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Resumen (Abstract) 

 

DIAGNÓSTICO DE FALLAS INCIPIENTES EN RODAMIENTOS BAJO 

CONDICIONES DE OPERACIÓN NO ESTACIONARIAS MEDIANTE ANÁLISIS DE 

VIBRACIONES. 

 

Los rodamientos, son una parte fundamental de la mayoría de máquinas rotativas, 

consecuentemente, la detección de fallas y el diagnóstico temprano de estos elementos son de gran 

interés para incrementar los niveles de confiabilidad y mantenibilidad de los equipos rotativos. El 

análisis de vibraciones es la herramienta más utilizada para el diagnóstico de rodamientos. Pese a 

los avances en los algoritmos y procesamiento digital de señales para el diagnóstico, es común 

encontrar grandes avances para casos en los cuales las condiciones operativas se mantienen 

estacionarias. Este no es el caso de muchos equipos rotativos, donde la velocidad angular puede 

resultar variable en el tiempo. En general, la operación bajo condiciones de velocidad variable 

genera respuestas vibratorias en las cuales se combinan fenómenos ángulo-periódicos con 

fenómenos tiempo-periódicos.  

 

Este trabajo presenta un método para el diagnóstico de fallas en rodamientos, utilizando algoritmos 

de “Computer Order Tracking”, análisis de Ciclo-No-Estacionareidad y análisis de Kurtosis 

Espectral. El método fue evaluado utilizando una serie de señales capturadas bajo condiciones de 

velocidad variable y una serie de señales simuladas, bajo diferentes condiciones de carga y 

velocidad. Adicionalmente se propone una estrategia para la demodulación de señales, y se presenta 

un clasificador, entrenado con una combinación entre señales simuladas y señales capturadas para 

el diagnóstico de tipos de fallas. 

 

Palabras clave: Rodamiento, Análisis de Vibraciones, Velocidad variable, Cyclo-No 

Estacionareidad, Order Tracking Computarizado, Kurtosis Espectral.  
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Abstract 

 

DIAGNOSIS OF INCIPIENT FAILURES IN ROLLING ELEMENT BEARINGS UNDER 

NON-STATIONARY OPERATION CONDITIONS BY VIBRATION ANALYSIS. 

 

Rolling Element Bearings –REB  are a fundamental part of most of rotating machines. Consequently, 

their fault detection and timely diagnosis are of great interest to improve the reliability and 

maintainability of rotational equipment. Vibration analysis is the most widely used tool for bearing 

diagnostics. Despite advances in algorithms and digital signal processing for diagnosis, it is common 

to find great advances for cases in which operating conditions remain stationary. This is not the case 

with many rotating equipment, where the angular velocity can be variable over time. In general, 

operation under variable speed conditions generates vibratory responses at which angle-periodic 

phenomena are combined with time-periodic phenomena. 

 

This work presents a method for the diagnosis of bearing failures, using "Computer Order Tracking" 

algorithms, Cycle-Non-Stationarity analysis and Spectral Kurtosis analysis. The method was 

evaluated using a series of signals captured under variable speed conditions and a series of simulated 

signals, under different load and speed conditions. Additionally, a signal demodulation strategy is 

proposed, and a classifier is presented, trained with a combination between simulated signals and 

captured signals for the diagnosis of types of failures. 

 

 

Keywords: Rolling Element Bearing, Vibration Analysis, non-stationary Speed, Cyclo-non-

stationary analysis, Computer order tracking, Spectral Kurtosis. 

 

 

 

 

 



Content XI 

 

Content 

Pág. 

Resumen (Abstract) ....................................................................................................................... IX 

Figures list .................................................................................................................................... XIII 

Symbols and Abbreviations List ................................................................................................ XVI 

1. Introduction ............................................................................................................................ 19 
1.1 Background and Context .................................................................................................. 19 
1.2 Justification ...................................................................................................................... 24 
1.3 Research Aim ................................................................................................................... 25 

2. Theoretical Framework ......................................................................................................... 27 
2.1 Rolling Element Bearing Diagnosis – Benchmark method.............................................. 27 
2.2 Kurtosis, Spectral Kurtosis and Fast Kurtogram. ............................................................. 30 
2.3 Second-Order Cyclostationary Analysis for Rolling Element Bearing. ........................... 36 
2.4 Analysis of Square Envelope Spectrum. .......................................................................... 40 

2.4.1. Demodulation Band ..................................................................................................... 41 
2.5 Variable Speed Order Tracking........................................................................................ 45 

2.5.1. Order Tracking Approaches ......................................................................................... 45 
2.6 Variable Speed Bearing Diagnosis State of Art ............................................................... 52 

3. Experimental Setup ................................................................................................................ 56 
3.1 Rolling Element Bearing Characterization ...................................................................... 57 
3.2 Test Rig Critical Speed .................................................................................................... 61 

3.2.1. Critical Speed Model Estimation ................................................................................. 61 
3.3 Other notorious spectral components ............................................................................... 62 

4. Model for Rolling Element Bearing Diagnosis under variable Speed ............................... 63 
4.1 NewIESfogram ................................................................................................................. 71 

5. Simulated Experimental Results ........................................................................................... 74 
5.1 Simulation Model ............................................................................................................. 74 

5.1.1. Outer Race Amplitude Modulation Function ............................................................... 76 
5.1.2. Inner Race Amplitude Modulation Function ............................................................... 77 
5.1.3. Rolling Element Amplitude Modulation Function ....................................................... 78 
5.1.4. Nominal Parameters for Simulated Signals. ................................................................ 79 

5.2 Simulated Faults Results .................................................................................................. 82 
5.2.1. Outer Race Simulated Fault ......................................................................................... 83 
5.2.2. Inner Race Simulated Fault .......................................................................................... 87 
5.2.3. Ball Simulated Fault ..................................................................................................... 91 



XII DIAGNOSIS OF INCIPIENTS FAILURES IN ROLLING ELEMENT BEARINGS UN NON-STATIONARY 

OPERATION CONDITIONS BY VIBRATION ANALYSIS. 

 
5.2.4. Simulated Combination Fault ...................................................................................... 96 

5.3 Other Effects Observables on Simulated Signals. .......................................................... 101 
5.3.1. Effect of Signal to noise ratio .................................................................................... 101 
5.3.2. Effect of Impulse distribution .................................................................................... 102 
5.3.3. Effect of Random Slippage ........................................................................................ 106 

6. Experimental Tests. ............................................................................................................. 109 
6.1 Outer Race Fault. ........................................................................................................... 110 
6.2 Inner Race Fault. ............................................................................................................ 116 
6.3 Rolling Element Fault. ................................................................................................... 123 
6.4 Combination Fault.......................................................................................................... 127 
6.5 Conclusions of chapter. .................................................................................................. 132 
6.6 Classification Algorithm. ............................................................................................... 132 

7. Conclusions and Recommendations ................................................................................... 135 

8. References ............................................................................................................................. 137 

9. Annex .................................................................................................................................... 141 
9.1 Annex: Spectral Correlation Estimators......................................................................... 142 
9.2 Annex: Spectral Correlation Statistical Threshold ......................................................... 143 
9.3 Annex: Chapter 5 - Outer Race Simulated Signals Summary. ...................................... 145 
9.4 Annex: Chapter 5 - Inner Race Simulated Signals Summary. ....................................... 147 
9.5 Annex: Chapter 5 – Ball Fault Simulated Signals Summary. ........................................ 149 
9.6 Annex: Chapter 6 - Outer Race Faults Summary. .......................................................... 151 
9.7 Annex: Chapter 6 - Inner Race Faults Summary. .......................................................... 154 
9.8 Annex: Chapter 6 – Rolling Element Faults Summary. ................................................. 157 
9.9 Annex: Chapter 6 – Combination Faults Summary. ...................................................... 160 

 

 
 
 
 



Content XIII 

 

Figures list 

Figure 1-1. Vibration response in a faulty Rolling Element Bearing - Illustration. ......................... 20 

Figure 1-2. Illustration for vibrational response in time domain and angular domain. .................... 22 

Figure 1-3. Vibrational response in REB under variable speed [10]. .............................................. 23 

Figure 2-1. Typical REB fault waveform and Envelope. Vibrational response against angular 

position ............................................................................................................................................. 28 

Figure 2-2. Rolling Element Bearing Diagnosis by Squared Envelope Spectral Analysis – Two 

methods [25]. ................................................................................................................................... 29 

Figure 2-3. Sample kurtosis illustration ........................................................................................... 31 

Figure 2-4 Illustration of Spectral Kurtosis Estimator ..................................................................... 32 

Figure 2-5. Window length dependence  of spectral kurtosis. ......................................................... 33 

Figure 2-6. Kurtogram ..................................................................................................................... 34 

Figure 2-7. Kurtogram Binary Tree. ................................................................................................ 35 

Figure 2-8. Fast Kurtogram. ............................................................................................................. 35 

Figure 2-9. Illustration of Spectral Correlation for strictly Second-Order Cyclostationary. ............ 37 

Figure 2-10. 'Signal 1' Power Spectral Density ................................................................................ 37 

Figure 2-11. Power Spectral Density vs. α-shifted Power Spectral Density. ................................... 38 

Figure 2-12. ‘Signal 1’ Simulated Outer Race Fault Spectral Correlation ...................................... 39 

Figure 2-13 ‘Signal 1’ Simulated Outer Race Fault Spectral Correlation Color-map ..................... 39 

Figure 2-14. simulated Outer Race Fault 'signal 1' Waveform ........................................................ 40 

Figure 2-15. 'Signal 1' Squared Envelope Spectrum ........................................................................ 41 

Figure 2-16. ‘Signal 1’ Spectral Correlation averaging over spectral frequency axis. .................... 41 

Figure 2-17. Simulated Outer Race Fault 'Signal 2' Kurtogram demodulation. .............................. 43 

Figure 2-18. Simulated Outer Race Fault 'Signal 2' Spectral Correlation ........................................ 44 

Figure 2-19. Simulated Outer Race Fault 'Signal 2' Spectral Correlation Demodulation ................ 44 

Figure 2-20 Variable Speed Conceptualization. .............................................................................. 45 

Figure 2-21 Illustration for Order Tracking Approaches ................................................................. 46 

Figure 2-22 Theoretical Tacho Encoder Signal for Increasing Rotational Speed ............................ 47 

Figure 2-23 Phase demodulation illustration ................................................................................... 48 

Figure 2-24. Simulated Spectrogram for illustration of MOPA ....................................................... 50 

Figure 2-25 Instantaneous Spectrum at time step ti.......................................................................... 50 

Figure 2-26 Shrinked Instantaneous Spectrum under the harmonics set H. .................................... 51 

Figure 2-27. Probability distribution map for instantaneous angular speed ..................................... 52 

Figure 3-1. Test Rig ......................................................................................................................... 56 

Figure 3-2. Magnitude Spectrum Raw Vibration Response. ........................................................... 57 

Figure 3-3 Modulations in resonance regions for Outer Race Fault REB 1450-1850 Hz. .............. 58 

Figure 3-4.Outer-Race Fault waveform. .......................................................................................... 59 



XIV DIAGNOSIS OF INCIPIENTS FAILURES IN ROLLING ELEMENT BEARINGS UN NON-STATIONARY 

OPERATION CONDITIONS BY VIBRATION ANALYSIS. 

 
Figure 3-5. Outer Race Faulty Bearing – Kurtogram. ..................................................................... 59 

Figure 3-6. Raw signal vs Kurtogram filtered signal waveforms. ................................................... 60 

Figure 3-7. Spectral Correlation for Outer Race Fault Bearing ....................................................... 60 

Figure 3-8. Discrete Random Separation filter magnitude spectrum. .............................................. 62 

Figure 4-1. Procedure for REB Diagnosis under variable speed. .................................................... 63 

Figure 4-2. Procedure for REB Diagnosis illustration. .................................................................... 64 

Figure 4-3 Waveform of variable speed vibration response. A) Time domain signal. B) Short Time 

Fourier Representation. .................................................................................................................... 66 

Figure 4-4. Instantaneous Rotational Speed from MOPA approach. ............................................... 67 

Figure 4-5. Phase demodulation order tracking. .............................................................................. 68 

Figure 4-6. Angle domain waveform. .............................................................................................. 68 

Figure 4-7. GSA illustration ............................................................................................................ 69 

Figure 4-8. Order-Frequency Spectral Coherence - OFSCoh .......................................................... 69 

Figure 4-9. Enhanced Envelope Order Spectrum ............................................................................ 70 

Figure 4-10. Illustration of IES and Ind-metric computation. A) Spectral Coherence 

Representation. B) IES representation. ............................................................................................ 72 

Figure 4-11. Ind-metric computation comparison. A) ind illustration for low SNR Improved 

Envelope Specturm. B) ind illustration for high SNR Improved Envelope Specturm .................... 73 

Figure 4-12 Sample correlation computation comparison. A) Low sample correlation case. B) High 

sample correlation case. ................................................................................................................... 73 

Figure 5-1. Amplitude Modulation Function ................................................................................... 75 

Figure 5-2. Loads for the case of localized faulty on outer race ...................................................... 76 

Figure 5-3. Loads for the case of localized faulty on inner race ...................................................... 77 

Figure 5-4 Loads for the case of localized faulty on rolling element .............................................. 78 

Figure 5-5 Illustration of slippage .................................................................................................... 80 

Figure 5-6. Components of simulated signals and rotation speed. .................................................. 81 

Figure 5-7. Simulated Signals for OR fault. .................................................................................... 84 

Figure 5-8. 'S-OR7' signal OFSC and IES ....................................................................................... 85 

Figure 5-9. ‘S-OR2’signal OFSC and IES. ...................................................................................... 86 

Figure 5-10. IES comparison for Inner Race Simulations Signals. ................................................. 88 

Figure 5-11. ‘S-IR-1’signal OFSC and IES. .................................................................................... 89 

Figure 5-12. ‘S-IR-1’signal OFSC and IES. .................................................................................... 90 

Figure 5-13. IES comparison for Rolling Element Faults Simulations Signals. .............................. 92 

Figure 5-14. IES for Rolling Element Faults Simulations Signals – Horizontal Comparison. ........ 93 

Figure 5-15. ‘S-BF-4’signal OFSC and IES. ................................................................................... 94 

Figure 5-16. ‘S-BF-6’signal OFSC and IES. ................................................................................... 94 

Figure 5-17. IES comparison for Combination Fault Simulations Signals. ..................................... 96 

Figure 5-18. ‘S-CF-6’signal OFSC and IES. ................................................................................... 97 

Figure 5-19. ‘S-CF-8’signal OFSC and IES. ................................................................................... 98 

Figure 5-20. Order Frequency Spectral Coherence Map for Combination Fault S-CF-9. ............... 99 

Figure 5-21. IES at different spectral frequency bands for S-CF-9. A) Demodulation for Ball Fault. 

B) Demodulation for Outer Race Fault. C) Demodulation for Inner Race Fault. D) EES............. 100 

Figure 5-22. Effect on Signal to Noise Ratio. ................................................................................ 101 

Figure 5-23. Effect of spall size on vibration generated ................................................................ 102 



Contenido XV 

 

Figure 5-24. IES for different spall extension. ............................................................................... 103 

Figure 5-25. Effect on Spall Percentage – Loads similar to S-BF-2. ............................................. 104 

Figure 5-26. Effect on Spall Percentage – Loads similar to S-BF-7. ............................................. 105 

Figure 5-27. Effect of random slippage. ........................................................................................ 107 

Figure 6-1 Run OR-3 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ....... 111 

Figure 6-2. Run OR-3 B1 A. IESFOgram B. IESFO. .................................................................... 112 

Figure 6-3. Run OR-3 B1. A. newIESFOgram, B. newIESFO. ..................................................... 112 

Figure 6-4. Run OR-5 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 113 

Figure 6-5. Run OR-5 B1 signal. A. IESFOgram B. newIESFOgram. C. Improved Envelope Order 

Spectrum. ....................................................................................................................................... 114 

Figure 6-6. Run OR-6 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum ....... 115 

Figure 6-7. Run OR-6 B1 signal. A. IESFOgram B. newIESFOgram C. IESFO D. newIESFO .. 116 

Figure 6-8. Run IR-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ........ 117 

Figure 6-9 Run IR-1 B1 signal. A. IESFO. B. newIESFO ............................................................ 118 

Figure 6-10. Run IR-1 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 119 

Figure 6-11. Run IR-1 B2 signal. A. IESFO. B. newIESFO. ........................................................ 120 

Figure 6-12. Run IR-2 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 121 

Figure 6-13. Run IR-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 122 

Figure 6-14. Run IR-2 B2 signal. A. IESFO. B. newIESFO. ........................................................ 122 

Figure 6-15 Run BF-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 124 

Figure 6-16 Run BF-1 B2 signal. newIESFO. ............................................................................... 124 

Figure 6-17. Run BF-2 B2 signal. newIESFO ............................................................................... 125 

Figure 6-18 Different newIESFO for ball fault case, signals sampled on B2. ............................... 126 

Figure 6-19 Run CF-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. ...... 128 

Figure 6-20. Run CF-2 B2 newIESFO for Inner-Race fault search ............................................... 129 

Figure 6-21. Run CF-2 B2 newIESFO for Outer-Race fault search .............................................. 129 

Figure 6-22. Run CF-3 B2 signal. Enhanced Envelope Order-Spectrum ...................................... 130 

Figure 6-23. Run CF-6 B2 signal. Enhanced Envelope Order-Spectrum ...................................... 130 

Figure 6-24. Run CF-8 B2 signal. Enhanced Envelope Order-Spectrum ...................................... 131 

Figure 6-25. Data Set Estructure. ................................................................................................... 133 

Figure 6-26. Confusion matrix for validation data ......................................................................... 134 

Figure 6-27. ROC Performance illustration. .................................................................................. 134 

 

 

 



Content XVI 

 

Symbols and Abbreviations List 

 

Latin Symbols 
 

Symbol Term Unit SI 

f Spectral Frequency Hz 

h 
System's Impulse Response – Time 

representation of discrete filter 
[-] 

t Time variable s 

x Vibrational Response / Vibration Signal m s-2 

Mg Rotor weight N 

m Unbalance equivalent mass kg 

e Unbalance equivalent eccentricity m 

me Unbalance weight kg m 

A(t) Amplitude Modulation Function m s-2 

 

Greek Symbols 
 

Symbol Term Unit SI 

𝛼 Cyclic frequency revolution-1 

𝜃 Angular shaft position rad 

�̇� Angular shaft speed s-1 

�̈� Angular shaft acceleration s-2 

 
 
Abbreviations 
 

Abbreviation Term 

REB Rolling Element Bearing 

Fs Frequency of Sampling [samples/s] 

Os Order sampling (similar to Fs but in angular domain) [samples/revolution] 

STFT Short Time Fourier Transform 

BPOO Ball Pass Order Outer-Race [event / revolution] 

BPOI Ball Pass Order Inner-Race [event / revolution ] 

BSO Ball Spin Order [event / revolution] 

FCO Fault Characteristic Order [event / revolution] 

FTO Fundamental Train Order [event / revolution] 

BPFO Ball Pass Outer-Race Frequency [Hz] 

BPFI Ball Pass Inner-Race Frequency [Hz] 



Contenido XVII 

 

Abbreviation Term 

BSF Ball Spin Frequency [Hz] 

FTF Fundamental Train Frequency [Hz] 

SC Spectral Correlation [ U4 Hz-2 ] 

SCoh Spectral Coherence [-] 

PSD Power Spectral Density [U2 Hz-1 ] 

SES Squared Envelope Spectrum 

EES Enhanced Envelope Spectrum 

EEOS Enhances Envelope Order Spectrum 

IES Improved Envelope Spectrum 

IEOS Improved Envelope Order Spectrum 

MOPA Multi Order Probabilistic Analysis 

PDF Probability Distribution Function 

SNR Signal to Noise Ratio 

OR Outer Race 

IR Inner Race 

RE Rolling Element 

BF Ball Fault 

 

 

 

 

 

 





 

1. Introduction 

 

1.1 Background and Context 

The Rolling Element Bearing (REB) diagnosis is of particular interest for condition based 

maintenance. The aim of the diagnosis by mechanical vibrations consists in the identification of 

anomalies in the vibratory response of a particular equipment, identifying if such anomaly comes 

from a change in the driving source, or some physical change in the equipment of interest. The above 

is illustrated in Equation 1-1, in this model the vibratory response 𝑥(𝑡) results as the output of a 

lineal time invariant system with time transfer response function ℎ(𝑡), when an external stimulus or 

drive force 𝑓(𝑡), taking into account the noise or others vibration sources 𝑛(𝑡). 

Equation 1-1   𝑥(𝑡) = ℎ(𝑡) ∗ 𝑓(𝑡)  + 𝑛(𝑡) 

For the particular case of vibrations in rotary machinery, it is intuitive to assume that the external 

driving force presents a periodic behavior as a function of the angular position of the shaft θ. As a 

result, it is expected that the vibratory response will also show some kind of periodical behavior in 

the angular domain. However, in most cases, the transfer function does not depend on the angular 

position of the axis, therefore, without incurring in rigorous math’s, Equation 1-1 can be rewritten 

as follows. 

Equation 1-2   𝑥(𝑡, 𝜃) = ℎ(𝑡) ∗ 𝑓(𝜃) + 𝑛(𝑡) 

In order to express the vibratory response in the angular domain, different techniques have been 

developed [1]–[4]. These authors have mainly taken advantage from the different advances in digital 

signal processing. Among those techniques the Computer Order Tracking (COT) is maybe the most 

used [5]. The Computer Order Tracking identify the angular position of the shaft by referencing in 

the pulses series emitted by a tachometer or encoder. By this, is possible to obtain a signal sampled 

at instants, which correspond to equally angular spans.  

Particularly for the Rolling Element Bearing diagnosis, the interaction between time periodical and 

angular periodical phenomenons has been exposed by different authors [2], [6]. To exemplify this, 

consider the presence of a brief crack in the outer race of a bearing, as shown in Figure 1-1. This 

crack will generate contact with the rolling elements as the shaft continues rotating. This situation 

would be present at equally-spaced angular intervals according to the geometry of the bearing. In 

this sense, the contacts will occur at periods dictated by the Fault Characteristics Frequencies –FCF 

of the rolling element bearing, named BPFI, BPFO, BSF and FTF. Those frequencies are broadly 

exposed and discussed in literature [7].  

Each time crack and rolling elements are in contact, occurs an impulsive force, which generates a 

vibration response in the resonance frequencies of the REB. Resonance frequencies usually belong 

to 2000 – 10000  Hz [8], and they are dictated mainly by dynamic conditions, i.e. dictated by the 

mass, restrictions, stiffness and damping characteristics of REB. This has an important implication, 



20 Diagnosis Of Incipient Failures In Rolling Element Bearings Un Non-Stationary Operation Conditions By 

Vibration Analysis. 

 
which is that instantaneous vibrational response generated by those impacts are mainly time-

dependent, as it is illustrated in Figure 1-1. 

 

Figure 1-1. Vibration response in a faulty Rolling Element Bearing - Illustration. 

 

 

The situation illustrated in Figure 1-1 and the previous paragraph, could be summarized by the fact 

that the impacts periodicity are dictated by the geometry of the REB and the shaft rotational speed. 

On the other hand, the behaviour of the vibrational response at impacts is mainly dictated by 

dynamics characteristics and is usually associated with high frequencies energy. 

The simplistic model of Equation 1-2, also could explain the situation previously seen. The impulsive 

force generated by the contact between rolling elements and race is represented by the force 𝑓(𝜃). 

