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Chapter 1 Preliminaries

1.1 Motivation

The accelerated use of information technologies in different domains is changing howdatasets

are built. For instance, dedicated crowdsourcing platforms likeAmazonMechanical Turk (AMT),

LabelMe, and Crowdflower allow extracting the ’wisdom of crowds’ [2] to obtain large datasets

labeled by multiple annotations. However, the concept of crowdsourcing goes beyond dedicated

platforms; for example, through its social nature, the web collects a large volume of labeled

datasets, where such labels commonly correspond to web-based ratings (products rating, trans-

lation rating, product tag). The attractiveness of crowdsourcing lies in the possibility of getting

suitable quality labels at a low-cost [3, 4].

The aforementioned poses a new challenge in the supervised learning context. Instead of

having datasets labeled by one source (which is supposed to be an expert who provided the abso-

lute gold standard), we have datasets labeled by multiple annotators with different and unknown

expertise [5]. Hence, typical supervised learning algorithms need to be adapted to face multi-

labeler datasets.

Besides, in a local context, the research group in automatics (RGA) from Universidad Tec-

nológica de Pereira and the Grupo de control y procesamiento digital de señales fromUniversidad

Nacional de Colombia (Sede Manizales) have successfully developed several research works re-

lated to the analysis of different medical images (ultrasound, X-rays, MRI, DMRI) aiming to

support the identification of nerves structures and the diagnosis of various pathologies, includ-

ing Parkinson, breast, and brain cancer [6–8]. Most of these works include a supervised learning

step, where it is necessary to hire experts to obtain the required labels for training the learning

algorithms. However, experts are scarce, and their time is costly; moreover, there exists disagree-

ment among the annotations given by the multiple annotators, especially if they have different

levels of expertise.

Accordingly, from the global and local scenarios, it is necessary to continue developing

methodologies that allow facing supervised learning problems in the context of multiple annota-

tors. This book presents the latest advancements in supervised learning frommultiple annotators,

drawing from the doctoral thesis of Dr. Julián Gil Gonzalez and the collective research efforts of

the previously mentioned groups.



1.2 Problem Statement

1.2 Problem Statement

The main aim of a supervised learning task is to learn a function that maps from the input

features to the output space, which is estimated by using a training set, where it is supposed that

an expert provides the actual label (termed gold standard) for each instance [9]. Nonetheless, in

many real-world applications, such a gold standard is unavailable since the experts are scarce,

their time is expensive, and the labeling problem is tedious and time-consuming [10, 11]. Sim-

ilarly, other labeling problems correspond to a subjective evaluation (e.g., sentimental analysis,

products rating); thus, the gold standard needs to be clarified [12]. Instead of the gold standard,

we may have access to several noisy annotations provided by R heterogeneous annotators (also

named as sources or labelers), where each source gives its version of the unknown gold standard

[13]. Those annotations can be collected in several ways. For instance, the model proposed in

[1], the sources correspond to physicians who make a diagnosis about the presence of cancer

using medical images. Likewise, in the approach proposed by the authors in [10], the labels are

provided by algorithms that are used to measure the QT interval in an electrocardiogram signal

(the QT interval is a measurement used to assess some electrical properties of the heart).

Accordingly, conversely to typical supervised learning settings, in multi-labeler scenarios,

each instance is linked with multiple annotations provided by multiple annotators. Commonly,

not all the labelers give an output for each input in the dataset. Thereby, it is not straightfor-

ward to apply traditional supervised learning algorithms in the presence of data from multiple

annotators [14]. In this sense, learning from crowds has been introduced as a general framework

from two main perspectives: to fit the labels from multiple annotators or to adapt the supervised

learning algorithms [15].

The first approach is known in the literature as “label aggregation” or “truth inference,” com-

prising the computation of a single hard label per sample to estimate of the ground truth. The

hard labels are then used to feed a standard supervised learning algorithm [16]. The straight-

forward method is the so-called majority voting–(MV), which has been used in different multi-

labeler problems due to its simplicity [17]. Still, MV assumes homogeneity in annotators’ reli-

ability, which is hardly feasible in real applications, e.g., experts vs. spammers. Furthermore,

the consensus is profoundly impacted by incorrect labels and outliers [13]. Conversely, more

elaborated models have been considered to improve the estimation of the correct tag through the

well-known Expectation-Maximization–(EM) framework and by facing the imbalanced labeling

issue [17, 18].

The second approach jointly trains the supervised learning algorithm and models the an-

notators’ behavior. It has been shown that such strategies lead to better performance than those

belonging to label aggregation. Thus, the features used to train the learning algorithm provide

valuable information to puzzle the ground truth [19]. The most representative work in this area

is exposed in [1], which offers an EM-based framework to learn the parameters of a logistic re-

3
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gression classifier and model the annotators’ behavior by computing their sensitivities and speci-

ficities. Such a technique has inspired several models in the context of multi-labeler scenarios,

including binary classification [19, 20] , multi-class discrimination [16, 21], regression [22, 23],

and sequence labeling [23, 24]. Furthermore, some works have addressed the multi-labeler prob-

lem using deep learning approaches, typically including an extra layer that codes the annotators’

information [3, 25, 26].

According to the above, among the works developed in this area, we recognize two main

groups: the approaches based on frequentist models–(FMs) and the schemes based on probabilis-

tic or Bayesian models–(BMs). Furthermore, we note that most works on learning from crowds

are mainly based on two assumptions: i) The performance of the annotators does not depend

on the feature space and ii) independence among the annotators; however, these assumptions

are not valid in practice. Hence, the primary motivation of this proposal is to address these two

problems.

The performance of the annotators does not depend on the feature space. In most multi-

labeler approaches, it is necessary to estimate the performance of the annotators, which is usually

measured in terms of accuracy [27], or sensitivity and specificity [1, 3, 19] in classification set-

tings; similarly, in regression approaches, such performance is measured in terms of the error

variance [22]. However, a restriction commonly seen in these algorithms is that they assume that

the performance is consistent across the input space. This assumption is an impractical restriction

since the expertise of the annotators may vary depending on the instance they label [28, 29]. For

example, if we consider online annotators assessing some documents, they may have different

labeling accuracy. Such differences may rely on whether they are more familiar with specific

topics related to studied documents [30].

Independence among the annotators. Another assumption commonly seen is to consider in-

dependence among the annotators. This assumption is used to reduce the complexity of the

model [31, 32] or based on the fact that it is plausible to guarantee that each labeler performs the

annotation process individually [33]. Nevertheless, this assumption cannot fit most real-world

applications. For example, if the sources are humans, the independence assumption is hardly

feasible because knowledge is a social construction; hence, people’s decisions will be corre-

lated since they share information, communicate with each other, or because they belong to a

particular school of thought [34, 35]. On the other hand, if we consider that the sources are algo-

rithms, where some of them are based on the samemath principle, there likely exists a correlation

among their labels [10]. Accordingly, the relaxation of this restriction could be used to improve

the ground truth estimation [36].

Therefore, some problems related to supervised learning with multiple annotators still need

to be solved. For this reason, the main objective of this work is to develop multiple annotators’

4
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models based on FMs and BMs aiming to code the labelers’ performance as a function of the input

space and considering dependencies among them to improve the multi-labeler representation the

ability to classify and regress tasks.

1.3 Mathematical Preliminaries

In this section, we introduce the mathematical formulation for the problem of learning from

multiple annotators. First, in Section 1.3.1, we recall the mathematical formulation of a tradi-

tional supervised learning scenario. We analyze two perspectives to face such scenarios: The

frequentist and the Bayesian point of view. Finally, Section 1.3.2 describes the composition of a

dataset from multiple labelers and the main aims of algorithms dealing with this kind of data.

1.3.1 Methods for Supervised Learning

A classical supervised learning problem comprises the estimation of a function f : X → Y ,

where X and Y are, respectively, the input space and the output space [9]. Such a function f is

computed from a training setD = {X,y}, whereX =
{
xn∈X ⊆RP

}N
n=1

andy= {yn∈Y}Nn=1.

Depending on the output space Y nature, we recognize different supervised learning settings: i)

binary classification holding Y ∈ {−1, 1} or Y ∈ {0, 1}; ii) multi-class classification, where

Y ∈ {1, . . . ,K}, beingK the number of classes; and iii) regression where Y ∈ R [1].

Notice that in most supervised learning cases, we are not interested in knowing the exact

form f , but we are focused on computing the output in a specific value f(x∗), where x∗ ∈RP

[37]. One of the most basic estimators is the well-known generalized linear estimator given by:

f(x∗) = ϑ0 +

D∑
d=1

ϑdξd(x∗), (1.1)

where {ϑd}Dd=0 are the model parameters, and ξd : RP → R is the d-th component of a pre-

selected set of non-linear functions, named basis functions, aiming to deal with non-linearities in

the data’s structure [38]. The main advantage of these type of estimators is that the related models

remain linear regarding the set of parameters {ϑd}Dd=0. Nevertheless, because this estimator is

parametric, for high-dimensional spaces, the number of basis functions D has to be large to

obtain a proper performance, leading to overfitting [39]. Such drawback has been addressed

in the literature; for example, Support Vector Machines–(SVMs) define a set of basis functions

centered in the training data. Then, a subset of them is selected during the training, where the

number of selected functions is generally smaller than the training set’s size. Another alternative

propound to use parametric forms for the basis functions (the number of functions is given in

advance), in which the parameters are estimated during the training stage. The most successful

approach in this context is the well-known artificial neural network–(ANN) [9].
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On the other hand, in contrast to previous approaches, which are parametrized in terms of a

set of basis functions, it is possible to introduce a symmetric positive bivariate function, termed

kernel, which enables to build non-parametric estimators less prone to overfitting. Thus, a way

to estimate f(x∗) is given as follows [40]:

f(x∗) = k>
∗ (K + ψNI)−1 y, (1.2)

where k∗= [κ(x1,x∗), . . . , κ(xN ,x∗)]
> ∈RN×1, and κ : X × X → R is a kernel function.

Besides,K ∈RN×N is formed by the evaluation of κ over the input setX , and I ∈RN×N is the

identity matrix. Finally, ψ ∈R+ is a regularization hyper-parameter, which will be discussed in

the following sections. Hence, such estimator in equation (1.2) can be derived from two different

but related perspectives: a frequentist (regularization) and a Bayesian perspective.

A Frequentist Perspective

From a frequentist perspective (regularization), the aim is to suppose the function of interest

to belong to a reproducing kernel Hilbert space–(RKHS) Hκ, which is generated by the chosen

kernel κ; thereby, we have f ∈Hκ. Accordingly, the estimator can be inferred by minimizing the

following regularized functional

f̂ = argmin
f ∈Hκ

1

N

N∑
n=1

(f(xn)− yn)
2 + ψ||f ||2Hκ

, (1.3)

where ||·||Hκ is the norm in Hκ. Besides, we notice that the first term in equation (1.3) cor-

responds to the well-known empirical risk, which particularly is computed as the sum of the

squared errors [40]. Such a term penalizes the variation between predicted outputs f(xn) and

the corresponding true value yn. The second term in equation (1.3) represents the regulariza-

tion expression that controls the estimator’s smoothness to avoid overfitting; hence, the larger

value, the smoother the estimation f̂ . The regularization concept in a RKHS plays a key role in

the machine learning area, so it is necessary to review some notions about RKHS [41]. A RKHS

is a Hilbert space of functions defined by a reproducing kernel κ, a symmetric positive definite

function. In that sense, given a kernel function κ a RKHS is generated in such a way that the

function κ(x, ·) is linked to Hκ for all x∈X , and [42]

f(x) = 〈f, κ(x, ·)〉Hκ ; ∀f ∈Hκ,

where 〈·, ·〉Hκ is the inner product in Hκ. The above expression corresponds to the reproducing

property. Further, we recognize two additional properties, essential for the regularization per-

spective. First, the representer theorem indicates that in an RKHS the functions are built as a

linear combination of the kernel in given points [43]

6
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f(x) =

N∑
n=1

αnκ(x,xn) = k>α, (1.4)

where k= [κ(x1,x), . . . , κ(xN ,x)]
> ∈RN×1 and α = [α1, . . . , αN ]> ∈RN×1 are the combi-

nation parameters. Second, the norm of a function in a given RKHS can be written as:

||f ||Hκ=

N∑
i=1

N∑
j=1

αiαjκ(xi,xj) = α>Kα. (1.5)

Then, replacing equations (1.4) and (1.5) in equation (1.3), the optimization problem becomes:

α̂ = argmin
α

1

N

(
α>KKα− 2α>Ky + y>y

)
+ ψα>Kα. (1.6)

We remark that the latter objective function is convex with respect to α; thereby differentiating

such an objective function with respect toα, and equaling zero, the minimizer for equation (1.6)

yields:

α̂=(K + ψNI)−1 y.

Accordingly, the output estimation for a new instance f(x∗) is given as follows

f(x∗) =
N∑

n=1

αnκ(x∗,xn) = k>
∗ α̂.

A Bayesian Perspective

On the other hand, another perspective exists to solve supervised learning problems, called

Bayesian. We identify controversy in the exact definition of Bayesian approaches; for instance,

[9] establishes that the Bayesian formulation stands for considering f to be random; nevertheless,

[44] sets that Bayesian estimation can also be used for deterministic computation of f . In this

book, we follow the definition in [9]; thus, we consider only the models that fix f to be random

(or the model parameters if it is the case) as a Bayesian treatment.

For specific demonstration, we use the well-known Gaussian processes–(GPs), one of the

most common Bayesian approaches in the supervised learning context. Namely, a GP is a random

process where any finite set of samples follows a Gaussian distribution [37]. Typically, a GP is

employed as a prior over functions. Hence, let be f(x) a function that follows a GP, f(x) ∼
GP(m(x), κf (x,x

′)), where m(x)=E[f(x)] is the mean function (usually m(x)= 0), and

κf (x,x
′)=E[(f(x)−m(x))(f(x′)−m(x′))] is the covariance function with κf :X ×X →R

being a given kernel function (x′ ∈X ).

If we consider the finite set of inputs in X , then f = [f(x1), . . . , f(xN )]> ∈RN is drawn for a

multivariate Gaussian distribution f ∼ N (f |0,Kff ), where Kff ∈RN×N is the covariance

matrix formed by the evaluation of κf over the input set X .

7
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From a Bayesian point of view, the GPs priors represent our beliefs about the properties of

the function we are modeling [40]. Let us consider the squared exponential–(SE) kernel, given

as:

κSE(x,x
′) = s2 exp

(
−||x− x′||2

2l2

)
,

with the parameter l∈R+ defining the characteristic length-scale and s∈R+ specifying an

output-scale amplitude. We notice in Figure 1.1 that a GP, prior to using a SE kernel func-

tion, prefers smooth functions [45]. Then, the beliefs captured by the GP prior are updated in the

presence of data through the likelihood function. This leads to an updated distribution, named

the posterior distribution that can be used to make predictions over new samples x∗.

0 0.2 0.4 0.6 0.8 1

−2

0

2

x

f
(x
)
∼
GP

(0
,κ

f
(x
,x

′ )
)

Figure 1.1 Samples from a GP with SE covariance function over a 1-D problem with s = 1 and l = 0.2

In a regression setting, the likelihood function is usually Gaussian and codes the linear

relation between the observations and a given model corrupted with zero mean Gaussian noise,

p(y|f ,X, σ2) =

N∏
n=1

N (yn|f(xn), σ
2),

where f =[f(x1), · · · , f(xN )]> ∈RN , and σ2 ∈R+ is the noise variance. Notice that the like-

lihood function factorizes over the data points, which assumes that the noise is independent and

identically distributed. In this case, due to a Gaussian likelihood, the posterior distribution has

an analytic solution. Given a new test point x∗ and the training data D= {X,y}, the predicted

distribution is computed as:

p(f(x∗)|D,x∗,φ) = N (f̄(x∗), k(x∗,x∗)), (1.7)

where φ indicates the model hyper-parameters, including σ2, and the hyper-parameters related

8
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to the kernel function. Moreover, we have

f̄(x∗) = k>
ff∗

(
Kff + σ2NI

)−1
y, (1.8)

k(x∗,x∗) = kf∗f∗ − k>
ff∗

(
Kff + σ2I

)−1
kff∗ , (1.9)

where kff∗ ∈RN is the cross-covariance function between f and f∗= f(x∗); besides, kf∗f∗ ∈R

is the covariance function for f∗. Conversely, the model hyper-parameters φ are estimated by

minimizing the minus logarithm of the marginalized likelihood function, as follows

φ̂ = argmin
φ

(− log p(y|X)) =
1

2
y> (Kff + σ2I

)−1
y +

1

2
log
∣∣Kff + σ2I

∣∣
where |·| indicates the determinant of a matrix.

Connections between Frequentist and Bayesian Points of View

In general terms, the dimension of an RKHS can be infinity [40]. However, if we limit

the analysis to finite-dimensional RKHS, it is possible to determine that every RKHS can be

described in terms of a feature map Φ : X → RD, such that

κ(x,x′) =
D∑

d=1

Φd(x)Φd(x
′). (1.10)

Moreover, the functions in an RKHS with a kernel κ are formulated based on a set of parameters

$ = [$1, . . . , $D]
> ∈RD as follows

f(x) =

D∑
j=1

$dΦd(x) = 〈$,Φ(x)〉, with ||f$||Hκ= ||$||2, (1.11)

where 〈·, ·〉 and ||·||2 are the Euclidean inner product and norm, respectively. Besides, Φ(x) =

[Φ1(x), . . . ,ΦD(x)]
> ∈RD. According to the above, the assumption f ∼ GP(0, κ(x,x′)) be-

comes

$ ∼ N (0, ID) ∝ exp

(
−1

2
||$||22

)
,

where ID ∈ RD×D is an identity matrix. If we assume a Gaussian likelihood, we have

p(y|f ,X, σ2) =
N∏

n=1

N (yn|f(xn), σ
2) ∝ exp

(
− 1

2σ2

N∑
n=1

(〈$,Φ(xn)〉 − yn)
2

)
.

Then, the posterior distribution is proportional to

exp

(
− 1

2σ2

N∑
n=1

(〈$,Φ(xn)〉 − yn)
2 − 1

2
||$||22

)
.
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We see that a maximum a posteriori–(MAP) estimation for the posterior will become a minimiza-

tion problem with Tikhonov regularization [46], where the regularization parameter is related to

the noise variance.

1.3.2 Learning from Multiple Annotators

A supervised learning scenario involves the estimation of a function f : X → Y . Usu-

ally, each xn is assigned to a single yn, i.e., the ground truth. Still, in several real-world prob-

lems instead of the ground truth, we have multiple labels provided by R∈N annotators with

different levels of expertise [1]. It is common to find that each annotator r only labels |Nr|≤N
samples, being |Nr| the cardinality of the set Nr ⊆ {1, . . . , N} that contains the indexes of

samples labeled by the r-th annotator. Besides, we define the set Rn ⊆ {1, . . . , R} holding

the indexes of annotators that labeled the n-th instance. Thereby, it is possible to build a data

set for the annotator r∈{1, 2, . . . , R}, Dr = {Xr,yr}, where Xr = {xn}n∈Nr
∈ R|Nr|×P and

yr =
{
y
(r)
n

}
n∈Nr

∈Yr (commonly Yr =Y , ∀r) are the input feature matrix and the labels given

by the r-th annotator, respectively. Besides, yr is composed of elements y(r)n , which is the r-th

annotation of sample xn.

Now given the data set from multiple annotators D=
{
X,Y ={y(r)n }n∈Nr ∈Rn

}
the aims of a

multi-labeler approach are: First, to estimate the unknown gold standard for the instances in the

training set y= [y1, . . . , yN ]. Second, to code the annotators behavior as a function of the input

space. Finally, the third objective is to build a supervised learning model which generalizes well

on unseen data [28]. A graphical comparison between a typically supervised learning dataset

and a multi-labeler database is shown in Figure 1.2.

1.4 Literature Review on Supervised Learning from Multiple
Annotators

As we established previously, learning from crowds faces supervised learning problems

where the gold standard is not available. Among the developed works on this topic, we recognize

two main groups: The approaches based on frequentist models (FM) and the Bayesian models

(BM) schemes.

Regarding FM, we recognize the model proposed in [47]. Here, the authors first perform

a geometrical interpretation of the majority voting (MV) scheme, and they remark that the es-

timated true label corresponds to the annotation (which can be seen as a point in a space gen-

erated by the MV approach) that has the largest distance to a decision hyperplane. Following

this interpretation, they propose a weighted majority voting approach for binary and multi-class

classification, where the weights are related to the annotator’s reliability. Following the notion of

margin in multi-class support vector machines (SVM), authors in [47] define the crowdsourcing

margin, which is the minimal difference between the aggregated score of the potential true label
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Figure 1.2 Graphical comparison between datasets for typical supervised learning settings and datasets
from multiple annotators

and the scores for other alternative labels. Accordingly, the annotators’ reliability is estimated as

generating the largest margin between the potential true labels and other alternatives. However,

this approach considers that the annotators’ expertise is stationary across the input space; also,

it does not consider account dependencies among the labelers. On the other hand, authors in

[48] propose a mixture of classifiers aiming to deal with multi-labelers scenarios. The idea is to

consider R classifiers gr(x), where each one is trained using the dataset for the r-th annotator

Dr = {Xr,yr}, being Xr and yr the inputs and their corresponding outputs given by labeler

r, respectively. Accordingly, the proposed classifier is given by f(x) =
∑R

r=1 νrgr(x), where

ν = [ν1, . . . , νR]∈RR are the weighting factors. Each parameter νr ∈R is estimated using a ver-

sion of the variable ranking approach over a kernel matrix, which is computed based on the labels

from the r-th annotator and the input features. Still, this approach lacks interpretability since it

is unclear the meaning of the parameters ν. On the other hand, authors in [25] propose a Deep

neural network–(DNN)-based approach to deal with multi-labeler data in both classification and

regression tasks. The basic idea is to introduce an extra layer termed Crowdlayer, which allows

training a DNN directly from the noisy labels from multiple annotators using backpropagation.

The Crowdlayer is fed by what one usually defines as the output layer of a DNN (e.g. softmax/sig-

moid for classification or linear for regression), and for each annotator r it learns a mapping from

the output layer to the labels given by such labeler; hence, the Crowdlayer codes the annotators’

reliabilities and biases.
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So far, we have shown FM based on deterministic formulations such as SVM or DNN. Now,

we focus on FM based on a probabilistic formulation. The most representative work is the one

proposed in [1], which corresponds to an extension of the early work in [18] aiming to jointly

learn a logistic regression-based classifier and the performance of the annotators in terms of

sensitivity and specificity. Accordingly, the likelihood function (marginalizing for y) is given

by:

p(Y |X,a, b)=

N∏
n=1

R∏
r=1

pnp
(
y(r)n |yn = 1, ar

)
+ (1− pn)p

(
y(r)n |yn = 1, 1− br

)
, (1.12)

where pn is set as a logistic regression model with parameters ω ∈RP

pn= p(yn=1|xn,ω) =
1

1 + exp(−ω>xn)
. (1.13)

In addition, p(y(r)n |yn=1, ar) and p(y
(r)
n |yn=0, 1− br) are modeled as Bernoulli distributions

with parameter ar ∈[0, 1] and br ∈[0, 1] respectively, indicating the annotator’s sensitivity and

specificity. Figure 1.3 shows the graphical model for the approach in [1]. The model parameters

a=[a1, . . . , aR]
> ∈RR, b=[b1, . . . , bR]∈RR, and w are estimated by maximizing the likeli-

hood function in equation (1.12) and using the Expectation-Maximization–(EM) algorithm.

xn yn y
(r)
n

R

N

Figure 1.3 Graphical model for the approach proposed in [1]. xn, yn, and y
(r)
n are, respectively, the input,

the ground truth, and the label given by the r-th annotator. Shaded nodes represent observed values, while
unshaded nodes indicate latent variables

The model exposed below has significant relevance since they have inspired many works

in the area of learning from crowds, including binary classification [5, 19, 20, 49], multiclass

classification [16, 27], regression [22, 23], and sequence labeling [24].

According to the above, we notice some drawbacks. Firstly, such type of methods does not

take into account the uncertainty in the predictions. Moreover, these approaches do not consider

dependencies among the labelers nor the relationship between the annotators’ expertise and the

input space, which does not fit real-world scenarios as we established in the problem statement.

On the other hand, few works have been focused on BM. In contrast to FM-based approaches,

BM allows modeling the uncertainty in the labels, making them robust in the presence of noise.

We recognize three strategies that use BM to face supervised learning settings with multiple an-

notators based on the graphical model in Figure 1.3. The first method is the proposed in [19],

termed Variational Gaussian processes for crowdsourcing–(VGPCR). The VGPCR’s formulation

12
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is based on the work given in [20]. Both use a GPs-based framework to solve binary classifi-

cation problems and a sensitivity-specificity-based model to measure the annotators’ behavior.

Nonetheless, unlike [20], VGPCR treats the annotators’ parameters (sensitivity and specificity)

as random variables instead of fixed points. Also, it uses variational inference (instead of Expec-

tation Propagation–(EP)) to estimate the posterior distributions of the model random variables

[19]. In turn, [49] proposed a scalable version of VGPCR, named Scalable variational Gaus-

sian processes for crowdsourcing–(SVGPCR). Authors in [49] argue that a classical GP has a

computational complexity of O
(
N3
)
caused by the inversion of kernel matrix Kff , which is

prohibited for large datasets. In contrast, they propose a GP sparse approximation via the so-

called Variational Fourier features–(VFF) within a variational inference framework to learn a

new kernel matrix to approximate Kff and to estimate the model’s random variables (the same

as in VGPCR). In such a way, the computational complexity is reduced to O(ND2
f +NDfP ),

where Df ∈Z+ << N . Then, SVGPCR is extended by authors in [16] to deal with multiclass

classification problems in the context of multiple annotators. In this model, the behavior of each

annotator is assessed in terms of her/his confusion matrix, which is assigned to a Dirichlet prior

to performing a fully Bayesian inference. Finally, regarding regression settings, authors in [22]

propose a GP-based model, where the labels are assumed to be a corrupted version of the hidden

true labels by Gaussian noise; thus, y(r)n = yn +N (0, σr), where σr ∈R+ is the r-th annotator

error-variance.

Similarly to FM, most BM are based on two assumptions: the outputs of the labelers do not

depend on the input features and independence among the annotators. These assumptions have

been widely discussed in the problem statement, where we have established that they do not fit

real-world scenarios. Next, we describe the FM and BM that try to relax these assumptions.

Approaches to Code the Relationship between the Annotators’ Performance and
the Input Space

Regarding the approaches that model the annotators’ behavior as a function of the input

samples, we recognize that they are based on FM with probabilistic formulation; in fact, they are

based on the graphical model shown in Figure 1.4. The first work is proposed in [28, 50]. They

xn

yn

y
(r)
n

R

N

Figure 1.4 The graphical model used to code the labelers’ expertise as a function of the input space. xn,

yn, and y
(r)
n are the input, the ground truth, and the label given by the r-th annotator, respectively. Shaded

nodes represent observed values, while unshaded nodes indicate latent variables
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introduce an algorithm for binary classification, holding the joint conditional distribution as:

p(Y ,y|X)=
N∏

n=1

p(yn|xn)
R∏

r=1

p(y(r)n |xn, yn), (1.14)

where p(yn|xn) if fixed as a logistic regression model (see equation (1.13)). Similarly, they use

two different models, for the term p(y
(r)
n |xn, yn):

p(y(r)n |xn, yn) = N
(
y(r)n |yn, ηr(xn)

)
, (1.15)

p(y(r)n |xn, yn) = (1− ηr(xn))
|y(r)n −yn|ηr(xn)

1−|y(r)n −yn|, (1.16)

where ηr(xn) is fixed as a logistic regression with parameters γr ∈RP . Then, an EM algorithm

is used to compute the model parameters.

On the other hand, the work in [51] proposes an extension of the work in [1], aiming to model

the dependencies between the annotators and the input space. For doing so, they assume that

the distribution of the input space X can be approximated by using a Gaussian mixture model

with L components. Hence, the author hypothesizes that each annotator r has a particular per-

formance for each mixture component. Accordingly, they define a(r)l ∈[0, 1] and b(r)l ∈[0, 1] re-
spectively as the sensitivity and specificity of the annotator r in the l-th mixture component, with

l∈{1, . . . , L}. Therefore, the likelihood function for the incomplete data is given as:

p(Y |X)=

N∏
n=1

L∏
l=1

R∏
r=1

pnp(y
(r)
n |yn = 1, a

(r)
l ) + (1− pn)p(y

(r)
n |yn = 0, 1− b

(r)
l ), (1.17)

where pn is fixed to be a logistic regression model. Besides, p(y(r)n |yn = 1, a
(r)
l ) and p(y(r)n |yn =

0, 1 − b
(r)
l ) are modeled with Bernoulli distributions with parameters a(r)l and 1 − b

(r)
l respec-

tively. Similar to the previous approach, the model parameters are estimated by maximizing the

likelihood and employing the EM algorithm.

So far, the works we have discussed are intended for binary classification. Conversely, for re-

gression settings, we only identify the work proposed by [52], which establishes the following

generative model

yn = f(xn) + εf , (1.18)

y(r)n = gr(yn,xn) + εg, (1.19)

where εf , εg ∈R+ are modeled as Gaussian noise. Note that f :X → Y and gr :X × Y → Yr

characterize the regression function and the annotators model, respectively. Here, the authors

use a GPs-based approach for the regression function f ; thus:

14
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p(y|X)=N (y|0,Kff ) , (1.20)

where the covariance matrix K ∈RN×N is computed by using a kernel that involves a squared

exponential term, a linear term, and a constant bias (see [52] for more details). Similarly, each

gr is also modeled as a GP; in this sense, the conditional distribution can be expressed as:

p(y|X)=
R∏

r=1

N (yr|0,Sr) , (1.21)

where Yr is connected with X and Y via a covariance matrix Sr ∈RN×N , where the element

n, n
′ is computed using a particular kernel κS({yn,xn}, {yn′ ,xn

′}) [52]. In this work, the latent

functions f and {gr}Rr=1 are estimated by following the Maximum a posteriori–(MAP) solution.

Approaches to Code Independence between Annotators

One of the most common assumptions in learning from crowds is that the annotators make

their decisions independently. However, as we remark in previous sections, that assumption is

hardly plausible. Regarding this, we only recognize the work in [10] based on BM. Here, the

authors introduce a covariance measure among the annotators; hence, the annotator model is

expressed by

p(Y |y,ϕ,Σ)=

N∏
n=1

N (Υn|yn1R +ϕ,Σ) , (1.22)

where Σ∈RR×R is the covariance matrix of the R annotators, 1R ∈RR is an all-ones vector,

andϕ∈R(R codes the bias of the annotators. Besides,Υn ∈RR contains the labels provided for

the n-th instance. Here, the model parameters are computed using a Bayesian framework based

on Gibbs sampling.

Figure 1.5 shows relevant state-of-the-art works. To summarize, we raise the following observa-

tions:

- In general terms, we notice that most of the models for multiple annotators are based on

FM to solve mainly binary classification tasks.

- We recognize only three relevant works (based on FM) to code the relationship between

the input space and the annotators’ behavior. Two are based on linear classifiers, two solve

binary classification, and the remaining method employs a GP-based framework to solve

a regression problem. Further, we observe that none of these three approaches considers

labelers’ interdependencies.

- Concerning the codification of annotators’ dependencies, we only identify a single algo-

rithm based on BM to face regression settings. However, such a method does not code the

labelers’ performance as a function of the input space.
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[78]

[75]

[53]

[67]

[85]

[43]
[22]

Figure 1.5 Relevant state-of-the-art works for supervised learning with multiple annotators

- Finally, we did not identify any model that codes the annotators’ behavior under two as-

sumptions: i) dependencies between the labelers; ii) the annotators’ performance depends

on the input space.

Accordingly, the principal aim of this research is to face the problems presented in Sec-

tion 1.2 using both perspectives, Frequentist and Bayesian approaches.

1.5 Objectives

1.5.1 General Objective

To develop a supervised learning framework in the context of multiple annotators taking

into account dependencies among the labelers and the fact that the annotators’ performance is

non-stationary across the input space, aiming to improve the representation of the labels in clas-

sification and regression tasks.

1.5.2 Specific Objectives

1. To develop a supervised learning approach (regression and classification) with multiple

annotators, which uses a frequentist-based approach to code the labelers’ expertise by con-

sidering dependencies among their decisions (labels).

2. To develop regression and classification approaches in multi-labelers scenarios, where the

performance of the annotators is modeled using a frequentist-based strategy to code non-

stationary and correlated labelers.

3. To develop a Bayesian-based method that jointly trains the supervised learning approach

16
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(regression or classification) and estimates the labelers’ performance by taking into account

dependencies among them and the relationship between their performance and the input

space.

1.6 Outline and Contributions

The main contributions are briefly introduced in the following sections, which are summa-

rized in Figure 1.6.

Multi-labeler
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Aim 2- Chapter 2

Aim 2- Chapter 3

Aim 3- Chapter 4

Figure 1.6 Relationship between the aims of this work and the developed methodologies. KAAR: Ker-
nel alignment-based annotators relevance analysis. LKAAR: Localized kernel alignment-based annotator
relevance analysis, RCDNN: Regularized chained deep neural network for Multiple Annotators, CGPMA:
Chained Gaussian Processes for multiple annotators, and CCGPMA: Correlated chained Gaussian Pro-
cesses for multiple annotators

1.6.1 Kernel Alignment-Based Annotator Relevance Analysis (KAAR)

The centered kernel alignment–(CKA) is commonly used for kernel selection in typical

kernel-based learning models. The CKA approach comprises the computation of a convex com-

bination of R kernels Kν =
∑R

r=1 νrKr, where each matrix Kr is computed over the input

features with a given kernel κr(xn,xn′); also, the weights ν =[ν1, . . . , νR]∈[0, 1]R are com-

puted by quantifying the similarities between the combination of kernels and the target kernel
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F , which in this case is a kernel computed over the labels (ground truth) κy(yn, yn′) [53]. Our

first contribution comprises the use of CKA to measure the labelers’ performance. For doing

so, we define a convex combination of R kernels, one for annotator; Kν =
∑R

r=1 νrKr, where

Kr is computed as κr(y
(r)
n , y

(r)
n′ ). Besides, we compute ν as the average matching between the

combination of kernels and the target kernel F . We remark that for multi-labeler datasets, we

do not have the actual labels; then, we choose the kernel over the features to be the target kernel

κX(xn,xn′). We hypothesize that the input features code the main patterns of the unknown gold

standard labels.

We highlight that in the case of multiple annotators, each parameter νr is proportional to the

r-th annotator’s performance. In turn, a new sample label is predicted as a convex combination of

learners adopting the achieved KAAR-based coding f(·) =
∑R

r=1 νrgr(·), where each gr(·) is a
supervised learning algorithm trained with the dataset for the r-th algorithmDr (Figure 1.7). Our

approach estimates the performance of the annotators using a non-parametric model, allowing it

to be more flexible concerning the labels’ distribution. Moreover, our methodology relaxes the

assumption of independence between the annotators, which codes possible correlations in the

annotators’ opinions to model their expertise. This approach is related to the first specific aim,

and it is described in Chapter 2. Besides, such a methodology was published in [54].¹

1.6.2 Localized Kernel Alignment-Based Annotator Relevance
Analysis (LKAAR)

As we exposed in Section 1.6.1, the first contribution, KAAR, uses the CKA approach to

model the annotators’ interdependencies. CKA assumes that the distribution of the input features

is stationary; that is, the weight νr penalizes equally all the samples for the r-th kernel function.

Thereby, KAARdoes not consider the relationship between the input features and the labelers’ be-

havior, is unrealistic as established in Section 1.2. To deal with this issue, we introduce a localized

multiple kernel learning-based approach to compute Kq =
∑R

r=1QrKrQr ∈RN×N [55, 56],
where Qr ∈ RN×N is a diagonal matrix whose elements are defined by the vector qr 

=[qr(x1), . . . , qr(xN )]
> ∈ RN . The combination factors q = [q1, . . . , qR]

> ∈ RN×R are 

estimated in such a way as to maximize the CKA between the kernel matrices Kq and F ∈ 

RN×N , where we recall that for multiple annotators settings, F holds elements κX(xn, xn′ ).

