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Abstract

A Data-driven Representation Learning for Tumor Tissue Differ-
entiation from Non-Small Cell Lung Cancer Histopathology Images

Lung cancer is the second most common type and the leading cause of cancer death in the

world. It is divided into different types according to cellular and tissular features, and in

turn, these types are distinguished by typical patterns that represent them. Each histolog-

ical subtype of lung cancer is associated with the prognosis and treatment of patients, and

is subjectively stratified mainly by its morphological features. However, due to the very

nature of the disease, this stratification varies since there is no specialized grading system,

and also because of the difficulty of characterizing cases that generally contain mixtures

of histological patterns and unspecified tissues, which therefore, alters the diagnosis and

prognosis of patients. This research work addresses a computational data-driven strategy to

characterize histological patterns of lung cancer, in addition to determining its differentia-

tion and aggressiveness, in order to support decision-making in clinical practice. Therefore,

this work has been divided in two parts. The first part presents a supervised subtype dif-

ferentiation learning of lung cancer features in a latent space constructed with a variational

autoencoder. In such space, complicated patterns are quantified by estimating a differenti-

ation grade of typical encoded features of lung cancer subtypes. Then, a logistic regression

model assigns differentiation cancer subtype grade to the embedded tissue samples. This ap-

proach builds up a subtype differentiation grade of non-small cell lung cancer among complex

structures which are fully interpretable and integrable with a pathology workflow. Finally,

the second part presents an unsupervised computational approach based on an ensemble of

tissue-specialized variational autoencoders, which were trained per histopathology subtype,

to build an unsupervised embedded tissue-image representation. This representation was

used to train a Random Forest classifier of three lung adenocarcinoma histology subtypes

(lepidic, papillary and solid), and a 2D-visually interpretable projection from the learned

embedded representation.

Keywords: Digital Pathology, Tissue Representation, Histopathology, Variational Autoen-

coder, Lung Adenocarcinoma, Lung Cancer



Resumen

Un aprendizaje de representación basado en datos para la diferen-
ciación de tejido tumoral a partir de imágenes de histopatoloǵıa de
cáncer de pulmón de células no pequeñas

El cáncer de pulmón es el segundo tipo más común y la principal causa de muerte por cáncer

en el mundo. Se divide en diferentes tipos según las caracteŕısticas celulares y tisulares, y

a su vez, estos tipos se distinguen por los patrones histológicos t́ıpicos que los representan.

Cada subtipo histológico de cáncer de pulmón se asocia con el pronóstico y tratamiento de

los pacientes, y se estratifica subjetivamente por parte de los patólogos principalmente por

sus caracteŕısticas morfológicas. Sin embargo, por la propia naturaleza de la enfermedad,

esta estratificación vaŕıa ya que no existe un sistema de gradación especializado, y también

por la dificultad de caracterizar los casos que generalmente contienen mezclas de patrones

histológicos y tejidos no especificados, lo que puede afectar la precisión del diagnóstico y

pronóstico de los pacientes. Este trabajo de investigación aborda una estrategia computa-

cional basada en datos para caracterizar los patrones histológicos del cáncer de pulmón,

además de determinar su diferenciación y agresividad, con el fin de apoyar la toma de deci-

siones en la práctica cĺınica. Por ello, este trabajo se ha dividido en dos partes. La primera

parte presenta un aprendizaje supervisado de diferenciación de subtipos de caracteŕısticas de

cáncer de pulmón en un espacio latente construido con un autocodificador variacional. En

dicho espacio, los patrones complejos se cuantifican mediante la estimación de un grado de

diferenciación de las caracteŕısticas codificadas t́ıpicas de los subtipos de cáncer de pulmón.

Luego, un modelo de regresión loǵıstica asigna un grado de diferenciación del subtipo de

cáncer a las muestras de tejido codificadas. Este enfoque construye un grado de diferen-

ciación de subtipos de cáncer de pulmón de células no pequeñas entre estructuras complejas

que son totalmente interpretables e integrables con un flujo de trabajo de patoloǵıa. Fi-

nalmente, la segunda parte presenta un enfoque computacional no supervisado basado en

un conjunto de codificadores automáticos variacionales especializados en tejidos, que fueron

entrenados por subtipo de histopatoloǵıa, para construir una representación de imagen de

tejido codificada no supervisada. Esta representación se usó para entrenar un clasificador

Random Forest para distinguir entre tres subtipos histológicos de adenocarcinoma de pulmón

(leṕıdico, papilar y sólido) y una proyección visualmente interpretable en 2D a partir de la

representación incrustada aprendida.

Palabras clave: Patoloǵıa Digital, Representación de tejidos, Histopatoloǵıa, Autocodifi-

cador Variacional, Adenocarcinoma de pulmón, Cáncer de pulmón.
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1 Introduction

According to the most recent report from the Global Cancer Observatory (GLOBOCAN),

lung cancer was the second most common type of cancer in 2020, accounting for 11.4% of all

cancer cases, but was the leading cause of cancer deaths with 18% of all deaths worldwide,

likewise, the 5-year survival of patients with lung cancer is estimated to be 10 to 20 percent

for most countries [8]. Lung cancer is mainly divided into two types: non-small cell lung

cancer (NSCLC), causing about of 85% of all diagnosed cases (see Figure 1-1), and small

cell lung cancer (SCLC), with an incidence about of 15% [8, 9]. SCLC is the most aggressive

form of lung cancer and is closely related to smoking. These types of tumors have a worse

prognosis because the cancer cells quickly spread to other parts of the body. On the other

hand, NSCLC is more frequent in non-smokers and is associated with a better prognosis [1].

Figure 1-1: Left side: Fine-needle aspiration biopsy of the lung. A small piece of tissue
is removed using several computed tomography (CT) images and is then examined under a
microscope. Right side: The main types of NSCLC and their common location. Adenocarci-
noma is located mainly in the peripheral zone and in the upper lobes of the lung. Squamous
cell carcinoma is located mainly in central areas, originating in the bronchi [1]. Adapted
from: Lung Biopsy. National Cancer Institute. Accessed November 25, 2022.
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However, only a small proportion of patients with NSCLC, less than 20%, are diagnosed in

early stages of the disease whereas in most cases, more than 47%, are diagnosed in later stages

(stage III/IV), where lymph nodes or distant organs are involved, significantly affecting their

survival [10].

1.1 Lung Cancer differentiation

NSCLC is subdivided into several histological subtypes (see Figure 1-2), with adenocarci-

noma (ADC) being one of the most frequently diagnosed among them, whose incidence is

estimated to be close to 40%; followed by squamous cell carcinoma (SCC), with an incidence

around 30% of all cases [11, 12, 13]. Several studies have demonstrated the importance of

differentiating NSCLC subtypes [14] since available treatments are different depending on

the histological subtype [15]. Also, early characterization of NSCLC is crucial to determine

patient prognosis and survival [16].

Figure 1-2: The main types of lung cancer and their estimated incidence. Adapted from:
Bender, E. (2014) [2]

Patient prognosis is estimated according to the tumor grade and is typically based on its

architecture and cellular features. In other types of cancer, there are well-established tumor

grading methods associated with prognosis, such as the case of the Gleason Score for prostate

cancer [17]. However, this is not the case in lung cancer because grading is subjective by
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pathologists and it is currently determined on a spectrum from well-differentiated (grade 1)

to the most poorly-differentiated (grades 3 or 4), also, grading lacks any specific guideline

or assessment system that allows its differentiation [18]. For this reason, recent studies have

explored the relationship between histological subtypes of NSCLC and its aggressiveness

[14, 19, 20]. However, the design of a quantitative measure that reflects the differentiation

between histological subtypes of NSCLC and the need to characterize them remains a chal-

lenge.

Pathologists analyze tissue samples under the microscope by looking for cellular and tissular

patterns and morphology to describe and interpret the findings in order to determine the

diagnosis and tumor subtypes [21]. Thus, the histological subtype of NSCLC and its infil-

tration are generally described in the cancer diagnosis. Because of this, it has been reported

that ADC, the main diagnosed subtype of NSCLC, currently is mainly divided into five his-

tological subtypes (see Figure 1-3), which include lepidic, acinar, papillary, micropapillary

and solid [22]. It has been observed that histological subtypes of ADC are related to prog-

nosis, reason why the World Health Organization (WHO) recommends classifying ADC into

four grades: well-differentiated (Grade 1), moderately-differentiated (Grade 2), and poorly-

differentiated (Grades 3 or 4), based on histological subtype and its infiltration, as shown

in the Table 1-1. However, subtype characterization and tissue grading are intrinsically

subjective and vary due to a lack of a specialized grading system and pathologist expertise

[15, 23, 24].