This force is dictated by the kinematic characteristics of the ensemble, i.e. geometry and rotational 

speed. On the other side, the path between race and the vibration sensor corresponds to the function 

ℎ(𝑡), which is a transfer function dictated by the dynamic characteristic i.e. mass, stiffness and 
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damping, an consequently, will determine the resonance frequencies of the REB. In this sense, 𝑓(𝜃) 

represents the periodic forces while the ℎ(𝑡) represents the system dynamic. 

The previous discussion shows the linkage between angular position dependency and time phenomes 

dependency for REB diagnosis. The first one governs the periodicity forces while the second one 

represents the system dynamics. 

If the angular velocity keeps constant, the duality between time variable 𝑡 and angular position 𝜃 is 

easily solved since the proportional relation for both variables. In this sense, the vibrational response 

would have periodicity in both domains. In general is preferred to perform the REB diagnosis in 

angular domain, analyzing the spectral behaviour of the signal envelope in terms of ‘orders’, which 

is the analogues to frequency in time domain. 

In many applications is reasonable to assume the angular velocity keeps stationary, i.e. nearly 

constant. However, it is common to find diverse situations at which this assumption does not results 

reasonable. In such situations, the interaction between kinematics (angular domain) and dynamics 

(time domain) matter, since vibrational response signal contains valuable information in both 

domains.  

To explain the interaction between both domains, in nonstationary angular speed, let consider again 

the rolling element bearing exposed in previous paragraphs and illustrated in Figure 1-1. Consider a 

“run-up” situation at which the angular speed is increasing. Under this situation, the impulses 

generated due to contact with failure surface conserves periodicity in angular domain. However, this 

periodicity is not conserved in time domain since the time-intervals at which impacts are generated 

would be reducing as angular velocity increases. Accordingly, this indicates that if the vibrational 

response is expressed as a time function, the impacts would not seem periodical. This situation is 

illustrated in Figure 1-2. On the other hand, the behaviour of the signal just at instants when impacts 

occurs, is mainly governed by time domain, i.e. when vibrational response is represented in angular 

domain, the time periodicities at impact instants do is loosed, as it is illustrated in the lower part of 

Figure 1-2. From REB diagnostic perspective, this duality generates the necessity of implement a 

method which allows to extract periodic information related with angular domain, but also, consider 

the frequencies associated with the ensemble dynamics [9]. 
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Figure 1-2. Illustration for vibrational response in time domain and angular domain. 

 

 

Additionally to the duality on time and angular dependencies, it should be added that the 

amplitude could be modulated as consequence of angular speed changes. From an energetic 

perspective, this velocity increasing (decreasing) could be represented as an increase in kinetic 

energy, transmitted to REB and generating increases (decreases) in the energy of elastic 

deformation. To illustrate this, consider the model presented by [10], illustrated in Figure 1-3. 
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Figure 1-3. Vibrational response in REB under variable speed [10]. 
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In this model the force is represented as an angular periodic pulse train 𝛿𝜃𝑓
, which activate the REB 

transfer function ℎ(𝑡). Those pulses are modulated in amplitude by the function 𝐴𝑚(𝑡) because of 

kinetic energy increasing. 

This modulation 𝐴𝑚(𝑡) could have other additional causes different from kinetic energy increase, 

including for example natural frequencies excitations associated with shaft or rotors supported by 

the REB. This excitations are probable because the temporal changes in the 1X during acceleration 

run-up. Equally to resonance frequencies associated with REB, the resonance frequencies of the 

shaft, rotor, and other elements present are mainly time dependent, establishing a linkage between 

vibrational response of REB and dynamical behaviour of other elements arranged in the assembly. 

Through this section, a general discussion of the aspects related with the diagnosis of REB under 

variable speed has been discussed. As previously discussed, results important to build models which 

results able to detect the presence of periodicity of vibration spikes while catching the dynamic 

behaviour of the system.  

For the following sections of this chapter, a brief justification of this work and a summary of the 

research aim is presented. 

1.2 Justification 

The condition-based maintenance represents an interesting strategy for many of industrial and 

productive process since their benefits in reducing operative costs and increase equipment’s 

reliability. By this approximation many logistics and monetary benefits could be achieved [11], [12]. 

Particularly, the mechanical vibration analysis and vibration based condition monitoring are one of 

the most useful techniques in CBM [13]. By vibration, analysis is possible to capture symptoms of 

early failures, which could also aid the detection, diagnostic and eventual prognostic of the 

indication.  

Vibration-based condition monitoring is intended to capture the vibrational response of particular 

equipment by the use of vibration sensors. This is done to identify if an eventual change in the 

vibrational response is either due to any change in equipment structure or is due to any change in 

excitation source or drive mechanism [14]. 

In some situations, the criticality of the equipment in question induces the need for permanent and 

online monitoring of mechanical vibrations. A need that can be reinforced when the mechanisms 

contain elements such as bearings, gears or blades, since detection under such conditions is made 

more sensitive by using accelerometers [14], [15]. The above, in conjunction with the nowadays 

context of Industry 4.0, the wide availability of sensors and acquisition systems at more accessible 

prices, the accelerated increase in computing capacity, and the availability of algorithms and 

frameworks for digital signal processing, lead the use of online vibration monitoring. 

One of the great challenges for online vibration monitoring lies in the variability that can arise in the 

operating conditions of the different rotating equipment. This gives rise to non-stationary vibrations 

that can significantly alter the vibratory response and in consequently make it difficult to detect, 

classify and diagnostic faults [16]. The non-stationarity of the vibratory response can occur by the 
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variation in the operating speeds or external loads under which equipment is subject. In the first case, 

the nature of the vibrations in the frequency domain is highly altered, and consequently, the fault 

diagnosis may lose precision. Therefore, the analysis of vibrations in rotary machinery under variable 

speed conditions is a problem of nowadays interest [17]. 

In particular, bearing failure detection and diagnosis is one of the areas of greatest interest for 

Vibration-based condition monitoring. These elements are of great interest since most rotating 

machines are present but it is estimated that only 10% reach the L10 life expectancy [8]. In many 

applications, REB are the components of major spare replacement and even with biggest failure rate 

as illustrated by [18], where it is reported that REB cover until 6.77 % of electric motors. Being the 

biggest percentage of mechanical failures. Other sources as [19], [20] indicate that 40 % of failures 

of induction motors are associated with REB failures. Additionally, it is estimated than 76 % of wind 

turbines fails in their gearbox as a consequence of REB failure [21]. This latter case resulting of 

great interest as rotational speed presents high variation as consequence of wind currents 

randomness. 

1.3 Research Aim 

In the present work, it is intended to give an evaluation of diagnosis process of rolling element 

bearings when they are subjected to non-stationary conditions implying variable rotation speed. 

Under those situations, the vibrational responses associated with failures in REB are of special 

interest, by some important aspects such as the ones described in section 1.1. 

In this sense, this work is aimed under the research question established as follows.  

Under variable speed conditions, the presence of bearing failures and variable speed, added to 

amplitude modulation, can be diagnosed through the following techniques: Envelope spectral 

analysis, Order tracking techniques, Cycle stationarity analysis and Filtering for maximization of 

spectral kurtosis?  

Using the following hypothesis. 

Early diagnosis of bearing failures can be made under variable speed conditions using techniques of 

Spectral Envelope Analysis, Order Tracking Techniques, Cyclostationary Analysis and Filtering to 

maximize spectral kurtosis. 

Accordingly, this thesis is formulated by using the following objectives.  

 

As general objective has been declared. 

 

 To evaluate the diagnosis of incipient failures in Rolling Element Bearings using mechanical 

vibration analysis. 

 

For specific objectives, it has been declared. 

 

 To design strategy for the simulation and acquisition of signals with bearing failures 

operating under variable speed conditions. 
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 To develop a model for the diagnosis of incipient failures in bearings, under variable speed 

conditions, using spectral envelope analysis, order tracking techniques, cyclo-stationarity 

analysis and filtering to maximize spectral kurtuosis. 

 To evaluate the detection capacity of Cyclo-stationarity models and spectral kurtuosis 

filtering for cases of bearing failures. 

 

During the development of this work, a model for the simulation of REB fault signals is used. Also, 

a model for the REB diagnosis under non stationary rotational speed is proposed and the results of 

their usage for simulated signals and experimental signals are shown. Also a learning algorithm for 

the classification and diagnosis of REB faults is exposed. Accordingly, the document is organized 

as follows. On chapter 2 a theoretical framework with the main algorithms available on literature is 

exposed and their usage is briefly illustrated by a practical case. Section 3 describes the test rig used 

for capturing experimental dataset. At chapter 4 the model proposed for REB diagnosis is presented. 

The chapter 5 describes the model used for simulating REB fault signals. Finally, on chapter 6 the 

experimental data is shown and the result of using the model proposed on chapter 4 is also exposed. 

Chapter 7 presents conclusions and future works. 

 

 



 

2. Theoretical Framework 

 

2.1 Rolling Element Bearing Diagnosis – Benchmark 

method 

For REB failure diagnosis in past decades, important advances have been shown. Maybe the most 

effective techniques to perform REB diagnosis is based on analyzing vibrational response envelope. 

Specifically, this technique relies on take the spectral content of the signal envelope and verify if 

there is information of Fault Characteristic Orders –FCO [2], [22]–[24]. The Fault Characteristic 

Orders are based on kinematic relations between the different elements of the REB, and their 

geometry. In the most common case, at which the outer race speed keeps static, the Table 2-1 

summarize the relations for the FCO. 

 

Table 2-1 Fault Characteristics Orders Relations 

FAULT CHARACTERISTIC ORDER MATHEMATICAL RELATION 

Ball-Pass Inner Race Order: BPOI 
𝑁

2
(1 +

𝑑

𝐷
cos(𝜃)) 

Ball-Pass Outer Race Order: BPOO 
𝑁

2
(1 −

𝑑

𝐷
cos(𝜃)) 

Fundamental Train Order: FTO 
1

2
(1 −

𝑑

𝐷
cos(𝜃)) 

Ball Spin Order: BSO 
𝐷

2𝑑
[1 − (

𝑑

𝐷
cos(𝜃))

2

] 

N: Number of rolling elements.  

d: Rolling Element Diameter.  

D: Pitch Diameter.  

θ: Contact Angle. 
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Typical vibrational response of incipient failures have been modeled for faults on different 

components according to load distribution and kinematic relations. The most common patterns and 

envelopes for incipient failures are briefly illustrated on Figure 2-1. Although those waveforms 

correspond to most common failures, there are situation at which modulations could be different, 

mainly depending on the loads imposed to REB. The relation between modulations and type of loads 

are summarized on Table 2-2 [7]. 

 

Figure 2-1. Typical REB fault waveform and Envelope. Vibrational response against angular 

position 

 

Table 2-2. Periodic characteristics of bearings with defects under various loadings and path effect 

CAUSE OF 

PERIODICITY 

PRACTICAL 

EXAMPLES 

OUTER RACE 

DEFECT 

INNER RACE 

DEFECT 

ROLLING 

ELEMENT 

DEFECT 

Static Load* 
Misalignments. 

Dead Weight 
No Effect 1× FTO 

Shaft Unbalance 

High 

Unbalance 

High Speed 

Regimes 

1× No Effect 1-FTO 

REB Diameter 

Variations 
Mounting 1×FTO 1-FTO No Effect 

Transmission 

Path Effect 

Cracks on 

shaft 
No Effect 1× 

FTO 

BSO 
*Static Load represents the case commonly exposed on literature and illustrated in Figure 2-1. 

During the last decades, two methods for the analysis of the envelope have been highlighted, as 

illustrated in Figure 2-2. To describe those methods consider the angular speed keeps near constant. 

The first method consists of the use of a band-pass filter, which limits the content of the vibratory 

response to the resonance frequencies of the bearing. Usually the band-pass frequencies lies in the 

range of 2000 - 12000 Hz. Once the signal is filtered, an analytic version of this signal is obtained 

by the use of Hilbert transform. By taking the square magnitude of analytic signal, the squared 

envelope is obtained and results possible to analyze it, either in order or frequency domain.  
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Figure 2-2. Rolling Element Bearing Diagnosis by Squared Envelope Spectral Analysis – Two 

methods [25]. 

 

The first method consists of the use of a band-pass filter, which limits the content of the vibratory 

response to the resonance frequencies of the bearing. Usually the band-pass frequencies lies in the 

range of 2000 - 12000 Hz. Once the signal is filtered, an analytic version of this signal is obtained 

by the use of Hilbert transform. By taking the square magnitude of analytic signal, the squared 

envelope is obtained and results possible to analyze it, either in order or frequency domain. The band 

pass filter was usually selected by experience of analyst. However, some works describe a 

benchmark method to select the range of filter. This is made based on the fact that resonance 

frequencies are stimulated by impulsive forces resulting from contract with incipient fault, By the 

fact statistical kurtosis is a clear descriptor for impulsive behaviour, this method relies in selecting 

the range of frequencies for which kurtosis is maximized. 

The second method uses the Cyclo-stationarity model. With this model, it is intended to extract the 

periodic information of the variation of the vibratory response. Particularly, it has been shown REB 

failure give rise to second order cyclostationary signals, which mean the autocorrelation function of 

the vibrational response has a periodical behaviour with respect time delay. To describe the 

behaviour of second order Cyclo-stationary the spectral correlation is an useful information. Spectral 

correlation is a bi-variable function which would depend on the spectral frequency –f , and the cyclic 

frequency –α. Broadly, for the REB diagnosis, the spectral frequency would contain the information 

related with the dynamic characteristic of the ensemble, whereas the cyclic frequency would contains 

the information related with the kinematics. By have estimating spectral correlation, the square 

envelope spectrum could be obtained straightforward by averaging over the spectral frequency. Once 

square envelope is plotted, the idea is to search peaks at fault characteristics orders. Spectral 

correlation would be explained with more detail in section 2.3. 

Recently other methods based on automatic learning algorithms has been [26]–[28]. Although there 

are many advantages associated with their utilization, at industrial level, they are limited mainly by 

the amount of failure data available, the labeling and the highlighted unbalance of failure data in 

contrast to normal operation. These automatic learning diagnosis methods have enormous potential, 

but results difficult to generalize at industrial environments.  
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The strategies exposed on Figure 2-2 have been broadly studied and developed for the case at which 

rotational speed keeps constant. For the case at which rotational speed does not keep constant, the 

Squared Envelope Order Spectrum –SEOS should be obtained instead of Squared Envelope 

Spectrum –SES. To obtain the SEOS, some different process should be done for obtaining the 

Squared Envelope Order Spectrum, such as order tracking, Cyclo non-stationarity analysis and 

different approach for demodulation should be used, as it will be discussed on section 4.  

 

2.2 Kurtosis, Spectral Kurtosis and Fast Kurtogram. 

The kurtosis is a fourth moment descriptor for a random variable. It establish information related 

with the shape of probability distribution function. It is generally expressed as the relation between 

fourth moment and fourth power of standard deviation as it illustrated in Equation 2-1. Kurtosis is 

commonly estimated by the sample kurtosis as defined in Equation 2-2, where 𝑋, 𝑆 represent the 

average and the sampled standard deviation, while 𝑥𝑖 and 𝑁 represent the realizations and number 

of realizations respectively. 

 

Equation 2-1   𝐾𝑢𝑟𝑡[𝑋] =
𝐸[ (𝑋−𝜇)4 ]

𝜎4 − 3  

Equation 2-2   𝐾𝑢𝑟�̂�[𝑋] =
1

𝑁

∑ (𝑥𝑖−𝑋)
4

𝑖

𝑆4 
− 3 

 

This definition is known as Pearson definition, also called excess kurtosis. The “3” scalar subtraction 

is done with the aim a random variable X normally distributed have a null kurtosis. It should be 

noticed than kurtosis takes measure of the weight of tails in the distribution of random variable X. 

To further illustrates consider the realization of two simulated signals illustrated in Figure 2-3. Note 

although both signals have the same range of numerical values, the backward signal, drawn with 

gray tone, seems normally distributed as their tails are not far separated from the ±1 standard 

deviation region*, (drawn in shadow gray region in right plot of Figure 2-3). In fact, each realization 

in signal 1 has been built as a stationary Gaussian noise, which explain the fact its sample kurtosis 

is near zero, as indicated by the labels of Figure 2-3.  
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Figure 2-3. Sample kurtosis illustration 

 

On the other hand, signal 2 seems like if periodically, sudden transient events occurs and 

consequently realizations reach a high numerical value. This behaviour is further illustrated in the 

histogram of right side, since the major part of signal 2 realizations lies in a narrower region than 

signal 1, although both have the same range. Signal 2 in fact simulates a REB faulty vibrational 

response, as the transients previously discussed represents a periodical impact generated by faulty 

surface contact. It should also noticed signal 2 reaches a higher kurtosis value than signal 1. 

Discussion until now allow illustrating the concept of kurtosis and their appliance on temporal 

realizations. It also illustrates the fact Gaussian distributed realizations are characterized by null 

kurtosis. Also, for the REB fault signal, the kurtosis value could be considered as and indicative of 

presence of anomalies which give raise to transients effects. Kurtosis in fact could be considered as 

a valuable descriptor of transient anomalies, which for our interest is interesting to characterize in 

frequency domain. To perform the characterization of transients in frequency domain, the spectral 

kurtosis is defined as the relation between the fourth cumulant and the squared second moment of 

signal at frequency f, i.e. equivalent to filter signal realizations at a particular frequency –f. Under 

the assumption of ergodicity spectral kurtosis could be defined as indicates Equation 2-3, where 

|𝐻(𝑡, 𝑓)|2 is the power spectrum at time t, and the <∙> indicates averaging along time. The 

subtraction of “2”  in contrast to “3” previously discussed is explained because 𝐻(𝑡, 𝑓) represents a 

complex envelope, as it was shown by [29]. 

Equation 2-3    𝑆𝐾[𝑋](𝑓) =
〈| 𝐻(𝑡,𝑓) |4〉

〈| 𝐻(𝑡,𝑓) |2〉2 − 2 

Spectral kurtosis could be estimated from the Short Time Fourier Transform – STFT, by consider a 

window slice tap along the time axis, taking the power spectrum at each tap and taking time averages 

on windowing taps according to Equation 2-4. Where NW represents the length of window and |HW| 

the windowed magnitude spectrum. 

Equation 2-4    𝑆�̂�[𝑋](𝑓; 𝑁𝑊) =  
〈| 𝐻𝑊(𝑡𝑘,𝑓) |4〉

〈| 𝐻𝑊(𝑡𝑘,𝑓) |2〉2 − 2 

To illustrate the estimator of spectral kurtosis described by Equation 2-4, consider the STFT of 

signal2 previously discussed, shown in Figure 2-4.  In this figure a fraction of time has been plotted 

to illustrate the windowing process (Figure 2-4 – A). By slice the windows, and taking the Fourier 
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transform on each window the spectrogram is built as illustrates (Figure 2-4–B). Notice the 

compromise between time and frequency resolution as well stablished by uncertainty principle. On 

each row of the spectrogram averaging of the square magnitude and fourth power of magnitude are 

computed as illustrates the gray tone curves of Figure 2-4 – C. By taking the division between both 

curves, and subtracting 2 units, the spectral kurtosis is estimated, as illustrates the curve drawn in 

black continuous line.  This estimator in fact could be seen as a welch estimator, since it replaces the 

ensemble averaging, by average over the time axis on STFT.  

Figure 2-4 Illustration of Spectral Kurtosis Estimator  

 

 

In previous illustration, should be noticed an important detail which is related with the role of the 

length of windows. The window length should be as short as possible to allow the correct 

identification of two transient effects (refers to Figure 2-4A) but should also be large enough to 

capture the entire transient effect. For the window illustrated in Figure 2-4A it could be noticed that 

the window length selected allows to separately identify two transients but is no large to capture the 

time duration of first transient. The so-called Kurtogram further explores the window length 

dependence of spectral kurtosis estimator. In the Kurtogram, the spectral kurtosis is plotted against 

the window length and spectral frequency, similar to the 3D projection plot illustrated in Figure 2-5. 
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Figure 2-5. Window length dependence  of spectral kurtosis. 

 

The interest of spectral kurtosis relies on the fact it could indicate at which range of frequency the 

signal presents its maximum impulsiveness. The aforementioned results extremely useful for REB 

diagnosis as it could separate the frequency at which transient occurs. This suggest spectral kurtosis 

in fact could be taken as a filter which maximize the signal impulsivity, as it was demonstrated in 

[30].  

In fact, for practices, is desirable to generate a passband filter, which allows maximizing the kurtosis 

of the resulting envelope. This filter should be centered in the frequency at which spectral kurtosis 

is maximum. However, considering spectral kurtosis is window-length dependent, the bandwidth is 

a parameter to concern. In this sense, to select the optimal filter, which maximizes the kurtosis of 

envelope, a bi-map of spectral kurtosis against window length and center frequency is usually 

plotted. The optimal filter to proceed the envelope spectrum analysis is selected as the combination 

of frequency bandwidth –Δf ~ Fs/NW, and center frequency fc. This is illustrated in Figure 2-6. 
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Figure 2-6. Kurtogram 

 

This indicates that a filter, which maximizes kurtosis of envelope, should be centered near 6000 Hz, 

considering a window of near four (4) samples. Two appreciations should be considered, the first is 

computation of Kurtogram results computational costly, since it is necessary to compute STFT by 

each window length. Additionally, although it results clear the center frequency, the filter realization 

results in a bandwidth near to 1.5×103 Hz, which is considerably wide, and do not result easy to 

obtain such a narrow window without ripple effects.  

In a manner to overcome those appreciations, the fast Kurtogram is defined by [31]. This Kurtogram 

approximation is based on a binary tree search, partially inspired in Wavelet Packet transform. It 

divides the bandwidths and center frequencies in a binary-three map such as the ones drawn in Figure 

2-7, using a bank of filters separating detail and residuals for each level (i.e. to analyze higher 

frequency resolution),  instead of computing STFT for each window length.  



Chapter 2 – Theoretical Framework  35 

 

Figure 2-7. Kurtogram Binary Tree. 

 

The kurtosis of the envelope is represented by color map for each of pair of center frequency fc and 

bandwidth Δf represented by the binary-tree grid. The pass-band filter is selected by taking the couple 

of center frequency and bandwidth, in which kurtosis rise is maximum value. As illustrated in Figure 

2-2, once signal is filtered, the square envelope spectrum analysis proceeds. The fast Kurtogram for 

the previous ‘Signal 2’ is drawn in Figure 2-8.  

Figure 2-8. Fast Kurtogram. 
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The Fast Kurtogram illustrated in Figure 2-8 highly coincides with the complete Kurtogram drawn 

in Figure 2-6. Although there is more clear resolution in the complete Kurtogram, the simplicity of 

the Fast Kurtogram and the savings in computational costs are extremely valuable for applications 

in REB diagnosis.  

2.3 Second-Order Cyclostationary Analysis for Rolling 

Element Bearing. 

 

As illustrated in Figure 2-2, the Square Envelope Spectrum, could be obtained by carrying a 

cyclostationary analysis, as exposed in [32]. The cyclostationary analysis were applied to REB, near 

two decades ago, where [33] shown that an anomaly in a REB give raise to a second order 

cyclostationary signal. Accordingly, the vibration response of a REB fault is non-stationary but hides 

a periodic behaviour in its variance. To characterize this, the Spectral Correlation representation has 

been shown extremely useful. Usually a bi-spectrum map is analyzed, where the Spectral Correlation 

(SC) is plotted against Spectral Frequency – f and Cyclic Frequency –α. The earlier represents the 

dynamic characteristics of the REB i.e. their resonance frequencies, whereas the second one 

represents the periodic behave of the fault [23]. 