We remark that such combination factors qr estimates the annotators’ performance con-

sidering it as a function of the input features and considering the interdependencies among the

labelers. Besides, like KAAR, LKAAR is built as a convex combination of classifiers, as shown

in Figure 1.8; however, instead of having ν as the combination coefficients, which are constant

across the input space, we use q. LKAAR has three remarkable features: i) the performance of

each annotator is a function of the input space; ii) the assumption of independence among the

¹A MATLAB implementation of KAAR is available in https://github.com/juliangilg/KAAR-Learning-from-multiple-
annotators-using-Kernel-Alignment
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Figure 1.7 Kernel alignment-based annotator relevance analysis – (KAAR) pipeline. CKA stands for
Centered Kernel Alignment. X indicates the input space, and each Yr represents the output space for the
r-th annotator. Moreover, ν = [ν1, . . . , νR]

> is a vector containing the annotators’ relevance parameters.
Finally, the supervised learning mapping function f is computed as a convex combination of functions gr
that are trained from the r-th annotator’s data

annotators is relaxed by modeling inter-annotators dependencies [57]; and iii) the performance

of the annotators is estimated using a non-parametric model, allowing it to be more flexible to the

distribution of the labels. This approach is related to the second specific aim, and it is described

in Chapter 3, which is based on the publication [58].²

1.6.3 Regularized Chained Deep Neural Network for Multiple Annotators
(RCDNN)

Our previous contributions, KAAR and LKAAR, deal with a multi-labeler problem in two

stages; the first comprises the estimation of the annotator’s parameters, which are then used

²A MATLAB implementation of LKAAR is available in https://github.com/juliangilg/LKAAR
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Figure 1.8 Localized kernel alignment-based annotator relevance analysis – (KAAR) pipeline. CKA
stands for Centered Kernel Alignment. X indicates the input space, and each Yr represents the output
space for the r-th annotator. Moreover, [q1(xn), . . . , qR(xn)]

> is a vector containing the annotators’
relevance parameters for the n-th input sample. Finally, the supervised learning mapping function f is
computed as a convex combination of functions gr that are trained from the r-th annotator’s data

as weight factors for the combination of R learning models (second stage). In contrast, our

third contribution is a Regularized deep neural network-based method that jointly estimates the

annotators’ performance and the supervised learning algorithm. This approach is inspired by

the chained Gaussian Processes model–(CGP) [59], where the idea is to model each parameter

θj(x), j ∈{1, . . . , J} in a given likelihood with multiple independent GPs priors (one GP prior

per parameter). Unlike CGP, we consider that each neuron in the output layer of a DNN is linked

to one of the parameters of a given likelihood through a deterministic function hj(·). Thus, in a

multi-labeler scenario, the annotators’ parameters are modeled as a function of the input features.

Moreover, we note that since each output in a DNN is computed as a linear combination of the

outputs of a previous layer, our RCDNN codes interdependencies among the annotators. Besides,

l1, l2, and Monte-Carlo Dropout-based regularizers are coupled within our method to deal with
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Figure 1.9 Regularized chained Deep Neural Network scheme. x is an input vector, %o(·) is the o-th layer
of a DNN, fj(x) is the j-th output neuron for the input x. Moreover, each θj(x) is the j-th parameter of
a given likelihood modeled as a function of the input space, and J is the number of likelihood parameters.
Finally, hj(·) is a deterministic function such that θj(x) = hj (fj(x))

the overfitting issue in deep learning models. Like LKAAR, this approach is related to the second

specific aim. RCDNN is described in Chapter 4 (based on [60]) and summarized in Figure 1.9.³

1.6.4 Chained Gaussian Processes for Multiple Annotators (CGPMA) and
Correlated Chained Gaussian Processes for Multiple Annotators
(CCGPMA)

Up to this point, our contributions, KAAR, LKAAR, and RCDNN, solve the multi-labeler

problem from a frequentist perspective. Conversely, the last two contributions are based on

Bayesian approaches, specifically on GPs. First, we apply the CGP [59] model to a multi-labeler

likelihood. As exposed in Section 1.6.3, CGP links each likelihood parameter θj(x) to a GP

prior fj(x) ∼ GP(0, κfj (·, ·)), being κfj (·, ·) the covariance function and j ∈{1, . . . , J}. Such
a connection between the parameter θj(x) and the f(x) is performed via a deterministic function

h(·) : R → Mj , whereMj is the domain for θ(x) (Figure 1.10). Accordingly, in a multi-labeler

scenario, we are modeling the relationship between the annotators’ performance and the input

features.

Unlike CGP, we consider that multiple correlated GPs model the likelihood’s parameters.

For doing so, we take as a basis the ideas from a Multi-output GP–(MOGP) regression [40],

where each output is coded as a weighted sum of shared latent functions via a semi-parametric

latent factor model–(SLFM) [61]. In contrast to the MOGP, we do not have multiple outputs but

multiple functions chained to the given likelihood parameters. Thus, each latent function fj(x)

is computed as

fj(x) =

Q∑
q=1

wj,qµq(x), (1.23)

³A Python implementation of RCDNN is available in https://github.com/juliangilg/RCDNN-MA
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Figure 1.10 Chained Gaussian processes. Each fj(x) is a latent function that follows a GP, Moreover,
each θj(x) is the j-th parameter of a given likelihood, and J is the number of likelihood parameters.
Finally, hj(·) is a deterministic function such that θj(x) = hj (fj(x))
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Figure 1.11 Correlated chained Gaussian processes. Each fj(x) is a latent function computed as a linear
combination of functions {µq(x)}Qq=1 that follows a GP. Moreover, each θj(x) is the j-th parameter of a
given likelihood, and J is the number of likelihood parameters. Finally, hj(·) is a deterministic function
such that θj(x) = hj (fj(x))

where µq(·) ∼ GP(0, kq(·, ·)), with kq : X×X → R is a kernel function, and wj,q ∈R is a

combination coefficient (Q∈N). Each, LF is chained to the likelihood parameters, as shown in

Figure 1.11. From the multiple annotators’ point of view, the likelihood parameters are related

to the labelers’ behavior; thereby, CCGPMA models the labelers’ behavior as a function of the

input features while also considering the annotators’ interdependencies. CGPMA and CCGPMA

are related to the third specific aim. Both models are described in Chapter 5, which is based on

[62].⁴

1.6.5 Book Structure

This work is organized as follows. In Chapter 2, we introduce the KAAR model to code

the annotators’ performance taking into account dependencies among their labels, where the

supervised learning algorithm is based on a linear combination ofR learners. Chapter 3 discusses

the LKAAR model, an extension of KAAR to model the relationship between the input features

and the labelers’ performance. In Chapter 4, we introduce a Regularized DNN-based approach

to jointly train a supervised learning model and model the annotators’ behavior considering their

dependencies and the relationship between their performance and the input space. Chapter 5

⁴A Python implementation of CCGPMA is available in https://github.com/juliangilg/CCGPMA
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presents the CGPMA and CCGPMA models, which address the multi-labeler problem from a

Bayesian perspective. CGPMA considers the performance as a function of the inputs; while

CCGPMA extends CGPMA to capture dependencies among the labelers. Finally, Chapter 6,

describes the conclusions, future works, and academic discussion.
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Chapter 2 Kernel Alignment-Based Annotator

Relevance Analysis

Most works in the context of learning from multiple annotators are based on parametric

models, which leads to the following issues: i) if the quantity of the parameters is comparable

with the number of samples available for training, the model can fall quickly into overfitting [28].

ii) Linear or Gaussian constraints are commonly imposed to compute the optimal solutions an-

alytically [63]. However, real-world datasets cannot fulfill such assumptions. iii) Most of the

works assume independence between the annotators. However, it is suitable to consider that the

labelers make their decisions independently. It is not true that these opinions are independent

since there are possible correlations between the expert views [64].

In this chapter, we introduce a new kernel alignment-based annotator relevance analysis–

(KAAR) approach to estimate the expertise of the labelers in scenarios where the gold standard

is unavailable. KAAR computes each annotator’s relevance as an averaged matching between the

input features and the expert labels. A new sample label is predicted as a convex combination of

learners adopting the achieved KAAR-based coding. Unlike previous works, our approach esti-

mates the annotators’ performance using a non-parametric model, allowing it to be more flexible

concerning the distribution of the labels. Moreover, our methodology relaxes the assumption of

independence between the annotators, highlighting possible correlations between the opinions to

code their expertise. Our approach is similar to the proposed in [65] in that we perform the super-

vised learning task using a weighted combination of supervised learning algorithms. However,

unlike such a work, we estimate the weights using a kernel alignment-based approach to quantify

the matching between the input features and the annotator expertise. We empirically show, using

both simulated and real annotators for regression and classification tasks, that our methodology

can be used to estimate the performance of multiple labelers even if the gold standard is not

available, outperforming state-of-the-art techniques.

2.1 Centered Kernel Alignment Fundamentals

In typical kernel-based learning models, selecting of a positive-definite function is crucial.

Multiple kernel learning–(MKL) deals with such an issue by defining a kernel Kν as a combi-

nation of R basis kernels; thus, we have [66]

Kν =hν

(
{Kr}Rr=1

∣∣∣ν) , (2.1)

where hν is the combination function, which can be linear (sum of kernels) or non-linear (e.g.,



2.2 Kernel Alignment-Based Annotator Relevance Analysis

product of kernels) [67]. Moreover, Kr ∈RN×N is computed using a particular kernel function

over the input features X , κr :X × X →R, and ν ∈RR is a vector containing the combination

parameters. In particular, we define the function hν as a convex combination; accordingly,

Kν =hν

(
{Kr}Rr=1

∣∣∣ν)= R∑
r=1

νrKr, (2.2)

where ν ∈[0, 1]R, and ||ν||2=1 guarantees that Kν is positive definite (ν ∈RR holds elements

νr and ||·||2 is the l2-norm). It is worth mentioning that adopting a convex sum favors the inter-

pretability of parameters {νr}Rr=1, where theweight νr ∈[0, 1] represents the r-th kernel relevance

[66].

Centered Kernel Alignment–(CKA)-based approaches leverage a data-driven estimator of ν by

quantifying the similarity among the kernels over input features and the kernel computed over the

outputs F ∈RN×N , which is also set as a positive definite function κy :Y×Y→R. Thereby, the

matching between Y and X spaces can be measured through an empirical estimate of the CKA

value ρ∈[0, 1] based on the Kν and F kernels as follows [53]:

ρ (Kν ,F )=
〈K̄ν , F̄ 〉F

|| K̄ν ||F || F̄ ||F
, (2.3)

where F̄ stands for a centered kernel matrix computed as: F̄ = ĨF Ĩ , being Ĩ = I−1>1/N a

centering matrix, I ∈RN×N is the identity, and 1∈RN is an all-ones vector. Namely, the vector

ν can be inferred by minimizing equation (2.3); the higher the νr value the better the contribution

of Kr to match the target F .

2.2 Kernel Alignment-Based Annotator Relevance Analysis

As we pointed out previously, CKA quantifies the similarity between a pair of input-output

spaces to perform a proper configuration of a convex set of kernel functions. Alike, our idea is

to use CKA to estimate the annotators’ expertise in scenarios where the gold standard is unavail-

able. For doing so, we assume that the input features code the main patterns of the unknown gold

standard labels. Thus, we measure the CKA between a kernel extracted from the input features

(our target) andR kernels computed from the annotations given by each expert. Accordingly, we

rewrite the matrix F as follows: fnn′ =κX(xn,xn′),with n, n′ ∈{1, 2, . . . , N}. For associating
samples, several bivariate measures of similarity can be used, e.g., linear, Gaussian, polynomial,

etc. [68]. Here, to favor the mathematical tractability and to avoid the influence of the free param-

eters regarding the annotator performance, we fix κX as a linear kernel, yielding: fnn′ =xnx
>
n′ .

In turn, the pairwise similarity within the r-th expert annotations is defined by rewriting κr. The

form κr will depend on the label space nature (i.e., regression or classification), which is dis-

cussed in Section 2.2.1. On the other hand, the kernel matrix Kν , which codes the multiple

annotation dependencies, is computed as a convex combination of the R kernels Kr, holding
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2.2 Kernel Alignment-Based Annotator Relevance Analysis

elements: k(r)nn′ =κr(y
(r)
n , y

(r)
n′ ). Correspondingly, to capture each annotator performance, we

compute the νr value using the following CKA-based optimization:

ν̂ = argmax
ν

ρ(Kν ,F ); s.t.||ν||2= 1. (2.4)

Note that we highlight the dependence of the kernel matrix Kν with respect to the vector ν. As

a result, the weight ν̂r ∈ ν̂ in equation (2.4) explains the measured matching between the r-th

expert, as stated in κr(y
(r)
n , y

(r)
n′ ), and the input features, as coded in κX(xn,xn′). Moreover,

through an auxiliary vector v ∈RR, wherein the following equality is imposed ν =v/||v||2, the
optimization problem in equation (2.4) can be solved trough the minimization of a quadratic cost

function:

v̂ = argmax
v

L(v) = argmax
v

v>Γv − 2v>a; s.t. ||v||2≥ 0, (2.5)

where the matrix Γ∈RR×R collects inter-annotator dependencies as:

Γrr′ =〈K̄r, K̄r′〉F,

where r, r′ ∈{1, 2, . . . , R}, and a∈RRquantifies the similarity between the r-th expert and the

input feature space as: ar =〈K̄r, F̄ 〉F. Accordingly, KAAR allows measuring the annotators’

performance by taking into account dependencies among their behavior. A gradient descent-

based approach is given to solve the optimization problem in equation (2.5) as follows:

dL(v)
v

= 2Γv − 2a. (2.6)

After estimation of the relevance vector ν, we assess the output ynew ∈Y of a new input

xnew ∈RP as the following convex combination of learners

ŷnew =
1

||ν||1

R∑
r=1

νrgr(xnew), (2.7)

where gr :RP →Y is a supervised learning algorithm trained from the set Dr, and ||·||1 is the

l1-norm.

Notably, our kernel alignment-based annotator relevance analysis approach–(KAAR) can

deal with missing labels. Also, it is possible to use any supervised learning scheme to learn the

function gr . To summarize, our KAAR (Algorithm 1.) counts on the enhancement of learn-

ing from multiple annotators by its two central stages: i) Seeking a relevance vector ν, relying

on the averaged matching between the annotator labels and the input data features, and ii) Pre-

dicting the output of a new sample as a convex combination of learners adopting the achieved

CKA-based relevance vector that intends to enhance the data separability based on the explained

discrimination of each provided expert.
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2.3 Experimental Set-Up

Algorithm 1: KAAR description
Data: D= {X,Y } , xnew

1 Compute K̄ following equation (2.2).
2 Compute F̄ from the kernel function κX(·, ·).
3 Compute the annotators’ parameters ν by solving the optimization problem in

equation (2.5).
4 Learn a function gr(·) for each annotator by using Dr = {Xr,yr}.
5 Predict the output ŷnew for xnew following equation (2.7).

2.2.1 KAAR for Classification and Regression

One of the advantages of our proposal is that it can be applied for regression and classifica-

tion. The key factor comprises the election of a proper function for κr(y
(r)
n , y

(r)
n′ ). We describe

the kernel used for each setting (regression/classification).

Classification

In this first case, y(r)n ∈{1, . . . ,K}, being K the number of classes. In turn, the pairwise

similarity within the r-th expert annotations is defined by rewriting κr as follows:

κr(y
(r)
n , y

(r)
n′ ) =

1, if n, n′ ∈ Nr and y(r)n = y
(r)
n′

0, Otherwise
, (2.8)

where the condition n, n′ ∈Nr, inhibits the influence of missing labels.

Regression

For regression problems, we have the labels y(r)n ∈R. Thus, as in [53], we choose a linear

kernel as follows

κr(y
(r)
n , y

(r)
n′ ) =

y
(r)
n y

(r)
n′ , if n, n′ ∈ Nr

0, Otherwise
, (2.9)

where the condition n, n′ ∈Nr, inhibits the influence of missing labels.

2.3 Experimental Set-Up

In this section, we describe the experiments’ configurations to validate our KAAR approach

in multiple annotators scenarios for classification and regression tasks.

2.3.1 Classification
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2.3 Experimental Set-Up

Testing Datasets

Aiming to test our KAAR approach as a classification tool from multiple annotators scenar-

ios, we use eight datasets for binary classification of the well-known UCI repository ¹. The cho-

sen datasets include: Wisconsin Breast Cancer Database–(breast), BUPA liver disorders–(bupa),

Johns Hopkins University Ionosphere database–(ionosphere), Pima Indians Diabetes Database–

(pima), Tic-Tac-Toe Endgame database–(tic-tac-toe), Iris Plants Database–(iris), Wine Data set–

(Wine), and Image Segmentation Data Set–(Segmentation).

Moreover, the proposed approach is also tested on a real multiple annotators settings by ap-

plying it in two datasets. The first is a voice database, where the idea is to build a system for eval-

uating the voice quality. The Massachusetts Eye and Ear Infirmary Disordered Voice Database

from the Kay Elemetrics company is used, which comprises voice records from healthy and dif-

ferent voice issues. Explicitly, a subset of N =218 voice records is deemed: 51 healthy and

167 pathological. Four specialists assessed the quality following the GRBAS protocol, which

comprises the evaluation of five qualitative scales: Grade of dysphonia–(G), Roughness–(R),

Breathiness–(B), Aesthenia–(A), and Strain–(S). For each perceptual scale, the specialist assigns

an integer tag ranging from 0 (healthy voice) to 3 (severe disease) [69]. Next, the well-known

Mel-frequency cepstral coefficients–(MFCC) are computed for each voice signal to obtain an

input space of 13 features (P =13) [21]. The automatic assessment of voice quality configures

five independent multi-class classification problems. However, since we have information about

each voice record’s diagnosis (pathological or normal), we map the labels to the set {1, 2}. The
second dataset is called sentiment polarity, which corresponds to a collection of more than ten

thousand sentences, is labeled as positive or negative. From this collection,N =5000 sentences

were selected randomly and published in the AMT platform to obtain labels from multiple an-

notators about each sentence’s sentiment polarity. Besides, the remaining 5248 sentences were

kept for testing. Each phrase is pre-processed to remove the stop words and is represented using

a vocabulary with a size of 8919. A post-processing step based on Latent Semantic Analysis was

carried out to reduce the dimensionality to P =1200 features (for more details, [27]). Further,

the music genre data is analyzed, holding a collection of song records labeled from one to ten

depending on their music genre: classical, country, disco, hip-hop, jazz, rock, blues, reggae, pop,

and metal. From this set, 700 samples were published randomly in the AMT platform to obtain

labels from multiples sources (2946 labels were obtained from 44 workers). The feature extrac-

tion is performed by following the work by authors in [27] to obtain an input space with P =124.

Table 2.1 summarizes the tested datasets.

¹http://archive.ics.uci.edu/ml
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Table 2.1 Datasets description

Name Number of
features

Number of
instances

Number of
classes

Semi-synthetic

Breast 9 683 2
Bupa 6 345 2

Ionosphere 34 351 2
Pima 8 768 2

Tic-tac-toe 9 958 2
Iris 4 150 3
Wine 13 178 3

Segmentation 18 2310 7

Fully real
Voice 13 218 2
Polarity 1200 10427 2
Music 124 1000 10

Provided and Simulated Annotations

Regarding the UCI repository datasets, which are mainly used for typical supervised learn-

ing approaches without considering multiple annotators, two different simulation methods are

studied to avoid biased results: i) Classifier disrupting proposed in [27], where a logistic regres-

sion classifier is trained using the input features and the true labels {xn, yn}Nn=1, to obtain a

classifier weight vector w∈RP . Then, the label given by the r-th annotator is simulated as fol-

lows: y(r)n =w>xn+N (0, σ2r ), where N (0, σ2r ) stands for a univariate normal distribution with

zero mean and variance σ2r ∈R+. In turn, a sigmoid function is applied to map the disrupted

label within the set {1, 2}. Accordingly, the higher the σ2r , value, the lower the expertise level

of the r-th labeler. ii) Biased coin used in [50] that builds a binary number τ (r)n ∈{0, 1} from a

Bernoulli distribution ruled by the probability parameter pr ∈[0, 1]. Then, the simulated annota-

tions of the r-th expert yields: y(r)n = yn, if τ
(r)
n =0, otherwise, y(r)n = ỹn, if τ

(r)
n =1; where ỹn

is the flipped version of yn.

Concerning the voice quality dataset, the annotations from four experts are provided,R=4.

For concrete testing, we only consider the R and B scales because, for scales A and S, the perfor-

mance of the labelers is not satisfactory. For the scale G, the labelers’ expertise is quite similar

(according to the analysis performed in [21]). Similarly, we have labels from 203 workers for the

polarity sentiment dataset. However, we only consider the annotators who labeled at least 15% of

the available instances; in this sense, we use the information from R=7 labelers. It is important

to highlight that these 7 annotators do not label all the available instances. Further, for the music

dataset, we only consider the annotators who labeled at least 20% of the instances; thus, we use

the information from R=9 labelers.

KAAR Training and Comparison Methods

KAAR employs a linear kernel to define the input data similarities and a closed form to

compare expert annotations (equation (2.8)). It does not require any free parameter tunning to

compute the relevance vector ν in equations (2.4) and (2.5). Now, as the classification function
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2.3 Experimental Set-Up

Table 2.2 A brief overview of the state-of-the-art methods tested

Algorithm Description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the majority voting of the labels as the ground truth.
MA-LFC [1] A LRC with constant parameters across the input space.
MA-MAE [50] A LRC where the sources parameters depend on the input space.
MA-DGRL [27] A multi-labeler approach that considers as latent variables

the annotator performance.
MA-GPC [20] A multi-labeler GPC, which is as an extension of MA-LFC

by using a non-linear approach.

Note: GPC: Gaussian Processes classifier, LRC: logistic regression classifier, MV: majority voting, MA:
multiple annotators, MAE: Modelling annotators expertise, LFC: Learning from crowds, DGRL: Distin-
guishing good from random labelers.

gr, we use a Gaussian processes-based model whose hyperparameters are set by optimizing a

marginal likelihood [37]. Also, the validation is assessed by estimating the classification perfor-

mance as the Area Under the Curve (AUC) for both simulated and real data. A cross-validation

scheme is carried out with 30 repetitions where 70% of the samples are utilized for training and

the remaining 30% for testing (except for the sentiment polarity dataset since it clearly defines

the training and testing sets). On the other hand, Table 2.2 presents the comparison methods.

2.3.2 Regression

Testing Datasets

We test our approach using three types of datasets: fully synthetic data, semi-synthetic data,

and fully real datasets. First, We generate fully synthetic data as a one-dimensional regression

problem, where the ground truth for the n-th sample corresponds to yn = sin(2πxn), where the

input matrixX is formed by randomly sampling 300 points within the range [0, 1] from a uniform

distribution. The test instances are obtained by extracting 300 equally spaced samples from the

interval [0, 1]. Second, to control the label generation [19], we build semi-synthetic data from

six datasets related to regression tasks from the well-known UCI repository. We selected the fol-

lowing datasets: Auto MPG Data Set–(Auto), Bike Sharing Dataset Data Set–(Bike), Concrete

Compressive Strength Data Set–(Concrete), The Boston Housing Dataset–(Housing),² Yacht Hy-

drodynamics Data Set–(Yacht), and Relative location of CT slices on axial axis Data Set–(CT).

Third, we evaluate our proposal on one fully real dataset. In particular, we use the music genre

data³, holding a collection of songs record labeled from one to ten depending on their music

genre: classical, country, disco, hip-hop, jazz, rock, blues, reggae, pop, and metal. From this

set, 700 samples were published randomly in the AMT platform to obtain labels from multiples

²See https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html for housing

³http://fprodrigues.com/publications/learning-from-multiple-annotators-distinguishing-good-from-random-labelers/
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Table 2.3 Datasets for regression

Name Number of
features

Number of
instances

Fully synthetic synthetic 1 100

Semi-synthetic

Auto 8 398
Bike 13 17389

Concrete 9 1030
Housing 13 506
Yacht 6 308
CT 384 53500

Fully real Music 124 1000

sources (2946 annotations from 44 workers). Notice that the music dataset configures a 10-class

classification problem; however, we are addressing a multi-class classification problem with a

regression model in such an experiment. Such practice is not uncommon in machine learning

and is usually known as “Least-square classification” [9, 37]. Table 2.3 summarizes the tested

datasets for the regression case.

Simulated and Provided Labels

As we pointed out previously, fully synthetic and semi-synthetic datasets do not hold real

annotations. Thus, it is necessary to generate these labels synthetically as a version of the gold

standard corrupted by Gaussian noise, i.e., y(r)n = yn + εr, where εr ∼ N (0, σr), being σr the

r-th annotator error-variance for the sample n. This simulation method has been used in several

works, such as [22, 23]. Further, for the music dataset, we only consider the annotators who

labeled at least 20% of the instances; thus, we use the information from R=9 labelers.

KAAR Training and Method Comparison

Alike in the classification case, KAAR for regression settings employs a linear kernel to

define the input data similarities and a closed-form to compare expert annotations (see equa-

tion (2.8)), it does not require any free parameter tunning to compute the relevance vector ν in

equations (2.4) and (2.5). Besides, as the regression function gr, we use a Gaussian processes-

based model, whose hyperparameters are set by optimizing a marginal likelihood [37]. The

quality assessment is carried out by estimating the regression performance as the coefficient of

determination–(R2). A cross-validation scheme is employed with 15 repetitions where 70% of

the samples are utilized for training and the remaining 30% for testing (except for the fully syn-

thetic dataset and music dataset since they clearly define the training and testing sets). Table 2.4

displays the methods employed by the state-of-the-art for comparison purposes. From Table 2.4,

we highlight that for the model MA-DL, the authors provided three different annotators’ codifica-
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Table 2.4 A brief overview of state-of-the-art methods tested for regression tasks

Algorithm Description
GPR-GOLD 
GPR-Av MA-
LFCR [1]

MA-GPR [20] 
MA-DL [25]

A GPR using the real labels (upper bound).
A GPR using the average of the labels as the ground truth. A LR model 
for MA where the labelers’ parameters
are supposed to be constant across the input space.
A multi-labeler GPR, which is as an extension of MA-LFCR. A Crowd 
Layer for DL, where the annotators’ parameters are constant across the 
input space.

Note: GPR: Gaussian Processes Regression, LR: logistic regression, Av: average, MA: multiple annota-
tors, DL: Deep learning, LFCR: Learning from crowds for regression.

tions: MA-DL-B, where the bias for the annotators is measured; MA-DL-S, where the labelers’

scale is computed; and measured; MA-DL-B+S, which is a version with both [25].

2.4 Results and Discussion

2.4.1 Classification

First, a representative experiment is carried out to verify the KAAR capability to code the

annotator performance. Namely, samples belonging to the Setosa and the Versicolour classes in

the iris dataset are considered for testing theKAAR-based coding on a linearly separable problem.

Afterward, we simulate five annotators using the simulation methods described in Section 2.3 by

the parameters shown in Table 2.5. Moreover, Table 2.5 shows the KAAR-based coding results

for the iris dataset regarding the matching weights in ν. We compute such weights as the CKA-

based dependency between each expert kernel and the target for the two simulation methods. In

particular, we analyze two different target kernels: from true labels and the input features (νTL

and νIF ). Comparing theAUC for the simulated annotators and the KAAR-based results, overall,

our approach can infer the annotators’ performance from the input features. Figure 2.1 shows a

visual comparison among the following kernels computed: the kernel calculated over the ground

truth labels, the kernel estimated from the input features (F ), and the kernels estimated for each

expert {Kr : r=1, . . . , R}. Remarkably, the true labels and the input features kernels exhibit

a significant coincidence; an appropriate parametrization reveals relevant information about the

unknown gold standard. Besides, the annotation quality plays a vital role regarding the visual

similarities between the true labels and the simulated annotations kernels; the lower the quality,

the lower the visual similarity. The latter statement can be corroborated in Table 2.5, which shows

the parameters used in each method to simulate annotators with different levels of expertise. The

AUC is computed between the true labels and the simulated annotations. On the other hand, we

recall that one of the main aims of this first proposal is to measure the annotators’ performance by
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Figure 2.1 Iris dataset illustrative results. On the first row, from left to right, we show the similarities
among samples according to the true labels and the input features. On the second and third rows, from left
to right, we expose the kernels computed from the annotators’ labels concerning each simulation method
(see Table 2.5). Vertical and horizontal axes display the sample index, sorted by the value of the ground
truth labels

Table 2.5 KAAR-based annotator coding results for the iris dataset

Simulation
method

Parameter
value AUC [%] νTL νIF

Classifier
disrupting

σ21 = 10 100 0.7071 0.6971
σ22 = 102 100 0.7071 0.6971
σ23 = 104 99.88 0 0.1613
σ24 = 106 87.28 0 0.0465
σ25 = 1010 45.72 0 0

Biased coin

p1 = 0.1 87.00 0.8423 0.8410
p2 = 0.3 84.00 0.5116 0.5186
p3 = 0.5 51.00 0 0
p4 = 0.6 35.00 0.0767 0.0843
p5 = 0.7 31.00 0.1511 0.1291

Targets: the true labels (νTL) and the input features (νIF ).

considering dependencies between them. Figure 2.2 presents a visual comparison between the

five annotators’ estimated dependencies. On the left, we show the Pearson correlation coefficient

between the annotations yr and yr′ for r, r′ ∈{1, . . . , R} as the reference value. We remark that

only positive values of the Pearson correlation coefficient are allowed; negative values are fixed

as 0. Similarly, on the right, we estimate the dependencies Γrr′ ∈ [0, 1] between the r-th and

r′-th annotator based on the CKA formulation as Γrr′ = 〈K̄r, K̄r′〉F. Remarkably, comparing

the reference and the estimated dependencies among the annotators, we can see that, although

the exact behavior is not recovered, KAAR can identify the labelers’ relevant relationship, which

improves the annotators’ representation.

Up to this point, we have verified that the relevance vector ν captures the performance of
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Figure 2.2 Annotators’ interdependencies. In the left column, from top to bottom, we show the Pearson
coefficient computed over the labels from multiple annotators. On the right, we present the annotators’
dependencies estimated with our KAAR

multiple annotators even if the goal standard is unavailable and considers dependencies among

the annotators. In turn, we perform classification experiments using datasets from the UCI repos-

itory. We simulate five annotators with different levels of expertise using the simulation param-

eters exposed in the second column of Table 2.5. Here, the KAAR-based coding is employed

within a Gaussian Process-based classifier-(GPC) to predict a new label. For concrete testing,

the GPC kernel function is fixed as a squared exponential with automatic relevance determi-

nation (ARD), and the kernel parameters are computed by minimizing the marginal likelihood

function. Table 2.6 reports the mean and the standard deviation for the predicted AUC. More-

over, the method with the highest performance is highlighted in bold, excluding the upper bound

(GPC-GOLD), which is a GPC trained with the true labels. Most of the classification meth-

ods from multiple annotators considered in this work outperform the majority voting baseline

in most cases. This is not surprising since this baseline does not recognize different expertise.

Remarkably, our approach is less prone to overfitting when compared with the parametric models

(GPC-MV, MA-LFC, MA-MAE, MA-DGRL, MA-GPC). The above is a direct consequence of

the number of parameters for modeling the performance of the annotators. For instance, MA-

LFC and MA-GPC use 2 × R parameters, MA-DGRL uses R parameters, and MA-MAE uses

P × R parameters. Otherwise, our approach estimates the labelers’ expertise as closed-form

similarities between the input space and the labelers’ annotations; hence, no free parameter tun-

ing is required. However, it is important to highlight a trade-off between model overfitting and

accuracy due to approaches that code the annotators’ expertise using parametric representations,

i.e., MA-GPC and MA-LFC, which can capture biased labelers.
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2.4 Results and Discussion

Table 2.6 UCI repository classification results

(a) Classifier disrupting.
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation average

GPC-GOLD 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 96.65± 3.81 99.40± 0.87 91.39± 2.05 92.18
GPC-MV 99.39± 0.41 65.15± 5.20 93.74± 3.04 82.59± 2.90 58.70± 5.11 99.75± 0.42 99.40± 0.87 94.13± 0.98 86.61
MA-LFC 99.51± 0.30 55.52± 17.25 86.97± 16.27 83.53± 1.73 62.89± 3.25 99.63± 0.39 99.88± 0.17 97.31± 0.42 85.66
MA-DGRL 99.61± 0.27 68.11± 7.62 90.51± 3.55 82.59± 2.82 61.10± 3.16 97.11± 1.87 99.78± 0.33 92.05± 2.36 86.36
MA-MAE 99.62± 0.31 66.37± 3.99 92.81± 2.83 83.10± 2.36 63.45± 2.80 99.55± 0.86 99.81± 0.27 95.59± 0.50 87.54
MA-GPC 95.08± 2.46 56.68± 10.39 94.79± 2.70 66.77± 4.30 60.07± 2.83 99.68± 0.34 99.81± 0.27 98.20± 0.22 83.88
KAAR 99.39± 0.39 65.33± 5.47 96.63± 1.57 83.91± 2.45 64.05± 3.58 99.64± 0.47 99.56± 0.81 94.50± 0.95 87.87

(b) Biased coin.
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation average

GPC-GOLD 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 96.65± 3.81 99.40± 0.87 91.39± 2.05 92.18
GPC-MV 94.13± 3.69 59.28± 5.95 65.48± 7.72 64.48± 8.57 62.54± 5.17 98.45± 1.84 97.83± 1.83 90.63± 2.73 79.10
MA-LFC 99.35± 0.43 71.43± 4.60 84.45± 4.27 83.02± 2.01 60.38± 3.09 99.56± 0.53 97.89± 1.78 99.41± 0.20 86.93

MA-DGRL 99.14± 1.26 68.89± 6.15 58.06± 8.45 82.23± 2.60 56.30± 4.63 94.01± 5.51 93.16± 5.77 96.24± 1.10 81.00
MA-MAE 96.57± 2.46 68.14± 4.58 67.34± 7.15 79.90± 3.49 50.43± 5.39 99.08± 0.92 95.25± 2.54 98.63± 0.33 81.92
MA-GPC 94.45± 2.51 43.19± 9.84 92.03± 6.05 68.96± 5.86 73.42± 4.15 99.45± 0.54 99.68± 0.35 99.41± 0.16 83.83
KAAR 99.04± 0.49 68.51± 5.42 85.51± 5.45 82.48± 2.72 90.13± 3.60 99.34± 0.91 99.33± 0.56 93.18± 1.78 89.69

Bold: the highest performance, excluding the upper bound (target) classifier GPC-GOLD.

The aforementioned is empirically demonstrated in Table 2.6; in some cases, MA-LFC and

MA-GPC exhibit better performance than KAAR (mainly for the Bupa Dataset and segmenta-

tion). Nonetheless, our approach outperforms all the models considered for validation in general.

Table 2.7 outlines the achieved performances for the datasets holding real-world annotators.

We highlight in bold the best method, excluding the upper bound (GP-GOLD). As seen for the

voice quality dataset, the scale R allows exhibiting similar AUC values for most approaches. The

latter can be explained in that, the annotators share comparable performances in terms of the

AUC. Besides, we note that our KAAR approach obtains the highest AUC values for scale B,

which is a remarkable result as long as, in this scale, the quality of the annotations decreases

considerably for the R references. On the other hand, concerning the sentiment polarity dataset,

the KAAR algorithm clearly outperforms all the validation methods; it achieves similar perfor-

mance to the model trained with the gold standard (GPC-GOLD). The above can be explained in

the sense that considering the correlations between the labelers encourages suitable coding about

the annotators’ performance, which positively affects on the quality of the predictions.

2.4.2 Regression

First, we perform a controlled experiment aiming to verify the capability of our KAAR

method to estimate the performance of multiple annotators taking into account their dependen-

cies. For this first experiment, we use the fully synthetic dataset described in Section 2.3.2. We

simulate five labelers (R = 5) with different expertise levels using the parameters shown in

Table 2.8. Besides, such a Table shows the KAAR-based coding results for this fully synthetic

dataset regarding the matching weights in ν. From the classification result in Table 2.5, we note

that our approach can measure the annotators’ performance based on the similarities between the

annotations from multiple labelers and the input features. Accordingly, for this first regression

experiment, we compute the weights ν as the CKA-based dependency between each expert ker-
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2.4 Results and Discussion

nel and the target kernel, which is computed over the matrix X . From Table 2.8, we remark that

the behavior of R2 score for the simulated annotators and the KAAR-based results are propor-

tional; hence, we identify that our approach can infer the annotator performance from the input

features in scenarios of real-valued labels.

