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Prólogo

“El romper de una ola no puede explicar todo el mar”

Vladimir Nabokov.

I. Propósito

En mi opinión la construcción personal debe ser tan importante como la académica. Nos alarman los

indicadores de deserción, las tasas de suicidio, la drogra adicción, etc., pero somos incapaces de mitigar

sus causas. Además, mantenemos la idea de que el bienestar sólo depende de la acumulación de bienes

materiales, e ignoramos el alimento del ser, del alma...

En mi desarrollo personal encontré que mi propósito actual es aprender a ser feliz. Y que mi felicidad

no debe depender de lo material:

“Não se pode comprar o vento, não se pode comprar o sol,

não se pode comprar a chuva, não se pode comprar o calor,

não se pode comprar as nuvens, não se pode comprar as cores,

não se pode comprar minha alegria, não se pode comprar minhas dores”

Latinomérica, Calle 13.

Además, no importa si no encajamos en un molde, siempre y cuando respetemos y aceptemos a los

demás. Ahora bien, estimado lector, como lo dice Na Morales en su canción “Fui y Volv́ı”, ... yo

he visto el mundo con mis ojos miopes..., por lo que mi mirada es limitada y no pretendo que mis

palabras sean verdades absolutas.
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III. Ahora śı el prólogo.

Creo que el desarrollo del páıs no debe depender del extractivismo de recursos finitos. Necesitamos

una economı́a multisectorial orientada a la agricultura e innovación tecnológica para la solución de

problemas en las regiones. Vivimos en una dinámica que genera toneladas de basura a diario y tenemos

la oportunidad de ser un ejemplo de conservación de la biodiversidad, y respeto por los páramos, el

agua y la vida.

Por esta razón, uno de los propósitos de este trabajo es impulsar el desarrollo de tecnoloǵıas que

contribuyan al crecimiento del páıs. Espećıficamente en este trabajo encontrarás la apropiación tec-

nológica de redes neuronales convolucionales (CNNs) y Sistemas on Chip (SoC). Además se documenta

la manera en que se resolvieron los problemas y se cumplieron los objetivos propuestos. Anhelo, que

lo aqúı presentado no termine en los anaqueles olvidados de nuestra biblioteca, si no que pueda ser de

utilidad para cualquier mente ansiosa que quiera apropiar este modesto trabajo.
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Abstract

A New Framework for Training a CNN with a Hardware-Software Architecture

Facial Expression Recognition (FER) systems classify emotions by using geometrical approaches or

Machine Learning (ML) algorithms such as Convolutional Neural Networks (CNNs). However, design-

ing these systems could be a challenging task that depends on the data set’s quality or the designer’s

expertise. Moreover, CNNs inference requires a large amount of memory and computational resources,

making it unfeasible for low-cost embedded systems. Hence, although GPUs are expensive and have

high power consumption, they are frequently employed because they considerably reduce the inference

time compared to CPUs.

On the other hand, SoCs implemented in FPGAs could employ less power and support pipelining.

However, the floating point representation may result in intricate and larger designs that are only

suitable for high-end FPGAs. Therefore, custom hardware-software architectures that maintain ac-

ceptable performance while using simpler data representations are advantageous.

To address these challenges, this work proposes a design methodology for CNN-based FER systems.

The methodology includes the preprocessing, the Local binary pattern (LBP), and the data augmenta-

tion. Besides, several CNN models were trained with TensorFlow and the JAFFE data set to validate

the methodology. In each test, the relationship between parameters, layers, and performance was stud-

ied, as were the overfitting and underfitting scenarios. Furthermore, this work introduces the model

M6, a single channel CNN that reaches an accuracy of 94% in less than 30 epochs. M6 has 306.182

parameters in 1.17 MB.

In addition, the work also employs the quantization methodology from TensorFlow Lite (tflite), to com-

pute the inference of a CNN using integer numbers. M6’s accuracy dropped from 94.44% to 83.33%

after quantization, the number of parameters increased from 306.182 to 306.652, and the model size

decreased almost 4× from 1.17 MB to 0.3 MB.

Also, the work presents a custom hardware-software architecture to accelerate CNNs known as the

FER SoC, which reproduces the main tflite operations in hardware. Hence, as the integer numbers

are fully mapped to hardware registers, the accelerator results will be similar to their software coun-

terparts. The architecture has been tested on a Zybo-Z7 development board with 1 GB RAM and

the Zynq7 device XCZ7020-CLG400. Moreover, it was observed that the architecture got the same

accuracy but was 20% slower than a laptop equipped with an AMD CPU with 16 threads, 16 GB of
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RAM and a Nvidia GTX1660Ti GPU. Therefore, it is recommended to assess whether the trade-off

between quantization and inference time is worth it for the target application.

Lastly, another contribution is the framework for CNNs’ training in custom hardware-software archi-

tectures known as Resiliency. It has been used to train and run the inference of the single-channel M6

model. Resiliency provides the design files needed as well as the Pynq 2.7 image created for running

ML frameworks such as TensorFlow and PyTorch. Although the training time was slow, the accuracy

and loss were consistent to traditional approaches. However, the execution time could be improved by

utilizing bigger FPGAs with MPSoCs like the Zynq Ultrascale family.

Keywords: FER, CNN, FPGA, HNN.
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Resumen

Nuevo framework para entrenar CNNs con una arquitectura hardware-software

Los sistemas de reconocimiento de expresiones faciales (FER) clasifican emociones usando estrategias

geométricas o algoritmos de Machine Learning (ML) como redes neuronales convolucionales (CNNs).

Sin embargo, el diseño de estos sistemas es una tarea compleja que depende de la calidad del set de

datos y la experiencia del diseñador. Además, la inferencia de las CNNs requiere recursos de memoria y

cómputo que hacen inviable el uso de sistemas embebidos de bajo costo. Igualmente, aunque las GPUs

son costosas y presentan un alto consumo de potencia, se utilizan frecuentemente porque reducen el

tiempo de ejecución en comparación a las CPU.

Por otro lado, los sistemas on-chip (SoCs) implementados en FPGAs emplean menos potencia y so-

portan cómputo en paralelo. No obstante, representaciones numéricas como punto flotante pueden

resultar en diseños complejos sólo adecuadas para FPGAs de gama alta. Por esta razón, el uso de

arquitecturas de hardware-software que emplean representaciones numéricas sencillas y mantienen un

desempeño aceptable son favorables.

Para afrontar estos desaf́ıos, este trabajo propone una metodoloǵıa de diseño para sistemas FER

basados en CNNs. La metodoloǵıa incluye el preprocesamiento, el patrón local binario (LBP), y la

aumentación de datos. Asimismo, para validar la metodoloǵıa varios modelos CNNs fueron entrenados

con TensorFlow y el set de datos JAFFE. En cada test, se estudia la relación entre los parámetros, las

capas y el desempeño, el subentrenamiento y el sobreentrenamiento. Además, este trabajo introduce

un modelo CNN de un canal llamado M6 que alcanza una exactitud de 94% en menos de 30 épocas.

M6 tiene 306.182 parámetros y emplea 1.17 MB.

El trabajo también utiliza la estrategia de quantización de TensorFlow Lite (tflite) para computar la

inferencia de la CNN empleando números enteros. Después de la quantización, la exactitud de M6 se

redujo de 94.44% a 83.33%, el número de parámetros aumentó de 306.182 a 306.652, y el tamaño del

modelo se redujo aproximadamente 4 veces pasando de 1.17 MB a 0.3 MB.

Igualmente, el trabajo presenta el FER SoC, una arquitectura de hardware-software para la acel-

eración de CNNs que reproduce las operaciones principales de tflite en hardware. En este caso, como

los registros en hardware soportan las operaciones enteras, los resultados del acelerador son similares
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a la contraparte software. El FER SoC fue implementado en el sistema de desarrollo Zybo-Z7, el

cuál emplea 1 GB RAM, y la FPGA Zynq XCZ7020-CLG400. Además, se observó que la arqui-

tectura obtuvo la misma exactitud que una laptop con una CPU AMD de 16 threads, 16 GB de

RAM, y la GPU de Nvidia GTX1660Ti, pero fue 20% más lenta. Por lo que se recomienda evaluar

śı el intercambio entre la quantización y el tiempo de ejecución es suficiente para la aplicación objetivo.

Por último, otra contribución del trabajo es el framework Resiliency, el cuál permite el entrenamiento

y la inferencia de modelos CNN de un solo canal. Resiliency, provee los archivos de diseño necesarios

y la imagen Pynq 2.7 creada para ejecutar los frameworks de ML TensorFlow y PyTorch. Aunque

el tiempo de entrenamiento fue lento, la exactitud y la perdida son consistentes con las estrategias

tradicionales. Sin embargo, el tiempo de ejecución puede ser mejorado usando FPGAs de gama alta

con MPSoCs como las Zynq Ultrascale.

Palabras claves: FER, CNN, FPGA, HNN.
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INTRODUCTION

Facial expression recognition (FER) systems are essential for applications such as human-computer

communication, animation, psychiatry, and automobile safety [14], [5], [6]. However, due to the di-

versity in face phenotypes and variability in the structure of facial expressions from person to person,

designing FER systems remains challenging. Additionally, the image acquisition process is subject

to factors that increase the complexity of the classification problem, including poor illumination, face

rotations, and noise (e.g., hair, glasses). Furthermore, there is a lack of guidelines and code examples

in the literature to provide training to designers. FER systems typically use complex multi-channel

Machine Learning (ML) architectures suitable for implementation with high-performance hardware,

but not with embedded devices. These ML algorithms include Convolutional Neural Networks (CNN),

known for their potential to extract features from the input data. CNNs are used in several appli-

cations, like object detection and semantic segmentation [15], [16]. Also, they have been shown to

increase the performance of the traditional FER applications [17], [18].

One of the open-source frameworks for developing ML applications is TensorFlow [19]. When it’s

used for training CNN models, the parameters obtained are represented by floating-point numbers.

Unfortunately, keeping double precision on devices with limited resources could be unfeasible. One of

the strategies to successfully execute the inference of CNNs on those devices is to represent the model

parameters and computations with integer numbers. This could be achieved by means of techniques

such as quantization, available in the TensorFlow’s library, tflite [20]. Nonetheless, the process implies

a trade-off between the model’s accuracy and its behavior in hardware.

On the other hand, embedded systems are commonly bound to the inference stage of a ML applica-

tion, because the training phase is complex and entails a large number of memory and computational

resources. For instance, [21] presents the challenges that face IoT devices when used in ML scenarios.

However, training ML algorithms locally could be relevant in scenarios where new data samples must

be considered at run-time or where previously trained models will be retrained, as in the Transfer

Learning technique [22]. But the reports on training are scarce and evidence a gap in frameworks for

training CNNs in custom hardware-software architectures.

To work around the drawbacks presented above, the following objectives have been proposed:

General Objective

Propose a framework that allows to train and execute a CNN in an embedded system (hardware-

software), being able to use custom or the most popular software libraries. The framework will create

the files needed to describe the architecture and will provide the tools for simulating and implementing

it. Moreover, the framework will give advice about the hardware-software trade-offs needed to improve
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the performance.

Specific Objectives

• Design and implement a basic FER application based on CNNs by means of software libraries.

• Design and evaluate accelerators for implementing the CNN feed forward execution in hardware.

• Design and validate a hardware-software architecture that implement the training algorithm and

fits in an autonomous embedded system.

• Design and implement a framework that integrates the previously defined objectives and employs

a design space exploration to propose the most cost-effective hardware.

• Evaluate the framework performance by means of metrics used in the literature such as the

neural network accuracy and the execution time.

The thesis has the following structure: Chapter 1 presents a design methodology for a single-channel

CNN-based FER system, along with the image pre-processing, the data augmentation, and the M6

CNN model trained with the JAFFE data set [23]. Then, chapter 2 describes the quantization process

applied to the M6 model using tflite and the IP cores designed for the custom hardware-software

architecture to accelerate its inference in hardware. Lastly, chapter 3 shows a base system designed for

Pynq that runs a Jupyter server on a Zybo-z7 development board and is capable of running the ML

frameworks TensorFlow and PyTorch. In addition, the Resiliency framework is introduced. Resiliency

puts together all the approaches used in this work, provides the design resources needed to train CNNs

on embedded systems, and gives guidelines for the design space exploration.
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Chapter 1

Facial Expression Recognition (FER) Systems

Facial expression recognition (FER) systems are examples of interaction technology based on Machine

Learning (ML) and are fundamental for applications such as Human-Computer Communication, an-

imation, psychiatry, automobile safety, etc. [14], [24], [5]. However, the design of FER systems is a

challenging task due to the different phenotypes around the world.

Besides, the acquisition process is subject to illumination conditions, face rotation, noise (e.g., hair,

glasses), etc., that increase the complexity of the classification problem. Hence, it is recommended

to preprocess the images before using ML algorithms like Convolutional Neural Networks (CNNs).

According to the literature, CNNs have increased the performance of FER systems, making them an

interesting study topic that will be covered in this chapter.

First, the traditional FER system structure will be presented in section 1. Subsection 1.1 introduces

the CNN-based FER systems; a recent strategy to integrate ML and traditional FER systems.

Section 2 shows the data sets used for training and validating the FER systems proposed in the

literature. Section 3 depicts the basic data set preprocessing, while section 4 depicts the extended

preprocessing: Local Binary Pattern (LBP) and Data Augmentation (DA).

The design process of a single channel CNN-based FER system is described in section 5, including

some of the models tested and their learning curves. The section concludes with M6, a feasible model

for running inference on embedded systems. Lastly, the discussion and conclusions can be found in

sections 6 and 7.
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1 Facial Expression Recognition (FER) Systems

Traditional FER systems had been implemented based on the detection of facial actions associated

with prototypical expressions like happiness, sadness, anger, surprise, disgust, and fear. For instance,

the Facial Action Coding System (FACS) proposed in 1977 by Erman and Friesen [14], associated these

facial actions with expressions. In FACS, individual or group changes in the facial muscles are coded

as Action Units (AUs). For instance, the action of raising the inner brow, caused by the Frontalis and

Pars Medialis muscles, is known as AU1 while AU19 is the action of “Tongue Out” [1]. Moreover, AUs

can be additive when they appear independently and non-additive when different AUs modify each

other. Some AUs for the upper and lower face are shown in Figure 1.1.

Unfortunately, FER systems based on traditional methods present drawbacks due to the different

ways AU changes from individual to individual, even in the same expression. Moreover, the image

acquisition process could lead to different conditions of illumination, exposure, face angle, rotation,

etc. that could affect the classification accuracy of the FER system [17].

On the other hand, CNNs have become a feasible alternative to implementing FER systems, mainly

because they are able to extract features from the input data and train their parameters by using

those feature maps [25], [5], [6], [17].

1.1 CNN-based FER Systems

According to the literature, a CNN-based FER system can be composed of input data preprocessing

and the classification architecture. This architecture could include one or more channels with the goal

of increasing accuracy [25], [5], [6], [17]. For example, one channel could be a CNN while the other

used a ML algorithm such as a Support Vector Machine (SVM) or another CNN.

An extensive survey on FER can be found in [18]. It covers the databases available and their pre-

processing, along with the deep networks used: CNNs, Deep Belief Networks (DBN), Deep Autoen-

coder (DAE), Recurrent Neural Network (RNN), and General Adversarial Network (GAN). Moreover,

the work points out that deep networks can underperform if the training data is insufficient. Other

works found are listed below.

In [25] authors proposed a single channel system called I2CNN , which is shown in figure 1.2a. I2CNN

uses five convolutional layers and one SVM and reaches an accuracy of 75% with JAFFE and 98.3%

with CK+, both data sets using six emotions. On the other hand, [5] presented a two-channel approach

named WMDNN (see figure 1.2b) that integrates two CNNs: a partial VGG16 network and a shallow

CNN. Its input were 72×72 pixels images from a Local Binary Pattern (LBP), and it achieved accuracy

of 92.21% with JAFFE and 97.02% with CK+.

Another example of a two-channel FER system is [6] shown in figure 1.2c. This work integrates two

CNNs: one using geometric features and the other using appearance features from LBP images. This

system achieves 91.27% with JAFFE and 96.46% with CK+.
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(a) Upper face AUs.

(b) Lower face AUs.

Figure 1.1: Examples of face action units (AUs). Taken from [1].
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(a) I2CNN: One channel architecture. Taken from [25].

(b) WMDNN: Two channels architecture. Taken from [5].

(c) Hierarchical DNN: Two channels architecture. Taken from [6].

Figure 1.2: Examples of CNN-based FER systems architectures proposed in literature.
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2 Data sets for FER systems

Data sets suitable for training FER systems are composed of several images that share characteristics

like resolution, color, etc. Usually, these data sets must face problems such as [14]:

• Emotions are expressed at different intensities for each subject.

• There is a loss of authenticity when the subjects are aware that they are being photographed.

• Subject’s spontaneous expressions may be limited or inhibited by the environment.

Among all the different data sets available, the most popular in literature are the Cohn-Kanade data

set, proposed in 1998 [1] and extended as CK+ in 2010 [26], and the Japanese Female Facial Expression

(JAFFE) data set, proposed in [23] and [2].

The Cohn-Kanade data set (CK+) is composed of 500 images from 100 subjects with ages ranging

from 18 to 30 years, and ethnicity is distributed as 15% African-Americans and 3% Asians and Latino-

Americans. 65% images are of women, and the data set includes only posed expressions. Images were

taken using two cameras: one directly in front of the subject and the other positioned 30 degrees to

the subject’s right. However, the data set contains only the images taken from the frontal camera.

Some images from the CK and CK+ data sets are shown in figure 1.3a.

(a) Example images from CK (1st row) and CK+ (2nd row). Taken from [26].

(b) Example images from JAFFE. Taken from [2].

Figure 1.3: Examples of data sets used in FER systems.
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On the other hand, the Japanese Female Facial Expression (JAFFE) data set is composed of 219

images of 7 facial expressions (6 basic facial expressions + 1 neutral) with only posed expressions from

10 Japanese female models [23]. The photos have been taken under strictly controlled conditions with

similar lighting by using the acquisition setup presented in figure 1.4. Models have tied their hair away

from their faces to avoid hiding their expressions. Figure 1.3b shows some images from the JAFFE

data set.

Figure 1.4: Acquisition setup used for JAFFE. Taken from [2].

3 Basic data set preprocessing for FER systems

Data set preprocessing can improve the FER system’s accuracy by eliminating irrelevant information

such as the background, and adjusting parameters such as the input size, resolution, etc. Figure 1.5

summarizes the steps involved in basic data set preprocessing.

The original image has a size of 256 × 256 pixels and comes directly from the data set. Faces are

commonly detected by using algorithms such as the Adaboost learning algorithm, proposed by Viola

and Jones in 2004 [27]. In this work, the landmarks released by Davis King in [28] and first published

in [4], are employed (see figure 1.6). These landmarks are read using a C++ toolkit for ML algorithms

known as Dlib [29].

The Dlib methods used are get frontal face detector() and shape predictor(landmarks), which are

both used in Anas Khayata’s algorithm [3]. For instance, the eye detection algorithm uses the points

36− 42 for the right eye and the points 42− 48 for the left eye.