Figure 1-3: The five main histological subtypes of ADC correlate with its most common
prognosis. The lepidic pattern is the least aggressive and has the best prognosis, the acinar
and papillary patterns are considered intermediate, and the micropapillary and solid patterns
are the most aggressive and are generally associated with the worst prognosis. Adapted from:
Kuhn, E. (2018) [3].
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Table 1-1: Histopathologic grading scheme for ADC proposed by the International Asso-
ciation for the Study of Lung Cancer Pathology Committee (IASLC) [6]. However, since
grading systems have not been established for all histological types of lung cancer, its repro-
ducibility and prognostic significance have not been rigorously tested [6, 7].

Grade Description

Grade Xa Cannot be assessed
Grade 1 Well-differentiated (lepidic-predominant with no or < 20% high-grade pat-

tern)
Grade 2 Moderately differentiated (acinar or papillary-predominant with no or <

20% high-grade pattern)
Grade 3 Poorly differentiated (any tumor with ≥ 20% high-grade pattern (i.e.

solid, micropapillary, cribriform, or complex glandular pattern)
Grade 4a Undifferentiated

a Grading scheme used for the American Joint Committee on Cancer (AJCC) [7].

Additionally, the accurate interpretation can occasionally be a challenge, particularly in

poorly-differentiated cases [25], in which cells preserve a normal appearance, and generally

tend to grow slowly. In contrast, in high-grade cancers, cells grow rapidly and abnormally

in different regions, resulting in a worse prognosis, and may require different treatments de-

pending on the subtype and tissue infiltration [26]. The incidence of NSCLC varies widely,

and it is common that there are not enough samples for each histological subtype. This

is due to the inherent difficulty of characterizing some tissue samples as they usually con-

tain mixtures of histological patterns and unspecified tissues [27]. In fact, the mixture of

histological subtypes is challenging and alters the patient diagnosis and prognosis [28].

1.1.1 Morphological features

In lung cancer, radiological examinations are the first line to determine the nature of the

disease, since they are non-invasive methods. However, the main disadvantage of this type

of imaging is that it does not provide enough information to accurately determine the extent

and characteristics of the disease, so histopathological analysis remains the gold standard in

the diagnosis of cancer [15].
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Figure 1-4: Comparison of the main morphological features of healthy lung tissue and
the histological subtypes of ADC. Adapted from: Adenocarcinoma overview, by Pathology
Outlines, 2019 [4].

Tumor tissue grade and its aggressiveness are determined by cellular and tissular features

(see Figure 1-4) [21]. The lepidic pattern is composed of generally soft cells that grow along

the alveolar walls, and in general, the invasive foci contain characteristics such as malignant

glands, too-small alveoli, angulated or branched, and the presence of an interstitial desmo-

plastic reaction. The acinar pattern is mainly composed of neoplastic glands arranged in

acini. These structures can be small tubules, angulated and branching cords, and even more

complex irregular glands. Occasionally, the acini collapse so that the acinar pattern is diffi-

cult to recognize. The papillary pattern contains neoplastic cells lining fibrovascular nuclei

of variable size and branching, whose neoplastic cells are generally cuboidal or columnar.

The micropapillary pattern is mainly composed of papillary tufts that can fold on the alve-

olar surface, float within the alveoli, and even infiltrate the stroma. The solid pattern is

composed of solid nests, sometimes with a vaguely scaly appearance. The cell cytoplasm can

be light, dark, eosinophilic, or basophilic, and the nuclei are usually highly pleomorphic. In

some cases, immunohistochemistry must be applied to differentiate it from other subtypes

such as non-keratinizing SCC [3, 29].

1.1.2 Incidence and predominance

Currently, there are no detailed global studies about the incidence of histological subtypes

of ADC and its differentiation, hence these incidences can only be estimated in isolated
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studies. For example, in Gengpeng et al. [30], lepidic and acinar predominant subtypes are

analyzed in a cohort about of two thousand patients, where the incidence was 0.72% and

0.45% respectively. In Kadota et al. [31], a retrospective study is performed with about one

thousand patients diagnosed with ADC and classified according to the predominance of their

histological subtypes, finding that 10% of the cases had lepidic predominance, 40% acinar,

23% papillary, 6% micropapillary, 13% solid and 4% mucinous. In Kinno et al. [32], about

of two thousand patients were selected in which 34.8% were characterized with predominant

papillary histological subtype, 19.7% predominant lepidic, 12.7% predominant solid, 9.3%

predominant acinar, 6.3% predominant micropapillary, and 3.9% mucinous. Characteriza-

tion of histological subtypes of ADC is critical to guide patient treatment and prognosis.

However, this task is often challenging due to the heterogeneous nature of ADC and the

subjective criteria for evaluation, added to the proportion of difficult cases, such as those

mixed, that is, those that present two or more predominant patterns, and the cases with

unspecified or poorly differentiated patterns.

Due to the heterogeneity of NSCLC data, a collaboration between pathologists and engineers

is typically required to build artificial intelligence (AI) models that exploit the potential of

the data. Data-driven models have the advantage of offering a greater interpretation ca-

pacity thanks to the knowledge provided by pathologists, a feature that differentiates them

from the main deep learning (DL) models. While the latter models are still considered a

black box in understanding the nature of the disease, data-driven models allow the active

participation of experts to, among other things, define the regions of interest and interpret

the results [15].

1.2 Deep Learning in lung cancer

Computational approaches have demonstrated the potential to learn the typical patterns

that characterize the histological subtypes of NSCLC, as well as, to guide pathologists and

oncologists for improving the accuracy of medical diagnosis [33]. The development of compu-

tational pathology tools for quantitative diagnosis support and histological tumor subtypes

characterization from histopathology digital images could help to reduce the time needed to

identify and interpret findings, allowing pathologists to spend time in other aspects of clinical

and pathological workflow or cancer research, such as image-based biomarker interpretation

and discovery, or design a tissue-based grading system to improve the estimation of patient

prognosis [34, 35, 36].

The current rise of digital pathology and digitized histopathology slides have made possible

to integrate different AI and machine learning (ML) models to analyze and perform tasks for

diagnosis support. Several works have used computational models in pathology with data

from the most common types of cancer such as breast [37, 38] or prostate [39, 40]. In most
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of them, convolutional neural networks (CNN) have been implemented because their ability

to learn all kinds of patterns on images. For example, Litjens et al. [41], trained a CNN

with prostate and breast cancer cases to improve histological diagnosis in biopsies with early

metastases. Veeling et al. [42] proposed a CNN model to detect tumors in a set of lymph

node metastasis images; and Mukhopadhyay et al. [43], selected a sample of patients and

developed different automatic methods to perform the main diagnostic tasks, concluding

that the results obtained by the models were above those obtained in traditional methods

involving microscopic examination.

Computational models designed to perform different tasks, such as classification, detection

or segmentation, using data from NSCLC subtypes have grown progressively [44]. The most

common CNN-based models are pretrained architectures from natural images (e.g., Ima-

geNet) such as ResNet50 or InceptionV3 tuned to perform tasks such as NSCLC histological

subtype classification [14, 45]. Other more specialized ones, such as UNet [46], are used

for tissue-type segmentation tasks in digital histopathology images [47]. Although there are

many applications, these types of DL models are generally not interpretable [48], so their

acceptance in clinical practice is still a matter of discussion. In addition, many of them

depend on a large amount of annotated data to be trained by supervised approaches and

get a good performance [49]. However, in some applications, such as cancer histopathology

images, large amounts of annotated data are not available, which is why some recent meth-

ods have made efforts to make the most of the small amount of data available to learn its

features and perform several tasks. These DL models are generally considered unsupervised

[50, 51, 52], semi-supervised [53, 54] or data-driven models [55, 56, 57], since they take full

advantage of the complexity and representativeness of the small amount of data, obtaining

results comparable to classical supervised methods.

1.2.1 Histological subtype classification

Particularly, in lung cancer, the characterization of histological subtypes of NSCLC has been

explored. In Coudray et al. [14], a deep learning model for automatic analysis of histological

subtypes of NSCLC was developed with data retrieved from The Cancer Genome Atlas

(TCGA) and own cohorts. The data include images that correspond to frozen tissues and

associated genetic information. The authors demonstrate the capacity of a CNN model to

support lung cancer diagnosis in difficult-to-diagnose cases, and also the associated genetic

information contributes to improve the model performance by providing additional features

to characterize the disease.