Table 2.7 Real annotators datasets results
AUC([%])

Method Voice Dataset Polarity
Dataset

Music
Dataset AverageR B

GPC-GOLD 92.83 91.89 80.26 92.84 89.45
GPC-MV 88.91 82.05 77.62 88.79 84.34
MA-LFC 90.86 86.68 50.53 85.99 78.51
MA-MAE 89.95 82.07 48.73 81.92 75.66
MA-DGRL 93.11 80.93 56.13 88.32 79.62
MA-GPC 93.55 80.16 61.18 82.53 79.35

KAAR (proposal) 92.37 90.83 78.15 88.96 87.57

Bold: themethodwith the highest performance, excluding the upper bound (target) classifier GPC-GOLD.

Now, Figure 2.3 (column 1) shows the regression results generated by 5 different regression

schemes based on GPs, where the r-th regressor gr is trained with dataset Dr. Remarkably, if

we compared the KAAR-based parameters ν in Table 2.8 and the regression results. We note

that the higher the regression performance, the higher the KAAR-based performance estimation.

Moreover, in the first two images (from top to bottom) of the second column of Figure 2.3, we

expose the result of our GPR-GOLD (a GP-based regression model trained with the actual labels)

and the regression results generated by the KAAR-based approach based on the combination

of the regression results exposed in the first column. We notice that our method performs the

regression task properly. The regression results of KAAR are similar to the ones from GPR-

GOLD.

On the other hand, we recall that our work’s main objective is to estimate the annotators’

performance by taking into account inter-dependencies. In the last two images of the second

column in Figure 2.3, we expose a visual comparison between the five annotators’ estimated

dependencies. On the left, we show the Pearson correlation coefficient between the annotations

yr and yr′ for r, r′ ∈{1, . . . , R} as the reference value. We remark that only positive values

of the Pearson correlation coefficient are allowed; negative values are fixed as 0. Similarly, on

the right, we estimate the dependencies Γrr′ ∈ [0, 1] between the r-th and r′-th annotator based

on the CKA formulation as Γrr′ = 〈K̄r, K̄r′〉F. Comparing the reference and the estimated

Table 2.8 KAAR-based annotator coding results in the fully synthetic dataset

Parameter value R2 ν

v1 = 0.2 0.5698 0.5632
v2 = 0.33 0.2423 0.3048
v3 = 0.5 0.0412 0.1252
v4 = 2 −2.8083 0.0025
v5 = 4 −8.0806 0.0040
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Figure 2.3 Regression illustrative results. In the first column, from top to bottom, we show the regression
results for each annotator. In the second column, from top to bottom, we exhibit the result for GPR-GT,
the result for our GPR-KAAR; finally, in the last row, we show the Pearson coefficient computed over the
labels from multiple annotators and the dependencies estimated with our KAAR

dependencies among the annotators, we can see that, although the exact behavior is not recovered,

KAAR can identify the labelers’ relevant relationship.

On the other hand, regarding the semy-synthetic datasets, Table 2.9 shows the results of

the semi-synthetic datasets. On average, our KAAR exhibits the best generalization performance

regarding theR2 score. Now, regarding its GPs-based competitors (GPR-Av, MA-GPR), we note

that the intuitive lower bound GPR-Av exhibits a worse prediction than our KAAR. However, we

remark on MA-GPR’s behavior, which is lowest compared with its GPs-based competitors, even
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2.4 Results and Discussion

Table 2.9 Regression results in terms of R2 score over semi-synthetic datasets
Method auto Bike concrete housing yacht ct Average

GPR-GOLD 0.8698± 0.0268 0.5612± 0.0059 0.8101± 0.0251 0.8288± 0.0389 0.8043± 0.0741 0.8652± 0.0054 0.7899
GPR-Av 0.8518± 0.0273 0.5432± 0.0076 0.7749± 0.0283 0.7984± 0.0424 0.7667± 0.0870 0.8223± 0.0074 0.7595

MA-LFCR 0.7992± 0.0231 0.3880± 0.0073 0.5975± 0.0388 0.7072± 0.0538 0.6120± 0.0775 0.6619± 0.2492 0.6276
MA-GPR 0.8558± 0.0269 0.4242± 0.0175 0.7807± 0.0312 0.7247± 0.0628 0.7319± 0.0965 0.0111± 0.0038 0.5881
MA-DL-B 0.7890± 0.0296 0.5926± 0.0121 0.2281± 0.0355 0.5323± 0.0757 0.1897± 0.0680 0.7590± 0.2437 0.5151
MA-DL-S 0.7866± 0.0274 0.5882± 0.0122 0.2259± 0.0312 0.5276± 0.0852 0.1900± 0.0722 0.8722± 0.2388 0.5318

MA-DL-B+S 0.7826± 0.0274 0.5874± 0.0135 0.2216± 0.0331 0.5326± 0.0884 0.1815± 0.1018 0.6782± 0.2659 0.4973
KAAR 0.8541± 0.0303 0.5667± 0.0062 0.8034± 0.0255 0.8195± 0.0354 0.7729± 0.0697 0.8884± 0.0022 0.7841

Note: Bold: the highest R2 excluding the upper bound GPR-GOLD.

far worse than the supposed lower bound GPR-Av. The key to this particular outcome lies in its

formulation; MA-GPRmodels the annotators’ behavior by assuming no dependencies among the

labelers’ decisions.

Conversely, we analyze the results concerning the linear model MA-LFR; from the results,

we notice that this approach’s prediction capacity is far lower than our KAAR. Such an outcome

indicates that most databases may have a non-linear structure. Finally, we analyze the DL-based

models’ results; we remark on a considerably low prediction capacity; in fact, they are even de-

feated by the linear model MA-LFR. We explain this behavior because the DL-based model uses

an extra layer (termed CrowdLayer), which is used to manage the data from multiple annotators.

Such a layer does not offer a suitable codification of the labelers’ behavior.

Finally, the fully real datasets present the most challenging scenario, where both the input

features and the labels come from real-world applications. Table 2.10 outlines the achieved per-

Table 2.10 Regression results in terms of R2 score over the fully real dataset

Method Music

GPR-GOLD 0.4889
GPR-Av 0.2744

MA-LFCR 0.1404
MA-GPR 0.0090
MA-DL-B 0.2339
MA-DL-S 0.2934

MA-DL-B+S 0.3519
KAAR 0.2816

Note: Bold: the highest R2 excluding the upper bound GPR-GOLD.

formances. We notice that the DL approaches MA-DL-B+S andMA-DL-S obtain the best gener-

alization performance in terms of the R2 score, followed by our KAAR. Further, as theoretically

expected, such performance lies between that of GPR-GOLD and GP-Av. Moreover, regarding

the GPs-based competitor MA-GPR, we note that it exhibits the worst prediction capability with

a R2 close to zero. We argue that the above is a symptom of overfitting, which can be confirmed

based on the training R2 score is 0.4731, which is comparable with GPR-GOLD. Conversely,
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the linear approach MA-LFCR performs worse than the theoretical lower bound GP-Av, which

indicates a non-linear structure in the Music dataset. Also, we observe that all regression models

presented a lower generalization performance than previous results over the same dataset. The

above is a repercussion of solving a multi-class classification problem with regression models.

2.5 Summary

We propose a new kernel-alignment-based approach, termed KAAR, to support the en-

hancement of supervised learning in the context of multiple annotators’ data. To this end, KAAR

computes each provided expert’s relevance through a CKA-based averaged matching between the

annotator labels and the input data features. A convex combination of supervised learning algo-

rithms is carried out by adopting the multiple annotator performances coded in the KAAR-based

relevance analysis. Unlike previous works, our proposal estimates the performance of the annota-

tors using a non-parametric model. It relaxes the assumption of independence between the label-

ers, which allows the coding of some biases and tendencies between the annotators’ opinions. We

tested our approach in synthetic and real-world datasets for classification and regression settings.

For the synthetic experiments, we use some databases from the UCI repository. We simulate mul-

tiple annotators following the schemes in Section 2.3.1 and Section 2.3.2 for classification and

regression, respectively. On the other hand, we gather two classification tasks for the real-world

datasets: the annotations are obtained from multiple experts’ opinions (voice quality problem)

and using the crowd-sourcing platform AMT (polarity and music data). Moreover, for regression

problems, we use the music dataset. The results show that the proposed method can deal with

binary classification, multiclass classification, and regression problems with multiple labelers. In

fact, in most cases, our approach achieves competitive or even better results when compared to

different state-of-the-art models [1, 20, 22, 25, 28, 70]. Furthermore, we experimentally demon-

strate (using simulated annotators) that the performance of our approach does not depend on

the model used for reproducing the annotations. Similarly, in the real-world datasets, it is evi-

denced that KAAR is not significantly affected when the labelers’ expertise decreases drastically.

Remarkably, KAAR deals with scenarios with missing labels.

Still, KAAR assumes that the annotators’ performance only depends on the ground truth

labels, which is not entirely accurate in many real applications, as it was pointed out in [28].

Accordingly, future work must be oriented toward relaxing this assumption by considering that

the annotators’ expertise depends on the ground truth and the instance they are labeling.
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Chapter 3 Localized Kernel Alignment-Based

Annotator Relevance Analysis

To model the annotators’ behavior, learning parameters related to their performance is nec-

essary. Such parameters include accuracy [27], the confusion matrix [21], error variance [22],

and bias [23]. It is commonly found in the literature that the parameters are modeled as fixed

points [20] or as random variables [16], where such parameters are homogeneous across the in-

put data. The latter assumption is wrong since an expert makes decisions based not only on

his/her expertise but also on the features observed from raw data [28, 50].

On the other hand, independence among the annotators is commonly used to reduce the com-

plexity of the model [31] or based on the fact that it is plausible to guarantee that each labeler

performs the annotation process individually [33]. Nevertheless, this is only partially correct

because there may exist correlations among the annotators [51]. For example, if the sources are

humans, the independence assumption is hardly feasible because knowledge is a social construc-

tion; hence, people’s decisions will be correlated when they share information, communicate, or

belong to a particular school of thought [34, 35]. Accordingly, the relaxation of this restriction

could be used to improve the ground truth estimation [36].

According to the previously related, in this chapter, we propose an approach to face super-

vised learning problems with multiple annotators. Our model is an extension of the KAARmodel

introduced in Chapter 2. Like KAAR, our LKAAR is built as a convex combination of classifiers.

The annotator’s performance is computed by matching the input features and the labels. Simi-

larly, both approaches take into account dependencies between the annotators. However, unlike

KAAR, our LKAARmodels the annotators’ parameters as a function of the input features, which

is an essential aspect of the behavior of the annotators, as has been established in the literature

[27, 52]. Finally, we highlight that because our approach can model inconsistent annotators, it

is more robust to outliers compared with models that do not consider the relationship between

the input features and the labelers’ behavior. LKAAR estimates the annotators’ performance for

every region in the input space; meanwhile, the other approaches estimate such performance as

an average of some parameters [16, 19, 23]. Consequently, it is known that the average operator

suffers under the presence of outliers [13].

3.1 Localized Kernel Alignment Fundamentals

As we exposed in Chapter 2, a usual approach to perform kernel selection comprises a con-

vex combination ofR basis kernelsKν =
∑R

r=1 νrKr, whereKr ∈RN×N is a matrix holding

elements κr(xn,xn′), κr :RP×RP →R is a particular kernel (n, n′ ∈{1, . . . , N}), and νr ∈R
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is a weighting factor.

The above combination assumes that the distribution of the input data is stationary. That is,

the weight νr penalizes equally all the samples for the r-th kernel function, which cannot fulfill

real-world scenarios. To deal with this issue, localizedmultiple kernel learning-based approaches

compute Kq as the following quadratic combination [55, 56]:

Kq =
R∑

r=1

QrKrQr, (3.1)

where Qr ∈RN×N is a diagonal matrix whose elements are defined by the vector

qr =[qr(x1), . . . , qr(xN )]>. The combination factors {qr}Rr=1 should be estimated in such a

way as to maximize the similarity between the kernel matrices Kq and F ∈RN×N , where F

holds elements κy(yn, yn′) and κy : Y ×Y → R. Then, the Centered Kernel Alignment–(CKA)

between Kq and F is computed as follows [53]:

ρ (Kq,F ) =
〈K̄q, F̄ 〉F

|| K̄q ||F || F̄ ||F
, (3.2)

where F̄ stands for a centered kernel computed as: F̄ =HFH , being H = I−1>1/N a cen-

tering matrix, I ∈RN×N is the identity, 1∈RN is an all-ones vector, and || · ||F and 〈·, ·〉F stand

for the Frobenius norm and inner product, respectively. Moreover, the centralized version ofKq

is estimated as: K̄q =
∑R

r=1QrK̄rQr, with K̄r =HKrH.

3.2 Localized Kernel Alignment-Based Annotator Relevance
Analysis

We enhance our KAAR presented in Chapter 2, where a CKA-based approach is applied

to code each labeler’s expertise in scenarios where the gold standard is not available. However,

unlike KAAR, we consider the annotator’s expertise a function of the input space. Accordingly,

we assume that the input features in X contain the relevant information regarding the ground

truth label. We compute the CKA between a kernel extracted over the input features and a local

combination of R labelers kernels. Consequently, the target matrix F elements in equation (3.2)

are computed through the kernel function: κX : RP × RP → R. Further, to compute the local

relevance of annotator r concerning the input xn, we infer the diagonal of Qr in equation (3.1)

as follows:

qr(xn) =

β
(r)
0 +

∑N
n′=1 β

(r)
n′ κβ(xn,xn′), if n ∈ Nr

0, Otherwise
. (3.3)

The condition n ∈ Nr inhibits the influence of missing labels, {β(r)j ∈R}Nj=0 are combination

coefficients, and κβ :RP × RP → R is a kernel function. Now, to compute β(r)j , we employ the

41



3.2 Localized Kernel Alignment-Based Annotator Relevance Analysis

following CKA-based optimization problem:

β̂
(r)
j = argmax

β
(r)
j

ρ̂ (Kq,F ) = argmax
β
(r)
j

〈K̄q, F̄ 〉F
|| K̄ ||F

, (3.4)

where:

|| K̄q ||2F =tr
(
K̄qK̄

>
q

)
=tr

 R∑
r,l=1

〈QrK̄rQr,QlK̄ lQl〉F

 (3.5)

codes the inter-annotator dependencies, being tr(·) the trace operator. We have omitted the term

|| F̄ ||F in equation (3.2) since it does not depend on the combination parameters β(r)j . A gra-

dient descent-based approach is provided to solve the optimization problem in equation (3.4) as

follows [71]:

∂ρ̂(Kq,F )

∂β
(r)
j

=tr

((
∂ρ̂(Kq,F )

∂Qr

)> ∂Qr

∂β
(r)
j

)
, (3.6)

where ∂ρ̂(Kq ,F )

∂Qr

∈ RN×N , yields:

∂ρ̂(Kq,F )

∂Qr

=
2 || K̄q ||F K̄rQrF̄ − 2〈K̄q, F̄ 〉F || K̄q ||−1

F K̄rQrK̄q

|| K̄q ||2F
, (3.7)

∂ρ̂(Kq,F )

∂Qr

=2K̄rQr

(
F̄

|| K̄q ||F
− 〈K̄q, F̄ 〉FK̄q

|| K̄q ||3F

)
, (3.8)

and ∂Qr

∂β
(r)
j

∈RN×N is a diagonal matrix holding elements:

∂ [Qr]nn

∂β
(r)
j

=


1, if j = 0

κβ(xn,xj), if j 6= 0 and n ∈ Nr

0, if j 6= 0 and n 6∈ Nr

. (3.9)

Next, to predict the output yn, we propose the following convex combination of supervised

learning models:

ŷn = ĝ(xn) =

R∑
r=1

q2r (xn)gr(xn)

R∑
r=1

q2r (xn)

, (3.10)

where gr :RP → N is a classification function learned from the r-th annotator’s dataset Dr. In

turn, to compute each labeler’s expertise qr(xnew) for a new sample xnew, we hypothesize that

an annotator exhibits comparable performance for similar instances:
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q2r (xnew) =

∑
n∈Nr

q2r (xn) exp (−d (xnew,xn))∑
n∈Nr

exp (−d (xnew,xn))
, (3.11)

where d(·, ·) :RP ×RP → R is the Euclidean distance. Finally, our localized kernel alignment-

based annotator relevance analysis (LKAAR) can be summarized as in Algorithm 2.

Algorithm 2: LKAAR description
Data: D= {X,Y } , xnew

1 Compute K̄q following equation (3.1).
2 Compute F̄ from the kernel function κX(·, ·).
3 Solve the optimization problem: β̂(r)j =argmax

β
(r)
j

ρ̂ (Kq,F ) in equation (3.4) from
the gradient in equation (3.6).

4 Compute the annotators’ parameters q2r (xn), using equation (3.3) and β̂(r)j .
5 Learn a classification function gr(·) for each annotator by using Dr.
6 Given a new sample xnew compute q2r (xnew) using equation (3.11).
7 Predict the output ŷnew for xnew following equation (3.10).

3.2.1 LKAAR for Classification and Regression

Similar to KAAR, this second proposal has the advantage of being flexible to be applied to

regression and classification scenarios. The key factor comprises the election of a proper function

for κr(y
(r)
n , y

(r)
n′ ). For classification, we use the kernel function in equation (2.8); conversely, for

regression we use the kernel function in equation (2.9).

3.3 Experimental Set-Up

This section describes the experiments’ configurations to validate our LKAAR in multiple

annotators scenarios for classification and regression tasks.

3.3.1 Classification

Testing Datasets

To test our LKAAR approach, we use three kinds of datasets. First, we generate fully syn-

thetic data as two multivariate Gaussians in 2D (P = 2). The data for the first class is sampled

from two multivariate Gaussian distributions N ([−3,−3]>,Σ), and N ([3, 3]>,Σ); conversely,

for the second class we useN ([3,−3]>,Σ), andN ([−3, 3]>,Σ). The covariance matrix is fixed

as: Σ=[0.8 0.1; 0.1 0.9].

Second, to control the label generation [19], we build semi-synthetic data from eight datasets

devoted to binary andmulti-class classification of thewell-knownUCI repository. Third, we eval-

uate our proposal on three fully real datasets, where both, the input features and the annotations
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are captured from real-world problems. The description for these two dataset groups is found in

Section 2.3.1; Table 2.1 summarizes the tested datasets.

Simulated and Provided Labels

As we pointed out, fully synthetic and semi-synthetic datasets do not hold real annotations.

In this sense, generating these labels synthetically as a corrupted version of the gold standard is

necessary. For this purpose, we use different simulation methods: i) Biased coin that assumes a

constant annotator’s performance across the input space; this method was already introduced in

Section 2.3.1. ii) Non-homogeneous labels, which assume that the source performance depends

on the input space [50]. In that sense, it represents the input space by R clusters (for concrete

testing, we use the K-means algorithm to define each cluster). Then, the r-th annotator is fixed

as the “expert,” i.e., his/her labels correspond to the ground truth in samples belonging to the

cluster r. For the rest of the samples, the annotator makes mistakes in 35% of the cases, which are

selected randomly. iii) Biased coin (Non-homogeneous) is an extension of a Biased coin [27]. It

also divides the input space byR clusters. In each cluster, it samples a number τ (r)n∼c (n ∼ k stands

for the sample n belonging to the cluster c ∈ {1, 2, . . . , R}) from a Bernoulli distribution with

parameter pc,r. Then, the simulated annotations of the r-th expert yields: y(r)n = yn, if τ
(r)
n∼c=0;

otherwise, y(r)n = ỹn, if τ
(r)
n∼c=1. For the fully real data, Polarity and Music provides the crowd

labels from the AMT platform. Regarding the voice quality dataset, we have annotations from

four experts. However, for concrete testing, we only consider the G, R, and B scales, as suggested

by authors in [21]. The annotators’ expertise is not satisfactory for A and S scales.

LKAAR Training and Method Comparison

The Gaussian kernel is preferred in pattern classification because of its universal approxi-

mating ability and mathematical tractability [37]. Hence, we fix the κX and κβ kernel functions

in equations (3.3) and (3.4) as:

κX(xn,xn′)=κβ(xn,xn′)= exp

(
− ||xn − xn′ ||22

2l2

)
, (3.12)

where l∈R+ is the bandwidth and || · ||2 is the L2 norm. For concrete testing, we fix the term

l as the median of the input distances [42]. Next, to model the classification function gr(·) in

equation (3.10), we use three different approaches: a multi-class linear classifier based on Lo-

gistic regression (LRC), a classifier based on support vector machines (SVMs) using a Gaussian

kernel, and a Gaussian Processes classifier (GPC). The hyperparameters related to SVC are esti-

mated by using a cross-validation scheme. Moreover, the GPC covariance function is computed

via a squared exponential kernel, fixing the hyperparameters by optimizing the marginal likeli-

hood [37]. The one-vs-all scheme is utilized in SVC and GPC to deal with multi-class problems.

The quality assessment estimates the classification performance as the Area Under the Curve
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Table 3.1 A brief overview of the state-of-the-art methods tested

Algorithm Description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the majority voting of the labels as the ground truth.
MA-LFC [1] A LRC with constant parameters across the input space.
MA-DGRL [27] A multi-labeler approach that considers as latent variables

the annotator performance.
MA-MAE [50] A LRC where the source parameters depend on the input space.
MA-GPC [20] A multi-labeler GPC, which is an extension of MA-LFC

by using a non-linear approach.
KAAR [54] A kernel-based approach that employs a convex combination

of classifiers and codes labelers dependencies.

Note: GPC: Gaussian Processes classifier, LRC: logistic regression classifier, MV: majority voting, MA:
multiple annotators, MAE: Modelling annotators expertise, LFC: Learning from crowds, DGRL: Distin-
guishing good from random labelers, KAAR: kernel alignment-based annotator relevance analysis.

(AUC) and the overall accuracy (Acc). Further, the AUC is extended for multi-class settings, as

the authors in [72] discussed. A cross-validation scheme is employed with 30 repetitions, where

70% of the samples are utilized for training and the remaining 30% for testing (except for the

music dataset since it clearly defines the training and testing sets). Table 3.1 displays the methods

employed by the state-of-the-art for comparison purposes. TheMatlab codes for our LKAAR and

the state-of-the-art methods studied are publicly available.¹ We remark that the GPC-Gold only

provides an upper bound for our LKAAR.

3.3.2 Regression

Testing Datasets

Aiming to test our LKAAR in regression scenarios, we use the synthetic, semi-synthetic,

and real datasets presented in Section 2.3.2.

Simulated and Provided Labels

We recall that fully synthetic and semi-synthetic datasets do not hold real annotations from

multiple labelers. In this sense, it is necessary to generate such labels synthetically as corrupted

versions of the true labels, considering that the labelers’ performance is a function of the input

samples. Accordingly, we assume that the input space is represented by R clusters, where such

representation is carried out from the K-means algorithm. Then, in cluster c∈{1, . . . , R} the

simulated labels follow, y(r)n = yn +N (0, σc,r), where σc,r represents the error variance for the

r-th labeler in cluster c. For real datasets, we perform a similar procedure as in Section 2.3.2.

¹GPC-MV, MA-LFC, MA-MAE, MA-DGRL, GPC-GTIC, KAAR, and LKAAR codes: https://github.com/juliangilg.
MA-GPC codes: http://www.fprodrigues.com/
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LKAAR Training and Method Comparison

Like in the classification problem, our LKAAR is built based on Gaussian kernels; in that

sense, we defineκX andκβ as in equation (3.12). Next, we use aGaussian processes-basedmodel

to estimate each function gr, whose hyperparameters are estimated by minimizing a marginal

likelihood [37]. The regression performance is measured using the coefficient of determination–

(R2). A cross-validation scheme is employed with 30 repetitions where 70% of the samples

are utilized for training and the remaining 30% for testing (except for the music dataset, since it

defines the training and testing sets). Table 3.2 displays the employedmethods of the state-of-the-

art for comparison; we remark that for the model MA-DL, the authors provided three different

annotators’ codification: MA-DL-B, where the bias for the annotators is measured; MA-DL-S,

where the labelers’ scale is computed; and measured; MA-DL-B+S, which is a version with both

[25].

Table 3.2 A brief overview of state-of-the-art methods tested for regression tasks

Algorithm Description

GPR-GOLD A GPR using the real labels (upper bound).
GPR-Av A GPR using the average of the labels as the ground truth.
MA-LFCR [1] A LR model for MA where the labelers’ parameters

are supposed to be constant across the input space.
MA-GPR [20] A multi-labeler GPR, which is as an extension of MA-LFCR.
MA-DL [25] A Crowd Layer for DL, where the annotators’ parameters

are constant across the input space.
KAAR [54] A kernel-based approach that uses a convex combination

of regression approaches and codes the labelers dependencies

Note: GPR: Gaussian Processes Regression, LR: logistic regression, Av: average, MA: multiple annota-
tors, DL: Deep learning, LFCR: Learning from crowds for regression.

3.4 Results and Discussion

3.4.1 Classification

We perform a controlled experiment aiming to verify the LKAAR capability to estimate

the performance of inconsistent annotators as a function of the input space and take into account

their dependencies. For this first experiment, we use the fully synthetic dataset described in

Section 3.3.1. We simulate five labelers (R = 5) with different levels of expertise. For the Biased

coin we fix p = [0.1, 0.3, 0.5, 0.6, 0.7], where the r-th component codes the corresponding

labeler’s performance. For the Biased coin (Non-homogeneous) approach, we divide the input

space into five regions and define the following performance matrix P ∈ [0, 1]R×R:
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P =



0.00 0.90 0.50 0.15 0.60

0.90 0.00 0.30 0.40 0.75

0.50 0.30 0.00 0.60 0.30

0.15 0.40 0.60 0.00 0.80

0.60 0.75 0.30 0.80 0.00


, (3.13)

holding elements Pc,r, which are related to the expertise of the r-th annotator in the region c.

Accordingly, we note that the r-th annotator is an expert (its labels correspond to the ground

truth) in the region k= r.

Figure 3.1 (column 1) shows the LKAAR-based matching weights q2r (xn). These weights

are computed as the CKA-based similarities between each kernel expert and the target kernel from

the input features. Ideally, the target kernel would be calculated over the true labels; however, we

are dealing with scenarios where these correct labels are not available. Comparing the parameters

used for the simulation method Biased coin (Non-homogeneous) (see equation (3.13)) and the

LKAAR-based results, we can note that our approach can infer the labeler performance. Thus, an

appropriate parametrization allows for capturing relevant information about the hidden ground

truth. Figure 3.1 (column 2) shows the decision boundaries generated by different Gaussian

process classifiers, where each was trained with the labels from one of the annotators.

Also, we can elucidate that the classification results generated by each of the simulated

annotators (gr(·)) vary depending on the input space. Remarkably, we also note that the higher

the classifier discrimination, the higher the LKAAR-based performance estimation. Moreover, in

the first two images (from top to bottom) of the third column of Figure 3.1, we expose the result of

our GPC-GOLD (a Gaussian processes classifier trained with the actual labels) and the decision

boundaries generated by our LKAAR-based approach as in equation (3.10). We can observe that

our method performs the classification task properly. Its decision boundaries are similar to those

produced by the GPC-GOLD. As seen, the q(xn)
(r) weights enhance the decision boundaries

around regions where the r-th expert exhibits high performances. Besides, one of the main aims

of our work is to estimate the annotators’ performance by taking into account inter-dependencies.

So, in the last two images of the third column in Figure 3.1, we expose a visual comparison

between the estimated dependencies among the five annotators. We estimate the dependencies

Γrl ∈ [0, 1] between the r-th and l-th annotator from (3.5) as:

Γrl = 〈QrK̄rQr,QlK̄ lQl〉F (3.14)

Similarly, we consider the absolute value of the Pearson correlation coefficient between the an-

notations yr and yl for r, l∈{1, . . . , R} as the reference value. Comparing the reference and

the estimated dependencies among the annotators, we can see that, although the exact behavior

is not recovered, LKAAR is able to identify the critical relationship among the labelers from

the input features in X. On the other, regarding semi-synthetic data results, Table 3.3(a) shows
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Figure 3.1 Fully synthetic dataset results. The first column (top to bottom): relevance values q2r(xn).
The second column (top to bottom): decision boundaries produced by a GPC trained over each annotator
dataset. The third column (top to bottom): decision boundaries generated by the GPC-GOLD (gold stan-
dard) and the LKAAR. Also, it displays the dependencies among the annotators estimated by LKAAR
(from the input samples) vs. the Pearson correlation coefficients (absolute value) from the labelers’ anno-
tations

the results regarding the “Biased coin” simulated labels, where the performance of the experts

is constant across the input space. On average, KAAR exhibits the best generalization perfor-

mance in AUC and Acc. However, we also note that our LKAAR-GPC gets the second-best

performance in both metrics. The above is a satisfying result because both approaches are based

on the combination of R classifiers, where combinations coefficients are proportional to the la-

beler’s performance. Note that KAAR was designed assuming that the labelers’ performance is

constant for every region in the input space. Now, concerning other competitors based on non-

linear classifiers, we note that the approach based on majority voting gets a low performance,

which is not unexpected since this method is the most naive to deal with multi-labelers scenar-

ios. Besides, we note that the behavior of MA-GPC is surprising since its performance is poor

compared with other non-linear classifiers (KAAR, LKAAR-GPC, LKAAR-SVM). Linear clas-
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Table 3.3 UCI repository classification results

(a) Biased coin labels
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation average

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 92.12
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 86.91

GPC-MV AUC[%] 89.57± 7.77 55.15± 9.03 67.71± 7.56 58.33± 5.13 61.94± 4.65 98.82± 1.15 97.01± 2.29 89.93± 2.27 77.31
Acc[%] 84.31± 9.85 53.78± 7.34 63.78± 6.72 59.26± 4.43 59.72± 4.13 85.78± 5.59 86.29± 5.22 77.43± 5.99 71.29

MA-LFC AUC[%] 98.83± 1.12 69.92± 4.63 82.91± 4.63 82.73± 2.40 59.67± 2.98 99.34± 0.77 97.63± 1.87 99.50± 0.22 86.32
Acc[%] 95.80± 1.27 65.96± 5.28∗ 83.43± 4.12 76.35± 2.10 66.82± 2.19 93.85± 4.66 90.13± 4.82 94.89± 0.75 83.40

MA-DGRL AUC[%] 99.23± 0.45 64.03± 8.48 79.83± 5.36 82.89± 2.42 58.52± 3.04 98.88± 1.18 95.27± 2.81 98.42± 0.36 84.63
Acc[%] 95.35± 1.45 60.80± 7.78 82.63± 3.72 77.32± 2.48 63.69± 2.54 92.74± 4.21 84.28± 6.20 89.47± 1.10 80.79

MA-MAE AUC[%] 97.49± 3.57 65.89± 7.30 64.03± 9.02 83.49± 2.25 50.58± 6.34 89.12± 5.91 93.14± 5.78 95.69± 1.03 79.93
Acc[%] 94.03± 3.07 64.01± 7.50 70.79± 9.96 77.00± 2.67∗ 51.56± 8.00 78.74± 11.07 81.70± 8.82 90.99± 2.92 76.10

MA-GPC AUC[%] 94.45± 2.51 43.19± 9.84 92.03± 6.05 68.96± 5.86 73.42± 4.15 99.09± 0.81 99.73± 0.38 99.33± 0.14 83.78
Acc[%] 96.24± 1.02 54.23± 4.34 80.57± 6.34 73.33± 2.47 71.39± 3.32 93.85± 3.07 93.84± 3.17 93.95± 0.92 82.18

KAAR AUC[%] 99.05± 0.60 67.14± 6.50 93.73± 2.36 81.34± 2.49 91.32± 3.60 99.59± 0.64 99.16± 0.60 92.10± 1.26 90.43
Acc[%] 95.89± 1.01 63.91± 5.12 89.46± 2.55∗ 76.00± 2.48 84.73± 3.07∗ 95.11± 3.16∗ 96.16± 2.60 82.25± 5.16 85.44∗

LKAAR-LR AUC[%] 97.35± 2.28 60.71± 7.25 69.36± 8.28 76.18± 3.22 54.02± 3.53 95.53± 2.91 98.05± 1.30 98.23± 0.28 81.18
Acc[%] 89.53± 5.34 57.21± 6.64 69.43± 7.78 69.99± 3.32 55.02± 3.54 85.85± 5.76 92.70± 3.96 90.93± 1.02 76.33

LKAAR-SVM AUC[%] 98.90± 0.52 56.43± 3.84 92.79± 4.64 71.92± 3.69 76.98± 3.73 99.13± 1.16 99.50± 0.61 98.54± 0.26 86.77
Acc[%] 96.50± 1.10∗ 55.10± 2.97 88.63± 4.11 68.81± 3.19 71.71± 3.84 90.89± 7.62 95.91± 2.33 92.67± 1.12 82.53

LKAAR-GPC AUC[%] 99.11± 0.69 59.54± 5.93 91.88± 3.08 79.57± 3.17 89.07± 2.93 99.57± 0.55 99.36± 0.57 92.76± 1.71 88.86
Acc[%] 95.84± 1.46 56.60± 4.50 87.59± 2.80 75.06± 2.42 82.85± 3.13 95.26± 3.07 96.48± 2.61∗ 82.58± 4.68 84.03

(b) Non-homogeneous labels
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation average

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 92.12
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 86.91

GPC-MV AUC[%] 99.11± 0.58 70.95± 3.90 93.14± 3.49 81.21± 2.57 87.83± 4.11 99.63± 0.39 98.41± 1.38 91.48± 1.48 90.22
Acc[%] 96.29± 1.48 66.60± 4.31 87.90± 3.26 74.87± 2.32 81.96± 3.46 95.33± 3.05 93.96± 3.34 82.68± 5.30 84.95

MA-LFC AUC[%] 98.72± 0.93 71.53± 4.18 82.08± 4.79 82.29± 2.22 61.13± 3.28 98.75± 1.44 96.83± 1.75 99.58± 0.11 86.36
Acc[%] 95.63± 1.79 69.68± 4.20∗ 81.43± 4.44 76.52± 1.91∗ 64.88± 2.86 94.44± 4.62 87.74± 4.67 95.40± 0.71∗ 83.21

MA-DGRL AUC[%] 99.30± 0.39 68.00± 4.09 77.60± 7.50 81.72± 2.57 61.83± 2.80 98.78± 1.34 95.33± 3.35 98.31± 0.32 85.11
Acc[%] 94.63± 1.77 65.77± 3.47 81.94± 3.42 76.45± 2.81 66.45± 2.24 94.59± 2.96 84.91± 6.50 89.58± 0.99 81.79

MA-MAE AUC[%] 99.28± 0.60 70.82± 3.90 78.91± 6.01 81.80± 2.57 60.35± 3.28 85.97± 2.39 98.20± 1.33 97.27± 0.28 85.32
Acc[%] 96.31± 1.38 66.92± 3.35 82.25± 3.99 76.12± 2.77 65.64± 2.37 94.81± 4.14 89.31± 5.79 92.94± 0.76 83.04

MA-GPC AUC[%] 95.81± 2.94 49.81± 11.72 94.46± 3.09 67.83± 4.24 81.44± 3.81 99.15± 1.03 99.85± 0.24 99.42± 0.14 85.97
Acc[%] 96.70± 1.37∗ 59.52± 4.71 82.13± 3.32 72.77± 2.71 76.39± 2.85 94.30± 2.90 94.34± 2.80 94.74± 0.68 83.86

KAAR AUC[%] 98.81± 0.66 70.20± 5.70 93.88± 3.53 81.18± 2.93 89.55± 2.84 99.56± 0.52 99.53± 0.36 92.34± 1.38 90.63
Acc[%] 96.02± 1.14 65.99± 5.44 87.52± 4.24 75.10± 2.98 81.68± 2.41 95.56± 2.92∗ 96.54± 2.11∗ 81.11± 4.15 84.94

LKAAR-LR AUC[%] 99.34± 0.44 68.86± 5.16 87.14± 3.38 82.04± 2.44 65.40± 3.13 96.00± 2.50 99.21± 0.82 97.97± 0.27 87.00
Acc[%] 96.00± 1.46 64.17± 4.22 84.10± 3.20 75.67± 2.15 66.96± 2.74 82.59± 6.07 94.28± 3.19 90.02± 0.93 81.72

