is predominant over dynamic one.
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5.2.2.Inner Race Simulated Fault

The Table 5-5 summarizes the result obtained for experimental simulations in the case of Inner Race
Fault. If the cyclic orders @ = 1,2, BPOI and 2 x BPOI exceed the statistical threshold they were
labeled as Y’ in the latest columns of Table 5-5. In the opposite case were labeled as ‘“N’. The
modulation coefficient R is estimated as indicates Equation 5-7. This is defined as the quotient
between the dynamic load and static load, i.e. the relation between term me(278)? cos(3) and term
Mg of Equation 5-3.

4m?mecos() (03 +6,0,+ 67)
Mg

Equation 5-7 R =

where Mg stands for the Rotor and shaft weight, me stands for the unbalance charge, and 6 stands
for instantaneous rotational speed, as it was exposed on Table 5-1.

Table 5-5. Summary of loads for Inner Race Simulated signals

Run Static Static Acceleration S;Qg?n?z R oS 2 LB 20
Load | Unbalance
Label Load
[N] [kg m] Freq. range IN]
3 rev/s? 0.17 N N Y N
S-IR-1 9.8 1.5%x10* 05-32
10 - 25 Hz
3 rev/s? 0.03 N N Y Y
S-IR-2 58.8 1.5%x10* 05-32
10 - 25 Hz
3 rev/s? 16.67 N N Y Y
S-IR-3 9.8 0.015 51.3-320.5
10 -25Hz
3 rev/s? 2.78 N N Y Y
S-IR-4 58.8 0.015 51.3-320.5
10 -25Hz
6 rev/s? 0.36 N N Y N
S-IR-5 9.8 1.5%x10* 05-82
10 -40 Hz
6 rev/s? 0.06 N Y Y Y
S-IR-6 58.8 1.5%x10* 05-82
10 -40 Hz
6 rev/s? 35.90 N N Y Y
S-IR-7 9.8 0.015 51.3-820.5
10 -40 Hz
6 rev/s? 5.98 N N Y Y
S-IR-8 58.8 0.015 51.3-820.5
10 -40 Hz

The Figure 5-10 illustrates the IES obtained from signals S-IR-1 to S-IR-8, ordered according to
modulation coefficient R. Each signal IES, and their corresponding statistical threshold are drawn
with different gray tone. Particular cyclic orders are labeled on horizontal axis. Additional view of
those results are presented on annex in section 9.4.
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Figure 5-10. IES comparison for Inner Race Simulations Signals.
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In Figure 5-10, all the cases presented the 1xXBPOI order exceeds the statistical threshold. Is
noticeable the effect of modulation coefficient on the behaviour of the IES. As bigger the modulation
coefficient, the peaks at BPOI and 2xBPOI exceed in major proportions the statistical threshold
(drawn with dashed lines for each case). Is also noticeable the fact that side bands tends to disappear

as R increases. This latest behaviour is in accordance with exposed on Equation 5-3, since, as R is

higher, indicates the term Mg is low in comparison with me@?cos(y) term. The former implies that
sidebands at synchronous orders are decimated.

From previous observations, when an Inner Race fault occurs, higher static load leads to sidebands,
which reduce the peaks at BPOI.

Signal S-IR-1 appears to be the one with a less confidence about cyclostationary behaviour at BPOI.
To further exemplify this, consider the OFSC map for S-IR-1 shown in Figure 5-11-A and the IES
estimated from the spectral range between 2 and 6 kHz shown in Figure 5-11-B. A clear peak
exceeding statistical threshold is observed at 1xBPOI. Peaks at 1x, 2x, 2xBPOIl and some
synchronous sidebands are noticeable although they do not exceed statistical threshold.
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Figure 5-11. ‘S-IR-1’signal OFSC and IES.
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On the other hand, from Figure 5-10, it is possible to observe the signal with major cyclostationary
behaviour is the S-IR-7. In fact, that is the one with the biggest modulation coefficientR. The OFSC
map is illustrated in Figure 5-12-A and the IES is illustrated in Figure 5-12-B. Clear peaks at discrete
cyclic frequencies of BPOI and 2xBPOI are evident. Those peaks exceed the statistical threshold
considerably. Is also worth to note that no modulation sidebands are recognized, neither peaks at
synchronous components such as 1x and 2x. The former is explained by the dominant effect of
dynamic load, i.e. high modulation coefficient.
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Figure 5-12. ‘S-IR-1’signal OFSC and IES.

A. Order Frequency Spectral Correlation OFSC

w 12 | | 1x: 1
> 2x: 2
(%]
g BPOI-2: 3.47
g 8 BPOI-1: 4.47
E L B fmmmmmmmm e e e e e e e 4 —— BPOIL:5.47
T4 BPOI+1: 6.47
G IE BPOI+2: 7.47
& e i e s R e i pen e ST S S R B 2xBPOI-1: 9.94
0 _ .
5 3 p : 3 n 15 2xBPOI: 10.94
Cyclic Frequency a [rev™?]
[
0.000 0.002 0.004 0.006
B. Improved Envelope Espectrum
0.20
N
[=] T
S o 0.15
[=]
i R e
¥5010
| l{
005 Mg At e o i
0 2 4 6 8 10 1

Cyclic Frequency a [rev]

In general, the performance of method shows a good result for the case of inner race fault. The
behaviour of the results are in accordance with the amplitude modulation function used to simulate
the IR fault signals.
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5.2.3. Ball Simulated Fault

Table 5-6 shows the results obtained for the case of Rolling Element (Ball) Fault simulation signals.
In this case, it results important to search for orders such as a« = FT0,2 X FTO,3 X FTO and even
harmonics of BSO suchas 2 X BSO and 4 x BSO. The results of IES on those orders are summarized
on right columns of Table 5-6. Similar to the previous cases, if the IES exceed the statistical threshold
at those orders, they were labeled as “Y’. In the opposite case were labeled as “N°. Additional results

of this table can be seen on annex of section 9.5.

The modulation coefficient R is estimated as indicates Equation 5-8. This is defined as the quotient
between the dynamic load and static load, i.e. the relation between term 4m?me6? cos(y) and term
Mg of Equation 5-4.

Equation5-8 R =

Mg cos(yp)
meél 92

where Mg stands for the Rotor and shaft weight, me stands for the unbalance charge, and 6 stands

for instantaneous rotational speed, as it was exposed on Table 5-1.

The interest on even multiples of BSO is reasonable, since per each revolution on rolling element,
the defect would make double contact and so double strike, corresponding to contact with inner and

outer race.
Table 5-6. Summary of loads for Rolling Element Fault Simulated signals
Static Static Acceleration Range qf R IXFTO | 2xFTO | 3xFTO | 2xBSO 4xBSO
Run Dynamic
Label Load | Unbalance Load
[N] [kg m] Freq. range [N]
3 rev/s? N N N Y Y
S-BF-1 9.8 1.5%x10* 05-3.2 5.85
10-25Hz
3 rev/s? N N N Y Y
S-BF-2 58.8 1.5x10* 05-32 35.10
10-25Hz
3 rev/s? 513 N N N N N
S-BF-3 9.8 0.015 32'0 5 0.06
10-25Hz )
3 rev/s? 513 N N N Y Y
S-BF-4 58.8 0.015 32'0 5 0.35
10—-25Hz )
6 rev/s? N N N Y Y
S-BF-5 9.8 1.5x10* 05-8.2 3.66
10—-40 Hz
6 rev/s? N N N Y Y
S-BF-6 58.8 1.5x10* 05-8.2 21.94
10—-40 Hz
6 rev/s? 513 N N N Y Y
S-BF-7 9.8 0.015 82.0 5 0.04
10-40 Hz )
6 rev/s? 513 N N N Y Y
S-BF-8 58.8 0.015 82'0 5 0.22
10-40 Hz )
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To discuss the modulation coefficient R, is important to note the fact that amplitude modulation
function of Equation 5-4, does not represent a typical case, since both components are associated to
a periodical function. For convenience, the modulation coefficient was defined in a similar manner
than the case exposed on Equation 5-6, i.e. similar to the Outer Race fault case. This definition is
made based on the similitude between function exposed of Equation 5-4 and Amplitude Modulation
from Single Side Band, usually called as SSB in literature [53]. In such case, the carrier order
corresponds to 1-FTO, while modulation order corresponds to 1-2FTO.

In Figure 5-13 the IES from simulated ball fault signals are shown. Statistical thresholds are drawn
for each case with horizontal dashed lines. Vertical cursors at harmonics of FTO, harmonics of BSO,
and FTO sidebands are also drawn.

Although modulation coefficient does not represent a good descriptor for the behaviour of IES, the
results on Figure 5-13 are organized according to modulation coefficient R to save uniformity with
respect other cases.

Figure 5-13. IES comparison for Rolling Element Faults Simulations Signals.
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Even if modulation coefficient is not a good descriptor, a pattern could be observed if comparisons
are carried out between signals with the same loads but with different dynamic ranges (see Table
5-6). To illustrate this, consider Figure 5-14 at which the results previously exposed on Figure 5-13
are reorganized.

For instance, consider the results of signals S-BF-1 and S-BF-5, both have been generated with the
same loads, but S-BF-5 is modeled with higher acceleration. For the S-BF-5 the diagnosis is more
straightforward since the peaks are higher at 2xBSO. Similar conclusions could be seen for pairs
such as S-BF-2 and S-BF-6, and so on.

Figure 5-14. IES for Rolling Element Faults Simulations Signals — Horizontal Comparison.
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For the case of Rolling Element Fault (Ball fault), the case S-BF-4 is the one with less evidence of
fault, i.e. with less evidence of cyclo-stationarity at 2xBSO. The OFSC map and the IES for S-BF-4
are illustrated in Figure 5-15. Cursors at 2xBSO, 4xBSO and FTO sidebands are drawn. Altough
IES at 2xBSO does not exceed threshold, it is a notorious peak on IES for this particular case. Not
considerable components at FTO appear on Figure 5-15.
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Figure 5-15. ‘S-BF-4’signal OFSC and IES.
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Figure 5-16. ‘S-BF-6’signal OFSC and IES.
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On the other hand, the case with higher level of cyclostationarity at 2xBSO is the S-BF-6. The results
for this case are further illustrated on Figure 5-16, where the OFSC map and the IES have been
drawn. Clear peaks at cyclic orders 2xBSO and 4xBSO are evident since they exceed the threshold.
In addition, FTO sidebands are evident on Figure 5-16-B.
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5.2.4. Simulated Combination Fault

In this section, results of simulations for combination faults are presents. Simulations were carried
considering the presence of faults on outer race, inner race and rolling element at same time. The
loads, acceleration and rotational speed kept equal to the previous cases, i.e. similar to exposed on
Table 5-3. Results obtained from combination fault are shown in Figure 5-17, where the IES is
plotted against cyclic order . The statistical thresholds are plotted with horizontal dashed lines.
Vertical cursors at harmonic of BPOO, BPOI, 2xBSO and FTO are drawn. In addition, cursors at 1x
and 2x are also drawn.

Figure 5-17. IES comparison for Combination Fault Simulations Signals.
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Is worth noting the fact, that across the IES shown in Figure 5-17 the major part of signals does not
have any cyclic frequency with statistical evidence of cyclo-stationarity. Only for cases S-CF-6, S-
CF-7 and S-CF-8 there is some cyclic order which exceeds the statistical threshold. However, clear
peaks at BPOO and BPOI are evident across many of the signals analyzed. On the other hand, across
all the cases simulated with combination faults, Cyclostationarity at BSO and FTO is difficult to be
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established, which in fact shows that diagnosis of rolling element is the most difficult case. This
situation was also presented during experimental test.

To illustrate some of the results previously presented, consider the case S-CF-6, for which the OFSC
map and IES are illustrated in Figure 5-18. Cursors are settled similarly to the ones in Figure 5-17.
Is observable than little peak arrive at order 2xBSO, but their magnitude are not relevant.

Figure 5-18. ‘S-CF-6’signal OFSC and IES.
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The case S-CF-8 is illustrated in Figure 5-19. Similar to the S-CR-6 case. In this case, clear peaks
are evident at BPOI and 2xBPOI but, although there is a little peak at 2xBSO it is no relevant.
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Figure 5-19. ‘S-CF-8’signal OFSC and IES.
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At this point, considering a combination of fault case results interesting to explore the role of the
demodulation band. In this sense, consider an additional simulated signal, the one consisting of a
combination of faults, but with the particular behavior that each one of the faults was simulated using
different impulse response function h(t) through Equation 5-1. For instance, the Rolling Element
Fault was simulated with an expected resonance frequency of 4 kHz, whereas Outer Race and Inner
race were simulated with resonance frequencies of 7 kHz and 10 kHz respectively, as it is described
in Table 5-7.

