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Abstract

The use of traditional models such as the modified Debye-Hiickel model, the Pitzer model, MSE (Mixed-
Solvent Electrolyte), or e-NRTL (Non-Random Two Liquid - Electrolyte) for predicting colligative ef-
fects in the Water + NaCl system is challenging. While these models have shown good results in terms
of predictions, their statistical and computational implementation has required significant effort. On
the other hand, certain Machine Learning algorithms have been studied for phase equilibrium pre-
diction in systems with dissolved electrolytes. In this study, the implementation of three Machine
Learning algorithms (Neural Networks, Least Squares Support Vector Machines, and Regression Deci-
sion Trees) was evaluated for predicting the decrease in melting temperature and saturation pressure
of the Water + NaCl system. The results were compared with the prediction provided by an empirical
variant of the Debye-Hiickel model. Zero mean, normality, and residual independence tests were con-
ducted for all models to statistically evaluate the regression results. It was found that machine learn-
ing models have the potential to predict colligative effects in electrolyte solutions, particularly the
Regression Decision Tree model, which met all the assumptions studied for both effects and proved
to be a reliable prediction tool. Finally, it was demonstrated that computationally, the implemen-
tation of machine learning models was straightforward, and their implementation for new studies in
property prediction is a promising research area.

Keywords: Prediction, Colligative effects, Cryoscopic effect, Boiling point elevation, Water + NaCl, Empirical
models, Debye-Hiickel model, Machine Learning, Neural Networks, Least Squares Support Vector Machines,
Regression Decision Trees, Electrolyte solution, Melting temperature, Saturation pressure.
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Resumen

El uso de los modelos tradicionales como el modelo modificado de Debye-Hiickel, el modelo de Pitzer,
MSE (Mixed-Solvent Electrolyte) o e-NRTL (Non-Random Two Liquid - Electrolyte) para la prediccién
de los efectos coligativos del sistema Agua + NaC es dificil porque aunque han tenido buenos resulta-
dos en términos predicciones, su implementacién de forma estadistica y computacional ha requerido
diferentes esfuerzos. Por otro lado, se ha estudiado la aplicacién de algoritmos de Machine Learn-
ing para la prediccion de equilibrios de fase en sistemas con electrolitos disueltos. En este trabajo se
evalud la implementacién de 3 algoritmos de Machine Learning (Redes Neuronales, Maquinas de So-
porte de Vectores de Minimos Cuadrados y Arboles de Decision de Regresién) para la prediccion de la
disminucién en la temperatura de fusién y la presién de saturacién del sistema Agua + NaCl. Los resul-
tados se compararon con la prediccién dada por una variante empirica del modelo de Debye-Hiickel.
Para todos los modelos se realizaron pruebas de media cero, normalidad e independencia de residuales
con el objetivo de evaluar estadisticamente los resultados de regresion. Se comprobé que los modelos
de aprendizaje de mdaquina tienen potencial para la prediccién de los efectos coligativos de soluciones
de electrolitos; especialmente se encontré que el modelo 4rbol de decisién de regresién cumplio con
todos los supuestos estudiados para ambos efectos, y es una herramienta de precicién fiable. Final-
mente, se mostré que computacionalmente los modelos de aprendizaje automatico fueron sencillos
de implementar y que su implementacién para nuevos estudios en la prediccién de propiedades es un
area de estudios prometedora.

Palabras clave: Prediccion, Efectos coligativos, Efecto crioscdpico, Efecto ebulloscépico, Agua + NaCl, Mod-
elos empiricos, Modelo de Debye-Hiickel, Machine Learning, Redes Neuronales, Maquinas de Soporte de
Vectores de Minimos Cuadrados, Arboles de Decisién de Regresion, Solucién electrolitica, Temperatura de

fusién, Presién de saturacién.
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1 Introduction.

1.1 Justification.

The phase equilibrium models for electrolyte solutions are necessary for the design and thermody-
namic prediction in industrial processes such as chemical fertilizer production, crystallization, wastew-
ater treatment, reactive crystallization, azeotropic or extractive distillation, and liquid-liquid extrac-
tion [1]. There are many models of electrolytic solutions, but they are complicated, and it is difficult
to choose which one to apply. On the other hand, it is necessary to critically compare the performance
of the equations to predict the thermodynamic properties of electrolyte systems among themselves
and against experimental data [2]. However, although these problems date back a few decades, the
key points that currently hinder the application of these models are [3]:

+ To choose the experimental databases according to the model application.

+ Model comparison, since objective critical evaluations are rare and negative self-evaluations are
even rarer.

« Implementation of published models, as they often hide details.

+ Modifications or improvements lack proper justification and fail to distinguish between cause
and effect.

+ The need to consider multiple interactions between ions, which may require more complex
models.

Examples of these problems have been found when attempting to apply models such as the Pitzer
equation, MSE (Mixed-Solvent Electrolyte), or e-NRTL (Non-Random Two Liquid - Electrolyte). Fur-
thermore, calculating properties without resorting to the optimization of specific parameters is par-
ticularly error-prone. In fact, "all sorts of correlations have been described with non-trivial chemical systems,
but the chances of these being universally applicable are therefore as bleak as they were a quarter of a century
ago” [3].
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Artificial intelligence (Al), particularly machine learning (ML), can be as precise as current models using
available computational resources such as processors, virtual machines, and others. Various review
articles have been presented that include applications of Al/ML in chemical process engineering [4],
fluid mechanics [5], energy systems [6], smart cities [7], and structural health monitoring [8]. In the
field of petroleum engineering, some authors have demonstrated the validity of implementing these
tools [9-13], while in the specific field of chemical engineering, interesting findings have been made
on these applications [14-20]. However, to the best of our knowledge, the only ML application to the
water-NaCl system has been made using support vector machines for the simulation of freezing point
depression of the solution [21]. Therefore, it makes sense to pose the following research question: Is
it possible to filter and reduce data related to colligative effects in the Water + NaCl system using a
Machine Learning algorithm?

1.2 Hypothesis and objectives.

1.2.1 Hypothesis.

A Machine Learning model of the equilibrium data of the Water + NaCl system can predict its be-
havior, with statistical validity and with a prediction equivalent to that of the existing Debye-Hiickel
theoretical model.

1.2.2 General objective.

To develop a Machine Learning algorithm capable of filtering and reducing data related to colligative
effects in the Water + NaCl system.

1.2.3 Specific objectives.

- Represent the experimental data of the NaCl-water system with an empirical variant of the
Debye-Hiickel (DH) model.

+ To develop a computational reduction with ML capable of predicting the colligative effects of
the water-NaCl system and its phase equilibrium.

- Statistically evaluate the performance of the ML model to reproduce the experimental data and
compare it with the empirical model.
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1.3 Methodology.

A compilation of published data on the cryoscopic and ebullioscopic effects in the Water + NaCl sys-
tem was conducted to condense them into an empirical variant of the DH model. Data adjustment
was achieved through a process of minimizing residuals.