LKAAR-SVM AUC[%] 98.29± 0.80 64.37± 3.36 96.98± 2.01 77.80± 2.28 89.82± 2.14 98.05± 1.90 99.53± 0.47 97.89± 0.32 90.34
Acc[%] 96.36± 1.02 63.14± 3.67 92.19± 2.43∗ 72.52± 2.22 80.99± 2.81 84.44± 6.76 96.48± 2.26 91.28± 0.93 84.68

LKAAR-GPC AUC[%] 99.00± 0.75 71.07± 5.05 93.37± 2.91 81.23± 2.21 91.97± 2.01 99.57± 0.61 99.64± 0.34 92.61± 1.73 91.06
Acc[%] 96.03± 1.32 66.92± 4.79 87.75± 3.90 75.10± 2.65 84.09± 2.43∗ 95.26± 3.29 96.54± 2.16∗ 80.98± 3.91 85.33∗

(c) Biased coin (Non-homogeneous) labels
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation average

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 92.12
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 86.91

GPC-MV AUC[%] 90.78± 4.28 50.47± 6.19 82.91± 6.03 70.18± 6.29 65.91± 6.72 98.55± 1.38 97.75± 2.04 90.18± 1.71 80.84
Acc[%] 86.63± 2.06 48.27± 4.84 75.65± 6.45 66.52± 5.16 64.66± 3.64 88.81± 5.00 86.92± 5.76 79.24± 4.99 74.59

MA-LFC AUC[%] 97.99± 0.99 59.64± 8.08 72.66± 9.98 72.73± 3.43 52.88± 3.13 96.72± 8.98 96.47± 2.13 99.50± 0.15 81.07
Acc[%] 96.00± 1.70∗ 56.41± 8.12 69.17± 12.53 58.10± 4.53 46.27± 3.03 92.30± 5.18 87.55± 4.97 95.06± 0.80∗ 75.11

MA-DGRL AUC[%] 99.31± 0.42 61.77± 6.17 77.83± 7.02 81.66± 2.65 55.70± 3.95 98.76± 1.33 95.26± 3.30 98.32± 0.34 83.58
Acc[%] 78.08± 2.22 55.64± 4.52 71.43± 5.15 76.90± 1.99∗ 60.64± 2.33 94.37± 2.66 84.84± 6.32 89.63± 0.89 76.44

MA-MAE AUC[%] 95.22± 1.70 64.63± 9.77 64.18± 9.17 79.94± 2.64 52.36± 4.78 93.16± 5.08 96.25± 2.40 94.40± 1.26 80.02
Acc[%] 87.15± 1.85 62.34± 8.46∗ 67.94± 7.19 75.94± 2.69 53.33± 6.42 81.70± 11.68 86.67± 5.15 88.38± 2.00 75.43

MA-GPC AUC[%] 85.37± 5.90 40.79± 12.30 74.52± 4.57 73.17± 3.34 61.82± 4.51 98.71± 1.14 99.60± 0.41 99.35± 0.14 79.17
Acc[%] 92.55± 2.17 52.82± 6.38 69.87± 4.41 62.42± 3.00 62.33± 2.98 93.85± 3.49 95.09± 2.65∗ 93.46± 0.83 77.80

KAAR AUC[%] 97.81± 0.99 56.52± 9.13 82.20± 4.93 67.90± 3.16 75.34± 4.70 98.75± 1.10 97.91± 1.36 91.75± 1.41 83.52
Acc[%] 77.19± 3.14 52.44± 7.79 72.60± 4.80 61.20± 2.95 70.69± 3.63 90.44± 5.48 91.45± 4.28 76.38± 5.05 74.05

LKAAR-LR AUC[%] 99.52± 0.30 66.07± 6.14 82.99± 5.01 80.57± 3.31 52.32± 3.38 96.83± 2.14 99.27± 0.68 97.87± 0.30 84.43
Acc[%] 92.47± 2.24 60.22± 5.67 78.92± 4.32 75.07± 2.65 55.64± 2.77 83.41± 6.92 94.59± 3.12 89.77± 0.99 78.76

LKAAR-SVM AUC[%] 98.37± 1.00 52.35± 6.40 88.28± 5.13 66.84± 3.66 73.85± 3.43 96.22± 2.50 98.88± 0.80 97.59± 0.34 84.05
Acc[%] 87.72± 5.17 50.96± 6.81 84.73± 4.66∗ 64.81± 3.11 70.02± 2.74 74.15± 7.90 91.82± 4.33 90.37± 1.24 76.82

LKAAR-GPC AUC[%] 98.14± 1.04 58.36± 7.24 86.23± 4.47 73.80± 2.83 80.02± 4.15 99.61± 0.61 98.74± 0.93 92.24± 1.80 85.89
Acc[%] 86.76± 4.33 54.52± 5.27 78.25± 5.51 69.64± 3.01 74.90± 2.99∗ 95.93± 3.15∗ 93.84± 3.57 78.71± 4.18 79.07∗

Bold: the highest AUC excluding the upper bound (target) classifier GPC-GOLD. The highest accuracy
(Acc) is marked with ∗, except the upper bound.

sifiers such as MA-LFC and MA-DGRL obtain a better performance. This result indicates that

MA-GPC is more prone to overfitting, which authors in [19] empirically analyzed. Next, we an-
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alyze the results concerning linear classifiers. Notably, simple classifiers such as MA-LFC and

MA-DGRL obtain competitive results compared with their non-linear competitors. The above

suggests that some of the considered datasets may have a linear structure. To confirm this sup-

position, we perform an additional experiment by training an LR-based classifier with the actual

labels over all the datasets (we follow the same scheme as for GPC-GOLD). We obtain an AUC

equal to 87.10 (on average), close to the results of MA-LFC and MA-DGRL. We can elucidate

that there exists a linear structure in some of the datasets, and under such settings, MA-LFC,

and MA-DGRL sets an attractive option. Nonetheless, MA-MAE and LKAAR-LR obtain the

worst generalization performance (MA-MAE performs worse than GPC-MV), which is a clear

consequence of their feature-dependent model for the annotators. We recall that the process of

generating the synthetic annotations assumes that the annotators’ performance does not depend

on the input features; hence, this scenario is most convenient for MA-LFC and MA-DGRL.

On the other hand, Table 3.3(b) shows the results regarding the “Non-homogeneous labels”,

where the performance of the experts depends on the input features. First, we observe that all

classification models exposed better generalization performance in AUC and Acc compared with

the previous simulation method (Table 3.3(a)). The above suggests an increase in the quality of

the labels; in fact, we can confirm this suggestion by analyzing the behavior of GPC-MV, which

gets quite competitive results. Besides, we highlight that our LKAAR-GPC exhibits, on average,

the best performance among the nine multi-annotators classifiers (in terms of AUC and Acc).

The behavior of the non-linear based approaches is, in principle, a bit unexpected in that the most

straightforward method (GPC-MV) reaches a comparable performance with more sophisticated

strategies such as KAAR and LKAAR-SVM. However, as we already pointed out, this behavior is

caused because, in this experimental set-up, the simulation method (“Non-homogeneous labels”)

generates suitable quality labels, which favors the estimation of the unknown ground truth via

majority voting. Besides, MA-GPC again gets a considerably low performance compared with its

other non-linear based competitors; still, this can result from a lack of generalization (overfitting).

Now, let us analyze the results for the linear models. Remarkably, we notice that LKAAR-LR

andMA-MAE get more competitive results when compared with their competitors MA-LFC and

MA-DGRL. Since the labelers’ expertise is non-stationary across the input space, both LKAAR-

LR and MA-MAE are suitable. Furthermore, we highlight that our LKAAR-LR outperforms all

linear competitors, and its generalization performance is quite better than its natural competitor

MA-MAE.

Finally, Table 3.3(c) shows the results as regards the experiment where the labels were

simulated by using the method “Biased coin (Non-homogeneous)”. At first glance, this experi-

ment is more challenging since there exists more difference between the performance of GPC-

GOLD (the upper bound) and the classification scheme with the best performance (our LKAAR-

GPC). Analyzing the non-linear classifiers, we note that again, MA-GPC obtains an insufficient

performance, which is even worse than the lower bound (GPC-MV). Besides, we remark the
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Table 3.4 Fully real datasets results
AUC([%])

Method Voice Dataset Polarity
Dataset Music AverageG R B

GPC-GOLD 93.66 93.66 93.66 80.26 92.84 90.81
GPC-MV 90.17 84.73 84.04 71.14 89.20 83.97
MA-LFC 89.99 90.59 87.27 72.06 89.63 85.90

MA-DGRL 85.45 90.14 79.33 74.35 89.20 83.69
MA-MAE 91.08 89.12 80.74 50.00 84.16 79.02
MA-GPC 91.50 91.16 80.81 77.18 79.18 83.96
KAAR 89.85 93.50 89.20 64.68 86.74 84.79

LKAAR-LR 90.39 92.92 88.94 76.99 89.36 87.72
LKAAR-SVM 92.06 93.02 86, 98 75.68 90.79 87.70
LKAAR-GPC 90.78 93.60 89.79 77.16 90.69 88.40

Bold: the method with the highest performance excluding the upper bound (target) classifier GPC-GOLD.

performance of our LKAAR-SVM and LKAAR-GPC, which outperform all of its competitors

(GPC-MV, KAAR, and MA-GPC). The latter is an exciting result, especially when we com-

pare the KAAR and LKAAR-GPC performances (both approaches are based on the combination

of GPCs). Concerning the linear classifiers, we remark that our LKAAR-LR surpasses all its

competitors (MA-LFC, MA-DGRL, MA-MAE). Indeed, our approach obtained the second-best

results, also defeating non-linear classifiers such as GPC-MV, KAAR, and MA-GPC. The lat-

ter is evidence that our approach better represents the annotators’ behavior. Besides, we notice

that the performance of MA-MAE is quite low compared with our LKAAR-LR, which is, in

principle, unexpected since both approaches compute the annotators’ performance as a function

of the input space. This result can be explained in two regards. First, unlike our LKAAR-LR,

MA-MAE uses a logistic regression-based model to code the non-stationaries in the labelers’

performance, which does not fit the labels generated in this experiment. Moreover, MA-MAE

assumes independence between the annotators; the labelers make their decision independently,

which decreases the modeling of the labeler’s behavior.

Summarizing, we tested our approach in controlled scenarios by using three different strate-

gies. First, we simulate annotators with homogeneity in their performance named Biased coin

labels. The remaining two strategies named Non-homogeneous labels and Biased coin (Non-

homogeneous) labels simulates inconsistent annotators, i.e., labelers, whose performance varies

depending on the input features. Attained to the results (Table 3.3(a), Table 3.3(b), and Ta-

ble 3.3(c)), we note that for consistent annotators KAAR offers the best performance. On the

other hand, for inconsistent labelers, our LKAAR is the best option. However, we highlight

that by considering inconsistent annotators, a more realistic scenario is configured [1, 50, 52];

hence, our approach is presented as the most suitable option among the state-of-the-art models

considered.

Until now, we have empirically demonstrated that our approach offers a better representa-

tion of the labelers’ behavior since we compute the annotators’ performance taking into account
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Figure 3.2 Annotator dependencies analysis for the Voice dataset (Scale B). First row (left to right): t-sne-
based 2D projections holding the annotators’ labels. Red circles: positive class, blue crosses: negative
class. Second row (left to right): dependencies among annotators estimated by LKAAR (from the input
samples) vs. the Pearson correlation coefficients (absolute value) from the experts’ labels

dependencies among their decisions and considering that such a performance as a function of the

input features. Nevertheless, the previous experiments configure a very controlled scenario due

to the labels are simulated. Accordingly, these results could be biased by the simulation method.

In this sense, the fully real datasets present the the most challenging scenario, where both the

input samples and the labels come from real-world applications. Table 3.4 outlines the achieved

performances. First, we observe that for the voice data, the scales G and R exhibit a similar

performance for all studied approaches. The latter can be explained in that for these scales, the

annotators exhibit a proper performance. On the other hand, we notice that for the scale B, there

exits a considerable performance reduction, which indicates that the annotators’ performance is

lower when compared with scales G and R, as was empirically demonstrated in [21].

However, we highlight that our approach (LKAAR-LR, LKAAR-SVM, LKAAR-GPC) and

KAAR exhibit the best generalization performances. Remarkably, LKAAR-LR outperforms all

of its linear competitors. This is an outstanding outcome because it reflects that our approach

better represents the labelers’ behavior. We perform an additional experiment over the voice

dataset for the scale B. For visualizations purposes; we reduce the dimensions to 2D by using

the well-known t-student stochastic neighbor embedding algorithm (t-sne). From left to right,

Figure 3.2 (row 1) shows each expert’s labels on the 2D t-sne space. Likewise, in the second row,

from left to right, we show the LKAAR estimation of the dependencies among the annotators vs.

the absolute value of the Pearson correlation coefficient between yr and yl, for r, l∈{1, . . . , R}.
As seen, the labels provided by the first and third annotator are quite similar, indicating a strong

dependence between them. Remarkably, this structure in the annotation process is captured by

LKAAR.
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Next, regarding the Polarity dataset, we note that MA-GPC exhibits the best generaliza-

tion performance followed by our LKAAR-GPC; the difference between these two methods is

not significant. Besides, the performance of MA-MAE and KAAR is quite low, in principle,

unexpected; however, we give some reasons to explain this anomaly. First, MA-MAE uses P pa-

rameters for the classification model and P ×R parameters to model the labelers’ performance.

Moreover, from Table 2.1, we can note that for this dataset, P = 1200 and the number of train-

ing samples is 5000. The above is a problem because, considering that we have labels from 203

annotators, we need to estimate over 240000 parameters, leading MA-MAE to overfit. Now, the

behavior of KAAR is more unexpected than MA-MAE since it is based on a non-linear classifier

and exhibited a competitive performance in previous experiments. We argue that the missing

labels cause this unusual conduct because more than the 50% of the annotators labeled less than

30 instances. The above can represent a problem for KAAR because it estimates the labelers’

performance as an average matching between the input features and the labels each annotator

gives. Accordingly, the labelers’ performance estimation suffers a negative impact in scenarios

with very few labels per annotator. We will expand this analysis in the final experiment.

Lastly, we analyze the results concerning Music dataset. We remark that our LKAAR-SVM

and LKAAR-GPC obtain the best generalization performance in AUC. Moreover, we highlight

the achievement of our LKAAR-LR, given that it gets a competitive result compared with the

other linear classifiers, even defeating some non-linear classifiers (KAAR, MA-GPC, and GPC-

MV). On the other hand, we note that MA-MAE and MA-GPC exhibit a significantly low perfor-

mance, even lower than their intuitive lower bound (GPC-MV). This behavior is not uncommon,

given that it has been repeated in the previous experiment; we argue that this outcome results

from overfitting. However, this dataset configures a multi-class classification problem; accord-

ingly, we use a one-vs-all scheme for all binary classification (including MA-MAE and MA-GP)

to deal with this. Nevertheless, such a scheme to deal with multi-class classification can lead to

regions on the input space that are ambiguously classified [9].

As a final experiment, we wish to evaluate the impact of the number of annotators on the

performance of the multi-labeler classifiers. We use the Music dataset for concrete testing, which

holds 2946 labeled instances from 44 real annotators. We sort the experts in a descending way

regarding the number of cases marked. Figure 3.3 shows the number of samples labeled by each

annotator. We can note that only a few annotators labeled more than 300 samples; more than

50% of the labelers annotated less than 30 examples.

Figure 3.4 shows the classifiers’ performance in AUC as a function of the number of anno-

tators. First, we notice that our LKAAR-SVM and LKAAR-GPC exhibit, on average, the best

performances in terms of AUC (89.53, 87.60, respectively). Both approaches have no significant

effects due to the number of annotators. In turn, we note an unusual behavior in MA-GPC and

MA-MAE. Such action is caused by overfitting. On the other hand, we analyze that the linear

models MA-LFC, LKAAR-LR, MA-GRL, and GPC-MV expose quite similar behavior, where
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Figure 3.4 Generalization performance in terms of AUC as a function of the number of annotators

their performance is not affected by the number of annotators. KAAR exhibits a suitable perfor-

mance; however, after 20 annotators, we evidence a significant decrease in its execution; indeed,

for 44 labelers, KAAR performs worse than linear classifiers. We can explain this result as fol-

lows: The performance of KAAR starts to decrease coincides with the point where the number

of labeled instances per annotator decreases. Accordingly, from the annotator 20, KAAR has to

estimate the experts’ performance with very few labels, and this could lead to miss-estimation,

which harms the predictions.
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3.4.2 Regression

Following a similar structure for the classification results, we first conduct a controlled ex-

periment to verify the LKAAR capabilities in the context of real-valued labels. For this first ex-

periment, we use the fully synthetic dataset described in Section 3.3.1. We simulate five labelers

(R = 5) with different levels of expertise and using the following variance matrix V ∈ RR×R:

V =



0.00 3.00 0.02 2.00 1.50

1.00 0.00 2.00 1.50 0.02

0.75 1.50 0.00 0.02 1.00

0.50 0.02 1.00 0.00 2.00

0.02 2.00 3.00 1.00 0.00


, (3.15)

holding elements σc,r, which are related to the expertise of the r-th annotator in the region c. We

notice that the r-th annotator is an expert (its labels correspond to the ground truth) in the region

k= r. Figure 3.5 column 1 and 2 present respectively the regression functions for each annotator

gr and the LKAAR-based weights q2r (xn), related to the labelers’ performance. Contrasting

the parameters for the simulation process (equation (3.15)) and the LKAAR-based results in the

second column, we can note that our approach can detect the zones where the parameter σc,r
presents the lowest value and remarkably such zones match with regions where the regression

results are closer to the gold standard (the above from a visual inspection). Further, in the first

two images (from top to bottom) of the third column of Figure 3.1, we show the result of GPC-

GOLD (a Gaussian processes regressor trained with the gold standard) and the regression results

generated by our LKAAR-based approach as in equation (3.10). We notice that compared with

the ground truth, our approach exhibit a proper performance; in fact, the result for our LKAAR is

close to its theoretical upper bound GPC-GOLD. By estimating the qr(xn) weights as a function

of the input space, we can enhance the zones where the regression function for r-th labeler, gr,

exhibits high performances. Besides, one of the main aims of this proposal is to estimate the

annotators’ performance by considering inter-dependencies. Therefore, in the last two images of

the third column in Figure 3.5we expose a visual comparison between the estimated dependencies

among the five annotators.

We estimate the dependencies Γrl ∈ [0, 1] between the r-th and l-th annotator from (3.5).

Likewise, we consider the absolute value of the Pearson correlation coefficient between the an-

notations yr and yl for r, l∈{1, . . . , R} as the reference value. Comparing the reference and the

estimated dependencies with LKAAR, we remark that our approach identifies critical relation-

ships among thelabelers.

On the other hand, Table 3.5 presents the results concerning semi-synthetic datasets. We

highlight that our LKAAR exhibits the best regression performance in terms of the R2 score.

Now, analyzing the behavior of GPs-based competitors, we notice that GPR-Av exhibits a lower

performance when compared with our KAAR, which is not unexpected since GPR-Av corre-
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Figure 3.5 Regression illustrative results. In the first column, from top to bottom, we show the regression
results gr for each annotator. On the second column, from top to bottom, we present the LKAAR-based
relevance qr. In the third column, we exhibit the result for GPR-GOLD and the result for our GPR-
LKAAR; finally, in the last row, we show the Pearson coefficient computed over the labels from multiple
annotators and the dependencies estimated with our LKAAR

sponds to the most naive approach to deal with multi-labeler data. Besides, we remark a con-

siderably low R2 score (on average) for MA-GPR, even lower than the supposed lower bound

Table 3.5 Regression results in terms of R2 score over semi-synthetic datasets
Method auto Bike concrete housing yacht ct Average

GPR-GOLD 0.8698± 0.0268 0.5612± 0.0059 0.8101± 0.0251 0.8288± 0.0389 0.8043± 0.0741 0.8652± 0.0054 0.7899
GPR-Av 0.8480± 0.0348 0.5479± 0.0069 0.7471± 0.1452 0.4972± 0.4034 0.7368± 0.1665 0.8261± 0.0079 0.7005

MA-LFCR 0.7975± 0.0230 0.3880± 0.0072 0.5965± 0.0369 0.7033± 0.0570 0.6065± 0.0834 0.6605± 0.2503 0.6254
MA-GPR 0.8558± 0.0269 0.4242± 0.0175 0.7807± 0.0312 0.7247± 0.0628 0.7319± 0.0965 0.0111± 0.0038 0.5881
MA-DL-B 0.7814± 0.0326 0.5914± 0.0131 0.2228± 0.0361 0.5351± 0.0781 0.1924± 0.0767 0.5477± 0.2991 0.4785
MA-DL-S 0.7835± 0.0302 0.5871± 0.0127 0.2186± 0.0328 0.5284± 0.0867 0.1809± 0.0976 0.9402± 0.0284 0.5398

MA-DL-B+S 0.7876± 0.0285 0.5877± 0.0116 0.2270± 0.0344 0.5339± 0.0881 0.1921± 0.0830 0.6431± 0.2999 0.4952
KAAR 0.8499± 0.0365 0.5672± 0.0056 0.7666± 0.0290 0.8037± 0.0448 0.5875± 0.0999 0.9051± 0.0023 0.7467
LKAAR 0.8484± 0.0377 0.5688± 0.0062 0.7986± 0.0246 0.8047± 0.0443 0.7511± 0.0875 0.8944± 0.0025 0.7777

Bold: the highest R2 excluding the upper bound GPR-GOLD.
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GPR-Av. Our explanation for such an outcome lies in the MA-GPR’s formulation; MA-GPR

models the annotators’ behavior without considering relationships between the input space and

the annotators’ performance or dependencies.

Regarding the linear model, MA-LFR, we note that its prediction performance is consider-

ably lower than our method. The above indicates the presence of a non-linear structure in most

considered datasets. Finally, analyzing the DL-based methods, we remark that their performance

is the lowest concerning the average R2 score. Our explanation for this result is that the Crowd-

layer used for the DLmodels to manage multi-labeler data does not offer a suitable representation

of the annotators’ behavior.

As a final experiment, we use the Music dataset corresponding to fully real datasets, con-

figuring the most challenging scenario; here, both the input samples and the labels from multiple

annotators come from real-world applications. Table 3.6 outlines the obtained performances in

Table 3.6 Regression results in terms of R2 score over the fully real dataset

Method Music

GPR-GOLD 0.4889
GPR-Av 0.2744

MA-LFCR 0.1404
MA-GPR 0.0090
MA-DL-B 0.2339
MA-DL-S 0.2934

MA-DL-B+S 0.3519
KAAR 0.2816
LKAAR 0.2865

Bold: the highest R2 excluding the upper bound GPR-GOLD.

terms of the R2 score. We remark that the DL-based approaches, MA-DL-B+S and MA-DL-S

obtain the best generalization performance in terms of the R2 score, followed by our LKAAR.

Further, as theoretically expected, such performance lies between that of GPR-GOLD and GP-

Av. Moreover, regarding the GPs-based competitor MA-GPR, we note that it exhibits the worst

prediction capability with aR2 close to zero. We argue that the above is a symptom of overfitting,

as confirmed in Chapter 2. Besides, MA-LFCR presents the second-lowest performance, even

worsen than the theoretical lower bound GPR-Av that suggests a non-linear structure in the mu-

sic dataset. Finally, we notice a considerable reduction in the R2 score compared with previous

results (Table 3.5), because we are using regression schemes to solve a multi-class problem.

3.5 Summary

In this second proposal, we expose a localized kernel-alignment-based annotator relevance

approach, named LKAAR, to support binary and multi-class classification problems in the pres-
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ence of multiple annotators. Our LKAAR computes the relevance of each provided expert

through a centered kernel alignment-based matching between the annotator labels and the input

features, taking into account dependencies among the annotators and considering the labelers’

performance as a function of the input data. Then, a combination of classifiers/regressors is car-

ried out by adopting the multiple annotator performances coded in the LKAAR-based relevance

analysis. We tested our approach in synthetic, semi-synthetic, and real-world datasets. For the

synthetic experiments, we generate both the input data and the labels from multiple annotators.

Similarly, we use some databases from the UCI repository for the semi-synthetic scenario. Re-

garding the real-world datasets, we include three datasets. The annotations are obtained from

the opinion of multiple experts (voice quality problem) and using the crowd-sourcing platform

AMT (Polarity data and Music). The results show that the proposed method deals with binary,

multi-class classification, and regression problems, where the ground truth is not available. In

most cases, our LKAAR achieves competitive or even better results when compared to different

state-of-the-art classification and regression models [1, 20, 22, 27, 28, 54]. Besides, we em-

pirically demonstrated that LKAAR better codes each annotator’s behavior. The latter is also

preserved for non-stationary labels across the input space (Figure 3.1). Moreover, Table 3.3 and

Table 3.4, show that our approach is not severely affected by low labelers’ performances. Be-

sides, from Figure 3.3, we found that LKAAR exhibits a suitable generalization performance

even after varying the number of annotators and the labeled samples, which is a remarkable out-

put since it indicates that our proposal extracts relevant information from the labels, even if they

are scarce. Even with KAAR, our LKAAR solves the supervised learning problem as a convex

combination of classifiers/regressors (one per labeler), which can be problematic if the number

of labelers grows. Future work must be oriented to develop an approach that jointly estimates the

annotators’ performance while training the supervised learning algorithm.
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Chapter 4 Regularized Chained Deep Neural Network

for Multiple Annotators

This chapter introduces a Regularized Chained Deep Neural Network for Multiple Annota-

tors, RCDNN to jointly estimate the ground truth label and the annotators’ performance. RCDNN

is inspired in the Chained Gaussian Processes model–(CGP) [59], where each parameter in a

given likelihood is coded with multiple independent Gaussian Processes–(GPs) priors (one GP

prior per parameter). Unlike CGP, our method considers that the last layer models the parameters

of an arbitrary likelihood. Thus, in a multi-labeler scenario, the annotators’ parameters are coded

as a function of the input space. Moreover, since each output in a deep model is computed as a

linear combination of previous layers’ outputs, our RCDNN can code interdependencies among

the annotators. Besides, l1, l2, and Monte-Carlo Dropout-based regularizers are coupled within

our method to deal with the overfitting issue in deep learning models. Our proposal follows the

line of the works in [3, 25] in that RCDNN uses a deep-based approach to build a supervised

learning model in the context of multiple annotators. However, while such approaches code the

annotators’ parameters as fixed points, we model them as functions to consider dependencies be-

tween the input features and the labelers’ behavior. RCDNN is also similar to the LKAARmodel

introduced in Chapter 3. Both approaches model the annotators’ performance as a function of the

input instances and consider interdependencies among the labelers. Nonetheless, unlike LKAAR,

where it is necessary to use as many classifiers as annotators, our approach only needs to train a

single classifier from a deep learning representation, which is advantageous for many labelers.

4.1 Chained Deep Neural Network

Let us consider an input-output datasetD={X∈X ,y∈ Y},whereX =
{
xn∈X ⊆RP

}N
n=1

and y= {yn∈Y}Nn=1 hold the input and output spaces, respectively (with N instances and P

features). Inspired by the Chained Gaussian Processes model–(CGP) [59], a likelihood function

with J parameters is written as:

p(y|X,θ) =
N∏

n=1

p(yn|θ1(xn), . . . , θJ(xn)), (4.1)

whereθ= [θ1 . . . ,θJ ]
> ∈RNJ is a parameter vector, andθj = [θj(x1) . . . θj(xN )]> ∈RN . Here,

each θj(x)∈Mj maps an input sample to the parameter space, being Mj the domain for the j-

th parameter (j ∈{1, 2, . . . , J}). A Chained Deep Neural Network–(CDNN) can be introduced

by linking each likelihood parameter θj(x) to one of the J outputs of a deep neural network

comprising S hidden layers. Accordingly, let f(x) = [f1(x), . . . , fJ(x)]
> ∈RJ be a vector



4.2 Regularized Chained Deep Neural Network for Classification with Multiple Annotators

containing the J outputs of a deep network:

f(x) = (%S ◦ %S−1 ◦ . . . ◦ %1)(x), (4.2)

where ◦ stands for function composition. Then, each parameter is computed as: θj(x) =

hj(fj(x)), where hj : R → Mj is a deterministic function that maps each output fj(x) to

the appropriate domain Mj . Besides, each layer %s, with s∈{1, 2, . . . , S}, depends on a set

of variables (neural network weights and bias) φ = [φ1, . . . ,φS ]
>, which can be estimated by

minimizing the following log-likelihood cost (for i.i.d samples):

− log (p(y|X,θ,φ)) = −
N∑

n=1

log (p(yn|θ1(xn), . . . , θJ(xn),φ)) . (4.3)

Remarkably, the deep model in equation (4.2) allows exploiting the representation learning ca-

pability of neural networks within a chained framework through the likelihood in equation (4.3).

4.2 Regularized Chained Deep Neural Network for Classification
with Multiple Annotators

We follow the model proposed by authors in [27]; here, a Regularized Chained Deep Neural

Network–(RCDNN) is introduced for classification tasks from multiple annotations. Concerning

this, let λ(r)n ∈{0, 1} be a binary variable representing the r-th annotator reliability: λ(r)n = 1 if

y
(r)
n = yn, and λ

(r)
n = 0 in other cases. If λ(r)n = 1, the label y(r)n is modeled by means of a

categorical distribution; otherwise, if λ(r)n = 0, y(r)n is supposed to follow a uniform distribution.

In consequence, the likelihood function in equation (4.3) is rewritten as:

p(Y |θ) =
N∏

n=1

∏
r∈Rn

(
K∏
k=1

ζ
δ(y

(r)
n −k)

n,k

)λ
(r)
n (

1

K

)1−λ
(r)
n

, (4.4)

where δ(y(r)n − k) = 1, if y(r)n = k, and δ(y(r)n − k) = 0, otherwise. Moreover, ζn,k = p(y
(r)
n =

k|λ(r)n = 1) is the estimation of the hidden ground truth for the n-th instance in class k.

Accordingly, an architecture holding J = K+R outputs is required within our RCDNN for

modeling the likelihood parameters θ in equation (4.4). In particular, K output layers are fixed

to estimate the hidden ground truth ζn,k based on a softmax function as follows:

ζn,k =
exp(fk(xn))∑K
i=1 exp(fi(xn))

. (4.5)

Furthermore, a step function can compute the annotator’s reliability. Yet, the step function is

approximated through R output layers {ςr(·)}Rr=1, fixing the well-known sigmoid activation to

avoid discontinuities and favor the RCDNN implementation:
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λ(r)n = ς(fm(xn)) =
1

1 + exp(flr(xn))
, (4.6)

where lr = K + r∈{K + 1, . . . J} is the index of the output linked to the estimation of the

reliability of r-th expert. Afterward, the log-likelihood of equation (4.4) is used to compute the

RCDNN weights and bias in φ, as follows:

φ∗ = argmin
φ

−
N∑

n=1

∑
r∈Rn

[
λ(r)n (φ)

(
K∑
k=1

δ(y(r)n − k) log (ζn,k(φ))

)
−
(
1− λ(r)n (φ)

)
log(K)

]
,

(4.7)

where λ(r)n (φ) and ζn,k(φ) highlight the dependency between the annotator reliability/ground

truth estimation and the RCDNN weights and bias.

In turn, to avoid overfitting and favor the RCDNN generalization capability, l1 and l2 norm-

based regularizers are used for dense layers; besides, dropout layers are also added. Both regular-

ization schemes are implemented through the function composition presented in equation (4.2).

Lastly, to exploit the RCDNN generalization, the well-known Monte-Carlo dropout prediction

strategy is used to estimate the expert’s reliability λ̂(r)n and the ground truth label ζ̂n,k, as fol-

lows [73]:

λ̂(r)n =
1

E

E∑
e=1

λ(r)n (φ∗,∆e), (4.8)

ζ̂
(r)
n,k =

1

E

E∑
e=1

ζ
(r)
n,k (φ

∗,∆e); (4.9)

where notation λ(r)n (φ∗,∆e) and ζ
(r)
n,k (φ

∗,∆e) stands for the dependency between the estimated

output, the trained RCDNN weights and bias based on equation (4.7), and the set ∆e holding

dropout layers. As seen, the Monte-Carlo dropout-based predictions in equations (4.8) and (4.9)

compute the RCDNN outputs as the sample mean over a stack ofE predictions; each activates the

dropout layers in∆e randomly for the u-th iteration within aMonte-Carlo scheme. For RCDNN’s

implementation details, see Section 4.3.4.

4.3 Experimental Set-Up

4.3.1 Tested Datasets

The introduced RCDNN classifier for multiple annotators scenarios is tested in three differ-

ent datasets. The first category, termed 2D-PCA iris dataset, is intended to show our method’s

work graphically. The Principal Component Analysis-(PCA) algorithm is applied to reduce the

well-known Iris dataset dimension from four to two [73], aiming to easily observe some pre-
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liminary results in a cartesian plane and illustrate how multiple annotations can be simulated.

Second, we build semi-synthetic data from eight datasets devoted to the binary and multi-class

classification of the well-known UCI repository (see Section 2.3.1). Moreover, we test the pub-

licly available bearing data collected by the Case Western Reserve University–(Western). The

aim is to build a system to diagnose an electric motor’s status based on two accelerometers. The

feature extraction was performed as in [74] (P = 7, N = 3413, K = 4). Finally, our proposal

is tested on three fully real datasets (Voice, Polarity, and Music), where, the input features and

the annotations are captured from real-world problems. The description for the three datasets is

found in Section 2.3.1; Table 2.1 summarizes the tested datasets.

4.3.2 Provided and Simulated Annotations

Since the semi-synthetic datasets do not provide annotations from multiple labelers, to test

our RCDNN classifier, it is necessary to simulate those annotations based on the ground truth,

which is available for these kind of experiments. Taking into account that our approach is built

under the consideration that the annotators’ performance depends on the input space, we use

the schemes Non-homogeneous labels and Biased coin (Non-homogeneous) presented in Sec-

tion 3.3.1.

Regarding the voice quality dataset, the annotations from four experts are provided, R=4.

However, only the G, R, and B scales are studied for concrete testing. Indeed, for scales A and S,

the sources’ expertise is not satisfactory [21]. Similarly, labels from 203 workers are available for

the polarity sentiment dataset. Annotators who labeled at least 15% of the available instances are

kept, yielding R = 7 labelers. Finally, 2946 labels were obtained from 44 instances concerning

the music dataset. Nevertheless, in our experiments, the sources that labeled at least 15% of the

available instances are studied (R=9).

4.3.3 Method Comparison and Quality Assessment

Our model’s validation is carried out by estimating the classification performance as the

Area Under the Curve (AUC) and the overall accuracy (Acc). The AUC is extended for multi-

class scenarios, as discussed in [72]. A cross-validation scheme is used with 30 repetitions,

where 70% of the samples are utilized for training and the remaining 30% for testing, except for

the music and polarity dataset, since they clearly define the training and testing sets. Table 4.1

displays the state-of-the-art models that are considered for comparison purposes. The Matlab

codes for the state-of-the-art methods studied are publicly available ¹. We highlight that the

GPC-Gold is used only to provide an upper bound for our approach.

¹GPC-MV MA-LFC, MA-MAE, MA-DGRL, GPC-GTIC, KAAR, and LKAAR codes: https://github.com/juliangilg.
MA-GPC codes: http://www.fprodrigues.com/
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Table 4.1 A short overview of the tested state-of-the-art approaches

Approach Brief description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC that uses the majority voting of the labels as the ground truth.
MA-LFC [1] A LRC with constant parameters across the input space.
MA-DGRL [27] A multi-labeler approach that considers as latent variables the annotator performance.
MA-MAE [50] A LRC where the source parameters depend on the input space.
MA-GPC [20] A multi-labeler GPC, which is an extension of MA-LFC using a non-linear approach.
KAAR [54] A kernel-based approach that employs a convex combination of GPC,

it codes the labelers dependencies.
LKAAR-(LR,SVM,GPC) [54] A localized kernel alignment-based annotator relevance analysis using a combination of

LRC, SVM, GPC, respectively. It models the annotators’ dependencies
and the relationship between the labelers’ behavior and the input features.

