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Abstract
Leaf morphological description studies are complex because they require highly trained
personnel and the consultation of a large amount of available documentation, such as vi-
sual category systems in botanical manuals, books, online databases, and herbariums, and
commonly should be contrasted with other experts. These studies require a significant re-
source investment and a high manual workload. On the other hand, the number of botanists
available and in training for performing these studies cannot meet the current needs of the
growing amount of foliar information resulting from automation and the increasing complex-
ity of research questions. In this scenario, automatic computational processes are required to
provide a qualitative and quantitative morphological description that significantly alleviates
the experts’ workload.

The difficulty of using automatic approaches in morphological analysis materializes if any
of these functionalities are missing: 1. extracting the relevant features from the shape so
that they can be analyzed separately, 2. producing robust categories that emerge from the
representation of each feature, and 3. explanatory capacity of the categories in the context
of the biological problem.

This work proposes a computational strategy for discovering leaf-shape categories that helps
to overcome these limitations. First, an algorithm extracts each feature and represents it
appropriately (contractive) in a specific feature space (morphospace). Then, the points in
the morphospace are analyzed and organized under the concepts of neighborhood, cohesion,
and persistence. The method accounts for these features and analyzes the number of clusters
for all neighborhood sizes, and chooses the optimal number of clusters, in other words, the
number of categories. This system of categories has the property of explaining the under-
lying phenomenon qualitatively and quantitatively. In this way, during the neighborhood
analysis, the categorization dendrogram emerges. Finally, the interpretation of the results is
given by the morphospace and by the dendrogram.

The effectiveness of the proposed approach is evaluated against category systems established
by experts. The results show that the proposed approach can produce useful categorizations
similar to what is reported in Hickey’s manual, a widely used botanist manual. This ap-
proach allows biologists to make qualitative and quantitative descriptions of leaf morphology,
helping them to describe variability, taxonomy, plasticity, adaptation, and ecological changes.

Keywords: (Novel category discovery, Unsupervised categorization, Leaf shape, Con-
tour analysis, morphological, Image processing, Topological analysis, Image classifica-
tion).
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Resumen

Los estudios de descripción morfológica de hojas son complejos en la medida que requieren
de personal altamente entrenado y de la consulta de una gran cantidad de documentación
disponible como i.e., sistemas de categorías visuales en manuales botánicos, libros, bases de
datos en línea, herbarios, inclusive contrastar hallazgos con otros expertos. Por tanto, estos
estudios demandan una inversión significativa de recursos y tienen una alta carga de trabajo
manual. Por otro lado, la cantidad de botánicos disponibles y en formación no logra suplir
las necesidades actuales de la creciente cantidad de información foliar resultante de la au-
tomatización y la creciente complejidad de las preguntas de investigación. En este escenario
se requieren procesos computacionales automáticos que proveen una descripción morfológica
cualitativa y cuantitativa que alivian en gran medida la carga de trabajo de los expertos.

La dificultad de usar enfoques automáticos en análisis morfológicos se materializa si hace
falta alguna de estas funcionalidades: 1. extraer los rasgos relevantes de la forma para que
puedan analizarse por separado, 2. producir categorías robustas que emergen de la repre-
sentación de cada rasgo, y 3. capacidad de explicación de las categorías en el contexto del
problema biológico.

En este trabajo se propone una estrategia computacional para el descubrimiento de cate-
gorías de formas de hojas que ayuda a automatizar estas funcionalidades clave. Primero, un
algoritmo extrae cada rasgo y lo representa de manera adecuada (contractiva) en un espacio
de características (morfoespacio) específico. Luego, la muestra proyectada en el morfoespa-
cio es analizada y organizada bajo los conceptos de vecindad, cohesión y persistencia. Este
método realiza un análisis del número de grupos para todos los tamaños vecindad y escoge
la cantidad de grupos óptima, en otras palabras, las categorías. Este sistema de categorías
tiene la propiedad de explicar el fenómeno subyacente de manera cualitativa y cuantitativa.
De esta forma, durante el análisis de vecindad surge el dendrograma de la categorización.
La interpretación de los resultados está dada por el morfoespacio y por el dendrograma.

La efectividad del enfoque propuesto se evalúa frente a sistemas de categorías establecidos
por expertos. Los resultados evidencian que el enfoque puede producir categorizaciones
razonables similares a lo reportado en el manual de Hickey. Este enfoque permitirá a los
biólogos hacer descripciones cualitativas y cuantitativas de la morfología útiles en estudios
de variabilidad morfológica, taxonomía, plasticidad, adaptación y ecología.

Palabras clave: (Descubrimiento de categorías novedosas, categorización no super-
visada, forma de hoja, análisis de contorno, morfología, procesamiento de imágenes,
análisis topológico, clasificación de imágenes).
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1 Introduction

Since ancient times, studying plant morphology has been a matter of survival [58]. Iden-
tifying which plants are edible and which are toxic or poisonous for human consumption
is essential [58]. Furthermore, the knowledge of identifying plants and associating them
with their medicinal properties has always been highly esteemed and recognized in all cul-
tures [102]. Hence, the need arose to recognize the different plants in the environment and
study how they can be discriminated against, classified, and organized to refine and pass on
this knowledge through generations.

A significant historical milestone in describing these biological objects is the contribution
of Carl Linnaeus, who developed the classification system known as binomial nomenclature,
revolutionizing the way species are categorized and named [39]. This categorization system
enabled clear and precise communication in the field of biology and laid the foundation for
modern taxonomy [102]. Since then, classification systems based on categories have been
fundamental for describing biological objects.

For constructing these systems, botanical experts typically use various physical or morpho-
logical characteristics the plant provides, particularly the leaves, to identify and discriminate
among them. These characteristics include size, texture, consistency, leaf venation pattern,
and shape, among others [39]. Obtaining these features involves exploring many leaves,
requiring physical access to the plant and a method to capture, collect, and store all this
information. In addition, this data should be described for particular biological contexts,
commonly by a morphological description of their features. The morphological description
is a highly specialized pattern recognition task that commonly demands extensive knowl-
edge of botany and advanced use of information from herbariums, online databases, and a
widely used botanic manual, such as Hickey’s manual [58]. Additionally, several years of
field experience and interaction with other experts, often through research collaborations,
are necessary to describe specific groups of plants [58].

In the case of plants, the knowledge resulting from this process is documented in botan-
ical architecture manuals, where various relevant traits are categorized visually, including
detailed descriptions and graphic definitions of botanical terms [128]. The observation that
this process is heavily dependent on human expertise leads to the question of whether it is
computationally possible to reproduce botanists’ specialized knowledge when identifying plant
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species or varieties and whether the mechanism of constructing visual categories used by bi-
ologists can be replicated algorithmically?. This thesis explores this research question in the
context of the morphological description of leaves.

When defining shape categories, one issue is the inevitable introduction of biases [132]. These
biases depend on the educational background of the expert and the shapes they have studied
or encountered, making it impossible to have a complete system of categories covering all
possible forms [132]. In most botanic manuals, some categories are defined qualitatively
using simple shapes, while others are defined more quantitatively using measurements such
as area, length, and angles [35]. These definitions may be ambiguous. For example, Hickey’s
manual defines apex angle categories precisely. The apex is an “acute” class if the angle at
the top is less than 90 degrees and “obtuse” in other cases. However, these defined thresholds
may work well in a specific biological context but may not be suitable in others [60]. In the
description of natural system properties, this ambiguity is commonly present. For instance,
some values, like thermal floors, are also arbitrarily set by dividing altitudes into ranges
such as “warm climate” between 0 and 1000 meters and “temperate climate” between 1000
and 2000 meters. These categorization systems can also lead to classification problems when
elements fall close to the boundaries [110].

Moreover, defining the shape of a plant can be an ambiguous process as it depends on the
subjective perception of the expert [90]. It has even been found that people can classify
differently at different times. Objective systems should work consistently across different
scenarios and situations. In addition, fixed reference systems need to be imported with the
emergence or consideration of new forms [26].

In conclusion, plant morphological knowledge and identification have been fundamental for
human survival and development throughout history [10]. Although experts have developed
effective classification and categorization systems, these systems still have biases and sub-
jectivity [132]. The possibility of computationally reproducing specialized knowledge and
the mechanism of constructing visual categories is an ongoing challenge [3]. Nevertheless,
technological advancements undoubtedly open new opportunities in this field.

Shape description and category discovery

Currently, biologists employ sophisticated methods for the qualitative description of shape
and quantitative analysis through geometric morphometrics [73, 16]. For instance, Pro-
crustes’s popular approach allows them to focus on specific shape traits, typically a segment
of the overall contour, and test one or multiple morphological hypotheses [16]. Despite the
popularity of this method in biology, this approach requires arduous and highly specialized
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manual work, making it highly sensitive to placing critical points known as “landmarks” and
“pseudo-landmarks”. These marks are crucial points that the expert manually places along
the contour [20]. The precise positioning of landmarks is essential to obtain high-quality
results that validate or reject the hypotheses [20]. This approach’s primary limitation lies in
accurately reproducing all landmarks in each sample [3].

In Procrustes analysis, after registering all the landmarks in each sample, a dimensional-
ity reduction using Principal component Analysis (PCA) is used, followed by a clustering
technique such as k-means, where the number of groups, k, must be defined beforehand, to
determine a set of categories [16]. This strategy is limited because, apriori, the number of
groups has yet to be discovered. Therefore, more automated and efficient approaches are
needed to handle large-scale data sets while maintaining accuracy and reliability [8]. These
newer methods should alleviate the burden of manual landmark placement and reduce the
risk of human error, providing more reproducible and consistent results [71].

An alternative approach involves automatically placing points uniformly along the entire con-
tour, bypassing the need to set specific landmarks manually [3]. Subsequently, base functions
allow to extract particular properties that facilitate data analysis [116]. This approach as-
sesses how closely the shape resembles well-known functions, such as sines, complex cosines,
wavelets, and Gaussians [21]. This approach results in representations known as Fourier
ellipses, p-type, wavelets, Gabor filters, or chain codes, respectively [115].

In this last strategy, a morphospace is constructed by measuring the similarity of each sam-
ple to the selected base functions [128]. For example, using Fourier ellipses, the resemblance
of a leaf’s representation to a cosine of a particular frequency is evaluated, exploring mul-
tiple frequencies to achieve a comprehensive frequency-domain analysis of the data [68].
Conversely, wavelet or Gabor functions are bounded, unlike sines and cosines, which are
infinite. This property allows scaled and shifted versions of these functions to select or
extract specific segments of the shape [128]. The goal here is to obtain representations of
shape features that exhibit contractiveness. In this context, contractive means that samples
projected in the morphospace become closer the more similar they are, and these similarity
relationships remain consistent despite changes in scale, displacement, rotation, or other
transformations [116].

Despite the flexibility of these characterizations, approaches using Fourier ellipses or p-
type representations fail to distinguish between different shape features, leading to a loss of
specificity [3]. This limitation makes it challenging to construct and test hypotheses about
the shape, something that is achievable with geometric morphometrics such as Procrustes
analysis [27]. On the other hand, representations using wavelets or Gabor functions are un-
derstudied by botanists, and their interpretation needs to be improved [3]. Moreover, these
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approaches need to incorporate expert knowledge, such as botanical manuals or herbariums,
which is a significant drawback, resulting in limited adoption of these methods in morpho-
logical analysis [26]. This point brings us to the question: can we employ a contractive
representation using base functions that are interpretable by botanists?.

Recently, approaches based on machine learning models aimed to produce categories ob-
jectively, which refer to groups of objects with the same visual aspect. For instance, deep
clustering is a strategy based on deep neural networks to automatically discover clusters
or groups of similar data points in large datasets [23]. This method can identify patterns
and relationships in the data that may take time to discover [23]. However, deep clustering
is computationally intensive and may require large amounts of data to be trained effec-
tively [84]. On the other hand, novel category discovery, a technique that uses machine
learning algorithms to identify new categories or concepts in a dataset [121, 78, 63, 56]. This
approach is helpful in cases where the data is highly diverse, or the number of categories
needs to be discovered or determined [78]. Nevertheless, in these approaches can be challeng-
ing to interpret the generated categories because of the deep learning approaches black-box
nature [84].

The main drawback of current approaches for category discovery is that they need to clarify
from where the discovered categories come. These approaches generally use all available in-
formation without focusing on domain-relevant features [84]. For example, a deep clustering
approach may discover categories about all traits in the leaf image dataset rather than a
specific trait, e.g., the margin type. As a result, it becomes difficult to interpret the origin
of the categories [130]. This lack of interpretability can make it difficult to understand and
trust the categories discovered by these methods [79]. Therefore, there is a need for more
robust and interpretable approaches to category discovery that can extract relevant features
and provide insight into how the categories are formed, especially in life-science areas [8]. In
addition, most of these methods lack a formal definition of a category, commonly relying on
the ambiguous concept of a group. This way, the categories discovered should be objective,
and ideally, their origins should emerge naturally, providing a more robust and interpretable
understanding of the data [56].

Justification

Categories are essential for constructing scientific knowledge and understanding reality [64].
Categories refer to groups of entities classified together based on their common properties or
features for understanding and evaluating knowledge within a specific field or discipline [8].
The categories are relevant for analyzing and organizing objects, phenomena, and knowl-
edge [8].
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The amount of data produced by automatized processes is unprecedented. Therefore, tra-
ditional methods for organizing and analyzing these data are required [23]. Categorization
plays a crucial role in this process by helping to organize the information and make it more
manageable. Additionally, grouping similar items or concepts allows extracting valuable in-
sights and structuring knowledge from data [23]. Furthermore, it allows individuals to place
a concept or idea within a larger category and understand its relationship to other similar
ideas [8].

Qualitative shape analysis and geometric morphometrics are current approaches used for
morphological description, but they have the drawback of heavily relying on manual input
and being time-consuming [26]. Although various automated and objective methods have
been proposed for morphological analysis, they are not widely used because they diverge
from how botanists typically work [3].

On the other hand, recent studies warn that the number of experts in taxonomy and botany,
in general, is declining [107]. In an era with increasing data and ecological, climatic, and
food-related issues that significantly impact life and sustainability, automating processes
to align with botanists’ methods can substantially enhance their efficiency and effective-
ness [107].

The automation of morphological analysis could represent a significant advancement for mod-
ern botany. By reducing the manual workload and time required to analyze plant shapes,
experts would have more freedom to focus on creative and investigative tasks. Moreover,
streamlining the identification and classification of species through automation could lead to
more effective responses to current challenges related to the environment, conservation, and
food security.