Three different machine-learning models were evaluated: neural networks, support vector machines,
and decision trees. The data used for training the ML models were exactly the same dataset used
for the empirical variant. The concentration of NaCl (Myx) was labeled as the input variable for the
cryoscopic effect, and additionally, temperature (T) for the ebullioscopic effect; and as the output
variables, melting temperature (T,) for the melting point prediction and saturation pressure (P5") for
the boiling point elevation prediction.

Initially, a preliminary reduction of the complete dataset for each of the effects was performed using
the four models under study. Pierce tests and Mahalanobis distance were used to filter outliers in
the DH model, and the Minimum Covariance Determinant test was employed for each ML algorithm.
Filtered data were used for the final model reduction and obtaining the presented results.

The validity of fitting processes for both the DH variant and ML models was assessed through residual
diagnostics. Similarity, tests for normality like Shapiro-Wilk and Anderson-Darling, Durbin-Watson
correlation, and the sign test for serial correlation were performed. Finally, graphs such as the QQ
normal probability plot, parity diagrams, and the model-data comparison graph were presented.



2 Methods and models

2.1 Debye-Hiickel model.

The first theoretical model of activity coefficients for electrolyte solutions was proposed by Debye
and Hiickel in 1923 [22]. It describes the behavior of the charged ions with the law of electrostatic
charges, allowing the prediction of measurable effects such as freezing point depression [23]. In its
original form, the Debye-Hiickel model is limited to the study of solutions at infinite dilution, but a
modified version including additional terms,

ol
ln(X1’}/1) = —U(mW>5MMX [1 — %|Z+Z_’ \/iO'(a\/i) + 3:| s (2'1)
can be applied to solutions with concentrations of practical interest [24]. Here the o function is de-
fined as
(x) L 1+ % In(+x) ! (2-2)
o(x) = = X ln(+x) — -
x3 14+ x

and the ionic strength is

Zz M; = mezn: vz’ (2-3)
i=1

where n denotes the number of dissolved ionic species. For instance, for NaCl, n = 2, and thus,
| = My, while the remaining terms are shown in Table 2-1.

In the particular case of the ebullioscopy effect the parameters a, o and ¢ of Eq. 2-1 were redefined
as follows,

a =a;+aT (2-4)

a = b1 + sz (2'5)
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Table 2-1: Aqueous NaCl parameters for the modified Debye-Hiickel equation 2-1 [24].

Parameter Symbol  Value Units

Molecular weight (mw)s 0.01802 kg/mol

lonic charges |2tz 1 -
Stoichiometric factor v 2 -
0= ¢+ CzT (2'6)

to improve the representation of the activity dependence on temperature (T).

2.2 Non-linear regression.

Most common regression models fit data to a straight line or a linear combination of independent
variables. However, a regression can also describe the relationship between variables with non-linear
functions, where the objective is the minimization of the sum of squares of the residuals (RES)

RES = ¢ (2-7)
i=1

to find, in an iterative optimization process, the values of the model parameters that best fit the ex-
perimental values. Where the residuals are defined as the difference between the observed values and
the values predicted by the model

€ :yiExp _inal' (2_8)

In fact, this technique has been used to determine the parameters of nonlinear models in the anal-
ysis of liquid-liquid equilibria or electrolyte systems, with good experimental predictions [25, 26].
Currently, different optimization algorithms are used for minimization processes, among those are
Newton’s method, BFGS method, or Levenber-Marquartd method, which has been implemented and
validated for structured nonlinear regression problems such as the settings performed in this work
[27].
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2.3 Machine learning.

Artificial Intelligence (Al) can be defined as the ability of digital computers to perform tasks that only
humans could do until now. In particular, Machine Learning (ML) is an area of Al that aims to give
computers the ability to "learn” a task without being explicitly programmed for it. Essentially, ML
is a way of applying statistics to estimate complex functions and also, albeit with less emphasis, to
obtain confidence intervals around them [28]. Machine learning is increasingly being used to predict
the behavior of complex nonlinear systems in fields such as finance, medicine, geology, and sensing,
among others. Machine learning algorithms, such as neural networks, decision trees, and support
vector machines can predict performance and discern patterns that characterize a system by learning
from data. They can also be used to model complex systems and automate the creation of analytical
models. Machine learning models can be computationally fast and easier to implement compared to
conventional thermodynamic models, for example in the prediction of clathrate hydrate equilibrium
in the presence of electrolytes [29].

The development of an ML model includes the four critical steps shown in Figure 2-1 with these in-
gredients [30]:

1. Database: a collection of experimental and computational results that can be used to train
and validate machine learning models. The quality of the data is a determining factor for the
proper functioning of the model, so sometimes it is necessary to perform a previous cleaning,
eliminating data that may be duplicated, irrelevant, or incorrect.

2. Descriptors: important data attributes used as inputs to the ML model. It is essential that the
chosen descriptors are relevant to the objective result and are not highly correlated with each
other.

3. Algorithms: mathematical models that predict a variable of a system based on other vari-
ables. They connect descriptors and qualitative and quantitative results, making their devel-
opment one of the most active areas in machine learning. They can be grouped into two main
categories: supervised learning and unsupervised learning. Supervised learning refers to using
labeled data (known inputs and outputs) to train a model capable of predicting future input
values (e.g., neural networks, Gaussian process regression, or support vector machines). Unsu-
pervised learning uses unlabeled data to train the model and classify input data with little or no
human intervention (e.g., k-means clustering, hierarchical clustering, Gaussian mixture model).
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Figure 2-1: A general process for developing a machine learning model [30].

Neural network (NN).

It is a model, inspired by the connection of brain neurons, that is used to generalize the relation-
ships that exist between inputs and outputs of a process. Classical neural networks are almost al-
ways presented as black-box models, fully data-driven, where the underlying principles of the model
are generally absent. However, despite this nature, neural networks have been widely used in process
optimization [31, 32], for the prediction of fluid properties of hydrocarbons, refrigerants, petroleum
fluids, ionic liquids, and alcohols [33, 34], and the prediction of molecular properties [35]. In fact,
neural networks have been shown to be universal approximates, due to their rich interpolation space,
and therefore are a useful and promising tool for approximating physical laws [36].

An artificial neural network (NN) consists of a network of connected nodes called neurons organized
into mutually exclusive layers, as shown in Fig 2-2. The first is named the input layer, and it defines
the independent variables of the network. The last one is named the output layer and returns the
output values corresponding to the specified input variables, or the dependent or predicted variables.
All intermediate layers are known as hidden layers [37].

In a Neural Network a neuron, shown in Fig 2-3, is a processing element that receives a set of input
signals X = xq, ..., X,, which are respectively modified by a series of synaptic weights W = wy, ..., w,,.
The values modified by the synaptic weights are summed up in what is called the net input. The output
of the neuron depends on what we call the activation function, which acts on the net input [38].
Transfer functions are typically linear
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Input Hidden Output
Layer Layer Layer

@_,

—O

Figure 2-2: Schematic representation of a neural network with 3 layers, one input with 3 neurons, one
output with 2 neurons, and one hidden with 4 neurons [33].

flx) = x (2-9)
in the output layer, and functions such as the sigmoidal hyperbolic tangent

B 2
_1—|—e—x

fx) —1 (2-10)
are used in hidden layers [39]. The setting of the number of hidden layers and neurons is commonly
done through trial and error. However, the number of neurons in the input and output layers depends
solely on the problem being investigated, and generally, those numbers are selected through opti-
mization [39-42].