Table 5-7. S-CF-9 Signal Description.

Label S-CF-9

Type Fault Combination Fault
Load and Speed Conditions Similar to run 4 on Table 5-3
Ball Fault Resonance Frequency [kHz] ~4

Outer Race Resonance Frequency [kHz] ~7

Inner Race Resonance Frequency [kHz] ~10
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For the previously introduced signal S-CF-9, the Order Frequency Spectral Coherence OFSCoh map
is shown in Figure 5-19. Some vertical patterns could be observed, but is noticeable those patterns
are at different spectral frequency locations, as it is highlighted by the three rectangles drawn on the
figure.

Figure 5-20. Order Frequency Spectral Coherence Map for Combination Fault S-CF-9.
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The three rectangles drawn in Figure 5-19 are centered at spectral frequencies of 4, 7, and 10 kHz,
which are the resonance frequencies for each type of fault, as exposed in Table 5-7. If each one of
the frequency bands, illustrated by the three rectangles, is considered for demodulation, the obtained
IES would be as illustrated in Figure 5-21-A to Figure 5-21-C. The EES is also plotted in Figure
5-21-D, which is the equivalent of IES when the entire spectral frequency axis is considered.

In Figure 5-21-A, a clear sign of Rolling Element (Ball) fault is evident, once a peak at 2xBSO is
exceeding the threshold. This was expected since the demodulation band contains the simulated
resonance frequency. Similarly happens for Figure 5-21-B and Figure 5-21-C, showing signs of
faults at outer race and inner race respectively. However, is worth noting that for Figure 5-21-D
demodulation is not accurately enough to show any significant sign of fault.

From the previous discussion, it is important to highlight that when an adequate demodulation band
is used, the diagnosis could be improved.
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Figure 5-21. IES at different spectral frequency bands for S-CF-9. A) Demodulation for Ball Fault.
B) Demodulation for Outer Race Fault. C) Demodulation for Inner Race Fault. D) EES.
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5.3 Other Effects Observables on Simulated Signals.

On this section, some parameters used for the simulation signals are discussed and their effect is
exposed. In particular, it results from interest to discuss about signal to noise ratio, the effect of
slippage and what is the effect generated when a surface defect is spalled rather than an incipient
defect.

5.3.1.Effect of Signal to noise ratio

As it is expected, the diagnosis by IES is improved when the signal to noise ratio is high. To illustrate
this, consider Figure 5-22, which shows the IES for a ball fault, under load conditions similar to prior
simulated signal ‘S-BF-01" (See section 5.2.3 and Table 5-6). On Figure 5-22, the IES is shown for
different levels of signal to noise ratio —SNR.

Figure 5-22. Effect on Signal to Noise Ratio.
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It results interesting to note that as noise is increased, the IES merges to a delta on the zero-cyclic
frequency This behaviour indicates there is no presence of any cyclostationarity and their spectral
representation is well defined by their Power Spectral Density, i.e. SC(O0, f).



102 Diagnosis Of Incipient Failures In Rolling Element Bearings Un Non-Stationary Operation Conditions By
Vibration Analysis.

5.3.2.Effect of Impulse distribution

On the model exposed in section 5.1, described by Equation 5-1, the vibration is mainly the response
of a series of periodical strikes, accompanied by an amplitude modulation signal. In this sense, the
periodical strikes are modeled as a series of periodical delta functions. However, if the failure is not
an incipient fault, i.e. their length has increased or it have been growth among the race, the vibration
that is generated just at failed surface contact could not be modeled as a delta. In contrast, it more
convenient to model it as a random force, generated by excessive friction and contact stresses. This
situation is illustrated on Figure 5-23 for the case of an inner race fault.

Figure 5-23. Effect of spall size on vibration generated
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For the case illustrated, the periodicity of excitations is preserved, since the spall size is not large
enough to capture two or more consecutive rolling elements. However this is not the most general
case, in such case, the spall size could be sufficiently large to capture the position of various rolling
elements. In those cases, is highly probably the BPOI order periodicity would be loosed by the
combination of random forces generated by the various rolling elements captured by spall. To
exemplify this, consider the Figure 5-24, where the IES is plotted against the spall size. The spall
size is modeled as a percentage of 1/BPOI, as illustrated in Figure 5-24.
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Figure 5-24. IES for different spall extension.
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A similar situation is observed if the case of ball defect is considered. For example, consider Figure
5-25, in which the case of rolling element fault is simulated under different spall percentages.
Particularly, for this case, loads are loads similar to S-BF-2 (see Table 5-6). As spall percentages
increases the fault characteristic order 2xBSO lose their relevance, but at the same time, exists an
increase on orders such as 2xFTQO. This is explainable because the periodicity of surface impacts get
loosed but the amplitude modulation is conserved. In this sense, this behaviour indicates as spall is
increased the modulations orders, i.e. the orders that governs A(6 ) of Equation 5-4 are increased,
but the periodical impacts are loosed.
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Figure 5-25. Effect on Spall Percentage — Loads similar to S-BF-2.
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To further illustrates the discussion on prior paragraph, consider the simulated fault on rolling under
conditions equal to ‘S-BF-7’. The behaviour of IES against spall percentages is shown on Figure
5-26. Vertical cursors are settled and the results are organized according to spall percentage. Similar
to previous discussion, as spall percentages increase, the cyclostationarity of fault characteristic
order 2xBSO is loosed, while the cyclostationary at orders such as 2x(1-FTOQ) is increased. To
conclude the comparison between Figure 5-25 and Figure 5-26, let discuss about the static load and
dynamic load effect. Table 5-8 presents a comparison between values of IES for different spall
percentages, according to dynamic and static loads. For the case in which statistic threshold is
overcome, the value is underlined and highlighted.
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Figure 5-26. Effect on Spall Percentage — Loads similar to S-BF-7.
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Table 5-8. Spall-percentage comparison between load conditions.

Equation 5-4 A(Q(t)) = p[Mg Cos(ZrtFTO H(t)) + me(2m6)? cos(Zn(l —FT0)6 + 1,00)]
% Spall | Run | Average Dynamic | Static Load [N]: | Statistical | 2xBSO | 2xFTO | 2x(1-FTO)
Load [N]: Mg Threshold
0% Run 2 1.93 58.8 0.084 0.171 | 0.092 0.034
0% Run 7 4145 9.8 0.084 0.150 | 0.041 0.072
25% | Run2 1.93 58.8 0.084 0.162 | 0.126 0.038
25% | Run7? 4145 9.8 0.084 0.114 | 0.039 0.100
50% | Run2 1.93 58.8 0.084 0.080 | 0.154 0.032
50% | Run7 4145 9.8 0.084 0.078 | 0.041 0.108
75% | Run2 1.93 58.8 0.084 0.088 | 0.191 0.039
75% | Run7 4145 9.8 0.084 0.059 | 0.043 0.121
100% | Run?2 1.93 58.8 0.084 0.048 | 0.169 0.036
100% | Run? 4145 9.8 0.084 0.073 | 0.042 0.170
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In Table 5-8, as previously discussed, modulations orders such as 2xFTO and 2x(1-FTO) becomes
notorious and even the dominant orders for the cases at which spall percentage is big enough. Cases
where loads are as ‘Run2’, in such case the static load is greater than dynamic load, the governing
order becomes 2xFTO, as is dictated by Equation 5-4. On the other hand, if we consider the case for
which loads are similar to ‘Run7’, i.e. dynamic load bigger than static load, the dominant order
becomes 2x(1-FTO), in accordance with exposed on Equation 5-4.

5.3.3.Effect of Random Slippage

The model exposed in Equation 5-1 establish the vibrational response of a faulty bearing is composed
by a series of periodical strikes. The periodicity of those strikes is determined by the kinematic
relations of the bearing ensemble, i.e., mainly by the geometric relations of the REB. However, the
periodicity of such strikes are not strictly periodic, in fact the periodical arrive of those strikes are
susceptible to stochastic process, mainly by the slippage of the rolling element. The slippage could
be product of ruptures in oil film formed between surfaces, changes between radial and axial loads
ratios, among others.

In this section, the effect of random slippage is briefly discussed. Consider Figure 5-27, in which a
simulated rolling element fault is considered under different percentages of slippage, as it was briefly
explained in Figure 5-5. For this case, loads are similar to S-BF-1 (see Table 5-6).
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Figure 5-27. Effect of random slippage.
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In Figure 5-27, as slippage increases, at the 2xBSO order, the IES is less conclusive, since the fault
characteristic order tends to lose cyclostationarity, and tends to decrease until the threshold is not
exceeded. Although slippage has a negative effect on the diagnosis, it seems to be less detrimental
than other effects such as spall percentages and noise, as have been discussed in sections 5.3.1 and
53.2.

During this chapter, a model for simulating fault signals under variable speed has been exposed. The
method exposed in section 4 has been applied to a series of simulated fault signals, considering four
cases (Outer race fault, Inner race fault, Ball fault, and Combination of faults).

The method proposed shows good performance establishing diagnosis through the simulated signals,
however it shows great dependency on the ratio between static loads and dynamic loads, called
modulation coefficient depending of the case. In this sense, important quotations related with to
modulation coefficient have been established. The importance of demodulation and spectral
frequency band is also shown for the case of combination faults.

A discussion of the effect of signal-to-noise ratio, random slippage, and spall percentage is also
presented. Some relevant aspects have been highlighted. It was shown that random slippage could
be considerably high, and the method still being able to capture peaks in IES at fault characteristic
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orders. This in fact is an advantage of using the Second Order Cyclostationary analysis. On the other
hand, it was shown that the spall percentage tends to favor the apparition of peaks at the orders
dictated by the amplitude modulation function A(t), i.e. synchronous orders for Outer and Inner Race
cases, and harmonics of FTO for Rolling Element Faults (Ball Fault).



6. Experimental Tests.

In this chapter, the results of experimentation done on the Test-Rig (previously introduced in chapter
3) is exposed. Four different defects, under different load conditions, acceleration conditions, and
speed regimes were captured. The order tracking process was done with a Tacholess approach,
previously discussed in section 2.5. Additional verification of angular speed was done by using the
1x tachometer installed on the test rig, by connecting the TTL digital voltage of the tachometer to
channel 4 of N1 9230. The waveform, MOPA, and Phase Demodulation techniques were also applied
to the captured tacho-voltage signal were also applied.

Through the different cases, the outer race one results as the most straightforwardly diagnosable,
whereas, the rolling element fault case becomes the most challenging. Apparently, the former is due
to an advanced state of fault. When the bearing with a combination of faults was analyzed, strange
patterns were observed on the Enhanced Envelope Order-Spectrum and the newlESFO where strong
signs of slippage were noticed.

To classify those observations during the results of this chapter, the labels summarized in Table 6-1
were used. Those labels were proposed by [22] and used to classify the results obtained of analyze
the famous Western University Bearing data set. In the explanation column of Table 6-5 minor
adaptations were added.

Table 6-1. Diagnosis Categories

DIAGNOSTIC DIAGNOSIS
CATEGORY | SUCCESS EXPLANATION
v1 Yes Fault clearly diagnosable by the classical behaviour on the Squared
Envelope Spectrum (or Enhanced Envelope Spectrum).
v? Yes Fault is diagnosable, but there is abnormal behavior on Squared
Envelope Spectrum (or Enhanced Envelope Spectrum).
Fault probably diagnosable, Squared Envelope Spectrum shows
1 Partial discr_ete co_mponents at fault characteristic orde.rs _but they are not
dominant. i.e. The peaks at the Fault Characteristic Orders are far
from the statistical threshold.
Fault potentially diagnosable, Squared Envelope Spectrum shows
P2 Partial smeared components which could coincide with fault characteristic
orders.
Fault is not diagnosable. There is no evidence of Fault
N1 No Characteristic Order on the Squared Envelope Spectrum, but there is
some evidence of other problematics
N2 No Fault is not diagnosable and not distinguishable for noise.
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6.1 Outer Race Fault.

