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Abstract 
 

Bayesian Network Methodology for Decision Support in Forensic 

Geotechnical Engineering 

 

Recent advances in engineering have increased the community’s expectation for civil 

engineering works to operate safely. Occasionally some of these works fail because of human 

errors or the unpredictable behavior of materials. Forensic engineering is the branch of 

forensic science in charge of investigating those engineering failures. Scientific methods used 

in forensic engineering guarantee that conclusions regarding the causes of an engineering 

failure come from reliable investigation processes. However, in the case of geotechnical 

failures, the inherent uncertainty of soil/rock materials, difficulties in evidence collection, and 

multiplicity of failure scenarios (hypotheses) pose a challenge in identifying the actual causes 

of failure. Therefore, conclusions about the causes of geotechnical failures sometimes seem 

arbitrary and biased because they are mainly based on expert judgment. Bayesian probabilistic 

tools can support decision-making about the causes of geotechnical failures. This thesis 

presents a Bayesian methodology for decision support in forensic geotechnical engineering 

based on two probabilistic techniques: Bayesian inference via posterior odds ratio and 

Bayesian Networks. The methodology compares probabilistically the hypotheses formulated 

as causes of failure and evaluates the influence of the amount of information (evidence) 

included in the analysis. Two benchmark problems and a case study were used to validate the 

applicability of the methodology. The results show that the Bayesian methodology identifies 

the most likely cause of a geotechnical failure, even when the amount of evidence is sparse. 

The use of the proposed methodology improves decision-making processes related to the 

causes of geotechnical failures.  

 

Keywords: Forensic geotechnical engineering, Bayesian Networks, Bayesian inference.
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Resumen 
 

Metodología de Redes Bayesianas para el Apoyo en las Decisiones de Ingeniería 

Geotécnica Forense 

 

Los avances recientes de la ingeniería han aumentado la expectativa de la comunidad de que 

las obras civiles funcionen con seguridad. Ocasionalmente, algunas de estas obras fallan 

debido a errores humanos o al comportamiento imprevisible de los materiales. La ingeniería 

forense es la rama de la ciencia forense encargada de investigar las fallas en ingeniería. Los 

métodos científicos utilizados por la ingeniería forense garantizan que las conclusiones sobre 

las causas de una falla provengan de procesos de investigación confiables. Sin embargo, en el 

caso de fallas geotécnicas, la incertidumbre inherente a los materiales de suelo y roca, las 

dificultades en la recolección de evidencia y la multiplicidad de escenarios de falla (hipótesis) 

suponen un reto para identificar las verdaderas causas de falla. En consecuencia, las 

conclusiones relacionadas con las causas de fallas geotécnicas algunas veces lucen arbitrarias 

y sesgadas porque se basan principalmente en el juicio de los expertos. Las herramientas 

probabilísticas bayesianas pueden apoyar la toma de decisiones sobre las causas de fallas 

geotécnicas. Esta tesis presenta una metodología bayesiana de apoyo a la toma de decisiones 

en ingeniería geotécnica forense utilizando dos técnicas probabilísticas: Inferencia bayesiana 

empleando las técnicas posterior odds ratio y Redes Bayesianas. La metodología compara 

probabilísticamente las hipótesis formuladas como causas de una falla y evalúa la influencia 

de la cantidad de información (evidencia) incluida en el análisis. Se presentan dos problemas 

de referencia y un caso de estudio para su validación. La metodología bayesiana identifica la 

causa más probable de la falla, incluso cuando la cantidad de evidencia es escasa. Además, su 

aplicación mejora la toma de decisiones relacionadas con las causas de fallas geotécnicas. 

 

Palabras clave: Ingeniería geotécnica forense, redes bayesianas, inferencia bayesiana 
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1. Introduction 

1.1 Background 

Geotechnical engineering has seen remarkable advancements in recent times, driven by the 

dedication, scientific expertise, and innovative materials developed by enthusiastic engineers. 

This progress has increased the community’s expectation that civil works such as buildings, 

dams, levees, or excavations operate safely. Occasionally some civil engineering works fail 

because of unpredictable behavior or human errors. Such failures remind engineers that there 

is still a long way to go in building safer structures and reducing risk. 

 

Some engineering failures are catastrophic and can considerably impact society, the 

environment, or the economy. However, most of them merely impact the structure’s 

serviceability or have little effect on its functionality. Regardless of the failure’s magnitude or 

the structure’s importance, each failure becomes an opportunity to enhance knowledge and 

test the validity of engineering models. Forensic engineering is the right tool for investigating 

such failures because it provides a reliable framework. In addition, it is based on scientific 

methods, which ensure that the results come from a sequence of phases that lead to repeatable, 

measurable, and testable conclusions. 

 

Uncertainty plays a significant role in forensic engineering because the evidence is frequently 

incomplete, fragmented, or blurred. Uncertainty has traditionally been addressed from a 

qualitative perspective through techniques such as event and causal factor analysis (ECFA), 

human performance evaluation process (HPEP), and fault tree analysis, among others (Noon, 

2009). However, a more rigorous approach to uncertainty management by combining 

abductive reasoning and Bayesian statistics has been proposed by researchers such as 

Biedermann et al.  (2005), Taroni et al. (2014), and Bensi (2010). 
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Sometimes, the causes of failures are attributable to geotechnical/geological origins. Forensic 

geotechnical engineering (hereafter FGE) investigates these causes by using particular 

geotechnical methods but preserving the forensic engineering approach and the principles of 

the scientific method. FGE has been associated with legal disputes (Lacasse, 2016;  Rao & Babu, 

2016; Day, 2010). However, during this century, the main focus has shifted to improving 

geotechnical works, determining the causes of failures, and learning from mistakes (Terwel et 

al., 2018).  

1.2 Problem Statement 

Geotechnical engineers recognize that determining the cause (or causes) of failure is 

challenging, owing to factors such as incomplete evidence and the inherent uncertainty 

associated with failure investigations. On the one hand, failures encompass multiple variables, 

scenarios, and pieces of evidence that must be organized and classified. On the other hand, 

once the evidence has been evaluated, several hypotheses about causes of failure must be 

tested against the available evidence. The scientific method supports the testing process, but 

the decision regarding the most probable cause of failure usually relies on qualitative 

assessments or expert opinion. Moreover, the hypotheses are rarely compared using 

probabilistic techniques despite their recognized benefits in FGE (Bea, 2006). 

 

As a result, conclusions about the causes of geotechnical failures sometimes seem arbitrary or 

biased (Kool et al., 2019). Biased conclusions may be due to the misapplication of engineering 

design methods in FGE assessments and the lack of a probabilistic framework for testing and 

comparing failure hypotheses. For example, Brady (2012) recognizes that design methods are 

unsuitable for FGE because they align available evidence with preconceived notions of the 

causes of failure. In addition, Phoon et al. (2016) identify the lack of a rigorous probability 

framework and the potential applicability of reliability concepts in FGE. In summary, the 

followings knowledge gaps have been identified: 

 

 Conclusions regarding the causes of failure sometimes seem arbitrary and biased due 

to the misapplication of design procedures in FGE. For example, collected evidence is 

forced to conform to biased hypotheses rather than the evidence leading to the 

formulation of hypotheses. 
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 Complex geotechnical models and sophisticated constitutive soil models usually 

support forensic investigations. However, final decisions regarding the cause of failure 

are mainly based on expert opinion. Therefore, the decision-making process is 

frequently untraceable and irreproducible. 

 

 Probabilistic methods, especially Bayesian tools, have the potential to be applied in 

FGE, yet they are seldom used. 

1.3 Aim of the Thesis 

The aim of this thesis is to develop a Bayesian methodology for supporting decisions about the 

causes of failures with geotechnical origins. In particular, the proposed methodology uses 

Bayesian inference and Bayesian network tools. The following three specific objectives were 

formulated in order to achieve the aim of the thesis: 

 

1. To define a procedure for testing hypotheses about the causes of geotechnical failures. 

The procedure relies on Bayesian inference (posterior odds ratio technique) and Bayesian 

networks. 

 

2. To assess the influence of multiple pieces of evidence on the conclusions about the 

causes of geotechnical failures. 

 

3. To validate the proposed methodology by applying it to an actual failure case. 

1.4 Outline of structure 

The thesis is structured as follows: Chapter 2 briefly introduces Bayesian statistics and 

Bayesian networks, gives key definitions regarding probability, Bayes’ theorem, hypotheses 

comparison, and direct acyclic graphs, and describes the steps to turn a causal graph into a 

Bayesian network. Chapter 3 provides an overview of forensic engineering and FGE and 

describes inductive, deductive, and abductive reasoning processes. It also depicts and 

discusses the stages of the forensic geotechnical process and some additional aspects to 

consider, such as back analysis and technical shortcomings. Chapter 4 presents a Bayesian-

based methodology for supporting decisions about the causes of failures. The methodology 
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combines the abductive reasoning process with the inference properties of Bayesian Networks 

and Bayesian statistics. Chapter 5 analyzes an actual geotechnical failure using the proposed 

methodology. Chapter 6 discusses the major findings of the thesis. Finally, conclusions and 

suggestions for future work are presented in Chapter 7. 

 



 

  
 

2. Introduction to Bayesian Inference and 
Bayesian Networks 

This Chapter presents a general overview of the fundamentals of Bayesian statistics and 

Bayesian Networks (BNs). Bayesian statistics is a theory based on Bayes’ theorem that 

assumes a different interpretation of probability and uncertainty. Within Bayesian statistics, 

BNs are one of the probabilistic graphic models used to support decision-making. The 

following paragraphs provide key concepts about statistics, probability, and Bayesian analysis. 

Standard textbooks such as Koller & Friedman (2009) can be consulted for a more 

comprehensive review. 

2.1 Bayesian Statistics 

2.1.1 Uncertainty and probability 

Engineering systems, natural environments, and even daily life events are all subjected to 

uncertainty. Uncertainty may arise from a lack of information, unobservable or partly 

observable outcomes, and physical or economic constraints. Even if these problems can be 

overcome, systems are inherently stochastic. From a practical geotechnical engineering 

approach, uncertainty can be categorized as natural and epistemic. 

 

Figure 2-1 shows the uncertainty categories proposed by Baecher & Christian (2003). Natural 

uncertainty refers to the intrinsic randomness of nature, which can be observed over time and 

space. For example, several locations within the same homogeneous soil will show different 

values for a physical-mechanical characteristic (e.g., deformability, shear strength, hydraulic 

conductivity) measured at a specific date. Also, the exact locations will show different physical-

mechanical values if measurements are performed at a later point in time. On the other hand, 

epistemic uncertainty involves the lack of knowledge and information about an engineering 
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system. It may arise from measurement inaccuracy, hidden information, unsuitable models, or 

knowledge limitations. 

 

 

Figure 2-1. A practical approach to uncertainty categories in geotechnical engineering. 

Modified from Baecher & Christian (2003). 

 

From a mathematical perspective, the measurement of uncertainty is carried out through 

probability theory. Probability assigns a number to each possible outcome (or event 𝐸 ) of the 

sample space (𝑊). The sample space refers to all possible outcomes related to an experiment, 

parameter, or system involving chance. Outcomes and probability assignments follow specific 

rules (Jensen & Nielsen, 2007): 

 

1. Outcomes are mutually exclusive. That is, two or more outcomes cannot co-occur. 

 

2. The probability assigned to an outcome must be a non-negative real number: 

𝑃(𝐸 ) ≥ 0, 𝑃(𝐸 ) ∈ ℝ 

(2-1) 

 

The probabilities of all potential outcomes within the sample space must add up to 1.0  

𝑃(𝐸 ) = 𝑃(𝛺) = 1.0 

(2-2) 

 

3. The probability that two mutually exclusive outcomes 𝐸  or 𝐸  occur is the sum of each 

individual probability: 
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𝑃 𝐸 + 𝐸 = 𝑃 𝐸 ) + 𝑃(𝐸  
(2-3) 

2.1.2 Probability: Frequentists vs. Bayesians 

There are two definitions of probability depending on the philosophical perspective of the 

term. On the one hand, the frequentist approach assumes that a population’s statistical 

parameters are fixed but unknown (Bolstad, 2010). In this case, the probability measures the 

uncertainty of those unknown fixed parameters. Frequentists estimate probabilities in two 

different ways (Kruschke, 2015): (1) from relative frequencies calculated from long-run 

experiments and (2) by deriving it mathematically when an experiment and its outcomes are 

simple to interpret. Frequentists choose the best statistical parameters by rejecting 

hypotheses that include values with a low chance of being observed (Baecher & Christian, 

2003).  

 

On the other hand, the Bayesian approach assumes probability as a rational degree of belief 

(Baecher, 2017). This approach holds the idea that the natural world has no “fixed” statistical 

parameters but several probable states. Consequently, the probability measures the natural 

world’s possible states that can be estimated through an updating process. This process, 

known as “explaining away,” simulates the bidirectional pattern (i.e., backward and forward 

processes) of human reasoning for making decisions under uncertainty. Unlike frequentist 

schools, hypothesis rejection is unnecessary because the best statistical parameters are chosen 

based on prior assumptions and actual data. 

 

The philosophical confrontation between these two probability schools has a long history. The 

main aspects of this conflict are: (i) how to analyze data, (ii) how to update beliefs in the light 

of new information, and (iii) how to make rational decisions under uncertainty (McGrayne, 

2011). In recent years, there has been an increasing debate about the validity of p-values used 

in the frequentist approach. Some researchers, such as Wagenmakers et al. (2008), have 

suggested that frequentist inference is not an appropriate statistical interference method. 

However, the Bayesian school is strongly criticized for using subjective beliefs that may lead 

to different conclusions depending on prior beliefs.  
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2.1.3 Bayes’ Theorem  

The theorem was proposed by Reverend Thomas Bayes in 1763 and then rediscovered and 

widely used by Pierre Simon Laplace in 1774. For almost 150 years, the theorem was 

practically forgotten until the Second World War when Alan Turing decoded a German secret 

code using a Bayesian approach. Since then, the Bayesian theorem has been used in fields as 

diverse as medical diagnosis, cybersecurity, insurance, business decisions, spam filtering, and 

image processing. Despite some critics, the Bayesian approach to probability is gaining interest 

due to its advantages in decision-making problems (McGrayne, 2011). 

 

Bayes’ theorem is a precise mathematical technique for analyzing information based on 

experience and knowledge (Stone, 2013). The theorem can be deduced from the concept of 

conditional probability. Let 𝑚 and 𝑑 be two different events. The conditional probability states 

the following: the probability of 𝑚 given 𝑑 is the probability that 𝑚 and 𝑑 occur together, 

divided by the probability that 𝑑 occurs at all (Equation 2-4.) 

 

𝑃(𝑚|𝑑) =
𝑃(𝑚 ∩ 𝑑)

𝑃(𝑑)
 

(2-4) 

 

Similarly, the conditional probability of 𝑑 given 𝑚 is presented in Equation 2-5. 

 

𝑃(𝑑|𝑚) =
𝑃(𝑑 ∩ 𝑚)

𝑃(𝑚)
 

(2-5) 

 

Equating 2-4 and 2-5, and admitting that 𝑝(𝑚 ∩ 𝑑) = 𝑝(𝑑 ∩ 𝑚), algebraic manipulations lead 

to Equation 2-6. 

 

𝑃(𝑚|𝑑) =
𝑃(𝑑|𝑚) 𝑃(𝑚)

𝑃(𝑑)
 

(2-6) 

 

Equation 2-6 is known as Bayes’ theorem or Bayes’ rule. Bayes’ theorem states that the 

probability of 𝑚 given 𝑑 is the probability of 𝑑 given 𝑚 times the probability of 𝑚, relative to 
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the probability of d. Each term in Equation 2-6 has a name describing a specific information 

type. 𝑃(𝑚) is the prior probability of 𝑚, i.e., the probability of 𝑚 before observing any data. 

𝑃(𝑑|𝑚) also known as the likelihood term, express the probability of observing 𝑑 given that 𝑚 

is true. 𝑃(𝑑) is the marginal probability of 𝑑 or the normalization term. Finally, 𝑃(𝑚|𝑑) is the 

posterior probability that describes the probability of 𝑚 being true, given the observed data 𝑑. 

Equation 2-6 can be rewritten as Equation 2-7 or 2-8, depending on whether discrete or 

continuous variables are used. Equation 2-7 is suitable for discrete variables, whereas 

Equation 2-8 applies for continuous variables. 

 

𝑃(𝑚 | 𝑑) =
 𝑃(𝑑 | 𝑚) 𝑃(𝑚)

∑  𝑃(𝑑 | 𝑚) 𝑃(𝑚)
 

(2-7) 

 

𝑃(𝑚 | 𝑑) =
𝑃(𝑑 | 𝑚) 𝑃(𝑚) 

∫  𝑃(𝑑 | 𝑚) 𝑃(𝑚) 𝑑𝑚
  

(2-8) 

 

Information for Bayesian inference may come from two sources: the prior probability 𝑃(𝑚) 

that express the belief of 𝑚 and the likelihood 𝑃(𝑑|𝑚) that includes actual data. Therefore, 

according to Equations 2-6 to 2-8, the posterior probability 𝑃(𝑚 | 𝑑) can be described as a 

combination of prior beliefs and actual data. When actual information is scarce 𝑃(𝑚) controls 

the posterior probability. On the contrary, if actual information is available, 𝑃(𝑚 | 𝑑) controls 

the posterior probability. 

 

Although deriving Bayes’ theorem is relatively easy, its application to actual inference 

problems may be challenging. Before the advent of computers, Equations 2-6 to 2-8 could only 

be solved using closed-form expressions known as conjugate distributions. These expressions 

include posterior, likelihood, and prior distributions belonging to the same probability 

distribution family. For example, a Gaussian likelihood and a Gaussian prior will lead to a 

Gaussian posterior distribution. Similarly, if the likelihood is defined by a Bernoulli 

distribution and the prior is a Beta distribution, the posterior will be a Beta distribution. 

Nowadays, Bayesian inference is not restricted to conjugate distributions due to the 
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development of efficient computer algorithms such as Monte Carlo simulations, Metropolis–

Hasting sampling, and Gibbs sampling.  

 

In the case of geotechnical engineering, some researchers have pointed out the importance of 

the Bayesian probability approach. Baecher (2017) argues that most geotechnical engineers 

intuitively practice Bayesian inference. For example, the emblematic observational method 

attributed to Terzaghi and then described by Peck (1969) uses a practical and qualitative 

Bayesian approach. Several researchers such as Wang et al. (2016); Sakurai et al. (2003); 

Baecher & Christian (2003); Feng (2015); Ering & Sivakumar Babu (2017); Calvello et al. 

(2017); Berti et al. (2012); Hasan & Najjar (2013); and Wu(2011), recognize the advantages of 

Bayesian approach to probability over traditional frequentist analysis in geotechnical 

engineering. 

2.1.4 Hypotheses Comparison: Bayes Factor and Posterior Odds 

As mentioned in Section 2.1.3, Bayesian statistics analyze the information by combining 

experience and data. It aims to update prior beliefs through the acquisition of new information. 

The updating process is achieved via the Bayes theorem in which prior beliefs (i.e., the prior 

probability term 𝑃(𝑚) in Equation 2-6) are combined with the collected information (i.e., the 

likelihood term 𝑃(𝑑|𝑚)) to update prior believes (i.e., the posterior probability term 𝑃(𝑚|𝑑) in 

Equation 2-6). In other words, Bayes theorem estimates the probability of an event 𝑚 given 

that data 𝑑 are observed. 

 

In addition to updating event probabilities, Bayes’ theorem compares competing hypotheses. 

If the event 𝑚 is replaced by a hypothesis 𝐻 in Equation 2-6  and the marginal probability 𝑃(𝑑) 

is dropped, then Equation 2-9 is obtained. The term 𝑃(𝑑) can be discarded because it only 

normalizes the posterior probability (i.e., gives values between 0 and 1 to the posterior 

probability).  

 

𝑃(𝐻|𝑑) ∝ 𝑃(𝑑|𝐻) 𝑃(𝐻) 

(2-9) 

 

Equation 2-9 states that posterior probability is proportional to likelihood multiplied by the 

prior probability. If 𝐻  and  𝐻  are two competing hypotheses, then the ratio of posterior 
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probabilities can be used to compare these hypotheses (see Equation 2-10). The first term in 

Equation 2-10 is the posterior odds ratio and represents how better 𝐻  explains the data than 

𝐻 . The second term is known as Bayes Factor (BF). It denotes the ratio between likelihoods. 

The third term is the prior odds which express the ratio between prior probabilities of 𝐻  and 

𝐻  before observing some data. Equation 2-10 plays a significant role in model comparison 

and null hypothesis testing and supposes an improvement to the classical Null Hypothesis 

Significance Testing (Gelman & Tuerlinckx, 2000). 

 

𝑃(𝐻 |𝑑)

𝑃(𝐻 |𝑑)
=

𝑃(𝑑|𝐻 )

𝑃(𝑑|𝐻 )
 
𝑃(𝐻 )

𝑃(𝐻 )
  

 

(2-10) 

 

Jeffreys (1961) proposed an evidence scale for interpreting BF and posterior odds values 

(Table 2-1). Similarly, Kass & Raftery (1995) suggested a BF scale based on a minor 

modification of the Jeffreys scale. The BF or posterior odds values can be interpreted as 

follows: For example, a 𝐵𝐹 = 7 (or 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 = 7) means that 𝐻  explains the data 

seven times better than 𝐻 . According to Table 2-1, BF=7 is interpreted as “Positive” evidence 

favoring 𝐻  over 𝐻 . In the case of a BF or a posterior odds values less than 1, Figure 2-2 can 

be used to interpret the results. For example, 𝐵𝐹 = 0.14 indicates that there is “positive” 

evidence favoring 𝐻  over 𝐻 . 

 

Table 2-1.: Jeffreys (1961) scale and Kass & Raftery (1995) modified scale. 

Jeffreys scale 

(1 – 3.2) Not worth more than a bare mention 

(3.2 – 10) Substantial 

(10 – 100) Strong 

(>100) Decisive 
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Kass and Raftery scale 

(1 – 3) Not worth more than a bare mention 

(3 – 20) Positive 

(20 – 150) Strong 

(>150) Very Strong 

 

 

 

Figure 2-2.: Graphical representation for interpreting the BF and posterior odds values. 

 

In the case of multiple comparisons hypotheses, Bayesian analysis completely overcomes the 

problems when several hypotheses are compared simultaneously via classical p-values. The 

classical frequentist approach resorts to correction factors to avoid encountering false-

positive errors (Type I errors) during multiple comparisons (refer to Gelman et al., 2012 for 

further details). The correction factors are grouped in a concept known as Family Wise Error 

Rate and include the Bonferroni, Holm, and Hochberg correction factors. In contrast, Bayesian 

multiple comparisons do not require correction factors since their comparative process 

incorporates more information than p-values. Therefore, it is more adept at mitigating size 

effects and preventing Type I errors (Gelman & Tuerlinckx, 2000). 

 

The Bayes factor, posterior odds, and model comparison process intend to understand how 

well a hypothesis explains the evidence. Their purpose is not to gather evidence to support a 

particular hypothesis as some statistical malpractices do (e.g., hypothesis fishing, refer to Dahl 

et al., 2008 for further explanation). Therefore, the Bayesian methodology proposed in this 

thesis is based on the ability of Bayesian analysis to compare hypotheses and determine which 

of them better explains a geotechnical failure. Chapter 4 expands the description of the 

proposed methodology. 

Not worth more than 
a bare mention

Positive Strong Very strong
1 3 20 1500.30.050.006

PositiveStrongVery Strong
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2.2 Bayesian Networks 

The primary goal of Bayesian Networks (BN) is to estimate variable values that cannot be 

directly observed or that can be measured but at an unacceptable cost (Jensen & Nielsen, 

2007). To achieve this goal, causal graphs 𝒢 and probability relationships ℘ are used to 

construct a Bayesian network. Once 𝒢 and ℘ are defined, they may reveal valuable attributes 

for variables and their causality relationships. This section presents a BN overview, some basic 

definitions, and the process for eliciting conditional probability distributions.  

2.2.1 Bayes’ Theorem and Bayesian Networks 

As mentioned before, Bayes’ theorem is a powerful tool for updating beliefs and analyzing data 

based on prior information (i.e., prior beliefs) and evidence (i.e., observations or actual data). 

The direct use of Equations 2-6 to 2-8 may be helpful in simple problems involving a few 

variables and a few pieces of evidence. However, real-world problems, particularly 

geotechnical systems, involve several unknown events, many variables, and limited 

observations. Bayes’ theorem can be successfully applied in those complex problems if 

combined with graphical models. The result is a probabilistic graphic model known as a 

Bayesian Network.  

 

BNs have some advantages over the plain use of Bayes’ theorem. These advantages include 

updating information in multivariable models, a transparent inclusion of evidence, and the 

capacity to track the updating process (Correa et al., 2009). Additionally, graphical 

representation facilitates understanding causal relationships between variables and provides 

a clear language of communication. Unlike most machine learning tools (e.g., neural networks 

and support vector machines), BNs’ topology encodes dependencies between variables. 

Therefore, findings and outcomes can be easily explained when new information is included 

in BNs (Friedman et al., 1997). 

2.2.2 Basic definitions 

A decision-making problem under uncertainty can be structured through a graphical model 

known as a causal graph 𝒢 or causal network (see Figure 2-3). Mathematically, 𝒢 consists of a 

set of nodes 𝒳 =  {𝑋 , … , 𝑋 } and a set of directed arrows ℰ connecting nodes (e.g., 𝑋 → 𝑋 ). 

Nodes may encode random variables, events, sample spaces, a set of states, hypotheses, or 
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propositions. Arrows are a set of information channels that represent causal relationships 

between nodes. When ℰ does not form a loop between 𝒳, 𝒢 is called a direct acyclic graph 

(DAG).  

 

The basic notation of a DAG consists of denoting nodes as parents and children. In the 

expression 𝑋 → 𝑋 , 𝑋  is the parent of 𝑋  and 𝑋  is the child of 𝑋 . In general, 𝑃𝑎(𝑋 ) denotes 

the parents of node 𝑋  and 𝐶ℎ(𝑋 ) represents the children of 𝑋 . Figure 2-3 presents an 

example of a causal graph 𝒢 with nodes 𝒳 =  {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}. 𝐶 and 𝐷 are children of 𝐵, 𝐴 is a 

parent of 𝐶 and 𝐸 is a child of 𝐶. Note that 𝐴 and 𝐵 have no parents. Consequently, 𝐴 and 𝐵 are 

denoted as root nodes. 

 

 

Figure 2-3.: Example of a simple causal graph (DAG) 

 

2.2.3 Connection types 

Nodes in a DAG can be connected in three simple configurations: serial, diverging, and 

converging connections. Each connection type is related to causal relationships between nodes 

and how one node may change another node’s state. Also, connection types define how 

information is propagated through a DAG when some evidence is included in one or more 

nodes. As shown below, arrows represent causality direction between nodes but do not 

necessarily indicate the direction of information flow. 

 

Figure 2-4 presents a serial connection. In this simple DAG, 𝐴 affects 𝐵, which in turn 

influences 𝐶. In other words, any evidence entered in 𝐴 will propagate to 𝐵 and then to 𝐶 (see 
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Figure 2-4a). Reasoning from 𝐴 to 𝐶 is known as a causal trail. Similarly, any evidence entered 

in 𝐶 will propagate to 𝐴 through 𝐵 (see Figure 2-4b). This latter type of reasoning is known as 

an evidential trail. In the case of instantiating 𝐵 (i.e., entering evidence in 𝐵), any evidence 

entered in 𝐴 will be irrelevant for 𝐶. Therefore, when 𝐵 is instantiated, the flow channel 

between 𝐴 and 𝐶 is blocked, and it is said that 𝐴 and 𝐶 become independent given 𝐵.  

 

A diverging connection, also known as a common cause, is shown in Figure 2-5. 𝐴 and 𝐶 are 

children of 𝐵 or mathematically 𝐶ℎ(𝐵) =  {𝐴, 𝐶}. Any information included in 𝐴 will influence 

𝐶 (see Figure 2-5a). Similarly, any evidence entered in 𝐶 will influence 𝐴 through 𝐵 (see Figure 

2-5b). However, if 𝐵 is instantiated, any evidence entered in 𝐴 will be irrelevant to 𝐶 (see 

Figure 2-5c). In this case, it is said that 𝐴 and 𝐶 become independent given 𝐵.  

 

A converging connection, also known as a common effect configuration, is shown in Figure 2-6. 

Information propagation in converging connections differs from serial and diverging 

connections. The converging connection in Figure 2-6 can be expressed mathematically as 

𝑃𝑎(𝐵) =  {𝐴, 𝐶}. Clearly, any evidence entered in 𝐴 or 𝐶 will propagate to 𝐵 (see Figure 2-6a, 

b). By extension, any knowledge of 𝐴 does not influence 𝐶. Similarly, any knowledge of 𝐶 does 

not influence 𝐴. In other words, knowledge of one potential cause does not influence other 

potential causes. However, if any information is entered in 𝐵 (the common effect), the 

information within 𝐵 will influence both 𝐴 and 𝐶 (see Figure 2-6c). This type of information 

flow, known as the explaining away effect, is a powerful characteristic used in abductive 

reasoning. 
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Figure 2-4.: Serial connection and its flow of information (grey nodes indicate instantiation 

i). (a) Node A is instantiated, (b) Node C is instantiated, and (c) Node B is instantiated. 

 

 

 

Figure 2-5.: Diverging connection and its flow of information (grey nodes indicate 

instantiation i). (a) Node A is instantiated, (b) Node C is instantiated, and (c) Node B is 

instantiated. 
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Figure 2-6.: Converging connection and its flow of information (grey nodes indicate 

instantiation i). (a) Node A is instantiated, (b) Node C is instantiated, and (c) Node B is 

instantiated. 

2.2.4 D-separation and Markov Blankets 

Section 2.2.3 has intuitively introduced the d-separation concept. The three basic connection 

types presented above encompass how information can be transmitted through a causal graph. 

Also, they cover the rules to decide if a pair of nodes are independent (i.e., separated) given 

any evidence included in a causal graph. Accordingly, the d-separation concept can be defined 

as follows (Jensen 2007): Two nodes 𝐴 and 𝐶 in a DAG are d-separated if there is an 

intermediate node 𝐵 connecting those nodes such that:  

 

 The connection type between 𝐴 and 𝐶 is serial or diverging, and 𝐵 is instantiated, or 

 

 The connection type between 𝐴 and 𝐶 is converging, and neither 𝐵 nor any child of 𝐵 

is instantiated. 

 

In any other case, 𝐴 and 𝐶 are d-connected. 
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The d-separation (or d-connection) concept is related to the idea of a DAG path that can 

transmit information. For example, two nodes 𝐴 and 𝐶 in a DAG might be connected by several 

paths. However, if all the paths that connect 𝐴 and 𝐶 are inactive, 𝐴 and 𝐶 are d-separated. 

Conversely, if there is at least one active path between 𝐴 and 𝐶, it is said that 𝐴 and 𝐶 are d-

connected. 

 

A Markov blanket extends the idea of d-separation to causal graphs containing many nodes 

(Jensen & Nielsen, 2007). A node value can be inferred using only the information from a 

subset of nearby nodes. Information from distant nodes is frequently useless due to d-

separation rules within the causal graph. For example, Figure 2-7 presents the Markov Blanket 

for node 𝐼. The Markov Blanket has the particular property that when it is instantiated, the 

node 𝐼 remains d-separated from the rest of the nodes in the network (outside the red dotted 

line). Mathematically, the Markov Blanket of node 𝑋  can be defined as the set that contains the 

children of 𝑋 , the parents of 𝑋  and all nodes that share a child with 𝑋 . 

 

 

Figure 2-7.: Markov blanket for node 𝐼 
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2.2.5 From Causal Graphs to Bayesian Networks 

The set of directed arrows ℰ in 𝒢 usually represents the strength of cause-effect relationships 

between nodes. This relationship can be expressed quantitatively using probability calculus 

(Jensen & Nielsen, 2007). For example, the arrow in Figure 2-8a represents the relationship 

between 𝐴 and 𝐵, which can be described probabilistically as 𝑃(𝐴 | 𝐵). However, if node 𝐴 has 

several parents (e.g., nodes 𝐵, 𝐶, 𝐷, 𝐸 in Figure 2-8b) then arrows represent the probabilistic 

interaction 𝑃(𝐴 | 𝐵, 𝐶, 𝐷, 𝐸) between 𝐴 and their parent nodes. 

 

 

 

Figure 2-8.: Probabilistic relationships between nodes. (a) Simple connection. (b) multiple 

connections. 

 

When arrows in a DAG represent probabilistic relationships and nodes have finite states, the 

resulting probability graph model is a Bayesian Network. The following is a formal definition 

based on Jensen & Nielsen (2007) and Koller & Friedman (2009): A Bayesian network is a 

model consisting of a set of probability relationships ℘ that factorize over a graph 𝒢. ℘ is 

expressed as conditional probability distributions (CPD) for nodes in 𝒢. In summary, a 

Bayesian Network must meet the following conditions: 

 

 Include a set of nodes and a set of arrows connecting the nodes. 

 

 The set of nodes and arrows must form a DAG. 

 

 Nodes must have a finite set of mutually exclusive states. 

 

 A CPD must be attached to each node. 
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2.2.6 The Chain Rule  

BN’s ability for decision-making problems is due to the combining properties of Bayes’ 

theorem and the Chain Rule. On the one hand, Bayes’ theorem, described in section 2.1.3, 

updates prior beliefs as new information is obtained. On the other hand, the chain rule 

reproduces the causal relationships between nodes using conditional probabilities. Let 𝒳 =

 {𝑋 , … , 𝑋 } be the set of variables that represents a problem. The joint probability distribution 

of 𝒳 is 𝑃(𝒳) =  𝑃(𝑋 , … , 𝑋 ). For example, if 𝑛 = 10 and each variable is binary-valued, the 

joint probability distributions would require 2 − 1 = 1023 numbers for specifying 𝑃(𝒳). 

Even for a few variables with binary states, the joint distribution is inaccessible to a human 

expert. Furthermore, it is computationally expensive. 

 

The required number for specifying a joint distribution grows exponentially as the number of 

variables and states increases. However, a more compact version of 𝑃(𝒳) can be achieved by 

using the properties of BNs related to conditional probabilities and d-separation rules between 

variables. The compact version of 𝑃(𝒳) corresponds to the chain rule, which can be expressed 

as shown in Equation 2-11. Using the notation 𝑃𝑎(𝑋 ) for denoting the parents of 𝑋 , the chain 

rule for Bayesian Networks can be rewritten as Equation 2-12. 

 

𝑃(𝒳) =  𝑃(𝑋 , … , 𝑋 ) = 𝑃(𝑋  | 𝑋 , . . . , 𝑋 ) 𝑃(𝑋  | 𝑋 , . . . , 𝑋 ) … 𝑃(𝑋  |𝑋 ) 𝑃(𝑋 ) 

(2-11) 

 

𝑃(𝒳) =  𝑃 𝑋  | 𝑃𝑎(𝑋 )  

(2-12) 

2.2.7 Causal Graph Construction 

Scutari & Denis (2015) recognize three approaches to creating a causal graph 𝒢: (i) data-

driven, (ii) expert-driven, and (iii) hybrid approach. Data-driven modeling derives the 

underlying causal relationships using the observed data, in other words, learning the BN’s 

structure from data and uncovering the conditional probability distribution that controls the 

problem. The expert-driven approach involves defining causality between variables by a 

human expert or deriving it using well-known physical or mathematical relationships. The 
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third approach combines the previous two to generate a more robust model. In this study, only 

the expert-driven approach is employed due to the characteristics of geotechnical failure 

problems. 

 

In general, the construction of 𝒢 using the expert-driven approach consists of the following 

steps: 

 

1. Identification of variables and node creation: The aim is to recognize all relevant 

variables in the problem. Variables can be divided into two general groups. The first 

group includes those variables that cannot be directly observable or whose 

observation implies an unacceptable cost. These variables are known as hypothesis 

variables. The second group of variables includes those that provide some information 

and modify hypothesis variables. This second group is called information or evidence 

variables. Once relevant variables have been identified, each variable is placed at a 

unique node. 

 

2. Node type definition and number of states: The values of the variables can be discrete 

or continuous. Defining variable types depends on their characteristics and 

complexity. Discrete variables can assume values among a countable set of values. The 

simplest discrete case is the Boolean type, in which the discrete space contains only 

two states (e.g., 0/1, yes/no, failure/no-failure). Rank discretization extends the 

discrete space to more than two states (e.g., low/medium/high, 0/1/3/4, 

excellent/good/regular/bad). Probability mass functions can be used to represent 

probability distributions of discrete variables 

 

Continuous variables assume a range of values among an infinite set of states. They are 

represented through probability density functions (PFD) such as Gaussian, Poisson, or 

beta distributions. However, using continuous variables in BNS requires a 

discretization process that leads to a loss of accuracy. Some efficient computational 

algorithms, such as dynamic discretization (Neil et al., 2007), combine discrete, 

continuous, and non-numeric nodes to overcome the loss of accuracy difficulties. 
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3. Information channels and arrows: The flow of information through a BN requires 

connecting the nodes. The connecting process is carried out in such a way that it 

reflects the causal relationships between nodes. In other words, the BN’s topology 

defines connection types, d-separation properties, and Markov blankets. The BN’s 

topology must mimic the causal dependencies or independence between variables. 

 

In the last step, Kjærulff & Madsen (2013) distinguish two ways of eliciting the causal graph 

structure. The first is a basic approach that uses the natural cause-effect relationship between 

hypothesis and information variables. In the basic approach, Kjærulff & Madsen expand the 

number of variable types to include background, problem, mediating, and symptom variables. 

For example, Figure 2-9a presents a simple causal graph including hypothesis and 

information (evidence) variables of a geotechnical problem. Figure 2-9b shows an expanded 

model of the same problem inferred from common knowledge, empirical relationships, or 

theoretical models such as the geotechnical triangle (Burland, 2012). Although a causal graph 

can be elicited using the basic approach, domain experts must verify the correct flow of 

information and d-separation requirements between variables. 

 

Figure 2-9.: (a) Example of a causal graph using a basic approach. (b) expanded model 

example. 
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The second approach enhances the basic approach by using idioms for constructing fragments 

of large BNs. Idioms denote the specialized terminology and jargon associated with a specific 

field of knowledge (in this case, the geotechnical engineering jargon). 

 

Idioms operate as reasoning guidelines for building fragments of large BNs. They can represent 

reasoning under uncertainty through semantic relationships between variables (Jordan et al., 

2013). Idioms represent an advance over the basic approach because they preserve the d-

separation and Markov blanket properties required in BNs. Neil et al. (2000) argue that the 

following five idioms cover almost all reasoning substructures employed in a BNs: 

 

1. Cause-consequence idioms model a cause-effect process between inputs (causes) and 

outputs (effects or consequences). Figure 2-10 presents cause-consequence idioms 

expressed as causal graphs. This idiom can be easily identified when a process follows 

a well-defined chronological sequence. Commonly they include words and expressions 

such as “attributable to,” “due to,” “as a consequence of,” “impact,” “cause,” and “resulted 

in,” among others. The following sentences from geotechnical literature are examples 

of cause/consequence idioms in geotechnical engineering jargon.  

 

a. “One of the major factors contributing to the settlements in Mexico City is the 

regional subsidence as a consequence of the consolidation of the soft clay layers.” 

(Puzrin, Alonso, & Pinyol, 2010, page 6). See Figure 2-10a 

b. “Surface fault rupture caused by an earthquake is important because it severely 

damages buildings, bridges, dams, tunnels, canals, and underground utilities.” 

(Day, 2010, page 217). See Figure 2-10b 

c. “The decrease in the pore water pressure might have been caused by inward 

movement of the diaphragm wall, which resulted in volume expansion of the soil 

behind the wall.” (Iwasaki, 2016, page 535). See Figure 2-10c 

d. “Most of the past embankment dam failures were caused by either overtopping 

or seepage erosion/piping.” (Xu & Zhang, 2016, page 105). See Figure 2-10d 
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Figure 2-10.: Examples of BNs constructed from cause-consequence idioms in geotechnical 

engineering. (a) Settlements in Mexico City, (b) Surface fault rupture caused by an 

earthquake, (c) Inward movement of a diaphragm wall, and (d) dam failure. 

 

2. Measurement idioms: Some nodes (variables) within a BN can be difficult to observe 

or measure directly. However, some related nodes can indirectly measure the actual 

value of the unobserved variable. These nodes are known as indicators. Measurement 

idioms include words and expressions such as “monitoring,” “measurement,” 

“estimation,” “test,” “indication,” “symptom,” and “features,” among others. The 

following sentences from geotechnical literature are examples of measurement idioms 

used in geotechnical engineering jargon. 

 

a. “The deep failure of caissons was also an indication that the foundation soil had 

experienced an additional reduction in strength most likely associated with soil 

liquefaction.” (Puzrin, Alonso, & Pinyol, 2010, page 128). See Figure 2-11a 

b. “One common laboratory test used to determine the expansion potential of the 

soil is the expansion index test. […] Other laboratory tests such as hydrometer 

analysis and Atterberg limits, can be used to classify the soil and estimate its 

expansiveness.” (Day, 2010, page 106). See Figure 2-11b 
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c. “The most significant advantages of the CPT are its simplicity, repeatability, 

accuracy, and continuous record. […] This paper outlines alternate ways in which 

the CPT can and has been correlated to liquefaction resistance…” (Robertson & 

Campanella, 1985, page 384–403). See Figure 2-11c 

 

3. Definitional idioms model two or more nodes combined into a single node. Usually, 

these idioms represent a deterministic relationship between a node and its parents. 

For example, in Figure 2-12, the parent node 𝜇 (pore water pressure) and 𝜎 (total 

stress) define the synthesis node 𝜎′ (effective stress). 

 

4. Induction idioms are used to estimate parameter values from available data. They can 

be used to make predictions or model the process of statistical inference. Figure 2-13 

shows a causal graph to estimate the mean value of water content from several 

measurements. Note that induction idioms do not reflect causality. 

 

 

Figure 2-11.: Examples of BNs constructed from measurement idioms. (a) Deep failure of 

caissons, (b) Laboratory test for expansion potential, and (c) CPT and liquefaction resistance. 
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Figure 2-12.: Example of a BN constructed from a definitional idiom. 

 

 

Figure 2-13.: Example of a BN constructed from an induction idiom. 

 

5. Reconciliation idioms aim to reconcile diverse and independent sources of information 

into a single variable (Neil et al., 2000). They can be used when different models (or 

BN) are used to estimate the same variable. The reconciliation idiom may merge 

information from several sources or choose the most appropriate source. Figure 2-14 

presents an example of a reconciliation idiom applied to estimate the shearing 

resistance angle from both triaxial and CPT measurements.  

 

 

Figure 2-14.: Example of a BN constructed from a reconciliation idiom. 

2.2.8 Eliciting Conditional Probability Distributions – CPD 

The probability relationships ℘ that factorized over 𝒢 are expressed as conditional probability 

distributions (CPD). A CPD encodes the probability of 𝑋  given its parents 𝑃(𝑋  | 𝑃𝑎(𝑋 )). That 
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is, 𝑃(𝑋  | 𝑃𝑎(𝑋 )) represents the probability of every single value of 𝑋  given each possible 

combination of 𝑃𝑎(𝑋 ) values. When 𝒢 contains few nodes, and each node has few states, it is 

possible to express 𝑃(𝑋  | 𝑃𝑎(𝑋 )) using conditional probability tables (CPT) or tabular 

representations. However, tabular representation becomes intractable when 𝑋  has several 

states and numerous parent variables. Moreover, CPT cannot be used when variables have 

infinite domains, as in the case of continuous variables. 

 

Several authors have recognized that eliciting CPDs is one of the most challenging tasks in 

constructing a BN (Mkrtchyan et al., 2016; Druzdzel & Gaag, 2000, Marcot et al., 2006; Chen & 

Pollino, 2012, Fenton & Neil, 2019, Kjærulff & Madsen, 2013). That is true not only for the 

reasons described in the preceding paragraph but also because of the difficulties in assigning 

probability values when information is limited or comes from the domain of human experts. 

Therefore, populating CPD should be carried out right after the careful construction of 𝒢. 

Otherwise, if 𝒢 does not describe the causal relationships correctly, the elicited numbers may 

be useless. 

 

The numbers composing the CPD can be estimated from expert knowledge, mathematical 

models, and databases. Due to the unavailability of significant and reliable databases in 

geotechnical engineering, especially those containing actual geotechnical failures, the 

examples presented in this research are focused on the former two sources. However, when 

databases are required, these can be retrieved from the outcomes of physical-mathematical 

models representing the geotechnical problem. A further description of the three sources of 

information for eliciting CPD is presented below 

 

Expert knowledge 

Large databases about rare and uncommon situations are scarce or even non-existent. In 

geotechnical engineering, this lack of data becomes critical in problems involving geotechnical 

failures. As a result, the primary source of information for populating CPD in reliability analysis 

comes from the domain of expert knowledge (Rohmer, 2020). Expert knowledge is rarely 

expressed by employing numerical probabilities. Therefore, qualitative assessments should be 

translated into quantitative measurements using questionaries, interviews, or technical 

literature.  
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Some indirect methods are available to transform qualitative knowledge into quantitative 

probability values. Rohmer (2020) describes three general approaches: (i) direct elicitation, 

(ii) assumptions on the causal structure, and (iii) filling-up techniques. Direct elicitation 

inquiries about the strength of causal relationships between variables using statements, 

analogies, or scales. The probability wheel is one of the direct technics in which a circle is 

divided into 𝑛 segments corresponding to the possible states of a variable. Then, the human 

expert is queried about the probability of each state given some background information.  

 

The probability scale is another example of direct elicitation. In this method, a human expert 

is queried about probabilities using predefined verbal statements. A numerical value 

according to a probability scale is assigned to each verbal statement. Figure 2-15 presents an 

example of a probability scale. In this case, emphasis has been placed on low and high values. 