To define the concept of second order cyclostationarity, it is important to define the autocorrelation 

function, as it is defined in Equation 2-5, where E[ ∙] denotes the expectancy operator and the * 

indicates complex conjugate. In this equation results important to note the fact that autocorrelation 

depends on two variables, the instantaneous time t, and time lag τ.  

Equation 2-5   𝑅𝑥𝑥(𝑡, 𝜏) = 𝐸[ 𝑥(𝑡)𝑥∗(𝑡 − 𝜏)] 

A second order cyclostationary signal is defined as a signal in which their autocorrelation function 

keeps periodical with respect instantaneous time, i.e. it should exist a fundamental period 𝑇, such as 

𝑅𝑥𝑥(𝑡 + 𝑇, 𝜏) =  𝑅𝑥𝑥(𝑡, 𝜏). To characterize the spectrum of a second order cyclostationary signal, 

Spectral Correlation is defined as the double Fourier transform of autocorrelation function as it is 

expressed in Equation 2-6. Where 𝛼, and 𝑓, denote the Cyclic Frequency and Spectral Frequency. 

Equation 2-6   𝑆𝐶2𝑥(𝛼, 𝑓) = 𝔉𝑡→𝛼 {𝔉𝜏→𝑓 {𝑅𝑥𝑥(𝑡, 𝜏) } } 

Cyclic frequency –α, maps the instantaneous time, and usually contains information on modulation 

frequencies. Spectral frequency maps the time delay to the spectral domain and represents the 

spectral content of carrier frequencies. Particularly, for the case of REB fault signals, α is mainly 

related to the periodicity of occurrence of impacts i.e. the cinematic characteristics of the REB 

ensemble (as discussed in section 2.1). On the other hand, f details the dynamic characteristic of the 

ensemble, which is contained in the carrier frequencies spectrum.  

The name ‘Spectral Correlation’ is not fortuitous, in fact, from the previous definition expressed in 

Equation 2-6, it has been shown that this expression could be transformed in a correlation between 
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power spectral density of vibrational response, with their α – delayed version, as it is shown in 

Equation 2-7.  

Equation 2-7    𝑆𝐶𝑥(𝑓, 𝛼) = 𝐸[ 𝑋(𝑓)𝑋∗(𝑓 − 𝛼)] 

In fact, when a signal is strictly second order cyclostationary, the spectral correlation would be zero 

in whichever cyclic frequency, except in those in which the signal shows periodicity in its spectral 

correlation. Accordingly, the spectral correlation bi-map would seem similar to the one illustrated in 

Figure 2-9.  

Figure 2-9. Illustration of Spectral Correlation for strictly Second-Order Cyclostationary. 

 

To illustrate the concept of spectral correlation, consider the simulated Outer Race Fault, named 

‘Signal 1’, which was previously analyzed in section 2.2. The power spectral density –PSD, is shown 

in Figure 2-10. The power of the signal is mostly concentrated in the range of 3000 – 4000 Hz. In 

fact, the zoomed region located at the upper right corner, plots the PSD in the range of 330-3800 Hz. 

Figure 2-10. 'Signal 1' Power Spectral Density 
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In Figure 2-10, the dotted cursor line, drawn in gray tone (Cursor 1) is located at 3437 Hz. The 

cursors drawn in black dashed line (Cursor 2 and Cursor 3), are distanced by exactly 1xBPOF and 

2xBPOF from the Cursor 1.  Now, let imagine he PSD curve is shifted by 1xBPOF to the right, i.e. 

consider the PSD displaced by BPOF. By doing this displacement, the peak marked with the Cursor 

1 will lie in the position marked by Cursor 2. Similarly, the peak marked with Cursor 2 will coincide 

with the position marked with Cursor 3. This situation is illustrated in Figure 2-11 A. where the 

zoomed (3300 Hz to 3800 Hz) is drawn in gray tone, while the 1xBPFO shifted PSD is drawn in 

black tone.  

Figure 2-11. Power Spectral Density vs. α-shifted Power Spectral Density. 

 

From the previous discussion, and the situation illustrated in Figure 2-11-A. and Figure 2-11-B., is 

straightforward to notice that if the product of both curves is computed, it will rise a considerably 

high value curve. To further discussion, consider the case where PSD is delayed by BPFI illustrated 

in Figure 2-11-C. As could be noticed, the peaks previously marked by cursors, do not coincide and 

subsequently, the product would of the PSD and BPFI-shifted PSD be a near to zero curve, as it is 

shown in Figure 2-11-D.  

As would be discussed in section 2.4, the fact that the curve in Figure 2-11-B is numerically greater 

than Figure 2-11-D, indicates that high spectral correlation is raised when α is set equal to BPFO, 

whereas is low when α is set to BPFI.  

Spectral Correlation is the result to shift the Power Spectral Density among the α-axis, and so, 

plotting the bi-spectral map f-α vs SC, in a similar manner as illustrated in Figure 2-9. For the 

previous worked ‘signal 1’, the spectral correlation bi-map is shown in Figure 2-12. It is notorious 

for the high value raised around α=140 Hz, which is the value for BPFO in simulated signal. 
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Figure 2-12. ‘Signal 1’ Simulated Outer Race Fault Spectral Correlation 

 

Usually, spectral correlation is plotted in a color-map, as the ones illustrated in Figure 2-13. As could 

be noticed, the vertical line pattern highly marked inside the spectral frequency range of 3000 – 4000 

Hz, is an indicative of high second order cyclostationary and consequently, indication of fault in 

REB. 

 

Figure 2-13 ‘Signal 1’ Simulated Outer Race Fault Spectral Correlation Color-map 

 

Some quotations should be done respecting the Spectral Correlation estimator. The illustration 

worked on Figure 2-11 only intends to exemplify the principle of spectral correlation expressed in 

Equation 2-7, but the estimator for the Spectral Correlation has been subject to diverse discussion as 

has been synthetized by [34]. In Annex 9.1, the most common and useful estimators are listed. 
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2.4 Analysis of Square Envelope Spectrum. 

 

To explore the concept of envelope function, and discuss it as a demodulation tool, let consider the 

analytic signal from 𝑥(𝑡) as indicates Equation 2-8 

Equation 2-8    𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝑥ℎ(𝑡) 

Where 𝑥ℎ(𝑡) is obtained from taking Hilbert transform on 𝑥(𝑡). The analytic signal has the 

interesting property of having zero spectrum at negative frequencies. By taking the magnitude of the 

analytic signal, the envelope signal is obtained. 

Equation 2-9    𝐸𝑛𝑣𝑥(𝑡) = [𝑥2(𝑡) + 𝑥ℎ
2(𝑡)]

1

2 

To illustrate the role of the envelope, consider again the simulated REB Outer Race fault signal, 

named ‘signal 1’. The waveform is illustrated in Figure 2-14 (as previously zoomed in Figure 2-3). 

The black line represents the envelope of the signal, obtained as expressed in Equation 2-9.  

Figure 2-14. simulated Outer Race Fault 'signal 1' Waveform 

 

As it could be seen, the envelope is manner to demodulate the spectrum of original signal x, since 

the envelope draw the occurrence of impacts generated by contact with faulty surfaces. This in fact 

is the reason why the Envelope Spectrum Analysis is the most widely tool used for REB diagnosis.  

An important quotation should be mentioned, for smoothness in behaviour of spectrum, the Square 

Envelope Spectrum – SES is preferred rather the Envelope Spectrum. ‘Signal 1’ Square Envelope 

Spectrum is plotted in Figure 2-15.  
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Figure 2-15. 'Signal 1' Squared Envelope Spectrum 

 

In fact, SES, could also be obtained from Spectral Correlation as it has been shown in. It is done by 

taking the average of SC over the spectral frequency f axis, i.e. integrating over the vertical direction 

in Figure 2-13. This idea is expressed in Equation 2-11, where Fs denotes the sampling frequency. 

Figure 2-16 illustrates the SES obtained from averaging the spectral correlation.  

Equation 2-10   𝑆𝐸𝑆𝑥(𝛼 ) =
1

𝐹𝑠
∫ | 𝑆𝐶(𝛼, 𝑓) | 𝑑𝑓

𝐹𝑠

0
   

Equation 2-11   𝑆𝐸𝑆𝑥(𝛼 ; 𝑓1, 𝑓2) =
1

𝑓2−𝑓1
∫ | 𝑆𝐶(𝛼, 𝑓) | 𝑑𝑓

𝑓2

𝑓1
   

 

Figure 2-16. ‘Signal 1’ Spectral Correlation averaging over spectral frequency axis. 

 

2.4.1. Demodulation Band 

Notorious similitude is evidenced in Figure 2-15 and Figure 2-16. This in fact was previously 

exposed in Figure 2-2, where both approaches ends up with the analysis of SES. In this particular 

case, there is clear evidence of high peaks at the Fault Characteristic Frequency, i.e. BPFO, 

indicating the presence of Outer Race in REB. However, the raw SES does not always reveal high 

peaks at the fault characteristic frequency, even if the fault has occurred.  

One way to improve the SES is to demodulate the signal. Whichever the two methods described in 

Figure 2-2, contemplates this procedure. In the called benchmark method, demodulation is done by 
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the use of Kurtogram, previously discussed in section 2.2. By the use of the Kurtogram is possible 

to determine the most useful filter bandwidth in which kurtosis is maximized, i.e. the one which 

maxims the signal impulsivity. To exemplify this, consider the simulated Outer Race Fault signal 

named ‘Signal 2’, which was previously illustrated in gray tone in Figure 2-3. The raw envelope is 

illustrated in Figure 2-17-A. Their corresponding raw SES is shown in Figure 2-17-B, the cursors 

shown are set as in legend of Figure 2-15. By visualizing the SES, does not result possible to 

diagnosis an Outer Race Fault, since there is no evidence of markable peaks in the at the BPFOO 

(Black-dotted lines). The reason of this particular case is explained because originally ‘Signal 2’ is 

highly corrupted by colored noise, further explained by its near zero kurtosis, as discussed in Figure 

2-3.  

By the use of fast Kurtogram (Not illustrated for ‘Signal 2’), is possible to determine the optimal 

kurtosis bandwidth is estimated in the range of 5004  -  6000.0  Hz. By filtering the signal using a 

linear FIR filter, the waveform shown in Figure 2-17-C is obtained. As it is illustrated, the kurtosis 

of filtered signal is highly increased in comparison with the kurtosis of raw signal, reaching a 

numerical value of 14.6. The demodulated waveform, shown a typical pattern of REB fault, 

characterized by periodical impacts, where periodicity is governed by fault characteristic frequency 

BPFO, as further shown in the SES of Figure 2-17-D.  In this latter figure, noticeable peaks are 

reached at BPFO and sideband modulations around the shaft speed rotation in revolution per second 

(cursors set as in Figure 2-15).   
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Figure 2-17. Simulated Outer Race Fault 'Signal 2' Kurtogram demodulation. 

 

Similarly, SES could also be obtained by averaging the Spectral Correlation over the spectral 

frequency axis. However, a demodulated SES, could be obtained if the range of frequency being 

averaged is selected, as expressed in Equation 2-11. By selecting a correct demodulation band, 

clear symptoms of is second order cyclostationary at the specified Fault Characteristic Frequency, 

i.e. REB fault symptoms, could be evidenced. To exemplify this idea, consider the Spectral 

Correlation of simulated outer race fault ‘Signal 2’, shown in Figure 2-18 (Note the log-scale).  
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Figure 2-18. Simulated Outer Race Fault 'Signal 2' Spectral Correlation 

 

In the range of 500 - 1500 Hz (Grey dashed rectangle), a high spectral density is evidenced. However, 

there in this region there is no vertical lines pattern, which indicates there is no evidence of second 

order cyclostationary. This high spectral density is product of the colored noise corruption 

intentionally added to ‘Signal 2’. However, in the range of 3000 – 4000 Hz (Black dashed rectangle), 

notorious vertical patters are evidenced. This is even more clear by consider the SES shown in 

Figure 2-19-A1, where the SC is averaged over the entire spectral frequency axis, i.e. 0 – 6000 Hz. 

In the SES there is no evidence of peaks at BPFO. In contrast, consider the SES averaged over the 

range 3000 – 4000 Hz shown in Figure 2-19-B. In this latter figure, clear evidence of Outer Race 

REB fault is evidenced, in a similar manner than exposed in Figure 2-17-D.  

 

Figure 2-19. Simulated Outer Race Fault 'Signal 2' Spectral Correlation Demodulation 

 

 

                                                      

 

1 Cursors are set as Figure 2-17 
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2.5 Variable Speed Order Tracking 

As discussed, the periodicity of occurrence of impacts generated by REB fault are linked to angular 

shaft position, while the transient vibration at impact moments depends mainly to time domain. If 

angular speed is constant, this duality is straightforward managed, because direct and proportional 

relation between angular domain and time domain, as has been managed until now. However when 

rotational speed do not keeps constant, approaches to solve this duality are necessary to achieve a 

correct SES analysis, i.e. achieve a correct diagnosis. 

Let classify the variable rotational speed in two categories. The first one, illustrated in Figure 2-20-

A, occurs when rotation speed keeps nominally constant, but suffer fluctuations, mainly due to 

slippage, randomness, load changes, etc. As rotational fluctuations do not exceed 20% (1:5 relation) 

[35], is possible to assume that vibrational response could be analyzed entirely in angular domain. 

This implies that, by expressing the vibrational response in angular domain is possible to use the 

techniques previously exemplified to manage REB diagnosis.  

Consider the second variable rotational speed case, in which the speed changes their numerical 

nominal value, as occurs in a run-up case, for example. In this case, illustrated in Figure 2-20-B, 

the linkage between angle dependence and time dependence should be considered as would be 

described in section 5.1. 

 

Figure 2-20 Variable Speed Conceptualization. 

 

2.5.1. Order Tracking Approaches 

In both variable rotational speed cases, illustrated in Figure 2-20, do result imperative get the 

angular position, rotational speed and vibrational response as function of angular position. By 

tacking the spectrum of vibrational response as function of orders, which is the equivalent to 

frequency in angular domain (measured in event per revolution), the smearing of synchronous 

components in vibrational response could be avoided. This process has been named Order Tracking 

in literature. Usually, Order Tracking relies on the use of different approaches, which are briefly 

illustrated in Figure 2-21.  
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Figure 2-21 Illustration for Order Tracking Approaches 

 

 

The analog order tracking is the oldest approach. Consists in governing the sampling periods with a 

key-phasor signal, which generates a synchronous pulse, each time the shaft position rotates a 

constant angle. The sampling system then reads the numerical voltage of vibration sensor, generating 

a signal sampled at equally spaced angular positions. This procedure however do not result totally 

synchronous, since the lapses time between governing signal and sampling the sensor voltage could 

lose information about random speed fluctuations. The use of analog devices would result in costly 

devices and their use is fairly limited when there is no physical access to the rotor or the shaft to be 

tracked. 

Second approach, takes advantage of digital signal processing. The idea is to sample (at equi-spaced 

times, as usual) the signal of vibration sensor and the signal generated by a tachometer or shaft 

encoder. This latter allows knowing the angular shaft position sampled in time domain, and so, does 

result possible to estimate the vibrational response at equally spaced angular periods. This approach 

is usually referred as Digital Order Tracking, and since the evolution of digital systems, is the most 

common used approach. 

Digital Order Tracking techniques could be categorized in two approaches, Computed Order 

Tracking, and Digital Resampling Method. Although apparently both techniques are apparently 

equivalent, the procedure is slightly different. 

 Computed Order Tracking - COT: 

In Computed Order Tracking –COT, is done with the aid of a tacho or shaft encoder and the 

usual accelerometer. Both signals, generated by accelerometer and tacho are sampled 
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simultaneously at constant times, as usual in common ADC system. By the signal sampled 

on the shaft encoder, is possible to determine the time in which shaft rotation advances by 

the encoder ratio (ΔΘ). As it is illustrated in Figure 2-22. 

Figure 2-22 Theoretical Tacho Encoder Signal for Increasing Rotational Speed 

 

Figure 2-22illustrates the usual tacho waveform when speed is variable. In this illustration, 

the width of pulses is decreasing indicating the rotational speed increases. The “circular 

marks” indicate the time arrivals at which shaft advances the angular position dictated by 

the resolution of tacho (ΔΘ). Knowing three consecutive time arrivals, does result possible 

to estimate a quadratic polynomial which interpolates angular position with time. This is 

illustrated in Equation 2-12 and Equation 2-13. 

Equation 2-12   𝜃<𝑖>(𝑡) = 𝑏𝑜
<𝑖> + 𝑏1

<𝑖>𝑡 + 𝑏2
<𝑖>𝑡2 

Where 𝜃<𝑖>(𝑡) indicates the angular position as function of time, in the interval which lies in [ 
[0.5𝑖ΔΘ  ; 1.5𝑖ΔΘ]. The coefficients 𝑏0, 𝑏1, 𝑏2 are determined between three consecutive sections by 

solving the equations shown in Equation 2-13. 

Equation 2-13   [
(𝑖 − 1)ΔΘ

𝑖ΔΘ
(𝑖 + 1)ΔΘ

] = [

1 𝑡𝑖−1 𝑡𝑖−1
2

1 𝑡𝑖 𝑡𝑖
2

1 𝑡𝑖+1 𝑡𝑖+1
2

] [

𝑏𝑜

𝑏1

𝑏2

]

<𝑖>

  

Determining angular position as function of time, it is also possible to establish the time as function 

of angular positions. This could be estimated by the use of Equation 2-14. 

Equation 2-14   𝑡𝑘
<𝑖> = [

1

2𝑏2
(√𝑏1

2 − 4𝑏2(𝜃𝑘 − 𝑏0)2 − 𝑏1)]
<𝑖>

 

By taking a series of {𝜃𝑘}  equally sampled, do result possible to interpolate the vibration amplitude 

and so completing the COT process. This final step is easily done by the use of cubic splines. The 

COT process is detailed discussed in  [1], [36]. 

 Angular Digital Resampling: 

This approach is quite similar to COT, however a difference should be remarked in the process. In 

Digital Resampling the tacho signal is not used to estimate the angular positions, but is used to 
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estimate the instantaneous angular speed –IAS curve. From the angular speed, the angular position 

curve is determined (easily made by integration over time). With angular position as function of 

time, is possible to determine the interpolation times, i.e. time instants at which angular increments 

results constant. On the other hand, the vibration signal (sampled in time) is Up-sampled, to increase 

time resolution. With the Up-sampled signal, the amplitude interpolation is achieved. To finish the 

order tracking process, a down-sampling process is done in order to reduce unusable computational 

cost. Up-sampling and Down-sampling process should be companied low pass-filter to avoid 

aliasing. This process is further discussed in [37]. 

In the Digital Resampling Order Tracking, the Phase Demodulation Approach should be highlighted. 

Phase demodulation has been reported as a valuable tool for Order Tracking, and is maybe the most 

used technique to determine the instantaneous angular speed [5]. Phase demodulation relies on 

extracting the phase of the first harmonic in the tachometer signal. Precisely, it extracts the phase of 

first harmonic for analytic tacho signal.  From the phase extracted, a curve for angular position vs 

time is build and afterwards is used for determining the times to resample, such signal result sampled 

at constant angular increments [35]. Phase demodulation process is briefly illustrated in Figure 

2-23. 

 

Figure 2-23 Phase demodulation illustration 

 



Chapter 2 – Theoretical Framework  49 

 

Phase demodulation process starts with the tacho signal sampled in time ψ(t). By the analysis of their 

spectrum, the first harmonic is selected. Then a filter centered in the first harmonic is built (h(t)). 

The bandwidth of the filter should not exceed the ±20 % of nominal center frequency, since filter 

could overlap with modulation side-bands or even higher harmonics. After the tacho signal is filtered 

(ψh(t)), their analytic version is taken (ψh,a(t)), i.e. one side spectrum is built. This step could be done 

by taking Hilbert transform on filtered signal as defined in Equation 2-15.  

   

Equation 2-15    𝜓ℎ,𝑎 = 𝜓ℎ + 𝑗ℋ[ 𝜓ℎ ]  

where the sub-index h and a, denote the filtered version and the analytic version, j denotes the 

imaginary part and ℋ[∙] denote the Hilbert Transform. 

From the analytic filtered, does result possible to extract the phase, which could be seen as the 

angular shaft position. At the same time, from the phase derivative, the instantaneous angular speed 

could be estimated, as exposed in Equation 2-16 and Equation 2-17.  

Equation 2-16    𝜃 = arctan (
ℑ[ 𝜓ℎ,𝑎 ]

ℜ[ 𝜓ℎ,𝑎]
) 

Equation 2-17    �̇�(𝑡) =
1

2𝜋

𝑑𝜃

𝑑𝑡
 

Does result important to annotate that correction from the quadrant on the use of arctan(∙) function 

should be taken. Also the unwrapped phase should be use when estimating instantaneous angular 

speed, i.e. when the phase derivative is taken. 

 Tacholess Digital Order Tracking 

In some situations, the use of tachometer or shaft encoder would require a physical access to desired 

shaft, increase the cost of acquisition system, or simply would be incompatible with operational 

conditions such as dust, humidity or high temperatures. Even so, in many practical situations, Order 

Tracking is a fundamental part of vibration monitoring. Recently high interest has been focus on 

achieve order tracking by using the vibrational response itself instead of using an external reference 

tacho. Tacholess order tracking could be applied where synchronous components are clearly 

separated from the main signal, i.e. synchronous orders and their harmonics are strong enough in the 

signal. 

Tacholess order tracking could rely on diverse principles, such as, Time-Frequency representation, 

Adaptive filters harmonics Tracking, Multi-harmonics Time-Frequency representation, Probabilistic 

methods, Phase demodulation, Data-driven methods, among others [5], [38], [39]. Particularly, 

results interesting to discuss in brief detail the Multi Order Probabilistic Analysis –MOPA and the 

Phase demodulation approach.  

 Multi Order Probabilistic Analysis. 

This approach results advantageous when a complex system with multiple harmonics is intend to be 

analyzed. Whereas many of Tacholess order tracking approach require that the user select the correct 

harmonic to be tracked, MOPA approach try to use the big part of synchronic harmonics available 

information, avoiding the user necessity to select the suitable harmonic. This approach build a 
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probability distribution function from the time frequency representation, as for example the classical 

Short Time Fourier Transform –STFT. 

In this section the concept behind MOPA approach would be illustrated, however the detail would 

not be covered but could be found in the original paper [40]. Let consider the spectrogram shown in 

Figure 2-24. This signal was built by adding a colored noise with spectral content in the bandwidth 

[0.05 ;  0.25] Hz with a series of Synchronus harmonics with variable speed.  

Figure 2-24. Simulated Spectrogram for illustration of MOPA 

 

Consider now the frequency magnitude spectrum at some time step ti. If the signal to noise ratio of 

each Synchronus component is considerable high, a clear peak at the corresponding harmonic would 

be noticeable, as illustrated in Figure 2-25. 

Figure 2-25 Instantaneous Spectrum at time step ti 

 

Consider a set of order harmonics {Hi} as for example illustrated in Figure 2-25, {0.5 , 1 , 2 , 3}. 
If the magnitude spectrum is shrinked by each Hi , a coincidence of peaks at 1X is expected. 
This is illustrated in Figure 2-26. Given the coincidence of peaks at the corresponding 
synchronous frequency (1x), if the multiplication of those shrinked spectrum is computed, a 
high peak is expected as illustrates the bottom part of Figure 2-26. 
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Figure 2-26 Shrinked Instantaneous Spectrum under the harmonics set H. 