From the outer race fault case, all experiments done resulted in clear symptoms of failures, i.e.
discrete components at BPOO were present. Those discrete components exceeded the statistical
threshold considerably. Even the signals captured on Bearing 1, which was the healthy bearing,
reflected the shown OR failure symptoms, coming from the vibrational response of Bearing 2. Table
6-2 resumes the experimentation results. In general, it results clear the fault observed at outer race,
in all the runs. The results are further illustrated in annexes of section 9.6.

Table 6-2. Outer Race Fault Case - Experimental Results

Num. Range Speed Acceleration Load Bearing 1 Bearing 2
OR-1 14 - 30 Hz High (6 Hz/s) 5 kg static Y1 Y1
OR-2 30 - 25 Hz High (6 Hz/s) 5 kg static Y1 Y1
OR-3 8—18 Hz Low (3 Hz/s) 5 kg static Y1 Y1
OR-4 21 - 32 Hz Low (3 Hz/s) 5 kg static Y1 Y1l
OR-5 22 — 39 Hz High (6 Hz/s) 0 kg Y1 Y1
OR-6 3714 Hz High (6 Hz/s) 0 kg Y1 Y1
OR-7 17 — 30 Hz Low (3 Hz/s) 0 kg Y1 Y1
OR-8 22— 38 Hz Low (3 Hz/s) 0 kg Y1 Y1

To illustrate the results obtained for the case of Outer Race Fault, consider Figure 6-1-A, where the
OFSCoh map for the signal captured on bearing 1, under OR-3 conditions is shown. In the figure,
the Spectral Coherence is plotted against spectral frequency —f and cyclic order —a. Some vertical
patterns at BPOO and its harmonics could be observed. In addition, some vertical contrasts are
observable at 2x order. However, none relevant horizontal band is observed at naked eye. The
Enhance Envelope Order Spectrum —EES is shown in Figure 6-1-B. The three first harmonics of
BPOO exceed the statistical threshold and a particular peak rise at 2x order. The EES drawn in Figure
6-1-B is a clear pattern of Outer Race Fault.
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Figure 6-1 Run OR-3 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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This particular case, i.e. OR-3 Bearing 1 signal, results convenient for illustrating the benefits of
correct demodulation as it was discussed previously in section 4.1. To explore this, consider the
IESFOgram illustrated in Figure 6-2-A, where the binary-three optimization selects the spectral
range comprehended between 800 and 2400 Hz as the optimum spectral range. The result of using
this spectral range for demodulation is shown in the IESFO plotted in Figure 6-2-B. Although there
are peaks at BPOO and its harmonics, they are campaigned by some other peaks at uninterpretable
orders, which also exceed the statistical threshold.

Similarly, the use of newlESFO and IESFO are shown in Figure 6-3. The use of newlESFO selects
the spectral frequency range between 18400 and 21600 Hz, as it is illustrated in Figure 6-3-A. The
order-spectrum obtained by the use of IESFOgram is shown in Figure 6-3-B. Clearly, it shows
patterns of having a failure at outer race, since peaks at BPOO and its harmonics are clear and not
disturbed by others uninterpretable orders. Notice also the fact that no peaks at synchronous
components are observable in Figure 6-3-B.
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Figure 6-2. Run OR-3 B1 A. IESFOgram B. IESFO.
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Figure 6-3. Run OR-3 B1. A. newlESFOgram, B. newlESFO.
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Additionally, consider the run signal captured on bearingl, under the conditions established on OR-
5. The OFSCoh map and the EES are illustrated in Figure 6-4. In the OFSCoh map, Noticeable
vertical patterns are observable at the first three harmonics of BPOO. Some other vertical contrasts
are observed at synchronous orders such as 1x and 2x. An horizontal contrast could be noticed if the
attention is focused on 10-15 kHz spectral band, as it is highlighted by the box drawn in the figure.

Figure 6-4. Run OR-5 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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As a matter of fact, the spectral bands dictated by IESFO and newlESFO coincide with the spectral
range previously highlighted, as it is shown in Figure 6-5-A and Figure 6-5-B. The IES obtained by
demodulate the OFSCoh map according to the spectral frequency range between 12.8 kHz and 14.4
kHz is illustrated in Figure 6-5-C. Some improvement could be seen by comparing this latter IES
with the EES of Figure 6-4-B, the most pinpointed is the range by which the statistical threshold is
overcome. Clearly, after demodulation, the peaks at BPOO and harmonics are stronger, while
conserving the importance of some synchronous orders such as 1x, 4x.
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Figure 6-5. Run OR-5 B1 signal. A. IESFOgram B. newlESFOgram. C. Improved Envelope Order
Spectrum.
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For the signal of OR-6 captured on bearing 1, the OFSCoh is illustrated in Figure 6-6-A. A clear
spectral band rises around 13 kHz with some vertical visible lines. Nonetheless, those vertical lines
do not coincide precisely with BPOO and its harmonics, instead, coincide with 3.5x order and
harmonics. The situation is further illustrated in EES of Figure 6-6-B. It appears the BPOO discrete
components tend to slice to coincide with 3.5x order, slicing roughly 2 percent. This in fact is tending
to coincide with a synchronous order such as 7x as the second harmonic of 3.5x.
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EES

Figure 6-6. Run OR-6 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum

A. Order Frequency Spectral Coherence Map
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Especial care should be taken prior to using an optimization based on IESFOgram or
newlESFOgram, since those methods use a pre-defined cyclic order in order to optimize their
visualization in the Improved Envelope Spectrum. If the slice is taken into account, both, IESFOgram
and newlESFOgram bring out roughly the same demodulation band comprehended between 12.8
and 14.4 kHz. IESFOgram, newlESFOgram, and IES for this case are shown in Figure 6-7.
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Figure 6-7. Run OR-6 B1 signal. A. IESFOgram B. newlESFOgram C. IESFO D. newlESFO
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It is also important to note the improvement in IES achieved by the use of newlESFO in Figure 6-7-

D, in comparison with the EES shown in Figure 6-6-B. In the first case all three harmonics of BPOO
exceeds the statistical threshold while for the EES is only true for the first harmonic.

6.2 Inner Race Fault.

For inner race faults, the diagnosis on signals captured on bearing 2 pedestal were clear in the major
part of cases. However, the results for signals captured on bearing 1 pedestal were not clear in many
cases. The results are summarized in Table 6-3 where the different running are listed with their
corresponding range of speed, acceleration, and load. The Bearing 1 and Bearing 2 columns list the
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resulting diagnosis, according to the criteria exposed previously in Table 6-1. Those results are
further illustrated on annex of section 9.6.

Table 6-3. Inner Race Fault Case - Experimental Results

Num. Range Speed Acceleration Load Bearing 1 Bearing 2
IR-1 29 - 38 Hz High (6 Hz/s) 5 kg static P1 Y1
IR-2 29 - 11 Hz High (6 Hz/s) 5 kg static N2 Y1
IR-3 13-29 Hz Low (3 Hz/s) 5 kg static N2 Y2
IR-4 29-13Hz Low (3 Hz/s) 5 kg static N1 Y2
IR-5 21 -38Hz High (6 Hz/s) 0 kg P1 Y2
IR-6 37 - 14 Hz High (6 Hz/s) 0 kg N1 Y2
IR-7 15 - 28 Hz Low (3 Hz/s) 0 kg N1 Y2
IR-8 30— 38 Hz Low (3 Hz/s) 0 kg Y1 Y2

To illustrate the results summarized on Table 6-3, consider the signal for IR-1 case, captured on
pedestal 1. The SCoh map and the EES is shown in Figure 6-8. In the EES, peaks at discrete order
of BOPI and 2xBPOlI are observable, however, their magnitude are far from the statistical threshold.
This explains the P1 label assigned to this particular signal.

Figure 6-8. Run IR-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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Although the EES does not bring out a clear spectrum for establishing failure in the inner race, some
improvements could be managed after demodulation. In Figure 6-8-A, a blue-dashed box has been
drawn to denote the demodulation spectral range dictated by the IESFOgram. Similarly occurs for
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the orange dotted box, which highlights the spectral demodulation band marked by the newlESFO.
The IESFO and newlESFO for IR-1 B1 signal are shown in Figure 6-9. Particularly, the use of
IESFO, shown in Figure 6-9-A, does not helps in any manner since the floor noise is so noticeable,
even though the 1XxBPOI component exceed the statistical threshold. On the other hand, the use of
newlESFO allows to increase the magnitude of the discrete components at BPOI and 2xBPOI orders,
while keep the discreteness of those components. Additionally, it allows identifying side-lobes
spaced at synchronous orders.

Figure 6-9 Run IR-1 B1 signal. A. IESFO. B. newlESFO
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Similar analysis could be achieved for signal IR-1 captured on pedestal of bearing 2, which is the
bearing with the fault at its inner race. The OFSCoh map is shown in Figure 6-10-A, while the
resulting Enhanced Envelope Order Spectrum is shown in Figure 6-10-B. Discrete peaks at BPOI
and 2xBPOI, exceeding the threshold are noticeable, however, the appearance of the spectrum does
not match the one expected for an incipient inner race fault.
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Figure 6-10. Run IR-1 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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In Figure 6-10-B is noticeable the floor noise, and consequently, is desirable to have a spectrum with
higher relevance at BPOI and its harmonics. The situation could be improved by using the
demodulation dictated by the newlESFOgram (while IESFOgram does not appear useful for this
case). The spectral frequency ranges dictated by IESFOgram and newlESFOgram are shown in
Figure 6-10-A, sketched with the dashed blue box, and the dotted orange one, respectively. The
newlESFO is then obtained by using a demodulation band lied between 14.93 and 17.07 kHz. Figure
6-11 illustrates the spectrograms obtained after demodulation. The newlESFOgram, shown in Figure
6-11-B shows than the BPOI and 2xBPOI overcomes the statistical threshold and some of the
synchronous lobe-sides.
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Figure 6-11. Run IR-1 B2 signal. A. IESFO. B. newlESFO.
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Now consider the signal sampled on pedestal 1, under IR-2 conditions. This is illustrated in Figure
6-12. As it is seen, there is no evidence of any considerable vertical pattern in Figure 6-12-A neither
a clear peak at BPOI nor 2xBPOI in the IES of the Figure 6-12-B. In fact, neither IESFO nor
newlESFO could broadcast a relevant spectral frequency range at which signs of inner race fault
could be obtained. This indicates the energy of the strikes at faulty bearing, i.e. bearing 2, got
vanished along the path until the pedestal of bearing 1. The former discussion explains the label N1
set in Table 6-3 for the IR-2 row.
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Figure 6-12. Run IR-2 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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In contrast, when the signal captured on bearing 2 is considered, clear peaks at BPOO and harmonics
are observable in the EES. This is illustrated in the OFSCoh map and the EES in Figure 6-13. Even
peaks spaced at synchronous orders exceed the statistical threshold. The spectral frequency ranges
dictated by IESFO and newlESFO are illustrated in Figure 6 13-A by the drawn boxes. Particularly,
the newlESFO’s result turned out the most useful for demodulation given the clearness reflected in
newlESFO as it is exposed on Figure 6-14. Although the EES per se results in a clear sign of inner
race fault, the newlESFO increase the magnitude of relevant orders a little.
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Figure 6-13. Run IR-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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Figure 6-14. Run IR-2 B2 signal. A. IESFO. B. newlESFO.