Once the architecture of a neural network has been finalized, the selection of an algorithm to train the
model, i.e., to find the values of the weights that minimize the mean square error (MSE),

_' n
MSE = — e’ 2-11

is one significant stage of the optimization model. Although there are different algorithms to evaluate
the model during the training process, the Levenberg-Marquardt algorithm has proven to be very com-
petent, functional, with a high prediction capability, which makes it frequently used in the training of
NNs [43-46].
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Figure 2-3: Neuron of an artificial Neural Network [38].

Least-squares support vector machine (LSSVM).

Support vector machines (SVM) are a well-accepted strategy for obtaining an accurate relationship
between experimental data and the parameters of a particular mathematical problem [47, 48]. The
Least-Squares Support Vector Machine (LSSVM) is a modified version of the support vector machine
proposed by Suykens and Vandewalle [49]. This technique has been widely used for classification
problems such as regression, reducing execution time, and increasing adaptability to different practi-
cal cases [50].

A typical SVM scheme is shown in Figure 2-4, where input variables pass through functions called

kernels. The results of these functions allow for determining the hyperplane that best fits the data.
This procedure is carried out by minimizing the algorithm’s cost function, defined as:

1 n
Qussym = EWTW +Y Z e (2-12)
for the LSSVM model, where w, Y, and e, are the regression weight, the relative weight of the sum of

regression errors compared to the regression weight, and the error for n training targets, respectively.
The superscript T indicates the transpose matrix. Regression weight is written as

w = ZOéka (2-13)
k=1
and output as

Y =w'o(x) + b+ e (2-14)
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The feature map, the input vector of the model variables, and the outputs are connected by

Y—b

T+ (1/2) e

Q =

The training process of the LSSVM technique involves adjusting the weights (w;) and bias terms of the
prediction function using an optimization algorithm that minimizes the objective function [21]. The
kernel functions are essential for the performance of the technique and are used to project the data
into a high-dimensional space. The most commonly used kernel functions in LSSVM are [50-52]

+ Linear:

K(X,',Xj) = X,'XJ'. (2'16)

+ Polynomial:

K(X,'7XJ') = (X,’Xj + C)d (2'1 7)

forde N ¢>0.

- Gaussian (RBF):

2
K(xi, X)) = exp (M) (2-18)

27

Currently, more emphasis has been placed on Gaussian radial basis kernels (RBF) due to satisfactory
results with respect to the prediction of new values [9, 11, 12,47, 49, 53-55].
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Figure 2-4: Typical schematic of a support vector machine (SVM) algorithm [21].

The parameters that affect the accuracy of the LSSVM models are [53, 56, 57]:

+ The parameter C controls the margin violation penalty in the classification problem. The larger
the value of C, the more strictly the margin violations are penalized and, therefore, the better the
model fits the training data. This value is related to the first term of Eq 2-12 which corresponds
to the penalty for the norm of the weight vector w.

- The v parameter (Eq. 2-18) controls the shape of the Kernel function. A higher value of v
will result in a sharper Kernel function and thus a more complex model that is more prone to
overfitting. A lower value of  will result in a smoother Kernel function and a simpler model
prone to underfitting.

- The parameter e controls the tolerance of the loss function in the regression problem. If the
absolute error between the model output and the desired output is less than ¢, there is consid-
ered to be no error. A lower value of € will result in a model that is a better fit for the training
data.

The processes for the determination of the parameters in charge of the training of the model are gov-
erned by optimization decreasing the error of the adjustment [57].
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Decision tree regression (DTR).

Decision trees (DT) are classification methods used in data mining and machine learning that predict
the value of a dependent variable from given values of independent variables, as shown in Figure 2-5.
A decision tree classifies instances by descending down the tree from the root to some leaf node [58].
DT models are constructed using a hierarchical structure with multiple branches, the prediction task
involves selecting a suitable branch based on the input conditions. Upon making a decision, the infor-
mation passes onto the branches of the next level, and so on until the deepest level representing the
final response to the problem is reached. The depth of the tree serves as a parameter for refining the
model. Currently, several algorithms exist for training decision trees, which use the minimization of
metrics like information entropy within various decision groups. In the case of regression trees (DTR),
the metrics to be minimized correspond to the error between the experimental output and that ob-
tained by the model [59-62].

All decision trees have the following elements [63]:

+ Node: a position from which the tree will be split according to the independent variable and its
value in the data set.

- Edge: is responsible for displaying the decision directly from one split to the next node.

- Root: the first node where the first division takes place.

+ Leaf node: the final node that predicts the outcome of the model.
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Dependent variable: PLAY
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n Play n
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Figure 2-5: Illustrative diagram of a decision tree algorithm [64].

The two main aspects of algorithm attribute selection are:

- Gain of information: It is a method used to calculate the amount of information that a variable
provides for the classification of a dataset. This method is used to split the tree into branches,
based on the values of information gain, determined using a measure of impurity, which in the
case of regression is the mean squared error (MSE). The idea is to select the variable that mini-
mizes the MSE when dividing the dataset into two groups using that variable as a splitting node
[63]. The procedure to determine this aspect is as follows:

1. Calculate the MSE of the original data set.

2. For each available variable, calculate the MSE of the subsets of data obtained by splitting
the original set into two groups using the dependent variable as the splitting node.

3. Calculate the information gain as the difference between the original MSE and the average
MSE of the data subsets.

4. Select the variable with the highest gain of information as the separating node.

Once the splitting node has been selected, the process is repeated for the resulting subsets of
data, until the stopping criterion is reached, which generally corresponds to the tree depth or
minimum node size.

+ Gini Index: Measures the impurity or purity defined as
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G=1-) _p (2-19)

where p; corresponds to the ratio of the i class in the node [65]. This is used when creating the
decision tree algorithm, where small Gini index attributes are preferred over attributes possess-
ing a larger index. This parameter is calculated by the training algorithms and it is considered a
classification or regression error [66].

2.4 Statistical consistency.

Outlier identification.

In the literature, outliers have been defined as «measurements that differ significantly from the nor-
mal pattern of the observer’s data», although the reasons that can explain the occurrence of outliers
are fundamental to data management, the selection and rejection of these values are extremely im-
portant for obtaining statistically valid predictive models [67, 68].

Various tests were conducted, to evaluate the quality of experimental residuals and to identify any
possible outliers. Those tests have been used to improve models by measuring similarity in experi-
mental samples and eliminating repeated values in cement content prediction processes. Additionally,
it has also been used in biophysics studies to determine the importance of external features in statis-
tical learning of human organ interactions [69, 70].