Next, the rotation angle is calculated by using a line between the eyes, while a vertical line traversing

the image is used as a reference (see figure 1.5). Rotation makes use of the functions getRotationMatrix2D

and warpAffine from the OpenCV library [30].
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Original image

size: 256 × 256 px

Eyes Detection

Dlib + Landmarks

Rotation

OpenCV:
getRotationMatrix2D

Equalize Histogram

OpenCV: EqualizeHist

Resize

OpenCV: resize
128 × 128 px

Region of Interest

Eliminate irrele-
vant information

Figure 1.5: JAFFE Pre-processing for FER. Adapted from [3].

Figure 1.6: Facial Point Annotations. Taken from [4].
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After that, the Region of Interest (ROI) is cropped from the image, eliminating background, and

non-relevant parts such as the hair and the neck. The image is then resized to 128× 128 pixels.

Lastly, the image contrast is improved by Histogram Equalization using the OpenCV equalizeHist()

function. This implementation can be found at https://gitlab.com/dorfell/fer_sys_dev/

-/blob/master/00_sw/00_jaffe_pre-traitement/00_dlib_lbp_comparaison/mes_fonctions.

py.

4 Extended data set preprocessing for FER systems

4.1 Local Binary Pattern

The visual descriptor known as Local Binary Pattern (LBP) is frequently used in FER systems [5], [6],

due to the enhancement of textures associated with the action units (AU). To compute the LBP codes,

a pixel from the grayscale image is compared to the pixels around it in a 3 × 3 array. The encoding

process is summarized by equations 1.1 and 1.2, where ic and ip represent the grayscale image values

from the center and its neighbors pixels, respectively, and N is the number of neighbors’ pixels. The

encoding process ends with a decimal value used to build the new LBP image, as shown in figure 1.7.

LBP =

N∑
n=1

s(ip − ic)× 2n (1.1)

s(z) =

1, z ≥ 0

0, z < 0
(1.2)

Figure 1.7: LBP encoding example. Adapted from from [5], [6].
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Implementation of LBP in this work was made by employing the Scikit-image library [31]. In partic-

ular, the local binary pattern function from skimage.feature was used. This function provides five

methods for determining the pattern as described in [32]:

• “default”: Rotation-variant LBP.

• “ror”: Rotation-invariant LBP.

• “uniform”: LBP using improved rotation-invariance and uniform patterns.

• “nri unifor”: LBP with uniform patterns but non-rotation-invariant.

• “var”: LBP based on rotation-invariant variance measures of the contrast of local image texture.

Figure 1.8 shows the different LBP methods that were applied to the same JAFFE image. Implemen-

tation can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_

sw/00_jaffe_pre-traitement/00_dlib_lbp_comparaison/mes_fonctions.py.

As the smoothest result was obtained with the “var” method, this was selected for applying LBP to

the entire JAFFE data set. Finally, the LBP image is resized to 128×128 pixels using OpenCV.resize

with LANCZOS4 as the interpolation method.

Figure 1.8: LBP methods comparison with JAFFE.

4.2 Data Augmentation

Training CNNs requires a large number of images to get acceptable precision and avoid overfitting.

As the JAFFE data set size is about 256 images, it is necessary to increase the number of training

samples by means of techniques like data augmentation (DA).
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In DA, each training sample is subject to transformations such as rotation, flip, etc.; to create new

training data. In this work, a Python library for data augmentation named Albumentation was used

[33]. 15 transformations, including shift, scale, rotation, flip, and some combinations, were applied to

images of 6 emotions as reported in the literature [5], [6].

After this process, the number of training images increased to 2640. Figure 1.9 depicts some DA exam-

ples over JAFFE resized to 64×64, and the implementation can be found at https://gitlab.com/

dorfell/fer_sys_dev/-/blob/master/00_sw/00_jaffe_pre-traitement/07_dlib_var_

red_aug15/00_dlib_var_red_aug15.py.

Figure 1.9: Examples of data augmentation with JAFFE.
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5 Designing a CNN-based FER system

The architectures of some CNN-based FER systems proposed in the literature [25], [5], [6], [17] were

presented in subsection 1.1. The CNN models designed in those works are summarized in table 1.1,

as well as the accuracy obtained with the JAFFE data set.

Ref. Model Accuracy Architecture
[25] I2CNN

for
grayscale
images

75.28%

[5] WMDNN
Channel
1: Partial
VGG16
for
grayscale
images

90.86%

[5] WMDNN
Channel
2: Shal-
low CNN
for LBP
images

88.33%

[6] Appearance
feature-
based
CNN
for LBP
images

89.33%

Table 1.1: Architectures of some CNN-based FER systems and their accuracy for JAFFE.
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On the other hand, the performance of CNN inference on hardware-software architectures is affected

by the Logic Resources available, the operations involved, and the model size. Thus, the most suitable

option for an embedded system is a single-channel CNN-based FER system.

The CNN’s design is an iterative process that depends on previously acquired knowledge about the

input data and the model’s accuracy. Moreover, expertise on CNNs could limit the design exploration

space (DES) to tuning the most relevant parameters. Besides, some known tips are:

• Start with a convolutional layer with a few filters and increase the filters in the following layers.

The number of filters should be multiples of two.

• Use a subsampling layer such as AveragePooling or MaxPooling after each convolutional layer to

decrease the size of the feature maps.

• The number of neurons in the last layer (e.g., Dense) should be equal to the number of classes.

Remember that for the FER system, each class corresponds to an emotion.

• Compare the performance of different optimizers (e.g., SGD, Adam) using metrics such as accu-

racy, loss or graphics like learning curves.

• Adjust the learning rate (lr, α) to improve the training process. Some of the recommended values

are α = 0.001 and α = 0.0005.

• Tune the batch size (bs) and the number of epochs (a.k.a. époques) to avoid underfitting and

overfitting.

This work employed the JAFFE data set with 6 and 7 emotions, processed with the Local Binary

Pattern (LBP) using the VAR method and data augmentation with Albumentation, as well as Ten-

sorFlow to train the CNN models. TensorFlow is an open-source framework for developing machine

learning systems [19]. To evaluate the model’s performance, the learning curves for accuracy (a.k.a.

exactitude) and loss (a.k.a. perte) were analyzed. Hence, three diagnostics are possible:

• Underfitting: The model doesn’t reach a lower error value, and the training loss doesn’t de-

crease no matter the number of epochs. Another scenario is that the training loss is decreasing

but the training is halted, thus it is needed to increase the number of epochs until the curve gets

stable.
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• Overfitting: The model learned the training data set but fails to generalize, as a consequence, it

presents high accuracy with the training data set and low accuracy with the validation data set.

The validation loss curve could decrease in the first epochs and then start to increase, creating

a gap between the validation and training loss curves.

• Good fit: Can be identified when the curves for the validation loss and the training loss decrease

to an acceptable value, while keeping a small gap between the curves. Here, it is important to

observe that increasing the number of epochs without control can result in overfitting.

Additionally, the ML framework typically provide techniques to fine-tune the training. For instance,

EarlyStopping allows to end the training when a metric (e.g., validation loss) no longer improves [34],

whereas, ReduceLROnPlateau decreases the learning rate value when a metric improvement halts [35].

In the following subsections, some models tested are presented, as well as the model selected to develop

the work goals. The ML framework employed was TensorFlow [19]. TensorFlow is an open source

project currently used by several companies, including AMD, ARM, Google, Intel, Lenovo, Nvidia,

and Texas Instruments, among others. More than 60 tests were performed with 3 to 10 repetitions. In

addition, the source code and the training reports, including the model architectures and the learning

curves, can be found at https://gitlab.com/dorfell/fer_sys_dev/-/tree/master/00_

sw/01_etu_mod_jaffe/01_MX_fp.

5.1 Testing model M1

The architecture of model M1 (see figure 1.10) was adapted from the example “Training a neural

network on MNIST with Keras” found in https://www.tensorflow.org/datasets/keras_

example. It was chosen as the starting point because, for the MNIST data set, it reached an accu-

racy above 90% with just a few layers.

The M1 input for FER came from the JAFFE data set with samples of 128× 128 px. The parameters

under test were the batch size (bs), the learning rate (lr) and the number of filters in the convolutional

layers, among others.
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(a) Original architecture.

(b) bs = 256, lr = 0.001.

(c) bs = 128, lr = 0.001, with 128 filters.

Figure 1.10: Tests with the M1 model.

According to the accuracy and loss learning curves presented in figure 1.10, the model is underfit-

ting with less than 50% of accuracy for the validation data set. These tests are located in https://

gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/01_etu_mod_jaffe/01_MX_

fp/06_entrainement_dlib128_aug15_20210219.pdf.

5.2 Testing model M2

The architecture of model M2 (see figure 1.11) is based on the partial VGG16 proposed for the

WMDNN FER system [5] shown in table 1.1.
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The model was tested with and without Dropout varying the batch size, the learning rate, and using

MaxPooling instead of AveragePooling. The learning curves show instability, and the accuracy is under

50%. The training reports for this model can be found at https://gitlab.com/dorfell/fer_

sys_dev/-/blob/master/00_sw/01_etu_mod_jaffe/01_MX_fp/01_entrainement_dlib128_

aug15_20210217.pdf.

(a) Original architecture.

(b) bs = 256, lr = 0.001

(c) bs = 128, lr = 0.001, without dropout and MaxPooling instead of AveragePooling.

Figure 1.11: Tests with the M2 model.
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5.3 Testing model M3

The architecture of model M3 (see figure 1.12) is based on model M2 but the kernel size for the convolu-

tional layers is increased from 3×3 to 5×5. The tests made with M3 include varying the batch size, the

learning rate, with and without Dropout and using MaxPooling instead of AveragePooling. The learn-

ing curves obtained show accuracy improvements up to 80% after 100 epochs (époques), but the model

tends to overfit. These tests are located in https://gitlab.com/dorfell/fer_sys_dev/-/

blob/master/00_sw/01_etu_mod_jaffe/01_MX_fp/17_entrainement_dlib_var128_aug15_

20210219.pdf.

(a) Original architecture.

(b) bs = 64, lr = 0.001

(c) bs = 64, lr = 0.001, without Dropout, Dense(1024), Dense(512) and MaxPooling instead of Aver-
agePooling.

Figure 1.12: Tests with the M3 model.
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5.4 Testing model M4

The architecture of model M4 (see figure 1.13) is based on model M3 but includes only 1 Dense

layer to avoid overfitting. Besides, the input size is changed to 64 × 64 and the number of epochs is

reduced from 100 to 30, because the accuracy and loss barely improve after epoch 15. The model was

tested by varying the batch size, the learning rate, and the number of filters per Convolutional layer

among other parameters. The learning curves show a validation accuracy of around 70% but the gap

between the training and the validation loss indicates that overfitting is still present. The test reports

can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/01_

etu_mod_jaffe/01_MX_fp/42_entrainement_dlib_var64_aug15_20210302.pdf.

(a) Original architecture

(b) bs = 64, lr = 0.0001

(c) bs = 64, lr = 0.0001, with Conv of 32, 64 and 128 filtres, and kernel of (5,5).

Figure 1.13: Tests with the M4 model.
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5.5 Testing model M6

Model M5 is based on model M4, but the stride parameter is replaced for the Convolutional and the

MaxPooling layers from (2, 2) to (1, 1). Test reports for this model are located in

https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/01_etu_mod_jaffe/

01_MX_fp/60_entrainement_M5_jaffe_dlib_var64_aug15_20210313.pdf.

The architecture of model M6 (see figure 1.14) is based on model M5 but changes the number of filters

in the Convolutional layer to 32, 64, and 128. In addition, the Dense layer includes six neurons instead

of seven, thus training is made with the data set including 6 emotions, as found in the literature. The

learning curves show the validation accuracy stabilizing around of 90% and the validation loss around

0.4. It is worth mentioning that the gap between the training and the validation loss is approximately

0.3, which indicates an acceptable fit. As the model M6 is a single-channel CNN that achieves ac-

ceptable performance, this will be the CNN-based FER system proposed in this work. The training

reports for model M6 can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/

master/00_sw/02_M6_jaffe/00_M6_jaffe_dlib_var64_aug15/00_entrainement_M6_jaffe_

dlib_var64_aug15_6emo_20210324.pdf The python script used is also available in the appendix

B as listing B.1.

(a) Original architecture

(b) bs = 32, lr = 0.001

Figure 1.14: Tests with the M6 model.
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6 Discussion

The recent use of CNN models for FER systems has been widely adopted in the state of the art, mainly

because of the performance that can be attained. However, because there is not a clear agreement on

what architecture should be used for the FER system, it remains an intriguing topic for research.

Moreover, the applications for FER systems have different requirements with different relevance ac-

cording to the specific problem. For instance, latency and accuracy are crucial for automobile safety,

while computational complexity could be more relevant for embedded systems with human-computer

interaction capabilities.

On the other hand, although there are several algorithms that could be used to enhance the data

set (e.g., the Canny Edge detector), the stages implemented in this work for the basic and extended

preprocessing were taken from the literature, making the results comparable with similar works.

Besides, this work trained a single-channel CNN with a small data set, which led to learning curves for

accuracy and loss that had ripple effects with some outliers. This behavior could cause techniques like

EarlyStop and ReduceLROnPlateau to randomly stop the training or change the learning rate before

getting to the optimal values.

Furthermore, because the work aims to run CNNs inference in a hardware-software architecture,

the design process of a CNN-based FER system involves a trade-off between performance and the

computational resources available in the target platform.

7 Conclusion

This chapter briefly presented the basis of FER systems, from their traditional architectures to those

integrating ML algorithms. Furthermore, due to the inherent complexity of FER systems, it is advised

to follow the literature along with the data sets used, the basic preprocessing stages (e.g., eliminating

background, face rotation, histogram equalization, etc.), the LBP and the DA. Hence, it is worth

mentioning that “the input data could be as important as the system architecture”.

In addition, the design process of a CNN-based FER system was described. From the several tests

made, the relevance of each parameter is studied, as are the relationships between overfitting/under-

fitting and the number of layers, samples, epochs, etc.

In addition, as mentioned before, designing a FER system is an observation process with several

iterations. Where analyzing the learning curves and not only the final values of metrics is essential.

Lastly, a single-channel CNN-based FER system trained with TensorFlow and the JAFFE data set

that achieves an accuracy of above 90% is proposed.
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Chapter 2

Hardware Neural Networks (HNN)

In chapter 1 model M6 was proposed as a single-channel CNN-based FER system. This model was

trained using the JAFFE data set [23], [2] and TensorFlow, obtaining parameters represented by

floating-point numbers. This chapter will employ model M6 to design and propose a hardware-software

architecture able to execute the inference of a FER CNN model. This architecture will be an alternative

to traditional and expensive platforms such as GPUs and high-performance systems.

An outlook of AI-enabled IoT devices is presented in [21], along with two techniques of model compres-

sion: pruning and quantization. Pruning removes connections, neurons, or layers from the network to

reduce the memory and computational resources needed [36]. However, it could decrease the accuracy.

Whereas quantization typically keeps the model’s architecture but changes the numeric representation

of the parameters, which could also affect the accuracy. Hence, due to M6’s size, the less aggressive

compression technique will be used, which is quantization.

The chapter starts by introducing the quantization library tflite from TensorFlow.Tflite allows repre-

senting neural network parameters as integer numbers. As a result, they can be imported to hardware

platforms such as FPGAs without losing too much precision. Besides, in section 2 the development

platform employed is introduced. Then, the configuration of a basic SoC and the cores capable of per-

forming tflite operations like the Convolution and the MultiplyByQuantizedMultiplier are described in

section 3. Following, section 4 shows the integration of the aforementioned cores into the FER SoC,

which is appropriate for running the inference of model M6. The address assigned to each core, the

number of resources used, and the power consumption are also specified. The chapter provides links to

the Vivado and Vitis projects, making the results reproducible. Lastly, the discussion and conclusions

can be found in sections 5 and 6.
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1 Quantization Aware Training

Running the inference of CNN models in embedded systems is a task that could entail complex logic

resources and a reasonable amount of memory. This is due to the model’s size and the need for

storing the layers’ outputs, usually in floating-point representation. Besides, the Quantization Aware

Training technique transforms a floating-point TensorFlow model into an integer model with similar

performance. It was proposed in [13], and is now implemented in the TensorFlow package named

model optimization, which is part of the TensorFlow Lite source code.

For instance, Figure 2.1 shows how a convolutional layer from the M6 model is quantized. After all the

model layers have been quantized, the model’s inference will only involve integer-arithmetic operations.

Figure 2.1: Tflite Quantization Aware Training Example.

On the other hand, the impact of the quantization process on the model’s accuracy depends on factors

such as the layers and the training parameters, including the data set. However, there are some

models whose accuracy is not so different after quantization. Table 2.1 presents some models suitable

for quantization.
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Before applying quantization to a model, it is necessary to check the supported operations.Those can

be found at the TensorFlow Lite 8-bit quantization specification (see [37]), as well as the expected

range of the numeric values. Table 2.2 describes the specification for the layers employed by model

M6.

Model Floating-point
baseline model

Quantized Aware
Training Model

Post-training full inte-
ger quantized Model

MobileNet v1
1.0 224

71.03% 71.06% 69.57%

MobileNet v2
1.0 224

70.77% 70.01% 70.20%

ResNet v1 50 76.30% 76.10% 75.95%

Table 2.1: Quantized models with comparable accuracy to floating point. Adapted from [20].

Layer Inputs/Outputs Data type Range
Conv 2D Input 0: int8. [−128, 127].

Input 1 (Weight): int8. [−127, 127].
Input 2 (Bias): int32. [int32 min,

int32 max].
Output 0: int8. [−128, 127].

Fully Input 0: int8. [−128, 127].
Connected Input 1 (Weight): int8. [−127, 127].

Input 2 (Bias): int32. [int32 min,
int32 max].

Output 0: int8. [−128, 127].
Max Input 0: int8. [−128, 127].
Pool 2D Output 0: int8. [−128, 127].

Table 2.2: Specification for the quantized layers used in M6. Adapted from [37].

As all the M6 layers were supported by TensorFlow Lite, quantization was applied to the model, and

performance was evaluated through the metrics displayed in table 2.3. Although the accuracy de-

creased to 83.3% and the loss increased to 0.36, having integer-only inference, is a tradeoff that makes

the hardware acceleration more feasible. This implementation can be found at

https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/02_M6_jaffe/01_

M6_jaffe_tflite/entrainement.log.

Model Rep-
resentation

Accuracy Loss Parameters Size
MB

Floating Point 94.44% 0.12 306.182 1.17
Quantized 83.33% 0.36 306.652 0.30

Table 2.3: Metrics for model M6 in float point and after quantization.
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2 Hardware Platform

A hardware-software co-design allows the execution of an algorithm by using designs that share hard-

ware and software components on specialized platforms. These platforms are mainly composed of

microcontrollers or embedded processors with specific IP cores implemented in FPGAs. FPGAs are

programmable integrated circuits, considered one of the best tools for the design of digital circuits

due to their capability of being dynamically reconfigured and their affordable prices [38]. Usually, FP-

GAs are sold with development boards that come with the JTAG programmer, Pmods and input and

output peripherals (e.g., HDMI, USB, DDR memory, etc.). Digilent’s Zybo-Z7 [8] is employed in this

work (see Figure 2.2).The academic price for this board is around USD$262, which is not expensive

for this kind of platform. The board integrates the XC7Z020-1CLG400C Zynq FPGA from Xilinx.

