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Bogotá, Colombia

2023



Estimación neuronal no paramétrica
eficiente de la densidad y su

aplicación a la detección de valores
at́ıpicos y anomaĺıas
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Abstract

The main goal of this thesis is to propose efficient non-parametric density estimation methods

that can be integrated with deep learning architectures, for instance, convolutional neural

networks and transformers. A recent approach to non-parametric density estimation is neural

density estimation. One advantage of these methods is that they can be integrated with deep

learning architectures and trained using gradient descent. Most of these methods are based

on neural network implementations of normalizing flows which transform an original simpler

distribution to a more complex one. The approach of this thesis is based on a different idea

that combines random Fourier features with density matrices to estimate the underlying

distribution function. The method can be seen as an approximation of the popular kernel

density estimation method but without the inherent computational cost. Density estima-

tion methods can be applied to different problems in statistics and machine learning. They

may be used to solve tasks such as anomaly detection, generative models, semi-supervised

learning, compression, text-to-speech, among others. This thesis explores the application of

the method in anomaly and outlier detection tasks such as medical anomaly detection, fraud

detection, video surveillance, time series anomaly detection, industrial damage detection,

among others.

Keywords:

Kernel density estimation, Kernel methods, Deep Learning, Random Fourier Features, Ma-

chine Learning, Deep Kernel, Large-scale learning, Kernel Density Estimation Approxima-

tions, Density Matrix, Neural Density Estimation.
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Resumen

El objetivo principal de esta tesis es proponer métodos eficientes de estimación de densi-

dad no paramétrica que puedan integrarse con arquitecturas de aprendizaje profundo, por

ejemplo, redes neuronales convolucionales y transformadores. Una aproximación reciente a

la estimación no paramétrica de la densidad es la estimación de la densidad usando redes

neuronales. Una de las ventajas de estos métodos es que pueden integrarse con arquitec-

turas de aprendizaje profundo y entrenarse mediante gradiente descendente. La mayoŕıa de

estos métodos se basan en implementaciones de redes neuronales de flujos de normalización

que transforman una distribución original más simple en una más compleja. El enfoque

de esta tesis se basa en una nueva idea diferente que combina caracteŕısticas aleatorias de

Fourier con matrices de densidad para estimar la función de distribución subyacente. El

método puede considerarse una aproximación al popular método kernel density estimation,

pero sin el coste computacional inherente. Los métodos de estimación de la densidad pueden

aplicarse a diferentes problemas en estad́ıstica y aprendizaje automático. Pueden ser utiliza-

dos para resolver tareas como la detección de anomaĺıas, modelos generativos, aprendizaje

semi-supervisado, compresión, texto a habla, entre otros. El presente trabajo se centra

principalmente en la aplicación del método en tareas de detección de anomaĺıas y valores

at́ıpicos como la detección de anomaĺıas médicas, la detección de fraudes, la videovigilancia,

la detección de anomaĺıas en series temporales, la detección de daños industriales, entre otras.

Palabras claves:

Estimación de la densidad del núcleo, métodos del núcleo, aprendizaje profundo, carac-

teŕısticas aleatorias de Fourier, aprendizaje automático, núcleo profundo, aprendizaje a gran

escala, aproximaciones de la estimación de la densidad del núcleo, matriz de densidad, esti-

mación de la densidad neuronal.
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1. Introduction

The primary objective of this thesis is to introduce novel non-parametric methods for density

estimation, which will be applied to anomaly detection tasks. Density estimation is a crucial

statistical task that involves estimating the underlying distribution function from observed

data. In order to achieve high accuracy and precision in density estimation, it is necessary

to develop robust methods that accurately capture the underlying distribution function, as

certain methods may produce biased or high-variance estimations. Broadly speaking, density

estimation methods can be classified into two categories: parametric and non-parametric.

Parametric methods are limited by predefined functions with free parameters, while non-

parametric methods do not make any assumptions about the distribution function. One of

the most widely used non-parametric methods for density estimation is kernel density esti-

mation, however, this method has certain drawbacks that are fully explained in Chapter 3.

To address these limitations, this thesis proposes a novel non-parametric density estimation

method that overcomes the issues associated with kernel density estimation. Additionally,

we present two novel methods for anomaly detection, as well as a new approach to stream-

ing anomaly detection. The proposed methods offer significant improvements over existing

methods and are evaluated in detail in this thesis.

1.1. Motivation

In statistics, density estimation is a task in which an estimate of the true underlying distri-

bution function is constructed from experimental or observed data. First, one must define

random variables, which are measurable functions in a probability space that maps from

the sample space to a real number. These random variables have a probability distribution

function (PDF) that can be interpreted as the relative probability of an outcome. Often,

we have data from an experiment in which the underlying PDF is unknown. Therefore, in

this scenario, we have two possible use cases for density estimation; we can assume that

our data come from a proposed parametric model, or we can use a nonparametric model

approach. The former assumes that the process was generated from a specific type of qθ
density functions, where qθ are the adjustable parameters of the model, such as the expo-

nential family of distributions. In general, however, the underlying process is arbitrary and

may not follow a parametric distribution. The latter assumes no particular distribution and

uses the data points to estimate the probability density function. A parametric model is
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an excellent choice when statistical goodness-of-fit tests, such as the Kolmogorov-Smirnov

test, are available. Thus, we can apply these tests to compare the experimental samples

with the reference probability distribution. However, in several experiments, it is not easy

to propose a probability distribution. Moreover, parametric methods, such as multivariate

Gaussian in a high-dimensional space, scale quadratically. In such cases, it is a better choice

to use a nonparametric approach such as kernel density estimation (KDE), also known as the

Parzen-Rosenblatt window [136, 155]. Another good reason for selecting a nonparametric

approach is its ability to obtain an optimal fit to any input distribution as more training

samples become available. In contrast, no model with parametric assumptions can have that

property [166].

A variety of real problems can be solved using density estimation such as generative models,

spatial analysis, classification, anomaly and outliersd́etection, among others. First, gener-

ative models attempt to generate new samples from a given probability distribution. This

probability distribution can be estimated explicitly or implicitly. For example, autoregres-

sive models and neural flow models use explicit maximum likelihood estimation to find an

estimate of the underlying probability density function and, from there, are used to generate

new samples such as images and audio [135, 151]. Second, density estimation can be used

in spatial analysis to construct choropleth maps. Each shaded part of the choropleth maps

represents areas of measurement variability [19, 169]. Third, density estimation can be used

as an intermediate step for supervised and unsupervised learning, for example, to classify

points into different classes [180]. Fourth, anomaly and outliersd́etection algorithms are used

to recognize sample data points that deviate from the rest of the samples where, for instance,

an explicit PDF can be used to classify points with very low probability as outliers [108].

Anomaly and outlierd́etection is a very common task in a variety of applications such as

fraud detection [201, 143], video surveillance [92, 188], medical anomaly detection [122, 23],

time series anomaly detection [119], industrial damage detection [119, 147], among others.

Given a set of points {x1, · · · , xn}, typically the task in anomaly detection is to categorize

the data into normal and anomalous points. In this context, it is usually assumed that the

anomalous points are generated by a different generative process than the normal points.

However, this assumption is often not fulfilled, since, for example, normal data generated by

a machine in an industrial factory may become anomalous due to a change in the underlying

process. Another problem in anomaly detection is that in the vast majority of data sets the

data are not labeled, so that both normal and abnormal data may appear indistinguishable.

Therefore, three different approaches are followed to create anomaly detection algorithms.

First, a supervised learning approach in which normal and anomalous data points are used

in the training phase [89, 172, 87]. The problem with this approach is that anomalous data

is rare, so it is difficult to generate such training data points. Therefore, this approach has

the drawback of dealing with unbalanced data sets. Second, the clean approach in which

only normal points are used in the training phase and in the testing phase the dataset is
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contaminated with anomaly data points. Third, the unsupervised learning approach, in

which both normal and anomaly points are used as training data points, and the idea is to

separate normal and anomaly points without any labeling [186, 124, 107]. The problem with

this approach is that commonly, in the literature, algorithms assume that the anomalous

points have a well-defined anomaly distribution; however, in general, this assumption does

not hold because, for example, adversaries always want to try to defeat our defense algorithm

by showing them as similar as possible to the normal data points. In addition, a diverse set

of potential causes, such as a new device failure model, may deviate slightly from the normal

point distribution. Besides, there is an intrinsic problem with high-dimensional data sets,

where we need large data sets to cover the entire space.

The KDE is perhaps the preferred nonparametric density estimation tool used by statis-

ticians, engineers, and scientists. In this method, we want to approximate the underlying

distribution function f based on the finite data samples. We assume no prior parametric dis-

tribution function. However, one of the drawbacks of KDE is its low efficiency, i.e., the time

consumed to make a prediction is linear in the number of training data points. Moreover, it

is a memory-based algorithm, i.e., the density prediction of new data points is done using all

the training data points; therefore, we need to store each training data point to make a new

prediction. Due to these problems, the approximate fast evaluation of nonparametric density

estimation is an active research topic. Different approaches are proposed in the literature:

higher-order divide-and-conquer methods [69], near- and far-field separation (pruning) [118],

and hashing-based estimators (HBE) [27]. So far, hashing-based estimators seem to be the

best state-of-the-art method for approximate kernel density estimation. In this thesis, a new

algorithm for approximating KDE will be proposed and evaluated on anomaly detection

problems.

This thesis addresses density estimation using a new perspective that combines density ma-

trices, which is an important formalism in quantum mechanics, and random Fourier features,

which explicitly compute an approximate feature space of certain kernels, to perform density

estimation. Density matrices have not been widely used in machine learning; however, its

combination of linear algebra and probability is a powerful tool that has a high potential

impact in different machine learning tasks as has been shown by [64, 66]; therefore, in this

thesis we started from the initial ideas presented in [64] and [66] and extended them and

explored new algorithms on density matrices and random Fourier features. In addition, we

aimed to design new competitive and efficient density estimation algorithms with additional

properties such as being able to connect to deep learning architectures. New algorithms

based on these ideas have been presented to solve anomaly detection tasks. One important

anomaly detection task is anomaly detection for streaming data [199], where data is contin-

uously generated. This task can be solved using the novel algorithm proposed, which utilizes

density matrices based on the presented ideas. This approach is advantageous due to its fast

speed and low-resource training phase.
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1.2. Problem Statement

Anomaly and outlier detection is an important task in different research areas with vari-

ous application domains. One of the main challenges in anomaly detection is that usually

only normal data points are available. This problem can be solved using an unsupervised

learning approach; however, its performance is lower than the supervised one, but it avoids

the process of generating anomalous data where in some real tasks they are difficult or even

impossible to obtain. Examples of unsupervised algorithms brought from the supervised

world for anomaly detection are the one-class support vector machines or the isolated forest

algorithm. These methods assume that the data come from a single class; it has been shown

in the literature that these algorithms obtain inferior results to methods that can handle

multimodal datasets. Other algorithms that solve anomaly detection tasks from the unsu-

pervised world are density-based algorithms such as parametric density estimation or kernel

density estimation. However, current density estimation algorithms suffer from the curse of

dimensionality and their linear complexity in the number of training data is prohibitive in

most application domains. Typically, this problem is solved by using a dimensionality re-

duction approach, such as principal component analysis, and a density estimation algorithm,

such as kernel density estimation.

A challenge in density estimation is how to build efficient algorithms. Algorithms capable of

producing an approximation to the underlying distribution function are applied to a variety of

problems in machine learning. State-of-the-art algorithms, such as density neural networks,

provide a useful tool for estimating density, and this estimate can be used to solve a variety

of problems, such as anomaly and outlier detection problems. However, algorithms from

literature, such as autoregressive models or latent models, are computationally heavy and

time consuming. Other algorithms that are based on adversarial networks have the drawback

of not explicitly estimating density, but compute it intrinsically; therefore, the search for new

algorithms that can estimate density with maximum likelihood and are able to deal with high

dimensionality using few resources compared to current solutions is of utmost importance.

Finally, with the advent of deep learning and its powerful feature extraction capabilities, the

proposed new algorithms must be able to connect with and train alongside other networks.

Recent research in the literature points to the need for new algorithms that predict the

underlying density estimation to find anomaly patterns and outlier data points [129, 113].

Therefore, some open questions need to be addressed:

• How to design a nonparametric density estimation method that is efficient in terms of

time and space?

• How to design a method capable of integrating with other deep learning methods for

nonparametric density estimation?

• Is the approximation given by the proposed method better in terms of efficiency than

the state-of-the-art approximation methods for kernel density estimation?
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• How to design methods for anomaly and outlier detection using nonparametric density

estimation?

• What is the impact of new methods for anomaly and outlier detection using nonpara-

metric density estimation?

1.3. Objectives

1.3.1. Main goal

To develop a non-parametric method for density estimation that is efficient, can be integrable

with other deep learning frameworks, and can be used for solving anomaly detection tasks.

1.3.2. Specific objectives

• To design a non-memory-based method for efficient kernel density estimation.

• To evaluate the efficiency of the method and to compare it against other state-of-the-art

kernel density approximation methods.

• To propose new algorithms for anomaly detection using density matrices and random

Fourier features.

• To evaluate the model in anomaly detection tasks.

1.4. Contributions and Academic Products

This PhD thesis is a body of work, encompassing a diverse range of contributions to the

academic community. It includes four journal papers, two of which have already been ac-

cepted and two more that are currently under review. In addition, the thesis contains five

international full-size conference papers, one student abstract paper, and one doctoral con-

sortium paper, along with nine pre-print articles that have been made available to the wider

research community. The candidate has also made contributions to open-source software,

with the creation of six new public repositories and the creation of a public dataset for

density estimation tasks. The candidate has presented their research on five international

conference posters and presentations. The thesis also includes the supervision and support

of an undergraduate statistics thesis and a Master’s in computer science thesis.
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1.4.1. Publications

Neural Density Estimation

• Gallego, J.A., Osorio, J.F., González, F.A. (2022). Fast Kernel Density Estimation

with Density Matrices and Random Fourier Features. In: Bicharra Garcia, A.C., Ferro,

M., Rodŕıguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022.

IBERAMIA 2022. Lecture Notes in Computer Science, vol 13788. Springer, Cham.

https://doi.org/10.1007/978-3-031-22419-5\ 14
We have demonstrated that the Density Matrix Kernel Density Matrix can effectively

address the challenges associated with efficient kernel density estimation.

• Gallego, J.A., & González, F.A. (2023). DEMANDE: Density Matrix Neural Density

Estimation. IEEE Access (accepted). doi: https://10.1109/ACCESS.2023.3279123

We have introduced a novel neural density estimation method called DEMANDE,

which utilizes adaptive Fourier features in combination with density matrices.

• González, F. A., Gallego, A., Toledo-Cortés, S., & Vargas-Calderón, V. (2022).

Learning with density matrices and random features. Quantum Machine Intelligence,

4(2), 1-17. https://doi.org/10.1007/s42484-022-00079-9

We introduced the Density Matrix Kernel Density Estimation framework, which forms

the basis of this PhD thesis. Our work demonstrates that this method can be applied

to a variety of tasks, including classification, regression, ordinal regression, density

estimation, and more.

• Gallego-Mejia, J. (2023). Efficient Non-Parametric Neural Density Estimation and

Its Application to Outlier and Anomaly Detection (Doctoral Consortium). Association

for the Advancement of Artificial Intelligence (AAAI 2023)

We have summarized all the methods developed during this PhD in a brief doctoral

consortium paper, which we presented at the Doctoral Consortium hosted by the As-

sociation for the Advancement of Artificial Intelligence (AAAI 2023).

Anomaly Detection

• Gallego-Mejia, J., Bustos-Brinez, O., & González, F. A. (2022). LANDM and

ANDM: Quantum Inspired Density Matrices for Anomaly Detection. (To Be Sub-

mitted on Data Mining and Knowledge Discovery)

arXiv:2211.08525.

We have introduced two novel methods for anomaly detection that use an autoencoder

to capture a feature representation and DMKDE to compute probabilities.

https://doi.org/10.1007/978-3-031-22419-5_14
https://doi.org/10.1007/978-3-031-22419-5_14
https://doi.org/10.1007/978-3-031-22419-5_14
https://doi.org/10.1007/978-3-031-22419-5_14
https://doi.org/10.1007/978-3-031-22419-5_14
https://ieeexplore.ieee.org/document/10131950
https://ieeexplore.ieee.org/document/10131950
https://link.springer.com/article/10.1007/s42484-022-00079-9
https://link.springer.com/article/10.1007/s42484-022-00079-9
https://link.springer.com/article/10.1007/s42484-022-00079-9
https://aaaidc.github.io/dc2023/schedule/
https://aaaidc.github.io/dc2023/schedule/
https://aaaidc.github.io/dc2023/schedule/
https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
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• Gallego-Mejia, J., Bustos-Brinez, O., & González, F. ”InQMAD: Incremental Quan-

tum Measurement Anomaly Detection,” 2022 IEEE International Conference on Data

Mining Workshops (ICDMW), Orlando, FL, USA, 2022, pp. 787-796,

doi: 10.1109/ICDMW58026.2022.00107.

We have introduced a novel incremental anomaly detection method that utilizes density

matrices and adaptive Fourier features. This method can be viewed as an exponential

moving average method.

• Gallego-Mejia, J., Bustos-Brinez, O., & González, F. ”Streaming and Incremental

Anomaly Detection through Density Matrices” 2023 Springer Neural Computing and

Applications (To Be Submitted, Special Issue Invitation on Incremental Learning from

ICDM Organization).

We have been invited by ICDM Workshop organizers to make an extended version of

the InQMAD article. In this new article, we have introduced a novel new incremen-

tal anomaly detection method using density matrices and adaptive Fourier features.

With InQMAD, these methods can be considered a simple moving average and an

exponential moving average, respectively.

• Bustos-Brinez, O., Gallego-Mejia, J., & González, F. A. (2022). Anomaly Detection

through Density Matrices and Kernel Density Estimation (AD-DMKDE). Neural In-

formation Processing Systems Conference: LatinX in AI (LXAI) Research Workshop

2022, New Orleans, USA.

We have introduced a novel method called AN-DMKDE, which utilizes density esti-

mations as a measure of abnormality.

1.4.2. Software

• Gallego-Mejia, J., Bustos-Brinez, O., González, F. A (2023). Joaggi/lean-dmkde:

v1.0 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.7709642

• Gallego-Mejia, J., González, F. A (2022). Joaggi/demande: v1.0 (v1.0). Zenodo.

https://doi.org/10.5281/zenodo.7709634

• Gallego M., Joseph A., Osorio, Juan F., González, Fabio A. (2022). Fast Kernel

Density Estimation with Density Matrices and Random Fourier Features Software

(1.0.1). Zenodo. https://doi.org/10.5281/zenodo.6941020

• Bustos-Brinez, O., Gallego-Mejia, J., González, F. A. (2022). Joaggi/anomaly-

detection-density-matrix-kernel-density-estimation: v1.0.0 (v1.0.0).

Zenodo. https://doi.org/10.5281/zenodo.7308904

• Gallego-Mejia, J., Bustos-Brinez, O., González, F. A (2022). Joaggi/Incremental-

https://ieeexplore.ieee.org/document/10031206
https://ieeexplore.ieee.org/document/10031206
https://ieeexplore.ieee.org/document/10031206
https://www.springer.com/journal/521
https://www.springer.com/journal/521
https://www.springer.com/journal/521
https://www.springer.com/journal/521
https://doi.org/10.52591/lxai2022112810
https://doi.org/10.52591/lxai2022112810
https://doi.org/10.52591/lxai2022112810
https://doi.org/10.52591/lxai2022112810
https://github.com/Joaggi/lean-dmkde
https://github.com/Joaggi/lean-dmkde
https://github.com/Joaggi/demande
https://github.com/Joaggi/demande
https://github.com/Joaggi/Fast-Kernel-Density-Estimation-with-Density-Matrices-and-Random-Fourier-Features
https://github.com/Joaggi/Fast-Kernel-Density-Estimation-with-Density-Matrices-and-Random-Fourier-Features
https://github.com/Joaggi/Fast-Kernel-Density-Estimation-with-Density-Matrices-and-Random-Fourier-Features
https://github.com/Joaggi/anomaly-detection-density-matrix-kernel-density-estimation
https://github.com/Joaggi/anomaly-detection-density-matrix-kernel-density-estimation
https://github.com/Joaggi/anomaly-detection-density-matrix-kernel-density-estimation
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
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Anomaly-Detection-using-Quantum-Measurements: v1.0.0 (v1.0.0).

Zenodo. https://doi.org/10.5281/zenodo.7183564

• Gallego-Mejia, J., González, F. A (2023). Joaggi/Robust-kernels-for-robust-location-

estimation: v1.0 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.7709651

1.4.3. Datasets

• Gallego-Mejia, Joseph A., Gonzalez, Fabio A. (2023). DEMANDE Dataset (V1.0)

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.7822851

1.4.4. Other Contributions

Papers

• Gallego, J. A., González, F. A., & Nasraoui, O. (2021). Robust kernels for robust

location estimation. Neurocomputing, 429, 174-186 [54].

We demonstrated that the Gaussian kernel possesses inner robustness due to its rela-

tionship with the Welsh M-Estimator. Additionally, we introduced four novel robust

kernels that share a relationship with M-Estimators.

• Gallego, J. A., González, F. A., (2019). Robust Estimation in Reproducing Kernel

Hilbert Space [Poster Presentation]. Neural Information Processing Systems Confer-

ence: LatinX in AI (LXAI) Research Workshop 2019, Vancouver, Canada.

https://doi.org/10.52591/lxai2019120829

• Useche, D. H., Bustos-Brinez, O. A., Gallego, J. A., & González, F. A. (2022). Com-

puting expectation values of adaptive Fourier density matrices for quantum anomaly

detection in NISQ devices. In arXiv: 2201.10006.

We demonstrated that the novel DMKDE method can be implemented on a quan-

tum computer. Our experiments involved using DMKDE for density estimation and

anomaly detection tasks.

• Gallego-Mejia, J., Bustos-Brinez, O., & González, F. A. (2023). LEAN-DMKDE:

Quantum Latent Density Estimation for Anomaly Detection (Student Abstract). As-

sociation for the Advancement of Artificial Intelligence (AAAI 2023)

We have introduced a novel method for anomaly detection that utilizes an autoen-

coder to capture a feature representation and DMKDE to calculate probabilities. It is

published as a student abstract conference paper.

https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Incremental-Anomaly-Detection-using-Quantum-Measurements
https://github.com/Joaggi/Robust-kernels-for-robust-location-estimation
https://github.com/Joaggi/Robust-kernels-for-robust-location-estimation
https://zenodo.org/record/7822851#.ZF1Hyo3MIzY
https://zenodo.org/record/7822851#.ZF1Hyo3MIzY
https://www.sciencedirect.com/science/article/abs/pii/S0925231220317033
https://www.sciencedirect.com/science/article/abs/pii/S0925231220317033
https://doi.org/10.52591/lxai2019120829
https://doi.org/10.52591/lxai2019120829
https://doi.org/10.52591/lxai2019120829
https://arxiv.org/pdf/2201.10006.pdf
https://arxiv.org/pdf/2201.10006.pdf
https://arxiv.org/pdf/2201.10006.pdf
https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
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Coadvisor

• Osorio Ramı́rez, Juan Felipe (2021). On the performance of Kernel Density Estimation

using Density Matrices. Undergraduate Thesis, Universidad Nacional de Colombia.

• Bustos-Brinez, O., (2023). Desarrollo de un algoritmo para detección de anomaĺıas

basado en estimación de densidad basada en kernels, matrices de densidad y medias

cuánticas, Master’s Thesis, Universidad Nacional de Colombia.

Posters

Gallego-Mejia, Joseph A., González, Fabio A. (2023). Efficient Non-Parametric Neural

Density Estimation and Its Application to Outlier and Anomaly Detection (v1.0.0). Asso-

ciation for the Advancement of Artificial Intelligence (AAAI 2023). Zenodo.

https://doi.org/10.5281/zenodo.7633808

Gallego-Mejia, Joseph A., Bustos-Brinez, Oscar, González, Fabio A. (2023). LEAND:

Quantum Latent Density Estimation for Anomaly Detection (Student Abstract) (v1.0.0).