Objectives

In this research, our primary goal is to develop a computational model capable of auto-
matically and interpretably discovering leaf shape categories from a given set of samples.
By harnessing advanced algorithms and techniques, our model can process the input data
effectively and extract essential morphological features from the leaf traits. Proposing a rep-
resentation space that captures leaf traits’ inherent variations and diversity is imperative.
This objective involves identifying and defining crucial morphological features with high dis-
criminatory power, allowing the model to precisely distinguish between different leaf shapes.

A key challenge in this research is to devise a category discovery strategy, both robust and
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objective. The computational model will be designed to autonomously identify visual cate-
gories without requiring manual sample data annotation. This approach minimizes human
biases and laborious manual efforts, making the categorization process more efficient and
reliable.

Transparency and interpretability are fundamental aspects of any computational model in
scientific research. Hence, we will meticulously design a strategy for explaining the shape
categories discovered by our model in a transparent and interpretable manner. The model
will generate quantitative results, such as cohesion and similarity values for each category,
and qualitative explanations, including visual representations of data distribution in the mor-
phospace and the formation of groups in the dendrogram. These comprehensive analyses will
enable biologists and researchers to effectively understand and validate the categorization
results.

By accomplishing these specific objectives, our work aims to significantly contribute to au-
tomated morphological analysis in botany, providing researchers with a powerful tool for
exploring leaf shape variations in an interpretable and efficient manner. The model’s po-
tential for uncovering new insights and discoveries in leaf morphology promises to advance
ecological and biological studies and foster collaboration between computational researchers
and domain experts.

Main contributions

The main contributions of this computational model for automatically discovering objective,
robust, and interpretable visual categories with applications in biological shape analysis are
highlighted below.

• Automated Categorization without Annotations: The proposed model can dis-
cover visual categories without requiring manual sample data annotation. This au-
tomation eliminates manual annotations’ laborious and time-consuming tasks, freeing
biologists to focus on higher-level interpretations and hypothesis testing.

• Flexibility and Adaptability: The model’s flexibility allows it to adapt to different
morphological features and research contexts. Biologists can tailor the model to their
needs, enhancing its interpretability and adaptability to their workflow.

• Quantitative and Qualitative Analysis: The model produces quantitative results,
such as categories with cohesion and similarity values, and qualitative explanations,
like data distribution in the morphospace and dendrogram formation. By merging
both perspectives, the model provides a comprehensive and insightful analysis.
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• Bridging Objective Data Analysis and Biological Interpretations: The model
bridges the gap between objective data analysis and meaningful biological interpreta-
tions by providing quantitative and qualitative outputs. This dual perspective enriches
the biologist’s understanding of shape variation and facilitates integration into current
morphological studies.

• Exploring Relationships with External Factors: The model’s versatility allows
for exploring relationships with external factors such as climate, ecology, soil charac-
teristics, environmental pressures, and crop production. This potential connection can
support broader environmental and ecological studies.

• Handling Unclassified Specimens: The model handles unclassified specimens,
which can lead to significant ecological or biodiversity findings, such as discovering
new species, identifying anomalies, and characterizing biodiversity.

• Formal Definition of Visual Categories: The study clearly defines visual categories
as “a set of groups that persist at different scales and exhibit high cohesion.” This
definition is supported by various concepts, making the category concept more robust
than a simple cluster.

• Independence of Representation and Category Discovery Components: The
model’s representation and category discovery components are independent, allowing
it to be applied to multiple problems requiring category discovery by changing the
representation component.

• Additional Computational Methods: Besides the visual category discovery model,
several original computational methods are provided for tasks such as leaf image bina-
rization, segmentation, density adjustment, feature extraction, and data visualization.

Overall, this computational model represents a significant advancement in automating mor-
phological description and offers valuable biological shape analysis tools. By providing auto-
mated categorization and comprehensive analysis of morphological traits, the model has the
potential to revolutionize ecological and biological studies, leading to valuable discoveries
and insights.

Thesis structure

This thesis is organized as follows: The second section establishes the method’s baseline for
discovering shape categories. It introduces an experimental framework for species identifica-
tion based on a sample. Additionally, it outlines the workflow for automatic morphological
description. Section three details the development of a novel computational model for dis-
covering robust shape categories. The chapter addresses whether it is feasible to develop a
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computational model capable of uncovering objective, robust, and interpretable categories
of leaf-shape traits. In addition, algorithms are proposed to extract features from specific
shape traits. Robust categories are defined based on concepts related to topology and the
optimization of neighborhood relationships. In the final section, we present the work’s con-
tributions and the most relevant findings and insights in the morphological description area.
In addition, we comment on the conclusions and limitations of the work.



2 Contour analysis for interpretable
leaf shape category discovery

Abstract

Background The categorical description of leaf shapes is of paramount importance in ecol-
ogy, taxonomy, and paleobotanical studies. Classification systems proposed by domain ex-
perts support these descriptions. Despite the importance of these visual descriptive systems,
classifications based on this expert’s knowledge may be ambiguous or limited when repre-
senting shapes in unknown scenarios, as expected for biological exploratory domains. This
work proposes a novel strategy to automatically discover the shape categories in a set of
unlabeled leaves by only using the leaf-shape information. In particular, we overcome the
task of discovering shape categories from different plant species for three different biological
settings.
Results The proposed method may successfully infer the unknown underlying shape cate-
gories with an F-score greater than 92%.
Conclusions The approach also provided high levels of visual interpretability, an essential
requirement in the description of biological objects. This method may support the morpho-
logical analysis of biological objects in exploratory domains.

2.1 Background

Visual shape description in plants is a very specialized and time-consuming task [59, 122].
Botanists and ecologists require straightforward approaches to communicate relevant infor-
mation about plant morphology. The construction of category systems allows the commu-
nication of the underlying phenomena and the standardization of biological studies [59].
Visual categorization is also an essential task for botanic manual construction, in which ex-
pert knowledge is commonly registered as visual categories [7, 60, 35, 11]. In these systems,
botanists define key terms accompanied by a visual description of the observed characteris-
tics, with which categories of the shape are established. In systematic biology and taxonomy,
experts are extensively trained to perform this task [99, 66].

Leaf categorization based on traditional botanical manuals has several limitations. First,
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there are exploratory scenarios in which the working hypothesis is related to datasets of high
morphological variability [59, 22], as in poorly explored ecosystems like the Páramos [13].
These scenarios may require particular categorization systems, not necessarily existing, in
the commonly used botanical manuals [22]. Second, human-based labeling may be biased by
individual opinions because of the high level of subjectivity implicit in the recognition pro-
cess of biological objects [29]. Finally, botanical manuals are restricted to narrow biological
domains. For instance, Northern United States [53], Indian forest [17], tropical Africa [70]
and Carolinas in United States [97]. The characterization of unknown biological scenarios
cannot necessarily be carried out using this manual [59].

An alternative to characterize plants objectively is digital plant morphology [29]. This ap-
proach provides quantitative representations of the object appearance [68, 16, 20]. Several
plant science problems have been tackled using this method [12], specifically, species classifi-
cation and characterization of morphological traits in response to changes in environmental
or genetic conditions using, for instance, pseudolandmarks or harmonics to characterize the
variation of geometric traits of the leaf contours [68, 16, 20]. However, despite the utility
of these approaches to quantify shape, they are limited to object contours with the same
homology [71]. Other tools currently available for performing morphometric measurements,
like plantcv [46], morpholeaf [14] or MowJoe [37], do not consider automatic approaches to
overcome the construction of visual categories systems to describe shapes in the biological
domain.

Besides category discovery, the visual description of biological forms also requires high levels
of interpretation [77]. Thus the expert should understand the causes of the existence of a
shape category, and these categories should also be biologically meaningful [33]. This prop-
erty of interpretability is fundamental because the knowledge of these causes may help to
find explanations of the underlying phenomena, relating the shape to adaptation, function,
and development, among other biological features [22]. To achieve these interpretations,
biologists commonly use high-level concepts to characterize leaf shape [28]. For instance,
the concept of the type of blade or the kind of margin. Notably, these two concepts are
closely related to low and high frequencies of the object contour and are captured by the
Fourier transform of the border [20]. This fact suggests the use of the Fourier transform
representation for recovering some high-level categories used for the foliar description task.

In this work, we propose a novel method to discover the shape categories underlying a set of
non-annotated samples based on contour analysis. We show that the use of strategies based
on harmonics allows for building a representation space that captures some of the high-level
features commonly used by botanists and ecologists in the description of geometrical blade
information. We study exploratory scenarios with no known shape categories, in contrast
to previous works that focused on the problem of plant species classification [119]. It is
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important to note that in the proposed approach the contour information is organized in a
morphospace objectively. Therefore, the expert may evidence of the characteristics associ-
ated with the biological phenomenon under investigation. We also keep high levels of visual
interpretability of the shape information, which is an essential requirement in the character-
ization of biological data that has been not considered in most of the digital leaf morphology
studies [20].

2.2 Methods

Figure 2-1 illustrates the proposed method for constructing interpretable visual categories
for a set of images. An image database composed of unlabeled leaves is used as input.
The contours of each leaf were extracted by using segmentation and contour extraction algo-
rithms. This information was represented with a complex Fourier transform (CFT), and a set
of representative harmonics of the leaf information was selected. Then, a dimensionality re-
duction method was applied to these harmonics to obtain a three-dimensional morphospace
of representation. Finally, an adaptive kernel density estimation method determined the
shape categories.

2.2.1 Contour extraction

The input dataset contained natural images with controlled background. These images were
represented in a saturation channel because they showed a higher contrast between the leaf
lamina and the background. Then, the Otsu method provided a leaf segmentation [93]. A
closing morphological operator based on a circular structural element of five pixels of radius
removed small holes in the binary image. A tracing algorithm extracted the leaf bound-
ary [51]. This method followed the contour points and returned a two-dimensional vector of
vertices. The size of this vector depended on the contour length and the image resolution.
In order to have a similar representation among leaves of different sizes, a cubic spline-based
interpolation was applied to this array [51]. In particular, N = 512 samples uniformly spaced
were obtained to represent each contour.

2.2.2 Contour representation

A p-type transformation was used for contour representation, this transform corresponds
to a CFT representation of the shape information [112]. Before the CFT, each spatial
position of the resampled border (x, y) was represented as a complex value z = (x, jy),
with j =

√
−1. The points in the border conform a complex discrete signal z[n], with
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Figure 2-1: Graphical representation of the strategy for category discovery in leaves dataset.
The leaf contours in the dataset were obtained by using binarization and contour
extraction. This shape information was represented by a complex Fourier trans-
form. A set of representative harmonics of the leaf information were selected.
Following this, a dimensionality reduction method was applied to the selected
harmonics. Finally, an adaptive kernel density estimation method was used to
determine the shape categories.

n = 1, 2, . . . , N . Later, the slopes ∆z[n] among the adjacent points in z[n] were computed
as ∆z[n] = (x[n + 1] − x[n], j(y[n + 1] − y[n])). This representation provides robustness
to rotation transformations. The slopes were normalized by the distance ∥∆z[n]∥ among
the neighbor points n and n + 1, as follows: ẑ[n] = ∆z[n]

∥∆z[n]∥ , with n = 1, 2, . . . , N − 1, this
normalization provides invariance to scale transformations. Later, a CFT was applied to the
normalized slope signal ẑ[n], obtaining:

Z[k] =
1

N

N−1∑
n=0

ẑ[n]e−j2πkn/N

where k is the harmonic index, N/2 + 1 is the maximum frequency order and Z[k] is the
k-th harmonic. For the contour description, it is not essential to use the complete set of
harmonics [119]. Therefore, the number of harmonics was 22, which allowed a suitable
reconstruction of the leaf contour [92].

2.2.3 Dimensionality reduction

Following previous works in the analysis of foliar shapes [29, 115], a dimensionality reduction
based on the Principal Component Analysis (PCA) was applied to the selected harmonics.
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This process was performed by using a Singular Value Decomposition (SVD) of the covariance
matrix computed using the complex harmonics [115]. In order to have visual interpretability
of the representation space, the first three principal components were studied.

2.2.4 Clustering

After dimensionality reduction, the category discovery process was performed. For this,
the low dimensional data was firstly normalized by applying a whitening transformation in
each dimension [34]. A shape category was defined as a cluster emerging in the previously
constructed representation space. In this work, two clustering approaches were explored,
namely, meanshift [44] and adaptive meanshift [103].

The meanshift algorithm is a non-parametric clustering method for locating the maxima of a
density function given n discrete data sampled from that function [44]. Given n data points
ui, i = 1, ..., n on a d-dimensional space Rd, the multivariate kernel density with kernel K(u)

and bandwidth h parameter is given by:

f̂ =
1

nhd

n∑
i=1

K

(
u− ui

h

)
.

This algorithm provides the modes of the density function, which in our case corresponded to
shape categories. The meanshift algorithm directly provides multiple clusters, in contrast to
other approaches like k-means which require a definition of the number of classes beforehand.
Nevertheless, meanshift results are highly dependent on the bandwidth parameter selection,
which indirectly determines the number of classes.

An adaptive meanshift algorithm was also explored to overcome the bandwidth selection
issue. This algorithm uses the local density in the representation space to define a dynamic
bandwidth for each sample. In particular, the Euclidian distances between ui and its first
k neighbors were averaged and then used as the sample bandwidth parameter hi [103], i.e.,
these hi were used for computation of the meanshift vector. In the proposed setting, the
k parameter was obtained experimentally using the TreeMew dataset; six groups of species
compose this dataset. The average distance to the eight nearest neighbors allowed the re-
covery of these six groups in TreeMew; the k parameter was then fixed for all experiments.
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2.2.5 Evaluation

Leaf image dataset

The category discovery task consists in arranging a non-annotated dataset in a represen-
tative set of shape categories and providing them with coherent explanations in biological
terms. There are several public leaf datasets available to study plant species that can be used
for evaluation purposes. In this work, two leaf image annotated datasets with information
about species with different morphology were selected, namely, TreeMew and ImageClef 2014
datasets [48]. These datasets contain high-quality and quantity isolated leaf image samples,
all of them with a controlled background. These conditions helped to extract good-quality
contours. Each image in these datasets is annotated with the plant species, which was used
as ground truth for the shape category discovery problem. Figure 2-2 shows a sample of
each species selected in this study.

For the quantitative evaluation, the samples were organized in three sets to perform shape
category identification. The TreeMew was used to build a test set (TreeMew) with six groups,
with 20 samples per group. Similarly, for the samples in the ImageClef database, two test
sets were constructed (Clef30a and Clef30b), each one with six groups, and 30 samples per
group. Table 2-5 shows the corresponding morphological description, which was obtained
by using the Hickey manual [35]. As observed, the selected species show differences in their
blade shape and margin. It is expected that the proposed method can discriminate samples
in different classes using these two criteria. Importantly, these sets have high morphological
variability, as Table 2-5 shows. Therefore, this experimental setting is appropriate for eval-
uating the category discovery strategy.