In other approaches, Gertych et al. [19] implemented a CNN to characterize four histological

patterns of ADC (acinar, micropapillary, solid, and cribriform). There, they compared

the results obtained by the model with the interpretation described by pathologists and

determined that machine learning models, such as CNN, have the potential to distinguish
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the histological subtypes of ADC and their growth patterns, as well as to help pathologists

to quantify them. Wei et al. [20] implemented a CNN to classify the main histological

subtypes of ADC (lepidic, papillary, micro-papillary and solid) and compare the results

obtained with the annotations made by pathologists. They concluded that their model

had the potential to classify histological subtypes of ADC and assist pathologists in clinical

practice by pre-scanning the image and highlighting regions of diagnostic interest. Yu et

al. [58] developed a CNN for classifying NSCLC images using genetic information. Their

main goal was to quantitatively characterize histopathology images to identify tumor regions

and their histological subtype. Their approach objectively estimates histological patterns

that characterize NSCLC, which in turn serves as a support system for pathologists in the

evaluation of lung cancer.

1.2.2 Tissue segmentation

Given the high variability of histological subtypes of NSCLC, recent efforts have emerged

to properly characterize them. Recently, international challenges have emerged in retrieving

difficult-to-characterized NSCLC data available on TCGA. One of the most recent is the

WSSS4LUAD [59], organized by The 5th International Symposium on Image Computing

and Digital Medicine (ISICDM 2021), in which it was sought to characterize some types of

tissue in ADC images, such as, tumor epithelial tissue, tumor-associated stroma tissue and

normal tissue, using only image-level annotations with a set of 67 ADC images retrieved

from Guangdong Provincial People Hospital (GDPH) and 20 ADC images retrieved from

TCGA, one image per patient. Participants were expected to be able to design robust

computational models using the small amount of available data to segment the three tissue

types with the provided images. The designed computational models proved to be a feasible

solution to replace the manual characterization of the tissues, being of great interest to

reduce annotation efforts. In addition to the multiple applications and promising results in

the characterization and differentiation of cancer, computational models in digital pathology

are including pathologists and oncologists as guarantors of their operation and as support

to develop more specialized models that allow understanding of the nature of pathologies

[59, 20].

Computational models of DL contribute to improve the clinical workflow, since they allow the

automation of different tasks that are normally time consuming, in addition to supporting

decision-making of diagnostic interest for diseases such as NSCLC. Although the difficulties

in applying this type of techniques in clinical practice are well known, regulations have

recently been approved that allow its implementation [60], hence there is a growing interest

in interpreting its results [61]. For this reason, unlike DL-based AI models, data-driven

models combine visual representations of the data with the expertise of pathologists to

interpret the results and thereby, among other things, stratify risk and predict response to
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treatments [20, 62].

1.2.3 Unsupervised feature/image representation

Histopathology image analysis using AI models, particularly in DL field, has encouraged

the growth of image analysis techniques that automatically extract relevant features using

data-driven approaches [20]. The introduction of these types of techniques, and their abil-

ity to identify pathological features that contribute to diagnosis, prognosis, and prediction,

could help pathologists to guide the patient treatment and prognosis [33]. The prognosis

consists of stratifying patients taking into account the diagnosis or progression of the dis-

ease, by allowing clinicians and oncologists to make the necessary decisions for their correct

treatment. In this sense, the potential of AI models lies in providing the necessary tools to

identify complex patterns and support clinical decision-making that guides the selection of

the appropriate treatment for each type of disease [15, 58].

Autoencoders

Autoencoders (AE) are a type of architecture used in dimensionality reduction processes

(see Figure 1-5). There are three main components of an AE: an encoder, a latent feature

representation, and a decoder. In most typical architectures, the encoder and decoder are

neural networks [63].

Figure 1-5: A typical architecture of an AE. The encoder e encodes the input information,
from the original space to the representation space z, also called latent space, and then the
decoder d decompresses the information. Adapted from Rocca (2019) [5].

The AE tries to reproduce the given input as an output. The learning procedure then consists

of learning the encoder and decoder functions simultaneously, minimizing the reconstruction

loss:
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Loss = ||x− x̂||2 = ||x− d(z)||2 = ||x− d(e(x))||2 (1-1)

where, the reconstruction loss is the difference between the model’s output x̂ and its input

x, penalizing d(e(x)) for being dissimilar to x [64]. Depending on the input information,

the compression can be lossy, that is, a part of the information is lost during the encoding

process and cannot be recovered during the decoding process [5].

Variational Autoencoders

The Variational Autoencoder (VAE) is a variant of the classical AE architecture, where

instead of a deterministic function, the latent space is regularized by encoding the input as

a mixture of Gaussian distributions in order to return the mean and variance values that

describe these Gaussians [65]. In this sense, the distributions returned by the encoder are

enforced to be close to a known distribution, a standard normal distribution [64, 5].

Figure 1-6: A typical architecture of a VAE. In this case, the latent space is regularized by
encoding the input as a mixture of Gaussian distributions. Adapted from Rocca (2019) [5].

Therefore, e and d can also be thought of as conditional probability distributions. So, the

loss function is composed of two terms: a reconstruction term and a regularization term.

The reconstruction, as in an AE, is the difference between the output and the input of the

model. Otherwise, the regularization term is the Kullback-Leibler (KL) divergence between

the estimated probability distribution of the data and a reference distribution, a standard

normal distribution. This function tries to force the encoder network to be as similar as

possible to the reference distribution [64].
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Loss function and regularization

The optimization objective of a VAE, as in other variational methods, is the evidence lower

bound, abbreviated as ELBO. In general, the ELBO is derived through Jensen’s inequality

(see Annex A) [65]. It brings the distributions returned by the encoder close to a chosen

distribution, e.g., normal standard:

ELBO = −1

2

J∑
j=1

(1 + (σ2
j )− (µ2

j)− (eσ
2
j ))︸ ︷︷ ︸

Regularization

+
D∑
i=1

xi log x̂i + (1− xi) log(1− x̂i)︸ ︷︷ ︸
Reconstruction

(1-2)

where, the regularization term is the result of the approximation for a Gaussian assumption,

and the reconstruction term is the definition of the binary cross entropy (see Annex A).

Additionally, if one wants to regularize the latent space taking into account the compromise

between the reconstruction and the form of the regularized space, Higgings et.al. (2017) [66]

explore an approach that introduces an adjustable hyperparameter β that modulates the

learning constraints applied to the model, while balancing the trade-off between the model

capability to reconstruct the input image and the understanding of representation space. If

the value of the parameter β = 1, corresponds to the base model of the VAE [67], with β > 1,

the model is pushed to learn a more efficient latent representation for the data, untangling

the generated space. On the contrary, if β < 1 the model tries to reconstruct the input data

in a better way.

1.3 Contributions and Academic Products

This work addresses a data-driven computational strategy to characterize the histological

patterns of lung cancer, in addition to determining its differentiation and aggressiveness, in

order to support decision-making in clinical practice. The main contributions of this work are

the construction of a representation space based on the learning of a variational autoencoder

in order to quantify the patterns that identify the subtypes of non-small cell lung cancer, in

addition to estimating the differentiation grade of each subtype. Moreover, an ensemble of

variational autoencoders specialized in several histological subtypes of lung adenocarcinoma

is explored, which allows characterizing them from few learned features. The publications

presented as part of this thesis are mentioned in the next section (see Section 1.3.1).

1.3.1 Academic products

Results of this work were published in:
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• Fabian Cano, Charlems Alvarez-Jimenez, David Becerra, Andres Siabatto, Angel

Cruz-Roa, Eduardo Romero. A supervised subtype differentiation learning for build-

ing invariant features of non-small cell lung cancer in a latent space of a Variational

Autoencoder. Proc. SPIE 12088, 17th International Symposium on Medical Infor-

mation Processing and Analysis - SIPAIM 2021, Campinas (Brazil), November 2021.

doi.org/10.1117/12.2606255

• Fabian Cano, Charlems Alvarez-Jimenez, Eduardo Romero, Angel Cruz-Roa. En-

semble of unsupervised learned image representations based on variational autoencoders

for lung adenocarcinoma subtypes. Submitted to the 20th IEEE International Sympo-

sium on Biomedical Imaging - ISBI 2023, Cartagena de Indias (Colombia), April 2023.