Association for the Advancement of Artificial Intelligence (AAAI 2023), Washington DC,

USA. Zenodo. https://doi.org/10.5281/zenodo.7633793

Gallego-Mejia, Joseph A., Bustos-Brinez, Oscar, González, Fabio A. (2022). Poster:

Anomaly Detection through Density Matrices and Kernel Density Estimation (AD-DMKDE)

(Version 1). LatinX in AI Research at NeurIPS 2022, New Orleans, USA. Zenodo.

https://doi.org/10.5281/zenodo.7573566

Gallego-Mejia, Joseph A., Fabio A. González. (2019). Robust Estimation in Repro-

ducing Kernel Hilbert Space. In Neurocomputing (Version 1, Vol. 429, Numbers 14 March

2021, pp. 174–186). Zenodo. https://doi.org/10.5281/zenodo.6604897

Presentations

• Efficient Non-Parametric Neural Density Estimation and Its Application to Outlier and

Anomaly Detection - Association for the Advancement of Artificial Intelligence AAAI

2023 - Washington DC, USA - Winner of a travel award to present work - Doctoral

consortium Feb. 2023 - Presentation of doctoral research

• InQMAD: Incremental Quantum Measurement Anomaly Detection - The IEEE In-

ternational Conference on Data Mining (ICDM) - Orlando - Florida (2022), USA -

Presentation of research in streaming anomaly detection - Winner of a travel award to

present work

• Anomaly Detection Through Density Matrices and Kernel Density Estimation (AD-

DMKDE) Nov. 2022 - LatinX in AI Research Workshop co-located with the Thirty-

https://repositorio.unal.edu.co/handle/unal/80040
https://repositorio.unal.edu.co/handle/unal/80040
https://zenodo.org/record/7633808#.ZAptWtLMJhE
https://zenodo.org/record/7633808#.ZAptWtLMJhE
https://zenodo.org/record/7633808#.ZAptWtLMJhE
https://zenodo.org/record/7633793#.ZApteNLMJhE
https://zenodo.org/record/7633793#.ZApteNLMJhE
https://zenodo.org/record/7633793#.ZApteNLMJhE
https://zenodo.org/record/7633793#.ZApteNLMJhE
https://zenodo.org/record/7573566#.ZAptmtLMJhE
https://zenodo.org/record/7573566#.ZAptmtLMJhE
https://zenodo.org/record/7573566#.ZAptmtLMJhE
https://zenodo.org/record/6604897#.ZAptrdLMJhE
https://zenodo.org/record/6604897#.ZAptrdLMJhE
https://zenodo.org/record/6604897#.ZAptrdLMJhE
https://youtu.be/eGpYclZYwG4
https://youtu.be/eGpYclZYwG4
https://youtu.be/eGpYclZYwG4
https://youtu.be/eGpYclZYwG4
https://youtu.be/r1OeQ6Zr1Gs
https://youtu.be/r1OeQ6Zr1Gs
https://youtu.be/r1OeQ6Zr1Gs
https://youtu.be/r1OeQ6Zr1Gs
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
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Third Neural Information Processing Systems (NeurIPS) New Orleans, USA - Presen-

tation of research in anomaly detection - Winner of a travel award to present work

• Fast Kernel Density Estimation with Density Matrices and Random Fourier Features

- Nov. 2022 - Sociedad Iberoamericana de Inteligencia Artificial (IBERAMIA) New

Orleans, USA - Presentation of the research named Fast Kernel Density Estimation -

Winner of a travel award to present work

• LatinX in AI Research Workshop co-located with the Thirty-Third Neural Information

Processing Systems (NeurIPS) - Vancouver, Canada - Robust Estimation in Reproduc-

ing Kernel Hilbert Dec. 2019 - Presentation of research in robust estimation - Winner

of a travel award to present work

1.5. Organization of this thesis

This PhD thesis is focused on the development of novel techniques for density estimation and

anomaly detection. Above, we presented an introduction that outlines the motivation for

the research, the problem statement, and the objectives. The contributions of the research

are also presented, which include neural density estimation and anomaly detection, among

others. In the Chapter 2, we provide an overview of density estimation, kernel density esti-

mation, and related topics, such as efficient kernel density estimation and anomaly detection.

The first contribution is presented in Chapter 3, which proposes DEMANDE: Density Matrix

Neural Density Estimation. The second main contribution is presented in Chapter 4, which

proposes AN-DMKDE and LEAN-DMKDE as methods to stationary anomaly detection.

The third main contribution is presented in Chapter 6, which proposes InQMAD, a method

for streaming anomaly detection. Overall, this thesis presents important new techniques for

density estimation and anomaly detection, with potential applications in a range of fields,

including finance, healthcare, and security.

https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/OS-9HOyB1ww
https://youtu.be/I4hT77u79QA
https://youtu.be/I4hT77u79QA
https://youtu.be/I4hT77u79QA
https://youtu.be/I4hT77u79QA


2. Background and Related Work

This chapter serves as a comprehensive introduction to the background and related work

utilized in this thesis. We start by delving into the fundamentals of density estimation

and Kernel Density estimation, followed by the groundbreaking concept of neural density

estimation and the novel methods employed in neural flows. To provide a more thorough

understanding, we demonstrate various applications of density estimation, and share several

efficient kernel density estimation techniques. We then dive into the approximation kernel

techniques, with a detailed exploration of the random Fourier feature method. The density

matrix formalism utilized in this thesis is introduced, providing a deeper understanding of

the subject matter. Moreover, we tackle the anomaly detection problem by defining it and

showcasing multiple shallow and deep learning methods that are pertinent to this problem.

Finally, we provide an overview of streaming anomaly detection and present the latest state-

of-the-art techniques.

2.1. Density Estimation

In this section, our goal is to provide readers with a comprehensive understanding of density

estimation and its importance in various fields. We begin by providing a concise expla-

nation of density estimation and its fundamental importance in statistical modeling and

data analysis. To further elaborate on the topic, we present the kernel density estimation

method, highlighting its strengths and weaknesses. We discuss how this approach uses kernel

functions to estimate the underlying probability density function, allowing flexible model-

ing of data distributions. However, we also acknowledge the limitations of kernel density

estimation, such as sensitivity to the choice of kernel bandwidth and its computational com-

plexity. In addition, we explore interesting advances in density estimation techniques known

as neural density estimation. These methods take advantage of neural networks to estimate

density functions and offer several advantages. In particular, these new approaches can be

trained end-to-end using deep learning methodologies, allowing for more efficient and accu-

rate density estimation. In the following, we delve into the various applications of density

estimation in various domains. We show how density estimation plays a crucial role in fields

such as anomaly detection, image synthesis, and generative modeling, among others. By

illustrating these applications, we highlight the practical relevance and versatility of density

estimation techniques. In addition to the above content, we also present state-of-the-art
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methods to address the challenges and limitations of kernel density estimation. We explore

novel approaches that propose innovative solutions to improve the complexity of kernel den-

sity estimation. We conclude this section including an explanation of the density matrix, a

formalism used in quantum mechanics. This formalism serves as a fundamental concept for

the novel methods presented in the following chapters, showing the interdisciplinary nature

of density estimation. By enhancing this section with a more complete and coherent narra-

tive, we strive to provide readers with a comprehensive understanding of density estimation,

its various methodologies, applications, and ongoing advances in the field.

2.1.1. Density Estimation and Kernel Density Estimation

Density estimation is a branch of statistics in which the idea is to reconstruct the underlying

probability density function (PDF) given a set of data points {x1, · · · , xn} ⊂ R
d [67]. Figure

2-1 shows a perspective of different approaches for density estimation. Three main topics

are shown: parametric, nonparametric and neural network density estimation. Parametric

density estimation has a variety of literature generated in the last century and is not our

main focus in the present thesis. For nonparametric density estimation, the most commonly

used algorithm is KDE. Density estimation using neural networks has three main subtopics:

autoregressive, adversarial and variational networks.

Density Estimation

Parametric ...

Nonparametric KDE [155, 136, 184, 68, 31]

Neural

Network

Normalizing

Flows

[48, 151, 135, 133, 191]

Figure 2-1.: Taxonomy map for density estimation.

In statistics there are several parametric strategies to obtain the PDF, where some para-

metric density function is commonly assumed, for instance, the Gaussian, Beta or Gamma

distribution among others [17]. The problem with this approach is that, in general, the

underlying density function is possibly not even known [154]. Therefore, to solve this prob-

lem, nonparametric strategies for density estimation, such as kernel density estimation, are

used. Kernel Density Estimation (KDE) or also known as Parzen window is a nonparametric

estimation of the probability density function [155, 136]. This method makes no particular

assumptions about the underlying probability density function. The smooth estimation of

the Parzen window has the form:
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f̂X(x) =
1

Nλ

N
∑

i=1

kλ(x, xi) (2-1)

where kλ(·) is a kernel function and λ is the smoothing bandwidth parameter of the estimate.

A small λ-parameter implies a small degree of smoothing, leading to capture some purely

random structures [68, 31]. Conversely, a high λ-parameter implies a high degree of smooth-

ing, possibly leaving behind some important structures [184]. Obtaining the perfect band

parameter is a data-dependent optimization problem; hence, various solutions are proposed

in the literature, such as ad-hock solutions [13], adaptive functions [171], particle swarm

optimization [168], among others.
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Figure 2-2.: 1-D synthetic dataset. The gray zone is the area of true density. The estimated

pdf calculated by KDE (σ = 0, 3535) is shown.

Figure 2-2 shows a synthetic example using KDE. This dataset corresponds to a mixture of

univariate Gaussians. The mixture weights are 0.3 and 0.7 respectively and the parameters

are (µ1 = 0, σ = 1) and (µ1 = 5, σ = 1). It was generated with 10,000 samples for training

and use as test dataset 1,000 samples equally spaced in the interval [−5, 10]. The gray zone

is the area of true density. The estimate pdf calculated by KDE is shown as the orange

curve. This figure shows that the KDE is a good estimator for estimating a uni-variate

bi-modal probability distribution function, and it can be shown that it can be used in higher

dimensions.
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In [136], Parzen showed that Eq. 2-1 is an unbiased estimator of the pdf f . When kλ is the

Gaussian kernel, Eq. 2-1 takes the form:

f̂γ,X(x) =
1

N(π/γ)
d
2

N
∑

i=1

e−γ(∥xi−x∥)
2

(2-2)

The kernel density function (KDE) is perhaps the most widely used nonparametric density

estimation tool [31]. However, KDE has the drawback of suffering from the curse of di-

mensionality, i.e., the time consumed to make a prediction is at least linear in terms of the

training data points. This problem has been studied in the last two decades, with hash data

structures being one of the most recent solution attempts, see Subsection 2.1.4 for further

details. A more efficient density estimation algorithm could be a solution to this difficult

problem, in which an approximation is made with the help of a quantum feature map, in

particular using a random Fourier feature map.

In recent years, new state-of-the-art methods called neural density estimates have been pro-

posed [48, 151]. With these new methods, prior knowledge of the data can be combined with

the flexibility and learning capability of neural networks [135]. Furthermore, these methods

differ from other neural networks architectures as they provide an accurate estimate of the

probability distribution function [63]. Neural density estimates transform a simple initial

distribution such as the Gaussian distribution into a more complex and richer distribution.

Some caution must be taken with the transformation because the probability distribution

function must integrate to one given the second axiom of Kolmogorov probability. Therefore,

given a set of points x1, · · · , xn, define PX(x) as the density function of the random variable

X. A transformation y = f(x) has to integrate to one; therefore, the probability density

function is defined as PY (y) = PX(f
−1(y))|det∂f−1

∂y
|. This transformation could be chained

as f1 ◦ · · · ◦ fn [133, 191].

2.1.2. Neural Density Estimation

Three main approaches have been used in state-of-the-art neural density estimation: au-

toregressive models, normalizing flows and generative adversarial networks. Autoregressive

methods have their origin in the restricted Boltzman machine, which is a Markov random

field with bipartite substructure, where a connection is established between the weights W

and the observations v. One issue of this kind of method is their intractable Z partition

function who ensure a valid distribution and sums to 1 [95, 52, 14].

Normalizing Flow models were proposed in the last decades as an improvement of autoregres-

sive flows models, whose strength is based on the change of variables [44, 152]. This change

of variable can be composed in a series of differentiable and invertible transformations of
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a known density function, for instance, the normal distribution. The change of variables

needs to preserve the volume, which imposes a constraint on the availability of base density

functions. Nonetheless, these normalizing flow algorithms are difficult to tune, thus their

convergence is not always guaranteed [112].

In [112], the authors propose a new algorithm for density estimation using deep generative

neural networks. In the case of the discriminators, the z discriminator is used to distinguish

the generated latent variable ẑ from the real latent variable z. The other discriminator is

used to discern the true data x from the generated data x̂. This method can use complex

deep neural networks as discriminators, e.g., convolutional neural networks or transformers.

The model presented in this chapter follows a different approach to neural density estimation

which is based on density matrices and kernel-approximating Fourier features. One of the

main advantages of this approach is its simplicity as well as its good performance in some

benchmark tasks as shown by the experimental evaluation in Section 5.3. In that section

different state-of-the-art neural density methods were used as baselines. These methods are

described next:

Normalizing flows models data x using a sequence of invertible and differentiable transfor-

mation of a generally simple f -function.

The method uses a change of variables where Z and X are defined as random variables, such

that X = fθ(Z), Z = f−1
θ (X), and f : Rn → R

n. Then,

pX(x; θ) = pZ(f
−1
θ (x))

∣

∣

∣

∣

det

(

∂f−1
θ (x)

x

)∣

∣

∣

∣

The volume is conserved in this transformation due to the calculation of the determinant.

Generative adversarial networks are based on two generator networks and two discriminators.

One of the generators is used to map from z latent space to x space similar to the process

performed by normalization flow algorithms. The other generator is used to perform the

opposite transformation from x-space to z-space. Some prominent algorithms as presented

next:

• Masked Autoregressive Flow (MAF): use the following recursions for each layer: xi =

ui expαi + µi where µi = fµi(u1:i−) [135]. MAF is a generalization of RealNVP.

• Inverse Autoregressive Flow (IAF) [91]: In [135], the authors show that inverse au-

torregresive flow is a generalization of RealNVP. Define z0 = (z′0 − µ0)/σ0 and zi =

(z′i − µ(z′1:i−1)/σ(z
′
1:i−1), then the Jacobian is lower triangular. This implies that the

determinant|dz/dz′| can be computed as
∏D

i=1 1/σi(z1:i−1) who is not dependent of z′i.

• Planar Flow [152]: this normalized flow uses a family of transformation of the form

f(z) = z+uh(wTz+ b) where u, w, b are free parameters and h(·) is an element-wise

function. This transformation has a triangular Jacobian.
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• Real NVP [45]: this method uses coupling layers as follows y1:d = x1:d and yd+1:D =

xd+1:D

⊙

exp(s(x1:d)) + t(x1:d) where s and t means scale and translation respectively,

and
⊙

is the Hadamard product or element-wise product. Also, the inverse of such

transformation does not involve the computation of the inverse of neither s or t, there-

fore these functions can be arbitrarily complex and difficult to invert in particular can

be multilayer neural networks.

• Neural Spline Flow [47]: Neural Splines Flow uses a partition of K *nodes* of the space

between (-B,-B) and (B,B). The out-of-range transformation is mapped as the identity.

This makes the overall transformation linear out-of-range, so it can take unrestricted

inputs. Each knot uses a monotone rational-quadratic function. The authors claim that

rational-quadratic functions are easy to derive and, due to their monotonic behavior,

are also analytically invertible.

2.1.3. Density Estimation Applications

Density estimation models can be used for a wide variety of machine learning tasks, such as

anomaly detection, image processing, text-to-speech, and semi-supervised learning, among

others. Anomaly detection, outlier detection, and novelty detection algorithms will be pre-

sented in Section 2.2.1. Figure 2-3 shows a variety of density estimation applications. Kernel

density estimation, parametric models, and neural networks are the main approaches in those

applications. KDE has several applications, such as estimation of the underlying probability

density function, estimation of confidence intervals and confidence bands [49, 34], local mode

finding for geometric feature estimation [29, 32], for estimating ridge density function [61],

for constructing cluster trees [12], for estimating cumulative distribution function [130], for

estimating receiver operating characteristic (ROC) curves [121], among others.

Density estimation is used to construct clustering algorithms, e.g., Fraley and Raftery [51]

used an expectation maximization algorithm with a mixture model to propose a hierarchical

agglomerative clustering, Nakaya and Yano [131] used the kernel density estimation algo-

rithm with a spatio-temporal modification to visualize clusters of crime areas, Anderson [6].

Density estimation is also used in spatial analysis, e.g., Borruso [19] used network density es-

timation to estimate the use of some insurance banks in European cities, Anderson [6] used

kernel density estimation to assess injury-related traffic accidents in London, UK, Downs

[46] proposed a method to generate the intensity surface in a spatial environment for moving

objects using kernel density estimation and time geography. Super-resolution imaging is an-

other use case of density estimation, e.g., Gatopoulos et al. [60] used variational autoencoders

and likelihood estimation to generate new super-resolution images, Sejong et al. [167] used

a normalizing flow-based model and a large stack of convolutional layers to provide better

super-resolution images, Cheng et al. [33] used a mixture model of a Dirichlet process and

a Gaussian process regression to estimate the distribution of training patches, Guardnaccia
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et al. [70] used kernel density estimation to make a spatial analysis of city noise with in-

formation collected from a French mobile app installed on citizens’ smartphones using their

GPS location data.

Kamalov [88] used kernel density estimation to generate new samples from a given data set,

dealing with imbalanced data sets. Lee and Park [100] used kernel density estimation to

process the image by subtracting the background in a pixel-based method. This method can

dynamically remove backgrounds in the video, using few resources. Density estimation is

also used in classification, e.g., [93] proposed an end-to-end pipeline for classification using

kernel density estimation for online classification, [66] proposed a classification method using

density estimation and Fourier random features. Semi-supervised classification is another

task that can be solved using density estimation, e.g., Ji et al. [84] used manifold kernel

density estimation to propose a first phase with unlabeled samples where the manifold is

extracted and a second phase with labeled samples. Text-to-speech conversion is currently

an active research topic. The density estimation obtained by inverse autoregressive flow

(IAF) is used in Peng et al. [138] to generate a sequence-to-sequence model thus converting

text to speech.

2.1.4. Efficient Kernel Density Estimation

Kernel density estimation is a memory-based algorithm, i.e., it stores each data point in

the training phase and uses it to calculate an average kernel distance. This process has a

drawback given by the memory space and the time footprint of the process; therefore, new

algorithms are proposed in the literature to solve this problem. It should be noted that

the time complexity of the original KDE is linear as a function of the training data points.

Figure 2-4 shows several approaches for efficient kernel density estimation.

Indyk and Motwd [78] proposed a method for hashing buckets called Locality-Sensitive Hash-

ing. This method differs from normal hashing in that it maximizes collisions instead of

minimizing them. This method can be considered a dimensionality reduction technique.

Using this method, the authors proposed two algorithms to reduce the processing time and

realized a sub-linear query time. Gray and Moore [69] proposed a new space partitioning

tree that uses the idea of grid search but with a divide-and-conquer approach. Each point in

the tree is contained in several hyper-rectangles. The tree is constructed using only a small

percentage or number of points. The problem with the latter two approaches is that they

scale exponentially according to the number of dimensions. In physics and statistics, this is

not a real problem because typical applications have several d dimensions less than or equal

to three. However, in recent data sets where the number of dimensions is on the order of

tens, better approaches are needed to solve this problem.

Recently, March et al. [117] have proposed a new method for pruning far points and approx-

imating near fields. This algorithm performs fast kernel sums by separating points between
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near and far fields. A tree data structure is used to perform fast tree traversal summation.

The most promising tool in state-of-the-art methods are hashing-based estimators for kernel

density estimation, where a hash structure is used to construct close distance boxes that

allow the computation of few distances in the prediction step [27, 173, 11]. Here, a sampling

scheme is used, where points are sorted into buckets thanks to a hash function whose main

objective is to send similar objects to the same hash value.

2.1.5. Density Matrices

One of the main building blocks used in quantum physics to capture classical and quantum

probability in a given physical system is the density matrix. This formalism was conceived by

Von Neumann [187] as the foundation of quantum statistical mechanics. The density matrix

describes the states of the quantum system and explains the relationship between the pure

state and the mixed states of the system. Given the Heisenberg uncertainty principle, the

position and velocity of a given particle cannot be measured at the same time, even in theory.

Therefore, the pure state allows the density matrix to capture the quantum probability of a

given particle. However, when the preparation of the system is not fully known, mixed states

are required to provide the classical probability in the density matrix. Another possibility

is when the particle system has quantum entanglement, in this case, mixed states are used

to provide the quantum probability in the density matrix [178]. In this thesis, a density

matrix will be used as a component for new quantum-inspired machine learning algorithms

combined with kernel density estimation.

Density matrices had been used in some works in machine learning. Figure 2-5 shows

some applications of density matrices in machine learning. Density matrices can be used

as a building block for machine learning algorithms. According to our research, Wolf [193]

showed the first attempt to use density matrix to solve some machine learning problems,

including clustering, feature selection, set similarity, and classification. Chatzis et al. [28]

proposed a combination between the Gaussian mixture model and density matrices. They

showed that the density matrix can represent a linear combination of the simple Gaussian

mixture model as a diagonal density matrix. Tiwari and Melucci [182] proposed a new al-

gorithm for information retrieval using the density matrix. They used |x⟩ as the document

representation and |y⟩ as the input query. Both elements, non-relevant and relevant docu-

ments, were used to compute the density operators ρ0 and ρ1 respectively. Sato et al. [161]

study proposed a variational Bayes inference based on simulated annealing and the density

matrix. Jankovic and Sugiyama [81], Jankovic [79], Janković et al. [82] proposed a robust

and non-robust probabilistic PCA using Born’s rule. They showed that the algorithm can

be solved offline as a sequential and online optimization problem with two different time

scales. Jankovic [80] proposed a new quantum-inspired machine learning algorithm called

quantum low entropy-based associative reasoning based on quantum Tsallis entropy, the
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nearest neighbor algorithm, and support vector machines.

2.2. Anomaly Detection

In this section, we provide an in-depth look at the anomaly detection task in the context of

machine learning. We define the task itself and also explore various methods that have been

developed to solve the problem. We cover a wide range of techniques, including both tradi-

tional approaches rooted in classical ideas and state-of-the-art methodologies that leverage

deep learning. In addition to discussing these methods, we delve into the concept of stream-

ing anomaly detection, which is of significant importance when dealing with massive data

sets arriving as a data stream. We recognize that in scenarios where acquiring the complete

training set from scratch is difficult or even infeasible, streaming anomaly detection becomes

a crucial aspect to consider. We examine the unique challenges posed by streaming data and

highlight strategies and algorithms that enable effective anomaly detection in such dynamic

environments. By incorporating these topics, we aim to provide a comprehensive exploration

of the task of anomaly detection. We cover its various methodologies, ranging from classical

to state-of-the-art approaches, and highlight the critical role of streaming anomaly detection

in effectively analyzing large-scale datasets.

2.2.1. Anomaly Detection and Outlier Detection

The idea in anomaly detection is to classify normal versus abnormal patterns, i.e., to con-

struct a segmentation between normal and abnormal patterns of the data points. Figure 2-6

shows the different methods and application of anomaly detection. In anomaly detection,

the normal and abnormal behavior of data points could be given by two different underlying

distribution functions; however, it could be a modification of the underlying process. In this

case, the task is referred to in the literature as novelty detection, i.e., the algorithm will

search for anomalous patterns within the data sets and if there is a change in the process,

the anomaly detection model will be updated. An outlier is a data point that differs signif-

icantly from other observations; therefore, outlier detection is a task to discriminate those

outliers. Anomaly and outlier detection can be used in various applications such as fraud

detection, insurance care, intrusion detection for cybersecurity, industrial damage detection,

among others.