Experimental settings

The evaluation was two-fold: a quantitative evaluation, to assess the method’s capacity for
recovering the original categories, and a qualitative evaluation, to study how the method
characterized biologically relevant morphological leaf traits related to the extracted cate-
gories.
The shape category discovery problem aims to predict shape categories presented in an
unlabeled sample set [55, 129]. We assumed that each plant species corresponds to a different
shape category. Under this assumption, the original species of each sample constituted the
ground truth for the category discovery problem. A confusion matrix and the corresponding
F-score provided quantitative measures of the method performance in the identification
of these categories. This last measure considers both the precision and the recall of the
class discovery tasks [2]. A leave-one-out scheme was used to study the variability of this
performance measurement across different datasets. Once the samples were projected into
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Figure 2-2: Groups of leaves samples used for testing the method. The image shows the
selected species from the TreeMew and ImageClef datasets. The species with
the most quantity of samples were selected. The leaves groups were organized
in the following way, Top: Tree leaf database MEW 2010, middle: Clef30a, and
bottom: Clef30b.

the reduced representation space, the clustering algorithm was applied for three different
configurations of distance and clustering algorithm, namely:

• Data whitening and meanshift algorithm MS + W . Data whitening consists in sub-
tracting the mean and dividing by the deviation of the data in each dimension, similar
to the Mahalanobis distance [32].

• Data whitening and adaptive meanshift algorithm AMS +W .
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• Data without whitening and adaptive meanshift algorithm.

Finally, a leaf sample per category was projected over the principal components to perform
the qualitative assessment. The linear combination of harmonics in each principal compo-
nent was shown and joined with projected samples for interpretation. The aim here was to
recover the margin types and blade shapes of the leaf samples.

2.3 Results

2.3.1 Capability of the method to recover the original categories

Figure 2-3 shows the morphospace 3D for the evaluated datasets. Each morphospace shows
spheres and representative leaf prototypes. The center of the spheres represents the position
of each leaf sample for the evaluated datasets. The sphere radius is given by the adaptive
meanshift algorithm. The spheres that were displayed with the same color conformed to the
same leaf shape category. The prototypes were the representative sample of each cluster dis-
covered. The leaf prototype corresponds to the closest leaf sample using Euclidean distance
to the cluster centroid.

(a) TreeMew morphospace (b) Clef30a morphospace (c) Clef30b morphospace

Figure 2-3: Results of adaptive mean shift clustering for the three evaluated datasets. Each
morphospace shows spheres and representative leaf prototypes. The center of
the spheres represents the position of each leaf sample for the evaluated datasets.
The sphere radius is given by the adaptive meanshift algorithm. The spheres
that are displayed with the same color compose the same leaf shape category.
The prototypes were the representative sample of each cluster discovered.

Table 2-1 reports the quantitative performance obtained by using different experimental set-
tings. In particular, two algorithms: meanshift and adaptive meanshift, and two distances:
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Euclidean and Euclidean plus whitening, which is similar to Mahalanobis distance [32]. This
was done in the following combinations: meanshift + whitening, adaptive meanshift + non-
whitening, and adaptive meanshift + whitening. As observed, the use of adaptive meanshift
and whitening resulted in the highest performance for the three explored datasets. High
values of F-scores were obtained for the three datasets. Figure 2-3 shows that the proposed
representation space locates nearby similar shape samples; additionally, the method was able
to separate groups of different species samples. Tables 2-2, 2-3 and 2-4 show the confusion
matrix for the evaluated datasets. In the test datasets, the emergence of leaf clusters was
evident. Finally, Table 2-2 reports the method recovered most of the ground truth categories
associated with the original species.

Table 2-1: Performance comparison between Mean Shift + Whitening (MS+W), Adaptive
Mean Shift + Non-Whitening (MS+NW) and Adaptive Mean Shift + Whitening
(MS+W). Table reports the mean ± 1 SD for each performance measurement
(F-measure).

Dataset MS+W AMS+NW AMS+W

TreeMew 93%±2.1 88%±3.5 97%±1.4

Clef30a 93%±1.4 90%±2.4 97%±1.4

Clef30b 91%±2.3 87%±3.8 92%±2.8

Table 2-2: Confusion matrix results for TreeMew dataset using adaptive meanshift plus
whitening. F-measure score 0.95.

.

Specie | group 1 2 3 4 5 6 7 8

Ilex aquifolium 14 0 0 0 0 0 5 1

Fagus sylvatica 0 20 0 0 0 0 0 0

Carpinus betulus 0 0 20 0 0 0 0 0

Juglans nigra 0 0 0 20 0 0 0 0

Populus alba 0 0 0 0 20 0 0 0

Quercus frainetto 0 0 0 0 0 20 0 0

2.3.2 Qualitative evaluation

The proposed method aims also to provide an interpretable representation of the discovered
categories. In the experimental setting herein proposed we considered species from six dif-
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Table 2-3: Confusion matrix results for Clef30a dataset using adaptive meanshift plus
whitening. F-measure score 0.97.

.

Specie | group 1 2 3 4 5

Populus nigra 30 0 0 0 0

Ulmus minor 0 30 0 0 0

Acer campestre 0 0 30 0 0

Platanus hispanica 0 0 0 30 0

Ruscus acuelatus 0 30 0 0 0

Janiperus oxycedrus 0 0 0 0 30

Table 2-4: Confusion matrix results for Clef30b dataset using adaptive meanshift plus
whitening. F-measure score 0.92.

Specie | group 1 2 3 4 5 6 7

Ficus acrica 24 0 0 0 0 0 6

Quercus petraea 0 30 0 0 0 0 0

Populus tremura 0 0 29 0 0 1 0

Cercis siliquastrum 0 0 4 26 0 0 0

Phillyrea angustifolia 0 0 0 0 30 0 0

Acer monspessulanum 0 0 21 0 0 9 0

ferent shape categories from the TreeMew dataset. Shapes can be described for the complete
leaf or their parts as described in Table 2-5. These shape categories were proposed using
the Hickey manual [60]. This manual contains high-level shape concepts related to shape,
margin, base, and apex. In order to reach high levels of interpretability some leaves were
selected from the morphospace to be shown on the representation space axis. For this, we
fixed equally spaced points on the axis and the closest sample to these points were shown in
the axis, as illustrated in Figure 2-4.

These projections show the morphological variability of the dataset along the main axis.
By examining samples in each axis, the shape features that discriminate the groups are
identified. As observed, the species with the same margin were closely represented on the
first principal component (PC1). Therefore, PC1 represents mainly high-frequency border
information that can be linked to these margins. Similarly, the second principal compo-
nent (PC2) groups species with similar blade shapes, which are projected to the vertical
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Figure 2-4: Representation space of leaf shape given by PC1 and PC2 for TreeMew dataset.
Each axis represents a principal component and shows its harmonics composite.
Different contour leaf samples projected from morphospace are shown under the
axis. As observed, the x-axis is linked to variations in the margin, while the
y-axis is linked to the blade shape.

axis from wide to thin form. More specifically, clusters related to species Carpinus betulus,
Fagus silvatica, and Ilex aquifolium are very close in the representation space, as shown in
Figure 2-4. Interestingly, these species also present high levels of similarity according to the
botanical manual, as observed in Table 2-5. On the other hand, species Juglans nigra and
Quercus frainetto are for each other, which can also be observed in the proposed representa-
tion space. In the ImageClef dataset, Figures 2-5 and 2-6 showed similar behavior in PC1,
corresponding to changes in the margin, while PC2 was related to the leaf width. This result
suggests that the method can be used to study margins and shapes simultaneously, resulting
in a rich representation.
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Table 2-5: Morphological description for the species used in each test group. This description
was obtained by using the Hickey manual [60]

Specie Shape Margin Base Apex

TreeMew:

1. Carpinus betulus Elliptic Dentate Rounded Convex

2. Fagus silvatica Elliptic Crenate Concave Convex

3. Ilex aquifolium Elliptic Serrate Convex Acuminate

4. Juglans nigra Oblong Entire Decurrent Acuminate

5. Populus alba Ovate Crenate Rounded Convex

6. Quercus frainetto Obovate Dentate Complex Complex

Clef30a Selection:

1. Populus nigra Ovate Crenate Convex Convex

2. Acer campestre Elliptic Dentate Convex Complex

3. Ulmus minor Elliptic Dentate Complex Convex

4. Ruscus aculeatus Elliptic Entire Convex Acuminate

5. Platanus hispanica Ovate Serrate Truncate Convex

6. Janiperus axycedrus Special Entire Complex Straight

Clef30b Selection:

1. Ficus carica Ovate Crenate Crodate Convex

2. Quercus petraea Obovate Dentate Convex Convex

3. Populus tremura Elliptic Crenate Convex Convex

4. Cercis siliquastrum Elliptic Entire Lobate Rounded

5. Phillyrea angustifolia Oblong Entire Decurrent Straight

6. Acer monspessulanum Elliptic Entire Cordate Rounded

2.4 Discussion

A new method for the morphological analysis of leaves is introduced. The method allows
the discovery of the categories of leaf shapes in an unlabeled dataset. These categories are
interpretable from the biological point of view. The method uses a harmonic representation
of the contours, a dimensionality reduction, and an unsupervised clustering strategy. The
results show that the strategy identifies categories of leaves related to concepts of margin
and foliar lamina. This strategy allows studying sample sets in which the categories are
unknown, which may appear in poorly studied biological scenarios.

Results in Table 2-1 show that the proposed approach may uncover the underlying shape
categories for different samples of unlabeled leaves, by using only leaf contour information.
In particular, the method provided high values of F1-scores (average 95%) in the tasks of
discovering previously known shape categories related to the species, by using only unla-
beled data. Despite the morphological variability of the datasets herein explored, which
includes different kinds of margin, base, and apex, see Figure 2-2 and Table 2-5. The scores
and confusion matrices indicate that most of the samples were assigned correctly to the
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Number of groups: 6
Radius factor:    1.000000
Experiment name:  clef30a

PC1

PC2

Figure 2-5: Representation space of leaf shape given by PC1 and PC2 for first Clef selection
dataset. Each axis shows different leaf samples projected from the morphospace
under its principal component.

original shape category. Importantly, no prior knowledge about specific shapes resulted in
these categories, in contrast to previous approaches that strongly rely on domain expertise,
for instance, particular categories of lamina shapes, as commonly found in botanic manu-
als [7, 60, 11], or individual landmarks located over the leaf border [71]. Importantly, this
expert knowledge may not be available for the description of unknown morphological sce-
narios [14, 95]. Therefore, the proposed approach is relevant for this kind of description.

In principle, in unknown biological scenarios, shape categories are not known beforehand
and may differ from ones used for known scenarios [29]. For instance, in the plant com-
munities in the tropical region, such as Páramos and Guyana Shield [13], for which recent
evidence suggests a high morphological variability and endemism. There are no botanical
manuals for these scenarios, and the existing ones are not from the region and probably
cannot explain the variety of forms. To discover these categories, we used a highly flexible
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Number of groups: 6
Radius factor:    1.000000
Experiment name:  clef30b

PC1

PC2

Figure 2-6: Representation space of leaf shape given by PC1 and PC2 for second Clef se-
lection dataset. Each axis show different leaf samples projected from the mor-
phospace under its principal component.

low-level representation space that captures biologically meaningful information about the
leaf border, in particular, its large and fine variations [13]. The proposed representation
exhaustively captured a broad set of lamina border variations in the Fourier harmonics, pro-
viding a rich morphospace to represent possibly unknown sample morphologies. We assumed
that leaves with similar variations in the border were close in this morphospace. Therefore,
shape categories associated with common morphological features are expected to emerge as
clusters. Results in Table 2-2 show that the clusters or shape categories identified in this
space, using only the available samples, coincide with the ground truth of shape categories.
Remarkably, these categories resemble known shape categories for different classes using
only endogenous information from the sample. To our knowledge, this result constitutes the
first evidence about the possibility of automatically discovering categories of the shape of
biological forms. Alternative approaches have been proposed to discover these categories in
natural images [52, 55, 129]; however, these approaches have not been explored yet for the
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discovering of leaf shape categories problem.

Low performance observed in F1-scores for some of the studied scenarios is linked to two
principal causes. First, a high level of morphological overlap among some of the original
shape categories. For instance, in the dataset Clef30a the species Ulmus minor and Ruscus
acuelatus have high levels of visual similarity, see Figure 2-7b, resulting in a single shape
category, see category number two in Table 2-3. Despite that, the proposed representation
was flexible enough to delimitate both categories properly, see curves in Figure 2-7b. Im-
portantly, the visualization considered in the model helps to localize and correct errors in
the final assignment of the sample category. Second, in some cases, leaf border information
was not adequately represented by the Fourier transform. For instance, this representation
did not correctly capture border information for samples in specie Populus tremura in violet
color in Figure 2-7a, probably because of the presence of high-frequency information in the
serrations [15, 50]. Further investigations may also consider alternative data representations
which account for these shape particularities [15, 50, 72].

(a) Error type 1 (b) Error type 2

Figure 2-7: Errors examples, in our approach, leaves with similar shapes form clusters. The
lines that appear from the leaf center show how these leaves are connected to
shape groups. In the left box (a), there are two groups, and in the right box
(b), there is one. However, on the left, there is a light green leaf that has a
shape similar to one group, but it is connected to another. In contrast, in the
right box, all the leaves are connected to the same group, but these could be
separated into two species by the violet and orange lines.

Figures 2-4, 2-5 and 2-6 show that common high-level concepts with biological meaning
emerged from the representation spaces obtained by PCA projections. Particularly, in the
PC1 axis, serrations change from left to right, from serrate margin to entire margin. While
in the PC2 axis, leaf shape changes from bottom to top, from wide lamina to narrow lam-
ina. Therefore, we conclude that the major axis relates to the lamina shape concept and
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the minor axis to the border serration. These high-level concepts represent explanations for
the shape categories discovered [60, 35, 11]. Explainability refers to a human-interpretable
description by which the method categorized a shape given a set of unlabeled images [33].
In this case, each discovered category is characterized by a particular combination of lamina
and margin shapes. The lamina and serration shape concepts are commonly used by ex-
perts to explain leaf shape categories, and they are fundamental for interpreting biological
variations [60, 35, 11]. These two factors are at the base of leaf descriptive systems of shape
categories, and they are commonly used for taxonomical classification, and leaf adaptation
to environmental conditions, among others.