(a) Top. (b) Bottom.

Figure 2.2: Zybo-Z7 Development board. Taken from [7].

The Zynq family incorporates a processing system (PS) with traditional programmable logic (PL)

in the same chip, as shown in figure 2.3. Also, a more detailed representation can be found at C.2.

The PS is a multi-core ARM 32-bit processor running at 660 MHzinterconnected to the PL by an

AMBA interface, such as Axi4-Lite. Hence, it is possible to design a System on Chip (SoC) with both

hard-core and soft-core processors.

The PL includes configurable basic elements for implementing digital designs as complex as soft core

processors. Some of these elements include:
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Figure 2.3: Zynq APSoC Architecture Simplified. Adapted from [8].

• Configurable Logic Block (CLB): One CLB has 8 LUTs, 16 Flip-flops, 2 arithmetic and

carry chains, 256 bits of distributed ram and 128 bits of shift registers [9]. As shown in figure

2.4, these resources are grouped in 2 slices. Slices inside a CLB don’t share connections and can

be slices with memory (SLICEM) or without memory (SLICEL).

• Block RAM (BRAM): According to [10] a block RAM can store up to 32 kbits and has

two independent access ports. Thus, data can be written to and read from either port. Write

and read operations are synchronous, and hence they need a clock’s edge. The structure of a

BRAM is shown in figure 2.5. BRAMs can be arranged to provide the following configurations:

64k×1, 32k×1, 16k×2, 8k×4, 4k×9, 2k×18. BRAMs can be used to store the layer’s parameters.

• DSP48 Block: This resource can be used to implement the addition, multiplication, and multi-

ply and add operations. As seen in figure 2.6, this block is made up of a 25×18 two’s complement

multiplier, a 48-bit accumulator, and a Single-Instruction-Multiple-Data (SIMD) arithmetic unit,

among other elements [11]. The use of these elements in a specific IP core can be inferred by

the design tool (i.e., Vivado). However, there are some primitives that allow you to define when

they should be used.

Table 2.4 summarizes some of the resources available on the XC7Z020-1CLG400C FPGA in the Zybo-

Z7 board employed.
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(a) CLB structure.

(b) SLICEM.

Figure 2.4: PL architecture. Taken from [9].

Universidad Nacional de Colombia

27



Figure 2.5: BRAM structure. Taken from [10].

Figure 2.6: Basic DSP48 Slice. Taken from [11].

Logic Resource Quantity
Logic slices 13, 000
6-input LUTs 53, 200
Block RAM 630 kB
DSP 220

Table 2.4: XC7Z020-1CLG400C Specification. Taken from [7].
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3 Hardware-software Development

3.1 Base SoC Design

Figure 2.7: Basic ARM SoC.

Figure 2.8: Vivado Block Design for the Basic ARM SoC.

Figure 2.7 shows a basic System on Chip (SoC) while Figure 2.8 depicts its Vivado Block Design.

Moreover, this SoC will be used to host the custom-designed cores needed to run the inference in

hardware. The basic SoC is composed of the Zynq7 Processing System, the AXI interconnect, the

Processor System Reset, and the AXI GPIOs. The Zynq7 Processing System manages the ARM pro-

cessor, and it is configured as follows:

• Zynq Block Design: Default.

• PS-PL Configuration: Default.

• Peripherals I/O Pins: Default.

• MIO Configuration:

◦ Bank 0 I/O Voltage: LVCMOS 3.3V.

◦ Bank 1 I/O Voltage: LVCMOS 1.8V.

∗ Memory interfaces: Default.

∗ I/O Peripherals:
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† SD0:

MIO 47, signal=cd, LVCMOS1.8V, speed=slow, pullup=disable, in.

MIO 40, signal=clk, LVCMOS1.8V, speed=fast, pullup=disable, inout.

MIO 41, signal=cmd, LVCMOS1.8V, speed=fast, pullup=disable, inout.

MIO 42, signal=data[0], LVCMOS1.8V, speed=fast, pullup=disable, inout.

MIO 43, signal=data[1], LVCMOS1.8V, speed=fast, pullup=disable, inout.

MIO 44, signal=data[2], LVCMOS1.8V, speed=fast, pullup=disable, inout.

MIO 45, signal=data[3], LVCMOS1.8V, speed=fast, pullup=disable, inout.

† UART1:MIO 48, signal=tx, LVCMOS1.8V, speed=slow, pullup=enable, out.

MIO 49, signal=rx, LVCMOS1.8V, speed=slow, pullup=enable, in.

† GPIO/GPIO MIO:
MIO 07, signal=gpio[7], LVCMOS3.3V, speed=slow, pullup=disable, out.

MIO 50, signal=gpio[50], LVCMOS1.8V, speed=slow, pullup=enable, inout.

MIO 51, signal=gpio[51], LVCMOS1.8V, speed=slow, pullup=enable, inout.

• Clock Configuration: Default.

• DDR Configuration:

◦ DDR Controller Configuration:

∗ Memory Type: DDR 3.

∗ Memory Part: MT41K256M16 RE-125.

◦ Memory Part Configuration: Default.

• SMC Timing Calculation: Default.

• Interrupts: Default.

After setting up this configuration, click on “Run Block Automation” and Vivado will connect the Processor

System Reset block. Besides, add the AXI interconnect and AXI GPIO blocks and click on “Run Connection

Automation”. On the other hand, the input images and training parameters are 4D tensors stored on a

microSD card as binary files. The program designed to create the binary files can be found at https:

//gitlab.com/dorfell/fer_sys_dev/-/tree/master/01_hw/microSD/M6. Also, algorithm 1 lists

the function used to read the 4D tensors, which is located in https://gitlab.com/dorfell/fer_sys_

dev/-/blob/master/01_hw/fer_soc/firmware/app0/src/peripheral.c.

For computing the inference in hardware, custom cores were designed. These cores target the following layer

operations: MultiplyByQuantizedMultiplier (mbqm), Convolution, MaxPooling and Dense or Fully Connected.

In the following subsections, these cores will be presented.
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Algorithm 1 Function to read 4D tensors from the microSD.

1: function ReadTensorSD(FileName, F ileSize, TensorShape, tensor[x, y, z, w]){
2: f mount(&fatfs, Path, 0);
3: f open(&fil, SD File, FA READ);
4: f lseek(&fil, 0);
5: f read(&fil, (void∗)DestinationAddress, F ileSize, &NumBytesRead);
6: ∗ ∗∗
7: for(int i = 0; i < TensorShape[0]; i+ +){
8: for(int j = 0; j < TensorShape[1]; j + +){
9: for(int k = 0; k < TensorShape[2]; k + +){

10: for(int l = 0; l < TensorShape[0]; l + +){
11: tensor[i][j][k][l] =
12: (DestinationAddress[0x83 + idx ∗ 8] << 24) |
13: (DestinationAddress[0x82 + idx ∗ 8] << 16) |
14: (DestinationAddress[0x81 + idx ∗ 8] << 8) |
15: (DestinationAddress[0x80 + idx ∗ 8]); };
16: }; }; };
17: f close(&fil); };
18: end function

3.2 Tflite Core

The tflite core was designed to evaluate the quantization functions involved in the inference. Algorithms

2, 3, and 4 show some of these functions. Besides, these functions were implemented in C++ and linked

to Python by means of the ctypes library (see https://gitlab.com/dorfell/fer_sys_dev/-/blob/

master/00_sw/02_M6_jaffe/01_M6_jaffe_tflite/mes_fon_CPP/src/monbib.cpp). For instance,

the SaturatingRoundingDoublingHighMul function saturates the product between the input value (a) and the

quantized multiplier (b). The output value is bound to the int32 t maximum value. The exponent parameter is

used by function RoundingDivideByPOT to round the saturated value. Lastly, MultiplyByQuantizedMultiplier

calls the aforementioned function and passes the exponent derived from the shift quantization parameter.

Algorithm 2 Function SaturatingRoundingDoublingHighMul adapted from Tflite source code.

1: function SaturatingRoundingDoublingHighMul(std :: int32 t a, std :: int32 t b){
2: bool overflow = a == b && a == std :: numeric limits < std :: int32 t >:: min();
3: std :: int64 t a 64(a); std :: int64 t b 64(b);
4: std :: int64 t ab 64 = a 64 ∗ b 64;
5: std :: int32 t nudge = ab 64 >= 0 ? (1 << 30) : (1 − (1 << 30));
6: std :: int32 t ab x2 high32 = static cast < std :: int32 t > ((ab 64 + nudge) / (1ll << 31));
7: return overflow ? std :: numeric limits < std :: int32 t >:: max() : ab x2 high32; };
8: end function

In figure 2.9 the Tflite Core is shown. The core was designed to run the tflite stage of the inference and

is described in VHDL. Its source files can be found at https://gitlab.com/dorfell/fer_sys_dev/

-/tree/master/01_hw/ip_repo/tflite_mbqm_1.0. Mainly, the core is composed of the 5 submodules

described below:
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Algorithm 3 Function RoundingDivideByPOT adapted from Tflite.

1: function RoundingDivideByPOT (std :: int32 t x, std :: int8 t exponent){
2: assert(exponent >= 0);
3: assert(exponent <= 31);
4: const std :: int32 t mask = Dup((1ll << exponent) − 1);
5: const std :: int32 t zero = Dup(0);
6: const std :: int32 t one = Dup(1);
7: const std :: int32 t remainder = BitAnd(x, mask);
8: const std :: int32 t threshold = Add( ShiftRight(mask, 1),
9: BitAnd(MaskIfLessThan(x, zero), one));

10: return Add( ShiftRight(x, exponent),
11: BitAnd( MaskIfGreaterThan(remainder, threshold), one ) ); };
12: end function

Algorithm 4 Function MultiplyByQuantizedMultiplier adapted from Tflite.

1: function MultiplyByQuantizedMultiplier(std :: int32 t x,
2: std :: int32 t quantized multiplier, int shift){
3: std :: int8 t left shift = shift > 0 ? shift : 0;
4: std :: int8 t right shift = shift > 0 ? 0 : − shift;
5: return RoundingDivideByPOT (
6: SaturatingRoundingDoublingHighMul(x ∗ (1 << left shift),
7: quantized multiplier), right shift); };
8: end function

• tflite core0: For adding the bias to the input value (e.g. cv in) and checking the presence of overflow.

• tflite core1: For multiplying the quantized multiplier with the input value plus bias (i.e., signal xls).

The operation is performed by 2 DSP48 because the result is 64 bits width. The nudge is also computed

by this submodule.

• tflite core2: For adding the ab 64 value to the nudge and storing to ab nudge.

• tflite core3: For saturating the ab nudge and binding it to the int32 t maximum value. The result is

stored in the register srdhm.

• tflite core4: For rounding srdhm subject to the shift quantization parameter. The shift value is adapted

by MultiplyByQuantizedMultiplier. The result is stored in mbqm.

Figure 2.9: Tflite Core.
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Figure 2.10 shows the output value = 0xFFFFF7C2 calculated with the input value = 0xFFFE9248, the bias

= 0000004B, the shift = FB, and the quantized multiplier (M0) = 5C5D83CE. This procedure reproduces

the Tflite behavior on hardware and takes approximately 600 µs. start and done signals are employed to

interact with the SoC.

Figure 2.10: Tflite Core Simulation.

The core is connected to an AXI-Lite bus by means of a wrapper. The wrapper has registers for each core signal;

hence, 7 registers were used. Each register address depends on the core BaseAddress assigned in the SoC. The

algorithm 5 presents the function used to read and write the core registers from the ARM processor. The code

for this function can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/01_

hw/fer_soc/firmware/app0/src/accel.c. This function will be used by the custom cores designed for

the Convolution and Dense operations.

Algorithm 5 Function to write and read the tflite core registers.

1: function tflite mbqm(BaseAddress, cv in, bias, M0, shift){
2: TFLITE MBQM mWriteReg(BaseAddress,
3: TFLITE MBQM S00 AXI SLV REG1 OFFSET, cv in);
4: TFLITE MBQM mWriteReg(BaseAddress,
5: TFLITE MBQM S00 AXI SLV REG2 OFFSET, bias);
6: TFLITE MBQM mWriteReg(BaseAddress,
7: TFLITE MBQM S00 AXI SLV REG3 OFFSET, M0);
8: TFLITE MBQM mWriteReg(BaseAddress,
9: TFLITE MBQM S00 AXI SLV REG4 OFFSET, shift);

10: ∗ ∗ ∗
11: while( TFLITE MBQM mReadReg(BaseAddress, / ∗ done signal ∗ /
12: TFLITE MBQM S00 AXI SLV REG6 OFFSET ) == 0x00000000 ){};
13: tf out = TFLITE MBQM mReadReg(BaseAddress,
14: TFLITE MBQM S00 AXI SLV REG5 OFFSET );
15: return tf out; };
16: end function
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3.3 Conv Core

The function for computing the Tflite convolution operation in Numpy is shown in the algorithm 6, while the

complete code can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/

02_M6_jaffe/01_M6_jaffe_tflite/mes_fonctions.py Observe that entree represents a tensor with

the input data, and fil is the weight tensor for each filter. In addition, the output values are stored in the

tensor cv tab. And, for quantization and inference other variables (e.g., shift, M0, scale, offset ent, offset sor)

are used. And the QuantizeMultiplier function was directly mapped from the Tflite source code. The first

clamp operation (see line 12) represents a ReLU from 0 to 255. In the second clamp (line 14), the min val=-128

and max val=127 correspond to the int8 range.

Algorithm 6 Tflite Convolution implemented in Numpy.

1: function conv k5 npT (entree, filtres, biases, M, scale, offset ent, offset sor) :
2: for f in range(0, #filters) :
3: shift,M0 = QuantizeMultiplier(M [f ]/scale);
4: for i in range(0, #rows − 4) :
5: for j in range(0, #cols − 4) :
6: for k in range(0, #cc − 4) :
7: ent = entree[0, 0 + i : 5 + i, 0 + j : 5 + j, k];
8: ent = ent+ offset ent;
9: cv tab[0, i, j, f ] = cv tab[0, i, j, f ] + np.tensordot(ent, filtres[f, :, :, k];

10: cv tab[0, i, j, f ] = cv tab[0, i, j, f ] + biases[f ];
11: cv tab[0, i, j, f ] = QuantizeMultiplier(cv tab[0, i, j, f ],M0, shift);
12: cv tab[0, i, j, f ] = min(max(cv tab[0, i, j, f ], 0), 255);
13: cv tab[0, i, j, f ] = cv tab[0, i, j, f ] + offset sor;
14: cv tab[0, i, j, f ] = min(max(cv tab[0, i, j, f ],min val),max val);
15: return cv tab;
16: end function

In figure 2.11 the Conv Core is presented. This core is capable of computing a convolutional window of 25×25

and is described in VHDL. Its source code can be found at https://gitlab.com/dorfell/fer_sys_

dev/-/tree/master/01_hw/ip_repo/conv_1.0. The core is divided into 4 submodules:

• conv core0: For adding the offset ent to the input values (x ). xo is the name given to the output

signals.

• conv core1: For multiplying the weights (w) with the xo values using DSP48. The output signals are

labeled as xow.

• conv core2: For adding all the xow values into one xow signal.

• conv core3: For adding the previous value cv in to the present value xow. This result is saved in the

register cv out.

To validate the core behavior, several operations were simulated. For instance, the simulation in figure 2.12

shows that each convolution made takes approximately 500 ns.

The core is connected to an AXI-Lite bus by means of a wrapper. The wrapper has registers for each core sig-

nal; hence, 55 registers were used. Likewise, each register address depends on the core’s BaseAddress assigned
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Figure 2.11: Conv Core.

Figure 2.12: Conv Core Simulation.

in the SoC. The algorithm 7 describes the function cv k5 core used to read and write the core registers from

the ARM processor.

Algorithm 7 Function to write and read the Conv core registers.

1: function cv k5 core(BaseAddress, x01, ..., x25, w01, ..., w25, offset ent, cv in){
2: CONV mWriteReg(BaseAddress, CONV S00 AXI SLV REG1 OFFSET, x01);
3: ∗ ∗∗
4: CONV mWriteReg(BaseAddress, CONV S00 AXI SLV REG26 OFFSET, w01);
5: ∗ ∗∗
6: CONV mWriteReg(BaseAddress, CONV S00 AXI SLV REG51 OFFSET, offset ent);
7: CONV mWriteReg(BaseAddress, CONV S00 AXI SLV REG52 OFFSET, cv in);
8: ∗ ∗∗
9: cv out = CONV mReadReg(BaseAddress, CONV S00 AXI SLV REG53 OFFSET );

10: return cv out; };
11: end function

The algorithm 8 shows the function conv k5 executed by the ARM processor. ent is the input tensor with

dimensions x,y,z,wfil is the filters tensor, par is the parameters tensor, and cnv the output tensor.
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The function is constantly employing the conv and the tf mbqm cores to compute values. This is attained by

means of the functions cv k5 core and tflite mbqm. As the cnv tensor is stored in RAM, it is available for

the next layer. These functions can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/

master/01_hw/fer_soc/firmware/app0/src/accel.c.

Algorithm 8 Function to compute a convolutional layer

1: function conv k5(EntShape, ent[x, y, z, w], F ilShape, fil[x, y, z, w],
2: ParShape, par[x, y, z, w], CnvShape, cnv[x, y, z, w]){
3: for(f = 0; f < FilShape[0]; f + +){
4: get: shift, M0, bias
5: for(i = 0; i < EntShape[1]− 4; i+ +){
6: for(j = 0; j < EntShape[2]− 4; j + +){
7: for(k = 0; k < FilShape[3]; k + +){
8: cnv[0][i][j][f ] = cv k5 core(BaseAddress0, ent[0, 0 + i, 0 + j, k], ..., fil[f, 0, 0, k], ...,
9: offset ent, cnv[0][i][j][f ]) };

10: cnv[0][i][j][f ] = tflite mbqm(BaseAddress1, cnv[0][i][j][k], bias, M0, shift);
11: cnv[0][i][j][f ] = min( max(cnv[0][i][j][f ], 0), 255);
12: cnv[0][i][j][f ] = cnv[0][i][j][f ] + offset sor;
13: cnv[0][i][j][f ] = min( max(cnv[0][i][j][f ], − 128), 127); };
14: }; };
15: return cnv; };
16: end function

3.4 MaxPooling Core

The maxpool core was designed to implement the maxpool npT function for a kernel size of 2×2. The function

takes four values and returns the maximum one. Then it repeats that process across the entire input data.

Usually, the input data could be the feature maps obtained in the convolutional layer. The function is shown

in algorithm 9 and can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_

sw/02_M6_jaffe/01_M6_jaffe_tflite/mes_fonctions.py.

Algorithm 9 Tflite MaxPooling implemented in Numpy.