 

Additional direct techniques, such as gambling analogy and fuzzy set analysis, can assign 

values to expert knowledge (Rohmer, 2020). Whichever technique is used, all of them focus on 

populating CPD using tractable pieces of information elicited from human experts. However, 

direct elicitation rapidly becomes inefficient when states and parents grow. For example, a 

binary variable 𝑋  with three binary parents require eight values to specify its CPD. Maybe 

eight values can be elicited by a human expert, but if 𝑋  has ten binary parents, 1024 numbers 

must be elicited for a full CPD specification. Undoubtedly, this amount is unmanageable for a 

human expert. 

 

Mathematical models 

Instead of defining a conditional probability 𝑃(𝑋  | 𝑃𝑎(𝑋 )) for every state of 𝑋  given every 

possible combination of 𝑃𝑎(𝑋 ), it is possible to use mathematical functions to approximate 

this probability. Mathematical functions include deterministic CPD, standard statistical 

distributions, comparative expressions, and logical operators. These functions facilitate the 

CPD construction and overcome the obstacles encountered in real BN applications related to 

computational efficiency and storage. 
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Figure 2-15.: A probability scale example for translating verbal statements into probability 

values (Kjærulff & Madsen, 2013). 

 

Databases 

Defining a CPD from a database assumes that some underlying process has generated the data 

(Kjærulff & Madsen, 2013). Consider two DAG structures, DAG1 and DAG2, defined by human 

experts HE1 and HE2, respectively. If each DAG represents two different underlying processes 

that generate the data, then the CPDs estimated by each DAG will be different. Therefore, each 

BN constructed from a DAG and a CPD will produce different results, but only one of them may 

be useful. This condition reveals the importance of constructing functional BNs that reflect the 

variables’ causal relationships.  

 

Constructing CPD from databases requires data to cover all relationships between variables 

defined in a DAG. Otherwise, the estimated parameters will not be statistically significant or 

may not be estimated at all. These conditions imply that databases should be long enough to 

cover those relationships. In this case, CPD values can be estimated from probability 

frequencies using the maximum likelihood estimation (MLE) or Bayesian estimation (Jensen 

& Nielsen, 2007).  
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2.2.9 Inference and Belief Updating 

The primary goal of any BN is to answer questions such as (i) What is the probability of 𝑋  given 

that some evidence in  𝑋  is known?, (ii) What are the most probable states for the set of variables 

𝑋 = {𝑋 , 𝑋 , … , 𝑋 } given that the state of 𝑋  is known? or (iii) Is 𝑋  independent from 𝑋 ?  The 

first question is know as a conditional probabilistic query in probabilistic and computer 

science. The second corresponds to a most probable explanation, and the third is a conditional 

independence query. Therefore, a BN can be viewed as an expert system capable of answering 

questions related to some specific problem. 

 

The process of reaching conclusions using evidence is known as inference. BNs are used as 

powerful probabilistic tools because they can emulate inference processes. For example, 

evidence can be included directly in a BN because reasoning processes are encoded in its 

topology. BNs allow experts to reach conclusions about the most probable values given some 

evidence. Besides, BNs can perform inference tasks from imperfect knowledge and incomplete 

information, just as human experts do (Fenton & Neil, 2019). 

 

In the context of BNs, inference analysis has two opposite directions: forward and backward. 

On the one hand, forward analysis refers to BN’s predictive abilities. In other words, they 

estimate the probability distribution of an evidence variable based on the states of hypothesis 

variables (refer to Figure 2-9). Forward tasks are comparable to learning machine techniques 

such as neural networks, support vector machines, and regression analysis. On the other hand, 

the backward direction is related to diagnosis and hypothesis testing. Unlike most machine 

learning techniques, BNs can perform backward analysis. The backward analysis involves 

estimating the probability distribution of any node given some evidence entered in one or 

more nodes. Evidence may refer to actual observations on a particular state of a variable (i.e., 

hard evidence) or uncertain and incomplete observations (i.e., soft evidence). For the purposes 

of this thesis, only hard evidence is considered. 

 

As described above, forward and backward inference requires entering information in some 

nodes to update the probability distributions in the remaining nodes. Specifically, the 

inference task is about computing the probability distributions of the unobserved nodes, given 

evidence entered in the observed nodes. Inference tasks are performed using conditional 

probability queries such as 𝑃(𝑌 | 𝑋 = 𝑒), where 𝑌 denotes the unobserved nodes, and 𝑋 = 𝑒 
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denotes nodes in which evidence is included. In Bayesian Network terminology, the expression 

𝑃(𝑌 | 𝑋 = 𝑒) corresponds to a belief-updating process that can be solved using exact and 

approximate algorithms. 

 

Exact algorithms include variable elimination algorithm methods and junction tree methods. 

Conceptually, the variable elimination algorithm estimates the marginal probability 

distribution over a subset of variables using a sequential elimination process of those variables 

not involved in the subset of interest (Bensi, 2010). The order in which variables are 

eliminated impacts computational demand. Moreover, every conditional query made to the 

network requires the algorithm to be re-run. Therefore, although the elimination algorithm is 

relatively simple, it is not helpful in practice because computational requirements increase 

exponentially for BNs with multiple nodes. Many standard BN textbooks, such as Jensen & 

Nielsen (2007) and Koller & Friedman (2009), describe this algorithm. 

 

The junction tree (also called clique tree) is an algorithm equivalent to the elimination 

algorithm because it is based on the same basic operations: factor multiplication and variables 

summing out. However, it relies on predefined data structures, known as cliques, which 

convert a BN into a tree. Cliques operate as super-nodes that include multiple variables of the 

original BN. These super-nodes recycle some intermediate operations of the elimination 

algorithm and provide answers to multiple queries using a unique data structure. Although the 

clique algorithm is computationally more efficient than the elimination algorithm, it demands 

more storage capacity since cliques may significantly increase the size of the original BN. 

Reference textbooks such as Koller (2009) comprehensively describe the clique algorithm. 

 

Approximate algorithms are based on a set of techniques known as stochastic simulation. They 

include, among others, the rejection sampling algorithm and Gibbs sampling. The basic idea 

behind these techniques is to draw thousands of random observations using the BN’s 

properties. Observations are then used for estimating conditional probabilities of interest. The 

most straightforward approximate algorithm is the rejections sampling technique. It generates 

random observations using Monte Carlo simulation and counts how many matches the 

evidence. The probability is estimated by the ratio presented in Equation 2-13, in which 𝑁( ) 

represents the number of observations that match the evidence, and 𝑁 is the number of 
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observations generated. A basic rejections sampling algorithm, such as the Metropolis-Hasting, 

is presented in Algorithm 2-1. 

 

𝑃(𝑌) =
𝑁( )

𝑁
 

(2-13) 

 

Algorithm 2-1.: The Metropolis – Hasting algorithm. 

Procedure: The Metropolis–Hasting Algorithm (MHA) is a particular implementation of the 

Markov Chain Monte Carlo Methods (MCMC). The MHA uses a proposed distribution 

(usually a 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎)) to draw samples from the posterior distribution 𝑃(𝑚|𝑑). The 

algorithm starts at any arbitrary point of 𝑃(𝑚) with a non-zero value 𝑚 . Then, it proceeds 

to a new position by proposing a movement based on the proposed distribution. The 

movement is accepted if a decision procedure is fulfilled.  

0. Initialize the 𝒎 values 𝒎𝟎 . 𝒎𝟎 values are sampled from the prior distribution 

𝑝(𝒎).  

For iteration 𝑖 = 1, 2, … , 𝑛 

1. Generate a proposed jump sample value from the proposed distribution: 

𝑚  ~ 𝑟 𝑚 𝑚  

If Gaussian distribution is used as a proposed distribution use 

𝑚 =  𝑚 + ∆𝑚. 

Where ∆𝑚 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 

2. Calculate the acceptance probability using the acceptance function (see equation 

9): 

𝛼 = 𝑚𝑖𝑛 1,
𝑞(𝑚 | 𝑑)

𝑞(𝑚 | 𝑑)
 

Draw a value (𝑢) from an independently uniform (0,1) distribution. 

3. Accept the proposal: if 𝑢 < 𝛼, then 𝑚 = 𝑚  

Reject the proposal:  if 𝑢 > 𝛼, then 𝑚 = 𝑚  

Return 𝑚  
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The Gibbs sampling is another approximate algorithm based on the rejection sampling 

technique. The basic idea is to explore the parameter space of the conditional probability of 

interest by changing one input parameter at a time. With this change, greater efficiency is 

achieved. Algorithm 2-2 describes the general Gibbs sampling algorithm proposed by Yildirim 

(2012). 

 

Algorithm 2-2.: The Gibbs sampling algorithm. 

Procedure: Initialize all the parameters with initial values 𝑚 , 𝑚 , 𝑚 … 𝑚 . At iteration 

𝑖 = 1, a value for 𝑚  is randomly drawn and conditioned on 𝑚 , 𝑚 … 𝑚  values. Then, a 

value for 𝑚  at iteration 𝑖 = 1, is randomly drawn conditioned on 𝑚 , 𝑚 , 𝑚  … 𝑚   

values. In general, for 𝑚  at iteration 𝑖 = 1, is drawn conditioned on 𝑚 , 𝑚 , 𝑚 , … , 𝑚 . 

0. Initialize the 𝒎 values 𝒎𝟎 .  

For iteration 𝑖 = 1, 2, … , 𝑛 

1. Sample 𝑚   ~ 𝑃 𝑚 | 𝑚
( )

, 𝑚
( )

, … , 𝑚
( )  

2. Sample 𝑚   ~ 𝑃  𝑚 | 𝑚 , 𝑚
( )

, … , 𝑚
( )  

3. Sample 𝑚   ~ 𝑃 𝑚 |𝑚 , 𝑚 , … , 𝑚
( )  

4. Sample 𝑚   ~ 𝑃 𝑚 | 𝑚 , 𝑚 , 𝑚 , … , 𝑚   

2.2.10 Most Probable Explanation 

As mentioned in Section 2.2.9, a BN can answer questions about the most probable states for 

unobserved variables, given some observed variables. These types of questions are known as 

Most Probable Explanations (MPEs). Suppose that 𝒳 =  {𝑋 , … , 𝑋 } and 𝒳 =  𝑋 , … , 𝑋  

represent the subset of observed and unobserved nodes, respectively, included in a BN. An 

explanation for a particular state of observed nodes 𝒳 = 𝑥  is defined as a configuration of 

states for unobserved nodes 𝒳 = 𝑥  such that 𝑥  is consistent with 𝑥  (Campos et al., 2001). 

A BN can provide several explanations to 𝒳 = 𝑥 . However, as described by Pearl (1988), the 

abductive process is interested in finding the best explanation, or in BN terms, obtaining the 

maximum a posteriori probability (MAP). In other words, given 𝑥  and 𝑥 , the MAP aims to find 

the configuration of 𝑥  that maximizes 𝑃(𝑥 |𝑥 ). Equation 2-14 represents the MAP, where 
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�̇�  is the Most Probable Explanation (MPE) for 𝑥 . In general, a BN can provide the K-most 

probable explanations (K MPE) to an observed subset of variables 𝑥 .  

 

�̇� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑥 |𝑥 ) 

(2-14) 

2.3 Bayesian Networks in Civil Engineering Applications 

Bayesian Networks in civil engineering applications are a new field of research. Although 

technical literature about this topic is limited, it has grown during the last few years. A search 

for publications in scientific databases yields the results presented in Figure 2-16. Significant 

growth has occurred since 2005, with 232 publications by 2021. The most relevant work is 

presented and discussed below. 

 

 

Figure 2-16.: Publications about Bayesian Networks in Civil Engineering  (a) Number of 

publications by year. (b) Cumulative publications by year 

 

Straub (2005) presented one of the earliest applications of BNs to civil engineering. The author 

proposed a general BN framework for analyzing natural hazards and demonstrating BN’s 

viability for rockfall hazard analysis. Furthermore, he demonstrated that the flexibility of BNs 

improves risk assessment outcomes when interdisciplinary natural hazards share several 

parameters. In the same way, Smith (2006) used BNs to estimate the risk of multiple failure 

mechanisms in dams and the interrelation between them. For example, a simple dam failure 

analysis showed that although internal erosion and overtopping failure mechanisms follow 

different failure paths, they share some critical variables. Identifying these variables and their 

relative influence on failure mechanisms for programming maintenance and interventions is a 

necessary task. 
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Straub & Grêt-Regamey (2006) and Kiureghian et al. (2009) presented two applications of BNs 

in natural hazard analysis. The first study proposes a probabilistic framework for avalanche 

analysis. The framework uses BNs to combine information from diverse sources, such as 

dynamic and empirical models based on experience and observation. The results allowed 

researchers to create maps containing avalanches' annual probability and travel distances. 

They conclude that BNs improve avalanche prediction due to the integration of diverse 

information. The second study deals with infrastructure risk management in post-earthquake 

events. The study proposes a BN-based methodology for uncertainty management of post-

earthquake events based on the ability of BNs to update their status as new information is 

obtained. This ability is used in making critical decisions in post-earthquake events such as 

road closures and the evacuation of people. Finally, the authors highlight the importance of 

real-time decision-making based on the information provided by BNs. 

 

Nadim & Liu (2013) analyzed the quantitative risk of earthquake-triggered landslides and 

their effects on exposed buildings. Traditionally, earthquakes and landslides are studied 

separately and then combined using deterministic methodologies that usually do not include 

the assessment of the joint probability of the events. The authors propose using a BN to 

evaluate the combined effect of landslide-earthquake interaction from a multilevel 

perspective. Although the study demonstrates the ability of BNs to assess the joint probability 

of natural hazards, the need to include expert opinion and actual observations of earthquake-

triggered landslides is recognized. 

 

Probabilistic Bayesian network models have also been used to study dam safety. Morales-

Nápoles et al. (2014) propose the use of nonparametric continuous variables to analyze dam 

safety, including three failure modes (global stability, overturning, and internal erosion) and 

three triggering factors (rainfall, earthquake, and maintenance type). Additionally, the BN 

model includes nodes for modeling consequences such as floods, loss of life, and economic 

costs. The use of expert opinion for eliciting conditional probability tables (CPT) is the most 

remarkable aspect of this study. 

 

The phenomenon of soil liquefaction and its prediction during an earthquake has also been 

studied using BNs. This phenomenon holds significance in geotechnics, given the substantial 

uncertainty associated with soil and earthquake variables. Hu et al. (2016) constructed a BN 
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with twelve of the most critical variables in liquefaction analysis and found that BNs better 

predict the liquefaction behavior of soils than other artificial intelligence tools. The authors 

conclude that BNs predict better because their structure can represent the interdependencies 

between variables. Moreover, BNs combine information from multiple sources using a 

probabilistic framework. 

 

Uncertainty monitoring and geotechnical reliability assessment in slope stability have also 

been studied using BNs. In this regard, Mohan et al. (2019) performed a study in which the 

influence of additional exploration on the reliability of slope stability was analyzed using geo-

mechanical and spatial correlation variables. The BNs were used as a metamodel to shorten 

the calculation time and replace computationally expensive numerical models. A similar study 

developed by Špačková & Straub (2011) analyzed the performance of tunnel stability using 

Dynamic Bayesian Networks. The authors recognized few advances in fields such as stability 

analysis, advance rates, and excavation processes for tunnel design and construction. A 

framework based on dynamic BN was proposed based on historical information on excavation 

performance. The authors concluded that conditional probabilities estimated from past 

information are more reliable than probability estimations suggested by experts. 

2.4 Summary 

The preceding chapter briefly introduces Bayesian statistics, inference, and Bayesian 

Networks. These probabilistic concepts are the foundation on which the proposed 

methodology is based. The main ideas of this chapter can be summarized as follows: 

 

 Bayesian statistics defines probability as a rational degree of belief. In other words, the 

natural world has no “fixed” statistical parameters but several probable states. 

Bayesian statistics mimics the “explaining away” process that simulates the 

bidirectional pattern (i.e., backward and forward processes) of human reasoning. 

 

 The Bayes’ theorem (or Bayes’ rule) is the central concept of Bayesian Statistics. The 

theorem is a precise mathematical technique for analyzing information based on 

experience and knowledge. 
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 Bayes theorem can be used to compare competing hypotheses that explain a 

phenomenon (or the causes of a geotechnical failure). The comparison is performed 

through the Bayes Factor or Posterior Odds Ratio (POR). The POR represents how 

better a hypothesis 𝐻  explains a phenomenon than a hypothesis 𝐻 . Jeffreys scale and 

Kass & Raftery modified scale are used to interpret POR results. 

 

 A Bayesian network (BN) is a model consisting of a DAG and a set of probability 

relationships. The DAG shows the causal relationships between variables (nodes), and 

the probability relationships are expressed as conditional probability distributions 

(CPD) or conditional probability tables (CPT). Common geotechnical knowledge and 

geotechnical jargon can be used to identify causal relationships between variables. 

These cause-effect relationships are translated into several small DAGs that can be 

joined together. 

 

 The primary goal of any BN is to answer probability questions. In particular, questions 

related to the condition of a variable after the inclusion of some evidence in other 

variables. This process is known as inference, and BNs are used as powerful 

probabilistic tools because they can emulate inference processes. 

 

 



 

  
 

3. Forensic Science and Forensic Engineering 

3.1 Introduction and definitions 

Forensic science aims to provide a logical connection between past events in order to discover 

causal relationships between them. Many authors have defined forensic science as a historical 

science based on the analysis of information (Carper, 2000; Cleland, 2001; Houck, 2006; Noon, 

2009). Information in forensic science, also known as evidence, is usually sparse, scattered, 

vague, and incomplete (Noon, 2009). Pieces of evidence are the components from which an 

event is reconstructed. The result of this reconstruction is a narrative in which: (i) the event is 

described, (ii) a reasonably logical sequence of events is presented, and (iii) the most 

reasonable causal relationships between the different pieces of evidence are analyzed. 

 

Since forensic science has traditionally studied events related to threats to life, health, or 

safety, it has been associated with criminal investigations. In fact, forensic science is aided by 

various specialties such as ballistics, DNA analysis, anthropometry, and fingerprint analysis, 

among others. Surprisingly, DNA analysis is the only one of these techniques that gives a 

probabilistic framework to traditional forensic science (Noon, 2009). The word forensic has a 

broader connotation, despite the common association of forensic science with criminalistics, 

disputes, or offenses. The definition of forensic is related to the context in which it is used. For 

example, digital forensics involves recording and analyzing digital information to support 

criminal investigations. Similarly, it is called forensic engineering when the purpose is to 

investigate the origin of failures in engineering systems. In this sense, the word forensics can 

be associated with any field of knowledge in which it is necessary to investigate cause-effect 

relationships. 

 

In the case of forensic engineering, it can be defined as the branch of forensic science in charge 

of studying failures in engineering systems. Forensic engineering has two main focuses. First, 



Chapter 3. Forensic Science and Forensic Engineering 
 

39

 

  
 

it can support the resolution of legal lawsuits associated with engineering failures (Carper, 

2000). Second, it can investigate the origin or causes of system failures to propose technical 

solutions and improve engineering practices. It is important to note that the failure of an 

engineered system can be understood as a sudden collapse, system degradation, accident, 

incident, or any deviation from the behavior foreseen in the design. 

3.2 Characteristics for the development of a forensic 
engineering study 

Carper (2000) presents an account of the main characteristics of forensic engineering and the 

responsibilities of the professionals involved in its practice. The first characteristic refers to 

the professionals’ technical competence and extensive experience in designing similar 

engineering works. Although this background is desirable and necessary in most cases, Babu 

(2016) and Brady (2012) argue that experience is not enough and may not be desirable 

because the design and forensic processes are opposite. In other words, design requires 

inductive skills to predict the behavior of a system, while forensic research requires deductive 

and retrospective skills to explain how and why a failure occurred (Day, 2010). The main 

differences between design and forensic processes are shown in Table 3-1. 

 

A second desirable characteristic in a forensic investigation is the competence of the 

professionals involved in the forensic study. It refers to the ability to collect, organize, select, 

and interpret evidence. Babu (2016)  points out that the collection of evidence is critical due 

to the need to clean the failure site and reconstruct the engineering works. In most cases, the 

evidence is destroyed, washed, lost, or concealed. Therefore, the interpretation of evidence 

must almost always be made on incomplete information. In other cases, conclusions can be 

drawn, or conflicts can be resolved with complementary and redundant information (Carper, 

2000). 

 

Table 3-1.: Comparison of design and forensic processes. (After Brady, 2012) 

Design Process Forensic process 

Problem-solving Causation determination 

It is based on assumptions It is based on evidence 
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Design Process Forensic process 

Deals with unknowns to give engineering 
solutions 

Investigates the unknowns of an engineering 
solution 

A priori (starts with theories and ends with 
evidence) 

A Posteriori (starts with the evidence and ends 
with theories) 

Synthesizes (has multiple solutions, chooses one) Analyzes (only one sequence of events) 

Discards the less probable hypothesis Discards hypotheses based on evidence 

The heuristic method is used (i.e., follows 
standards, strategies, rules, or codes) 

No heuristic method is used (Based on evidence 
and scientific principles) 

 

The third and last characteristic refers to the ability to communicate the results of a forensic 

investigation. Communication ability includes both oral and written skills. Verbal ability is vital 

when the investigation results are used to support legal litigation, while written ability must 

reflect the competence and truthfulness of the forensic investigation process (Carper, 2000). 

3.3 Use of the Scientific Method 

The scientific method is a systematic approach that aims to reveal the cause-effect 

relationships of a phenomenon through the collection, organization, and analysis of evidence 

or factual data (Noon, 2009). Lord Bacon formally introduced the scientific method in the early 

seventeenth century, and since then, its application has been widely extended to the physical 

sciences. Two versions of the scientific method are recognized. The first and oldest 

corresponded to the application of the original version of the method. This version included 

the following stages: 

 

1. Proposing a hypothesis based on data, measurements, facts, or observations. 

 

2. Contrasting the data with the hypothesis to verify its consistency. 

 

3. Verifying or modifying the initial hypothesis with new data or available evidence. 

 

The second and more recent version of the scientific method includes the following stages: 
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1. Proposing a hypothesis based on the collection, organization, and analysis of data, 

evidence, measurements, and observations. 

 

2. Contrasting the data with the proposed hypothesis. This hypothesis must also be able 

to predict unobserved data or anticipate consequences or effects not yet seen. 

 

3. Confirming, modifying, or changing the hypothesis as required if new evidence or 

experimental data becomes available. 

 

The critical difference between the two versions of the scientific method is the predictive 

ability of the hypothesis of the second version. Consequently, further experiments or 

additional measurements could verify the predictive ability. For example, the predictive ability 

of a hypothesis can forecast consequences, information, and data found later that could have 

been dismissed, misinterpreted or considered unimportant in the early stages of the forensic 

investigation (Noon, 2009). 

 

The third phase in both versions of the scientific method confirms that hypotheses are not 

static premises but, on the contrary, evolve as new evidence is acquired. This evolutive process 

implies that the third phase is an iterative process in which the hypothesis adjusts according 

to the evidence. For example, after a preliminary evaluation, a forensic investigator proposes 

that an unforeseen surcharge caused an excavation failure (initial hypothesis). Based on this 

initial hypothesis, an engineering solution is proposed, a legal investigation process is initiated, 

and preliminary conclusions are communicated to the media. Sometime later, after a more 

exhaustive investigation, new evidence related to an elevation of the water table and 

additional lateral pressures on the excavation contradicts the initial hypothesis. The new 

hypothesis states that the excavation failure was caused by additional hydrostatic pressures 

on the excavation not included in the design. As a result, the engineering solution is 

substantially modified, the legal process could take a different direction, and public opinion 

could be negatively impacted.   

3.4 Inductive, Deductive, and Abductive Processes 

The reasoning process used in forensic engineering can be framed within three types: 

inductive, deductive, and abductive. Inductive reasoning dates back to ancient Greece and 
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attempts to infer a general conclusion from particular cases. In other words, a proposition or 

set of propositions is tested against evidence obtained through unbiased observations (Noon, 

2009). Once the proposition is evaluated, a commonality is proposed. Thus, the inductive 

process starts from particular cases and ends up with the statement of a universal premise. 

Since the universal premise is formulated from particular cases, inductive reasoning admits a 

reasonable degree of uncertainty that can be addressed using probability theory. 

 

Deductive reasoning can also be traced back to ancient Greece and was recognized as the 

preferred method of reasoning by the Greeks (Noon, 2009). The deductive process relies 

entirely on the intellect to explain the phenomena. That is to say, conclusions on particular 

aspects are deduced from a set of premises universally accepted as truths. Contrary to 

inductive reasoning, deductive reasoning begins from general aspects and ends with particular 

statements. Since the general premises are assumed to be true, deductive reasoning does not 

involve uncertainty and therefore does not admit probability analysis. 

 

Abductive reasoning is the third type of logical reasoning. Contrary to inductive or deductive 

reasoning, which use particular cases or universal premises, abductive reasoning is based on 

statements known as hypotheses. Hypotheses are suppositions or possible explanations of a 

phenomenon generated on the basis of evidence, observation, and measurements. Campos et 

al. (2001) represent the abductive reasoning process by Equation 3-1. This equation explains 

that if some phenomenon 𝜔 is observed and some norm or rule 𝜑 leads to 𝜔, then 𝜑 is defined 

as a possible explanation for 𝜔. The nature of abductive reasoning implies a component of 

uncertainty associated with its process, i.e., since 𝜑 is defined as a possible explanation of the 

phenomenon, it is assumed that 𝜑 is not unique, and several rules could explain the 

phenomenon 𝜔. Consequently, each possible explanation 𝜑 associated with the phenomenon 

𝜔 has a probability of occurrence. 

 
𝜑 → 𝜔, 𝜔

𝜑
 

(3-1) 

Several authors, such as Campos et al. (2001), Jensen & Nielsen (2007), and Fenton & Neil 

(2019), argue that abductive reasoning actually mimics the human reasoning and decision-
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making process. Figure 3-1, proposed by Campos et al. (2001), presents the process of 

abductive reasoning. The process unfolds as follows: (i) facts, observations, and measurements 

are employed to (ii) generate several hypotheses and (iii) develop the set of possible 

explanations of the phenomenon. After contrasting the facts and hypotheses (iv), one or a few 

are selected based on their capacity to explain the phenomenon. (v) This selection constitutes 

the best explanation of the phenomenon. Bayesian networks can systematically represent the 

abductive reasoning process (refer to Chapter 2). 

 

 

Figure 3-1.: Abductive process (modified from Campos et al., 2001) 

3.5 A review of some general methods used in forensic 
engineering 

Although standardization does not apply to forensic methods, some specific characteristics are 

common to all forensic engineering investigation processes. These characteristics are linked 

to applying the scientific method and are reproducible in structural and geotechnical 

engineering. The forensic investigation methods presented below are general and applicable 

to any engineering failure. However, since the most studied failures have structural origins, 

their application focuses on structural engineering. 

 

Noon (2009) defined the forensic process using the “investigation pyramid” idea. This idea 

compares the forensic process to a pyramid with a large amount of information (i.e., evidence, 

data, and facts) at its foundation. On top of this foundation, information is analyzed using the 

scientific method. Finally, at the top of the pyramid, the analyzed information supports a small 

number of conclusions. The pyramid idea suggests that conclusions must be based on the 

analysis of the evidence and not on other hypotheses or conclusions. Figure 3-2 depicts the 

concept of the “investigation pyramid.” 

 

Based on a set of steps common to all forensic investigations, Bell (2000) proposed the flow 

chart of the investigative process presented in Figure 3-3. One implication of Bell’s diagram is 

that several failure hypotheses cannot be re-evaluated simultaneously using the same 
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evidence. In fact, new failure hypotheses are not allowed in the latter stages. Therefore, even 

though new evidence may disprove the initial failure hypotheses, the process prevents the 

formulation of new hypotheses. 

 

 

Figure 3-2.: The Investigation Pyramid (Modified from Noon, 2009). 

 

In 2018, the American Society of Civil Engineers (ASCE) published a set of guidelines for failure 

investigations. These guidelines (ASCE, 2018) update a first edition published in 1989. The 

ASCE recognizes that each investigation is unique and that there is no single approach to 

studying failures. However, the ASCE outlines five steps common to all forensic engineering 

studies. The steps shown in Figure 3-4 are based on forensic investigations focused on civil 

engineering. The Bayesian framework for forensic geotechnical assessments described in 

Chapter 4 is based on the recommendations suggested in the ASCE (2018) guidelines. 

 

A forensic engineering research methodology based on civil, biomechanical, or aerospace 

engineering practices was proposed by Terwel et al. (2018). According to these authors, the 

methodology integrates three essential elements identified in every forensic investigation: (i) 

the life cycle of the product or structure, (ii) the categorization of the failure causes according 

to the life cycle stage, and (iii) the standard forensic investigation approach that includes steps 

such as data collection, hypothesis generation, hypothesis testing, conclusions, and report 

findings. In addition, the authors implemented the “ring of trustworthiness” concept to 

increase the validity and reliability of forensic findings. 
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Figure 3-3.: The investigative process proposed by Bell (2000) 

 

 

 

Figure 3-4.: Typical steps of a forensic investigation suggested in ASCE (2018) 
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3.6 Forensic Geotechnical Engineering 

Forensic geotechnical engineering is a sub-branch of forensic engineering concerned with 

studying and investigating engineering system failures associated with 

geological/geotechnical origins (Rao, 2016). The traditional practice of forensic geotechnical 

engineering has focused primarily on resolving legal disputes, supporting legal decisions, and 

determining liability (Carper, 2000; Day, 2010; Lacasse, 2016). However, a more recent 

version of forensic geotechnical engineering has broadened its focus to investigate causal 

relationships leading to geotechnical failures. This latter version focuses primarily on safety 

and learning from mistakes to prevent and improve geotechnical engineering systems (Terwel 

et al., 2018). In addition, it allows forensic geotechnical engineering to include the tools of the 

Scientific Method, the deductive and abductive reasoning methods, and the application of 

probability and statistics techniques. 

3.6.1 Stages of the forensic geotechnical process 

Brady (2012) and the ASCE guidelines (ASCE, 2018) recognize that the forensic geotechnical 

engineering process involves at least the four stages shown below: 

 

1. Collection of available evidence and its analysis. 

 

2. Development of credible hypotheses about the causes of geotechnical failure. 

 

3. Testing each of the credible hypotheses against the available evidence. 

 

4. Selection of the hypothesis related to the most likely cause of failure. 

 

Brady (2012) also suggests a fifth step relating to identifying and effectively communicating 

the cause of failure. Similarly, Terwel et al. (2018) recognize that communication of failure 

causes should not be undervalued. 

 

The first step involves collecting the available information related to the geotechnical failure. 

This information, referred to as evidence in forensic terminology, enables the identification of 

failure aspects and their associated consequences. Evidence collection begins with the field 
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investigation, which includes site reconnaissance, field observation, photographic recording, 

eyewitness interviews, and the collection of design and construction documents. The use of 

modern tools such as drone photography, satellite imaging, and laser scanning is 

recommended in any forensic geotechnical investigation. Although evidence collection may 

come from various and dissimilar sources of information, it should be selected and organized 

in easily accessible databases. Databases make information available to understand the 

conditions, circumstances, and factors leading to geotechnical failures. In all cases, the 

evidence collection process should include verification, preservation, and chain of custody of 

the information.  

 

Stage two is concerned with establishing hypotheses related to failure causes. Bell (2000) and 

Brady (2012) agree that inductive and synthesis reasoning processes employed in 

conventional engineering design are insufficient for hypothesis generation. These 

conventional methods are not applicable because they require apriorism reasoning, i.e., 

starting with general theories and ending with evidence. In other words, multiple solutions to 

an engineering problem are proposed, and one is chosen based on experience, codes, or 

standard design methods. Therefore, apriorism reasoning is harmful to hypothesis generation 

because it can force the evidence to be matched with biased hypotheses. For example, a 

common bias in forensic investigation occurs when a possible failure hypothesis is identified, 

and forensic experts attempt to find evidence confirming that hypothesis. In such cases, 

forward reasoning is favored over backward reasoning, contrary to the requirements of 

forensic methods.  

 

Noon (2009) proposes that hypothesis generation should not be based on traditional 

engineering methods but on deductive and abductive reasoning. Abductive reasoning is 

particularly interesting in forensic engineering because it allows information and evidence to 

guide the generation of failure hypotheses. In such cases, abductive reasoning identifies 

distinct components of a geotechnical structure and combines them to generate a logical 

sequence of the failure and its associated causes. Unlike traditional engineering design, where 

there are many options for solving a problem, in forensic geotechnical engineering, the failed 

structure behaves and fails in only one way. For this reason, in forensic engineering, there are 

no standardized processes for the investigation of a failure. Only the tools provided by the 

scientific method and abductive reasoning are used. 
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The third stage of the forensic investigation process involves developing and analyzing the 

failure hypothesis established in the second stage. The main task of this stage is to compare 

each hypothesis against the evidence collected. According to Bell (2000), all credible 

hypotheses must be systematically analyzed before being approved or disapproved. Each 

hypothesis must be continually tested against the evidence to be validated or falsified during 

the forensic investigation. The result of the process is the elimination of all but one hypothesis 

that explains the evidence. However, most forensic investigations do not reach individual 

results due to the uncertainty involved in the process. Usually, the conclusions reached refer 

to several causes of failure. In other cases, the conclusion refers to some of the most probable 

causes of the failure. 

 

In a conventional forensic geotechnical investigation, the hypotheses are contrasted with the 

evidence using back-analysis calculations. Back-analysis consists of implementing either 

numerical or physical geotechnical models, in which the results are compared with the 

evidence collected during the first stage of the forensic process. In general, if the results of the 

back-analysis agree with the evidence, the hypothesis is considered feasible. However, if the 

results of the back-analysis do not agree with the evidence, the hypothesis is rejected (falsified) 

or considered unlikely. Although back-analysis is commonly employed to test failure 

hypotheses, Hwang (2016) points out that only experts can interpret its results. This author 

further points out that computational capacity limit back-analysis when complex constitutive 

models are used. 

 

As mentioned above, the third stage is about testing hypotheses against the evidence and re-

evaluating their validity, which implies that stage three is an iterative process. Some of the 

hypotheses initially put forward are discarded during the iterative process, and new ones are 

proposed. Iteration is performed until one (or a few) hypotheses are consistent with the 

evidence. This iterative process is one of the characteristics of the scientific method applied in 

forensic investigations, in which abductive reasoning and probabilistic tools offer support in 

determining the causes of geotechnical failures. 

 

The last stage focuses on selecting the most probable cause (or causes) that led to the 

geotechnical failure. The cause is selected among the hypotheses formulated in stage two and 
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from the results of the iterative process of stage three. The selected hypothesis and the 

conclusions of the forensic investigations may support legal disputes and assist remediation 

designs. Several authors, such as Bell (2000), Poulos (2016), and Terwel et al. (2018), 

recognize the fourth stage as a critical task in the forensic investigation process. Moreover, 

authors such as Kool et al. (2019) acknowledge that the conclusions drawn from forensic 

studies sometimes appear arbitrary and subjective due in part to a lack of rigor in the process 

of hypothesizing, contrasting evidence, and selecting the most probable cause. Combining the 

scientific method, probability theory, and statistical tools may help reduce the subjectivity and 

arbitrariness of the conclusions about the causes of failure of geotechnical origin. This doctoral 

research uses Bayesian tools to support decision-making regarding the causes of geotechnical 

failures in order to reduce the cognitive bias associated with the forensic process. 

3.6.2 Additional aspects to consider 

Collection of geotechnical evidence 

Collecting geotechnical evidence is the first step after a failure. Day (2011) warns that people 

involved are urged to clean up the site and reconstruct the collapsed structures quickly after a 

failure. This cleanup may limit the time available for evidence collection and cause forensic 

investigators to work against the clock. The information collected within this limited 

timeframe must be sufficient to develop a reliable forensic investigation. In addition, the 

parties involved in the investigative process must agree on the plausibility of the information. 

For this purpose, guidelines such as ASCE (2018) for collecting and storing information should 

be used. 

 

Pre-failure signs 

Before a failure, geotechnical structures show signs of a possible deviation from the behavior 

predicted during the design stage. Geotechnical monitoring, visual inspection by human 

experts, and maintenance are the sources of information from which these pre-failure signs 

can be identified. In geotechnical structures, pre-failure signals may include cracking, 

settlement, deformation, stress increase, and changes in the water table and pore water 

pressures. Information from these signs can be helpful during the forensic investigation 

process. It can give clues about the origin and early development of the failure. 
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Back Analysis 

As mentioned in Section 3.6.1, back analysis is widely used in forensic geotechnical 

engineering. Its purpose is to validate the hypotheses proposed as causes of failure. Back 

analysis can consist of several levels of analysis (Hwang, 2016). The most basic analyses 

employ hand calculations, stability numbers, empirical relationships, or rules of thumb. 

Intermediate analyses employ numerical models with simple constitutive equations. More 

sophisticated analyses require complex geometries and more sophisticated constitutive 

models. Regardless of the complexity of the analyses, the interpretation of back analysis results 

should be viewed only as a decision support tool in which engineering judgment should 

prevail. For this reason, the interpretation should be made by engineers experienced in 

forensic and back analysis. 

 

Technical shortcomings 

Technical shortcomings can appear at any stage of an engineering project. In the design stage, 

errors related to the misapplication of standards and technical specifications, inadequate 

subsurface exploration, and poor assignment of geotechnical models and parameters can be 

expected. There may be substandard construction practices, inadequate monitoring and 

quality control, and an inadequate inspection and maintenance plan during the construction 

and maintenance stages (Babu, 2016).  

 

In any stage of a geotechnical project, failures can occur due to human factors. Melchers & Beck 

(2018) classify human factors into (i) human error and (ii) human intervention. On the one 

hand, failures due to human errors are related to ignorance, carelessness, negligence, or 

insufficient knowledge. On the other hand, human intervention can act in both directions: 

sometimes leading to failure or sometimes minimizing human errors by applying positive 

actions. In this regard, Sowers (1993) evaluated 500 cases and found that 88% of civil 

engineering failures originated from human shortcomings. However, he also emphasized that 

continuous education and retraining could reduce the number of engineering failures and 

negative consequences. Similarly, Jessep et al. (2016) discuss the shortcomings that led to 100 

geotechnical failures. They found that 50% of the failures were caused by inadequate design. 

The remaining 50% were caused by shortcomings in site investigation, unforeseen 

phenomena, and construction malpractice. 
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Observational Method 

The Observational Method is a geotechnical engineering tool developed by K. Terzaghi and 

later established by Peck (1969). It involves designing a geotechnical structure based on the 

best knowledge of materials and considering a wide range of possible behaviors. The overall 

structural performance is monitored during construction based on measuring specific 

parameters. For each possible behavior, corrective actions are stipulated. A comprehensive 

review of the Observational Method combined with Bayesian statistics is described by Spross 

(2016), Spross et al. (2016), and Spross & Johansson (2017). Extending the observational 

method beyond the construction process can help detect the causes of failure in geotechnical 

structures. For example, Zhang et al. (2010) applied the observational method and some 

specific measurements to evaluate the safety of civil structures using Bayesian updating 

techniques. However, the advantages of the observational method in forensic geotechnical 

engineering have not been extensively documented. 

 

Reliability considerations 

Although the variability of geotechnical materials is sufficiently accepted, probability and 

reliability aspects are seldom employed in forensic geotechnical engineering evaluations. 

Phoon et al. (2016) highlight the lack of literature on this subject but pointed out the need and 

potential use of probability tools in forensic geotechnical engineering. Moreover, these authors 

argue that if geotechnical failure is defined as an unacceptable difference between expected 

and observed behavior (Leonards, 1982), a failure should be quantified in a probabilistic sense. 

In other words, probability tools could provide additional information about the causes of 

geotechnical failures and probabilistically estimate the difference between expected and 

actual behavior. 

 

Communicating the causes of failure 

As mentioned above, communicating the causes of failure is an essential step in the forensic 

investigation process. The engineer must present the findings of the forensic studies in a 

manner that experts and non-experts understand. Effective communication about the causes 

of failure plays a prominent role in courts and trials where liability is sought, but it must also 

improve engineering practice through case studies. In this regard, Bell (2000) emphasizes that 

a case study should be approached by considering two types of failure processes: technical and 

procedural. The former refers to analyzing the physical conditions and the interactions 
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between components that led to the failure. The latter refers to constructive deficiencies, 

design deficiencies, lack of quality, and human errors. According to Bell (2000), procedural 

errors could represent more than 90% of the causes of the failure of engineering systems. 

 

Common errors in a forensic investigation: 

Noon (2009) identified at least four (4) common errors in forensic investigations: (i) The first 

error refers to the hasty search for evidence favoring a hypothesis. This error is typical in 

forensic practice because the investigator anticipates conclusions before completing the 

forensic analysis. It is of particular interest in the later stages of the study when only two or 

three failure hypotheses remain under study. (ii) The second common mistake is related to 

possible conflicts that may arise from the conclusions of a forensic study. For example, the 

results of the forensic study could blame an individual or a company concerned about its 

reputation. In this case, forensic investigators must act unbiasedly and maintain professional 

integrity. (iii). The third error is caused by overconfidence in determining the causes of failure. 

In other words, the failure cause is presumed to be so evident that collecting evidence, 

formulating failure hypotheses, and analyzing those hypotheses is considered unnecessary. 

(iv) Finally, the fourth typical shortcoming in forensic investigation is a procedural error 

related to people involved in corrective actions. Although this error is outside the failure 

investigation itself, Noon (2009) points out that implementing such corrective actions cannot 

be left to those involved or responsible for the failure. In this case, from an ethical perspective, 

the solution requires assigning different personnel. 

3.6.3 Advances and research in forensic geotechnical engineering: 
description and discussion 

Civil engineering has traditionally employed forensic engineering to determine failure causes, 

especially failures associated with structural causes. In the forensic study of structures, the 

classic texts of Ratay (2000), Bell (2000), Noon (2001), Kardon (2003), Brady (2012), and 

ASCE (2018) are well-known. However, forensic science in geotechnical engineering was only 

officially recognized in 2006 with the creation of the ISSMGE Technical Commission TC 40 

“Forensic Geotechnical Engineering” (Rao & Babu, 2009). The creation of this technical 

committee does not imply a total absence of forensic geotechnical analyses in previous 

decades, rather studies have tended to focus on particular cases. For example, the Vaiont 

landslide in Italy (Müller L., 1968; Chowdhury, 1987; Dykes & Bromhead, 2018), the Leaning 
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Tower of Pisa (Burland et al., 1998) and the settlement of the Metropolitan Cathedral in Mexico 

City (Guerra, 1992) are well-known forensic geotechnical cases. 

 

Geotechnical engineering has used forensic science deterministically and sometimes without 

the rigorous application of the scientific method. This practice has negatively impacted 

forensic geotechnical studies because conclusions about the causes of failure sometimes seem 

arbitrary or biased (Kool et al., 2019). Several authors have warned about this malpractice and 

have expressed the need to implement new approaches to studying forensic geotechnical 

engineering (Phoon et al., 2016; Gilbert, 2016; Xu & Zhang, 2016). The following paragraphs 

discuss some of the most relevant works in forensic geotechnical engineering developed in the 

last few years. 

 

The Vaiont landslide is perhaps one of the first well-documented cases of forensic geotechnical 

engineering. The landslide occurred in October 1963 due to the reactivation of an old landslide 

and the rising water levels in the reservoir (Alonso et al., 2010). Müller (1968) reviewed the 

primary studies of the Vaiont catastrophe up to 1968 and developed a fault model that 

disproves the failure hypothesis related to the existence of clay on the slip surface. The study 

criticized the use of a posteriori analyses performed by other authors in which critical aspects 

of the limit equilibrium calculation were not considered. He further explains that such 

calculations cannot account for certain aspects of failure due to reservoir level variation. 

Müller’s approach to the Vaiont failure has some characteristics of a forensic study. For 

example, he developed a model of failure and tested some hypotheses. He then compared the 

results of the failure model with the evidence and concluded on the hypotheses. Although 

Müller’s work was not strictly a forensic study, it was the first attempt to test hypotheses 

against the evidence from a geotechnical perspective. 

 

Day (2010) presented one of the first forensic engineering textbooks devoted exclusively to 

geotechnical engineering, especially to the forensic study of foundations. Day provided an 

overview of the practice of forensic foundation engineering in the late 20th century. Extensive 

descriptions of the process of evidence collection through field testing, laboratory testing, 

monitoring, and documentation acquisition are presented. Although the first chapters are 

focused on explaining the process of assignment and investigation based on the scientific 

method, Day presented an investigative process based on an ASCE guideline (Greenspan et al., 
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1989) that does not include hypotheses testing against evidence (Figure 3-5). Moreover, the 

examples presented throughout the book do not reveal how each failure hypothesis was tested 

against geotechnical evidence. Although the text attempts to make the forensic geotechnical 

investigation more rigorous by formalizing some of the processes, it still lacks two essential 

steps of the scientific method: hypothesis development and verification (Falsification 

principle. Popper, 2002). 

 

As was mentioned before, by the beginning of the 21st century, the international geotechnical 

community had identified the need for a more rigorous approach to forensic geotechnics. Thus, 

in 2006 the ISSMGE created the technical committee TC 40, “Forensic Geotechnical 

Engineering,” which later became the TC 302. The purpose of this committee was to prepare 

guidelines for forensic studies, present to the geotechnical community learned lessons, and 

interact with other disciplines. Among TC 302’s functions were the realization of several 

working sessions, dissemination events, and the publication of the book “Forensic 

Geotechnical Engineering” (Rao & Babu, 2016). The publication of this book formalized the 

practice of forensic geotechnical engineering and presented an overview of how researchers 

were approaching the study of geotechnical failures. 

 

In addition to the above, Poulos (2016), Lacasse (2016), and Rao (2016) contributed a set of 

articles that proposed a general framework and guidelines for the practice of forensic 

geotechnical engineering. Poulos focuses his framework on discussing the geotechnical and 

structural factors affecting forensic investigations. He also suggests developing and testing 

credible hypotheses by comparing them with the field, laboratory, and computational model 

results. In addition, The author warns of the need to consider the variability of the terrain, thus 

opening the possibility of using probabilistic tools. Finally, he draws attention to the iterative 

process of hypothesis verification. 