12

A. IESFO fc: 23200.0 ; Af: 1600.0 Hz
| 1 ] 1 |
i i i i i

|

2 4 6 8
Cyclic Frequency a [event/rev]

B. newlESFO fc: 19200.0 ; Af: 12800.0 Hz

|

ol b g b st otk il Y ’u{‘ il
»\I‘HA#%L‘#.;W‘;AI\."r’ﬁj:w"\:"f‘qﬁzgﬁn{#{“,#ﬁvw“#wW’l?‘vhjt"lal‘;ﬁ'53"1#\;1ﬂr‘}';'%jﬂ*,'j%;ﬁﬁi\r;r

| ] I | |
I I I I 1

L] ‘“’H

\
¥

2 4 6 8
Cyclic Frequency a [event/rev]

© BPOI-1: 4.43
+ BPOI-2: 3.43
BPOI: 5.43

© BPOI+1: 6.43
+ BPOI+2:7.43

=+ 2xBPOI-1: 9.86

2xBPOI: 10.86

— 2xBPOI+1:11.86

BPOI-1: 4.43
BPOI-2: 3.43
BPOI: 5.43
BPOI+1: 6.43
BPOI+2: 7.43
2xBPOI-1: 9.86
2xBPOI: 10.86
2xBPOI+1: 11.86

BPOI-1: 4.43
BPOI-2: 3.43
BPOI: 5.43
BPOI+1: 6.43
BPOI+2: 7.43
2xBPOI-1: 9.86
2xBPOI: 10.86
2xBPOI+1: 11.86



Chapter 6 — Experimental Tests 123

6.3 Rolling Element Fault.

Eight runs were analyzed, as shown in Table 6-4. The experiments BF-1 to BF-4 were done with a
loader mounted on the center of the shaft. Whereas experiments BF-5 to BF-8 were done without
load applied to shaft. The diagnosis on rolling element resulted the most challenging case. In any of
the cases analyzed was possibly to diagnostic the classical pattern of Envelope Order-Spectrum with
peaks at BSO, with sidebands on the fundamental train order FTO. However at FTO and harmonics
of FTO were evident in almost all cases. For the signals captured on pedestal of Bearing 1, i.e.
healthy bearing, it was not possibly to stablish clearly the pattern of fault.

Table 6-4. Ball Fault - Experimental Results

Num. Range Speed Acceleration Load Bearing 1 Bearing 2
BF-1 20 - 38 Hz High (6 Hz/s) 5 kg static P1 Y2
BF-2 2911 Hz High (6 Hz/s) 5 kg static P1 Pl
BF-3 19-35Hz Low (3 Hz/s) 5 kg static P1 Y2
BF-4 38 - 21 Hz Low (3 Hz/s) 5 kg static Pl Y2
BF-5 21 — 38 Hz High (6 Hz/s) 0 kg P1 Y2
BF-6 35— 16 Hz High (6 Hz/s) 0 kg P1 Y2
BF-7 14 — 28 Hz Low (3 Hz/s) 0 kg N2 Y2
BF-8 30-38Hz Low (3 Hz/s) 0 kg P1 Y2

To exemplify the results, let consider the signal captured on Bearing 2, under conditions of BF-1
run. The spectral correlation and the Enhanced Envelope Spectrum (EES) is shown in Figure 6-15.
The EES shows a series of peaks at the cage characteristic order FTO and their harmonics. The 2x
order own a high magnitude, which could be attributable to the coincidence with the 5™ harmonic of
FTO (5x0.402 =2.01), which is highly probably to fall in 2x if slippage happens. In fact, if slippage
is so considerable, the 6" FTO harmonic (6x0.402 = 2.41) could also be misinterpreted as the BSO
(2.32).
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Figure 6-15 Run BF-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.
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By using the IESFOgram or newlESFOgram approaches for search FTO discrete components, both
lye the same demodulation band, comprehended between 14.4 and 15.2 kHz as the optimum range.
This spectral frequency range has been illustrated in Figure 6-15-A with the plotted boxes in the
OFSCoh map. The newlESFO (equivalent to IESFO for this case) is shown in Figure 6-16. Notice
that 2xBSO peaks is near the statistical threshold, however, in a similar manner to exposed on EES
of Figure 6-15-B, the most prominent components are located at harmonics of FTO.

Figure 6-16 Run BF-1 B2 signal. newlESFO.
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As the classical pattern of bearing element fault (peaks at BSO with FTO sidebands, see Figure 2-1)
does not match with the one exposed in Figure 6-16, this case (Bearing 2 of BF-1) is labeled as Y2.
It means that failure could be diagnosed but further considerations are needed to clarify this behavior.
As mentioned on previous paragraph, similar results, i.e. peaks at FTO but not peaks at BSO were
reported by the analysis exposed in [22] on a constant speed test rig, and the experimentation done
by [54] on a similar test rig. Although this situation is not the classical pattern of a rolling element
bearing, it is a characteristically pattern when damage is pronounced and the periodicity of BSO is
loosed and the energy is smeared on low orders multiples of FTO [8].

To further illustrate the results, consider the Figure 6-17. In this figure, the newlESFO is used to
demodulate discrete components at FTO, on signal sampled on B2, for BF-2 run. Peaks at FTO are
identifiable, however they magnitude do not exceed the statistical threshold plotted by the dashed
line. In this sense, the result of the diagnosis is labeled as P1.

Figure 6-17. Run BF-2 B2 signal. newlESFO
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More clear patterns of harmonics at FTO were observable at signals BF-5,BF-6, BF-7 and BF-8.
Note that according to the Table 6-4 those signals were captured without the loader assembled in the
shaft, this suggests FTO modulations become important when static load is not present or decimated.
To further illustrates this, consider the Figure 6-18, where the newlESFO is plotted against cyclic
orders. In the figure newlESFOgram demodulation approach has been used. The resulting spectral
frequency range is labeled for each running. Particular cursors vertical lines have been set on the
bottom axis while synchronous orders were set in top axis. Figure allows visualizing the influence
of FTO and their harmonics, particularly for signals BF-5 to BF-8.
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Figure 6-18 Different newlESFO for ball fault case, signals sampled on B2.
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In general, the Rolling Element Fault case was not straightforward to diagnose. None of the signals
captured on bearing one (1) showed a pattern of fault. Indeed, the crack seems to be in an advanced
state, explaining the peaks at FTO and the lack of peaks at BSO, as explained by [8]. On the other
hand, high values at cyclic frequency o=0 were also observed. The discussion of those tendencies

was exposed in sections 5.3.2 and 5.3.3.
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6.4 Combination Fault.

Experimental runs were also taken for the case of a bearing with a combination of faults. Those
experimental runs were sampled under different load and speed conditions, as it is described in Table
6-5. The labels categories set on the columns Bearingl and Bearing 2 were previously exposed on
Table 6-1. Additional graphical results are shown in annex of section 9.9.

Table 6-5. Combination Fault - Experimental Results

Num. Range Speed Acceleration Load Bearing 1 Bearing 2
CF-1 4-25Hz High (6 Hz/s) 5 kg static Y2 Y2
CF-2 26 — 38 Hz High (6 Hz/s) 5 kg static Y2 Y2
CF-3 19 -36 Hz Low (3 Hz/s) 5 kg static Y1 Y1
CF-4 37 -15Hz Low (3 Hz/s) 5 kg static Y1 Y1
CF-5 14 — 28 Hz High (6 Hz/s) 0 kg N1 N1
CF-6 28— 41 Hz High (6 Hz/s) 0 kg N1 N1
CF-7 16 — 29 Hz Low (3 Hz/s) 0 kg N1 N1
CF-8 30— 38 Hz Low (3 Hz/s) 0 kg N1 N1

In general, faults were easily diagnosable for the case on which the shaft was mounted with the static
loader. On the other hand, for the cases at which the shaft had not attached a load, the diagnosis
process reveals clear cyclostationary components, but at orders different from expected. In both
cases, a high slippage were observed. It is the thought of the author that the combination of fault
works as high impulsivity noise among the different characteristic faulty orders.

To illustrate the aforementioned, let consider the vibration captured on bearing 2, under the
conditions described on run CF-2. The OFSCoh map is shown in Figure 6-19-A. Clear vertical
stripped pattern is evidential near to nominal BPOO among almost the entire spectral frequency
range. However, it results important to highlight the smearing at the harmonics of BPOO, in fact, the
BPOO was manually set as 3.215, in contrast with the theoretical 3.572 reported by bearing
manufacturer (Table 3-1). The Enhanced Envelope (Order-)Spectrum is illustrated on Figure 6-19-
B, peaks at 1XxBPOO and 2xBPOO clearly exceed the statistical threshold drawn by the horizontal
dashed line in the figure. None other fault characteristic order appears to be relevant, however,
synchronous orders are noticeable
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Figure 6-19 Run CF-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum.

A. Order Frequency Spectral Coherence Map
7 T

N2 ! ; ! ---- 1xFTO: 0.36
=2 i 1 i === 2xFTO: 0.72
> ---- 2xBSO: 4.45
£ 15 —— BPOO: 3.22
2 —— BPOI: 5.78
210 —— 2xBPOO: 6.44
= - 4xBSO: 8.89
g 5 —— 2xBPOI: 11.56
a o iR B e e e Fi i —— 3xBPOO: 3.22
0 2 a4 6 8 10 12
Cyclic Frequency a [event/rev]
00 02 04 06 08 10
B. Enhanced Envelope Spectrum EES f.: 12800.0 ; Af: 25600.0 Hz

0.250 ‘ i f |
0.225 | 3 |
0.200
e o

1 0.150

w
0.125
0.100
0.075 '\#L/JW "
0.050

0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]

From Figure 6-19, the setting of BPOO was further confirmed by a discrete component at 5.775, set
as BPOI, which is consequent with the rule at which the sum of BPOO and BPOI should results
equivalent to number of rolling elements. The aforementioned deduction comes from the relations
established on Table 2-1, as it is exposed in Equation 6-1.

. N d N d
Equation 6-1 BPOO + BPOI =7 (1 - Ecos(@)) + 2 (1 + Ecos(@)) =N

An interesting aspect of the newlESFO approach appears since different demodulation bands are
obtained as a function of the failure tempted to be diagnosed. This is illustrated in Figure 6-20, and
Figure 6-21 where newlESFOgram was used for demodulate the signal intending to search for inner
race fault and outer race fault, respectively. For the case of inner race searching a demodulation band
between 2.13 and 4.27 kHz arose, while for the case of outer race fault, the spectral frequency lied
in the 17.1 to 19.2 kHz range was selected. The pattern observed in Figure 6-20 allows to diagnose
a failure at inner race but being skeptical by the lack of discreteness, whereas the newlESFO shown
in Figure 6-21 reveals a clear fault at the outer race.
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Figure 6-20. Run CF-2 B2 newlESFO for Inner-Race fault search
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Figure 6-21. Run CF-2 B2 newlESFO for Outer-Race fault search
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The result obtained on runs CF-3 and CF-4 were labeled as Y1 on both Bearings. To illustrate this,
consider now the signal taken on bearing 2, under the conditions described for run CF-3, in such
case the diverse fault were diagnosable by the high peaks at their corresponding Fault Characteristic
Orders, as shown in the Enhanced Envelope Spectrum in Figure 6-22-B.
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Figure 6-22. Run CF-3 B2 signal. Enhanced Envelope Order-Spectrum
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When the shaft was mounted without load (CF-5 to CF-8), the Table 6-5 shows that diagnosis were
no possible. However, particular situations were observed on experiments done without load. For
instance, consider the case captured on B2 labeled as CF-6. The EES of Figure 6-23 shows a
particular behaviour; in such all peaks are located at harmonics of 0.335.

Figure 6-23. Run CF-6 B2 signal. Enhanced Envelope Order-Spectrum
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An explanation for this behaviour arise from the hypothesis the FTO take this value, either by an
increase in contact angle from theoretical 0°, or by synchronism generated by the combination of
multiple faults. The latter appears to be a reasonable explanation if the subsequent fault characteristic
orders are computed from FTO as follows on Table 6-6.

Table 6-6. Fault Characteristic Orders as function of FTO

Fault Characteristic Order Relation Numerical Value FTO - Harmonic
FTO Hypothesis 0.335 1x
BPOO N X FTO 3.015 )¢
BPOI N —-NXFTO 5.985 17.9x = 18x
BSO 2FTO(1 — FT0) 1.350 4.03x = 4x
1—2FTO

The same behaviour is observable in the experiment labeled as ‘CF-8’, as illustrated in Figure 6-24.
The peaks were observable just at harmonics of 0.335, which is why result tentative to think the FTO
slice to 0.335. However, this assumption is not referenced in any other reference, and regardless the
high value of EES at those discrete frequencies, those results are labeled as N1. This label was
assigned since combination fault is neither easily diagnosable nor disagreeable, but there is evidence
of discrete peaks revealing anomalies, i.e. excessive slippage, looseness or mounting mistakes. All
the signals analyses on experiments Cf-5 to CF-8 presented the same behaviour.

Figure 6-24. Run CF-8 B2 signal. Enhanced Envelope Order-Spectrum
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Along all the runs for the combination fault case, the BPOO was the most dominant fault
characteristic order. A reasonable explanation is the direct contact that Outer-Race has with the
Bearing Pedestal, and so, vibration do not suffer from path impedances prior to rise the
accelerometer. Additionally, impacts at Outer Race should not be modulated, and so, their energy is
not shared with modulation orders. This fact suggest that a diagnosis of incipient failures would be
more diagnosable if the fault occurs at the outer race. On the other hand, the most challenging case
occur when the incipient failure takes place at one of the rolling elements.
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6.5 Conclusions of chapter.