Additional related work:

• Fabian Cano, Angel Cruz-Roa. Analysis of a semi-supervised learning algorithm

of self-training based on convolutional neural networks in breast cancer histopathology

images. Submitted as poster to the 17th International Symposium on Medical Infor-

mation Processing and Analysis - SIPAIM 2021, Campinas (Brazil), November 2021.

1.4 Organization of this thesis

The remaining chapters of this thesis are organized as follows:

• Chapter 2: A supervised subtype differentiation learning of NSCLC. This

chapter presents a supervised subtype learning approach of histopathology tissue sam-

ples, using typical tissue samples, from ADC and SCC, selected by expert pathologists.

The basic idea is to use a variational autoencoder to construct a latent space and to

project onto it a selection of typical histopathological patterns which may describe

objectively variations of these patterns. The ADC and SCC images of tissue samples

were observed to map at different locations of the latent space and grouped around

very different regions in a 2D projection. Finally, the differentiation grade is estimated

for each example and stratified according to the typical features of each cancer subtype

(ADC and SCC).

• Chapter 3: Ensemble of image representations for ADC subtypes. This

chapter presents a computational pathology approach based on an ensemble of tissue-

specialized variational autoencoders, each of them trained with the associated histopathol-

ogy ADC subtype, i.e., lepidic, papillary and solid. This approach aims to build an

unsupervised embedded tissue-image representation used to: 1) train a Random For-

est tissue classifier of ADC subtypes, and 2) construct a 2D projection that is visually

interpretable of tumor tissue sample distribution of ADC subtypes in the embedded
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space. The proposed approach of unsupervised embedded tissue-image representation

allows a good histopathology ADC subtypes differentiation, and a semantic spatial

distribution of tissues into embedded space, placing typical isolated histopathology

patterns of ADC subtypes (e.g. lepidic and solid) in the periphery, and untypical

and mixtures of histopathology patterns (e.g. papillary) in the central zone. These

two characteristics could help pathologists by providing more quantitative, objective

and interpretable tools of computational pathology for diagnosis support in the more

challenging and relevant tumor differentiation among histopathology ADC subtypes.

• Chapter 4: Conclusions and perspectives. This final chapter presents the main

conclusions of this thesis, highlighting the main contributions, the most important

findings and their impact on research and practical areas. Finally, future research

directions and perspectives are presented and discussed.



2 A supervised subtype differentiation

learning of NSCLC

This chapter presents a supervised subtype differentiation learning of lung cancer features

in a latent space constructed with a variational autoencoder. Specifically, selected tissue

samples of NSCLC are mapped to a latent space and a logistic regression model assigns

differentiation cancer subtype grade to the embedded tissue samples. Typical tissue samples

of well-differentiated lung cancer subtypes are grouped close in the latent space with high

confidence of the differentiation grade, while poorly differentiated tissue samples, with lower

confidence of the differentiation grade, are located at other latent space regions. The best

variational autoencoder achieves an average performance of MAE = (0.072 ± 0.0004) and

RMSE = (0.2654 ± 0.0019). These results demonstrate this type of representation may

capture a reduced set of histopathological invariants, use them to quantify complex patterns

and improve the reproducibility of certain estimations. A complete version of this chapter has

been accepted for publication as a research article in the proceedings of 17th International

Symposium on Medical Information Processing and Analysis (see reference [68]).

2.1 Introduction

According to the World Health Organization (WHO), lung cancer was the most common

type of cancer worldwide in 2018 [69]. It is mainly divided into two subtypes, being non-small

cell lung cancer (NSCLC) the most frequent with about 85% of incidence [1]. This neoplasia

is subdivided into adenocarcinoma (ADC) and squamous cell carcinoma (SCC) [11], each

characterized by well-defined features. ADC is the most frequently diagnosed and is usually

located at the lung periphery [12]. SCC is less frequent, with about 30% of incidence, and

it is generally located at the central region of the lung, close to the bronchi, reason why it is

considered more aggressive than ADC [12].

Several studies have shown how important is to differentiate these NSCLC subtypes [14],

because the available treatments are different for each cancer subtype. In addition, early

characterization of lung cancer is crucial to guide prognosis and clinical management of pa-

tients.
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Diagnosis of a cancer subtype is reached with a tissue obtained by a biopsy that passes

through a histological process, and it is subsequently evaluated by a pathologist [70]. This

assessment includes a staging of the disease long before administering any treatment. For

most cancers, the degree of the disease is determined, aiming to establish the abnormality

level of the cancer cells. However, this complex process is dependent on the pathologist

expertise, and yet the final level of quantification is too poor, despite many variables for

the patient management depend on it, namely the recurrence risk, the response to the treat-

ment, the prognosis and the disease evolution [23]. In low-grade (well-differentiated) cancers,

cells look practically normal and they generally tend to grow slowly. In high-grade (poorly

differentiated) cancers, cells are very different from normal ones. In this case, it is common

to observe an accelerated growth of the tumor region and having a worse prognosis, which

is why they may require different treatments [71]. Overall, cell types define treatment and

prognosis, for example if the neoplasm exhibit mixtures of squamous cells and adenocarcino-

mas the diagnosis will be less accurate. In fact, the grade of poorly differentiated samples is

more challenging and usually the sample shows SCC and ADC pattern combinations because

the close- and mix- related histopathological features [27, 28].

Evaluation of the extent, aggressiveness and severity of cancer is still a very subjective task,

yet it is at the very base of any decision. Pathologists usually quantify observations by

subjectively assigning the percentage of a particular pattern, i.e., 25%, 50%, 75% or 100%.

This analysis is complemented by descriptions of specific cellular and tissular features. This

methodology of course hinders many subtle patterns and limits the possibility of performing

quantitative population studies since these analyses are hardly comparable or reproducible.

There exists therefore a basic need of developing interpretable scores for quantifying com-

plicated histopathological patterns.

The present work presents a supervised subtype learning approach of histopathology tissue

samples, using typical tissue samples, from ADC and SCC, selected by expert pathologists.

The basic idea is to use a variational autoencoder to construct a latent space and to project

onto it a selection of typical histopathological patterns which may describe objectively vari-

ations of these patterns. An autoencoder can be though of as a compression model which

preserves relevant information of the original data when mapping the input to a space with a

smaller dimension. A set of probability distribution functions approximate the structure of

this space and generate not only observations but synthetic occurrences. Overall, the latent

space representation of an autoencoder is linear since the projected sample may be propa-

gated back to the original space of image samples and a linear combination of parameters

produce a synthetic histology image sample.

Specifically, a set of typical patches of each pathology, patches representing ADC and SCC

typical well-differentiated tissue patterns, were selected by an expert and projected to the

latent space. The ADC and SCC images of tissue samples were observed to map at different
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locations of the latent space and grouped around very different regions in a 2D projection.

Finally, the differentiation grade for each NSCLC subtypes between the actual images of

tissue samples of 256 × 256 × 3 pixels and stratifies them according to typical features of

each cancer subtype (ADC and SCC).

This paper is organized as follows: Section 2.2 introduces the methodology, Section 2.3

present the evaluation and results, finally, Section 2.4 present some conclusions.

2.2 Methodology

To the best of our knowledge, this is a first proposal to automatically establish a differenti-

ation tumor tissue grade between two quite complex pathological entities (ADC and SCC).

Variational Autoencoders (VAE) have shown to be useful for representation learning, data

generation and dimensionality reduction [72, 73]. This type of autoencoder captures the

invariant data relations and generates a linear representation of the high-dimensional data

into a low-dimensional space, thereby facilitating formulation of simple metrics in the la-

tent space [74, 75]. An aim of the present investigation was to construct a quantification

of differentiation grade of tumoral tissue samples by estimating the proportion of each can-

cer subtype from an actual histopathology workflow. For doing so, a dataset of patients

diagnosed with NSCLC (see Section 2.2.1) was used to train a VAE with a Gaussian prior

(see Section 2.2.2). The latent space generated by the mixture of Gaussian distributions

captures main invariants features of the subtypes of cancer by projecting each data into a

space with smaller dimension. Relationships of this latent space are described by a logistic

regression model (see Section 2.2.3) which estimates the staging and severity of the disease in

a set of selected tissue samples from independent set of histopathology cases of both NSCLC

subtypes.