1: function maxpool npT (entree) :
2: ∗ ∗ ∗
3: for i in range(0, #rows/2) :
4: for j in range(0, #cols/2) :
5: for k in range(0, #cc/2) :
6: mp tab[0, i, j, k] = np.max( entree[0, 2 ∗ i : 2 ∗ i+ 2, 2 ∗ j : 2 ∗ j + 2, k] );
7: return mp tab;
8: end function

The core design is shown in figure 2.13. It takes four values at the same time, compares them, and outputs

their maximum one. The core is written in VHDL, and its source files can be found at https://gitlab.

com/dorfell/fer_sys_dev/-/tree/master/01_hw/ip_repo/mpool_1.0/src/maxpool.vhd
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Figure 2.13: MaxPooling Core.

The core is connected to an AXI-Lite bus by means of a wrapper. The wrapper has registers for each core

signal; hence, 7 registers were used. Each register address depends on the core BaseAddress assigned in the

SoC. Algorithm 10 describes the mp 22 core function used to read and write the core’s registers from the ARM

processor. This function takes four values as input parameters and returns the maximum. In addition, note

that the BaseAddress points to the core.

Algorithm 10 Function to write and read the mp 22 core registers.

1: function mp 22 core(BaseAddress, x01, x02, x03, x04){
2: MPOOL mWriteReg(BaseAddress, MPOOL S00 AXI SLV REG1 OFFSET, x01);
3: MPOOL mWriteReg(BaseAddress, MPOOL S00 AXI SLV REG2 OFFSET, x02);
4: MPOOL mWriteReg(BaseAddress, MPOOL S00 AXI SLV REG3 OFFSET, x03);
5: MPOOL mWriteReg(BaseAddress, MPOOL S00 AXI SLV REG4 OFFSET, x04);
6: ∗ ∗ ∗
7: while( MPOOL mReadReg(BaseAddress, / ∗ done signal ∗ /
8: MPOOL S00 AXI SLV REG6 OFFSET ) == 0x00000000 ){};
9: res = MPOOL mReadReg(BaseAddress,

10: MPOOL S00 AXI SLV REG5 OFFSET );
11: return res; };
12: end function

Moreover, the function mp 22 core is called by the maxp 22 function presented in the algorithm 11, which

goes through the input data and creates the tensor from the MaxPooling layer. cnv is the input tensor coming

from the convolutional layer (i.e., thus the feature maps), and its dimensions are represented by x,y,z,w. mxp

is the output tensor for the MaxPooling layers. The tensor is stored in RAM, so it is available for the next

layer. The code for these functions can be found at https://gitlab.com/dorfell/fer_sys_dev/-/

blob/master/01_hw/fer_soc/firmware/app0/src/accel.c.

3.5 Dense Core

The function for computing the Tflite dense operation in Numpy is depicted in the algorithm 12 and its entire

code can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/00_sw/02_M6_

jaffe/01_M6_jaffe_tflite/mes_fonctions.py Observe that entree is a vector with the input data, fil

is the weights matrix, and the output values are stored in the vector fc vec. Other variables (i.e., shift, M0,

scale, offset ent, offset sor) are used for quantization and inference. And the QuantizeMultiplier function was

directly mapped from the Tflite source code.
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Algorithm 11 Function to compute the maxpooling layer.

1: function maxp 22(CnvShape, cnv[x, y, z, w], MxpShape, mxp[x, y, z, w]){
2: for(i = 0; i < MxpShape[1]; i+ +){
3: for(j = 0; j < MxpShape[2]; j + +){
4: for(k = 0; k < MxpShape[3]; k + +){
5: mxp[0][i][j][k] =
6: mp 22 core(BaseAddress,
7: cnv[0, 0 + i ∗ 2, 0 + j ∗ 2, k], cnv[0, 0 + i ∗ 2, 1 + j ∗ 2, k],
8: cnv[0, 1 + i ∗ 2, 0 + j ∗ 2, k], cnv[0, 1 + i ∗ 2, 1 + j ∗ 2, k] ); };
9: }; }; };

10: end function

In the clamp at line 9, the min val=-128 and max val=127 correspond to the int8 range.

Algorithm 12 Tflite Dense implemented in Numpy.

1: function dense npT (entree, params, biases, M, scale, offset ent, offset sor) :
2: fc vec = []; # list of classification.
3: for cls in range(0, #classes) :
4: shift,M0 = QuantizeMultiplier(M [0]/scale);
5: ent = ent+ offset ent;
6: Wx b = np.tensordot([ent[0]], [params[cls]]) + biases[cls];
7: Wx b = QuantizeMultiplier(Wx b,M0, shift);
8: Wx b = Wx b+ offset sor;
9: Wx b = min(max(Wx b,min val),max val);

10: fc vec.append(Wx b);
11: return fc vec;
12: end function

In figure 2.14 the Dense Core is presented. It’s capable of computing the main operation of a dense or full

connected layer and is described in VHDL. Despite the fact that typical dense layers involved a large number

of factors, the core was designed to operate 64× 64 elements at once. Its source code can be found at https:

//gitlab.com/dorfell/fer_sys_dev/-/tree/master/01_hw/ip_repo/dense_1.0. The core is di-

vided into two submodules:

• dense core0: For adding the offset ent to the input values (x ). xo is the name given to the output

signals.

• dense core1: For multiplying the weights (w) with the xo values using DSP48. The output signals are

labeled as xow, and are added into the top module. Its result will be saved in ds out.

The core is connected to an AXI-Lite bus by means of a wrapper. The wrapper has registers for each core

signal; hence, 133 registers were used. Each register address depends on the core BaseAddress assigned in the

SoC. The algorithm 13 describes the function ds k64 core employed to read and write the core’s registers from

the ARM processor.
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Figure 2.14: Dense Core.

Algorithm 13 Function to write and read the Dense core registers .

1: function ds k64 core(BaseAddress, x01, ..., x64, w01, ..., w64, offset ent, ds in){
2: DENSE mWriteReg(BaseAddress, DENSE S00 AXI SLV REG1 OFFSET, x01);
3: ∗ ∗∗
4: DENSE mWriteReg(BaseAddress, DENSE S00 AXI SLV REG65 OFFSET, w01);
5: ∗ ∗∗
6: DENSE mWriteReg(BaseAddress, DENSE S00 AXI SLV REG129 OFFSET, offset ent);

7: DENSE mWriteReg(BaseAddress, DENSE S00 AXI SLV REG130 OFFSET, ds in);
8: ∗ ∗∗
9: ds out = DENSE mReadReg(BaseAddress, DENSE S00 AXI SLV REG131 OFFSET );

10: return ds out; };
11: end function

The algorithm 14 represents the function dense used to compute the dense layer. ent is the input vector

with dimension x. fil is the filters matrix, par the parameters matrix, and dns the output vector. The

function is constantly employing the dense and the tf mbqm cores to compute values by means of the functions

ds k5 core and tflite mbqm. These functions can be found at https://gitlab.com/dorfell/fer_sys_

dev/-/blob/master/01_hw/fer_soc/firmware/app0/src/accel.c.

3.6 Additional functions

Other functions needed to run the inference in hardware are the padding and flatten. The padding function is

shown in the algorithm 15. It adds elements with zero value to the tensor to maintain the same size between

the layer’s input and output tensors. As the zero value is affected by the quantization process, the value used

is the zero point parameter.

Although this process could be memory-intensive, it can be improved by adding execution conditions through

the layers. However, this will increase the core’s complexity and could lead to more hardware resources being

needed. As the hardware platform employed has enough memory (i.e., 1 GB DDR3), this implementation is

affordable.
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Algorithm 14 Function to compute a dense layer

1: function dense(EntShape, ent[x], F ilShape, fil[x, y],
2: ParShape, par[x, y], DnsShape, dns[x]){
3: for(f = 0; f < FilShape[0]; f + +){
4: get: shift, M0, bias
5: for(i = 0; i < EntShape[0]/64; i+ +){
6: dns[f ] = ds k64 core(BaseAddress0,
7: ent[0 + 64 ∗ i], ..., ent[63 + 64 ∗ i],
8: fil[f ][0 + 64 ∗ i], ..., fil[f ][63 + 64 ∗ i]
9: offset ent, dns[f ] ); };

10: dns[f ] = tflite mbqm(BaseAddress1, dns[f ], bias, M0, shift);
11: dns[f ] = dns[f ] + offset sor;
12: dns[f ] = min( max(dns[f ], − 128), 127); };
13: return dns; };
14: end function

Algorithm 15 Function to compute the padding layer.

1: function padding(EntShape, ent[x, y, z, w], PadShape,
2: pad[x, y, z, w], zero point){
3: for(f = 0; f < EntShape[0]; f + +){
4: for(i = 0; i < EntShape[1]; i+ +){
5: for(j = 0; j < EntShape[2]; j + +){
6: for(k = 0; k < EntShape[3]; k + +){
7: if( ( ((i >= 0) && (i < 2)) || ((i >= EntShape[1] + 2) && (i < EntShape[1] + 4)) ) ||
8: ( ((j >= 0) && (j < 2)) || ((j >= EntShape[2] + 2) && (i < EntShape[2] + 4)) ) ){
9: pad[f, i, j, k] = zero point; }

10: else{
11: pad[f, i, j, k] = ent[f, i− 2, j − 2, k]; };
12: }; }; }; }; };
13: end function

The flatten function described in algorithm 16 takes a tensor as input and creates a 1D array. Its dimensions

will be subject to the number of feature maps, their size, and the number of classes. The output vector will

be stored in the SoC RAM and will be the input for a Dense layer.

Algorithm 16 Function to compute the flatten layer.

1: function flatten(EntShape, ent[x, y, z, w], F ltShape, flt[x]){
2: int idx = 0;
3: for(i = 0; i < EntShape[1]; i+ +){
4: for(j = 0; j < EntShape[2]; j + +){
5: for(k = 0; k < EntShape[3]; k + +){
6: flt[idx] = ent[0, i, j, k];
7: idx = idx + 1; };
8: }; }; };
9: end function
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4 Putting all together: the Hardware Neural Network Accelerator

4.1 FER SoC design

Running the inference of a CNN model in an FPGA requires a SoC with specific cores. In this section, the

base SoC and the cores presented before will be integrated. This integration will be known as the FER SoC.

In addition, its block diagram is shown in figure 2.15, along with its Vivado block design in figure 2.16.

Here, the specific cores reproduce the operations of convolution, maxpooling, dense or fullconnected, and Mul-

tiplyByQuantizedMultiplier following the TensorFlow Tflite guidelines. Furthermore, the cores are connected

through an AXI interconnect interface to the ARM processor. Hence, each core is controlled by reading and

writing their registers using their base addresses.

Figure 2.15: FER SoC.
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In figure 2.17 the base addresses employed for each core are shown. Besides, the Vivado project with the

FER SoC design can be found at https://gitlab.com/dorfell/fer_sys_dev/-/tree/master/01_

hw/fer_soc.

Figure 2.17: Memory map for the FER SoC.

Figure 2.18 shows the FER SoC placed and routed into the FPGA. The number of resources employed is

summarized in Table 2.5. Despite the fact that parallelism could be improved by adding cores’ instances, it

was observed that large cores make the routing unfeasible because there isn’t enough space in the FPGA used.

Resource Available Utilization Utilization %
LUT 53200 6373 11.98
LUTRAM 17400 71 0.41
FF 106400 12470 11.72
DSP 220 93 42.27
IO 125 18 14.40

Table 2.5: FER SoC Utilization.
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Figure 2.18: FER SoC place and route.

Furthermore, Figure 2.19 shows the Vivado estimation for the FER SoC power consumption. Here, the Pro-

cessing System (i.e., the ARM processor) had the higher consumption: 1.53 W , and the total estimated power

is less than 1.7 W .

Figure 2.19: FER SoC power consumption.
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4.2 FER SoC testing

Once the FER SoC has been implemented, the next step is to design the software routines needed to execute

the CNN model. This interaction between the hardware and software will be known as the accelerator.

Furthermore, the Zynq7 ARM processor will be the accelerator’s master. Thus, it will run the inference function

and keep track of the execution process. This architecture can take advantage of the hardware processor latency

and the FPGA throughput.

Algorithm 17 Function to execute the M6 inference.

1: function M6 inference(InShape, InTensor[x, y, z, w]){
2: / ∗ ∗ ∗ layer1 ∗ ∗ ∗ /
3: padding(InShape, InTensor, Pad1Shape, Pad1Tensor, zero point);
4: conv k5(Pad1Shape, Pad1Tensor, F il1Shape, F il1Tensor,
5: Par1Shape, Par1Matrix, Cnv1Shape, Cnv1Tensor);
6: maxp 22(Cnv1Shape, Cnv1Tensor, Mxp1Shape, Mxp1Tensor);
7: / ∗ ∗ ∗ layer2 ∗ ∗ ∗ /
8: padding(Mxp1Shape, Mxp1Tensor, Pad2Shape, Pad2Tensor, zero point);
9: conv k5(Pad2Shape, Pad2Tensor, F il2Shape, F il2Tensor,

10: Par2Shape, Par2Matrix, Cnv2Shape, Cnv2Tensor);
11: maxp 22(Cnv2Shape, Cnv2Tensor, Mxp2Shape, Mxp2Tensor);
12: / ∗ ∗ ∗ layer3 ∗ ∗ ∗ /
13: padding(Mxp2Shape, Mxp2Tensor, Pad3Shape, Pad3Tensor, zero point);
14: conv k5(Pad3Shape, Pad3Tensor, F il3Shape, F il3Tensor,
15: Par3Shape, Par3Matrix, Cnv3Shape, Cnv3Tensor);
16: maxp 22(Cnv3Shape, Cnv3Tensor, Mxp3Shape, Mxp3Tensor);
17: / ∗ ∗ ∗ layer4 ∗ ∗ ∗ /
18: flatten(Mxp3Shape, Mxp3Tensor, F ltShape, F ltV ector);
19: / ∗ ∗ ∗ layer5 ∗ ∗ ∗ /
20: dense(FltShape, F ltV ector, F il5Shape, F il5Matrix,
21: Par5Shape, Par5Matrix, Dns1Shape, Dns1V ector);
22: return 0; };
23: end function

In algorithm 17, the function M6 inference reproduces the architecture of model M6. Its complete defini-

tion can be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/01_hw/fer_soc/

firmware/app0/src/M6FER.c. The function employs the JAFFE LBP image and layer parameters, includ-

ing the quantization ones. These tensors are read from the SD card and stored in the SoC RAM. Then, layers

are computed by using the functions presented in the former section. These results will also be stored in the

SoC RAM, so they can be used by the following layers. The inference ends with a vector containing the integer

value assigned to each class. The greatest value will be the classification result.

Figure 2.20 presents how the accelerator proposed can be used to execute the model M6 inference. Although

the accelerator is aimed at model M6, it is suitable for CNN models with similar characteristics. Also, the SoC

firmware is compiled through a Vitis project located at https://gitlab.com/dorfell/fer_sys_dev/

-/tree/master/01_hw/fer_soc/firmware.
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Figure 2.20: Running the inference of a CNN-based FER system in the accelerator.

Lastly, the accelerator results were compared to the values obtained by a laptop running the M6’s inference

with Numpy (see table 2.6). The AMD Ryzen7 4800H processor (16 threads up to 4.2 GHz), 16 GB of RAM,

and a GPU Nvidia GeForce GTX 1660 Ti are among the laptop’s specifications. The OS installed is Ubuntu

20.04.2 LTS, kernel version 5.13.0-37-generic, with TensorFlow 2.6.0. Its execution time was 82s. On the other

hand, the FER SoC employs a XC7Z020-1CLG400C FPGA. Although this Zynq7 chip includes an 2 cores

ARM processor running at 660 MHz, only one core is used. In addition, the Zybo-Z7 board provides a 1 GB

DDR3 RAM. M6’s inference took 99 s on the accelerator.

Besides, values from the two platforms were the same because of the integer representation used. Moreover,

a demonstration of the M6’s inference running in the accelerator and the laptop can be found at https:

//www.youtube.com/watch?v=WQdaqADqCEE. Also, a screenshot of this test has been added to Figure

C.4.

Furthermore, it is worth mentioning that although the FER SoC is 17 s slower than the laptop, the FER SoC

needs fewer resources and power. Besides, the FER SoC run on a cheaper hardware platform.
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Platform
Name

Hardware specs Software Execution
time

Legion 5

Processor: AMD
Ryzen 7 4800H

RAM: 16 GB
GPU: Nvidia GeForce
GTX 1660 Ti.

OS: Ubuntu 20.04.2 LTS
kernel: 5.13.0-37-generic
library: Numpy.

82 s

Zybo-Z7

FPGA: Xilinx
Zynq XC7Z020.

Processor: ARM A9
core at 660 MHz

RAM: 1 GB DDR3.

Baremetal
Firmware: M6FER.c
Vitis project

99 s

Table 2.6: M6 inference perfomance comparison.

5 Discussion

The inference of neural networks requires a large amount of memory and compute capability. Usually, large

GPUs are employed, but they are costly and have high power consumption. Therefore, they could be unfeasible

for some portable systems. On the other hand, specific SoCs implemented in FPGAs could consume less power

and support pipelining. For instance, the FER SoC proposed is capable of computing up to 64 operations at

the same time with less than 1.7 W .

Furthermore, parallelism could be improved by employing several cores’ instances, or by using all the cores

available in the ARM processor. Despite this, as mentioned in subsection 4 implementing the design in the

FPGA needs space to place and route the paths. Thus, it’s important to distribute the computational load

between the processing system and the programmable logic.

6 Conclusion

This chapter proposes a hardware-software architecture (i.e., the accelerator) capable of executing the inference

of a CNN model. This architecture employs the tflite quantization scheme. Achieving acceptable accuracy

with integer parameters instead of decimal values.

Besides, IP cores suitable for computing pertinent operations for the M6’s inference were designed. These

cores make use of optimized hardware resources such as DPS48 and BRAMs, and they are integrated into the

FER SoC. The last could be improved by adding more IP core instances or increasing the number of elements

per operation. However, this customization will be limited by the FPGA’s resources and the space available

for the place and route process.

Furthermore, the accelerator’s results and performance were compared to a laptop equipped with an AMD

Ryzen7, Nvidia GPU and up to 16 GB RAM running Numpy in Ubuntu 20.04.

Although the accelerator was the slowest, the resources it used and its cost were the lowest. Therefore,

the accelerator could be a feasible and attractive alternative when the trade-off between the execution time,

resources and costs would be flexible.
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Chapter 3

Resiliency: A Framework for Training a CNN with

a custom Hardware-Software (HW-SW)

Architecture.

Although embedded systems are widely employed in several applications, their use in Machine Learning (ML)

scenarios is commonly bounded to the inference stage. Besides, the training phase is avoided due to its

implicit complexity and the number of logic resources required. However, training ML algorithms locally could

be relevant in scenarios where new data samples must be considered at run-time or where previously trained

models will be retrained, as in the Transfer Learning technique [22].