During this chapter, the method previously exposed on Figure 4-1 were applied through different
experimental signals captured on test rig. For the major part of cases, fault were easily diagnosable
but some aspects were also observed.

Diagnosis is straightforward when the fault is generated on outer race and Inner race, while is most
difficult to be established when it is presented in the rolling element.

For the case of combination faults, slippage play an important role, since it could generates merging
of different fault characteristic orders.

Experimental runs for rolling element shown that the fault was not in an incipient stage, which in
fact causes the increase of cyclostationarity at orders such as 1-FTO and FTO. This was in
accordance with the previous results exposed in section 5.3.2.

The use of newlESFO reveals in many cases, improvements on the diagnosis process, since it allows
the analyst to get clearest order-envelope spectrum, by a correct demodulation. It also allows the
identification of particular spectral frequencies for different types of fault, especially when a
combination fault is intended to be diagnosed.

6.6 Classification Algorithm.

In this section, the results of using a classification algorithm to diagnosis the fault in REB under
variable speed are exposed. The algorithm was built by the use of data collected from test rig exposed
on section, and simulated faults exposed on Figure 6-25.
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Figure 6-25. Data Set Estructure.
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The architecture used is based on four dense layers attached to batch-normalization and 15% dropout.
Each dense layer is activated by ‘Relu’ function. The first dense layer had 2401 units, corresponding
to the entries on the EES of each signal, as it is illustrated on Figure 6-25. Subsequent dense layers
own 2°, 25 and 3 units on the last layer. Adam optimizer was used with a total of 8000 epochs.

The data-set was normalized previously, since use of EES implies all values lie in the range between
0 and 1. Training process was achieved by use of Adam’s optimizer, using hyper-parameters a =

0.001, 5, = 0.9, B, = 0.999 and £ = 10~7. After 5000 epochs, the maximum validation accuracy
achieved is 0.83 as can be seen at the confusion matrix shown on Figure 6-26.
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Figure 6-26. Confusion matrix for validation data
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To further illustrate the performance of the classification algorithm, one class vs others ROC strategy
is used, where each one of the failure types is compared against the others. The results are shown in
Figure 6-27, where the base identity line have drawn for a threshold of 0.5.

Figure 6-27. ROC Performance illustration.
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This classification method allows to classify faults on REB even with different fault, loads and
rotational speed conditions. It is important to note the use of EES is a form to standardize the
condition in such way a particular peak at fault characteristic order should be identified. It is also
shown the possibility of build classification algorithms mainly by the use of simulated signals. This
results in a big advantage for the use of learning algorithms in practical situations for machinery
maintenance, since is not common to find data failures while is more common to have signals coming

from healthy states of the machinery.



7. Conclusions and Recommendations

Diagnosis of REB under non-stationary regimens, and particularly, under variable speed represents
a challenge for Condition Vibration Monitoring. Through this work, a method for diagnosing REB
failure was proposed and tested on test rig experiments. The experimental tests were achieved under
different loads and speed conditions. Some of the samples taken on the test rig show presence of
incipient failures. Particularly, some of the REB tested do not shown presence of incipient failure,
but the presence of smearing fault.

Additionally, a model for emulate REB faults was exposed and used for simulating faulty signals.
Some runs were created using the simulation algorithm to validate the diagnosis method proposed.
The simulation fault model allows to identify typical behavior for non-incipient failures, which in
fact were observed during experimental runs where incipient failure was not the case.

The aims exposed in section 1.3 were achieved and closed by the next considerations.

o A model for the simulation of faults was built, which allows varying amplitude modulation
function and correlating it with different load and speed conditions. By the use of the
simulation fault model, some considerations were added in order to emulate different
situations from incipient failures and analyze their effect on the diagnosis process. By the
use of those considerations, it was possible to conclude about the experimental runs in such
failures on REB under test do not seem to be incipient failures. Experimental signals were
captured on the test rig, on both pedestals.

e A method for fault diagnosis were proposed. The proposed model was based on the
Improved Envelope Order-Spectrum —IEOS, which is the most common used tool for
Bearing Diagnosis. The IEOS were obtained by the use of order tracking, and
cyclostationarity analysis.

e Analgorithm to improve demodulation was proposed, based on newlESFO, which is a tool
for selection the best spectral frequency range at which Improved Envelope Spectrum
reveals presence of failure searched.

e The model proposed was used to diagnose a series of signals of REB faults, obtained from
a test rig. The model was also used to diagnose faults on simulated REB fault signals. For
the experimental signals model was able to diagnose correctly 77% of the cases. On the other
hand, the model was able to diagnose correctly 84% of the simulated incipient failure
signals.

e For the cases where non-incipient failures were suspected, the method proposed could
identify patterns of failure, mainly dictated by presence of amplitude modulation governing
orders on the Improved Envelope Order-Spectrum.
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A classification method based on a learning algorithm is exposed, showing some advantages
by the use of simulation signals and a satisfactory performance based on metrics, reaching
an overall precision of 84.2%, and an overall recall of 83.2%.

The classification algorithm owns advantages from capturing different load, speed and
acceleration conditions by unifying those using the Improved Envelope Order Spectrum —
IEQS, and using it as the input for the algorithm. It would be desirable to amplify the signals
available and increase the amount of data available for the training process.
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9.2 Annex: Spectral Correlation Statistical Threshold

During this annex the statistical threshold is discussed for the Order Frequency Spectral Correlation
function — OFSC. During this section, we consider the Welch Estimator is intend to be used (see
section 9.1) [34].

Consider the signal x[n] and signal y[n], each of one with a total of L samples. Those signals would
be windowed with a window function w[n], with a total of N samples and sliding R samples per
each slice of window. Welch estimator, benefits from STFT representation, as indicates in Equation
9-1 for signal x[n].

Equation 9-1 X[t; fl = Z;thgw_lx[n]w[n — iR] exp(—2mjfn)

Where N,, represents the amount of samples considered for w[n], R represents the samples sliced
by each windowing step and K would be defined as the amount of windowing steps, estimated as
exposed in Equation 9-2.

Equation 9-2 K= [L_:W

|+1
where |-] stands for roof function, i.e. the lower nearest integer from -.

Welch estimator for spectral correlation between signals x[n] and y[n] takes the form exposed on
Equation 9-3.

. = 1 =K — *
Equation 9-3 SCxy (frait) = g Zico XL f1Y[6; f +a]

To define the variance of the estimator for SC(«, f) the variance reduction factor € play an important
role. It is defined as follows.

Equation 9-4 e = Xz Ry [kR]? (K,;zlil)

Where R,, represents the autocorrelation function of the window w([n]. R,, is deifned as indicates
Equation 9-5.

Equation 9-5 Rylk] = Yo _ew[n — klw[n]

An interesting result is stablished in [34], is that for a hann window, when R < N,,, /3, it happens
that

Equation 9-6 RS ||3?,W||2/L
where ||-|| stands for L, norm.

If L is large enough, the variance of welch SC estimator becomes
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Equation 9-7 Var {SCay gy} = EXOY(f + )

Where X(f) and Y (f) stands for the power spectral density of signals x[n] and y[n]. This result
makes possible to establish an hypothesis test for the presence of cyclo-stationarity at a particular
a. This hypothesis test is built from Ho hypothesis as follows.

Ho: signal y and x are jointly Cyclo-stationary.
H1: Reject null hypothesis
The criteria for rejection Ho has been established as follows [34].

Reject Ho if there exists a (non singleton) frequency interval “I”” where.

. — 2 1 P Y
Equation 9-8 5Cr i = 52302 Var {SCaveg,py} VP EI

Equation 9-8 results extremely useful to establish the validation of cyclostationary content of a
particular signal. It establish that an statistical threshold could be established with a p-value from
consider a chi-squared distribution with 2 degree of freedom.
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9.3 Annex: Chapter 5
Summary.
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3Hzs?

10-25Hz

Enhanced Fnvelope Fspectrum

[P PP

AN RTORTIT
e naiwhiin " )

) [ E) 10 1
Cyclic Frequency @ [eventfrev]

el

1xBROC: 3.57
2xBPOC: 7.14
3xBPOC: 1071

S-OR-4

60

0.01500

3Hzs?

10-25Hz

Enhanced Envelape Fspectrum

n.osn.xrlu \ [ I

Ay
ALt afuumert A '

IRRTIRTITY
oMty

[ 2 a 6 a 10 I
Cyclic Frequency a [eventfrev]

ey
202

1xBPOC: 3.57
2XBPOC: 7.14
3xBPOC: 10.71

S-OR-5

10

0.00015

6 Hzst

10-40 Hz

Enhanced Envelope Fspectrum

0.225 ‘ ‘

gz
w88
wogo0as

250100

w L

i W s A kil LAkl
2

o

a [ a 10 I
Cyclic Frequency a [eventfrev]

el
2

1xBPOC: 3.57
2xBPOC: 7.14
3¥BPOC: 10.71

S-OR-6

60

0.00015

6 Hzst

10-40 Hz

Enhanced Envelope Fspectrum

0.075 J
0.050\“ TR - o " e

Tl e ¥ Gl ki ul

a [
Cyclic Frequency & [event/rey]

el
2

1xBPOC: 3.57
2xBPOC: 7.14
3xBPO0: 10.71

S-OR-7

10

0.01500

6 Hzs?

10-40 Hz

Enhanced Fnvelope Fspectrum

sos0 WJWJWWWWMM«W

0 2 ) [ E) 10 1
Cyclic Frequency @ [eventfrev]

el

1xBROC: 3.57
2xBPOC: 7.14
3xBPOC: 1071
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Enhanced Envelope Fspectrum

0225 ‘ el
0.200 — 1x8P00:357
0175 —— 2xBP00: 1.14
1 e —— 3xBP0O: 10.71
6 Hzs L5z 0.150
S-OR-8 60 0.01500 EEETES

10-40 Hz

0.050 P R Lk o OTTTING
! Lo b e st bty oty ARk hakia

a 5 a
Cylic Frequency a [eventirev]
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9.4 Annex: Chapter 5 - Inner Race Simulated Signals
Summary.

Run Static | Dynamic Acceleration FROM 0 Hz to 12800 Hz demodulation
Label Load Load
[kal [kg m] Freq. range
Enhanced Envelope Espectrum
0225 ‘ ;“;
v
0.200 BPOI-2: 3.43
017 = orsas
3 Hz S'1 ¥ 0150 BPOI+1: 643
23
288 .
S-IR-1 1 0.00015 EES Aol - SuBrort. 526
EE 0.100 —— 2xBFOI: 10.86
10-25Hz
0.0751
0050 WLMW»‘M»MM WWLWWWWMM i
L] 2 a ] 8 10 L
Cyclic Frequency o [event/rev]
Frhanced Fnvelope Fspectrum
0.225 ‘ ;l é
-
0.200 BPOI-2: 3.43
0175 — Grocsas
3 Hz S'1 ggulsu BPOI+1: 6.43
noo BPOI+2: 7.43
S-IR-2 6 0.00015 HES 0125 e 46PN, 986
50100 —— 2xBFOI: 10.86
10 - 25 Hz L {
0075
- N
Ll L e N S
a 2 a [ 8 10 L
Cyclic Frequency a [eventfrev]
Enhanced Envelope Espectrum
0,225 ‘ ;*:;
0.200 B:'('D\-Z 343
0175 = Gorsas
3 Hzs? sZa1s0 sPoL1- 643
8 §§ BPOI+2: 7.43
S-IR-3 1 0.01500 Heso 230011, 336
€5 0100 ‘ —— 2xBPOI: 10.86
10 - 25 Hz Lw |
0075
0050 WWWM,.JWMWMWAM A
q 2 3 13 ] I L
Cyclic Frequency a [eventfrev]
Enhanced Envelope Expectrum
0225 ;‘ ;
v
0.200 BPOI-2: 3.43
0175 BPOI-1: 4.43
. N — P01 5.3
3Hz 51 ST 0ase ‘ BPOI+1: 6.03
258
SIR-4| 6 | 001500 ol e
250100 ‘ —— 2xBPOI: 10.86
10 - 25 Hz |
0.0751
0050 WWM,.JWMWMWMF\ iy
a 2 3 3 ] I 12
Cyclic Frequency o [event/rev]
Enhanced Envelope Espectrum
el
‘ 2
BPOI-2: 3.43
BPOLL: 4,43
R — BPOI:5.43
6Hzs? BPOI+1: 6.03
BPOL+2: 7.43
S-IR-5 1 0.00015 : !
—— 2xBFOI: 10.86
oo LNWJWLWMWMW
L] 2 ] 10 L
Cyclic Frequency o [event/rev]
Frhanced Fnvelope Fspectrum
0.225 ‘ ;lé
0.200 B:{‘O\—Q‘ 343
0175 | — Grocsas
6 Hz S'l 2Zo1s0 BPOI+1: 6.43
nss BPOI+2: 7.43
S-IR-6 | 6 0.00015 Boamn) e
50100 —— 2xBFOI: 10.86
10-40 Hz ‘
0075
o STV NS NNV NS N WOV
— adi bbby
a 2 a [ 8 10 L
Cyclic Frequency a [eventfrev]
Enhanced Envelope Espectrum
0,225 ‘ ;*:;
0.200 B:'('D\-Z 343
0175 = Gorsas
6 Hz st sZa1s0 sPoL1- 643
@ §§ | BPOI+2: 7.43
S-IR-7 1 0.01500 S Al o 2xBP011: 386
€5 0100 —— 2xBPOI: 10.86
10-40 Hz ‘
0075
0050 memwwmww i A Wt
q 2 3 13 ] I L
Cyclic Frequency a [eventfrev]
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S-IR-8