Let α be the ratio of the anomaly points. When α is high, the most prominent approach

for anomaly detection will be to use a supervised learning approach. However, when α is

low, the best approach will be to use outlier detection algorithms, e.g., in a fraud detection

problem, it will be easier to model the distribution of normal behaviors first and treat the

outlier points as outliers later. The advantage of this approach is that we do not have to

make any assumptions about the distribution. However, the drawback of this approach is
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that the anomaly may not necessarily be an outlier. Moreover, if the data set has a long-

tailed distribution due to the high number of outlier data points, it will not work either. The

importance of anomaly detection is due to the fact that the recognition of anomalous behavior

enables decision making. For example, anomalous traffic patterns on a network could mean

that sensitive data is being transmitted over the network [77]. Anomalous detection in MRI

images could mean cancer detection [7]. Anomalous user behavior in payment transactions

could mean credit card fraud [143]. Anomaly detection is an actionable task in contrast

to outlier detection which is commonly used to locate outliers and subsequently remove

them [141]. An efficient density estimation model can serve as the basis for a new proposed

algorithm for anomaly and outlier detection problems capable of yielding a measure of the

uncertainty given by the density prediction [24]. Lately, deep neural networks are used to

predict whether a point is an outlier showing great performance in anomaly detection tasks.

They work best when a large amount of data is available and can perform implicit feature

engineering. For instance, Lv et al. [113] proposed a two-step anomaly detection algorithm

using a variational autoencoder as the first step and a kernel density algorithm as the second

step.

Anomaly detection can be solved using supervised [89, 172, 87], unsupervised [186, 124, 107],

hybrid and one-class approaches [2], among others. Anomaly detection can solve problems

such as medical anomaly detection [122, 23], fraud detection [201, 143], video surveillance

[92, 188], time series anomaly detection [119], and industrial damage detection [119, 147].

New algorithms in deep neural networks are able to provide better approximations to very

complex problems such as medical images or sequencing datasets. Moreover, voluminous

datasets are increasing rapidly nowadays, where this feature is frequently encountered in a

variety of applications in anomaly detection such as sensor networks; therefore, deep neural

networks are a good selection for their good performance on huge datasets. In addition,

neural networks can learn intrinsically complex features by avoiding manual feature gen-

eration. Also, neural networks can be mixed with classical methods like one-class support

vector machines [25].

In the upcoming subsections, we present a comprehensive overview of eleven state-of-the-art

anomaly detection methods that represent the most prevalent types of techniques in the

field. These methods are classified into three categories: classical methods, recent shallow

methods, and deep learning methods. Each algorithm takes into account the proportion

of outliers in the data as a parameter for determining threshold values. Moreover, specific

parameters for each algorithm are elaborated upon in their respective sections. In Chapter

4, we utilized these methods as baseline models and compared them against novel proposed

methods to evaluate their effectiveness in detecting anomalies.
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Classical Methods

• Isolation Forest [111]: this method profiles the anomalous data points from the be-

ginning, assuming that some anomalous points can be found in the training data set.

It divides the space into lines orthogonal to the origin. The points that require less

tree breaking are considered anomalous. The method requires three hyperparameters:

number of decision trees, number of samples for each decision tree and the proportion

of anomalous data points.

• Minimum Covariance Determinant [156]: this algorithm embeds the data points into a

hyper ellipsoid using robust estimators of the mean and covariance of the points, and

then uses the Mahalanobi distance of each point to score its anomaly. This algorithm

has only one hyperparameter of proportion of anomalous points in the data set.

• One Class Support Vector Machines [165]: basically, the idea is to generate a maximal

margin from the origin such that all the training data points (normal points) lie within

the origin and the margin. The method supposes that anomalous points are far away

from normal points, i.e., they reside in the subspace generated by the maximization of

the hyperplane that does not contain the origin. A Gaussian Kernel was used for all

the experiments given their good properties.

• Local Outlier Factor [20]: the algorithm computes the k-nearest neighbors of each

point. It then computes the local reachability density using the distance between the

points and the k-nearest neighbor. Next, the algorithm compares the local reachability

density of each point and computes the LOF. When the LOF values are equal or less

than 1, the data point is considered an inlier, otherwise an outlier. The hyperparameter

is the type of distance used in the k-nearest neighborhood algorithm and the proportion

of anomalous data points.

• K-nearest neighbors (KNN) [146]: this method calculates the k-nearest neighbor dis-

tances of each point and computes a function over this distance. The three main

functions to compute the distances are: the largest distance, the mean distance and

the median distance. According to the distance computed function, the scientist selects

an anomaly threshold given the percentage of anomalous data points. There are several

hyperparameters: k nearest neighbor, distance metric to the k-nearest neighbor algo-

rithm, distance function applied to the distance metric, and proportion of anomalous

data points.

Recent Shallow Methods

• SOS [83]: the algorithm is inspired by T-SNE. It computes a dissimilarity matrix which

can be the Euclidean distance. The dissimilarity matrix is then used to compute an

affinity matrix using a perplexity parameter. With stochastic selection of sub-graphs,
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a probability metric of being an outlier point is calculated using the link probabilities

between points in the subgraph. Given the link probability, a threshold value is selected

to classify outlier points from normal ones. It has two parameters: the perplexity and

the threshold value.

• COPOD [104]: this algorithm uses the copula, which is a function that allows the joint

multivariate distribution function to be expressed in its marginal distribution functions.

The copula is calculated and then a skewness correction is calculated to decide whether

to use the left tail or the right tail of the copula. Finally, a threshold value is used to

determine whether a point is anomalous or normal. The only parameter considered is

the anomaly threshold value.

• LODA [139]: it is an ensemble algorithm based on histograms applied to each dimen-

sion. Each histogram is projected using w random parameters. The joint probability is

computed under the strong assumption of independence between the projected vectors.

The logarithm function is applied to avoid the curse of dimensionality. The method has

three hyperparameters, nevertheless, they are obtained automatically in the training

phase.

Deep Learning Methods

• VAE [90]: the model is based on Bayesian statistics. It uses an autoencoder with

stochastic variational inference to reconstruct the original sample point. With a vari-

ational lower bound reparameterization trick, the model can be trained by stochastic

gradient descent. The model has several parameters like the number of neurons in each

hidden layer, the number of hidden layers, the number of iterations of the optimization,

the activation function of each neuron, among others. In addition, a threshold value

is needed to decide whether a point is anomalous or not.

• DeepSVDD [157]: this method is based on Support Vector Data Description (SVDD),

which surrounds normal points on a hypersphere in a reproducing Hilbert space. The

anomalous points are assumed to be outside the hypersphere. The parameter v controls

the proportion of anomalous points found by the algorithm. It has several parameters

including: v, number of hidden layers, number of neurons, epochs, among others.

• LAKE [113]: it is based on the union of two anomaly detection methods. First, a

variational autoencoder (VAE) is used as a dimensionality reduction algorithm and

as a measure of reconstruction error. Second, a kernel density estimation (KDE) is

attached to the last hidden layer of the variational autoencoder and concatenates with

the reconstruction error in terms of mean squared error and cosine similarity. The

KDE uses the reconstruction error and the dimensionality reduction to construct an

estimate of the density of the given point. The method has several parameters such

as the number of epochs of the VAE, the γ parameter of the Gaussian kernel used in
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KDE, and the ratio of anomalous points.

• Adversarially Learned Anomaly Detection (ALAD) [198]: is a method that combines a

generative adversarial network (GAN) framework with anomaly detection. It involves

training a generator network to learn the underlying distribution of normal data and

generate synthetic samples, while simultaneously training a discriminator network to

distinguish between real and synthetic samples. During anomaly detection, new sam-

ples are passed through the discriminator, which assigns a score indicating the likeli-

hood of being anomalous. A threshold is set on these scores to differentiate between

normal and anomalous samples. ALAD leverages adversarial training to learn a rep-

resentation of normal data and effectively detect anomalies that deviate significantly

from the learned distribution.

• Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE)

[22]: is a powerful method that combines adaptive Fourier features and density matrices

to detect anomalies in data. By leveraging adaptive Fourier features, AD-DMKDE can

effectively approximate the Gaussian kernel, capturing complex patterns and variations

in the dataset. Incorporating density matrices allows AD-DMKDE to capture the

distribution function of the data points, providing a comprehensive representation of

the underlying structure. Through a quantum measurement-based approach and a

threshold computed from the training data, AD-DMKDE assigns a normality score to

each data point, indicating its likelihood of being normal. This integrated approach

enables accurate and reliable anomaly detection, facilitating effective data analysis and

decision-making processes.

2.2.2. Streaming Anomaly Detection

In streaming anomaly detection, the data points X = {x1, · · · ,xt} arrive as a d-feature-

dimension sequence. This sequence can be the sequence of transactions for a given credit

card or the temperature recorded by an IOT sensor. The challenge in this configuration is

that the concept of ”normality” evolves over time, meaning that a point that was considered

normal behavior can drift and become anomalous behavior. To solve this problem, there

is a need to develop algorithms that can learn on-line with high speed and low memory

consumption.

Next, we will present an explanation of incremental anomaly detection methods found in

the state of the art. These twelve methods present a wide variety of techniques and are the

following STORM, HS-Tree, iForestASD, RS-Hash, RCF, LODA, Kitsune, DILOF, xStream,

MStream, Ex. IF and MemStream. These methods employ different techniques such as

Isolation Forest, hashing, autoencoders and random cutting trees to detect anomalies in the

streaming data. These methods are used as a baseline in this thesis.
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• STORM [8]: A StreamManager and a Query Manager have been proposed. The former

is an indexed stream buffer whose job is to store the number of successive neighbors

and the identifiers of the most recent preceding neighbors. The latter is a procedure

that efficiently answers queries about whether a certain data point is an inlier or an

outlier.

• HS-Tree [179]: This method constructs complete binary trees where each tree has at

most 2h+1 − 1 node. Each subtree is constructed by randomly selecting a feature and

breaking it in half. A random perturbation of each subtree is performed to create

diverse subtrees. Each point has to traverse each binary tree to capture the mass

profile. Finally, a scoring function is computed using the mass function of a query

data point passing through each data node.

• iForestASD [43]: This algorithm has its roots in the Isolation Forest method. The

method uses a window for streaming data and is sent to the Isolation Forest. An

abnormality score is calculated using the average depth of the point on each tree in

the forest. If the point is normal, it is joined to the Isolation Forest.

• RS-Hash [160]: This method uses the Isolation Forest method at its roots. A tree is

constructed as a sequence of randomly selected features. Anomalous points are those

that are easily separated from the normal data points. With the scoring function given

by the Isolation Forest, a score of anomalous sliding windows is computed to detect

concept drift.

• RCF [71]: The algorithm constructs a robust randomized cutting tree (rrct) using a

random selection of the dimension weighted by its range. A uniform distribution is

used to cut the selected dimensions. This process is repeated n times, with n being

the maximum depth. A forest is constructed using several robust randomized cutting

tree. A new point is classified as an anomaly using the comparison of its insertion and

deletion complexity.

• LODA [140]: The algorithm uses a set of histograms for each dimension. Each his-

togram is mapped to a projection space using w parameters that capture the impor-

tance of the feature. The log likelihood in the projection space is then calculated. An

anomalous data point is expected to have a lower value of the log likelihood.

• Kitsune [124]: Kitsune is an algorithm that uses an ensemble of autoencoders to pro-

vide an anomaly score. Features are sent to l autoencoders of 3 layers each. The

reconstruction error calculated as root mean square error (RMSE) is sent to a final

3-layer autoencoder. Finally, the RMSE of the reconstruction is calculated and used

as the anomaly score.

• DILOF [128]: The method uses the k nearest neighbor information as in the Local

Outlier Factor (LOF) but improves it in the case of streaming data. The algorithm

has two phases: a detection phase and a summary phase. In the first phase it decides
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whether a point is anomalous or not. In the second, it uses an approximation algorithm

with a sampling strategy to update the memory of the k nearest neighbors.

• xStream [116]: The method uses a hash structure to reduce the dimensionality of the

data points, which allows the evolution of features in the stream. After reduction, the

method partitions the space into so-called half-space chains. These partitions capture

the density estimate at a different granularity. The outlier score is calculated based

on the density estimate score. For streaming, a previous window is used to score the

point outlier.

• MStream [15]: This algorithm uses two locality-sensitive hash functions: feature hash-

ing and record hashing. The former computes a hash for each feature in the data

point. The latter computes a hash for all features simultaneously. The anomaly score

is calculated using a chi-square density function. The algorithm is combined with an

autoencoder to reduce the dimensionality of the data.

• Ex. IF [72]: This algorithm uses a random slope to cut the hyperplane and a random

intercept. This differs from the isolation forest because the latter chooses random

features and generates a random cut on that feature. The method shows better results

when compared to the isolation forest for anomaly detection.

• MemStream [16]: The method proposes a nearest neighbor memory-based algorithm.

Each data point passes through a shallow autoencoder to reduce the dimensionality

of the original space. A memory is built using n-normal data points as initialization.

Then, when a new point arrives, it is forwarded to the autoencoder and compared to

the memory. An anomalous point will have a high mean square error compared to its

neighbors. The memory is updated only with normal data points.

2.3. Kernel Approximation Techniques - Random Fourier

Features

Kernel density estimation can be seen as a kind of kernel method. Several methods are based

on kernel methods, for example, support vector machines [164] and Gaussian processes [149].

Kernel methods rely on the kernel trick, i.e., the feature space is not computed explicitly

[36]. Instead, the feature space is computed intrinsically by the kernel function. Due to

this kernel function, kernel methods increase their complexity with at least the square of the

number of data points [162].

Increasing the speed of kernel methods is one of the challenges that researchers have studied

during the last two decades [30, 185]. Several approaches are proposed in the literature:

divide and conquer methods in which the original problem is broken into small subprob-

lems that are independent and efficient to solve [10]; compute a low-rank approximation of
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the kernel matrix, e.g., greedy techniques and the Nyström method [195, 192]; and random

Fourier features (RFFs) [144]. The RFFs are data-independent, unlike data-dependent tech-

niques, such as the greedy and Nyström methods. The RFFs uses Bochner’s theorem, which

is defined as follows:

Theorem 2.3.1. (Bochner’s Theorem) Let f be a bounded continous function on R
d. Then,

f is positive definite if and only if it is the Fourier transform of a nonnegative and finite

Borel measure p(w). The Fourier transform of a nonnegative Borel measure, call it p(w), is

f(x) =

∫

Rd

p(w)exp(i⟨w,x⟩)dw (2-3)

Using the Bochner’s theorem, note that f(x) = Ew[exp(i⟨w,x⟩)]; therefore, given an isotropic

kernel and the Bochner’s theorem, the following equality hold

k(x− y) = Ew[ψw(x)ψw(y)
∗] (2-4)

where ψw(x) = exp (jw∗x) and ψw(y)
∗ = exp (−jw∗y) is the complex conjugate. Rahimi

and Recht [144] used the Equation 2-4 to show that if we sample N i .i .d . realizations from

{wn}Nn=1, the following equation hold:

k(x− y) = Ew[Zw(x)Zw(y)] (2-5)

≈ 1

N

N
∑

n=1

exp
(

iwT
n (x− y)

)

(2-6)

where Zw(x) =
√
2cos(w∗x + b), with b ∼ Uniform[0, 2π]. Rahimi et al. [144] showed that

the Equation 2-6 uniformly converges to k(x, y) as the following theorem shown:

Theorem 2.3.2. LetM be a compact subset of Rd with a diameter diam(M). Then for the

mapping ϕrff defined above, we have

Pr

[

sup
x,y∈M

|⟨ϕ∗
rff(x), ϕrff(y)⟩ − k(x, y) ≥ ϵ|

]

≤

28
(

σpdiam(M)

ϵ

)2

exp

(

− Dϵ2

4(d+ 2)

)

(2-7)

where, σ2
p is the second momentum of the Fourier transform of k. In particular, for the

Gaussian kernel σ2
p = 2dγ.
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The idea of random Fourier features was extended with other characteristics. Figure 2-7

shows different approaches based on random Fourier features. Different approaches have

been proposed to compute the random features for the kernel approximation based on data-

independent strategies: Monte Carlo sampling [97, 197], quasi-Monte-Carlo sampling [9, 170],

and quadrature rules [37]. Other approaches using a data-dependent strategy are proposed:

leverage score sampling [105, 110], reweighted random features [174, 9], and kernel learning

[105, 21]. Although the RFFs has demonstrated incredible power in machine learning tasks,

there are three main open questions being actively investigated in state-of-the-art work:

sampling schemes [97], learning procedures [106], and variance reduction [106].

2.4. Brief Summary and Perspectives

This chapter offers a thorough and in-depth review of the literature related to density esti-

mation, covering various topics such as kernel density estimation, neural density estimation,

and efficient kernel density estimation techniques. In addition, the chapter delves into ker-

nel approximation techniques, specifically random Fourier features, and provides a detailed

explanation of density matrices and their characteristics. The chapter also explores the

applications of density estimation and concludes with a discussion on anomaly detection,

outlier detection, and streaming anomaly detection.

The knowledge and insights gained from this literature review form the basis for the novel

density matrix kernel density estimation method that we will introduce in the following

chapter. This method is the foundation of our present thesis and builds upon the existing

literature to provide a new and innovative approach to density estimation.
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Density Estimation

Applications

Clustering [51, 131, 6]

Spatial Analysis [51, 131, 6, 70]

Image Super-Resolution [60, 167, 33]

Imbalanced Data Sets [88]

Image Processing [100]

Semi-Supervised Classification [84]

Text-to-speech [138]

To estimate confidence

intervals

[49, 34]

To find local modes for

geometric feature estimation

[29, 32]

To estimate the

density function ridge

[61]

To construct cluster trees [12]

To estimate the cumulative

distribution function

[130]

to estimate receiver

operating characteristic (ROC) curves

[121]

Figure 2-3.: Taxonomy map for density estimation applications.

Efficient

KDE

Tree Based [69, 78]

Pruning [117]

Hashing [27, 173, 11]

Figure 2-4.: Taxonomy map for efficient kernel density estimation literature.
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Density Matrix

Classification [193, 80, 28]

Dimensionality Reduction [81, 79]

Similarity Sets

and Information Retrieval

[193]

Clustering [193]

Figure 2-5.: Taxonomy map for density matrices used in machine learning literature.

Anomaly

Detection

Applications

Medical Anomaly Detection [122, 23]

Fraud Detection [201, 143]

Video Surveillance [92, 188]

Time Series Anomaly Detection [119]

Industrial Damage Detection [119, 147]

Methods

Supervised [89, 172, 87]

Unsupervised

Autoencoder [186]

Variational [124]

Adversarial Networks [107]

Hybrid Models Feature Extraction

+ Traditional Algorithms [2]

one-Class

Neural Networks [25]

SVM [102]

Figure 2-6.: Taxonomy map for anomaly detection. Based on the ideas exposed in [24].
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Random Fourier

Features

Data

Dependent

Leverage Score Sampling [105, 110]

Re-weighted

random features [174, 9]

Kernel Learning [105, 21]

Data

Independent

Monte Carlo

Sampling [97, 35, 196]

Quasi-Monte

Carlo Samping [9, 114]

Quadrature Rules [37, 126]

Figure 2-7.: Taxonomy map for random Fourier features approximation literature.
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Neural Density Estimation



3. DEMANDE: Density Matrix Neural

Density Estimation

Density estimation is a fundamental task in statistics and machine learning that aims to

estimate, from a set of samples, the probability density function of the distribution that

generated them. There are different methods for addressing this problem but recently deep-

neural density estimation methods have emerged as a powerful alternative. This chapter

presents a novel method for neural density estimation based on density matrices and adaptive

Fourier features. Density matrices are commonly used in quantum mechanics to represent

the quantum state of a physical system. In this work, they are used to estimate probability

densities using an operation called quantum measurement. The proposed method can be

trained without optimization using an averaging operation over the samples of the training

dataset. It can also be integrated with deep learning architectures and trained using gradient

descent. The performance of the proposed method was evaluated on a range of synthetic and

real datasets and compared with fast kernel density estimation and state-of-the-art neural

density estimation methods. The results demonstrate that the proposed method achieves

competitive performance while being faster and more efficient than existing methods.

The work presented in this chapter corresponds to:

• Gallego, J.A., & González, F.A. (2023). DEMANDE: Density Matrix Neural Density

Estimation. IEEE Access(accepted). doi: https://10.1109/ACCESS.2023.3279123.

[55? ]

3.1. Introduction

The estimation of the joint distribution, p(x1, · · · ,xn), of a set of random variables is a

generally important task in machine learning. This estimation of the underlying distribution

has a variety of applications, for instance: density estimation, anomaly detection, non-

supervised, and supervised learning. Parametric models, such as Gaussian mixture models,

suffer from several problems, such as model misspecification, when the assumed parametric

model does not capture the underlying probability density function, resulting in a biased

or inaccurate model [18, 73]; overfitting, if the selected parametric model is too complex

compared to the original data [127, 99]; computational complexity, when the model has

https://ieeexplore.ieee.org/document/10131950
https://ieeexplore.ieee.org/document/10131950
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to be optimized using maximum likelihood estimation and there are several parameters to

be adjusted [39, 123]; limited flexibility, when parametric estimation is constrained by the

selected parametric family [86, 59]; data preprocessing, a parametric model is often biased or

inaccurate given normalization, scaling or anomaly removal [159]. Kernel density estimation

(KDE) as a non-parametric density estimation partially solved these problems. The method

can approximate arbitrary density functions and its performance increases when more data

points are available [155, 136]. The drawback of this method is that it requires all the

training data points to make a prediction, which makes it a memory-based method [31]. A

different approach to density estimation is based on neural networks with deep architecture.

This approach is called neural density estimation and one of its main advantages is that it can

be integrated with other deep-learning architectures. The most representative approaches to

neural density estimation are autoregressive neural models, normalizing flows, and generative

adversarial models. One of the early attempts at creating autoregressive models was to stack

Restricted Boltzmann Machines together, forming a deep belief network [176, 75]. However,

this method is based on the calculation of the partition function. In general, this calculation

for more than 30 hidden variables is forbidden [95]. In [95, 52, 14], the authors proposed

other autoregressive models. They use the conditional probability rule to obtain an estimate

of the distribution. While these methods have shown powerful results, they can be slow

to optimize and consume significant computational resources. Furthermore, they have to

compute the partition function that is not always available, which can further slowdown the

model and make it more difficult to train. Normalizing Flow models were proposed in the

last decades as an improvement of autoregressive flow models, whose strength is based on

the change of variables [44, 152]. This change of variable can be composed in a series of

differentiable and invertible transformations of a known density function, for instance, the

normal distribution. The change of variables needs to preserve the volume, which imposes

a constraint on the availability of basis density functions. However, these normalization

flow algorithms are really difficult to tune, thus their convergence is not always guaranteed

[112]. We have evaluated several of these methods in the present manuscript and their

implementation software is publicly available in the manuscript repository.

In this chapter, we present a novel combination of adaptive Fourier features and density

matrices that can be used to perform density estimation. Density matrices are a formalism

used in quantum mechanics to represent the state of a quantum system. Its application

in machine learning, and in particular in density estimation, has been limited, but initial

exploration suggested that this approach could be a competitive alternative [64, 55]. In

this chapter, we present a neural density estimation method that surprisingly has a deep

relationship with KDE and can be seen as an approximation of it. We systematically evaluate

it in different benchmark tasks. One of the main advantages of this approach is that it

provides an efficient prediction method whose complexity does not depend on the number of

training samples compared to KDE. Besides, its implementation as a computational graph
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produces a differentiable and integrable deep learning architecture that can be optimized by

gradient descent. An important characteristic of the model is that, for some applications,

it is also possible to train it without using optimization, which alleviates the computational

burden associated with gradient-based optimization methods. The method is systematically

evaluated on different density estimation tasks and compared against state-of-the-art neural

density estimation methods.

In summary, the contributions of the present work are:

• A novel neural density estimation method that integrates deep learning, adaptive

Fourier features, and density matrices, offering an end-to-end framework for density

estimation.

• Systematic evaluations of the proposed method in four distinct scenarios: a fast

kernel density estimation comparison, an evaluation of unconditional density estima-

tion in both low and high dimensions, and a conditional density estimation evaluation.