 

 

Now, if the process illustrated above is made upon all the time steps, a time-frequency distribution 

is obtained, where the synchronous 1x curve should be highlighted. This time frequency 

representation could be seen as the evolution of probability distribution function –pdf,  for angular 

speed at each time step, and finally, instantaneous angular speed could be computed by tacking the 

expectancy in such probability distribution function. Time-frequency probability density is 

illustrated in Figure 2-27.  
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Figure 2-27. Probability distribution map for instantaneous angular speed 

 

A note of caution should be made at this point. To build the mentioned probability distribution 

function, a series of steps and mathematical rigor is needed. For example, normalization should be 

made prior to shrunk spectrums multiplication in order to guarantee the resulting representation will 

represent a probability. Additionally, a pre-whitening step is recommended in order to avoid 

distortions in the resulting pdf. Another important point is to pre-select the maximum frequency to 

be analyzed avoiding interferences with different spectral contents. All those details should be 

carefully taken into account and are clearly defined and explained in the original paper. The reader 

should be free to consult the original paper [40].  

2.6  Variable Speed Bearing Diagnosis State of Art 

 

Through sections 2.1 to 2.4 a series of algorithms and techniques related to REB diagnosis are 

described. However, the REB diagnosis under variable speed suffer from different aspects worth to 

mention.  

As previously discussed, a simplistic model for REB- fault could be modeled as illustrated on 

Equation 2-18. The vibrational response for a REB result from the response of a LTI system, until 

the excitations generated periodically on angular domain. 

Equation 2-18     𝑥 = ℎ(𝑡) ∗ 𝑓(𝜃)  

In this sense, to achieve an adequate diagnosis, three aspects could result important. The first one, 

as described in section 2.5, is the capability of identify a precise order tracking. The Order Tracking, 

and the estimation of accurate instantaneous angular speed becomes an edge for REB diagnosis 

under non-stationary conditions. As previously discussed, Tacholess order tracking are become the 

most investigated approach. In such way, techniques such as MOPA and Phase Demodulation 

becomes extremely useful for. However, as limitation of such techniques are related to large speed 

fluctuations and crossing orders in time frequency representation.  
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The discrete-random separation process is also an important part of the REB diagnosis. REB fault 

generates vibrational responses characterized by the random occurrence of strikes. Thus, the 

deterministic components speed should compromise the SES and the ability of achieve REB 

diagnosis. Deterministic components are usually associated with gearboxes, misalignments, 

unbalance, etc., synchronized with shaft speed orders and their respective harmonics, the table below 

list some of the resent algorithms developed to achieve DRS. 

 

Table 2-3. State of art strategies for discrete random separation 

Author Method Description Advantage Disadvantage 

Abboud 2016 

[41] 

GSA – 

Generalized 

Synchronus 

Average 

It takes 

Synchronus 

Average at 

defined rotational 

speed regimes 

Captures large 

fraction of energy 

on discrete 

components 

energy. 

 

Synchronus 

components are 

almost removed 

from blind. 

 

Unstable at 

lower 

rotational 

Speed. 

 

Inability to 

separate 

discrete 

components 

present on 

time 

representation 

(such as PWM 

switching 

frequency) 

Borghesani 2013 

[42] 

 

CEPSTRUM 

Prewhitening. 

Removes 

quefrencies 

different from 

zero and utilize it 

as a whitening 

factor. 

Facilitates the 

demodulation 

band selection. 

 

There is not 

hyper-parameters 

involved 

 

Limited to 

fluctuating 

speed cases. 

Bonnardot 2004 

[3] 

E-SANC Estimate the 

deterministic part 

of a signal by 

using a Self 

Adaptive filter 

after doing 

angular 

resampling. 

Easy 

implementation 

Filter function 

is mainly 

defined in 

time domain 

but does not 

track 

variations in 

angular 

domain. 
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As the last point, a correct way to obtain the SES should be consider. The focus should be pointed 

on the way that allows demodulating the signal in spectral frequency domain, in such a way the 

periodicity of fault contact strikes could be observed on order domain. The table below summarize 

the strategies most useful (According to author point of view).  

Table 2-4. State of art for obtaining Squared Envelope Spectrum SES. 

Author Method Description Advantage Disadvantage 

Abboud 2015 

[43] 

OFSC-ACP It is defined as the 

double Fourier 

transform on 

auto-correlation 

function. Is an 

extension of 

Spectral 

Correlation but 

taking one of the 

Fourier 

transforms on 

angular domain.  

Captures the 

information 

related to time 

domain and 

angular domain in 

a correct manner. 

 

Computational 

cost. 

 

Dependent on 

selection of 

hyper 

parameters 

 

 

D’Elia [44] OFSC - CMS It is defined as the 

double Fourier 

transform on 

auto-correlation 

function. Is an 

extension of 

Spectral 

Correlation but 

taking one of the 

Fourier 

transforms on 

angular domain. 

Straightforward 

to select 

frequency 

demodulation 

bands 

 

 

Low 

computational 

Cost 

Limitation in 

the amount of 

order to be 

analyzed 

 

Smith 2015 [45] Benchmark-

method extended 

Filter the signal as 

dictated by 

Kurtogram on 

time domain. 

Followed by 

Hilbert transform 

SES 

 Kurtogram 

could raise to 

miss-

interpretation 

of 

demodulation 

bands 

Berntsen 2022  

[46] 

Demodulation 

based on OMA 

Analysis 

(Operational 

Mode Analysis) 

Filter signal 

according to the 

pre-captured 

resonance 

frequencies 

 Implies prior 

characterization 

of all bearings 

to be 

diagnosed. 
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Mauricio 2022 

[47] 

Generalization 

of indicators of 

cyclo-

nonstationarity 

   

Mauricio 2020 

[48] 

IESFOgram 

demodulation 

Represent the IES 

as function of 

frequency bands, 

in a 1/3-binary 

tree for 

maximizing a 

metric 

Improves 

demodulations. 

 

Allows getting 

convenient IES 

for a desirable 

fault 

characteristic 

order 

The metric 

proposed does 

not evaluate the 

behaviour of 

IES but the 

magnitude at 

desired Fault 

characteristic 

order. 

 

In the literature described in this section, it is not exposed a structured method that explicitly 

integrates the algorithms available for REB diagnosis in the case of variable speed conditions. It was 

also difficult to find a clear guide for the tuning of the parameters implied at each one of those 

algorithms. In this sense, the idea exposed in section 4 tries to structure some of the algorithms 

available and bring an explanation for the parameter selections. A method for demodulation is also 

exposed in section 4. From the author's perspective, the demodulation strategies could be susceptible 

to improvements. 

Finally, according to the literature search, it is not usual to find classification algorithms based 

directly on the Improved Envelope Spectrum –IES (Or the similar version Improved Envelope Order 

Spectrum). The use of IES as the input for a classification algorithm rises as an interesting strategy, 

of the great understanding it brings about the vibrational response and could be interesting for the 

generalization of classification algorithms. 

 



 

3. Experimental Setup 

 

Experimentation was conducted on Test-Rig SpectraQuest Bearing Balance Fault Simulator BBFS, 

system shown in Figure 3-1. BBFS system consists of a 0.5 HP three phase induction motor with 

VFD-Lenze ESV251. The motor is coupled to a 5/8” diameter steel shaft, supported on two REB, 

with a span of 400 mm. In the middle of the span, a rotor of 5 kg weight is fit. Bearings with pre-

fabricated faults are originally installed. The faults were generated by the use of electro-erosion 

methods. Commercial reference for bearing are Rexnord ER-16K. 

 

Figure 3-1. Test Rig 

 
 

 

Vibrations on horizontal and vertical direction were sampled in both REB pedestals. Signal were 

record using a NI9234 DAQ with a sampling frequency of 52 kHz. REB fault characteristic order 

are as indicated by Table 3-1. 

 

 

Table 3-1 Fault Characteristic Orders 

REB COMMERCIAL REFERENCE: Rexnord ER-16K 

 ABREVIATION FAULT CHARACTERISTIC ORDER 

Inner Race  BPOI 5.430 

Outer Race BPOO 3.572 

Rolling Element BSO 2.322 

Cage FTO 0.402 
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3.1 Rolling Element Bearing Characterization 

In order to achieve a first characterization of the vibrational response, the vibration signal 

measured in the motor-side pedestal for a Healthy bearing and a Bearing with Outer-Race 

induced fault are compared. The rotational speed keeps nominally constant at 45 Hz and both 

measured are taken with the same charge. The magnitude spectrum of both cases is illustrated 

in Figure 3-2.  

 

Figure 3-2. Magnitude Spectrum Raw Vibration Response. 

 
 

It results notorious the rise in spectral energy contained in the range of 4500 – 10500 Hz, as it has 

been highlighted on Figure 3-2. This effect can be seen with more detail in Figure 3-3 where the 

magnitude spectrum is zoomed in regions between 1450-1850 Hz, 4500 – 6000 Hz and 8250 – 10500 

Hz. In the 4500 – 6000 Hz and 8250 – 10500 Hz regions, the spectrum reach peaks at frequencies 

equally spaced by entire multiples of the rotational speed – RPS. This behaviour is marked by the 

Orange-continuous cursors. 
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Figure 3-3 Modulations in resonance regions for Outer Race Fault REB 1450-1850 Hz. 

 
 

 

It results of particular interest the peak raised at 1634.4 Hz illustrated in Figure 3-3-A, since similar 

test rig has been reported with REB resonance at 2000 Hz [49].  However, there is no clear evidence 

of harmonics multiples of this discrete frequency. According to this reasoning, the understudy REB 

appears to have resonance frequencies in some of the ranges marked previously discussed. 

 

This is clarified if the waveform of the vibrational response is analyzed as it illustrated in Figure 3-4. 

The waveform is composed by a series of vibrations generated by the contact of the outer race fault 

surface and the rolling element, generating an impact on the REB body. Those impacts occurs 

periodically according to the fault characteristic order (or similarly called Fault Characteristic 

Frequency). Clearly, it indicates that the strong modulations occurring in the high frequency ranges, 

previously analyzed in Figure 3-3, are explained by the contact of surface faults. 
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Figure 3-4.Outer-Race Fault waveform. 

 
 

Although results evident the presence of high impulsivity modulated at the Fault Characteristic Order 

BPOO, the focus in this section is to characterize the spectral behavior of the REB. For this reason, 

it results important to determine in which of the frequency range belong the most impulsive 

frequency i.e. tend to determine which is the most probable resonance frequency band excited by the 

shocks generated by fault surfaces contact. To explore this, consider Figure 3-5, which illustrates the 

fast Kurtogram. This is a representation of the spectral kurtosis by using a binary-three 

representation. This representation allows for identifying the band in which the most impulsive noise 

is generated. 

 

 

Figure 3-5. Outer Race Faulty Bearing – Kurtogram. 

 
 

According to fast Kurtogram representation, the most impulsive bandwidth belongs to 9.600 – 12800 

Hz. This is in accordance with the magnitude spectrum previously discussed. To discuss in more 

detail this, consider Figure 3-6, which plots the raw signal waveform and the waveform of the signal 
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filtered at the maximum kurtosis bandwidth. As can be seen, the filtered signal shows a more 

impulsive behavior, dictated mainly by the occurrence of fault surfaces contact. This in fact is 

emphasized by the kurtosis descriptor of this second case. 

 

Figure 3-6. Raw signal vs Kurtogram filtered signal waveforms. 

 
 

The spectral content of the signal is also shown in the bi-spectral map shown in Figure 3-7. It displays 

the spectral correlation of the faulty outer race REB as a function of the spectral frequency –f  

(Vertical axis expressed in Hz) and the cyclic frequency –α  (Horizontal axis expressed in orders). 

The span cursors in the right part of the figure illustrate the spectral frequency bands analyzed 

previously in Figure 3-3. In those ranges, a notorious increase in the spectral correlation is raised. In 

the figures, a vertical line pattern is also notorious, especially in the cyclic frequencies 𝛼 equivalent 

to BPOO (nearest to 3x rotational speed harmonic). The beforehand described behavior indicates the 

signal presents high cyclostationarity in the band selected, reinforcing the hypothesis of finding 

spectral resonance in those ranges. 

 

 

Figure 3-7. Spectral Correlation for Outer Race Fault Bearing 
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3.2 Test Rig Critical Speed 

In this section, a pre-characterization of the test-rig is achieved. This is done by a simplified model 

and is also verified by a transient speed run-up vibration analysis. Both results are presented 

separately. 

3.2.1. Critical Speed Model Estimation 

Considering the overall equivalent lumped mass on a simply rotor, located at the center of the shaft. 

The critical speed is dictated by Equation 3-1. 

Equation 3-1     𝜔𝑐 = √
𝑔

𝑊𝑇𝐿𝛿𝑐𝑐
 

Where 𝛿𝑐𝑐 represents the influence coefficient of a load located at the center of the rotor, in the 

deflection measured at the center of the rotor. For a simple supported rotor, it is determined according 

to Equation 3-2. 

Equation 3-2     𝛿𝑐𝑐 =
𝐿4

8

6𝐸𝐼𝐿
=

𝐿3

48𝐸𝐼
 

The 𝑊𝑇𝐿 stand for the total equivalent lumped weight, which results as an equivalent load located at 

the center of the rotor. For this particular case, the rotor weight is located at the center of the shaft, 

with a numerical value of 5kg. The terms of Equation 3-2, are summarized in Table 3-2. A critical 

speed is estimated with a value of 1089.2 Hz. 

 

Table 3-2 Numerical Estimation of Test Rig Critical Speed. 

Shaft Diameter D m 0.0254 

Shaft radius R m 0.0127 

Aluminium Rotor Weight Mr kg 5.0 

Young Modulus E Pa 2.00×1011 

Area - Inertia Moment Ixx = Iyy m4 2.04×10-8 

Span - Shaft supports distance L m 0.3966 

Gravity acceleration g m.s-2 9.785 

Total Lumped Weight WTL N 48.9 

Influence coefficient cc δcc m/N 3.18×10-7 

Angular critical speed ωc rad.s-1 7.93×102 

Rotational critical frequency fc Hz 126.2 
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3.3 Other notorious spectral components 

 

As notated earlier, the AC motor is driving by a VFD. In those cases, they commonly produce 

electromechanical interactions, which could even generates torsional vibrations. VFD system try to 

control the phase frequency by switching the voltage and controlling the time-lapse of those switches 

inside an alternator. The switching frequency can vary in the range of 2 kHz to 16 kHz depending of 

the continuity required in the electrical connection. As more high, the switching frequency more 

smoothness is perceived in the AC wave. This type of devices usually generates high impulsive noise 

in a similar way than REB faults produce. In this sense, a prior identification of electromagnetic 

interactions should be carried in the Test characterization. For this particular case, happens that 

during the discrete random separation process, a notable peak is identified at the frequency of 12 

kHz, as it is shown in Figure 3-8.  

Figure 3-8. Discrete Random Separation filter magnitude spectrum. 

  

In Figure 3-8, the DRS process has been done for the case of a healthy bearing and a faulty bearing. 

It is noticeable the 12000 Hz peak, which indicates the presence of a discrete component just in the 

switching frequency of the VFM.  

 

For the exposed in previous sections, some aspects should be highlighted. At first, the critical speed 

is far from the speed ranges at which the experiments were done, as it will be exposed in section 6, 

since the maximum rotational frequency is around 40 Hz while the critical speed is estimated at 126 

Hz. There are three plausible ranges from resonance frequencies, i.e. (1.4-1.9 kHz, 4.5-6 kHz, and 

8-11 kHz), which have been identified from the SC bi-spectral map and the Kurtogram. In addition, 

there is evidence of discrete components dictated by interference with the VFM shifting frequency, 

i.e. 12 kHz. 

 

 



 

4. Model for Rolling Element Bearing Diagnosis 

under variable Speed 

 

In this chapter, a model for the REB diagnosis under variable speed is presented. Many of the 

algorithms described in section 2 are integrated in the model presented. A particular case is exposed, 

corresponding to a signal sampled on the test rig described in section 3, at which the bearing far from 

motor (B2) is subject to Inner Race Fault, while rotational speed varies in the range 15 – 30 Hz. 

The procedure is briefly summarized in Figure 4-1, and is further illustrated on Figure 4-2. The 

procedure is structured in four main steps, the capture of raw signal, computer order tracking, 

discrete random separation and the order-frequency analysis. 

 

Figure 4-1. Procedure for REB Diagnosis under variable speed. 
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Figure 4-2. Procedure for REB Diagnosis illustration. 

 

 

The method starts with the raw signal sampled in time domain, at a constant time step Δt = 1/Fs, 

where Fs corresponds to the sampling frequency of the ADC system. To perform order tracking 

using a Tacholess strategy, the Short Time Fourier Transform –STFT is used to obtain a time-
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frequency representation. Since the test rig do not owns element such as gears or blades, the 

synchronous orders are located in the bottom part of spectrum. This explains why other time-

frequency representations such as wavelet transform was not considered for this case, once it would 

imply lower time resolution.  

An adequate trade-off between time resolution and frequency resolution should be established As a 

good recommendation, it is not desirable to allow frequency resolution to exceed 10% of the nominal 

speed (since speed variations between 10% to 25% could be predicted by time synchronous average 

[35]). While the minimum speed during experimental practice is around 15 Hz, the frequency 

resolution should not exceed 1.5 Hz.  

From Time-Frequency representation and the use of Multi-Order-Probabilistic analysis, the 

instantaneous Rotational speed is estimated. Once the instantaneous rotational speed is determined, 

the MOPA strategy was used by the fact that no gears or blade elements are in the test rig, which 

becomes difficult to track a particular order different from the synchronous ones. Also, the maximum 

tracking of STFT usually generates distortions on the 𝐼𝑅𝑆[𝑡𝑖]. By the experimental result, MOPA 

gives a good approximation during the experimental setup.  

The reconstruction of instantaneous rotation speed IRS[ti] could be achieved by taking the expected 

value of MOPA at each time step 𝑡𝑖, as it is exposed on Equation 4-1. 

Equation 4-1    𝐼𝑅𝑆[𝑡𝑖] = 𝐸[ 𝑀𝑂𝑃𝐴[𝜔; 𝑡𝑖] ] 

By taking the value of IRS[ti], a band-pass filter centered at IRS[ti] is built. The previous time-

frequency representation 𝑋[𝑓𝑘, 𝑡𝑖] could be filtered and consequently, a virtual tachometer 𝑡𝑎𝑐ℎ𝑜[𝑛] 

is obtained by synthesis. Popular synthesis method Overlap-add – OLA is adequate. OLA method 

results appropriately since it's relative simply implementation. It is also important to argue that the 

real attention for virtual tacho is focused on their phase, as is exposed in Figure 4-1and Figure 4-2. 

Note that by using this procedure, virtual tacho is sampled on time domain, and consequently, 

instantaneous phase 𝜙[𝑛] and instantaneous rotational speed 𝑖𝑟𝑠[𝑛] are obtained on time domain. 

For discrete random separation, the GSA method proposed on [41] is proposed. Mainly, the use of 

GSA is preferred over the other methods exposed on Table 2-3 by the fact it could detect other 

synchronous components different from the synchronous ones. GSA was used with a speed 

resolution of 0.5 Hz, regimen increments of 0.5 Hz, and a kernel lambda λ of 1.2× the speed 

resolution. 

However, some limitations have been recognized for the use of GSA. For example, at signals with 

low rotational frequency, i.e. near 12-14 Hz, control over the frequency detail should be paid because 

the method tends to be unstable. For those situations, longer processing times were expected. Even 

an increase in frequency detail should be necessary. Additional steps are necessary from the use of 

GSA since order tracking interpolation is necessary to change to angular domain sampling (i.e 

𝑥[𝑚] = 𝑥(𝑚Δ𝜃), where ‘m’ indicates the index for angular domain sampling). This point is a future 

work proposal, based on how to properly set a method, which allows discrete random separation at 

variable speed conserving sampling on time domain. 
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Finally, the order-frequency analysis is made based on Cyclo-Nonstationary Representation. The 

OFSC bi-spectral map is obtained by the use of Average Cyclic Periodogram (Annex 4). This 

representation is interesting since it allows to identify periodical information related with cyclic order 

𝛼 and spectral frequency 𝑓. The OFSC map was generated using the parameters described on Table 

4-1. 

Hann window is used since the spectral content of the signal is for many cases unknown and it results 

satisfactory for the major part of cases. In addition, Hann window owns good trade-off between 

frequency and amplitude accuracy. 

Table 4-1. Parameters for OFSC-ACP 

SIGNAL 

Sampling time Duration of signal in seconds 5 s 

Sampling Frequency Fs 51200 Hz 

DIGITAL SIGNAL PROCESSING 

Window length 𝑁𝑤 Number of samples on window 211 

Window Type of window used Hann  

FFT length 𝑁𝐹𝐹𝑇 Number of samples to use in FFT 211 

𝑐𝑤 Noise Bandwidth Correction Coefficient 1.5 

Δ𝑓 Spectral frequency resolution: Fs/2Nw 12.5 Hz 

𝑐𝑤Δ𝑓 Effective Spectral Frequency 18.75 Hz 

Overlap Percentage Overlapping between consecutive windows 75 % 

α' range Range of study for cyclic orders 0 – 12 [revolution-1] 

α' resolution Space between consecutive α values 0.005 

The next part of the section, the method is applied to a particular signal, which is the vibrational 

response for an outer race fault case. All steps related in Figure 4-1 and Figure 4-2 are further 

illustrated.  

The Figure 4-3A illustrates the waveform of vibrational response sampled on test rig, while running 

at a variable speed between 15 and 30 Hz. The corresponding spectrogram is illustrated on Figure 

4-3B. 

Figure 4-3 Waveform of variable speed vibration response. 

A) Time domain signal. B) Short Time Fourier Representation. 
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From the Multi-Order Probabilistic Analysis, a Probability Distribution Function – pdf for the 

instantaneous rotational speed –IRS is obtained. The IRS is obtained for time steps 𝑡𝑖, with a 

resolution Δ𝑡𝑖 dictated by the time frequency representation previously discussed. In this sense, at 

each time step a pdf for the IRS is represented (named IRS[f, ti] on Figure 4-2). By using of expected 

operator the Instantaneous Rotation Speed could be estimated at time steps ti. This is illustrated in 

Figure 4-4. The MOPA results shown utilizes the first 3 harmonics, with a time step of 0.06 s. The 

hyper-parameters utilized are shown in Figure 4-4. 

Figure 4-4. Instantaneous Rotational Speed from MOPA approach. 

 

Table 4-2. Hyper-Parameter used for MOPA. 

Hyperparameter Nomenclature  

Sampling Frequency Fs 51200 Hz 

STFT window samples Nw
 215 

STFT Overlap Percentage [-] 90 % 

STFT type window [-] Hanning 

STFT num. of FFT samples Nfft
 217 

Harmonics {Hj} {1,2,3} 

Dim. Kernel [-] 26 

Number of Kernels K 5 

Gamma [-] 17438 Hz/s 
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At each time step, a zero-phase filter is built. The filter is built with center frequency at the estimated 

IRS, with a bandwidth of 10 % around IRS, i.e.  [0.9 ∙ 𝐼𝑅𝑆𝑖 ;  1.1 ∙ 𝐼𝑅𝑆𝑖]. This filter is applied to 

original Time Frequency representation followed by normalization step. This normalization is done 

with the intention to avoid any kind of amplitude modulation in the virtual tacho signal but keeping 

the phase modulations as desired in virtual tacho signal. The synthetized virtual tacho and the 

subtracted phase and IRS are plotted in Figure 4-5. 

Figure 4-5. Phase demodulation order tracking. 

 

The angle resampled signal and their order spectrum are shown in Figure 4-6. Clear peaks at shaft 

rotation harmonics are revealed, which in fact indicates the resampling process has been achieved 

correctly. A second phase demodulation is recommended in cases where clear peak at shaft rotation 

harmonics are spread and do not result clear. This phase demodulation step could be made in angular 

domain by a similar way than exposed in section 2.5. 