One of the tests used is the Pierce test, which aims to determine which outliers can be removed from
the experimental data set. This testis based on the concept thatif a value is an outlier, then its removal
should significantly reduce the variance of the data set. The determination of outliers with this test is
implemented in the following algorithm [71, 72]:

1. Calculate the mean (x) and standard deviation (o,) of the dataset.

2. Determine the value of the statistic

R = exp (%(x2 — 1)) 0 (%) (2-20)

where 1) correspond to the error function and x* to the squared maximun error deviation.
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3. Evaluate
X — X (2-21)

4. Remove those x; such that
|x; — X| > Ro,. (2-22)

5. Repeatthe procedure by incrementing the number of suspects by 41 and recalculating the value
of R.

6. Recalculate the values of x and o, when no more suspects appear in the dataset.

Additionally, after determining the number of values to be rejected, the Mahalanobis distance measure
can be used to find the values that are furthest from the covariance structure. This test is carried out
through the following steps [73, 74]:

1. Calculate the mean (x) and covariance matrix (COV) of the dataset.

2. Calculate the Mahalanobis distance for each point in the dataset

D = (x; —X)'COV'(x; — X)
where x; is the feature vector of the i-th point.

3. Reject the number of outliers that have the largest distance from the determined structure.

Outliers canalso be detected using the Minimum Covariance Determinant (MDC) estimator, calculated
as the minimum determinant of the sample covariance matrix, and its Mahalanobis distance using the
following algorithm [75, 76]:

1. Select a random subset of h observations from the dataset.
2. Calculate the covariance matrix from this subset.

3. Calculate the Mahalanobis distance (Eq 2) for each point in the dataset with respect to this
covariance matrix.

4. Select the m observations with the smallest distances (where m = [n/2]).
5. Calculate the covariance matrix from the selected m observations.

6. Calculate the determinant of this covariance matrix.
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7. If the determinant is smaller than a value predefined by the confidence of the test, then the
corresponding points are considered outliers.

The implementation of MDC has been compared with other tests for outlier detection in machine
learning models, and its results have been satisfactory for its application in general cases [77]. More-
over, its ability to model data as a high-dimensional Gaussian distribution with potential covariances
among input features allows this model to be used for anomaly detection and removal in machine
learning applications. For instance, it has been employed for estimating performance and monitoring
the status of thermal power plants, as well as detecting anomalies in the redshifts of SDSS galaxies
[78, 79].

Statistical consistency.

In machine learning the data after outlier removal were used at the rate of 0.8 for training and 0.2 for
testing [80]. The model loss and regression criterion were defined as the mean squared error (MSE
Eq. 2-11).

The residuals’ measures of central tendency were calculated as described in Table 2-2, while the good-
ness of fit was tested using the residuals (Eq 3-12), to calculate the mean square error (Eq. 2-11), the
coefficient of determination,

no 2
EEPENED D =L (2-23)
> i i —¥)?
and the adjusted coefficient of determination
-1
Po=p— "1 q_p 2-24
adj n— (k + 1)( r ) ( )

where n and k are the numbers of experimental observations and model parameters, respectively,
specifically for the case of ML models, the values of the adjusted coefficient were not determined due
to the difficulty in obtaining the number of adjusted parameters.

The statistical consistency of the models is checked with tests for the following properties of the
residuals [81]

* Z€ro mean

+ normality
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Table 2-2: Definition of the statistics of the measures of central tendency for n residuals [82].
Statistic Definition Formula

AVG Avarage of residuals IS e

MAD  Mean average deviation IS0 el

1
RMS Root mean square [l S (ei)z] 2

n i=1

- independence (autocorrelation)

for instance, these assumptions validate the statistical consistency of liquid-vapor equilibrium mod-
els by reducing experimental data [82].

The Durbin-Watson test assessed their correlation [83, 84]. The statistic

d— E?:z (e —€i1)°
> i (€)?

is compared with the critical values (d, dy) as follows

(2-25)

- if d < d_ there is evidence of positive correlation.
- ifd, < d < dy the test is inconclusive.

- if dy < dthereis no evidence of positive correlation.

and the same is done, but using 4-d instead of d, for negative correlation [82]. However, the Durbin-
Watson test has been modified for machine learning (ML) models, as it is difficult to predict the num-
ber of adjusted parameters. To do so, the test statistic has been analyzed based on the following
criteria [85, 86]

- d = 2 zero autocorrelation.
+ d > 2 negative autocorrelation.

« d < 2 positive autocorrelation.
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Table 2-3: Normal distribution tests for residuals.

Test Statistic Formula
Shapiro-Wilk [82] w S (ae)?/ > (e —&)?
e = %Z: €;
Anderson-Darling [91] A’ —n—(1/n) > [(2i—=1)InZi+ (2n + 1 — 2i) In(T — Z;)]

On the other hand, the randomness of sign grouping can be tested in terms of

1 <
bt = s D _fo (2-26)
mou=2

being p4 the cumulative probability of observing at random u or less sequences of same-sign values
given m positive and n negative values; high probabilities p£ suggest low autocorrelation, and vicev-
ersa, and the values p+ (m, n, u) are tabulated in Ref [87]. The calculation of p+ in python has been
automated with

fo=2¢0- ¢, (2-27)

when u = 2k or

fu= QLGS + G5 G0 (2-28)
when u = 2k — 1. The use of p+£ has been proposed before for the thermodynamic consistency eval-
uation of liquid-vapor equilibria data [82], but anyway, it is limited to situations where the values
follow a sequence, as in observations tied to a single independent variable. Since the prediction of the
saturation pressure of the system depends on more than one predictor (molality and temperature),

the order of the residuals was determined as a function of activity for both effects, a behavior that has
been statistically validated previously [88].

In this work, the Shapiro-Wilk and Anderson-Darling tests were chosen to test the assumption of
normality of the residuals. The effectiveness of these tests has been evaluated as a function of the
number of experiments or data [89], and they have been used for the evaluation of models in vapor-
liquid equilibrium [82], and even in data reduction for predictive models for COVID-19 cases [90].
Normality is assessed by the p-values of the tests at a specified significance level (%95).



3 Cryoscopic effect

3.1 Equilibrium model.

The cryoscopic effect occurs when a solute dissolves in a solvent, resulting in a decrease in the freezing
temperature of the solvent. In other words, the cryoscopic effect is a type of solid-liquid equilibrium
in which a solid is formed from the solvent due to the presence of the solute. Under isothermal con-
ditions, for the solvent (1) the principle of equality of fugacities leads to [24]

=t (3-1)

where the superscripts S and L correspond to the pure solid and fluid phases, respectively. Following
the Lewis-Randall rule, the solubility of the solvent in the liquid phase is

f1L = X1’Y1f1L (3-2)

where fL corresponds to the fugacity of the pure liquid solvent. Substituting Eq. (3-1) into Eq. (3-2)
the equality of fugacities in the system becomes

fig = X1%f1L- (3-3)

However, the solution temperature is far from the fusion temperature of pure solid, hence, the solid
and liquid fugacities f°, £ do not cancel. Nevertheless, the ratio (f/f7) is calculated as shown in
Fig 3-1, leading to [92].
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P
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Figure 3-1: Thermodynamic cycle for the fugacity ratio of pure liquid [92]. The change between the

points a — d is replaced with the sequencea — b — ¢ — d.