• A novel adaptive Fourier features approach, which utilizes a siamese network to

enhance the random Fourier feature method.

• A comprehensive convergence and complexity analysis of the proposed algo-

rithm.

Collectively, these contributions represent a significant advancement in the field of neural

density estimation, with practical applications in various fields, including data analysis and

modeling. The rest of the chapter is organized as follows. Section 3.2 presents the novel

neural density estimation model based on adaptive Fourier features and density matrices.

Section 5.3 presents the evaluation of the method in different datasets and its comparison

against fast kernel density estimation and state-of-the-art neural density estimation methods.

Finally, Section 5.4 presents the conclusions and ideas for future work.

All the software used to generate the results of the experiments on the present chapter are

publicly available on Github: https://github.com/Joaggi/demande and Zenodo [85] with the

DOI: 10.5281/zenodo.7709633. Besides, the datasets generated are also publicly available

on Zenodo [57] with the DOI: 10.5281/zenodo.7822851.

3.2. Density Matrix Neural Density Estimation

(DEMANDE)

In this section, we present a method for neural density estimation that can be coupled

with other deep neural density estimation methods, such as convolutional neural networks,

transformers, and generative adversarial networks, among others. It is derived from the

density matrix which is a matrix for estimating the quantum state of a physical system.

Therefore, it can be used in quantum computers and trained on them. Surprisingly, it
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Table 3-1.: Notation

Random variables:

x1 · · ·xn set of identical and independent distributed variables

x∗ an identical and independent distributed variables

xa:b slice of the vector x from the variable a to b

Mathematical symbols:

O(·) complexity in Bachmann Landau notation

Pr[] probability density function

k(·, ·) kernel function

γ parameter of the Gaussian kernel

⊙ Hadamard product

⟨·, ·⟩ inner product

Rd d-dimensional real space

cos(·) cosine function

N (·) normal distribution

Uniformuniform distribution

ρ density matrix

Λ eigen values of density matrix

V eigenvectors of density matrix

ϕaff(·) adaptive Fourier feature explicit projection

| · | absolute value

diam(M)sup d(x, y) : x, y ∈M

can also be derived as an approximation of the kernel density estimation allowing a non-

memory-based method that is more efficient in prediction and can also be trained using

gradient descent. A graphical explanation of Density Matrix Neural Density Estimation

(DEMANDE) is shown in Fig. 3-1. In this method, there are three different spaces: the

data X space, the deep learning representation X ′ space, and the induced F space. Each

training sample x0, · · · , xn is passed through a deep neural network generating a X ′ space.

From the new space X ′, using adaptive Fourier features explained in Subsection 3.2.2, we

explicitly map to the inner space ϕ induced by a Gaussian kernel F . We can use either a

summation or an optimization process to compute the ρ-density matrix using the induced

training points. When a new sample arrives x∗, we can compute its density estimate. First,

the point is forwarded through a deep neural network that generates a x
′

∗. Second, it is

explicitly induced into the embedded space induced by the Gaussian kernel. This F space

can be generated explicitly due to adaptive Fourier features (AFF). The ρ density matrix

can be computed as the sum of the outer product between the AFF representation of each

x
′

∗ or using a gradient descent optimization. Using the ρ density matrix calculated before,

we can compute the density estimate f̂(x∗) of x∗ by calculating a quantum measurement.
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Figure 3-1.: Illustration of Density Matrix Neural Density Estimation (DEMANDE) train-

ing and prediction flow. Training samples (A) are represented (e.g., using a

deep neural network) in a problem space X ′ (B). The training samples are then

mapped to a feature space F using an adaptive Fourier-feature transformation

(C). The dot product of points in F approximate a Gaussian kernel in the X ′

(D). The set of Gaussian functions associated to the training points collectively

approximate the PDF of the data distribution on X ′ (H). A new sample, x∗
(E), is represented in the space X ′ (F) and mapped to the space F (G). The

quantum measurement module calculates the density of x′∗ (I) with the help

of a density matrix built from the images of the training points (H).

Each component of the proposed method is further explained in the following subsections.

It is worth pointing out that while deep neural networks are often used in the more general

model to map from X -space to X ′-space, they may not always be necessary depending

on the problem and data complexity. For example, in the experimental setup outlined in

Subsection 3.3.1, where the problem space is relatively simple, a simpler model without a

deep learning representation step may be more appropriate, in contrast, in Subsection 3.3.4

a deep representation on an image dataset is used. However, the performance of a deep or

shallow model should be rigorously evaluated using appropriate metrics, to ensure that it

can adequately capture the underlying patterns in the data.

3.2.1. Density Matrix Neural Density Estimation (DEMANDE)

If we start from 2-2, with kγ representing the Gaussian kernel, we can do the following

derivation [66]:
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f̂(x) =
1

MγN

N
∑

i=1

kγ(x,xi)

=
1

MγN

N
∑

i=1

k2γ/2(x,xi)

≃ 1

MγN

N
∑

i=1

⟨ϕaff(x), ϕaff(xi)⟩2

=
1

MγN

N
∑

i=1

ϕTaff(x)ϕaff(xi)ϕ
T
aff(xi)ϕaff(x)

=
1

Mγ

ϕTaff(x)

(

1

N

N
∑

i=1

ϕaff(xi)ϕ
T
aff(xi)

)

ϕaff(x)

=
1

Mγ

ϕ(x)Taff ρ ϕ(x)aff

(3-1)

The matrix ρ is called a density matrix [66] and it can be seen as a summary of the training

data set that can be used to estimate the density of a new sample. Density matrices are

a formalism used in quantum mechanics to represent the state of a quantum system. The

last line in 5-3 can be seen as an instance of the Born rule that calculates the probability

of obtaining a particular state ϕ(x)aff when measuring a quantum system whose state is

described by the density matrix ρ [66]. In DEMANDE the ρ matrix is defined as:

ρ =
1

N

N
∑

i=1

ϕ̄aff(xi)ϕ̄
T
aff(xi) (3-2)

where ϕ̄aff(x) =
φaff(x)

||φaff(x)||
. This guarantees that Tr(ρ) = 1.

In quantum mechanics, a measurement on a quantum system is represented by a Hermitian

operator, also known as an observable, that corresponds to the physical quantity being

measured. When a measurement is performed on a quantum system, the system is projected

into an eigenstate of the observable, and the outcome of the measurement corresponds to the

eigenvalue of that eigenstate. The quantum measurement step in Figure 3-1, corresponds

to projecting the density matrix ρ into the state ϕ̄aff(x), where x is a new sample. The

magnitude of the projection is determined by the Born rule: Tr(ρ|ϕ̄aff(x
∗)⟩⟨ϕ̄aff(x

∗)|) =

Tr(⟨ϕ̄aff(x
∗)|ρ|ϕ̄aff(x

∗)⟩). This is used to calculate the density of x as:

f̂γ(x) ≃
1

Mγ

ϕ̄(x)Taffρϕ̄(x)aff (3-3)
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where Mγ is a normalizing constant. Using directly (3-3) to do an estimation of the proba-

bility of a new sample could be very inefficient since the size of the training density matrix

is O(D2), where D is the dimension of the adaptive Fourier features explained in Subsection

3.2.2. To alleviate this, we can perform a low-rank factorization of ρ as follows:

ρ ≈ V TΛV (3-4)

where V ∈ R
r×D contains as rows the eigenvectors of ρ corresponding to the r largest

eigenvalues, and Λ ∈ R
r×r is a diagonal matrix with the r largest eigenvalues. In this way,

the estimation in 5-3 can be calculated as:

f̂γ(x) ≃
1

Mγ

||Λ1/2V ϕ̄(x)aff||2 (3-5)

Equation 4-5 is the basis for the neural density estimation model. The parameters of this

model are the weights W and b of the AFF mapping and the V and Λ parameters of the

density estimation step. Note that this decomposition incurs an addition to the training

cost of O(D3). However, during the testing phase, the quantum measurement reduces from

O(D2) to O(Dr). The eigenvalues obtained from a spectral decomposition of the density

matrix can be interpreted as probabilities; therefore, we can discard those eigenvalues with

lower probabilities. It is essential to discuss the parameter r, as it significantly influences

the performance of the model. This value can be chosen as a hyperparameter using a cross-

validation approach. In our experiments, we observed that selecting the minimum r value

that preserves more than 90% of the likelihood is usually sufficient. However, in some cases,

we obtained good results even with less than 90% probability preservation. Therefore, it is

crucial to carefully analyze the trade-off between the amount of probability preserved and

the computational cost associated with higher r values. After performing the decomposition,

the trace property of the density matrix may no longer hold, which means that Tr(ρ) ̸= 1.

To address this issue, we can re-normalize the density matrix by dividing it by the trace

of the resulting matrix. This will ensure that the trace of the density matrix equals 1

and that the probabilities of all possible outcomes add up to 1. Algorithm 1 presents the

steps to produce a prediction estimate of a point x∗ using 4-5 presented above. The AFF

parameters are learned independently by training the neural architecture shown in Fig. 3-2

using Algorithm 4. The parameters V and Λ can be learned using two different approaches

detailed in Algorithm 2 and 3.

The first approach, Algorithm 2, estimates the density matrix ρ from training data and

calculates the factorization components V and Λ using spectral decomposition. An important
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Algorithm 1: Density Matrix Neural Density Estimation prediction (DEMANDE)

Input: Testing data point {x∗}, {w, b} AFF parameters, γ-parameter, ρ or {Λ, V }
Output: f̂γ(x∗)

1 Compute ϕaff(x∗) =
√
2cos(wTx∗ + b)

2 and ϕ̄aff(x∗) =
φaff(x∗)

||φaff(x∗)||

3 Estimate f̂γ(x∗) ≃ 1
Mγ
ϕ̄(x∗)

T
affρϕ̄(x∗)aff

4 or f̂γ(x∗) ≃ 1
Mγ
||Λ1/2V ϕ̄(x∗)aff||2

Algorithm 2: Density Matrix Neural Density Estimation training (DEMANDE)

Input: Training dataset D = {xi}i=1,··· ,N ,w, b AFF parameters

Output: V,Λ

1 ∀i ∈ {1, · · · , N} Compute

2 ϕaff(xi) =
√
2cos(wTxi + b)

3 and ϕ̄aff(xi) =
φaff(xi)

||φaff(xi)||

4 Calculate ρ = 1
N

∑N
i=1 ϕ̄aff(xi)ϕ̄

T
aff(xi)

5 Perform a spectral decomposition of ρ

6 ρ ≈ V TΛV

7 return V,Λ

feature of this approach is that it does not require any optimization, just averaging the

density matrices representing the training samples.

The second approach, Algorithm 3, exploits the fact that the prediction model (Algorithm

1) is a differentiable neural network that can be trained by backpropagation and gradient

descent, as it is the widespread practice for neural models. This process is in general more

computationally demanding than the optimization-less approach of Algorithm 2. Its main

advantage is that it can be integrated with other deep architectures and trained jointly. This

approach is explored in Section 3.3.4 of the experimental evaluation.

In [66], it is shown that f̂ , as defined in 5-3, uniformly converges to the Gaussian kernel

Parzen’s estimator f̂γ (2-2).

Let X = {xi}i=1...N ⊂ M a set of iid samples, whereM is a compact subset of Rd with a

diameter diam(M), then f̂ (5-3) and f̂γ satisfy:
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Algorithm 3: Density Matrix Neural Density Estimation training using gradient

descent (DEMANDE-SGD)

Input: Training dataset D = {xi}i=1,··· ,N ,w, b AFF parameters

Output: V ∗,Λ∗

1 Apply gradient descent to find:

2 V ∗,Λ∗ = argminV,Λ
∑N

i=1 log f̂(xi)

3 where f̂(xi) =
1
Mγ
||Λ1/2V ϕ̄aff(x)||2,

4 ϕaff(xi) =
√
2cos(wTxi + b),

5 and ϕ̄aff(xi) =
φaff(xi)

||φaff(xi)||

6 return V ∗,Λ∗

Pr

[

sup
x∈M
|f̂(x)− f̂γ(x)| ≥ ϵ

]

≤

28
(√

2dγdiam(M)

3MγNϵ

)2

exp

(

−D(3MγNϵ)
2

4(d+ 2)

)

(3-6)

Similarly, the optimization of the random Fourier features using backpropagation does

not modify the last proposition. Parzen’s estimator of the Gaussian kernel is an unbiased

estimator of the true underlying density function. However, its value does not sum to one

given the approximation of the random Fourier features. In arbitrary settings, it could cause

problems; however, in many density applications, the exact value of the density is not used,

but a comparison reference to other values.

3.2.2. Adaptive Fourier feature learning

Kernel methods are the backbone of several machine learning algorithms, such as support

vector machines [74], Gaussian processes [148], kernel density estimation [136, 155], kernel

principal component analysis [163], among others. A kernel calculates the dot product in

an implicit feature space. This feature space is usually high-dimensional or even of infi-

nite dimension, as it is the case for the Gaussian kernel [162]. Random Fourier features

(RFF) [145] is a method that given a shift-invariant kernel, k : X × X → R, calculates

an explicit feature map ϕrff : X → F such that k(x,y) ≈ ⟨ϕrff(x), ϕrff(y)⟩. RFF are

based on Bochner’s theorem [145] and approximates the kernel by estimating an expected

value k(x,y) ≃ Ew[Zw(x)Zw(y)] where Zw(x) =
√
2cos(w∗x + b), with w ∼ N (0, 1) and

b ∼ Uniform[0, 2π] for the Gaussian kernel. The features correspond to a set {ϕrff,i}i=1...D

with ϕrff,i(x) =
√
2cos(w∗

ix + bi) where wi and bi are sampled from the aforementioned

distributions. The higher the number of features, the better the approximation.
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Figure 3-2.: This figure describes the learning process of adaptive Fourier features (AFF)

through a siamese neural network. This involves selecting random samples,

denoted as xi and xj, and processing them through a dot product with a

non-linear cosine function used by random Fourier features. To ensure that

the density matrices have a norm equal to one, a normalization step is im-

plemented. The inner product of the normalized samples is then computed

and compared with the original kernel. The loss function is defined as the

discrepancy between the dot product of the projected samples and the Gaus-

sian kernel computed between them. The optimization process involves tuning

the parameters of the AFF through gradient descent to minimize the discrep-

ancy. By using a siamese neural network, the learning process of the RFF is

enhanced, allowing for efficient computation and optimization of the features.

An interesting characteristic of RFF is that they are data independent. However, it is

possible to achieve a better approximation of the kernel with the same number of features

if we use data to learn the features instead of the data-agnostic sampling procedure of the

original RFF method. Some works have proposed data-dependent strategies to obtain better

features: leverage score sampling [105, 110], reweighted random features [174, 9], and kernel

learning [105, 21].

In this work, we propose a new method to learn the w and b vectors using gradient descent.

We called this approach adaptive Fourier features (AFF). The method uses a siamese neural

network which is shown in Fig. 3-2. The neural network is trained by sampling pairs

of samples xi and xj from the data set and minimizing a square error loss function L =
(

k(xi,xj)− k̂w,b(xi,xj)
)2

, as shown in Algorithm 4.
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Algorithm 4: Adaptive Fourier Feature learning

Input: Training data set D = {xi}i=1,··· ,N , γ kernel bandwidth

Output: w, b AFF parameters

1 Build a set s = {(x′
i,x

′′
i )}i=1,··· ,m where x′

i and x′′
i are randomly sampled from D

2 Apply gradient descent to find

3 w∗, b∗ = argminw,b
1
m

∑

xi,xj∈s
(kγ(xi,xj)− k̂w,b(xi,xj))2

4 return w∗, b∗

Figure 3-3.: (left) Comparison between the real Gaussian kernel centered on 2 as k(x, y) =

exp−γ||x− y||2, the random Fourier feature, the random Fourier feature

squared, the adaptive Fourier feature, and the adaptive Fourier feature

squared. (Right) The mean squared error between approximation Fourier fea-

tures and the real Gaussian kernel.

González et al. [66] propose to use the square of the dot product of samples represented

using RFF as a better approximation of the Gaussian kernel. We follow the same approach

here. Fig. 3-3 shows the comparison between the real Gaussian kernel, its approximation

using RFF, squared RFF, adaptive Fourier features, and squared adaptive Fourier features.

The best approximation is obtained by squared AFF, followed by AFF, squared RFF, and

RFF. As shown by the right plot in Fig. 3-3, squared AFF can reach a good approximation

even with a small number of features, this has a positive impact on the efficiency of the

density estimation algorithms presented in the next sections.
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Table 3-2.: Complexity analysis of DEMANDE with and without spectral decomposition.

Training Testing

Without O(nDd2 + nD2) O(mDd2 +mD2)

With O(nDd2 + nD2 +D3) O(mDd2 +mDr)

3.2.3. Complexity Analysis

Table 3-2 shows the complexity analysis with and without spectral decomposition. In this

subsection, we use n and m to denote the number of training and testing data points, re-

spectively, while D represents the number of adaptive Fourier features, and d represents the

number of features. During the training phase of the DEMANDE algorithm without decom-

position, the time complexity is dominated by the dot product calculation between each data

point and the adaptive Fourier features. Specifically, the time complexity is proportional

to O(nDd2). Additionally, a dot product is calculated between the resulting vector and

the density matrix, with a time complexity proportional to O(nD2). This gives an overall

training time complexity of O(nDd2 + nD2). During the testing phase, the time complex-

ity is determined by the dot product calculation between each data point and the adaptive

Fourier features, as well as the time complexity of the quantum measurement. Therefore,

the overall testing time complexity is proportional to O(mDd2+mD2). For the DEMANDE

with decomposition variant, the training and testing time complexity is O(nDd2+nD2+D3)

and O(mDd2 +mDr), respectively. The memory footprint of DEMANDE is determined by

the need to maintain a density matrix, whose size is proportional to O(D2). Additionally, it

stores the weights of the adaptive Fourier features, whose size is proportional to O(dD).

3.3. Experimental Evaluation

Four different experiments are presented in this section. The first one is a comparison of the

novels DEMANDE and DEMANDE-SGD methods against fast kernel density estimation

methods. We compare their efficiency according to the mean average error and their efficacy

in terms of milliseconds spent making the inference. The second and third experiments

compare the novel methods against state-of-the-art neural density estimation methods in low

and high dimensions respectively. The Spearman correlation and mean average error between

the underlying density function and the density estimation obtained by each method are

reported. Finally, the last experiment is a comparison between the proposed methods against

neural density estimation in a conditional density estimation setting using synthetic image

datasets. The accuracy is reported to both DEMANDE and DEMANDE-SGD methods. All

the experiments were running using a computer with 8 cores Intel 12 2.2 GHz, 64 GB of

ram, and a GPU NVIDIA 3080 RTX.
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Figure 3-4.: We analyze nine synthetic datasets, each of which is labeled based on its prob-

ability and energy function. These datasets include: (1) Multivariate normal

distribution, (2) Arc distribution, (3) Mixture Gaussian distribution, (4) Star,

(5) Swiss Roll, (6) Potential 1, (7) Potential 2, (8) Potential 3, and (9) Potential

4.

3.3.1. Fast Kernel Density Estimation

In this section, we systematically assess the performance of DEMANDE-SGD on various

synthetic data sets and compare it with kernel density estimation approximation methods.

Data sets and experimental setup

Table 3-4 shows nine datasets that were used in this experiment and Subsection 3.3.2. The

density estimation function of each synthetic where each number represents the following

distributions: (1). Multivariate normal distribution, (2). Arc distribution [135], (3). Mixture

Gaussian distribution, (4). Star [112], (5). Swiss Roll [112], (6). Potential 1, (7). Potential

2, (8). Potential 3, and (9). Potential 4 [152]. For each dataset, we generated 100 000

training data points and 50 000 testing data points. In this experiment, we use six datasets:

Arc (2), Potential 1 to 4 (6-9), and a mixture of Gaussian distribution (3).

We tested DEMANDE against several approximate kernel density estimation methods in
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this experiment. For this comparison, we use: (1) a raw implementation of kernel density

estimation using NumPy (RAWKDKE, (2) a naive implementation of kernel density estima-

tion using the KDE.py library (NAIVEKDE) [175], (3) tree-based kernel density estimation

(TREEKDE), (4) kernel density estimation using a k-dimensional tree (KDEKDT), and (5)

kernel density using a ball tree (KDEBT). For more information on NAIVEKDE, KDEKDT,

and KDEBT see 2.1.4. Due to the limited reproducibility of the hashing-based algorithm

implementations, we did not compare our method with theirs. The Gaussian kernel was

used for all experiments. Two kinds of experiments have been carried out. The first was an

evaluation of the accuracy of each algorithm on each data set. In the second, we evaluated

the time it took to make a new density prediction on the training set. Each run was per-

formed with different training set sizes, using a scale of 10i where i ∈ {1, 2, 3, 4, 5}, and we

set the test set to 104 test examples. The spread parameter was found using a 5-fold cross-

validation for each data set and each training size in a logarithmic scale γ ∈ {2−20, · · · , 220}.
The optimal number of random Fourier features used by DEMANDE-SGD was searched in

the set {50, 100, 500, 1000}. After finding the best hyperparameter, several attempts were

performed for each algorithm in each data set.

We measure the efficacy of each algorithm on each data set using the L1-error also known as

average error. Some advantages over L2-error are outlined in [41]. The L1-error is defined

over n samples by the following equation: MAE = 1
n

∑n
i=1 |f̂(x)− f(x)|. In [41], the author

shows that the loss L1 loss
∫

|f̂ − f | is invariant under monotone transformations of the

coordinate axes and points out that it is related to the maximum error made if we were

estimating the probabilities of all Borel sets of f̂ and f respectively. The efficiency has been

evaluated using the CPU time in milliseconds (ms), which defines the amount of time it takes

for the central processing unit (CPU) to execute its processing instructions to compute the

evaluation request. We used the built-in time package in the Python programming language

to measure the elapsed time in prediction time for each algorithm.

Results and discussion

Fig. 3-5 shows the comparison of the efficacy measure with the mean average error (MAE)

of each algorithm on six synthetic data sets. The MAE of DEMANDE and DEMANDE-

SGD is close to other KDE approximation methods in ARC, Potential 1, Potential3, Poten-

tial 4, and 2d mixture. In Arc, however, their performance does not improve after 103 training

data points. In Potential 2, both DEMANDE and DEMANDE-SGD are better than the

KDE approximation methods. On 2D Mixture, DEMANDE and DEMANDE-SGD out-

perform other KDE approximation methods. Fig. 3-6 shows the comparison of the efficiency

measure in time taken of the central processing unit (CPU) of approximation methods of

KDE. All approximation methods, except DEMANDE and DEMANDE-SGD, increase

their prediction time when the number of points increases. However, it is observed that

DEMANDE does not increase linearly like the other methods. DEMANDE-SGD has a
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larger initial footprint, but it remains constant as the number of data points increases. If

we evaluate it with more than 105 points, we would expect all methods to exceed the time

consumed by DEMANDE-SGD.

3.3.2. Unconditional Density Estimation

In this subsection, we proposed an experiment based on synthetically generated data to

evaluate the performance of various neural density estimation methods and compare them

with DEMANDE and DEMANDE-SGD. It should be noted that the underlying density

function is known for each data set used in the current experiment.

Data sets and experimental setup

The datasets were defined above in Subsection 3.3.1. Besides, we assessed four baseline neural

flow algorithms: (1). Masked Autoregressive Flow for Density Estimation [135], (2). Inverse

Autoregressive Flow [91] and (3). Planar Flow [152]. The novel DEMANDE and state-

of-the-art methods were tunning using Adam Optimizer with polynomial decay. To select

the hyperparameters, a cross-validation method was used together with a random search.

For each data set and algorithm, we tested 30 different combinations of hyperparameters.