Figure 4-6. Angle domain waveform. 
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By the use of the Generalized Synchronus Average, a prior Discrete Random Separation could be 

achieved. The use of GSA is illustrated in Figure 4-7. Does result evident the energy loosed at the 

discrete synchronous orders 1x, 2x and 3x once the GSA is done.  

Figure 4-7. GSA illustration 

 

By using the random component obtained after GSA process, the Order-Frequency Spectral 

Coherence could be obtained as exposed in Figure 4-8. The parameters used were previously exposed 

on Table 4-1. Clear vertical patterns are observed at fault characteristic order of BPOO, 2xBPOO 

and 3xBPOO. Those vertical lines are visible on all the spectral frequency range between 0 to Fs/2 

which makes it straightforward to establish a diagnosis (Outer Race Fault Diagnosis). 

Figure 4-8. Order-Frequency Spectral Coherence - OFSCoh 
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For the most part of cases, it results more convenient to analyze the Squared Envelope Order 

Spectrum (as discussed on section 2.4). At this point, there are many ways to buid SEOS versions. 

For example, from OFSCoh map the Enhanced Envelope Order Spectrum could be obtained by 

averaging the OSFCoh map over the vertical axis. Former, mean integrating over the vertical axis 

and plotting the result as a function of α. This is plotted on Figure 4-9. Dashed blue line stands for 

the statistical threshold, with a 95% Confidence Interval, for which the signal could be considered 

to own second-order cyclo-stationarity. To make the previous statement clear, consider the 1xBPOO 

cyclic order (α =BPOO). Since the EEOS overcome the statistical threshold represented by dashed 

blue line, it could be considered that signal owns a second order cyclostationary component at 

BPOO. Similar cases for orders such as 2x, 2xBPOO, and 3xBPOO. With previous results, it is clear 

the diagnosis of outer race fault. 

Figure 4-9. Enhanced Envelope Order Spectrum 

 

For the particular case studied on previous paragraph (case exposed on Figure 4-9) results in a clear 

diagnosis using EEOS, i.e. averaging over the spectral frequency range. However, this is not the 

general case. In many situations is not as straightforwardly as the case previously illustrated. 

Demodulation is usually necessary for obtaining convenient Order Spectrum, i.e, an order-spectrum 

useful for diagnosis. By the use of OFSCoh map, demodulation could be achieved by averaging 

(integrating) over a convenient spectral frequency band. When a particular spectral frequency band 

is selected, the result is usually called as IEOS, which stands for Improved Envelope Order 

Spectrum. For example, if a spectral frequency band comprehended  

For this particular case, application of model previously summarized on Figure 4-1allows to 

determine the Instantaneous rotational speed, separate the Random and Deterministic parts and so, 

obtain cyclic frequency representation by the use of Enhanced Envelope Spectrum. At EES clears 

peaks at Fault Characteristic Frequency could be obtained and so generate a Diagnosis. This 

procedure would be followed by the rest experimental setups. 

In this section, the method NewIESfogram [50] is exposed. The NewIESfrogram is a strategy for 

demodulation, i.e. selecting a convenient spectral frequency range to analyze the resulting IES. The 
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main idea with his method is to define a new metric, which can measure the convenience of selecting 

a spectral range to generate an IES and subsequently made a diagnosis based on such IES. The metric 

is exposed as a function of spectral frequency band.  

The results exposed in [50] show that for the case of a constant speed, the diagnosis process could 

be improved with respect to similar strategy previously exposed on [48]. In section 6, the extension 

of that method for the case of variable speed would be exposed. 

 

4.1 NewIESfogram 

As it was mentioned, usually is common to try to represent the cyclic frequencies on a one-

dimensional spectrogram. In fact, the IES has been proved to represent a valuable tool for REB fault 

diagnosis. The use of Improved Envelope (Order) Spectrum in place of Enhanced Envelope (Order) 

Spectrum , stands by the fact that commonly the fault characteristic frequencies do not modulate all 

the spectral content, but modulates selected frequency ranges. The latter indicates that an adequate 

selection of 𝑓𝑐 and Δ𝑓 for the IES determination could improve notoriously the one-dimensional 

spectrum representation, and so on the diagnosis process.  

Recently, [51] has proposed a method for the semi-automatic selection of the optimal frequency band 

for the IES computation. The resulting IES is namely IESFO standing for Improved Envelope 

Spectrum Frequency Optimization. This method was applied to REB diagnosis under high impulsive 

noise coming for Pulse-Width Modulation (PWM). In this approach, a metric is represented as a 

function of the spectral frequency band. The metric selected in this proposed method correspond to 

the sum of the IES evaluated over a set of cyclic frequencies previously selected, as it is shown in 

Equation 4-2. 

Equation 4-2    𝐼𝑛𝑑 = ∑ 𝐼𝐸𝑆(𝛼𝑘; 𝑓𝑐 , Δ𝑓)𝑘  

where 𝛼𝑘 could represents the kTH candidate of cyclic frequency in which a track of fault should 

appear. It is important to mention that probably the set of cyclic frequencies correspond to the 

harmonics of the fault characteristic frequency prior selected.  

In this sense, optimal frequency band is done by representing the Ind-metric in a 1/3-binary tree, in 

a similar manner as Kurtogram is presented. The optimal spectral frequency band is then selected by 

maximum value observing in which center frequency and frequency bandwidth the Ind-metric 

reaches the. This approach has been named IESFOgram. 

To further exploration of IES computation from the use of IESFOgram and the Ind computation let’s 

analyze the Figure 4-9. A set of three cyclic frequencies are prior selected {𝛼1, 𝛼2, 𝛼3}. Additionally 

let’s suppose that a spectral frequency band (f1 and f2) is also prior selected by the use of IESFOgram. 

From the Spectral Coherence (refer to Figure 2-18) the Improved Envelope Spectrum is computed 

by the integration between f1 and f2  over the f-axis as it is illustrated on Equation 4-3.  
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Equation 4-3  𝐼𝐸𝑆(𝛼; 𝑓𝑐  , Δ𝑓) =
1

Δ𝑓
∫ 𝑆𝐶𝑂ℎ(𝛼, 𝑓) 𝑑𝑓

𝑓2

𝑓1
   

The IES is then evaluated at the set of cyclic frequencies, and the magnitudes obtained are added to 

compute the Ind metric as it is shown in Equation 4-2 process is schematized in the Figure 4-10.b. 

Figure 4-10. Illustration of IES and Ind-metric computation. A) Spectral Coherence 

Representation. B) IES representation. 

 
 

For REB diagnosis, it is desirable to obtain a spectrogram where the magnitude of the IES looks as 

close as possible to delta functions in the FCF. It means the desired shape of the IES is reaches high 

magnitude value in those FCF frequencies whereas the neighbor magnitudes keep close to zero. 

From the last idea, it results important to explore the nature of the metric used in the IESFOgram. 

Although the metric intends to maximize the amplitude on the selected FCF, it do not evaluate the 

IES on the neighbor cyclic frequencies. This is illustrated in Figure 4-11, where two IES generates 

the same 𝐼𝑛𝑑 despite of their noticeable differences on their behaviour. In Figure 4-11.a. the IES do 

not keep zero at the neighbors of the selected fault characteristics frequencies, whereas the IES 

shown in Figure 4-11.b does.  
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Figure 4-11. Ind-metric computation comparison. A) ind illustration for low SNR Improved 

Envelope Specturm. B) ind illustration for high SNR Improved Envelope Specturm 

 

In order to generate another metric, which evaluates a high peak in the selected FCF, but at the same 

time valuates the neighbor behave, the Sample Correlation Coefficient between the IES and a 

hypothetic IES equivalent to the sum of delta functions on the FCF is proposed. This idea is 

illustrated in Figure 4-12 and described by Equation 4-4. In Figure 4-12.a, an IES have small sample 

correlation with respect to the hypothetic IES, this is because the magnitude of IES on neighbor 

cyclic frequencies have considerable magnitude. In contrast, Figure 4-12.b have big sample 

correlation because of their similitude with the desire delta function. 

 

Figure 4-12 Sample correlation computation comparison. 

A) Low sample correlation case. B) High sample correlation case. 

 

 

Equation 4-4    𝑟 =
∑ (𝐼𝐸𝑆[𝑘]−𝐼𝐸𝑆)(𝐼𝐸𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑[𝑘]−𝐼𝐸𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑)𝑘

√∑ (𝐼𝐸𝑆[𝑘]−𝐼𝐸𝑆)
2

(𝐼𝐸𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑[𝑘]−𝐼𝐸𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
2

𝑘

 

where the ¯ stands for the mean operator.  

The optimal spectral frequency band could also by obtained by the 1/3-binary tree search in a similar 

way than an IESFOgram or a Kurtogram. With the only aim of simplicity, this approach is named 

newIESFOgram. The resulting IES generated is named newIESFO in analogous manner. 

 

During this chapter, the method proposed has been described and exemplified. The algorithm's 

parameters employed in each of the steps of the method are exposed and their selection has been 

briefly discussed. Some improvement points on the method was mentioned and some control aspects 

have been exposed. Finally, in section 4.1 a new method for demodulation based on OFSCoh is 

introduced in a previous author’s work. 

 



 

5. Simulated Experimental Results 

 

For validation of method exposed on section 4, a series of experiments are proposed. At first, a series 

of simulated signals are considered. The model for simulating those signals is described on section 

5.1, and the different considerations for each of the type of failure are detailed in sections 5.1.1 to 

5.1.4. In section 5.2 results of experiments on simulated signals are exposed and discussed for the 

different type of faults and the loads applied. Additionally, on section 5.3 the effect of random 

slippage, Signal to Noise Ratio and the spread on impulses are analyzed.  

 

5.1 Simulation Model 

 

From this point, the interest is to achieve a classification according to angular acceleration and 

diverse type of charges. In this sense, an incipient fault in a REB could be simulated as a discrete 

train pulse, modulated by the load according to the nature of them. To further consider the behaviour 

and relations between the type of loads, modulations and pulse trains, consider the Equation 5-1.  

 

Equation 5-1   𝑥(𝑡 ) = [𝐴(𝜃(𝑡)) ∑ 𝛿Θo(𝜃(𝑡)𝑘 ] ∗ ℎ(𝑡)     

   

𝛿𝑘
Θ0(𝜃) =  {

1  if  𝜃 =  𝑘Θ0

  0  ;    otherwise
 

 

Where 𝑥(𝑡) denotes the acceleration, the * operator denotes the convolution, ℎ(𝑡) represents the 

impulse response of REB body, 𝐴(𝜃(𝑡)) represent the amplitude modulation function, and 

𝛿𝑘
Θ0(𝜃(𝑡)) represent an impulse located at an entire multiple of angular periodicity Θ0. Angular 

periodicity Θ0 results as the inverse of Fault Characteristic Orders (BPOO, BPOI, BSO), depending 

of type of fault to be simulated. The terms of Equation 5-1 are illustrated on Figure 5-1. 



Chapter 5 – Simulated Experimental Results 75 

 

Figure 5-1. Amplitude Modulation Function 

 

 

For convenience, 𝐴 and 𝛿𝑘
Θ0  would be expressed as function of angular domain, since it represents 

the direct relation between input force and angular position. On the other hand, the impulse response 

ℎ(𝑡) is strictly time dependent as described on section 1. Note the similarity between Equation 5-1 

and Equation 1-2. 

The modulation function 𝐴(𝑡) would result from the combination of different load, as exposed on 

Table 2-2. Similar models  were presented by [52], for the case of Outer Race and Inner Race defects, 

under constant speed regime. For the purpose of this section the amplitude load would be described 

for the three types of faults and a discussion about the implications of variable speed on their 

behaviour. For the rest of the chapter, the results of apply the method proposed on section 4 are 

exposed. Additionally, the effect of randomness are briefly discussed. For the particular analysis of 

this section, only radial loads are considered, and axial load effect is discarded. 
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Table 5-1 Factor and levels from simulated signals. 

FACTOR SYMBOL LOW LEVEL HIGH LEVEL 

Dynamic Load (unbalance) me 0.00015 kg∙m 0.015 kg∙m 

Static Load (Dead weight) Mg 1 kg (9.8 N) 6 kg (58.8 N) 

Rotational Speed Run up: 0 to 5 seconds. �̇� 10 – 25 Hz 10 – 40 Hz 

Fault type [-] IR – OR – BF – Healthy 

 

5.1.1.Outer Race Amplitude Modulation Function 

As most common case, the Outer race is fixed without movement, whereas inner race rotates at 

synchronous speed with shaft at the Instantaneous Rotation Speed. Consequently, If a small defect 

is present on the outer race, it would keep on the same position, usually located on the bottom part 

of Outer Race. The Static load and dynamic loads are illustrated on Figure 5-2. 

 

Figure 5-2. Loads for the case of localized faulty on outer race 

 

 

As rolling element pass through the load zone and the defect, an impact would be generated. Note 

the static load does not generate any modulation as the distance between defect and static load keeps 

constant. On the other hand, dynamic load is synchronous with inner race and their effect would be 

seen as a modulation at the IRS frequency. The Equation 5-2 summarizes this situation [52].  
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Equation 5-2   𝐴(𝜃(𝑡)) = 𝜌[𝑀𝑔 cos 𝜓 + 𝑚𝑒�̇�(𝑡)2 cos(2𝜋𝜃(𝑡))] 

Θ0 =
1

BPOO
 

Notice the static load component does not have any relation with the angular domain. In fact, if static 

load is considerable with respect dynamic load a constant modulation function is expected. On the 

other hand, the dynamic load would not only depend on the angular position, but also would be 

amplified by the rotational speed. This situation results from particular interest on the case of variable 

speed, since the ration between static load and dynamic load changes over time.  If the dynamic load 

is considerable, the envelope spectrum should be composed of discrete peaks at BPOO and 

harmonics of BPOO, accompanied with sidebands at 1×. 

 

5.1.2.Inner Race Amplitude Modulation Function 

In contrast to the Outer Race Fault case, if a small defect were present on the inner race, the location 

of defect would be displacing synchronously with shaft. This situation is illustrated on Figure 5-3.  

 

Figure 5-3. Loads for the case of localized faulty on inner race 

 

 

The static load would generate an amplitude modulation dictated by the difference between angular 

position of defect and static load. As angular position of the defect is displacing at shaft speed, a 

modulation of 1× is expected for the case of static load. On the other hand, as both, dynamic load 
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and defect position, rotates at the same angular speed (shaft speed), their relative position does not 

change and consequently any modulation is expected. The impact periodicity, is dictated by the Ball 

Pass Inner Race Order BPOI. The amplitude modulation function is expressed in Equation 5-3 [52]. 

Equation 5-3   𝐴(𝜃(𝑡)) =  𝜌[𝑀𝑔𝑐𝑜𝑠(2𝜋𝜃(𝑡)) + 4𝜋2𝑚𝑒�̇�(𝑡)2 cos(𝜓)]  

Θ0 =
1

𝐵𝑃𝑂𝐼
 

It is important to annotate that although in previous paragraph it has been said that any modulation 

is expected from dynamic load, it is only true for the case of constant angular speed. Notice the 

amplitude of dynamic load is proportional to square of Instantaneous Rotational Speed. The latter 

means for the case of variable speed, an amplitude modulation is expected from the increase in 

kinetic energy of the system. 

 

5.1.3.Rolling Element Amplitude Modulation Function 

For the case of rolling element failure, various modulations are expected. First, consider the situation 

illustrated on Figure 5-4 at which a fault is drawn in one of the rolling elements. The figure illustrates 

that the rolling element rotates at a speed equivalent to the product of BSO and shaft speed (�̇� ×
𝐵𝑆𝑂). Whereas, the cage is rotating at an angular speed equivalent to the product of FTO and shaft 

speed (�̇� × 𝐹𝑇𝑂). As usual, the dynamic load is rotating synchronously with the shaft, i.e. at an 

angular speed of �̇� whereas the static load does not move.  

Figure 5-4 Loads for the case of localized faulty on rolling element 

 



Chapter 5 – Simulated Experimental Results 79 

 

To understand the model proposed, it is important to describe the effect of static load. The rolling 

element with failure would be located at the static load zone once per rotation of the cage. This 

means an amplitude modulation is expected in function of the angular distance between static load 

and the position of the cage with the rolling element failed rolling. The former, means that static load 

would generate an amplitude modulation at FTO order. 

On the other hand, it is important to note the dynamic load rotates at different angular speed than the 

cage. In this sense, a modulation is expected from the relative positions between the faulty rolling, 

and the dynamic load. The before mentioned implies that a modulation is expected at (1-FTO) order 

as consequence of dynamic load. The magnitude of dynamic load could be modeled as proportional 

to square instantaneous angular speed. The Equation 5-4 models the vibrational response for the case 

of a localized fault on a rolling element. 

Equation 5-4  𝐴(𝜃(𝑡)) = 𝜌[𝑀𝑔 cos(2𝜋𝐹𝑇𝑂 𝜃(𝑡)) + 𝑚𝑒�̇�2 cos(2𝜋(1 − 𝐹𝑇𝑂)𝜃(𝑡) + 𝜓𝑜)] 

Θ0 = 1/BSO 

Notice in this case, amplitude modulations are expected from both contributions, static and dynamic 

load. Similar to previous cases, the dependence between dynamic load and angular speed generates 

additional amplitude modulation from the variations of the kinetic energy of the ensemble.  

 

5.1.4.Nominal Parameters for Simulated Signals. 

Signals for different type of faults were simulated according to amplitude modulation functions 

exposed through sections 5.1.1 to 5.1.4 and the model exposed on Equation 5-1. The impulse 

response function ℎ(𝑡) was modeled as an all poles, second order, 1 DOF system, with a damping 

coefficient 휁 =  0.01, a natural frequency of  Ω𝑁 = 8000𝜋 rad s−1. The equivalent impulse 

response on digital domain was obtained by impulse invariance method. 

Rotational speed was set as a linear-run up. With an initial rotation frequency of 10 Hz and an 

acceleration was a factor with levels at 3 Hz/s and 6 Hz/s. 5 seconds signals where simulated, at a 

sampling frequency of 25600 Hz.  

The fault characteristic orders are set equal to the ones of the Test Rig described on section 3, in 

Table 3-1. To simulate the effect of progressive faults, and the randomness associated with strikes 

generated by the contact between faulty surfaces, a random slippage was added to the angular 

distance between pulses. This slippage is set as a random value in the range of -5% and 5% for each 

pulse, with an uniform probability distribution. This situation is illustrated on Figure 5-5.  
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Figure 5-5 Illustration of slippage 

 

 

Figure 5-5-A illustrates the nominal position of pulse and the possible range at with the impulse 

could lie. As there is no information of probability of slippage, an uniform probability distribution 

is considered between the limits previously discussed (±5 %). Figure 5-5-B schematize a realization 

of the process and the multiplication with the corresponding amplitude modulation function𝐴(𝜃(𝑡)), 

as previously discussed.  

For making the simulation process more realistic, additional signals are added to built the simulated 

signal 𝑦(𝑡). The output signal is estimated as the sum of three different signals. The non-

cyclostationarity signal, 𝑥(𝑡), simulated with the model exposed on Equation 5-1, additive white 

Gaussian noise, 𝑛(𝑡), and the effect of some discrete components 𝑑(𝑡). Each of the one signals are 

normalized between -0.5 and 0.5, and weighted prior to summation. This is exposed on Equation 

5-5, and summarized on Table 5-2. 

Equation 5-5    𝑦(𝜃, 𝑡) = 𝑥(𝜃, 𝑡) + 𝑛(𝑡) + 𝑑(𝜃(𝑡)) 
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Table 5-2 Composition of simulated signals 

TYPE OF SIGNAL RELATION WEIGTH FACTOR 

 

Cyclo-Non Stationary 

 

 

𝑥(𝜃, 𝑡) =  [𝐴(𝜃(𝑡)) ∑ 𝛿Θo(𝜃(𝑡))
𝑘

] ∗ ℎ(𝑡) 

 

 

cx = 0.40 

 

Additive White Noise 

 

𝑛(𝑡)   ;      𝑛(𝑡𝑖) ~ 𝒩(𝜇 = 0 , 𝜎 =  0.5)   
 

cn = 0.55 

 

Discrete components 𝑑(𝑡) =  

0.15 sin (2𝜋𝜃(𝑡) +
𝜋

3
 ) + 

0.10 sin (4𝜋𝜃(𝑡) +
𝜋

4
 ) + 

0.05 sin (6𝜋𝜃(𝑡) +
𝜋

7
 ) + 

0.05 sin (8𝜋𝜃(𝑡) +
𝜋

5
 ) + 

0.05 sin (10𝜋𝜃(𝑡) +
𝜋

2
) + 

0.05 sin(60 × 2𝜋𝑡) +  

0.05 sin(6000 × 2𝜋𝑡)  

 

 

cn = 0.05 

 

To exemplify the previous paragraphs, consider a fault on Outer Race, for the case of low angular 

acceleration. The cyclo-nonstationary part, the white noise and discrete contributions are illustrated 

on Figure 5-6-A. The Figure 5-6-B illustrates the instantaneous angular speed. 

 

Figure 5-6. Components of simulated signals and rotation speed. 
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The parameters for static load, unbalance, acceleration and dynamic load range are summarized on 

Table 5-3. For each case, the signal was scaled between 0 and 1. Those parameters have been selected 

aiming to simulate the conditions of test rig exposed on section 3.  

Table 5-3. Parameters for Simulation Signals 

 
Static Load 

[N] 

Unbalance 

[kg m] 

Acceleration 

 

Freq. range 

Range of  

Dynamic Load 

[N] 

Run 1 9.8 1.5×10-4 

3 Hz s-1 

 

10 – 25 Hz 

0.6 – 3.7 

Run 2 58.8 1.5×10-4 
3 Hz s-1 

 

10 – 25 Hz 

0.6 – 3.7 

Run 3 9.8 0.015 

3 Hz s-1 

 

10 – 25 Hz 

59.2 – 370.1 

Run 4 58.8 0.015 
3 Hz s-1 

 

10 – 25 Hz 

59.2 – 370.1 

Run 5 9.8 1.5×10-4 

6 Hz s-1 

 

10 – 40 Hz 

0.6 – 9.5 

Run 6 58.8 1.5×10-4 
6 Hz s-1 

 

10 – 40 Hz 

0.6 – 9.5 

Run 7 9.8 0.015 

6 Hz s-1 

 

10 – 40 Hz 

59.2 – 947.5 

Run 8 58.8 0.015 
6 Hz s-1 

 

10 – 40 Hz 

59.2 – 947.5 

 

5.2 Simulated Faults Results 

In this section, the simulated signals results are illustrated for each case of fault, with the parameters 

previously exposed on Table 5-3. The combination fault case is also considered. In general, after 

applying the model described on section 4, the diagnosis results satisfactory. In addition, the relation 

between dynamic loads and static loads results important for the behaviour on the Envelope Order 

Spectrum analysis.  

The discrete components at IES are compared with respect to statistical threshold. In this sense, if a 

discrete cyclic frequency overcomes the statistical threshold is it possible to affirm that at such 

discrete cyclic frequency the signal has a second order cyclo-stationary behavior, with a p-value of 

95% [34]. The statistical threshold comes from the Equation 9-8 described on annex 9.2 
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5.2.1.Outer Race Simulated Fault 

 

Table 5-4 summarizes the result obtained on the different experimental simulations for the case of 

Outer Race Fault. In the last columns (shadow columns), the discrete cyclic orders of 𝛼 =

1, 2, 𝐵𝑃𝑂𝑂, and 2 × 𝐵𝑃𝑂𝑂 were labeled as ‘N’ or ‘Y’ as follows. If those discrete components 

exceed the statistical threshold they were labeled as Y, in the opposite case were labeled as N.  