 

On the other hand, Lacasse emphasizes the importance of forensic engineering in resolving 

legal conflicts and highlights the principles of its practice. Such principles are related to the 

“standard of care,” expert evidence, and the litigation process. In other words, it refers to 

scientific and conflict resolution skills required by professionals involved in forensic 

investigations. Rao provides an additional viewpoint on the characteristics of forensic 

investigations. He offers an overview of the general procedures used in forensic analysis and 
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points out that traditional sampling, testing, and design techniques do not fit the requirements 

of forensic work. He further emphasizes the importance of legal issues and the relevance of 

final report writing. 

 

 

Figure 3-5.: Typical steps in forensic investigations. Modified from Day (2010) and 

Greenspan et al. (1989). 

 

The use of back analysis has been and continues to be the most widely employed tool in 

verifying failure hypotheses. For example, Popescu & Schaefer (2016) employed a back 

analysis to compare strength parameters before and after the installation of piles for landslide 

stabilization. Hwang (2016) noted that back analysis is employed as technical evidence to 
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validate hypotheses. His study provides an example of back analysis, the information required, 

and its limitations. The limitations include the complexity of some constitutive models and the 

need for the results to be interpreted by expert engineers. Other notable research papers in 

which back analysis was used for hypothesis validation include (i) Alonso et al. (2016), who 

described the failure of a Caisson produced by storm waves, (ii) a study by Iai (2016) in which 

the failure of a Caisson quay wall due to an earthquake is described, and (iii) the forensic 

analysis of the failure of a retaining wall presented by Babu et al. (2016) 

 

The most recent proposals on the use of probabilistic tools in forensic analyses are presented 

by Gilbert (2016) and Phoon et al. (2016). Gilbert (2016) shows that uncertainty plays a crucial 

role in forensic analysis. He demonstrates from a probabilistic approach that if several 

hypotheses can explain the evidence, it is almost impossible to determine the causes of failure. 

He also argues that collecting additional evidence does not always mean that the uncertainty 

of failure hypotheses is reduced. Furthermore, the author claims that ignoring credible 

hypotheses can lead to erroneous conclusions. 

 

Similarly, Phoon et al. (2016) emphasize the need to include reliability analysis in forensic 

geotechnical engineering to provide objective conclusions. To this end, they propose a 

preliminary methodology consisting of two components: (i) a reliability index describing the 

behavior of the geotechnical system and (ii) a conventional statistical hypothesis test to check 

if the reliability index was met. Although Phoon’s method provides innovation in forensic 

evaluation, it continues to employ the classic null hypothesis significance testing (NHST) that 

Bayesian methods have strongly criticized (Allenby, 1990; Johnson, 1999; Kruschke, 2010; 

Masson, 2011; Szucs & Ioannidis, 2017; Tendeiro & Kiers, 2019). The methodology proposed 

in this doctoral research is based on Phoon’s proposal to include probability and reliability 

tools for forensic geotechnical evaluations. However, it goes further by incorporating Bayesian 

analysis tools to overcome the drawbacks of the classical probability approach. 

 

The Breitenhagen levee failure is a recent and well-documented forensic geotechnical case that 

focuses on the breach of a section of the Saale River levee near Breitenhagen in Germany in 

2013. According to Grubert (2013), an instability process apparently caused the failure due to 

the river’s sustained rise in water levels. Kool et al. (2019) developed a forensic study of this 

levee failure using a systematic approach that included: (i) estimating a range of values for the 



Chapter 3. Forensic Science and Forensic Engineering 
 

57

 

  
 

geotechnical parameters, (ii) establishing a baseline stability model using the expected values 

for the parameters, (iii) defining possible failure scenarios and including the uncertainty in the 

parameters, (iv) determining the most likely failure scenario using sensitivity calculations. 

Kool et al. proposed ten failure scenarios and estimated the factor of safety (FoS) and the 

geometry of the slip surface for each of them. The FoS and failure geometry values for each 

scenario were compared against the available evidence. They concluded that the combination 

of high river levels and locally weak soils caused the failure of the Breitenhagen levee. 

 

In a later study, Kool et al. (2020) reassessed the Breitenhagen levee failure using a Bayesian 

probabilistic approach. As in the 2019 study, a base model and several failure scenarios were 

proposed. For each scenario, a probabilistic model was developed, including pore water 

pressures, method of analysis, and soil behavior model. The likelihood of each scenario was 

estimated by calculating its probability of failure. Subsequently, Bayes’ theorem was used to 

calculate the probability of each scenario given the failure and slip geometry. Unlike the study 

by Kool et al. (2019), the probabilistic results showed that the most likely cause of failure was 

the combination of locally weak soils and high pore pressures inside the levee due to an 

aquifer. 

 

Garcia-Feria et al. (2022) revisited the data of the Breitenhagen levee failure using a 

probabilistic model approach based on Bayesian Networks. Hypotheses and evidence nodes 

were included in the Bayesian networks in order to test each failure hypothesis against the 

collected evidence. Probability queries and the K-Most Probable Explanation (KMPE) 

algorithm were used to find the cause of failure. Unlike Kool et al. (2020), the Bayesian network 

approach concluded that a combination of weak soils and high phreatic levels led to the levee 

failure.  

3.7 Summary 

The main objective of this chapter has been to present a brief introduction to forensic science 

and forensic engineering and to illustrate how these concepts are used in forensic geotechnical 

engineering (FGE). Forensic science is defined as a historical science based on the analysis of 

information. Any forensic analysis should: (i) describe the event (phenomenon or failure), (ii) 

present the logical sequence of events, and (iii) analyze the causal relationships between 

pieces of evidence. In addition, the main ideas can be summarized as follows: 
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 Forensic engineering (FE) is the branch of forensic science in charge of studying 

failures in engineering systems. It has two main focuses: (i) support the resolution of 

legal lawsuits associated with engineering failures, and (ii) study the origin or causes 

of system failures to propose technical solutions and improve engineering practices. 

 

 The scientific method is a systematic approach that aims to reveal the cause-effect 

relationships of a phenomenon through the collection, organization, and analysis of 

evidence or factual data. The scientific method is a central concept in forensic 

engineering. It includes the following stages: (i) hypotheses formulation, (ii) 

contrasting evidence with the proposed hypotheses, and (iii) confirming, modifying, or 

changing hypotheses when new evidence is available. 

 

 Three reasoning processes support forensic engineering: inductive, deductive, and 

abductive. In FE, abductive reasoning is preferred because it is based on hypotheses. 

Hypotheses are explanations of a phenomenon generated on the basis of evidence, 

observation, and measurements. The nature of abductive reasoning implies a 

component of uncertainty because a hypothesis is a possible explanation of a 

phenomenon (failure). 

 

 A forensic geotechnical investigation includes at least four steps: (i) Collection and 

analysis of available evidence, (ii) formulation of credible hypotheses about the causes 

of failure, (iii) testing hypotheses against the available evidence, and (iv) selection of 

one hypothesis related to the most likely cause of failure. 

 

 Due to the unique characteristics of geotechnical engineering, some aspects of forensic 

geotechnical analysis need special attention. For example, although back analysis has 

been widely used in FGE, its results should be viewed only as a decision support tool 

in which engineering judgment should prevail. The methodology proposed in this 

thesis uses back analysis as a support tool, but in addition, it includes engineering 

judgment through probabilistic techniques such as POR and BN. 

 



 

  
 

4. Bayesian Methodology for Decision Support 
in Forensic Geotechnical Engineering 

This chapter describes the proposed Bayesian methodology for decision support in forensic 

geotechnical engineering (FGE). The methodology focuses on decision-making about the most 

probable causes of geotechnical failures by formulating multiple hypotheses about the 

conditions that may have led to the failures. Then, the hypotheses are evaluated 

probabilistically using two techniques: (i) Bayesian hypotheses comparison via posterior odds 

ratio and (ii) Bayesian networks (BN). The result is the selection of one (or several) hypotheses 

as the most probable causes of failure. 

 

The first section introduces the methodology and describes the proposed steps for collecting 

evidence, formulating hypotheses, constructing the probability model, and comparing 

hypotheses. The methodology includes the elements presented in Chapters 2 and 3 and some 

additional elements proposed by the author of this thesis based on posterior odds ratio and 

Bayesian networks techniques. The second section presents a benchmark example (Schweiger, 

2006) formulated from a well-known geotechnical problem to describe and validate the 

methodology for decision support using the posterior odds ratio technique and Bayesian 

networks. The third section uses a well-documented levee failure analysis (Kool et al., 2019) 

to apply the proposed methodology. 

4.1 Proposed Bayesian Methodology for Decision Support 

The proposed Bayesian methodology for decision support in FGE consists of three main stages.  

Each stage includes several steps focused on providing exhaustive information regarding 

evidence, failure models, and hypotheses comparison. The stages and their steps follow the 

principles of forensic engineering methodologies suggested in the past (Bell, 2000; Noon, 

2009; Brady, 2012; Poulos, 2016; ASCE, 2018; Terwel et al., 2018). Figure 4-1 depicts a 
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flowchart of the proposed methodology. The main stages and their steps are described in detail 

in the following subsections. 

4.1.1 Stage 1. Preliminary steps 

Preliminary steps include: (i) collecting evidence and (ii) formulating failure hypotheses about 

the causes of failure. 

Collecting evidence 

The purpose of collecting evidence is to validate failure hypotheses. The evidence and their 

analysis should be able to validate or disapprove hypotheses about the causes of failure with 

geotechnical origins. For example, if a hypothesis states that an elevation in the water table 

caused an excavation failure, the collected evidence should focus on finding information on 

water table levels before, during, and after the failure.  

 

Since the primary purpose of evidence is to validate hypotheses, the collection process must 

be unbiased and objective (Rao, 2016). Objectivity ensures that no part of the evidence is 

altered or hidden to favor or disprove a hypothesis. Unbiasedness is especially important 

because models are susceptible to modifications if the input information (i.e., evidence) is 

disturbed. Therefore, alteration of water table records, pore water pressures, stress states, 

construction process, or geo-mechanic parameters can decisively influence conclusions about 

the causes of failure. 

 

The evidence collected from geotechnical failures can be qualitative or quantitative. 

Qualitative evidence is common in geotechnical engineering. It describes stability conditions, 

deformation magnitudes, or the characteristics under which a failure occurred. The stability of 

a geotechnical system is the most common qualitative evidence used in forensic assessments. 

In this case, an expert defines the failure of a geotechnical system based on some functionality 

or deformation criteria. The expert can also recognize a failure if its consequences are 

observable. For example, a levee failure can be recognized by flooding in nearby areas, and an 

excavation failure can be identified by the damage caused to adjacent structures (Kool et al., 

2019).  
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Figure 4-1. Proposed Bayesian methodology for decision support in Forensic Geotechnical 

Engineering. 
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Quantitative evidence focuses on monitoring the performance of critical variables that 

describe the geotechnical system. In general, quantitative evidence is more reliable and 

accurate than qualitative evidence. However, collecting quantitative evidence is challenging 

because, in most cases, it requires a monitoring system conceived in the design and 

implemented during the construction and operation stages. Deformations, pore water 

pressures, and stress measurements are standard monitoring variables used as quantitative 

evidence. Unfortunately, quantitative evidence is not always available in forensic assessments 

because most failed structures do not include an appropriate monitoring system, or the 

information was not acquired. 

 

In some cases, qualitative and quantitative evidence are mutually interchangeable. In other 

words, qualitative evidence can be translated into quantitative and vice versa. For example, 

when limit equilibrium methods are used, a qualitative descriptor such as “unstable” can be 

translated into a quantitative factor such as the Factor of Safety. In this case, a value less or 

equal to 1.0 means an “unstable” stability condition. Likewise, qualitative descriptors such as 

high, medium, low, or yes and no can be used to simplify the range of quantitative variables 

used in complex numerical models. 

 

The evidence must be carefully classified and organized regardless of its origin. The Bayesian 

methodology proposed in this thesis relies on this organization to draw conclusions about the 

causes of geotechnical failures. For the purposes of this thesis, evidence will be assembled into 

a set 𝐷, where each element 𝑑   corresponds to a piece of evidence. As demonstrated in 

example of Section 4.2, the amount of evidence from the set 𝐷 included in the forensic analysis 

is decisive for drawing conclusions.  In summary, the classification and proper use of pieces of 

evidence are the basis for formulating failure hypotheses and identifying the most probable 

causes of failure.  

Formulating failure hypotheses 

Formulating competing hypotheses about the causes of failure is one of the most challenging 

tasks in forensic geotechnical analyses. Each hypothesis must be able to explain the 

geotechnical failure and must be tested against the evidence. As mentioned in Chapter 3, the 

inductive process used in the conventional design is inappropriate for formulating hypotheses 

because it uses apriorism reasoning (Brady, 2012). Therefore, abductive reasoning should be 
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used instead of apriorism reasoning, and evidence should guide the formulation of failure 

hypotheses. Some critical factors for formulating failure hypotheses are described below. 

 

Formulating “credible” failure hypotheses 

A critical aspect of the formulation process is that competing hypotheses must be credible. All 

competing hypotheses should be based on the predictable behavior of soil/rock materials and 

expected external/internal forces acting on the geotechnical structure. In geotechnical 

engineering, credible hypotheses are associated with changes in stress states. These changes 

result from the variation of: 

 

 Pore-water pressures: Changes in pore-water pressures within soils/rocks may be 

caused by the increase (or decrease) in groundwater levels. For example, sustained 

heavy rainfalls may raise the water table in just a few hours and produce changes in 

pore-water pressures, resulting in variations of effective stress states within the soil. 

An excavation may lead to a two/ three-dimensional water flow through the soil/rock, 

causing a decrease in the water table. This decrease also results in changes in effective 

stress states. 

 

 External/internal forces: Variations in external or internal forces can also change the 

stress state within the soil/rock mass. External forces such as point or linear forces 

caused by vehicular traffic, construction equipment, nearby buildings, earthquakes, or 

excavation activities may significantly change stress states. Internal forces are less 

susceptible to variation because they are related to the unit weight of soils and rocks. 

However, a variation in pore water pressures within the soil/rock can cause a 

significant change in internal forces, especially those related to effective stresses. 

 

 Soil/rock-environment interaction and their influence on geomechanical properties: 

Weathering, erosion, and chemical and biological changes illustrate the soil/rock-

environment interaction that may impact strength and deformation properties. 

Although the impact of these processes is well known in geotechnical engineering, 

their quantification is difficult due to the complex physical-chemical processes that 

occur within the soil/rock (Gens, 2010). 
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Use of semantic expressions (idioms) 

The cause-effect relationships or semantic expressions (idioms) described in Section 2.2.7 can 

be used to formulate failure hypotheses. Hypotheses should be verbalized in a way that cause-

effect relationships are identifiable. In other words, input (cause) variables should be clearly 

distinguished from output (effect) variables. Geotechnical idioms are helpful for this 

classification because they usually reflect how geotechnical models work. The following are 

some examples of semantic expressions (idioms) used as failure hypotheses: 

 

 Example 1: The rise of the water table to level -1.0 m led to slope instability. 

 Example 2: An unexpected surcharge of 60 kN/m near the excavation caused a 

settlement of 0.60 m. 

 Example 3: Weathering of the rock mass reduced joint strength. Therefore, several 

wedges collapsed. 

 Example 4: The earth retaining structure was underdesigned. Therefore, the structure 

was not able to support lateral earth pressures.  

 Example 5: The failure was a random event. Therefore, although soil/rock materials 

were correctly characterized and geotechnical structures adequately designed, the 

failure occurred because of the randomness of natural materials (i.e., sometimes the 

unpredictable happens). 

 

Example 1 implies a direct cause-effect relationship between the water table and slope 

stability. This relationship can be estimated through a physical-mathematical model such as 

limit equilibrium or finite elements. Example 2 is a typical cause-effect relationship between 

external forces and deformations. The settlement caused by the unexpected force can be 

estimated using finite element methods with constitutive soil models such as cam-clay, 

hardening, or soft soil. Example 3 relates the degradation of rock properties with wedge failure 

in a rock mass. In this case, a physical-mathematical function needs to define the joint strength 

reduction due to weathering. Example 4 involves a cause-effect relationship in which an 

erroneous design caused a failure. Hypotheses like the one in Example 4 require careful 

consideration because they involve human errors. Finally, Example 5 is considered the null 

hypothesis or the baseline scenario (i.e., the original design). Its purpose is to be compared 

with other hypotheses and, if feasible, to be discarded. 
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Collectively exhaustive and mutually exclusive hypotheses  

In order to fulfill probability requirements, hypotheses about the causes of a geotechnical 

failure must be collectively exhaustive. In other words, credible hypotheses should together 

encompass the entire range of possible causes that could explain the geotechnical failure. This 

condition guarantees that at least one hypothesis can explain the causes of failure. Therefore, 

if there is one hypothesis that seems feasible, it should be included in the forensic analysis. If 

some hypotheses are not included in the analysis, they cannot be probabilistically evaluated 

using the proposed methodology.  

 

Regarding the concept of mutually exclusive hypotheses, geotechnical failures can be a 

combination of multiple causes. Therefore, hypotheses are not mutually exclusive because 

multiple causes can co-occur. One typical example is about slope instabilities caused by 

unexpected surcharges and heavy rainfalls infiltrating soils. Another example is an excavation 

failure caused by an elevation of the water table and uncontrolled construction processes. 

Although the hypotheses do not necessarily have to be exclusive, the possible states of each 

hypothesis must be exclusive. For example, the failure of a geotechnical system cannot be 

explained by both rising and falling water tables simultaneously. 

 

As a final remark about hypotheses formulation, it is worth mentioning that all credible 

hypotheses must be able to be translated into a probabilistic model. In practice, that means 

that cause-effect relationships between variables must be able to be represented by physical-

mathematical models in which uncertainty is included. Illustrations of probabilistic models, 

such as the posterior odds ratio using performance indicators (e.g., the factor of safety) and 

Bayesian networks, are presented in Sections 4.2 and 4.3.    

4.1.2 Stage 2. Constructing the Probabilistic Failure Model 

The probabilistic failure model includes two steps: (i) defining random variables and (ii) 

deriving the probabilistic failure model. Model accuracy is evaluated using a decision node. 

Each step is described below. 

Defining random variables  

Once the failure hypotheses have been formulated, the next step is to define the random 

variables included in the hypotheses. By default, all geotechnical variables are random. 



66 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

However, the randomness of some of them may be minor or have limited influence on 

geotechnical behavior. Therefore, random variables are selected according to the following 

criteria: 

 

 Variables related to one or more hypotheses should be considered random variables. 

For example, if a hypothesis associates the geotechnical failure to the elevation of the 

water table, then the variable “water table” should include all possible credible states 

of the water table to be evaluated. 

 

 In the case of geotechnical failures related to the strength of soil/rock materials (i.e., 

Strength Limit State analysis), strength variables should be defined as random 

variables. The effective angle of shear resistance 𝜙′, effective cohesion 𝑐′, pre-

overburden pressure 𝑃𝑂𝑃, shear strength ratio 𝑆, and strength increase exponent 𝑚, 

are examples of random strength variables in both limit equilibrium and finite element 

methods. 

 

 For Service Limit State analysis, i.e., when deformations are conditioning the 

geotechnical analysis, variables such as Young’s modulus 𝐸, shear modulus 𝐺, 

compression index 𝐶 ,  swelling index 𝐶 , and initial void ratio 𝑒 ,  among others, should 

be considered as random variables. 

 

 Performance variables (i.e., evidence variables) such as Factor of Safety 𝐹𝑜𝑆, stability 

condition 𝑆𝐶, settlement 𝜌, or inclination 𝑖 are random because they depend on random 

input variables. 

 

Random variables can be defined as discrete or continuous variables. If a variable can only take 

a finite number of states, then the variable should be treated as discrete. On the other hand, if 

the variable can take an infinite number of states, then the variable should be treated as 

continuous. Most random geotechnical variables are continuous due to the characteristics of 

physical-mathematical models. For example, strength and deformation parameters are 

continuous random variables. However, for the sake of simplicity, some geotechnical models 

can be simplified by discretizing the range of a continuous variable. A classic example of 
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discretization is the Factor of Safety (FoS). The FoS is continuous in the interval [0, ∞), but it 

is commonly discretized into two states: stable for FoS>1.0 and unstable for FoS≤1.0. 

 

The complexity of some geotechnical models and the number of random variables could make 

Bayesian probabilistic analysis intractable, mainly because of a significant increase in 

computational cost. In these cases, it is necessary to resort to two strategies: (i) simplify 

geotechnical models and (ii) reduce the number of random variables. Geotechnical model 

simplification is feasible when the simplified model can reliably explain the relationships 

between input (hypotheses) variables and output (evidence) variables. For instance, a limit 

equilibrium method for a slope stability model could be used instead of a computational 

strength reduction method (i.e., finite element method). However, model simplification is not 

always viable, and sometimes complex models should be used.  

 

Regarding the number of variables, comparison techniques such as Bayesian networks and 

posterior odds ratio (refer to Figure 4-1) require a limited number of random variables. 

Critical random variables should be identified by exploring the sensitivity of the geotechnical 

model. In other words, once the model is selected, only the variables with the most significant 

impact on failure should be randomized. In addition, the randomization should consider the 

geotechnical variables involved in the hypotheses about the causes of failure. 

Deriving Failure Model 

A geotechnical failure model describes how performance variables behave. A reliable 

geotechnical failure model should be capable of including failure hypotheses defined in 

previous stages. For probabilistic analysis, performance variables are random because the 

model’s input variables are also random. Depending on the performance variables, the failure 

model can consider failure by resistance (Ultimate Limit State -ULS-) or failure by deformation 

(Serviceability Limit State -SLS-). The factor of safety (FoS) and the Margin of Safety (MS) are 

the most common performance variables used in ULS analysis (Melchers & Beck, 2018). Both 

variables can be represented by probability density functions in which a limit state defines the 

probability of failure. In the case of the FoS, the probability of failure is estimated as 𝑃 =

𝑃(𝐹𝑜𝑆 ≤ 1.0). For the MS, the probability of failure is calculated as 𝑃 = 𝑃(𝑀𝑆 ≤ 0).  
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A probabilistic failure model for SLS can be defined similarly to a ULS analysis. Deformations 

and displacements are performance variables frequently used in SLS analysis. However, unlike 

ULS, the performance variables in an SLS model do not have a unique limit state. For example, 

the allowable limit deformation for a road slope is larger than the allowable limit deformation 

for a dam slope. Similarly, the maximum allowable differential settlement for a residential 

building is greater than for a nuclear power plant. Therefore, each geotechnical structure 

should define its performance variables for SLS analyses.  

 

In Bayesian forensic analyses, computing the failure model is the most time-consuming and 

computationally expensive task. Several simplified techniques for estimating failure models, 

such as direct integration and second-moment methods, are available in the literature. 

However, these methods limit the number of random variables and their type of probability 

distribution functions. In Sections 4.2, 4.3 and Chapter 5, only numerical Monte Carlo 

simulations are used. The Monte Carlo technique artificially simulates thousands of 

experiments based on the probability distribution of input (hypotheses) variables. Each 

experiment samples a value from each random variable and estimates performance variables 

using a deterministic geotechnical (physical-mathematical) model. Since the experiment is 

repeated thousands of times, enough observations of the performance variables are obtained. 

Consequently, the probability of failure can be estimated using Equation 4-1. 

 

𝑃 =
𝑛

𝑁
  

(4-1) 

 

where 𝑛  is the number of experiments for which a failure (or undesired performance) is 

observed, and 𝑁 is the total number of experiments.  

 

The accuracy of the failure model and hence the probability of failure is a function of the total 

number of experiments 𝑁. On the one hand, too few experiments will result in low model 

accuracy and, therefore, a poor approximation of the probability of failure. On the other hand, 

too many experiments will result in a longer computational time and higher computational 

cost. A trade-off between accuracy and computational cost can be estimated by convergence 

analyses (Melchers & Beck, 2018). Convergence analysis estimates the value of the probability 

of failure for a progressive number of experiments using a convergence plot. The value 𝑁 is 
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defined once stability is reached in the convergence plot. Additional convergence analysis 

using standard deviation for performance variables can also be used to estimate 𝑁. For 

example, Figure 4-2 (a) shows a convergence plot for the probability of failure 𝑃(𝑓), and 

Figure 4-2 (b) a convergence plot for the standard deviation of 𝑃(𝑓). Note that in this case 

after 600 experiments, both values converge to unique values. 

 

 

Figure 4-2. Typical convergence plot for 𝑃(𝑓) and standard deviation of 𝑃(𝑓). 

 

4.1.3 Stage 3. Probabilistic Hypothesis Comparison 

The hypothesis comparison is the core of the Bayesian methodology proposed in this thesis. 

Two Bayesian techniques for hypothesis comparison are chosen: posterior odds ratio and 

Bayesian networks. Both techniques are based on Bayesian probability but differ in how they 

deal with information (i.e., evidence) and how the results are reported. Each Bayesian 

comparison technique is described below. 

Posterior Odds Ratio (POR) 

The method described in this section compares the probability of multiple hypotheses using 

the odds ratio. The odds of hypotheses 𝐻  and 𝐻  (denoted as 𝑂(𝐻 )) is the ratio of the chance 

of 𝐻  being true to the chance of 𝐻  being true. Hypotheses comparison via posterior odds ratio 

includes the following steps: 
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Calculate the Likelihood 

Use the available evidence to estimate the likelihood term in the Bayes theorem (see Equation 

2-7). This step consists in estimating the probability of observing the evidence 𝑑 , given that 

hypothesis 𝐻  is true (i.e., 𝑃(𝑑  | 𝐻 )). The probability can be estimated from the results of 

Monte Carlo simulations described in Section 4.1.2 by conditioning the evidence 𝑑  on 

hypothesis 𝐻 . For example, let’s assume that evidence  𝑑  corresponds to an observed slope 

instability, evidence  𝑑  corresponds to a circular slip surface, and hypothesis 𝐻  states that a 

slope failure was caused by a high-water table. Therefore, the probability of observing an 

instability and a circular slip surface, given that a high-water table caused the failure, can be 

estimated from Monte Carlo simulations by counting the number of failures with circular slip 

surfaces conditioned on a high-water table. 

 

Pieces of evidence can be included one at a time in order to assess their impact on the 

hypotheses. However, the complete analysis requires all available evidence to be included and 

contrasted with each hypothesis. 

 

Define prior odds for failure hypotheses 

Prior odds (written as 𝑂 𝐻 ) compares the probability of hypotheses 𝐻  and 𝐻  before any 

evidence is observed or included in the analysis. In other words, prior odds represent how 

strongly a forensic investigator believes in a hypothesis 𝐻  compared to hypothesis 𝐻  before 

conducting a Bayesian analysis. Prior odds can be assigned based on well-established 

knowledge, experience in similar geotechnical failures, or expert opinion. Given that an 

incorrect assignment of prior odds can lead to erroneous results and unrealistic conclusions 

about causes of failure, its definition must be implemented carefully. Incorrect prior odds 

assignments are evident when the value of 𝑂 𝐻  is unreasonably large or small. For example, 

two hypotheses are formulated to explain the causes of an excavation failure. The hypothesis 

𝐻  states that an unexpected surcharge value caused the failure, whereas the hypothesis 𝐻  

affirms that an inappropriate construction sequence led to the failure. If the odds ratio for 𝐻  

and 𝐻  is defined as 𝑂(𝐻 ) = 100, it means that the hypothesis 𝐻  is one hundred times more 

likely to be true than the hypothesis 𝐻  before any evidence is observed. Clearly 𝐻 , is favored 

over 𝐻  without a convincing technical or probabilistic argument. When there is no well-

established prior knowledge about the causes of a geotechnical failure, prior odds should be 
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defined as 𝑂(𝐻 ) = 1.0. That is, both hypotheses 𝐻  and 𝐻  are equally likely before including 

any evidence or conducting a Bayesian analysis. 

 

Calculate the posterior odds ratio 

The posterior odds ratio is calculated using Equation 2-10. Forensic investigators can use the 

boundaries defined in Table 2-1 or Figure 2-2 as a guide to interpret results and decide how 

many times the hypothesis 𝐻  explains the failure better than the hypothesis 𝐻 . In the case of 

𝑂 𝐻 = 1.0, the posterior odds value equals the Bayes Factor (see Section 2.1.4). In order to 

verify the influence of prior odds on posterior odds, additional analysis can be carried out by 

modifying prior odds values and the amount of evidence included in the analysis.  

 

Pairwise comparisons 

Pairwise comparisons contrast all hypotheses to each other using the posterior odds ratio. The 

probabilistic comparison allows the forensic investigator to support or discredit some 

hypotheses formulated in previous stages and draw conclusions about the most probable 

causes of geotechnical failures.  

 

Bayesian Networks 

Bayesian networks (BNs) are the second suggested technique for comparing hypotheses about 

causes of failure. They encode all the information of the probabilistic failure model in its 

structure, allowing for more complex probabilistic queries. The construction of BNs and its 

hypotheses comparison technique is described below. 

 

Identifying hypotheses and evidence variables 

All random variables should be identified and classified into input (hypothesis) or output 

(evidence) variables, following the criteria described in Section 4.1.2. On the one hand, input 

(hypotheses) variables are those related to the failure hypotheses formulated in the 

preliminary steps described in Section 4.1.1. Soil constitutive parameters, pore-water 

pressures, and stress states are good examples of input (hypothesis) variables. On the other 

hand, output (evidence) variables are those that can be easily measured or observed. For 

example, slope stability conditions, deformations, or water table levels are output (evidence) 

variables easily measured by devices or defined through expert opinion. 
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Input (hypotheses) and output (evidence) variables are usually represented by discrete 

random variables. BNs use discrete random variables to simplify calculations through 

conditional probability tables (CPT). Since most geotechnical variables are continuous, it is 

necessary to discretize them into a finite set of states (intervals). For example, a discretization 

process for a continuous random variable such as the angle of shear resistance (𝜙′) involves 

the definition of several discrete states that cover the entire range of credible 𝜙′ values. Three 

methods for discretization are suggested: (i) Define the number of states according to 

geotechnical criteria. Low, medium, high or stable and unstable are common descriptors used 

in geotechnical engineering. However, these descriptors should have a physical meaning and 

must be widely accepted. (ii) Divide the range of the random variable into 𝑛 bins. Although this 

process is straightforward, loss of information is a major concern when the value of 𝑛 is small 

(Antonucci, 2018). (iii) Use discretization algorithms such as those presented by Drezner & 

Zerom (2016) and Fenton & Neil (2019). 

 

Constructing the Direct Acyclic Graph (DAG) 

Before constructing the DAG for hypotheses comparison, causal relationships (i.e., causality) 

between hypotheses and evidence variables should be identified. Causality is the influence of 

a variable on another represented by deterministic or probabilistic relationships. Since the 

proposed methodology is based on Bayesian tools, probabilistic relationships are the focus of 

the analysis. Causality can be inferred from natural cause-effect relationships represented by 

physical models or semantic relationships known as idioms (refer to Chapter 2). Physical 

models use mathematical functions to describe the causality between variables. A classic 

example is the principle of effective stress (𝜎′) within a soil mass. 𝜎′ is a function of the total 

stress (𝜎) and the pore water pressure (𝑢). Although the relationship is deterministic, it can 

become probabilistic by including uncertainty in its parameters. In the case of idioms, 

geotechnical knowledge is encoded in its structure. The five basic idioms described in Section 

2.2.7 can be used to infer the probabilistic relationship between variables. 

 

Once causality relationships between variables are identified, the DAG is constructed by 

assigning one node to each random variable and connecting nodes through edges (arrows). 

Edges indicate the direction of the cause-effect relationship between the connected nodes and 

operate as a channel for transferring information (see Section 2.2.7). The final DAG structure 

must reflect the dependence (or independence) between the variables included in the forensic 
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geotechnical analysis. In other words, the hypotheses about the causes of failure and the pieces 

of evidence must be represented in the DAG structure.  

 

The process of constructing the DAG begins by identifying cause-effect relationships among a 

limited number of variables. Each set leads to a small DAG, and these individual DAGs can 

subsequently be merged to create a more extensive DAG. An example of constructing an 

expanded DAG for analyzing a geotechnical failure is detailed in Chapter 5. 

 

Eliciting the Conditional Probability Tables CPT 

Databases, expert knowledge, or probabilistic failure models can be used to elicit the CPTs. If 

a failure model is available, probabilistic relationships can be deduced from the results of 

Monte Carlo simulations. Refer to Section 2.2.8 for a more detailed description.  

 

Comparing hypotheses using probability queries 

A direct acyclic graph (DAG) and its conditional probability tables (CPTs) form a BN. From a 

broad perspective, a BN is considered both a metamodel and an expert system. A BN operates 

as a metamodel because it is a simplified model of a more extensive probabilistic model 

obtained from Monte Carlo simulations. Additionally, a BN is considered an expert system 

because it can answer probability questions (i.e., conditional probability queries). In 

conclusion, a BN emulates the decision-making process of a human expert for making 

decisions under uncertainty. 

 

In FGE, probability queries are used to determine the probability of a failure hypothesis under 

some evidence. The evidence is included by instantiating one or several nodes (i.e., assigning 

a unique value to an evidence node) and examining the configuration for the rest of the nodes. 

For example, a BN can be queried about the probability of observing an unstable condition 

(ST=unstable) near an excavation and a settlement(𝜌) greater than 0.80 m, given that a high 

elevation of the water table (𝑊𝑇) and an unexpected surcharge (𝑆𝑐ℎ) higher than 100 kPa 

were measured. In mathematical terms, the query is written as 𝑃(𝑆𝑇 = 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝜌 >

0.80𝑚 | 𝑊𝑇 = ℎ𝑖𝑔ℎ, 𝑆𝑐ℎ > 100 𝑘𝑁). In this case, the WT and Sch nodes are instantiated, 

whereas the configuration of 𝜌 and ST nodes are evaluated. 
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The above query is an example of a complex probability query that can be solved through a 

BN. BNs generally allow for more complex probability queries than the posterior odds ratio 

(POR) technique. This characteristic is advantageous because additional hypotheses can be 

formulated without further computational experiments or Monte Carlo simulations. For 

example, the same BN can be used to estimate the probability of several hypotheses, such as: 

 

 The probability of observing an unstable condition and a settlement equal to or 

greater than 0.80 m near the excavation, given that the water table elevation 

remains constant, and the surcharge is lower than 100 kN: 

 

𝑃(𝑆𝑇 = 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝜌 ≥ 0.80𝑚 |𝑊𝑇 = 𝑐𝑜𝑛𝑠𝑡, 𝑆𝑐ℎ < 100 𝑘𝑁) 

(4-2) 

 

 The probability of observing an unstable condition and a settlement equal to or 

greater than 0.80 m near the excavation, given that the water table elevation is low, 

and the surcharge is equal to 100 kN: 

 

𝑃(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝜌 ≥ 0.80𝑚 |𝑊𝑇 = 𝑙𝑜𝑤, 𝑆𝑐ℎ = 100 𝑘𝑁) 

(4-3) 

 

 The probability of observing an unstable condition and a settlement between 0.5 

m and 0.8 m near the excavation, given that the water table elevation remains 

constant, and the surcharge is higher than 100 kN: 

 

 

𝑃(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 0.50𝑚 ≥  𝜌 ≥ 0.80𝑚 |𝑊𝑇 = 𝑐𝑜𝑛𝑠𝑡, 𝑆𝑐ℎ > 100 𝑘𝑁) 

(4-4) 

 

As described in Section 2.2.10, finding Most Probable Explanations (MPE) is an additional 

feature of BNs. The proposed Bayesian methodology uses the MPE for finding the configuration 

of the unobserved nodes (i.e., hypothesis nodes) consistent with the evidence included in the 

observed nodes (i.e., evidence nodes). Several configurations of hypotheses nodes can explain 

the evidence included in the observed nodes. For example, an excavation failure can be 
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explained by two different hypotheses: one related to an elevation of the water table and 

another to an unexpected surcharge. In this case, the MPE calculates which of these two 

hypotheses is most probable and designates it as the most probable cause of geotechnical 

failure. However, if the forensic investigator is interested in examining several causes of failure 

consistent with the evidence, the K-MPE can be implemented. In the K-MPE, the K (K is a 

natural number) explanations with the highest probabilities are designated as the most 

probable causes of failure.  

4.2 The ERTC7 Benchmark Exercise 

The ERTC7 benchmark exercise presented by Schweiger (2006) is used in this section to 

validate the posterior odds ratio (POR) and Bayesian network (BN) techniques for hypotheses 

comparison in FGE. Some modifications are implemented from the original benchmark 

exercise. For example, the embedded length of the wall is deliberately defined to be short in 

order to induce a failure. A variation in the water table position is also included. Then, the POR 

and BN techniques are used to validate if they are able to detect the short embedded length as 

the main cause of failure. The main stages and the specific steps of the POR and BN branches 

of Figure 4-1 are applied to the ERTC7.  

4.2.1 General description of the ERTC7 

The original ERTC7 benchmark exercise (Schweiger, 2006) aimed to determine the required 

embedded length of the wall for a deep excavation supported by a strut (Figure 4-3). The 

following are some additional features considered in the original modeling of the ERTC7 

benchmark exercise: 

 

 A permanent surcharge of 10kPa and a variable surcharge of 50kPa are located at the top 

of the excavation (Figure 4-3). 

 

 The water table (WT) is located at -4.0 m below the ground surface. 

 

 The bedrock is more than 20m below the ground surface. 
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 Lowering of the WT and pore water pressures are modeled via steady-state flow 

calculations. 

 

In the original benchmark exercise, thirteen researchers from different countries submitted 

their results regarding the required embedded length of the wall. After a comprehensive 

revision, Schweiger (2006) found significant differences in the results due to several analysis  

 

methods and assumptions made during the calculations. In particular, the embedded length of 

the wall varied between 1.5 m and 5.5 m, with an average of 3.5 m. According to Schweiger 

(2006), the differences were mainly due to: (i) the assumed soil-wall friction values, (ii) the 

methods of analysis employed, such as finite element, finite difference, and limit equilibrium, 

and (iii) different design methods, strength reduction factors, load magnification factors, and 

safety factors used in calculations.  

 

Figure 4-3. The ERTC7 benchmark exercise (Modified from Schweiger, 2006). 

 

Table 4-1 presents the average values of soil and wall parameters and the type of limit 

equilibrium equations used in this POR example. Additionally, a sequence of the construction 

phases is shown in Figure 4-4.   
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Table 4-1. ERTC7 benchmark exercise. Adopted values for forensic assessment. 

Characteristic Variable Value 

Geometry See Figure 4-3 - 

Soil  

Unit weight above WT 𝛾  (kN/m3) 19 

Unit weight below WT 𝛾  (kN/m3) 20 

Effective cohesion c’ (kPa) 10 

Effective shear resistance angle 𝜙′ (º) 27.5 

Young’s modulus (kPa) 3.0x104 

Poisson´s ratio (-) 0.3 

Wall 

Unit weight 𝛾  (kN/m3) 24 

Young’s modulus (kPa) 3.0x107 

Poisson´s ratio (-) 0.18 

Soil-wall friction (º)  𝜙′ 

Thickness (m) 0.8 

Construction 
phases 

0 – Initial phase: Generation of initial 
effective stress based on pore water 
pressures and state parameters. K0 (-) 

0.5 

1 – Wall and surcharge: Installation of 
wall and activation of surcharge. 
Elastoplastic drained analysis. 

- 

2 – First excavation: Excavation to level -
2.0. Elastoplastic drained analysis. 

- 

3 – Strut and second excavation: Strut 
installation at -1.5 m and second 
excavation to level -4.0 m. Elastoplastic 
drained analysis. 

- 

4 – WT lowering and third excavation: 
Pore pressure calculation using steady-
state flow conditions. Excavation to level 
-6.0 m using elastoplastic drained 
analysis. 

- 

Limit 
equilibrium 
analysis 

Jambu’s equations with circular slip 
surfaces - 
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Figure 4-4. ERTC7 Benchmark exercise: Phases of the construction process for numerical 

modeling. 
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4.2.2 Stage 1. Preliminary Steps: Evidence and Failure Hypotheses 
(Hypothetical failure scenario) 

A hypothetical failure scenario of the ERTC7 is defined to validate the POR's ability to detect 

the cause of failure. The hypothetical scenario consists of a deep excavation failure with the 

characteristics presented in Figure 4-5 and Table 4-2. The excavation’s stability condition 

and the slip surface’s geometry are used as the main pieces of evidence. The variables 

represented by a question mark in Figure 4-5 are considered hypothesis variables (i.e., the 

surcharge - SCh, the elevation of the water table - WT, and embedded length – El ).  

 

For the hypothetical ERTC7 failure, it is known that a short embedded length of the wall equal 

to 2.0 m (i.e., 𝐸𝑙 ≤ 2.0 𝑚) led to the failure. However, in an actual forensic assessment, the 

cause of failure is not known in advance. Therefore, several failure hypotheses are proposed 

and then evaluated to verify if the proposed Bayesian methodology can probabilistically 

predict the actual cause of failure.  

 

  

Figure 4-5. The ERTC7 hypothetical failure scenario. 
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Table 4-2. ERCT7. List of variables used as main pieces of evidence. 

Observed variable Condition Value 

Excavation stability  Unstable 𝐹𝑜𝑆 ≤ 1.0 

Slip surface Length of the slip surface  𝑆 < 26 𝑚 

 

Assume that for the excavation, the actual values of the embedded wall length (El), the water 

table position (WT), and the overburden (Sch) at the time of failure are unknown. Three failure 

hypotheses (𝐻 to 𝐻 ) related to these unknown variables are proposed by different parties 

involved in the forensic investigation. Additionally, the design values (baseline scenario) are 

defined as the null hypothesis 𝐻 . The proposed hypotheses are as follows: 

 

 The first hypothesis 𝐻  (proposed by the construction contractor) states that the wall 

was constructed according to the design (i.e., 𝐸𝑙 = 3.5 𝑚). However, after construction, 

there was an unexpected elevation of the water table (WT) to the -2.0 m level. This 

change in the WT level caused an increase in the hydrostatic pressures and the 

subsequent excavation failure. 

 

 The second hypothesis 𝐻  (proposed by the project owner) suggests that the wall was 

constructed according to the design. However, the failure was triggered by an 

unforeseen increase in the surcharge caused by vehicular and machinery traffic near 

the excavation site.  

 

 The third hypothesis 𝐻  (proposed by the affected neighbors and the local authority) 

suggests that some errors during the construction process caused the failure. In 

particular, the wall has a shorter embedded length than contemplated in the design. 

 

 The null hypothesis 𝐻  (baseline scenario) states that the construction process fulfilled 

the design requirements. Consequently, the excavation failure was caused only by 

chance (i.e., it was a random event). Table 4-3 summarizes the failure hypotheses and 

their values.  
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Table 4-3. ERCT7. Summary of failure hypotheses and their variable values. 

Variable 

Hypothesis 𝑯𝟎 

Simple chance or 

random event 

Hypothesis 𝑯𝟏  

Elevation of the 

water table (WT) 

Hypothesis 𝑯𝟐 

Increase in the 

surcharge 

Hypothesis 𝑯𝟑 

Short embedded 

length of the wall 

Embedded length of 
the wall (m) 

3.5 3.5 3.5 < 3.5 

Water table position  
(m) 

≤-4.0 ≥-2.0 ≤-4.0 ≤-4.0 

Surcharge magnitude 
(kPa) 

≤ 50 ≤ 50 > 50 ≤ 50 

 

4.2.3 Stage 2. Constructing the Probabilistic Failure Model 

Random Variables 

The original ERTC7 Benchmark exercise uses deterministic values for both material and 

geometry variables. However, for the purposes of this example, uncertainty is assigned to some 

variables via probability density functions (PDF) and probability mass functions (PMF). The 

PDF and PMF are assigned based on the recommendations from technical references (Phoon 

& Kulhawy,1999a; Phoon & Kulhawy,1999b; Griffiths & Fenton, 2007). Whereas PDFs are used 

to characterize the uncertainty of soil properties, PMFs are used to characterize variables 

associated with hypotheses 𝐻  to 𝐻  described in Section 4.2.2. Table 4-4 and Figure 4-6 

present the PDFs and PMFs assigned to continuous and discrete random variables. Truncate 

normal and discrete uniform distributions are assigned to continuous and discrete variables 

respectively.  

 

Table 4-4. Probability functions for the random variables involved in the ERTC7 model. 

Variable Symbol Unit 
Variable 

type 
Probability 
distribution 

Parameters* 

Effective 
cohesion  

𝑐′ kPa Continuous 
Normal 
truncate 

Mean: 10kPa 
COV = 20% 
LB =4.0 kPa 
UB = 16 kPa 

Effective 
shear 
resistance 
angle  

𝜙′ ° Continuous 
Normal 
truncate 

Mean: 27.5° 
COV = 12% 
LB =17° 
UB = 38° 

Soil Young’s 
modulus 

𝐸  kPa Continuous 
Normal 
truncate 

Mean = 3.0x104 kPa 
COV = 20% 
LB =1.5x104 kPa 
UB =4.5x104 kPa 
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Variable Symbol Unit Variable 
type 

Probability 
distribution 

Parameters* 

Wall 
embedded 
length 

𝐸𝐿 M Discrete Uniform 
LB = 1.5 m 
UB = 4.5 m 
n = 7 

Water table 
location 

𝑃𝐿 M Discrete Uniform 
LB = -4.0 m 
UB =  0.0 m 
n = 5 

Surcharge 𝑆𝑐ℎ kN/m2 Discrete Uniform 
LB = 40 kN/m2 
UB =70 kN/m2 
n = 4 

*COV: Coefficient of variation, LB: lower bound, UP: Upper bound, n: number of states. 