On the other hand, works found in the literature aimed at accelerating CNNs on hardware do not provide

enough information to reproduce their results. The aforementioned evidences a gap in frameworks for training

CNNs in custom hardware-software architectures. This work aims to reduce this gap with Resiliency: a

framework that provides the design resources needed to train CNNs on embedded systems.

The chapter has the following structure: In section 1 a brief review of some custom hw-sw architectures that are

commercially available are presented. Those devices cover virtual assistants and accelerators, among others.

Then, section 2 presents the process of designing a hw-sw architecture for running a custom Pynq image. This

image will provide the Python environment needed for the ML frameworks. Here, the popular frameworks

TensorFlow and PyTorch are tested on the Zybo-Z7 board running the custom Pynq 2.7 image. These tests

include simple CNN models trained with the MNIST and CIFAR10 data sets and the M6 model proposed for

FER applications and trained with JAFFE. Performance metrics like accuracy, loss, and execution time are

reported in section 3. Furthermore, section 4 describes the hw-sw architectures involved in Resiliency and how

they can be used for inference and training. The framework also points out aspects that could improve the

overall performance.

Moreover, the reader will find links to the source files, development projects, and test examples, which would

make this work reproducible. Lastly, the discussion and conclusions can be found in sections 5 and 6.
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1 Custom hardware-software architectures aimed to ML algorithms

The training of CNNs usually involves loading into memory mini batches of data, layer parameters (e.g.,

weights, biases, etc.), and partial results. Besides, operations for computing the optimization stage and layers’

outputs frequently demand complex hardware.

On the other hand, several ML applications, like virtual assistants and smart appliances, employ embedded

systems that connect to online servers (e.g., Amazon Alexa [39], Google Assistant [40]). In addition, AI desktop

pets like Vector [41], [42] and EMO [43] use these servers with traditional hardware or aim to include specific IP

cores capable of executing the inference’s algorithms locally. The cost of these platforms is around USD $350

for Vector and USD $279 for EMO, and some examples are shown in figure 3.1.

(a) Vector Robot is based on a Qualcomm 200 Processor. Taken from [41].

(b) EMO Robot uses a CPU with a NN processor. Taken from [43].

Figure 3.1: Examples of AI desktop pets: Vector by DDL and EMO by Living AI.

Moreover, specific hardware devices targeting Neural Networks’ inference acceleration through handling tensor

operations have been released. For instance, Figure 3.2 shows the Google Coral devices [44] costing up to

USD $130, and the Intel Neural Compute Stick 2 (NCS2) [45] costing around USD $150. Despite their

capabilities, they are constrained by data transfer bandwidth (e.g., USB 3.0), ML frameworks support, and

the dependency on most of them of at least a laptop controlling the execution flow.

Furthermore, applications will eventually require model parameters that take data acquired at run time;

thus, techniques that use pre-trained models (e.g., MobileNetV2) to retrain custom layers are appealing [22].

Nevertheless, from an embedded systems perspective, it is needed to have an affordable hardware-software
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(a) Coral devices by Google. Taken from [44]. (b) Intel NCS2. Taken from [45]

Figure 3.2: Hardware devices for acceleration.

architecture capable of executing the training algorithm.

To target this issue, development environments such as Vitis AI [46] had been proposed. This environment is

presented in figure 3.3a. The lowest level uses an overlay with a Deep Learning Processing Unit (DPU). The

following level provides the Xilinx Runtime Library (XRT) and the AI compiler, Quantizer, and Optimizer.

These levels provide support for ML frameworks like Caffe, PyTorch, and TensorFlow. However, the Xilinx

hardware platforms supported are high-performance edge devices like the Alveo cards [47] shown in Figure 3.3b.

Unfavorably, these devices are usually expensive and use large amounts of power (e.g., 75 W ). In addition,

some Xilinx IP cores require a paid license to generate the configuration files (e.g., bitstreams, firmware, etc.).

(a) Vitis AI environment. Taken from [46]. (b) Alveo U200. Taken from [47].

Figure 3.3: Vitis AI and hardware platforms by Xilinx.
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Lastly, an open-source project known as PYNQ [12] aims to run Python on Zynq, Zynq Ultrascale+, Zynq

RFSoC and Alveo devices. Nonetheless, there weren’t any image files available for the Zybo-Z7 development

board before this work. The Pynq environment is shown in figure 3.4. The lowest level uses Vitis, Pynq and

user IPs, and provides hardware specification by means of Xilinx Support Archives (*.xsa) or configuration files

such as bitstreams. Knowing the target hardware, the Board Support Package (BSP) could then be built. The

BSP provides drivers and libraries like the Generic FAT system and the Platform Management API for Zynq

[48]. Following this, the BSP could be used as input to the XRT which will support the Linux kernel. The

Linux distribution employed is Xilinx’s Petalinux. The consecutive layer supplies the PYNQ libraries needed

to run Python along with the user overlays. Overlays are implemented through partial reconfiguration of the

Programmable Logic (PL). The environment ends with the user application; Jupyter Notebooks running over

an IPython kernel.

Figure 3.4: Pynq development environment. Taken from [12].

It’s worth mentioning that one attempt to improve the capabilities of Pynq is Xilinx’s Project ”DPU on Pynq”

[49]. The project releases an overlay with DPU suitable for Pynq. The release includes example notebooks for

training and inference, but it is bound to the expensive Zynq Ultrascale+ FPGAs. Currently, the project only

supports three boards: Avnet’s Ultra96, Xilinx’s ZCU104 and Kria KV260.

Also, the design process of a custom hardware-software (hw-sw) architecture capable of running Pynq on a

Zybo-Z7 will be described. The architecture could make Pynq suitable for other lightweight embedded systems.

In addition, the Pynq image creation process and guidelines for using ML frameworks will be provided.

2 Creating a Pynq image for Zybo-Z7

In this section, the process of creating a Pynq’s image for the Zybo-Z7 board is described. The hardware

development includes a minimal processing system configuration through a Tool Command Language (*.tcl)

script. In addition, the base overlay will also be defined in a *.tcl file. This overlay will contain the peripherals

implemented in the PL and will be connected through the AXI-lite interface to the PS. On the other hand,

the software’s development will employ a pre-built root fs image to compile custom Pynq 2.7 for the Zybo-Z7.
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As the process could help grow the Open-source Pynq project, it has been shared on the official Pynq web site

[50]. Following this, the stages will be described in some detail.

2.1 Create the Board Directory

The process starts by cloning the Pynq repository from https://github.com/Xilinx/PYNQ. Then, it

is needed to create a directory for the Zybo-Z7 board with the structure proposed in [51]. The directory

will include all the files needed to build the Pynq image. The created directory can be found at https:

//gitlab.com/dorfell/fer_sys_dev/-/tree/master/01_hw/Pynq_Zybo-Z7/Zybo-Z7 and should

be located inside the boards folder of the Pynq local repository.

† Zybo-Z7/

• base/

notebooks/GPIOs test.ipynb, etc.

vivado/contraints/base.xdc

build bitstream.tcl, build ip.tcl

base.py, base.tcl, makefile, etc.

• notebooks/getting started/*.ipynb

• packages/boot leds/boot.py

pre.sh

• petalinux bsp/ 

hardware project


build bitstream.tcl

makefile

zyboz7.tcl

meta-user/recipes-bsp/

device-tree/files/system-user.dtsi

u-boot/

• Zybo-Z7.spec

• xilinx-zyboz7-2020.2.bsp

The base folder contains the overlay files, such as the hardware design (base.tcl), the hardware constraints

(base.xdc), the example GPIOs Jupyter notebook (*.ipynb) and the build scripts. Running its makefile will

generate the base.bit bitstream. The packages/boot leds directory has a minimal routine to configure the PL

with the base overlay and turn on the leds at boot. The board support package (BSP) with the minimal

architecture capable of running Petalinux is defined in the petalinux bsp directory. Note that the bsp also

includes the Linux device tree and some u-boot parameters. Running its makefile will create the bsp xilinx-

zyboz7-2020.2.bsp, which should be located as indicated above. At last, the Zybo-Z7.spec will point out the

architecture, the bsp, the base overlay, and the packages that will be included in the custom Pynq image.
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Listing 3.1: Zybo-Z7.spec

1 ARCH_Zybo-Z7 := arm

2 BSP_Zybo-Z7 :=

3 #BSP_Zybo-Z7 := xilinx-zyboz7-2020.2.bsp

4 BITSTREAM_Zybo-Z7 := base/base.bit

5 FPGA_MANAGER_Zybo-Z7 := 1

6

7 STAGE4_PACKAGES_Zybo-Z7 := xrt pynq boot_leds ethernet pynq_peripherals

2.2 Create the Board Support Package (BSP) (30 min approx.)

The BSP’s design will use as a reference the Pynq-Z2 example from the Pynq boards folder. Although the

Pynq-Z2 and the Zybo-Z7 have the same FPGA (i.e., xc7Z020-clg400), they present some differences. So, the

specifications in [8] should be considered for the Zybo-Z7.

• DDR part number: MT41K256M16 RE-125.

• The PS UART1 is routed to the FTDI instead of the UART0 for the Pynq-Z2.

• The crystal oscillator has a frequency of 33.3333 MHz.

Hence, the zyboz7.tcl file was modified to consider the aforementioned. The BSP is shown in figure 3.5 along

with its Vivado block design in figure 3.6. The design includes the Zynq Processing System to handle the ARM

processor, a DDR ram interface, an interruption vector (IRQ) and some Processor System Resets to handle

the overlays’ peripherals.

Figure 3.5: Board Support Package adapted for the Zybo-Z7 board.
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Figure 3.6: Vivado Block design for the BSP targetted to the Zybo-Z7 board.
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Listing 3.2 depicts the steps needed to create the bsp.

Listing 3.2: Zybo-Z7.spec.

1 $ source /tools/Xilinx/Vitis/2020.2/settings.sh

2 $ source ˜/petalinux/2020.2/settings.sh

3 $ petalinux-util --webtalk off

4 Make sure that ˜/PYNQ/boards/Zybo-Z7/Zybo-Z7.spec has the line BSP_Zybo-Z7 :=

5 $ cd ˜/PYNQ/sdbuild

6 $ make bsp BOARDDIR=/home/user/PYNQ/boards BOARDS="Zybo-Z7"

7 copy the bsp file from ˜/PYNQ/sdbuild/output/bsp/Zybo-Z7/xilinx-zyboz7-2020.2.

bsp to ˜/PYNQ/boards/Zybo-Z7/. Thus, along the Zybo-Z7.spec.

8 Add the bsp to the Zybo-Z7.spec: BSP_Zybo := xilinx-zyboz7-2020.2.bsp.

2.3 Create the image (2h30 min approx.)

To make the port process simple, the Logictools overlay was removed, and the base overlay was reduced by

deleting the Arduino and Raspberry Pi peripherals. Also, the Makefile in the sdbuild/ folder was also updated

to avoid compiling for all the boards (i.e., Pynq-Z1, Pynq-Z2, ZCU-104, sw repo). The changes were made after

line 65, where the Pynq repository is automatically cloned. In addition, it is important to check variations

in the ˜/PYNQ/build.sh file. As a reference, the file Makefile sdbuild shared in https://gitlab.com/

dorfell/fer_sys_dev/-/tree/master/01_hw/Pynq_Zybo-Z7/Zybo-Z7) includes the changes made.

Moreover, the block diagram for the base overlay is shown in figure 3.7 as well as its Vivado Block design

in figure 3.8. The overlay shares the hardware system used for the bsp but adds some IP cores aimed at

the PL. These cores include peripherals such as the AXI GPIOs for switches, LEDs, and buttons, along

with peripherals like audio codec and HDMI video. Furthermore, the constraints file base.xdc was updated

employing the Zybo-Z7 master xdc.
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Figure 3.7: Block diagram of base overlay defined in base.tcl.

The steps used to create the custom images are described in listing 3.3.

Listing 3.3: Image building.

1 Download the PYNQ rootfs arm v2.7 from \url{http://www.pynq.io/board.html}.

2 The downloaded file is named focal.arm.2.7.0_2021_11_17.tar.gz and will be

placed in ˜/PYNQ/sdbuild/.

3 $ cd ˜/PYNQ/sdbuild

4 $ make BOARDDIR=/home/user/PYNQ/boards BOARDS="Zybo-Z7" PREBUILT=focal.arm.2.7.0

_2021_11_17.tar.gz nocheck_images

5 Wait patiently ...

When these steps are finished, an image file named Zybo-Z7-2.7.0.img will be stored in ˜/PYNQ/sdbuild/output

directory. The image size will be around 7.6 GB.
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Figure 3.8: Vivado Block design of base overlay defined in base.tcl.
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2.4 Copy image to micro SD card (20 min approx.)

The final step is to copy the custom Pynq 2.7 image to a micro SD card. In listing 3.4, the commands employed

are presented.

Listing 3.4: Copying image to SD card.

1 $ cd ˜/PYNQ/sdbuild/output

2 $ df -h

3 Select the device corresponding to your SD card. Be careful, you could damage

your OS if choose wrong.

4 $ umount /dev/sXX1 (for instance, mine was in /dev/sdb1).

5 $ sudo dd bs=4M if=Zybo-Z7-2.7.0.img of=/dev/sXX status=progress

Then, insert the SD card into the Zybo-Z7 board and connect it to your local network via Ethernet before

powering it on. In the Pynq serial terminal, type ifconfig to find out what your local IP address is. Then

search for eth0/inet: 192.168.*.*. In your internet browser, write the local IP with the port number 9090, for

example: 192.168.0.25:9090. If everything is okay, Pynq will be running and you should be asked to login.

Use xilinx as the password. For instance, the Figure 3.9 shows Pynq 2.7 running on Zybo-Z7.

Figure 3.9: Pynq 2.7 running on Zybo-Z7.

Next, to test the base overlay, you could go to base/GPIOs test.ipynb and run the notebook. The custom

Pynq 2.7 image created for the Zybo-Z7 can be downloaded from https://drive.google.com/file/
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d/1kCT_UZjIuDym3yhI739xY1OY1Q4byCHx/. Lastly, a video demonstrating the Pynq 2.7 image run-

ning on the board and the base overlay working can be found at https://www.youtube.com/watch?v=

a1FPf9TzUzs. Next, to test the base overlay you could go to the base/GPIOs test.ipynb and run the notebook.

The custom Pynq 2.7 image created for the Zybo-Z7 can be downloaded from https://drive.google.com/

file/d/1kCT_UZjIuDym3yhI739xY1OY1Q4byCHx/. Lastly, a video demonstrating the Pynq 2.7 image run-

ning on the board and the base overlay working can be found at https://www.youtube.com/watch?v=

a1FPf9TzUzs.

3 Testing ML Frameworks on the hw-sw architectures proposed

In this section, the process of testing some popular ML frameworks in the hardware-software architecture

proposed before is described. The hw-sw architecture will use the Pynq 2.7 image presented in the previous

section. Because the work aims to extend the capabilities of training ML algorithms for embedded systems, it

has also been shared in the Pynq community. The frameworks tested were Tensorflow and PyTorch and can

be found at:

https://discuss.pynq.io/t/testing-tensorflow-2-5-in-zybo-z7-running-pynq-2-7/4157

https://discuss.pynq.io/t/testing-pytorch-1-8-in-zybo-z7-running-pynq-2-7/4181.

3.1 Tensorflow 2.5 in Zybo-Z7 running Pynq 2.7

3.1.1 Installing Python3.7 (50 min approx.)

The Pynq 2.7 release comes with Python3.8, but the latest TensorFlow wheel available for the armv7l archi-

tecture is compiled for Python3.7. For this reason, the former Python version must be installed in Pynq. This

can be accomplished by following the commands presented in listing 3.5, which were taken from [52].

Listing 3.5: Installing Python3.7 on Pynq 2.7.

1 $ cd /home/xilinx/

2 $ wget http://www.python.org/ftp/python/3.7.0/Python-3.7.0.tar.xz

3 $ tar -xf Python-3.7.0.tar.xz

4 $ cd Python-3.7.0/

5 $ ./configure

6 $ make install

3.1.2 Create a virtual environment for Python3.7 (5 min approx.)

To avoid unresolved dependencies between packages and be able to create an IPython kernel in the future, it

is necessary to create a virtual environment. This process is summarized in listing 3.6.
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Listing 3.6: Creating a virtual environment for Python3.7.

1 $ cd /home/xilinx/

2 $ python3.7 -m pip install virtualenv

3 $ python3.7 -m virtualenv env

4 $ source /env/bin/activate

3.1.3 Install TensorFlow in the virtual environment (> 5h approx.)

Warning: This stage could take a lot of time; for that reason, the estimated time for each command is

given. The precompiled TensorFlow 2.5 wheel for the armv7l architecture can be found in [53]. There are

two ways to get the wheel: use the Katsuya Hyodo scripts, as shown in listing 3.7, or download it from

https://drive.google.com/uc?id=1iqylkLsgwHxB_nyZ1H4UmCY3Gy47qlOS and then paste it into

/home/xilinx/ from the SD card’s ROOT partion.

Listing 3.7: Hyodo scripts for downloading TF wheel.

1 $ wget https://raw.githubusercontent.com/PINTO0309/Tensorflow-bin/main/

previous_versions/download_tensorflow-2.5.0-cp37-none-linux_armv7l_numpy1195

.sh 2

2 $ chmod +x download_tensorflow-2.5.0-cp37-none-linux_armv7l_numpy1195.sh

3 $ ./download_tensorflow-2.5.0-cp37-none-linux_armv7l_numpy1195.sh

Then, install some of the libraries needed by Tensorflow 2.5 inside the Python3.7 environment. For instance,

the H5PY and matplotlib are installed using pip3.7. Other library dependencies would be resolved by pip

while TensorFlow is installed (e.g., Numpy, etc.). Listing 3.8 describes the commands employed.

Listing 3.8: Installing TensorFlow 2.5 wheel.

1 (env) $ apt update # 2 min approx.

2 (env) $ apt install libhdf5-dev # 2 min approx.

3 (env) $ pip3.7 install --no-binary=h5py h5py # 2 h approx.

4 (env) $ pip3.7 install tensorflow-2.5.0-cp37-none-linuxarmv7l.whl # 2h approx.

5 (env) $ exec $SHELL

6 $ cd /home/xilinx/

7 $ source env/bin/activate

8 (env) $ python3.7 -m pip install matplotlib # 30 min approx.

9 (env) $ python3.7

10 >>> import tensorflow
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11 >>> tensorflow.version

12 The last command should return ’2.5.0’.

3.1.4 Create the IPython Kernel (1h approx.)

To run TensorFlow in a Jupyter notebook, an IPython kernel must be created. This process is shown in the

listing 3.9.

Listing 3.9: IPython kernel with TensorFlow 2.5.

1 (env) $ python3.7 -m pip install ipykernel # 1h approx.

2 (env) $ python3.7 -m ipykernel install --user --name=tfenv

3 After this step the kernel for tensorflow has been created.

3.1.5 Testing Tensorflow 2.5 running on Zybo-Z7 with Pynq 2.7

The notebook employed to test Tensorflow on the Zybo-Z7 can be found at https://gitlab.com/dorfell/

fer_sys_dev/-/tree/master/01_hw/Pynq_Zybo-Z7. It includes the small CNN model shown in figure

3.10. Furthermore, the Mnist data set and the Adam optimizer are used to train the model on the hw-sw

architecture.