A high correlation between the discrete components exceeding the statistical threshold and the 

modulation coefficient (Column 𝑅) is observed. The mean modulation coefficient 𝑅 is defined from 

the Amplitude modulation function, exposed on section 5.1.1. In the case of Outer Race Fault, it 

becomes the relation between static load 𝑀𝑔𝑐𝑜𝑠(𝜓) and dynamic load 𝑚𝑒�̇�2. As shaft rotation speed 

does not keep constant, the modulation coefficient does not keep constant. For the previous reason, 

an average modulation coefficient is taken, as it is exposed on Equation 5-6. 

Equation 5-6    𝑅 =
𝑀𝑔 cos(𝜓)

4𝜋2𝑚𝑒�̇�1�̇�2
 

where 𝑀𝑔 stands for the Rotor and shaft weight, 𝑚𝑒 stands for the unbalance charge, and �̇� stands 

for instantaneous rotational speed, as it was exposed on Table 5-1.  

Table 5-4. Summary of loads for Outer Race Simulated signals. 

Run 

Label 

Static 

Load 

[N] 

Static 

Unbalance 

[kg m] 

Acceleration 

 

Freq. range 

Range of  

Dynamic 

Load 

[N] 

𝑹 1x 2x 1xBPOO 2xBPOO 

S-OR-1 9.8 1.5×10-4 

3 rev/s2 

 

10 – 25 Hz 

0.6 – 3.7 5.85 

N N Y N 

S-OR-2 58.8 1.5×10-4 

3 rev/s2 

 

10 – 25 Hz 

0.6 – 3.7 35.10 

N N Y Y 

S-OR-3 9.8 0.015 

3 rev/s2 

 

10 – 25 Hz 

59.2 – 370.1 0.06 

N N N N 

S-OR-4 58.8 0.015 
3 rev/s2 

 

10 – 25 Hz 

59.2 – 370.1 0.35 
N N N N 

S-OR-5 9.8 1.5×10-4 
6 rev/s2 

 

10 – 40 Hz 

0.6 – 9.5 3.66 
N N N N 

S-OR-6 58.8 1.5×10-4 

6 rev/s2 

 
10 – 40 Hz 

0.6 – 9.5 21.94 

N N Y Y 

S-OR-7 9.8 0.015 

6 rev/s2 

 
10 – 40 Hz 

59.2 – 947.5 0.04 

N N N N 

S-OR-8 58.8 0.015 

6 rev/s2 

 

10 – 40 Hz 

59.2 – 947.5 0.22 

N N N N 
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Figure 5-7 illustrates the IES obtained from signals S-OR-1 to S-OR-8. Similarly. The statistical 

threshold (95% CI) is plotted for each case with a dashed line. Additional view of those results are 

presented on annex of section 9.3.  

 

Figure 5-7. Simulated Signals for OR fault. 

 

 

In general, for the case of Outer Race fault, when the dynamic load is considerably stronger than 

static load, the diagnosis process is difficult since the modulation generated by synchronous 

components spread the energy of strikes. On the other hand, when static load is the dominant 

component, diagnosis is more straightforward and the peaks at BPOO exceed statistical threshold.  

To further illustrates this idea, let consider the signal S-OR-7, which is the one with the minimum 

modulation coefficient. The OFSC map is shown in Figure 5-8-A. The Figure 5-8-B, shows the IES 

estimated from the spectral range between 2 and 6 kHz. Although a clear discrete component is 

observed at cyclic frequency of BPOO, the energy of this discrete component does not overcome the 

hypothesis threshold. It is worth to note the presence of some discrete peaks on the at cyclic order 

2×, and modulation sidebands at BPOO – 2x. Although his energy is so low, there are an effect of 

Synchronus modulations (Dynamic Load Effect). The fact it appears at 2×, instead of 1x, is 

explainable given the extreme low modulation coefficient. The reader could be free to consult the 
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Appendix 9.2 and see the IES for the signal S-OR-4 and 5, in such cases modulations at 1× occurs, 

maybe because modulation coefficient are near to 1. 

 

Figure 5-8. 'S-OR7' signal OFSC and IES 

 

 

Now, consider the results for Signal S-OR-2, which is the case one with major modulation 

coefficient, this is illustrated on Figure 5-9, which illustrates the Order Frequency Spectral 

Correlation and the IES estimated at a spectral frequency between 2 and 6 kHz. A clear diagnosis 

could be established from the results shown in Figure 5-9, since clear peaks at BPOO are evidenced. 

Also is noticeable that those peaks exceed statistical threshold.  
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Figure 5-9. ‘S-OR2’signal OFSC and IES. 

 

 

In contrast with the exposed on Figure 5-8, for the IES in Figure 5-9 there is no evidence of peaks at 

any synchronous discrete component (1× or 2×), neither any modulation sideband. The former is in 

accordance with the exposed on Equation 5-2, since the static load is predominant over dynamic one.  
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5.2.2.Inner Race Simulated Fault 

 

The Table 5-5 summarizes the result obtained for experimental simulations in the case of Inner Race 

Fault. If the cyclic orders 𝛼 = 1, 2, 𝐵𝑃𝑂𝐼 and 2 × 𝐵𝑃𝑂𝐼 exceed the statistical threshold they were 

labeled as ‘Y’ in the latest columns of Table 5-5. In the opposite case were labeled as ‘N’. The 

modulation coefficient 𝑅 is estimated as indicates Equation 5-7. This is defined as the quotient 

between the dynamic load and static load, i.e. the relation between term 𝑚𝑒(2𝜋�̇�)2 cos(𝜓) and term 

𝑀𝑔 of Equation 5-3. 

Equation 5-7   𝑅 =
4𝜋2𝑚𝑒𝑐𝑜𝑠(𝜓)(�̇�2

2+�̇�2�̇�1+ �̇�1
2)

𝑀𝑔
  

where 𝑀𝑔 stands for the Rotor and shaft weight, 𝑚𝑒 stands for the unbalance charge, and �̇� stands 

for instantaneous rotational speed, as it was exposed on Table 5-1.  

Table 5-5. Summary of loads for Inner Race Simulated signals 

Run 

Label 

Static 

Load 

[N] 

Static 

Unbalance 

[kg m] 

Acceleration 

 

Freq. range 

Range of  

Dynamic 

Load 

[N] 

𝑹 1x 2x 1xBPOI 2xBPOI 

S-IR-1 9.8 1.5×10-4 

3 rev/s2 

 
10 – 25 Hz 

0.5 – 3.2 

0.17 N N Y N 

S-IR-2 58.8 1.5×10-4 

3 rev/s2 

 

10 – 25 Hz 

0.5 – 3.2 

0.03 N N Y Y 

S-IR-3 9.8 0.015 

3 rev/s2 

 

10 – 25 Hz 

51.3 – 320.5 

16.67 N N Y Y 

S-IR-4 58.8 0.015 

3 rev/s2 

 

10 – 25 Hz 

51.3 – 320.5 

2.78 N N Y Y 

S-IR-5 9.8 1.5×10-4 
6 rev/s2 

 

10 – 40 Hz 

0.5 – 8.2 
0.36 N N Y N 

S-IR-6 58.8 1.5×10-4 
6 rev/s2 

 

10 – 40 Hz 

0.5 – 8.2 
0.06 N Y Y Y 

S-IR-7 9.8 0.015 

6 rev/s2 

 
10 – 40 Hz 

51.3 – 820.5 

35.90 N N Y Y 

S-IR-8 58.8 0.015 

6 rev/s2 

 

10 – 40 Hz 

51.3 – 820.5 

5.98 N N Y Y 

 

The Figure 5-10 illustrates the IES obtained from signals S-IR-1 to S-IR-8, ordered according to 

modulation coefficient 𝑅. Each signal IES, and their corresponding statistical threshold are drawn 

with different gray tone. Particular cyclic orders are labeled on horizontal axis. Additional view of 

those results are presented on annex in section 9.4.  
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Figure 5-10. IES comparison for Inner Race Simulations Signals. 

 

In Figure 5-10, all the cases presented the 1xBPOI order exceeds the statistical threshold. Is 

noticeable the effect of modulation coefficient on the behaviour of the IES. As bigger the modulation 

coefficient, the peaks at BPOI and 2×BPOI exceed in major proportions the statistical threshold 

(drawn with dashed lines for each case). Is also noticeable the fact that side bands tends to disappear 

as 𝑅 increases. This latest behaviour is in accordance with exposed on Equation 5-3, since, as 𝑅 is 

higher, indicates the term 𝑀𝑔 is low in comparison with 𝑚𝑒�̇�2cos (𝜓) term. The former implies that 

sidebands at synchronous orders are decimated.  

From previous observations, when an Inner Race fault occurs, higher static load leads to sidebands, 

which reduce the peaks at BPOI.  

Signal S-IR-1 appears to be the one with a less confidence about cyclostationary behaviour at BPOI. 

To further exemplify this, consider the OFSC map for S-IR-1 shown in Figure 5-11-A and the IES 

estimated from the spectral range between 2 and 6 kHz shown in Figure 5-11-B. A clear peak 

exceeding statistical threshold is observed at 1xBPOI. Peaks at 1x, 2x, 2xBPOI and some 

synchronous sidebands are noticeable although they do not exceed statistical threshold. 

 

 



Chapter 5 – Simulated Experimental Results 89 

 

Figure 5-11. ‘S-IR-1’signal OFSC and IES. 

 

 

On the other hand, from Figure 5-10, it is possible to observe the signal with major cyclostationary 

behaviour is the S-IR-7. In fact, that is the one with the biggest modulation coefficient𝑅. The OFSC 

map is illustrated in Figure 5-12-A and the IES is illustrated in Figure 5-12-B. Clear peaks at discrete 

cyclic frequencies of BPOI and 2xBPOI are evident. Those peaks exceed the statistical threshold 

considerably. Is also worth to note that no modulation sidebands are recognized, neither peaks at 

synchronous components such as 1x and 2x. The former is explained by the dominant effect of 

dynamic load, i.e. high modulation coefficient. 
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Figure 5-12. ‘S-IR-1’signal OFSC and IES. 

 

 

In general, the performance of method shows a good result for the case of inner race fault. The 

behaviour of the results are in accordance with the amplitude modulation function used to simulate 

the IR fault signals. 
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5.2.3. Ball Simulated Fault 

 

Table 5-6 shows the results obtained for the case of Rolling Element (Ball) Fault simulation signals. 

In this case, it results important to search for orders such as 𝛼 = 𝐹𝑇𝑂, 2 × 𝐹𝑇𝑂, 3 × 𝐹𝑇𝑂 and even 

harmonics of BSO such as 2 × 𝐵𝑆𝑂 and 4 × 𝐵𝑆𝑂. The results of IES on those orders are summarized 

on right columns of Table 5-6. Similar to the previous cases, if the IES exceed the statistical threshold 

at those orders, they were labeled as ‘Y’. In the opposite case were labeled as ‘N’. Additional results 

of this table can be seen on annex of section 9.5. 

The modulation coefficient 𝑅 is estimated as indicates Equation 5-8. This is defined as the quotient 

between the dynamic load and static load, i.e. the relation between term 4𝜋2𝑚𝑒�̇�2 cos(𝜓) and term 

𝑀𝑔 of Equation 5-4.  

Equation 5-8 𝑅 =
𝑀𝑔 cos(𝜓)

𝑚𝑒�̇�1�̇�2
  

where 𝑀𝑔 stands for the Rotor and shaft weight, 𝑚𝑒 stands for the unbalance charge, and �̇� stands 

for instantaneous rotational speed, as it was exposed on Table 5-1.  

The interest on even multiples of BSO is reasonable, since per each revolution on rolling element, 

the defect would make double contact and so double strike, corresponding to contact with inner and 

outer race. 

Table 5-6. Summary of loads for Rolling Element Fault Simulated signals 

Run 

Label 

Static 

Load 

[N] 

Static 

Unbalance 

[kg m] 

Acceleration 

 

Freq. range 

Range of  

Dynamic 

Load 

[N] 

𝑹 1xFTO 2xFTO 3xFTO 2xBSO 4xBSO 

S-BF-1 9.8 1.5×10-4 

3 rev/s2 

 

10 – 25 Hz 

0.5 – 3.2 5.85 

N N N Y Y 

S-BF-2 58.8 1.5×10-4 

3 rev/s2 

 

10 – 25 Hz 

0.5 – 3.2 35.10 

N N N Y Y 

S-BF-3 9.8 0.015 
3 rev/s2 

 

10 – 25 Hz 

51.3 – 

320.5 
0.06 

N N N N N 

S-BF-4 58.8 0.015 
3 rev/s2 

 

10 – 25 Hz 

51.3 – 

320.5 
0.35 

N N N Y Y 

S-BF-5 9.8 1.5×10-4 

6 rev/s2 

 
10 – 40 Hz 

0.5 – 8.2 3.66 

N N N Y Y 

S-BF-6 58.8 1.5×10-4 

6 rev/s2 

 
10 – 40 Hz 

0.5 – 8.2 21.94 

N N N Y Y 

S-BF-7 9.8 0.015 

6 rev/s2 

 

10 – 40 Hz 

51.3 – 
820.5 

0.04 

N N N Y Y 

S-BF-8 58.8 0.015 

6 rev/s2 

 

10 – 40 Hz 

51.3 – 
820.5 

0.22 

N N N Y Y 
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To discuss the modulation coefficient  𝑅, is important to note the fact that amplitude modulation 

function of Equation 5-4, does not represent a typical case, since both components are associated to 

a periodical function. For convenience, the modulation coefficient was defined in a similar manner 

than the case exposed on Equation 5-6, i.e. similar to the Outer Race fault case. This definition is 

made based on the similitude between function exposed of Equation 5-4 and Amplitude Modulation 

from Single Side Band, usually called as SSB in literature [53]. In such case, the carrier order 

corresponds to 1-FTO, while modulation order corresponds to 1-2FTO.  

In Figure 5-13 the IES from simulated ball fault signals are shown. Statistical thresholds are drawn 

for each case with horizontal dashed lines. Vertical cursors at harmonics of FTO, harmonics of BSO, 

and FTO sidebands are also drawn. 

Although modulation coefficient does not represent a good descriptor for the behaviour of IES, the 

results on Figure 5-13 are organized according to modulation coefficient 𝑅 to save uniformity with 

respect other cases.  

 

Figure 5-13. IES comparison for Rolling Element Faults Simulations Signals. 
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Even if modulation coefficient is not a good descriptor, a pattern could be observed if comparisons 

are carried out between signals with the same loads but with different dynamic ranges (see Table 

5-6). To illustrate this, consider Figure 5-14 at which the results previously exposed on Figure 5-13 

are reorganized. 

For instance, consider the results of signals S-BF-1 and S-BF-5, both have been generated with the 

same loads, but S-BF-5 is modeled with higher acceleration. For the S-BF-5 the diagnosis is more 

straightforward since the peaks are higher at 2xBSO. Similar conclusions could be seen for pairs 

such as S-BF-2 and S-BF-6, and so on. 

 

Figure 5-14. IES for Rolling Element Faults Simulations Signals – Horizontal Comparison. 

 

 

For the case of Rolling Element Fault (Ball fault), the case S-BF-4 is the one with less evidence of 

fault, i.e. with less evidence of cyclo-stationarity at 2xBSO. The OFSC map and the IES for S-BF-4 

are illustrated in Figure 5-15. Cursors at 2xBSO, 4xBSO and FTO sidebands are drawn. Altough 

IES at 2xBSO does not exceed threshold, it is a notorious peak on IES for this particular case. Not 

considerable components at FTO appear on Figure 5-15. 
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Figure 5-15. ‘S-BF-4’signal OFSC and IES. 

 

 

Figure 5-16. ‘S-BF-6’signal OFSC and IES. 
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On the other hand, the case with higher level of cyclostationarity at 2xBSO is the S-BF-6. The results 

for this case are further illustrated on Figure 5-16, where the OFSC map and the IES have been 

drawn. Clear peaks at cyclic orders 2xBSO and 4xBSO are evident since they exceed the threshold. 

In addition, FTO sidebands are evident on Figure 5-16-B. 
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5.2.4. Simulated Combination Fault  

 

In this section, results of simulations for combination faults are presents. Simulations were carried 

considering the presence of faults on outer race, inner race and rolling element at same time. The 

loads, acceleration and rotational speed kept equal to the previous cases, i.e. similar to exposed on 

Table 5-3. Results obtained from combination fault are shown in Figure 5-17, where the IES is 

plotted against cyclic order 𝛼. The statistical thresholds are plotted with horizontal dashed lines. 

Vertical cursors at harmonic of BPOO, BPOI, 2xBSO and FTO are drawn. In addition, cursors at 1x 

and 2x are also drawn. 

 

Figure 5-17. IES comparison for Combination Fault Simulations Signals. 

 

Is worth noting the fact, that across the IES shown in Figure 5-17 the major part of signals does not 

have any cyclic frequency with statistical evidence of cyclo-stationarity. Only for cases S-CF-6, S-

CF-7 and S-CF-8 there is some cyclic order which exceeds the statistical threshold. However, clear 

peaks at BPOO and BPOI are evident across many of the signals analyzed. On the other hand, across 

all the cases simulated with combination faults, Cyclostationarity at BSO and FTO is difficult to be 
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established, which in fact shows that diagnosis of rolling element is the most difficult case. This 

situation was also presented during experimental test. 

To illustrate some of the results previously presented, consider the case S-CF-6, for which the OFSC 

map and IES are illustrated in Figure 5-18. Cursors are settled similarly to the ones in Figure 5-17. 

Is observable than little peak arrive at order 2xBSO, but their magnitude are not relevant. 

 

Figure 5-18. ‘S-CF-6’signal OFSC and IES. 

 

 

The case S-CF-8 is illustrated in Figure 5-19. Similar to the S-CR-6 case. In this case, clear peaks 

are evident at BPOI and 2xBPOI but, although there is a little peak at 2xBSO it is no relevant. 
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Figure 5-19. ‘S-CF-8’signal OFSC and IES. 

 

At this point, considering a combination of fault case results interesting to explore the role of the 

demodulation band. In this sense, consider an additional simulated signal, the one consisting of a 

combination of faults, but with the particular behavior that each one of the faults was simulated using 

different impulse response function ℎ(𝑡) through Equation 5-1. For instance, the Rolling Element 

Fault was simulated with an expected resonance frequency of 4 kHz, whereas Outer Race and Inner 

race were simulated with resonance frequencies of 7 kHz and 10 kHz respectively, as it is described 

in Table 5-7. 

Table 5-7. S-CF-9 Signal Description. 

Label S-CF-9 

Type Fault Combination Fault 

Load and Speed Conditions  Similar to run 4 on Table 5-3 

Ball Fault Resonance Frequency [kHz] ~ 4 

Outer Race Resonance Frequency [kHz] ~ 7 

Inner Race Resonance Frequency [kHz] ~ 10 
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For the previously introduced signal S-CF-9, the Order Frequency Spectral Coherence OFSCoh map 

is shown in Figure 5-19. Some vertical patterns could be observed, but is noticeable those patterns 

are at different spectral frequency locations, as it is highlighted by the three rectangles drawn on the 

figure. 

Figure 5-20. Order Frequency Spectral Coherence Map for Combination Fault S-CF-9. 

 

The three rectangles drawn in Figure 5-19 are centered at spectral frequencies of 4, 7, and 10 kHz, 

which are the resonance frequencies for each type of fault, as exposed in Table 5-7. If each one of 

the frequency bands, illustrated by the three rectangles, is considered for demodulation, the obtained 

IES would be as illustrated in Figure 5-21-A to Figure 5-21-C. The EES is also plotted in Figure 

5-21-D, which is the equivalent of IES when the entire spectral frequency axis is considered. 

In Figure 5-21-A, a clear sign of Rolling Element (Ball) fault is evident, once a peak at 2xBSO is 

exceeding the threshold. This was expected since the demodulation band contains the simulated 

resonance frequency. Similarly happens for Figure 5-21-B and Figure 5-21-C, showing signs of 

faults at outer race and inner race respectively. However, is worth noting that for Figure 5-21-D 

demodulation is not accurately enough to show any significant sign of fault.  

From the previous discussion, it is important to highlight that when an adequate demodulation band 

is used, the diagnosis could be improved.  
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Figure 5-21. IES at different spectral frequency bands for S-CF-9. A) Demodulation for Ball Fault. 

B) Demodulation for Outer Race Fault. C) Demodulation for Inner Race Fault. D) EES. 
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5.3 Other Effects Observables on Simulated Signals. 

On this section, some parameters used for the simulation signals are discussed and their effect is 

exposed. In particular, it results from interest to discuss about signal to noise ratio, the effect of 

slippage and what is the effect generated when a surface defect is spalled rather than an incipient 

defect. 

5.3.1.Effect of Signal to noise ratio 

As it is expected, the diagnosis by IES is improved when the signal to noise ratio is high. To illustrate 

this, consider Figure 5-22, which shows the IES for a ball fault, under load conditions similar to prior 

simulated signal ‘S-BF-01’ (See section 5.2.3 and Table 5-6). On Figure 5-22, the IES is shown for 

different levels of signal to noise ratio –SNR.  

Figure 5-22. Effect on Signal to Noise Ratio. 

 

 

It results interesting to note that as noise is increased, the IES merges to a delta on the zero-cyclic 

frequency This behaviour indicates there is no presence of any cyclostationarity and their spectral 

representation is well defined by their Power Spectral Density, i.e. 𝑆𝐶(0, 𝑓). 
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5.3.2.Effect of Impulse distribution 

On the model exposed in section 5.1, described by Equation 5-1, the vibration is mainly the response 

of a series of periodical strikes, accompanied by an amplitude modulation signal. In this sense, the 

periodical strikes are modeled as a series of periodical delta functions. However, if the failure is not 

an incipient fault, i.e. their length has increased or it have been growth among the race, the vibration 

that is generated just at failed surface contact could not be modeled as a delta. In contrast, it more 

convenient to model it as a random force, generated by excessive friction and contact stresses. This 

situation is illustrated on Figure 5-23 for the case of an inner race fault.  

  

Figure 5-23. Effect of spall size on vibration generated 

 

 

For the case illustrated, the periodicity of excitations is preserved, since the spall size is not large 

enough to capture two or more consecutive rolling elements. However this is not the most general 

case, in such case, the spall size could be sufficiently large to capture the position of various rolling 

elements. In those cases, is highly probably the BPOI order periodicity would be loosed by the 

combination of random forces generated by the various rolling elements captured by spall. To 

exemplify this, consider the Figure 5-24, where the IES is plotted against the spall size. The spall 

size is modeled as a percentage of 1/BPOI, as illustrated in Figure 5-24.  
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Figure 5-24. IES for different spall extension. 

 

 

A similar situation is observed if the case of ball defect is considered. For example, consider Figure 

5-25, in which the case of rolling element fault is simulated under different spall percentages. 

Particularly, for this case, loads are loads similar to S-BF-2 (see Table 5-6). As spall percentages 

increases the fault characteristic order 2×BSO lose their relevance, but at the same time, exists an 

increase on orders such as 2×FTO. This is explainable because the periodicity of surface impacts get 

loosed but the amplitude modulation is conserved. In this sense, this behaviour indicates as spall is 

increased the modulations orders, i.e. the orders that governs 𝐴(𝜃(𝑡)) of Equation 5-4 are increased, 

but the periodical impacts are loosed.  
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Figure 5-25. Effect on Spall Percentage – Loads similar to S-BF-2. 