 

Probabilistic Failure Model (Limit Equilibrium) 

A probabilistic model is created to determine the causes of the hypothetical ERTC7 failure 

described in Section 4.2.2. The model is based on the probability functions for discrete and 

continuous random variables presented in Table 4-1. Slope stability calculations are 

estimated via limit equilibrium analysis using Jambu’s corrected equations. In order to ensure 

the representativeness and reproducibility of the probabilistic failure model, a Python script 

was developed to implement 𝑁 = 140,000 computer experiments of the ERTC7 model using 

Slide v 5.0 (Rocscience Inc., 2006). The Python script included a “crude” Monte Carlo 

simulation in which the values of the random variables are drawn from their probability 

distributions. Figure 4-7 shows the histogram of the Factor of Safety (FoS) and the fitted log-

normal probability distribution derived from the computer experiments.  

 

The convergence of the probability of failure 𝑃(𝑓) (i.e., probability of 𝐹𝑜𝑆 ≤ 1.0) and its 

estimated standard deviation (𝑠𝑑 ( )) derived from the 𝑁 Monte Carlo simulations are shown 

in Figure 4-8 and Figure 4-9, respectively. Note that 𝑃(𝑓)converges to the value of 0.143 after 

approximately 50,000 runs. Similarly, 𝑠𝑑 ( ) converges to 0.0023 for a similar number of runs. 

Consequently, the representativeness of the model is guaranteed with the proposed number 

of simulations. 
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Figure 4-6. ERTC7 Benchmark exercise: Probability density function (PDF) and probability 

mass functions (PMF) for continuous and discrete random variables. 
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Figure 4-7. ERTC7 Benchmark exercise: Histogram and fitted Log-normal distribution for the 

Factor of Safety (FoS). 

 

 

Figure 4-8. ERTC7 Benchmark exercise: Convergence plot for 𝑃(𝑓) 
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Figure 4-9. ERTC7 Benchmark exercise: Convergence plot for the standard deviation of 𝑃(𝑓). 

4.2.4 Stage 3(a). Probabilistic Hypotheses Comparison via POR 
Technique 

The proposed hypotheses regarding the causes of excavation failure are compared against the 

baseline scenario (i.e., the proposed design) and between them. The posterior odds ratio (POR) 

technique is used and includes the following steps: 

 

 Use the available evidence to estimate the likelihood term in Bayes’ theorem (see 

Equation 2-6). In other words, estimate the probability of observing the evidence 𝑑  

given that hypothesis 𝐻  is true. In the case of the ERTC7 exercise, the likelihood refers 

to the probability of simultaneously observing an unstable condition and a slip surface 

length shorter than 26 m, given that the failure hypothesis 𝐻  is true. In mathematical 

terms: 𝑃(𝑑 = 𝐹𝑜𝑆 ≤ 1.0 & 𝑆 < 26 𝑚 | 𝐻 ). The 𝑁 = 140,000 results from stability 

calculations are used to estimate these probabilities. For example, the likelihood 

𝑃(𝑑 | 𝐻 ) is estimated by counting the number of unstable cases (𝐹𝑜𝑆 ≤ 1.0) with a 

slip length shorter than 26 m (𝑆 < 26 𝑚)  conditioned on the values of hypothesis 𝐻  

(third column of Table 4-3). 
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 Establish the prior odds of 𝐻 . as 𝑃 𝐻 𝐻⁄ = 𝑂 𝐻  based on actual data, experience, 

or expert opinion. For the ERTC7 exercise, several 𝑂 𝐻  can be proposed based on 

prior knowledge. For example, if there are severe concerns about the construction 

process and the embedded length of the wall, then it can be argued that 𝑃(𝐻 𝐻⁄ ) =

𝑂(𝐻 ) = 10. It means that hypothesis 𝐻  is ten times more likely than the null 

hypothesis 𝐻 . On the other hand, when 𝑂(𝐻 ) = 0.1, it is presumed that the 

construction process meets the design. In this case, 𝐻  is ten times more likely than 𝐻 . 

 

 Calculate the posterior odds using Equation 2-10 and Table 2-1 to determine how 

many times better 𝐻  explains the evidence than 𝐻 . For example, in the case of 𝐻  vs 

𝐻 , the posterior odds assess how much the elevation of the water table better explains 

the excavation failure than the baseline scenario (i.e., a failure due to a random 

process). 

 

 Comparison between failure hypotheses 𝐻 to 𝐻 . For the ERTC7, the comparison 

allows the investigator to support or discredit some hypotheses as the causes of 

excavation failure. 

 

Bayesian Hypotheses Comparison for 𝑯𝟏 vs 𝑯𝟎 

The probability of excavation failure due to the elevation of the WT (𝐻 ) and the probability of 

failure due to random chance (𝐻 ) are compared. Equation 4-5 shows the ratio of posterior 

odds for this analysis. The likelihood terms for 𝐻  and 𝐻  are estimated from the slope stability 

calculations. The analysis defines 𝑘 = 2 stages for the amount of evidence included in the 

analysis. In the first stage (𝑘 = 1) only the observed stability condition 𝑑 = 𝐹𝑜𝑆 ≤ 1.0 is 

included as evidence. The second stage (𝑘 = 2) includes the stability condition and the 

observed slip surface length (𝑑 = 𝐹𝑜𝑆 ≤ 1.0 & 𝑆 < 26 𝑚). The likelihood values estimated 

from conditioning the evidence 𝑑  on hypotheses 𝐻  are presented in Table 2-1. 

 

𝑃(𝐻  | 𝑑 )

𝑃(𝐻  | 𝑑 )
=

𝑃(𝑑  | 𝐻 )

𝑃(𝑑  | 𝐻 )
 
𝑃(𝐻 )

𝑃(𝐻 )
 

(4-5) 
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Table 4-5. Likelihood values for 𝐻  and 𝐻  for stages of evidence inclusion 

Amount of evidence 

(𝐤) 
Description 𝐏(𝐝𝒌 | 𝐇𝟎) 𝐏(𝐝𝒌 | 𝐇𝟏) 

1 
Evidence 𝑑 = 𝐹𝑜𝑆 ≤ 1.0  

(Unstable) 
9.90 x 10  4.65 x 10  

2 
Evidence 𝑑 =  𝐹𝑜𝑆 ≤ 1.0 & S < 26m  

(Unstable and slip surface length < 26 m)  
1.61 x 10  6.80 x 10  

 

The prior odds in Equation 4-5 for the amount of evidence 𝑑 = 𝐹𝑜𝑆 ≤ 1.0 are initially defined 

as 𝑃(𝐻 𝐻⁄ ) = 𝑂(𝐻 ) = 1.0 (or 1:1). It means, there is no prior knowledge about the causes 

of failure, and the investigator assumes that the probability for each hypothesis to be true is 

the same. The posterior odds calculated from 𝑂(𝐻 ) = 1.0 are 46.9 (Equation 4-6). 

Consequently, by including only the amount of evidence 𝑑 , a failure due to an elevation of the 

WT is 46.9 times more likely than a failure due to random chance, despite the initial 

assumption that both hypotheses (𝐻  and 𝐻 ) were equally likely. In other words, there is 

“strong” evidence (refer to Table 2-1) in favor of an elevation of the WT as the cause of the 

excavation failure.  

 

When an additional amount of evidence is included (𝑑 = 𝐹𝑜𝑆 ≤ 1.0 & 𝑆 < 26 𝑚), the 

posterior odds reduce to 4.2 (Equation 4-7). This posterior odds value means the failure due 

to an elevation of the WT is only 4.2 times more likely than a failure caused by random chance. 

Therefore, the inclusion of additional evidence reduces the probability of hypotheses 𝐻  from 

“strong” to “positive” as the cause of failure (refer to Table 2-1). This result is not surprising, 

given that the actual failure cause was defined as the short embedded length of the wall 

(Section 4.2.2). 

 

𝑃(𝐻  | 𝑑 )

𝑃(𝐻  | 𝑑 )
=

𝑃(𝑑  | 𝐻 )

𝑃(𝑑  | 𝐻 )
 
𝑃(𝐻 )

𝑃(𝐻 )
=  

0.0465

0.00099
 
0.5

0.5
= 46.9  

(4-6) 

 

𝑃(𝐻  | 𝑑 )

𝑃(𝐻  | 𝑑 )
=

𝑃(𝑑  | 𝐻 )

𝑃(𝑑  | 𝐻 )
 
𝑃(𝐻 )

𝑃(𝐻 )
=  

0.0068

0.00161
 
0.5

0.5
= 4.24  

(4-7) 
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Table 4-6 and Figure 4-10 show the posterior odds’ variation with prior odds and the regions 

based on the boundaries defined in Table 2-1. Note that the posterior odds are sensitive to 

changes in prior odds. When the probability of the hypotheses is not known in advance, the 

value 𝑂(𝐻 ) = 1.0 is considered as a reference point. However, in case of having prior 

information such as piezometric measurements or similar past failures, the value 𝑂(𝐻 ) can 

be modified. For example, prior odds defined as 𝑂(𝐻 ) = 0.1, (or 1:10) means that before any 

analysis, 𝐻  is 10 times more likely than 𝐻 .  

 

Table 4-6. Prior and posterior odds values for 𝐻  and 𝐻  given evidence 𝑑  and 𝑑  

Prior Odds  
𝑶(𝑯𝟏) 

Posterior odds for  
𝒅𝟏 = 𝑭𝒐𝑺 ≤ 𝟏. 𝟎 

Posterior odds for  
𝒅𝟐 = 𝑭𝒐𝑺 ≤ 𝟏. 𝟎 & 𝑺 < 𝟐𝟔 𝒎 

0.01 0.469 0.042 

0.1 4.69 0.424 

1 46.9 4.24 

10 469 42.4 

100 4691 424 

 

 

 

Figure 4-10. Prior and posterior odds values for 𝐻  vs 𝐻 . Evidence 𝑑  and 𝑑 . 
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Pairwise Bayesian Hypotheses Comparison 

Pairwise comparison for hypotheses 𝐻  to 𝐻  is performed by including different amounts of 

evidence (𝑑  and 𝑑 ). Table 4-7 shows the likelihood values estimated from conditioning the 

evidence on each hypothesis, and Table 4-8 presents the posterior odds for the amount of 

evidence 𝑑  and 𝑑  when prior odds are fixed to 𝑂 𝐻 = 1.0 . Additionally, several plots for 

pairwise analysis H − H  considering variation of 𝑂 𝐻  values are depicted in Figure 4-11. 

 

Table 4-7. Likelihood values for 𝐻  and 𝐻 , and evidence 𝑑  and 𝑑  

 Amount of  

evidence(𝐤) 
Stage description 

Likelihood 

𝐏(𝐝𝒌 | 𝐇𝟐) 

Likelihood 

𝐏(𝐝𝒌 | 𝐇𝟑) 

1 
Evidence 𝑑 = 𝐹𝑜𝑆 ≤ 1.0  

(Unstable) 
1.05 x 10  5.62 x 10  

2 
Evidence 𝑑 =  𝐹𝑜𝑆 ≤ 1.0 & S < 26m  

(Unstable and slip surface length < 26 m)  
1.76 x 10   5.63 x 10  

 

 

Table 4-8. Pairwise Bayesian hypothesis comparison H −  H . (a) Posterior odds for a 

fixed value 𝑂 𝐻 = 1.0 and evidence 𝑑 = 𝐹𝑜𝑆 ≤ 1.0. (b) Posterior odds for a fixed value 

𝑂 𝐻 = 1.0 and evidence 𝑑 = 𝐹𝑜𝑆 ≤ 1.0 & 𝑆 < 26 𝑚. 

 

𝐇𝒊 − 𝐇𝒋 

j   

𝐇𝒊 − 𝐇𝒋 

j  

 𝐇𝟏 𝐇𝟐 𝐇𝟑   𝐇𝟏 𝐇𝟐 𝐇𝟑 
 

 

i 

𝐇𝟎 46.9 1.1 56.7   

i 

𝐇𝟎 4.24 1.1 34.9  

 𝐇𝟏 - 0.02 1.2   𝐇𝟏 - 0.25 8.2  

 𝐇𝟐 - - 53.3   𝐇𝟐 - - 31.8  

(a) 𝐇𝟑 - - -  (b) 𝐇𝟑 - - -  

 

 

Table 4-8 and Figure 4-11 lead to the following conclusions: 

 

 If only evidence 𝑑  is included in the analysis, the posterior odds show that a failure 

due to an elevation of the WT (𝐻 ) is approximately 47 times more likely than a failure 

due to random chance (𝐻 ). However, when additional evidence (𝑑 ) is considered in 

the analysis; posterior odds are reduced to 4. This result confirms the importance of 
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including additional evidence in forensic analysis when comparing two failure 

hypotheses. 

 

 In the case of 𝐻  vs 𝐻 , including additional evidence does not have any effect on 

posterior odds. In other words, no conclusive evidence exists suggesting that an 

increase in the surcharge led to the failure. 

 

 There is “strong” evidence that the hypothesis 𝐻  is more likely than 𝐻  when evidence 

𝑑  is considered. A short embedded depth of the wall explains the excavation failure 

35 times better than random chance. 

 

 When comparing 𝐻  vs 𝐻  (Table 4-8-b), there are 1/0.25 = 4  times more chances 

that an elevation of the WT led to the excavation failure than an increase in the 

surcharge. On the other hand, a short embedded depth of the wall explains 8.2 times 

better the excavation failure than an elevation of the WT.  

 

 Finally, there is “strong” evidence in favor of failure excavation due to a short 

embedded depth of the wall when 𝐻  and 𝐻  are compared. 

 

The summary plot of Figure 4-11 (f) confirms that hypothesis 𝐻  is the most probable cause 

of excavation failure. This result demonstrates that the comparison methodology proposed in 

this research can probabilistically predict the most probable cause of failure. In conclusion, the 

POR technique indicates that the short embedded length of the wall is the most probable cause 

of excavation failure, as defined in the hypothetical failure scenario described in Section 4.2.2. 
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Figure 4-11. Prior and posterior odds values. (a) 𝐻  vs 𝐻 , (b) 𝐻  vs 𝐻 , (c) 𝐻  vs 𝐻 , (d) 𝐻  

vs 𝐻 , (e) 𝐻  vs 𝐻 , (f) Comparison summary of H  𝑣𝑠 H  for 𝑂 𝐻 = 1.0. 
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4.2.5 Stage 3(b). Probabilistic Hypotheses Comparison Using BN 
Technique 

Node classification: Hypothesis and evidence nodes 

The BN technique for hypothesis comparison demands assigning a node to each random 

variable defined in Table 4-2 and Table 4-3. Nodes contain the set of mutually exclusive 

events or states that form the variable’s domain. Also, they require classification as evidence 

or hypothesis nodes. In the case of the ERTC7 benchmark exercise, the embedded length of the 

wall (El), the water table position (WT), and the overburden (SCh) are selected as hypotheses 

nodes because they are related to the hypotheses of failure formulated in Section 4.2.2. The 

slope stability condition (SC) and the slip surface (SS) are used as evidence nodes because their 

information can be measured and used as evidence.  For example, the SC node contains two 

mutually exclusive states (stable and unstable) that an experienced engineer can identify. 

 

On the other hand, the SS node may be more challenging to measure, and only starting and 

ending locations of the slip surface are identifiable right after a failure. However, if circular slip 

surfaces are assumed, the total length of the slip surface can be estimated. Figure 4-5 presents 

an example of a potential circular slip surface for excavation failure.  

 

Direct Acyclic Graphs (DAG) or Causal Graphs 

Constructing the DAG for the ERTC7 excavation failure involves defining the causal 

relationships between nodes. Causal relationships (i.e., causality) represent the influence of 

one node (variable) on another. It can be inferred from (i) physical relationships or (ii) 

semantic substructures that reflect standard knowledge. For example, in the case of standard 

knowledge, the semantic substructure of the hypothesis 𝐻  (a short embedded length (El) of 

the diaphragm wall caused the excavation failure) can be translated into the DAG shown in 

Figure 4-12a. However, the semantic structure does not indicate the strength of probability 

relationships between nodes EL and SC. Therefore, a physical or mathematical model is needed 

to describe causality. The influence of WT and Sch on SC and SS (hypotheses 𝐻  and 𝐻 ) can be 

inferred using similar reasoning. Figure 4-12b. presents the complete DAG for the ERTC7 

exercise in which the blue and red circles represent hypothesis and evidence nodes, 

respectively. 
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Figure 4-12. (a) A simple DAG to represent the influence of El on SC. (b) DAG for the ERTC7 

excavation failure. 

 

Eliciting of CPTs 

As previously mentioned, semantic structures for constructing DAGs do not describe the 

strength of probability relationships between nodes. Therefore, probability relationships 

should be estimated using a combination of expert knowledge and geotechnical models. In the 

case of the ERTC7 exercise, CPTs for hypothesis nodes (blue circles of Figure 4-12a.) can be 

defined using prior expert knowledge. Since it is assumed that no prior information is available 

for the hypothesis nodes, the probability distribution for the domain of each node can be 

described by the discrete uniform distributions defined in Table 4-4 and Figure 4-6. In other 

words, all states included in hypothesis nodes are equally probable before seeing any other 

data. Figure 4-13 shows the initial states of the hypothesis nodes. 

 

Regarding the evidence nodes SC and SS, their prior states (i.e., their states before seeing any 

information about stability conditions or slip surface length) depend on the probability 

distribution of their parent nodes. For example, the prior probability distribution of the SC 

node in Figure 4-13 depends on every combination of El, WT, and Sch. Since each hypothesis 

node contains only a few states, the probability dependence of SC can be expressed via CPTs. 

Figure 4-13 presents the complete BN of the ERTC7 excavation failure and the prior states of 

hypothesis and evidence nodes. 
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Figure 4-13. Bayesian network for the ERTC7 excavation failure. Prior states of hypothesis 

and evidence nodes 

 

Hypotheses Comparison Via Probability Queries 

The evidence in Table 4-2 is included in the BN (Figure 4-13) to estimate the probability of 

the hypotheses formulated in Section 4.2.2. As mentioned in Chapter 2, BNs can perform 

inference processes by inserting pieces of evidence in some of their nodes. The inference 

process updates the probability of the nodes when new information is included. For the ERTC7 

excavation failure, information in Table 4-2 is included as realizations of evidence nodes. 

 

The conditional probability of hypotheses 𝐻  to 𝐻  given the evidence, is estimated using 

conditional probability queries in the form 𝑃(ℋ  | 𝑆𝐶 = 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝑆𝑆 < 26𝑚), where ℋ  is a 

combination of states in hypothesis nodes that represents the hypothesis 𝐻 . For example, ℋ , 

corresponds to the combination of states that represents the hypothesis 𝐻 , or mathematically 

ℋ =  {𝐸𝑙 = 3.5, 𝑊𝑇 ≥ 2.0,   𝑆𝑐ℎ ≤ 50}. Therefore, the probability of observing the 

occurrence of hypothesis 𝐻  given that the excavation failed and the observed slip length is 

less than 26 m can be represented as 𝑃(𝐸𝑙 = 3.5, 𝑊𝑇 ≥ 2.0,   𝑆𝑐ℎ ≤ 50  |  𝑆𝐶 = 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒,
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𝑆𝑆 < 26 ). The results of conditional probabilities for hypotheses 𝐻  to 𝐻  using the BN of 

Figure 4-13 are presented in Table 4-9. 

 

Table 4-9. Probabilities for hypotheses 𝐻  to 𝐻  given the evidence  𝑆𝐶 = 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 and 

𝑆𝑆 < 26 𝑚. 

Hypothesis Description 𝑷(𝑯𝒊 | 𝑺𝑪 = 𝑼𝒏𝒔𝒕𝒂𝒃𝒍𝒆, 𝑺𝑺 < 𝟐𝟔 𝒎) 

𝐻  Simple chance, random event, or “Act of God.” 3.2 x 10   

𝐻  Elevation of the water table (WT) 6.7 x 10  

𝐻  Increase in the surcharge (Sch) 3.3 x 10   

𝐻  Short embedded length of the wall (El) 2.3 x 10   

 

According to the results of probability queries shown in Table 4-9, the hypothesis 𝐻  better 

explains the excavation failure than hypotheses 𝐻  to 𝐻 . In other words, the short embedded 

length of the diaphragm wall is the most probable cause of the excavation failure and its 

observed slip length. Not surprisingly, this result is similar to that found using the POR 

technique. In addition, the result confirms that BNs is a feasible technique to determine the 

most probable causes of geotechnical failures. 

 

Additional Hypotheses comparison using the K Most Probable Explanation (K MPE) 
Algorithm 

As described in Chapter 2, the K MPE algorithm is interested in obtaining the 𝐾 most probable 

explanations, i.e., finding 𝐾 configurations of hypotheses nodes consistent with the observed 

states in evidence nodes. To this end, all combinations of hypothesis nodes that led to the 

observed evidence are identified using an R routine (Annex A1). The combinations resulted in 

86 additional hypotheses that could explain the ERTC7 failure. The probability of each 

hypothesis is estimated and organized in descending order.   

 

Table 4-10 shows the first K=20 hypotheses, and Annex A2 contains the probabilities for the 

rest of the hypotheses. Note that all the first K=20 hypotheses include embedded lengths of the 
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diaphragm wall less than 3.5 m and water table levels varying between 0 m and 2 m. The Sch 

value seems irrelevant to explain the failure. 

 

Table 4-10. 𝐾 = 20 Most Probable Explanations (K MPE) for the ERTC7 Benchmark 

Exercise. 

K-MPE EL WT Sch Prob.  K EL WT Sch Prob. 

1 1.5 0 70 4.1 x 10   11 1.5 1 40 3.1 x 10  

2 1.5 0 40 4.1 x 10   12 1.5 1 60 3.1 x 10  

3 1.5 0 60 4.1 x 10   13 2.5 0 70 2.3 x 10  

4 1.5 0 50 4.1 x 10   14 2.5 0 40 2.2 x 10  

5 2 0 50 3.3 x 10   15 2 1 70 2.2 x 10  

6 2 0 70 3.3 x 10   16 2.5 0 60 2.2 x 10  

7 2 0 60 3.1 x 10   17 2.5 0 50 2.1 x 10  

8 2 0 40 3.1 x 10   18 2 1 50 2.1 x 10  

9 1.5 1 50 3.1 x 10   19 1.5 2 40 2.0 x 10  

10 1.5 1 70 3.1 x 10   20 2 1 40 2.0 x 10  

 

4.3 The Breitenhagen Levee Failure 

The Breitenhagen levee failure described by Grubert (2013) and Kool et al. (2019) explores 

the applicability of the POR and BN techniques for hypothesis comparison as proposed in this 

thesis. The levee failure occurred near the Breitenhagen municipality in Saxony-Anhalt, 

Germany, during the Saala and Elbe Rivers floods of 2013. According to Grubert (2013), slope 

instability was caused due to high water pressures that had developed inside the levee. 

4.3.1 Geometry, Geotechnical Conditions, and Previous Forensic 
Studies 

A cross-section of the levee at the failure location and a simplified stratigraphy are presented 

in Figure 4-14. Note that for the average height of the levee (3.5m), the upstream and 

downstream slope inclinations are different even though the entire levee is composed of the 

same clayed (cohesive) material. Underneath this clayed material lies a sandy (cohesionless) 

soil at a depth of 5.5m measured from the levee’s crest. The red dotted arc in Figure 4-14 
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represents the actual slip surface geometry observed during the slope instability described by 

Kool et al. (2019). All elevations in Figure 4-14  are referenced to the German vertical datum 

(NHN - Normalhöhennull). 

 

 

Figure 4-14. Cross-section of the Breitenhagen levee at the failure location and its simplified 

stratigraphy (Modified from Kool et al., 2019). 

 

Upper and lower boundaries for geotechnical parameters were inferred by Kool et al. (2019) 

using the soil exploration results reported by Grubert (2013) and typical values reported in 

Dutch technical literature. The boundaries for clayed and sandy soils using Mohr-Coulomb and 

SHANSEP constitutive models are reproduced in Table 4-11. 

 

Several authors have studied the Breitenhagen levee failure from a forensic perspective. For 

example, Grubert (2013) investigated the breach’s causes by conducting a geotechnical 

exploration and slope stability analysis. In his study, the tree roots inside the levee were 

identified as the most probable cause of failure. Moreover, the author highlighted the 

contribution of the downstream slope angle and the existence of a conductive layer inside the 

levee as secondary causes of failure. Subsequent studies by Kool et al. (2019) and Kool et al. 

(2020) argue that locally weak clayed soils and a pond connection with an aquifer with high 

water pressures led to the levee failure. 
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Table 4-11. Lower and upper boundaries for clayed and sandy soils at the Breitenhagen 

levee failure. 𝛾: total unit weight of the soil, 𝑐′: effective cohesion, 𝜙′: effective shear 

resistance angle, 𝑆: shear strength ratio, 𝑚: strength increase exponent, 𝑃𝑂𝑃: pre-

overburden pressure. 

Soil 

Mohr-Coulomb SHANSEP 

𝜸𝒍𝒐𝒘/𝒖𝒑 

[𝐤𝐍/𝐦𝟑] 

𝒄′𝒍𝒐𝒘/𝒖𝒑 

[𝐤𝐏𝐚] 

𝝓′𝒍𝒐𝒘/𝒖𝒑 

[º] 

𝑺 𝒍𝒐𝒘/𝒖𝒑 

[−] 

𝒎 𝒍𝒐𝒘/𝒖𝒑 

[−] 

𝑷𝑶𝑷 𝒍𝒐𝒘/𝒖𝒑 

[−] 

Cohesive 15/21 0/15 15/34 0.23/0.49 0.50/0.98 0/150 

Sand 19/22 0/0 32/40 - - - 

 

4.3.2 Stage 1: Preliminary Steps. Failure hypotheses and Collected 
Evidence 

The causes of failure identified in previous forensic studies (Grubert, 2013; Kool et al., 2019) 

are used as failure hypotheses. The hypotheses can be divided into two general groups. The 

first group includes three hypotheses related to changes in pore water pressure conditions 

inside the levee (see Figure 4-15). These hypotheses assume average values for soil strength 

parameters in drained and undrained conditions. 

 

 H : Hypothesis H  states that the failure was caused by an unexpected elevation of the 

water table inside the levee. This elevation is attributed to a sustained high level of the 

Saala River (Figure 4-15 b). 

 

 H : Hypothesis H  suggests that the tree roots inside the levee created a highly 

conductive layer in which high pore-water pressures were developed (Figure 4-15 c). 

 

 H : Hypothesis H  affirms that a highly conductive layer was created through the sandy 

soil (Figure 4-15 d) as a result of an early breach in the levee. A pond identified 

adjacent to the breach suggests a connection between it and the downstream side 

through a conductive layer (aquifer). According to hypothesis H  the failure was 

caused by high pore-water pressures below the levee aquifer. 

 

 H : A base scenario with design soil parameters and average pore water conditions is 

included in the analysis for comparative purposes. The base scenario represents the 
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design values, or at least the expected geotechnical performance of the levee. All 

hypotheses are compared to the base scenario in order to verify their probability. 

Therefore, the base scenario becomes the null hypotheses H  when multiple 

comparisons are performed. 

 

The second group of hypotheses is related to locally weak soil conditions. Mohr-Coulomb and 

SHANSEP soil constitutive models characterize drained and undrained soil behavior at the 

time of failure. In this case, several hypotheses can be established using the values of soil 

strength parameters. For example, the hypothesis H  can be formulated as follows: a 

combination of weak soil and an elevation of the water table caused the levee failure. Further 

hypotheses related to geotechnical soil conditions are developed in Section 4.3.5 (Hypotheses 

Comparison Via Probability Queries). 

 

 

Figure 4-15. Pore-water pressure conditions for hypotheses H  to H . (a) H  base scenario 

model, (b) H elevation of the water table inside the levee, (c) H  conductive layer due to tree 

roots inside the levee, (d) H  high pore-water pressures due to an aquifer in the sandy soil. 

 

Concerning the collected evidence, Grubert (2013) identified the slope failure using visual 

inspection. The author also describes the consequences of the breach (e.g., floods) to further 

demonstrate the failure. Additionally, Kool et al. (2019) described the slip surface geometry 

using a set of photographs before, during, and after the breach. Figure 4-14 depicts the 
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circular slip failure identified by Kool et al. (2019), and Table 4-12 summarizes the collected 

information used as the main pieces of evidence. 

 

Table 4-12. Collected evidence in the Breitenhagen levee failure.  

Evidence Description Additional information 

e  Levee failure 
Unstable condition FoS<1.0. Consequences such as loss of levee continuity and 

floods were observed. 

e  
Circular slip 

failure 

A circular slip failure with a total length of 11.7 m was inferred. Starting (x1) and 

ending (x2) points were identified at 2.1m from the toe and 1.0m from the crown, 

respectively. This slip surface is named as 𝑠𝑔  

 

4.3.3 Stage 2: Probabilistic Failure Model 

Random Variables 

All relevant variables and their randomness must be identified. The levee failure involves 

several geometric and geotechnical variables. In the Breitenhagen levee case, geometric 

variables do not exhibit huge variations. Likewise, the unit weight of soils has little influence 

on slope stability conditions. Therefore, these variables are defined as deterministic, and they 

are not included in the probabilistic analysis.  

 

Contrary to geometry variables and unit weight of soils, geotechnical variables such as 

elevation of the water table, pore water pressures, and soil strength significantly influenced 

stability conditions. A slight variation in the values of these variables could lead to 

considerable changes in the stability condition and the slip surface geometry. Therefore, the 

variables presented in Table 4-13 are defined as random variables. For the sake of POR and 

BN simplicity, all variables in Table 4-13 are classified as discrete and described by uniform 

discrete distributions. Notice that they are also closely related to the hypotheses formulated 

in Section 4.3.2. 
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Table 4-13. Random variables for the forensic analysis of the levee failure. 

Node 
(variable) 

Description 
Probability 
distribution 

Domain (states) 

WT Water Table position – m Discrete uniform [𝐻𝑖𝑔ℎ, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤] 

CLT 
High pore-water pressures in the 
conductive layer due to tree roots  

Discrete uniform [𝑌𝑒𝑠, 𝑁𝑜] 

PCA 
High pore-water pressures in the 
aquifer (pond connection) 

Discrete uniform [𝑌𝑒𝑠, 𝑁𝑜] 

c′ 
Effective cohesion in the clayed soil 
(Mohr-Coulomb) – kPa 

Discrete uniform [0, 1, 2, … , 15] 

ϕ′ 
Effective angle of shear resistance 
(Mohr-Coulomb) – degrees 

Discrete uniform [15, 16, … , 33, 34] 

S Shear strength ratio (SHANSEP) - / Discrete uniform [0.23, 0.24, … , 0.49] 

m Strength increase exponent -/ Discrete uniform [0.50, 0.54, … , 0.98] 

POP Pre-overburden pressure – kPa Discrete uniform [0,010, 20, … , 150] 

SC Stability condition Discrete uniform [𝑆𝑡𝑎𝑏𝑙𝑒, 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒] 

SG 
Slip surface geometry (circular 
failure geometries) 

Discrete uniform [𝑠𝑔 , 𝑠𝑔 , … , 𝑆𝐺 ] 

 

Probabilistic Failure Model (Limit Equilibrium) 

Two probabilistic failure models are constructed for the Breitenhagen levee failure. The first 

model uses a drained soil behavior represented by the Mohr-Coulomb soil constitutive 

equations. In this case, the effective cohesion (c′) and the effective angle of shear resistance 

(𝜙′) characterize the shear resistance. The second model uses the SHANSEP constitutive 

equations to describe an undrained soil behavior. The shear strength ratio (S), strength 

increase exponent (m), and pre-overburden pressure (POP) are the variables that represent 

the SHANSEP soil model. Both models are probabilistic and include the probability 

distributions presented in Table 4-13. 

 

The models were obtained from a computational experiment in which one hundred thousand 

(100,000) slope stability calculations were performed using D-Stability (Meij & Deltares, 

2020). In the experiment, variable values are drawn according to their probability distribution 

(see Table 4-13). The D-Stability calculations were customized in a python script to simplify 

the running process and data acquisition (Refer to Annex A3 and A4). 
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The convergence of the probability of failure 𝑃(𝑓) derived from the 𝑁 = 100,000 

computational experiments is shown in Figure 4-16. Note that after approximately 40,000 

runs, 𝑃(𝑓) converges to 0.270 and 0.139 for drained and undrained models, respectively. 

Consequently, the representativeness of the models is guaranteed with 𝑁 = 100,000 

computational experiments. 

 

 

Figure 4-16. The Breitenhagen levee failure: Convergence plot for 𝑃(𝑓). (a) Drained model 

Mohr-Coulomb, (b) Undrained model SHANSEP. 

 

4.3.4 Stage 3 (a). Probabilistic Hypotheses Comparison via POR 
Technique 

The proposed hypotheses regarding the levee failure (H  to H ) are compared against the base 

scenario (i.e., the proposed design H ) using the POR technique. Similarly to the ERTC7 failure 

case, the levee failure analysis includes the following steps: 

 

 Estimate the likelihood term (Equation 2-6). In other words, estimate the probability 

of observing the evidence 𝑒  given that hypothesis 𝐻  is true. The 𝑁 = 100,000 results 

from stability calculations are used to estimate these probabilities. 

 

 Define prior odds of 𝐻  as  𝑃 𝐻 𝐻⁄ = 𝑂 𝐻 . In this a POR analysis 𝑂 𝐻  is defined 

as 1.0.  
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 Calculate the posterior odds to determine how many times better 𝐻  explains the 

evidence than 𝐻  (Equation 2-10). 

 

 Comparison between all failure hypotheses. Results allows the forensic investigator to 

support or discredit some causes of failure. 

 

Pairwise Bayesian Hypotheses Comparison 

Pairwise comparison for hypotheses 𝐻  to 𝐻  is performed for the evidence 𝑒  and 𝑒 . In 

addition, hypotheses 𝐻  to 𝐻  that combines weak soil strength parameters and different pore 

water pressure conditions are also included in the analysis. These additional hypotheses are 

proposed to evaluate the impact of weak soils on identifying the causes of failure. Likelihood 

values estimated from conditioning the evidence on each hypothesis are presented in Table 

4-14, and posterior odds for evidence 𝑒  and 𝑒  when 𝑂 𝐻 = 1.0 are summarized in Table 

4-15, Table 4-16 and Figure 4-17.  

 

Table 4-14. Likelihood values for 𝐻  to 𝐻 . Evidence 𝑒  and 𝑒  & 𝑒  

Hypothesis 

𝐇𝐢 
Description 

Evidence 𝑒 : Levee failure 

(𝐹𝑜𝑆 ≤ 1.0) 

 

Likelihood 𝐏(𝒆𝟏 | 𝐇𝐢) 

Evidence 𝑒 & 𝑒 :Levee 
failure and  

circular slip surface type sg6 

(𝐹𝑜𝑆 ≤ 1.0 & 𝑆𝐺 = 𝑠𝑔 ) 

Likelihood 𝐏(𝒆𝟏, 𝒆𝟐 | 𝐇𝒊) 

H  Design conditions 0.00 0.00 

H  Elevation of the water table 8.16 x 10  8.16 x 10  

H  
High pore-water pressures 
due to tree roots 3.51 x 10  3.51 x 10  

H  
High pore-water pressures 
in the aquifer below the 
levee 

2.51 x 10  2.51 x 10  

H  
Elevation of the water table 
inside the levee and weak 
soils 

1.00 x 10  7.84 x 10  

H  
High pore-water pressures 
due to tree roots and weak 
soils 

7.50 x 10  2.95 x 10  

H  
High pore-water pressures 
in the aquifer below the 
levee + weak soils 

9.84 x 10  0.00 
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Table 4-15. Pairwise Bayesian hypothesis comparison H −  H . Posterior odds for a fixed 

value 𝑂 𝐻 = 1.0 and evidence 𝑒 = 𝐹𝑜𝑆 ≤ 1.0.  

𝐇𝒊 − 𝐇𝒋 

j 

𝐇𝟏 𝐇𝟐 𝐇𝟑 𝐇𝟒 𝐇𝟓 𝐇𝟔 

i 

𝐇𝟎 *Inf *Inf *Inf *Inf *Inf *Inf 

𝐇𝟏 1.0 0.4 3.1 12.3 9.2 12.1 

𝐇𝟐 - 1.0 7.1 28.4 21.4 28.0 

𝐇𝟑 - - 1.0 4.0 3.0 3.9 

𝐇𝟒 - - - 1.0 0.8 1.0 

𝐇𝟓 - - - - 1.0 1.3 

𝐇𝟔 - - - - - 1.0 

 

*Inf: stands for infinity. 𝑃(𝐻 ) = 0: the null hypothesis 𝐻  does not generate the the evidence. 
In other words, geotechnical and kinematic conditions of 𝐻  cannot develop a failure and a slip 
geometry like the 𝑠𝑔 . 

 

 

Table 4-16. Pairwise Bayesian hypothesis comparison H −  H . (a) Posterior odds for a 

fixed value 𝑂 𝐻 = 1.0, evidence 𝑒 = 𝐹𝑜𝑆 ≤ 1.0 and 𝑒 = (𝑆𝐺 = 𝑠𝑔 )    

𝐇𝒊 − 𝐇𝒋 

j 

𝐇𝟏 𝐇𝟐 𝐇𝟑 𝐇𝟒 𝐇𝟓 𝐇𝟔 

i 

𝐇𝟎 *Inf *Inf *Inf *Inf *Inf *Inf 

𝐇𝟏 1.0 0.4 0.0 9.6 3.6 0.0 

𝐇𝟐 - 1.0 0.0 22.3 8.4 0.0 

𝐇𝟑 - - 1.0 Inf Inf Inf 

𝐇𝟒 - - - 1.0 0.4 0.0 

𝐇𝟓 - - - - 1.0 0.0 

𝐇𝟔 - - - - - 1.0 

 

*Inf: stands for infinity. 𝑃(𝐻 ) = 0: the null hypothesis 𝐻  does not generate the the evidence. In 

other words, geotechnical and kinematic conditions of 𝐻  cannot develop a failure and a slip 

geometry like the 𝑠𝑔 . 
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Figure 4-17. Prior and posterior odds values. Comparison summary of H  𝑣𝑠 H  for     

𝑂 𝐻 = 1.0. 

 

The pairwise comparison using the POR technique led to the following conclusions: 

 

 If only evidence 𝑒  is included in the POR analysis, the posterior odds show that 

hypotheses 𝐻 , 𝐻  and 𝐻  are more likely than the hypothesis 𝐻  to 𝐻 . However, when 

additional evidence 𝑒  is considered, posterior odds are drastically reduced with the 

exception of 𝐻  . In other words, an elevation of the water table and weak soils 

(hypothesis 𝐻 ) is the most likely explanation of the levee failure.  

 

 “Inf” values in Table 4-15 and Table 4-16 for row 𝐻  suggest that hypothesis 𝐻  does 

not have the geotechnical and kinematic conditions leading a failure with the observed 

zslip geometry 𝑠𝑔 . 

 

 “Inf” and “zero” values in Table 4-16 also suggest that in some cases, hypothesis 

𝐻 , 𝐻  and  𝐻  cannot explain the failure and the observed slip geometry 𝑠𝑔 .  

 

H 2 - H 1

H 3 - H 1

H 4 - H 1

H 5 - H 1

H 6 - H 1

H 3 - H 2

H 4 - H 2

H 5 - H 2

H 6 - H 2

H 4 - H 3

H 5 - H 3

H 6 - H 3

H 5 - H 4

H 6 - H 4

H 6 - H 5

0.4
0.4

3.1
0

12.3
9.6

9.2
3.6

12.1
0

7.1
0

28.5
22.3

21.4
8.4

28
0

4
0

3
0

3.9
0
0.8

0.4
1

0
1.3

0

e 1: FoS<1

e 2: FoS<1 &SG = sg6

Not conclusive StrongPositive
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 Finally, when all available evidence 𝑒  and 𝑒  is included in the POR analysis, only 

pairwise comparisons for hypothesis 𝐻  remain in the positive and strong sectors of 

evidence scale (refer to Figure 4-17 and Figure 2-2). 

4.3.5 Stage 3 (b). Probabilistic Hypotheses Comparison via Bayesian 
Networks 

Node classification: Hypothesis and evidence 

In the case of the Breitenhagen levee failure, WT, CLT, PCA, 𝑐′, 𝜙′, S, m, and POP are selected as 

hypotheses nodes because they are related to the hypotheses formulated in Section 4.3.2. On 

the other hand, the slope stability condition (SC) and the slip geometry (SG) are used as 

evidence nodes because their information can be directly observed and used as evidence 

(Figure 4-20). For example, the SC node involves two states (stable and unstable) that an 

experienced engineer can easily identify through visual inspection. For the SG node, starting 

and ending locations are identifiable right after the failure, and commonly circular slip surfaces 

are assumed in clayed soils. Therefore, several circular surfaces may define the SG domain. 

Figure 4-18 presents an example of two out of 21 potential slip surfaces defined for the levee 

failure. 

 

 

Figure 4-18. Example of two potential slip surface geometries for the Breitenhagen levee 

failure.  
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Direct Acyclic Graphs (DAG) or Causal Graphs 

As mentioned in previous examples, causality can be inferred from (i) physical relationships 

or (ii) semantic substructures that reflect standard knowledge. For example, the influence of 

𝑐′ and 𝜙′ on SC for drained conditions can be represented by the DAG shown in Figure 4-19a. 

This relationship is inferred from Janbus’s equations which describes the influence of soil 

strength on slope stability. The relationships between S, m, POP, and SC for undrained analysis 

and their corresponding DAG are constructed using similar physical relationships. 

 

Common geotechnical knowledge can also be used for inferring causality. The semantic 

substructure of the hypothesis 𝐻  (failure was caused by an unexpected WT elevation inside the 

levee) can be translated into a DAG, as shown in Figure 4-19b. Although the influence of WT 

on SC and SG is described in the hypothesis, the sentence does not indicate the physical or 

mathematical relationships between them. Consequently, additional models (mathematical or 

physical) are needed to characterize the influence. The influence of hypotheses 𝐻  and 𝐻  on 

SC and SG can be inferred using similar reasoning. 

 

 

Figure 4-19. Simple DAGs. (a) Influence of c′ and ϕ′ on SC. (b) Influence of WT (H ) on SC 

and SG 

 

Figure 4-20 presents the two DAG for the Breitenhagen levee failure inferred from physical 

and semantic structures. The DAG of Figure 4-20a represents the levee failure analysis using 

the Mohr-Coulomb soil constitutive model for drained conditions. The DAG of Figure 4-20b 

shows an undrained condition using the SHANSEP model. In both figures, red circles 

correspond to evidence nodes, and blue circles represent hypothesis nodes.  
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Eliciting of CPTs 

After constructing the DAGs, the strength of causality between nodes is defined via probability 

relationships. In the case of the DAGs shown in Figure 4-20, the hypothesis nodes (blue 

circles) do not depend on other nodes; thus, their probability distributions can be described 

by the discrete uniform distributions. Figure 4-21 displays the CPTs for the hypothesis nodes 

constructed from the information of probability distributions of Table 4-13. 

 

The prior states of evidence nodes (SC and SG) depend on the probability distribution of their 

parent nodes. For example, the prior probability distribution of the SC node in Figure 4-20a 

depends on every single combination of WT, CLT, PCA, 𝑐′, and 𝜙′ values. All CPT values for SC 

and SG were obtained from the probability models described in Section 4.3.3 (e.g., Table 4-17). 

The SC and SG values were collected from the computational experiments and summarized 

through the CPTs shown in Figure 4-21 and Figure 4-22.  

 

The DAGs of Figure 4-20 and their corresponding CPTs constitute the BNs used in the 

Breitenhagen failure analysis. The resulting BNs and their prior probabilities are presented in 

Figure 4-23.  
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Figure 4-20. DAGs for the levee failure analysis (a) Drained conditions using a Mohr-

Coulomb model, and (b) Undrained conditions using the SHANSEP model. Red and blue 

circles represent evidence and hypothesis nodes, respectively. 
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Table 4-17. Partial segment of the CPT for the SC node (the complete CPT contains 209 

additional matrix slices) 

CLT = No, ϕ’=  15, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

 

CLT = Yes, ϕ’=  15, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

 

CLT = No, ϕ’=  16, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

 

CLT = Yes, ϕ’=  16, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

 

CLT = No, ϕ’=  17, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

 

CLT = Yes, ϕ’=  17, PCA = Yes, WT = High 

 
c′ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SC 
Stable 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Unstable 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
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Figure 4-21. Bayesian network for the Breitenhagen levee failure using drained conditions and a Mohr-Coulomb soil constitutive 

model. 
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Figure 4-22. Bayesian network for the Breitenhagen levee failure using undrained conditions and SHANSEP constitutive model. 



Chapter 4. Bayesian Methodology for Decision Support in  
Forensic Geotechnical Engineering 

113

 

  
 

 

Figure 4-23. Bayesian network for the Breitenhagen levee failure (prior probabilities). (a) 

Drained condition (Mohr-Coulomb), (b) Undrained condition (SHANSEP).  
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Hypotheses Comparison Via Probability Queries 

To assess the probability of the competing hypotheses 𝐻  to 𝐻 , the evidence presented in 

Table 4-12 is included in the BNs of Figure 4-23. The conditional probability of hypotheses 

𝐻  to 𝐻  given the evidence is estimated using conditional probability queries. The combination 

of states that represent hypotheses 𝐻  to 𝐻  are shown in Table 4-18. Table 4-18 also 

presents additional hypotheses 𝐻  to 𝐻  that combines weak soil strength parameters and 

different pore water pressure conditions. These additional hypotheses are proposed to 

evaluate the impact of including weak soil strength values on identifying causes of failure. The 

results of conditional probabilities queries for hypotheses 𝐻  to 𝐻  are presented in Table 

4-19. 

 

Table 4-18. Combination of states in hypothesis nodes for representing failure hypothesis 

𝐻  to 𝐻 . 