2.2.1 NSCLC dataset

The dataset was then built from The Cancer Genome Atlas (TCGA) [76], a set of patients

diagnosed with NSCLC, one slide per patient was selected from which several WSI regions

of 1024 × 1024 pixels, diagnosed as typical of any of the two types of tumor (ADC and

SCC), were randomly extracted. For each WSI region, squared patches (tissue samples) of

256 × 256 pixels from the tumor region were extracted at a magnification of 20× with a

microns per pixel ratio (MPP) of 0.5015 (see Figure 2-1).

From the total of patches extracted automatically, typical patches of each class were manually

selected with the help of pathologists. Poorly differentiated patches, with artifacts such as

blurring or tissue with cellular absence, were discarded. In total, training set contains five

cases from which 89 patches were extracted for the ADC subtype and five cases from which
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78 patches were extracted for the SCC subtype. Testing set was built with ten different

cases, five diagnosed with ADC and five with SCC from which 200 patches of ADC and 200

of SCC were extracted, as shown in the Table 2-1.

Table 2-1: Distribution of cases and patches for ADC and SCC. Patches were selected by
expert pathologists.

Subtype
Training Testing

Cases Patches Cases Patches

Adenocarcinoma 5 89 5 200
Squamous Cell Carcinoma 5 78 5 200

Total 10 167 10 400

Figure 2-1: Sample image patch (tissue sample) of 256 × 256 pixels extracted from the
annotated region (shaded region) of a histopathology case of (ADC). Own source.

2.2.2 Variational autoencoder

A VAE is basically a strategy which compresses information into a space with reduced di-

mension, the latent space, and recoveries the original data by reversing, as far as possible,

the achieved compression. An interesting property of these methods is that they linearize

data relations in such latent space [77, 78], making possible the development of enriched

and more appropriate representations to attach and design quantitative and interpretable

methods.
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Basically, a VAE is a network composed of two coupled convolutional neural networks: an

input which encodes the data to a lower dimensional space, the latent space, and an output

which reconstructs original data from the probability distributions estimated in the latent

space (see Figure 2-2). Herein the encoder network consists of five convolutional blocks

(convolution and downsampling), a deep fully-connected layer, two fully-connected layers in

parallel and an output layer. Convolutional blocks reduce the input data dimension from

256 × 256 × 3 to 8 × 8 × 1024 pixels, while the deep fully connected layer extracts feature

maps to be processed by two fully-connected layers in parallel, one in charge of estimating

means and the other variances. These parameters are used by the output layer to construct

128 normal probability distributions, assuming the distribution of the latent space is approx-

imated by a summation of normal distributions [79].

The Parzen estimator constructs an isotropic Gaussian for each projected data in the mani-

fold and determines the density by observing the neighbors within the bounded region. The

decoder network processes the latent space by sampling an instance from the mixture of

Gaussian distributions. In this point, a fully connected layer interpolates the data to the

dimensions of the encoder network (8×8×1024), followed by five convolutional blocks (con-

volution and upsampling) connected to this layer with the same number of parameters as

the encoder network layers, i.e., the architecture of the encoder and decoder networks are

the same and likewise the number of parameters. However, the parameters learned by both

networks are not necessarily the same. The upsampling layers perform a data interpola-

tion taking into account the nearest neighbor to scale up the data to the original dimension

(256×256×3 pixels). The final result of the network is the reconstruction of the input data

from the sampling performed in the latent space.

Figure 2-2: VAE architecture. The input patch is encoded to built a 128-dimensional
latent space, where data is sampled and interpolated to reconstruct the patch to its original
dimension. Adapted from Rocca (2019) [5].
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Latent space

These VAE minimize the reconstruction error and capture main input data invariants in a

latent space which is approximated by a set of probability distributions, making possible to

generate not only observations but also synthetic examples. This latent space, after Parzen

approximation, consists of a set of normal distributions, reason why the loss function is com-

posed of two terms, a reconstruction term (in the decoder output layer) and a regularization

term (in the encoder output layer) (see Figure 2-3). The reconstruction term is the differ-

ence between the image reconstructed by the decoder network and the input image, while

the regularization term is expressed as the Kulback-Leibler divergence between the data

distribution in the latent space and a standard normal distribution. This term prevents the

model from encoding data too far apart in the latent space and the generated probability

distributions to overlap. By overlapping probability distributions, the generation of new

data shares common features.

Figure 2-3: The loss function is composed of a reconstruction term (which minimizes the
input-output difference between of the VAE) and a regularization term (makes the latent
space more regular). Adapted from Rocca (2019) [5].

2.2.3 Latent space representation for cancer subtype differentiation

A logistic regression model with the Limited-memory Broyden–Fletcher–Goldfarb–Shanno

(LBFGS) optimization method was implemented by taking as input the values generated

by the probability distributions of the latent space using the linear representation of 128

values of means and variance learned by the VAE. LBFGS optimization stores only the

latest updates of the second derivative of the matrix with gradient evaluations. The selected

image patches of well-differentiated tissue samples of ADC and SCC are mapped to different

regions in the latent space and a quantification of the differentiation grade of actual image

patches of 256 × 256 × 3 pixels are used to train the supervised method. Interestingly,

the image samples with high-confidence estimation of the differentiation grade are regions

with more typical patterns of a NSCLC subtype, either ADC or SCC, while patches with

low-confidence estimation of the differentiation grade were projected to the regions in the

latent space that exhibits complex mixtures of the two subtypes. This supervised subtype
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differentiation learning model stratifies patches with different and complex visual patterns

and histopathological characteristics of each NSCLC subtype and differentiation grade.

2.3 Results and discussion

2.3.1 Projections to the latent space

The two 128-dimensional latent spaces (mean and variance) generated by the VAE was pro-

jected into a two two-dimensional planes using the t-SNE (t-distributed Stochastic Neighbor

Embedding) dimensionality reduction technique with Barnes-Hut approximation.

Figure 2-4 plots corresponding mean and variance values of the projected patches. As

expected, the variance plots show better separability of the regions corresponding to the

variability of histopathology visual features in the latent space per each NCSLC subtype,

i.e. ADC (blue) or SCC (red). The areas with highest concentration of samples exhibit typi-

cal well-differentiation NCSLC subtype patterns (ADC or SCC), while values in the mixture

regions, and fuzzy frontier, contain poorly differentiation of NCSLC subtypes for complex

and more close proportions of the combinations of their histopathology tissue samples.

Figure 2-4: Graphs corresponding to the means and variances of the projected data in
the latent space. Representative data for each NCSLC subtype are concentrated in different
regions of the 2D-projected latent space. Own source.
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2.3.2 Measuring differences between ADC and SCC

SCC is a neoplasia of epithelial origin, morphologically characterized by keratinization and/or

intercellular bridges. ADC is also epithelium-originated, with varied architectural patterns,

i.e., acinar, papillary, micropapillary and lepidic. However, tumors with a lower degree of

differentiation show fuzzy or confused SCC and ADC visual features, case in which squamous

or glandular identification is made by immuno-histology [80].

Qualitative results

Examples were selected for each NCSLC subtype and projected to the latent space (see

Figure 2-5). Patches A and B are examples of the ADC subtype, the first located in the

region with highest ADC concentration corresponding to well-differentiated ADC region

in the latent space, while the second at the poorly differentiated region with mixture of

ADC and SCC. Patches C and D correspond to examples of the SCC subtype, the first

located at the poorly differentiated region with mixture of ADC and SCC, it exhibits areas

of keratinization, but also artifacts which simulate glandular patterns. Finally, patch D is

located near the well-differentiated SCC region in the latent space, showing typical SCC

patterns such as the intercellular bridges.

Figure 2-5: Projected ADC and SCC examples in a 2D-plane by t-SNE. Patches with
typical characteristics are concentrated around the same latent space region projected while
poorly differentiated patches are located in the mixture regions of the latent space projection.
Own source.
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Quantitative results

The validation results with the performance measure of the generalization capability of the

presented approach is presented. A logistic regression model estimates the differentiation

grade of NCSLC subtypes using the invariant patterns of the tissue samples. Several runs

of random five cross-validation was performed selecting six cases (three per NCSLC sub-

type) with their corresponding tissue samples for training and four cases (two per NCSLC

subtype) for validation to explore the regularization parameter of logistic regression model.