 

To further illustrates the discussion on prior paragraph, consider the simulated fault on rolling under 

conditions equal to ‘S-BF-7’. The behaviour of IES against spall percentages is shown on Figure 

5-26. Vertical cursors are settled and the results are organized according to spall percentage. Similar 

to previous discussion, as spall percentages increase, the cyclostationarity of fault characteristic 

order 2xBSO is loosed, while the cyclostationary at orders such as 2x(1-FTO) is increased. To 

conclude the comparison between Figure 5-25 and Figure 5-26, let discuss about the static load and 

dynamic load effect. Table 5-8 presents a comparison between values of IES for different spall 

percentages, according to dynamic and static loads. For the case in which statistic threshold is 

overcome, the value is underlined and highlighted.  
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Figure 5-26. Effect on Spall Percentage – Loads similar to S-BF-7. 

 

 

Table 5-8. Spall-percentage comparison between load conditions. 

 Equation 5-4      𝐴(𝜃(𝑡)) = 𝜌[𝑀𝑔 cos(2𝜋𝐹𝑇𝑂 𝜃(𝑡)) + 𝑚𝑒(2𝜋�̇�)2 cos(2𝜋(1 − 𝐹𝑇𝑂)𝜃(𝑡) + 𝜓𝑜)] 

 

% Spall Run Average Dynamic 

Load [N]: 

 

Static Load [N]: 

𝑀𝑔 

Statistical 

Threshold 

2xBSO 2xFTO 2×(1-FTO) 

0 % Run 2 1.93 58.8 0.084 0.171 0.092 0.034 

0 % Run 7 414.5 9.8 0.084 0.150 0.041 0.072 

25 % Run 2 1.93 58.8 0.084 0.162 0.126 0.038 

25 % Run 7 414.5 9.8 0.084 0.114 0.039 0.100 

50 % Run 2 1.93 58.8 0.084 0.080 0.154 0.032 

50 % Run 7 414.5 9.8 0.084 0.078 0.041 0.108 

75 % Run 2 1.93 58.8 0.084 0.088 0.191 0.039 

75 % Run 7 414.5 9.8 0.084 0.059 0.043 0.121 

100 % Run 2 1.93 58.8 0.084 0.048 0.169 0.036 

100 % Run 7 414.5 9.8 0.084 0.073 0.042 0.170 
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In Table 5-8, as previously discussed, modulations orders such as 2×FTO and 2×(1-FTO) becomes 

notorious and even the dominant orders for the cases at which spall percentage is big enough. Cases 

where loads are as ‘Run2’, in such case the static load is greater than dynamic load, the governing 

order becomes 2×FTO, as is dictated by Equation 5-4. On the other hand, if we consider the case for 

which loads are similar to ‘Run7’, i.e. dynamic load bigger than static load, the dominant order 

becomes 2×(1-FTO), in accordance with exposed on Equation 5-4. 

 

5.3.3.Effect of Random Slippage 

 

The model exposed in Equation 5-1 establish the vibrational response of a faulty bearing is composed 

by a series of periodical strikes. The periodicity of those strikes is determined by the kinematic 

relations of the bearing ensemble, i.e., mainly by the geometric relations of the REB. However, the 

periodicity of such strikes are not strictly periodic, in fact the periodical arrive of those strikes are 

susceptible to stochastic process, mainly by the slippage of the rolling element. The slippage could 

be product of ruptures in oil film formed between surfaces, changes between radial and axial loads 

ratios, among others. 

In this section, the effect of random slippage is briefly discussed. Consider Figure 5-27, in which a 

simulated rolling element fault is considered under different percentages of slippage, as it was briefly 

explained in Figure 5-5. For this case, loads are similar to S-BF-1 (see Table 5-6).  
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Figure 5-27. Effect of random slippage. 

 

In Figure 5-27, as slippage increases, at the 2xBSO order, the IES is less conclusive, since the fault 

characteristic order tends to lose cyclostationarity, and tends to decrease until the threshold is not 

exceeded. Although slippage has a negative effect on the diagnosis, it seems to be less detrimental 

than other effects such as spall percentages and noise, as have been discussed in sections  5.3.1 and 

5.3.2.  

 

During this chapter, a model for simulating fault signals under variable speed has been exposed. The 

method exposed in section 4 has been applied to a series of simulated fault signals, considering four 

cases (Outer race fault, Inner race fault, Ball fault, and Combination of faults).  

The method proposed shows good performance establishing diagnosis through the simulated signals, 

however it shows great dependency on the ratio between static loads and dynamic loads, called 

modulation coefficient depending of the case. In this sense, important quotations related with to 

modulation coefficient have been established. The importance of demodulation and spectral 

frequency band is also shown for the case of combination faults. 

A discussion of the effect of signal-to-noise ratio, random slippage, and spall percentage is also 

presented. Some relevant aspects have been highlighted. It was shown that random slippage could 

be considerably high, and the method still being able to capture peaks in IES at fault characteristic 
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orders. This in fact is an advantage of using the Second Order Cyclostationary analysis. On the other 

hand, it was shown that the spall percentage tends to favor the apparition of peaks at the orders 

dictated by the amplitude modulation function A(t), i.e. synchronous orders for Outer and Inner Race 

cases, and harmonics of FTO for Rolling Element Faults (Ball Fault).  

 

 



 

6. Experimental Tests. 

 

In this chapter, the results of experimentation done on the Test-Rig (previously introduced in chapter 

3) is exposed. Four different defects, under different load conditions, acceleration conditions, and 

speed regimes were captured. The order tracking process was done with a Tacholess approach, 

previously discussed in section 2.5. Additional verification of angular speed was done by using the 

1x tachometer installed on the test rig, by connecting the TTL digital voltage of the tachometer to 

channel 4 of NI 9230. The waveform, MOPA, and Phase Demodulation techniques were also applied 

to the captured tacho-voltage signal were also applied.  

Through the different cases, the outer race one results as the most straightforwardly diagnosable, 

whereas, the rolling element fault case becomes the most challenging. Apparently, the former is due 

to an advanced state of fault. When the bearing with a combination of faults was analyzed, strange 

patterns were observed on the Enhanced Envelope Order-Spectrum and the newIESFO where strong 

signs of slippage were noticed. 

To classify those observations during the results of this chapter, the labels summarized in Table 6-1 

were used. Those labels were proposed by [22] and used to classify the results obtained of analyze 

the famous Western University Bearing data set. In the explanation column of Table 6-5 minor 

adaptations were added. 

Table 6-1. Diagnosis Categories 

DIAGNOSTIC 

CATEGORY 

DIAGNOSIS 

SUCCESS 
EXPLANATION 

Y1 Yes 
Fault clearly diagnosable by the classical behaviour on the Squared 

Envelope Spectrum (or Enhanced Envelope Spectrum). 

Y2 Yes 
Fault is diagnosable, but there is abnormal behavior on Squared 

Envelope Spectrum (or Enhanced Envelope Spectrum). 

P1 Partial 

Fault probably diagnosable, Squared Envelope Spectrum shows 

discrete components at fault characteristic orders but they are not 

dominant. i.e. The peaks at the Fault Characteristic Orders are far 

from the statistical threshold. 

P2 Partial 

Fault potentially diagnosable, Squared Envelope Spectrum shows 

smeared components which could coincide with fault characteristic 

orders. 

N1 No 

Fault is not diagnosable. There is no evidence of Fault 

Characteristic Order on the Squared Envelope Spectrum, but there is 

some evidence of other problematics 

N2 No Fault is not diagnosable and not distinguishable for noise. 
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6.1 Outer Race Fault. 

From the outer race fault case, all experiments done resulted in clear symptoms of failures, i.e. 

discrete components at BPOO were present. Those discrete components exceeded the statistical 

threshold considerably. Even the signals captured on Bearing 1, which was the healthy bearing, 

reflected the shown OR failure symptoms, coming from the vibrational response of Bearing 2. Table 

6-2 resumes the experimentation results. In general, it results clear the fault observed at outer race, 

in all the runs. The results are further illustrated in annexes of section 9.6.  

Table 6-2. Outer Race Fault Case - Experimental Results 

Num. Range Speed Acceleration Load Bearing 1 Bearing 2 

OR-1 14 – 30 Hz High (6 Hz/s) 5 kg static Y1 Y1 

OR-2 30 – 25 Hz High (6 Hz/s) 5 kg static Y1 Y1 

OR-3 8 – 18 Hz Low (3 Hz/s) 5 kg static Y1 Y1 

OR-4 21 – 32 Hz Low (3 Hz/s) 5 kg static Y1 Y1 

OR-5 22 – 39 Hz High (6 Hz/s) 0 kg Y1 Y1 

OR-6 37 – 14 Hz High (6 Hz/s) 0 kg Y1 Y1 

OR-7 17 – 30 Hz Low (3 Hz/s) 0 kg Y1 Y1 

OR-8 22 – 38 Hz Low (3 Hz/s) 0 kg Y1 Y1 

 

To illustrate the results obtained for the case of Outer Race Fault, consider Figure 6-1-A, where the 

OFSCoh map for the signal captured on bearing 1, under OR-3 conditions is shown. In the figure, 

the Spectral Coherence is plotted against spectral frequency –f and cyclic order –𝛼. Some vertical 

patterns at BPOO and its harmonics could be observed. In addition, some vertical contrasts are 

observable at 2x order. However, none relevant horizontal band is observed at naked eye. The 

Enhance Envelope Order Spectrum –EES is shown in Figure 6-1-B. The three first harmonics of 

BPOO exceed the statistical threshold and a particular peak rise at 2x order. The EES drawn in Figure 

6-1-B is a clear pattern of Outer Race Fault. 
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Figure 6-1 Run OR-3 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 

This particular case, i.e. OR-3 Bearing 1 signal, results convenient for illustrating the benefits of 

correct demodulation as it was discussed previously in section 4.1. To explore this, consider the 

IESFOgram illustrated in Figure 6-2-A, where the binary-three optimization selects the spectral 

range comprehended between 800 and 2400 Hz as the optimum spectral range. The result of using 

this spectral range for demodulation is shown in the IESFO plotted in Figure 6-2-B. Although there 

are peaks at BPOO and its harmonics, they are campaigned by some other peaks at uninterpretable 

orders, which also exceed the statistical threshold. 

Similarly, the use of newIESFO and IESFO are shown in Figure 6-3. The use of newIESFO selects 

the spectral frequency range between 18400 and 21600 Hz, as it is illustrated in Figure 6-3-A. The 

order-spectrum obtained by the use of IESFOgram is shown in Figure 6-3-B. Clearly, it shows 

patterns of having a failure at outer race, since peaks at BPOO and its harmonics are clear and not 

disturbed by others uninterpretable orders. Notice also the fact that no peaks at synchronous 

components are observable in Figure 6-3-B. 
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Figure 6-2. Run OR-3 B1 A. IESFOgram B. IESFO. 

 

Figure 6-3. Run OR-3 B1. A. newIESFOgram, B. newIESFO. 
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Additionally, consider the run signal captured on bearing1, under the conditions established on OR-

5. The OFSCoh map and the EES are illustrated in Figure 6-4. In the OFSCoh map, Noticeable 

vertical patterns are observable at the first three harmonics of BPOO. Some other vertical contrasts 

are observed at synchronous orders such as 1x and 2x. An horizontal contrast could be noticed if the 

attention is focused on 10-15 kHz spectral band, as it is highlighted by the box drawn in the figure.  

Figure 6-4. Run OR-5 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

  

As a matter of fact, the spectral bands dictated by IESFO and newIESFO coincide with the spectral 

range previously highlighted, as it is shown in Figure 6-5-A and  Figure 6-5-B. The IES obtained by 

demodulate the OFSCoh map according to the spectral frequency range between 12.8 kHz and 14.4 

kHz is illustrated in Figure 6-5-C. Some improvement could be seen by comparing this latter IES 

with the EES of Figure 6-4-B, the most pinpointed is the range by which the statistical threshold is 

overcome. Clearly, after demodulation, the peaks at BPOO and harmonics are stronger, while 

conserving the importance of some synchronous orders such as 1x, 4x.  
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Figure 6-5. Run OR-5 B1 signal. A. IESFOgram B. newIESFOgram. C. Improved Envelope Order 

Spectrum. 

 

For the signal of OR-6 captured on bearing 1, the OFSCoh is illustrated in Figure 6-6-A. A clear 

spectral band rises around 13 kHz with some vertical visible lines. Nonetheless, those vertical lines 

do not coincide precisely with BPOO and its harmonics, instead, coincide with 3.5x order and 

harmonics. The situation is further illustrated in EES of Figure 6-6-B. It appears the BPOO discrete 

components tend to slice to coincide with 3.5x order, slicing roughly 2 percent. This in fact is tending 

to coincide with a synchronous order such as 7x as the second harmonic of 3.5x.  
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Figure 6-6. Run OR-6 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum 

 

 

Especial care should be taken prior to using an optimization based on IESFOgram or 

newIESFOgram, since those methods use a pre-defined cyclic order in order to optimize their 

visualization in the Improved Envelope Spectrum. If the slice is taken into account, both, IESFOgram 

and newIESFOgram bring out roughly the same demodulation band comprehended between 12.8 

and 14.4 kHz. IESFOgram, newIESFOgram, and IES for this case are shown in Figure 6-7.  
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Figure 6-7. Run OR-6 B1 signal. A. IESFOgram B. newIESFOgram C. IESFO D. newIESFO 

 

It is also important to note the improvement in IES achieved by the use of newIESFO in Figure 6-7-

D, in comparison with the EES shown in Figure 6-6-B. In the first case all three harmonics of BPOO 

exceeds the statistical threshold while for the EES is only true for the first harmonic. 

 

6.2 Inner Race Fault. 

For inner race faults, the diagnosis on signals captured on bearing 2 pedestal were clear in the major 

part of cases. However, the results for signals captured on bearing 1 pedestal were not clear in many 

cases. The results are summarized in Table 6-3 where the different running are listed with their 

corresponding range of speed, acceleration, and load. The Bearing 1 and Bearing 2 columns list the 
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resulting diagnosis, according to the criteria exposed previously in Table 6-1. Those results are 

further illustrated on annex of section 9.6.  

Table 6-3. Inner Race Fault Case - Experimental Results 

Num. Range Speed Acceleration Load Bearing 1 Bearing 2 

IR-1 29 – 38 Hz High (6 Hz/s) 5 kg static P1 Y1 

IR-2 29 – 11 Hz High (6 Hz/s) 5 kg static N2 Y1 

IR-3 13 – 29 Hz Low (3 Hz/s) 5 kg static N2 Y2 

IR-4 29 – 13 Hz Low (3 Hz/s) 5 kg static N1 Y2 

IR-5 21 – 38 Hz High (6 Hz/s) 0 kg P1 Y2 

IR-6 37 – 14 Hz High (6 Hz/s) 0 kg N1 Y2 

IR-7 15 – 28 Hz Low (3 Hz/s) 0 kg N1 Y2 

IR-8 30 – 38 Hz Low (3 Hz/s) 0 kg Y1 Y2 

 

To illustrate the results summarized on Table 6-3, consider the signal for IR-1 case, captured on 

pedestal 1. The SCoh map and the EES is shown in Figure 6-8. In the EES, peaks at discrete order 

of BOPI and 2×BPOI are observable, however, their magnitude are far from the statistical threshold. 

This explains the P1 label assigned to this particular signal.  

Figure 6-8. Run IR-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 

Although the EES does not bring out a clear spectrum for establishing failure in the inner race, some 

improvements could be managed after demodulation. In Figure 6-8-A, a blue-dashed box has been 

drawn to denote the demodulation spectral range dictated by the IESFOgram. Similarly occurs for 
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the orange dotted box, which highlights the spectral demodulation band marked by the newIESFO. 

The IESFO and newIESFO for IR-1 B1 signal are shown in Figure 6-9. Particularly, the use of 

IESFO, shown in Figure 6-9-A, does not helps in any manner since the floor noise is so noticeable, 

even though the 1xBPOI component exceed the statistical threshold. On the other hand, the use of 

newIESFO allows to increase the magnitude of the discrete components at BPOI and 2xBPOI orders, 

while keep the discreteness of those components. Additionally, it allows identifying side-lobes 

spaced at synchronous orders.  

Figure 6-9 Run IR-1 B1 signal. A. IESFO. B. newIESFO 

 

Similar analysis could be achieved for signal IR-1 captured on pedestal of bearing 2, which is the 

bearing with the fault at its inner race. The OFSCoh map is shown in Figure 6-10-A, while the 

resulting Enhanced Envelope Order Spectrum is shown in Figure 6-10-B. Discrete peaks at BPOI 

and 2×BPOI, exceeding the threshold are noticeable, however, the appearance of the spectrum does 

not match the one expected for an incipient inner race fault. 
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Figure 6-10. Run IR-1 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 

In Figure 6-10-B is noticeable the floor noise, and consequently, is desirable to have a spectrum with 

higher relevance at BPOI and its harmonics. The situation could be improved by using the 

demodulation dictated by the newIESFOgram (while IESFOgram does not appear useful for this 

case). The spectral frequency ranges dictated by IESFOgram and newIESFOgram are shown in 

Figure 6-10-A, sketched with the dashed blue box, and the dotted orange one, respectively. The 

newIESFO is then obtained by using a demodulation band lied between 14.93 and 17.07 kHz. Figure 

6-11 illustrates the spectrograms obtained after demodulation. The newIESFOgram, shown in Figure 

6-11-B shows than the BPOI and 2xBPOI overcomes the statistical threshold and some of the 

synchronous lobe-sides. 
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Figure 6-11. Run IR-1 B2 signal. A. IESFO. B. newIESFO. 

 

 

Now consider the signal sampled on pedestal 1, under IR-2 conditions. This is illustrated in Figure 

6-12. As it is seen, there is no evidence of any considerable vertical pattern in Figure 6-12-A neither 

a clear peak at BPOI nor 2xBPOI in the IES of the Figure 6-12-B. In fact, neither IESFO nor 

newIESFO could broadcast a relevant spectral frequency range at which signs of inner race fault 

could be obtained. This indicates the energy of the strikes at faulty bearing, i.e. bearing 2, got 

vanished along the path until the pedestal of bearing 1. The former discussion explains the label N1 

set in Table 6-3 for the IR-2 row. 
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Figure 6-12. Run IR-2 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 

 

In contrast, when the signal captured on bearing 2 is considered, clear peaks at BPOO and harmonics 

are observable in the EES. This is illustrated in the OFSCoh map and the EES in Figure 6-13. Even 

peaks spaced at synchronous orders exceed the statistical threshold. The spectral frequency ranges 

dictated by IESFO and newIESFO are illustrated in Figure 6 13-A by the drawn boxes. Particularly, 

the newIESFO’s result turned out the most useful for demodulation given the clearness reflected in 

newIESFO as it is exposed on Figure 6-14. Although the EES per se results in a clear sign of inner 

race fault, the newIESFO increase the magnitude of relevant orders a little. 
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Figure 6-13. Run IR-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 

Figure 6-14. Run IR-2 B2 signal. A. IESFO. B. newIESFO. 
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6.3 Rolling Element Fault. 

 

Eight runs were analyzed, as shown in Table 6-4. The experiments BF-1 to BF-4 were done with a 

loader mounted on the center of the shaft. Whereas experiments BF-5 to BF-8 were done without 

load applied to shaft.  The diagnosis on rolling element resulted the most challenging case. In any of 

the cases analyzed was possibly to diagnostic the classical pattern of Envelope Order-Spectrum with 

peaks at BSO, with sidebands on the fundamental train order FTO. However at FTO and harmonics 

of FTO were evident in almost all cases. For the signals captured on pedestal of Bearing 1, i.e. 

healthy bearing, it was not possibly to stablish clearly the pattern of fault.  

Table 6-4. Ball Fault - Experimental Results 

Num. Range Speed Acceleration Load Bearing 1 Bearing 2 

BF-1 20 – 38 Hz High (6 Hz/s) 5 kg static P1 Y2 

BF-2 29 – 11 Hz High (6 Hz/s) 5 kg static P1 P1 

BF-3 19 – 35 Hz Low (3 Hz/s) 5 kg static P1 Y2 

BF-4 38 – 21 Hz  Low (3 Hz/s) 5 kg static P1 Y2 

BF-5 21 – 38 Hz High (6 Hz/s) 0 kg P1 Y2 

BF-6 35 – 16 Hz High (6 Hz/s) 0 kg P1 Y2 

BF-7 14 – 28 Hz Low (3 Hz/s) 0 kg N2 Y2 

BF-8 30 – 38 Hz  Low (3 Hz/s) 0 kg P1 Y2 

 

To exemplify the results, let consider the signal captured on Bearing 2, under conditions of BF-1 

run. The spectral correlation and the Enhanced Envelope Spectrum (EES) is shown in Figure 6-15. 

The EES shows a series of peaks at the cage characteristic order FTO and their harmonics. The 2x 

order own a high magnitude, which could be attributable to the coincidence with the 5th harmonic of 

FTO (5x0.402 ≈2.01), which is highly probably to fall in 2x if slippage happens. In fact, if slippage 

is so considerable, the 6th FTO harmonic (6x0.402 = 2.41) could also be misinterpreted as the BSO 

(2.32). 
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Figure 6-15 Run BF-1 B1 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

  

By using the IESFOgram or newIESFOgram approaches for search FTO discrete components, both 

lye the same demodulation band, comprehended between 14.4 and 15.2 kHz as the optimum range. 

This spectral frequency range has been illustrated in Figure 6-15-A with the plotted boxes in the 

OFSCoh map. The newIESFO (equivalent to IESFO for this case) is shown in Figure 6-16. Notice 

that 2xBSO peaks is near the statistical threshold, however, in a similar manner to exposed on EES 

of Figure 6-15-B, the most prominent components are located at harmonics of FTO.  

Figure 6-16 Run BF-1 B2 signal. newIESFO. 
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As the classical pattern of bearing element fault (peaks at BSO with FTO sidebands, see Figure 2-1) 

does not match with the one exposed in Figure 6-16, this case (Bearing 2 of BF-1) is labeled as Y2. 

It means that failure could be diagnosed but further considerations are needed to clarify this behavior. 

As mentioned on previous paragraph, similar results, i.e. peaks at FTO but not peaks at BSO were 

reported by the analysis exposed in [22] on a constant speed test rig, and the experimentation done 

by [54] on a similar test rig. Although this situation is not the classical pattern of a rolling element 

bearing, it is a characteristically pattern when damage is pronounced and the periodicity of BSO is 

loosed and the energy is smeared on low orders multiples of FTO [8]. 

To further illustrate the results, consider the Figure 6-17. In this figure, the newIESFO is used to 

demodulate discrete components at FTO, on signal sampled on B2, for BF-2 run. Peaks at FTO are 

identifiable, however they magnitude do not exceed the statistical threshold plotted by the dashed 

line. In this sense, the result of the diagnosis is labeled as P1.  

Figure 6-17. Run BF-2 B2 signal. newIESFO 

 

 

More clear patterns of harmonics at FTO were observable at signals BF-5,BF-6, BF-7 and BF-8. 

Note that according to the Table 6-4 those signals were captured without the loader assembled in the 

shaft, this suggests FTO modulations become important when static load is not present or decimated. 

To further illustrates this, consider the Figure 6-18, where the newIESFO is plotted against cyclic 

orders. In the figure newIESFOgram demodulation approach has been used. The resulting spectral 

frequency range is labeled for each running. Particular cursors vertical lines have been set on the 

bottom axis while synchronous orders were set in top axis. Figure allows visualizing the influence 

of FTO and their harmonics, particularly for signals BF-5 to BF-8. 
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Figure 6-18 Different newIESFO for ball fault case, signals sampled on B2. 