Hypothesis Description  

Pore water pressure 
conditions 

Drained 
analysis 

Undrained analysis 

𝑾𝑻 𝑪𝑳𝑻 𝑷𝑪𝑨 
𝐜′ 

[kPa] 
𝛟′  

[°] 

𝑺 

[−] 

𝒎 

[−] 
POP 

[kPa] 

𝐻  
Elevation of the 
water table 

High No No 4-8 21-28 
0.28-
0.34 

0.90-
0.98 

10-50 

𝐻  
High pore-water 
pressures due to 
tree roots 

Medium 
or Low 

Yes No 4-8 21-28 
0.28-
0.34 

0.90-
0.98 

10-50 

𝐻  

High pore-water 
pressures in the 
aquifer below the 
levee 

Medium 
or Low 

No Yes 4-8 21-28 
0.28-
0.34 

0.90-
0.98 

10-50 

𝐻  

Elevation of the 
water table inside 
the levee and weak 
soils 

High No No ≤ 4 ≤ 21 ≤ 0.28 ≤ 0.90 ≤ 10 

𝐻  

High pore-water 
pressures due to 
tree roots and 
weak soils 

Medium 
or Low 

Yes No ≤ 4 ≤ 21 ≤ 0.28 ≤ 0.90 ≤ 10 

𝐻  

High pore-water 
pressures in the 
aquifer below the 
levee + weak soils 

Medium 
or Low 

No Yes ≤ 4 ≤ 21 ≤ 0.28 ≤ 0.90 ≤ 10 
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Table 4-19. Probabilities for hypotheses 𝐻  to 𝐻  given the evidence 𝑆𝐶 = 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒 and 

𝑆𝐺 = 𝑠𝑔 . 

Hypothesis Description 

𝑷(𝑯𝒊 | 𝑺𝑪 = 𝑼𝒏𝒔𝒕𝒂𝒃𝒍𝒆, 𝑺𝑮 = 𝒔𝒈𝟔 ) 

Drained Undrained 

𝐻  Elevation of the water table 1.7 x 10  4.0 x 10  

𝐻  High pore-water pressures due to tree roots 1.2 x 10  0.0 

𝐻  
High pore-water pressures in the aquifer below the 
levee 

0.0 0.0 

𝐻  Elevation of the water table and weak soil 1.1 x 10  4.2 x 10  

𝐻  
High pore-water pressures due to tree roots and 
weak soils 8.7 x 10  1.9 x 10  

𝐻  
High pore-water pressures in the aquifer below the 
levee + weak soil 

0.0 0.0 

 

 

According to the probability results of Table 4-19, the hypothesis 𝐻  better explains the 

failure than the rest of the hypotheses formulated in Section 4.3.2. That is to say, the elevation 

of the water table inside the levee combined with weak soils are the most probable causes of 

the Breitenhagen levee failure and its observed slip surface. This result is similar to that found 

using the POR technique.  

 

Additional Hypotheses comparison using the K Most Probable Explanation (K MPE) 
Algorithm 

The configurations of hypotheses nodes consistent with the observed states in evidence nodes 

resulted in 241 additional hypotheses (𝐻  to 𝐻 ) that could explain the Breitenhagen levee 

failure. The probability of each hypothesis is estimated and organized in descending order. 

Table 4-20 shows nine additional hypotheses (𝐻  to 𝐻 ) and their probabilities estimated 

using the K MPE algorithm. The probability results for hypotheses 𝐻  to 𝐻  are presented 

in Annex A5. 

 

Notice that the 𝐾 = 2 most probable explanations combine 𝐻  with low soil strength values in 

both drained and undrained conditions. The 𝐾 = 10 results also indicate that the failure is not 
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related to the hypothesis 𝐻 . In conclusion, the combination of a WT elevation due to the 

sustained high level in the Saala River and the low strength of the levee’s soil is the most likely 

cause of the Breitenhagen levee failure. 

 

Table 4-20. 𝐾 = 10 Most Probable Explanations (K MPE) for the Breitenhagen levee 

failure.  

K-

MPE 
𝑯𝐢 

Drained Condition (Mohr – Coulomb) Undrained Condition (SHANSEP) 

WT CLT PCA c’ 
(kPa) 

’ 
(°) 

𝑷(𝑯𝒊 | 𝒆) WT CLT PCA S m POP 
(kPa) 

𝑷(𝑯𝒊 | 𝒆) 

1 𝐻  High No No 1 30 4.33 x 10  High No No 0.37 0.74 0 1.49 x 10  

2 𝐻  High No No 1 26 4.30 x 10  High No No 0.43 0.54 10 1.48 x 10  

3 𝐻  Medium Yes No 4 21 4.29 x 10  High Yes No 0.27 0.58 70 1.42 x 10  

4 𝐻  High No No 1 25 4.28 x 10  High Yes No 0.41 0.7 0 1.40 x 10  

5 𝐻  Medium Yes No 3 26 4.27 x 10  High Yes No 0.27 0.82 20 1.39 x 10  

6 𝐻  High No No 3 25 4.27 x 10  High Yes No 0.35 0.9 0 1.37 x 10  

7 𝐻  High No No 1 21 4.26 x 10  High No No 0.31 0.7 10 1.35 x 10  

8 𝐻  Medium Yes No 3 25 4.26 x 10  High No No 0.25 0.9 10 1.31 x 10  

9 𝐻  Medium Yes No 3 21 4.25 x 10  High Yes No 0.41 0.9 10 1.31 x 10  

10 𝐻  Medium Yes No 2 23 4.25 x 10  Medium Yes No 0.23 0.54 20 1.31x 10  

4.4 Summary  

Chapter 4 presents the proposed Bayesian methodology for decision support in FGE. In 

general, the methodology includes the formulation of multiple hypotheses regarding the cause 

of a geotechnical failure. The hypotheses are contrasted against the collected evidence using 

two Bayesian techniques: posterior odds ratio (POR) and Bayesian Networks (BN). The main 

aspects of the proposed methodology and the examples that confirm its validity can be 

summarized as follows: 

 

 The proposed Bayesian methodology for decision support in FGE consists of three 

main stages: (i) Preliminary steps, (ii) construction of a probabilistic failure model, and 

(iii) probabilistic hypotheses comparison. The first stage focuses on collecting 

evidence and formulating credible hypotheses about the causes of geotechnical 

failures. The second stage includes defining relevant random variables and developing 

a probabilistic failure model. The last stage is the core of the proposed Bayesian 
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methodology and includes the POR and BN techniques for comparing hypotheses. The 

result of this comparison is the selection of one or more hypotheses as the most likely 

cause of failure. 

 

 The following aspects are crucial for successfully applying the proposed methodology: 

(i) The purpose of collecting evidence is to validate failure hypotheses. The evidence 

and their analysis should be able to validate or disapprove hypotheses about the causes 

of failure. Therefore, the collected evidence should be unbiased and objective. (ii) All 

hypotheses should be based on the predictable behavior of soil/rock materials and 

expected external/internal forces acting on the geotechnical structure. Semantic 

expressions (geotechnical jargon) can be used to formulate credible hypotheses. In 

addition, all credible hypotheses must be able to be translated into a probabilistic 

model. (iii) Random variables should be selected based on the hypotheses, the 

influence of each variable on the soil/rock behavior, and the characteristics of the 

performance variables. (iv) A reliable geotechnical failure model should be capable of 

including all failure hypotheses defined in the preliminary stage. 

 

 A modified version of the ERTC7 benchmark exercise (Schweiger, 2006) is presented 

to describe and validate the POR and BNs techniques. The embedded length of the wall 

is deliberately defined to be short in order to induce a failure in the ERTC7 exercise. 

Then, both techniques are used to validate their ability to detect the cause of failure. 

Each stage of the proposed methodology is applied to the modified version of the 

ERTC7. The results show that the POR and BN  techniques predicts the short embedded 

length of the wall as the most probable cause of excavation failure. 

 

 The applicability of the POR and BN techniques for hypothesis comparison are also 

explored through the Breitenhagen levee failure (Grubert, 2013; Kool et al., 2019). 

Four hypotheses related to pore water pressure conditions and soil behavior are 

formulated as causes of failure. The results show that the POR and BN techniques 

predict the most probable cause of a failure. Moreover, the results are comparable to 

those found in previous forensic studies. 

 



  
    

  
 

5. Determining the Causes of an Excavation 
Failure. The Green Office Project: A Real 
Application of Bayesian Methodology 

This chapter presents an application of the proposed Bayesian methodology for supporting 

decisions regarding the causes of geotechnical failures. Posterior odds ratio (POR) and 

Bayesian networks (BN) techniques described in Chapter 4 have been applied to an excavation 

failure in Bogotá, Colombia (Unal, 2012). The chapter is divided into two sections. The first 

section describes the general characteristics of the project and the geotechnical conditions 

under which the excavation failure was developed. The second section examines the failure 

using the proposed Bayesian methodology and determines the most probable causes that led 

to the excavation failure. 

5.1 General Description and Geotechnical Conditions 

5.1.1 General description 

The Green Office Project is a six-level building with three basement levels located on the 

northeast side of Bogotá, Colombia (Figure 5-1). During the construction activities in 

December 2011, an excavation failure occurred. Heave of the bottom of the excavation, large 

settlements on 11th street, and significant horizontal movements in the diaphragm wall were 

observed and monitored. The large settlements impacted vehicular and pedestrian traffic on 

11th street and caused the total closure of the road for at least seven months. Although no 

injuries to workers or neighbors were reported, safety conditions at the workplace and traffic 

security were significantly impacted. 

 



Chapter 5. Determining the Causes of an Excavation Failure. 
The Green Office Project 

119

 

  
 

 

Figure 5-1. Location of the Green Office project on the northeast side of Bogotá, Colombia. 

(Modified from Google Earth, 2022). 

5.1.2 Geotechnical Characterization of the Site. 

Geotechnical Characterization of the Original Design  

According to the documentation collected during the forensic investigation, the original 

geotechnical design included seven borings with depths ranging between 12 m and 49 m. 

Several Vane Shear Tests (VST), Standard Penetration Tests (SPT), and laboratory tests were 

performed on disturbed and undisturbed soil samples to characterize the geotechnical 

behavior of the soils. Unfortunately, the design documents do not provide information from 

boring logs, field tests, and laboratory tests. Moreover, a detailed geotechnical characterization 

of the subsoil was not delivered.  

 

The stratigraphy from the original geotechnical design is described in Table 5-2a. The stratum 

M1 is a brown to dark brown soft clay with intercalations of thin sand layers and peat. Stratum 

M2 is a dark brown very soft clay that extends to 36.0 m depth below the original surface grade. 

Stratum M3 is a gray medium-dense sand. Finally, a gravelly medium to dense sand with thin 
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peat layers is located up to 49 m in depth. According to the water levels observed at borehole 

locations, the original design assumed the water table at a depth of 3.0m. 

Geotechnical Characterization Performed for the Forensic Investigation 

Subsurface conditions for the forensic investigation were evaluated by drilling six (6) 

boreholes, two (2) Cone penetrations Tests (CPTu), and six (6) Down Hole tests to depths 

ranging from 40 m to 50 m. Figure 5-2 shows the location of these exploration activities. A 

total of 288 disturbed and undisturbed soil samples were recovered from the boreholes using 

Shelby tubes (thin-walled, open-tube samplers) to conduct physical and mechanical laboratory 

tests required for analyses. A summary of the geotechnical properties obtained from 

laboratory and field tests is shown in Figure 5-3 and Figure 5-4. Table 5-1 presents the 

average values of the geotechnical parameters. 

 

 

Figure 5-2. Location of the six (6) boreholes and two (2) Cone penetrations Tests (CPTu) 

developed during the forensic investigation (Modified from Google Earth, 2022 and Unal, 

2012).
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Figure 5-3. Laboratory results for the forensic investigation. Green Office Project (Unal, 2012).
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Figure 5-4. Field results from CPTu tests for the forensic investigation. Green Office Project 

(Unal, 2012). 
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Table 5-1. Average values of geotechnical parameters. 

Stratum 

Soil 

constitutive 

model 

𝜸𝒔𝒂𝒕 

𝒌𝑵 𝒎𝟑⁄  

𝜸𝒖𝒏𝒔 

𝒌𝑵 𝒎𝟑⁄  

𝒄′ 

𝒌𝑵 𝒎𝟐⁄  

𝝓′ 

(°) 

𝝀∗ 

(−) 

𝜿∗ 

(−) 

𝒆𝒊𝒏𝒊 

(−) 

M1 Soft soil 14.8 13.8 5.0 24.0 0.188 0.047 2.0 

M2 Soft soil 13.4 12.4 6.3 19.3 0.137 0.045 2.8 

M3 Mohr-Coulomb 17.8 16.8 0.0 34.8 - - - 

M4 Mohr-Coulomb 18.5 17.5 0.0 42.0 - - - 

𝛾 : Saturate unit weight, 𝛾 : unsaturated unit weight, 𝑐′: effective cohesion, 𝜙′: effective angle of shear 

resistance, 𝜆∗: modified compression index, 𝜅∗: modified swelling index, 𝑒 : initial void ratio. 

Comparison of Geotechnical Characterizations. Original Design vs. Forensic 
Investigation 

The stratigraphy inferred from the six borings of the forensic investigation is compared with 

the original geotechnical design (Table 5-2). Notice that differences in depth and soil 

descriptions were found in both stratigraphies. No geotechnical properties were compared 

because the information from the original design was unavailable. A simplified stratigraphy 

inferred from the forensic investigation is presented in Figure 5-5. 

 

Table 5-2. Comparison of the stratigraphy obtained from borings in the original geotechnical 

design (a) and forensic investigation (b). 

(a) Original geotechnical design  (b) Forensic investigation 

Stratum 

Approximate 

Depth Range 

of Stratum 

(m) 

Description  Stratum 

Approximate 

Depth Range 

of Stratum 

(m) 

Description 

M1 0 – 4 

Brown to dark brown 

clay with intercalations 

of thin sand layers and 

peat 

 

M1 0 – 6 

Inorganic brown 

soft clay of high 

plasticity (MH - CH) 

M2 4 – 36 

Dark brown, very soft 

clay. 

 

M2 6 – 35 

Inorganic brown 

silts and clays of 

high compressibility 

(MH – CH) 
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(a) Original geotechnical design  (b) Forensic investigation 

Stratum 

Approximate 

Depth Range 

of Stratum 

(m) 

Description  Stratum 

Approximate 

Depth Range 

of Stratum 

(m) 

Description 

M3 36 – 38 
Gray medium-dense 

sand. 

 
M3 35 – 40 

Dense gray sand 

(SP) 

M4 38 - 49 

Gravelly medium to 

dense sand with some 

thin peat layers. 

 

M4 40 – 50 

Possibly a colluvial 

soil composed of 

gravel and sand. 

 

5.1.3 Structure, Foundation, and Construction Process 

The Green Office Project is an L-shaped building 23.5 m high (six floors above the ground 

surface) and 11 m deep (three basements). The structure at the basements consists of a portal 

frame that includes circular columns of 0.8 m in diameter, which are spaced 10.0 m in both 

directions, and rectangular beams with dimensions 0.4 x 0.7 m. The beams support several I-

shaped steel beams and a composite metal floor deck. The structure above the ground surface 

consists of I-shaped steel columns supporting a composite metal floor deck. Each column is 

supported by three piles connected by a pile cap. The piles are 29.0 m deep and 0.8 m in 

diameter. Additionally, a 17 m deep and 0.4 m thick diaphragm wall provides lateral support 

to the 11 m deep excavation for the basements. A simplified scheme of the structure and 

diaphragm wall is shown in Figure 5-5.  

 

Figure 5-5. Stratigraphy and simplified scheme of the Green Office Project. 

(Cross section A-A from Figure 5-2). 
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According to the construction logbook, the deep excavation and diaphragm wall included the 

following construction steps: 

i. Construction of the piles from the -11.0 m level to the -40.0 m level.  

ii. Construction of the diaphragm wall panels: this step included the construction of 

guided walls, trench excavation, steel placing, and concrete casting. 

iii. Construction of temporary caisson piles from the 0.0 m level to the -11.0 m level and 

concrete beams for the first floor. According to the design, the concrete beams act as 

struts and provide additional lateral support. At this step, the construction of the 

superstructure started. 

iv. Excavation of the whole first basement down to the -4.0 m level.  

v. Construction of concrete beams for the first basement.  

vi. Excavation of the second basement down to the -7.70 m level. At this point, 

construction managers decided to excavate areas of 20 m x 20 m. In each area, the 

beams and the second basement slab were constructed. 

vii. Excavation of the third basement: following the same procedure as the second 

basement. 

viii. Construction of foundation slabs in every 20 m x 20 m area. 

5.1.4  Monitoring System and Failure Description 

Description of the monitoring system 

Eight inclinometers and five Casagrande piezometers were installed during the construction 

activities. Six inclinometers were located within the diaphragm wall, and two inclinometers 

were installed in the adjacent area. The total length of the inclinometers ranged between 17 m 

and 26 m, whereas the piezometers were 12 m in length. Figure 5-6 shows the location of the 

inclinometers and piezometers installed before the construction stage.  

 

The forensic investigation included the installation of six additional inclinometers at the 

locations of boreholes shown in Figure 5-2. These additional inclinometers aimed to verify the 

measurements and inclination rates provided by the constructor. Additionally, during the 

drilling activities for the forensic investigation, several water table levels were recorded. 

Finally, a conventional topographic survey was carried out on the adjacent area to verify 

settlements and heaves reported by the constructors. 
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Figure 5-6. Location of inclinometers and Casagrande piezometers installed before the 

construction stage (Modified from Google Earth 2022). 

Failure Process and Measurements from the Monitoring System  

During the construction and forensic investigation, a topographic survey was carried out to 

identify the critical cross-section A-A’ shown in Figure 5-2 and Figure 5-5. The chronological 

analysis of the A-A cross-section revealed a continuous settlement process. At the early stages 

of the process, small settlement values due to the first basement excavation (-4.0 m level) were 

observed. Then, large settlements up to 0.90 m were measured adjacent to the excavation for 

basements two and three. In addition, heave of the base of the excavation was recorded during 

construction activities for the first basement, and significant heave values up to 0.4 m were 

measured for basements two and three. 

 

The measurements from the 14 inclinometers were used to identify critical deformations on 

the diaphragm wall and the surrounding area. Inclinometers located at positions S01 and S02, 

shown in Figure 5-2, revealed large horizontal displacements. As expected, the location of the 

critical cross-section A-A’ coincides with the location of the critical inclinometers. In other 

words, large settlements on 11th street, significant heave values at the base of the excavation, 
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and large horizontal displacements in the surrounding area indicate a failure process through 

cross-section A-A’. 

 

Regarding the elevation of the water table (WT), Figure 5-22 presents the monthly rainfall 

recorded by a nearby weather station from 2007 to 2011, and Figure 5-23 shows the variation 

of the WT during the construction process. Additionally, Table 5-3 presents the values of the 

water table levels recorded during the exploration work for the forensic investigation stage. In 

both cases (construction and forensic stages), there is a positive correlation between 

antecedent rainfall and the WT levels. 

 

Table 5-3.Levels of the water table during the forensic investigation stage (January 2012). 

Borehole Total 

depth(m) 

Water table levels 

(m) 

S01 50 -1.75 

S02 40 -1.60 

S03 50 -2.30 

S04 45 -1.70 

S05 45 -1.60 

S06 45 -0.50 

 

5.2 Application of the Bayesian Methodology 

5.2.1 Stage 1: Collected Evidence and Hypotheses Formulation 

 

Collected Evidence 

Table 5-4 summarizes the evidence collected from design documents, construction logbooks, 

and geotechnical characterization during the forensic investigation. The evidence is used to 

develop the geotechnical model and evaluate the failure hypotheses. Additional evidence is 

presented and discussed in Section 5.2.3. 
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Table 5-4. Summary of collected evidence: geometry, loads, monitoring, groundwater 

conditions, and failure mechanism. 

Category Symbol Value Units Evidence Description 

Geometry 𝐿 17.0 m The total length of the diaphragm wall 

𝐸 6.0 m Embedded length of the diaphragm wall 

𝑇 0.4 m Diaphragm wall thickness  

𝐷  11.0 m The total depth of excavation 

𝐷  4.0 m Depth of excavation for basement 1 

𝐷  7.7 m Depth of excavation for basement 2 

𝐷  11.0 m Depth of excavation for basement 3 

𝐵 72.0 m Total width of the excavation 

𝐻  23.5 m Height of the building at failure 

Loads 𝑞  21.0 kN/m2 Estimated load of the superstructure at failure 

𝑞  8.0 kN/m2 Estimated load of the foundation slab at failure 

𝑞  6.0 kN/m2 Estimated load of each basement slab at failure 

𝑞  90 kN Traffic Loads (point loads) 

𝑞  20 kN/m2 Estimated load of the adjacent building (2 floors) 

Measurements 
from 
monitoring 

𝜌  0.98 m Maximum settlement observed on 11th street 

𝑖  0.19 m Maximum inclination observed in the diaphragm wall 

ℎ  0.50 m Maximum heave observed at the base of the excavation 

Water Table 𝑊𝑇 -3.0 m Level of the water table at the time of failure 

Failure 
mechanism  

𝐿  19.0 m Distance from the diaphragm wall to the main crown crack  

𝑆𝑆  - - Observed slip surface shape: circular 

 

Hypotheses about the causes of failure 

Since the first evidence of failure, several stakeholders, such as owners, construction 

contractors, public utility companies, local government authorities, and the affected 

community, have shown an interest in determining the causes that led to large deformations 

and the subsequent excavation failure. Stakeholders formulated numerous hypotheses about 
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the causes of failure. For example, building owners and construction contractors stated that 

the excavation failure occurred only as a result of an unexpected elevation in the water table 

level due to damage to a sewer pipe near the building. On the other hand, public utility 

companies and local government authorities claimed that the failure was due to design 

shortcomings. In particular, they argued that the thickness and the embedded length of the 

diaphragm wall were inadequate to support lateral earth pressures and a possible elevation of 

the water table to the 0.0 level. Some argued, even further, that the original design was not 

even appropriate for supporting lateral pressures with a water table at the -3.0 level. In 

summary, the hypotheses formulated by the stakeholders are described below:  

 

 Hypothesis 𝐻 : A diaphragm wall 0.4 m thick and 17.0 m long combined with a water 

table at the -3.0 m level led to the excavation failure and the displacements recorded 

at points T, W, and B (refer to Figure 5-5). The hypothesis 𝐻 , proposed by public 

utility companies, local government authorities, and the community, implies that the 

original design was unable to support lateral earth pressures. 

 

 Hypothesis 𝐻 : A diaphragm wall 0.8 m thick and 25.0 m long combined with a water 

table at the -3.0 level led to the excavation failure and the displacements recorded at 

points T, W, and B (refer to Figure 5-5). The hypothesis 𝐻  is a counterfactual design 

condition included only for comparison purposes. It provides information about what 

would have happened if a more robust design, such as a diaphragm wall 0.8 m thick 

and 25.0 m long, had been implemented. 

 

 Hypothesis 𝐻 : A diaphragm wall 0.4 m thick and 17.0 m long combined with a water 

table at the ground surface led to the excavation failure and the displacements 

recorded at points T, W, and B (refer to Figure 5-5). The hypothesis 𝐻  proposed by 

the owner and construction contractors implies that the elevation of the water table 

alone led to the excavation failure. 

 

 Hypothesis 𝐻 : A diaphragm wall 0.8 m thick and 25.0 m long combined with a water 

table at the ground surface led to the excavation failure and the displacements 

recorded at points T, W, and B (refer to Figure 5-5). Hypothesis 𝐻  is also a 
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counterfactual design condition. It provides information about what would have 

happened if a more robust design had been implemented. 

 

The values of the random variables for hypotheses 𝐻  to 𝐻  are summarized in Table 5-5. 

 

Table 5-5.Green Office Project. Summary of values for failure hypotheses. 

Variable 
Hypothesis 𝑯𝒊 

𝑯𝟏 𝑯𝟐 𝑯𝟑 𝑯𝟒 

Total length of the wall 

𝑊  (m) 
17.0 m 25.0 m 17.0 m 25.0 m 

Thickness of the wall 

𝑊  (m) 
0.4 m 0.8 m 0.4 m 0.8 m 

Water table position  

𝑊𝑇 (m) 
-3.0 m -3.0 m  0.0 m 0.0 m  

 

5.2.2 Stage 2: Random Variables and Probabilistic Failure Model 

According to the criteria presented in Section 4.1.2, the selected random variables for 

hypotheses comparison are the total length of the wall 𝐿, the thickness of the wall 𝑇, and the 

water table 𝑊𝑇 elevation. For simplicity, 𝐿 and 𝑇 are merged into one new variable 𝐿𝑇 with 

two states 𝐿𝑇 = {𝐿𝑇 , 𝐿𝑇 }. The state 𝐿𝑇  is the original geotechnical design (𝐿𝑇 : 𝐿 = 17.0 𝑚,

𝑇 = 0.4 𝑚) and the state 𝐿𝑇  is the robust counterfactual design (𝐿𝑇 : 𝐿 = 25.0 𝑚, T = 0.8 𝑚) 

suggested by an experienced geotechnical designer. Figure 5-7a shows the probability mass 

function (PMF) for the wall variable 𝐿𝑇 in which both states 𝐿𝑇 and 𝐿𝑇  are equally probable. 

 

Similar to 𝐿𝑇, two equally probable states are assigned to the variable water table elevation 

𝑊𝑇 = {𝑊𝑇 . , 𝑊𝑇 . }. Each element represents the water table at the 0.0 m and -3.0 m levels, 

respectively. Figure 5-7b shows the PMF for the WT variable. For the sake of simplicity of the 

probability model, 𝐿𝑇 = {𝐿𝑇 , 𝐿𝑇 } and 𝑊𝑇 = {𝑊𝑇 . , 𝑊𝑇 . } comprise the total sample space 

of the model.  

 

In order to construct a complete probability failure model for the Green Office Project, the 

forensic analysis requires additional random variables. In the case of the strength limit state, 

variables 𝑐′and 𝜙′, for strata M1 and M2 are defined as random variables described by 
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truncated normal distributions with the mean and coefficient of variation (COV) values 

presented in Table 5-6 (Phoon & Kulhawy, 1999a). For strata M3 and M4, 𝑐′and 𝜙′ values are 

defined as deterministic due to the considerable depth of the strata and their little influence 

on the excavation failure (refer to Table 5-1). Deterministic values also describe the unit 

weights of soils for all strata. 

 

Figure 5-7. Probability mass functions (pmf) for (a) design variable and (b) Water table 

elevation. 

 

In the case of service limit state analysis, variables 𝜆∗, 𝜅∗, and 𝑒  for strata M1 and M2 are 

defined as random variables due to their influence on deformations of the excavation. 

Truncated normal distributions also describe these random variables with the mean and COV 

values of Table 5-1 (Phoon & Kulhawy, 1999a). Deformation variables for strata M3 and M4 

are described by the deterministic values presented in Annex A7. Probability density functions 

for all random variables are shown in Figure 5-8. 

 

Table 5-6. Probability functions for random variables of the Green Office Project. 

Component Variable Symbol Unit 
Variable 

type 
Probability 
distribution 

Parameters* 

Stratum M1  

Effective 
cohesion  

𝑐′  kPa Continuous 
Normal 
truncate 

Mean: 5.0 kPa 

COV = 10% 

LB =3.5 kPa 

UB = 6.5 kPa 

Effective 
angle of 
shear 
resistance  

𝜙′  ° Continuous 
Normal 
truncate 

Mean: 24.0 ° 

COV = 10% 

LB =16.8 ° 

UB = 31.2 ° 
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Component Variable Symbol Unit 
Variable 

type 
Probability 
distribution 

Parameters* 

Modified 
compression 
index 

𝜆∗  - Continuous 
Normal 
truncate 

Mean = 0.188 

COV = 10% 

LB =0.132 

UB =0.244 

Modified 
swelling 
index 

𝜅∗  - Continuous 
Normal 
truncate 

Mean: 0.047 

COV = 10% 

LB = 0.033 

UB = 0.061 

Initial void 
ratio 

𝑒  - Continuous 
Normal 
truncate 

Mean: 2.0 

COV = 7% 

LB = 1.6 

UB = 2.4 

Stratum M2 

Effective 
cohesion  

𝑐′  kPa Continuous 
Normal 
truncate 

Mean: 6.3 kPa 

COV = 10% 

LB =4.4 kPa 

UB = 8.2 kPa 

Effective 
angle of 
shear 
resistance  

𝜙′  ° Continuous 
Normal 
truncate 

Mean: 19.3 ° 

COV = 10% 

LB =13.5 ° 

UB = 25.1 ° 

Modified 
compression 
index 

𝜆∗  - Continuous 
Normal 
truncate 

Mean = 0.137 

COV = 10% 

LB =0.096 

UB =0.178 

Modified 
swelling 
index 

𝜅∗  - Continuous 
Normal 
truncate 

Mean: 0.0457 

COV = 10% 

LB = 0.0320 

UB = 0.0594 

Initial void 
ratio 

𝑒  - Continuous 
Normal 
truncate 

Mean: 2.8 

COV = 10% 

LB = 1.9 

UB = 3.6  

Diaphragm 
Wall 

Total length 
and 
thickness 

𝐿𝑇 - Categorical Categorical 

k = 2 

𝐿𝑇 = {𝐿𝑇 ,   𝐿𝑇 } 

𝑃(𝐿𝑇 ) =  0.5 

𝑃(𝐿𝑇 ) =  0.5 

Water Table 
Level 

Water Table 𝑊𝑇 - Categorical Categorical 

k = 2 

𝐿𝑇 = {𝐿𝑇 ,   𝐿𝑇 } 

𝑃(𝑊𝑇 ) =  0.5 

𝑃(𝑊𝑇 ) =  0.5 

*COV: Coefficient of variation, LB: lower bound, UP: Upper bound, k: number of categories. 
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Figure 5-8. Probability density functions (pdf) for random variables of the Green Office 

Project. 
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Figure 5-8 (continued). Probability density functions (pdf) for random variables of the Green 

Office project. 

 

Two probabilistic failure models are constructed to determine the causes of the excavation 

failure. The first model uses limit equilibrium models via Janbu’s corrected equations to 

analyze the strength limit state. The limit equilibrium model compares the available strength 

in the soil against the stresses imposed by the loads or excavation processes via the Factor of 

Safety (𝐹𝑜𝑆). A 𝐹𝑜𝑆 value smaller than 1.0 indicates an unstable condition, whereas a 𝐹𝑜𝑆 

value greater than 1.0 implies a stable condition. The probabilistic model for the strength limit 

state implements 𝑁 = 8,000 computational experiments of the geotechnical model presented 

in Figure 5-5 with the random variables presented in Table 5-6. The Python script presented 

in Annex A6 estimates the 𝐹𝑜𝑆 through Slide v5.0 (Rocscience Inc., 2006). Figure 5-9 shows 

the 𝐹𝑜𝑆 histograms for designs 𝐿𝑇  and 𝐿𝑇 , and their corresponding fitted lognormal 

probability distributions. Figure 5-10 presents the convergency plot for the FoS and the 

standard deviation of the FoS. 

 

The second probabilistic model uses a Finite Element Model (FEM) to evaluate the service limit 

state. A Python routine implements 𝑁 = 8,000 computational experiments to calculate 

deformations using Plaxis V20 (Bentley Systems, 2020). Deformations are estimated on points 

T, W, and B, located on 11th street, the diaphragm wall, and at the bottom of the excavation, 

respectively (refer to Figure 5-5 for points location). 

 

The FEM comprised the soil stratigraphy and geotechnical parameters outlined in Table 5-1, 

the structural components along with the point/linear loads specified in Table 5-4, the 

geometry illustrated in Figure 5-5, and the construction sequence detailed in section 5.1.3. 

The model employed 1121 finite elements and 9472 nodes, with increased refinement around 
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the excavation area to achieve more precise deformation outcomes. All components of the FEM 

were constructed using the Python Application Programming Interface (API) included in 

Plaxis, and the repetitive calculations were implemented in the Python script presented in 

Annex A.7. Figure 5-11 displays the flowchart that served as the foundation for the Python 

script. This script was employed to derive the deformation results of the model by 

incorporating the random variables listed in Table 5-6. 

 

 

Figure 5-9. Green Office Project: Histograms of the Factor of Safety (FoS). 

 

 

Figure 5-10. Convergence plots for FoS and standard deviation (FoS). 
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Figure 5-11. Flow chart used to construc the Python script (Green office FEM). 

5.2.3 Stage 3. Bayesian Hypotheses Comparison  

Hypotheses 𝐻  to 𝐻  are compared using the Bayesian Methodology proposed in Chapter 4. 

The posterior odds ratio (POR) and the Bayesian network (BN) technique are applied to the 

Green Office Project following the procedure described in Section 4.1.3. and Figure 4-1. 

Posterior Odds Ratio 

The results from the computational experiments are used to calculate the POR based on the 

steps described in Section 4.13. The first step estimates the probability of observing the 

evidence given that a hypothesis is assumed to be true (i.e., the likelihood term in Equation 

Start

Define functions
def soil_tratigraphy
def soil_materials
def structural_elements
def  line_point_loads
def meshing_model
define construction_stages

N = number 
of iterations

i <N
Draw random 

values from 
variables 

Run the 
FEM model
(functions)

Read 
deformations

End
yesno
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2-6). Table 5-7 presents different amounts of evidence to verify their influence on the 

likelihood term and the failure hypotheses. For example, Equation 5-1 shows several 

likelihood terms related to evidence 𝑒 . The first term is read as the probability of 

simultaneously observing an unstable condition, a settlement on 11th street greater than 0.30 

m, an inclination of diaphragm wall greater than 0.20 m, and a heave at the base of the 

excavation higher than 0.30 m, given that hypothesis 𝐻   is true (i.e., 𝐻 : a diaphragm wall 0.4 

thick and 17.0 m long combined with a water table at the -3.0 level led to the excavation failure 

and the displacements recorded at points T, W, and B.). Table 5-8 shows the calculated 

likelihood values for all 𝐻  and 𝑒 combinations. 

 

Table 5-7. Different amounts of evidence for the Green Office forensic analysis. 

Amount of evidence (𝐞𝒌) Description 

𝑒  𝐹𝑜𝑆 ≤ 1.0 (Unstable excavation) 

𝑒  

 𝐹𝑜𝑆 ≤ 1.0, ρ > 0.3 m  

(Simultaneously observing an unstable condition of the excavation 

and a settlement on 11th street greater than 0.3 m)  

𝑒  

𝐹𝑜𝑆 ≤ 1.0 , ρ > 0.3 m , i > 0.2 m , h > 0.3 m    

(Simultaneously observing an unstable condition of the excavation, a 

settlement on 11th street greater than 0.3 m, an inclination of 

diaphragm wall greater than 0.2 m, and a heave at the bottom of 

excavation greater than 0.3 m)  

 

 

𝐿
|

= 𝑃(𝑒  | 𝐻 ) 

  𝐿
|

= 𝑃(𝑒  | 𝐻  ) 

 𝐿
|

= 𝑃(𝑒  | 𝐻  ) 

𝐿
|

= 𝑃(𝑒  | 𝐻 ) 

(5-1) 
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Table 5-8. Estimated Likelihood values for all 𝐻  and 𝑒  combinations. 

Amount of evidence (𝐞𝒌) 
Likelihood 

𝑷(𝒆𝒌 | 𝑯𝟏) 𝑷(𝒆𝒌| 𝑯𝟐) 𝑷(𝒆𝒌 | 𝑯𝟑) 𝑷(𝒆𝒌 | 𝑯𝟒) 

e  1.0 x 10  9.3 x 10  1.0 x 10  4.8x 10  

e  1.0 x 10  2.0 x 10  1.0 x 10  4.8x 10  

e  1.0 x 10  2.0 x 10  4.7x 10  2.0 x 10  

 

The second step of the posterior odds technique defines the prior odds for each pair of 

hypotheses. The prior odds are initially specified as 𝑃 𝐻 𝐻⁄ = 𝑂 𝐻 = 1.0 (or 1:1) for all 

hypotheses combinations. In other words, all hypotheses are equally likely to be true before 

any data or evidence is observed. A 1:1  prior odds value guarantees no bias for any of the 

hypotheses formulated as causes of failure. However, different prior odds values can be 

evaluated to verify the influence of any bias about the causes of failure. For the Green Office 

Project, the prior odds values of 1:1 (hypotheses 𝐻  and 𝐻   are equally likely), and 10:1 

(hypothesis 𝐻  is ten times more probable than hypothesis 𝐻 ) are evaluated. 

 

The third and final step is comparing pairs of hypotheses through Equation 5-2. The 

comparison includes all possible hypotheses combinations, the differing amounts of evidence 

established in Table 5-7, and the prior values defined above. The results of the Bayesian 

hypotheses comparison are summarized in Figure 5-12 and Table 5-9.  

 

P(H  | e )

P H  | e
=

P(e  | H )

P e  | H
 
P(H )

P H
 

(5-2) 
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Table 5-9. Bayesian comparison for hypotheses pairs H −  H  for different amounts of 

evidence (𝑒 , 𝑒 , 𝑒 ). Prior odds values 1.0 (1:1) and 10 (10:1). Color code identifies the 

posterior odds interpretation according to the Kass & Raftery (1995) criteria in Table 2-1 

and Figure 2-2. Color convention: red: “Not worth more than a bare mention,” orange: 

positive, yellow: strong, green: very strong. 

 

(a) Prior odds 1.0 (1:1) 
Evidence 𝑒  

 (b) Prior odds 1.0 (1:1) 
Evidence 𝑒  

 (c) Prior odds 1.0 (1:1) 
Evidence 𝑒  

𝐻  
𝐻  

𝐻  𝐻  𝐻   
𝐻  

𝐻  𝐻  𝐻  𝐻   
𝐻  

𝐻  𝐻  𝐻  𝐻  

𝐻  - - -   𝐻  - - -   𝐻  - - - 

𝐻  10.8 - -   𝐻  500 - -   𝐻  5000 - - 

𝐻  1.0 0.09 -   𝐻  1.0 0.02 -   𝐻  2.1 
0.000

4 
- 

𝐻  2.1 0.2 2.1   𝐻  2.1 0.04 2.1   𝐻  5000 1.0 2385 

               
              

(d) Prior odds 10 (10:1) 
Evidence 𝑒  

 (e) Prior odds 10 (10:1) 
Evidence 𝑒  

 (f) Prior odds 10 (10:1) 
Evidence 𝑒  

𝐻  
𝐻  𝐻  𝐻  𝐻   

𝐻  
𝐻  𝐻  𝐻  𝐻   

𝐻  
𝐻  𝐻  𝐻  𝐻  

𝐻  -   -  -   𝐻   - -  -    𝐻  -  -  -  

𝐻  108 - -   𝐻  5000 - -   𝐻  
5000

0 - - 

𝐻  10.0 0.9 -   𝐻  10.0 0.2 -   𝐻  21.0 0.004 - 

𝐻  21.0 2.0 21.0   𝐻  21.0 0.4 21.0   𝐻  
5000

0 
10.0 23850 
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Figure 5-12. Pairwise Bayesian comparison summary for H  𝑣𝑠 H . Prior odds 𝑂 𝐻 = 1.0 

(1:1). 

 

From the analysis of Figure 5-12 and Table 5-9, the following conclusions are drawn: 

 

For prior odds 𝑂 𝐻 = 1.0 (1:1) 

 When only the amount of evidence 𝑒  is included in the analysis, the posterior odds 

results show that a failure due to hypothesis 𝐻  is 10.8 times more likely than a failure 

due to hypothesis 𝐻  (refer to Table 5-9(a)). In other words, there is positive evidence 

in favor of a failure due to shortcomings of the geotechnical design combined with a 

water table at the -3.0 m level (𝐻  vs 𝐻 ). Similarly, there is positive evidence in favor 

of a failure due to shortcomings of the geotechnical design combined with a water table 

at the ground surface when compared to the suggested design (𝐻  vs 𝐻 ). However, 

there is no conclusive evidence suggesting that shortcomings of the design and a water 

table at the ground surface caused the excavation failure (𝐻  vs 𝐻 ).  

 

 When the amount of evidence 𝑒  is included, results show that hypothesis 𝐻  is 500 

times more likely than hypothesis 𝐻  (𝐻  vs 𝐻 , refer to Table 5-9b). That means that 
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shortcomings in the design combined with a water table at -3.0 level are the most 

probable cause of excavation failure. Similar conclusions can be drawn when 

hypotheses 𝐻  and 𝐻  are compared to hypothesis 𝐻 . In these cases, shortcoming of 

the design and a water table at the ground surface are the most likely causes of failure.  

 

 When all available evidence is included in the analysis (i.e., evidence 𝑒  is included, 

refer to Table 5-9c), conclusions about the most probable causes of failure reaffirm 

the results obtained for evidence 𝑒 . In conclusion, comparison of hypotheses 𝐻  - 𝐻  

and 𝐻  - 𝐻  shows that shortcomings in the design (i.e., hypotheses 𝐻  and 𝐻 ) are the 

most probable causes of excavation failure.  

 

The above results show the relevance of including all available evidence in forensic analyses. 

For example, evidence 𝑒  shows slight support for hypotheses 𝐻  as the cause of failure. 

However, when all available evidence 𝑒  is included, hypotheses 𝐻  and 𝐻  are strongly 

favored. 

 

For prior odds 𝑂 𝐻 = 10 (10:1) 

When prior odds are defined as 𝑂 𝐻 = 10 (10: 1), similar conclusions to those obtained in 

the 𝑂 𝐻 = 1.0 analysis can be inferred. Although the strength of the evidence is different 

(notice the variation in color codes), conclusions about the most probable causes that led to 

the excavation failure are similar to 𝑂 𝐻 = 1.0. In other words, for the Green Office Project, 

the evidence and the geotechnical model are sufficient to reach the same conclusions, even if 

there are biases in favor of some hypotheses. 

Bayesian Networks 

A BN for the forensic analysis of the Green Office excavation failure is proposed in this 

subsection. The BN is constructed based on the steps described in Section 4.1.3 and the 

properties presented in Section 2.2.7. The advantage of the BN approach is its ability to expand 

forensic analyses by including additional nodes (variables) related to evidence, expert opinion, 

and common sense. In addition, BNs allow for the exploration of several hypotheses not 

included in the first hypotheses formulation.  The results from the computational numerical 

experiments are also used in the BN.  
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The forensic analysis of the Green Office Project uses geotechnical idioms to construct small 

fragments of DAGs (refer to Section 2.2.7). The DAG fragments are joined to form the final DAG 

used in the forensic analysis. The process of constructing the DAG fragments, joining them 

together, and using the BN for hypotheses comparison is described below. 

 

DAG fragment 1: Stability condition of the excavation due to the water table level and design 

variables  

The DAG for representing the relationship between the stability of the excavation (𝑆𝐶), water 

table elevation (𝑊𝑇) and the design variables (𝐿𝑇), uses a simple cause-consequence idiom 

(refer to Section 2.2.7). The interpretation of the DAG presented in Figure 5-13a is 

straightforward and is based on the accepted knowledge that 𝑊𝑇 and 𝐿𝑇 have a direct 

influence on 𝑆𝐶. However, since the influence of 𝑊𝑇 and 𝐿𝑇 on 𝑆𝐶 is estimated via 

computational experiments, the factor of safety (𝐹𝑜𝑆) is included in the DAG of Figure 5-13b 

as a mediating variable between input and output nodes.  

 

 

Figure 5-13. DAG fragment for the cause-consequence idiom between the stability condition 

of the excavation (𝑆𝐶), the position of the water table (𝑊𝑇), and the design variables (𝐿𝑇). 

(a) Simple DAG, (b) Final version of the DAG fragment with the FoS as a mediating node. 

 

DAG fragment 2: Nodes indicating the stability condition of the excavation 

The stability condition is itself an abstract concept, which is challenging to measure or observe. 

However, several measurable variables can provide information about the stability condition 

(𝑆𝐶). The measurement idiom and the indicator nodes described in Section 2.2.7 are used to 

characterize the causal relationships between (𝑆𝐶) and the following indicator variables: 

expert opinion (𝐸𝑜), the heave (ℎ) of the base of the excavation measured at point B (Figure 

5-5), the inclination of the wall (𝑖) measured at point W, and the settlement (𝜌) measured at 
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point T on 11th street. The causal relationship between 𝑆𝐶 and its indicators is shown in Figure 

5-14. 

 

 

Figure 5-14. DAG fragment for the measurement idiom between the stability condition of the 

excavation (𝑆𝐶), and its indicators nodes: expert opinion (𝐸𝑜), the settlement on the 11th 

street (𝜌) measured at point T , the inclination of the wall (𝑖) measured at point W, and the 

heave (ℎ) measured at point B. 

 

DAG fragment 3: Causes of variation in the water table and their indicators 

One advantage of BNs over the prior odds ratio technique for comparing hypotheses is their 

ability to include additional nodes (i.e., variables) related to hypotheses, measurements, 

observations, and standard engineering practice. In the case of the Green Office Project, 

additional failure causes related to the water table elevation were formulated during the 

development of the forensic analysis. Owners and constructor contractors argued that damage 

to a sewer pipe near the project caused an unexpected elevation in the water table to 0.0 level. 

The sewerage network was inspected, and some minor damage, such as leaks and cracks, were 

identified.  

 

On the other hand, local authorities, utility companies, and the affected community claimed 

that the excavation failure resulted from shortcomings in the geotechnical design. They argued 

that the geotechnical design should have considered a potential elevation in the water table to 

ground surface, given contractors’ experience in nearby excavations and the quick response of 

the groundwater level to antecedent rainfall. In addition, they considered that the length and 

thickness of the diaphragm wall were inadequate to support lateral earth and hydrostatic 

pressures.  
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According to the hypotheses formulated by owners and local government entities, a variation 

in the water table elevation can be explained by two causes: antecedent rainfall (𝐴𝑟) and 

damage to sewer pipelines (𝐷𝑚) . Figure 5-15a shows the DAG fragment for this simple cause-

effect idiom. Each cause (i.e., Ar and Dm) is represented in distinct nodes because they are not 

mutually exclusive. This means that the presence of one cause does not negate the possibility 

of the other. Since cause nodes 𝐴𝑟 and 𝐷𝑚 cannot be directly observed, indicator nodes are 

included. For node 𝐴𝑟, rainfall (𝑅𝑎) node is included as an indicator node to identify whether 

significant antecedent rainfall was recorded in nearby weather stations. In the case of node 

𝐷𝑚, inspection  node (𝐼𝑛) is used to indicate whether significant damage to a sewer pipeline 

was identified during inspection works. In addition, the indicator node 𝑃𝑧 is included in the 

DAG to consider water table measurement using piezometers. The complete DAG fragment 

related to the causes of water table elevation is presented in Figure 5-15b. 