L

AGa—>d = RT ln%

where the molar Gibbs energy change, AG comes from the changes in enthalpy and entropy

AG¢a—>d = A}[a—>d - ASa—)dT
and following the cycle in Fig 3-1 the enthalpy change is written as

T
AH, g = AHy, + / AC,dT.

Tfus

Similarly, the change in entropy over the thermodynamic cycle is written as follows

T AC
AS, 4 = ASps + / 7”dT

,Tfus

where the entropy of fusioén is

(3-4)

(3-5)

(3-6)

(3-7)
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ASfus - AHfus/Tfus‘ (3_8)

Gathering Eqgs. 3-5 to 3-8 and assuming that AC, is constant over the range of temperatures in the
cycle, it is obtained

il Bl (T ) _A8G (T ) | AG T (3-9)
fS RTjys T R T R T
hence, from Egs. 3-5 and 3-9
AHfMS T AC Tfus Tfus
| = — 1— — 1 -=E4+ = 3-10
N0y RT Ths TR T T (3-10)
where
s
= (3-11)

being x;7; the activity of component 1. Finally, Eq 3-10 allows determining the experimental activity
for the determination of the residuals for the data reduction process.

To apply the Debye-Hiickel model, we collected experimental data on the melting point depression

(Fig. 3-2) water + NaCl system, and performed a least-squares minimization of the sum of residuals
(e;), which were defined as follows:

€ = (X171)EXP — (x171)cal (3-12)

where

. (x171)Exp corresponds to the value of the activity calculated from experimental data.

* (X177)cal corresponds to the value calculates with Eq. 2-1 using the fitted parameters.

in this case, it was helpful to define the activity as (x;7) and not with the regular notation a to avoid
confusion with the fit parameter of the Debye-Hiickel model.



3.2 Data filtering. 23

272 %

270
%@
268 | Py

266 | o~

Freezing point temperature (K)

252

0 05 1 15 2 25 3 35 4 45 5
NaCl molality (mol/kg)

Figure 3-2: Freezing point experimental data for aqueous NaCl solutions. o [93], { [94], A [95], (I
[96].

3.2 Data filtering.

For this reduction, molality was the only independent variable. The Debye-Hiickel parameter fit and
Machine Learning algorithm training were first performed with the raw data set to determine the out-
liers from the residuals; that is, the differences between the experimental activities and their values
calculated with the model, either DH or ML, as described in Sections 2.2 and 3.1. For the ML models,
it means that the complete dataset was used to optimize the architectures or characteristic parame-
ters.

The databases were defined as those used for DH, the algorithms used for effect prediction were the
same as those presented in section 2.3 (Neural Networks, Leas Square Support Vector Machine, and
Decision Tree Regression), and finally the predictor was defined as the only independent variable, the
NaCl molality.
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Debye-Hiickel.

Debye-Hiickel parameters for the Water + NaCl system («, a, 0, Ec. 2-1) were fitted to raw data by
residual minimization (Eq. 3-12), making use of the downhill simplex algorithm as implemented in
the Python scipy.optimize.fmin function. Initial values were taken from Sandler’s textbook [24], and
the results are shown in Table 3-2.

Neural network (NN).

The Keras libraries imported from Tensorflow in Python were used for training and construction of the
algorithm architecture. Residual minimization was achieved by varying the neural network architec-
ture. It was designed with one input variable, the molality of the NaCl (M), and one output, the fusion
temperature of the system (Tg,). The optimal numbers of epochs (12) and neurons (1000) were found
by a simultaneous cross-validation process, evaluating combinations of epochs (100, 500, 1000) and
neurons (4, 8, 12). The model was trained with the Levenberg-Marquardt algorithm, which has shown
promising results for modeling the vapor-liquid equilibrium of binary systems [46]. The number of
hidden layers was increased one at a time until the mean squared error stopped decreasing (the MSE
was used as the relationship between the experimental and calculated activities). Also, to avoid over-
fitting, the residuals’ distribution in the QQ plots was checked, finding neither extrapolation problems
nor a heavy-tailed distribution [97].

Least-squares support vector machine (LSSVM).

The Python-sklearn SVR library was used for the training and definition of the algorithm, which was
applied by optimizing the margin penalty parameters (C), kernel function shape control (7), and loss
function tolerance used for regression (¢) through cross-validation. There were evaluated values
of C = [0.1, 1,10, 100], v =[0.001, 0.01, 0.1, 1, 10], and € = [0.001,0.01,0.1, 1] [98-101], being
choosen C = 100, v = 0.001, and ¢ = 0.001. The radial basis function, also known as the "RBF” or
Gaussian function, was used as the kernel function, which has been previously used for predicting the
freezing point depression in the NaCl + Water system [21].

Decision tree regression (DTR).

The Python DecisionTreeRegressor library from the Sklearn repository was used for this training. This
model was generated by defining its depth through a cross-validation process, with depths ranging
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Table 3-1: Outliers identified with each model.

Activity | Myx | DH | NN | LSVM | DTR | Activity | Myx | DH | NN | LSVM | DTR
0.9673 | 0.90 X 0.9053 | 3.02 | X X X X
0.9397 | 1.84 X 0.8855 | 3.30 X

0.9420 | 1.86 X X 0.8777 | 3.49 X

0.9387 | 1.94 X 0.8062 | 5.20 X

0.8963 | 3.01 X

from 1 to 10. To avoid overfitting, the pruning parameter controlling the minimum reduction in cost-
complexity was jointly optimized whit the depth of the tree. In this case, ccpalpha values ranging from
0 to 5 were evaluated [102]. The optimal parameters were 0 and 6 for the pruning control parameter
and tree depth, respectively.

Outlier identification tests were applied to the raw data as described in section 2.4, Pierce and Maha-
lanobis tests for the DH residuals, and the MDC test for the ML models as explained in section 2.4. The
results for both Debye-Hiickel and Machine Learning, are shown in Fig. 3-3 and Table 3-1. For exam-
ple, only one outlier (My,cg = 3.0195 in Table 3-1) was found in the DH residuals, both by Peirce and
Mahalanobis tests. Also, it is worth mentioning that the QQ plots showed that indeed the selected
values deviated from normality. On the other hand, the MDC test yields different outlier sets for each
model, 4 outliers with NN, LSSVM, and DTR, a result that can be attributed to the various subspaces
created in the test [103]. In the end, joining all the results, from DH and ML, 9 outliers were pruned
from the 69 measurements of the raw data set, Table 3-1 shows a summary of the outliers rejected
for each of the models.

3.3 Data reduction.

The model fitting and training processes were repeated after eliminating the outliers. The DH fitting
was restarted using the parameters obtained from the raw data as new initial estimates, obtaining the
parameters is shown in Table 3-2. For neural networks, it was found that architecture with 2 hidden
layers presented the best performance (see Table 3-3). The goodness-of-fit statistics are summarized
in Table 3-4. Similarly, Figure 3-4 compares experimental data with model results (ML parity plots
include only results of the test subset). For the machine learning, the data was partitioned at random,
in training (80%) and test (20%, 12 measurements).
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Residual distribution

QQ plot

Debye Hiickel.
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Figure 3-3: Residuals from the raw data. Bold symbols are outliers.
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Table 3-2: Parameters of the Debye-Hiickel model (Eq. 2-1). Filtered data excludes outliers (Fig 3-3).