In order to identify the possible factors associated with the obtained shape categories we
performed a posthoc analysis to identify. This kind of analysis is also used in other ap-
proaches, for instance, Procrustes and Fourier analysis [71], which consider a subsequent
interpretation step aimed to identify sources of variations [71]. In these analyses, experts
assign a meaning to observed experimental variations. For instance, correlating shape fea-
tures with known domain variables. Following a similar approach, we conclude that the
shape discovering method provides consistent explanations in biological terms, shape, and
margin, to the categories discovered. Future work may consider the automatic identification
of the concepts that determine the categories and not only rely on the interpreters’ opin-
ions. It is worth noting that previous approaches to category discovery do not consider the
issue of construction of biological explanations to support biological interpretations [55, 129].

In this work, a complex Fourier-based representation supported the feature description stage.
This transformation provides high levels of visual interpretability [115]. In our experiments,
the contours become invariant to geometric transformations, and they were also normalized
and centered, as in the Procrustes analysis, but without requiring any landmark. Unlike
other approaches to contour analysis, harmonics capture contour variability in the frequency
space. Therefore, our approach may serve as a tool to analyze this variability in leaves with
a different structure. For instance, the approach can be useful when the contours present
different lobular compositions, or in sessile leaves, which do not have petioles resulting in
open contours. This kind of description is essential also for the description of poorly studied
vegetation, as it happens in the high mountain Andean vegetation [13]. A three-dimensional
space obtained by PCA embedded the contour representation, and a non-supervised clus-
tering algorithm was used on this representation space to infer the corresponding shape
categories. The aim here was to reduce the dimensionality of the data in 3D space and
provide visualizations and interactivity with the samples in the representation space. As
Figures 2-4, 2-5 and 2-6 show, the leaves were distributed along with the representation
space forming dense groups. The distance between a pair of samples was related to their
similarity, and the direction between them revealed the particular feature that differentiates
them. When the biologist organizes the obtained sample in leaf categories [20, 76]. This
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representation allows both a visual representation of the shape information and a suitable
space to solve the category discovery problem.

The present work has some limitations. First, the proposed method uses only endogenous in-
formation on the leaf contour morphology to project the sample into a morphospace, suitable
to discover the shape categories. Future work may consider including additional informa-
tion related to the scientific question (for instance, precipitation), which helps explain the
sample’s morphological variability. This complementary information can be included, for
example, as an additional part of the feature vector that characterizes each sample. Future
work may also consider interaction with the experts to construct the richest morphospace,
enabling post-hoc verification and modification of the proposed categories according to the
expert knowledge. Second, increasing the number of categories may difficult the capacity of
the method to discriminate the underlying shape groups correctly. As illustrated in Addi-
tional file 1: Figure S3, when considering a reduced number of PCs, the shape categories
cannot be adequately discriminated, and more PCs should be included. Therefore, the in-
clusion of additional PCs should be considered when the complexity of the database increases.

2.5 Conclusions

In this work, we proposed a novel method to automatically discover shape categories from
the digital image of leaf samples by keeping high levels of visual interpretability of the shape
information. The method is based on a complex Fourier representation of the contour, which
is embedded in low-dimensional representation space. An adaptive clustering method with
whitening was used to discover the shape categories. The method was evaluated through the
task of predicting the shape categories associated with different plant species. Our results
suggest that the proposed method successfully discovers the plant categories by using only
leaf shape information providing high levels of visual interpretability.



3 Robust visual category system of
specific leaf shape traits

Abstract

Describing the leaf’s shape is critical for taxonomy, plant function understanding, and un-
veiling the vegetation adaptation mechanisms to environmental changes. Nevertheless, the
shape description of biological objects is challenging as it encodes multiple attributes from
genetics and the environment. Therefore, most leaf-shape characterization still depends on
experts’ knowledge. Significantly, these descriptions rely on visual category systems estab-
lished by experts in botanical manuals. These systems of visual categories group regularities
in shapes that humans perceive to explain leaf traits. These knowledge organization systems
are highly informative. However, they also have ambiguity and bias risks. This paper pro-
poses a novel approach for automatically discovering robust visual categories for different leaf
traits. The proposed strategy relies on morphospaces suitable for representing shape features
shared across particular leaf traits and a novel Topological Data Analysis based algorithm
for identifying robust groups of shapes in these morphospaces. Results suggest that this
approach automatically recovers visual categorical systems for six leaf traits, which highly
resemble those determined by experts in classical botanic manuals and visual categories as-
sociated with different species. Moreover, the strategy exhibits biological interpretability,
enhancing its value in botanical research. This approach represents a first step toward a
quantitative description of morphological variability from the visual categorical systems per-
spective.

Keywords: Novel category discovery, Unsupervised categorization, Leaf shape, Contour
analysis, morphological, Image processing, Topological analysis, Image classification

3.1 Introduction

Plant morphological traits and their relationship to the environment are essential in ecol-
ogy [90]. For instance, the shape of leaves directly influences the plant’s function, and it
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represents a robust indicator of its adaptation to the environment [91]. However, shape in
biology is complex as it encodes multiple traits resulting from genetics, environment, develop-
ment, and adaptation [80]. Likewise, the shape is an abstract concept that can be differently
perceived depending on the biological context and the expert’s perspective [90]. Recently,
biologists have warned that the available approaches for shape description cannot quantify
all the information a biological organism provides through its shape [3]. Although there are
several quantitative approaches for addressing the problem of shape description [29, 20, 116],
there is still a need for methods that exhaustively and effectively describe the abundance of
shapes exhibited by nature [3].
Traditionally, biologists have employed a qualitative approach for classifying shapes, often
referencing visual category systems from botanical manuals [3]. These manuals serve as
comprehensive resources, offering detailed descriptions, illustrations, and clear definitions of
botanical terms. They facilitate understanding and identification of various plant species
by visually representing plant structures, functions, and classifications [60]. For this reason,
they are extensively used in qualitative studies analyzing morphological variability in species
due to environmental factors by providing descriptors like color, size, texture, and shape [62,
80, 10, 120, 88]. Typically, botanical manuals, like the Hickey manual (a botanic reference
widely used to describe different leaf traits), structure knowledge around shared geometrical
features, relying on the concept of shape categories [60].
The ability to parse varying stimuli into discrete categories is a fundamental property of
human and animal behavior [60, 41]. The category notion represents a general simplified ab-
straction based on the regularities perceived in objects [67]. The category concept simplifies
the analysis process of highly heterogeneous phenomena [98, 41], as in the case of biological
object description. Therefore, categories constitute the foundation of many knowledge orga-
nization systems [64]. However, in the case of biology, it is only possible to have some of the
potential categories because of the high complexity and variability of the biological objects
of interest that prevents a global, totalizing, and complete analysis of them [8]. Therefore,
studies based on visual category systems have ambiguity and bias risks [31]. For instance, in
the Hickey manual [60], an expert differentiates the rounded class from the convex class be-
cause, in the first one, a “smooth arc” is discerned. This shape assessment is highly subjective
and may differ depending on expertise.
Alternatively, quantitative approaches can be used for shape description. These approaches,
for instance, describe the leaf shape as a sequence of points on the lamina contour and project
this silhouette to a so-called morphospace through a geometrical analysis method [116, 21].
The morphospace provides a quantitative representation of the possible form, shape, or
structure of an organism [3]. Furthermore, a distance measure can be defined for this mor-
phospace, allowing comparisons between objects to classify, categorize, or relate the results
to the quantitative description of genetic, evolutionary, and environmental features [3]. Nev-
ertheless, unlike botanical manuals, the quantitative methods for shape description focus on
the most general shape features, having the risk of missing additional information provided
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by experts [25]. In addition, these descriptions need more interpretability and explainabil-
ity [81]. For instance, these shape description strategies do not account for categorical
systems for grouping objects according to shared geometrical features the experts may un-
derstand [86, 87].

Recently, deep learning models have also been applied to discover underlying categories
in data [114]. These works focus on directly learning a morphospace from a large set of
samples and organizing objects into categories [23]. However, in these approaches, the control
over the morphospace is minimal because of the non-linear back-box nature of the deep
learning architectures [130]. In addition, in these techniques, it is difficult to interpret which
traits resulted in the discrimination of the categories, a critical interpretability requirement
in the biological context [79]. Other strategies based on clustering [116] capture groups
of objects. But groups of samples proposed as categories by these methods need more
robustness to the expected shape variations exhibited by biological entities and also to the
outliers occurrence [116]. Therefore, a quantitative, automatic, and flexible approach is
required to describe the shape in different contexts, allowing the organization of biological
entities into categories, as is the case with botanical manuals and field guides. But at the
same time, these categories must be objective and reproducible enough to explain the shape
of any sample.

This work proposes a novel strategy for automatically discovering shape categories. In con-
trast to previous approaches for shape description, this approach allows quantitative and
qualitative shape descriptions for different leaf traits and considers robustness issues. The
proposed system relies on two main components. The first aims to represent the geomet-
rical information of various leaf traits in suitable morphospaces to describe relevant shared
geometrical features. The second component constructs a high-dimensional discrete combi-
natorial structure of similarities between samples. This structure codifies relationships in
multiple neighborhood scales among samples in the morphospace, from which robust cat-
egories emerge. Compared with related methods, the proposed approach provides a high
degree of interpretability of the results in morphological terms through a dendrogram that
reveals the dynamics of the formation of visual categories and quantifies the similarity re-
lationships at the level of samples, groups, and visual categories. Results suggest that the
proposed approach is highly effective in automatically discovering visual categories of leaf
shapes when comparing them to the ones defined by experts, using only endogenous shape
information and no annotated data. In addition, results show that it is possible to establish
a taxonomy of shape groups according to the highlighted shape feature descriptions. Re-
markably, the results extended up to six different types of leaf traits. These results suggest
that many studies of morphological variability can be automatized, helping to advance in
taxonomy, systematics, recognition of new species, and morphological changes caused by
global warming [80, 10, 120, 88]. Furthermore, the proposed methodology for discovering
categories may apply to other areas of knowledge.
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3.2 Related Work

Two approaches are the most widely used in the quantitative description of biological shapes:
the geometric approach and the analysis using contour basis functions [3]. Furthermore,
techniques for dimensionality reduction are also usually applied after the representation
stage, followed by clustering methods to group the samples [29].
The geometric approach uses a set of landmarks to define the shapes to be analyzed and looks
for the geometric transformation that minimizes their differences [1]. This strategy has the
advantage of being strongly linked to the research question and therefore provides a high level
of interpretability of the results [127]. For instance, geometric approaches allowed to identify
genetic markers associated with specific shape characteristics such as serration or lobulation
based on Procrustes analysis [1, 106, 43], as well as studying the relationship between genetic
variability and morphological variability [131, 54, 19, 26, 27]. However, this approach has
significant expert intervention and requires a high level of precision in the location of the
landmarks. In addition, in some studies, it is not possible to replicate the complete set of
reference landmarks in the whole sample [3], limiting the study scope. Furthermore, the
level of specialization in the landmark definition and location also constraints the analysis
scope [3].
Quantitative and automatic methods, which use a family of basis functions to construct the
morphospace, can operate on extensive collections of leaf samples. The most commonly used
approach for analyzing various leaf shape features is the elliptical Fourier transform [68]. Re-
searchers have used the elliptical Fourier for taxonomic or systematic studies [30, 94] and the
automatic identification of genus or species [126, 85]. However, this representation is limited
to closed contours and does not provide information about the geometric correspondence
between points. Alternative approaches use more elaborate quantitative representations
or machine learning, followed by a clustering technique to classify or categorize the ob-
jects [73, 3, 74, 4]. However, using more complex representation methods may restrict the
interpretability of the results.
In general, the category discovery problem has been explored in two ways. The first approach
aims to discover visual categories for automatically classifying objects in natural images
without annotations [69, 38]. The second, more recent, use deep clustering to generate a
learned representation space from the samples. This last approach defines categories using
semi-supervised learning, in particular, an auto-encoder architecture and a simple clustering
method such as k-means [63, 78, 121, 56]. However, while the learned morphospace obtained
by this method may produce good results in the grouping phase, it is difficult to identify
which traits of the shape establish the groups. Previous work proposed the adaptive mean-
shift algorithm in the morphospace for discovering the underlying categories of an unlabeled
subset of any samples [116]. However, the method is susceptible to outliers and may fail
with inter-cluster samples. Moreover, the categories resulting from these methods need to
be more robust for noisy experimental scenarios.
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In summary, the detailed shape description performed by experts is mainly performed qual-
itatively by comparing samples with graphical models defined in the manuals, commonly
organized as visual categorical systems. In addition, there are quantitative approaches for
describing the shape. However, these approaches do not discriminate the shape features to
generate the categories or must be more robust to face the biological variability expected
from field samplings. Therefore, a quantitative approach is required to build robust visual
categories for different shape traits.

3.3 Materials and methods

Fig 3-1. shows the category discovery process. The method starts with a dataset of leaf im-
ages without annotations and generates a set of robust interpretable visual shape categories
representative of the sample for different leaf traits.
The process begins by binarizing the image and segmenting the leaf. Then, an algorithm for
extracting the petiole also helps characterize different leaf parts, for example, the apex, the
base, and the leaf body. The leaf contour is then extracted and interpolated for different
contour sizes. The expert may decide which leaf traits will be used to find the robust
categories. Then, particular shape representations are applied depending on the leaf trait
to be characterized. These shape features are projected to the corresponding morphospace.
Following this, the Principal Components Analysis (PCA) method reduces this morphospace
to three dimensions, improving the interpretability of the categories to be discovered. Then
a simplicial complex codifying neighborhood relationship of shape among samples is built
in the morphospace. Connected components of this simplicial complex are filtered out to
characterize highly cohesive groups of samples. Next, the groups that most persist across
different neighborhood scales are determined and defined as robust categories. Finally, a
dendrogram codifies the dynamic of the discovery category process from the sample.