6 0.01500

6 Hzs?

10-40 Hz

Enhanced Envelope Fspectrum

0.225 ;* ;
x
0.200 BPOI-2: 3.43
0175 BPOI-1: 4.43
M — Bl 5.43
SZoas BPOI+1: 6.43
988 s | BPOI+2: 7.43
L e 2xBPOI-1: 986
50100 — 2xBPOI: 10.85
0.075 L
0.050 \ \
T ECS VHPURYYRRYIITTPITVIPIY O VT TR WINPT | DO NPT | S
3

0 0 12

i [3
Cyclic Frequency a [event/rev]
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9.5 Annex: Chapter 5 — Ball Fault Simulated Signals
Summary.

Static | Dynamic Acceleration FROM 2000 to 6000 Hz demodulation
Load Load
[kal [kg m] Freq. range

Run
Label

B, Improved Ervelope Lepactrim

T —- 18T 0.392
oo I ‘ ‘ == 210 0.784
ours| 111 —— FTO: 1177
24050-2x7T0: 1.85
1 L 0150 ZXHSO-1FTC 4.25
3Hzs 22 om0 e
nEEME 26850+ LxFTO: 5.03
S-BF-1 1 0.00015 B35 e 200421710, 5.2

10 - 25 Hz

4xBSO-24F 10: 8.49
4xBEO-1KFTC: 8,88

o
=
2

| — x50 9.27
0.050 T T Y P KBS0+ 10 9,67
o et g u -
0025 . 4XBSO+24TO: 10.06
z L] bt 12
Cyclic Frequency a lrev—]
B, Impraved Envelope Expactrum
T 1X10: 0.392
e ‘ ‘ 2xFT0: 0.780
ours| 10 - 3T 1177
2X050-2xFT0: 3.85
1 10150 2xBS0-1xFT0: 4,25
3Hzs oZ v
pE80E 2XBS0+ 1FT0: 5,03
S-BF-2 6 0.00015 B e 20850+24770: 3.2
“a

0,025 4xBSO+ 2%FT0: 10.06

1xBS02xF 10 .48
10-25Hz 0075 4XBSO-1xFTO: 8,88
‘ — 4xB50: 0.27
050 ) ol m AXUSO+1XFT0; 967
z a 6 8 10 1

Cycic Frequency a [rev=]

6, Improved Envelope Espectmum

T 1470: 0,302
aoo| |11 ‘ ‘ 24F10: 0,784
b - 3FT0: 1177
047 2ABSO-267 05 3.85
- w0150 TARSO-1XF 105 .25
3Hzs 1 2z — 2xBSO: 464
gEBeans 24850+ LxFTO: 5,03
S-BF-3 1 0.01500 ST e RS0+ 23010, .42
Sa

4xBS0-26F10: 8.49
10-25Hz nors 20501770, 8 88
C e
0050 A ) i " 4XBSO+LXFTO; 36T
PR TR TP P
s P 4 Ay ey d A%BSO+2XFTO: 10.06

B
Cyclic Frequency a [rev="]

B, Improved Envelope Espactum

[ 1IT0: 0,392
ozoof |1 24FI0: 0,784
[ —— BFTO: 1177
047 2xB50-2xFT0: 3,85
-1 w0150 KBS0 146 10: 4,25
3Hzs =2 — 2xBSO: 464
S-BF-4 6 0.01500 gEg 0B 2xBS0+1xFTO: 5.02
D= . st XS0+ 2FT0: 5,52
gy 010 ARBSO-2%FT0: 8,49
10 — 25 HZ .075 AxBSO-1xFTO: 8.88
— 4xBSD: 927
0.050 | | |
AN, " " J rorr Lt A ARHSO+1NFTO) 96T
0.025 ! " i b ’ - 4xBSO+2XFT0: 10.06
2 5 0 1z
Cyclic Frequency « rev="1
B Improved Emwlape Lpactium
T 110 0,302
we| |1 \ b
o16f 11 3410 1177
2xBS0-2xFT0: 3.85
1 011 25BS0-16FTO: 4.25
6Hzs $on o
Pt 24050+ 1XFTO: 5.03
S-BF-5 1 0.00015 Tnnoew 2xBS0+2xFTO: 5,42
3 4KBS0-ZXFID: B,49

L]
1040 Hz | e

a0t " an b oo M ArAakiclbily 4xBS0.+ IXFTO: 8.67
TP A AT YR bl o Lt e AXBSO-+25FTO: 10.06

2 ] [ [] i 1
Cyelic Fraquency a [rev=']

B, Improved Envelape Espectrum

a8 T T T -~ 1iFTO: 0.392
P ‘ Setio 0 os
0161 § | FRFIC: 1177

014 2xBSO-2xFTO- 3 85

-1 u 2%BSO-1xFT0: 4.25
6Hzs 2oz — 2xB50: 4 64

ES
4000,

S-BF-6 6 0.00015 Fow Timornio 242

4XBSO ZFIC: B.49

<3008
10 — 40 Hz 4xBS0-1xFT0: B.88
006 — 4xBS0:0.27
s N PPRTTIR TPRVTY TR IS TE ORI A INFT Y 1 WO NRTYY W Yo AXBSO + 1xFTO: 0.67
004 oh APy Vg > "
M " T AXBS0+2xFTO: 10.08
7 5 0 1
Cyclc Frequency a rev=]
B, Improved Cnvalope Lepactrur
T
ozoo| || ! ‘ ‘
LEES 2485027 T0: 3,85
6 Hz 51 s PRHS0-1NFTC: 4.25
ZS of — a0 064
S-BF-7 1 0.01500 PR 2xBS0+1XFTO: 5.03
_RE- . wss 2x050+2x7T0; 5,42
Ly 0100 AxBSO-2%F T0: 8.49
10 — 40 Hz pors 4xBSO-1xFT0: 8.88
‘l — 4xB50:9.27
0050 LA_’_“_. PO PO RPN PGNP TPIRTITIY UUWPH YOIV PO TOPP | KBS0+ 1XFTO; 9,67
oz ’ g 4xBSO+26FTO: 10,08
0 z i 0 b

B
Cycic Frequency a [rev="]
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B. Improved Cavelope Cspactrum

wzeo| |1 ‘ ‘ -~ BxF10:0.781
0175 2x050-2xFT0: 3.85
6 Hzs = oesoans

S-BF-8 6 0.01500

24850+ 1xFT0: 5.03
2XBS0+24FT0; 5,42
‘ AXBSO-24F10: B.49

10-40 Hz : 0.075 AxBSO-LaFTO: £.88

— 4xB50:9.27
0050 WWWMwWM'WWW IS0+ 14 T0: 867
o 2 6 ] 10 1

AXBE0+ 26FTO: 10,06

3
Cyciic Frequency a [rev="]
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9.6 Annex: Chapter 6 - Outer Race Faults Summary.

Num.

Range
Speed

Acc.

Load

Bearing 1/ Bearing 2

OR-1

14—

6 Hz/s

5 kg

Enhanced Envelope Spectrum EES

0407 x: 1
- 2%:2
30 Hz static 035 1xBPOO: 3.57
2xBPOO: 7.14
s 0.30 3xBPOO: 10.71
a
S
W
“2 E 0.20
T3
0.15
0.10
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
I 1
0.7 22
06 1xBPOO: 3.57
. 2xBPQO: 7.14
N 3xBPOO: 10.71
Sfos x
8¢
é E E 0.4
& N
5 0.3
0.2
0.1
1] 2 4 6 ] 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
OR2 | 30— | 6Hzs | 5kg
- 0.35 2%:2
25 Hz static 1xBPOO: 3.57
0301 2xBPOO: 7.14

o
m
o

EES
fe: 12800.0

&F: 25600.0 Hz
e o
[N}
(SRl

3xBPOO: 10.71

0.10
0.051
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
Ix: 1
0.6 2%:2
1xBPOO: 3.57
0.5 2xBPOO: 7.14
N 3xBPOO: 10.71
o
gg 04
ngs
e
Y803
®
3
0.2
0.1
2 4 6 [] 10 12
Cyclic Frequency a [eventirev]
Enhanced Envelope Spectrum EES
OR-3 | 8-18 | 3Hz/s | 5kg .
- 2x: 2
Hz static 07 1xBPOO: 3.57
2xBPOO: 7.14
p 06 3xBPOO: 10.71
se
geg®®
Yegoa
Fi
303
0.2
0.1

o
]

4 6 8 10 12
Cyclic Frequency a [event/rev]
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EES
fc: 12800.0
Af: 25600.0 Hz

Enhanced Envelope Spectrum EES

Ix: 1
08 2x: 2
07 — 1xBPOO: 3.57
| —— 2xBP00: 7.14
0.6 —— 3xBPOO: 10.71
05
0.4
0.3
0.2
0.1
0 4 6 8 10 12

Cyclic Frequency a [event/rev]

OR-4

21 —
32 Hz

3 Hz/s

5 kg
static

Enhanced Envelope Spectrum EES

1x: 1

2x: 2
— 1xBPOO: 3.57
—— 2xBPOO: 7.14
—— 3xBPOO: 10.71

4 6 8 10 12
Cyclic Frequency a [event/rev]

Enhanced Envelope Spectrum EES

0.8 Ix: 1
2% 2
0.7 — 1xBPOO: 3.57
06 —— 2xBPOO: 7.14
» — 3xBPOO: 10.71
Sa0s
Sg
f580a
oh
503
0.2
01
0 4 6 ] 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
OR-5 | 22 - 6 Hz/s | 0 kg 1
2x:2
39 Hz 0.251 — 1xBPOO: 3.57
—— 2xBPOO: 7.14
#0201 —— 3xBPOO: 10.71
g2
nwd8
whR
an 0.15
3
0.10
a 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
Ix: 1
2%:2
05 — 1xBPQO: 3.57
—— 2xBPOO: 7.14
204 —— 3xBPOO: 10.71
32
Ss
5805
it
L
]
0.2
0.1
4 6 [] 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
OR-6 | 37— | 6Hzs | Okg
' 2x:2
14 Hz —— 1xBPOO: 3.57
0.25 — 2xBPOO: 7.14
¥ —— 3xBPOO: 10.71
o
So
S 0.20
n88
EEE
5015
0.10

4 6 ] 0 12
Cyclic Frequency a [event/rev]
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Enhanced Envelope Spectrum EES

I 1
2% 2
0.5 — 1xBPOO: 3.57
— 2xBPOO: 7.14
504 — 3xBPOO: 10.71
.
25
gs
§%%03
b
®
a
0.2
0.1
(] 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
OR 7 17 3 H / 0 k Enhanced EnVE‘DpE SpEE[[Um EES
- - zls g 11
2x:2
30 Hz — 1xBPOO: 3.57
— 2xBPOO: 7.14
¥ —— 3xBPOO: 10.71
2a
gs
HEH
an
a
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
Ix: 1
0.5 2%: 2
— 1xBPOO: 3.57
—— 2xBPOO: 7.14
§ 04 —— 3xBPOO: 10.71
=
gs
LR
b
®
o2
0.1
2 4 6 8 10 12
Cyclic Frequency a [event/rev]
OR-8 22 3Hz/s | 0 kg Enhanced Envelope Spectrum EES
- — 1x: 1
02251 2x:2
38 Hz 0.200 1 — 1xBPOO: 3.57
| —— 2xBPOO: 7.14
§ 0175 — 3xBPOO: 10.71
o
a2
» S5 0.150
w :§
SNo01s
3
0.100
0.075
0.050 | . . . , . |
0 2 a 6 [ 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
Ix: 1
2%:2
0.4 — 1xBPOO: 3.57
—— 2xBPOO: 7.14
M —— 3xBPOO: 10.71
oF
g30
gig
oo
502
0.1

2 4 6 [] 10 12
Cyclic Frequency a [eventirev]
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9.7 Annex: Chapter 6 - Inner Race Faults Summary.