Performance measures Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

were calculated. The best model in cross-validation was obtained using C = 0.1 reaching an

average performance of MAE = (0.072 ± 0.0004) and RMSE = (0.2654 ± 0.0019). Thus,

a logistic regression model was trained with the full training set of six cases with the best

parameter in cross-validation step. Finally, using an independent testing data of lung cancer

for evaluation, the model achieves a performance of MAE = 0.2275 and RMSE = 0.477.

Figure 2-6 shows some examples of the quantification of image patches to estimate the dif-

ferentiation grade for each NCSLC subtype by the logistic regression model. The probability

of belonging to one of the two classes is shown at the top of each example. Patches with

SCC well-differentiated features are located at the extreme left, with a higher probability of

belonging to the class.

Figure 2-6: Examples of results obtained with the logistic regression model with the train-
ing set. The well-differentiated image patches of each NCSLC subtypes are located at the
extremes, SCC on the left side (red) and ADC on the right side (blue), while the poorly
differentiated patches are located in the center of the graph. Own source.
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Pathologists analysis

Patches A and C show keratinization, while patch B exhibits intercellular bridges, typical of

SCC with the highest value of SCC = 0.9803. Patches D and F, despite being SCC patches,

show ADC features, namely pseudo-glandular spaces similar to the ADC acinar pattern, that

explains the lower values of SCC. The cellular arrangement around the structures observed

in patches I and J, correspond to the ADC class and the higher value of ADC. Patch F shows

a poor differentiated pattern, the like-glandular structure together with the absence of SCC

features with the corresponding lower value of SCC.

Features in patches E and G are unspecific and no classification was possible, as in patch G,

where nuclei are small, crowded, with scant cytoplasm and with no structures of glandular

lineage, represented in the closed valued for ADC = 0.5539 and SCC = 0.4461. On the

other hand, patch E exhibits few areas of keratinization. Patches K and L, ADC patches,

show well-differentiated features of ADC like rows of columnar cells, a central eosinophilic

structure and nuclear polarization towards the periphery, in addition, patch K shows a

lepidic pattern, which explains the higher values of ADC for both K and L patches. All

these features suggest the adenocarcinoma subtype.

Finally, patch H, typical of the ADC class, contains a wide area of eosinophilic extracellular

material that could simulate the presence of keratinization, a typical pattern of the SCC

class, which corresponds to the wrong characterization by the model and it explains the

lower value of 0.2783 for ADC.

2.4 Conclusions

This investigation explored a novel approach to quantify the differentiation subtype of non-

small cell lung cancer lesions, using patterns learned by a variational autoencoder. The latent

space generated by the VAE allows the development of enriched and more appropriate repre-

sentations to attach and design quantitative and interpretable methods. A logistic regression

model quantify the differentiation subtype of image patches with different histopathology vi-

sual patterns, characteristic of each NCSCLC subtype (ADC or SCC).

It was found that the representative well-differentiated patterns of each NCSCLC are con-

centrated in the same regions of the latent space with highest concentration of samples,

and poorly differentiated image patches or with mixed histopathology features of both NC-

SCLC subtypes are concentrated in other mixture regions in the latent space. This early

and promising results envision the possibility to quantify the proportion of complex tissue

cancer subtypes thanks of a pathologist’s data-addressed learning approach of a supervised

subtype differentiation learning of non-small cell lung cancer to include reproducible and

quantitative properties in computational pathology workflow.



3 Ensemble of image representations for

ADC subtypes

This chapter presents a novel unsupervised computational approach based on an ensemble of

tissue-specialized variational autoencoders, which were trained to differentiate the main his-

tological ADC subtypes, and build an unsupervised embedded tissue-image representation.

Each VAE encodes the information and specializes in building a representation of a sample

of input images from the same tissue subtype. Subsequently, they are concatenated to build

a final tissue descriptor based on the patterns learned by each VAE. This representation was

used to train a Random Forest classifier of three lung adenocarcinoma histology subtypes

(lepidic, papillary and solid), and a 2D-visually interpretable projection from the learned

embedded representation. Experimental results achieve an average F-score of 0.72± 0.05 in

the test dataset and a well-separated 2D visual mapping of tissue subtypes. This approach

demonstrated that specialized models could be obtained with a small randomly selected data

sample, and therefore, how the representation versatilely allows its use to distinguish among

ADC histological subtypes with high throughput and low variance. A complete version of

this chapter was submitted for presentation as a research article in the 20th IEEE In-

ternational Symposium on Biomedical Imaging - ISBI 2023, which will be held in

Cartagena de Indias, Colombia, April 18-21, 2023.

3.1 Introduction

Lung adenocarcinoma (ADC) is one of the most frequent types of non-small cell lung can-

cer (NSCLC), whose incidence is estimated to be close to 40%; followed by squamous cell

carcinoma (SCC), with an incidence around 30% of all cases [11, 12]. Several studies have

demonstrated the importance of discriminating NSCLC subtypes [14] since available treat-

ments are different depending on the histological subtype [15]. Particularly, ADC exhibits

different patterns known as histological subtypes which include lepidic, acinar, papillary, mi-

cropapillary and solid [22], as shown in the Figure 3-1. Each pattern has a known prognosis

and aggressiveness [19]. Lepidic pattern is the least aggressive and has the best prognosis,

acinar and papillary patterns are considered intermediate, and the micropapillary and solid

patterns are the most aggressive and are generally associated with the worst prognosis.
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Figure 3-1: The five main histological subtypes of ADC correlate with its most common
prognosis. Adapted from: Kuhn, E. (2018) [3].

Precise and early characterization of NSCLC is crucial to determine patient prognosis and

survival [16]. However, the incidence of NSCLC subtypes varies widely, whereby there are

some subtypes more common than others, and since about 80% of ADC cases contain a

mixed spectrum of multiple histological patterns and unspecified tissues [27]. In addition,

patient prognosis is estimated according to tumor grade, which is typically based on tissue

architecture and cellular characteristics. Different from other types of cancer, e.g., breast or

prostate cancer, in lung cancer (LCa) there is no standardized grading score system. There-

fore, tumor differentiation and grading process is subjective by pathologists and currently

determined on a spectrum going from well-differentiated (grade 1) to poorly-differentiated

(grades 3 or 4) [18]. In fact, the qualitative criteria used to differentiate histological patterns

tend to induce variability among pathologists [81, 20].

Previously, computational pathology approaches have reported the potential to learn typical

patterns that characterize the NSCLC histological subtypes, as well as, to guide pathologists

and oncologists in improving the accuracy of medical diagnosis [33]. For instance, Coudray

et al. [14] developed a deep learning model for automatic analysis of NSCLC histological

subtypes using data retrieved from The Cancer Genome Atlas (TCGA) and proprietary co-

horts. This work demonstrated the capacity of a convolutional neural network (CNN) to

support LCa diagnosis in difficult-to-diagnose cases. Likewise, Gertych et al. [19], imple-

mented a CNN to characterize four ADC histological patterns, i.e., acinar, micropapillary,

solid, and cribriform. The authors presented a comparison between results obtained with a

CNN model and pathologist interpretation, showing how machine learning models like CNN
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have the potential to distinguish ADC histological subtypes and the associated growth pat-

terns. Similarly, Wei et al. also implemented a CNN to differentiate four ADC histological

subtypes (lepidic, papillary, micropapillary and solid) and compared the results with patholo-

gist annotations, concluding their model had the potential to classify the subtypes and assist

pathologists in clinical practice by pre-scanning the image and highlighting regions of diag-

nostic interest. Also recent efforts have emerged, such as the challenge WSSS4LUAD [59],

organized by The 5th International Symposium on Image Computing and Digital Medicine

(ISICDM 2021), in which it was sought to characterize some types of tissue in ADC images.

The designed computational models proved to be a feasible solution to replace the manual

characterization of the tissues, being of great interest to reduce annotation efforts. In addi-

tion to the multiple applications, computational models in digital pathology are including

pathologists and oncologists as guarantors of their operation and as support to develop more

specialized models that allows to understand the nature of pathologies [20, 59].