3.3.1 Data and reference visual categories

There are several public leaf datasets available to study plant morphology, which can be used
for exploring the shape category discovery problem. In particular, we selected the Image-
CLEF2012 [48] and the TreeMew datasets to study the problem and compare performance
with a baseline category discovery method [116].
The ImageCLEF 2012 dataset has been widely used in leaf classification experiments and has
the appropriate conditions to evaluate the performance of the proposed method. This dataset
provides a good-quality image collection of developed leaves (adults) with one specimen
per image. Additionally, the dataset has sufficient images per species to allow multiple
experiments. In particular, the dataset contains 11.572 images organized into 115 species,
of which 57% are scanned, 24% photos with controlled backgrounds, and the remaining 19%
are photos in natural environments. We selected up to 49 species with 50 or more specimens
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Figure 3-1: Process for the discovery of leaf shape categories. The process starts with im-
ages from an unannotated leaves dataset. The first step extracts the silhouette
from the image resulting in a binary representation of the leaf. Then, an algo-
rithm segments the petiole, dividing the silhouette into apex, base, and petiole.
Once the expert selects a part of the leaf, the method extracts the contour,
i.e., the leaf trait for which categories should be discovered. The next step is
to extract specific traits to generate the morphospace. Then, a combinatorial
structure (similarity graph) codifies sample neighborhood relationships. Finally,
the categories returned by the method correspond to the groups with the highest
persistence when the neighborhood changes, i.e., the groups that do not change
for different neighborhood sizes. Finally, a dendrogram shows the method’s dy-
namic.

in this dataset for the experiments. In addition, the images are annotated with taxonomy
(genus and species), spatial location (latitude, longitude, altitude), locality, and date.
The proposed method aims to discover a set of shape categories in unlabeled samples. To
provide quantitative results about the expected performance in the category discovery task,
we performed different experiments to identify the categories emerging on samples from
related leaf traits labeled in predefined shape categories. The method only considered the
sample leaf trait shape and aimed to discover the underlying shape categories.
Therefore, in addition to selecting the data for conducting leaf species discovery experiments,
setting a reference system of shape categories is also necessary. For this, the Hickey manual
was used [60]. This manual offers a comprehensive and detailed analysis of leaf contour
morphology. The manual was meticulously created by esteemed botanists with extensive
expertise in the systematics field, aiming to establish unambiguous and standardized termi-
nology for describing leaf forms. The manual provides categorized terms, visual examples,
and instructions for accurately describing contour characteristics. These manual reference
categories serve as a reference to evaluate the method’s effectiveness in distinguishing samples
into distinct shape categories.
In the first set of experiments, four categorical systems of shape defined in the Hickey
manual [35], specifically, apex shape, laminar shape, margin type, and base leaf traits, were
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taken. Fig. 3-2 shows the visual categorical systems used as reference. Next, following
the morphological definitions in the Hickey manual, several samples that accomplish the
description of each of the classes in Fig. 3-2 were selected and annotated.
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Figure 3-2: Visual categories taken from the Hickey manual [60] for category discovery ex-
periments. In columns, the different shape features were selected for contour
description. Composite figure with images taken directly from the Hickey man-
ual [60].

The second set of experiments assessed the method’s ability to discover the species of the
leaves from the morphological characteristics expressed by the shape. In these experiments,
it was assumed that the species were in the same categories. The full TreeMew dataset of
120 samples was used in the first experiment, and ImageCLEF 2012 with eight unbalanced
categories and 905 images were used in the second experiment. These annotated categories
were considered as ground truth for quantitative analysis.
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3.3.2 Leaf segmentation

The first step in the visual category discovery process is segmenting the leaf for each sample
in the dataset. The process of segmentation of the leaf and subsequent binarization of the
image is the same as that proposed in [116]. This method returns the binary image with the
silhouette of the leaf.

3.3.3 Petiole segmentation

Segmenting the leaf’s petiole is essential for extracting specific traits from the shape, partic-
ularly for segmenting the parts of the leaf, such as the apex, base, or leaf body. In addition,
the leaf body helps analyze the leaf’s general laminar shape, symmetry, margin, and lobation.

Before segmenting the petiole, the leaf is vertically aligned. More specifically, with the
help of PCA, the leaf midrib is aligned with the vertical axis. Once the leaf is aligned,
the cumulated profile, defined as the number of points that conform to the leaf’s interior
when intersecting with vertical lines, is computed, i.e., a sinogram of the leaf’s interior is
calculated [57], as illustrated by the blue curve in Fig. 3-3. To remove the high-frequency
variations in the profile, for instance, linked to serrations, the profile is normalized to the
zero-one interval, and a low pass filter is applied to smooth the curve, see the orange curve
in Fig. 3-3. Then, a gradient is calculated to detect sharp changes in the profile, which may
characterize different leaf traits, as observed in the green curve in Fig. 3-3. For identifying
the petiole, the method marks the initial points of the first (init point line) and the second
(inflection point line) positive slopes of the gradient curve, from left to right. These two
points define the segment containing the petiole. The apex (apex point) is indicated by the
initial point of the first slope, from right to left. The midpoint corresponds to the middle
between the inflection and the apex points.

3.3.4 Contour extraction

The contour extraction process aims to represent the leaf shape information as a vector of
two-dimensional points. These points are equidistant vertices from the leaf outline. The
number of vertices was set to 640. The Susuki’s algorithm extracted the leaf contour [109].
This algorithm takes the binary image, follows the border between the region and the back-
ground, and registers the pixel coordinates in an array. Finally, an interpolation algorithm
allowed the representation of the leaf contour with the same number of points. For this, the
algorithm constructs an equally spaced partition of the curve length to locate the vertices of
the contour.
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Figure 3-3: Method for segmenting the petiole. This strategy aimed to identify the divisions
that separate the leaf into three sections (right panel): petiole, base, and apex,
as shown in the right panel. On the left, the panel illustrates the petiole segmen-
tation process. First, the leaf is positioned horizontally, with the petiole at the
left. The cumulated profile (blue curve) corresponds with the number of points
that conform to the leaf’s interior when intersecting with vertical lines. The
orange curve corresponds to a smoothed version of the leaf profile. The green
curve corresponds to the derivative of this smoothed profile. For identifying the
petiole, the method marks the initial points of the first (init point line) and the
second (inflection point line) positive slopes, from left to right. These two points
define the segment containing the petiole. The apex point is indicated by the
initial point of the first slope, from right to left. The midpoint corresponds to
the middle between the inflection and the apex points.

3.3.5 Feature extraction

After contour extraction, particular representations were proposed to describe different parts
of the leaf, for which there is an interest in determining shape categories. These representa-
tions are similar to the ones commonly used in geometric morphometry [131, 94].
Ideally, to obtain categories that explain the underlying phenomenon in biological terms, the
morphospace must satisfy two properties [1]. First, samples with similar shapes should ap-
pear close by, and samples with different shapes should appear far away in the morphospace.
Second, the similarity relation in the morphospace must be maintained invariant to scale,
rotation, translation, and other geometric transformations of the samples [104]. Another
desirable property is that the density of the samples in the groups shows slight variation
across the morphospace. When a feature space satisfies these properties, it is referred as
contractive [104].
In research problems related to the shape of the leaves, shape categories can be obtained from
various parts leaf traits, such as the base, the apex, the petiole, the entire leaf, or the leaf
without the petiole. Complementary, specific shape features can be extracted for symmetry
categories, margin types, and lobation. In each case, specific representations to describe
these leaf traits are required to extract the representative features. The algorithms for com-
puting these representations receive a set of contours as two-dimensional arrays of points and
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construct particular morphospaces. The algorithms for computing specific representations
for different leaf parts are described below.

Shape representation

The proposed method categorizes the shape into closed (whole leaf) and open contours
(base, apex, or petiole). The feature extraction method uses a family of p-type functions.
The representation method is detailed in [116]. The first 50 p-type coefficients are selected
and then reduced to three dimensions using PCA.

Representation of the laminar shape

The representation selected to describe the laminar shape should be powerful enough to cap-
ture the different shapes, for instance, ovate, obovate, oblong, and elliptic among others [60],
but should also be able to discriminate among these different categories.
The algorithm allows representing the laminar shape features, for instance, the classes in the
Hickey manual ovate, obovate, oblong, and elliptic, among others. For this, a vertical profile
of the leaf is built. This profile consists of a series of values indicating the leaf’s width at
each vertical point. The series is analyzed with the wavelet transform [128], and 16 scale
coefficients covering the entire profile are selected. Then, PCA is used to reduce from 16
values to a three-dimensional morphospace.

Characterization of the leaf-lobes

This method is designed to represent the leaf-lobes features present in the samples. The
algorithm also uses a family of p-type functions to analyze the contour. Two contours are
reconstructed, one with the first six p-type complex coefficients and the other with the first 16
complex coefficients. Then, the point-to-point Euclidean distance between the two contours
is calculated, and a one-dimensional signal is obtained. The signal is also analyzed with
the wavelet transform [128], and gain 16 scale coefficients are selected that cover the entire
signal. Finally, PCA is used to project features to a three-dimensional morphospace.

Characterization of the margin types

The proposed algorithm is designed to represent the kinds of margins, such as dentate,
serrate, cuneate, and entire, among other shape categories. As before, the process begins
by representing the contour using a family of p-type functions. A contour is reconstructed
with the first 16 complex p-type coefficients (see Fig. 3-4 columns Harmonic(16)). Then,
the point-to-point Euclidean distance between the original and Harmonic(16) contours is
calculated, resulting in a one-dimensional signal (see column Shape distance to original in
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Figure 3-4: Extraction of margin-type features from the leaf contour. Each row represents
an observed Hickey category of margin type: A. Entire, B. Crenate, C. Dentate,
and D. Serrate. The sequence from left to right includes the original contour,
the reconstructed contour with 16 harmonics, the superposition of both contours
and a plot illustrating the point-to-point distance between them. The original
contour is depicted using a pattern of four colors, indicating different contour
parts, starting from the top contour point. In the distance plot, the segment in
the center corresponding to the petiole was removed. Part E shows a composition
of the distance curves for each category, note how each category exhibits a
distinct amplitude and distribution.
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Fig. 3-4). This signal is analyzed with the wavelet transform [128], and the largest 32 high-
frequency coefficients that characterize the margin variations are selected. Finally, PCA is
used again to reduce from 32 values to a three-dimensional morphospace.

3.3.6 Category discovery algorithm

The proposed algorithm synthesizes the information of samples in the morphospace as a
set of robust categories. For this, the leaf trait samples are represented by N points in a
morphospace of dimension d, with d the number of features describing each leaf trait, in this
case d = 3. Following Topological Data Analysis (TDA) [123, 24] strategies, the category
discovery algorithm constructs N balls of varying radii around each sample, as illustrated in
panel A at Fig. 3-5 to build robust and cohesive neighborhoods of similar shape, which are
defined as categories.

Defining shape neighborhoods

Each ball represents a shape neighborhood, i.e., the regions in the morphospace with similar
shapes to the sample in the ball center. Given a set radius (one per ball), two, three, or
more balls may eventually intersect. For instance, see the intersections of two balls (2 and
3) or among three balls (15, 16, 17) in panel A at Fig. 3-5. When the intersection among a
set of balls is not empty (see intersection of balls 2 and 3), there is a shared shape region in
the morphospace, indicating that the corresponding samples are similar in shape.
Complementary, the union of intersecting balls represents a region in the morphospace where
shapes are similar, i.e., the union of these balls forms a new neighborhood. For instance, the
union of balls centered at 2 and 3 (neighborhood 2-3), balls centered at 5 and 6 (neighborhood
5-6), and balls centered at 6 and 7 (neighborhood 6-7) configure three new neighborhoods,
as illustrated in panel A at Fig. 3-5. Following a similar reasoning, the intersection between
neighborhoods 5-6 and 6-7 is not empty. Therefore, the union of these two neighborhoods
configures a new neighborhood, particularly the union of balls centered at 5, 6, and 7.
Following this procedure, i.e., the intersection of neighborhoods for identifying commonalities
in shape, followed by their union for constructing novel neighborhoods, it is possible to
delimit regions in the space with a similar shape.
This strategy results in groups of samples with a similar shape. However, these groups
depend highly on the selected radii for the balls. For instance, when zero radii are selected,
each group corresponds to a single sample because all ball intersections are empty. In
contrast, for very large radii, for example, infinite, there is a single group containing all
samples because all balls intersect. Observe also how groups (and neighborhoods) change
when using a constant radius of 0.188 (panel A at Fig. 3-5) compared to a radius of 0.334
(panel C at Fig. 3-5).
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constant radius (0.188) density radius (variable) constant radius (0.334)

A B C

Figure 3-5: Comparison of balls of a constant radius with balls of radius dependent on the
density. The figure presents three graphs composed of components connected by
edges and triangles that rely on the radius of the balls. Connected components
belonging to the same group are displayed in the same color. In panel A, the
radius is small and constant for all samples. Note how the samples at the top
of the graph have a lower density. These samples may correspond to the same
category. However, with this radii selection they do not belong to the same
neighborhood. In panel C the radius is larger and constant for all samples. In
this case, the radii selection results in a neighborhood (violet) previously not
observed in panel A. However, notice how a small increase in the radius will
result in the mixture of orange and violet groups forming a single group, hiding
the existence of the violet neighborhood. When a constant radius is used, the
underlying assumption is that the samples have the same density in all groups.
However, if some neighborhoods have samples with different densities, this as-
sumption does not hold. In this case, using balls adapted to the local density
can improve the delimitation of the neighborhoods. The method considers a
large radius in regions of low local sample density, and a small radius in regions
of high density, to discover the clusters, as observed in Panel B. In this case, the
groups are more cohesive and robust to interclass samples.

Representing neighborhoods with simplicial complexes

In order to simplify computations, it is possible to characterize the neighborhood using a
discrete structure called a simplicial complex, which provides a combinational representation
of neighborhoods. A simplicial complex is a family of sets closed under subset operations.
Each set in the simplicial complex will correspond to a part of the neighborhood.
For constructing the simplicial complex, first, each ball is identified by its center, i.e., by
the index of the sample located in the ball center. These indices are included in the sim-
plicial complex as singletons, i.e., a set with exactly one element. Each singleton is called a
0-simplex. The union of two connected balls (with non-empty intersections) in the neighbor-
hood is indicated by a set containing the pair of indices of the two corresponding balls. Each
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set of two elements is an edge (connecting two samples), also called a 1-simplex. For instance,
neighborhoods 5-6 and 6-7 are identified by the 1-simplices {5, 6} and {6, 7}, respectively.
Importantly, these two neighborhoods share a non-empty intersection (the ball 6) that also
belongs to the simplicial complex, as the 0-simplex {6}. The complete set of 1-simplices is
also included in the simplicial complex. Following a similar idea, a set containing the corre-
sponding three-ball indices represents the union of three balls with a non-empty intersection.
Each set of three elements is a triangle (connecting with edges to three samples), also called
a 2-simplex. The 2-simplices are also included in the simplicial complex. Note that each
triangle contains the edges in the borders and samples in the corners, and by construction,
they are also part of the simplicial complex. For instance, the union of balls 15, 16, and 17
is represented by the 2-simplex {15, 16, 17}. A simplicial complex containing this simplex
should also include the 1-simplices {15, 16}, {16, 17} and {15, 17} and the 0 -simplex {15},
{16}, and {17}.
Therefore, when considering any subset of a simplicial complex, the resulting set is also in the
simplicial complex, i.e., the simplicial complex is closed under the subset operation. A similar
idea allows the representation of high-order intersections or interactions using high-order
simplices, such as tetrahedrons and their generalizations, the k-dimensional simplices [24].
Fig. 3-6 illustrates geometrically, with points, edges, and triangles, three different simplicial
complexes obtained when considering different sample ball radii. In these cases, the simplicial
complexes contain not only the triangles but also the edges conforming the triangles and the
corner points, conforming these edges.