Parameter | Initial estimates Raw data Filtered data
«Q 1.178 1.9645 1.9576
a 1.4966 —4.2124 x 107> —4.2938 X 107>
) 0.137 25176 x 107" 2.5180 x 107"

Table 3-3: Neural network setting.

Hidden layers MSE
1 1.2756 x 10—
2 9.0105 x 1077
3 1.3369 x 107°

Central tendency statistics show that the averages and mean absolute deviations (AVG, MAD, see Ta-
ble 3-4) of the residuals for all models tend to be zero. Moreover, compared to validated results of
solubility equilibrium or molecular diffusivity, the values of the mean absolute deviation (MAD) are
relatively small [84, 104, 105]. Values predicted with the DH model were in close agreement with the
experimental results, as evidenced by the values of r* and r. In the case of the ML models, the coef-
ficient of determination shows a good correlation between the experimental data and the predictions
for the NN and LSSVM models, but the DTR results show deviations with respect to some experimen-
tal data, an expected behavior due to the poor prediction capability of the model in regressions [106].
In sum, all these findings suggest that the models provide a good fit for the experimental data.

The distribution of the residuals and the correlation statistical tests are shown in Fig. 3-5 and Table
3-5. The residuals are represented as a function of activity, this presentation with the objective of
maintaining an order to analyze both colligative effects regardless of the number of independent vari-
ables as explained in the section 2.4. A negative correlation means that the probability of a residual
of one sign being followed by another of the opposite sign is low. A positive correlation means a high
likelihood that a residual will be followed by another of the same sign. The machine learning results
come from the residuals of the test subset, and, as mentioned earlier (2.4) the criterion to analyze the



28 3 Cryoscopic effect

Parity plot Experimental data and model results
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Figure 3-4: Model results with filtered data (ML parity plots include only results of the test subset).
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Table 3-4: Residuals’ central tendency and goodness of fit statistics by model.

MSE AVG MAD RMS r Fog
DH |495x 1077 | —1.44x10"%|505x 107* | 7.04x 107* | 0.9998 | 0.9997
NN [456x 107 | —335x10%|593x10*|6.75x 107* | > 0.9999
LSSVM | 3.95x 1077 | 1.38 x 107* | 4.36 x 107* | 6.29 x 107* | > 0.9999
DTR |[7.72x10°%| 3.49x107* |2.00x 103 | 2.80 x 1073 | > 0.9999

d-value for ML models was different.

+ For the Debye-Hiickel residuals the plot suggests that both types of correlation appear, and in
fact, the high p=£ value indicates many sign sequences. However, the limit values of the Durbin-
Watson test wered, = —4.73 and dy = 1.86, yielded evidence of negative correlation (YES for
DW-), and no evidence of positive correlation (NO for DW+). The probability value calculated
for the randomness of the distribution showed the same behavior so that the distribution of

the residuals had no pattern.

- For the residuals of the NN and LSSVM models, a positive correlation was observed, with a

non-random distribution, and few sign sequences (low p+).

- Contrary to the other two ML models, DTR generated residuals that are randomly distributed,

with many sign sequences, and negative correlation.

To assess the normal distribution of the residuals, the Shapiro-Wilk and Anderson-Darling tests were
applied to the filtered data as they serve equally well with small and large numbers of data [89]. The
results of the two tests in Table 3-6 confirmed the normality of the residuals in Fig. 3-5 for all the
models, that is, they follow the normal distribution according to the assumptions made. This be-
havior is visualized in the QQ plots in Figure 3-5, The ML models present a distribution close to the
45-degree line, with no erratic behavior or deviation from the central data in the tails, and they don’t

show overfitting; which validates their use for further predictions. [97].
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Distribution of residuals 00 normality plot
Debye Hiickel.
«10% ° .
2 o
15 °
1t B
°© ]
_ 0% o o ° E
] ° o |° o E
T 0 > P =3
7 o
& o ° & o B o =
05 ° ) ° °© %0 o go o 15
o I° &
1p ©
15
2
082 084 086 088 09 092 094 098 098 25 2 45 4 05 0 05 1 15 2 25
Activity Theoretical quantiles
Neural Network.
. 107 N ) .
N .
6 15
4 1
2 8
— 205 .
= > :
g 2 o o 0
o Q o ®
4 E o5 .
& A
o 5
Iy ° -1 5
o
8 .
. 15
-10
2
082 0.84 0.86 0.88 0.9 092 094 096 0.98 2 -1.5 -1 0.5 0 0.5 1 1.5 2
Activity Theoretical quantiles
Least Squares Support Vector Machine.
%107 .
1
?
05 . P
T
2 0 5 =
g o kY
o o [=
£
&
05 &
-1
082 084 086 088 09 092 094 096 098 2 45 4 05 0 05 1 15 2
Activity Theoretical quantiles
Decision Tree Regression.
x10°
6t 2
57 1.5
sl
1 .
3t o 8 <
T 5l o Eos
2 S i
3 1t 00 L 0 .
[-3 o .
0 0o E *
F. & -05
Al
-1
2t °
1.5 . .
a3t
2
082 084 086 088 09 092 094 096 098 2 45 4 05 0 05 1 15 2
Activity Theoretical quantiles

Figure 3-5: Distribution of residuals from the filtered data.
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Table 3-5: Statistics and results of distribution tests for residuals.

Model Durbin-Watson Signs distribution
d-Value DW- DW+ | n+ n— Sequences  p=% Rand. Dist?
DH 2.17 YES NO 18 41 28 0.7688 YES
NN 1.63 NO YES 2 10 3 0.1818 NO
LSSVM 1.23 NO  YES 8 4 4 0.7090 NO
DTR 2.40 YES NO 7 5 5 0.4242 YES
Table 3-6: Results of residuals’ normality tests.

Model Stai?sat'ijciro_:fl\i/:klue Stagzgirsorgrliat?gln\%alue Normal dist?

DH 0.8684 1.2937 | —57.0280 0.5430 YES

NN 0.9163 0.2273 | —10.0490 0.4970 YES

LSSVM | 0.9037 0.1768 | —10.0590 0.4970 YES

DTR 0.9449 0.5636 | —10.0520 0.4970 YES




4 Ebullioscopic effect

4.1 Equilibrium model.

The ebullioscopic effect occurs when a non-volatile solute dissolves in a volatile solvent, which de-
creases the saturation pressure of the system. This effect can be considered as a type of liquid-vapor
equilibrium between a gaseous phase composed of the solvent and a liquid phase formed by the sol-
vent and the solute. In a system under isothermal conditions, the equal fugacity principle for the
solvent (1) is expressed as [24]

fl=H, (4-1)
and replacing the definition of the fluid fugacity (Eq 3-2) the system becomes

X1’Y1f1L = f1V7 (4-2)

where x;7; is activity of the solvent (1). For vapor-liquid systems, the vapor fugacity corresponds to

f =P, (4-3)
where ¢, is the fugacity coefficient of component 1, and the liquid fugacity, at low pressures, is ex-
pressed as [92].

ff=p" (4-4)

where P5™ refers to the saturation pressure of the pure component (1) at the system temperature.
Finally, by replacing the fugacity definitions en Eq 4-2 one can express the activity of the system as,

P1P
X171 = ﬁ (4'5)
1
but, at low pressures, the fugacity coefficient, ¢, can be omitted, so Eq 4-5 reduces to [92]
p
M= oo (4-6)
1

where the Antoine equation
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Figure 4-1: Experimental osmotic coefficients from ebulloscopic measurements in the NaCl + water
system [109].