This work introduces a computational pathology approach based on an ensemble of tissue-

specialized variational autoencoders, each of them trained with the associated histopathology

ADC subtype, i.e., lepidic, papillary and solid. This approach aims to build an unsupervised

embedded tissue-image representation used to: 1) train a Random Forest tissue classifier

of ADC subtypes, and 2) construct a 2D projection that is visually interpretable of tumor

tissue sample distribution of ADC subtypes in the embedded space. Our proposed approach

of unsupervised embedded tissue-image representation allows a good histopathology ADC

subtypes differentiation, and a semantic spatial distribution of tissues into embedded space,

placing typical isolated histopathology patterns of ADC subtypes (e.g. lepidic and solid)

in the periphery, and untypical and mixtures of histopathology patterns (e.g. papillary)

in the central zone. These two characteristics could help pathologist by providing more

quantitative, objective and interpretable tools of computational pathology for diagnosis sup-

port in the more challenging and relevant tumor differentiation among histopathology ADC

subtypes.

3.2 Methodology

3.2.1 ADC lung cancer dataset

A total of 41 cases were retrieved from The Cancer Genome Atlas (TCGA-LUAD) database.

These cases correspond to Formalin-Fixed, Paraffin-Embedded (FFPE) biopsies of three of

the main histological subtypes of ADC, distributed as: 16 lepidic, 20 papillary and 5 solid;

representing one histological subtype per level of aggressiveness.
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3.2.2 Preprocessing

As illustrated in Figure 3-2, square patches of 256 × 256 pixels were extracted at 10× of

magnification from tumor regions of each whole-slide image (WSI). According to Coudray

[14], those values of patch size and magnification are the appropriate ones to identify charac-

teristic patterns that allow differentiation of histological subtypes of ADC on WSI. For each

square patch, a color deconvolution was performed to separate the hematoxylin and eosin

stains, and only the hematoxylin channel was selected to be used because of better nuclei

visualization. Finally, hematoxylin-channel patches were downscaled to a size of 128 × 128

pixels, in order to reduce the computational cost necessary for the training and testing of

machine learning models.

Figure 3-2: Preprocessing of patches extracted from tumor regions. Color deconvolution
was performed to obtain hematoxylin and eosin channels, and then hematoxylin patches
were downscaled to reduce computational cost in later steps. Own source.

3.2.3 Variational Autoencoder

An ensemble of tissue-specialized encoder-decoder architecture was designed, specifically

based on Variational Autoencoders (VAE), i.e., a learned representation of each histological

subtype of ADC is obtained per VAE. A VAE is a unsupervised learning model composed

of two sections, encoder and decoder, for an embedded representation of mixture of normal

distributions (see Figure 3-3). On the one hand, the encoder reduces input dimensionality

and generates a linear representation by learning a set of probability distributions, usually

a mixture of normal distributions with mean and variance values. The mixture of normal
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distributions are an approximation to the real data distribution, and their sampling allows

reconstructing the input data, as well as generating new synthetic data. On the other

hand, the decoder performs an upsampling of the samples extracted from the mixture of

distributions to the original size of the input data. In summary, the purpose of the encoder

is to generate a compressed and embedded representation of the input data as a mixture of

probability distributions, while the decoder reconstructs the input image.

Figure 3-3: VAE architecture. Encoder reduces the input dimensionality from 128 × 128
pixels to a vector of 128 values, i.e., 128 normal probability distributions. Then, decoder
upsamples these values to the original size, which corresponds to the reconstruction. Adapted
from Rocca (2019) [5].

In this way, the loss function of a VAE architecture is composed of two terms, reconstruction

and regularization:

Loss = ||x− x̂||2︸ ︷︷ ︸
Reconstruction term

+KL[N(µx, σx),N(0, 1)]︸ ︷︷ ︸
Regularization term

(3-1)

where, the reconstruction term is the difference between the model output x̂ and its input

x, and the regularization term is the Kullback-Leibler divergence KL between the estimated

probability distribution of the data N(µx, σx) and a reference distribution N(0, 1) (standard

normal).

3.2.4 Experimental setup

The ADC lung cancer dataset was divided into two parts (see Table 3-1): 80% of cases of

each histological subtype, that is, 13 lepidic, 16 papillary and 4 solid compose the training

set (33 cases in total); and the remaining 20%, that is, 3 lepidic, 4 papillary and 1 solid
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constitute the test set (8 cases in total). A small set of patches was randomly selected for

each training case. Lepidic dataset is composed of 494 patches (38 per case), papillary with

496 patches (31 per case), and solid with 500 patches (125 per case), and no additional data

augmentation process was performed. It is worth mentioning that the number of patches per

case is not balanced between classes, since the main intention of this work is that each model

specializes in one of the three selected histological ADC subtypes, so only a case balance

is necessary. Additionally, the test dataset contains 600 lepidic patches (200 per case), 672

papillary patches (168 per case), and 720 solid patches.

Table 3-1: Distribution of cases and selected patches of the three main histological subtypes
of ADC, one subtype for each level of aggressiveness.

Subtype
Training Testing

Cases Patches Cases Patches

Lepidic 13 494 3 600
Papillary 16 496 4 672
Solid 4 500 1 720

Total 33 1.490 8 1.992

A VAE was trained for each histological ADC subtype in order to specialize each network

in differentiating tissue patterns of the subtype with which it was trained. Encoder and

decoder are composed of 5 blocks, each block has a convolution layer, a L1 normalization

and a max-pooling layer. Architecture and hyperparameters of each of the three models are

the same. Models were trained in 500 epochs with 128 dimensions at its bottleneck, 128

probability distributions, and the reconstruction term in the loss function was regularized

to obtain a better representation of the data, as described in Higgins 2017 [66].

3.2.5 Local tissue representation

Training patches of each histological subtype were projected onto their corresponding VAE

to obtain a feature vector of 128 values per patch, corresponding to sampled values of the 128

bottleneck probability distributions. Each VAE is specialized in compressing the information

for each histological subtype. The mean and variance vectors allow the construction of a

final vector, a mixture of probability distributions, where each position is the sampled value

of a normal probability distribution, as shown in Figure 3-4.
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Figure 3-4: Embeddings for each histological subtype of ADC. Own source.

Subsequently, patches of each histological subtype were cross-projected onto the VAE cor-

responding to the remaining subtypes to obtain the whole tissue-based feature vectors of

each patch based on the representation spaces of each histological ADC subtype. Finally,

individual representations of 128 values were concatenated in a final vector of 384 features,

as shown in the Figure 3-5. In summary, each tissue patch is expressed as the concatenated

representation of all selected histological ADC subtypes.

Figure 3-5: Concatenated representation of features. Each vector is composed of the
individual representations of each tissue-specialized VAE. Own source.
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3.3 Results and discussion

3.3.1 Qualitative results

In order to have a visual and interpretable representation of the data, a dimensionality

reduction process was performed using a Uniform Manifold Approximation and Projection

(UMAP) [82] with Euclidean metric, thus reducing the 384 concatenated dimensions per

patch to two dimensions (2D), and subsequently plotted, as shown in Figure 3-6.

It can be seen that patches with typical patterns of each histological subtype are located on

Figure 3-6: Representation space. Each point on the space represents an input patch. Own
source.

the periphery of the space, forming visually separable regions. In turn, patches that contain

mixtures of patterns are located in the central zone, which shows that the constructed

representation is able to separate the relevant concepts using only the information obtained

at the patch level, without any kind of supervision.

3.3.2 Quantitative results

Two different classification models were trained as a way to validate the discriminating

capability of the representations learned by the VAEs: Support Vector Machines (SVM)

with linear kernel and radial kernel basis function (RBF), and Random Forest. In each case,

an random grid search exploration of parameters was carried out until the best model was

obtained. The results are shown in Table 3-2, and additionally the confusion matrices for
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Figure 3-7: Confusion matrices for each of the classification models. Own source.

the three cases are presented (Figure 3-7), where it is evident that the model that obtained

the best performance was Random Forest, with an F1-Score of 0.72± 0.05.

Table 3-2: Quantitative performance results. A Random Forest classifier with 500 decision
trees and a depth of 7 obtained the best performance.