 

 

Figure 5-15. DAG fragments for causes of water table elevation. (a ) DAG fragment from a 

simple cause-effect idiom. (b) Expanded DAG fragment with indicator nodes.  

 

Final DAG 

Figure 5-16 presents the complete DAG for the forensic analysis of the Green Office excavation 

failure. The complete DAG is obtained by joining the DAG fragments shown in Figure 5-13b, 

Figure 5-14, and Figure 5-15b. Red, blue, and green nodes in Figure 5-16represent evidence, 

hypothesis, and mediating nodes, respectively.  
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Figure 5-16. DAG for the forensic analysis of the Green Office excavation failure. Red, blue, 

and green nodes represent evidence, hypothesis, and mediating nodes, respectively. 

 

Conditional Probability Tables (CPT)  

The strength of causality relationships between nodes is defined by the conditional probability 

tables (CPTs) shown in Figure 5-17. The data for each CPT was obtained as follows: 

 

 CPTs for the indicator nodes  𝜌, 𝑖, and ℎ are constructed based on the results from the 

𝑁 = 8000 computational experiments described in Section 5.2.2. Each probability 

value is obtained by conditioning the indicator node on the state values of the 𝑆𝐶 node. 

 

 In the case of node 𝐸𝑜, expert opinion is employed. Since not all expert opinions are 

identical, and some may disagree as to whether the excavation is stable, a probability 

of 80% is assigned to “do not observe failure,” given that the excavation is stable 

(𝑖. 𝑒. , 𝑆𝐶 = 𝑠𝑡𝑎𝑏𝑙𝑒). Consequently, a probability of 20% is assigned to “observe failure,” 
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given that the excavation is stable. On the other hand, when the excavation is unstable 

(i.e., 𝑆𝐶 = 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒), experts are more likely to agree with the assessment. Therefore, 

a probability of 98% is assigned to “observe failure,” and only 2% is assigned to “do 

not observed failure,” given that the excavation is unstable. For practicality, the above 

probabilities are assigned using only one expert opinion. However, extensive studies 

can be conducted on expert opinions about stability conditions. 

 

 The CPT for 𝑆𝐶 node is constructed from the 𝐹𝑜𝑆 values. From numerical analysis, a 

𝐹𝑜𝑆 ≤ 1.0 value indicates an unstable condition, whereas 𝐹𝑜𝑆 > 1.0 denotes a stable 

excavation condition. For the convenience of analysis, it is assumed that all 𝐹𝑜𝑆 ≤ 1.0 

values lead to an unstable condition and all 𝐹𝑜𝑆 > 1.0 values represent stable 

conditions. The CPT of the 𝑆𝐶 node shown in Figure 5-17 represents this situation. 

 

 The CPT of the 𝐹𝑜𝑆 is constructed based on the results from the 𝑁 = 8000 

computational experiments. Probability values are conditioned on the 𝑊𝑇 and 𝐿𝑇 

values, as shown in Figure 5-17. 

 

 In the case of 𝐿𝑇, 𝐷𝑚, and 𝐴𝑟, their CPTs are defined based on prior knowledge. Since 

no prior knowledge is available, all states have the same probability values (Figure 

5-17). 

 

 The CPT values for indicator node 𝑃𝑧 consider the accuracy of the piezometer and the 

error measurement rate. For simplicity, the values shown in Figure 5-17 are assumed. 

These values are related to false negative rates reported in similar tests (Kruschke, 

2015). CPT values for 𝑅𝑎 and 𝐼𝑛 nodes are defined similar to 𝑃𝑧. 

 

 The CPT values of the 𝑊𝑇 node are conditioned on 𝐷𝑚 and 𝐴𝑟 states. These values are 

inferred from one expert opinion. For example, the probability of the water table at 

the 0.0 m level, given the simultaneous occurrence of antecedent rainfall and damage 

to sewer pipes, is 0.99. In contrast, the probability of the water table at the 0.0 m level, 

given that rainfall did not occur but damage to sewer pipelines occurred, is 0.15. 
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Bayesian Network and hypotheses comparison 

Figure 5-18 presents the BN for the forensic analysis and the initial state in all their nodes. 

The initial state represents the probability of the node’s states before any evidence is included 

in the BN. As described in Chapter 2, BNs can update the probability of their nodes by including 

evidence as realizations. Realizations involve assigning specific values to evidence nodes to 

verify how the rest of the nodes are updated.  

 

The evidence shown in Table 5-7 is included in the BN of Figure 5-18 to compare the 

hypotheses about the cause of failure described in Section 5.2.1. The twelve probability queries 

of Table 5-10 are used to include evidence and update the node’s states of the BN. Probability 

queries ask questions about a hypothesis’s probability given some evidence. For example, the 

probability query for the hypothesis 𝐻  and evidence 𝑒  can be read as the probability of 

observing simultaneously a diaphragm wall 0.4 thick and 17.0 m long and a water table at the 

ground surface, given that a failure and a settlement on 11th street greater than 0.3 m are 

observed. Table 5-10 presents the numerical result of the twelve probability queries.  

 

Table 5-10. Probability queries for hypotheses 𝐻  to 𝐻  and evidence 𝑒  to 𝑒 . 

Hypothesis 

𝑯𝒊 

Evidence 

𝒆𝒌 
Probability query 𝑷(𝑯𝒊|𝒆𝒌) 

𝐻  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 3.29 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚) 3.65 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚, 𝑖 > 0.2, ℎ > 0.3) 3.65 x 10  

𝐻  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  |𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 9.10 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚) 3.40 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚, 𝑖 > 0.2, ℎ > 0.3) 3.40 x 10  

𝐻  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 3.64 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚) 4.04 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚, 𝑖 > 0.2, ℎ > 0.3) 4.03 x 10  

𝐻  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 2.15 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚) 1.96 x 10  

𝑒  𝑃(𝐿𝑇 , 𝑊𝑇 .  | 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝜌 > 0.3 𝑚, 𝑖 > 0.2, ℎ > 0.3) 1.97 x 10  

 

 



148 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

 

Figure 5-17. DAG for the forensic analysis of the Green Office excavation failure and its conditional probability tables (CPTs). 
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Figure 5-18. BN for the forensic analysis of the Green Office excavation failure. Initial state (i.e., evidence not included in the nodes). 
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Unlike the posterior odds technique for hypotheses comparison, BNs may include additional 

nodes (variables) related to hypotheses or evidence. In the case of the Green Office Project, the 

BN includes variables related to the water table level (𝑃𝑧, 𝑅𝑎, 𝐴𝑅), stability condition 

(𝑆𝐶, 𝐹𝑜𝑆), and several indicator nodes (𝜌, 𝑖, ℎ, 𝐸𝑜). These additional nodes allow evidence to 

be more easily included. Furthermore, the influence of the amount of evidence on the updating 

process can be observed graphically in the BN. The following analysis present four examples 

regarding the influence of evidence and its impact on failure hypotheses.  

 

 Case No. 1: Assume that only two pieces of evidence are available: a piezometer lecture 

at the ground surface and no significant damage reported during the sewer pipe 

inspection (𝑃𝑧 = 0.0 𝑚 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝐼𝑛 = 𝑁𝑜 𝑑𝑎𝑚𝑎𝑔𝑒). Figure 5-19 compares the initial 

BN (no evidence included) and the updated BN (evidence included). Notice that by 

including these two pieces of evidence, the probability of the “Unstable” state in the SC 

node increased from 0.65 to 0.73, and the water table 𝑊𝑇 as a cause of failure 

increased from 0.53 to 0.95. However, given the d-separation properties of the BN, the 

states of the design node 𝐿𝑇 remain constant (𝐿𝑇 = 𝐿𝑇 = 0.5). Consequently, the two 

pieces of evidence do not provide information about the causes of failure related to the 

design variable 𝐿𝑇. 

 

 Case No. 2: In addition to the evidence provided in Case No. 1, an expert is consulted 

on the stability of the excavation. After a field visit, the expert concludes that the 

excavation is in a condition of failure. This additional piece of evidence is included in 

the BN as 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒. Figure 5-20 compares the updated BN of Case No. 1 

and the updated BN with the additional evidence (Case 2). The resulting BN shows a 

minimal increase in the “0.0 m” state of the WT node but reveals a significant increase 

in 𝐿𝑇 , and a reduction in 𝐿𝑇 . In other words, the expert opinion about the stability 

condition favors the design 𝐿𝑇  as a probable cause that led to the excavation failure.
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Figure 5-19. Case No 1. Comparison between (a) the initial BN and (b) the updated BN for 

evidence: 𝑃𝑧 = 0.0 𝑚 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝐼𝑛 = 𝑁𝑜 𝑑𝑎𝑚𝑎𝑔𝑒.  
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Figure 5-20. Case No 2. Comparison between (b) the BN of Case No. 1 and (c) the updated BN for 

evidence: 𝑃𝑧 = 0.0 𝑚 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝐼𝑛 = 𝑁𝑜 𝑑𝑎𝑚𝑎𝑔𝑒, 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒. 
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 Case No. 3: Assume now the case with the following pieces of evidence: (i) a piezometer 

reading shows a water table at -3.0 m level, (ii) there are no extraordinary rain records 

during previous months near the excavation, (iii) damage to sewer pipelines is found, 

(iv) settlement measurements on 11th street exceed 0.30 m, (v) the inclinometer near 

the diaphragm wall shows an inclination greater than 0.20 m, (vi) the heave of the base 

of the excavation is higher than 0.3 m, and (vii) the expert concludes that the 

excavation is under failure. Figure 5-21 compares the initial and updated state of the 

BN after including the above seven pieces of evidence. Notice that under these 

conditions, the BN indicates that the design 𝐿𝑇  (i.e., a diaphragm wall 17 m long and 

0.4 thick) is the most probable cause of excavation failure. In addition, although 

damage to sewer pipelines is found, the BN indicates that the elevation of the water 

table to the ground surface is not a probable cause of failure. 

 

 Case No. 4: Case No. 4 includes the actual evidence collected during the forensic 

investigation of the Green Office Project. The evidence includes the following 

information: 

 

Monthly rainfall data during 2011 compared with previous years 

Figure 5-22 shows the monthly rainfall data provided by IDEAM (Colombian weather 

service) from 2007 to 2011. Precipitation data from May to October 2011 shows lower 

values than the same months of previous years. However, in November 2011 (one 

month before the failure), the precipitation was extraordinarily high (292.4 mm). 

Consequently, this information is included as evidence in the BN as 𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠. 

 

Piezometer measurements near the excavation failure area 

Figure 5-23 presents the water table level measured in piezometers PZ1 and PZ5 from 

January 2011 to January 2012. Piezometer PZ1 shows a stable water table level from 

June 2011 to September 2011, but by October 2011 and November 2011, a 

considerable elevation to the -3.0 m level has been recorded. Then, by December 2011, 

a sudden decrease in the level was observed, possibly explained by the damage to the 

piezometer caused by the excavation failure. The information provided by the 

piezometers is included in the BN as 𝑃𝑧 = −3.0 𝑚 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 
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Figure 5-21. Case No 3. Comparison between (a) the initial BN and (d) the updated BN for 
evidence: 𝑃𝑧 = −3.0 𝑚 𝑟𝑒𝑎𝑑𝑖𝑛𝑔, 𝑅𝑎 = 𝑁𝑜 𝑟𝑒𝑐𝑜𝑟𝑑𝑠, 𝐼𝑛 = 𝑑𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 > 0.2 𝑚, ℎ >

0.3 𝑚, 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒. 
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Figure 5-22. Monthly rainfall from 2007 to 2011 in the project area (Unal, 2012). 

 

Figure 5-23. Variation in the water table level according to piezometers PZ 1 and PZ5 (Unal, 

2012). 
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Inspection and diagnosis of aqueduct and sewer pipelines 

The Bogota Aqueduct and Sewerage Service (EAAB) inspected the aqueduct and sewer 

pipelines near the project area to detect any damage. The inspection did not find any 

damage to aqueduct pipelines. However, several sewer pipelines were clogged, and 

minor leaks were detected. The evidence provided by this information is included in 

the BN as 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒.  

 

Topographic survey: 11th street and at the bottom of the excavation. 

A topographical survey was carried out to verify the magnitude of the settlements on 

11th street. Figure 5-24 presents the longitudinal section B-B (refer to Figure 5-2) of 

the Green Office Project, where a differential settlement of 0.90 m on 11th street was 

observed. Photo 5-1 demonstrates the settlement’s magnitude and impact on 

vehicular and pedestrian traffic. The evidence provided by this information is included 

in the BN as 𝜌 > 0.30 𝑚. 

 

A topographical survey at the bottom of the excavation was not carried out during the 

construction stage. However, the construction logbook reveals a heave during the 

excavation activities for the third basement. The evidence provided by this information 

is included in the BN as ℎ > 0.30 𝑚. 

 

 
Figure 5-24. Longitudinal section B-B (refer to Figure 5-2). Maximum settlement measured 

on 11th street. 
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Photo 5-1. Settlement on 11th street. (a) impact on the vehicular roadway, and (b) impact  
on the pedestrian walkway. Photographs from Caracol Radio (2012) and Radio Santafe 

(2012). 

 

Inclinometer measurements adjacent to the diaphragm wall  

Inclinometers I6, I7, and I8 were the closest to the excavation failure area (refer to 

Figure 5-6). The accumulated measurements of inclinometers I7 and I8 from October 

2010 to January 2012 are plotted in Figure 5-25. Although inclinometer I6 was 

damaged in October 2011, it recorded an accumulated inclination of 196 mm up to that 

date. The damage to the inclinometer may be due to the excavation failure. Given that 

no conclusive evidence is gathered from inclinometer measurements, the information 

is included in the BN as 𝑖 < 0.20 𝑚. 

 

Figure 5-26 presents the updated state of the BN after the inclusion of the actual 

evidence collected during the forensic investigation (Case No. 4). The analysis of the 

BN of Figure 5-26 and its comparison with the BN of Cases 1 to 3 (Figure 5-19 to 

Figure 5-21), leads to the following conclusions: 

 

 The six pieces of actual evidence presented in Case no. 4 indicate that the design 𝐿𝑇  

(diaphragm wall 17 m long and 0.4 m thick ) combined with a water table at the -3.0 m 

level, was the likely cause of the excavation failure. A closer inspection of the updated 

BN (Figure 5-26) reveals that the states 𝐿𝑇 = 𝐿𝑇  and 𝑊𝑇 = −3.0 𝑚 are far more 

likely than the states 𝐿𝑇 = 𝐿𝑇  and 𝑊𝑇 = 0.0 𝑚. The results from the conditional 

probability queries presented in Table 5-11  support this conclusion. Note that the 



158 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

combination of states 𝐿𝑇 = 𝐿𝑇  and 𝑊𝑇 = −3.0 𝑚 is more likely than other 

combinations. 

 

Figure 5-25. Accumulated inclination measured in inclinometers I7 and I8 (Unal, 2012). 

 

 Although damage to an adjacent sewer pipeline was detected, the updated BN of 

Figure 5-26 indicates no impact on 𝑊𝑇 = 0.0 𝑚. Therefore, damage to a sewer 

pipeline is unlikely to explain the excavation failure. 

 

 Even though unusual rainfall was recorded during the two months before the failure, 

the piezometer readings remain below the -3.0 m level on average. Consequently, the 

unusual rainfall and the likely elevation of the water table to the ground surface are 

unlikely to explain the excavation failure. 

 

 The evidence provided by nodes 𝜌, ℎ, and 𝑖 is decisive in determining the stability of 

the excavation. Even though the inclination measurements 𝑖 do not provide conclusive 

evidence about the inclination in the diaphragm wall, settlements 𝜌 recorded on the 

11th and the heave ℎ identified at the base of the excavation are enough to demonstrate 

the failure of the excavation. In addition, although the expert opinion node 𝐸𝑜 is not 

used as evidence, the state 𝐸𝑜 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is updated to 98%.  
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Figure 5-26. Updated BN after the inclusion of actual evidence: 

𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3. 
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Table 5-11. Probability queries for the actual evidence of the Green Office failure. 

Probability query 𝑷(𝑯𝒊|𝒆𝒌) 

𝑃(𝐿𝑇 , 𝑊𝑇 .     |  𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑟𝑒𝑎𝑑𝑖𝑛𝑔, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3) 0.138 

𝑃(𝐿𝑇 , 𝑊𝑇 .   |  𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑟𝑒𝑎𝑑𝑖𝑛𝑔, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3) 0.727 

𝑃(𝐿𝑇 , 𝑊𝑇 .     |  𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑟𝑒𝑎𝑑𝑖𝑛𝑔, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3) 0.067 

𝑃(𝐿𝑇 , 𝑊𝑇 .   |  𝑅𝑎 = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑟𝑒𝑎𝑑𝑖𝑛𝑔, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3) 0.068 

 

K Most Probable Explanation – K MPE 

All combinations of hypotheses nodes in Figure 5-16 that led to the observed evidence (𝑅𝑎 =

𝑅𝑒𝑐𝑜𝑟𝑑𝑠, 𝑃𝑧 = −3.0 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, 𝐼𝑛 = 𝐷𝑎𝑚𝑎𝑔𝑒, 𝜌 > 0.3 𝑚, 𝑖 < 0.2, ℎ > 0.3) are identified through 

an R routine (refer to Annex A8). The routine detected the 17 combinations shown in Table 

5-12. According to this table, the most probable explanation of the excavation failure is a water 

table elevation at the -3.0 m level and a diaphragm wall 17 m long and 0.4 thick. Notice that 

the first K=3 explanations include LT1 as a probable explanation. Explanation K=4 includes LT2 

as a probable explanation, but its probability is two orders of magnitude less likely than K=3. 

 

Table 5-12. K=17 Most probable explanations of the Green Office excavation failure. 

K 
Dm 

(Damage) 

Ar 
(Antecedent 

Rainfall) 

WT 
(Water  

Table) 

LT 

(Design) 

FoS 
(Factor 

Of  

Safety) 

SC 

(Stability 

Condition) 

Eo 

(Expert opinion) 
Prob. 

1 FALSE TRUE -3.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.5378 

2 TRUE TRUE 0.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.1338 

3 TRUE TRUE -3.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.1227 

4 TRUE TRUE 0.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0656 

5 FALSE TRUE -3.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0456 

6 FALSE FALSE -3.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.0346 
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7 TRUE FALSE -3.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.0275 

8 TRUE TRUE -3.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0126 

9 TRUE FALSE 0.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.0069 

10 TRUE FALSE 0.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0040 

11 FALSE FALSE -3.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0038 

12 TRUE FALSE -3.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0029 

13 FALSE TRUE 0.0m LT1 <1.0 Unstable 
Observe_ 

failure 
0.0009 

14 FALSE TRUE -3.0m LT2 >1.0 Stable 
Do_not_observe_ 

failure 
0.0005 

15 TRUE TRUE 0.0m LT2 >1.0 Stable 
Do_not_observe_ 

failure 
0.0002 

16 FALSE TRUE 0.0m LT2 <1.0 Unstable 
Observe_ 

failure 
0.0002 

17 FALSE TRUE -3.0m LT2 >1.0 Stable 
Observe_ 

failure 
0.0002 

5.2.4 Comparison of POR and BN Techniques 

POR technique 

The analysis of the Green Office failure using the POR technique revealed that initial 

shortcomings in the design were the most probable cause of the excavation failure. This 

conclusion is derived from the probabilistic comparison of several hypotheses formulated by 

the stakeholders. Even though several prior odd values were analyzed to check the sensitivity 
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of the analysis, the POR technique disproves several hypotheses and shows that the evidence 

is conclusive in favor of design flaws. 

 

The POR analysis was carried out by increasing the amount of evidence. In the first case, only 

the evidence (𝑒 ) related to the stability of the excavation was used. The results showed that 

this evidence alone did not provide conclusive results for any hypothesis. When additional 

evidence related to settlements and inclination measurements was included  (𝑒  and  𝑒 ), the 

analyses indicated that design flaws were the most likely cause of the excavation failure. These 

results show the importance of including all available evidence in forensic analyses. 

BN technique 

The analysis of the failure using BNs allowed the inclusion of additional variables. These 

variables are related to qualitative evidence, such as expert opinion (Eo), antecedent rainfall 

(Ar), and damage to sewer pipelines (Dm) that could not be included in the POR technique. The 

inclusion of qualitative variables strengthened the analysis and reaffirmed design flaws as the 

most likely cause of failure. 

 

As in the POR technique, evidence was gradually included in the BN. The results showed that 

including a few pieces of evidence does not yield conclusive results. However, including all 

available evidence in the BN allows for determining the most likely cause of failure with high 

reliability. Furthermore, given the BN's characteristics, the hypothesis comparison process is 

traceable and reproducible. 

 

Main Differences 

The main difference between POR and BN techniques lies in the type and amount of 

information that can be included in the analysis. Although both techniques employ similar 

geotechnical and information models, the POR technique is simpler in its construction and 

interpretation. However, it is limited by the type of information that can be included. For 

example, the direct inclusion of qualitative variables in Bayes' theorems is not possible with 

the POR technique. 

 

On the other hand, although constructing a reliable BN is challenging, the inclusion of 

additional variables expands the number of initial hypotheses and allows for more complex 



Chapter 5. Determining the Causes of an Excavation Failure. 
The Green Office Project 

163

 

  
 

queries. For example, in the studied case, qualitative evidence related to expert opinion and 

inspection of sewerage networks included some aspects of the hypotheses that were not 

included in the POR analysis. 

5.3 Summary 

Chapter 5 presents an actual case study of the proposed Bayesian methodology for supporting 

decisions regarding the causes of geotechnical failures. The case study is a forensic 

geotechnical analysis of a deep excavation failure that occurred in the Green Office Project in 

Bogotá, Colombia. The general characteristics of the project and the geotechnical conditions 

under which the excavation failed are described. The main aspects of the case study and its 

results can be summarized as follows: 

 

 The Green Office Project is a six-level building with three basement levels located on 

the northeast side of Bogotá, Colombia. During construction activities, an excavation 

failure was observed. Heave of the bottom of the excavation, large settlements on 11th 

street, and significant horizontal movements in the diaphragm wall were monitored. 

 

 The failure sequence included the following steps: (i) small settlements values were 

observed during the excavation for the first basement (-4.0 m level), (ii) large 

settlements up to 0.90 m adjacent to the excavation were measured during 

construction activities for basements two and three (-11.0 m level), (iii) large 

horizontal displacements were recorded in the surrounding area and the diaphragm 

wall. 

 

 Stakeholders formulated some hypotheses about the causes of failure. Building owners 

and construction contractors stated that excavation failure occurred as a result of an 

unexpected elevation in the water table level due to damage to a sewer pipe near the 

building. Utility companies and local government authorities claimed that the failure 

was due to design shortcomings. In particular, the thickness and the embedded length 

of the diaphragm wall were inadequate to support lateral pressures. 

 

 Two probabilistic failure models were constructed in order to apply the proposed 

Bayesian methodology and determine the causes of the excavation failure. The first 



164 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

model analyzes the strength limit state through limit equilibrium via Janbu’s corrected 

equations. The second model used a finite element analysis to evaluate the service limit 

state and to calculate deformations. 

 

 The POR and BN techniques described in Chapter 4 were applied to the execution 

failure of the Green Office Project. The POR technique compared the competing 

hypotheses for several prior odds ratio values and different amounts of evidence. In all 

cases, the results identified that the most likely cause of the excavation failure was a 

shortcoming in the diaphragm wall design (thickness and length) combined with an 

elevation of the water table. 

 

 The BN for the forensic analysis of the Green Office Project was constructed from small 

pieces of cause-effect relationships. Each piece was translated into a simple DAG. Then, 

all simple DAGs were joined together to create a large DAG that accounts for 

hypotheses and evidence. Probability relationships (i.e., CPT) were estimated from the 

limit equilibrium and finite element probabilistic models. The actual evidence collected 

during the forensic investigation was included in the BN. Unlike the POR technique, the 

BN identified only the shortcomings of the diaphragm wall design as the most likely 

cause of failure. The difference in results between the two techniques may be explained 

by the amount of evidence used in each case. For example, the evidence related to 

antecedent rainfall and damage to sewer pipelines was not included in the POR 

analysis, given the limitations of this Bayesian technique. However, the results from 

both techniques are comparable and support the thickness and short embedded length 

of the diaphragm wall as the most likely cause of the excavation failure.  

 



  
    

  
 

6.  Discussion 

6.1 Key Findings and Implications 

This section discusses key findings and implications of the Bayesian methodology for forensic 

geotechnical analysis. Improvement in estimating failure causes using the proposed 

techniques is examined.  

6.1.1 Improvement in Estimating Failure Causes 

The Bayesian methodology proposed in this thesis demonstrates that probabilistic 

methodologies constitute an essential tool that may help establish  the most probable cause of 

a geotechnical failure. Bayesian inference via posterior odds ratio (POR) and Bayesian networks 

(BN) were the probabilistic tools used in this research due to their ability to simulate the 

abductive reasoning used in forensic engineering. The examples presented in Chapter 4 and 

the case study analyzed in Chapter 5 have demonstrated that the proposed methodology 

identifies the most probable cause of failure even when evidence is scarce.  

 

Authors such as Kool et al. (2019) recognized that conclusions about the causes of a 

geotechnical failure sometimes seem biased, and therefore findings can be questionable. The 

Bayesian methodology overcomes this bias by testing several hypotheses against the available 

evidence. Since the testing process relies on a verifiable probability framework, hypotheses 

about the causes of failure can be compared probabilistically. For example, the method can 

estimate how many times better hypothesis 𝐻  explains a failure than hypothesis 𝐻 . In 

addition, the K most probable explanation (KMPE) algorithm provides the top K explanations 

of the causes of failure in a BN. 

 

The ERTC7 benchmark in Section 4.2 presents an example of the improvement in estimating 

failure causes. In this exercise, a short embedded length of the wall was fixed as the cause of 
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an excavation failure. The excavation was then analyzed, assuming that the cause of failure was 

not known in advance. To this end, several hypotheses were formulated: (i) the elevation of 

the water table, (ii) an unforeseen increase in the surcharge, and (iii) the short embedded 

length of the wall. Each hypothesis was tested against the evidence using the POR technique. 

The results and the probabilistic analysis showed that the POR technique found the short 

embedded length of the wall as the most likely cause of failure. 

 

The Breitenhagen levee failure presented in Section 4.3 provides an additional example of the 

improvement in estimating failure causes. In this case, the BN technique was used as an expert 

system. The hypotheses about failure causes were included as nodes in the BN in order to 

represent the failure model probabilistically. Different hypotheses regarding pore water 

pressure and geotechnical conditions were evaluated by including evidence and querying the 

BN. In addition, the KMPE algorithm was used to estimate the most probable causes of the 

levee failure. The analysis showed that the results provided by the BN are comparable to other 

forensic techniques (Kool et al., 2019; Kool et al., 2020).  

6.1.2 Beyond Traditional Back Analysis 

As described in Chapter 3, back analysis is the preferred tool in forensic geotechnical 

engineering (FGE). Hwang (2016) points out that back analysis must be used cautiously due to 

limitations, such as model complexity and numerical analysis. He argues that back analyses 

outcomes should only be interpreted by expert analysts. Furthermore, back-analysis tools 

should be chosen based on the collected evidence, laboratory tests, and soil/rock behavior. In 

practice, the standard procedure to construct the back analysis model is based on the "as-built" 

conditions of the structure (Babu & Singh, 2016). Then, the outcomes from the back analysis 

are compared against the collected evidence using deterministic criteria. 

 

As in the standard procedure, the methodology proposed in this thesis constructs geotechnical 

models based on the characteristics of the materials and the collected evidence. However, the 

method recognizes the uncertainty of failure conditions and expands back analysis to include 

several failure hypotheses. Compared with standard back analyses, where only a few 

computational experiments are performed, the Bayesian methodology performs thousands of 

experiments. The outcomes from these experiments are translated into POR or BN, which can 

be queried as an expert system (refer to Section 2.2.9). The answers to the queries are 
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probabilistic, and comparisons between hypotheses are objective. The latter aspect is 

particularly important in the sense that the methodology is traceable and replicable. 

Consequently, it provides more reliable conclusions about the causes of geotechnical failures 

than traditional methods and simple back analysis. This aspect constitutes the key 

contribution of this research to forensic geotechnical engineering. 

6.1.3 Two Bayesian Techniques for Hypotheses Comparison 

To date very few papers have been published on the role of Bayesian analysis in FGE (e.g., Kool 

et al., 2020). In fact, no research on the use of Bayesian networks in FGE has been published, 

except for a preliminary approach carried out by Xu & Zhang (2016). The Bayesian 

methodology described in Chapter 4 represents a considerable breakthrough in the available 

techniques that support decisions about the causes of geotechnical failures. Furthermore, the 

possibility of changing the way that geotechnical engineers make decisions about the causes 

of failures is an exciting contribution to existing knowledge and potentially a vast area of 

research. 

 

The method described in Chapter 4 explores two Bayesian tools for comparing hypotheses: 

posterior odds ratio (POR) and Bayesian networks (BN). Whereas the POR technique uses the 

basic Bayes' theorem (refer to Equation 2-6) to compare two competing hypotheses, BNs 

expand the theorem through the chain rule (refer to Section 2.2.6). In the case of the POR, 

probabilities are estimated directly from Bayes' theorem. Thus, calculations are simple, but 

results are sensitive to prior odds values. On the other hand, BNs overcome prior odds values 

influence, but their construction is more complicated than the POR. Further discussion of prior 

odds' influence on posterior probabilities and Bayesian network construction is given in 

Section 6.2. 

Posterior Odds Ratio (POR) 

Although the POR technique for comparing failure hypotheses has been used extensively in 

criminal investigations and forensic science (e.g., Taroni et al., 2014; Neil et al., 2019), to date 

there have been no reports in FGE. The methodology proposed in this thesis adapts the POR 

technique to the characteristics of geotechnical failures, such as material uncertainty, soil 

constitutive models, back analyses, failure scenarios, and numerical methods. The 

methodology represents an enhancement in FGE as it surpasses the conventional methods in 
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deriving conclusions about the causes behind geotechnical failures. For example, Kool et al. 

(2020) propose a Bayesian procedure based on an event tree for hindcasting levee failures. 

However, their procedure does not compare hypotheses using any criteria. In contrast to the 

Kool et al. procedure, Section 4.2 presents an example of the use of the POR technique and the 

criteria for selecting the most probable cause of failure based on Jeffreys's (1961) scale and 

Kass & Raftery's (1995) modified scale.  

Bayesian Networks (BN) 

The BN technique proposed in Section 4.1 and the results from examples in Section 4.3 and 

Chapter 5 suggest that BNs can help to identify the most probable cause of a geotechnical 

failure. Combining computational experiments and expert opinion through BNs results in less 

arbitrary conclusions. Furthermore, the KMPE algorithm can list the most probable causes that 

explain a failure. Similar results have been achieved in criminal investigations and forensic 

engineering. For example, Garbolino & Taroni (2002); Taroni et al. (2004); Biedermann et al. 

(2005); Kwan et al. (2008); Biedermann & Taroni (2012); and Holický et al. (2013) present 

several examples regarding BN applications for interpreting evidence and assessing failures. 

However, BNs have not been extensively employed in FGE, possibly due to the complexity of 

geotechnical failures and the poor training of geotechnical engineers in Bayesian statistics 

(Baecher, 2017). 

6.1.4 Use of Standard Knowledge and Geotechnical Jargon 

The proposed Bayesian methodology applies the DAG construction procedure suggested by 

Kjærulff & Madsen (2013). This procedure is based on depicting small pieces of cause-effect 

relationships through simple DAGs and then joining them together to represent large and 

complex geotechnical failure models. Geotechnical jargon and standard geotechnical 

knowledge can assist in identifying causal relationships between variables. The most 

challenging tasks in the proposed methodology are: (i) defining the pieces of cause-effect 

relationships based on the proposed failure hypotheses and (ii) eliciting the probabilistic 

relationships (i.e., the CPTs). In other words, each DAG should reflect the cause-effect 

relationship between variables (nodes), and the CPTs should account for the probabilities 

between variables. Experienced geotechnical engineers with abductive reasoning skills should 

complete these tasks.  
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In summary, the Bayesian method for comparing hypotheses can be used to support decisions 

regarding the causes of geotechnical failures. Since the method is based on a probabilistic 

framework, the decision-making process is traceable, biases are considerably reduced, and 

arbitrary conclusions can be avoided. Furthermore, the method can deal with multiple pieces 

of evidence from different sources and estimates the influence of the amount of evidence on 

selecting the most probable cause of failure. 

6.2 Limitations  

The following paragraphs discuss the weaknesses and limitations of the proposed Bayesian 

methodology and emphasize the need for further research in Bayesian statistics for FGE. 

6.2.1 General Limitations 

One of the limitations of the proposed methodology is the difficulty of translating geotechnical 

models into Bayesian networks or posterior odds ratios. This difficulty arises from the 

complexity of some models, in which many input variables may be needed. In order to keep 

the complexity to a minimum, it is necessary to keep the variables to those that may 

significantly influence the results. Therefore, before creating a probabilistic model, it is 

necessary to evaluate the influence of each variable on the geotechnical behavior and assign 

probability functions only to those that may have influence. Local and global sensitivity 

analyses can be used to examine the impact of uncertainties in input and output variables. 

 

The lack of information associated with geotechnical failures may be another limitation in 

applying the proposed Bayesian methodology. Since geotechnical failures are rare and unique, 

the available information is often scarce or non-existent. Therefore, each forensic geotechnical 

analysis requires unique data from the site investigation, laboratory tests, design 

documentation, and as-built records. Although standard geotechnical knowledge can be used 

to analyze failures, each analysis should use its own geometry, geomechanical properties, and 

failure mechanism information. Sometimes this information is difficult to acquire due to 

economic restraints or practical limitations such as inaccessibility to failure sites or inability 

to collect evidence. In any case, all available information should be used to formulate 

hypotheses and evaluate the causes of failure. 
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A complete forensic analysis of geotechnical failures using the proposed Bayesian 

methodology may be challenging due to the many different failure hypotheses that can be 

formulated. In fact, hypotheses from the stakeholders should only be considered if they are 

credible and verifiable using current geotechnical and probabilistic knowledge. In other 

words, forensic analyses cannot include hypotheses that cannot be represented by 

mathematical, probabilistic, or geotechnical models. Falsifiability, refutability, and 

unfalsifiability fallacy concepts (Bowen, 2018) are crucial aspects to consider when 

formulating hypotheses about causes of failure. An additional aspect is that theoretical models 

of some geotechnical phenomena are still under research. For example, the unsaturated, 

thermodynamic, and chemical behavior of soils are active research areas. Consequently, the 

cause-effect relationships are not yet fully understood, and solutions must rely on empirical 

relationships or expert opinion. 

6.2.2 Posterior Odds Ratio (POR) Technique 

Regarding the posterior odds ratio technique described in Section 4.3.1, two drawbacks were 

identified: (i) sensitivity to prior odds and (ii) limitations to including expert knowledge. As 

demonstrated in Section 4.2 and Section 5.2.3, prior odds values can significantly influence the 

posterior odds ratio values. The main challenge consists in selecting appropriate values for the 

prior odds ratio. For example, when two failure hypotheses are equally likely, the forensic 

investigator should assign 1.0 to the prior odds ratio. Conversely, when a hypothesis is 

unlikely, high (or low) values such as 100 or 1000 (0.01 or 0.001) should be assigned. 

Assigning values to the prior odds ratio is a subjective task that requires expertise and 

knowledge of similar geotechnical failures. In case of doubt, when failure hypotheses are well 

formulated and seem equally likely, all geotechnical forensic analyses should use 1.0 for the 

prior odds ratio.  

 

Including expert, empirical or common knowledge in the POR technique may be difficult if a 

mathematical model cannot represent this knowledge. Moreover, combining expert opinion 

and geotechnical models without a probabilistic framework is virtually impossible. In the case 

of the proposed Bayesian methodology, expert opinion should be included in the likelihood 

term of Bayes' theorem (Equation 2-9). For example, an expert can define a geotechnical failure 

using a deformation value based on his/her expertise. However, another expert can define a 

geotechnical failure using different deformation values. In order to include all available expert 
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opinions, the geotechnical failure should be defined probabilistically using a likelihood term. 

Consequently, likelihood values should be defined through surveys (i.e., statistical data) or 

epistemic probabilities (Kadane & Schum, 1998).  

6.2.3 Bayesian Networks (BN) Technique 

The Bayesian network technique described in Section 4.3.2 is subject to at least the following 

limitations: discretization of continuous variables, translating expert knowledge into 

probability distribution functions (PDF), construction of DAG structures, and computational 

demand. Each limitation is discussed below. 

Discretization of continuous variables 

Most variables used in geotechnical engineering to describe soil/rock properties are 

continuous. BNs can deal with continuous variables, although their use is limited to probability 

distribution functions such as normal or beta. Therefore, the standard practice discretize the 

variables and assign them a discrete domain. Friedman & Goldszmidt (1996) pointed out that 

discretization implies a tradeoff between two aspects. On the one hand, discretization leads to 

an efficient representation of cause-effect relationships between variables, especially when 

those relationships are highly nonlinear. In this way, it produces models that can be used for 

decision-making, as in the case of FGE. On the other hand, all discretization processes create 

an unavoidable loss of information that may affect the results. Therefore, a useful BN for FGE 

should be able to model hypotheses of geotechnical failures without losing accuracy and 

representativeness.  

 

Discretization of a continuous variable is still an unsolved problem. Although several 

techniques, such as static discretization, dynamic discretization (Neil et al., 2007), and credal 

sets (Antonucci, 2018) are available, there is not yet a discretization tool for solving the 

problem of information loss without affecting computational cost. BNs used in FGE are no 

exception to discretization problems. For example, in the forensic analyses described in 

Sections 4.3 and 5.2.3, the number and width of the intervals were defined based on the 

model's accuracy and computational cost. Several trials were required to identify the number 

and width of intervals for each geotechnical variable.  

 



172 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

In some cases, geotechnical variables are easy to discretize. The factor of safety (FoS) and some 

deformation variables are good illustrations of a straightforward discretization using standard 

geotechnical knowledge. For example, in the forensic analysis discussed in Chapter 5, the FoS 

was divided into groups ≤ 1.0 and > 1.0. The group ≤ 1.0 represents all geotechnical cases in 

which failure occurs, while the group ≥ 1.0 includes all stable cases. In addition, deformation 

variables such as settlement and horizontal displacement are discretized using the criteria 

specified in local engineering codes (e.g., settlement values higher than 0.3 m and horizontal 

displacements higher than 2% of the excavation depth are defined as serviceability failures). 

Translating expert knowledge into probability distribution functions 

As mentioned in Section 2.2.8, a BN can include human expert knowledge to support decision-

making in FGE. Including expert knowledge is helpful when there are significant concerns 

regarding the uncertainty of cause-effect relationships between variables. However, 

translating expert knowledge into useful PDFs or CPTs can be challenging. Uusitalo (2007) 

breaks down this challenge into two main areas of difficulty: (i) classical statistics used by 

experts mainly focus on confidence intervals and point estimates, such as averages and 

standard deviations. Consequently, most human experts are not trained in Bayesian statistics 

and updating probability concepts. (ii) human experts commonly assign probabilities using 

large databases. Therefore, assigning probabilities to knowledge when information is 

unavailable is a complex task. 

 

The latter reason is of particular interest in FGE because geotechnical failures are considered 

rare events. Large databases with similar geotechnical failures are uncommon. Moreover, 

when these databases are available, they should be used cautiously since each failure is unique, 

and general trends cannot be easily inferred. Heuristic reasoning can help allocate 

probabilities to rare events and supports the elicitation of CPT. The probabilities assigned to 

the 𝐸𝑜 (expert opinion) variable in the Green Office example of Section 5.3.8 illustrate the use 

of heuristic reasoning in FGE. Although heuristic reasoning can support some BN tasks, it may 

lead to biased outcomes that could invalidate the forensic analysis. Boutang & De Lara (2015)  

provide good examples of some of the biases behind them.  

Construction of DAG structures 

In many forensic geotechnical problems, the DAG structure that reflects the cause-effect 

relationships between variables can be constructed using physical-mathematical models. 
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Since these models have been validated through experimental or real-scale prototypes, and 

the geotechnical community widely accepts them, the resulting DAG implies little uncertainty. 

For example, the DAGs constructed in Sections 4.3 and 5.2.3 use physical-mathematical 

models. Therefore, no uncertainty is considered during their construction.  

 

In some forensic problems, identifying causality and constructing useful DAGs can be 

challenging (Uusitalo, 2007). Forensic studies that involve interaction between environmental 

and geotechnical variables (e.g., slope stability, volumetric changes due to climate variation, 

and weathering) are good illustrations of problems where constructing useful DAGs is difficult. 

Structuring multidisciplinary teams and using a standard reliability language could help 

develop useful DAGs and consistent forensic geotechnical analysis. 

Computational demand 

Computational demand is a significant concern in BNs with several variables, even though the 

number of probability relationships between variables is reduced by the chain rule (Section 

2.2.6). Bensi et al. (2013) pointed out that for moderately sized BNs, the computational 

demand could be intractable, especially when exact algorithms such as variable elimination 

are used. Given that the computational demands may restrict the use of BNs in FGE, the 

following aspects require special attention: 

 

 Reduce the number of variables and use only those that impact the outcomes. In other 

words, before constructing a BN, a sensitivity analysis should be performed in order to 

detect the relevant variables with the most significant influence on the results. 

 

 Discretize relevant variables using a few intervals. As discussed at the beginning of this 

section, BNs require the discretization of continuous variables into a finite number of 

intervals. The number of intervals should be defined based on representativeness, loss 

of information criteria, and computational demand. The discretization should also be 

based on standard geotechnical knowledge, failure criteria, and deformation 

thresholds. 

 

 Assign probability values to cause-effect relationships (i.e., eliciting CPT values). An 

efficient discretization process reduces the size of CPTs. Moreover, when parent and 



174 Bayesian Network Methodology for Decision Support in 
Forensic Geotechnical Engineering 

 

  
 

child nodes (variables) are binary (i.e., two states), and child nodes only depend on one 

or two parents, the probability values in the CPT can be assigned by human experts. 

Eliciting probability values for CPTs or providing the shape of a probability 

distribution can be challenging for human experts when variables have several states 

and depend on many parent nodes. Morgan & Henrion (1990) present a 

comprehensive analysis of the cognitive difficulties of human experts in this regard. 

 

 Computational demand may be a major concern if probability values that populate 

CPTs are estimated from complex numerical models. The examples of Sections 4.2 and 

5.2 are good illustrations of computational demand issues. In the case of the forensic 

analysis of Section 4.3, 100,000 slope stability calculations using limit equilibrium 

equations were performed using D-Stability (Meij & Deltares, 2020). In order to obtain 

accurate estimates of the conditional probabilities, the 100,000 slope stability 

outcomes were considered more than sufficient. Convergence plots of Figure 4-16 

demonstrate this condition.  

 

On the other hand, the forensic analysis described in Section 5.3 required a more sophisticated 

geotechnical model that included a complex finite element analysis. This sophisticated model 

was formulated based on failure and deformation criteria defined in the hypotheses. The 

number of finite element analyses was restricted to 8,000, given the limitations of the software 

and memory capacity. However, even with the restricted number of analyses, the number of 

outcomes was ample to complete the CPTs and use a BN for determining the most probable 

cause of failure. Both analyses, but especially the example of Section 5.3, required a 

compromise between the representativeness of the failure model and computational demand. 

Further research in this regard is required. 



  
    

  
 

7. Conclusions and Suggestions for Future Work 

7.1  Conclusions 

7.1.1 Diagnosis of Standard Practices in Forensic Geotechnical 
Engineering 

Deterministic analysis for hypotheses comparison is the standard practice in FGE. 

Deterministic models via back analysis are by far the most preferred tools used by geotechnical 

engineers. However, since analyzes are deterministic and the results are mainly based on 

expert judgment, some conclusions about the causes of geotechnical failures sometimes seem 

arbitrary. Two reasons may explain this situation. The first reason is associated with the 

uncertainty in soil/rock behavior and the uncertainty in failure scenarios. The second reason 

is related to the standard practices of FGE and how expert judgment is used. 

 

In the case of soil/rock behavior and uncertainty in failure scenarios, geotechnical engineers 

recognize that those materials and the forces acting on them are highly uncertain. However, 

probabilistic tools to address uncertainty are rarely used in forensic geotechnical 

investigations. Consequently, failure scenarios (hypotheses) are usually characterized by 

deterministic models, which in turn lead to deterministic results. Deterministic analyses are 

contrary to the behavior of geotechnical models and may lead to erroneous or biased results. 

 

Standard practices in FGE include comparing deterministic results from back-analysis against 

the collected evidence and supporting/disregarding hypotheses (failure scenarios) based on 

expert judgment. Since the results are deterministic and the expert judgment is difficult to 

trace, probabilistic comparison between hypotheses cannot be carried out. For example, 

deterministic analyses are unable to provide comparison such as (1) how many times the 

hypothesis  𝐻  better supports the evidence than the hypothesis  𝐻 ? or (2) although 
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hypotheses  𝐻 , 𝐻  and  𝐻  can explain the failure, which of them is the most likely explanation 

of the cause of failure? Current technical literature in FGE does not include probabilistic 

comparisons such as those mentioned above. 

 

As a result, current standard practices of FGE require the support of probabilistic techniques 

that align with the actual behavior of geotechnical systems and the uncertainty associated with 

the process of hypotheses comparison. Bayesian statistics and Bayesian inference are 

promising tools that can support decisions in FGE. This doctoral thesis has aimed to explore 

these tools in order to establish whether they can provide traceable and reliable conclusions 

regarding the causes of geotechnical failures. In addition, the proposed Bayesian methodology 

is expected to improve transparency in decision-making processes in FGE. 