Note: GPC: Gaussian Processes classifier, LRC: logistic regression classifier, MV: majority voting, MA:
multiple annotators, MAE: Modelling annotators expertise, LFC: Learning from crowds, DGRL: Dis-
tinguishing good from random labelers, KAAR: kernel alignment-based annotator relevance analysis,
LKAAR: localized kernel alignment-based annotator relevance analysis

4.3.4 RCDNN Detailed Architecture and Training

The proposed RCDNN architecture for multiple annotators comprises:

– IN: An input layer fed by the input samples X ∈RN×P .

– %1(·): A dense layer coding relevant patterns from input features to perform. The number

of neurons is set as h = bρP e, where ρ ∈ {0.5, 1, 1.5} is chosen empirically; a linear-

based activation function is used to code input data linear dependencies.

– %2(·): A dense layer fixing a tanh-based activation function with J = K + R neurons to

reveal non-linear relationships.

– %3(·): A fully-connected layer with K neurons and a softmax-based activation function,

which is employed to estimate the hidden ground truth ζk,n.

– %4(·): A dense layer with R neurons and a sigmoid-based activation function, which is

used to compute the annotators’ reliability in λ(r)n .

– For all provided %s layers l1 plus l2-based regularization strategy is used, searching the

regularization weights within the range {1e-3,1e-2,1e-1}.

– BatchNormalization and Dropout layers are included between layers to avoid vanishing

and exploding gradient issues. Also, it favors the RCDNN’s generalization capability, as

exposed in Section 4.2. See Figure 4.1 for details.

– The optimization problem in equation (4.7) is solved using a Back-propagation algorithm

as usual. Moreover, we utilize a mini-batch-based gradient descent approach with auto-

matic differentiation (RMSprop-based optimizer is fixed) to favor scalability.

We clarify that our RCDNN is flexible and admits different deep structures, such as Recurrent

or Convolutional layers aiming to deal with complex tasks (e.g., computer vision or natural lan-

guage processing). Moreover, our approach can build from different activation functions (RELU,

ELU, sigmoid, softmax). However, the last layers (in this case ε3 and ε4) need to be designed
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IN: X

%1(·)

%2(·)

%3(·) %4(·)

BN:BatchNormalization(·)

BN:BatchNormalization(·)

BN:BatchNormalization(·)

DO:Dropout(·)

DO:Dropout(·)

DO:Dropout(·)

•

•

•

•

•

•

Figure 4.1 RCDNN architecture details. %s stands for dense layer. %1 holds a linear activation, %2 includes
a tanh-based activation, and %3 and %4 output the hidden ground truth label and the annotator’s reliability
fixing a softmax and a sigmoid activation, respectively

to code each annotator’s behavior and the hidden ground truth. For example, the parameter λ(r)n

represents an estimation of the annotators’ reliability; accordingly, we need to use an activation

function whose output belongs to the range [0, 1].

4.4 Results and Discussion

A controlled experiment is performed to estimate the performance of inconsistent labelers as

a function of the input space while highlighting their dependencies. For this first experiment, the

2D PCA Iris dataset is employed (see Section 4.3.1). Besides, the data is divided into five clusters

using the K-means technique to emulate five annotators using the approach “Biased coin (Non-

homogeneous)”. A matrix P ∈ [0, 1]R×R is used to set a different score (annotator reliability)

for each pair annotator-cluster, as follows:

P =



0 0.9 0.5 0.15 0.6

0.9 0 0.3 0.4 0.75

0.5 0.3 0 0.6 0.3

0.15 0.4 0.6 0 0.8

0.6 0.75 0.3 0.8 0


. (4.10)
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Note that the value pc,r refers to the probability that the annotator r fails to label a sample that

belongs to cluster c; thus, a zero value means a perfect annotator for the correspondent cluster.

The r-th annotator is an expert (its labels correspond to the ground truth) in the region c = r.

Figure 4.2 shows the decision boundaries generated by our approach for the first experiment.

As shown, RCDNN offers a suitable representation for the multi-class classification problem; an

AUC score of 0.9837 is achieved, which demonstrates its generalization capability, even in cases

where the ground truth is unknown. Indeed, RCDNN codes the relationship between the input

space, the annotator’s behavior and the dependencies among their labels, improving the expert

codification quality [10, 54]. To empirically support the above statement, Figure 4.3 shows each

annotator’s simulated accuracy and the reliability estimated by our RCDNN. The latter elucidates

how our method successfully identifies the zones where the labelers have the best accuracy. The

above is not unexpected because the annotators’ accuracy (simulated) is compared with their

reliability (estimated); hence, the regions where a specific labeler obtains the higher accuracy

should match the regions where the estimated reliability is closer to 1.

3 2 1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0

Figure 4.2 RCDNN’s decision boundaries for the 2D-PCA Iris dataset (synthetic scenario). AUC=
0.9837. The point’s color stands for the Iris dataset classes. PCA1 and PCA2 stand for the first and
second PCA-based projections

In addition, Figure 4.4 shows a comparison between the Pearson correlation coefficients

(absolute value) from the labelers’ performance in equation (4.10), configuring the simulated

dependencies among the annotators, and the Pearson correlation coefficients (absolute value)

from the weight matrix Φ%4 ∈ R(K+R)×R of the layer %4(·) (RCDNN annotators’ dependencies

estimation). Comparing the real and the estimated dependencies, it is noticeable that, even though

the exact matrix is not recovered, our approach efficiently finds tendencies between annotators’

performances. The learned representation from hidden layers (Figure 4.1) allows coding both

linear and non-linear patterns that recover the expert dependencies from data. Then, our deep

model estimates the unknown ground truth and the relationships between annotators.

Table 4.2(a) shows the results concerning the “Non-homogeneous labels,” where it is sup-
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Annotator 4

Annotator 5

0.6
Figure 4.3 RCDNN-based annotators’ performance (reliability) estimation for the synthetic experiments
(2D PCA Iris data). In the first column (from top to bottom), the simulated accuracy for each annotator
is presented based on equation (4.10). The second column shows (from top to bottom) the estimated
annotators’ reliability (λr)

posed that the labelers’ performance depends on the input space X . First, we notice that most

of the classification schemes present a considerably high performance for both AUC and Acc;

in fact, the average AUC and Acc for all methods (except MA-DGRL and MA-MAE) are sim-

ilar compared to the upper bound GPC-GOLD. The above behavior demonstrates high-quality

labels, which is confirmed considering the performance of the most naive approach GPC-MV.

Furthermore, our RCDNN presents the best average ranking and the second AUC and Acc scores.

Then, from non-linear-based approaches, we notice that a naive approach, such as GPC-MV, ob-

tains similar performance compared with sophisticated ones, like KAAR, LKAAR-SVM, and

LKAAR-GPC. Nevertheless, as we already comment, such an outcome is a consequence of sim-

ulating annotators with suitable quality, which favors the majority voting method. Besides, MA-
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Figure 4.4 Target and estimated annotators’ dependencies for the synthetic 2D PCA Iris dataset. On the
left, the Pearson correlation coefficients (absolute value) from simulated accuracies (experts reliability) in
matrix P of equation (4.10) are shown. On the right, the dependencies among the annotators estimated
from the RCDNN %4 layer’s weights are displayed

GPC presents the lowest average ranking compared with its other non-linear methods, result-

ing from a lack of generalization (overfitting). Regarding the results for the linear models, they

achieve lower performance than non-linear ones.

On the other hand, Table 4.2(b) shows the results concerning the simulation method “Bi-

ased coin (Non-homogeneous).” At first sight, a generalized lower performance exists compared

with previous results in Table 4.2(a). To explain such an outcome, we recall the stimulation pa-

rameters P in equation (4.10), where the element 1 − pc,r (column r, row c) indicates the r-th

annotator’s performance in region c. Accordingly, taking the average by column to the matrix

1 − P , we obtain the annotator’s accuracy [0.57, 0.53, 0.66, 0.61, 0.51]. We remark that the

labelers’ accuracy is considerably low for this experiment, which impacts the algorithms’ per-

formance. RCDNN achieves the best predictive performance in both the overall accuracy and

the AUC score; RCDNN obtains the best average ranking. Moreover, the non-linear competitors

KAAR, LKAAR-GPC, and LKAAR-SVM achieve competitive results. However, GPC-MV and

MA-GPC offer the lowest classification scores. Regarding GPC-MV, the result is explained be-

cause GPC-MV corresponds to the most naive approach. After all, it considers that the whole

annotators achieve similar performance. On the other hand, the MA-GPC achieves a similar

performance compared with GPC-MV; such a behavior proves that MA-GPC is more prone to

overfitting [19]. Remarkably, simple classifiers such as MA-LFC, MA-DGRL, and LKAAR-LR

obtain competitive outcomes compared to the non-linear competitors; in fact, all the linearmodels

except MA-MAE outperform GPC-MV and MA-GPC. An additional experiment is conducted:

an LR-based classifier using the ground truth (following a similar scheme for GPC-GOLD) is

trained overall datasets, obtaining an average AUC equal to 87.21 (close enough to the MA-

DGRL and LKAAR-LR performances). Accordingly, a linear structure is presented in some

of the studied datasets. In turn, MA-MAE obtains the worst generalization performance (even

worse than GPC-MV). This outcome is a consequence of overfitting, empirically demonstrated
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Table 4.2 Semi-synthetic datasets results

(a) Non-homogeneous labels
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation western Average

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 94.52± 0.57 92.39
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 79.75± 0.57 86.12

GPC-MV AUC[%] 99.11± 0.58 70.95± 3.90 93.14± 3.49 81.21± 2.57 87.83± 4.11 99.63± 0.39 98.41± 1.38 91.48± 1.48 78.14± 4.15 88.87
Acc[%] 96.29± 1.48 66.60± 4.31 87.90± 3.26 74.87± 2.32 81.96± 3.46 95.33± 3.05 93.96± 3.34 82.68± 5.30 63.35± 1.68 82.54

MA-LFC AUC[%] 98.72± 0.93 71.53± 4.18 82.08± 4.79 82.29± 2.22 61.13± 3.28 98.75± 1.44 96.83± 1.75 99.58± 0.11 87.77± 0.79 86.72
Acc[%] 95.63± 1.79 69.68± 4.20∗ 81.43± 4.44 76.52± 1.91∗ 64.88± 2.86 94.44± 4.62 87.74± 4.67 95.40± 0.71∗ 57.21± 1.32 80.32

MA-DGRL AUC[%] 99.30± 0.39 68.00± 4.09 77.60± 7.50 81.72± 2.57 61.83± 2.80 98.78± 1.34 95.33± 3.35 98.31± 0.32 87.67± 0.85 85.39
Acc[%] 94.63± 1.77 65.77± 3.47 81.94± 3.42 76.45± 2.81 66.45± 2.24 94.59± 2.96 84.91± 6.50 89.58± 0.99 60.55± 1.26 79.43

MA-MAE AUC[%] 99.28± 0.60 70.82± 3.90 78.91± 6.01 81.80± 2.57 60.35± 3.28 85.97± 2.39 98.20± 1.33 97.27± 0.28 72.83± 0.80 82.76
Acc[%] 96.31± 1.38 66.92± 3.35 82.25± 3.99 76.12± 2.77 65.64± 2.37 94.81± 4.14 89.31± 5.79 92.94± 0.76 52.41± 1.56 79.63

MA-GPC AUC[%] 95.81± 2.94 49.81± 11.72 94.46± 3.09 67.83± 4.24 81.44± 3.81 99.15± 1.03 99.85± 0.24 99.42± 0.14 94.14± 0.52 86.87
Acc[%] 96.70± 1.37∗ 59.52± 4.71 82.13± 3.32 72.77± 2.71 76.39± 2.85 94.30± 2.90 94.34± 2.80 94.74± 0.68 78.52± 1.11∗ 83.26∗

KAAR AUC[%] 98.81± 0.66 70.20± 5.70 93.88± 3.53 81.18± 2.93 89.55± 2.84 99.56± 0.52 99.53± 0.36 92.34± 1.38 81.77± 1.02 89.64
Acc[%] 96.02± 1.14 65.99± 5.44 87.52± 4.24 75.10± 2.98 81.68± 2.41 95.56± 2.92∗ 96.54± 2.11 81.11± 4.15 64.58± 1.47 82.67

LKAAR-LR AUC[%] 99.34± 0.44 68.86± 5.16 87.14± 3.38 82.04± 2.44 65.40± 3.13 96.00± 2.50 99.21± 0.82 97.97± 0.27 83.25± 1.22 86.57
Acc[%] 96.00± 1.46 64.17± 4.22 84.10± 3.20 75.67± 2.15 66.96± 2.74 82.59± 6.07 94.28± 3.19 90.02± 0.93 51.49± 2.05 78.36

LKAAR-SVM AUC[%] 98.29± 0.80 64.37± 3.36 96.98± 2.01 77.80± 2.28 89.82± 2.14 98.05± 1.90 99.53± 0.47 97.89± 0.32 79.08± 0.95 89.09
Acc[%] 96.36± 1.02 63.14± 3.67 92.19± 2.43∗ 72.52± 2.22 80.99± 2.81 84.44± 6.76 96.48± 2.26 91.28± 0.93 53.73± 2.06 81.79

LKAAR-GPC AUC[%] 99.00± 0.75 71.07± 5.05 93.37± 2.91 81.23± 2.21 91.97± 2.01 99.57± 0.61 99.64± 0.34 92.61± 1.73 81.37± 1.37 89.98
Acc[%] 96.03± 1.32 66.92± 4.79 87.75± 3.90 75.10± 2.65 84.09± 2.43∗ 95.26± 3.29 96.54± 2.16 80.98± 3.91 65.20± 1.72 82.65

RCDNN (ours) AUC[%] 99.47± 0.33 69.80± 6.07 92.60± 2.80 83.25± 3.13 71.17± 3.76 99.74± 0.26 99.90± 0.13 99.15± 0.19 89.61± 0.71 89.41
Acc[%] 97.06± 1.19∗ 63.69± 4.26 86.79± 2.37 76.00± 3.10 68.06± 3.02 95.33± 2.46 97.84± 1.86∗ 92.96± 1.06 66.46± 1.82 82.68

(b) Biased coin (Non-homogeneous) labels
Method breast bupa ionosphere pima tic-tac-toe iris wine segmentation western Average

GPC-GOLD AUC[%] 99.04± 0.94 72.21± 3.69 95.02± 2.44 83.76± 1.98 99.97± 0.06 97.65± 2.71 99.22± 0.67 90.08± 1.94 94.52± 0.57 92.39
Acc[%] 96.44± 1.54 68.48± 4.43 91.08± 2.41 76.71± 1.96 99.16± 0.85 95.85± 3.29 96.92± 1.44 70.68± 6.81 79.75± 1.28 86.12

GPC-MV AUC[%] 90.78± 4.28 50.47± 6.19 82.91± 6.03 70.18± 6.29 65.91± 6.72 98.55± 1.38 97.75± 2.04 90.18± 1.71 74.40± 4.94 80.13
Acc[%] 86.63± 2.06 48.27± 4.84 75.65± 6.45 66.52± 5.16 64.66± 3.64 88.81± 5.00 86.92± 5.76 79.24± 4.99 65.04± 1.52 73.53

MA-LFC AUC[%] 97.99± 0.99 59.64± 8.08 72.66± 9.98 72.73± 3.43 52.88± 3.13 96.72± 8.98 96.47± 2.13 99.50± 0.15 84.97± 0.84 81.51
Acc[%] 96.00± 1.70∗ 56.41± 8.12 69.17± 12.53 58.10± 4.53 46.27± 3.03 92.30± 5.18 87.55± 4.97 95.06± 0.80∗ 55.17± 1.33 72.89

MA-DGRL AUC[%] 99.31± 0.42 61.77± 6.17 77.83± 7.02 81.66± 2.65 55.70± 3.95 98.76± 1.33 95.26± 3.30 98.32± 0.34 86.61± 1.10 83.91
Acc[%] 78.08± 2.22 55.64± 4.52 71.43± 5.15 76.90± 1.99∗ 60.64± 2.33 94.37± 2.66 84.84± 6.32 89.63± 0.89 65.61± 1.28 75.24

MA-MAE AUC[%] 95.22± 1.70 64.63± 9.77 64.18± 9.17 79.94± 2.64 52.36± 4.78 93.16± 5.08 96.25± 2.40 94.40± 1.26 61.40± 0.93 77.95
Acc[%] 87.15± 1.85 62.34± 8.46 67.94± 7.19 75.94± 2.69 53.33± 6.42 81.70± 11.68 86.67± 5.15 88.38± 2.00 49.34± 4.15 72.53

MA-GPC AUC[%] 85.37± 5.90 40.79± 12.30 74.52± 4.57 73.17± 3.34 61.82± 4.51 98.71± 1.14 99.60± 0.41 99.35± 0.14 93.09± 0.58 80.71
Acc[%] 92.55± 2.17 52.82± 6.38 69.87± 4.41 62.42± 3.00 62.33± 2.98 93.85± 3.49 95.09± 2.65 93.46± 0.83 76.88± 1.19∗ 77.70

KAAR AUC[%] 97.81± 0.99 56.52± 9.13 82.20± 4.93 67.90± 3.16 75.34± 4.70 98.75± 1.10 97.91± 1.36 91.75± 1.41 82.30± 0.73 83.39
Acc[%] 77.19± 3.14 52.44± 7.79 72.60± 4.80 61.20± 2.95 70.69± 3.63 90.44± 5.48 91.45± 4.28 76.38± 5.05 64.61± 1.36 73.00

LKAAR-LR AUC[%] 99.52± 0.30 66.07± 6.14 82.99± 5.01 80.57± 3.31 52.32± 3.38 96.83± 2.14 99.27± 0.68 97.87± 0.30 81.03± 0.80 84.05
Acc[%] 92.47± 2.24 60.22± 5.67∗ 78.92± 4.32 75.07± 2.65 55.64± 2.77 83.41± 6.92 94.59± 3.12 89.77± 0.99 54.80± 2.05 76.10

LKAAR-SVM AUC[%] 98.37± 1.00 52.35± 6.40 88.28± 5.13 66.84± 3.66 73.85± 3.43 96.22± 2.50 98.88± 0.80 97.59± 0.34 79.19± 1.46 82.39
Acc[%] 87.72± 5.17 50.96± 6.81 84.73± 4.66∗ 64.81± 3.11 70.02± 2.74 74.15± 7.90 91.82± 4.33 90.37± 1.24 55.39± 3.03 74.44

LKAAR-GPC AUC[%] 98.14± 1.04 58.36± 7.24 86.23± 4.47 73.80± 2.83 80.02± 4.15 99.61± 0.61 98.74± 0.93 92.24± 1.80 83.35± 0.75 85.61
Acc[%] 86.76± 4.33 54.52± 5.27 78.25± 5.51 69.64± 3.01 74.90± 2.99∗ 95.93± 3.15∗ 93.84± 3.57 78.71± 4.18 66.58± 1.19 77.68

RCDNN (ours) AUC[%] 99.26± 0.42 64.16± 3.87 83.41± 6.28 82.08± 3.27 65.31± 3.87 99.51± 0.53 99.77± 0.22 99.06± 0.20 87.94± 1.03 86.72
Acc[%] 94.07± 2.00 58.24± 5.13 76.70± 6.19 74.91± 3.77 65.07± 1.17 93.33± 3.30 96.17± 2.57∗ 91.28± 0.99 61.56± 5.13 79.04∗

Note: the highest AUC excluding the upper bound (target) classifier GPC-GOLD. Marked with ∗: the
highest accuracy (Acc) except the upper bound. The last column presents the average ranking for the AUC
score and the overall accuracy (GPC-GOLD is not considered). The best average ranking for AUC is
highlighted in bold, and the accuracy is marked with ∗

in [19]. It is noteworthy that RCDNN and LKAAR-GP obtain similar results, which is expected

since both approaches compute the annotators’ performance as a function of the input space

while considering dependencies between the labelers. However, an unexpected result regarding

the “tic-tac-toe” dataset arises, where LKAAR-GP far exceeds our approach’s performance. The

categorical features cause the above outcome in such a dataset, which cannot be modeled with the

chosen DNN architecture Figure 4.1. Still, our method can be easily adapted by setting different

layers and activation functions. It is worth noting that the previous experiments were done under

controlled scenarios using simulated annotations to stress our method and compare its perfor-

mance with recently developed approaches. In short, RCDNN offers the best advantages among

the state-of-the-art models considered in AUC, overall accuracy, and average ranking.

Up to this point, RCDNN unravels the information hidden in noisy annotations (simulated)

to estimate the unknown ground truth considering experts’ performance as a function of the input
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Table 4.3 Fully real-world datasets results
AUC([%])

Method Voice Dataset Polarity
Dataset Music AverageG R B

GPC-GOLD 93.66 93.66 93.66 80.26 92.84 90.81
GPC-MV 90.17 84.73 84.04 71.14 88.79 83.77
MA-LFC 89.99 90.59 87.27 72.06 85.99 85.18

MA-DGRL 85.45 90.14 79.33 56.13 88.32 79.86
MA-MAE 91.08 89.12 80.74 48.73 81.92 78.31
MA-GPC 91.50 91.16 80.81 61.18 82.53 81.43
KAAR 89.85 93.50 89.20 77.46 88.96 87.79

LKAAR-LR 90.39 92.92 88.94 68.28 84.43 84.99
LKAAR-SVM 92.06 93.02 86, 98 72.70 89.98 87.70
LKAAR-GPC 90.78 93.60 89.79 76.50 86.44 87.42

RCDNN 92.24 94.19 92.57 76.04 93.29 89.66

Note: the method with the highest performance excluding the upper bound (target) classifier GPC-GOLD.

space and dependencies among labelers. However, the following experiments aim to demonstrate

how our approach can outperform state-of-the-art methods even for real labelers, e.g., the chal-

lenge is higher as the input data and the annotations are obtained from real-world applications.

Table 4.3 describes the results achieved using AUC as the metric to compare the state-of-the-art

methods in five different real-world datasets.

First, analyzing the voice data for the scales G and R, all the approaches give similar AUC

values. In fact, for scale G, the GPC-MV attains competitive performance. The latter can be

explained in that the annotators exhibit similar conduct for these scales [21]. Conversely, for the

B scale, a generalized reduction is presented. Looking at RCDNN results for this database, it is

noticeable that the achievement is similar among all the scales, which is an exceptional outcome

showing our method’s ability to detect regions where annotators have superior execution.

In Polarity Dataset, an acceptable RCDNN’s performance is attained compared to others.

Our approach requires defining several layer weights in the deep model (Figure 4.1) concerning

the number of features (P ), labelers (R), and classes (K). For this particular dataset, those

values are considerably higher: P = 1200, R = 7, and K = 2. Nevertheless, the introduced

regularization strategy (l1, l2, plus Monte-Carlo Dropout) allows computing an acceptable AUC

performance of 76.04 in comparison with the best achieved by the KAAR method 77.46.

Lastly, in the case of Music data, our RCDNN obtains the best classification performance.

On the other hand, MA-MAE and MA-GPC exhibit a significantly low performance, even lower

than the intuitive lower bound (GPC-MV). This behavior has been repeated in previous experi-

ments because of the over-fitting issue. Nevertheless, an additional challenge is presented for the

music dataset regarding the multi-class classification setting. Accordingly, a one-vs-all scheme

is fixed for all binary classification methods (including MA-MAE andMA-GPC). Such a scheme

to deal with multi-class classification can lead regions on the input space that are ambiguously

classified [9].

As a final experiment, we analyze the impact of spammers and malicious annotators on the
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Figure 4.5Receiver Operating Characteristic (ROC) plot for the annotators simulatedwithin the spammers
and malicious scenario. Blue dots indicate the basis annotators. Red dots show extra annotators with
parameters Re = 65 and pr = 0.5. Green dots specify extra labelers with Re = 20 and pr = 0.6. We
notice that annotators located in the dashed line vicinity are considered Spammers. Similarly, labelers
above in the dashed line are regarded as good annotators; conversely, labelers located below such a line
are malicious annotators

performance of our multi-labeler classifier. We use the Pima dataset for concrete testing, which

holds 768 instances; from this dataset, we use 538 samples for training and the remaining 230

for testing. We create synthetic labels from 5 annotators generated from the Biased coin (non-

homogeneous) procedure (Section 4.3.2 and equation (4.10)). According to Figure 4.5 (blue

dots), from the 5 labelers, two are categorized as suitable labelers, one as Spammers, and the

remaining as Malicious. Then, we add additional Re annotators aiming to test our approach in

extreme scenarios where the number of malicious or spammers annotators increases. The labels

are simulated as follows: a random number τ (r)n is sampled from a Bernoulli distribution with

parameter pr; then if τ (r)n = 0, y(r)n = yn, and y
(r)
n = ỹn otherwise. For Spammers, we use

Re = 65 and pr = 0.5 (see red dots in Figure 4.5); like for malicious labelers, we fix Re = 20

and pr = 0.6 (see green dots in Figure 4.5).

Figure 4.6 presents the classifiers’ performance as a function of the number of spammers

(left in Figure 4.6) and malicious annotators (Figure 4.6). First, we analyze the effect of Spam-

mers annotators on the RCDNN’s performance. From the results in Figure 4.6 (left), we remark

that when the number of Spammers is less than 40, the performance of our approach is not af-

fected. However, when the number of Spammers exceeds 40, the RCDNN’S AUC becomes

unstable, oscillating between 0.6 and 0.8. Accordingly, we highlight that the critical point is pre-

sented when the percentages of good, spammers, and malicious labelers are respectively 4.65%,

90.70%, and 4.65%, which shows that our RCDNN is robust in the presence of a high number

of Spammers. Now, we compare our RCDNN with two state-of-the-art models, MA-LFC (linear
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Figure 4.6 MA-LFC, LKAAR-GPC, and RCDNN performance (AUC) as a function of the number of
labelers (spammers and malicious annotators)

model with the more competitive performance according to Table 4.3) and LKAAR-GPC (Non-

linear model with the more competitive AUC in Table 4.3). We notice that the LKAAR-GPC

behavior is similar to our approach; when the number of spammers exceeds 35, the AUC starts to

descend gradually. Conversely, we note that the MA-LFC’s performance is drastically affected

by the spammers. For more than 8 spammers, the AUC is close to 0.2.

Second, we inspect the consequences when malicious labelers are added. From the results

in Figure 4.6 (right), we note that our RCDNN is significantly affected when we have more than

5 malicious annotators; in that case, the AUC decreases from 0.85 approximately to a value

near 0.2. Thereby, we notice that the critical point is presented when the percentages of good,

spammers and malicious labelers are respectively 25%, 12.5%, 62.5%. In such a sense, for this

experiment, we can affirm that our approach can deal with malicious labelers if the percentage

of them is below 62.5%. Finally, studying the results related to LKAAR-GPC, we notice that

LKAAR again performs similarly to our RCDNNdue tomore than 5malicious labelers; LKAAR-

GPC achieves AUC scores lower than 0.5; on the other hand, MA-LFC susceptible since, for more

than 2 malicious labelers, the AUC decreases to a value near to 0.2.

4.5 Summary

This paper introduces a novel Regularized Chained Deep Neural Network classifier, termed

RCDNN, to deal with multiple annotator scenarios. Our method is built based on the ideas of

the chained Gaussian Processes [59], where each parameter in a multi-labeler likelihood is mod-

eled by using the outputs of a deep neural network. In such a way, RCDNN codes the annotators’

expertise as a function of the input data and the dependencies among the labelers from the last hid-

den layer’s weights. Besides, l1, l2, and Monte-Carlo Dropout regularization strategies are cou-

pled within our RCDNN architecture and predictor to contract the overfitting challenge of deep
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models. The proposal is tested using different scenarios concerning the provided annotations:

synthetic, semi-synthetic, and real-world experts. According to the results, RCDNN achieves ro-

bust predictive properties for the studied datasets, outperforming state-of-the-art methods while

providing an estimation of each labeler’s reliability and the dependencies among annotators.

However, we notice that RCDNN is based on a frequentist approach; thus, the estimations

for the annotators’ parameters and the supervised learning framework are deterministic, and it is

not possible to capture the uncertainty related to them.
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Chapter 5 Correlated Chained Gaussian Processes for

Multiple Annotators

In this chapter, we propose a probabilistic model, named the correlated chained Gaussian

Processes for multiple annotators–(CCGPMA), to jointly build a prediction algorithm applicable

to classification and regression tasks. CCGPMA is based on the chained GPs model–(CGP) [59],

which is a Multi-GPs framework where the parameters of an arbitrary likelihood function are

modeled with multiple independent GPs (one GP prior per parameter). Unlike CGP, we consider

that multiple correlated GPs model the likelihood’s parameters. For doing so, we take as a basis

the ideas from a Multi-output GP–(MOGP) regression [40], where each output is coded as a

weighted sum of shared latent functions via a semi-parametric latent factor model–(SLFM) [61].

In contrast to the MOGP, we do not have multiple outputs but multiple functions chained to

the given likelihood parameters. From the multiple annotators’ point of view, the likelihood

parameters are related to the labelers’ behavior; CCGPMA models the labelers’ behavior as a

function of the input features while also considering annotators’ interdependencies. Moreover,

our proposal is based on the so-called inducing variables framework [75], in combination with

stochastic variational inference [76]. To the best of our knowledge, this is the first attempt to build

a probabilistic approach to model the labelers’ behavior as a function of the input features while

also considering annotators’ interdependencies. Using both simulated and real-world data, the

results show how our method can deal with regression and classification problems from multi-

labelers data.

5.1 Chained Gaussian Processes

Let us consider an input-output datasetD={X∈X ,y∈Y},whereX =
{
xn∈X ⊆RP

}N
n=1

and y= {yn∈Y}Nn=1. In turn, let a GP be a collection of random variables f(x) indexed by the

input samples x∈X holding a joint multivariate Gaussian distribution [37]. A GP is defined by

its meanm(x)=E f(x) (we considerm(x)= 0) and covariance function

κf (x,x
′)=E (f(x)−m(x))(f(x′)−m(x′)), (5.1)

where κf :X × X →R is a given kernel function and x′ ∈X , yielding:

f(x) ∼ GP(0, κf (x,x
′)). (5.2)

If we consider the finite set of inputs in X , then f = [f(x1), . . . , f(xN )]> ∈RN is drawn for a

multivariate Gaussian distribution f ∼ N (f |0,Kff ), where Kff ∈RN×N is the covariance



5.1 Chained Gaussian Processes

matrix formed by the evaluation of κf (·, ·) over the input set X .

Accordingly, using GPs for modeling the input-output data collection D consists of constructing

a joint distribution between a given likelihood function and one or multiple GP-based priors. To

code each likelihood parameter as a random process, we employ the so-called chained GP–(CGP)

that attaches such parameters to multiple independent GP priors, as follows [59]:

p(y, f̂ |X) =
N∏

n=1

p(yn|θ1(xn), . . . , θJ(xn))×
J∏

j=1

N (f j |0,Kfjfj
), (5.3)

where each {θj(x)∈Mj}Jj=1 represents the likelihood’s parameters, being J ∈N the number

of parameters to represent the likelihood. Besides, each θj(x) holds a non-linear mapping from

a GP prior, e.g., θj(x)=hj(fj(x)), where hj :R → Mj is a deterministic function that maps

each latent function–(LF) fj(x), to the appropriate domain Mj .

Moreover, f j = [fj(x1), . . . , fj(xN )]> ∈RN is a LF vector that follows a Gaussian Process

prior, and f̂ = [f1, . . . ,fJ ]
> ∈RNJ . Kfjfj

∈RN×N is the covariance matrix belonging to

the j-th GP prior, which is computed based on the kernel function κj :X × X →R. The non-

parametric formulation of a GP introduces computational loads through the inference process.

For instance, considering that the dataset D configures a regression problem, a GP modeling

involves a computational complexity of O(N3) to invert the matrix Kfjfj
[37]. A common

approach to reduce such computational complexity is to augment the GP prior with a set of

M <<N inducing variables [77] uj =[fj(z
(j)
1 ), . . . , fj(z

(j)
M )]> ∈RM through additional eval-

uations of fj(·) at unknown locations Zj =[z
(j)
1 , . . . , z

(j)
M ] ∈ RM×P , which decreases the GP’s

computational complexity to O(NM2). Further, the following augmented GP prior arises:

p(f j ,uj) = N

f j

uj

 ∣∣∣∣∣ 0,
Kfjfj

Kfjuj

Kujfj
Kujuj

 , (5.4)

where Kfjuj
∈RN×M is the cross-covariance matrix formed by the evaluation of the kernel

function κj(·, ·) between X and Zj . Likewise, Kujuj ∈RM×M is the inducing points-based

covariance matrix. Then, the distribution of f j conditioned to the inducing points uj can be

written as:

p(f j |uj) =N
(
f j |Kfjuj

K−1
ujuj

uj ,Kfjfj
−Kfjuj

K−1
ujuj

Kujfj

)
, (5.5)

p(uj) =N
(
uj |0,Kujuj

)
. (5.6)

In most cases equations (5.5) and (5.6) are non-conjugate to the likelihood, finding the posterior

distribution p(f ,u|y) is not tractable analytically; therefore, we resort to a deterministic approx-

imation of the posterior distribution using variational inference. Hence, the actual posterior can

be approximated by a parametrized variational distribution p(f̂ ,u|y)≈q(f̂ ,u) [78], as:

74



5.1 Chained Gaussian Processes

q(f ,u) = p(f |u)q(u) =
J∏

j=1

p(f j |uj)q(uj), (5.7)

where u=
[
u>
1 , . . . ,u

>
J

]> ∈RMJ ; moreover, p(f j |uj) is defined in equation (5.5), and q(u) is

the posterior approximation over the inducing variables:

q(u) =
J∏

j=1

q(uj) =
J∏

j=1

N (uj |mj ,V j) . (5.8)

The approximation for the posterior distribution comprises the estimation of the following varia-

tional parameters: the mean vectors mj ∈RM and the covariance matrices V j ∈RM×M . Such

an assessment is carried out by maximizing an evidence lower bound–(ELBO). Due to space

restrictions, the ELBO derivation and details are included in the supplementary material.

5.1.1 Correlated Chained Gaussian Processes

From Section 5.1, we note that the CGP model assumes independence between priors,

thereby lacking a correlation structure between GPs. As mentioned before, we consider that

the annotators are correlated. We will enable this aspect of the model by assuming dependencies

among the latent parameters of the chained GP. In particular, we introduce the correlated chained

GPs–(CCGP) to model correlations between the GP latent functions, which are supposed to be

generated from a semi-parametric latent factor model–(SLFM) [61]:

fj(xn) =

Q∑
q=1

wj,qµq(xn), (5.9)

where fj :X →R is an LF, µq(·) ∼ GP(0, kq(·, ·)) with kq :X×X →R being a kernel function,

and wj,q ∈R is a combination coefficient (Q∈N). Here, each LF is chained to the likelihood’s

parameters to extend the joint distribution in equation (5.3) as follows:

p(y, f̂ ,u|X) = p(y|θ)
J∏

j=1

p(f j |u)p(u), (5.10)

where θ=[θ1, . . . ,θJ ]
> ∈RNJ holds the model’s parameters and

θj =[θj(x1), . . . , θj(xN )]> ∈RN relates the j-th parameter with the input space. Our CCGP

employs the inducing variables-based method for sparse approximations of GPs [77]. For each

µq(·), we introduce a set of M ≤ N “pseudo variables” uq =[µq(z
(q)
1 ), . . . , µq(z

(q)
M )]> ∈RM

through evaluations of µq(·) at unknown locations Zq =[z
(q)
1 , . . . , z

(q)
M ]∈RM×P . Note that

u=
[
u>
1 , . . . ,u

>
Q

]>
∈RQM , yielding:
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p(f j |u) =N
(
f j |KfjuK

−1
uuu,Kfjfj

−KfjuK
−1
uuKufj

)
, (5.11)

p(u) =N (u|0,Kuu)=

Q∏
q=1

N (uq|0,Kuquq), (5.12)

where Kuu ∈RQM×QM is a block-diagonal matrix with blocks Kuquq ∈RM×M , based on the

kernel functionκq(·, ·). On the other hand, the covariancematrixKfjfj
∈RN×N holds elements∑Q

q=1wj,qwj,qκq(xn,xn′), with xn,xn′ ∈X , and Kfju=[Kfju1 , . . . ,KfjuQ
]∈RN×QM ,

whereKfjuq ∈RN×M gathers elementswj,qκq(xn, z
(q)
m ), m∈{1, . . . ,M}.Alike CGP, in most

cases, the CCGP posterior distribution p(f̂ ,u|y) has not an analytical solution, so the actual pos-

terior can be approximated by a parametrized variational distribution p(f̂ ,u|y)≈q(f̂ ,u), as:

q(f̂ ,u) = p(f̂ |u)q(u) =
J∏

j=1

p(f j |u)
Q∏

q=1

q(uq), (5.13)

where p(f j |u) is given by equation (5.11), q(uq)=N (uq|mq,V q), and q(u)=N (u|m,V ).