1687.537
[ P*"(bar]) = 5.11564 — ————— 4-
981o(P7" bar]) TIK] — 42.98 @7

was used to determine the saturation pressure of pure water as a function of temperature [107].
Many experimental activity measurements are reported in terms of the practical osmotic coefficient,
1000

b = —W ln(xmq), (4'8)

introduced theoretically by Bjerrum [108]. For this work, all the experimental measurements found
as osmotic coefficients or saturation pressures were converted into activities.

4.2 Data filtering.

We collected experimental data on the solvent saturation pressure decrease (Figs. 4-1 and 4-2) in
the water + NaCl system, and performed a least-squares minimization of the sum of residuals (e; Eq.
3-12) such as presented in the section 3.2
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Figure 4-2: Experimental saturation pressures in the NaCl + water system [110].

The data filtering was performed similarly as shown in section 3.2, temperature was considered as an
independent variable in addition to NaCl concentration.

Debye-Hiickel.

Following Sandler’s textbook a temperature dependence was included in the DH parameters [24]. In
the data reduction to the equations [2-4 - 2-6] the initial estimates of a1, b1, c1 were the o, a, and
0 values found in the previous chapter (3.2); while the temperature dependence coefficients (a2, b2,
c2) were initialized as zero, the results are shown in Table 4-1.

Table 4-1: Debye-Hiickel parameters with T dependence (Eqgs. 2-4, 2-5, 2-6) estimated from raw data.

Parameter Value Parameter Value Parameter Value

as —4.4838 b, —5.4753 x 107" Cq 1.5466 x 107"

a, —1.8458 x 1072 b, 7.6194 x 107" C, —2.5196 x 10~*
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Neural network (NN).

The network was designed with two input variables corresponding to salt molality and temperature
and one output variable corresponding to activity. The number of neurons (7, 13, 20) and epochs (100,
500, 1000) of adjustment were optimized using a cross-validation algorithm similar to that used in
section 3.2 [111]. The reduction algorithm was specified as Levenberg-Marquardt [46]. As mentioned
earlier, the number of hidden layers was increased one by one until the MSE stopped decreasing. The
results showed that the best architecture for the neural network consisted of 13 neurons, and the op-
timal training was performed with 1000 epochs. Overfitting behavior was evaluated using QQ normal
distribution plots [97].

Least-squares support vector machine (LSSVM).

The parameters corresponding to the margin penalty, the control of the kernel function shape, and the
loss tolerance used in the regression were determined using a cross-validation algorithm, as described
in section 3.2 [98-101]. The results after the optimization were C = 10, v = 0.001, and ¢ = 0.001.
The radial basis function kernel was defined again as "RBF,” which had already been used for this spe-
cific working system [21].

Decision tree regression (DTR).

This model received two input variables (molality and temperature), as proposed in the neural network
model. The depth, which was the penalty parameter responsible for reducing the complexity cost, was
determined through a cross-validation algorithm. Depth values between 1and 15 and ccp — alpha pa-
rameter values between 0 and 5 were tested [102]. The results obtained through cross-validation for
the depth and the ccp — alpha parameter were 9 and 0, respectively.

For the DH model Pierce and Mahalanobis rejection tests resulted in no outliers or extremes in the
raw data set. Figure 4-3 shows the machine learning outlier residuals determined by the MDC test
for each model (see Table 4-2). Once again, more outliers were identified for the ML models, due to
the nature of the MDC test [103]. The QQ plots illustrate how they correspond to the most extreme
values of the trend, so that after their removal the subsequent training will not be biased by these
data. Gathering the results from the three models (NN, LSSVM, DTR) 26 outliers were removed from
the 193 observations of the raw data set.
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Figure 4-3: Residuals from the raw data. Bold symbols are outliers.
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Table 4-2: Outliers identified with each model.

Activity | Myx T NN | LSSVM | DTR | Activity | Myx T NN | LSSVM | DTR
0.9703 | 1.36 | 273.15 X 0.9866 | 0.45 | 383.15 | X

0.9693 | 1.36 | 373.15 X 0.9869 | 0.45 | 373.15 X
0.9539 | 1.36 | 373.15 X 0.9852 | 045 | 363.15 | X

0.9527 | 1.36 | 363.15 X 0.9834 | 045 333.15| X

0.9234 | 2.43 | 373.15 X 0.9820 | 045 | 313.15 | X

0.9210 | 243 | 273.15 | X 0.8142 | 4.89 | 360.65 X

0.8920 | 3.04 | 373.15 X 0.8059 | 4.96 | 273.15 X

0.9045 | 3.04 | 273.15 | X X 0.7492 | 6.10 | 283.15 | X X

0.8956 | 3.04 | 363.15 X 0.7618 | 6.11 | 360.65 X

0.8767 | 3.41 | 363.15 X 0.7612 | 6.13 | 360.65 X

0.8481 | 4.31 | 363.15 X 0.7441 | 6.72 | 373.15 X
0.7749 | 5.69 | 273.15 X 0.7483 | 6.37 | 333.15 X
0.7730 | 6.10 | 273.15 | X X 0.7489 | 6.17 | 303.15 | X

4.3 Data reduction.

After removing the outlier values the parameters of the Debye-Hiickel model were set again by op-
timization (see Section 3.2) finding the results shown in Table 4-3. After filtering the outliers, the

ML models were also retrained. Different architectures of the neural network were evaluated with
respect to the number of hidden layers with the MSE results shown in Table 4-4 that led to choosing
2 hidden layers. The results obtained for the goodness-of-fit statistics are shown in Table 4-5.

Table 4-3: Debye-Hiickel parameters with T dependence (Eqs. 2-4, 2-5, 2-6). Estimated from the

filtered data set.

Parameter Value Parameter Value Parameter Value
a 5.1244 x 1072 b, —9.8581 x 1074 s —1.0583 x 1072
a, 4.2250 x 1074 b, —6.4983 x 1074 o 3.9457 x 10~*

The values of the AVG and MAD statistics are around zero, so it can be inferred that the goodness of fit



38 4 Ebullioscopic effect

Table 4-4: Neural Network setting.

Hidden layers MSE
1 2.6222 x 107
2 6.9069 x 10~°
3 2.7548 x 107>

Table 4-5: Residuals’ central tendency and goodness of fit statistics by model.