7.1.2 Supporting Decisions in FGE. The Proposed Bayesian 
Methodology: Posterior Odds Ratio and Bayesian Networks 

This doctoral thesis proposed a Bayesian methodology for supporting decisions about the 

causes of failures with geotechnical origins. The methodology applies two Bayesian tools: 

Bayesian inference via Posterior Odds Radio (POR) and Bayesian Networks (BN). Both tools 

are used to compare hypotheses and identify the most probable cause that led to geotechnical 

failures. Furthermore, the methodology facilitates the assessment of how the quantity of 

evidence influences the identification of failure causes. 

 

The methodology includes three main stages: preliminary steps, construction of probabilistic 

failure models, and probabilistic hypotheses comparisons. The first stage aims to collect all 

available evidence required for the analysis and formulate credible hypotheses about the 

causes of failure. The purpose of collecting evidence is to validate or disregard hypotheses. 

Therefore, evidence should be systematically collected to avoid altering or losing information 

that could lead to erroneous results. In the case of hypotheses formulation, all hypotheses must 

be formulated based on the predictable behavior of materials and expected forces acting on 

the geotechnical structure. In geotechnical engineering, credible hypotheses are associated 

with changes in pore-water pressures, external/internal forces, and soil/rock behavior. 

Finally, hypotheses must fulfill two requirements: they should be verbalized so that cause-

effect relationships between variables are identifiable, and they must be collectively 
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exhaustive, i.e., encompass the entire range of possible causes that could explain the 

geotechnical failure.  

 

The second stage defines relevant random variables and develops probabilistic failure models. 

By default, all geotechnical variables are random. However, the randomness of some variables 

has limited influence on the geotechnical behavior. Therefore, random variables must be 

selected according to criteria such as hypotheses representativeness, service/strength limit 

state analyses, and performance of the geotechnical system. Regarding the probabilistic failure 

model, two aspects are relevant: (i) it must include all failure hypotheses and performance 

variables, and (ii) it must be simple but sufficiently accurate to provide reliable results. 

 

The last stage is the core of the Bayesian methodology proposed in this thesis. It aims to 

compare probabilistically hypotheses about causes of geotechnical failures using two Bayesian 

tools: posterior odds ratio (POR) and Bayesian networks (BN). The POR tool compares the 

chance of hypothesis 𝐻  being true to the chance of hypothesis 𝐻  being true by means of Bayes’ 

theorem (Bayes rule). The results obtained from the comparison are interpreted based on 

criteria defined in Jeffreys’s (1961) scale and Kass & Raftery’s (1995) modified scale. In the 

case of the BN tool, information about the probabilistic failure model is encoded in the BN 

structure. This encoding allows for more complex hypotheses comparison in the form of 

probability queries. 

 

A benchmark exercise, a well-documented case from the technical literature, and a case study 

are presented to validate the applicability of the proposed Bayesian methodology. The 

benchmark exercise is a modification of the ECRT7 excavation (Schweiger, 2006), in which the 

POR and BN tools were used. The well-documented case also examines the causes of the 

Breitenhagen levee failure (Kool et al., 2019) using POR and BN tools. Finally, the case study 

applies both Bayesian tools to find the most probable cause that led to the failure of a deep 

excavation in Bogotá, Colombia (Unal, 2012). The following conclusions can be drawn from the 

results of these analyses: 

 

 The POR tool can identify the most probable cause of a geotechnical failure even when 

the amount of evidence is scarce. After applying the stages proposed in the Bayesian 

methodology, the POR tool identified the most probable cause of failure in all case 
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studies. Moreover, it was able to estimate how many times better one hypothesis 

explained the geotechnical failure than the others. 

 

 The amount of evidence used to compare hypotheses through the POR tool is essential 

to identify the cause of failure. Although including a few pieces of evidence may provide 

insight into the cause of failure, including all available evidence increases the 

probability that one hypothesis better explains the failure than others. In all case 

studies, the progressive increase in the amount of evidence also increased the 

probability of one of the hypotheses, especially when the stability condition and 

deformation measurements were included together.  

 

 Similarly to the POR tool, the BN tool can also identify the most probable cause of a 

geotechnical failure. Moreover, the structure of the BN can encode additional 

information, such as human expert opinion and probability relationships between 

qualitative variables that cannot be included in the POR tool. These aspects of BNs 

allow for complex hypotheses comparisons and the evaluation of additional 

hypotheses not included in the early stages of forensic analyses. In addition, BNs can 

identify the most probable explanation (KMPE algorithm) among several probable 

explanations about the causes of a geotechnical failure.  

 

 Large and complex geotechnical failures could be analyzed through BNs. Causality 

information between variables involved in a geotechnical failure can be translated into 

small pieces of causal relationships. Each piece may be constructed from fragments of 

semantic expression (idioms from the geotechnical jargon), reflecting cause-effect 

relationships between variables (nodes). Then, the pieces of causal relationships are 

depicted by simple direct acyclic graphs (DAG), which are joined together to form a 

large DAG. The probabilistic relationships between nodes in the DGA can be estimated 

by combining probabilistic failure models and human expert opinion. 

 

 The failure case studies analyzed in this research went beyond the traditional tools 

applied in FGE. In addition to standard back analysis, probabilistic analyses via the 

proposed Bayesian methodology were also employed. The methodology recognizes the 

uncertainty associated with the engineering properties of soil/rock materials and 



Chapter 7. Conclusions and Suggestions for Future Work 179

 

  
 

failure scenarios and expands the traditional back analysis to include the analysis of 

several hypotheses. This expansion allows for probability comparisons between 

hypotheses which can support decisions regarding the causes of geotechnical failures. 

 

 The probabilistic comparison between hypotheses related to causes of geotechnical 

failures is the main contribution of this research to FGE knowledge. The results suggest 

that POR and BN tools can determine the most probable cause of failure. The practical 

implication of these findings is that Bayesian probabilistic techniques can support 

decisions regarding the causes of geotechnical failures. Moreover, the proposed 

methodology allows for tracking of the decision-making process, improves 

transparency and the reliability of conclusions. Therefore, the proposed methodology 

should reduce both bias and the perception of the arbitrariness related to conclusions 

in forensic geotechnical investigations. 

7.2  Suggestions for Future Work 

Based on the main results and limitations of this doctoral thesis, the following objectives for 

future work are suggested: 

 

 To develop a methodology to assist in the construction of BNs in geotechnical 

engineering. The methodology may be valuable for translating complex geotechnical 

problems into reliable and helpful BNs. For example, in addition to applications of BNs 

in FGE, BNs can be beneficial in diagnosis, design optimization, and inclusion of expert 

judgment. Semantic expressions (geotechnical jargon), as used in this thesis, should be 

the starting point for this methodology, given their ability to indicate causal 

relationships between variables. Well-developed methodologies for constructing BNs 

in medicine and forensic science should be used as a baseline. For example, BNs for 

disease diagnosis or BNs used in criminalistic can be adapted to the characteristics of 

geotechnical engineering.  

 

 Expand the applicability of the proposed Bayesian methodology by exploring more 

geotechnical failure cases. Future case studies should give priority to current 

challenging tasks such as hypotheses formulation, discretization of continuous 
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variables, complex probabilistic failure models, and CPT elicitation. For example, 

simplifying complex geotechnical models while maintaining accuracy and 

representativeness is an exciting field of research. In addition, well-known and well-

documented geotechnical failures may be analyzed using the proposed Bayesian 

methodology in order to reinforce its applicability.  

 

 Future work should involve the development of a probabilistic framework to include 

expert judgment for decision-making in geotechnical engineering. The Bayesian 

inference could be the probabilistic technique that supports the framework, given its 

ability to mimic human reasoning. The starting point for developing the framework 

may include well-established methodologies such as those used in risk analysis of 

nuclear power generation. Once the framework has been defined, Bayesian inference 

can be adapted to the characteristics of expert judgment in geotechnical engineering.  

 

 Propose a multidisciplinary work between engineers and lawyers to improve the 

practice of FGE and the resolution of legal lawsuits. Multidisciplinary work should 

focus on the following aspects: (1) define a common language for engineers and 

lawyers regarding geotechnical failures, (2) improve oral skills of geotechnical 

engineers in order to explain technical aspects of failures in court, (3) train lawyers in 

engineering failures, and (4) train geotechnical engineers in litigation. 
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A. Annex: Scripts and K MPE Results 

A1. ERTC7 Benchmark Exercise. Script of the K MPE Algorithm 

################################################################################ 
# 2022-12-30 
# By: wmgarciaf@unal.edu.co 
# 
# R SCRIPT para análisis Bayesiano 
# Red Bayesiana para análisis ERTC7 
 
# H.F. Schweiger (2006) 
# Results from the ERTC7 benchmark exercise 
# Numerical Methods in Geotechnical Engineering – Schweiger (ed.) 
# © 2006 Taylor & Francis Group, London, ISBN 0-415-40822-9 
################################################################################ 
 
#-------- PRELIMINARES -------------- 
# se leen los datos y se depuran para simplificar a 22 tipos de sup. de falla 
setwd("C:/Users/mgfer/OneDrive - Universidad Nacional de Colombia/D_drive/Simulations/Excavation") 
# 1. Leer el archivo con los resultados de las 100mil simulaciones de D-stability 
df = read.csv(file="results_ERTC7_for_BN.csv", header = T) 
# Convertir todas las columnas de "numeric" or "character" a "factor"  
for (i in 1: ncol(df)) { 
  df[, i] = as.factor(df[, i])  
} 
 
# -------- GRAFICOS PRELIMINARES -----------  
windows(20, 20) 
par(mfrow= c(3,2)) 
barplot(table(df$EL), horiz=F) 
barplot(table(df$WT), horiz=F) 
barplot(table(df$Sch), horiz=F) 
barplot(table(df$SC), horiz=F) 
barplot(table(df$SS), horiz=F) 
 
# -------- RED BAYESIANA -----------  
library(bnlearn) 
model1 = paste0("[EL]","[WT]","[Sch]", "[SC|EL:WT:Sch]","[SS|EL:WT:Sch]") 
dag1   = model2network(model1) 
windows(20, 20) 
graphviz.plot(dag1, layout = "dot") 
ERTC7_BN = bn.fit(x = dag1, data = df) 
 
# -------- ABDUCTIVE QUERIES  -----------  
# Hypothesis H0 - Random event, act of god 
cpquery(ERTC7_BN, event= (EL=="3.5")&(WT=="4")&((Sch=="50")|(Sch=="40")), 
        evidence = (SC=="Fail")&((SS=="L1")|(SS=="L2")|(SS=="L3")) , n=10E7) 
 
# Hypothesis H1 - Elevation of the water table 
cpquery(ERTC7_BN, event= (EL=="3.5")&((WT=="2")|(WT=="1")|(WT=="0"))&((Sch=="50")|(Sch=="40")), 
        evidence = (SC=="Fail")&((SS=="L1")|(SS=="L2")|(SS=="L3")) , n=10E6) 
 
# Hypothesis H2 - Increase of the Surcharge 
cpquery(ERTC7_BN, event= (EL=="3.5")&(WT=="4")&((Sch=="60")|(Sch=="70")), 
        evidence = (SC=="Fail")&((SS=="L1")|(SS=="L2")|(SS=="L3")) , n=10E7) 
   
# Hypothesis H3 - Short embedded lengh of the wall 
cpquery(ERTC7_BN, event= ((EL=="3")|(EL=="2.5")|(EL=="2")|(EL=="1.5"))&(WT=="4")&((Sch=="50")|(Sch=="40")), 
        evidence = (SC=="Fail")&((SS=="L1")|(SS=="L2")|(SS=="L3")) , n=10E7) 
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# -------- K-MPE -----------                  
KMPE_df = expand.grid(EL  = unique(df$EL), 
                      WT  = unique(df$WT), 
                      Sch = unique(df$Sch)) 
 
KMPE_df$query = NA 
progress_bar = txtProgressBar(min=0, max=length(KMPE_df$EL), style = 1, char="=") 
for(i in 1:length(KMPE_df$EL)){ 
  KMPE_df[i,4]= cpquery(ERTC7_BN, event= (EL==as.character(KMPE_df[i,1]))& 
                          (WT ==as.character(KMPE_df[i,2]))& 
                          (Sch==as.character(KMPE_df[i,3])), 
                        evidence = (SC=="Fail")& ((SS=="L1")|(SS=="L2")|(SS=="L3")), n=1E6) 
  setTxtProgressBar(progress_bar, value = i) 
} 
 
KMPE_df = KMPE_df[order(-KMPE_df$query),] 
KMPE_df$query = formatC(KMPE_df$query,format="e") 
#write.csv(x = KMPE_df, file = "KMPE_ERTC7.csv") 
 
#_______ 
KMPE_df2 = expand.grid(EL  = unique(df$EL), 
                      Sch = unique(df$Sch)) 
 
KMPE_df2$query = NA 
progress_bar = txtProgressBar(min=0, max=length(KMPE_df2$EL), style = 1, char="=") 
for(i in 1:length(KMPE_df2$EL)){ 
  KMPE_df2[i,3]= cpquery(ERTC7_BN, event= (EL==as.character(KMPE_df2[i,1]))& 
                        (Sch==as.character(KMPE_df2[i,2])), 
                        evidence = (SC=="Fail")& ((SS=="L1")|(SS=="L2")|(SS=="L3"))&(WT=="4"), n=1E6) 
  setTxtProgressBar(progress_bar, value = i) 
} 
 
KMPE_df2 = KMPE_df2[order(-KMPE_df2$query),] 
KMPE_df2$query = formatC(KMPE_df2$query,format="e") 
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A2. K Most Probable Explanations (K MPE) of the ERTC7 Benchmark 
Exercise K EL WT Sch Prob.  K EL WT Sch Prob. 

1 1.5 0 70 4.11E-02  46 3 1 60 6.56E-03 

2 1.5 0 40 4.10E-02  47 2.5 2 50 6.35E-03 

3 1.5 0 60 4.06E-02  48 2.5 2 40 6.33E-03 

4 1.5 0 50 4.06E-02  49 1.5 4 50 6.30E-03 

5 2 0 50 3.34E-02  50 2 3 60 6.26E-03 

6 2 0 70 3.29E-02  51 3 1 70 5.83E-03 

7 2 0 60 3.13E-02  52 1.5 4 40 5.77E-03 

8 2 0 40 3.12E-02  53 2 3 70 5.49E-03 

9 1.5 1 50 3.12E-02  54 1.5 4 70 5.48E-03 

10 1.5 1 70 3.08E-02  55 2 3 50 5.32E-03 

11 1.5 1 40 3.07E-02  56 1.5 4 60 5.11E-03 

12 1.5 1 60 3.05E-02  57 3 2 70 3.83E-03 

13 2.5 0 70 2.31E-02  58 2.5 3 70 3.79E-03 

14 2.5 0 40 2.21E-02  59 2.5 3 50 3.74E-03 

15 2 1 70 2.19E-02  60 2.5 3 40 3.59E-03 

16 2.5 0 60 2.18E-02  61 3 2 50 3.46E-03 

17 2.5 0 50 2.12E-02  62 3 2 60 3.46E-03 

18 2 1 50 2.09E-02  63 2 4 70 3.42E-03 

19 1.5 2 40 2.01E-02  64 2 4 60 3.41E-03 

20 2 1 40 1.99E-02  65 2 4 40 3.27E-03 

21 2 1 60 1.93E-02  66 3 2 40 3.17E-03 

22 1.5 2 60 1.87E-02  67 2 4 50 2.84E-03 

23 1.5 2 50 1.79E-02  68 2.5 3 60 2.59E-03 

24 1.5 2 70 1.79E-02  69 3 3 70 2.11E-03 

25 3 0 70 1.48E-02  70 2.5 4 50 1.97E-03 

26 3 0 40 1.42E-02  71 2.5 4 60 1.89E-03 

27 3 0 60 1.39E-02  72 2.5 4 70 1.72E-03 

28 3 0 50 1.25E-02  73 3 3 50 1.64E-03 

29 2.5 1 60 1.19E-02  74 3 3 60 1.61E-03 

30 2.5 1 70 1.15E-02  75 3 3 40 1.47E-03 

31 1.5 3 70 1.09E-02  76 2.5 4 40 1.14E-03 

32 2.5 1 50 1.08E-02  77 3 4 50 9.61E-04 

33 2.5 1 40 1.07E-02  78 3 4 60 7.25E-04 

34 2 2 40 1.05E-02  79 3 4 40 6.64E-04 

35 2 2 70 1.03E-02  80 3 4 70 5.50E-04 

36 2 2 50 1.01E-02  81 3.5 2 40 4.94E-04 

37 1.5 3 40 9.98E-03  82 3.5 2 60 4.73E-04 

38 1.5 3 50 9.91E-03  83 3.5 2 70 2.65E-04 

39 2 2 60 9.73E-03  84 3.5 2 50 1.78E-04 

40 1.5 3 60 9.31E-03  85 3.5 3 70 1.58E-04 

41 3 1 40 7.73E-03  86 3.5 3 60 1.38E-04 

42 2 3 40 7.14E-03  87 3.5 3 50 4.73E-05 

43 2.5 2 60 6.89E-03  88 3.5 4 60 2.94E-05 

44 3 1 50 6.72E-03  89 3.5 4 50 2.44E-05 

45 2.5 2 70 6.69E-03  90 3.5 4 40 1.22E-05 
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A3. Python Script. Breitenhagen Levee Failure. Mohr-Coulomb 

# -*- coding: utf-8 -*- 
""" 
Created on Wed Sep 16 11:53:36 2020 
 
@author: wmgarciaf 
 
This code is the second version of python execution od D-stability console 
The idea is to use a better code with user-defined functions 
Input variables have prior uniform distributions 
This .py file extracts coordinates X and Z and the Radius of slip circle 
""" 
# Call the modules used in this code 
import pandas as pd 
import numpy as np 
import random 
#import matplotlib.pyplot as plt 
import zipfile  # Import library to use zipfiles in Python 
import subprocess # to run the D-stability console 
import re  #Import Regex library to read float numbers 
#import time 
from tqdm import tqdm 
#import gc 
 
# Función para crear el data frame 
def data_frame(n_sim): 
    c_values     = np.arange(0.0, 16.0, 1.0);  
    c_values     = ["%.1f" % member for member in c_values] #Format to c_data values as float 
    fi_values    = np.arange(15.0 ,35.0, 1.0) 
    fi_values    = ["%.1f" % member for member in fi_values] 
    gamma_values = np.arange(18.0 ,18.1, 1.0) 
    gamma_values = ["%.1f" % member for member in gamma_values] 
    ST_values    = ['High', 'Medium', 'Low'] 
    CL_values    = ['Yes', 'No'] 
    PC_values    = ['High', 'Low'] 
         
    c_sample     = random.choices(c_values,     weights=None, k= n_sim)     
    fi_sample    = random.choices(fi_values,    weights=None, k= n_sim) 
    gamma_sample = random.choices(gamma_values, weights=None, k= n_sim) 
    ST_sample    = random.choices(ST_values,    weights=None, k= n_sim) 
    CL_sample    = random.choices(CL_values,    weights=None, k= n_sim) 
    PC_sample    = random.choices(PC_values,    weights=None, k= n_sim) 
         
    df = pd.DataFrame(list(zip(c_sample, fi_sample, gamma_sample,  
                               ST_sample, CL_sample, PC_sample)),  
                      columns =['c', 'fi', 'gamma', 'ST', 'CL', 'PC']) 
    df['FoS']= np.repeat('NA', len(c_sample))  # add FoS column to dataframe an fill it with NA's 
    df['X_center'] = np.repeat('NA', len(c_sample))  # add X_center column to dataframe an fill it with NA's 
    df['Z_center'] = np.repeat('NA', len(c_sample))  # add Z_center column to dataframe an fill it with NA's 
    df['R_center'] = np.repeat('NA', len(c_sample))  # add R_center column to dataframe an fill it with NA's 
    return(df) 
 
# Function to replace values in *soils.json file (c', fi', gamma) 
def soils (iter):  # definition and name of the function 
    f = open('soils.json', 'rt')   # open soils.json as read 
    dat = f.read()  # put the information in the variable dat 
    dat = dat.splitlines()   # split lines to convert in a list 
    dat[7] = """      "VolumetricWeightAbovePhreaticLevel": """ + df.iloc[iter,2]+"," # replace line 7 for a value of c' 
    dat[8] = """      "VolumetricWeightBelowPhreaticLevel": """ + df.iloc[iter,2]+"," 
    dat[11]= """      "Cohesion": """ + df.iloc[iter,0] + "," 
    dat[17]= """      "FrictionAngle": """ + df.iloc[iter,1] + "," 
    dat = '\n'.join(''.join(sub) for sub in dat)  # convert dat again to a string separated by new lines 
    f.close() # close f 
    f = open('soils.json', "wt") # open soils.json as write  
    f.write(dat)  # rewrite f(soils.json) with values in dat 
    f.close() # close f (soils.json) 
 
# Function to replace values in waternets.json file (saturated condition, conductive layer, pond connection) 
def waternets (iter): 
    g = open('waternets.json', 'rt') 
    data = g.read() 
    data = data.splitlines() 
    # Saturated levee condition 
    if df.iloc[iter,3] == "High":  # Saturation condition at column 3 in df 
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        data[19] = """          "X": 34.4,"""  
        data[20] = """          "Z": 54.7""" 
    elif df.iloc[iter,3] == "Medium": 
        data[19] = """          "X": 39.2,""" 
        data[20] = """          "Z": 54.7""" 
    else: 
        data[19] = """          "X": 38.0,""" 
        data[20] = """          "Z": 51.5""" 
    # Precence of conductive layer 
    if df.iloc[iter,4] == "Yes": # conductive layer condition at column 4 
        data[65] = """      "TopHeadLineId": "20",""" 
        data[66] = """      "BottomHeadLineId": "19",""" 
    else: 
        data[65] = """      "TopHeadLineId": null,""" 
        data[66] = """      "BottomHeadLineId": null,""" 
    # Pond connection 
    if df.iloc[iter,5] == "High": # Pond connection condition at column 5 in df 
        data[82] = """      "TopHeadLineId": "21",""" 
        data[83] = """      "BottomHeadLineId": "21",""" 
    else: 
        data[82] = """      "TopHeadLineId": null,""" 
        data[83] = """      "BottomHeadLineId": null,""" 
    data = '\n'.join(''.join(sub) for sub in data)  # convert dat again to a string separated by new lines 
    g.close() 
    g = open('waternets.json', "wt") 
    g.write(data) 
    g.close() 
 
# Function to built a *stix file with the new soils.json and waternets.json files 
def new_stix (): 
    # Lines to delete 'soils.json' and 'waternets/waternets.json' 
    zin  = zipfile.ZipFile ('Levee_Test_2_seed.stix', 'r') # variable containg with the original .stix file 
    zout = zipfile.ZipFile ('Levee_Test_2_new.stix', 'w') # variable with the new .stix file 
    for item in zin.infolist():  # for loop to read files  
        buffer = zin.read(item.filename) #Read each file in zin 
        if (item.filename[-100:] != 'soils.json' and  
            item.filename[-100:] != 'waternets/waternets.json'): #Conditional to exclude soils.json 
            zout.writestr(item, buffer) # Include files in zout 
    zout.close() 
    zin.close() 
    # Lines to append 'soils.json' and 'waternets/waternets.json' 
    z = zipfile.ZipFile('Levee_Test_2_new.stix', 'a') # variable to append into Test.stix 
    z.write('soils.json') 
    z.write('waternets.json', 'waternets/waternets.json') #file to append 
    z.close() 
 
# Function to extrac values of FoS, x_entry and x_exit 
def extract (iter): 
    zip_file = zipfile.ZipFile('Levee_Test_2_new.stix') 
    results = zip_file.read('results/bishopbruteforce/bishopbruteforceresult.json') 
    text_results = results.decode('utf-8') 
    df.iloc[iter,6] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[9])[0]) # get the Factor of Safety 
    df.iloc[iter,7] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[3])[0]) # get X_center 
    df.iloc[iter,8] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[4])[0]) # get Z_center  
    df.iloc[iter,9] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[6])[0]) # get R_center 
     
# 
n = 100000 # number of simulations 
df = data_frame(n) 
 
for ii in tqdm(range(0,n)): #tqdm add a progress bar 
    soils(ii) 
    waternets(ii) 
    new_stix() 
    subprocess.run(["D:/Software/Deltares/bin/D-GEO_Console.exe",  
                    "D:/Simulations/Levee_V1/Levee_Test_2_new.stix"]) 
   # time.sleep(0.01) 
    extract(ii) 
    #gc.collect()             
 
#df.to_csv("D:/Simulations/Levee_V1/100mil_MORH.csv") 
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A4. Python Script. Breitenhagen Levee Failure. SHANSEP 

# -*- coding: utf-8 -*- 
""" 
Created on Wed Sep 16 11:53:36 2020 
 
@author: wmgarciaf 
 
This code uses the SHANSEP method in the D-stability console 
The idea is to use a better code with user-defined functions 
Input variables have prior uniform distributions 
This .py file extracts coordinates X and Z and the Radius of slip circle 
""" 
# Call the modules used in this code 
import pandas as pd 
import numpy as np 
import random 
#import matplotlib.pyplot as plt 
import zipfile  # Import library to use zipfiles in Python 
import subprocess # to run the D-stability console 
import re  #Import Regex library to read float numbers 
#import time 
from tqdm import tqdm 
#import gc 
 
# Función para crear el data frame 
def data_frame(n_sim): 
    S_values     = np.arange(0.23, 0.505, 0.02);  
    S_values     = ["%.2f" % member for member in S_values] #Format to c_data values as float 
    m_values    = np.arange(0.50 ,1.01, 0.04) 
    m_values    = ["%.2f" % member for member in m_values] 
    POP_values = np.arange(0.0 ,151, 10.0) 
    POP_values = ["%.1f" % member for member in POP_values] 
    ST_values    = ['High', 'Medium', 'Low'] 
    CL_values    = ['Yes', 'No'] 
    PC_values    = ['High', 'Low'] 
    S_sample     = random.choices(S_values,     weights=None, k= n_sim)     
    m_sample     = random.choices(m_values,    weights=None, k= n_sim) 
    POP_sample   = random.choices(POP_values, weights=None, k= n_sim) 
    ST_sample    = random.choices(ST_values,    weights=None, k= n_sim) 
    CL_sample    = random.choices(CL_values,    weights=None, k= n_sim) 
    PC_sample    = random.choices(PC_values,    weights=None, k= n_sim) 
     
    #plt.hist(PC_sample, bins=100) 
     
    df = pd.DataFrame(list(zip(S_sample, m_sample, POP_sample,  
                               ST_sample, CL_sample, PC_sample)),  
                      columns =['S', 'm', 'POP', 'ST', 'CL', 'PC']) 
    df['FoS']= np.repeat('NA', len(S_sample))  # add FoS column to dataframe an fill it with NA's 
    df['X_center'] = np.repeat('NA', len(S_sample))  # add X_center column to dataframe an fill it with NA's 
    df['Z_center'] = np.repeat('NA', len(S_sample))  # add Z_center column to dataframe an fill it with NA's 
    df['R_center'] = np.repeat('NA', len(S_sample))  # add R_center column to dataframe an fill it with NA's 
    return(df) 
 
# Function to replace values in *soils.json file (S, m) 
def soils (iter):  # definition and name of the function 
    f = open('soils.json', 'rt')   # open soils.json as read 
    dat = f.read()  # put the information in the variable dat 
    dat = dat.splitlines()   # split lines to convert in a list 
     
    dat[30]= """      "ShearStrengthRatio": """ + df.iloc[iter,0] + "," 
    dat[36]= """      "StrengthIncreaseExponent": """ + df.iloc[iter,1] + "," 
      
    dat = '\n'.join(''.join(sub) for sub in dat)  # convert dat again to a string separated by new lines 
    f.close() # close f 
    f = open('soils.json', "wt") # open soils.json as write  
    f.write(dat)  # rewrite f(soils.json) with values in dat 
    f.close() # close f (soils.json) 
 
# Function to replace values in *states.json file (POP) 
def states(iter): 
   h = open('states.json', 'rt') 
   da = h.read() 
   da = da.splitlines()  
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   da[14]= """        "Pop": """ + df.iloc[iter,2] + "," 
   da = '\n'.join(''.join(sub) for sub in da)  # convert dat again to a string separated by new lines 
   h.close() # close f 
   h = open('states.json', "wt") # open soils.json as write  
   h.write(da)  # rewrite f(soils.json) with values in dat 
   h.close() # close f (soils.json) 
    
# Function to replace values in waternets.json file (saturated condition, conductive layer, pond connection) 
def waternets (iter): 
    g = open('waternets.json', 'rt') 
    data = g.read() 
    data = data.splitlines() 
    # Saturated levee condition 
    if df.iloc[iter,3] == "High":  # Saturation condition at column 3 in df 
        data[19] = """          "X": 34.4,"""  
        data[20] = """          "Z": 54.7""" 
    elif df.iloc[iter,3] == "Medium": 
        data[19] = """          "X": 39.2,""" 
        data[20] = """          "Z": 54.7""" 
    else: 
        data[19] = """          "X": 38.0,""" 
        data[20] = """          "Z": 51.5""" 
    # Precence of conductive layer 
    if df.iloc[iter,4] == "Yes": # conductive layer condition at column 4 
        data[65] = """      "TopHeadLineId": "20",""" 
        data[66] = """      "BottomHeadLineId": "19",""" 
    else: 
        data[65] = """      "TopHeadLineId": null,""" 
        data[66] = """      "BottomHeadLineId": null,""" 
    # Pond connection 
    if df.iloc[iter,5] == "High": # Pond connection condition at column 5 in df 
        data[82] = """      "TopHeadLineId": "21",""" 
        data[83] = """      "BottomHeadLineId": "21",""" 
    else: 
        data[82] = """      "TopHeadLineId": null,""" 
        data[83] = """      "BottomHeadLineId": null,""" 
    data = '\n'.join(''.join(sub) for sub in data)  # convert dat again to a string separated by new lines 
    g.close() 
    g = open('waternets.json', "wt") 
    g.write(data) 
    g.close() 
 
# Function to built a *stix file with the new soils.json, waternets.json and states.json files 
def new_stix (): 
    # Lines to delete 'soils.json' and 'waternets/waternets.json' 
    zin  = zipfile.ZipFile ('Levee_Test_3_seed.stix', 'r') # variable containg with the original .stix file 
    zout = zipfile.ZipFile ('Levee_Test_3_new.stix', 'w') # variable with the new .stix file 
    for item in zin.infolist():  # for loop to read files  
        buffer = zin.read(item.filename) #Read each file in zin 
        if (item.filename[-100:] != 'soils.json' and  
            item.filename[-100:] != 'waternets/waternets.json' and 
            item.filename[-100:] != 'states/states.json'): #Conditional to exclude soils.json, waternets and states.json 
            zout.writestr(item, buffer) # Include files in zout 
    zout.close() 
    zin.close() 
    # Lines to append 'soils.json' ,'waternets/waternets.json' and 'states.json' 
    z = zipfile.ZipFile('Levee_Test_3_new.stix', 'a') # variable to append into Test.stix 
    z.write('soils.json') 
    z.write('waternets.json', 'waternets/waternets.json') #file to append 
    z.write('states.json', 'states/states.json') 
    z.close() 
 
# Function to extrac values of FoS, x_entry and x_exit 
def extract (iter): 
    zip_file = zipfile.ZipFile('Levee_Test_3_new.stix') 
    results = zip_file.read('results/bishopbruteforce/bishopbruteforceresult.json') 
    text_results = results.decode('utf-8') 
    df.iloc[iter,6] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[9])[0]) # get the Factor of Safety 
    df.iloc[iter,7] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[3])[0]) # get X_center 
    df.iloc[iter,8] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[4])[0]) # get Z_center  
    df.iloc[iter,9] = float(re.findall('-?\d+\.\d+', text_results.splitlines()[6])[0]) # get R_center 
     
# 
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n = 100000# number of simulations 
df = data_frame(n) 
 
for ii in tqdm(range(0,n)): #tqdm add a progress bar 
    soils(ii) 
    waternets(ii) 
    states(ii) 
    new_stix() 
    subprocess.run(["D:/Software/Deltares/bin/D-GEO_Console.exe",  
                    "D:/Simulations/Levee_V2/Levee_Test_3_new.stix"], check= False) 
   # time.sleep(0.01) 
    extract(ii) 
    #gc.collect()  
#df.to_csv("D:/Simulations/Levee_V2/100mil_SHANSEP.csv") 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

1 Medium Yes Low 4 17 4.93E-03  1 High Yes High 0.31 0.78 10 1.51E-03 

2 High No Low 1 24 4.79E-03  2 High Yes Low 0.33 0.74 20 1.49E-03 

3 Medium Yes Low 3 18 4.77E-03  3 High No Low 0.27 0.54 20 1.46E-03 

4 Medium No Low 1 18 4.76E-03  4 High Yes Low 0.39 0.54 0 1.44E-03 

5 High No Low 1 29 4.73E-03  5 High No Low 0.37 0.94 0 1.40E-03 

6 Medium Yes Low 3 32 4.69E-03  6 High Yes High 0.29 0.82 10 1.37E-03 

7 High Yes Low 2 32 4.68E-03  7 High No Low 0.33 0.94 0 1.36E-03 

8 High Yes High 4 23 4.66E-03  8 Medium Yes Low 0.27 0.74 10 1.35E-03 

9 High Yes Low 6 23 4.65E-03  9 High No Low 0.43 0.9 0 1.34E-03 

10 High No Low 3 15 4.62E-03  10 High Yes High 0.27 0.86 0 1.34E-03 

11 High Yes High 6 31 4.62E-03  11 High No Low 0.27 0.94 0 1.34E-03 

12 High Yes Low 4 21 4.59E-03  12 High Yes Low 0.23 0.7 50 1.33E-03 

13 Medium Yes Low 3 16 4.58E-03  13 High Yes Low 0.49 0.54 0 1.32E-03 

14 High Yes Low 6 21 4.57E-03  14 High No Low 0.33 0.9 0 1.32E-03 

15 Medium No Low 1 16 4.57E-03  15 High Yes High 0.37 0.86 10 1.31E-03 

16 Medium Yes Low 3 19 4.55E-03  16 High Yes High 0.49 0.62 0 1.31E-03 

17 High Yes High 4 17 4.55E-03  17 High Yes Low 0.49 0.7 0 1.31E-03 

18 Medium No Low 2 18 4.55E-03  18 High Yes Low 0.45 0.7 0 1.31E-03 

19 High Yes Low 6 20 4.54E-03  19 Medium Yes Low 0.27 0.54 20 1.30E-03 

20 High No Low 3 26 4.54E-03  20 High Yes Low 0.25 0.58 80 1.30E-03 

21 High Yes Low 4 22 4.52E-03  21 High No Low 0.31 0.86 10 1.29E-03 

22 High No Low 4 15 4.51E-03  22 High Yes High 0.29 0.54 0 1.29E-03 

23 High Yes High 4 18 4.51E-03  23 High Yes High 0.45 0.58 0 1.28E-03 

24 High Yes High 5 24 4.50E-03  24 High Yes High 0.35 0.9 0 1.28E-03 

25 High Yes High 3 18 4.49E-03  25 High No Low 0.43 0.78 0 1.28E-03 

26 High No Low 1 20 4.49E-03  26 High Yes Low 0.35 0.94 10 1.28E-03 

27 High No Low 1 34 4.48E-03  27 High Yes High 0.37 0.78 10 1.27E-03 

28 High Yes Low 5 23 4.47E-03  28 High Yes Low 0.41 0.74 0 1.26E-03 

29 High Yes High 1 15 4.46E-03  29 High Yes Low 0.25 0.94 0 1.26E-03 

30 High Yes Low 6 19 4.46E-03  30 High Yes High 0.23 0.9 0 1.26E-03 

31 High Yes Low 5 18 4.46E-03  31 High Yes High 0.25 0.82 0 1.26E-03 

32 High Yes High 5 18 4.45E-03  32 High Yes High 0.25 0.78 10 1.25E-03 

33 High No Low 2 21 4.45E-03  33 High No Low 0.29 0.58 0 1.25E-03 

34 High Yes Low 2 29 4.45E-03  34 High Yes High 0.39 0.74 0 1.25E-03 

35 High No Low 1 30 4.45E-03  35 High No Low 0.41 0.58 0 1.25E-03 

36 High Yes High 5 25 4.44E-03  36 High Yes Low 0.23 0.62 70 1.25E-03 

37 High No Low 2 34 4.44E-03  37 High Yes High 0.25 0.7 20 1.25E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

38 High Yes High 2 30 4.44E-03  38 High No Low 0.45 0.5 10 1.25E-03 

39 High No Low 2 30 4.43E-03  39 High Yes Low 0.27 0.7 20 1.25E-03 

40 High No Low 3 32 4.43E-03  40 Medium Yes Low 0.31 0.78 10 1.24E-03 

41 High No Low 1 16 4.42E-03  41 Medium Yes Low 0.31 0.5 20 1.24E-03 

42 High Yes Low 6 25 4.42E-03  42 High Yes Low 0.23 0.9 30 1.23E-03 

43 Medium Yes Low 2 21 4.42E-03  43 High Yes Low 0.23 0.74 30 1.23E-03 

44 High Yes Low 6 24 4.42E-03  44 High No Low 0.23 0.5 40 1.22E-03 

45 Medium Yes Low 4 16 4.41E-03  45 High Yes Low 0.23 0.98 20 1.22E-03 

46 Medium Yes Low 4 23 4.41E-03  46 High Yes High 0.31 0.78 0 1.22E-03 

47 High No Low 1 27 4.40E-03  47 Medium Yes Low 0.31 0.9 10 1.22E-03 

48 High Yes Low 1 15 4.39E-03  48 Medium Yes Low 0.31 0.58 10 1.22E-03 

49 Medium Yes Low 2 24 4.39E-03  49 High Yes Low 0.41 0.5 0 1.22E-03 

50 High Yes High 1 17 4.39E-03  50 High No Low 0.31 0.54 0 1.22E-03 

51 High No Low 4 17 4.38E-03  51 High No Low 0.33 0.54 20 1.22E-03 

52 Medium Yes Low 3 21 4.38E-03  52 High Yes Low 0.41 0.94 0 1.22E-03 

53 High No Low 2 26 4.37E-03  53 High Yes High 0.41 0.82 10 1.21E-03 

54 High No Low 3 33 4.36E-03  54 High No Low 0.49 0.58 0 1.21E-03 

55 High No Low 4 19 4.36E-03  55 Medium Yes Low 0.23 0.9 10 1.21E-03 

56 Medium No Low 1 17 4.35E-03  56 High No Low 0.41 0.78 0 1.21E-03 

57 High Yes High 2 32 4.35E-03  57 High Yes Low 0.45 0.86 0 1.21E-03 

58 High No Low 1 26 4.34E-03  58 High No Low 0.25 0.5 0 1.21E-03 

59 High No Low 2 27 4.34E-03  59 High Yes High 0.39 0.94 0 1.21E-03 

60 High No Low 3 25 4.33E-03  60 High Yes High 0.41 0.78 10 1.20E-03 

61 Medium Yes Low 2 16 4.33E-03  61 High No Low 0.43 0.7 0 1.19E-03 

62 High Yes Low 5 22 4.33E-03  62 Medium Yes Low 0.35 0.74 10 1.19E-03 

63 High No Low 1 32 4.32E-03  63 High Yes High 0.45 0.86 10 1.19E-03 

64 High Yes Low 6 34 4.31E-03  64 High No Low 0.31 0.82 10 1.19E-03 

65 High Yes High 6 25 4.31E-03  65 Low No Low 0.23 0.66 10 1.19E-03 

66 Medium No Low 1 19 4.31E-03  66 High Yes High 0.47 0.54 0 1.19E-03 

67 Medium No Low 2 21 4.31E-03  67 High Yes Low 0.43 0.7 0 1.19E-03 

68 High No Low 1 23 4.31E-03  68 High No Low 0.47 0.7 0 1.19E-03 

69 High No Low 2 33 4.30E-03  69 High Yes High 0.25 0.78 20 1.19E-03 

70 High No Low 1 19 4.30E-03  70 High Yes Low 0.23 0.66 60 1.18E-03 

71 Medium Yes Low 3 30 4.29E-03  71 High No Low 0.35 0.82 10 1.18E-03 

72 High Yes Low 4 16 4.29E-03  72 High No Low 0.31 0.58 10 1.18E-03 

73 High No Low 2 31 4.28E-03  73 High Yes High 0.43 0.7 0 1.18E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

74 High Yes High 6 32 4.28E-03  74 High Yes High 0.29 0.78 0 1.18E-03 

75 High No Low 1 31 4.28E-03  75 High Yes High 0.45 0.9 10 1.18E-03 

76 Medium Yes Low 3 29 4.27E-03  76 Medium Yes Low 0.31 0.54 20 1.18E-03 

77 High Yes Low 6 30 4.27E-03  77 High No Low 0.33 0.86 10 1.18E-03 

78 Low No Low 1 15 4.27E-03  78 High Yes Low 0.23 0.58 90 1.18E-03 

79 High Yes High 4 15 4.27E-03  79 High No Low 0.23 0.94 0 1.18E-03 

80 High No Low 2 20 4.27E-03  80 High Yes High 0.29 0.5 0 1.17E-03 

81 High No Low 3 18 4.27E-03  81 High Yes High 0.45 0.82 10 1.17E-03 

82 High No Low 5 15 4.26E-03  82 High Yes Low 0.25 0.66 30 1.17E-03 

83 High No Low 2 24 4.25E-03  83 High Yes Low 0.43 0.82 0 1.16E-03 

84 Medium Yes Low 3 26 4.25E-03  84 High Yes Low 0.49 0.82 10 1.16E-03 

85 High No Low 1 28 4.25E-03  85 High No Low 0.49 0.62 0 1.16E-03 

86 High Yes High 1 16 4.25E-03  86 High No Low 0.29 0.62 10 1.16E-03 

87 High No Low 1 33 4.24E-03  87 High Yes Low 0.25 0.62 60 1.16E-03 

88 High Yes High 4 22 4.24E-03  88 High Yes High 0.39 0.82 0 1.16E-03 

89 High No Low 3 24 4.24E-03  89 High No Low 0.33 0.54 0 1.16E-03 

90 High Yes Low 4 23 4.24E-03  90 High No Low 0.31 0.98 0 1.16E-03 

91 High No Low 1 25 4.23E-03  91 High Yes Low 0.33 0.54 0 1.16E-03 

92 High Yes Low 5 24 4.23E-03  92 High Yes Low 0.47 0.78 0 1.16E-03 

93 High No Low 2 23 4.23E-03  93 High Yes High 0.47 0.86 0 1.15E-03 

94 High Yes Low 4 17 4.23E-03  94 High Yes High 0.43 0.98 0 1.15E-03 

95 High Yes Low 5 26 4.22E-03  95 High No Low 0.31 0.66 20 1.15E-03 

96 Medium No Low 1 15 4.22E-03  96 High No Low 0.33 0.5 0 1.15E-03 

97 High Yes High 5 17 4.22E-03  97 High Yes High 0.39 0.66 0 1.15E-03 

98 Medium Yes Low 5 16 4.21E-03  98 High Yes Low 0.35 0.9 10 1.15E-03 

99 Medium Yes Low 2 19 4.21E-03  99 High No Low 0.25 0.54 0 1.15E-03 

100 Medium Yes Low 2 25 4.21E-03  100 High Yes High 0.31 0.94 10 1.15E-03 

101 Medium Yes Low 3 24 4.21E-03  101 High Yes High 0.47 0.5 0 1.15E-03 

102 High Yes Low 5 20 4.20E-03  102 High Yes High 0.37 0.78 0 1.15E-03 

103 High Yes Low 4 18 4.20E-03  103 High Yes Low 0.33 0.74 0 1.15E-03 

104 Medium Yes Low 4 18 4.20E-03  104 Medium Yes Low 0.23 0.5 20 1.15E-03 

105 High Yes Low 6 18 4.20E-03  105 High Yes Low 0.39 0.7 0 1.15E-03 

106 High Yes High 6 24 4.19E-03  106 High Yes Low 0.27 0.78 20 1.14E-03 

107 High No Low 3 23 4.19E-03  107 High No Low 0.25 0.54 30 1.13E-03 

108 Medium Yes Low 3 28 4.19E-03  108 High Yes High 0.33 0.82 10 1.13E-03 

109 Medium Yes Low 2 23 4.19E-03  109 High Yes High 0.43 0.54 0 1.13E-03 

110 Medium Yes Low 3 22 4.19E-03  110 High No Low 0.37 0.82 10 1.13E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