Num. | Range | Acc. Load Bearing 1/ Bearing 2
Speed

I R 1 29 6 5 k Enhanced Envelope Spectrum EES
- - g o8] BPOI-2: 3.43
38 H H / t t BPOI-1: 4.43
Z ZIs static 016 — BPOI: 5.43
BPOI+1: 6.43
Lo BPOI+2: 7.43
S 2xBPOI-1: 9.86
088012 —— 2xBPOI: 10.86
W 2xBPOI+1: 11.86
#5010
0.08
0.06
0 2 4 6 ] 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0.45 BPOI-2: 3.43
BPOI-1: 4.43
0.401 — BPOI: 5.43
0.351 BPOI+1: 6.43
¥ BPOI+2: 7.43
25030 2xBPOI-1: 9.86
nas —— 2xBPOI: 10.86
&
“:‘_5025 2xBPOI+1: 11.86
F5020 Il | ||

0.15

0 2 3 6 8 10 12
Cyclic Frequency a [event/rev]

I R_2 29 _ H ig h 5 kg 045 Enhanced Envelope Spectrum EES 3012 3.43

- BPOI-1: 4.43
11 HZ (6 static 040 —— BPOI:5.43
0.35 BPOI+1: 6.43
HZ/S) o 8POI+2:7.43
25030 2xBPOI-1: 9.86
288 05 — 2xBPOI: 10.86
it 2xBPOI+1: 11.86
5020

0.15
0.10 PP,
oy
0 2 i 3 [] 0 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
T T BPOI-2: 3.43
0.5 BPOI-1: 4.43
— BPOI: 5.43
BPOI+1: 6.43
204 BPOI+2: 7.43
2a 2xBPOI-1: 9.86
uEg —— 2xBPOI: 10.86
W=to03 2xBPOI+1: 11.86
T3
0.2
0.1
0 2 4 6 8 10 12

Cyclic Frequency a [event/rev]

IR-3 13 _ LOW 5 kg Enhanced Envelope Spectrum EES 9012 3.4

- BPOI-1: 4.43
29Hz | 3 static 8p01: 5.43
Hz/s)

BPOI+1: 6.43
BPOI+2: 7.43
2xBPOI-1: 9.86
2xBPOI: 10.86
2xBPOI+1: 11.86

EES
fc: 12800.0

AF: 25600.0 Hz

0 2 4 6 ] 10 12
Cyclic Frequency a [eventirev]
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Enhanced Envelope Spectrum EES

o
B
=]

EES
fe: 12800.0

&F: 25600.0 Hz

e © o ©
NN W W
S w o

BPOI-2: 3.43
BPOI-1: 4.43
BPOI: 5.43
BPOI+1: 6.43
BPOI+2: 7.43
2xBPOI-1: 9.86
2xBPQI: 10.86
2xBPOI+1: 11.86

0.15
0.107
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
IR-4 29 L 5 ki Enhanced Envelope Spectrum EES
- — ow g BPOI-2: 3.43
13 H 3 tati 0.40 BPOI-1: 4.43
z statiC —— BPOI: 5.43
HZ/S) 0.35 BPOI+1: 6.43
N BPOI+2: 7.43
]
2z 030 2xBPOI-1: 9.86
n%S 035 —— 2xBPOI: 10.86
Wel 2xBPOI+1: 11.86
&
% 0.20
0.15
0.10} A i, 2 A e oat |
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
BPOI-2: 3.43
BPOI-1: 4.43
05 — BPOI:5.43
BPOI+1: 6.43
= BPOI+2: 7.43
2004 2xBPOI-1: 9.86
a88 — 2xBPOI: 10.86
niayd .
~ 5 2xBPOI+1: 11.86
s703
3
0.2
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
IR-5 21 Hiah 0k Enhanced Envelope Spectrum EES
- — |g g BPOI-2: 3.43
BPOI-1: 4.43
38 Hz (6 — BPOL: 5.43
BPOI+1: 6.43
HZ/S) u BPOI+2: 7.43
o
Se 2xBPOI-1: 9.86
n&s — 2xBPOI: 10.86
EEE] 2xBPOI+1: 11.86
g
2 4 6 8 10 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
BPOI-2: 3.43
0.40 BPOI-1: 4.43
— BPOI: 5.43
0.351 BPOI+1: 6.43
¥ BPOI+2: 7.43
S5 0.30] 2xBPOI-1: 9.86
neg —— 2xBPOI: 10.86
LoR0.25
GaRo 2xBPOI+1: 11.86
Q0.20
0.15 ] /| |
0.101
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
I R 6 37 H H h 0 k Enhanced Envelope Spectrum EES
- — |g g 0.35 BPOI-2: 3.43
BPOI-1: 4.43
14 Hz (6 0.30 — BPOI: 5.43
Hz/ BPOI+1: 6.43
Z S) _Yozs BPOI+2: 7.43
25 2xBPOI-1: 9.86
R —— 2xBPOI: 10.86
el 0.20 2xBPOI+1: 11.86
-
9015
010
0 2 4 6 : 10 12

Cyclic Frequency a [event/rev]
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Enhanced Envelope Spectrum EES

BPOI-2: 3.43
0.35 BPOI-1: 4.43
BPOI: 5.43
0.30 BPOI+1: 6.43
¥ BPOI+2: 7.43
S5 2XBPOI-1: 9.86
ngS 025 2xBPOI: 10.86
FESE .
of 020 2xBPOI+1: 11.86
2
0.151
0.101
0 2 i [3 [] o 12
Cyclic Frequency a [event/rev]
IR-7 15 L 0 k Enhanced Envelope Spectrum EES
- — ow g BPOI-2: 3.43
0.35 BPOI-1: 4.43
28 Hz (3 BPOI: 5.43
0.30 BPOI+1: 6.43
HZ/S) s BPOI+2: 7.43
S5 025 2XBPOI-1: 9.86
ngS 2xBPOI: 10.86
WeR020 2xBPOI+1: 11.86
|
0.15
0.10
0 2 i [3 [] o 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
BPOI-2: 3.43
BPOI-1: 4.43
BPOI: 5.43
BPOI+1: 6.43
M BPOI+2: 7.43
o
2s 2xBPOI-1: 9.86
0neg 2xBPOI: 10.86
wWoR :
R 2xBPOI+1: 11.86
-
k-]
0 2 4 6 8 10 12
Cyclic Frequency a [event/rev]
IR-8 30 L 0 k Enhanced Envelope Spectrum EES
- — ow g BPOI-2: 3.43
BPOI-1: 4.43
38 Hz (3 8POI: 5.43
BPOI+1: 6.43
HZ/S) u BPOI+2: 7.43
o5 2xBPOI-1: 9.86
ngg 2xBPOI: 10.86
wan 2xBPOI+1: 11.86
o
0 2 4 6 [] 1o 12
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0.45] BPOI-2: 3.43
BPOI-1: 4.43
0.40{ BPOL: 5.43
| BPOI+1: 6.43
p 03 BPOI+2: 7.43
23 530 2xBPOI-1: 9.86
gg0.
n8s 2xBPOI: 10.86
B8 028 2xBPOI+1: 11.86
2020
015
010}
0 2 4 6 8 10 12

Cyclic Frequency a [event/rev]
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9.8 Annex: Chapter 6 — Rolling Element Faults
Summary.

Num. Range Acc. Load Bearing 1 / Bearing 2
Speed

BF_l 20 _ 38 6 HZ/S 5 kg Enhanced Er\velope Spectrum EES  1xFTO 0.307
Hz static bkt

— 3xFTO:1.19

—— 4xFTO: 1.587

—— 5xFTO: 1.984

—— 6xFTO: 2.38

—— 7xFTO: 2.777

—— BxFT0:3.174
2xBSO-1xFTO: 4.24

—— 2xBSO: 4.63
2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87

—— 4xBS0:9.26
2 4 6 [ 10 12 4xBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]

EES
7t 12800.0
AF: 25600.0 Hz

Enhanced Envelope Spectrum EES

1xFTO: 0.397
2xFTO: 0.793
3xFTO: 1.19
AxFTO; 1,567
5xFTO: 1.984
BxFTO: 2,38
TxFTO: 2.777
8xFTO: 3.174
2xBSO-1xFTO: 4.24
— 2xBSO: 4.63
2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87
—— 4xBS0:9.26
2 4 6 8 10 12 4xBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]

EES
f: 12800.0
AF: 25600.0 Hz

BF-2 29_-11 6 Hz/s 5 kg s Enhanced Envelope Spectrum EES 1470, 0997
. — 2xFT0:0.793
He static | vl || |[[[]] | —im
0.35 —— 4xFTO: 1.587
—— 5xFTO: 1.984
0.30 — 6xFTO: 2.38
0.25 —— xFT0: 2777
—— BxFT0:3.174
0.20 2xXBSO-1xFT0; 4.24
— 2xBS0: 4.63

015 2xBSO+1xFTO: 5.03
0.10 4xB50-1xFTO: 8.87
= 4xBS0:9.26

3 7 3 & To o AxBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]

EES
f: 12800.0
AF: 25600.0 Hz

Enhanced Envelope Spectrum EES

— 1xFTO: 0.397
— 2xFTO:0.793
— 3xFTO: 1.19
—— 4xFTO:1.587

°

5xFTO: 1.984

6xFTO: 2,38

TxFTO: 2.777

8xFTO: 3.174

2xBSO-1xFTO: 4.24

....... — - 2xB50: 4.63

2xBS0+ 1xFTO: 5.03

4xBS0-1xFTO: 8.87
— 4xBS0:9.26

0 2 4 6 8 10 12 4XBSO+1xFTO: 9.66

Cyclic Fraquency a (event/rev]

EES
fc: 12800.0
Af: 25600.0 Hz

BF_3 19 _ 35 3 HZ/S 5 kg 0,250 Enhanced Envelope Spectrum EES  ro-037

H —— 2xFTO: 0.793
Hz static 0225 o
0200 — 4xFTO: 1.587
§ — SxFTO: 1.984
550178 — 6xFT0:2.38
n88 9150 — 7xFTO: 2.777
ol — BxFTO: 3.174
50125 2xBSO-1xFTO: 4.24
— 2xBSO: 463
0.100 2xBSO+1xFTO: 5.03
0075 4xBSO-1xFTO: B.87
— 4xBSO: 9.26
0 ; P G ) o 12 4xBSO+1xFTO: 9.66

Cyclic Frequency & [avent/rev]
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Enhanced Envelope Spectrum EES

—— 1xFTO: 0.397
0.250 —— 2xFTO: 0.793
— 3xFTO: 1.19
o7 — 4xFT0: 1.587
£0.200 — 5xFTO: 1.984
gq —— 6xFTO: 2.38
m§§0175 — TxFTO: 2.777
“Et0as0 — 8xFT0:3.174
&7
5 2XBS0-1xFTO: 4.24
0.125 — 2x850: 4.63
0.100 2xBSO+1xFTO: 5.03
4XBS0-1XFTO: 8.87
007 — 4xB50:9.26
o 2 4 8 10 12 4xB50+ 1xFTO: 0.66