MSE AVG MAD RMS r o

DH 1.09x 107° | 1.00x 103> | 1.80 x 1073 | 3.30 x 103 | 0.9980 | 0.9960

NN 6.91Tx 107 | —1.30 x 1073 | 2.10 x 103 | 2.60 x 103 | > 0.9999

LSSVM | 6.61 x 107® | 3.92x107* |2.10x 1073 | 2.60 x 103 | > 0.9999

DTR | 840 x107%| 1.20x 1073 [230x 103|290 x 103 | > 0.9999

is adequate. The magnitude of the Mean Squared Error (MSE) showed that the models were trained
adequately based on the error, i.e., all the models are consistent, and the assumption of mean devia-
tion can be validated [112]. The results for the coefficient of determination r? for DH and ML models,
and rgdj (only for DH), indicate a good prediction of the experimental values, also seen in Figure 4-4
for the vapor pressure of the mixture. On another hand, in the plots, the ML models did not show
deviation from the experiment.

Fig. 4-5 shows the distribution of the residuals as a function of activity, with the objective of ordering
the residuals as a function of a single variable instead of the two independent variables of the mea-
surements (molality and temperature), Table 4-6 summarizes the statistics of the Durbin-Watson and
sign distribution tests.

+ For DH model comparison with the critical values of the Durbin-Watson test yielded an incon-
clusive result for positive correlation and no evidence of negative correlation. The result of
the sign distribution test showed that the errors are not randomly distributed, due to the low
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Figure 4-4: Model results with filtered data. The comparison of the model was done graphically at
only a few temperatures to make the graphs clearer.
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Table 4-6: Statistics and results of distribution tests for residuals. Where "?” is unconclisive.

Model Durbin-Watson Signs distribution
d-Value DW- DW=+ | n+ n— Sequences pE Rand. Dist?
DH 0.83 NO ? 118 49 24 < 0.0001 NO
NN 1.42 NO YES 9 25 9 0.0201 NO
LSSVM 1.68 NO YES 17 17 16 0.3028 NO
DTR 1.72 NO YES 24 10 17 0.8516 YES

probability determined.

- The results obtained for the Durbin-Watson test statistics showed that the residuals of the ML
models were distributed following a positive correlation.

+ Theresults of the randomness in the distribution of the residuals that were evaluated by the sign
test showed that only the residuals of the DTR model were completely randomly distributed.

+ That the Durbin-Watson results show a positive correlation may run counter to what was found
for the randomness of the distribution of the residuals in the ML models. An explanation for
this behavior with the results may be that the Durbin-Watson test is inaccurate in determining
correlation in higher-order fitting models, so for the models worked, the result of the random
test presents more solid results, even in large samples (n > 100), suggesting that the residuals
of the evaluated models do not have any pattern in the way they are distributed and that this
can be considered random [113, 114].

Similarly to Section 3.3 the results of the normality tests conducted for the models of ebullioscopic
measurements are presented in Table 4-7 and Figure 4-5, including the QO normality plot. For the
DH model, it is evident in the QQ plots that the residuals have a noticeably non-normal distribution.
On the other hand, the other tests performed for the NN and LSSVM models allow us to confirm that
the distributions of their residuals fit a normal distribution. For the DTR model, all tests and the QO
normality plot show significant deviations from the 45-degree line, indicating a significant deviation
from the normal distribution.
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Figure 4-5: Distribution of residuals from the filtered data.
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Table 4-7: Results of residuals’ normality tests.

Shapiro-Wilk Anderson-Darling .
Model — — — Normal distribution
Statistic  p-Value Statistic  Critical value
DH 0.7973 < 0.0001 | 13.3516 1.0670 NO
NN 0.9754 0.6247 —32.0140 0.5260 YES
LSSVM | 0.9790 0.7397 —32.0170 0.5260 YES
DTR 0.9744 0.5942 —32.0180 0.5260 YES




5 Conclusions

The regression carried out on the experimental data yielded DH parameters different from those pre-
viously reported in the literature, however, these results were accepted, since they are consistent for
both cryoscopic and ebullioscopic data. Nevertheless, the cryoscopic results presented better sta-
tistical consistency than the ebullioscopic ones, which that can be attributed to the dependence of
saturation pressure on both molality and temperature.

It was found that the studied Machine Learning (ML) algorithms provide suitable predictions for the
analyzed effects, although not all algorithms meet the valid statistical assumptions (zero mean, nor-
mality, and independence) for each effect. On the other hand, ML models are easier to create than the
DH model. The comparison of the Debye-Hiickel model and the algorithms (NN, LSSVM, and DTR)
revealed that all of them have the potential to predict the two effects analyzed in this work.

All models adequately predict the freezing point reduction compared to the collected experiments
(Fig. 3-4). With respect to the sum of residuals (MSE), the DH model produced low values (< 1 x 1074)
for both cryoscopic and ebulloscopic effects. However, according to the measures of central tendency,
the DTR model showed a better approximation to the prediction of the data, behavior similar to that
shown by the NN and LSSVM models, showing that ML models have better predictive power for the
applications studied here.

When comparing the regression models used, it was found that the DH model presented the highest
probability of the residuals’ sign distribution being random (no autocorrelation) for the cryoscopic
effect, however, it did not have the same behavior when predicting the ebulloscopic effect where
the residuals were notably dependent. Now, the lower values of the same probability for the NN and
LSSVM models may suggest that their residuals do not follow the assumption of independence in both
effects, cryoscopic and ebullioscopic. Although the probability of observing at random the residual
sign distribution determined in the DTR model was not the highest, it shows an independent distri-
bution of residuals for both the cryoscopic and ebulloscopic effects.

The evaluation of the normality showed that ML models yielded normally distributed residuals for
both the cryoscopic and ebullioscopic data; while DH residuals followed the normal distribution for
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cryoscopic results, but not for the ebullioscopic ones. Since the normality of the residuals is an im-
portant assumption for validating the predictive ability of the model, this suggests that the selection
of an ML model over the theoretical DH model is statistically more accurate.

Finally, it has been statistically found that the DTR model performs better in predicting the colliga-
tive effects of the Water+NaCl system, as its central tendency measures, independence, and normality
tests validated the zero mean, independence, and normality assumptions for the regressions and pre-
dictions.



Nomenclature table

Symbol

Heat capacity

Gibbs energy

Enthalpy

Pressure

Entropy

Temperature

Partial molar fugacity

Activity coefficient

Residual

Fugacity

Fugacity coefficient

Molality (mol/kg)

Universal gas constant (8.314  J/mol x K)
Mole fraction

Sum of the charges of the dissolved electrolyte
Osmotic coefficient

e@kxgg‘hmg&m—lc@vm@g

Subscript

1 Solvent

2 Solut

Exp Experimental

Cal Calculated

fus  Fusion

MX Dissolved electrolyte
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5 Conclusions

Superscript
S Solid phase
F  Fluid phase
L Liquid phase
V  Vapor phase

sat Saturation

Acronyms
Al Artificial Intelligence
ML Machine Learning
DH Debye - Hiickel
NN Neural Network
LSSVM  Least-squares Support Vector Machine
SVM Support Vector Machine
DTR Decision Tree Regression
DT Decision Tree
MSE Mean Square Error
MDC Minimum Covariance Determinant
DW Durbin - Watson
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