Also,mq ∈RM , andV q ∈RM×M are respectively the mean and covariance of variational distri-

bution q(uq); similarly, m=[m>
1 , . . . ,m

>
Q]

> ∈RQM , and V ∈RQM×QM is a block-diagonal

matrix with blocks given by the covariance matrices V q. We remark that the variational ap-

proximation given by equation (5.13) is well known and has been used in several GPs models,

including [59, 79]. The approximation for the posterior distribution comprises the computation

of the following variational parameters: the mean vectors {mq}Qq=1 and the covariance matrices

{V q}Qq=1. Such an estimation is carried out by maximizing an evidence lower bound–(ELBO),

which is given as:

L =
N∑

n=1

Eq(f1),...,q(fJ )
[log p(yn|θ1,n, . . . , θJ,n]−

Q∑
q=1

DKL(q(uq)||p(uq)), (5.14)

where θj,n = θj(xn), with j ∈{1, . . . , J}, and DKL(·||·) is the Kullback-Leibler divergence and

q(f j) is defined as follows:

q(f j) = N (f j |KfjuK
−1
uum,Kfjfj

+KfjuK
−1
uu(V −Kuu)K

−1
uuKufj

). (5.15)

Yet, in presence of non-Gaussian likelihoods, the variational expectations–(VEs) computation

in equation (5.14) cannot be solved analytically [59, 79]. Hence, aiming to model different data

types, i.e., classification and regression tasks, we need to find a generic alternative to solve the

integrals related to these expectations. In that sense, we use the Gaussian-Hermite quadratures

approach as in [59, 77]. We remark such ELBO is used to infer the model’s hyperparameters

such as the inducing points, the kernel hyperparameters, and the combination factors wj,q equa-

tion (5.9). It is worth mentioning that the CCGPs objective functions exhibit an ELBO that allows

Stochastic Variational Inference–(SVI) [80]. Hence, the optimization is solved through a mini-
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5.2 Correlated Chained GP for Multiple Annotators-CCGPMA

batch-based approach from noisy estimates of the global objective gradient, which allows dealing

with large scale datasets [59, 77, 79]. Finally, we notice that the computational complexity for

our CCGP is dominated by the inversion of Kuu with O(QM3) and Kfu with O(JNQM2).

5.2 Correlated Chained GP for Multiple Annotators-CCGPMA

5.2.1 Classification

To model categorical data from multiple annotators using our CCGPMA, we use the frame-

work proposed in [27], which introduces a binary variable λ(r)n ∈{0, 1} representing the r-th

labeler’s reliability as a function of each sample xn. If λ
(r)
n = 1, the r-th annotator is supposed

to provide the actual label, yielding to a categorical distribution. Conversely, λ(r)n = 0 indicates

that the r-th annotator gives an incorrect output, modeled by a uniform distribution. Therefore,

the likelihood function is given as:

p(Y |θ) =
N∏

n=1

∏
r∈Rn

(
K∏
k=1

ζ
δ(y

(r)
n ,k)

k,n

)λ
(r)
n (

1

K

)(1−λ
(r)
n )

, (5.16)

where δ(y(r)n , k)= 1, if y(r)n = k, otherwise δ(y(r)n , k)= 0. Besides, ζk,n= p(y
(r)
n = k|λ(r)n = 1)

is an estimation of the unknown ground truth. Accordingly, J =K +R LFs are required within

our CCGPMA approach, to model the likelihood’s parameters θ. In particular, K LFs are used

to model ζk,n based on a softmax function as:

ζk,n = Ξ(fk(xn)) =
exp(fk(xn))

K∑
j=1

exp(fj(xn))

. (5.17)

Besides, R LFs are utilized to compute each λ(r)n from a step function; therefore, λ(r)n =1 if

flr(xn) ≥ 0, otherwise, λ(r)n =0 (r∈{1, . . . R}). lr =K + r∈{K + 1, . . . J} indexes the r-th

annotator’s LF. It is worth mentioning that we approximate the step function through the well-

known sigmoid function ς to avoid discontinuities and favor the CCGPMA implementation. Like

to CCGP, we use variational inference to approximate the posterior distribution of our CCGPMA.

In consequence, the actual posterior p(f̂ ,u|Y ) is approximated following equation (5.13). Be-

sides, we can derive a CCGPMA ELBO, yielding

L=

N∑
n=1

∑
r∈Rn

Eq(f1),...,q(fJ )

log( K∏
k=1

ζ
δ(y

(r)
n ,k)

k,n

)λ
(r)
n (

1

K

)(1−λ
(r)
n )

− · · ·

· · · −
Q∑

q=1

DKL(q(uq)||p(uq)). (5.18)

77



5.2 Correlated Chained GP for Multiple Annotators-CCGPMA

Finally, given a new samplex∗, we are interested in the mean and variance for predictive distribu-

tions related to the ground truth ζk,∗= p(y∗= k), and the labelers’ reliabilities λ(r)∗ . Accordingly,

for ζk,∗ we obtain

E[ζk∗|x∗, f̂ ,u] ≈
∫

Ξ(fk(x∗))q(f∗)df∗, (5.19)

where q(f∗)=
∫
p(f∗|u)q(u)du. Similarly, for the predictive variance of ζk,∗, we use the ex-

pression Var[ζk,∗] = E[ζ2k,∗]− E[ζk,∗]2; hence, we need to compute E[ζ2k,∗] as

E[ζ2k∗|x∗, f̂ ,u] ≈
∫

Ξ(fk(x∗))
2q(f∗)df∗. (5.20)

On the other hand, regarding the predictive mean and variance for λ(r)∗ , we have

E[λ(r)∗ |x∗, f̂ ,u] =

∫
ς(flr,∗)q(f∗)df∗. (5.21)

For the variance of λ(r)∗ , we use the expression Var[λ
(r)
∗ ] = E[(λ(r)∗ )2] − E[λ(r)∗ ]2; hence, we

need to compute

E[(λ(r)∗ )2|x∗, f̂ ,u] =

∫
ς(flr,∗)

2q(f∗)df∗. (5.22)

In this case, integrals in equations (5.19) to (5.22) have not closed solution; hence, we approxi-

mate them using the Gaussian-Hermite quadrature.

5.2.2 Regression

On the other hand, For real-valued outputs, e.g., Y∈R, we follow the multi-annotator model

used in [1, 22, 23, 52], where each output y(r)n is considered to be a corrupted version of the

hidden ground truth yn. Then:

p(Y |θ) =
N∏

n=1

∏
r∈Rn

N
(
y(r)n |yn, v(r)n

)
, (5.23)

where v(r)n ∈R+ is the r-th annotator error-variance for the instance n. In turn, to model this

likelihood function with CCGPMA, it is necessary to chain each likelihood’s paramater to a latent

function fj . Thus, we require J =R + 1 LFs; one to model the hidden ground truth, such that

yn= f1(xn), and R LFs to model each error-variance v(r)n =exp(flr(xn)), with r∈{1, . . . R},
and lr = r + 1 ∈ {2, . . . J}. Note that we use an exponential function to map from flr to v(r)n ,

aiming to guarantee v(r)n >0 (flr ∈R).

Similar to the classification problem, the actual posterior p(f̂ ,u|Y ) is approximated fol-

lowing equation (5.13). Further, the CCGPMA ELBO in regression settings is given by
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L=

N∑
n=1

∑
r∈Rn

Eq(f1),...,q(fJ )

[
logN

(
y(r)n |yn, v(r)n

)]
−

Q∑
q=1

DKL(q(uq)||p(uq)). (5.24)

Now, given a new sample x∗, we are interested in the mean and variances for predictive distribu-

tions concerning the ground truth y∗, and the labelers’ error-variances v(r)∗ . First, for y∗ we have

that since y = f1, the posterior distribution for y∗ corresponds to q(f1∗), yielding:

E[y∗|x∗, f̂ ,u] = µ1,∗ (5.25)

Var[y∗|x∗, f̂ ,u] = s1,∗, (5.26)

where µ1,∗, and s1,∗ are respectively the mean and variance of q(f1∗). Then, for v
(r)
∗ , we note that

due to vr = exp(flr), the posterior distribution for v(r)∗ follows a log-normal distribution with

parameters µlr,∗ and slr,∗, which correspond to the mean and variance of q(flr,∗) respectively.

In this sense, the mean and variance of v(r)∗ are given as:

E[v(r)∗ |x∗, f̂ ,u] = exp
(
µlr,∗+

slr,∗
2

)
. (5.27)

Var[v
(r)
∗ |x∗, f̂ ,u] = exp (2µlr,∗+slr,∗) (exp(slr,∗)−1) . (5.28)

5.3 Experimental Set-Up

In this section we introduce the experiments’ configurations to validate our CCGPMA in

both classification and regression settings.

5.3.1 Classification

Testing Datasets

We test our approach using three types of datasets: fully synthetic data, semi-synthetic data,

and fully real datasets.

First, we generate fully synthetic data as one-dimensional (P =1) multi-class classification

problem (K =3). The input feature matrix X is built by randomly sampling N =100 points

from an uniform distribution within the interval [0, 1]. The true label for the n-th sample is gen-

erated by taking the argmaxi{tn,i : i∈{1, 2, 3}}, where tn,1=sin(2πxn), tn,2=− sin(2πxn),

and tn,3=− sin(2π(xn + 0.25)) + 0.5. Besides, the test instances are obtained by extracting

200 equally spaced samples from the interval [0, 1]. Second, to control the label generation, we

build semi-synthetic data from seven datasets of the UCI repository¹ focused on binary and multi

class-classification, which are explained in Section 2.3.1 and the Western dataset introduced in

Section 4.3.1. Besides, we use additional datasets from UCI repository: Occupancy Detection

¹http://archive.ics.uci.edu/ml
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Data Set–(Occupancy) (N = 20560, P = 7, K = 2), and Skin Segmentation Data Set–(Skin)

(N = 245057, P = 4, K = 2). Finally, we evaluate our proposal on two fully real datasets,

where both the input features and the annotations are captured from real-world problems. Namely,

the Voice and Music dataset presented in Section 2.3.1.

Simulated and Provided Labels

Note that the fully synthetic and the semi-synthetic datasets do not hold real annotations.

Therefore, it is necessary to simulate those labels as corrupted versions of the hidden ground

truth. Here, the simulations are performed by assuming: i) dependencies among annotators, and

ii) the labelers’ performance is modeled as a function of the input features. In turn, the generative

model of our approach based on SLFM (termed SFLM-C) is used to build the labels, as follows:

– DefineQ deterministic functions µ̂q :X → R, and their combination parameters ŵlr,q ∈R,

∀r∈R,n∈N .

– Compute f̂lr,n=
∑Q

q=1 ŵlr,qµ̂q(x̂n), where x̂n ∈R is the n-th component of x̂∈RN , be-

ing x̂ the 1−D representation of the input features in X by using the well-known t-

distributed Stochastic Neighbor Embedding approach [81].

– Calculate λ̂(r)n = ς(f̂lr,n), where ς(·)∈[0, 1] is the sigmoid function.

– Finally, find the r-th label as y(r)n =

yn, if λ(r)n ≥ 0.5

ỹn, if λ(r)n < 0.5
, where ỹn is a flipped version of

the actual label yn.

Moreover, aiming to validate our approach under different labels’ distributions, we employ the

simulation method Biased coin (Non-homogeneous accuracy), which assumes that the annota-

tors’ performance depends on the input space (Section 3.3.1).

CCGPMA Training and Method Comparison

The classification performance is assessed as the Area Under the Curve–(AUC) and the

overall accuracy (Acc). Further, the AUC is extended for multi-class settings, as authors in [72]

discussed. We use a cross-validation scheme with 15 repetitions where 70% of the samples are

utilized for training and the remaining 30% for testing (except for the music dataset training and

testing sets are clearly defined). Table 5.1 displays the employed methods of the state-of-the-art

for comparison purposes. The abreviations are fixed as: Gaussian Processes classifier (GPC),

logistic regression classifier (LRC), majority voting (MV), multiple annotators (MA), Modelling

annotators expertise (MAE), Learning from crowds (LFC), Distinguishing good from random

labelers (DGRL), kernel alignment-based annotator relevance analysis (KAAR).

On the other hand, the Radial basis function–(RBF) kernel is preferred in pattern classifica-

tion because of its universal approximating ability and mathematical tractability. Hence, for all

GP-based approaches, the kernel functions are fixed as:
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Table 5.1 A brief overview of the state-of-the-art methods tested

Algorithm Description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the MV of the labels as the ground truth.
MA-LFC-C [1] A LRC with constant parameters across the input space.
MA-DGRL [27] A multi-labeler approach that considers as latent variables

the annotator performance.
MA-GPC [20] A multi-labeler GPC, which is as an extension of MA-LFC.
MA-GPCV [49] An extension of MA-GPC that includes variational inference

and priors over the labelers’ parameters.
MA-DL [25] A Crowd Layer for DL, where the annotators’ parameters

are constant across the input space.
KAAR [54] A kernel-based approach that employs a convex combination

of classifiers and codes labelers dependencies.
CGPMA-C A particular case of our CCGPMA for classification,

where Q= J , and we fix wj,q =1, if j= q, otherwise wj,q =0.

κ(xn,xn′) = s2 exp

(
− ||xn − xn′ ||22

2l2

)
, (5.29)

where || · ||2 stands for the L2 norm, n, n′ ∈{1, 2, . . . , N}, and s, l∈R+ are the kernel hyper-

parameters. For concrete testing, we fix s=1, while l is estimated by optimizing the correspond-

ing ELBO in equation (5.18) (we use a gradient-based optimization. The required gradients,

and the predictive distributions are presented in Section A.2.1). Moreover, for CGPMA, we fix

Q=R + K, since each LF fj(·) is linked to uq(·). On the other hand, for CCGPMA, each

fj(·) is built as a convex combination of µq(·) (equation (5.9)); therefore, there is no restriction

concerning Q. However, to make a fair comparison with CGPMA, we also fix Q=R + K in

CCGPMA. For the fully synthetic datasets, we use M =10 inducing points per latent function,

and for the remaining experiments, we test withM =40, andM =80. For all the experiments,

we use stochastic inference with a mini-batch size of 100. The CCGPMA’s Python code is pub-

licly available.²

5.3.2 Regression

Testing Datasets

Aiming to test our CCGPMA in regression scenarios, we use the synthetic, semi-synthetic,

and real dataset presented in Section 2.3.2.

Simulated and Provided Labels

For fully synthetic and semi-synthetic datasets do not hold real annotations. Thus, it is neces-

sary to generate these labels synthetically as a version of the gold standard corrupted by Gaussian

²https://github.com/juliangilg/CCGPMA
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noise, i.e., y(r)n = yn+ε
(r)
n , where ε(r)n ∼ N (0, v

(r)
n ), being v(r)n the r-th annotator error-variance

for the sample n. Note that we are interested in modeling such an error-variance for the r-th an-

notator as a function of the input features, correlated with the other labelers’ variances. In turn,

an SLFM-based approach is used to build the labels, as follows:

Define Q functions µ̂q : X → R, and the combination parameters ŵlr,q ∈R, ∀r, q.
Compute f̂lr,n =

∑Q
q=1 ŵlr,qµ̂q(x̂n), where x̂n is the n-th component of x̂ ∈ R, which is

an 1−D representation of input features X by using the t-distributed Stochastic Neighbor

Embedding approach [81].

Finally, determine v̂(r)n = exp(f̂lr,n).

Besides, aiming to validate our approach using different labels’ distributions, we use the sim-

ulation method described in Section 3.3.2 (termed Non-homogeneous error-variance), which

assumes that the annotators’ performance depends on the input space.

CCGPMA Training and Method Comparison

The quality assessment is carried out by estimating the regression performance as the co-

efficient of determination–(R2) and Pearson correlation coefficient–(Pear). A cross-validation

scheme is employed with 15 repetitions where 70%of the samples are utilized for training and the

remaining 30% for testing (except for fully synthetic dataset, since it clearly defines the training

and testing sets). Table 2.4 displays the employed methods of the state-of-the-art for comparison

purposes.

Besides, for CGPMA, we setQ=R+1, where each LF fj(·) is linked to uq(·). On the other

hand, for CCGPMA, each fj(·) is built as a convex combination of µq(·) (equation (5.9)); there-

fore, there is no restriction concerning Q. However, to make a fair comparison with CGPMA,

we also fix Q=R + 1 in CCGPMA. For the fully synthetic datasets, we use M =10 inducing

points per latent function, and for the remaining experiments, we test withM =40, andM =80.

For all the experiments, we use stochastic inference with a mini-batch size of 100. The model

parameters are estimated by optimizing the ELBO in equation (5.24). Such optimization is per-

formed via a gradient-based algorithm (The required gradients, and the predictive distributions

are presented in Chapter A)

5.4 Results and Discussion

5.4.1 Classification

We first perform a controlled experiment to test the CCGPMA capability when dealing with

binary andmulti-class classification. We use the fully synthetic dataset described in Section 5.3.1.

Besides, five labelers (R = 5) are simulated with different levels of expertise. To simulate

the annotators’ performance based on the method SLFM-C, we define Q=3 µ̂q(·) functions,

82



5.4 Results and Discussion

yielding:

µ̂1(x) = 4.5 cos(2πx+ 1.5π)− 3 sin(4.3πx+ 0.3π), (5.30)

µ̂2(x) = 4.5 cos(1.5πx+ 0.5π) + 5 sin(3πx+ 1.5π), (5.31)

µ̂3(x) = 1, (5.32)

where x ∈ [0, 1]. Besides, the combination weights are gathered within the following combina-

tion matrix Ŵ ∈RQ×R:

Ŵ =


0.4 0.7 −0.5 0.0 −0.7

0.4 −1.0 −0.1 −0.8 1.0

3.1 −1.8 −0.6 −1.2 1.0

 , (5.33)

holding elements ŵlr,q. Similarly, For the Non-homogeneous accuracy approach, we divide the

input space into five regions and define the performance matrix P ∈ [0, 1]R×R defined by equa-

tion (4.10).

For visual inspection purposes, we perform an initial experiment using the simulationmethod

SLFM-C. Figure 5.1 shows the predictive label’s probability–(PLP), p(y∗ = k|x∗), and the AUC

for all studied approaches regarding the fully synthetic data. Notice that for methods MA-GPC,

MA-GPCV, and KAAR, we use the one-vs-all scheme for this experiment (such methods were

defined only for binary classification settings). Accordingly, the PLP corresponds to scores rather

than probabilities for those models. Besides, regarding the PLP of our CGPMA and CCGPMA,

we provide the mean and variance for the predictive distribution ζk,∗= p(y∗= k|x∗, f̂ ,u), which

are computed based on equations (5.19) and (5.20). As seen in Figure 5.1, KAAR, MA-GPC,

andMA-GPCV present a different shape than the ground truth; moreover, KAAR andMA-GPCV

exhibit the worst AUC, even worse than the intuitive lower bound GPC-MV.We explain such con-

duct because these approaches are designed to deal with binary labels [19, 20, 54]. To face such a

problem, we use the one-vs-all scheme; still, it can lead to ambiguously classified regions [9]. We

note an akin predictive AUC concerning MA-DL methods and the linear approaches MA-LFC-

C and MA-DGRL. Nonetheless, the linear techniques exhibit a PLP less similar to the Ground

truth, because MA-LFC-C and MA-DGRL only deal with linearly separable data. Further, we

analyze the results of our CGPMA-C and its particular enhancement CCGPMA-C. Our methods’

predictive AUC is close to deep learning and linear models. Unlike them, our CGPMA-C and

CCGPMA-C show the most accurate PLP compared to the absolute gold standard. CCGPMA-

C behaves quite similarly to GPC-GOLD, which is the theoretical upper bound. Finally, from

the GPC-MV, we do not identify notable differences with the rest of the approaches (excluding

KAAR and MA-GPCV).

From the above, we recognize that by analyzing both the predictive AUC and the PLP, our
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Figure 5.1 Fully synthetic dataset results. The PLP is shown, comparing the prediction of our CCGPMA-
C (AUC = 1) and CCGPMA-C (AUC = 0.9999) against: the theoretical upper bound GPC-GOLD
(AUC = 1.0), the lower boundGPC-MV(AUC = 0.9809), and the state-of-the-art approachesMA-LFC-
C (AUC = 0.9993), MA-DGRL (AUC = 0.9999), MA-GPC (AUC = 0.9977), MA-GPCV (AUC =
0.9515), MA-DL-MW (AUC = 0.9989), MA-DL-VW (AUC = 0.9972), MA-DL-VW+B (AUC =
0.9994), KAAR (0.9099). The shaded region in GPC-MV, CGPMA-C, and CCGPMA-C indicates the
area enclosed by the mean ± two standard deviations. There is no shaded region for approaches lacking
prediction uncertainty

CCGPMA-C exhibits the best performance obtaining similar results compared to the intuitive

upper bound (GPC-GOLD). Accordingly, CCGPMA-C proffers a more suitable representation

of the labelers’ behavior than its competitors. Indeed, CCGPMA-C codes both the annotators’

dependencies and the relationship between the input features and the annotators’ performance.

To empirically support the above statement, Figure 5.2 shows the estimated per-annotator reli-

ability, where we consider models that include such parameters (MA-DGRL, CGPMA-C, and

CCGPMA-C). As seen, MA-DGRL (column 2 in Figure 5.2) does not offer a proper representa-

tion of the annotators’ behavior. CGPMA-C and CCGPMA-C (columns 3 and 4 in Figure 5.2)

outperform MA-DGRL, which is a direct repercussion of modeling the labelers’ parameters as

functions of the input features. We observe that CCGPMA-C exhibits the best performance in

terms of accuracy; such an outcome is due to this method improving the quality of the annotators’

model by considering correlations among their decisions [10, 54]).

It is worth mentioning that semi-synthetic experiments are a common practice in the learn-

ing from crowds area [19, 49], where the input features come from real-world datasets whilst the

labels from multiple annotators are simulated following the fully synthetic data set-up (see equa-

tions (5.30) to (5.33)). Table 5.2 (a) shows the results concerning semi-synthetic datasets using

the simulation method SLFM-C. On average, our CCGPMA-C accomplishes the best predictive

AUC; moreover, we note that CGPMA-C reaches the second-best performance. Furthermore,
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Figure 5.2 Fully synthetic data reliability results. From top to bottom, the first column exposes the true
reliabilities (λr). The subsequent columns present the estimation of the reliabilities performed by state-
of-the-art models, where the correct values are provided in dashed lines. The shaded region in CGPMA-C
and CCGPMA-C indicates the area enclosed by the mean ± two standard deviations. Also, the accuracy
(Acc) is provided

the GPs-based competitors achieve competitive results (GPC-MV, MA-GPC, MA-GPCV, and

KAAR). On the other hand, the GPC-MVmethod obtains a significantly lower performance than

our CCGPMA-C, which is explained because GPC-MV is the most naive approach since it con-

siders that the whole annotators exhibit the same performance. Conversely, analyzing the results

fromMA-GPC, MA-GPCV, and KAAR, we note that they perform worse than GPC-MV.We ex-

plain such an outcome in twoways. First, these approaches do not model the relationship between

the input features and the annotators’ performance. Second, as exposed in a previous experiment
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Table 5.2 Semi-synthetic classification results

(a) SLFM-C
Method Breast Bupa Ionosphere Pima TicTacToe Occupancy Skin Western Wine Segmentation Average

GPC-GOLD(M =40) AUC[%] 99.07± 0.45 69.75± 4.66 94.90± 2.35 83.78± 3.02 84.29± 3.34 99.56± 0.06 99.97± 0.01 91.85± 0.61 99.87± 0.15 95.96± 1.96 91.90
Acc[%] 96.62± 1.00 65.38± 4.03 85.91± 3.61 77.92± 2.48 79.61± 2.55 98.83± 0.09 99.62± 0.13 72.09± 1.01 96.67± 2.24 75.26± 8.69 84.79

GPC-GOLD(M =80) AUC[%] 99.03± 0.46 69.97± 4.83 95.13± 2.25 83.74± 2.97 84.91± 3.23 99.56± 0.06 99.97± 0.01 92.50± 0.57 99.88± 0.16 97.81± 0.41 92.25
Acc[%] 96.62± 1.07 66.09± 3.94 86.16± 3.36 77.84± 2.51 80.07± 2.47 98.83± 0.10 99.58± 0.11 73.00± 1.30 96.79± 2.26 86.57± 1.87 86.15

GPC-MV(M =40) AUC[%] 98.97± 0.45 53.66± 5.16 75.66± 5.72 53.99± 7.60 66.20± 3.57 75.85± 19.16 84.58± 0.90 86.58± 3.31 81.79± 2.12 95.62± 2.28 77.29
Acc[%] 94.93± 1.27 49.42± 7.21 64.91± 3.93 66.81± 2.80 62.36± 2.42 80.40± 1.84 82.64± 0.71 60.81± 5.05 59.51± 6.22 75.62± 9.54 69.74

GPC-MV(M =80) AUC[%] 98.92± 0.48 56.98± 5.29 77.79± 5.50 53.02± 6.74 67.44± 3.57 63.12± 19.68 84.20± 0.80 84.46± 0.89 83.23± 4.87 97.49± 0.47 76.66
Acc[%] 94.96± 1.45 54.42± 5.51 64.91± 3.93 67.73± 1.46 63.12± 2.17 78.41± 2.38 83.06± 0.33 57.64± 1.80 61.73± 11.56 84.00± 1.67 71.00

MA-LFC-C AUC[%] 87.89± 5.10 45.93± 14.44 73.58± 9.01 81.19± 3.13 60.04± 2.61 89.42± 0.79 94.40± 0.08 84.00± 2.11 96.92± 3.57 98.92± 0.31 81.23
Acc[%] 67.71± 2.85 46.54± 11.32 62.96± 6.01 76.62± 2.21 60.39± 2.48 70.83± 0.78 93.52± 0.29 59.71± 1.41 90.25± 5.12 92.17± 0.78 72.07

MA-DGRL AUC[%] 97.57± 1.89 57.24± 3.36 64.53± 7.21 81.38± 2.90 61.29± 2.30 49.71± 1.05 93.79± 1.07 81.43± 1.50 97.95± 2.21 98.97± 0.38 78.39
Acc[%] 89.92± 3.28 53.72± 3.84 33.27± 3.01 77.00± 2.71 62.06± 2.52 66.73± 0.46 89.30± 1.01 51.21± 1.58 89.01± 4.28 93.27± 1.05 70.55

MA-GPC AUC[%] 98.11± 1.16 54.46± 5.78 66.31± 14.74 53.25± 17.80 60.79± 9.95 92.57± 7.96 80.89± 0.60 86.71± 1.14 94.17± 2.62 97.34± 0.35 78.46
Acc[%] 96.13± 1.07 50.38± 4.69 62.14± 11.13 52.41± 14.30 58.70± 8.58 60.62± 1.99 76.70± 0.46 72.18± 1.61 90.49± 3.42 88.86± 2.10 70.86

MA-GPCV AUC[%] 82.70± 5.47 55.67± 6.83 62.38± 8.71 62.17± 5.90 61.04± 10.03 60.22± 2.66 76.29± 3.74 84.51± 1.47 97.35± 1.72 99.24± 0.27 74.16
Acc[%] 68.72± 3.24 52.37± 6.67 60.94± 5.64 61.21± 5.83 65.69± 2.33 56.25± 3.01 76.67± 2.30 69.45± 1.48 94.20± 3.35 95.95± 1.19 70.15

MA-DL-MW AUC[%] 94.70± 1.73 52.37± 5.68 75.35± 5.43 61.78± 2.67 68.27± 2.96 64.09± 2.26 86.36± 0.57 90.92± 0.56 97.28± 1.09 99.50± 0.17 79.06
Acc[%] 90.24± 4.52 51.67± 6.17 70.25± 3.90∗ 55.12± 3.64 62.87± 2.83 69.01± 1.30 46.03± 0.26 62.70± 1.05 88.52± 3.30 93.91± 1.33 69.03

MA-DL-VW AUC[%] 95.26± 2.45 53.27± 6.18 69.87± 4.97 60.63± 3.36 67.71± 2.67 68.40± 3.45 86.56± 0.68 91.73± 0.67 98.07± 1.52 99.72± 0.11 79.12
Acc[%] 90.57± 1.66 51.67± 5.65 67.30± 4.90 54.46± 1.97 64.42± 2.47 63.99± 1.71 46.19± 0.29 68.98± 1.48 91.23± 4.77 95.89± 0.92∗ 69.47

MA-DL-VW+B AUC[%] 94.65± 2.42 52.81± 6.31 71.96± 4.53 61.23± 3.78 67.80± 3.42 67.82± 3.86 86.68± 0.67 91.64± 0.85 98.17± 1.55 99.72± 0.09 79.25
Acc[%] 90.37± 1.88 52.31± 5.53 67.92± 4.76 56.68± 3.70 62.52± 3.28 64.15± 2.36 46.04± 0.28 64.16± 1.85 90.74± 4.75 95.65± 1.10 69.05

KAAR AUC[%] 80.58± 2.74 59.20± 6.63 70.46± 7.39 58.02± 4.06 63.81± 5.45 69.16± 2.06 51.58± 4.74 85.88± 1.20 99.43± 1.05 92.17± 1.90 73.03
Acc[%] 70.18± 3.58 56.22± 5.20∗ 63.14± 6.68 61.44± 2.64 56.32± 2.61 53.62± 1.10 39.84± 2.78 62.35± 1.86 93.58± 4.53 77.85± 5.82 63.45

CGPMA-C(M =40) AUC[%] 99.20± 0.38 57.13± 4.68 83.56± 10.02 82.01± 3.14 70.56± 3.04 82.20± 2.73 92.62± 1.20 91.78± 0.66 99.82± 0.18 96.79± 0.65 85.56
Acc[%] 96.10± 1.26 47.95± 7.36 65.66± 3.70 76.83± 2.81 67.62± 2.51 61.15± 1.56 90.62± 1.34 71.13± 1.83 95.31± 2.41 82.22± 2.20 75.46

CGPMA-C(M =80) AUC[%] 99.14± 0.38 56.96± 4.74 86.15± 6.96 82.04± 3.18 70.48± 3.12 99.08± 0.26 90.46± 1.64 91.85± 0.57 99.84± 0.12 94.06± 0.61 87.01
Acc[%] 95.06± 1.07 51.47± 5.99 65.16± 3.95 76.97± 2.31∗ 66.97± 2.93 85.75± 0.88 85.32± 1.50 70.66± 1.27 95.56± 1.95∗ 71.43± 3.47 76.43

CCGPMA-C(M =40) AUC[%] 99.38± 0.27 60.22± 5.06 87.84± 6.72 78.10± 6.22 74.95± 5.39 91.98± 2.00 85.70± 2.66 93.09± 0.51 99.44± 0.33 97.67± 0.53 86.84
Acc[%] 96.68± 1.23 50.71± 6.73 65.72± 4.43 67.13± 11.17 67.64± 5.45∗ 87.08± 1.79 82.39± 0.96 73.63± 1.10 93.46± 3.04 84.61± 3.21 76.90

CCGPMA-C(M =80) AUC[%] 99.33± 0.30 59.19± 5.65 90.55± 6.29 80.45± 5.10 73.12± 3.23 97.75± 2.00 89.42± 2.20 93.15± 0.50 99.43± 0.33 97.58± 0.43 88.00
Acc[%] 97.17± 0.87∗ 51.86± 5.54 65.97± 4.18 67.56± 14.16 65.30± 3.11 91.56± 5.64∗ 86.84± 1.99 73.98± 1.55∗ 92.96± 3.30 83.56± 4.17 77.68∗

(b) Non-homogeneous accuracy
Method Breast Bupa Ionosphere Pima TicTacToe Occupancy Skin Western Wine Segmentation Average

GPC-GOLD(M =40) AUC[%] 99.07± 0.45 69.75± 4.66 94.90± 2.35 83.78± 3.02 84.29± 3.34 99.56± 0.06 99.97± 0.01 91.85± 0.61 99.87± 0.15 95.96± 1.96 91.90
Acc[%] 96.62± 1.00 65.38± 4.03 85.91± 3.61 77.92± 2.48 79.61± 2.55 98.83± 0.09 99.62± 0.13 72.09± 1.01 96.67± 2.24 75.26± 8.69 84.79

GPC-GOLD(M =80) AUC[%] 99.03± 0.46 69.97± 4.83 95.13± 2.25 83.74± 2.97 84.91± 3.23 99.56± 0.06 99.97± 0.01 92.50± 0.57 99.88± 0.16 97.81± 0.41 92.25
Acc[%] 96.62± 1.07 66.09± 3.94 86.16± 3.36 77.84± 2.51 80.07± 2.47 98.83± 0.10 99.58± 0.11 73.00± 1.30 96.79± 2.26 86.57± 1.87 86.15

GPC-MV(M =40) AUC[%] 93.23± 6.06 63.66± 8.50 76.47± 15.09 66.27± 15.45 64.57± 2.64 60.90± 20.43 54.09± 12.70 90.27± 0.55 98.53± 1.60 95.40± 2.11 76.34
Acc[%] 91.67± 4.19 57.24± 5.96 70.06± 12.75 69.44± 7.35 63.01± 2.28 79.59± 3.19 25.28± 16.83 68.86± 1.58 82.10± 9.94 69.32± 9.29 67.66

GPC-MV(M =80) AUC[%] 92.89± 6.23 63.88± 8.19 79.65± 11.68 61.61± 15.74 66.18± 2.75 56.55± 17.28 57.72± 17.30 91.57± 0.48 98.56± 1.62 97.18± 1.27 76.58
Acc[%] 91.12± 4.45 56.86± 5.03 73.84± 8.35∗ 68.31± 11.19 63.50± 2.20 78.30± 3.52 29.50± 22.09 71.11± 1.45 83.21± 9.51 78.54± 9.38 69.43

MA-LFC-C AUC[%] 77.96± 3.82 64.90± 6.59 74.70± 4.40 81.90± 2.36 54.94± 2.92 85.01± 4.96 82.45± 2.51 85.24± 0.97 98.86± 1.03 99.05± 0.37 80.50
Acc[%] 72.26± 6.65 62.88± 6.05∗ 75.91± 4.28 76.19± 2.40∗ 56.85± 2.92 69.44± 4.08 55.25± 1.97 55.64± 1.44 94.07± 2.73 93.58± 1.20 71.21

MA-DGRL AUC[%] 56.88± 5.65 66.41± 7.39 57.18± 8.85 83.11± 1.92 54.56± 3.08 70.06± 14.56 61.12± 1.24 74.22± 1.68 93.17± 3.55 99.89± 0.13 71.66
Acc[%] 59.19± 4.56 62.12± 6.70 65.09± 4.97 77.75± 2.28 59.56± 4.28 41.43± 24.82 43.57± 0.36 26.09± 1.27 63.58± 4.57 28.03± 1.61 52.64

MA-GPC AUC[%] 40.52± 6.09 45.19± 6.26 46.84± 5.68 40.88± 3.82 57.93± 7.38 34.14± 3.27 53.13± 13.53 86.53± 0.85 89.83± 3.19 97.69± 0.49 53.48
Acc[%] 58.63± 5.45 49.36± 4.14 30.06± 4.16 56.85± 4.22 60.58± 5.93 26.67± 0.99 57.55± 11.06 75.41± 0.75 84.07± 4.13 92.27± 0.92 53.09

MA-GPCV AUC[%] 62.95± 3.77 59.88± 5.32 64.12± 5.34 65.27± 3.44 55.37± 5.35 27.93± 2.26 55.48± 9.45 89.34± 0.96 88.91± 7.83 98.94± 0.35 66.82
Acc[%] 59.22± 2.44 57.37± 4.31 61.19± 4.51 64.99± 2.80 53.06± 3.64 25.22± 0.43 49.12± 11.53 72.12± 1.67 83.95± 7.30 95.06± 1.15 62.13

MA-DL-MW AUC[%] 81.95± 5.95 53.06± 4.27 75.77± 6.44 68.72± 2.81 68.94± 2.57 72.50± 1.59 44.23± 1.79 93.32± 0.54 96.07± 1.79 99.63± 0.24 75.42
Acc[%] 70.31± 5.58 52.05± 3.58 71.38± 5.96 65.92± 3.04 63.68± 2.99 75.05± 0.48 52.82± 0.27 73.34± 1.72 85.93± 4.01 95.59± 1.24∗ 70.61

MA-DL-VW AUC[%] 83.06± 6.45 52.84± 4.49 73.22± 7.61 65.76± 3.91 68.67± 3.25 65.54± 12.99 43.92± 1.65 93.45± 0.39 95.98± 1.96 99.69± 0.17 74.21
Acc[%] 72.13± 5.13 51.99± 4.20 69.31± 7.22 64.27± 2.83 62.99± 3.74 65.00± 20.34 52.68± 0.32 75.53± 0.87∗ 86.67± 4.60 95.57± 1.22 69.61

MA-DL-VW+B AUC[%] 83.55± 5.23 53.29± 4.88 74.51± 5.76 66.45± 3.53 68.81± 3.14 54.14± 19.10 43.90± 1.61 93.49± 0.46 95.90± 1.80 99.66± 0.26 73.37
Acc[%] 69.27± 7.52 52.69± 3.51 69.31± 6.85 64.56± 3.36 63.80± 4.78 52.32± 24.94 52.75± 0.38 75.05± 1.68 85.56± 4.27 95.60± 1.69 68.09

KAAR AUC[%] 66.66± 4.06 54.45± 9.87 75.43± 4.52 73.77± 9.17 50.00± 0.00 82.84± 2.11 92.26± 1.44 84.67± 1.53 97.85± 1.89 96.30± 0.68 77.42
Acc[%] 59.74± 3.59 53.65± 9.66 73.27± 5.61 70.62± 4.34 33.52± 2.41 72.21± 3.05 57.22± 10.69 63.55± 1.81 90.49± 4.19 80.27± 3.31 65.45

CGPMA-C(M =40) AUC[%] 81.02± 9.70 61.31± 5.68 81.70± 3.87 81.88± 1.90 69.01± 2.21 70.00± 6.95 96.77± 0.84 89.55± 0.67 99.61± 0.40 63.20± 5.94 79.41
Acc[%] 71.58± 8.86 58.78± 4.42 67.11± 4.94 75.96± 2.63 64.98± 2.95 29.01± 0.67 87.66± 0.36∗ 65.76± 2.17 88.40± 9.58 28.52± 2.13 63.78

CGPMA-C(M =80) AUC[%] 81.42± 8.07 61.71± 5.09 83.38± 3.49 81.36± 1.78 71.66± 2.16 67.74± 4.01 84.82± 1.60 89.48± 0.65 99.32± 0.53 67.59± 1.28 78.85
Acc[%] 69.72± 3.89 59.29± 4.23 70.00± 5.06 75.67± 2.79 67.38± 2.12∗ 45.52± 0.48 62.81± 0.41 67.62± 1.48 94.44± 3.43 15.94± 1.63 62.84

CCGPMA-C(M =40) AUC[%] 94.63± 8.06 61.04± 5.00 84.28± 3.40 81.34± 2.51 60.73± 3.51 96.97± 4.95 85.50± 13.37 92.56± 0.41 99.75± 0.27 98.00± 0.38 85.48
Acc[%] 86.08± 11.94 59.29± 4.53 70.19± 5.13 75.79± 2.97 61.48± 4.71 88.84± 13.85∗ 67.77± 17.41 73.13± 1.40 96.30± 2.21 85.06± 3.17 76.39

CCGPMA-C(M =80) AUC[%] 97.00± 6.08 61.32± 4.43 86.59± 3.01 80.94± 2.29 59.50± 2.67 85.21± 4.68 89.20± 13.78 92.85± 0.46 99.74± 0.27 97.43± 2.61 84.98
Acc[%] 91.74± 9.74∗ 59.04± 3.81 72.26± 5.98 75.70± 2.87 62.80± 2.52 77.92± 4.03 72.96± 22.32 73.70± 1.37 95.80± 2.57 83.70± 9.69 76.56∗

Note: the highest AUC excluding the upper bound (target) classifier GPC-GOLD. Marked with ∗: the
highest accuracy (Acc) except the upper bound.