Simplex dimension and cohesion

The dimension of simplices in the simplicial complex provides information about the level of
interaction or cohesion between constitutive samples. For instance, if a simplicial complex
contains three 1-simplices, for example, S1 = {∅, {A}, {B}, {C}, {A, B}, {B,C}, {C,A}},
the amount of interaction of samples is lower than for S2 = {∅, {A}, {B}, {C}, {A,B},
{B,C}, {C,A}, {A,B, C}}. Because S2 contains a higher order intersection between samples
{A,B,C}, i.e., these three samples have more in common, exhibiting a stronger similarity
relationship. In other words, samples in S2 have more interactions among them than in S1.
Similarly, if S3 = {∅, {A}, {B}, {C}, {D}, {A,D}, {A,B}, {B,C}, {A,C}, {A,B,C}}, then
samples in S3 have also lower cohesion than samples in S2 because this simplicial complex
includes an additional low dimension interaction {A,D}.
Importantly, evidence from experimental psychology suggests that the number of matching
features between samples influences the degree of similarity in a category [45, 111]. Therefore,
for defining categories, the level of cohesion in the simplices contained in the corresponding
simplicial complex that represents the neighborhoods will be considered an indicator of this
level of matching.
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Categories and robustness

The category discovery method aims to characterize highly robust groups. However, groups
of similar samples highly depend on selected radii. The proposed approach assumes that
shape categories correspond to robust groups to overcome this limitation. The method’s
definition of robustness draws on the TDA concept of persistence [24], which measures the
level of constancy of data’s topological features across various scales. Specifically, our strat-
egy seeks the most consistent number of groups, observable when the radii vary, i.e., the
persistence in the number of groups. In addition, the method also aims for the groups with
a minimal number of constituting samples q. This last requirement accounts for discoverying
groups with a representative number of samples. This parameter is problem dependent and
can be selected by experts.
For characterizing groups with high persistence, first, let’s assume that the radii of the balls
centered at each sample in the morphospace can be parametrized by a single value α, called
the filtration value. The notion of filtration value aims to capture the scale of the neighbor-
hoods. For this, the parametrization will be selected such that given two filtrations value
α1, α2 with α1 < α2, the ball parametrized by α1 will be contained in the ball parametrized
by α2, for each ball centered at each sample, i.e., the scale described α1 will be finer than
α2.
The parametrization can be obtained, for instance, by using a α > 0 as the radii for all
balls (for example, see panels A and B in Fig. 3-5). However, other parametrizations are
possible, as illustrated by Fig. 3-6, which shows a parametrization based on a filtration value
dependent on the sample spatial density. We recall that balls centered at each sample (red
balls in Fig. 3-6) are related to neighborhoods (union of intersecting red balls in Fig. 3-6).
It is worth observing that with this parametrization, the neighborhoods related to small
filtration values will always be contained in the ones associated with larger filtration values,
i.e., the neighborhoods related to fine scales will be contained in coarse scales.
With this parametrization, a particular filtration value will help to determine a specific
number of neighborhoods emerging at a certain scale. For instance, small filtration values
may link to many neighborhoods, as illustrated by the red balls emerging for α = 0.057 in
Panel A in Fig. 3-6. In other words, when considering finer scales, many neighborhoods will
appear. However, these neighborhoods are not necessarily groups because they do not have
the minimal number of samples, in this case q = 4. In contrast, medium filtration values like
α = 0.152 (Panel C in Fig. 3-6), α = 0.178 (Panel D in Fig. 3-6), and α = 0.26 (Panel E in
Fig. 3-6) will result in fewer neighborhoods, but some of them will contain enough samples
to be considered as groups. Finally, large filtration values will determine only one group, as
observed for α = 0.332 at Panel F in Fig. 3-6.
As observed in Panel B, the number of groups obtained from this analysis can be studied
as a function of the filtration value. For instance, the number of groups conformed by k-
dimensional simplices emerging when increasing the neighborhood scale size from fine to
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Figure 3-6: Groups emerging along different filtration values. The filtration value α deter-
mines the radii of spheres that are centered at each point in the morphospace.
Similar shapes are captured in neighborhoods composed of the union of inter-
secting balls. These neighborhoods correspond to sets with points (0-simplices),
edges (1-simplices), and triangles (2-simplices). Different filtration value result
in neighborhoods with different scales. Small filtration values, for instance, Panel
A, relate to fine-scale neighborhoods. Large filtration values, for instance, Panel
F, relate to coarse-scale neighborhoods. When the filtration value increases, the
scale of the neighborhoods also increases, and the number of groups emerging
at different scales can be studied, as shown in Panel B. Five specific filtration
values {A,C,D,E, F} are indicated by the vertical dashed lines. In state A,
many neighborhoods emerge, but only a handful of elements are interconnected,
and no neighborhoods contain enough samples to be considered as groups. In
panels C, D, and E, the same number of groups conformed by triangles emerge.
In Panel F, only two groups formed by triangles emerged. The method searches
the interval of filtration values showing the most consistent number of groups,
where each group conformed by k-simplices of high-dimension, i.e., the largest
persistent interval with the highest cohesion. The interval of filtration values
with the greatest persistence is highlighted in light red.

coarse, as illustrated in Panel B of Fig. 3-6, which shows the number of groups conformed
by lines (blue curve) or triangles (red curve). For characterizing robust groups, the method
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focuses on the interval of filtration values that provides the most persistent number of groups,
i.e., the largest interval of filtration values that always results in the same number of groups.
When high dimensional simplices constitute these groups, they are both highly cohesive and
robust across scales, then they are considered as categories. For instance, the light-red area
in Panel B of Fig. 3-6 shows the interval of filtration values for which the groups constituted
only by triangles showed the highest persistence number of groups. In this case, there are
four categories.

Computing neighborhoods for categories

The previous approach computes cohesive and highly robust neighborhoods. However, for
a set radius, the naive construction of the simplicial complex computing neighborhood by
evaluating all combinations of possible intersections can be computationally intractable even
for small samples. For instance, for 150 samples, there are more than half-million evaluations
to be considered only to determine possible triangles in an exhaustive test of intersections
of three balls.
For overcoming this problem, the proposed method precomputes the Delaunay triangulation
(DT) of the samples and filters this simplicial complex, keeping only interactions (simplices)
below a specific neighborhood scale, i.e., a particular filtration value. The DT is the simplicial
complex corresponding to the geometric dual of the Voronoi diagram (VD) [82, 6]. In this
case, the VD of the sample is a partition of the morphospace into regions close to each of
a given set of samples. Once this partition is established, it is easy to query which samples
are proximal in shape to a particular sample [36]. In particular, the ones connected by the
Voronoi partition containing the sample [36, 82]. Because of this property and the duality,
simplices in the DT relate proximal samples in shape, dramatically reducing the number of
interactions to evaluate [47].
The DT, as a simplicial complex, represents a particular neighborhood that connects all
samples. The aim is to remove some simplices of this simplicial complex to obtain cohesive
neighborhoods. A cohesive neighborhood is a subset of the DT, which is also a simplicial
complex, i.e., a sub-simplicial complex. For computing the sub-simplicial complexes corre-
sponding to categories, the method should filter out some simplices of the DT. For instance,
1-simplices connecting two samples whose distance is bigger than the sum of the two ball
radii should be discarded.
Additionally, the distance between two samples provides information about the neighborhood
sizes for which two ball samples have an intersection, i.e., the exact size for which an edge or
other high-order simplex may emerge. Therefore, to discard simplices in the DT is enough
to focus on the distances between samples because the neighborhood will eventually change
only for these distances. The advantage of this approach is that the number of distances to
evaluate is finite. Because these distances may provide information to filter out complexes
of the DT, they will be sed as filtration values.
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Fig. 3-6 shows the resulting neighborhood after discarding complexes from the DT using
increasing filtering values. In this work, the Euclidean distance was used. Note how small
filtration values filter most high-dimension simplicial complexes of the DT, keeping mainly
0-simplices (see Panel A at Fig. 3-6). In contrast, large filtering values (α = 0.178) result
in sub-simplicial complexes that resemble categories, see Panel D at Fig. 3-6). These sub-
simplicial complexes are further post-processed to obtain highly cohesive neighborhoods with
enough samples. For instance, four highly cohesive sub-simplicial complexes can be obtained
by removing the 1-simplex {0, 10} in Panel E at Fig. 3-6.
Finally, the distances between points are ordered increasingly to construct the so-called
persistence diagram (see Panel B at Fig. 3-6), which shows the number of highly cohesive
groups (for instance, edges or triangles) emerging for different filtration values. From this
persistence diagram, the largest persistence interval is computed (see the light-red area Panel
B at Fig. 3-6), obtaining the robust categories.

Non-uniform density

In an ideal scenario, all samples in the same category appear at the same location in the
morphospace. However, the biological sampling process and the morphological variability
may cause a non-uniform distribution of samples. In other words, for real-world leaf traits,
samples may have a non-uniform density [116]. Because categories depend on distances
among points, when the filtering value increases, some samples in the same category may
connect faster than others, as observed for samples 2 and 3 compared to sample 9 in Panel
A at Fig. 3-5, generating, for instance, incorrect categories. A factor that depends on the
local density adjusts the distances between points to compensate for this phenomenon.
More specifically, a kernel density estimation [124] with an exponential kernel function and
bandwidth of h = 0.5 provides the local density of sample xj as follows:

f̂(x) = δi =
1

Nh

N∑
i=1

exp

(
−(xj − xi)

2

2h2

)
(3-1)

with xi the i-th sample.
Next, local density factors δi and δj computed for two samples xi and xj modify the distance
di,j between samples resulting in a transformed space, as follows:

d
′

i,j =
di,j

fi + fj

with fi = 1/eδi a compensation factor. This compensation factor always increases the size
of the ball, but increases are larger for samples located in low-density regions. For instance,
suppose that a point i is in a low region density. Then local density δi is small, and the
corresponding compensating factor fi is large. Therefore, all distances to i (d′

i,∗) decrease
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compared to the original distances (di,∗), i.e., in the transformed space, the point i now is
closer to all the other points, which is conceptually equivalent to enlarge the size of the ball
around i in the original space.
Fig. 3-5 compares the filtering process using a constant radius (Panel A) and the proposed
scaling factor (Panel B). Note that in all cases, the size of the balls increased in the trans-
formed space (Panel B). However, increases were larger for samples located in low-density
regions compared to the high-density areas, for instance, in sample 9 (low density) compared
to 13 (high density).

Building taxonomies of visual categories

When the filtering value increases, different groups of samples or neighborhoods emerge.
The proposed method looks for the most cohesive and robust ones for defining categories.
Simplicial complexes representing neighborhoods at low filtering scales are always contained
in simplicial complexes at high filtering scales (see Panels A, C, D, E, and F at Fig. 3-6).
This is a consequence of the filtering process performed on the DT. Therefore, following this
nested sequence of neighborhoods, it is possible to track the construction process for the
different categories.
A dendrogram showing how the groups are combined when the filtering value increases
represents the category construction process from groups obtained by varying filtering values.
This dendrogram allows a qualitative analysis of the proposed categories [65]. As a result,
the selected shape trait displays which samples are most similar to each other as a taxonomy.

3.3.7 Experimental setting

The main objective of the evaluation is to compare the categories discovered by the pro-
posed method with the categories established by experts. The proposed method operates
unsupervised, receiving a sample and generating unlabeled categories. In order to assess its
performance, a weighted multiclass f1-score is employed [113].
Initially, an algorithm matches the expert’s categories with the categories generated by the
method. This match allows for a systematic comparison between the two sets of categories.
Subsequently, a confusion matrix is constructed, where the samples that do not match the
expert’s defined categories are assigned to X category. This approach ensures that all samples
are accounted for and assessed in the evaluation. Precision and recall are calculated for each
class to provide a more comprehensive evaluation. Precision reflects the accuracy of the
method’s predictions within a specific category, while recall measures its ability to identify
relevant instances within that category correctly.
The results are further weighted based on the size of each class to obtain the overall f1-
score. This weighted approach considers the varying sizes of the categories, providing a
balanced assessment of the method’s performance across all classes. Finally, the f1-score
serves as a valuable metric to quantify the similarity between the expert’s category system
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and the categories generated by the proposed method. This evaluation framework allows for
a thorough and objective assessment of the method’s effectiveness in discovering categories
without relying on expert labeling.

3.4 Results

This work proposes a novel robust shape category discovery approach for different leaf traits.
First, we report evidence that the proposed strategy may automatically recover well-known
categories of shapes for various leaf traits. Then, we compare the proposed method in the
tasks of species discovery, assuming that each species corresponds to a shape category. This
last task allowed evaluating leaf category discovery algorithms in previous works [116].

3.4.1 Discovering visual shape categories for leaf traits

Fig. 3-7 shows the dendrogram that summarizes the category discovery process in the apex
shapes. In particular, this figure shows how different apex-shape groups and categories
(vertical lines) emerged across different filtration values (vertical axis). The light-red area
in the dendrogram indicates the interval with the highest persistence: 0.35-0.52, i.e., the
one for which the number of categories was highly robust. For this interval, the proposed
method automatically identified six shape categories. Significantly, these categories resemble
the ones labeled manually, as observed in Fig. 3-8.
Dendrogram vertical lines in Fig. 3-7 indicate the emergence of different groups of shapes.
At the bottom, the figure also shows shape samples corresponding to each group. Similar
apex shapes constitute the categories when the filtration value increases. For instance, the
first two contours from left to right (labeled as 0 and 43 ) have similar shapes. Therefore,
the method join them, resulting in the first shape category. Similarly, the strategy combines
the following four contours (labeled as 6, 26, 56, and 55 ), resulting in the second shape
category.
Fig. 3-9 shows the number of the groups identified versus the filtration value for edges
(Panel A) and triangles (Panel B). This figure reports the persistence of groups formed by
samples connected with edges and connected with triangles for each filtration value. It is
worth recalling that the higher the dimension of the simplices conforming to the group, the
higher the level of interaction among samples. Therefore, the group constituted by triangles
is more cohesive than the group with edges. Fig. 3-9 highlights shaded areas with the most
persistent groups for edges (light-blue area) and triangles (light-red area). As observed, in
the case of groups conformed by edges, only two groups persist across filtration values, while
for triangles, six groups emerged. ix categories were chosen in this case as this number
provided the highest persistent value between edges and triangles, as observed in Panel C of
Fig. 3-9.
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Figure 3-7: Dendrogram describing the shapes of leaf apexes. This diagram organizes sam-
ples based on their respective leaf apex shapes. The horizontal axis shows the
characteristic apex shapes within each category, complemented by the number
of samples each shape represents. The vertical axis, on the other hand, reports
the filtration value. The diagram demonstrates the organization of leaf apexes
into groups and the specific filtration value at which they are grouped. Each
group’s size, denoted by the line’s width, indicates the number of samples within
it. The value at the side corresponds to the persistence level. A light red region
in the diagram indicates the groups with the highest persistence.