For the validation phase, we used 40 000 training data points and 1 000 validation data

points. The batch size was set to 64. The initial learning rate for the polynomial decay

was searched in the interval [10−5, 10−1]; the final learning rate was set to 10−5. For each

neural flow algorithm, the following setup was used: the hidden shape was searched between

20 and 1000; the number of layers was searched in the list 2, · · · , 24. For Neural Splines:

the number of bins was searched between three and eleven; the b-interval was searched

between three and seven for each dimension. For DEMANDE: AFF dimension was explored

between 250 and 2 000, sigma was explored between 2−20 and 220, and the training of the

AFF was performed using 10000 pairs of different points. In the case of DEMANDE-SGD,

we selected the number of eigen-components in the list 0, 0.1, 0.5, 1 where each number

represents a percentage of the number of AFF. Moreover, we assessed random initialization

and DEMANDE initialization for the density matrix of DEMANDE-SGD.

We used two metrics to evaluate the performance of each algorithm. Those metrics are the

mean average error (MAE) and Spearman’s rank coefficient. For each metric, we compute

the metrics using the estimate of each algorithm and the real probability. MAE is computed

as 1/n ·∑n
i |p(xi)− p̂(xi)|, where n is the number of data points, p(xi) is the real probability

density, p̂(xi) is the estimated probability density given by the method, and |·| is the absolute
value function.
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Table 3-3.: Spearman correlation for Unconditional Density Estimation Experiment.

Dataset DEMANDE DEMANDE-SGD MADE Inverse Maf Planar Flow Neural Splines

arc 0.9943 0.9773 0.9993 0.9978 0.7395 0.9650

bimodal l 0.9954 0.9941 0.9924 0.9918 0.9443 0.9892

binomial 0.9991 0.9986 0.9991 0.9991 0.9866 0.9988

potential 1 0.9902 0.9839 0.9516 0.9667 0.8637 0.9723

potential 2 0.9072 0.8112 0.8478 0.8374 0.5540 0.8175

potential 3 0.8665 0.8558 0.8059 0.8113 0.6280 0.8125

potential 4 0.8928 0.9094 0.8768 0.8791 0.6034 0.8816

star eight 0.9871 0.9348 0.7710 0.7349 0.5940 0.9042

swiss roll 0.9936 0.9686 0.9713 0.9475 0.7753 0.9451

Table 3-4.: Mean average error for Unconditional Density Estimation Experiment.

Dataset DEMANDE DEMANDE-SGD MADE Inverse Maf Planar Flow Neural Splines

arc 0.0052 0.0179 0.0004 0.0007 0.0197 0.0057

bimodal l 0.0014 0.0152 0.0009 0.0010 0.0029 0.0012

binomial 0.0286 0.0266 0.0008 0.0008 0.0032 0.0010

potential 1 0.0089 0.0735 0.0104 0.0097 0.0235 0.0069

potential 2 0.0273 0.0548 0.0475 0.0514 0.0619 0.0520

potential 3 0.0321 0.0231 0.0225 0.0218 0.0340 0.0219

potential 4 0.0481 0.0377 0.0312 0.0331 0.0451 0.0308

star eight 0.0102 0.0161 0.0196 0.0232 0.0388 0.0172

swiss roll 0.0028 0.0344 0.0040 0.0045 0.0223 0.0051

Results and discussion

Table 3-3 presents the Spearman correlation results obtained from six neural density esti-

mation algorithms on nine synthetic data sets. The algorithms’ performance on the ARC,

Bimodal, and Binomial data sets is comparable, except for Planar Flow, which performs in-

feriorly. DEMANDE and DEMANDE-SGD outperform the other methods in Potentials

1 to 4, with DEMANDE-SGD showing better results than DEMANDE at Potential 4,

a difficult distribution function. DEMANDE has superior performance in Star Eight and

Swiss Roll compared to the other algorithms, while Planar Flow is the worst-performing

algorithm. Neural Splines consistently produces satisfactory results.

Table 3-4 reports the mean average error (MAE) between the actual and estimated density

functions for the nine synthetic data sets. MADE exhibits the best MAE performance in

the ARC, Bimodal, and Binomial data sets. DEMANDE performs best in Potential 2, Star

Eight, and Swiss Roll. Neural Splines is the best-performing algorithm in Potentials 1 and

4. DEMANDE-SGD has comparable MAE results to DEMANDE, with its performance
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being similar to the best-performing algorithms in Potentials 1 to 4, Star Eight, and Swiss

Roll.

Fig. 3-8 depicts the density estimate results of the six algorithms on the nine two-dimensional

synthetic data sets. DEMANDE exhibits the best results in all data sets, including the

most challenging Potentials 3 and 4. DEMANDE-SGD produces comparable results to

DEMANDE in seven out of nine data sets, with different results in Potentials 4 and Swiss

Roll. Fig. 3-9 presents the comparison between the real density and the density estimates

obtained by the six algorithms on the nine synthetic data sets. DEMANDE shows good

results with lower scatter in all data sets, albeit with slightly more dispersion than MADE in

the first and second data sets. In the Swiss Roll, DEMANDE exhibits the best performance

among all algorithms. DEMANDE-SGD shows a tendency to overestimate low-density

points due to its log-likelihood optimization approach.

DEMANDE is not the best one in terms of MAE. However, it is worth noting that for

the majority of real applications such as classification, anomaly detection, and regression,

the real value of the density function is not important. The most important property is

being able to differentiate between low-density areas and high-density areas. This property

is intrinsically captured by the Spearman correlation.

3.3.3. Unconditional Random Density Estimation in Higher Dimensions

Classical methods for density estimation, such as Gaussian Mixture Models [101] or Kernel

Density Estimation [136, 155], suffer from higher dimensions due to the curse of dimension-

ality. Several papers claim that normalizing flow methods can solve this problem. Related to

DEMANDE, it potentially can inherit the problems from kernel density estimation; however,

as shown in the following experiment, it can deal with higher dimensions and obtain good

density estimates. In this subsection, we propose an experiment to show the robustness of

DEMANDE methods when the number of dimensions varies and increased.

Data sets and experimental setup

In this experiment, we generate data points from a mixture of random independent Gaussian

distributions. For n dimensions, we generated 10·nGaussian distributions for n ∈ [1, · · · , 10].
The µi parameters of the Gaussians were generated from a uniform distribution µi ∈ (0, 1)n.

The covariance matrices, Σi, were generated with a vector of uniform values as eigenvalues.

With this vector, we compute the algorithm proposed by Davies et al. [38] to generate a

random correlation matrix. Using both the centroid and the covariance matrix, we sampled

an equal number of points from each Gaussian distribution to obtain 40 000 training data

points and 10 000 testing data points. Fig. 3-7 shows an example in two dimensions of the

randomly generated samples.
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Results and discussion

Fig. 3-7 shows the results obtained by each algorithm in the random Gaussian mixture

model synthetic data set. Planar flow has the worst performance among the six algo-

rithms. Made and Inverse Maf have a similar behavior. They start at nearly 0.92 of

Spearman’s correlation and decrease with higher dimensions. A Spearman correlation of

almost 0.76 was obtained for ten dimensions. Neural Splines starts better than Made

and Inverse Maf ; however, its performance decreases with more dimension. It shows the

worst performance in ten dimensions compared to Made and Inverse Maf obtaining 0.61

of Sperman’s correlation. DEMANDE start with nearly 1.0 Spearman’s correlation and

drop slightly with more dimensions. However, its performance is the best among all the neu-

ral density estimation methods. DEMANDE-SGD has similar behavior to DEMANDE

but with lower Spearman’s correlation.

3.3.4. Conditional Density Estimation

Density estimation can be used as a conditional density algorithm (conditioned on class

values). In this subsection, we present a systematic evaluation of the conditional density

estimation obtained by DEMANDE and compared it against state-of-the-art neural flow

methods in two frequently used benchmark image data sets MNIST and CIFAR.

Data sets and experimental setup

Table 3-5.: Data sets used for conditional density estimation.

Data set Attributes Classes Train-Test

Mnist 784 10 60000-10000

Cifar 3072 10 60000-10000

Two benchmark image datasets were utilized in this study. The specific characteristics of

these datasets are presented in Table 3-5. The DEMANDE algorithm was trained using

a conditional Bayesian density estimation approach and the ADAM algorithm was utilized

as the stochastic optimization gradient algorithm. To establish a baseline for comparison,

we compared DEMANDE against three existing state-of-the-art normalizing flow algorithms

(MADE [62], RealNVP [44], MAF [135]), as well as RoundTrip [112], a normalizing flow

generative adversarial algorithm. For further details, refer to Subsection 2.1.2. Each al-

gorithm was assessed by computing the conditional density over the test image dataset

and by maximizing the posterior probability, conditioned on the class label. Additionally,

we designed a LeNet architecture [98] as a feature extraction method and coupled it with
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DEMANDE-SGD as the density estimation method. The LeNet architecture comprised

two sequential convolutional layers, with a kernel size of 5, the same padding, and a ReLU

activation function. The first and second convolutional layers consisted of 20 and 50 filters,

respectively. The third layer was a fully connected layer, comprising 84 neurons. This fully

connected layer was integrated with the DEMANDE layer. The AFF layer was trained us-

ing 1000 adaptive Fourier features. Additionally, the AFF layer was solely optimized using

the algorithm described in Section 3.2, and not in the DEMANDE-SGD optimization

steps, to ensure a fair comparison. Thus, all AFF weights were set as untrainable in the

DEMANDE-SGD optimization step of the neural network.

For each dataset, we performed hyperparameter optimization using a cross-validation method-

ology with 30 randomly generated settings. To tune the γ parameter of DEMANDE, we

computed the mean distance between pairs of points in each dataset and selected an appro-

priate value for γ = 1
2σ2 . The number of adaptive Fourier features was set to 1000 for each

DEMANDE algorithm. The learning rate was selected from the interval (0, 0.001]. The

number of eigen-components was chosen from the list 0, 0.1, 0.5, 1, where each number rep-

resented a percentage of the total number of AFF. The mean accuracy from ten experiments

was reported.

Results and discussion

Table 3-6.: Accuracy results in conditional density estimation experiment using neural den-

sity estimation methods.

Algorithm MNIST CIFAR-10

MADE 0.911 0.358

RealNVP 0.744 0.309

MAF 0.926 0.295

RoundTrip (CNN) 0.983 0.427

DEMANDE 0.811 0.271

DEMANDE-SGD 0.952 0.484

LENET DEMANDE-SGD 0.989 0.628

Table 3-6 shows the results obtained by each algorithm in the density estimation task for

MNIST and CIFAR-10 image datasets. It can be seen that without convolutional neural net-

works DEMANDE-SGD is better than all other neural flow methods except RoundTrip on

Mnist, and it is the best on CIFAR-10. When we use convolutional layers with DEMANDE-

SGD its performance outperforms the other methods on both image datasets. The method

can be used not only as a density estimation algorithm but also as a conditional density es-

timation method. Future experiments on state-of-the-art image datasets, such as ImageNet
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or COCO, may be conducted to further explore the capabilities of the proposed method.

However, the current experiment aimed to demonstrate the potential of the method in a

similar context, such as density estimation.

3.3.5. DEMANDE versus DEMANDE-SGD discussion

It is worth noting that DEMANDE exhibits superior performance in pure density estimation

tasks, as demonstrated in Subsection 3.3.1 and Subsection 3.3.2. However, in proxy tasks,

such as the one presented in Subsection 3.3.4, DEMANDE-SGD outperforms DEMANDE.

Conventionally, the optimization process aims to derive overall better results, and we ex-

pected to see the same in the proposed method. Nevertheless, our experiments revealed that

the DEMANDE-SGD model tends to overestimate dense regions and underestimate sparse

regions where data resides, leading to inaccurate probability density function estimation.

However, we also found that this property of the DEMANDE-SGD model can be exploited

to obtain better results in scenarios such as conditional density estimation.

3.4. Conclusion

In this chapter, we have introduced a novel approach to neural density estimation based

on the combination of density matrices and adaptive Fourier features, which can be seam-

lessly integrated with other deep learning architectures. The proposed method represents

a significant improvement over kernel density estimation, as it overcomes the limitations

associated with high-dimensional data and provides an efficient prediction method whose

computational complexity is independent of the number of training samples. Our approach

has been rigorously evaluated on a variety of synthetic and real-world datasets and com-

pared against fast kernel density estimation and state-of-the-art neural density estimation

methods. Our results demonstrate the competitive performance of our proposed method,

highlighting its potential to offer a powerful alternative for density estimation tasks and to be

applied in a wide range of statistical and machine learning applications. Future work could

involve exploring the extension of our proposed approach to different types of data or devel-

oping hybrid models that combine our approach with other density estimation techniques,

to further improve the accuracy and scalability of the proposed method.
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Figure 3-5.: Comparison of the efficacy of each algorithm on six synthetic data sets. The

x-axis is a logarithmic scale of 10i where i ∈ {1, · · · , 5}. The y-axis represents
the mean average error between the prediction of the algorithm and the true

density.
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Figure 3-6.: Comparison of the efficiency of each algorithm on six synthetic data sets. The

x-axis is a logarithmic scale of 10i where i ∈ {1, · · · , 5}. The y-axis repre-

sents the time consumed by each algorithm in milliseconds used by the central

processing unit (CPU).
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Figure 3-7.: (Top) Randomly generated samples, (bottom) experimental results of uncon-

ditional random density estimation in higher dimensions. The x-axis is the

dimensions, and the y-axis is the Spearman’s correlation.
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Figure 3-8.: Each graph represents the density estimate obtained by a specific algorithm on

a two-dimensional data set. From left to right the algorithms are Real Density,

DEMANDE, DEMANDE-SGD, Made, Inverse Maf, Planar Flow, and Neural

Splines. From top to bottom, the data sets are Arc, Bimodal Gaussian, two-

dimensional Gaussian distribution, Potential 1-4, Star, and Swizz Roll.
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Figure 3-9.: Each graph represents the comparison of Spearman’s correlation between the

real density for each data set and the density estimate obtained by each algo-

rithm. From left to right the algorithms are DEMANDE, DEMANDE-SGD,

Made, Inverse Maf, Planar Flow, and Neural Splines. From top to bottom,

the data sets are Arc, Bimodal Gaussian, 2-dimensional Gaussian distribution,

Moons, Potential 1-4, Star, and Swizz Roll.
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4. Quantum Anomaly Detection through

Density Matrices, Adaptive Fourier

Features and Autoencoders

This chapter presents an anomaly detection model that combines the strong statistical

foundation of density-estimation-based anomaly detection methods with the representation-

learning ability of deep-learning models. The method combines an autoencoder, for learning

a low-dimensional representation of the data, with a density-estimation model based on ran-

dom Fourier features and density matrices in an end-to-end architecture that can be trained

using gradient-based optimization techniques. The method predicts a degree of normality

for new samples based on the estimated density. A systematic experimental evaluation was

performed on different benchmark datasets. The experimental results show that the method

performs on par with or outperforms other state-of-the-art methods. The work presented in

this chapter corresponds to the following articles:

Gallego-Mejia, J., Bustos-Brinez, O., & González, F. A. (2022). LANDM and ANDM:

Quantum Inspired Density Matrices for Anomaly Detection. (To Be Submitted on Data

Mining and Knowledge Discovery) [22, 56]

arXiv:2211.08525.

4.1. Introduction

Anomaly detection is a critical task in several applications, such as fraud detection [153],

video surveillance [189], industrial defects [40], and medical image analysis [183], among

others. In addition, it can be used as a preprocessing step in a machine learning system.

In these scenarios, the idea is to detect whether a new sample is anomalous or not and

leverage it to make actionable decisions [158]. Anomalies can change their name depending

on the application domain, such as anomalies, outliers, novelties, exceptions, peculiarities,

contaminants, among other terms. Anomaly detection refers to the task of finding patterns

within the data that deviate from expected behavior [3].

https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
https://arxiv.org/abs/2211.08525
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Fourier Features and Autoencoders

Anomaly detection is a well-studied topic in machine learning. The idea is to detect un-

expected behavior which deffer from the normal, expected behavior. Given r as the pro-

portion of anomalous data points, a proportion greater than 10% is typically solved using a

classification-based approach such as One Class Support Vector Machines [165]. Nonetheless,

in general, anomalous data points are scarce and datasets are unbalanced, with a proportion

of anomalous data points commonly less than 2%. The two main assumptions here are that

the anomalous points are scarce, and the anomalous points deviate greatly from the normal

points.

Classical methods for dealing with anomaly detection fall into three main categories: classification-

based such as one-class SVM [165], distance-based such as local anomaly factor (LOF) [20]

and isolation forest [111], and statistically-based such as kernel density estimation [129].

These methods have been used in several applications; however, they lack the representa-

tion learning ability of deep learning models that allow them to deal with complex, high-

dimensional data such as images [109]. Recent shallow methods, such as Stochastic Outlier

Selection (SOS) [83] and COPOD [104], are based on affinity and copulas, respectively.

However, SOS constructs a matrix that is quadratic in terms of data points and COPOD

does not directly compute joint distributions, which reduces its power. Recent deep learning

methods, such as variational autoencoders (VAE) [142], do not directly solve the anomaly

detection problem, but solve an indirect task with the minimization of the reconstruction

error. The VAE assumes that anomalous points have a higher value of the reconstruction

error compared to normal points, however, the algorithm has been shown to have sufficient

power to reconstruct even anomalous points. The deep support vector data description [157]

surrounds the normal points in a hypersphere but has an absence of degree of abnormality.

Finally, the LAKE method [113] is based on the union of two parts: variational autoencoder

and kernel density estimation (KDE). One problem with this method is that it optimizes the

variational autoencoder and feeds its results into the memory-based KDE algorithm. Each

latent space in the training data set must be saved to feed the KDE, with its correspond-

ing memory footprint. In this chapter, we propose a new method, named LEAN-DMKDE,

that uses the deep representation obtained by the autoencoders and the density captured by

the density matrices, a formalism of quantum mechanics. The new method can be trained

end-to-end, thus solving the shortcomings of LAKE.

The contributions of the present work are:

• Two new algorithms to anomaly detection that can be trained end-to-end with current

deep learning tools.

• A framework for producing a degree of normality in high dimensional and big datasets.

• A methodology for combining autoencoders with kernel methods to produce normality

likelihood estimation.

• A systematic comparison on multiple datasets of the novel method against state-of-
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Figure 4-1.: Quantum Anomaly Detection through Density Matrices, Adaptive Fourier Fea-

tures and Autoencoders (LEAN-DMKDE) method. Step 1, autoencoder repre-

sentation learning. Step 2, training of the model using both the reconstruction

error and the maximum likelihood estimation of the density matrix ρ. Step

3, estimation of the density of a new sample using the learn density matrix

ρ = V TΛV . Step 4, anomaly detector using the proportion of the anomalies.

the-art anomaly detection methods.

Reproducibility: all the code is available at the Github repo http:// and a release in

Zenodo.

4.2. Quantum Latent Density Estimation for Anomaly

Detections (LEAN-DMKDE)

The proposed novel Quantum Latent Density Estimation for Anomaly Detection (LEAN-

DMKDE) is shown in Figure 5-1. This model is constructed using an autoencoder, an

adaptive Fourier feature layer, a quantum measurement layer and finally a threshold anomaly

detection layer. The autoencoder is responsible for performing a dimensionality reduction

phase and giving the reconstruction error. The adaptive Fourier feature layer maps the

reduced event space to an approximate Hilbert space. The quantum measurement layer

produces density estimates of the given data points. The last step of the algorithm is an

anomaly detector that uses the density estimate and classifies whether a point is anomalous

or normal.



62
4 Quantum Anomaly Detection through Density Matrices, Adaptive

Fourier Features and Autoencoders

4.2.1. Autoencoder

The first step of the algorithm is an autoencoder. Given an input space X ⊆ R
d, and a

latent space F ⊆ Rp, where typically p ≪ d, a point in the input space is sent through an

ψ-encoder and a θ-decoder step, where ψ : X → F and θ : F → X , such that:

zi = ψ(xi,wψ)

x̂i = θ(zi,wθ)

where wψ and wθ are the network parameters of the encoder and the decoder respectively,

and x̂ is the reconstruction of the original data. The reconstruction error of the autoencoder

is defined as the Euclidean distance between the original data point and its reconstruction:

li(ψ, θ) = −||xi − x̂i||2 (4-1)

To capture further information computed by the autoencoder, the Euclidean distance error

(lEuc dist,i) were combined with the cosine similarity (lcos sim,i), defined as the cosine of the

angle between xi and x̂i, into one vector with the latent space (zi) as:

rec measurei = [lEuc dist,i, lcos sim,i]

and the latent space output of the autoencoder to the next layer is oi = [zi, rec measurei].

4.2.2. Quantum Measurement Kernel Density Estimation

Density estimation is one of the most studied topics in statistics. Given a random variable X

and its associated measurable space A, from which we capture some events, observations or

samples x1, · · · , xn, the probability density function f in a measurable set A ∈ A is defined

as a function that satisfies the following property:

Pr[X ∈ A] =
∫

A

fX(x)dx

In general, the underlying density function of an arbitrary system is unknown. The most

popular method for density estimation is kernel density estimation (KDE), also known as

Parzen window. KDE has two principal drawbacks: its memory-based approach, i.e., it

stores each data point x1, · · · , xn in the training phase and uses them to produce inferences

in the testing phase, and it cannot be combined with deep learning architectures. Given

a set of training points {xi}i=1,··· ,N , and a point x whose density is to be calculated, the

Kernel Density Estimation calculates it as:
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f̂(x) =
1

NMγ

N
∑

i=1

kγ(xi,x) (4-2)

where γ is the bandwidth parameter, Mγ is a normalization parameter, and kγ is a kernel

with specific properties [136].

In González et al. [66], Gallego and González [53], the authors showed that using a derivation

of the kernel density estimation method using the Gaussian kernel, we can derive a density

estimation method that captures quantum information as follows:

f̂(x) =
1

Mγ

ϕaff(x)
Tρ ϕaff(x) (4-3)

where ρ is a density matrix defined as

ρ =
1

N

N
∑

i=1

ϕaff(xi)ϕ
T
aff(xi)

and Mγ is a normalization constant. Note that ρ is a D-dimensional square matrix. The

density matrix captures the classical and quantum probabilities of a quantum system, and

it can be viewed as an aggregation of each data point in the feature space. The ρ matrix is

required to be a Hermitian matrix and its trace must be equal to one, tr(ρ) = 1.

ϕ̂aff indicates the adaptive Fourier features, which are explained right next. Random Fourier

features were first proposed by [144]. Its main idea is to build an explicit approximate

mapping of the reproducing Hilbert space induced by a given kernel. In particular, they

showed that if a Gaussian kernel is used, we can approximate

k(x,y) ≃ Ew(⟨ϕ̂aff,w(x), ϕ̂aff,w(y)⟩)

where ϕ̂aff,w =
√
2 cos(wTx + b), w ∼ N(0, Id) and b ∼ Uniform(0, 2π). This expectation

approximation is possible due to Bochner’s theorem. The adaptive Fourier features are

neural network-based fine-tuning of the random Fourier features. The explanation of this

network and its usage is presented in the Training Strategy subsection. 4.2.4

The dimensions of the ρ matrix can be problematic, given its size D2, but this can be

alleviated by using the matrix eigen-decomposition:

ρ ≈ V TΛV (4-4)

where V ∈ Rr×D is a matrix, whose rows contain the r vectors with the largest eigenvalues,

and Λ ∈ Rr×r is a diagonal matrix whose values correspond to the r largest eigenvalues of

ρ. This matrix eigen-decomposition modify the Equation 5-3 to:
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f̂γ(x) ≃
1

Mγ

||Λ1/2V ϕaff(x)||2 (4-5)

Equation 4-5 defines the algorithm to perform new density estimates based on density matri-

ces. The parameters Λ and V are obtained by gradient descent optimization. Note that the

adaptive Fourier features are trained independently using only the autoencoder and adaptive

Fourier feature layer. The output of the adaptive Fourier feature layer is the input of the

density matrices using the Equation 4-5. The density estimation error of the optimization

process is as follows:

V ∗,Λ∗ = argmin
V,Λ

β

N
∑

i=1

log f̂(xi)

where f̂(xi) =
1
Mγ
||Λ1/2V ϕaff(x)||2 and ϕaff(xi) =

√
2cos(wTxi+b). The algorithm is trained

minimizing both reconstruction and estimation losses using gradient descent.