MA-GPC, MA-GPCV, and KAAR use a one-vs-all to deal with multi-class problems, which can

lead to ambiguously classified regions [9]. The latter can be confirmed in the results for the multi-

class dataset “Western” (K = 4), where the predictive AUC for such approaches are the lowest.

Then, analyzing the results from the DL-based strategies, we note a slightly better performance

than the GPs-based methods (excluding CGPMA-C and CCGPMA-C). However, the DL-based

performs considerably worse than our proposal because the CrowdLayer provides straightfor-

ward codification of the labelers’ performance to guarantee a low computational cost [49]. Fi-
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nally, from the linear models, we first analyze the outstanding performance of MA-DGRL, which

defeats all its non-linear competitors. In particular, the simulated labels (Section 5.3.1) follow

the MA-DGRL model, favoring its performance. Though MA-LFC-C achieves competitive per-

formance compared to the DL-based methods, it is considerably lower than our proposal. The

MA-LFC-C formulation assumes that the annotators’ behavior is homogeneous across the input

space, which does not correspond to the labels simulation procedure.

On the other hand, Table 5.2(b) shows the results concerning the simulation method “Non-

homogeneous accuracy”. At first sight, there exists a generalized lower performance compared

to previous results in Table 5.2(a); the above indicates that the annotators’ performance is lower,

which impacts the algorithms’ performance. Our CCGPMA achieves the best predictive perfor-

mance in overall accuracy and AUC scores. Moreover, the non-linear competitors’ KAAR and

DL-based models achieve competitive results. However, GPC-MV, MA-GPC, and MA-GPCV

offer the lowest classification scores. Regarding GPC-MV, the result is explained because GPC-

MV corresponds to the most naive approach. After all, it considers homogeneity in the labelers’

performance. Conversely, MA-GPC and MA-GPCV achieve a worse performance than GPC-

MV; such behavior indicates that those methods do not properly represent the labelers’ behavior.

Regarding linear approaches, we highlight the outcome for MA-LFC, which achieves competi-

tive performance compared to the non-linear competitors.

To summarize, we tested our approach in controlled scenarios by using two strategies. First,

we simulate correlated annotators, whose performance is a function of the input space, named

SLFM-C. The remaining strategy, named Non-homogeneous accuracy, simulates inconsistent

annotators, i.e., labelers, whose performance varies depending on the input features. Attained

to the results (Table 5.2(a), and Table 5.2(b)), we note that our CCGPMA outperforms all its

competitors considering both metrics AUC and the overall accuracy.

Finally, we test the fully real datasets, configuring the most challenging scenario. The in-

put features and the labels from multiple experts come from real-world applications. Table 5.3

outlines the achieved AUC. First, we observe that for the voice data, G and R scales exhibit a

similar AUC for all considered approaches; in fact, GPC-MV obtains a result comparable with

the upper bound GPC-GOLD. The latter can be explained in that the annotators exhibit a suitable

performance for these scales, i.e., the provided labels are similar to the ground truth. On the

other hand, a reduction in the predictive AUC is observed for scale B, which is a consequence of

diminishing the labelers’ performance compared to scales G and R, as demonstrated in [21]. Our

approaches exhibit the best generalization performances for the three scales in the voice dataset.

Remarkably, CGPMA-C and CCGPMA-C do not suffer significant changes in scale B. This is an

outstanding outcome because it reflects that our method better represents the labelers’ behavior

against low-quality annotations. Finally, we review the AUC for the Music dataset. Achieved

results show a low performance for the MA-GPC, even lower than their intuitive lower bound

(GPC-MV). Notably, our CCGPMA-C reaches the best predictive AUC, comparable with the
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intuitive upper bound.

Table 5.3 AUC classification results for the fully real datasets

Method Voice Music AverageG R B

GPC-GOLD(M = 40) 0.9481 0.9481 0.9481 0.9358 0.9450
GPC-GOLD(M = 80) 0.9484 0.9484 0.9484 0.9178 0.9407
GPC-MV(M = 40) 0.8942 0.9373 0.8001 0.8871 0.8797
GPC-MV(M = 80) 0.9301 0.9377 0.7962 0.8897 0.8884

MA-LFC-C 0.9122 0.9130 0.8406 0.8599 0.8814
MA-DGRL 0.9127 0.9164 0.8259 0.8832 0.8845
MA-GPC 0.8660 0.8597 0.4489 0.8253 0.7500
MA-GPCV 0.9283 0.9208 0.8835 0.8677 0.9001
MA-DL-MW 0.8957 0.8966 0.8123 0.8567 0.8653
MA-DL-VW 0.8942 0.8929 0.8092 0.9167 0.8782

MA-DL-VW+B 0.9030 0.8937 0.8218 0.8573 0.8689
KAAR 0.9109 0.9351 0.8969 0.8896 0.9081

CGPMA-C(M = 40) 0.9324 0.9406 0.8696 0.9025 0.9113
CGPMA-C(M = 80) 0.9324 0.9417 0.8708 0.8987 0.9109
CCGPMA-C(M = 40) 0.9318 0.9422 0.9002 0.9446 0.9297
CCGPMA-C(M = 80) 0.9243 0.9383 0.8907 0.9456 0.9247

Bold: the highest performance excluding the GPC-GOLD bound.

5.4.2 Regression

We first perform a controlled experiment aiming to verify the capability of our CGPMA and

CCGPMA to estimate the performance of inconsistent annotators as a function of the input space

and take into account their dependencies. For this first experiment, we use the fully synthetic

dataset described in Section 5.3.2. We simulate five labelers (R = 5) with different levels of

expertise. To simulate the error variances based on the approach SLFM-R, we define Q = 3

functions µ̂q(·), which are given as

µ̂1(x) = 4.5 cos(2πx+ 1.5π)− 3 sin(4.3πx+ 0.3π) + 4 cos(7πx+ 2.4π), (5.34)

µ̂2(x) = 4.5 cos(1.5πx+ 0.5π) + 5 sin(3πx+ 1.5π)− 4.5 cos(8πx+ 0.25π), (5.35)

µ̂3(x) = 1, (5.36)

where x ∈ [0, 1]. Besides, we define the following combination matrix Ŵ ∈ RQ×R, where

Ŵ =


−0.10 0.01 −0.05 0.01 −0.01

0.10 −0.01 0.01 −0.05 0.05

−2.3 −1.77 0.54 0.9 1.42

 , (5.37)

holding elementswlr,q. Likewise, For the Non-homogeneous error-variance approach, we divide

the input space into five regions and define the performance matrixV defined by equation (3.15).

Figure 5.3 shows the predictive performance of all methods in this first experiment. The re-

sults show two clear groups: those based onGPs (GPR-Av,MA-GPR, CGPMA-R, andCCGPMA-
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Figure 5.3 Fully synthetic dataset results. We compare the prediction of our CCGPMA-R (R2 = 0.9438),
and CGPMA-R (R2 = 0.9280) with the theoretical upper bound GPR-GOLD (R2 = 0.9843) and lower
bound GPR-Av (R2 = 0.8718), and state-of-the-art approaches, MA-LFCR (R2 = −0.0245), MA-GPR
(R2 = 0.9208), MA-DL-B (R2 = 0.7020), MA-DL-S (R2 = 0.6559), MA-DL-B+S (R2 = 0.5997).
Note that we provided the Gold Standard in dashed lines. The shaded region in GPR-Av, MA-GPR,
CGPMA-R, and CCGPMA-R indicate the area enclosed by the mean plus or minus two standard de-
viations. We remark that there is no shaded region for MA-LFCR and DLMA since they do not provide
information about the prediction uncertainty

R), which expose the best performance in terms of the R2 score, and those based on other types

of approaches (MA-LFCR, andMA-DL), whose performance is not satisfactory. The behavior of

MA-LFCR is low since it only can deal with linear problems. Besides, concerning MA-DL and

its three variations (S, B, and S+B), we note that this approach can deal with non-linear dynamics.

However, MA-DL reaches a significantly low performance (even lower than the most naive ap-

proach, GPR-Av). To explain such an outcome, we remark that MA-DL introduces an additional

layer, the “CrowdLayer,” which allows the training of neural networks directly from the noisy

labels of multiple annotators [25]. However, such a CrowdLayer properly codify the annotators’

performance to guarantee a low computational cost [49]; therefore, MA-DL does not properly

codify the annotators’ behavior. On the other hand, among the GP-based methods, the proposed

CCGPMA-R achieves the best performance in terms of R2, followed closely by CGPMA-R and

MA-GPR.

Besides, concerning the high performance of our CCGPMA-R (the best in terms of R2

score), we hypothesize that such an outcome is a consequence of our method offering a better

representation of the labelers’ behavior when compared to its competitors. To empirically sup-

port the above hypothesis, Figure 5.4 shows the estimated error variances for this first experiment;

here, we only consider the models that include these parameters in their formulations. As seen

in Figure 5.4, MA-LFCR and MA-GPR offer the worst representation of the annotator’s per-

formance, which is expected because such models do not consider the relationship between the

annotators and the input space. Conversely, CGPMA-R and CCGPMA-R outperform the models

named previously. This outcome is a consequence that such two approaches compute the error-
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Figure 5.4 Estimated values of error variance for the five annotators in the fully synthetic experiment.
In the first column, from top to bottom, we expose the error variances used to simulate the labels from
each annotator. Furthermore, the subsequent columns from top to bottom present the estimation of such
error variances performed by state-of-the-art models that include these parameters in their formulation;
moreover, the true error variances are provided in dashed lines. The shaded region in CGPMA-R and
CCGPMA-R indicates the area enclosed by the mean plus or minus two standard deviations. We remark
that there is no shaded region for MA-LFCR and MA-GPR since these approaches perform a fixed-point
estimation for the annotators’ parameters. Finally, we remark that the R2 score between the true and
estimated error variances is provided

variance as a function of the input features, allowing for a better codification of the labelers’ be-

havior. Besides, by visually inspecting and analyzing theR2 scores, CCGPMA-R performs better

than CGPMA-R because the former properly codes the annotators’ interdependencies [10]. Fi-

nally, although our CCGPMA-R achieves the best representation of the annotators’ performance,

the result for Annotator 4 exhibits a lower performance in terms of R2 score compared to the

other labelers. The quasi-periodic behavior causes such an outcome in the error variances for

those labelers, which our approach cannot capture because we are using an RBF-based kernel.

Second, Table 5.4 (a) shows the results of the semi-synthetic datasets. On average, our

CCGPMA-R exhibits the best generalization performance regarding the R2 score. On the other

hand, regarding its GPs-based competitors (GPR-Av, MA-GPR, and CGPMA-R), we first note
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Table 5.4 Semi-synthetic regression results

(a) SLFM-R
Method Auto Bike Concrete Housing Yacht CT Average

GPC-GOLD(M =40) R2 0.8604± 0.0271 0.5529± 0.0065 0.8037± 0.0254 0.8235± 0.0419 0.8354± 0.0412 0.8569± 0.0055 0.7888
Pear 0.9359± 0.0132 0.7440± 0.0046 0.8997± 0.0142 0.9152± 0.0209 0.9350± 0.0110 0.9268± 0.0030 0.8928

GPC-GOLD(M =80) R2 0.8612± 0.0279 0.5603± 0.0063 0.8271± 0.0230 0.8275± 0.0399 0.8240± 0.0339 0.8648± 0.0047 0.7942
Pear 0.9361± 0.0139 0.7490± 0.0042 0.9124± 0.0126 0.9174± 0.0198 0.9281± 0.0141 0.9309± 0.0025 0.8956

GPR-MV(M =40) R2 0.8425± 0.0286 0.5280± 0.0100 0.7589± 0.0279 0.7834± 0.0463 0.7588± 0.0498 0.8070± 0.0130 0.7464
Pear 0.9260± 0.0155 0.7289± 0.0073 0.8765± 0.0168 0.8966± 0.0265 0.8913± 0.0162 0.9067± 0.0058 0.8710

GPR-MV(M =80) R2 0.8406± 0.0304 0.5397± 0.0085 0.7765± 0.0274 0.7903± 0.0451 0.7676± 0.0535 0.8167± 0.0089 0.7552
Pear 0.9246± 0.0168 0.7378± 0.0056 0.8852± 0.0162 0.8995± 0.0253 0.8964± 0.0184 0.9117± 0.0030 0.8759

MA-LFCR R2 0.7973± 0.0218 0.3385± 0.0051 0.6064± 0.0384 0.7122± 0.0509 0.6403± 0.0186 0.8400± 0.0014 0.6558
Pear 0.8953± 0.0116 0.5892± 0.0058 0.7823± 0.0230 0.8497± 0.0311 0.8091± 0.0137 0.9172± 0.0008 0.8071

MA-GPR R2 0.8456± 0.0281 0.4448± 0.0187 0.7769± 0.0367 0.7685± 0.0632 0.7842± 0.1027 0.0105± 0.0045 0.6051
Pear 0.9227± 0.0148 0.6694± 0.0140 0.8834± 0.0209 0.8809± 0.0352 0.9007± 0.0427 0.1410± 0.0072 0.7330

MA-DL-B R2 0.7766± 0.0253 0.5854± 0.0107 0.2319± 0.0328 0.5317± 0.1005 0.2089± 0.0783 0.6903± 0.2689 0.5041
Pear 0.8951± 0.0190 0.7712± 0.0047 0.5168± 0.0327 0.7555± 0.0619 0.5123± 0.0892 0.9698± 0.0138 0.7368

MA-DL-S R2 0.7761± 0.0279 0.5828± 0.0149 0.2363± 0.0252 0.5352± 0.0948 0.1822± 0.0985 0.8418± 0.2368 0.5257
Pear 0.8977± 0.0160 0.7736± 0.0060∗ 0.5175± 0.0322 0.7540± 0.0607 0.4883± 0.1189 0.9584± 0.0161∗ 0.7316

MA-DL-B+S R2 0.7717± 0.0239 0.5816± 0.0181 0.2369± 0.0322 0.5330± 0.0850 0.1974± 0.0895 0.5517± 0.2316 0.4787
Pear 0.8936± 0.0182 0.7727± 0.0071 0.5172± 0.0429 0.7537± 0.0580 0.5048± 0.0969 0.9632± 0.0157 0.7342

CGPMA-R(M =40) R2 0.8476± 0.0229 0.5464± 0.0069 0.8169± 0.0231 0.7244± 0.2973 0.8049± 0.0482 0.8236± 0.0132 0.7606
Pear 0.9280± 0.0109 0.7395± 0.0047 0.9063± 0.0126 0.8234± 0.2705 0.9183± 0.0235 0.9117± 0.0066 0.8712

CGPMA-R(M =80) R2 0.8342± 0.0217 0.5560± 0.0074 0.8190± 0.0254 0.7259± 0.3018 0.7928± 0.0884 0.8371± 0.0104 0.7608
Pear 0.9212± 0.0119 0.7459± 0.0051 0.9078± 0.0137 0.8093± 0.3051 0.9206± 0.0348 0.9188± 0.0046 0.8706

CCGPMA-R(M =40) R2 0.8558± 0.0248 0.5284± 0.0117 0.7976± 0.0270 0.8169± 0.0468 0.8409± 0.0548 0.8219± 0.0062 0.7769
Pear 0.9323± 0.0115 0.7345± 0.0050 0.8960± 0.0153 0.9129± 0.0263 0.9454± 0.0109 0.9123± 0.0017 0.8889

CCGPMA-R(M =80) R2 0.8534± 0.0243 0.5467± 0.0069 0.8220± 0.0259 0.8215± 0.0466 0.8691± 0.0473 0.8252± 0.0083 0.7897
Pear 0.9305± 0.0109 0.7443± 0.0039 0.9092± 0.0140∗ 0.9150± 0.0255∗ 0.9583± 0.0102 0.9138± 0.0017 0.8952∗

(b) Non-homogeneous error-variance
Method Auto Bike Concrete Housing Yacht CT Average

GPC-GOLD(M =40) R2 0.8604± 0.0271 0.5529± 0.0065 0.8037± 0.0254 0.8235± 0.0419 0.8354± 0.0412 0.8569± 0.0055 0.7888
Pear 0.9359± 0.0132 0.7440± 0.0046 0.8997± 0.0142 0.9152± 0.0209 0.9350± 0.0110 0.9268± 0.0030 0.8928

GPC-GOLD(M =80) R2 0.8612± 0.0279 0.5603± 0.0063 0.8271± 0.0230 0.8275± 0.0399 0.8240± 0.0339 0.8648± 0.0047 0.7942
Pear 0.9361± 0.0139 0.7490± 0.0042 0.9124± 0.0126 0.9174± 0.0198 0.9281± 0.0141 0.9309± 0.0025 0.8956

GPR-MV(M =40) R2 0.8388± 0.0373 0.5348± 0.0065 0.7648± 0.0262 0.7795± 0.0508 0.7752± 0.0579 0.8169± 0.0103 0.7517
Pear 0.9277± 0.0154 0.7335± 0.0055 0.8784± 0.0151 0.8921± 0.0280 0.9030± 0.0152 0.9109± 0.0043 0.8743

GPR-MV(M =80) R2 0.8402± 0.0396 0.5471± 0.0056 0.7819± 0.0270 0.7892± 0.0468 0.7792± 0.0616 0.8268± 0.0061 0.7607
Pear 0.9281± 0.0170 0.7421± 0.0045 0.8874± 0.0154 0.8968± 0.0259 0.9061± 0.0166 0.9153± 0.0030 0.8793

MA-LFCR R2 0.7909± 0.0210 0.3868± 0.0065 0.6050± 0.0333 0.7045± 0.0610 0.6230± 0.0290 0.8605± 0.0014 0.6618
Pear 0.8992± 0.0098 0.6223± 0.0051 0.7817± 0.0198 0.8512± 0.0284 0.8024± 0.0119 0.9277± 0.0007 0.8141

MA-GPR R2 0.8597± 0.0355 0.4408± 0.0169 0.7921± 0.0269 0.7446± 0.0624 0.7800± 0.0565 0.0116± 0.0034 0.6048
Pear 0.9300± 0.0180 0.6661± 0.0125 0.8915± 0.0153 0.8661± 0.0348 0.8899± 0.0309 0.1415± 0.0068 0.7309

MA-DL-B R2 0.7681± 0.0297 0.5996± 0.0105 0.2543± 0.0267 0.5264± 0.0973 0.1843± 0.0820 0.7612± 0.2679 0.5156
Pear 0.8923± 0.0196 0.7804± 0.0055 0.5395± 0.0387 0.7466± 0.0572 0.4963± 0.0970 0.9806± 0.0061 0.7393

MA-DL-S R2 0.7687± 0.0316 0.5944± 0.0097 0.2495± 0.0332 0.5279± 0.1031 0.1809± 0.0963 0.8231± 0.3349 0.5241
Pear 0.8919± 0.0171 0.7830± 0.0051 0.5312± 0.0407 0.7484± 0.0604 0.4840± 0.1281 0.9801± 0.0091 0.7364

MA-DL-B+S R2 0.7765± 0.0315 0.5909± 0.0113 0.2446± 0.0379 0.5454± 0.0933 0.1889± 0.0813 0.6294± 0.2498 0.4960
Pear 0.8954± 0.0168 0.7813± 0.0051 0.5251± 0.0482 0.7598± 0.0571 0.4946± 0.1163 0.9747± 0.0122 0.7385

CGPMA-R(M =40) R2 0.8570± 0.0335 0.5462± 0.0062 0.8154± 0.0265 0.8260± 0.0503 0.8025± 0.0748 0.8561± 0.0062 0.7839
Pear 0.9338± 0.0154∗ 0.7399± 0.0044 0.9055± 0.0148 0.9166± 0.0253 0.9177± 0.0417 0.9264± 0.0029 0.8900

CGPMA-R(M =80) R2 0.8137± 0.0667 0.5544± 0.0069 0.8250± 0.0260 0.8302± 0.0479 0.7458± 0.1670 0.8622± 0.0049 0.7719
Pear 0.9133± 0.0298 0.7456± 0.0049 0.9107± 0.0143∗ 0.9185± 0.0243∗ 0.9064± 0.0748 0.9296± 0.0024∗ 0.8873

CCGPMA-R(M =40) R2 0.8567± 0.0342 0.5265± 0.0068 0.7980± 0.0264 0.8172± 0.0548 0.8442± 0.0738 0.8006± 0.0093 0.7739
Pear 0.9342± 0.0156 0.7340± 0.0033 0.8960± 0.0151 0.9116± 0.0282 0.9566± 0.0064 0.9035± 0.0024 0.8893

CCGPMA-R(M =80) R2 0.8571± 0.0326 0.5428± 0.0073 0.8202± 0.0257 0.8288± 0.0515 0.8687± 0.0587 0.8403± 0.0099 0.7930
Pear 0.9335± 0.0160 0.7429± 0.0045 0.9082± 0.0144 0.9183± 0.0258 0.9653± 0.0136∗ 0.9205± 0.0040 0.8981∗

Bold: the highestR2 excluding the upper bound (target) classifier GPR-GOLD.Markedwith ∗: the highest
Pearson coefficient (Pear) except the upper bound.

that the performance of CGPMA-R exhibits a similar (but lower) performance than CCGPMA-R.

The above is a consequence conversely to CGPMA-R; our CCGPMA-R models the annotators’

interdependencies. Secondly, the lower bound GPR-Av exhibits a significantly worse prediction

than our approaches. We remark on MA-GPR’s behavior, which is lowest compared to its GPs-

based competitors, even far worse than GPR-Av. The key to this outcome lies in the MA-GPR

91



5.4 Results and Discussion

formulation; it models the annotators’ behavior by assuming that their performance does not de-

pend on the input features and considering that the labelers make their decisions independently,

which does fit the process that we use to simulate the labels. Next, we analyze the results con-

cerning the linear model MA-LFR; attained the results, we note that this approach’s prediction

capacity is far lower than ours. The above outcome suggests that there may exist a non-linear

structure in most databases. However, we highlight a particular result for the dataset CT, where

MA-LFCR exhibits the best performance defeating all its competitors based on non-linear mod-

els. The CT dataset may have a linear structure from the above. To confirm this supposition, we

perform an additional experiment over CT by training a regression scheme based on LR with the

actual labels (we follow the same scheme as for GPR-GOLD). We obtained an R2 score equal

to 0.8541 (on average), which is close to the results obtained by GPR-GOLD. Thus, we can elu-

cidate that there exists a linear structure in the dataset CT. Finally, we analyze the results for

the DL-based models. Similar to the experiments over fully synthetic datasets, we note a con-

siderably low prediction capacity; they are even defeated by the linear model MA-LFR. Again,

we attribute this behavior to the fact that the CrowdLayer (used to manage the data from mul-

tiple annotators) does not offer a suitable codification of the labelers’ behavior. Nevertheless,

considering the above, we observe a remarkable result in the Bike dataset, where the DL-based

approaches offer the best performance, even defeating the supposed upper-bound GPR-GOLD.

To explain that, it is necessary to analyze the meaning of the target variable in such a dataset. Re-

garding the description of this dataset,³ the target variables indicate the count of total rental bikes,

including casual and registered, in a day. The above suggests that there may exist a quasi-periodic

structure in the dataset, which the GPR-GOLD cannot capture since it uses a non-periodic kernel

(RBF). To support our suppositions, an additional experiment was performed over this dataset

by training the model GPR-GOLD with the following kernel:

κ(xn,xn′) = s2 exp

−1

2

P∑
p=1

(
sin( π

Tp
(xp,n − xp,n′))

lp

)2
 , (5.38)

where s ∈ R is the variance parameter, lp ∈ (R+) is the length-scale parameter for the p-th

dimension, and Tp ∈ (R+) is the period for the p-th dimension. Therefore, we obtain an R2

score equal to 0.5952 (on average), which is greater than the DL-based approaches, indicating a

quasi-periodic structure in the Bike dataset, as we had supposed.

On the other hand, Table 5.4(b) presents the results concerning the simulationmethod “Non-

homogeneous error-variance”. We highlight that our CCGPMA exhibits the best regression per-

formance in both metrics R2 score and the Pearson coefficient. Now, analyzing the behavior of

GPs-based competitors, we notice that GPR-Av exhibits the best performance compared to MA-

GPR. Our explanation for such an outcome lies in the formulation ofMA-GPR since it models the

³Such description can be found in https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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annotators’ behavior without considering relationships between the input space and the annota-

tors’ performance. Regarding the linear model, MA-LFR, we note that its prediction performance

is considerably lower than our method. The above indicates the presence of a non-linear structure

in most considered datasets. Finally, analyzing the DL-based methods, we remark that their per-

formance is the lowest concerning the average of the R2 score. Our explanation for this result is

that the Crowdlayer used for the DLmodels to manage multi-labeler data does not offer a suitable

representation of the annotators’ behavior.

Finally, we use fully real datasets, which present the most challenging scenario, where

both the input samples and the labels come from real-world applications. Table 5.5 outlines

the achieved performances. We remark that our CCGPMA-R with M = 80 obtains the best

generalization performance in terms of the R2 score. Further, as theoretically expected, its per-

formance lies between that of GPR-GOLD and GP-Av. Moreover, regarding the GPs-based com-

petitors (MA-GPR and CGPMA-R), we note that our CGPMA-R is lower than CCGPMA-R.

On the other hand, MA-GPR exhibits the worst prediction capability with an R2 close to zero.

We suppose the above is a symptom of overfitting, which can be confirmed due to the training

R2 score for MA-GPR is 0.4731, which is comparable with GPR-GOLD. Conversely, the lin-

ear approach MA-LFCR exhibits the second-lowest performance and performs worse than the

theoretical lower bound GP-Av indicates a non-linear structure in the Music dataset. Finally, an-

alyzing the results from the deep learning approaches, we note that the variation MA-DL-B+S

exhibits a similar performance compared to our CGPMA-R; however, it is slightly lower than

our CCGPMA-R. We highlight that despite deep learning capacities, our approach CCGPMA-R

offers a better representation of annotators’ behavior, unlike the deep learning techniques, which

measure such performance using a single parameter.

Table 5.5 Regression results regarding R2 score over the fully real dataset

Method Music

GPR-GOLD(M = 40) 0.4704
GPR-GOLD(M = 80) 0.4889
GPR-Av(M = 40) 0.2572
GPR-Av(M = 80) 0.2744

MA-LFCR 0.1404
MA-GPR 0.0090
MA-DL-B 0.2339
MA-DL-S 0.2934

MA-DL-B+S 0.3519
CGPMA-R(M = 40) 0.3345
CGPMA-R(M = 80) 0.3531
CCGPMA-R(M = 40) 0.3337
CCGPMA-R(M = 80) 0.3872

Bold: the highest R2 excluding the upper bound GPR-GOLD.
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5.5 Summary

We propose a novel Gaussian Process-based approach to deal with Multiple Annotators

scenarios, termed Correlated Chain Gaussian Process for Multiple Annotators (CCGPMA). Our

method is built as an extension of the chainedGP [59], introducing a semi-parametric latent factor

model-(SLFM) to exploit correlations between the GP latent functions that model the parameters

of a given likelihood function. To the best of our knowledge, CCGPMA is the first attempt to

build a probabilistic framework that codes the annotators’ expertise as a function of the input

data and exploits the correlations among the labelers’ answers. Besides, we highlight that our

approach can be used with different likelihoods, which allows us to deal with both categorical

data (classification) and real-valued (regression). We tested our approach for classification and

regression tasks using different scenarios concerning the provided annotations: synthetic, semi-

synthetic, and real-world experts. According to the results, our CCGPMA can achieve robust

predictive properties for the studied datasets, outperforming state-of-the-art methods.

On the other hand, as observed in Section 5.4.2, kernel selection plays a key role in the perfor-

mance of our CCGPMA. Hence, An improper kernel selection leads to unsatisfactory perfor-

mance.
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Chapter 6 Final Remarks

6.1 Conclusions

This book presented several specific methodologies based on frequentist and Bayesian mod-

els to face supervised learning problems with multiple annotators. In that sense, five strategies

were proposed to code the annotators’ behavior, considering the relationship between the input

features, the labelers’ performance and the dependencies among their outputs. The introduced

approaches naturally lead to data-dependent processing tuned to the particular sample constraints

and the considered learning scenario, including regression and classification (binary and multi-

class) tasks. The introduced framework is tested in both controlled scenarios, where the input

samples and the labels from multiple annotators come from real-world problems. Overall, at-

tained results demonstrated that proposed approaches code the labelers’ performance taking into

account dependencies among the annotators and considering the labelers’ performance as a func-

tion of the input data, favoring the learning performance in terms of task accuracy and data inter-

pretability in comparison to state-of-the-art methods. Following, the main concluding remarks

regarding each provided representation strategy are described:

- A kernel-alignment-based approach that allows coding the annotators’ performance in the

absence of the ground truth. The introduced strategy, termed KAAR, can compute each

provided labeler’s relevance through a CKA-based averaged matching between the given

labels and the input data features; it also considers similarities between all annotators’ la-

bels. Hence, KAAR relaxes the assumption of independence between the labelers, which

allows coding some biases and tendencies between the annotators’ opinions. Then, a con-

vex combination of supervised learning algorithms is carried out by adopting the multiple

annotator performances coded in the KAAR-based relevance analysis. For comparison,

KAAR is tested in synthetic and real-world datasets for classification and regression set-

tings. Results show that KAAR can deal with binary classification, multiclass classifica-

tion, and regression problems with multiple annotators.

- A localized kernel-alignment-based annotator relevance approach, named LKAAR, sup-

ports binary, multi-class classification, and regression problems in the presence of multiple

annotators, which configures an extension of KAAR aiming to code the relationship be-

tween the input features and the labelers’ behavior. Accordingly, our LKAAR computes

the relevance of each provided expert through a centered kernel alignment-based match-

ing between the annotator labels and the input features, taking into account dependencies

among the annotators and considering the labelers’ performance as a function of the input

data. Like KAAR, the LKAAR-based relevance analysis is used as weights in a combi-
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nation of classifiers/regressors (one for labeler), which are used to solve the supervised

learning problem from multiple annotators. We tested our approach in synthetic, semi-

synthetic, and real-world datasets. The results show that the proposed method deals with

binary, multi-class classification, and regression problems, where the ground truth is not

available. In most cases, our LKAAR achieves competitive or even better results when

compared to different state-of-the-art classification and regression approaches.

- A regularized chained Deep neural network (RCDNN) to support binary and multiclass

classification. RCDNN is built based on the concepts of the chained Gaussian processes

[59], where the parameters of a given multi-labeler likelihood are linked to the output

neurons of a deep neural network, where some of those parameters are related to the an-

notators’ performance. Accordingly, RCDNN codes such performance as a function of the

input space X and the annotators’ interdependencies. Besides, l1, l2, and Monte-Carlo

Dropout regularization strategies are coupled within our RCDNN architecture and pre-

dictor to contract the overfitting challenge of deep models. The proposal is tested over

binary and multiclass classification settings using different scenarios concerning the pro-

vided annotations: synthetic, semi-synthetic, and real-world experts. According to the re-

sults, RCDNN achieves robust predictive properties for the studied datasets, outperforming

state-of-the-art methods while providing an estimation of each labeler’s reliability and the

dependencies among annotators.

- A novel Gaussian Process-based approach to deal with Multiple labelers scenarios termed

Correlated Chain Gaussian Process for Multiple Annotators (CCGPMA). Our method is

built as an extension of the chained GP [59], introducing a semi-parametric latent fac-

tor model-(SLFM) to exploit correlations between the GP latent functions that model the

parameters of a given likelihood function. Hence, our CCGPMA jointly solves the super-

vised learning problem and estimates the annotators’ behavior. Notably, CCGPMA allows

codifying the labelers’ performance as a function of the input space while capturing corre-

lations between them. We highlight that our approach can be used with different likelihood

functions, which allows us to deal with categorical data (classification) and real-valued

(regression). We tested our approach for classification and regression tasks using different

scenarios concerning the provided annotations: synthetic, semi-synthetic, and real-world

experts. According to the results, our CCGPMA can achieve robust predictive properties

for the studied datasets, outperforming state-of-the-art methods.