Figure 3.10: Tensorflow running on Zybo-Z7 with Pynq.
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However, when the execution calls model.fit in the last cell, the kernel returns the error shown in figure 3.11.

After some debugging, the error led to a missing case for the armv7l in the file cpu utils.cc of the TensorFlow

source code. Something similar to the one seen for the aarch64 in https://github.com/tensorflow/

tensorflow/pull/46643/files/239839b09e02b5766d61041f31027de4eb882c45. However, the TF

*.cc files are not available since the wheel is a pre-compiled package. After a quick search using ls and grep,

the only available files are *.so libraries and *.h header files.

Possible workarounds are: First, cross-compiling Tensorflow from source code, considering both the Python3.8

available in the Pynq 2.7 release and the armv7l architecture. Possible workarounds are: First, cross-compiling

Tensorflow from source code considering both, the Python3.8 available in the Pynq 2.7 release and the armv7l

architecture. And second, using FPGAs with ARM 64-bit processors like the Zynq Ultrascale+ family. The

last one because there are wheels available for this architecture that have been successfully tested in other

platforms (e.g. Raspberry PI 4).

Figure 3.11: TensorFlow model.fit error.

The debugging process has been registered in https://www.youtube.com/watch?v=3m7kavySEYE.

Lastly, the following should be taken into account before employing this approach:

• The installation time could take more than 5 hours, and during this process, the board must be kept

powered and cooled.

• The training process will fail in the model.fit step. However, as far as I know, other TensorFlow methods

could be executed without concern.

• The inference process could be aimed through loading pre-trained parameters.
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• Other frameworks, such as PyTorch 1.8, could be used to train in the same hw-sw architecture. This

will be presented in the following section.

3.2 PyTorch 1.8 in Zybo-Z7 running Pynq 2.7

3.2.1 Installing Python3.7 (50 min approx.)

The Pynq 2.7 release comes with Python3.8, but the latest PyTorch wheels found for the armv7l architecture

are compiled for Python3.7. For this reason, the former Python version must be installed in Pynq. To install

the required version, follow the commands shown in listing 3.10.

Listing 3.10: Installing Python3.7 on Pynq 2.7.

1 $ cd /home/xilinx/

2 $ wget http://www.python.org/ftp/python/3.7.0/Python-3.7.0.tar.xz

3 $ tar -xf Python-3.7.0.tar.xz

4 $ cd Python-3.7.0/

5 $ ./configure

6 $ make install

3.2.2 Create a virtual environment for Python3.7 (5 min approx.)

To avoid unresolved dependencies between packages and be able to create an IPython kernel in the future, it

is necessary to create a virtual environment. This can be accomplished with the commands in listing 3.11.

Listing 3.11: Creating IPython kernel for PyTorch 1.8 on Pynq 2.7.

1 $ cd /home/xilinx/

2 $ python3.7 -m pip install virtualenv

3 $ python3.7 -m virtualenv pytorch_env

4 $ source pytorch_env/bin/activate

3.2.3 Install PyTorch in the virtual environment (> 2h approx.)

PyTorch requires two wheels to be installed: Torch Vision 0.9 and Torch 1.8. These wheels were precompiled

by Chia-Wei Wang and can be downloaded from

https://github.com/CW-B-W/PyTorch-and-Vision-for-Raspberry-Pi-4B. The installation pro-

cess is described in listing 3.12.
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Listing 3.12: Installing PyTorch 1.8

1 $ git clone https://github.com/CW-B-W/PyTorch-and-Vision-for-Raspberry-Pi-4B

2 $ cd PyTorch-and-Vision-for-Raspberry-Pi-4B/

3 $ pip3.7 install torch-1.8.0a0+56b43f4-cp37-cp37m-linux_armv7l.whl

4 $ pip3.7 install torchvision-0.9.0a0+8fb5838-cp37-cp37m-linux_armv7l.whl

5 $ python3.7 -m pip install matplotlib

6 $ apt install libopenblas-dev

7 $ exec $SHELL

8 $ cd /home/xilinx

9 $ source pytorch_env/bin/activate

10 $ python3.7

11 >>> import torch

12 >>> print(torch.__version__)

13 The last command should return ’1.8.0a0+56b43f4’.

3.2.4 Create the IPython Kernel (1h approx.)

To be able to use PyTorch in the Jupyter notebooks, an IPython kernel should be created. Listing 3.13 presents

the commands needed.

Listing 3.13: Creating the IPython kernel for PyTorch 1.8

1 (pytorch_env) $ python3.7 -m pip install ipykernel # 1h approx.

2 (pytorch_env) $ python3.7 -m ipykernel install --user --name=pytorch_kernel

3 After this step the kernel for PyTorch has been created.

3.2.5 Testing PyTorch 1.8 running on Zybo-Z7 with Pynq 2.7

The notebook used to test PyTorch is “A simple PyTorch Training Loop” from the Introduction to PyTorch

found at https://www.youtube.com/watch?v=IC0_FRiX-sw. The test includes a CNN model with two

convolutional layers trained with CIFAR10 and the SGD optimizer. The training process takes about one

hour; about five minutes per batch of 2000 images. The SoC memory is around 495 MB, of which up to 85 %

was used. Table 3.1 shows the loss values obtained for a laptop and the custom hardware-software architecture

proposed along with the error percentage. It is seen that loss values are similar for the two platforms. The

accuracy obtained on both platforms is around 54%, however, as the loss tendency shows, accuracy could be

improved by increasing the number of epochs. Unfortunately, this will also increase the training time at a rate

of approximately 30 minutes per epoch.
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Epoch Samples hw-sw
arch.

Laptop % Error

1 2000 2.189 2.235 2.058
1 4000 1.836 1.940 5.360
1 6000 1.673 1.713 2.335
1 8000 1.587 1.573 0.889
1 10000 1.540 1.507 2.189
1 12000 1.450 1.442 0.554
2 2000 1.401 1.378 1.669
2 4000 1.367 1.364 0.219
2 6000 1.348 1.349 0.074
2 8000 1.324 1.319 0.379
2 10000 1.278 1.284 0.480
2 12000 1.261 1.267 0.473

Table 3.1: Loss values for laptop and the hw-sw architecture proposed.

In figure 3.12 the CNN model trained with PyTorch in the Zybo-Z7 is shown. In addition, a copy of the

wheels and notebooks employed can be found at https://gitlab.com/dorfell/fer_sys_dev/-/tree/

master/01_hw/Pynq_Zybo-Z7.

Figure 3.12: PyTorch 1.8 running on Zybo-Z7 with Pynq.
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3.3 Testing model M6 in Zybo-Z7 running Pynq 2.7

The hw-sw architecture was also used to train the model M6. As TensorFlow presented some troubles (see

subsection 3.1), the model was mapped to PyTorch. In addition, as each ML framework implements a custom

version of layers and optimizers, it is expected to achieve different accuracy values. The notebook created can

be found at https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/01_hw/Pynq_Zybo-Z7/

FER_M6_pytorch/M6_jaffe_6emo_pytorch.ipynb, and in appendix B.1. The algorithm 18 presents the

PyTorch class needed to define the model. Here, methods are used to describe its behavior for backward and

forward propagation.

Algorithm 18 Model M6 class for PyTorch.

1: class M6FER Net(nn.Module) :
2: def init (self) :
3: super(M6FER Net, self). init ();
4: self.conv1 = nn.Conv2d( 1, 32, 5);
5: self.conv2 = nn.Conv2d(32, 64, 5);
6: self.conv3 = nn.Conv2d(64, 128, 5);
7: self.mpool = nn.MaxPool2d(2, 2);
8: self.fc1 = nn.Linear(128 ∗ 4 ∗ 4, 6);
9: ∗ ∗∗

10: def forward(self, x) :
11: x = self.mpool(F.relu(self.conv1(x)));
12: x = self.mpool(F.relu(self.conv2(x)));
13: x = self.mpool(F.relu(self.conv3(x)));
14: x = x.view(−1, 128 ∗ 4 ∗ 4);
15: x = self.fc1(x);
16: return x;
17: end class

Besides, Figure 3.13 depicts the setting employed, which was tested on the Zybo-Z7 board with Pynq 2.7 and

PyTorch 1.8 installed. The testing process can be found at https://gitlab.com/dorfell/fer_sys_dev/

-/blob/master/01_hw/Pynq_Zybo-Z7/FER_M6_pytorch/FER_M6_pytorch_Zyboz7_20220722.mp4.

While the board has 1 GB of RAM, the Pynq image mapped 495 MB of it, from which up to 80 % was used.

Moreover, although the test was designed for the M6 model, the architecture could work with other similar

CNN models.

Furthermore, table 3.2 presents the time spent training the M6 model in the Zybo-Z7 and on a laptop. On

the Zybo-Z7, the training process took 1h50; which is about 10 minutes per batch of 500 images, yielding a

44 % accuracy. Therefore, the hw-sw architecture proposed was slower than the laptop, which spent 50 s and

got 50 % of accuracy. However, this gap could be reduced with more capable FPGAs. For instance, the Zynq

Ultrascale+ family provides faster 64-bit MPSoC suitable for custom IP cores targeting CNN’s training (e.g.,

DPU).
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Figure 3.13: Hw-sw architecture for training the model M6 with PyTorch 1.8 in Pynq 2.7.

Platform
Name

Hardware specs Software Accuracy Execution
time

Legion 5

Processor: AMD
Ryzen 7 4800H

RAM: 16 GB
GPU: Nvidia GeForce
GTX 1660 Ti.

OS: Ubuntu 20.04.2 LTS
kernel: 5.13.0-37-generic
library: PyTorch 1.8.
application: M6***.ipynb

50 % 60 s

Zybo-Z7

FPGA: Xilinx
Zynq XC7Z020.

Processor: ARM A9
core at 660 MHz

RAM: 1 GB DDR3.

OS: Pynq 2.7
kernel: Petalinux
library: PyTorch 1.8
application: M6***.ipynb

44 % 1h50

Table 3.2: M6 training perfomance comparison.
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4 Resiliency: A Framework for Training a CNN with a custom

Hardware-Software Architecture.

Employing custom hw-sw architectures for training and running the inference of CNNs may broaden the scope

of the ML applications. However, it is an overwhelming process that requires deep knowledge of FPGA’s

design. Despite this, several works that aim to accelerate CNNs on FPGAs can be found at the literature. For

instance, in [54] authors proposed the Argus framework for utilizing Convolutional Layer Processors (CLP)

in large and expensive Virtex-7 (i.e., 485T and 690T) FPGAs. Argus takes the CNN model description and

provides the RTL description of the architecture. Another example is the ReCon framework presented in

[55]. Hence, the authors aim to accelerate a Hybrid Semantic Segmentation application. ReCon employs

Zynq UltraScale+ MPSoC FPGAs with the partial reconfiguration technique. In addition, [56] introduces

TF2FPGA, a framework that aims to map TensorFlow CNN models to Zynq FPGAs. Unfortunately, the

work lacks detail about the hw-sw architecture proposed. Besides, [16] presents a Task assignment framework

for acceleration of CNNs on Zynq FPGAs using Deep Processing Units (DPUs). The framework targeted the

Ultrascale+ ZCU104 and studied the effects of thread scheduling on the execution time. Lastly, the OMNI

framework described in [15] integrates hardware and software optimizations for sparse CNNs tested on the

ZCU102 and ZCU706 development boards. In OMNI the authors analyzed the computation dataflow and the

best suitable Processing Elements (PE) design.

Nonetheless, these works do not provide access to relevant files or repositories for reproducing their results.

Furthermore, efforts towards training CNNs on FPGAs with hw-sw architectures were not found in literature.

As a consequence, one of the goals of this section is to fill these gaps. The section presents a framework for

CNN’s execution in custom hardware-software architectures called Resiliency. It has been used to train and

run the inference of the single-channel M6 model, a CNN-based FER system presented in Chapter 1. Moreover,

algorithm 19 describes the framework design flow, and Figure 3.14 gives an overview.

To begin with, the user must provide the CNN model, the preprocessed data set, and an APSoC development

board. To run the inference, the CNN model needs to be trained with TensorFlow and quantized with tflite.

The parameters obtained for each layer must be copied to the board’s microSD card. The FER SoC is described

by the *.xsa file found in https://gitlab.com/dorfell/fer_sys_dev/-/blob/master/01_hw/fer_

soc/fer_soc_bd_wrapper.xsa. Also, if needed, the user could change the design by using the Vivado

project provided at https://gitlab.com/dorfell/fer_sys_dev/-/tree/master/01_hw/fer_soc.

Besides, the Vitis project provides the functions and drivers required to handle the custom IP cores in

the FER SoC. The Vitis project is located at https://gitlab.com/dorfell/fer_sys_dev/-/tree/

master/01_hw/fer_soc/firmware.

The model architecture should be mapped to an application *.c file (e.g. M6FER.c in https://gitlab.com/

dorfell/fer_sys_dev/-/blob/master/01_hw/fer_soc/firmware/app0/src/M6FER.c. The layers

supported include the tflite version of convolution, maxpooling and fully connected, but the user could add

its own IP cores to the SoC. The core files are also available at https://gitlab.com/dorfell/fer_sys_

dev/-/tree/master/01_hw/ip_repo, along with some simulation template files in the folders conv 1.0/src

and tflite mbqm 1.0/src. Before proceeding, check paths to the data and layer parameters, as well as sizes.
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Once the Vitis project compiles, the board can be configured. The user can then control the execution flow

using a serial terminal from another computer, or the inference can be run automatically by adjusting the

main application loop. Before proceeding, check paths to the data and layer parameters as well as sizes. Once

the Vitis project compiles the board can be configured. Next, the user can control the execution flow by using

a serial terminal from another computer or run the inference automatically adjusting the application main loop.

For training a CNN model, the following is needed: the Pynq 2.7 image copied to the microSD card and the

model in a Jupyter notebook. The Pynq image can be downloaded from https://drive.google.com/

file/d/1kCT_UZjIuDym3yhI739xY1OY1Q4byCHx/. However, although TensorFlow and PyTorch could be

installed, TensorFlow has a bug in the model.fit step. For that reason, PyTorch should be used instead. One

workaround to use TensorFlow is to change to a 64-bit MPSoC [57], because that wheel has been successfully

tested on the Raspberry PI 4 and they both use similar ARM CPUs. Next, turn on the board and login to the

Jupyter server at 192.168.0.X:9090. Make sure you’ve installed the ML framework following the instructions

given in section 3. Then, run the training, taking into account that this step could take several hours because

of the embedded system specs: a 32-bit CPU at 600 MHz, RAM 495 MB, etc. At last, to assess performance,

the following metrics can be utilized: execution time, accuracy, and loss.

Algorithm 19 Framework for FER systems in a custom HW-SW architecture.

1: Require:
2: Single channel CNN.
3: Pre− processed data set.
4: APSoC development board.
5: if (inference) then
6: Ensure:
7: CNN model trained and quantized.
8: Model parameters in SDCard.
9: V ivado project :

10: Hardware files (∗.xsa, ∗ .bitstream).
11: V itis project :
12: ∗ .c application to define model.
13: Execute:
14: Compile project.
15: Program FPGA.
16: Open Serial terminal.
17: Run inference.
18: Else if (train) then
19: Ensure:
20: CNN model in Jupyter notebook
21: Pynq image and notebook in SDCard
22: Execute:
23: Start Jupyer server
24: Install ML frameworks
25: Run training
26: End if
27: Assessment:
28: Accuracy, loss, execution time, etc.
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Furthermore, the custom hw-sw architectures involved in the framework could be modified to improve the

performance metrics. Some of the tips the user should keep in mind are:

• The training process is affected by the APSoC operation frequency (i.e., 660 MHz for Zybo-Z7) and

the RAM memory available. The execution time could be reduced by using a Multiprocessor System on

Chip (MPSoC) instead [57]. For instance, MPSoCs employ ARM Cortex-A53 processors that can run

up to 2.3 GHz.

• Another way to decrease the training time is by adding Deep Processing Units (DPU) [49] to the hw-sw

architecture. They can, however, only be used with some Ultrascale+ boards that support MPSoCs,

according to [49].

• As the partial results of each layer are kept for computing the next one, complex models usually entail

big stacks. Hence, when targeting small embedded systems, the user should consider single-channel

CNNs over multichannel models. This behavior applies to the inference and training processes.

• The FER SoC could obtain acceptable accuracy and inference time when working with integers rep-

resentation. Therefore, the CNN models should be quantized first to determine whether mapping the

model to the hw-sw architecture.

• The throughput of the FER SoC proposed for inference could be increased with more instances per

custom IP core. Here the FPGA resources for the Place and Route stages should also be considered.

These could be closely monitored in the Vivado Open Device and Utilization Report.

5 Discussion

Custom hw-sw architectures capable of executing the training stage of ML algorithms broaden the application

scope for embedded systems. This also includes the use of advanced techniques such as Transfer Learning [22].

However, the architecture’s performance depends on several factors, like data set size, number of model layers,

SoC memory, and operation frequency, among others. Therefore, a trade-off between the training time and

the platform capabilities will always be present.

Furthermore, traditional ML frameworks are best suited for multi-core CPUs or GPUs because their core

operations usually involve high-precision data representation and could be made in parallel. Nonetheless,

embedded systems CPUs are limited to up to 4 threads in the best-case scenario, while GPUs, although

having hundreds of threads, are more expensive and have higher power consumption.

On the other hand, Zynq FPGAs integrate ARM CPUs with Programmable Logic (PL), which could help

to increase the number of operations executed in parallel by employing several instances of specific designed

IP cores. However, to obtain an acceptable performance in training, larger FPGAs with MPSoCs should be

used (e.g., the Ultrascale+ family). MPSoCs include multi-core 64-bit CPUs operating up to 2.4 GHz. And

Ultrascale FPGAs have enough PL area for placing and routing several IP cores for deep learning operations,

such as DPUs.
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Finally, while there is no general agreement on how frameworks should accelerate CNNs on hardware, the

literature shows a preference for MPSoCs. Additionally, the shared methodology between the APSoC used in

this work and MPSoCs points to the potential of using them with Pynq and DPUs, which would reduce the

complexity of training CNNs on custom hw-sw architectures while maintaining acceptable performance.

6 Conclusion

This chapter presents a custom hw-sw architecture able to run Pynq 2.7 on the Zybo-Z7, as well as the

BSP with the minimal hardware design needed. Moreover, the base overlay that includes some AXI IP cores

implemented in the PL is also described. As mentioned, Pynq is based on Petalinux and its custom image was

built taking into account the BSP address map and the drivers and libraries needed to handle the peripherals

from Python. Furthermore, the image allows the execution of a Jupyter server on the development board.

Besides, the process of preparing Pynq for the ML frameworks was also presented. Furthermore, Tensorflow

and PyTorch were tested with simple CNN models trained with the data sets MNIST and CIFAR10. It was

found that the TensorFlow wheel package available for the 32-bit ARM architecture has a bug when calling the

fit method. Specifically, the method couldn’t recognize the CPU frequency needed to launch the optimization.