 

In general, the Rolling Element Fault case was not straightforward to diagnose. None of the signals 

captured on bearing one (1) showed a pattern of fault. Indeed, the crack seems to be in an advanced 

state, explaining the peaks at FTO and the lack of peaks at BSO, as explained by [8]. On the other 

hand, high values at cyclic frequency α=0 were also observed. The discussion of those tendencies 

was exposed in sections 5.3.2 and 5.3.3.   
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6.4 Combination Fault. 

Experimental runs were also taken for the case of a bearing with a combination of faults. Those 

experimental runs were sampled under different load and speed conditions, as it is described in Table 

6-5. The labels categories set on the columns Bearing1 and Bearing 2 were previously exposed on 

Table 6-1. Additional graphical results are shown in annex of section 9.9.  

 

Table 6-5. Combination Fault - Experimental Results 

Num. Range Speed Acceleration Load Bearing 1 Bearing 2 

CF-1 4 – 25 Hz High (6 Hz/s) 5 kg static Y2 Y2 

CF-2 26 – 38 Hz High (6 Hz/s) 5 kg static Y2 Y2 

CF-3 19 – 36 Hz Low (3 Hz/s) 5 kg static Y1 Y1 

CF-4 37 – 15 Hz Low (3 Hz/s) 5 kg static Y1 Y1 

CF-5 14 – 28 Hz High (6 Hz/s) 0 kg N1 N1 

CF-6 28 – 41 Hz High (6 Hz/s) 0 kg N1 N1 

CF-7 16 – 29 Hz Low (3 Hz/s) 0 kg N1 N1 

CF-8 30 – 38 Hz Low (3 Hz/s) 0 kg N1 N1 

In general, faults were easily diagnosable for the case on which the shaft was mounted with the static 

loader. On the other hand, for the cases at which the shaft had not attached a load, the diagnosis 

process reveals clear cyclostationary components, but at orders different from expected. In both 

cases, a high slippage were observed. It is the thought of the author that the combination of fault 

works as high impulsivity noise among the different characteristic faulty orders. 

To illustrate the aforementioned, let consider the vibration captured on bearing 2, under the 

conditions described on run CF-2. The OFSCoh map is shown in Figure 6-19-A. Clear vertical 

stripped pattern is evidential near to nominal BPOO among almost the entire spectral frequency 

range. However, it results important to highlight the smearing at the harmonics of BPOO, in fact, the 

BPOO was manually set as 3.215, in contrast with the theoretical 3.572 reported by bearing 

manufacturer (Table 3-1). The Enhanced Envelope (Order-)Spectrum is illustrated on Figure 6-19-

B, peaks at 1xBPOO and 2xBPOO clearly exceed the statistical threshold drawn by the horizontal 

dashed line in the figure. None other fault characteristic order appears to be relevant, however, 

synchronous orders are noticeable 
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Figure 6-19 Run CF-2 B2 signal. A. OFSCoh Map B. Enhanced Envelope Order Spectrum. 

 
 

From Figure 6-19, the setting of BPOO was further confirmed by a discrete component at 5.775, set 

as BPOI, which is consequent with the rule at which the sum of BPOO and BPOI should results 

equivalent to number of rolling elements. The aforementioned deduction comes from the relations 

established on Table 2-1, as it is exposed in Equation 6-1.  

Equation 6-1  𝐵𝑃𝑂𝑂 + 𝐵𝑃𝑂𝐼 =
𝑁

2
(1 −

𝑑

𝐷
cos(𝜃)) + 

𝑁

2
(1 +

𝑑

𝐷
cos(𝜃)) =  𝑁 

An interesting aspect of the newIESFO approach appears since different demodulation bands are 

obtained as a function of the failure tempted to be diagnosed. This is illustrated in Figure 6-20, and 

Figure 6-21 where newIESFOgram was used for demodulate the signal intending to search for inner 

race fault and outer race fault, respectively. For the case of inner race searching a demodulation band 

between 2.13 and 4.27 kHz arose, while for the case of outer race fault, the spectral frequency lied 

in the 17.1 to 19.2 kHz range was selected. The pattern observed in Figure 6-20 allows to diagnose 

a failure at inner race but being skeptical by the lack of discreteness, whereas the newIESFO shown 

in Figure 6-21 reveals a clear fault at the outer race. 
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Figure 6-20. Run CF-2 B2 newIESFO for Inner-Race fault search  

 
 

Figure 6-21. Run CF-2 B2 newIESFO for Outer-Race fault search  

 

 

The result obtained on runs CF-3 and CF-4 were labeled as Y1 on both Bearings. To illustrate this, 

consider now the signal taken on bearing 2, under the conditions described for run CF-3, in such 

case the diverse fault were diagnosable by the high peaks at their corresponding Fault Characteristic 

Orders, as shown in the Enhanced Envelope Spectrum in Figure 6-22-B. 
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Figure 6-22. Run CF-3 B2 signal. Enhanced Envelope Order-Spectrum 

 

When the shaft was mounted without load (CF-5 to CF-8), the Table 6-5 shows that diagnosis were 

no possible. However, particular situations were observed on experiments done without load. For 

instance, consider the case captured on B2 labeled as CF-6. The EES of Figure 6-23 shows a 

particular behaviour; in such all peaks are located at harmonics of 0.335.  

 

Figure 6-23. Run CF-6 B2 signal. Enhanced Envelope Order-Spectrum 

 



Chapter 6 – Experimental Tests 131 

 

An explanation for this behaviour arise from the hypothesis the FTO take this value, either by an 

increase in contact angle from theoretical 0°, or by synchronism generated by the combination of 

multiple faults. The latter appears to be a reasonable explanation if the subsequent fault characteristic 

orders are computed from FTO as follows on Table 6-6. 

 

Table 6-6. Fault Characteristic Orders as function of FTO 

Fault Characteristic Order Relation Numerical Value FTO - Harmonic 

FTO Hypothesis 0.335 1x 

BPOO 𝑁 × 𝐹𝑇𝑂 3.015 9x 

BPOI 𝑁 − 𝑁 × 𝐹𝑇𝑂 5.985 17.9x ≈ 18x 

BSO 
2𝐹𝑇𝑂(1 − 𝐹𝑇𝑂)

1 − 2𝐹𝑇𝑂
 1.350 4.03x ≈ 4x 

The same behaviour is observable in the experiment labeled as ‘CF-8’, as illustrated in Figure 6-24. 

The peaks were observable just at harmonics of 0.335, which is why result tentative to think the FTO 

slice to 0.335. However, this assumption is not referenced in any other reference, and regardless the 

high value of EES at those discrete frequencies, those results are labeled as N1. This label was 

assigned since combination fault is neither easily diagnosable nor disagreeable, but there is evidence 

of discrete peaks revealing anomalies, i.e. excessive slippage, looseness or mounting mistakes. All 

the signals analyses on experiments Cf-5 to CF-8 presented the same behaviour. 

 

Figure 6-24. Run CF-8 B2 signal. Enhanced Envelope Order-Spectrum 

 

Along all the runs for the combination fault case, the BPOO was the most dominant fault 

characteristic order. A reasonable explanation is the direct contact that Outer-Race has with the 

Bearing Pedestal, and so, vibration do not suffer from path impedances prior to rise the 

accelerometer. Additionally, impacts at Outer Race should not be modulated, and so, their energy is 

not shared with modulation orders. This fact suggest that a diagnosis of incipient failures would be 

more diagnosable if the fault occurs at the outer race. On the other hand, the most challenging case 

occur when the incipient failure takes place at one of the rolling elements. 
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6.5 Conclusions of chapter. 

During this chapter, the method previously exposed on Figure 4-1 were applied through different 

experimental signals captured on test rig. For the major part of cases, fault were easily diagnosable 

but some aspects were also observed.  

Diagnosis is straightforward when the fault is generated on outer race and Inner race, while is most 

difficult to be established when it is presented in the rolling element. 

For the case of combination faults, slippage play an important role, since it could generates merging 

of different fault characteristic orders. 

Experimental runs for rolling element shown that the fault was not in an incipient stage, which in 

fact causes the increase of cyclostationarity at orders such as 1-FTO and FTO. This was in 

accordance with the previous results exposed in section 5.3.2. 

The use of newIESFO reveals in many cases, improvements on the diagnosis process, since it allows 

the analyst to get clearest order-envelope spectrum, by a correct demodulation. It also allows the 

identification of particular spectral frequencies for different types of fault, especially when a 

combination fault is intended to be diagnosed. 

6.6 Classification Algorithm. 

 

In this section, the results of using a classification algorithm to diagnosis the fault in REB under 

variable speed are exposed. The algorithm was built by the use of data collected from test rig exposed 

on section, and simulated faults exposed on Figure 6-25. 
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Figure 6-25. Data Set Estructure. 

 

 

The architecture used is based on four dense layers attached to batch-normalization and 15% dropout. 

Each dense layer is activated by ‘Relu’ function. The first dense layer had 2401 units, corresponding 

to the entries on the EES of each signal, as it is illustrated on Figure 6-25. Subsequent dense layers 

own 29, 25 and 3 units on the last layer. Adam optimizer was used with a total of 8000 epochs. 

The data-set was normalized previously, since use of EES implies all values lie in the range between 

0 and 1. Training process was achieved by use of Adam’s optimizer, using hyper-parameters 𝛼 =
0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 and 휀 = 10−7. After 5000 epochs, the maximum validation accuracy 

achieved is 0.83 as can be seen at the confusion matrix shown on Figure 6-26.  
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Figure 6-26. Confusion matrix for validation data 

 

 

To further illustrate the performance of the classification algorithm, one class vs others ROC strategy 

is used, where each one of the failure types is compared against the others. The results are shown in 

Figure 6-27, where the base identity line have drawn for a threshold of 0.5. 

Figure 6-27. ROC Performance illustration. 

 

This classification method allows to classify faults on REB even with different fault, loads and 

rotational speed conditions. It is important to note the use of EES is a form to standardize the 

condition in such way a particular peak at fault characteristic order should be identified. It is also 

shown the possibility of build classification algorithms mainly by the use of simulated signals. This 

results in a big advantage for the use of learning algorithms in practical situations for machinery 

maintenance, since is not common to find data failures while is more common to have signals coming 

from healthy states of the machinery.  

 

 



 

7. Conclusions and Recommendations 

 

Diagnosis of REB under non-stationary regimens, and particularly, under variable speed represents 

a challenge for Condition Vibration Monitoring. Through this work, a method for diagnosing REB 

failure was proposed and tested on test rig experiments. The experimental tests were achieved under 

different loads and speed conditions. Some of the samples taken on the test rig show presence of 

incipient failures. Particularly, some of the REB tested do not shown presence of incipient failure, 

but the presence of smearing fault. 

Additionally, a model for emulate REB faults was exposed and used for simulating faulty signals. 

Some runs were created using the simulation algorithm to validate the diagnosis method proposed. 

The simulation fault model allows to identify typical behavior for non-incipient failures, which in 

fact were observed during experimental runs where incipient failure was not the case.  

The aims exposed in section 1.3 were achieved and closed by the next considerations. 

 A model for the simulation of faults was built, which allows varying amplitude modulation 

function and correlating it with different load and speed conditions. By the use of the 

simulation fault model, some considerations were added in order to emulate different 

situations from incipient failures and analyze their effect on the diagnosis process. By the 

use of those considerations, it was possible to conclude about the experimental runs in such 

failures on REB under test do not seem to be incipient failures. Experimental signals were 

captured on the test rig, on both pedestals. 

 

 A method for fault diagnosis were proposed. The proposed model was based on the 

Improved Envelope Order-Spectrum –IEOS, which is the most common used tool for 

Bearing Diagnosis. The IEOS were obtained by the use of order tracking, and 

cyclostationarity analysis. 

 

 An algorithm to improve demodulation was proposed, based on newIESFO, which is a tool 

for selection the best spectral frequency range at which Improved Envelope Spectrum 

reveals presence of failure searched. 

 

 The model proposed was used to diagnose a series of signals of REB faults, obtained from 

a test rig. The model was also used to diagnose faults on simulated REB fault signals. For 

the experimental signals model was able to diagnose correctly 77% of the cases. On the other 

hand, the model was able to diagnose correctly 84% of the simulated incipient failure 

signals. 

 

 For the cases where non-incipient failures were suspected, the method proposed could 

identify patterns of failure, mainly dictated by presence of amplitude modulation governing 

orders on the Improved Envelope Order-Spectrum. 
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 A classification method based on a learning algorithm is exposed, showing some advantages 

by the use of simulation signals and a satisfactory performance based on metrics, reaching 

an overall precision of 84.2%, and an overall recall of 83.2%. 

 

 The classification algorithm owns advantages from capturing different load, speed and 

acceleration conditions by unifying those using the Improved Envelope Order Spectrum –

IEOS,  and using it as the input for the algorithm. It would be desirable to amplify the signals 

available and increase the amount of data available for the training process. 
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9.1 Annex: Spectral Correlation Estimators 
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9.2 Annex: Spectral Correlation Statistical Threshold 

During this annex the statistical threshold is discussed for the Order Frequency Spectral Correlation 

function – OFSC. During this section, we consider the Welch Estimator is intend to be used (see 

section 9.1) [34]. 

Consider the signal 𝑥[𝑛] and signal 𝑦[𝑛], each of one with a total of L samples. Those signals would 

be windowed with a window function 𝑤[𝑛], with a total of Nw samples and sliding R samples per 

each slice of window. Welch estimator, benefits from STFT representation, as indicates in Equation 

9-1 for signal x[n]. 

Equation 9-1   𝑋[𝑡𝑖; 𝑓] =   ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑖𝑅] exp(−2𝜋𝑗𝑓𝑛)𝑖𝑅+𝑁𝑤−1
𝑛=𝑖𝑅  

Where 𝑁𝑤 represents the amount of samples considered for 𝑤[𝑛], R represents the samples sliced 

by each windowing step and K would be defined as the amount of windowing steps, estimated as 

exposed in Equation 9-2. 

Equation 9-2     𝐾 = ⌊
𝐿−𝑁𝑤

𝑅
⌋ + 1 

where ⌊∙⌋ stands for roof function, i.e. the lower nearest integer from ∙.  

Welch estimator for spectral correlation between signals x[n] and y[n] takes the form exposed on 

Equation 9-3. 

Equation 9-3    𝑆�̂�𝑋𝑌 (𝑓;𝛼;𝐿) =
1

𝐾𝐹𝑠
∑ 𝑋∗[𝑡𝑖; 𝑓] 𝑌[𝑡𝑖; 𝑓 + 𝛼]𝑖=𝐾−1

𝑖=0  

To define the variance of the estimator for 𝑆𝐶(𝛼, 𝑓) the variance reduction factor 휀 play an important 

role. It is defined as follows. 

Equation 9-4    휀 = ∑ ℛ𝑤[𝑘𝑅]2 (
𝐾−|𝑖|

𝐾2 )𝑖=𝐾−1
𝑖=−𝐾+1  

Where ℛ𝑤 represents the autocorrelation function of the window 𝑤[𝑛]. ℛ𝑤 is deifned as indicates 

Equation 9-5. 

Equation 9-5    ℛ𝑤[𝑘] = ∑ 𝑤[𝑛 − 𝑘]𝑤[𝑛]∞
𝑛=−∞    

An interesting result is stablished in [34], is that for a hann window, when 𝑅 ≤ 𝑁𝑤/3, it happens 

that 

Equation 9-6    휀 ≈ ||ℛ𝑤||
2

/𝐿 

where ||∙|| stands for L2 norm. 

If L is large enough, the variance of welch SC estimator becomes  
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Equation 9-7   𝑉𝑎�̂�  {𝑆𝐶𝑋�̂�(𝛼 ;𝑓;𝐿)} ≈ 휀𝑋(𝑓)𝑌(𝑓 + 𝛼)  

Where 𝑋(𝑓) and 𝑌(𝑓) stands for the power spectral density of signals 𝑥[𝑛] and 𝑦[𝑛]. This result 

makes possible to establish an hypothesis test for the presence of cyclo-stationarity at a particular 

𝛼. This hypothesis test is built from Ho hypothesis as follows. 

H0: signal y and x are jointly Cyclo-stationary. 

H1: Reject null hypothesis  

The criteria for rejection H0 has been established as follows [34].  

Reject H0 if there exists a (non singleton) frequency interval “I” where. 

Equation 9-8   |𝑆𝐶𝑋�̂�(𝛼 ;𝑓;𝐿)|
2

≥  
1

2
𝜒1−𝑝,2

2  𝑉𝑎�̂�  {𝑆𝐶𝑋�̂�(𝛼 ;𝑓;𝐿)}         ∀𝑓 ∈ 𝐼 

Equation 9-8 results extremely useful to establish the validation of cyclostationary content of a 

particular signal. It establish that an statistical threshold could be established with a p-value from 

consider a chi-squared distribution with 2 degree of freedom. 
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9.3 Annex: Chapter 5 - Outer Race Simulated Signals 

Summary. 

 

Run 

Label 

Static 

Load 

[N] 

Static 

Unbalance 

[kg m] 

Acceleration 

 

Freq. range 

FROM 2000 to 6000 Hz demodulation 

S-OR-1 10 0.00015 

3 Hz s-1 

 
10 – 25 Hz 

 

S-OR-2 60 0.00015 
3 Hz s-1 

 

10 – 25 Hz 

 

S-OR-3 10 0.01500 

3 Hz s-1 

 
10 – 25 Hz 

 

S-OR-4 60 0.01500 
3 Hz s-1 

 

10 – 25 Hz 

 

S-OR-5 10 0.00015 

6 Hz s-1 

 
10 – 40 Hz 

 

S-OR-6 60 0.00015 

6 Hz s-1 

 

10 – 40 Hz 

 

S-OR-7 10 0.01500 

6 Hz s-1 

 
10 – 40 Hz 
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S-OR-8 60 0.01500 

6 Hz s-1 

 
10 – 40 Hz 
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9.4 Annex: Chapter 5 - Inner Race Simulated Signals 

Summary. 

Run 

Label 

Static 

Load 

[kg] 

Dynamic  

Load 

[kg m] 

Acceleration 

 

Freq. range 

FROM 0 Hz to 12800 Hz demodulation 

S-IR-1 1 0.00015 
3 Hz s-1 

 

10 – 25 Hz 

 

S-IR-2 6 0.00015 

3 Hz s-1 

 
10 – 25 Hz 

 

S-IR-3 1 0.01500 
3 Hz s-1 

 

10 – 25 Hz 

 

S-IR-4 6 0.01500 

3 Hz s-1 

 
10 – 25 Hz 

 

S-IR-5 1 0.00015 
6 Hz s-1 

 

10 – 40 Hz 

 

S-IR-6 6 0.00015 

6 Hz s-1 

 
10 – 40 Hz 

 

S-IR-7 1 0.01500 
6 Hz s-1 

 

10 – 40 Hz 
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S-IR-8 6 0.01500 

6 Hz s-1 

 
10 – 40 Hz 
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9.5 Annex: Chapter 5 – Ball Fault Simulated Signals 

Summary. 

 

Run 

Label 

Static 

Load 

[kg] 

Dynamic  

Load 

[kg m] 

Acceleration 

 

Freq. range 

FROM 2000 to 6000 Hz demodulation 

S-BF-1 1 0.00015 
3 Hz s-1 

 

10 – 25 Hz 

 

S-BF-2 6 0.00015 

3 Hz s-1 

 
10 – 25 Hz 

 

S-BF-3 1 0.01500 
3 Hz s-1 

 

10 – 25 Hz 

 

S-BF-4 6 0.01500 

3 Hz s-1 

 
10 – 25 Hz 

 

S-BF-5 1 0.00015 

6 Hz s-1 

 
10 – 40 Hz 

 

S-BF-6 6 0.00015 

6 Hz s-1 

 
10 – 40 Hz 

 

S-BF-7 1 0.01500 

6 Hz s-1 

 
10 – 40 Hz 
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S-BF-8 6 0.01500 
6 Hz s-1 

 

10 – 40 Hz 
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9.6 Annex: Chapter 6 - Outer Race Faults Summary. 

Num. Range 

Speed 

Acc. Load Bearing 1 / Bearing 2 

OR-1 14 – 

30 Hz 

6 Hz/s 5 kg 

static 

 
 

 
OR-2 30 – 

25 Hz 

6 Hz/s 5 kg 

static 

 
 

 
OR-3 8 – 18 

Hz 

3 Hz/s 5 kg 

static 
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OR-4 21 – 

32 Hz 

3 Hz/s 5 kg 

static 

 
 

 
OR-5 22 – 

39 Hz 

6 Hz/s 0 kg 

 
 

 
OR-6 37 – 

14 Hz 

6 Hz/s 0 kg 
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OR-7 17 – 

30 Hz 

3 Hz/s 0 kg 

 
 

 
OR-8 22 – 

38 Hz 

3 Hz/s 0 kg 
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9.7 Annex: Chapter 6 - Inner Race Faults Summary. 

Num. Range 

Speed 

Acc. Load Bearing 1 / Bearing 2 

IR-1 29 – 

38 Hz 

6 

Hz/s 

5 kg 

static 

 
 

 
IR-2 29 – 

11 Hz 

High 

(6 

Hz/s) 

5 kg 

static 

 
 

 
IR-3 13 – 

29 Hz 

Low 

(3 

Hz/s) 

5 kg 

static 
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IR-4 29 – 

13 Hz 

Low 

(3 

Hz/s) 

5 kg 

static 

 
 

 
IR-5 21 – 

38 Hz 

High 

(6 

Hz/s) 

0 kg 

 
 

 
IR-6 37 – 

14 Hz 

High 

(6 

Hz/s) 

0 kg 
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IR-7 15 – 

28 Hz 

Low 

(3 

Hz/s) 

0 kg 

 
 

 
IR-8 30 – 

38 Hz 

Low 

(3 

Hz/s) 

0 kg 
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9.8 Annex: Chapter 6 – Rolling Element Faults 

Summary. 

 

Num. Range 

Speed 

Acc. Load Bearing 1 / Bearing 2 

BF-1 20 – 38 

Hz 

6 Hz/s 5 kg 

static 

 
 

 
BF-2 29 – 11 

Hz 

6 Hz/s 5 kg 

static 

 
 

 
BF-3 19 – 35 

Hz 

3 Hz/s 5 kg 

static 
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BF-4 38 – 21 

Hz  

3 Hz/s 5 kg 

static 

 
 

 
BF-5 21 – 38 

Hz 

6 Hz/s 0 kg 

 
 

 
BF-6 35 – 16 

Hz 

6 Hz/s 0 kg 
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BF-7 14 – 28 

Hz 

3 Hz/s 0 kg 

 
 

 
BF-8 30 – 38 

Hz  

3 Hz/s 0 kg 
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9.9 Annex: Chapter 6 – Combination Faults Summary. 

 

Num. Range 

Speed 

Acc. Load Bearing 1 / Bearing 2 

CF-1 4.4 – 

24.6 Hz 

6 Hz/s 5 kg 

 
 

 
CF-2 26.4 - 

37.7 Hz 

6 Hz/s 5 kg 

 
 

 



Chapter 9 – Annex 161 

 

CF-3 18.7 – 

35.8 Hz 

3 Hz/s 5 kg 

 
 

 
 

 

CF-4 37.5 -

15.1 Hz 

3 Hz/s 5 kg 
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CF-5 13.6 - 

27.6 Hz 

6 Hz/s 0 kg 

static 

 
 

 
 

CF-6 40.8 - 

28.1 

Hz. 

6 Hz/s 0 kg 

static 
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CF-7 15.5 - 

28.7 Hz 

3 Hz/s 0 kg 

static 

 
 

 
CF-8 30.5 - 

38.4 Hz  

3 Hz/s 0 kg 

static 
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