4.2.3. Anomaly Detection Step

The last step of the anomaly detection algorithm is to detect whether a given data point is

a normal or anomalous point. The algorithm uses the proportion of anomalies (γ) within

the data set to obtain a threshold value τ as:

τ = qγ(f̂(x1), · · · , f̂(xn))

where q is the percentile function. In the detection phase, the algorithm uses the τ value to

classify anomalous points as:

ŷ(xi) =

{

‘normal’ if f̂(xi) ≥ τ

‘anomaly’ otherwise

4.2.4. Training Strategy

The random Fourier feature approximation can be further tuned using gradient descent, in

a process called “Adaptive Fourier features”. This algorithm was first proposed in [53]. It

selects random pairs of data points (xi,xj) and applies gradient descent to find:

w∗, b∗ = argmin
w,b

1

m

∑

xi,xj∈s

(kγ(xi,xj)− k̂w,b(xi,xj))2
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where kγ(xi,xj) is the Gaussian kernel with a γ-bandwidth parameter, and k̂w,b(xi,xj))
2 is

the Gaussian kernel approximation. As an initialization to the Gaussian kernel approxima-

tion, we can sample w and b using N(0, Id), and Uniform(0, 2π), respectively, the same as

the random Fourier features.

It should be noted that each xi is a vector with m dimensions. For the anomaly detection

algorithm, m is the latent space of the autoencoder defined above. Therefore, we propose

an intermediate step to approximate the kernel in the latent space. First, the autoencoder

is trained without any additional layer. Second, we use forward propagation for several xi
data points to reduce the original space to the encoded space. Finally, the adaptive Fourier

feature algorithm is optimized as proposed above.

The training process is shown in the Algorithm 5. The hyperparameter α controls the

trade-off between the minimization of the reconstruction error and the maximization of the

log-likelihood. Using forward-propagation, each xi is sent through the encoder ψ(xi,wψ)

and the decoder θ(zi,wθ). Then, reconstruction errors are computed and combined with

the encoded zi as oi. Using the parameters of the adaptive Fourier features, the vector

oi is mapped to a Hilbert space in which dot product approximates the Gaussian kernel.

With the mapping ϕaff,waff
, we compute the likelihood of each sample using the density

matrix decomposition obtaining f̂(xi). A minimization optimization is performed using

backpropagation and stochastic gradient descent. Finally, τ is computed as the percentile

associated to a given γ proportion of anomalies.

4.3. Experimental Evaluation

In this section, we present an experimental evaluation of the novel LEAN-DMKDE method.

Our objective was to compare its performance against fourteen classic and deep anomaly

detection methods across twenty-four diverse datasets. To assess the effectiveness of the

methods, we employed two primary metrics: AUC-PR and AUC-ROC. Furthermore, we

performed statistical analysis to demonstrate the superior performance of the novel method.

4.3.1. Experimental Setup

The experimental framework used in this chapter intends to compare LEAN-DMKDE with

all the baseline algorithms listed in previous sections. To run One Class SVM, Minimum

Covariance Determinant, Local Outlier Factor and Isolation Forest, the implementation used

is the one provided by Scikit-Learn Python library. KNN, SOS, COPOD, LODA, VAE and

DeepSVDD were run using the implementation provided by PyOD Python library [200].

LAKE algorithm was implemented based on the Github repository of its authors, although

we had to correct the way the test dataset was split to include both normal and anomalous
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Algorithm 5: LEAN-DMKDE training process

1 Input: Training dataset D = {xi}i=1,··· ,N

2 Parameters: α: trade-off between reconstruction error and log-likelihood,

3 wrff, b: adaptive Fourier features parameters

4 γ: proportion of anomalies

5 Output: wψ: encoder parameters,

6 wθ: decoder parameters,

7 V ∗,Λ∗ : quantum measurement KDE parameters

8 for xi ∈ D until convergence do

9 zi = ψ(xi,wψ)

10 x̂i = θ(zi,wθ)

11 end

12 w∗
AFF, b

∗
AFF = argminw,b

1
m

∑

xi,xj∈D
(kγ(ψwψ

(xi), ψwψ
(xj)−k̂w,b(ψwψ

(xi), ψwψ
(xj)))

2

for xi ∈ D until convergence do

13 zi = ψ(xi,wψ)

14 x̂i = θ(zi,wθ)

15 lEuc dist,i = Euclidean distance(xi, x̂i)

16 lcos sim,i = cosine similarity(xi, x̂i)

17 oi = [zi, lEuc dist,i, lcos sim,i]

18 f̂(oi) =
1
Mγ
||Λ1/2V ϕaff,w(oi)||2

19 Lwψ ,wθ,V ∗,Λ∗ = ||xi − x̂i||2 − α
∑N

i=1 log f̂(oi)

20 wψ,wθ, V
∗,Λ∗ ← update parameters minimizing L

21 end

22 τ = qγ(f̂(x1), · · · , f̂(xn))
23 return wψ,wθ, V

∗,Λ∗, τ

samples in it.

In order to handle the inherent randomness found in some of the algorithms, it was decided

to fix in advance (into a single, invariant number) all the random seeds that could affect

the different stages of each algorithm (particularly dataset splitting and initialization steps).

All experiments were carried out on a machine with a 2.1GHz Intel Xeon 64-Core processor

with 128GB RAM and two RTX A5000 graphic processing units, that run Ubuntu 20.04.2

operating system.

Datasets

To evaluate the performance of LEAN-DMKDE for anomaly detection tasks, twenty public

datasets were selected. These datasets came from two main sources: the Github repository
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Dataset Instances Dimensions Outlier Rate

Arrhythmia 452 274 0,146

Cardio 2060 22 0,2

Glass 214 9 0,042

KDDCUP 5000 118 0,1934

Lympho 148 18 0,04

Ionosphere 351 33 0,359

Letter 1600 32 0,0625

MNIST 7603 100 0,092

Musk 3062 166 0,0317

OptDigits 5216 64 0,0288

PenDigits 6870 16 0,0227

Pima 768 8 0,349

Satellite 6435 36 0,3164

SatImage 5803 36 0,0122

Shuttle 5000 9 0,0715

SpamBase 3485 58 0,2

Thyroid 3772 36 0,0247

Vertebral 240 6 0,125

Vowels 1456 12 0,03434

WBC 378 30 0,0556

Table 4-1.: Main features of the datasets.

associated with LAKE1, and the ODDS virtual library of Stony Brook University2. The main

characteristics of the selected datasets, including their sizes, dimensions and outlier rates can

be seen in Table 5-1. These datasets were chosen because of the wide variety of features they

represent, with which the performance of the algorithms can be tested in multiple scenarios,

its extensive use in anomaly detection literature, and because of their accessibility, since the

files associated with each dataset can be easily accessed in their respective sources.

Metrics

To evaluate the performance of the proposed algorithm in comparison to baseline anomaly

detection methods, we employed AUC-PR and AUC-ROC as the primary metrics. These

metrics are extensively utilized in machine learning frameworks due to their effectiveness.

Although additional metrics such as accuracy and F1-Score on the anomaly class were also

calculated, they were not reported in this study. The calculations for AUC-PR, AUC-

ROC, and the aforementioned additional metrics were performed using the implementation

1https://github.com/1246170471/LAKE
2http://odds.cs.stonybrook.edu/about-odds/
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provided by the Scikit-Learn Python library [137].

For each algorithm, a set of parameters of interest was selected in order to perform a series

of searches for the combinations of parameters that gave the best results for each data set

under study. The list of algorithms and their parameters under study can be found in Table

4-2.

Algorithm Parameters of Interest

One Class

SVM

gamma (Gaussian kernel), out-

lier percentage

Isolation

Forest

number of estimators, samples

per estimator, outlier percent-

age

Covariance

Estimator

outlier percentage

LOF (Local

Outlier

Factor)

number of neighbors, outlier

percentage

K-nearest

Neighbors

number of neighbors, outlier

percentage

SOS perplexity (matrix parameter),

outlier percentage

COPOD outlier percentage

LODA outlier percentage

VAE-Bayes outlier percentage

DeepSVDD outlier percentage

LAKE normality ratio (related to out-

lier percentage)

LEAN-

DMKDE

sigma (Gaussian kernel), ar-

chitecture of the autoencoder,

size of Fourier features map-

ping, size of density ma-

trix eigen-decomposition, al-

pha (trade-off parameter)

Table 4-2.: Parameters of all the algorithms selected for grid search.

The selection of the best parameters was made by using a grid search strategy, ranking all

the possible combinations of parameters (up to a limit of 100 experiments) in terms of the

Auc-PR and AUC-ROC, and choosing the combination that showed the highest value for the

metrics. This selection of parameters was performed for each algorithm and each dataset.
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4.3.2. Results and Discussions

The Auc-ROC and Auc-PR obtained when using the winning combinations for all experi-

ments (algorithm and dataset pairs) are reported in Table 4-5 and Table 4-6. At a first

glance, there is a noticeable difference between the performance of most of the baseline

methods and LEAN-DMKDE, with AD-DMKDE being a notable exception; other meth-

ods that show better-than-average results include an autoencoder and isolation forest, that

had a slightly better performance than deep learning alternatives like LAKE, VAE-Bayes or

DeepSVDD.

Upon analyzing the influence of dataset features on performance, several patterns emerge.

LEAN-DMKDE demonstrates strong performance on datasets with outlier rates below 10%

but achieves its best performance with datasets ranging from 10% to 30%. Notably, LEAN-

DMKDE outperforms AD-DMKDE on datasets with higher dimensionality (more than 20

dimensions), which supports our hypothesis.

It is important to note that while the AUC-ROC of AD-DMKDE has a higher average value

compared to LEAN-DMKDE, this metric tends to be biased towards highly imbalanced

datasets. It gives higher scores to methods that predominantly predict the majority class,

which, in this case, is the normal class. Therefore, we relied on the AUC-PR of the anomaly

class as a more appropriate measure. This metric specifically evaluates the performance of

the methods on the anomaly class. It is worth mentioning that a method with a higher

AUC-ROC may undermine the importance of detecting anomalies.

To further analyze these results, a comprehensive statistical analysis was conducted. Specif-

ically, the Friedman test was utilized to assess the Auc-PR and Auc-ROC values, revealing a

statistically significant difference among the methods. Subsequently, the Friedman-Nemenyi

test was performed to delve deeper into the findings. The outcomes of this test are visually

presented in Figure 4-2. In the figure, significant differences between dataset pairs are de-

noted by black squares, while white squares indicate no significant difference. Upon analyzing

the figure, it becomes evident that the methods can be grouped into three distinct categories.

The first group comprises LEAN-DMKDE, AD-DMKDE, Autoencoder, and iForest. The

subsequent group consists of Covariance, KNN, VAE-Bayes, and COPOD. Lastly, the third

group encompasses LODA, ALAD, OCSVM, LOF, SOS, LAKE, and DSVDD.

4.3.3. Ablation Study

To establish that the LEAN-DKMDE architecture can achieve a better performance than

each of its separate components, the following experiments were performed:

• AN-DMKDE: using AN-DMKDE that is the final part of LEAN without the autoen-

coder. This method uses the density matrices to produce anomaly score.
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Figure 4-2.: Results for Friedman-Nemenyi test over the metrics of Auc-PR and Auc-ROC.

• AutoEncoder only: since the proposed method uses an autoencoder as a mechanism to

create a latent representation of the data, the neural network alone was applied over

the datasets, in such a way that the reconstruction error was used as a measure of

anomaly.

• LAKE: is a method that leverages an autoencoder and Kernel Density Estimation

(KDE) without end-to-end optimization.

The performance of these different experiments over all datasets are compared with LEAN-

DKMDE using Auc-PR as before. A parameter grid search was also performed over the

parameters that applied in each case and with the same value ranges used in LEAN-DKMDE.

Results can be seen in Table 4.3.3.

Based on the results, it is evident that LEAN-DKMDE outperforms both AN-DMKDE

and the Autoencoder stages, particularly the latter. AN-DMKDE demonstrates favorable

performance in certain datasets, potentially due to its effectiveness in datasets with fewer

features. However, when compared to the combined approach of LEAN-DKMDE, relying

solely on reconstruction error, as in the case of the Autoencoder alone, proves to be a notable

limitation. LAKE exhibits the poorest performance among the methods evaluated. These

findings highlight the significance of fine-tuning the density matrix in accordance with the

autoencoder to achieve optimal results.

As established in the Experimental Setup section, a parameter grid search was performed

for every algorithm and dataset, in order to find the combination of parameters that fitted

the best for each dataset. For every parameter, the search was conducted over a series of

values that were the same in all experiments (when possible). In Table 4-4, a list of the

ranges for all the parameters is presented. Some of these parameters are associated with

the outlier rate of each dataset: the outlier percentage parameter range was defined as the
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Table 4-3.: Ablation study: area under the Precision-Recall curve (AUC-PR) for all algo-

rithms applied on all data sets. The highest values have been highlighted, the

first in bold and the second in underline.
name Leand AD-DMKDE Autoencoder LAKE

Annthyroid 0,248 0,187 0,232 0,174

Arrhythmia 0,454 0,534 0,515 0,116

Breastw 0,988 0,987 0,98 0,864

Cardio 0,47 0,627 0,604 0,116

ForestCover 0,465 0,494 0,033 0,095

Glass 0,643 0,167 0,077 0,036

Ionosphere 0,797 0,984 0,966 0,228

Letter 0,156 0,489 0,29 0,036

Mammography 0,253 0,187 0,356 0,072

MNIST 0,71 0,549 0,551 0,333

Musk 0,747 1 1 0,853

OptDigits 0,407 0,526 0,555 0,021

PenDigits 0,672 0,614 0,173 0,06

Pima 0,572 0,596 0,487 0,319

Satellite 0,809 0,882 0,795 0,23

SatImage 0,918 0,764 0,948 0,175

Shuttle 0,9855 0,957 0,96 0,163

SpamBase 0,966 0,818 0,487 0,576

Speech 0,043 0,016 0,019 0,026

Thyroid 0,364 0,374 0,499 0,013

Vertebral 0,787 0,26 0,197 0,164

Vowels 0,276 0,757 0,574 0,267

WBC 0,758 0,703 0,489 0,237

Wine 1 0,467 0,756 0,274

Mean 0,6036 0,5807 0,5226 0,227

true value plus five near values over it and five near values under it. The same applies to

normality ratio, defined as 1.0 minus the true outlier rate, plus five values over it and five

values under it.

4.3.4. Dataset Description

The data sets used in the different experiments come from various scientific fields and have

a wide variety of characteristics, which allowed testing the performance of the algorithm in

different scenarios. Next, we present a list of the datasets used, including their source and a

brief description of their contents.

• Annthyroid: dataset from the UCI Machine Learning Repository is a publicly available

dataset that is commonly used for classification tasks in machine learning. It is derived

from a thyroid disease study and contains various attributes related to thyroid function

tests. The dataset is named ”annthyroid” because it is often used to train and evaluate

artificial neural networks (ANNs) for thyroid disease diagnosis. Patients with thyroid

disease are labeled as anomalous points.

• Arrhythmia: originally a multiclass dataset, it was modified for anomaly detection,

labeling the eight smallest classes as outliers, and the remaining classes as normal

data. The data file used in the experiments came from LAKE Github repository.

• Breastw: The Breast Cancer Wisconsin (Diagnostic) Dataset contains various features

computed from digitized images of fine needle aspirates (FNA) of breast masses. These
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Parameter Range of Values

Outlier per-

centage

dataset dependant

Number of

neighbors

[2, 4, 6, ..., 46, 48, 50] (LOF)

[10, 20, ..., 90, 100] (K-nearest

neighbors)

Gamma

(Gaussian

kernel)

[2−10, 2−9, ..., 24, 25] (One-

class SVM)

Normality ra-

tio

dataset dependant

Number of es-

timators

[20, 40, 60, 80, 100] (Isolation-

Forest)

Samples per

estimator

[20, 40, 60, 80, 100] (Isolation-

Forest)

Perplexity [10, 20, ..., 90, 100] (SOS)

Sigma (Gaus-

sian kernel)

[2−5, 2−4, ..., 28, 29] (LEAN-

DKMDE)

Autoencoder

architecture

(layer sizes)

[(64,32,16,32,64),

(128,64,32,8,32,64,128),

(128,32,2,32,128),

(64,20,10,4,10,20,64)] (LEAN-

DKMDE)

Size of

Fourier

features map-

ping

[250, 500, 1000, 2000] (LEAN-

DKMDE)

Size of

density

matrix eigen-

decomposition

[12, 25, 50, 100, 125, 200, 250,

400, 500, 1000, 2000] (LEAN-

DKMDE)

Alpha (loss

function pa-

rameter)

[0, 0.01, 0.1, 0.5, 0.9, 0.99, 1]

(LEAN-DKMDE)

Table 4-4.: Range of all the parameters used for grid search.

features are used to predict whether a given breast mass is benign (non-cancerous) or

malignant (cancerous).

• Cardio: This dataset is related to fetal heart measurements. Originally a 3-class

dataset, one of the classes was discarded and the pathological samples are considered
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outliers. The data file used in the experiments came from LAKE Github repository.

• ForestCover:

• Glass: This data set contains information on six different types of glass in terms of

iron oxide content. The sixth type is considered an outlier and the rest are normal

data. The data file used in the experiments came from ODDS virtual library.

• Ionosphere: it contains data from radar measurements in high-altitude atmospheric

layers, The data file used in the experiments came from ODDS virtual library.

• Letter: this dataset originally contained rectangular displays (4x4 size) of three English

letters, labeling one of them as ’anomaly’. The version we used came from the ODDS

virtual library, where the data were combined in pairs to obtain a dimension of 32;

outliers correspond to pairs where one letter belongs to the ’anomaly’ class.

• Mammography: dataset is a publicly available dataset that is often used for breast

cancer detection and classification tasks in machine learning. It contains features ex-

tracted from mammographic images, along with corresponding class labels indicating

the presence or absence of breast cancer. The dataset is designed to aid in the devel-

opment of predictive models for early detection of breast cancer.

• MNIST: one of the best-known datasets for automatic classification, the dataset we use

(a subset of the original with only digits zero and six) contains images of size 10x10.

The zero-digit class is considered normal data, and the six-digit class is the outlier

data. The data file used in the experiments came from ODDS virtual library.

• Musk: This dataset contains multiple configurations of molecules, in order to determine

whether each configuration is a musk or not (i.e., has a strong odor or not). The

musk molecules are fewer, so they are labeled as outliers. The data file used in the

experiments came from ODDS virtual library.

• OptDigits: the original data set had ten classes of handwritten digits of size 8x8, so

for our experiments, cases of digits 1-9 are normal data, and cases of zero digits are

outliers. The data file used in the experiments came from ODDS virtual library.

• PenDigits: This data set also refers to handwritten digits but is represented as eight

different pairs of (x,y) coordinates through which each stroke passes. Cases of null

digits are labeled as outliers. The data file used in the experiments came from ODDS

virtual library.

• Pima: this dataset contains medical data on Indian women and was intended to de-

termine whether or not patients have diabetes. The data file used in the experiments

came from ODDS virtual library.

• Satellite: This dataset is composed of 3x3 slices taken from a Landsat satellite image,

and there are six classes representing different soil types. The three smallest classes

(’2’, ’4’ and ’5’) are labeled as outliers. The data file used in the experiments came
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from ODDS virtual library.

• SatImage: coming from the previous Satellite dataset, here class ’2’ has been down-

sampled and considered as outlier data, while all the other classes are labeled as normal

data. The data file used in the experiments came from ODDS virtual library.

• SpamBase: this dataset contains email information, in which spam (unsolicited com-

mercial emails) are labeled as outliers. The data file used in the experiments came

from LAKE Github repository.

• Shuttle: this dataset has 9 numerical values and 7 classes. Class ’4’ was discarded,

class ’1’ is taken as normal data, and the remaining classes make up the outliers. The

data file used in the experiments came from ODDS virtual library.

• Speech: The dataset comprises a collection of vectors that represent segments of word

recordings in English, featuring a diverse range of accents. Each accent is assigned a

distinct class label. In this particular experiment, the American accent is considered

the normal data, while the remaining accents are treated as anomalous data.

• Thyroid: This dataset includes 3372 patient instances for diagnosing hypothyroidism.

It has three classes, but only sick patients are treated as outliers, because it is a minority

class. The data file used in the experiments came from LAKE Github repository.

• Vertebral: this dataset contains biomechanical information from 240 patients, referring

to attributes of the pelvis and lumbar spine. The normal patients are fewer, so they

are taken as outliers. The data file used in the experiments came from ODDS virtual

library.

• Vowels: this dataset contains 12 discrete time series sampled from Japanese vowel

recordings. Originally, each class represented a different speaker, and one of the speak-

ers is considered as outlier data and the rest as normal data. The data file used in the

experiments came from ODDS virtual library.

• WBC: the data here is the result of analyzing breast cancer images and contain at-

tributes of tumor cell nuclei. Benign instances are labeled as normal data, and ma-

lignant instances are labeled as outliers. The data file used in the experiments came

from ODDS virtual library.

• Wine: The dataset contains chemical analysis results of wines produced in three dis-

tinct Italian vineyards. Each class represents a specific vineyard. In the ODDS version

of the dataset, a small subset of samples from Class ’1’ is designated as anomalous,

while Classes ’2’ and ’3’ are treated as normal data.
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4.3.5. Statistical Analysis

To establish whether LEAN-DKMDE is statistically different (in terms of performance)

with respect to the baseline methods, the Friedman test, a well-known statistical method

to compare different populations or groups, was performed. This test uses the following

formula:

Q =

[

12

Nk(k + 1)

k
∑

j=1

R2
j

]

− 3N(k + 1)

where N is the number of datasets, k is the number of algorithms, and R2
j is the squared

sum of the observations for each particular algorithm.

Given a confidence value α = 0.05 and the p-value given by P[χ2
n−1 ≥ Q], we determine

that if the p-value is lower than α, there is statistically significant evidence supporting that

the methods are different. When applying this test to the results, it indicates that for both

F1 Score and Accuracy there is a statistically significant difference between the methods.

But Friedman test does not answer which of the methods are responsible for the difference

if present. To compare them two by two, we use the Friedman-Nemenyi test, a variation of

the former that applies over all pairs of methods. This statistical test was performed for the

two considered metrics (F1-Score and Accuracy).