Then, for comparison purposes, in Table 6.1, we expose the results of our approaches and

the state-of-the-art methods in Table 5.1 over three semi-synthetic datasets (Ionosphere, Western,

and Segmentation), where the labels were simulated by following the procedure Section 5.3.1,

which is the most challenging since it simulates correlated labelers, where their performance

depends on the input features. We show the non-parametric Friedman test results to establish

the statistical significance of such results. The null hypothesis settles that all algorithms perform
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equally [82]. Also, we fix the significance threshold as p < 0.05.

From Table 6.1, we note that analyzing both the average AUC and the average ranking, the

approaches proposed in this research are competitive (KAAR, LKAAR) or even outperform

(RCDNN, CGPMA, and CCGPMA) the considered state-of-the-art approaches. Besides focus-

ing on our approaches, we notice two groups; the first includes the methods CCGPMA, CGPMA,

andRCDNN (exhibit the best performance) that jointly estimates the annotators’ performance and

the supervised function f . On the other hand, the second group is conformed by the approaches

that perform such estimation independently, KAAR and LKAAR (the lowest performance). We

highlight that the first group offers better prediction performance regarding the AUC score. The

above is explained in the sense that, as it has been mentioned in different studies [1, 16, 19, 49],

methods that jointly build the supervised learning algorithm and the annotators’ performance

achieve superior performance since the interaction between such factors (labelers’ behavior and

the supervised learning model) provides critical information to puzzle out the actual labels. We

apply the Friedman test to verify the significance of the results in Table 6.1. As seen, we obtain

a Chi-square of 26.84 with p − value = 0.0084. Thus, we have enough statistical evidence to

determine that our CCGPMA performs better than state-of-the-art competitors.

Table 6.1 AUC classification results for the semi-synthetic and fully real datasets

Method Ionosphere Western Segmentation Voice Music Average AUC Average rankingG R B

GPC-GOLD 0.9513 0.9250 0.9781 0.9484 0.9484 0.9484 0.9358 0.9479 −−
GPC-MV 0.7779 0.8658 0.9749 0.9301 0.9377 0.8001 0.8897 0.8823 6.1428
MA-LFC-C 0.7358 0.8400 0.9892 0.9122 0.9130 0.8406 0.8599 0.8701 8.0000
MA-DGRL 0.6453 0.8143 0.9897 0.9127 0.9164 0.8259 0.8832 0.8553 8.7142
MA-GPC 0.6631 0.8671 0.9734 0.8660 0.8597 0.4489 0.8253 0.7862 11.142
MA-GPCV 0.6238 0.8451 0.9924 0.9283 0.9208 0.8835 0.8677 0.8659 7.4285
MA-DL-MW 0.7535 0.9092 0.9950 0.8957 0.8966 0.8123 0.8567 0.8741 7.8571
MA-DL-VW 0.6987 0.9173 0.9972 0.8942 0.8929 0.8092 0.9167 0.8751 7.4285

MA-DL-VW+B 0.7196 0.9164 0.9972 0.9030 0.8937 0.8218 0.8573 0.8727 7.5714
KAAR 0.7046 0.8588 0.9217 0.9109 0.9351 0.8969 0.8896 0.8739 7.8571
LKAAR 0.7121 0.8359 0.9355 0.9206 0.9360 0.8979 0.8998 0.8768 7.1428
RCDNN 0.6818 0.8520 0.9634 0.9224 0.9419 0.9257 0.9329 0.8885 5.7142

CGPMA-C 0.8615 0.9185 0.9679 0.9324 0.9417 0.8708 0.9025 0.9136 4.0000
CCGPMA-C 0.9023 0.9307 0.9774 0.9318 0.9422 0.9002 0.9456 0.9328 2.1428

Bold: the highest performance excluding the GPC-GOLD bound. The last column presents the average
ranking for the AUC score and the best average ranking in bold. The Friedman test returns a Chi-square
value of 26.84 (p− value = 0.0081).

Finally, we intend to analyze the impact of malicious annotators on our approaches’ perfor-

mance and compare them with some state-of-the-art methods. Similar to Section 4.4, we employ

the Pima dataset with 768 instances; thus, we use 538 samples for training and the remaining 230

for testing. We create synthetic labels from 5 annotators generated from the Biased coin (Non-

homogeneous) procedure (Section 3.3.1 and equation (4.10)). According to Figure 6.1 (left),

from the 5 labelers (red dots), two are categorized as suitable labelers, one as Spammers, and

the remaining as Malicious. Then, we simulate 20 additional annotators to analyze the behavior
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Figure 6.1 Malicious annotators. On the left, we show the Receiver’s Operating Characteristic (ROC) plot
for the simulated annotators. Red dots indicate the basis annotators. Green dots showmalicious annotators.
On the right, we present the performance (AUC) of DGRL, MA-GPC, MA-DL-VW+B, KAAR, LKAAR,
RCDNN, CGPMA, and CCGPMA as a function of the number of malicious annotators

of our approaches in scenarios where the number of malicious annotators increases. The labels

from malicious annotators are generated as as follows (see green dots on the left of Figure 6.1):

a random number α(r)
n is sampled from a Bernoulli distribution with parameter pr = 0.6; then if

α
(r)
n = 0, y(r)n = yn, and y

(r)
n = ỹn otherwise.

From the results in Figure 6.1 (right), we note that our approaches are significantly affected

when the number of malicious annotators is great than 5malicious annotators, which suggests the

presence of a critical point is presented when the percentages of good, spammers, and malicious

labelers are respectively 25%, 12.5%, 62.5%. Accordingly, for this experiment, we can affirm

that our approach can deal with malicious labelers if the percentage of them is below 62.5%.

On the other hand, regarding the state-of-the-art competitors MA-DGRL, MA-GPC, and MA-

DL-VW+B, we notice that all of them (except MA-DGRL) are more susceptible to malicious

labelers; in fact, their AUC is affected whit three or more malicious annotators. Conversely, we

highlight the performance of MA-DGRL, which is very close to our methods. To explain such

an outcome, we remark that MA-GPC andMA-DL-VW+B estimate the annotators’ performance

as an average of some parameters. However, MA-DGRL estimates such performance for every

region in the input space, which makes it more robust to the presence of malicious annotators.

6.2 Future Work

We have presented a framework based on frequentist and Bayesian models aiming to face

supervised learning problems with data from multiple annotators. However, from the theoretical

and experimental results, many issues can still be addressed to improve learning performance. In

particular, the following remarks could be of interest to future work approaches:

- KAAR and LKAAR independently compute the annotators’ behavior and the supervised
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learning function f . Such a function f is estimated using a convex combination of R

classifiers/regressors, which could be inconvenient for a large number of labelers. In that

sense, an interesting extension of such works could be to design a model that jointly relates

the supervised learning function and the annotators’ behavior based on LKAAR or KAAR.

- Concerning RCDNN, extending RCDNN for regression tasks is an exciting research line,

i.e., based on the model introduced in [22]. Next, we plan to use other deep structures,

i.e., Convolutional and Recurrent layers and different activation functions, to apply our

approach to more complex tasks such as computer vision or natural language processing.

- Moreover, regarding the RCDNN model, we recall that it only was proposed to deal with

classification (binary and multi-class) tasks. Accordingly, we plan to extend such an ap-

proach to real-valued data to deal with interesting applications such as text regression [25].

- Regarding CCGPMA, we can use convolution processes [83] instead of the SLFM, aiming

to represent the labelers’ correlations better. Also, our approach can be extended for multi-

task learning in the context of multiple annotators [40]. Accordingly, the likelihood of

multi-task learning for multiple annotators can be given as follows:

p(Y 1, . . .Y E |θ1, . . .θE) =

E∏
e=1

N∏
n=1

∏
re∈Re

n

p(yere,n|θ1(xn), . . . , θJe(xn)), (6.1)

Y e ∈RN×Re is a matrix containing the labels yere,n given by Re annotators for the e-th

task. Further, θe=[θe
1, . . . ,θ

e
Je ]

> ∈RNJ , and θe
j =[θej (x1), . . . , θ

e
j (xN )]> ∈RN is the j-

th parameter corresponding to the e-th task.

- We recognize an increasing interest in multi-labeler approaches from the Bioinformatics

community, particularly in applications related to computer-aided diagnosis–(CAD) sys-

tems [1, 36], such as predicting malignancy of pulmonary nodules, mitosis detection in

breast cancer [3] and the assessment of voice quality [21]. In this type of system, the

medical diagnosis (labels) represents the health risk levels, which are inherently ordered.

Accordingly, an ordinal regression problem is configured [84], which cannot be tackled

using multi-class classification or regression methods. In that sense, it is interesting to

extend our approaches to deal with ordinal data aiming to contribute to the Bioinformatics

area.

- Following the previous idea, we remark that in this work, we used a dataset termed “Voice,”

which comprises the evaluation of voice records following the perceptual scale GRBAS.

Such a dataset configures an ordinal regression problem; however, we convert it into a

binary classification problem for validation purposes (gold standard’s availability). In that

sense, it is interesting to apply our approaches to deal with the Voice dataset and build

a system for the automatic assessment of voice quality based on the GRBAS scale in the

presence of multiple annotators.

- Finally, this book is focused on training of SL algorithms from noisy labels adopting the

learning from crowds point of view. However, there are other perspectives to cast the
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noisy labels drawback. Specifically, we recognize the self-learning approaches [85], which

correspond to a pre-training step within a DNN architecture to correct possibly noisy or

missing label imputation. Self-learning approaches have been applied in computer vision

[86] and natural language processing [87]. Thereby, we establish that developing a model

that combines the concepts of self-learning and learning from crowds to face SL scenarios

with noisy labels is interesting.

6.3 Repositories

Model Github repository

KAAR https://github.com/juliangilg/KAAR
LKAAR https://github.com/juliangilg/LKAAR
RCDNN https://github.com/juliangilg/RCDNN_MA
CCGPMA https://github.com/juliangilg/CCGPMA
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Chapter A CCGPMA Supplementary Material

A.1 Derivation of CCGPMA Lower Bounds

log p(Y )= log

∫
p(Y |f̂)p(f̂ |u)p(u)df̂du,

= log

∫ J∏
j=1

p(f j |u)q(u)

p(Y |f̂)
J∏

j=1

p(f j |u)p(u)

J∏
j=1

p(f j |u)q(u)

df̂du. (A.1)

Using Jensen’s inequality, we obtain

log p(Y ) ≥
∫  J∏

j=1

p(f j |u)q(u)

 log


p(Y |f̂)

J∏
j=1

p(f j |u)p(u)

J∏
j=1

p(f j |u)q(u)

 df̂du, (A.2)

L=

J∏
j=1

∫
q(f j) log p(Y |f̂)df̂ −

Q∑
q=1

DKL(q(uq)||p(uq)), (A.3)

where DKL(·||·) is the Kullback-Leibler–(KL) divergence and q(f j) is defined as follows:

q(f j)=

∫
p(f j |u)q(u)du=N (f j |ιj ,Sj), (A.4)

and

ιj =KfjuK
−1
uum, (A.5)

Sj =Kfjfj
+KfjuK

−1
uu(V −Kuu)K

−1
uuKufj

. (A.6)

Moreover, note that the solution of the variational expectation (analytical or numerical) will de-

pend on the form of the likelihood p(Y |f̂):

E J∏
j=1

q(fj(xn))

[
log p(Y |f̂)

]
=

J∏
j=1

∫
q(f j) log p(Y |f̂)df̂ , (A.7)

For the numerical solution, we will use Gaussian-Hermite quadratures. Thus, considering for

simplicity a univariate case, the expectations can be approximated as:

Eq(fj) [log p(Y |fj)] ≈
1√
π

S∑
s=1

os log p(Y |
√
2σjgs + ιj), (A.8)

where ιj and σj are the mean and the variance of the distribution q(fj), respectively. Besides, the

pair of values os and gs are obtained from the Hermite polynomialHn(x) = (−1)nex
2 d
dxn e−x2 .



A.1 Derivation of CCGPMA Lower Bounds

A.1.1 Gradients w.r.t. the Variational Parameters

Here, we aim to maximize the lower bound in equation (A.3) for the variational parameters

mq and V q of each distribution q(uq).

Useful Equalities: These equalities are useful to compute the gradients [77]:

∂

∂ι
EN (x|ι,σ2) [h(x)] = EN (x|ι,σ2)

[
∂

∂x
h(x)

]
. (A.9)

∂

∂σ2
EN (x|ι,σ2) [h(x)] =

1

2
EN (x|ι,σ2)

[
∂2

∂x2
h(x)

]
. (A.10)

First, the bound derivatives w.r.t mq, yields:

∂L
∂mq

=
∂

∂mq
Eq(f̂)

[
log p(Y |f̂)

]
︸ ︷︷ ︸

Variational Expectation–(VE) part

− ∂

∂mq

Q∑
q=1

DKL(q(uq)||p(uq))︸ ︷︷ ︸
KL part

, (A.11)

where the KL part w.r.t. mq is defined as:

∂

∂mq
DKL(q(uq)||p(uq)) = K−1

uquq
mq. (A.12)

Now, the VE part w.r.t. mq is given as:

∂

∂mq
Eq(f̂)

[
log p(Y |f̂)

]
=

∂

∂mq
Eq(f̂)

[
log p(Y |f̂)

]
,

Chain Rule: ιj = h(mq),

= Eq(f̂)

[
∂

∂f̂
log p(Y |f̂)

]
︸ ︷︷ ︸

See Likelihoods

∂ιj
∂mq

. (A.13)

Second, the bound derivatives w.r.t V q are defined as:

∂L
∂V q

=
∂

∂V q
Eq(f̂)

[
log p(Y |f̂)

]
︸ ︷︷ ︸

VE part

− ∂

∂V q

Q∑
q=1

DKL(q(uq)||p(uq))︸ ︷︷ ︸
KL part

, (A.14)

where the KL part w.r.t. V q, yields:
∂

∂V q
DKL(q(uq)||p(uq)) =

1

2

(
K−1

uquq
− V −1

q

)
.

Now, the VE part w.r.t. V q is given as:
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∂

∂V q
Eq(f̂)

[
log p(Y |f̂)

]
=

∂

∂V q
Eq(f̂)

[
log p(Y |f̂)

]
,

Chain Rule: sj = h(V q),

=
1

2
Eq(f̂)

[
∂2

∂f̂
2 log p(Y |f̂)

]
︸ ︷︷ ︸

See Likelihoods

∂sj
∂V q

, (A.15)

where sj ∈RN is a vector containing the diagonal elements of matrix Sj . On the other hand, the

gradients w.r.t. the hyper-parameters are similar to the ones derived in [79].

A.2 Likelihood Functions

The models exposed previously accept a wide variety of likelihood functions p(Y |f̂) [59].
To incorporate any new likelihood, we need to compute the following expressions:

1. The likelihood p(Y |f̂).
2. The Log-likelihood log p(Y |f̂).
3. The variational expectation of the Log-likelihood Eq(f̂)

[
log p(Y |f̂)

]
.

4. The first order derivatives ∂

∂
ˆf

[
log p(Y |f̂)

]
.

5. The variational expectation of the first-order derivatives Eq(f̂)

[
∂

∂
ˆf

[
log p(Y |f̂)

]]
.

6. The second order derivatives ∂2

∂
ˆf
2

[
log p(Y |f̂)

]
.

7. The variational expectation of the second-order derivatives Eq(f̂)

[
∂2

∂
ˆf
2

[
log p(Y |f̂)

]]
.

8. The predictive mean and variance.

A.2.1 Multiclass Classification with Multiple Annotators

To model categorical data from multiple annotators using our CCGPMA, we use the frame-

work proposed in [27], which introduces a binary variable λ(r)n ∈{0, 1} representing the r-th

labeler’s reliability as a function of each sample xn. If λ
(r)
n = 1, the r-th annotator is supposed

to provide the actual label, yielding a categorical distribution. Conversely, λ(r)n = 0 indicates

that the r-th annotator gives an incorrect output, modeled by a uniform distribution.

1. p(Y |θ) is written as:

p(Y |θ) =
N∏

n=1

∏
r∈Rn

(
K∏
k=1

ζ
δ(y

(r)
n ,k)

k,n

)λ
(r)
n (

1

K

)(1−λ
(r)
n )

,

where δ(y(r)n , k) = 1, if y(r)n = k, and δ(y(r)n , k) = 0 otherwise. Moreover, ζk,n =

p(y
(r)
n = k|λ(r)n = 1); note that since λ(r)n = 1, ζk,n = p(yn = k) is an estimation of

the unknown ground truth. Accordingly, to use our CCGPMA over this model, we need
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J =K +R LFs;K LFs to model ζk,n, yielding:

ζk,n = Ξ(fk(xn)) =
exp(fk(xn))∑K
j=1 exp(fj(xn))

. (A.16)

Besides, we need R LFs to perform a soft estimation of each λ(r)n ; therefore, λ(r)n =

ς(flr(xn)) with r∈{1, . . . R}, and lr =K + r∈{K + 1, . . . J}. Here, ς(flr(xn)) is the

logistic sigmoid function: ς(a)= 1/(1 + exp(−a)), where a∈R.

2. log p(Y |f̂)

log p(Y |f̂) = log

N∏
n=1

∏
r∈Rn

(
K∏
k=1

ζ
δ(y

(r)
n ,k)

k,n

)λ
(r)
n (

1

K

)(1−λ
(r)
n )

,

=
N∑

n=1

∑
r∈Rn

{
λ(r)n

K∑
k=1

δ(y(r)n , k) log(ζk,n) + (1− λ(r)n ) log

(
1

K

)}
.

(A.17)

3. Eq(f̂)

[
log p(Y |f̂)

]
, yields:

Eq(f̂)

[
log p(Y |f̂)

]
=

∫ J∏
j=1

q(f̂ j) log p(Y |f̂)df̂ ,

=
N∑

n=1

∑
r∈Rn

Eq(flr,n)
[λ(r)n ]

K∑
k=1

δ(y(r)n , k)Eq(f1,n)...q(fK ,n) [log (ζk,n)] + · · ·

· · ·+ (1− Eq(flr,n)
[λ(r)n ]) log

(
1

K

)
, (A.18)

where

Eq(flr,n)[λ
(r)
n ] =

∫
q(flr,n)ς(flr,n)dflr,n. (A.19)

Eq(f1,n)...q(fK ,n) [log (ζk,n)] =

∫
q(f1,n)...q(fK,n) log(Ξ (fk(xn)))df1,n . . . dfK,n. (A.20)

The previous integrals do not have a close solution; hence, we approximate them by using
the Gaussian-Hermite quadratures.

Eq(f1,n)...q(fK ,n) [log (ζk,n)] ≈
(

1√
π

)K S1∑
sK=1

· · ·
SK∑
s1=1

osK . . . os1 log
(
Ξ
(
gsk
√

2σk,n + ιk,n
))

,

(A.21)

Eq(flr,n)[λ
(r)
n ] ≈ 1√

π

S∑
s=1

osς
(
gs
√

2σlr,n + ιlr,n
)
, (A.22)

where

Ξ
(
gsk
√
2σk,n + ιk,n

)
=

exp(gsk
√

2σk,n + ιk,n)∑K
i=1 exp(gsi

√
2σi,n + ιi,n)

, (A.23)

ς
(
gs
√

2σlr,n + ιlr,n
)
=

1

1 + exp(−(gs
√
2σlr,n + ιlr,n)

. (A.24)
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4. ∂

∂
ˆf

[
log p(Y |f̂)

]
∂

∂f̂

[
log p(Y |f̂)

]
=

∂

∂f̂

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n) + (1− λ(r)

n ) log

(
1

K

)}]
(A.25)

Case 1

∂

∂fk,n

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n)

}]
=
∑
r∈Rn

λ(r)
n

∂

∂fk,n

[
K∑

k=1

δ(y(r)
n , k) log (ζk,n)

]
,

=
∑
r∈Rn

λ(r)
n

(
δ(y(r)

n , k)− ζk,n
)
. (A.26)

Case 2

∂

∂flr,n

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n) + (1− λ(r)

n ) log

(
1

K

)}]
=

Ω, if r ∈ Rn

0, Otherwise
,

where

Ω =
∂λ

(r)
n

∂flr,n

(
K∑
k=1

δ(y(r)n , k) log(ζk,n)

)
− ∂λ

(r)
n

∂flr,n

(
log

(
1

K

))
,

=
(
λ(r)n − (λ(r)n )2

)( K∑
k=1

δ(y(r)n , k) log (ζk,n) + log(K)

)
. (A.27)

5. Eq(f̂)

[
∂

∂
ˆf

[
log p(Y |f̂)

]]
Case 1

Eq(f̂)

[
∂

∂fk,n

[
log p(Y |f̂)

]]
=
∑
r∈Rn

Eq(f1,n)...q(fK,n)q(flr,n)

[
λ(r)
n

(
δ(y(r)

n , k)− ζk,n
)]

,

=
∑
r∈Rn

Eq(flr,n)

[
λ(r)
n

] (
δ(y(r)

n , k)− Eq(f1,n)...q(fK,n)[ζk,n]
)
,

(A.28)

where

Eq(f1,n)...q(fK ,n) [ζk,n] ≈
(

1√
π

)K S1∑
sK=1

· · ·
SK∑
s1=1

osK . . . os1Ξ
(
gsk
√

2σk,n + ιk,n
)
, (A.29)

and Eq(flr,n)

[
λ
(r)
n

]
is approximated using equation (A.22),

Case 2

Eq(f̂)

[
∂

∂flr,n

[
log p(Y |f̂)

]]
=

Eq(f1,n)...q(fK,n)q(flr,n)
[Ω] , if r ∈ Rn

0, Otherwise
,
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where

Eq(f1,n)...q(fK,n)q(flr,n) [Ω] =

= Eq(f1,n)...q(fK,n)q(flr,n)

[(
λ(r)
n − (λ(r)

n )2
)( K∑

k=1

δ(y(r)
n , k) log (ζk,n) + log(K)

)]
,

=
(
Eq(flr,n)[λ

(r)
n ]− Eq(flr,n)[(λ

(r)
n )2]

)
× · · ·

· · · ×

(
K∑

k=1

δ(y(r)
n , k)Eq(f1,n)...q(fK,n) [log (ζk,n)] + log(K)

)
, (A.30)

where Eq(f1,n)...q(fK,n) [log (ζk,n)], and Eq(flr,n)
[λ

(r)
n ] are approximated by equa-

tions (A.21) and (A.22) respectively, and

Eq(flr,n)[(λ
(r)
n )2] =

∫
q(flr,n) (σ(flr,n))

2 dflr,n ≈ 1√
π

S∑
s=1

os
[
ς
(
gs
√

2σlr,n + ιlr,n
)]2

.

(A.31)

6. ∂2

∂
ˆf
2

[
log p(Y |f̂)

]
∂2

∂f̂
2

[
log p(Y |f̂)

]
=

∂2

∂f̂
2

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n) + (1− λ(r)

n ) log

(
1

K

)}]
.

(A.32)

Case 1

∂2

∂f2
k,n

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n) + (1− λ(r)

n ) log

(
1

K

)}]
=

=
∑
r∈Rn

λ(r)
n

∂

∂fk,n

[
δ(y(r)

n , k)− ζk,n
]
,

= −
∑
r∈Rn

λ(r)
n (ζk,n − ζ2k,n) (A.33)

Case 2

∂2

∂f2
lr,n

[
N∑

n=1

∑
r∈Rn

{
λ(r)
n

K∑
k=1

δ(y(r)
n , k) log(ζk,n) + (1− λ(r)

n ) log

(
1

K

)}]
=


∂Ω

∂flr,n
, if r ∈ Rn

0, Otherwise
,

where
∂Ω

∂flr,n
=

∂

∂flr,n

[(
λ(r)n − (λ(r)n )2

)]( K∑
k=1

δ(y(r)n , k) log (ζk,n) + log(K)

)
,

=

(
2
(
λ(r)n

)3
− 3

(
λ(r)n

)2
+ λ(r)n

)( K∑
k=1

δ(y(r)n , k) log (ζk,n) + log(K)

)
.

(A.34)

7. Eq(f̂)

[
∂2

∂
ˆf
2

[
log p(Y |f̂)

]]
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Case 1

Eq(f̂)

[
∂2

∂f2k,n

[
log p(Y |f̂)

]]
= −

∑
r∈Rn

Eq(f1,n)...q(fK,n)q(flr,n)

[
λ(r)n (ζk,n − ζ2k,n)

]
,

= −
∑
r∈Rn

Eq(flr,n)

[
λ(r)n

]
Eq(f1,n)...q(fK,n) [ζk,n] + · · ·

· · ·+
∑
r∈Rn

Eq(flr,n)

[
λ(r)n

]
Eq(f1,n)...q(fK,n)

[
ζ2k,n

]
,

(A.35)

where Eq(flr,n)

[
λ
(r)
n

]
, and Eq(f1,n)...q(fK,n)[ζk,n] are respectively approximated by

equations (A.22) and (A.29), and

Eq(f1,n)...q(fK ,n)

[
ζ2k,n

]
≈
(

1√
π

)K S1∑
sK=1

· · ·
SK∑
s1=1

osK . . . os1

[
Ξ
(
gsk
√

2σk,n + ιk,n
)]2

, (A.36)

Case 2

Eq(f̂)

[
∂2

∂f2lr,n

[
log p(Y |f̂)

]]
=

Eq(f1,n)...q(fK,n)q(flr,n)

[
∂Ω

∂flr,n

]
, if r ∈ Rn

0, Otherwise
,

where

Eq(f1,n)...q(fK,n)q(flr,n)

[
∂Ω

∂flr,n

]
=

=Eq(f1,n)...q(fK,n)q(flr,n)

[(
2
(
λ(r)
n

)3
−3
(
λ(r)
n

)2
+λ(r)

n

)( K∑
k=1

δ(y(r)
n , k) log (ζk,n) + log(K)

)]
,

=

(
2Eq(flr,n)

[(
λ(r)
n

)3]
− 3Eq(flr,n)

[(
λ(r)
n

)2]
+ Eq(flr,n)

[
λ(r)
n

])
×

(
K∑

k=1

δ(y(r)
n , k)Eq(f1,n)...q(fK,n) [log (ζk,n)] + log(K)

)
, (A.37)

where Eq(flr,n)

[
λ
(r)
n

]
, Eq(flr,n)

[(
λ
(r)
n

)2]
, Eq(flr,n)

[(
λ
(r)
n

)3]
,

and Eq(f1,n)...q(fK,n)[log(ζk,n)] are approximated respectively by equations (A.22),
(A.29) and (A.31); also,

Eq(flr,n)[(λ
(r)
n )3] =

∫
q(flr,n) (σ(flr,n))

3 dflr,n≈
1√
π

S∑
s=1

os
[
ς
(
gs
√

2σlr,n + ιlr,n
)]3

.

(A.38)

8. The predictive distributions.

Given a new sample x∗, we are interested in the predictive distributions for the ground

truth ζk,∗, and the labelers’ reliabilities λ(r)∗ .

Predictive distribution for ζk,∗ Each ζk,n is computed by applying the Softmax function

over each function fk,n, ∀k ∈ {1, . . . ,K}. Accordingly, the mean for ζk,∗ can be
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approximated as

E[ζk∗] =
∫

Ξ(fk,∗)q(f1,∗) . . . q(fK,∗)df1,∗ . . . dfK,∗,

≈
(

1√
π

)K S1∑
sK=1

· · ·
SK∑
s1=1

osK . . . os1Ξ
(
gsk
√

2σk,∗ + ιk,∗
)
. (A.39)

For the predictive variance of ζk,∗, we use the expression Var[ζk,∗] = E[ζ2k,∗] −
E[ζk,∗]2; hence, we need to compute E[ζ2k,∗], which is given as

E[ζ2k,∗] =
∫

Ξ(fk,∗)
2q(f1,∗) . . . q(fK,∗)df1,∗ . . . dfK,∗,

≈
(

1√
π

)K S1∑
sK=1

· · ·
SK∑
s1=1

osK . . . os1
[
Ξ
(
gsk
√

2σk,∗ + ιk,∗
)]2

. (A.40)

Predictive distribution for λ(r)∗ In this case, λr is computed by applying a Sigmoid func-

tion over the latent functions ς(f lr),∀r. Thus, the mean for ς(f∗) is given as

E[σ(flr,∗)] =
∫
ς(flr,∗)q(flr,∗)dflr,∗ ≈

1√
π

S∑
s=1

osς
(
gs
√
2σlr,∗ + ιlr,∗

)
. (A.41)

For the variance of ς(f∗), we use the expression Var[ς(flr,∗)] = E[ς(flr,∗)2] −
E[ς(flr,∗)]2; hence, we need to compute E[ς(flr,∗)2], which is given as

E[ς(flr,∗)2] =
∫
ς(flr,∗)

2q(flr,∗)dflr,∗≈
1√
π

S∑
s=1

os
[
ς
(
gs
√

2σlr,∗ + ιlr,∗
)]2
.

(A.42)

A.2.2 Gaussian Distribution for Regression with Multiple Annotators

For real-valued outputs, e.g., Y⊂R, we follow the multi-annotator model used in [1, 22, 23,

52], where each output y(r)n is considered to be a corrupted version of the hidden ground truth

yn.

1. p(Y |f̂)

p(Y |f̂) =
N∏

n=1

∏
r∈Rn

N (y(r)n |yn, v(r)n ), (A.43)

where, yn = f1(xn), and v
(r)
n = exp(flr(xn)), with r ∈ {1, . . . R}, and lr = r + 1 ∈

{2, . . . J}; hence, the number of required LFs are J = R+ 1.

2. log p(Y |f̂)

log p(Y |f̂) = log

N∏
n=1

∏
r∈Rn

N (y(r)n |yn, v(r)n ),

= −1

2

N∑
n=1

∑
r∈Rn

{
log(2π) + log(v(r)n ) +

(y
(r)
n − yn)

2

v
(r)
n

}
, (A.44)

where log v(r)n = log(exp(flr,n)) = flr,n
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3. Eq(f̂)

[
log p(Y |f̂)

]
Eq(f̂)

[
log p(Y |f̂)

]
=

∫ J∏
j=1

q(f̂ j) log p(Y |f̂)df̂ ,

=
N∑

n=1

∑
r∈Rn

Eq(f1,n)q(flr,n)

[
logN (y(r)n |yn, v(r)n )

]
. (A.45)

Since q(f1,n) and q(flr,1) obey Gaussian distributions, the above integrals can be solved
analytically as in [88]. Thus, we have∫

q(f1,n)q(flr,n) logN (y(r)
n |yn, v(r)n )df1,ndflr,n

= logN
(
y(r)
n |ι1,n, exp

(
ιlr,n − σlr,n

2

))
− σlr,n

4
−
s1,n exp

(
−ιlr,n+

σlr,n

2

)
2

. (A.46)

Thus,

Eq(f̂)

[
log p(Y |f̂)

]
=

N∑
n=1

∑
r∈Rn

logN
(
y(r)
n |ι1,n, exp

(
ιlr,n − σlr,n

2

))
− · · ·

· · · − σlr,n

4
−

s1,n exp
(
−ιlr,n +

σlr,n

2

)
2

, (A.47)

where f1,n is the n-th position of vector f1, flr,n is the n-th position of vector f lr , ι1,n is

the n-th position of vector ι1, ιlr,n is the n-th position of vector ιlr , s1,n is the n-th position

of vector s1, and σlr,n is the n-th position of vector slr .

4. ∂

∂
ˆf

[
log p(Y |f̂)

]
∂

∂f̂

[
log p(Y |f̂)

]
=

∂

∂f̂

[
−1

2

N∑
n=1

∑
r∈Rn

{
log(2π) + flr,n +

(y
(r)
n − f1,n)

2

exp(flr,n)

}]
.

(A.48)

Case 1
∂

∂f1,n

[
−1

2

N∑
n=1

∑
r∈Rn

{
(y

(r)
n − f1,n)

2

exp(flr,n)

}]
=
∑
r∈Rn

(y
(r)
n − f1,n)

exp(flr,n)
. (A.49)

Case 2

∂

∂flr,n

[
−1

2

N∑
n=1

∑
r∈Rn

{
flr,n +

(y
(r)
n − f1,n)

2

exp(flr,n)

}]
=

− 1
2
+

(y
(r)
n −f1,n)2

2 exp(flr,n)
, if r ∈ Rn

0, Otherwise
.

(A.50)

5. Eq(f̂)

[
∂

∂
ˆf

[
log p(Y |f̂)

]]
Case 1

Eq(f̂)

[
∂

∂f1,n

[
log p(Y |f̂)

]]
=
∑
r∈Rn

Eq(f1,n)q(flr,n)

[
(y

(r)
n − f1,n)

exp(flr,n)

]
,

=
∑
r∈Rn

(
y(r)
n − Eq(f1,n)[f1,n]

)
Eq(flr,n) [exp(−flr,n)] , (A.51)
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where

Eq(f1,n)[f1,n] = ι1,n, (A.52)

Eq(flr,n)
[exp(−flr,n)] = exp

(
−ιlr,n +

σlr,n
2

)
. (A.53)

Thus,

Eq(f̂)

[
∂

∂f1,n

[
log p(Y |f̂)

]]
=
∑
r∈Rn

(
y(r)n − ι1,n

)
exp

(
−ιlr,n +
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Case 2
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where

Eq(f1,n)
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2
]
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(y(r)n )2 − 2y(r)n f1,n − (f1,n)

2
]
,

=
(
y(r)n − ι1,n

)2
+ s1,n. (A.56)

Furthermore, Eq(flr,n)
[exp(−flr,n)] is computed as in equation (A.53). Thus,

Eq(f̂)
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. (A.57)

6. ∂2

∂
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A.2 Likelihood Functions

Case 1
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Case 2
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8. The predictive distributions.

Given a new sample x∗, we are interested in the predictive distributions for the ground

truth y∗, and the labelers’ error-variances v(r)∗ .

Predictive distribution for y∗ Due to y = f1, the posterior distribution for y∗ corre-

sponds to q(f1∗). Accordingly,

E[y∗] = E[f1,∗] = ι1,∗ (A.63)

Var[y∗] = Var[f1,∗] = s1,∗ (A.64)

Predictive distribution for v(r)∗ In this case, since vr = exp(flr), the posterior distribu-

tion for v(r)∗ follows a log-normal distribution with parameters ιlr,∗ and σlr,∗, which

respectively correspond to the mean and variance of q(flr,∗). In this sense, the mean

and variance of v(r)∗ are given as

E[v(r)∗ ] =

∫
exp(flr,∗)q(flr,∗)dflr,∗ = exp

(
ιlr,∗ +

σlr,∗
2

)
. (A.65)

Var[v
(r)
∗ ] =

∫ (
exp(flr,∗)− E[v(r)∗ ]

)2
q(flr,∗)dflr,∗

= exp (2ιlr,∗ + σlr,∗) (exp(σlr,∗)− 1) . (A.66)

117



Alphabetical Index

A
annotator relevance

analysis 17
annotator’s behavior 4
annotator’s dependencies 5
annotators 4

annotators’ relevance
parameters 19

B
binary classification 4

C
Chained Gaussian Processes

for Multiple
Annotators

(CGPMA) 21
classification problems 13

classification results 35
convex combination 39
covariance matrix 15
crowdsourcing 2

D
dataset 48
dataset results 48
dependencies 48
deterministic function 20,

60

E
error variances 88

F
fully real dataset 30
fully synthetic dataset 31
function 3

function gr 26

G
Gaussian distribution 7, 73
Gaussian process 34, 47
gold standard 2, 10
ground truth 10, 31, 40

I
input 3, 11
input features 11
input samples 13
input space 11

T
target classifier 35, 49

U
upper bound 34



The increasing popularity of crowdsourcing platforms, i.e., 
Amazon Mechanical Turk, is changing how datasets for su-
pervised learning are built. In these cases, instead of having 
datasets labeled by one source (which is supposed to be an 
expert who provided the absolute gold standard), we have 
datasets labeled by multiple annotators with different and 
unknown expertise. Hence, we face a multi-labeler scenario, 
which typical supervised learning models cannot tackle. 
For this reason, much attention has recently been given to 
the approaches that capture multiple annotators’ wisdom. 
However, such methods reside on two key assumptions: 
the labeler’s performance does not depend on the input 
space and independence among the annotators, which are 
hardly feasible in real-world settings. This book explores 
several models based on both frequentist and Bayesian 
perspectives aiming to face multi-labeler scenarios. Our 
approaches model the annotators’ behavior by considering 
the relationship between the input space and the labelers’ 
performance and coding interdependencies among them.
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