Fig. 3-8 reports the confusion matrix by comparing the resulting categories with the Hickey
manual identified manually in the dataset. As observed, the proposed approach automati-
cally recovered the original shape categories with an F1-score of 0.93. The method performed
satisfactorily in most shape categories with a 5% error rate. Purple values in the matrix
indicate these errors. In this case, retuse and rounded categories, which, as observed, are
highly similar, resulted in the highest error rates. Column X details the number of samples
per reference category; only 1.5% of samples were not classified. In addition, the method was
highly robust to class imbalance. For instance, the retuse category has more than three times
more samples than the complex category. However, the method performed appropriately in
both.
Fig. 3-10 shows the morphospace formed by the first three principal components of the
shape features used to describe the apex trait. A point in this space represents each leaf
apex sample. The colors of the points indicate the six categories of the apex shape used
as a reference, according to the Hickey manual. As observed from the sample distribution,
categories can be recovered despite the differences in density and the varying number of
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Figure 3-8: Confusion Matrix for the apex shape. This matrix compares the similarity be-
tween Hickey and the categories discovered by the algorithm. Rows show the
apex shape categories from the Hickey manual [60]. Columns show the categories
discovered by the proposed method. The contour of the most representative sam-
ple is shown as the column header. The column Total indicates the number of
samples per category used in the experiment.

samples per category. In addition, this figure also illustrates the role of a proper shape
description. For instance, the complex category resulted highly separated from the other
shape categories (see PC2 vs. PC3 and PC1 vs. PC3), indicating that the proposed shape
representation clearly distinguishes this category shape in the feature space. Furthermore,
the figure shows how the category of straight can be eventually divided into two groups (see
PC1 vs. PC2 and PC1 vs. PC3), potentially indicating the existence of subcategories within
this class. Additionally, some samples of the retuse category are mixed with the ones in the
rounded category, suggesting some overlap in the feature space between these classes and
explaining the results in the confusion matrix.
Fig. 3-11 reports the margin (top panel) and the base leaf (bottom panel) traits’ category
discovery process. As before, the feature space and the dendrogram show how the categories
emerged and illustrate some examples. At the same time, the confusion matrix compares
the shape categories discovered by the proposed method against those used as a reference
from the Hickey manual. The top panel in the figure summarizes the shape margin cate-
gories in the sample suggested by the algorithm. The corresponding distribution of points
in the morphospace reveals that two groups may emerge in this sample. However, as ob-
served, samples likely related to entire and crenate categories mixed, as did the samples of
dentate and serrate. The dendrogram confirms this observation, showing how samples with
similar margins conform to the groups. The dendrogram also shows how groups’ margins
are distributed from most serrated to most entire. The confusion matrix shows that these
categories were mixed, which explains the F1-score of 0.65. Nevertheless, the matrix results
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Figure 3-9: Number of identified groups across filtering values. Panel A shows the number
of groups connected by edges for different filtering values. Panel B shows the
corresponding number of groups connected by triangles. In both plots, the area
representing the longest persistence is highlighted. Panel C displays the highest
persistence value for both edge groups and triangles. In this case, 0.52 as the
filtration value yields the most persistent value among triangle groups, resulting
in six apex-shape categories.

are consistent with the morphospace distribution, indicating similarities in the feature space
of these categories.
Fig. 3-11 at the bottom shows the shape category discovery results for the leaf base. The
dendrogram shows how the groups were formed and mixed at different times. This dynamic
nature of the groups’ formation makes optimal category discrimination particularly chal-
lenging. In this case, the dendrogram revealed the existence of six distinct categories out of
eight proposed by the Hickey classification scheme. Notably, two categories identified by the
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Figure 3-10: The morphospace generated from the features extracted from the leaf apex
shape. Each point in the plot represents a selected sample leaf for this exper-
iment. The colors of the points correspond to the manually annotated classes
obtained using Hickey’s manual. A shape sample for each group is shown close
to the discovered groups. The morphospace is generated based on the princi-
pal components (PC1, PC2, and PC3). Different groups of forms emerge in
distinct regions within the morphospace.

dendrogram belong to the same class, as shown by their proximity in the dendrogram.
Furthermore, the confusion matrix shows that three similar classes cuneate, complex, and
decurrent merged, as also were rounded and convex classes. This decision likely was based
on the observation that these shapes are highly similar, making it difficult to distinguish
them. Significantly, the other categories were recovered satisfactorily.

3.4.2 Discovering species as categories

Fig. 3-12 shows the results in the task of species discovery, i.e., unsupervised classification
of leaves of the same species. This task implies discovering the proper categories and then
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Figure 3-11: Category discovery for margin and base. The top panel shows the categories
discovered for the margin. The bottom panel shows the categories discovered
for the base. Dendrograms (panels at A) represent the category discovery pro-
cess across different filtration values. The light red area identifies the categories
identified as the most persistent groups. Panels at B show the distribution of
samples in the morphospace, where the colors indicate the ground truth cate-
gory along with a representative sample. Panels at C show the results of the
confusion matrix and the F1-score. The original categories are in rows, and
the identified categories are in columns.

categorizing each sample correctly. The figure shows the results for eight species in the
ImgeCLEF2012 dataset at the top panel. As observed, initially, the dendrogram suggested
the existence of five shape categories or species. However, the dendrogram also highlights
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a light-blue area with seven groups. When comparing the results of discovered species
with the reference species, the method can successfully recover all species, as seen in the
dendrogram’s light-blue shaded area. The high persistence area has seven lines, one for each
species, and the left line corresponds to the mixture of two similar species. The confusion
matrix confirmed this result, with six columns associated with one species and column C
with the two remaining species. Only 5 of 905 samples were labeled as another species, and
less than 8% (Column X) needed to be labeled for a F1 − score = 0.82, which shows high
performance in the species discovery task.
Fig. 3-13 shows at the bottom the species discovered for a second dataset with 20 samples
per species distributed in six species. In this case, the dendrogram shows that all species
are connected almost simultaneously and remain so for a long interval of the filtration value.
The quantitative results show perfect performance in the species recovery task and high
visual similarity across species.
Finally, Fig. 3-13 summarizes all the shape categories discovered for the complete set of leaf
traits studied. As observed, the proposed method correctly identifies most shape categories
manually marked in the datasets for very different leaf traits and also for different species.

3.5 Discussion

This paper proposes a novel approach for automatically discovering robust visual categories
present in a sample of leaves. In contrast to previous works focused on leaf blades [116], the
proposed strategy allows characterizing categories of shapes for other leaf traits, including
apex, bases, and margins. The proposed approach successfully described visual categorical
systems of shapes that highly resemble those independently identified by experts in classical
botanic manuals, as observed in Fig. 3-13. The strategy relies on two main components:
first, a set of morphospaces suitable for representing shape features shared across similar leaf
traits, and second, a TDA-based algorithm for identifying categories of shapes in these mor-
phospaces. The computational strategy considers two properties humans use to define cate-
gories: 1) high levels of cohesion among samples, i.e., a high number of matching features (see
Fig. 3-6), which affect subjective similarity [45, 111], and 2) the existence of robust neigh-
borhoods among samples belonging to the same category (see Fig. 3-6), compared to related
formal methods of categorization whose primary focus is similarity measurement [116, 101].
The strategy also accounts for the non-uniform distribution of samples in the morphospace,
expected for real-world sampling processes [5, 105]. Additionally, the approach is highly
interpretable [86], providing taxonomies for discovered visual categorical systems and in-
terpretable representations of these categories in the morphospace. Results show that the
proposed method may provide simultaneously qualitative (i.e., morphological features) and
quantitative (i.e., categorical systems) descriptions of leaf morphology, representing a new
alternative for both leaf shape description and knowledge discovery [127, 43, 120].
The discussion is organized into four parts. The first discusses the importance of defining
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Figure 3-12: Category discovery for different species. The top panel shows the categories
discovered for the ImageCLEF dataset. The bottom panel shows the categories
discovered for the TreeMew. Dendrograms (panels at A) represent the category
discovery process across different filtration values. The light red area identi-
fies the categories identified as the most persistent groups. Panels at B show
the distribution of samples in the morphospace, where the colors indicate the
ground truth category along with a representative sample. Panels at C show
the results of the confusion matrix and the F1-score. The original categories
are in rows, and the identified categories are in columns.

which specific shape traits will be analyzed as a fundamental part of the category discovery
methodology. The second section establishes the definition of category and group concerning
state of the art and describes the method of category discovery and its properties. The third
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Figure 3-13: Shape categories identified for different traits and species. Results for six shape
category recovery experiments are shown. The number of categories initially
identified, the number of categories discovered, and the F1-score are reported.
A reference image and the corresponding name are shown for each category
to be discovered in each experiment. A contour representation of the corre-
sponding recovered category is shown. The successfully recovered categories
are highlighted with a blue contour. In contrast, missing categories are de-
picted as gray contours with a arrow indicating the category to which they
were merged.
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section describes the elements that allow interpreting the results in biological terms. Finally,
limitations and future work are presented.

3.5.1 Importance of finding specific trait categories

Visual categorical systems in botanical manuals represent the gold standard tool for de-
scribing leaf shape and their traits. Plant experts widely utilize these descriptive systems
to characterize leaf morphological variability, conduct taxonomic classifications, and even
discover new species, among other biological description tasks [62, 80, 10, 120, 88]. These
systems are essential in agriculture and ecology as they facilitate plant species identification.
This task is crucial in agriculture for selecting and identifying the species that best adapt
to environmental conditions [26, 100, 106]. In ecology, these systems play a vital role in un-
derstanding biodiversity, plant-environment interactions, and the impacts of climate change.
Such understanding is instrumental in effectively conserving and managing ecosystems [3].
For instance, in a study for determining a new species, the expert consults visual categorical
systems on botanical manuals, books, online databases, and herbariums to communicate and
contrast a hypothesis. This work naturally has a high qualitative charge, such as qualitatively
categorizing particular leaf traits, requiring a high degree of training [9, 107]. However, the
expert should still account for quantitative description, aiming for objective measurements
that provide evidence supporting the underlying hypotheses [108]. Therefore, the shape
description process should be informative enough to enable communication and sufficiently
accurate to provide convincing evidence. However, current approaches to shape description
lack this harmonized view of qualitative and quantitative characterizations. The proposed
method represents the first step in this direction. In particular, the results show how start-
ing from non-annotated samples, it is possible to construct highly qualitative visual shape
categorical systems (see Fig. 3-7) that can also be quantitatively described (see Fig. 3-8),
conciliating both perspectives.
In addition, these qualitative and quantitative descriptions become increasingly more com-
plex with the expanding amount of leaf information resulting from automatization [61], the
increasing complexity of research questions [83], and the growing need for specialists [107].
Therefore, it is almost impossible to construct particular categorical systems to describe bi-
ological information for all different instance problems. Nevertheless, the results show that
with minimal prior knowledge and no annotated information in the sample, the proposed
system may automatically recover visual categorical systems similar to the ones offered by
experts. In particular, the results (figures 3-8, 3-12, 3-11, and 3-13) demonstrated that it
is possible to discover reasonably well the specific traits categories observed in the widely
used Hickey manual and the original species in datasets samples. Notably, the same dis-
covery strategy worked across six different leaf traits: base shape, apex shape, laminar
shape, and margin type, and two datasets with various species (TreeMew and ImageCLEF)
(see Fig. 3-13). These results confirm that it is possible to use computational approaches



3.5 Discussion 55

to automatize the task of proposing visual categorical systems across highly heterogeneous
biological settings, at least in the constrained domain of leaf morphology.
A critical aspect of a successful visual category discovery is the input-sample representation,
as illustrated in Fig. 3-11. Any categorical model assumes these inputs have some formal de-
scription [67], which define the morphospace [21]. These representations should capture the
shape commonalities configuring a category while distinguishing among categories. There-
fore, this work proposes particular representations accounting for shape differences in leaf
traits. As expected, the method’s effectiveness and degree of interpretability depend on the
quality of these representations. For example, the proposed approach showed difficulties
separating different margin types (Fig. 3-11), presumably because of the limited capacity
of the proposed representation to distinguish shape differences between margin categories.
In this case, the proposed representation could be refined [21] to obtain categorical systems
closer to the expert’s expectations. After determining a more suitable description, the cate-
gory discovery process can, for instance, be applied to other samples, decoupling the shape
description tasks from the identification of categories. This property could help to identify
potential new species.

3.5.2 Importance of defining robust categories

This work proposes an approach to generate robust categories from points in a representation
space (Fig 3-10). The notion of categories refers to a set of similar entities that are grouped
together [49]. These groups simplify our worldview, providing a high explanatory capacity
to the interpretations based on them [8]. For these reasons, the hierarchical organization of
existing objects furnished by categories represents a fundamental mechanism of knowledge-
building in biology, medicine, and other areas focused on complex phenomena description.
The proposed approach distinguishes between group and category. Like clustering ap-
proaches, this approach focuses on similarity to form groups. However, to define a cate-
gory, starting from groups based on similarity, three well-known concepts from topology and
computational topology are considered [24]: neighborhood, cohesion, and persistence. The
neighborhoods allow us to describe the extent of the closest points to each sample in the mor-
phospace, providing a well-grounded approach for defining similarity. This concept enables
us to characterize, for instance, more abstract (large filtration values) to more concrete (small
filtration values) groups, see dendrogram in Fig. 3-7, similar to the groups proposed in the
biological taxonomies [40]. Cohesion permits considering groups with many commonalities
among features, as observed in panels A and B in Fig. 3-6. This characteristic influences
the subjective perception of categories [45, 111]. Persistence measures how neighborhood
relationships among samples endure or survive across multiple scales or sizes of neighbor-
hoods [24]. This last concept provides a grounded alternative to define categories by looking
for the most persistent groups, see the light-red area in Fig. 3-7. Remarkably, in most cases,
the resulting groups characterized using these three topological properties coincide with the
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categories provided by experts (for instance, see the confusion matrix in Fig. 3-8). Most re-
cent works heavily focused on learning representations spaces using data-intensive strategies,
such as deep learning [23] or sensitivity to minor sample shape variations and outliers [116].
Nevertheless, to our knowledge, this work is the first to consider these three properties to
characterize groups as categories. The evidence highlights the importance of considering
additional properties that likely describe the category concept beyond the ambiguous notion
of similarity.
The proposed method is highly robust to non-uniform densities in the sample groups of the
morphospace. This non-uniformity may result from extracting feature samples with some
variability, as illustrated in Fig. 3-5. This variability may result from the sampling process,
for instance, when sampling leaves at different stages of development [42] or if samples are
affected by insects [18]. Estimating groups under non-uniform density conditions is a well-
established problem commonly faced in density-based clustering methods [89]. Nevertheless,
in the proposed approach, this non-uniformity may also affect the persistence of groups
and, therefore, the category discovery process [116]. The method considers a factor that
depends on the statistical density at each point and modifies the local neighborhood’s size
to compensate for the non-uniform densities in the morphospace. This factor enlarges the
neighborhood in high-density areas and decreases it in low-densities regions (Fig. 3-6). This
strategy allows the method to operate with any number of samples, overcoming the limitation
of class balance required by some clustering methods [75], as long as the groups have enough
samples. Introducing this compensation in the neighborhood size is also crucial because the
strategy would fail without information on how many samples each group had.