4.4. Conclusions

This chapter presented Quantum Latent Density Estimation for Anomaly Detection (LEAN-

DKMDE), a novel method for anomaly detection based on the combination of autoencoders,

adaptive Fourier features and density estimation through quantum measurements. This

new method was compared against fourteen different anomaly detection algorithms, using a

framework that included twenty-four labeled anomaly detection datasets. For each dataset

and algorithm, a grid search of the best parameters was performed, and the performance

of the winning algorithms was compared using Auc-PR and Auc-ROC. LEAN-DKMDE

showed state-of-the-art performance, being superior to most classic algorithms and com-

parable to deep learning-based methods. The reliability of the proposed method does not

seem to be affected by the features of the dataset, although LEAN-DKMDE highlights in

high-dimensional datasets. Also, LEAN-DKMDE performs better than its separate parts

(KDE and autoencoder) and there is a noticeable difference when using only reconstruction

measures, all of which shows that the combination of density estimation and reconstruction

from autoencoders can perform better than these two elements separately.
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Table 4-5.: Area under the Precision-Recall curve (AUC-PR) for all algorithms applied on all data sets. The highest values

have been highlighted, the first in bold and the second in underline.
name Leand AD-DMKDE Autoencoder iForest Covariance KNN VAE-Bayes COPOD LODA ALAD OCSVM LOF SOS LAKE DSVDD

Annthyroid 0,248 0,187 0,232 0,34 0,504 0,212 0,209 0,197 0,147 0,192 0,127 0,186 0,142 0,174 0,083

Arrhythmia 0,454 0,534 0,515 0,558 0,459 0,514 0,532 0,566 0,365 0,393 0,425 0,433 0,472 0,116 0,32

Breastw 0,988 0,987 0,98 0,994 0,969 0,988 0,968 0,987 0,963 0,958 0,825 0,335 0,886 0,864 0,904

Cardio 0,47 0,627 0,604 0,693 0,469 0,555 0,595 0,581 0,198 0,507 0,465 0,185 0,254 0,116 0,267

ForestCover 0,465 0,494 0,033 0,097 0,015 0,06 0,07 0,06 0,065 0,043 0,116 0,015 0 0,095 0,01

Glass 0,643 0,167 0,077 0,072 0,097 0,121 0,077 0,076 0,058 0,056 0,035 0,035 0,072 0,036 0,143

Ionosphere 0,797 0,984 0,966 0,711 0,92 0,951 0,778 0,77 0,449 0,848 0,754 0,837 0,843 0,228 0,958

Letter 0,156 0,489 0,29 0,111 0,241 0,228 0,087 0,072 0,063 0,081 0,075 0,375 0,288 0,036 0,271

Mammography 0,253 0,187 0,356 0,307 0,145 0,193 0,196 0,416 0,154 0,19 0,042 0,113 0,072 0,072 0,078

MNIST 0,71 0,549 0,551 0,326 0,494 0,468 0,431 0,246 0,185 0,264 0,216 0,309 0,228 0,333 0,148

Musk 0,747 1 1 0,891 0,982 0,992 1 0,449 0,545 0,142 0,214 0,032 0,251 0,853 0,026

OptDigits 0,407 0,526 0,555 0,034 0,021 0,022 0,028 0,044 0,017 0,021 0,024 0,032 0,032 0,021 0,026

PenDigits 0,672 0,614 0,173 0,339 0,092 0,208 0,208 0,162 0,289 0,121 0,118 0,018 0,063 0,06 0,048

Pima 0,572 0,596 0,487 0,463 0,49 0,497 0,45 0,479 0,339 0,424 0,393 0,463 0,415 0,319 0,453

Satellite 0,809 0,882 0,795 0,66 0,76 0,61 0,631 0,601 0,596 0,561 0,54 0,36 0,354 0,23 0,32

SatImage 0,918 0,764 0,948 0,912 0,635 0,955 0,822 0,751 0,923 0,575 0,394 0,06 0,056 0,175 0,014

Shuttle 0,9855 0,957 0,96 0,968 0,842 0,19 0,922 0,954 0,911 0,878 0,568 0,1 0,111 0,163 0,072

SpamBase 0,966 0,818 0,487 0,372 0,307 0,345 0,348 0,44 0,302 0,264 0,273 0,155 0,26 0,576 0,231

Speech 0,043 0,016 0,019 0,023 0,022 0,019 0,02 0,02 0,029 0,02 0,019 0,044 0,024 0,026 0,028

Thyroid 0,364 0,374 0,499 0,675 0,688 0,324 0,442 0,223 0,131 0,402 0,286 0,293 0,082 0,013 0,125

Vertebral 0,787 0,26 0,197 0,133 0,138 0,125 0,165 0,119 0,106 0,123 0,218 0,153 0,121 0,164 0,077

Vowels 0,276 0,757 0,574 0,074 0,05 0,641 0,148 0,049 0,05 0,075 0,083 0,374 0,199 0,267 0,217

WBC 0,758 0,703 0,489 0,587 0,597 0,484 0,506 0,7 0,626 0,161 0,229 0,76 0,476 0,237 0,192

Wine 1 0,467 0,756 0,61 0,756 0,444 0,297 0,533 0,494 0,421 0,242 0,639 0,091 0,274 0,137

Mean 0,6036 0,5807 0,5226 0,4562 0,4455 0,4227 0,4137 0,3956 0,3335 0,3216 0,2783 0,2627 0,2413 0,227 0,2145
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Table 4-6.: Area under the ROC curve (AUC-ROC) for all algorithms applied on all data sets. The highest values have been

highlighted, the first in bold and the second in underline.
Algorithm LEAN ADDMKDE Autoencoder iForest Covariance KNN VAE-Bayes COPOD LODA ALAD OCSVM LOF SOS LAKE DSVDD

Annthyroid 0,733 0,788 0,648 0,833 0,918 0,704 0,704 0,799 0,66 0,687 0,617 0,71 0,642 0,7 0,51

Arrhythmia 0,753 0,773 0,778 0,863 0,817 0,776 0,769 0,787 0,676 0,724 0,807 0,832 0,738 0,31 0,707

Breastw 0,994 0,994 0,989 0,997 0,985 0,993 0,961 0,993 0,962 0,969 0,899 0,518 0,927 0,93 0,946

Cardio 0,761 0,813 0,951 0,951 0,863 0,937 0,953 0,919 0,677 0,924 0,893 0,645 0,829 0,474 0,655

ForestCover 0,972 0,987 0,837 0,939 0,686 0,891 0,933 0,877 0,905 0,859 0,877 0,558 0 0,878 0,5

Glass 0,769 0,885 0,663 0,635 0,74 0,788 0,663 0,654 0,49 0,529 0,212 0,221 0,558 0,25 0,76

Ionosphere 0,806 0,988 0,978 0,772 0,916 0,964 0,833 0,853 0,456 0,874 0,743 0,842 0,84 0,069 0,965

Letter 0,637 0,879 0,837 0,647 0,83 0,822 0,499 0,532 0,464 0,509 0,462 0,837 0,816 0,138 0,554

Mammography 0,907 0,914 0,885 0,88 0,747 0,845 0,883 0,908 0,773 0,84 0,557 0,786 0,626 0,703 0,531

MNIST 0,948 0,925 0,893 0,8 0,908 0,876 0,856 0,784 0,658 0,734 0,693 0,767 0,739 0,842 0,543

Musk 0,984 1 1 0,993 0,999 1 1 0,958 0,938 0,717 0,813 0,442 0,856 0,881 0,408

OptDigits 0,945 0,991 0,975 0,568 0,355 0,394 0,522 0,694 0,215 0,368 0,424 0,417 0,548 0,33 0,433

PenDigits 0,977 0,996 0,91 0,941 0,862 0,96 0,939 0,907 0,925 0,896 0,865 0,374 0,683 0,65 0,516

Pima 0,744 0,705 0,655 0,666 0,685 0,677 0,608 0,613 0,378 0,604 0,533 0,638 0,589 0,465 0,574

Satellite 0,839 0,875 0,827 0,674 0,79 0,758 0,625 0,658 0,598 0,609 0,582 0,542 0,563 0,294 0,498

SatImage 0,964 0,99 0,997 0,997 0,994 0,998 0,99 0,979 0,995 0,939 0,924 0,69 0,816 0,837 0,54

Shuttle 0,988 0,987 0,991 0,994 0,989 0,716 0,988 0,993 0,973 0,988 0,927 0,541 0,505 0,634 0,501

SpamBase 0,969 0,884 0,861 0,738 0,669 0,722 0,692 0,766 0,637 0,63 0,667 0,384 0,581 0,851 0,536

Speech 0,709 0,513 0,504 0,483 0,516 0,507 0,505 0,534 0,562 0,582 0,495 0,597 0,568 0,531 0,651

Thyroid 0,855 0,951 0,97 0,99 0,993 0,945 0,958 0,937 0,585 0,972 0,929 0,951 0,741 0,075 0,605

Vertebral 0,965 0,528 0,593 0,483 0,498 0,477 0,566 0,477 0,383 0,501 0,69 0,524 0,45 0,523 0,143

Vowels 0,732 0,982 0,916 0,668 0,653 0,961 0,613 0,539 0,54 0,733 0,58 0,912 0,825 0,298 0,555

WBC 0,96 0,922 0,913 0,94 0,94 0,909 0,898 0,94 0,909 0,762 0,464 0,976 0,918 0,371 0,633

Wine 1 0,967 0,967 0,922 0,967 0,9 0,833 0,944 0,767 0,9 0,8 0,967 0,5 0,7 0,556

Mean 0,87129 0,8848 0,8557 0,8072 0,805 0,8133 0,7829 0,7935 0,6719 0,7437 0,6855 0,6529 0,6607 0,5305 0,5758



5. Continuous and Incremental

Quantum Anomaly Detection

In this chapter, we introduces InQMAD. InQMAD: Incremental Quantum Measurement

Anomaly Detection is a novel method for detecting anomalies in streaming data. Traditional

methods for anomaly detection are not suitable for streaming data due to the need for

continuous model updates and high computational costs. InQMAD uses adaptive Fourier

features to map the data to a Hilbert space, where a density matrix captures the density of

the dataset. The method processes data in a single pass, using a nearly constant memory

and inference processing time, making it suitable for streaming data. InQMAD provides a

score for each data point, which is used to detect anomalous data. The method is compared

with other state-of-the-art methods on various datasets, and the results demonstrate its

effectiveness in detecting anomalies in streaming data.

The work presented in this chapter corresponds to the following article:

Gallego-Mejia, J., Bustos-Brinez, O., & González, F. ”InQMAD: Incremental Quantum

Measurement Anomaly Detection,” 2022 IEEE International Conference on Data Mining

Workshops (ICDMW), Orlando, FL, USA, 2022, pp. 787-796,

doi: 10.1109/ICDMW58026.2022.00107 [58].

Gallego-Mejia, J., Bustos-Brinez, O., & González, F. ”Streaming and Incremental Anomaly

Detection through Density Matrices” 2023 Springer Neural Computing and Applications (To

Be Submitted).

5.1. Introduction

Anomaly detection is a well-studied problem [26, 158, 134]. The main idea is to detect data

points or a group of data points that deviate from a ‘normality’ in a specific context (note

that normality is not related to the Gaussian normal distribution) . This problem arises

in several domains, such as network security [124], telecommunications [50], retail industry

[132], network traffic [190], financial transactions [4], and wired and wireless sensors [194].

In recent years, particular interest has been given to methods that can deal with problems

https://arxiv.org/abs/2210.05061
https://arxiv.org/abs/2210.05061
https://arxiv.org/abs/2210.05061
https://www.springer.com/journal/521
https://www.springer.com/journal/521
https://www.springer.com/journal/521
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where data is continuously generated as a stream rather than as a batch of data points. This

behavior is natural in credit card fraud detection [143], network system intrusion detection

[124], camera surveillance [177], Internet of Things (IOT) device problems [120], among

others. Data in this streaming environment is rapidly generated, potentially infinite, has

tremendous volume, and can exhibit concept drift.

An anomaly can be broadly defined as an observation or data that deviates significantly

from some kind of normality. Several types of anomalies can occur in real datasets, such

as point anomalies, group anomalies, contextual anomalies, low-level texture anomalies, and

high-level semantic anomalies. Classical methods have been used to solve this problem, but

they suffer with high-dimensional datasets [94]. Most of the recent deep learning methods

capture a lot of attention for their good properties, such as automatic feature extraction.

However, their training time and streamwise inference is prohibitively long [16].

Classical anomaly detection algorithms in batch environments are based on density estima-

tion, such as kernel density estimation [96], classification, such as one-class support vector

machines [115], and distance, such as the isolation forest [111]. Another type of recent so-

lutions is based on deep neural networks that have shown good properties in the anomaly

detection task. They are mainly based on variational autoencoders [5], deep belief networks

[94], one-class deep networks [25] and adversarial autoencoders [42]. These methods assume

that all training data points are available in the training phase. However, in a streaming

context the data arrives continuously. Some of these methods have poor adaptability and

extensibility, or inability to detect new anomalies continuously, where they have high model

update cost and/or slow update speed.

Stream anomaly detection can be viewed as a generalization of the typical anomaly detection

problem where data grows infinitely. Therefore, it is impractical, impossible or unnecessary

to store every data point that arrives as a stream. In this context, the method has to

distinguish between normal and anomalous data points, where concept drift can occur, and

the number of anomalies is scarce compared to normal data [43]. Several types of concept

drift can arise in streaming datasets, such as sudden, gradual, incremental or recurrent drift.

Concept drift occurs in data streams, where usually old data is less important than new

data. This trend in data has an evolutionary pattern, where recent behavior should be of

greater importance than older patterns [140]. In order to solve this problem, the method

must use a constant memory and a nearly constant inference processing time. Therefore,

it will process the data in a single pass. In the Subsection 2.2.2, 12 methods for streaming

anomaly detection are presented.

To pave the way, several methods have been developed in the last decade. Methods such

as iForestASD [43], RCF [71], xStream [116] and Ex. IF [72] present a modification of the

Isolation Forest batch anomaly detection method. One of the problems of these methods is

how to improve their inference complexity which is related to the depth of the trees which

typically will be log(n) where n is the number of data points. To solve this problem, HS-
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Tree [179], RS-Hash [160] and MStream [15] use a hash structure to avoid traversing each

tree. Other state-of-the-art methods use a modification of the well-studied local outlier

factor (LOF) [20]. Methods such as LODA [140], DILOF [128] and MemStream [15] use a

modification of the k-nearest neighbor algorithm, the roots of LOF, to score the outlierness

of data points. However, some of them are based on a memory that stores m-data points

which, viewed as a moving average, may not be able to detect high frequency points or

possible outliers.

In this chapter we present the novel method incremental quantum measurement anomaly

detection (InQMAD). This method uses adaptive Fourier features to map the original space

to a Hilbert space. In this space, a density matrix is used to capture the density of the

dataset. A new point passes through each stage and provides a score that is used as an

anomaly score in the final stage. An important feature of the method is that it is able to

build a density estimation model that is continuously updated with the incoming data, and

it has the ability to give more importance to recent samples similar to an exponential moving

average. The method works in streaming, is an unsupervised algorithm and retraining can

be performed continuously. The proposed method requires constant memory to process new

data points, can process data in a single pass, and process potentially endless streaming data

or even massive datasets. It can update the model in constant time, and its complexity is

O(1).

In summary, the contributions of the present work are:

• A novel streaming anomaly detection method: the new method works in a

streaming, potentially infinite and with potentially concept drift environment.

• A systematic evaluation of the proposed method: the algorithm is evaluated in

12 streaming datasets and compared it against 12 state-of-the-art streaming anomaly

detection methods.

• An ablation study analyzing the new method: a systematic evaluation of each

component of the method is performed.

Reproducibility: the code used in this chapter is released as open source and can be found

in https://doi.org/10.5281/zenodo.7183564

The outline of the chapter is as follows: in Section 2, we present the new method, explaining

all the stages of the algorithm. In Section 3, we systematically evaluate the proposed method

against state-of-the-art streaming anomaly detection algorithms. In Section 4, we state

conclusions and outline future lines of research.
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Figure 5-1.: Incremental Quantum Measurement Anomaly Detection (InQMAD) method.

The method consists of five steps: (1) an adaptive Fourier features (left sub-

figure), (2) a density matrix initialization, (3) a quantum measurement of the

new streaming data points, (4) a decision anomaly detection threshold for the

new data, and (5) an update of the density matrix ρ in case of new normal

data points.

5.2. Incremental Quantum Measurement Anomaly

Detection (InQMAD)

In this section, we present the new method new Incremental QuantumMeasurement Anomaly

Detection (InQMAD). Figure 5-1 shows each of the steps of the Algorithms 6 and 7. The

method consists of five steps: (1) an adaptive Fourier features, (2) a density matrix ini-

tialization, (3) a quantum measurement of the new streaming data points, (4) a decision

anomaly detection threshold for the new data, and (5) an update of the density matrix ρ in

case of new normal data points. Each stage is explained in detail in this section.

5.2.1. Adaptive Fourier Features

All streaming data points are mapped into a Hilbert space using adaptive Fourier features,

first proposed as random Fourier features by [144]. They showed that a Gaussian kernel can

be approximated as:

k(x,y) ≃ Ew(⟨ϕ̂rff,w(x), ϕ̂rff,w(y)⟩) (5-1)

where ϕ̂rff,w =
√
2 cos(wTx + b), w ∼ N(0, Id) and b ∼ Uniform(0, 2π). The expectation is

possible to Bochner’s Theorem and the fact that using Equation 5-1 that defines a random-

ized map converge in probability to the Gaussian kernel. However, the randomized map can
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be further refined using an optimization step, in particular using gradient descent, as shown

in [103, 53]. Given two pairs of random data points (xi, xj), the parameters w, b can be

optimized using the following equation:

w∗, b∗ = argmin
w,b

1

m

∑

xi,xj∈s

(kσ(xi,xj)− k̂w,b(xi,xj))2

where k̂w,b(xi,xj))
2 is the Gaussian kernel of Fourier feature approximation and kσ(xi,xj)

is the Gaussian kernel with a bandwidth parameter σ. Adaptive Fourier features allow us

to compute the feature space avoiding the explicit kernel computation and will be used as

input to the density matrix in the next step. We performed an empirical evaluation of this

improvement algorithm and propose an intermediate enhancement step. Assume that all

points are normalized between [0, 1]d, where d is the number of features, generate random

samples from Uniform(−0.5, 1.5)d. The increase in the range of the sampling space is to

account for future points outside the range. The next question that arises is how many

points we should generate. We use an empirical approach depending on how large the initial

training dataset is. If the training set is small (< 1000), we will sample until it consists of

10,000 data points. Otherwise, we will sample twice the size of the initial training dataset.

The intuition here is that if we have few data points, the algorithm will be prone to overfitting

in a local space near initial training dataset. The algorithm 6 shows the step in 6.

5.2.2. Density Matrix Initialization

The second step of the algorithm consists of calculating the density matrix using the mapping

obtained by passing each xt to the adaptive Fourier feature step explained above. The density

matrix is a formalism of quantum mechanics that was used as a base tool by [66, 53] to create

a density estimation method. The authors derive a new algorithm that uses random Fourier

features to store the density matrix ρ. The following equation is a slight modification of the

density matrix in terms of stream data:

ρt =
1

n

N
∑

i=1

qi · ϕaff(xi)ϕ
t
aff(xi) (5-2)

where
∑t

i=1 qi = 1. To initially compute the density matrix, an initial portion of the stream

{x1, · · · ,xn} is selected and sent to the equation 5-2 to calculate the density matrix ρ. The

initial training dataset size can degrade the final performance of the algorithm; therefore, it

is necessary to find it using a cross-validation approach. It should be noted that the density

matrix is computed using adaptive Fourier features avoiding explicit kernel computation as

in kernel density estimation; however, other feature mappings can be used as shown in [65].

The density matrix is initialized in Algorithm 6 in Step 7.
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5.2.3. Quantum Measurement

The third step of the algorithm is quantum measurement. A quantum measurement can be

obtained by using the density matrix ρ and mapping a data point xt+1 at time t+ 1 as:

f̂(xt+1) =
1

Mσ

ϕaff(xt+1)
Tρt ϕaff(x) (5-3)

where ρ is the density matrix defined in the equation 5-2 andMσ is a normalization constant.

This step gives us an estimate of the density of the given data point that will be used in the

next step. The initialized Algorithm 6 uses the quantum measurement in Step 8 and the

inference Algorithm 7 uses it in Step 8.

5.2.4. Anomaly Detection Classification

The fourth step of the algorithm is the anomaly detection classification stage. The threshold

is defined as τ , where a new point xi is defined as anomalous according to the following

equation:

ŷ(xi) =

{

‘normal’ if f̂(xi) ≥ τ

‘anomaly’ otherwise

After initialization of the density matrix using the initial training dataset, the threshold is

found using two different approaches. The first is that the threshold can be found using prior

knowledge of the proportion of anomalies (β). The second approach is to use an optimization

metric computed over {f̂(x1), · · · , f̂(xn)}, for instance using the best threshold with respect

to AUC-ROC in initial memory. The τ is obtained in Step 10 of the Algorithm 6 and the

anomaly detection classification occurs in Step 9 of the Algorithm 7.

5.2.5. Density Matrix Update

The fifth and final step of the algorithm is to update the density matrix. If a new point

xt at time t of the flow is classified as a normal data point, the density matrix ρt+1 will be

calculated as follows:

ρt+1 = (1− α) · ρt + α · ϕaff(xt+1)ϕ
T
aff(xt+1) (5-4)

Proposition 1. The resulting matrix ρt+1 in Equation 5-4 is a valid density matrix of the

form ρt+1 =
∑t+1

i=1 qiϕ(xi)ϕ
T (xi) with q1 = (1 − α)t+1, qi = (1 − α)t−i+1 · α ∀i ∈ {1, · · · , t}

and α ∈ [0, 1].
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Figure 5-2.: Importance comparison between memory based against exponential decay.

Proposition 1 shows that an exponential decay defines a valid density matrix. This matrix

consists of all data points that have reached the method up to time t, where older examples

are less important and have a lower weight compared to more recent ones similar to an

exponential moving average.

Figure 5-2 shows the difference between a constant memory and an exponential decay

method. The figure shows a memory-based algorithm using a window width of 200 and

compares it against an exponential decay memory using a α = 2
memory window width

. The black

memory-based line shows a constant memory whose points are of equal importance to the

method. The red exponential decay line shows an exponentially decaying method whose

points become less and less important as they age. The density matrix update only occurs

if the new point is classified as ‘normal’ and is performed in Step 10 of Algorithm 7.

5.2.6. Complexity Analysis

Proposition 2. The resulting matrix ρt+1 = (1− α) · ρt + α · ϕ(xt+1)ϕ
T (xt+1) in Equation

5-4 is a valid density matrix of the form ρt+1 =
∑t+1

i=1 qiϕ(xi)ϕ
T (xi) with q1 = (1 − α)t+1,

qi = (1− α)t−i+1 · α ∀i ∈ {1, · · · , t} and α ∈ [0, 1].

Proof. ρt+1 is a valid density matrix if (1−α)t+1+
∑t

i=1(1−α)t−i+1 ·α = 1. We give a proof

by induction on t.

Base Case: for t = 1, define ρt = ϕ(x1)ϕ
T (x1). for t = 2, define q1 = (1 − α) and q2 = α

then q1 + q2 = 1

Induction Step: Show that for every t ≥ 2, if ρt holds, then ρt+1 also holds.
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Define

pt = (1− α)t + α ·
t−1
∑

i=1

(1− α)t−i+1 (5-5)

Using
∑n

k=1 x
k = (x− xn+1)/(1− x), then

pt = (1− α)t + α · ((1− α)− (1− α)t
1− (1− α) ) = 1 (5-6)

Now, for t+1 :

qt+1 = q1 ·
(

(1− α)t + α ·
t−1
∑

i=1

(1− α)t−i+1

)

+ q2 (5-7)

= (1− α) ·
(

(1− α)t + α ·
t−1
∑

i=1

(1− α)t−i+1

)

+ α (5-8)

= (1− α)t+1 + α ·
t
∑

i=1

(1− α)t−i+1 + α (5-9)

= (1− α)t+1 + α ·
t+1
∑

i=0

(1− α)t−i+1 (5-10)

= 1 (5-11)

In this subsection, d will be the number of features and D will be the number of adaptive

Fourier features. For time complexity, in the anomaly detection phase, a dot product is

computed between each data point and the adaptive Fourier feature whose time complexity

is proportional to O(dD). In addition, a dot product is computed from the above result and

the density matrix whose time complexity is proportional to O(D2). In terms of memory,

InQMAD needs to maintain a density matrix whose size is proportional to O(D2) and stores

the weights of the adaptive Fourier features whose size is proportional to O(dD).

5.3. Experimental Evaluation

We designed and tested an experimental setup in order to answer the following questions:

• Q1. Streaming Method Comparison. Does our method perform accurately in

anomaly detection over streams of data, when compared it against to state-of-the-art

baseline methods?
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Algorithm 6: InQMAD initialization process

1 Input: Training dataset D = {xt}t=1,··· ,n,xt ∈ R
d

2 α: forgetting trade-off,

3 σ: bandwith parameter

4 β: proportion of anomalies

5 Output: wAFF, bAFF, ρ, τ

6 w∗
AFF, b

∗
AFF = argminw,b

1
m

∑

xi,xj∈D
(kσ(xi,xj)− k̂w,b(xi,xj))2 for xt ∈ D do

7 ρt = (1− α) · ρt−1 + α · ϕaff(xt)ϕ
T
aff(xt)

8 f̂(xt) =
1
Mσ
ϕaff(xt)

Tρt ϕaff(xt)

9 end

10 τ = qβ(f̂(x1), · · · , f̂(xn))
11 return wAFF, bAFF, ρn, τ

• Q2. Adaptability. How well does our method adapt to “concept drift”, that is,

sudden changes in the data stream inner structure?