However, it is known that TensorFlow is able to run on ARM 64-bit platforms such as the Raspberry PI 4.

PyTorch was also tested by training a CNN model. The loss values obtained were similar to the ones from the

laptop execution. Nonetheless, due to the fact that the hw-sw architecture proposed has limited resources such

as memory, number of threads, and CPU frequency, the time spent per epoch is slow, around 30 minutes per

epoch. Likewise, the M6 model used for FER applications was mapped to PyTorch and tested on the board.

Hence, the training time was around 2 hours for the embedded system and 1 minute for the 16-core laptop.

Also, the hw-sw architecture was 6% less accurate than the laptop.

On the other hand, the chapter introduces Resiliency. A framework for training and running the inference

of CNNs-based FER systems in custom hw-sw architectures. Resiliency provides HDL files, the Vivado and

Vitis projects, and the drivers and functions to handle the custom IP cores with their simulation testbenchs.

Also available are the Pynq image and the notebooks employed when testing TensorFlow and PyTorch. Also,

the Pynq image and the notebooks employed when testing TensorFlow and PyTorch are also available. As

revealed in the literature and from metrics obtained with the framework, the best alternative is employing

FPGAs with MPSoCs.

At last, the chapter provides links to all the files needed to reproduce the results. These files could be used

to develop and test overlays with IP cores designed to handle tensor operations, convolutional layers, etc.

This paves the way for overlays that extend the capabilities of the proposed hw-sw architecture for lightweight

embedded systems based on Zynq devices.
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Final Discussion

This work described a design methodology for a single-channel CNN-based FER system, along with the data

set preprocessing, LBP and DA. By following this methodology, the model M6 was trained using TensorFlow

with the JAFFE data set, achieving an accuracy of 94%. However, the size of the data set and the model make

training techniques like EarlyStopping and ReduceLROnPlateau not suitable. Also, a future step to improving

the model’s performance would be training with larger data sets like CK+ and using cross-validation.

Then, to run the inference of the M6 model on hardware, a custom hardware-software architecture (a.k.a. FER

SoC) was introduced. The model compression was made with quantization instead of pruning, since the former

would be too aggressive. The library used was tflite from TensorFlow and the quantized model accuracy was

83.33%, with parameters represented by integer numbers. Currently, the FER SoC is capable of computing up

to 64 operations at the same time, but thanks to its flexibility, other IP cores’ instances could be added as far

as the FPGA’s available resources allow it.

Next, the work aimed at training a CNN model on a custom hardware-software architecture. The architecture

included a BSP capable of running Pynq 2.7 on the Zybo-Z7, along with a base overlay for AXI IP cores.

The architecture runs a Jupyter server used to install and test the PyTorch and TensorFlow frameworks with

the CIFAR10, JAFFE and MNIST data sets. However, the TensorFlow wheel available for the 32-bit ARM

compatible with Pynq 2.7 didn’t allow training. Hence, M6 was mapped to PyTorch and the training time

was around two hours, whereas one minute for a 16-core laptop. The hw-sw architecture was 6% less accurate

than the laptop. In subsequent implementations, the performance could be improved by using faster MPSoCs

FPGAs with 64-bit processors.

Afterwards, the framework Resiliency was introduced. It gives the guidelines to train and run the inference of

CNN models on an embedded system, and provides the custom hardware-software architectures used in this

work. Moreover, the source code is open and available, and the designs are scalable, which facilitates the use

of larger and faster devices suitable for DPUs units.

Lastly, the academic production is listed below:

• D. Parra and C. Camargo, “A Systematic Literature Review of Hardware Neural Networks,” 2018 IEEE

1st Colombian Conference on Applications in Computational Intelligence (ColCACI), 2018, pp. 1-6, doi:

10.1109/ColCACI.2018.8484858.

• D. Parra and C. Camargo, “Design Methodology for CNN-based FER systems,” UNPUBLISHED: ICICT

2023.

• D. Parra, “Pynq 2.7 for Zybo-Z7”, 2022. [Online]. Available: https://discuss.pynq.io/t/

pynq-2-7-for-zybo-z7/4124

• D. Parra, “Testing Tensorflow 2.5 in Zybo-Z7 running Pynq 2.7”, 2022. [Online]. Available: https:

//discuss.pynq.io/t/testing-tensorflow-2-5-in-zybo-z7-running-pynq-2-7/4157
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Appendix A

State of the art of the Hardware Neural Networks

(HNNs)

With the appearance of high performance platforms in the last decade (i.e. GPU, FPGAs), Neural Networks

(NNs) are becoming an attractive tool for many classification and object recognition problems. Despite this,

the existent APIs for running NNs don’t exploit the hardware resources efficiently and for this reason several

researches have turn back their attention to Hardware Neural Networks (HNNs) [58], [59], [60]. HNNs are

the implementation of accelerators architectures that evaluate the NNs forward propagation algorithms, by

using reconfigurable platforms like FPGAs, or hardcore designs like the VLSI circuits [61], [62]. Usually, the

networks are trained by means of tools such as Caffe [63], MATLAB [64], TensorFlow [19], Microsoft Cognitive

Toolkit [65], etc. and then, with the weights and bias calculated, a hardware accelerator is implemented [66],

[67], [68]. Nevertheless, the discussion of how to design HNNs had been widen due to number of works that

had been proposed in the last few years [61], and up to day, a new literature review is needed to identify the

most relevant search streams that had appeared lately, the NN types being used, the organizations leading the

research, the research limitations and the quality of the implementation frameworks being proposed. In this

chapter, we aim to answer all of these questions by means of a Systematic Literature Review (SLR) [69], [70].

This chapter is organized as follows; Section I describes the carried out Systematic Literature Review. Section

II presents the SLR results and Section III the discussion. Finally, the conclusion is drawn in Section IV and

the Research Questions and Hypothesis in sections V and VI.

1 Systematic Literature Review Method

The literature review was made by applying the Systematic Literature Review (SLR) method, proposed by

Kitchenham et al. in [69] and [70]. The goal of this review is to identify the gaps existing in the HNN

implementation process by studying the relevant works in the state of the art. Additionally, according to the

literature NN implementations on traditional platforms like general purpose processors don’t use hardware

resources efficiently, and therefore there is a growing interest in exploring others platforms [58], [59], [60]. On

the other hand, Graphical Processing Units (GPUs) are being widely used for training NN because of their

high throughput, but those implementations are limited by the local memory available and the communication
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bandwidth between the host and the GPU, [71], [72], [60] besides, its power consumption make them not

practicals for embedded systems. Fortunately, these implementations can be improved by using accelerators

in custom hardware (e.g. ASICs, FPGA), which have demonstrated to have better performance during the

feedforward prediction stage and low power consumption [60], [73]. Moreover, FPGAs are easily programmable

and inexpensive, these being why they are the most advantageous option. Furthermore, with the appearance

of more optimization design techniques and the amount of FPGA logic resources available being increased, the

design exploration space is enlarged boosting the HNN implementation on FPGA-based platforms. By taking

into account the above-mentioned factors, it was decided to focus this literature review on HNN works and

implementation frameworks designed for these platforms, without including GPU-based works. Lastly, the

SLR method steps are documented below.

1.1 Research Questions (RQ)

The research questions addressed by this review are:

• RQ1: How many frameworks for implementing HNN has been proposed since 2010?

• RQ2: What types of Neural Networks are being addressed?

• RQ3: What individuals and organizations are leading the research?

• RQ4: What are the limitations of current research?

• RQ5: Is the quality of the implementation frameworks improving?

With respect to RQ1, the review starts at 2010 because HNNs start to be a feasible option when the resources

and computation platforms available were sufficient for the efficient implementation around 2010. With respect

to RQ2, there are several types of NN that can be implemented in hardware, however, differences in input

data, classification tasks, activation function, etc. can lead to choose one instead of another. For this reason

it is important to know which are the NN types being used for HNN. With respect to RQ3, it is essential to

identify HNN research trends, relevant authors and leading works to be aware of the current problems being

studied. With respect to limitations of HNN research (RQ4) the following issues are going to be considered:

• RQ4.1: Were the scope of HNN implementation frameworks limited?

• RQ4.2: Is there evidence that the use of HNNs is limited due to lack of implementation frameworks?

• RQ4.3: Is the quality of implementation frameworks appropriate?

• RQ4.4: Are frameworks contributing to the implementation of HNN by defining practice guidelines?

With respect to RQ5, it is important to know if the proposed frameworks are being improved in subsequent

works or if the new proposed frameworks are taking different approaches.

1.2 Search Process

The IEEE Computer Society Digital Library, the SCOPUS indexing system and Open Access organizations

like IAES, IOSR were used in the search process. All searches were based on titles, keywords and abstracts

of works published in journals, conferences and symposiums since 2010, which are shown in Table A.1. The
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Source Acronym Organization Publication
Transactions on Neural Networks and Learning Sys-
tems

TNNLS IEEE Journal

Transactions on Very Large Scale Integration Sys-
tems

TVLSIS IEEE Journal

Transactions on Computers TC IEEE Journal
Neural Networks NN ELSEVIER Journal
Neurocomputing NC ELSEVIER Journal
Information Fusion IF ELSEVIER Journal
Computer Methods and Programs in Biomedicine CMPB ELSEVIER Journal
Pattern Recognition PR ELSEVIER Journal
Engineering Applications of Artificial Intelligence EAAI ELSEVIER Journal
Engineering Research And Development IJERD Peer Re-

viewed
Journal

Electrical and Computer Engineering IJECE IAES Journal
Electronics and Communication Engineering JECE IOSR Journal
International Conference on Data Mining Workshops ICDMW IEEE Conference
International Conference on Computer Science and
Network Technology

ICCSNT IEEE Conference

International Conference on Architectural Support
for Programming Languages and Operating Systems

ASPLOS IEEE/ACM Conference

International Conference on Parallel Architectures
and Compilation Techniques

PACT IEEE/ACM Conference

Annual International Symposium on Computer Ar-
chitecture

ISCA IEEE/ACM Symposium

Annual International Symposium on Field Pro-
grammable Custom Computing Machines

ISFPCCM IEEE Symposium

Annual International Symposium on Field Pro-
grammable Gate Arrays

FPGA IEEE/ACM Symposium

Table A.1: Selected journals, symposiums and conference proceedings.

search string used in the IEEE library was “Neural Networks” AND “Hardware” and the search string used in

SCOPUS was TITLE-ABS-KEY(“Neural Networks”) AND TITLE-ABS-KEY(“Hardware”) OR TITLE-ABS-

KEY(“Framework”).

1.3 Study selection

The results for the different searches were added, obtaining a total number of 491 papers published between

Jan 1st 2010 and March 31th 2017: 143 from the IEEE digital library, 343 from SCOPUS indexing system

and 5 from the open access organizations. To these papers, the following inclusion and exclusion criteria were

applied.

Topics used to include the papers:

• Frameworks for implementing HNN with defined research questions, search process, data extraction and

data presentation, whether or not the researchers referred to their study as a implementation framework.

• Approach to optimize current implementations of HNN.
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Papers on the following topics were excluded:

• Informal literature surveys (no defined research questions; no defined search process; no defined data

extraction process).

• Papers presenting implementations of HNN with not defined procedures or not discussing the procedures

used.

• Papers presenting GPU-based works, which are limited by local memory constraints and bandwidth

communication will also be excluded.

• Duplicate reports of the same study (when several reports of a study exist in different journals the most

complete version of the study was included in the review).

After excluding papers that were obviously irrelevant, had not enough information, or were duplicates, there

were 61 papers remaining. Those papers were then subject to a more detailed assessment, where each paper

was reviewed to identify papers that could be rejected on the basis that they did not include literature reviews,

or that they were not related to implementation frameworks. This led to the exclusion of 41 papers. The

remaining papers are shown in Table A.2.

1.4 Quality assessment (QA)

Each article was evaluated using the following quality assessment (QA) questions based on [69]:

• QA1: Is the HNN implementation process presented explicitly?

• QA2: Is the literature search likely to have covered all relevant studies?

• QA3: Did the HNN implementation assess the quality/validity of previous included studies?

• QA4: Were the basic data/studies adequately described?

There are three possible outputs for each question with the following score: Y (yes) = 1, P (partly) =

0.5 and N (no) = 0. For QA1: Y the implementation process is presented explicitly, P the implementation

process is implicit and N the implementation process is not defined and cannot be readily inferred.

For QA2: Y the authors had cited at least 20 works including highly cited works, P the authors had cited

between 15 and 19 works including relevant works. N the authors had cited less than 15 works or they had

cited irrelevant works.

For QA3: Y The HNN implementation performance improved former ones in more than 2x, P the performance

was less than 2x of previous ones, and N performance was not reported.

For QA4: Y information of each primary study is presented, P each primary study is barely presented, and

N any information of each primary study is given.

1.5 Data collection

The data extracted from each work were:

• The source (journal, conference or symposium) and full reference.
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• Classification of the study type (i.e. HNN implementation, VLSI design, HNN implementation frame-

works).

• Main topic area.

• The author(s), their institution and the country where it is situated.

• Summary of the study including the main research questions and the answers.

• Research question/issue.

• Quality evaluation.

• How many primary studies were used in the work.

1.6 Data analysis

The data was tabulated (see Tables A.1 and A.3) to show:

• The number of HNN works published per year and their source (addressing RQ1).

• Whether the HNN work referenced others papers (addressing RQ1).

• The topics studied by the HNN works, i.e. HNN implementation, VLSI design, HNN implementation

frameworks (addressing RQ2 and RQ4.1).

• The authors: the affiliations of the authors and their institutions was reviewed but not tabulated (ad-

dressing RQ3).

• The number of previous HNN works in each paper (addressing RQ4.2).

• The quality score for each HNN work (addressing RQ4.3).

2 Results

2.1 Search Results

Including works from journals, symposiums and conferences they were 20 papers reviewed. These papers are

shown in Table A.2.

2.2 Quality evaluation of the HNN works.

The HNN works shown in Table A.2 were assessed based on the quality assessment (QA) questions. These

results are shown in Table A.3.

2.3 Quality factors

The average Quality Scores (QS) for studies each year, the mean and the standard deviation σ are shown in

Table A.4. As can be seen the number of HNN studies in the last few years has grew up from 1 study per year

up to 9 studies, showing the growing interest for HNN. Also, the average QS per year has been quasi-stable

around 3.0 (i.e. 2.88), which can be seen as an increase in the number of most comprehensive works on the

topic.
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Study
Ref.

Authors Date Paper
type

Number
primary
studies

Review topics

[61] Misra & Saha 2010 Journal 278 Overview of HNN models: HNN
chips, Cellular HNN, Neuromorphic
HNN, Optical NN.

[74] Farabet et al. 2011 Conference 27 HNN implementation, hardware ar-
chitectures.

[75] Rana D. Abdu-
Aljabar

2012 Journal 23 HNN implementation.

[76] Shakoory 2013 Journal 12 HNN implementation.
[77] Mohammed et

al.
2013 Journal 9 HNN implementation.

[66] Chen et al. 2014 Conference 44 HNN implementation, VLSI design.
[78] Singh et al. 2015 Journal 11 HNN implementation.
[58] Zhang et al. 2015 Symposium 16 HNN implementation.
[67] Zhou, Y., &

Jiang, J.
2015 Conference 12 HNN implementation.

[79] Du et al. 2015 Symposium 61 HNN implementation, VLSI design.
[59] Venieris et al. 2016 Symposium 16 HNN implementation framework.
[68] Murakami, Y. 2016 Conference 8 HNN implementation.
[80] Motamedi et al. 2016 Conference 10 HNN Parallelism.
[60] Dundar et al. 2016 Journal 49 HNN implementation.
[62] Li et al. 2016 Symposium 11 HNN implementation.
[81] Saldanha et al. 2016 Symposium 13 HNN implementation.
[82] Wang et al. 2016 Symposium 19 HNN implementation, VLSI design.
[73] Ortega-

Zamorano
et al.

2016 Journal 44 HNN implementation framework for
Backpropagation.

[83] Kyrkou et al. 2016 Journal 41 HNN implementation
[84] Luo et al. 2017 Journal 66 HNN implementation, VLSI design.

Table A.2: Systematic Review of HNN Studies.

3 Discussion

The answers to the research questions are discussed in this section.

• RQ1: How many frameworks for implementing HNN has been proposed since 2010?

The revision of several studies from 2010 to 2017 lead to 20 relevant HNN studies. Moreover, it is

observed that the interest in HNN is growing up as the number of studies per year.

Relevant studies included 1 survey of the HNN implementations proposed before 2010 [61], 4 studies of

HNN Very Large Scale Integration (VLSI) designs [66], [79], [84], [82], and the rest of studies proposed an

HNN design implemented in a reconfigurable platform (e.g. FPGA). Despite not all of them presented

an explicit framework, the implementation process could be readily inferred.

• RQ2: What types of Neural Networks are being addressed?

Most of the works aimed to implement Convolutional Neural Networks (CNN) [85], [86]. CNN has been

highly accepted in classification and object recognition problems because of its accuracy and relatively
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Study
Ref.

Paper
type

QA1 QA2 QA3 QA4 Total
Score

[61] Journal N Y N Y 2.0
[74] Conference Y Y Y P 3.5
[75] Journal Y P P Y 3.0
[76] Journal Y N P P 2.0
[77] Journal N N N N 0.0
[66] Conference Y Y Y Y 4.0
[78] Journal Y N P N 1.5
[58] Symposium Y P Y P 3.0
[67] Conference P P P P 2.0
[79] Symposium Y Y Y Y 4.0
[59] Symposium Y P Y Y 3.5
[68] Conference Y N P P 2.0
[80] Conference Y P Y Y 3.5
[60] Journal Y Y Y Y 4.0
[62] Symposium Y P P N 2.0
[81] Symposium P P P N 1.5
[82] Symposium P P P P 2.0
[73] Journal Y Y Y Y 4.0
[83] Journal Y Y Y Y 4.0
[84] Journal Y Y Y Y 4.0

Table A.3: Quality evaluation of the HNN studies.

Year
2010 2011 2012 2013 2014 2015 2016 2017

# of
papers

1 1 1 2 1 4 9 1

QS
Mean

2.0 3.5 3.0 1.0 4.0 2.625 2.94 4

QS σ 0.88 0.625 0.12 1.88 1.12 0.255 0.06 1.12

Table A.4: Average Quality Scores (QS) for studies by publication date.

fair cost. CNNs are a class of Deep Neural Networks (DNN) where weights are shared across neurons,

thus reducing the memory needed to stored the training parameters.

• RQ3: What individuals and organizations are leading the research?

The leadership of HNNs implementation can be divided by approach. The VLSI design of HNNs is lead

by the work group form by the State Key Laboratory of Computer Architecture in China, the Institute

of Computing Technology processing in China and the Inria Institution in France. They had designed

and implemented at least 4 different HNN chips [66], [79], [82].