6
Cyclic Frequency & [event/rev]

BF-4 3821 3 Hz/s 5 kg Enhanced Envelope Spectrum EES o007
: — 2xFT0: 0.793
He satic | e | [[[T]]] —imn
— 4xFTO: 1.587
2020 —— 5xFTO: 1.984
2= —— 6xFTO: 2.38
wBs — xFT0: 2.777
Heloas — BxFTO: 3174
2 2xBSO-1xFTOQ: 4.24
—— 2xBSO: 4.63
0.10 2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87
0.05 —— 4xBSO: 9.26
: 3 i 3 g T 12 4xBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0.250 — 1xFTO: 0.397
— 2xFTO: 0.793
0.225 — 3xFTO: 1.19
— 4xFTO: 1.587
A 0.200 — SxFTO: 1.984
220175 — 6xFT0: 2.38
ugs —— TXFTO: 2.777
Hog 0150 — 8xFTO: 3.174
Y405 2xBS0-1xFTO: 4.24
= 2xBSO: 463
0.100 2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87
0075 — 4x850:9.26
0 F) 3 g 3 o 1 4xBSO+1xFTO: 9.66

Cyclic Frequency a [event/rev]

BF_5 21 _ 38 6 HZ/S 0 kg Enhanced Envelope Spectrum EES  1xFTO 0397

Hz 022 —— 2xFTO: 0.793
0.20 — 3xFTO: 1.19
—— AxFTO: 1.587
N 018 —— 5xFTO: 1.984
23 0.16 —— 6xFTO: 2.38
PR — TxFT0: 2777
UoR —— BxFTO: 3174
Hg 012 2xBSO-1xFTO: 4.24
0.10 —— 2xBSO: 4.63
2xBSO+1xFTO: 5.03
008 4xBSO-1xFTO: 8.87
0.06 —— 4xBSO: 9.26
o 3 P 3 3 T 12 AXBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
—— 1xFTO: 0.397
0.20 — 2xFT0: 0.793
—— 3xFTO: 1.19
0.18 —— AxFTO: 1,587
8 — S5xFTO: 1.984
25018 —— 6xFTO: 2.38
E%EOU — 7xFT0: 2.777
~ — BxFTO:3.174
Y5012 2xBSO-1xFTO: 4.24
— 2xBSO: 4.63
0.10 2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87
008 — 4xBS0: 9.26
0 3 i 3 8 10 12 4XBSO+1xFTO: 9.66
Cyclic Frequency a [eventfrev]
BE-6 35— 16 6 Hz/s 0 kg Enhanced Envelope Spectrum EES, Lo 0307
¥ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ = aoores
Z 0.35 — 3xFTO:1.19
—— axFTO: 1.587
5030 — S5xFTO: 1.984
2a —— 6xFTO: 2.38
988025 — TxXFTO: 2777
Iiat —— 8xFTO: 3.174
Hy 020 2XBSO-1xFTO: 4.24
01 — 2xBSO: 4.63
2xBSO+1xFTO: 5.03
0.10 \ I| I " L 4xBSO-1xFTO: 8.87
il —— 4xBS0: 9.26

13 3 7 3 5 ) EP AxBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]
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Enhanced Envelope Spectrum EES

Cyclic Frequency a (event/rev]

—— 1xFTO: 0.397
el [T — o076
= 3xFTO: 119
o040 — 4xFTO: 1.587
5035 —— 5xFTO: 1.984
2e —— 6xFTO: 238
ngg 03 — 7xFT0: 2.777
Yeloas — BxFT0:3.174
*5 020 2xBSO-1xFTO: 4.24
. S I I I I . —— 2xBS0: 4.63
0.15 2xBSO+1xFTO: 5.03
\ L 4xBSO-1xFTO: 8.87
0.10 = 4xBS0:9.26
3 i 3 8 1o 1 4XBSO+1xFTO: 9.66
Cyclic Frequency a [eventirev]
BF_7 14 _ 28 3 HZ/S 0 kg Enhanced Envelope Spectrum EES  1xFTO 0,397
e A TTTTTTT] -
— 3xFTO: 119
0.30 —— 4xFTO: 1.587
N —— 5xFTO: 1.984
22025 —— 6xFTO: 2.38
e — 7xFT0: 2777
wWHE0.20 = 8xfT0O:3174
s 2xBSO-1xFTO: 4.24
0.15 —— 2xBS0: 4.63
2xBSO+1xFTO: 5.03
0.10 4xBSO-1xFTO: 8.87
—— 4xBS0:9.26
3 3 3 3 To ] AxBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
—— 1xFTO: 0.397
[ TTTTTTT] —
0.35 —— 3xfT0:1.19
—— 4xFTO: 1.587
5030 —— 5xFTO: 1.984
o2
s —— 6xFT0: 2.38
mEEUZS — IxFT0: 2777
Wan — BxFT0:3.174
#0020 2xBSO-1xFTO: 4.24
015 —— 2xBSO: 4.63
2xBSO+1xFTO: 5.03
0.10 4xBSO-1xFTO: 8.87
et oafon, l oy y A Potmaigotie — 4xBSO:9.26
3 3 3 & o 2 4XBSO+1XFTO: 9.66
Cyclic Frequency a [eventfrev]
BF-8 30 - 38 3 HZ/S 0 kg 02257 R e 1xFTO: 0.397
H 2xFTO: 0.793
A 0.200 3xFTO: 1.19
4xFTO: 1.587
¥ 0175 SXFTO: 1.984
§§ 0.150 6xFTO: 2.38
neg IxFTO: 2.777
Yo oa2s —— BXFTO: 3.174
g 2xBSO-1xFTO: 4.24
0.100 2xBSO: 4.63
2xBSO+1xFTO: 5.03
0.075 4 4xBSO-1xFTO; 8.57
4xBSO: 9.26
0‘”500 3 3 5 3 e I 4xBSO+1xFTO: 9.66
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
—— 1xFTO: 0.397
0.20
—— 2xFT0:0.793
0.18 ‘ ‘ j ‘ ‘ ‘ — 3xFTO:1.19
—— 4xFTO: 1.587
y 016 —— 5xFTO: 1.984
5'1014 —— 6xFT0: 2.38
e — 7xFT0: 2777
“odoa2 —— BxFT0:3174
"y 2xBS0-1xFTO: 4.24
0.10 —— 2xBSO: 4.63
0.08 2xBSO+1xFTO: 5.03
4xBSO-1xFTO: 8.87
0.06 —— 4xBSO:9.26
3 3 I3 ) To i) AxBSO+1xFTO: 9.66
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9.9 Annex: Chapter 6 — Combination Faults Summary.

Num. | Range Acc. Load Bearing 1 / Bearing 2
Speed
CF-l 44 — 6 HZ/S 5 kg o N 4 Enhanced Envﬁelope Spectrum EESS 10 .
24.6 Hz 05
0.4
;’: s i 0.3
0.1 -MM

=}
=}

B % 5 5
ges A g 2 3 g 2 g8 8
R & ¥ @ & % 5
~ K Ed &
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 6 8 10 12
0.5
0.4
z
NoZTo3
o3
E=g-]
588
3 n
R g 0.2 L l
0.1
0.0
o oX % =] o =} o ] (s} el
EE- N 5 3 4 ° 2 s 2
> X & P = & x = <
A& ~ x - EY ~N
m

N
Cyclic Frequency a [event/rev]

CF_2 264 - 6 HZ/S 5 kg 5 . Enhanced Envﬁelope Spectrum EESS 10 .

0
37.7 Hz 05
0.4
o
N
22503
~ o
5853
gEn
W& -02 | |
3
0.1 1 ‘ I A ..
0.0
[s e X1 % o o o o =] o o
[ o~ o @ Q o @ o 8
L a o & -4 @ o @
A& LI 2 g8 g
~ “a
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 10 12
0.5
0.4
Ho X
)
£3593
~ 88
383
Zen
e g 0.2 |y
0.1 .l
..LL A o | AL
0.0
O OX % Q o o o ] o o
EE- ~ S @ g o] I S &
% = a =] @ o % o @
A& = X % 3 g ¥
&

&
Cyclic Frequency a [event/rev]




Chapter 9 — Annex

161

CF-3

18.7 -

3 Hz/s

5kg

Enhanced Envelope Spectrum EES

0 2 10 12
35.8 Hz 03
0.4
Yol
N
22503
=31
238
i
W02 1
<
0.1
0.0
% x ol 5
gEe® ¢ 8 g § 8 g 8 g
| & @ & Iy @ o
x X o X @ x @ “,‘2
A& ~N x = % N
~ o]
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
2 6 10 12
0.40
0.35
N 0.30
Wol
£g802s
2e8
@ e u
Beg 0.20 )
0.15
0.10 . ‘
0.05
[e R % o o o (=] Is]
=~ ~ 8 a Q o @ 8 E
| oy & @ = & -] a &
x X «© X o x ] .
S & & % = X N
& A
Cyclic Frequency a [event/rev]
- - Enhanced Envelope Spectrum EES
CF-4 | 375 3 Hz/s | 5kg 0 5 . S 10 .
15.1 Hz 05
0.4
Yol
3503
=]
8¢
i
W02
3
0.1
0.0
o ox x o o o =] o
- o~ 8 @ e o @ 8 8
| oy = o & & -] o &
x X < X ] x @ =<
S & &~ x hi % ~N
~ o]
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 10 12
0.5
0.4
Tolt
)
£33
=R
53¢
i l
wE b 0.2 |
0.1
0.0
o OX % Q o [=] ] o
EE™ N 8 2 g o] @ g8 2
o & @ & o -] & @
x X < X ] x @ =<
A& X 2 <+ S E

&
Cyclic Frequency a [event/rev]
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Vibration Analysis.

- - Enhanced Envelope Spectrum EES
CF-5 | 136 6Hz/s | Okg 0 ) . p : " "
27.6 Hz static 03
0.4
ol
g o3 0.3
=8¢
2068
woT
W& 5 0.2
0.1
0.0
> x 5 5
ges & 8 g2 8 8 2 8 B
£k E 5 5 g g 5 B
A& N x = = &
& L
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 6 8 10 12
0.6
0.5
_ £0.4
N
f3s
58803
0§
"R,
0.1
0.0
> x 5 ol
gEgs & 8 g § 8 g 8 8
[T 4 o & = o = %
A& B X E i g R
N a
Cyclic Frequency a [event/rev]
- - Enhanced Envelope Spectrum EES
CF6 | 408 6 Hzis | Okg ] ] . : - - >
28.1 static 06
Hz. 05
_ £0.4
£33
58803
Bl |
Hes
<02 I
0.1
0.0
> > 5 ol
egs & 8 g g 8 2 g @
[ & o = & @ o =
ER X g I % R
N a
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 10 12
0.6
0.5
% 0.4
£33
388503
e
Hes
<02 | I i | |
01 MUM b MM
A N AV
0.0
x » 5 5
ggs & 8 & § 8 2 8 2
oy & o = & Q & =
x 2 =] X =) E @
A& N x < x &
& &
Cyclic Frequency a [event/rev]
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CF-7

15.5-

3 Hz/s

0 kg

Enhanced Envelope Spectrum EES
6 8

J 0 2 10 12
28.7 Hz static 06
0.5
_ E0.4
N g
i
58803
foc
HEs
02 |
0.1
0.0
ega & g8 g g 3 g2 38 2
Ek 5§ % 5 5 g g g
- A ~ E ~ 3 &
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 6 10 12
0.7
0.6
0.5
ol
£Sc04
=
8¢
23
gog 03
uTy
0.2 I 4 | ;
0.1
0.0
eg5 & 8 g 5 8 g 8 2
[ & o & a @ o &
R ] X 2 & 2 E
Cyclic Frequency a [event/rev]
- - Enhanced Envelope Spectrum EES
CF-8 | 305 3Hzls | Okg 0 5 e : " L
38.4 Hz static 03
0.4
Tol
SFRLY
~a
182
e
fleg oz |
0.1 JL
bbbl by
0.0
ee5 & g 3 5 8 g s 2
IR & @ @ -4 -] a ]
ERS I 2 § % Z
& o
Cyclic Frequency a [event/rev]
Enhanced Envelope Spectrum EES
0 2 6 8 10 12
0.5
0.4
ol
;’:‘ = 0.3
=88
588
Gor |
W s 0.2 '
0.1“ d I
0.0
epx & g g2 3 8 2 g 8
i = @ & - @ = 5
x X @ X @ x o =
-~ ~ % ~ F &

&
Cyclic Frequency a [event/rev]
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