• Q3. Ablation Study. What are the effects of removing some stages of the algorithm

(in particular, the Adaptive Fourier features embedding) on the overall performance

of our method?

5.3.1. Comparison to Streaming Methods

Experimental Setup

The experimental setup presented in this chapter took inspiration from the setup proposed

in [16]. There, it was performed a comparison of a dozen algorithms based on area under

the ROC curve (commomly known as AUC or AUROC), by applying them over a series

of streaming and anomaly detection datasets. Our method was implemented using the

JAX framework, a Python library designed for high-performance machine learning. All the

experiments were carried out on a machine with a 2.1GHz Intel Xeon 64-Core processor

with 128GB RAM and two NVIDIA RTX A5000 graphic processing units, that run Ubuntu

20.04.2 operating system.

To handle the inherent randomness that the proposed method can present in some of its

stages (particularly in dataset splitting and neural network training), we selected a unique,

invariant value for all the random seeds that affect the behavior of our method.
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Algorithm 7: InQMAD inference and density matrix update

1 Input: xt+1

2 ρt: density matrix

3 α: forgetting trade-off,

4 waff, baff: adaptive Fourier features parameters

5 τ : threshold anomaly detector

6 Output: ρt+1-quantum measurement KDE parameter,

7 ŷt+1 classification of the given data point

8 f̂(xt+1) =
1
Mσ
ϕaff(xt+1)

Tρt ϕaff(xt+1)

9 if f̂(xt+1) ≥ τ then

10 ρt+1 = (1− α) · ρt−1 + α · ϕaff(xt+1)ϕ
T
aff(xt+1)

11 ŷt+1 = ‘normal′

12 else

13 ρt+1 = ρt
14 ŷt+1 = ‘anomaly′

15 end

16 return ρt+1, ŷt+1

Datasets

In this framework, we selected twelve different datasets, that can be divided into two groups:

seven datasets (Cardio, Ionosphere, Mammography, Pima, Satellite, Satimage and Synthetic)

with relatively low dimensions and low number of records, mainly used to perform proof-of-

concept in anomaly detection, and five datasets (KDD99, NSL, DoS, UNSW and Cover) with

hundreds of thousands of registers and a high number of dimensions, that require an intensive

use of resources to be processed. A summary of the main features of all the datasets can be

seen in Table 5-1, and a brief description of each dataset is presented in the Supplemental

Material.

We present a summarized description of the datasets used in the experimental setup to apply

the algorithms on.

• Cardio [150]: consists of measurements of fetal heart rate, where the original classes

are normal, suspect, and pathologic; to adapt it to outlier detection, the normal class

formed the inliers and the pathologic class is down sampled and labeled as outliers,

while the suspect class is discarded.

• Ionosphere [150]: originally a binary classification dataset from UCI ML repository,

the ‘bad’ class is considered as outliers and the ‘good’ class as inliers.

• Mammography [150]: an open dataset about breast calcification, for outlier detec-

tion tasks the minority class of ‘calcification’ is considered as outliers and the ‘non-
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calcification’ class as inliers.

• Pima [150]: also from UCI ML repository, it includes data of female Indian patients

with the objective of classifying them as diabetic or healthy.

• Satellite [150]: derived from the Statlog dataset from UCI ML repository, it is a multi-

class dataset. For anomaly detection, the smallest three classes (2, 4, 5) are combined

to form the outliers, while all the other classes are combined to form the inliers.

• Satimage [150]: coming from the previous Satellite dataset, here class 2 has been down

sampled and considered as outliers, while the other classes are labeled as normal data.

This dataset and the latter came from ODDS virtual library.

• Synthetic: this dataset was created in [16] to analyze if their method could afford

sudden changes in data distribution. For this, the authors of the dataset combined two

sinusoidal waves, and contaminated 10% of the samples by adding Gaussian noise to

simulate anomalous data.

• KDD99 [1]: one of the best-known datasets in anomaly detection, the original dataset

contains 34 numerical dimensions and 7 categorical dimensions, that were transformed

using one-hot encoding to obtain a dataset of 121 dimensions. We treat normal data

as outliers in this experiment, given the fact that only 20% of all records are labeled

as normal.

• NSL [181]: coming from the previous KDD dataset, it adds some dimensions and solves

redundant and duplicate records.

• Cover [150]: originally a multiclass dataset from UCI ML repository, it is used to

predict forest cover type from wilderness areas in Colorado. Instances from class 2 are

considered as normal and instances from class 4 are labeled as anomalies. Instances

from other classes are omitted.

• DoS [76]: this dataset was created by the Canadian Institute of Cybersecurity. Each

record corresponds to a network package, and they were captured from simulations of

normal network traffic and synthetic attacks.

• UNSW [125]: created by ACCS (an Australian institute of computer science and cy-

bersecurity), it contains both real network normal activities and synthetic attacks.

Originally it included nine types of attacks. It has 13% of anomalies.

Parameter Search

The behavior of InQMAD depends on a series of parameters that regulate the Adaptive

Fourier features embedding, the density estimation stage and the size of the initialization

dataset of the method. Particularly, we tried to find which of these parameters had a larger

impact over the performance of the algorithm, and we selected four to carry out a parameter
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Table 5-1.: Main features of the datasets

Dataset Records Dimensions

Cardio 1831 21

Ionosphere 351 33

Mammography 11183 6

Pima 768 8

Satellite 6435 36

Satimage 5803 36

Synthetic 10000 1

KDD99 494021 121

NSL 125973 126

Cover 286048 10

DoS 1048575 95

UNSW 2540044 122

grid search over them in order to find the combination of parameters that showed the best

performance. The selected parameters are the following:

• n: this corresponds to the size of the initial training dataset D, that is used in the

initialization stage of the method. The n samples allow the construction of the first

density matrix ρn, and thus they indirectly influence the subsequent behavior of the

method. We searched this value in the set {64, 128, 256, 512, 1000, 2000, 2048, 5000},
taking into account that it cannot be bigger than the total of samples in the dataset.

• lrbase: since the construction of the adaptive Fourier features parameters waff and baff
involves the training of a neural network, we searched the best possible values for the

learning rate of this process. We designed the learning rate to follow a polynomial

decay, so we needed a start point and an end point for it. With the end point (lrend)

fixed on the value 10−7, we searched the start point (lrbase) over the values {10−2, 10−3,

10−4}.
• σ (of kernel): we used a Gaussian kernel at the core of the KDE stage of the method.

The shape of this kernel depends on the variance value, commonly notated as σ2, and it

has a notable influence over the quality of the density estimation. Since the variance is

related to the structure of the data, we chose a different set of values for each dataset.

• α: this parameter controls the tradeoff between the samples that are stored into the

density matrix of the method and the incoming samples that can substitute them. This

parameter can only take values between zero and one, and bigger values correspond to

bigger substitution rates on the memory. We searched this parameter over the range

[0.001, 1).
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The winning combinations of parameters for each dataset can be found in the Supplemental

Material.

Evaluation Metrics

Following the framework established in [16], we selected the area under the ROC curve

(also known as AUC or AUC-ROC) as the main metric to establish the performance of our

algorithm and compare it with the baseline methods. This metric was chosen because it

represents the overall capability of the model to distinguish between the classes, regardless

of the thresholds used in specific situations.

Results and discussion

The AUCROC score obtained for every pair of dataset and algorithm is presented in Table

5-2. The metrics corresponding to our method can be found in the column labeled InQMAD.

The absent values correspond to cases where the algorithms were not able to handle that

particular dataset. For each row, the best value is marked in bold, the second is underlined

and the third is marked in italics.

When looking at the average performance, InQMAD is the best method, being slightly better

than MemStream, and notably better than all other methods, thus showing a noticeable

improvement over the state-of-the-art algorithms in the area. When considering the size of

the datasets, there is a clear advantage of InQMAD over the smaller datasets (the ones in

the top rows of Table I), due to the fact that it shows the best performance for all of these

datasets. For bigger datasets (the ones in the bottom rows of Table I), it is still competitive,

but some algorithms do better, mainly in the biggest datasets like DoS or UNSW.

On the other hand, the number of dimensions does not seem to be as strongly related

to the performance of our method as the size, considering that it had a mixed behavior for

datasets with low dimensionality (high for Pima or Satellite, lower for Cover) and for datasets

with high dimensions (high for KDD or NSL, lower for UNSW). In general, memory-based

methods, such as MemStream, underperform InQMAD. Our intuition for this behavior is

that memory-based algorithms are similar to moving averages that may be prone to a high

frequency point or outlier. However, InQMAD can be considered an exponential moving

average that dampens the weight of high frequency points.
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Table 5-2.: Area under the ROC curve (AUCROC) for all algorithms over all datasets. The first, second and third positions

are respectively highlighted in bold, underlined and italics.
Dataset STORM HS-Tree iForestASD RS-Hash RCF LODA Kitsune DILOF xStream Mstream Ex.IF MemStream InQMAD

Cardio 0,507 0,673 0,515 0,532 0,617 0,501 0,966 0,570 0,918 0,986 0,921 0,884 0,989

Cover 0,778 0,731 0,603 0,640 0,586 0,500 0,888 0,688 0,894 0,874 0,902 0,952 0,923

DoS 0,511 0,707 0,529 0,527 0,514 0,500 0,907 0,613 0,800 0,930 0,734 0,938 0,788

Ionosphere 0,637 0,764 0,694 0,772 0,675 0,503 0,514 0,928 0,847 0,670 0,872 0,821 0,928

KDD 0,914 0,912 0,575 0,859 0,791 0,500 0,525 0,535 0,957 0,844 0,874 0,980 0,995

Mammo 0,650 0,832 0,574 0,773 0,755 0,500 0,592 0,733 0,856 0,567 0,867 0,894 0,914

NSL 0,504 0,845 0,500 0,701 0,745 0,500 0,659 0,821 0,552 0,544 0,767 0,978 0,982

Pima 0,528 0,667 0,525 0,562 0,571 0,502 0,511 0,543 0,663 0,529 0,672 0,742 0,750

Satellite 0,662 0,519 0,504 0,675 0,552 0,500 0,665 0,561 0,677 0,563 0,716 0,727 0,764

Satimage 0,514 0,929 0,554 0,685 0,738 0,500 0,973 0,563 0,996 0,958 0,995 0,991 0,996

Syn 0,910 0,800 0,501 0,921 0,774 0,506 - 0,703 0,539 0,505 - 0,955 0,982

UNSW 0,810 0,769 0,557 0,778 0,512 - 0,794 0,737 0,804 0,860 0,541 0,972 0,873
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5.3.2. Ablation Study

Being one of the most important stages of our algorithm, we wanted to determine the degree

of influence of the Adaptive Fourier Features embedding over the algorithm performance.

This comparison was made by building alternate versions of our method: InQM-NoAdp,

that instead of using adaptive Fourier features as mapping, uses the random Fourier features

approach stated in previous works like [66], and InQMAD-200, where the number refers to

the size of the encoding given by adaptive Fourier features. Since the size of the encoding

was chosen to be 2000 in all the experiments of InQMAD, we expect to determine if the

size of the adaptive features encoding enhances or diminishes the overall performance of the

method.

Using these different versions of our method over the datasets in the experimental setup, we

calculated the metrics that we present in Table 5-3. In order to make a fair comparison, in

every dataset we used the same parameters for all the versions. The best result of each row

is marked in bold.

From these results, there is a clear advantage in using the adaptive Fourier Features in the

majority of datasets, regardless of their size or dimensionality. Only in one of the datasets

(DoS) there is a small decrease in performance when using many Adaptive features, in

favor of a lower embedding size. Although, the difference in this case is way smaller than the

differences in favor of the use of Adaptive features on other datasets, particularly Ionosphere,

Syn and Satellite.

Table 5-3.: Results for Ablation Study on InQMAD, including Adaptive and NoAdaptive

versions

DATASET
AUCROC

InQM-NoAdp InQMAD-200 InQMAD

Cardio 0,976 0,974 0,989

Cover 0,847 0,899 0,923

DoS 0,767 0,808 0,788

Ionosphere 0,825 0,852 0,928

KDD 0,937 0,943 0,995

Mammo 0,907 0,912 0,914

NSL 0,947 0,96 0,982

Pima 0,728 0,737 0,75

Satellite 0,67 0,694 0,764

Satimage 0,965 0,977 0,996

Syn 0,928 0,929 0,982

UNSW 0,798 0,836 0,873
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5.3.3. Parameters

The winning combinations of parameters for our method are presented in Table 5-4. For

each dataset, their respective parameters are presented as an array.

The parameters selected to run the baseline methods were the same for all datasets and

follow the recommended values in the original proposal of each method. Their values are

presented in Table 5-5.

Table 5-4.: Best combinations of InQMAD parameters for each dataset

Dataset
Winning Parameters

[n, lrbase, sigma σ, alpha α]

Cardio

[256 0,001 3,0 0,99]

Cover

[1000 0,01 2,0 0,05]

DoS

[2048 0,001 0,11 0,40]

Ionosphere

[100 0,001 0,9 0,40]

KDD

[5000 0,001 2,0 0,5]

Mammo

[512 0,001 4,0 0,80]

NSL

[2000 0,01 1,25 0,25]

Pima

[64 0,001 0,5 0,95]

Satellite

[128 0,001 0,7 0,04]

Satimage

[256 0,0001 0,8 0,005]

Syn

[64 0,01 0,1 0,04]

UNSW

[2000 0,001 2,5 0,6]
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Table 5-5.: Best parameters for baseline methods
Method Winning Parameters

STORM window size = 10000,max radius = 0.1

HS-Tree window size = 100, num trees = 25,

max depth = 15, initial window X = None

iForestASD window size = 100, n estimators = 25,

anomaly threshold = 0.5, drift threshold = 0.5

RS-Hash sampling points = 1000, decay = 0.015,

num components = 100, num hash fns = 1

RCF num trees = 4, shingle size = 4,

tree size = 256

LODA num bins = 10, num random cuts = 100

Kitsune max size ae = 10, learning rate = 0.1,

hidden ratio = 0.75, grace feature mapping = 0.1

DILOF window size = 400, K = 8,

thresholds = [0.1, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.6, 2.0, 3.0]

xStream projection size = 50, number chains = 50,

depth = 10, rowstream = 0, nwindows = 0,

scoring batch size = 100000

Mstream alpha = 0.85

Ex. IF n trees = 200, sample size = 256,

limit = None,Extension Level = 1

MemStream memory length = [4, 16, 32, 64, 128, 256, 1024, 2048],

update threshold = [10, 1, 0.1, 0.01, 0.001, 0.0001]

5.3.4. Statistical Tests

Using the Table 5-2 as starting point, the Friedman test, a well-known statistical method

to compare different populations or groups, was applied in order to determine whether there

are statistically significant differences between the different methods. The Friedman test

uses the following formula:

Q =

[

12

Nk(k + 1)

k
∑

j=1

R2
j

]

− 3N(k + 1)

where N is the number of datasets, k is the number of algorithms, and R2
j is the squared

sum of the observations for each particular algorithm. Given a confidence value of 0.05 and

the p-value given by P[χ2
n−1 ≥ Q], if the p-value is lower than the confidence value, there

is statistically significant evidence supporting that the methods are different. Applying the

test returns a p-value of 3.06× 10−14, clearly showing that such difference does exist.

The Friedman test does not indicate which of the methods are responsible for this difference,

so to compare them two by two, we use the Friedman-Nemenyi test, applying it over all pairs

of methods. This test generates coefficients for each pair of datasets that indicate if they are

different (near to 0) or not (near to 1).

Figure 5-3 shows the results of Friedman-Nemenyi test, where black squares correspond to

pairs of datasets that differ significantly, and white squares correspond to pairs that do not.

The most different methods are LODA (due to their poor results) and InQMAD (the best

overall method). Other methods that differ notably from others include MemStream (the

second-best method) and iForestASD (the second worst method). The remaining methods

differ with others in only one or two cases.
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Figure 5-3.: Results of Friedman-Nemenyi test, performed on AUCROC performances of

all methods over all datasets.

5.4. Conclusion

In this chapter, we present a new method for data stream anomaly detection called Incre-

mental Quantum Measurement Anomaly Detection (InQMAD). The new method uses the

adaptive Fourier feature to map the data to a higher space and density matrices to capture

the density estimate. The new method has an initial linear training complexity in terms of

the number of training data points. In addition, it has a linear update complexity, which

makes it suitable for streaming problems. A systematic evaluation has been performed

against 12 state-of-the-art methods on 12 streaming datasets, showing similar performance.

We give a theoretical guarantee that the update stage of the algorithm generates a valid

density matrix. In addition, an ablation study shows the importance of the new empirical

random sampling applied to the adaptive Fourier features and the importance of the update

memory parameter α. For future research, we will use dimensionality reduction steps such

as principal component analysis or autoencoders to help with the curse of dimensionality in

massive datasets.



6. Conclusions and Perspectives

In conclusion, this PhD thesis has presented several innovative methods for density estima-

tion and anomaly detection in machine learning. The proposed methods combine classical

statistical foundations with the representation-learning abilities of deep-learning models,

and leverage techniques such as density matrices, random Fourier features, and adaptive

Fourier features. These methods have been systematically evaluated on various benchmark

datasets and have demonstrated competitive performance compared to state-of-the-art meth-

ods. Moreover, the thesis has introduced a quantum-inspired approach to density estimation

that can be coupled with deep neural networks, which has shown promise for future appli-

cations in machine learning and statistical applications.

The proposed method DEMANDE density matrices and adaptive Fourier features offers a

quantum-inspired approach to density estimation that can be coupled with deep neural net-

works. The method has demonstrated competitive performance when evaluated on various

synthetic and real datasets, making it a promising alternative for machine learning and sta-

tistical applications. In addition, the method has several advantages over traditional density

estimation methods. For example, the method does not require any prior knowledge of the

data distribution or the choice of an appropriate kernel function, making it a more flexible

and adaptable method. Furthermore, the method can efficiently capture the complex rela-

tionships between data points, even in high dimensions, due to the use of adaptive Fourier

features.

Another advantage of the proposed method is that it can be trained without optimization

using only explicit summation. This makes the method computationally efficient and allows

for easy integration with deep learning architectures, which have become increasingly popular

in recent years. The method can also be trained using gradient descent, which is a widely

used optimization technique in machine learning. This allows for the method to be fine-tuned

and optimized for specific applications, further improving its performance. Overall, the

proposed method offers a new approach to density estimation that combines the strengths

of quantum-inspired density matrices with the flexibility and adaptability of deep neural

networks. This approach has demonstrated competitive performance on a range of synthetic

and real datasets, making it a promising alternative for a variety of machine learning and

statistical applications. In addition, the method has several advantages over traditional

density estimation methods, including its flexibility, efficiency, and ability to capture complex

relationships between data points.
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Besides, we introduced a powerful new approach to anomaly detection that combines the

strengths of traditional density-estimation-based methods with the representation-learning

abilities of deep learning models. By using an autoencoder to learn a low-dimensional rep-

resentation of the data and combining it with a density-estimation model based on random

Fourier features and density matrices, the method is able to predict the degree of normality

for new samples based on the estimated density. What’s more, this approach addresses the

challenges posed by streaming anomaly detection by providing a new incremental anomaly

detection method that performs continuous density estimation using quantum measurements

and density matrices. This method can process potentially endless data, and its update com-

plexity is constant O(1). The systematic evaluation of this approach shows that this method

is not only effective but also outperforms other state-of-the-art methods. This research has

significant implications for a range of industries and applications that require real-time detec-

tion of anomalous events or data points in a continuous stream, from healthcare to finance,

to cybersecurity and beyond.

One possible future research direction could be exploring the effectiveness of different meth-

ods for anomaly detection using advanced techniques such as Kernel Quantum Measurement

(KQM) or a few adaptive Fourier features. The first approach could involve using KQM with

robust kernels to enhance the detection of anomalies in complex datasets with noisy or cor-

rupted samples. Additionally, the use of incremental quantum latent measurement through

denoising autoencoder could be explored as a way to optimize the detection of anomalies in

real-time scenarios where data is continuously evolving. Another potential direction could

be focused on window concept drift incremental quantum anomaly detection, which could

improve the detection of changes in data distributions over time. Furthermore, KQM den-

sity estimation with robust kernels and adaptive positive Fourier kernel density estimation

could be used to estimate the probability density function of the data, which could be use-

ful in many anomaly detection applications. Finally, the use of robust density estimation

methods such as kenel density estimation (KDE), density matrix kernel density estimation

(DEMANDE), or contaminated KDE with robust kernels could help to improve the accuracy

and reliability of anomaly detection algorithms in the presence of outliers or other types of

contamination in the data.

Overall, the contributions presented in this thesis represent significant advances in the fields

of density estimation and anomaly detection and provide new avenues for further research

in the field.



Bibliography

[1] Kdd cup dataset, 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[2] Andrews Jerone T. A., Edward J Morton, and Lewis D Griffin. Detecting anomalous

data using auto-encoders. International Journal of Machine Learning and Computing,

2016.

[3] Charu C Aggarwal. Outlier analysis second edition, 2016.

[4] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. A survey of

anomaly detection techniques in financial domain. Future Generation Computer Sys-

tems, 55:278–288, 2016.

[5] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using

reconstruction probability. Special Lecture on IE, 2(1):1–18, 2015.

[6] Tessa K. Anderson. Kernel density estimation and K-means clustering to profile road

accident hotspots. Accident Analysis and Prevention, 41(3):359–364, may 2009. ISSN

00014575. doi: 10.1016/j.aap.2008.12.014.

[7] Jerone T A Andrews, Thomas Tanay, Edward J Morton, and Lewis D Grif-

fin. Transfer representation-learning for anomaly detection, 2016. URL

http://www.vlfeat.org/matconvnet.

[8] Fabrizio Angiulli and Fabio Fassetti. Detecting distance-based outliers in streams of

data. pages 811–820, 2007. ISBN 9781595938039. doi: 10.1145/1321440.1321552.

[9] Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney. Quasi-monte

carlo feature maps for shift-invariant kernels. Journal of Machine Learning Research,

17(120):1–38, 2016. URL http://jmlr.org/papers/v17/14-538.html.

[10] Francis R Bach and Michael I Jordan. Predictive low-rank decomposition for kernel

methods. In ICML 2005 - Proceedings of the 22nd International Conference on Ma-

chine Learning, pages 33–40, 2005. ISBN 1595931805. doi: 10.1145/1102351.1102356.

[11] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density

estimation in high dimensions. volume 32, 2019.



Bibliography 99

[12] Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and

Larry Wasserman. Cluster trees on manifolds. arXiv preprint arXiv:1307.6515, 2013.

[13] David M Bashtannyk and Rob J Hyndman. Bandwidth selection for kernel conditional

density estimation, 2001. URL www.elsevier.com/locate/csda.

[14] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-

layer neural networks. Advances in Neural Information Processing Systems, 12, 1999.

[15] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and Bryan Hooi. Mstream:

Fast anomaly detection in multi-aspect streams. pages 3371–3382. Association for

Computing Machinery, Inc, 4 2021. ISBN 9781450383127. doi: 10.1145/3442381.

3450023.

[16] Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, and Bryan Hooi.

Memstream: Memory-based streaming anomaly detection. WWW 2022 - Proceed-

ings of the ACM Web Conference 2022, pages 610–621, 2022. doi: 10.1145/3485447.

3512221.

[17] Peter J Bickel and Kjell A Doksum. Mathematical statistics: basic ideas and selected

topics, volumes I-II package. CRC Press, 2015.

[18] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine

learning, volume 4. Springer, 2006.

[19] Giuseppe Borruso. Network Density Estimation: A GIS Approach for Analysing Point

Patterns in a Network Space. Transactions in GIS, 12(3):377–402, 2008. ISSN 1361-

1682.

[20] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: iden-

tifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD inter-

national conference on Management of data, pages 93–104, 2000.

[21] Brian Bullins, Cyril Zhang, and Yi Zhang. Not-so-random features. 10 2017. URL

http://arxiv.org/abs/1710.10230.

[22] Oscar Bustos-Brinez, Joseph Gallego-Mejia, and Fabio A González. Ad-dmkde:
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