On the other hand, there are different authors that had contributed with several studies about HNNs im-

plementation in reconfigurable platforms. For example, Eugenio Culurciello from the Courant Institute

of Mathematical Sciences, New York University and Yann LeCun from the Electrical Engineering De-

partment, Yale University both in USA presented works that include a dataflow processor for vision [74],
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and an Embedded Streaming DNN Accelerator [60]. In addition, Stylianos Veneris and Christos-Savvas

Bougaris from the Department of Electrical and Electronic Engineering, Imperial College in London had

presented fpgaConvNet, a framework for mapping CNN on FPGAs in [59]. Finally, Francisco Ortega-

Zambrano et al. from the Departamento de Lenguajes y Ciencias de la Computación, Universidad de

Málaga in Spain had proposed an efficient implementation of the NN training stage on FPGA in [73].

• RQ4: What are the limitations of current research?

Currently, due to the number of computational resources (i.e. memory and processing) needed by HNNs

implementations, researches aim to commercials FPGA-based systems (i.e. mostly large FPGAs), while

the design of HNNs VLSI chips remains limited. Moreover, there are others factors that restrict the

VLSI research such as: the power consumption, die size, fabrication technology and cost. Another

important reason is that there is not a general agreement between approaches and there are studies

that consider parameters that are not important to others studies, widening the exploration space but

reducing the concentrated efforts. Thus, there are a few implementation frameworks proposed and their

quality variates from barely acceptable to regular.

• RQ5: Is the quality of the implementation frameworks improving?

Due to the growing interest in implementing HNN, the number of proposed frameworks by year has been

increasing, and so the quality of studies published. For example, current studies offer a more complete

description of the proposed work, make comparisons with similar studies and provide external links that

widen the information available.

4 Conclusions

This chapter presented a Systematic Literature Review of the latest works related to the implementation of

neural networks into hardware, from which two main streams can be identified: HNNs VLSI designs and

HNNs implementation in reconfigurable platforms. Hence, the last one has the majority of studies due to the

known constrictions of the VLSI fabrication process. Also, it was found that CNNs are the most aimed NN

because of its features and applications. In addition, the awaken interest in HNNs has revealed the necessity

of implementation frameworks, that allow to identify relevant parameters and that present a solid number of

stages for accomplish the implementation. Unfortunately, frameworks available in the state of the art lack of

simplicity, usually aim to bigger hardware platforms, have an excessive use of logic resources and present an

acceptable accuracy.

Moreover, there are several problems in the implementation process that still had to be tackle down like: mem-

ory bottlenecks, scarce number of resources, complexity of the NNs, implementation precision and accuracy,

and efficient HNNs training.

5 Research Questions

These are the research questions that emerge from the literature review.

• How to create a framework that allow to implement neural networks in hardware?

• Is it possible to implement a NN accelerator to approach different problems?

Universidad Nacional de Colombia

88



• What are the NN parameters that affect the implementation of NN in hardware platforms?

6 Hypothesis

This section presents some hypothesis formulated around the research questions:

• How the input data type and the processing tasks can be used to determine the NN topology and the

design of the HNN accelerator?

• How the different works that can be found in the literature can be use to implement a cost-effective and

easy-deployment framework that aim to solve different problems?

• How are the number of neurons per layer related with the number of computational resources needed to

implement the HNN in a hardware platform?

• How are the neurons activation function related with the amount of computational resources needed to

implement the HNN in a hardware platform?

• How the use of fixed point or floating point algorithms affects the NN accuracy?
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Appendix B

Useful Scripts

Listing B.1: 00 M6 jaffe 6emo.py

1 import matplotlib as mpl

2 mpl.rcParams[’legend.fontsize’] = 12;

3 mpl.rcParams[’axes.labelsize’] = 12;

4 mpl.rcParams[’xtick.labelsize’] = 12;

5 mpl.rcParams[’ytick.labelsize’] = 12;

6 mpl.rcParams[’text.usetex’] = True;

7 mpl.rcParams[’font.family’] = ’sans-serif’;

8 mpl.rcParams[’mathtext.fontset’] = ’dejavusans’;

9 mpl.rcParams.update({’font.size’: 12});

10 import matplotlib.pyplot as plt

11

12 import numpy as np

13 import os

14 os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’3’; # TF debug messages

15 # 0 = all messages are logged (default behavior)

16 # 1 = INFO messages are not printed

17 # 2 = INFO and WARNING messages are not printed

18 # 3 = INFO, WARNING, and ERROR messages are not printed

19

20 import sys

21 np.set_printoptions(threshold=sys.maxsize) # Printing all the weights

22 import tempfile

23 import tensorflow as tf

24 physical_devices = tf.config.list_physical_devices(’GPU’)

25 tf.config.experimental.set_memory_growth(physical_devices[0], True)

26 from tensorflow import keras
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27

28 from matplotlib.backends.backend_pdf import PdfPages

29

30

31 print(" \n ");

32 print("************************************** ");

33 print(" Charger l’ensemble de donnÃ©es ");

34 print("************************************** ");

35 # Expressions: angry, disgust, fear, happy, sad, surprise, neutral

36 fer_eti = ["HA","AN","DI","FE","SA","SU"]; # Expressions abrÃ©gÃ©s

.

37 fer_lab = [ 0, 1, 2, 3, 4, 5 ]; # Index des expressions

.

38 nom_cls = 6; # Nombre des classes.

39

40 # 10-fold cross validation: La totalitÃ© de l’ensemble de donnÃ©es est

41 # divisÃ© en 10 sets, 9 pour l’entraÃ®nement et 1 pour le testing.

42

43 # Charger entraÃ®nement: Jaffe + prÃ©-traitement avec dlib + lbp-var + 15

augmentations

44 x_train = np.load("../../db_transfigure/jaffe_dlib_var64_aug15_6emo_img.npy");

45 y_train = np.load("../../db_transfigure/jaffe_dlib_var64_aug15_6emo_lab.npy");

46

47 # Charger testing: Jaffe + prÃ©-traitement avec dlib + lbp-var

48 x_test = np.load("../../db_transfigure/jaffe_dlib_var64_test_6emo_img.npy");

49 y_test = np.load("../../db_transfigure/jaffe_dlib_var64_test_6emo_lab.npy");

50

51 print("Ensemble des donnÃ©es: jaffe_dlib_var64_aug15_6emo_img.npy");

52 #print("Img dat: ", img_dat, img_dat.shape, type(img_dat), img_lab);

53 print("Taille des images: ", x_train.shape, type(x_train));

54 print("Taille des Ã©tiquettes: ", y_train.shape, type(y_train));

55

56 x_train = np.array(x_train, "float32");

57 x_test = np.array(x_test, "float32");

58 print(x_train.shape[0], ’train samples’);

59 print(x_test.shape[0], ’test samples’ );

60

61 # Dessiner quelques donnÃ©es

62 #fig = plt.figure();
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63 #ax1 = fig.add_subplot(2, 2, 1); ax1.set_title(fer_eti[y_train[0]]); ax1.imshow(

x_train[0], cmap="gray");

64 #ax2 = fig.add_subplot(2, 2, 2); ax2.set_title(fer_eti[y_train[1]]); ax2.imshow(

x_train[1], cmap="gray");

65 #ax3 = fig.add_subplot(2, 2, 3); ax3.set_title(fer_eti[y_train[2]]); ax3.imshow(

x_train[2], cmap="gray");

66 #ax4 = fig.add_subplot(2, 2, 4); ax4.set_title(fer_eti[y_train[3]]); ax4.imshow(

x_train[3], cmap="gray");

67 #fig.suptitle("Images avec prÃ©-traitement", fontsize=12); plt.tight_layout();

68 #fig.subplots_adjust(top=0.88);

69 #plt.show();

70 #sys.exit(0); # Terminer l’execution

71

72

73 print(" \n ");

74 print("************************************** ");

75 print(" ModÃ¨le ");

76 print("************************************** ");

77 # DÃ©finir l’architecture du modÃ¨le

78 model = keras.Sequential( [

79 keras.layers.InputLayer( input_shape=(64, 64) ),

80 keras.layers.Reshape( target_shape=(64, 64, 1) ),

81

82 keras.layers.Conv2D( filters=32, kernel_size=(5, 5), strides=(1,1), padding="

SAME", activation="relu"),

83 keras.layers.MaxPooling2D( pool_size=(2, 2), strides=(2,2) ),

84

85 keras.layers.Conv2D( filters=64, kernel_size=(5, 5), strides=(1,1), padding="

SAME", activation="relu"),

86 keras.layers.MaxPooling2D( pool_size=(2, 2), strides=(2,2) ),

87

88 keras.layers.Conv2D( filters=128, kernel_size=(5, 5), strides=(1,1), padding="

SAME", activation="relu"),

89 keras.layers.MaxPooling2D( pool_size=(2, 2), strides=(2,2) ),

90

91 keras.layers.Flatten( ),

92 keras.layers.Dense(nom_cls, activation=None) ] );

93

94 model.summary();

95 keras.utils.plot_model(model, to_file="model.png", show_shapes="True");
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96 #sys.exit(0); # Terminer l’execution

97

98

99 print("************************************** ");

100 print(" EntraÃ®nement... ");

101 print("************************************** ");

102 # ParamÃ¨tres d’entraÃ®nement

103 batch_size = 32; # Mini-batch size.

104 epochs = 30; # Nombre des Ã©poques.

105 lr_val = 0.001; # Learning rate.

106 print("batch_size = ", batch_size);

107 print("learning rate = ", lr_val);

108

109 # EntraÃ®nement ...

110 opt = keras.optimizers.Adam(learning_rate=lr_val);

111 model.compile(optimizer=opt,

112 loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),

113 metrics=[’accuracy’]);

114

115 his = model.fit( # Sauvegarder l’

histoire

116 x_train, y_train, batch_size=batch_size,

117 steps_per_epoch = len(x_train) / batch_size,

118 epochs=epochs, verbose=2,

119 validation_data=(x_test, y_test), workers=8);

120 #sys.exit(0); # Terminer l’execution

121

122

123 print("************************************** ");

124 print(" Evaluation de performance ");

125 print("************************************** ");

126 # Evaluating

127 score = model.evaluate(x_test, y_test, verbose=0);

128 print(’Avec la collection de test’);

129 print(’--> Perte:’, score[0]);

130 print(’--> Exactitude:’, 100*score[1]);

131

132 predictions = model.predict(x_test);

133 predicted_label = np.argmax(predictions[0]);

134
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135 #print(history.history);

136 #print(his.history.keys());

137

138 # Fonction qui sert Ã mesurer le performance du modÃ¨le

139 with PdfPages("graphique_entrainement.pdf") as export_pdf:

140

141 # summarize history for accuracy

142 plt.plot(his.history[’accuracy’]);

143 plt.plot(his.history[’val_accuracy’]);

144 plt.title(’Exactitude du modÃ¨le’);

145 plt.ylabel(’Exactitude’); plt.xlabel(’Ã©poque’);

146 plt.legend([’train’, ’test’], loc=’upper left’);

147 export_pdf.savefig(); plt.close();

148

149 # summarize history for loss

150 plt.plot(his.history[’loss’]);

151 plt.plot(his.history[’val_loss’]);

152 plt.title(’Perte du modÃ¨le’);

153 plt.ylabel(’Perte’); plt.xlabel(’Ã©poque’);

154 plt.legend([’train’, ’test’], loc=’upper left’);

155 export_pdf.savefig(); plt.close();

156

157

158 # En sauvegardant le modÃ¨le en hdf5

159 #------------------------------

160 model.save("models/M6_6emo.h5");

161 model.save_weights("models/M6_6mo_weights.h5");

162 #sys.exit(0);

163

164 print("**************************************");

165 print("* Â¡Merci d’utiliser ce logiciel! *");

166 print("* (8-) *");

167 print("**************************************");
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Training M6 for FER with PyTorch

Entrée [33]:

Entrée [34]:

%matplotlib inline

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import torchvision
import torchvision.transforms as transforms

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

from torch.utils.data import TensorDataset, DataLoader

# Charger entraînement: Jaffe + pré-traitement avec dlib + lbp-var + 15 augmentations
x_train = np.load("db_transfigure/jaffe_dlib_var64_aug15_6emo_img.npy");      
y_train = np.load("db_transfigure/jaffe_dlib_var64_aug15_6emo_lab.npy");
x_train = x_train[500:1000][:][:];  y_train = y_train[500:1000][:][:];

# Charger testing: Jaffe + pré-traitement avec dlib + lbp-var
x_test = np.load("db_transfigure/jaffe_dlib_var64_test_6emo_img.npy");      
y_test = np.load("db_transfigure/jaffe_dlib_var64_test_6emo_lab.npy");

print("Ensemble des données: jaffe_dlib_var64_aug15_6emo_img.npy");
print("Img dat: ", x_train, x_train.shape, type(x_train), x_train[0]);
print("Taille des images: ",     x_train.shape, type(x_train));
print("Taille des étiquettes: ", y_train.shape, type(y_train));

# Convertir à PyTorch
x_train = torch.from_numpy(x_train);
y_train = torch.from_numpy(y_train);
x_test = torch.from_numpy(x_test);
y_test = torch.from_numpy(y_test);

# Create loaders à partir du tenseurs en *.npy 
trainset = TensorDataset(x_train, y_train);

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

1 sur 6 22/07/2022, 17:37

Ensemble des données: jaffe_dlib_var64_aug15_6emo_img.npy
Img dat:  [[[ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  4  3  2]
  [ 0  0  0 ...  0  0  0]
  ...
  [ 0  1  0 ...  0  1  0]
  [ 0  1  1 ...  1  1  0]
  [ 0  0  0 ...  2  2  0]]

 [[ 3  3  3 ...  0  0  0]
  [ 4  3  5 ...  0  0  0]
  [ 6  4  3 ...  0  0  0]
  ...
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]]

 [[ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  3  0  0]
  ...
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]]

 ...

 [[ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  ...
  [ 0  0  0 ... 18 27 33]
  [ 0  0  0 ... 44 31 15]
  [ 0  0  0 ...  0  0  0]]

trainloader = torch.utils.data.DataLoader(trainset, batch_size=1,
shuffle=True, num_workers=2);

testset = TensorDataset(x_test, y_test);
testloader = torch.utils.data.DataLoader(testset, batch_size=1,

shuffle=True, num_workers=2);

# Expressions: angry, disgust, fear, happy, sad, surprise, neutral
fer_eti = ["HA","AN","DI","FE","SA","SU"];                 # Expressions abrégés. 
fer_lab = [   0,   1,   2,   3,   4,  5 ];                 # Index des expressions.

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

2 sur 6 22/07/2022, 17:37

Figure B.1: Notebook for M6 model in PyTorch installed on Pynq 1.8 running on the Zybo-Z7 board.
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 [[ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  ...
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]]

 [[ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  [ 0  0  0 ...  0  0  0]
  ...
  [ 2  2  3 ...  0  0  0]
  [ 1  2  2 ...  0  0  0]
  [ 1  1  2 ...  0  0  0]]] (500, 64, 64) <class 'numpy.ndarray'> [[0 0 0 ... 0 0 0]
 [0 0 0 ... 4 3 2]
 [0 0 0 ... 0 0 0]
 ...
 [0 1 0 ... 0 1 0]
 [0 1 1 ... 1 1 0]
 [0 0 0 ... 2 2 0]]
Taille des images:  (500, 64, 64) <class 'numpy.ndarray'>
Taille des étiquettes:  (500,) <class 'numpy.ndarray'>

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

3 sur 6 22/07/2022, 17:37

Entrée [35]:

Entrée [36]:

<class 'torch.Tensor'> torch.Size([1, 64, 64])
SU

import matplotlib.pyplot as plt
import numpy as np

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next();

# show images
npimg = images[0].numpy();
plt.imshow(npimg, cmap="gray");
print(type(images[0]), images.shape);

# print labels
print(fer_eti[labels[0]]);

class M6FER_Net(nn.Module):
def __init__(self):

# Here all the layers are defined
super(M6FER_Net, self).__init__()
# Conv2d(#channels(rgb), #filters, kernel_size)
self.conv1 = nn.Conv2d( 1,  32, 5);
self.conv2 = nn.Conv2d(32,  64, 5);
self.conv3 = nn.Conv2d(64, 128, 5);
self.mpool = nn.MaxPool2d(2, 2);
self.fc1 = nn.Linear(128 * 4 * 4, 6);

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

4 sur 6 22/07/2022, 17:37

Figure B.2: Notebook for M6 model in PyTorch installed on Pynq 1.8 running on the Zybo-Z7 board.
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Entrée [37]:

Entrée [38]:

def forward(self, x):
# Here the model (network) structure is defined
x = self.mpool(F.relu(self.conv1(x)));
x = self.mpool(F.relu(self.conv2(x)));
x = self.mpool(F.relu(self.conv3(x)));
x = x.view(-1, 128 * 4 * 4)
x = self.fc1(x);
return x

net = M6FER_Net()

criterion = nn.CrossEntropyLoss(); # sparse categorical cross-entropy (i.e. tales integers as targets instead of one-hot v
optimizer = optim.Adam(net.parameters(), lr=0.001);

for epoch in range(20):  # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(trainloader, 0):

# get the inputs
inputs, labels = data;

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
#outputs = net(inputs.float());
outputs = net(inputs.view(1, inputs.shape[0], inputs.shape[1], inputs.shape[2]).float());

loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

# print statistics
running_loss += loss.item()
if i % 500 == 499:    # print every 500 mini-batches

print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 500))

running_loss = 0.0

print('Finished Training')

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

5 sur 6 22/07/2022, 17:37

Entrée [39]:

[1,   500] loss: 1.932
[2,   500] loss: 1.788
[3,   500] loss: 1.759
[4,   500] loss: 1.732
[5,   500] loss: 1.821
[6,   500] loss: 1.826
[7,   500] loss: 1.591
[8,   500] loss: 1.373
[9,   500] loss: 1.194
[10,   500] loss: 0.977
[11,   500] loss: 0.841
[12,   500] loss: 0.904
[13,   500] loss: 0.680
[14,   500] loss: 0.529
[15,   500] loss: 0.482
[16,   500] loss: 0.397
[17,   500] loss: 0.426
[18,   500] loss: 0.284
[19,   500] loss: 0.270

Accuracy of the network on the 18 test images: 55 %

correct = 0
total = 0
with torch.no_grad():

for data in testloader:
images, labels = data
#outputs = net(images.float());
outputs = net(images.view(1, images.shape[0], images.shape[1], images.shape[2]).float());
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 18 test images: %d %%' % (
100 * correct / total))

M6_jaffe_6emo_pytorch - Jupyter Notebook http://localhost:8888/notebooks/M6_jaffe_6emo_pytorch.ipynb

6 sur 6 22/07/2022, 17:37

Figure B.3: Notebook for M6 model in PyTorch installed on Pynq 1.8 running on the Zybo-Z7 board.
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Appendix C

Complementary Resources

(a) Original Convolutional Layer. (b) Quantization Aware Training Layer.

(c) Quantized Layer.

Figure C.1: Tflite Quantization Aware Training. Taken from [13].
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Figure C.2: Zynq APSoC Architecture. Taken from [8].

(a) CLB structure.

Figure C.3: PL architecture. Taken from [9].
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Figure C.4: Validation of results. Comparison between the Numpy and the SoC.

Figure C.5: M6 model trained with PyTorch 1.8 in Pynq 2.7.
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