3.5.3 Results interpretability

It is worth recalling that the category concept underlying the proposed method goes beyond
the notion of group or cluster since it also accounts for cohesion and robustness based on
varying neighborhoods. Interestingly, these neighborhoods and the underlying representa-
tions also allow the method to reach a high biological interpretability level [86, 81]. For
instance, the neighborhoods configuring a category are easily interpretable in the proposed
approach, as illustrated in Fig. 3-7. This interpretability based on neighborhoods contrasts
with the lack of transparency of recent clustering approaches that learn non-linear represen-
tations from the samples to discover categories [23, 78, 121, 63], which are hard to interpret
by experts. In addition, the cluster concept can be intrinsically ambiguous because different
criteria for clustering data may result in different groups. For example, in principle, it is
not known which trait defines the categorization’s nature, and depending on the similarity
criteria’s extent, multiple groups can be obtained [102, 23]. The proposed approach still
relies on representation selection to construct the morphospace. However, compared with
previous proposals, our approach generates robust categories optimal across different scales,
compared to iterative methods that require the optimization of objective functions, which
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are not related to the biological nature of the problem [23, 38]. This is the case, for example,
of methods based on neural networks [130], in which the reasons for observing a particular
category may be obscure.
The proposed method provides highly interpretable groups and categories since the samples’
relationship depends on their similarity and cohesion (Fig. 3-6). In the proposed construc-
tion, two samples are directly connected if there is a connecting path in the underlying
simplicial complex. These paths also have an associated level of cohesion since they can be
edges, triangles, or higher-dimension structures with a higher dimension. Samples with a
high cohesion among them are characterized by identifying the dimension of the combinato-
rial structure. Importantly, to overcome the computational problem of comparing multiple
subsets of samples, the proposed approach restricts the exploration of possible interactions to
the connections part of the DT [47]. This restriction guarantees that the connection between
points performs through the contiguous neighborhoods. Furthermore, this triangulation also
decreases the method’s computational complexity because a point is only connected to its
immediate neighbors in this simplicial complex. This coherence in the similarity relationship
also helps improve the results’ interpretability.
The proposed approach provides high levels of interpretability from the results observed
in the morphospace and the dendrogram. For example, the morphospace projected to 3D
(Fig. 3-10) shows the samples’ distribution density and variability. This figure also shows
how the sample is organized for a specific neighborhood size, as seen in Figure 3-10. This
visualization allows us to understand how the groups are conformed, how cohesive they
are, and where the categories emerge. Additionally, the dendrogram (Fig. 3-7, 3-12, 3-11)
quantitatively and qualitatively shows the whole dynamics of the method through changes
in the size of the neighborhood. As observed, this approach explains how the groups appear,
for instance, when they merged, with which sample groups they merged, how many samples
each group accumulated, and the stability of each group. Remarkably, it is also possible
to discriminate which groups, subgroups, and categories emerged. All this information is
critical for knowledge communication.

3.5.4 Limitations and future work

The proposed approach can be extended in several ways. First, to increase the number of
categories that can be identified, it’s essential to consider new feature extraction algorithms.
While this study examined six categories, future work may explore complementary repre-
sentations. This exploration requires expanding the database to cover the requisite shapes
sufficiently with enough specimens. Second, subsequent studies may explore possible corre-
lations between the categories discovered with biological explanatory variables, for instance,
investigating which morphological traits correlate best with these variables.
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4.1 Contributions

The main contribution of this thesis is the proposal of a computational model to discover
objective, robust, and interpretable visual categories automatically. Unlike other automatic
approaches, this model does not require annotations in the sample and can find visual cat-
egories with minimal prior knowledge. This approach marks a beginning toward bringing
automated morphological descriptions closer to biologists, making them adaptable in their
workflow. The proposed model synthesizes results or knowledge into robust categories based
on the representation of the target trait. Therefore, biologists can formulate and test their
working hypotheses using a similar strategy established in geometric morphometrics [16].

The proposed model produces quantitative results, such as categories with their cohesion
and similarity values, as well as qualitative explanations, like data distribution in the mor-
phospace and the formation of groups and categories in the dendrogram. By merging both
perspectives, the model provides a comprehensive and insightful analysis.

By automating the categorization process, the model frees biologists from the laborious and
time-consuming task of manual annotations. This automation enables them to focus on
higher-level interpretations and hypothesis testing based on the generated visual categories.
The model’s flexibility allows it to adapt to different morphological features and research
contexts. Biologists can readily incorporate their expertise into the model, tailoring it to
their needs and enhancing its interpretability.

Furthermore, the model’s ability to provide quantitative and qualitative outputs bridges the
gap between objective data analysis and meaningful biological interpretations. This dual
perspective enriches the biologist’s understanding of shape variation and facilitates the in-
tegration of the automated approach into their current morphological studies.

The morphospace displays the distribution of samples (ideally using a reduced set of char-
acteristics) and their relative variability. At the same time, the dendrogram provides tax-
onomies tailored to the samples by hierarchically organizing them. Within the morphospace,
it is possible to introduce different variables for analysis, visualizing convex hulls alongside
the categories and observing their correlations [116]. This versatility allows for exploring
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relationships with external factors such as climate, ecology, soil characteristics, environmen-
tal pressures, and crop production [10]. These connections can explain and support global
warming, climate change, environmental adaptations, functional ecology, morphological vari-
ability, and more [90].

An important aspect is handling unclassified specimens, denoted as category ’X’ in the con-
fusion matrices [96]. These unique forms within the sample can lead to significant ecological
or biodiversity findings, such as discovering new species, identifying anomalies (diseases,
herbivory), and characterizing biodiversity [77]

This approach holds immense potential for advancing our understanding of complex eco-
logical processes and their connections to shape variations [122]. For instance, investigating
how climate factors influence morphological diversity or how environmental pressures impact
species adaptations can lead to valuable discoveries and contribute to broader environmental
and ecological studies [26].

It is essential to highlight that the method identifies the optimum as the highest persis-
tence at the specified level of cohesion. Unlike specific approaches such as deep clustering or
novel category discovery, our method avoids using iterative methods to optimize objective
functions that may not be directly relevant to the morphological description problem [63, 78].

Various approaches utilize the concept of category or propose the discovery of categories,
although a formal definition of this concept often needs to be provided. While researchers
commonly work with an intuitive understanding of what constitutes a category, there is, to
our knowledge, no formal definition that allows for systematic development based on this
concept.

In this study, we clearly define the visual category rooted in projecting a sample of elements
in a representation space: “a set of groups that persist at different scales and exhibit high co-
hesion.” This definition is supported by similarity neighborhood, element cohesion, cohesion
persistence, and non-uniform density in both space and groups, thus rendering the category
concept more robust than a cluster. Additionally, incorporating cohesion persistence ensures
that the identified categories are meaningful but robust and reliable across different scales.

On the other hand, the representation and category discovery components are independent.
The first component encompasses various algorithms that extract crucial features in the
analysis and generate a morphospace. In contrast, the second component solely relies on
a given representation space. This characteristic allows the method to be applied to mul-
tiple problems requiring category discovery by simply changing the first component. For
instance, in different contexts, it is commonly utilized for various purposes such as customer
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segmentation to enhance personalized services and marketing campaigns, social network
analysis to identify communities and behavioral patterns, anomaly detection for spotting
fraudulent activities, text clustering for topic analysis or content recommendation, and no-
tably, in medical image classification where interpretability is of utmost importance [125, 96].

Importantly, the main findings resulting from this work were also relevant for other catego-
rization tasks explored during this project. For instance, the study titled “Highly Seasonal
Aggressive Behaviors Link to Temporal Dynamics Shared Across Space” [117] aimed to iden-
tify categories of locations based on crime levels with a specific focus on seasonality. This
approach uses a representation of crime data based on spectrograms of different zones within
the city. The research explored the spatiotemporal patterns of aggressive behaviors. Subse-
quently, distinct categories of city zones exhibiting similar crime behaviors were established.
In addition, in work titled “Spatial-temporal patterns of aggressive behaviors: A case study
in Bogotá, Colombia” [118] constructed a comprehensive representation of crime by generat-
ing spectrograms based on the city’s zones. These spectrograms effectively characterized the
spatiotemporal occurrences of criminal activities across the urban landscape. This represen-
tation helped to identify and group city zones exhibiting similar patterns of crime behavior
into distinct categories.

In addition to the visual category discovery model, several original computational methods
are provided that can be applied to various tasks:

• An algorithm for leaf image binarization, enabling precise segmentation of leaves in
images captured from the front and under controlled backgrounds.

• A method for segmenting the petiole and leaf parts from a binary image, allowing for
more detailed analysis and characterization.

• A technique to determine a local density adjustment factor for scaling the neighborhood
size, facilitating the customization of analysis based on specific spatial requirements.

• Five distinct algorithms for extracting specific features from shape traits are employed
for comparison with the categories specified in the Hickey manual.

• An optimization method for connecting components of multiple dimensions through
Delaunay triangulation, enhancing data visualization and analysis.

• These innovative computational methods extend beyond the scope of visual category
discovery and offer valuable tools for tackling various challenges in botany and shape
analysis.

As a future direction, the inclusion of more algorithms for extracting specific features and
validation using appropriate representation space metrics should be considered. An alterna-
tive to fixed reference systems like botanical manuals is establishing a standardized library
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of algorithms recognized and endorsed by the biologist community for extracting and rep-
resenting morphological traits. While there is still much work to be done in automating
morphological description, this research is an initial step in bridging the gap between quan-
titative and qualitative aspects, allowing experts to engage in analysis and interpretation.
Nevertheless, collaboration with expert biologists is essential for this approach’s full poten-
tial.

The validation and refinement of this work should be pursued through close cooperation
with specialists who possess domain knowledge. Expanding the repertoire of feature extrac-
tion algorithms, the proposed model can cover a broader range of morphological traits and
address more diverse research questions. Validating the representation space through appro-
priate metrics will further enhance the model’s reliability and applicability, strengthening
its potential as a powerful tool for morphological analysis.

4.2 Conclusions

This work accomplished the objectives of developing a robust computational model for au-
tomatically discovering leaf shape categories while ensuring interpretability. The proposed
representation space and category discovery strategy allow for meaningful and reliable re-
sults, paving the way for new insights and discoveries in leaf morphology. The proposed
method successfully describes categorical systems that closely resemble those independently
identified by experts in classic botanical manuals. Furthermore, including a transparent
and interpretable explanation strategy enhances the model’s applicability and fosters col-
laboration between computational researchers and domain experts, fostering advances in
automated morphological analysis for various biological studies.

The foremost accomplishment was developing a computational model to discover leaf shape
categories automatically. This model employs state-of-the-art algorithms and techniques to
ensure accurate category discovery, proposing a suitable representation space tailored to the
specific characteristics of leaf traits. This representation space involved defining essential
morphological features that capture the diversity and variations present in the leaf samples.
By selecting a contractive representation space that maximizes the discrimination power of
these features, we improved the model’s ability to distinguish between different leaf traits
effectively.

One of the critical challenges in this research was to design a category discovery strategy that
would be both robust and objective. To address this, we implemented a novel approach that
does not rely on manual annotations in the sample data. Instead, our model autonomously
identifies visual categories, significantly reducing the need for laborious manual efforts and
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minimizing human biases. Researchers can gain insights into leaf shape’s underlying pat-
terns and structures by leveraging this approach. Identifying such categories offers a deeper
understanding of the diverse morphological variations in the leaf sample, which is crucial for
ecological studies, taxonomic research, and understanding the adaptability and biodiversity
of plant species.

Transparency and interpretability are paramount when dealing with complex computational
models in scientific research. Therefore, we meticulously designed a strategy to explain the
shape categories discovered by our model in an interpretable way. The model produces
quantitative results, such as cohesion and similarity values for each category, and qualitative
explanations, including visual representations of the data distribution in the morphospace
and the formation of groups in the dendrogram. This comprehensive analysis allows biolo-
gists and researchers to effectively understand and validate the categorization results. Unlike
traditional methods that may produce abstract or complex categorizations, this approach
generates visually interpretable categories, facilitating a more straightforward interpretation
and communication of the results.

The method’s versatility and ability to automatically discover meaningful visual categories
make it a powerful tool for various applications beyond botanical research. Its potential
applications extend to fields such as pattern recognition, computer vision, and artificial in-
telligence, where visual categorization plays a crucial role.

4.3 Limitations

The limitations of this work highlight specific areas that can be further explored and ex-
panded upon in future research:

• Limited number of analyzed traits: The study is restricted to investigating only
five leaf shape traits. Expanding the analysis to include a more extensive range of
morphological characteristics can offer a more comprehensive understanding of leaf
diversity and give researchers a broader scope for their investigations. Exploring ad-
ditional traits can unveil hidden patterns and correlations that may contribute to a
deeper understanding of plant taxonomy and adaptation.

• Controlled sample background: The model’s current limitation to receiving leaf
samples with controlled backgrounds may restrict its applicability to real-world sce-
narios. Future research could explore integrating images with natural backgrounds,
which better emulate the complexities encountered in ecological settings.
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• Limited sample types: The model’s testing has been conducted solely using individ-
ual images of complete leaves, neglecting the analysis of leaflets. Including leaflets in
the study can provide insights into the variations within compound leaves, contributing
to a more comprehensive understanding of leaf morphology in diverse plant species.

• Focus on shape traits: While the current model successfully analyzes shape traits,
it does not encompass venation patterns. Developing specialized algorithms to extract
and analyze venation characteristics can overcome this limitation.
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