Model Accuracy Precision Recall F1-Score

SVM Linear 0.46 ± 0.02 0.47 ± 0.04 0.47 ± 0.05 0.46 ± 0.03
SVM RBF 0.69 ± 0.04 0.69 ± 0.06 0.69 ± 0.09 0.69 ± 0.07
Random Forest 0.72 ± 0.03 0.73 ± 0.05 0.72 ± 0.11 0.72 ± 0.05

3.4 Conclusions

A novel approach, based on an ensemble of VAE learned representations was proposed to

differentiate the main histological ADC subtypes. Each VAE encodes the information and

specializes in building a representation of a sample of input images from the same tissue

subtype. Subsequently, they are concatenated to build a final tissue descriptor based on the

patterns learned by each VAE. This approach demonstrated that specialized models could

be obtained with a small randomly selected data sample, and therefore, how the represen-

tation versatilely allows its use to distinguish among ADC histological subtypes with high

throughput and low variance. In addition, the presented approach is discriminating enough

to show each tissue subtype in a two-dimensional projection for easy visual interpretation,

identifying the different patterns that characterize tissues according to their interpretation

complexity, either by typicity or mixture of histological patterns. Future work includes to

extend our approach with more histopathology ADC subtypes and evaluate its potential to

design quantitative image-based biomarkers of tumor grading and prognosis.
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4.1 Conclusions

This investigation explored a novel approach to quantify the differentiation grade of non-

small cell lung cancer subtypes, using patterns learned by a variational autocoder. The

latent space generated by the VAE allows the development of enriched representations that

are more suitable for linking and designing quantitative and interpretable methods.

Well-differentiated patterns representative of each NSCLC subtype were found to be con-

centrated in the same regions of the latent space with the highest sample concentration, and

poorly differentiated or mixed histopathological imaging patches of both NSCLC subtypes

were concentrated in other mixed regions in the latent space.

In addition, the representations learned by each VAE can be specialized for each histologi-

cal subtype from a small sample of selected data, and by performing an ensemble of these

projections on the spaces learned by the VAEs, also it is possible to distinguish in a versa-

tile way among the histological subtypes of ADC with high throughput and low variance.

Furthermore, this approach is discriminating enough to display each tissue subtype in a

two-dimensional projection for easy visual interpretation, identifying the different patterns

that characterize the tissues based on their complexity of interpretation, either by typicality

or a mixture of histological patterns.

4.2 Perspectives

In this work, a data-driven model was designed to characterize the patterns that define the

histological subtypes of lung cancer. In the construction of the work, different approaches

were tested using few data motivated by the difficulty of acquiring large amounts of charac-

terized data in the biomedical context. However, these challenges are still present, so they

are the starting point for new directions for future research work:

• Extend the proposed approach with the full set of histological subtypes that charac-

terize ADC and assess its potential to design quantitative image-based biomarkers for

tumor classification and prognosis.
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• A comprehensive solution for the pathology workflow. Since the starting point in the

diagnosis of lung cancer are radiology images, more commonly computed tomography

images, to propose a solution that tries to combine the information from these types

of images with the information learned from histopathology images. It could open

the way to constructing enriched metrics that make it possible to characterize the

pathology in a more efficient manner.
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A ELBO: Evidence Lower Bound

A.1 Standard ELBO

In Bayesian inference, we are often interested in the posterior distribution p(z|x) where x

are the observations, and z are latent variables. This evidence is hard to compute because

we have introduced latent variables that must now be marginalized out. Such integrals are

often intractable in the sense that, we do not have an analytic expression for them or they

are computationally intractable [83].

The main challenge with the variational inference objective is that it implicitly depends on

the evidence, p(x). Because we cannot compute the desired KL divergence, we optimize

a different objective that is equivalent to this KL divergence up to constant. This new

objective is called the evidence lower bound or ELBO [83].

ln p(x)

= ln

∫
z

p(x, z) dz

= ln

∫
z

p(x, z)
q(z|x)
q(z|x)

dz

Jenssen’s inequality: φ(E{X}) ≤ E{φ(X)}

≥ Eq(z|x)[ln
p(x, z)

q(z|x)
] by Jenssen’s inequality

= Eq(z|x)[ln
p(x|z)p(z)
q(z|x)

]

= Eq(z|x)[ln p(x|z)] + Eq(z|x)[ln
p(z)

q(z|x)
]

= Eq(z|x)[ln p(x|z)] +
∫
z

q(z|x) ln p(z)

q(z|x)
dz

= Eq(z|x)[ln p(x|z)] +
∫
z

q(z|x) ln p(z) dz −
∫
z

q(z|x) ln q(z|x) dz
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= Eq(z|x)[ln p(x|z)] +
∫
z

q(z|x) ln p(z)q(z)

q(z)
dz −

∫
z

q(x|z)q(z) ln(q(x|z)q(z)) dz

= Eq(z|x)[ln p(x|z)]︸ ︷︷ ︸
Average reconstruction

+DKL[q(z)||p(z)]︸ ︷︷ ︸
KL between p and q

= likelihood−KL

A.1.1 Reconstruction term

Reconstruction =
D∑
i=1

xi log x̂i + (1− xi) log(1− x̂i) (A-1)

This term is the binary cross entropy between the output x̂ and the input x. This part max-

imizes the log-likelihood, the likelihood tries to make the generated image more correlated

to the latent variable, which makes the model more deterministic.

A.1.2 KL term

This term minimizes the KL divergence between the posterior and the prior. We usually

assume the prior as a standard Gaussian distribution, and minimizing the KL will make the

posterior more similar to the prior, which means we are trying to make the posterior to be

a smooth Gaussian distribution.

The following is the demonstration of the origin of the KL term with a Gaussian assumption,

where p(x) and q(x) are probability distributions, µ is the mean and σ is the variance.

p(x) = N(µ1, σ1) and q(x) = N(µ2, σ2)

KL(p, q)

= −
∫

p(x) ln q(x) dx+

∫
p(x) ln p(x) dx︸ ︷︷ ︸

Relative entropy

from Bishop’s Pattern Recognition and Machine Learning

= −
∫

p(x) ln
1

(2πσ2
2)

( 1
2
)
e
− (x−µ2)

2

2σ2
2 dx+

∫
p(x) ln p(x) dx

= −
∫

p(x) ln e
− (x−µ2)

2

2σ2
2 dx+

∫
p(x) ln(2πσ2

2)
( 1
2
) dx+

∫
p(x) ln p(x) dx

= −
∫

p(x)(−(x− µ2)
2

2σ2
2

) dx+
1

2
ln(2πσ2

2) +

∫
p(x) ln p(x) dx
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= −
∫

p(x)(−(x2 − 2xµ2 + µ2
2)

2σ2
2

) dx+
1

2
ln(2πσ2

2) +

∫
p(x) ln p(x) dx

=

∫
p(x)x2 dx−

∫
p(x)2xµ2 dx+

∫
p(x)µ2

2 dx

2σ2
2

+
1

2
ln(2πσ2

2)

+

∫
p(x) ln p(x) dx

=
E[x2]− 2E[x]µ2 + µ2

2

2σ2
2

+
1

2
ln(2πσ2

2) +

∫
p(x) ln p(x) dx

var(x) = E[x2]− E[x]2 , then E[x2] = σ2
1 + µ2

1

=
σ2
1 + µ2

1 − 2µ1µ2 + µ2
2

2σ2
2
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1

2
ln(2πσ2

2) +

∫
p(x) ln p(x) dx
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σ2
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2

2σ2
2

+
1

2
ln(2πσ2
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∫
p(x) ln p(x) dx
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σ2
1 + (µ1 − µ2)

2

2σ2
2

+
1

2
ln(2πσ2
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=
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=
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=
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2
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1

)
1
2 − 1

2

=
σ2
1 + (µ1 − µ2)

2

2σ2
2

+ ln(
σ2

σ1

)− 1

2

KL(p, q) = 0 when µ1 = µ2 and σ1 = σ2

ELBO

= −1

2

J∑
j=1

(1 + (σ2
j )− (µ2

j)− (eσ
2
j ))

+
D∑
i=1

xi log x̂i + (1− xi) log(1− x̂i)

A.2 Regularized ELBO

Higgings et.al. (2017) [66] explore an approach that introduces an adjustable hyperparameter

β that modulates the learning constraints applied to the model, while balancing the trade-

off between the model capability to reconstruct the input image and the understanding of

representation space. If the value of the parameter β = 1, corresponds to the base model of
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the VAE [67], with β > 1, the model is pushed to learn a more efficient latent representation

for the data, untangling the generated space. On the contrary, if β < 1 the model tries to

reconstruct the input data in a better way.

ELBO

Eq(z|x)[ln p(x|z)]︸ ︷︷ ︸
Average reconstruction

+DKL[q(z)||p(z)]︸ ︷︷ ︸
KL between p and q

=
D∑
i=1

xi log x̂i + (1− xi) log(1− x̂i)︸ ︷︷ ︸
Reconstruction term

− β

2J

J∑
j=1

(1 + (σ2
j )− (µ2

j)− (eσ
2
j ))︸ ︷︷ ︸

KL term