111 Medium Yes Low 2 22 4.19E-03  111 High No Low 0.47 0.66 0 1.13E-03 

112 High Yes Low 6 26 4.18E-03  112 High Yes High 0.25 0.7 0 1.13E-03 

113 High Yes Low 5 15 4.18E-03  113 High Yes High 0.33 0.9 0 1.13E-03 

114 High Yes Low 1 16 4.18E-03  114 High Yes Low 0.49 0.78 0 1.13E-03 

115 Medium Yes Low 2 18 4.18E-03  115 High Yes Low 0.25 0.74 30 1.13E-03 

116 Medium Yes Low 2 17 4.18E-03  116 High No Low 0.49 0.86 0 1.12E-03 

117 High Yes Low 6 17 4.18E-03  117 High Yes Low 0.23 0.62 60 1.12E-03 

118 High Yes Low 6 33 4.18E-03  118 High Yes High 0.47 0.78 10 1.12E-03 

119 High Yes High 4 16 4.17E-03  119 High No Low 0.37 0.78 10 1.12E-03 

120 Medium Yes Low 3 20 4.17E-03  120 High Yes High 0.31 0.7 20 1.12E-03 

121 High Yes High 5 28 4.17E-03  121 High Yes High 0.33 0.74 20 1.12E-03 

122 High Yes Low 6 32 4.16E-03  122 High Yes High 0.33 0.54 0 1.12E-03 

123 High Yes Low 5 16 4.16E-03  123 High Yes Low 0.33 0.7 30 1.12E-03 

124 Medium Yes Low 2 15 4.16E-03  124 High Yes Low 0.25 0.54 0 1.12E-03 

125 High No Low 3 22 4.15E-03  125 High No Low 0.27 0.7 0 1.12E-03 

126 High No Low 2 29 4.15E-03  126 High No Low 0.23 0.78 10 1.12E-03 

127 High No Low 2 18 4.15E-03  127 High Yes High 0.49 0.58 0 1.12E-03 

128 High Yes Low 5 30 4.15E-03  128 High Yes Low 0.37 0.74 20 1.12E-03 

129 High Yes High 6 28 4.15E-03  129 High Yes Low 0.27 0.66 40 1.12E-03 

130 High Yes High 6 33 4.15E-03  130 High Yes Low 0.35 0.74 20 1.12E-03 

131 High No Low 2 15 4.14E-03  131 Medium Yes Low 0.33 0.62 10 1.12E-03 

132 High Yes Low 5 17 4.14E-03  132 High No Low 0.39 0.94 0 1.12E-03 

133 High Yes Low 4 24 4.14E-03  133 Medium Yes Low 0.23 0.7 10 1.12E-03 

134 High Yes Low 5 19 4.14E-03  134 Medium Yes Low 0.23 0.66 10 1.12E-03 

135 Medium Yes Low 3 23 4.13E-03  135 High Yes Low 0.49 0.74 0 1.12E-03 

136 High No Low 3 28 4.13E-03  136 High Yes High 0.37 0.5 0 1.12E-03 

137 High No Low 5 16 4.13E-03  137 High Yes High 0.49 0.86 0 1.12E-03 

138 High Yes Low 6 15 4.13E-03  138 High No Low 0.25 0.62 20 1.12E-03 

139 High No Low 1 22 4.12E-03  139 High Yes Low 0.43 0.82 10 1.12E-03 

140 High Yes High 6 26 4.11E-03  140 High No Low 0.29 0.86 0 1.12E-03 

141 High Yes High 4 21 4.11E-03  141 Medium Yes Low 0.29 0.58 10 1.12E-03 

142 High No Low 4 16 4.11E-03  142 High Yes Low 0.47 0.62 0 1.12E-03 

143 Medium Yes Low 3 27 4.11E-03  143 High Yes Low 0.31 0.82 0 1.12E-03 

144 High Yes High 5 22 4.11E-03  144 High Yes High 0.23 0.82 10 1.12E-03 

145 High No Low 3 31 4.11E-03  145 High Yes Low 0.43 0.5 0 1.11E-03 

146 High No Low 4 22 4.11E-03  146 High Yes Low 0.23 0.78 20 1.11E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

147 High No Low 4 23 4.09E-03  147 High Yes Low 0.43 0.78 0 1.11E-03 

148 High Yes Low 3 19 4.09E-03  148 High Yes High 0.23 0.94 10 1.11E-03 

149 High Yes High 3 15 4.08E-03  149 High No Low 0.37 0.74 10 1.11E-03 

150 High No Low 3 20 4.08E-03  150 High Yes High 0.31 0.62 40 1.11E-03 

151 High No Low 1 15 4.07E-03  151 High No Low 0.25 0.54 20 1.11E-03 

152 Medium Yes Low 4 19 4.07E-03  152 High Yes High 0.47 0.74 0 1.11E-03 

153 High No Low 3 19 4.07E-03  153 High No Low 0.23 0.54 20 1.10E-03 

154 High Yes Low 2 30 4.07E-03  154 High Yes Low 0.41 0.82 10 1.09E-03 

155 High Yes High 6 22 4.07E-03  155 High Yes Low 0.29 0.62 50 1.09E-03 

156 High Yes High 2 29 4.07E-03  156 High No Low 0.43 0.94 0 1.09E-03 

157 High Yes Low 6 16 4.05E-03  157 High Yes High 0.43 0.78 0 1.09E-03 

158 High Yes High 3 16 4.05E-03  158 High Yes High 0.31 0.86 10 1.09E-03 

159 Medium No Low 2 15 4.04E-03  159 High No Low 0.49 0.78 0 1.09E-03 

160 High Yes High 4 24 4.04E-03  160 High Yes Low 0.41 0.66 0 1.09E-03 

161 High Yes Low 1 17 4.04E-03  161 High Yes High 0.49 0.78 10 1.09E-03 

162 High Yes High 5 29 4.04E-03  162 High Yes High 0.27 0.66 30 1.09E-03 

163 Medium No Low 3 17 4.03E-03  163 High Yes Low 0.45 0.78 10 1.09E-03 

164 High Yes Low 3 16 4.03E-03  164 High No Low 0.23 0.66 20 1.09E-03 

165 High Yes Low 6 22 4.03E-03  165 High No Low 0.35 0.66 10 1.09E-03 

166 High Yes Low 6 31 4.03E-03  166 High No Low 0.33 0.78 0 1.09E-03 

167 High Yes Low 5 21 4.03E-03  167 High Yes Low 0.39 0.7 20 1.09E-03 

168 High No Low 1 17 4.03E-03  168 High No Low 0.35 0.58 10 1.09E-03 

169 Medium Yes Low 3 25 4.03E-03  169 High Yes Low 0.41 0.82 0 1.09E-03 

170 High No Low 2 17 4.02E-03  170 High Yes High 0.43 0.82 0 1.09E-03 

171 High Yes High 5 20 4.02E-03  171 High Yes High 0.41 0.5 0 1.09E-03 

172 High Yes High 6 23 4.02E-03  172 High Yes Low 0.33 0.98 10 1.09E-03 

173 High No Low 4 21 4.02E-03  173 High No Low 0.39 0.54 0 1.09E-03 

174 High No Low 5 18 4.02E-03  174 High No Low 0.25 0.54 40 1.09E-03 

175 High Yes High 5 19 4.02E-03  175 High No Low 0.35 0.54 20 1.09E-03 

176 High No Low 2 19 4.01E-03  176 High Yes High 0.23 0.58 60 1.08E-03 

177 Medium Yes Low 4 20 3.99E-03  177 High Yes Low 0.35 0.82 0 1.08E-03 

178 Medium Yes Low 3 31 3.98E-03  178 High No Low 0.35 0.5 20 1.08E-03 

179 Low No Low 1 17 3.98E-03  179 High No Low 0.37 0.5 0 1.08E-03 

180 High No Low 1 21 3.97E-03  180 High Yes High 0.35 0.86 10 1.08E-03 

181 High Yes Low 2 27 3.97E-03  181 High Yes High 0.33 0.98 0 1.08E-03 

182 High Yes High 5 26 3.97E-03  182 High Yes High 0.37 0.86 0 1.08E-03 

183 High Yes High 4 20 3.96E-03  183 High Yes Low 0.31 0.78 0 1.08E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

184 High Yes High 5 21 3.95E-03  184 Medium Yes Low 0.39 0.62 10 1.08E-03 

185 High No Low 3 17 3.95E-03  185 High Yes High 0.23 0.58 70 1.08E-03 

186 High Yes High 3 19 3.95E-03  186 High Yes Low 0.23 0.78 0 1.08E-03 

187 Medium Yes Low 4 15 3.95E-03  187 High Yes Low 0.35 0.94 0 1.08E-03 

188 High Yes High 6 34 3.95E-03  188 High Yes Low 0.29 0.94 10 1.08E-03 

189 High Yes High 5 30 3.93E-03  189 High Yes Low 0.47 0.7 0 1.07E-03 

190 High Yes High 3 17 3.93E-03  190 High Yes High 0.45 0.54 0 1.07E-03 

191 High Yes Low 4 19 3.93E-03  191 High No Low 0.27 0.58 20 1.07E-03 

192 High No Low 3 30 3.92E-03  192 High Yes Low 0.33 0.7 20 1.07E-03 

193 High No Low 2 32 3.92E-03  193 High No Low 0.41 0.5 10 1.07E-03 

194 High Yes High 6 29 3.92E-03  194 High Yes High 0.43 0.78 10 1.06E-03 

195 High Yes High 6 27 3.91E-03  195 High No Low 0.23 0.74 10 1.06E-03 

196 High Yes High 6 30 3.91E-03  196 High No Low 0.33 0.9 10 1.06E-03 

197 High Yes Low 5 28 3.90E-03  197 High No Low 0.25 0.74 10 1.06E-03 

198 Low No Low 1 16 3.89E-03  198 High Yes High 0.35 0.94 10 1.06E-03 

199 High Yes Low 4 15 3.89E-03  199 High No Low 0.23 0.78 0 1.06E-03 

200 High No Low 3 21 3.89E-03  200 High No Low 0.25 0.78 0 1.06E-03 

201 High No Low 2 22 3.88E-03  201 High No Low 0.29 0.5 0 1.06E-03 

202 High Yes Low 3 15 3.88E-03  202 High No Low 0.33 0.58 10 1.06E-03 

203 High No Low 2 28 3.88E-03  203 High Yes High 0.47 0.82 10 1.06E-03 

204 Medium No Low 2 16 3.88E-03  204 High Yes High 0.23 0.78 0 1.06E-03 

205 High No Low 4 24 3.86E-03  205 High Yes Low 0.31 0.78 20 1.06E-03 

206 High Yes High 2 28 3.86E-03  206 High Yes High 0.33 0.78 10 1.06E-03 

207 High No Low 3 29 3.85E-03  207 High No Low 0.33 0.74 10 1.06E-03 

208 Medium Yes Low 3 15 3.85E-03  208 High Yes High 0.39 0.98 0 1.06E-03 

209 High No Low 3 27 3.84E-03  209 High Yes High 0.41 0.98 0 1.06E-03 

210 Medium Yes Low 4 21 3.84E-03  210 High Yes Low 0.37 0.98 10 1.06E-03 

211 High No Low 3 16 3.84E-03  211 High Yes High 0.35 0.62 0 1.06E-03 

212 High No Low 1 18 3.84E-03  212 High No Low 0.41 0.7 0 1.06E-03 

213 High No Low 2 25 3.83E-03  213 Medium Yes Low 0.29 0.5 10 1.06E-03 

214 High Yes Low 5 29 3.83E-03  214 Low No Low 0.23 0.58 10 1.06E-03 

215 High Yes Low 3 17 3.82E-03  215 High Yes High 0.29 0.9 10 1.06E-03 

216 Medium Yes Low 5 15 3.82E-03  216 High No Low 0.43 0.58 10 1.06E-03 

217 High Yes Low 6 29 3.81E-03  217 High No Low 0.27 0.5 0 1.06E-03 

218 High Yes Low 6 27 3.81E-03  218 Medium Yes Low 0.33 0.86 10 1.06E-03 

219 High Yes Low 2 31 3.80E-03  219 High No Low 0.39 0.7 0 1.06E-03 
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A5. K Most Probable Explanations (K MPE) of the Levee Failure 

MOHR - COULOMB  SHANSEP 

K ST CL PC c phi Prob  K ST CL PC S m POP Prob 

220 High Yes Low 5 25 3.80E-03  220 Medium Yes Low 0.37 0.74 10 1.05E-03 

221 Medium No Low 2 17 3.79E-03  221 High Yes High 0.23 0.82 0 1.05E-03 

222 Medium No Low 2 20 3.78E-03  222 High Yes High 0.29 0.82 0 1.05E-03 

223 High No Low 5 17 3.78E-03  223 High Yes Low 0.35 0.54 0 1.05E-03 

224 Medium Yes Low 3 17 3.77E-03  224 High Yes High 0.35 0.78 10 1.05E-03 

225 High No Low 4 20 3.77E-03  225 High Yes Low 0.29 0.82 0 1.05E-03 

226 High Yes Low 4 20 3.76E-03  226 High Yes Low 0.25 0.9 10 1.05E-03 

227 Medium Yes Low 2 20 3.75E-03  227 High Yes High 0.29 0.62 40 1.05E-03 

228 Medium No Low 3 18 3.75E-03  228 High No Low 0.35 0.9 10 1.05E-03 

229 High Yes High 2 27 3.72E-03  229 High No Low 0.35 0.9 0 1.05E-03 

230 Medium No Low 2 19 3.70E-03  230 High Yes High 0.29 0.58 0 1.05E-03 

231 High No Low 2 16 3.69E-03  231 High Yes Low 0.29 0.9 20 1.05E-03 

232 High Yes Low 3 18 3.68E-03  232 High Yes High 0.37 0.58 0 1.05E-03 

233 High Yes Low 5 27 3.64E-03  233 High No Low 0.35 0.62 10 1.05E-03 

234 Medium Yes Low 4 22 3.64E-03  234 High Yes High 0.47 0.58 0 1.05E-03 

235 High Yes High 4 19 3.64E-03  235 High No Low 0.25 0.62 0 1.05E-03 

236 High No Low 4 18 3.64E-03  236 High Yes Low 0.23 0.9 20 1.05E-03 

237 High Yes High 2 31 3.62E-03  237 Medium Yes Low 0.37 0.7 10 1.04E-03 

238 High Yes Low 6 28 3.58E-03  238 High No Low 0.33 0.58 20 1.04E-03 

239 High Yes High 5 23 3.57E-03  239 High Yes High 0.39 0.54 0 1.04E-03 

240 High Yes High 5 27 3.40E-03  240 High No Low 0.49 0.82 0 1.04E-03 

241 High Yes Low 2 28 3.40E-03  241 High Yes Low 0.45 0.78 0 1.04E-03 
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A6. Python Script. The Green Office Excavation Failure. Slope Stability Model 

# -*- coding: utf-8 -*- 
""" 
Created on Wed Jun 22 17:53:42 2022 
 
@author: mgfer 
""" 
 
import numpy as np     
import random 
from scipy.stats import truncnorm 
#import matplotlib.pyplot as plt 
import pandas as pd 
import os         # To rename files 
import shutil     # To copy files 
import subprocess # to run the Slide console 
from tqdm import tqdm 
 
# Function to create random values and storage them in a dataframe 
def data_frame(n_sim): 
    random.seed(2022)         
    # Parameters to create a truncate normal distribution for c' and phi' 
    # Soil1: Soft Clay 
    c1_mean = 5.; COV1 = 0.1; c1_std = c1_mean*COV1; c1_clip_a = c1_mean-3.*c1_std ; c1_clip_b = c1_mean+3.*c1_std 
    c1_a, c1_b = (c1_clip_a - c1_mean) / c1_std, (c1_clip_b - c1_mean) / c1_std 
     
    fi1_mean = 24.; COV2=0.1; fi1_std = fi1_mean*COV2; fi1_clip_a = fi1_mean-3.*fi1_std; fi1_clip_b = fi1_mean+3.*fi1_std 
    fi1_a, fi1_b = (fi1_clip_a - fi1_mean) / fi1_std, (fi1_clip_b - fi1_mean) / fi1_std 
     
    lamda1_mean = 0.188; COV3 = 0.1; lamda1_std = lamda1_mean*COV3; lamda1_clip_a = lamda1_mean-3.*lamda1_std ; lamda1_clip_b = 
lamda1_mean+3.*lamda1_std 
    lamda1_a, lamda1_b = (lamda1_clip_a - lamda1_mean) / lamda1_std, (lamda1_clip_b - lamda1_mean) / lamda1_std 
     
    kappa1_mean = 0.047; COV4 = 0.1; kappa1_std = kappa1_mean*COV4; kappa1_clip_a = kappa1_mean-3.*kappa1_std ; kappa1_clip_b = 
kappa1_mean+3.*kappa1_std 
    kappa1_a, kappa1_b = (kappa1_clip_a - kappa1_mean) / kappa1_std, (kappa1_clip_b - kappa1_mean) / kappa1_std 
     
    einit1_mean = 2.; COV5 = 0.07; einit1_std = einit1_mean*COV5; einit1_clip_a = einit1_mean-3.*einit1_std ; einit1_clip_b = 
einit1_mean+3.*einit1_std 
    einit1_a, einit1_b = (einit1_clip_a - einit1_mean) / einit1_std, (einit1_clip_b - einit1_mean) / einit1_std 
     
    # Soil2: Very Soft Clay 
    c2_mean = 6.3; COV1 = 0.1; c2_std = c2_mean*COV1; c2_clip_a = c2_mean-3.*c2_std ; c2_clip_b = c2_mean+3.*c2_std 
    c2_a, c2_b = (c2_clip_a - c2_mean) / c2_std, (c2_clip_b - c2_mean) / c2_std 
     
    fi2_mean = 19.3; COV2=0.1; fi2_std = fi2_mean*COV2; fi2_clip_a = fi2_mean-3.*fi2_std; fi2_clip_b = fi2_mean+3.*fi2_std 
    fi2_a, fi2_b = (fi2_clip_a - fi2_mean) / fi2_std, (fi2_clip_b - fi2_mean) / fi2_std 
     
    lamda2_mean = 0.137; COV3 = 0.1; lamda2_std = lamda2_mean*COV3; lamda2_clip_a = lamda2_mean-3.*lamda2_std ; lamda2_clip_b = 
lamda2_mean+3.*lamda2_std 
    lamda2_a, lamda2_b = (lamda2_clip_a - lamda2_mean) / lamda2_std, (lamda2_clip_b - lamda2_mean) / lamda2_std 
     
    kappa2_mean = 0.0457; COV4 = 0.1; kappa2_std = kappa2_mean*COV4; kappa2_clip_a = kappa2_mean-3.*kappa2_std ; kappa2_clip_b = 
kappa2_mean+3.*kappa2_std 
    kappa2_a, kappa2_b = (kappa2_clip_a - kappa2_mean) / kappa2_std, (kappa2_clip_b - kappa2_mean) / kappa2_std 
     
    einit2_mean = 2.8; COV6 = 0.07; einit2_std = einit2_mean*COV6; einit2_clip_a = einit2_mean-3.*einit2_std ; einit2_clip_b = 
einit2_mean+3.*einit2_std 
    einit2_a, einit2_b = (einit2_clip_a - einit2_mean) / einit2_std, (einit2_clip_b - einit2_mean) / einit2_std 
     
    # Generate n_sim values following a truncate normal distribution 
    c1_sample      = truncnorm.rvs(c1_a, c1_b, loc=c1_mean, scale=c1_std, size=n_sim, random_state=2022) 
    fi1_sample     = truncnorm.rvs(fi1_a, fi1_b, loc=fi1_mean, scale=fi1_std, size=n_sim, random_state=2022) 
    lamda1_sample  = truncnorm.rvs(lamda1_a, lamda1_b, loc=lamda1_mean, scale=lamda1_std, size=n_sim, random_state=2022) 
    kappa1_sample  = truncnorm.rvs(kappa1_a, kappa1_b, loc=kappa1_mean, scale=kappa1_std, size=n_sim, random_state=2022) 
    einit1_sample   = truncnorm.rvs(einit1_a, einit1_b, loc=einit1_mean, scale=einit1_std, size=n_sim, random_state=2022) 
     
    c2_sample      = truncnorm.rvs(c2_a, c2_b, loc=c2_mean, scale=c2_std, size=n_sim, random_state=2022) # random_state=seed 
    fi2_sample     = truncnorm.rvs(fi2_a, fi2_b, loc=fi2_mean, scale=fi2_std, size=n_sim, random_state=2022) 
    lamda2_sample  = truncnorm.rvs(lamda2_a, lamda2_b, loc=lamda2_mean, scale=lamda2_std, size=n_sim, random_state=2022) 
    kappa2_sample  = truncnorm.rvs(kappa2_a, kappa2_b, loc=kappa2_mean, scale=kappa2_std, size=n_sim, random_state=2022) 
    einit2_sample   = truncnorm.rvs(einit2_a, einit2_b, loc=einit2_mean, scale=einit2_std, size=n_sim, random_state=2022) 
          
    df = pd.DataFrame(list(zip(c1_sample, fi1_sample, lamda1_sample, kappa1_sample, einit1_sample, 
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                               c2_sample, fi2_sample, lamda2_sample, kappa2_sample, einit2_sample)), # Create a data frame using the values 
                      columns= ['c1', 'phi1', 'lamda1', 'kappa1', 'eini1', 'c2', 'phi2', 'lamda2', 'kappa2', 'eini2' ]) 
     
    var_names = ['xc','yc','r', 'x1', 'y1', 'x2', 'y2', 'fs'] # variable names to read 
    method_names = ['or_fell', 'bish_simp', 'jan_simp', 'ja_corr' , 'spenc']  # methods names 
    col_names =  [y+'-'+x for x in method_names for y in var_names ]  # combine var_names and method names https://blog.finxter.com/how-to-
write-a-nested-for-loop-in-one-line-python/ 
    for t in col_names:   # Create columns in the 
        df[t]        = np.repeat('NA', len(c1_sample)) 
    return(df) 
 
# This function use the original "Modelo_slide_M1.sli" and replace the c and phi values from the dataframe df 
def create_sli(it): 
     
    filename = "modelo_slide_m1.sli" # Create file name based on excel codification File "List_of_files.xlsx" 
    dir_ini = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/source_files/" # Directory where the initial file is located 
    dir_fin = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/" #directory were the copy file will be located 
     
    original = dir_ini + filename     # complete path of the original file 
    target   = dir_fin + filename     # complete path of the copy file with a value indicating the iteration number 
    shutil.copyfile(original, target)       # command to copy the file 
    base = os.path.splitext(target)[0] # split the file name and its extension  
    os.rename(target, base + ".txt") # change extension of the file 
    work_file = dir_fin  + "modelo_slide_m1.txt" 
        
    g = open(work_file, 'r') # open the work_file 
    lines = g.readlines()  # read each line and convert the to a list 
     
    # Replace line 34 and 35 with the c- and phi- values for soft and very soft soils 
    lines[34] = "  soil1 = type: 0 water: 1 wtable: 0 c: "+str(float(df.iloc[it,0]))+" phi: "+str(float(df.iloc[it,1]))+" uw: 14.8 hutype: 0\n" 
    lines[35] = "  soil2 = type: 0 water: 1 wtable: 0 c: "+str(float(df.iloc[it,5]))+" phi: "+str(float(df.iloc[it,6]))+" uw: 13.4 hutype: 0\n" 
    lines = ''.join(lines)    # change list to string 
     
    g = open(work_file, "wt") #open work_file in write mode 
    g.write(lines)            #write the work_file with the variable lines 
    g.close()                 #close the file 
    os.rename(work_file, dir_fin + "Modelo_slide_m1.sli") # change extension of the file 
     
# This function change the extension of the output file *.s01 to *.txt in oder to read results 
def create_txt(): 
    dir_fin ="C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/" #directory were the copy file will be located 
    for i in os.listdir(dir_fin): 
        files = os.path.join(dir_fin,i) 
        split= os.path.splitext(files) 
        if split[1]=='.s01': 
           os.rename(files,split[0]+'.txt') 
 
#This function read the values of the output file 
def read_value(iii): 
    dir_fin = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/" #directory were the copy file will be located 
    g = open(dir_fin  + "modelo_slide_m1.txt") 
    line = g.readlines() 
    id1 = line.index("* Global Minimum FS (xc,yc,r,x1,y1,x2,y2,fs,name)\n")  # Find the line in the *txt file with the value "* Global Minimum FS 
(xc,yc,r,x1,y1,x2,y2,fs,name)\n" 
    fellenius_line   = line[id1+1].split()[0:8] #select the 7 first data  
    bishop_sim_line  = line[id1+2].split()[0:8] 
    janbu_sim_line   = line[id1+3].split()[0:8] 
    janbu_cor_line   = line[id1+4].split()[0:8] 
    spencer_line     = line[id1+5].split()[0:8] 
    all_values       = [fellenius_line, bishop_sim_line, janbu_sim_line, janbu_cor_line, spencer_line]  
    #all_values       = np.concatenate(all_values) # convertlist to a single vector 
    #print(values_stability) 
    return(all_values) 
 
#______________________________________________________________________________ 
#  COMMNANDS TO RUN SLIDE CONSOLE AND READ OUTPUT VALUES 
#______________________________________________________________________________ 
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# Loop to delete all previous files 
#path = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/" 
#for f in os.listdir(path): 
#    os.remove(os.path.join(path, f)) 
 
n_sim  = 1000   # Number of simulations 
df     = data_frame(n_sim) 
 
############################################################################## 
# 
# 
############################################################################## 
def cre_txt(): 
    dir_fin = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/" #directory were the copy file will be located 
    file_name = "modelo_slide_m1.s01" 
    file = dir_fin + file_name 
    pre, ext = os.path.splitext(file) 
    os.rename(file,pre +'.txt') 
 
# Loop to create the *.sli files 
 
for index, row in tqdm(df.iterrows()): 
     
    create_sli(index) 
 
# Run the Slide Console 
     
    filename = "modelo_slide_m1.sli" 
     
    subprocess.run(["C:/Program Files (x86)/Rocscience/Slide 5.0/aslidew.exe",  
                        "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations/"+filename ], check= False) 
    # Create *.txt files 
    cre_txt() 
     
    for t in range(5): 
        for s in range(8): 
            df.iloc[index,8*t+s+10 ]  = read_value(index)[t][s] 
 
    path = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/simulations" 
    for f in os.listdir(path): 
        os.remove(os.path.join(path, f)) 
 
df.to_csv("C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/Modelos_slide/"+'results_M1.csv') 
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# PLAXIS PRELIMINARIES ### 
import subprocess  # Use the subprocess module 
import os          # To use the cmd? (verify) 
from plxscripting.easy import *  # Import PLAXIS library 
 
import math 
import numpy as np 
import random 
from scipy.stats import truncnorm 
#import matplotlib.pyplot as plt 
import pandas as pd 
from tqdm import tqdm 
 
inputport = 10000  
plaxispw= r'***********'  # Password 
plaxis_path = r'C:\Program Files\Bentley\Geotechnical\***** #path of executable  
plaxis_input = 'PLAXIS2DxInput.exe--AppServerPort=21403 --NO_CONTROLLERS' 
 
# Connect to PLAXIS application 
s_i, g_i = new_server('localhost', 10000, password = plaxispw) # Conecta al servidor de entrada 
s_o, g_o = new_server('localhost', 10001, password = plaxispw) # Conecta al servidor de salida 
#s_i.new() 

In [2]: 
df = pd.read_csv ("C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/input_Pijao_plaxis1K.csv") 
point_names = ['T1','T2','T3','T4','T5','T6','T7','T8','T9','T10', 
'W1','W2','W3','W4','W5','W6','W7','W8','W9','W10','B1','B2','B3','B4','B5','B6','B7','B8','B9','B10'] 
step_names  = ['Phase3','Phase4', 'Phase5' ] 
col_names = [y+'-'+x for x in step_names for y in point_names ] 
for t in col_names:   # Create columns in df 
    df[t] = np.repeat('NA', len(df.index)) 
#print(df.head()) 

In [3]: 
# STRATIGRAPHY AND GEOMETRY (SOIL MODE) 
def soil_stratigraphy(s_i, g_i): 
    #inputport = 10000  
    #plaxispw= plaxispw #Password 
    #plaxis_path = r'C:\Program Files\Bentley\Geotechnical\PLAXIS 2D CONNECT Edition V20' #path of executable  
    #plaxis_input = 'PLAXIS2DxInput.exe--AppServerPort=21403 --NO_CONTROLLERS' 
 
    # Connect to PLAXIS application 
    #s_i, g_i = new_server('localhost', 10000, password = plaxispw) # Conecta al servidor de entrada 
    #s_o, g_o = new_server('localhost', 10001, password = plaxispw) # Conecta al servidor de salida 
     
     
    s_i.new() 
    g_i.SoilContour.initializerectangular(-120, 0 ,120 ,50) #define project limits 
    g_i.borehole(0)                         # add a borehole at coodinate x=0 
    g_i.borehole_1.Head = 50                # Set phreatic level 
    g_i.soillayer(0)                        # Create a soil layer of thick=0. Default name Soillayer_1 
    g_i.soillayer(1)                        # Create a soil layer of thick=0. Default name Soillayer_2 
    g_i.soillayer(2)                        # Create a soil layer of thick=0. Default name Soillayer_3 
    g_i.soillayer(3)                        # Create a soil layer of thick=0. Default name Soillayer_4 
    g_i.Soillayer_1.Zones[0].Top = 50       # Modify top position of Soillayer_1 to y = 30 
    g_i.Soillayer_1.Zones[0].Bottom = 44    # Modify bottom position of Soillayer_1 to y = 44 
    g_i.Soillayer_2.Zones[0].Bottom = 15      
    g_i.Soillayer_3.Zones[0].Bottom = 10      
    g_i.Soillayer_4.Zones[0].Bottom = 0   

In [4]: 
# CREATE AND ASIGN SOIL MATERIALS (SOIL MODE) 
def soil_material(s_i, g_i, c1, phi1, lamda1, kappa1, einit1, 
                 c2, phi2, lamda2, kappa2, einit2): 
    soil1 = g_i.soilmat()                           # Default name : Soil_1 
    soil2 = g_i.soilmat()                           # Default name : Soil_2 
    soil3 = g_i.soilmat()                           # Default name : Soil_3 
    soil4 = g_i.soilmat()                           # Default name : Soil_4 
     
    ### Soil 1 Properties ### 
    soil1.setproperties( 
    # General tab 
    "MaterialName", "Soft Clay",                        # Name of the soil material. 
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    "SoilModel", 5,                                 # Material model. 1 Linear Elastic, 2 Mohr-Coulomb, 3 Hardening Soil... see 
file:///C:/Program%20Files/Bentley/Geotechnical/PLAXIS%202D%20CONNECT%20Edition%20V20/Manuals/English/input_objects/objects_Soi
lMat.html 
    "DrainageType", 1,                              # Drainage type. 0 Drained, 1 Undrained (A) 3 Undrained (C)... 
    "Colour", 11129544,                             # Colour of the soil material in OLE colour notation 
    "MaterialNumber", 0,                            # Identification number of the soil material     
    "UserDefinedIndex", 0,                          # Index number of the soil model from the DLL file that is currently used 
    "Comments", "Soil for Green Office Building",   # Comments on the soil material 
    "gammaUnsat", 13.8, 
    "gammaSat", 14.8, 
    "DilatancyCutOff", False, 
    "ninit",einit1/(1+einit1),                               # porosity n=0.667 to get a initial void ratio e_init = 2.0.  
    # Parameters tab 
    "lambdaModified", lamda1,          # λ* = Cc/(2.3(1+e)) 
    "kappaModified", kappa1,                        # (λ* / κ* ) = 3.0 (reference: PLaxis Material Models Manual. p. 116) 
    "cref", c1,                                    # Reference value of the cohesion 
    "phi", phi1,                                    # Friction angle of the soil material 
    "psi", 0.0,                                     # Dilatancy angle of the soil material 
    "DefaultValuesAdvanced", True, 
    #"nu", 0.3,                                      # Equivalent to nurf 
    "UndrainedBehaviour", 0,                        # Undrained behaviour 0 Standard Undrained behaviour of the soil material is standard, 1 Manual 
    # Groundwater tab 
    #"DataSetFlow", 0, 
    #"ModelFlow", 0, 
    "SoilTypeFlow", 4,    
    #"UseDefaultsFlow", 1, 
    #"FlowDataModel" , 0 ,                         # 000 Standard, 100 Hypres,   200 USDA,  300 Staring, 400 User define 
    #"DefaultValuesFlow",True,                     # False Disables the use of default values for the flow parameters 
    "perm_primary_horizontal_axis",0.5996,         # Permeability of the soil along the primary horizontal axis 
    "perm_vertical_axis", 0.5996,  #  
     
    # Interfaces tab 
    "InterfaceStiffness", 0,                        # 0 standard 1 manual 
    "InterfaceStrength", 0,                         # 1 Rigid Rinter = 1.0, 0 Manual 
    "Rinter", 0.67,                                 # Strength reduction factor for interfaces 
    "ConsiderGapClosure", True, 
    # Initial tab 
    "K0Determination", 1, 
    "OCR", 3.0, 
    "POP", 0.0) 
     
    ### Soil 2 Properties ### 
    soil2.setproperties( 
    # General tab 
    "MaterialName", "Very Soft Clay",                        # Name of the soil material. 
    "SoilModel", 5,                                 # Material model. 1 Linear Elastic, 2 Mohr-Coulomb, 3 Hardening Soil... see 
file:///C:/Program%20Files/Bentley/Geotechnical/PLAXIS%202D%20CONNECT%20Edition%20V20/Manuals/English/input_objects/objects_Soi
lMat.html 
    "DrainageType", 1,                              # Drainage type. 0 Drained, 1 Undrained (A) 3 Undrained (C)... 
    "Colour", 8433599,                             # Colour of the soil material in OLE colour notation 
    "MaterialNumber", 0,                            # Identification number of the soil material     
    "UserDefinedIndex", 0,                          # Index number of the soil model from the DLL file that is currently used 
    "Comments", "Soil for Green Office Building",   # Comments on the soil material 
    "gammaUnsat", 12.4, 
    "gammaSat", 13.4,  
    "DilatancyCutOff", False, 
    "ninit", einit2/(1+einit2),                               # porosity n=0.0.736 to get a initial void ratio e_init = 2.8.  
    # Parameters tab 
    "lambdaModified", lamda2,            # λ* = Cc/(2.3(1+e)) 
    "kappaModified", kappa2,                         # (λ* / κ* ) = 3.0 (reference: PLaxis Material Models Manual. p. 116) 
    "cref", c2,                                    # Reference value of the cohesion 
    "phi", phi2,                                    # Friction angle of the soil material 
    "psi", 0.0,                                     # Dilatancy angle of the soil material 
    "DefaultValuesAdvanced", True, 
    "nu", 0.3,                                      # Equivalent to nurf 
    "UndrainedBehaviour", 0,                        # Undrained behaviour 0 Standard Undrained behaviour of the soil material is standard, 1 Manual 
    # Groundwater tab 
    "FlowDataModel" , 000 ,                         # 000 Standard, 100 Hypres,   200 USDA,  300 Staring, 400 User define 
    "DefaultValuesFlow", False,                     # False Disables the use of default values for the flow parameters 
    "perm_primary_horizontal_axis", 0.5996,         # Permeability of the soil along the primary horizontal axis 
    "perm_vertical_axis", 0.5996,  #  
    # Interfaces tab 
    "InterfaceStiffness", 0,                        # 0 standard 1 manual 
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    "InterfaceStrength", 0,                         # 1 Rigid Rinter = 1.0, 0 Manual 
    "Rinter", 0.67,                                 # Strength reduction factor for interfaces 
    "ConsiderGapClosure", True, 
    # Initial tab 
    "K0Determination", 1, 
    "OCR", 1.0, 
    "POP", 0.0) 
     
    ### Soil 3 Properties ### 
    soil3.setproperties( 
    # General tab 
    "MaterialName", "Clayed sand",                        # Name of the soil material. 
    "SoilModel", 2,                                 # Material model. 1 Linear Elastic, 2 Mohr-Coulomb, 3 Hardening Soil... see 
file:///C:/Program%20Files/Bentley/Geotechnical/PLAXIS%202D%20CONNECT%20Edition%20V20/Manuals/English/input_objects/objects_Soi
lMat.html 
    "DrainageType", 0,                              # Drainage type. 0 Drained, 1 Undrained (A) 3 Undrained (C)... 
    "Colour", 9160924,                             # Colour of the soil material in OLE colour notation 
    "MaterialNumber", 0,                            # Identification number of the soil material     
    "UserDefinedIndex", 0,                          # Index number of the soil model from the DLL file that is currently used 
    "Comments", "Soil for the Benchmark problem",   # Comments on the soil material 
    "gammaUnsat", 16.8, 
    "gammaSat", 17.8,  
    "DilatancyCutOff", False , 
    # Parameters tab 
    "Eref", 1146,                                  # Reference Young's modulus 
    #"E50ref", 2E4,                                 # Secant stiffness in standard drained triaxial test 
    #"EoedRef", 2E4,                                # Tangent stiffness for primary oedometer loading 
    #"EurRef", 6E4,                                 # Unloading/reloading stiffness at engineering strains 
    #"powerm", 0.5,                                 # Power for stress-level dependency of stiffness 
    "cref", 0,                                   # Reference value of the cohesion 
    "phi", 34.8,                                    # Friction angle of the soil material 
    "psi", 0.0,                                     # Dilatancy angle of the soil material 
    "nu", 0.3,                                      # Equivalent to nurf 
    "DefaultValuesAdvanced", True, 
    #"K0nc", 0.5,                                   # Coefficient of lateral earth pressure for a normally consolidated stress state  
    "UndrainedBehaviour", 0,                        # Undrained behaviour 0 Standard Undrained behaviour of the soil material is standard, 1 Manual 
    # Groundwater tab 
    "FlowDataModel" , 000 ,                         # 000 Standard, 100 Hypres,   200 USDA,  300 Staring, 400 User define 
    "DefaultValuesFlow", False,                     # False Disables the use of default values for the flow parameters 
    "perm_primary_horizontal_axis", 0.5996,         # Permeability of the soil along the primary horizontal axis 
    "perm_vertical_axis", 0.5996,  #  
    # Interfaces tab 
    "InterfaceStiffness", 0,                        # 0 standard 1 manual 
    "InterfaceStrength", 0,                         # 1 Rigid Rinter = 1.0, 0 Manual 
    "Rinter", 0.67,                                 # Strength reduction factor for interfaces 
    "ConsiderGapClosure", True, 
    # Initial tab 
    "K0Determination", 1, 
    "OCR", 1.0, 
    "POP", 0.0) 
     
 ### Soil 4 Properties ### 
    soil4.setproperties( 
    # General tab 
    "MaterialName", "Colluvion",                        # Name of the soil material. 
    "SoilModel", 2,                                 # Material model. 1 Linear Elastic, 2 Mohr-Coulomb, 3 Hardening Soil... see 
file:///C:/Program%20Files/Bentley/Geotechnical/PLAXIS%202D%20CONNECT%20Edition%20V20/Manuals/English/input_objects/objects_Soi
lMat.html 
    "DrainageType", 0,                              # Drainage type. 0 Drained, 1 Undrained (A) 3 Undrained (C)... 
    "Colour", 8962011,                             # Colour of the soil material in OLE colour notation 
    "MaterialNumber", 0,                            # Identification number of the soil material     
    "UserDefinedIndex", 0,                          # Index number of the soil model from the DLL file that is currently used 
    "Comments", "Soil for the Benchmark problem",   # Comments on the soil material 
    "gammaUnsat", 17.5, 
    "gammaSat", 18.5,  
    "DilatancyCutOff", False , 
    # Parameters tab 
    "Eref", 1736,                                  # Reference Young's modulus 
    #"E50ref", 2E4,                                 # Secant stiffness in standard drained triaxial test 
    #"EoedRef", 2E4,                                # Tangent stiffness for primary oedometer loading 
    #"EurRef", 6E4,                                 # Unloading/reloading stiffness at engineering strains 
    #"powerm", 0.5,                                 # Power for stress-level dependency of stiffness 
    "cref", 0,                                   # Reference value of the cohesion 
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    "phi", 42.4,                                    # Friction angle of the soil material 
    "psi", 0.0,                                     # Dilatancy angle of the soil material 
    "nu", 0.3,                                      # Equivalent to nurf 
    "DefaultValuesAdvanced", True, 
    #"K0nc", 0.5,                                   # Coefficient of lateral earth pressure for a normally consolidated stress state  
    "UndrainedBehaviour", 0,                        # Undrained behaviour 0 Standard Undrained behaviour of the soil material is standard, 1 Manual 
    # Groundwater tab 
    "FlowDataModel" , 000 ,                         # 000 Standard, 100 Hypres,   200 USDA,  300 Staring, 400 User define 
    "DefaultValuesFlow", False,                     # False Disables the use of default values for the flow parameters 
    "perm_primary_horizontal_axis", 0.5996,         # Permeability of the soil along the primary horizontal axis 
    "perm_vertical_axis", 0.5996,  #  
    # Interfaces tab 
    "InterfaceStiffness", 0,                        # 0 standard 1 manual 
    "InterfaceStrength", 0,                         # 1 Rigid Rinter = 1.0, 0 Manual 
    "Rinter", 0.67,                                 # Strength reduction factor for interfaces 
    "ConsiderGapClosure", True, 
    # Initial tab 
    "K0Determination", 1, 
    "OCR", 1.0, 
    "POP", 0.0) 
 
    # ASSIGN MATERIALS TO LAYERS 
    g_i.Soils[0].Material = soil1                      # Assign soil 1 to polygon Soils[0] 
    g_i.Soils[1].Material = soil2                      # Assign soil 2 to polygon Soils[1] 
    g_i.Soils[2].Material = soil3                      # Assign soil 3 to polygon Soils[2] 
    g_i.Soils[3].Material = soil4                      # Assign soil 4 to polygon Soils[3]     
        

In [5]: 
# DEFINE AND ASSIGN STRUCTURAL ELEMENTS (STRUCTURES MODE) 
def structural_elements(s_i, g_i):         # h_wall = wall total lenght 
    g_i.gotostructures()                   # Move to Structures tab 
     
    # WALLS 
    # Define wall lines 
    left_wall_line  = g_i.line(-35.50, 50, -35.50, 33) [-1] # Left wall. the value [-1] creates the object in plaxis  
    right_wall_line = g_i.line(+36.50, 50, +36.50, 33) [-1] # Right wall 
  
    # Define wall properties and assign to plates 
    # According to the implementation of the "platemat" command in PLAXIS, for the elastic part,  
    # you need to specify, at least, the following quantities: 
    #"EA" (...) "EA2" (...) "Gref" (...) "nu" (...)"d" (...) 
    # It is better to calculate d, E and G from equations. 
     
    # Wall Material 
    wall_mat = g_i.platemat()                                              # Create a plate (wall) material 
    wall_mat.setproperties(                                                # Set the properties of the wall material 
    # Material set 
    "MaterialName", "Walls", 
    "Colour", 16711680, 
    "Comments", "Structural Wall Properties", 
    "Elasticity", 0, 
    "IsIsotropic", True, 
    #Properties 
    "EA", 3.0E7*(0.4*1.0),                                                  # E=3.0E7 ; A=0.4*1.0 
    "EA2",3.0E7*(0.4*1.0),  
    "EI", 3.0E7*1.0*math.pow(0.4, 3)/12,                                    # I=1.0*d^3/12 = 5.33E-3, 
    "nu", 0.2, 
    "w", 24*1.0*0.4,                                                        # weight per length. 24*0.4 
    "d", math.sqrt(12 * (3.0E7*1.0*math.pow(0.4, 3)/12) / (3.0E7*0.4*1.0)), # d = math.sqrt(12 * EI / EA) 
    "Gref", 3.0E7 / (2 * (1 + 0.2)),                                          # Gref = E / (2 * (1 + nu)) 
    "PreventPunching", True) 
     
    # Create plates (walls) 
    Left_Wall = g_i.plate(left_wall_line,  "Material", wall_mat)            # Create a plate in left_wall_line and assign the wall_material 
    Right_Wall= g_i.plate(right_wall_line, "Material", wall_mat) 
     
    # Create Interfaces 
    g_i.neginterface(left_wall_line, right_wall_line )                    # negative interface 
    g_i.posinterface(left_wall_line, right_wall_line )                    # positive interface 
     
    # PILES 
    # Define pile lines 
    pile_line_7 = g_i.line(-30.50, 39,   -30.50, 10) [-1]   # create a line for pile in axis 7-7. [-1] draw the line in plaxis 
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    pile_line_6 = g_i.line(-19.75, 39,   -19.75, 10) [-1]    
    pile_line_5 = g_i.line(-09.75, 39,   -09.75, 10) [-1]      
    pile_line_4 = g_i.line(+00.25, 39,   +00.25, 10) [-1]      
    pile_line_3 = g_i.line(+10.25, 39,   +10.25, 10) [-1]     
    pile_line_2 = g_i.line(+20.25, 39,   +20.25, 10) [-1]      
    pile_line_1 = g_i.line(+31.75, 39,   +31.75, 10) [-1] 
     
    # Pile material 
    pile_mat = g_i.embeddedbeammat() 
    pile_mat.setproperties( 
    # Material Set 
    "MaterialName", "Pile", 
    "Colour", 0, 
    "Comments", "Structural Pile Properties", 
    "Elasticity", 0, 
    # Properties 
    "E", 3.0E7, 
    "w", 24.0, 
    "BeamType", 0, 
    "PredefinedBeamType", 0, 
    "Diameter", 0.8, 
    "A", math.pi*math.pow(0.8, 2)/4, 
    "I", 1/4*math.pi*math.pow(0.8, 4), 
    "Lspacing", 10, 
    "SkinResistance", 0, 
    "Tstart", 1, 
    "Tend", 100, 
    "LateralResistance", 0, 
    "Fmax", 100, 
    "DefaultStiffnessFactors", True 
    ) 
    # Create embeddedbeamrow (Piles) 
    Piles = g_i.embeddedbeamrow(pile_line_7, pile_line_6, pile_line_5, 
                               pile_line_4, pile_line_3, pile_line_2, 
                               pile_line_1, "Material", pile_mat) 
    # COLUMNS 
    # Define column lines 
    # Assign a variable to each axis lines. [-3:] means that includes all 3 lines created 
     
    C7_7 = g_i.line((-30.50, 50), (-30.50, 46), (-30.50, 42.3), (-30.50, 39) ) [-3:] # Column lines for axis 7-7 
    C6_6 = g_i.line((-19.75, 50), (-19.75, 46), (-19.75, 42.3), (-19.75, 39) ) [-3:] 
    C5_5 = g_i.line((-09.75, 50), (-09.75, 46), (-09.75, 42.3), (-09.75, 39) ) [-3:] 
    C4_4 = g_i.line((+00.25, 50), (+00.25, 46), (+00.25, 42.3), (+00.25, 39) ) [-3:] 
    C3_3 = g_i.line((+10.25, 50), (+10.25, 46), (+10.25, 42.3), (+10.25, 39) ) [-3:] 
    C2_2 = g_i.line((+20.25, 50), (+20.25, 46), (+20.25, 42.3), (+20.25, 39) ) [-3:] 
    C1_1 = g_i.line((+31.75, 50), (+31.75, 46), (+31.75, 42.3), (+31.75, 39) ) [-3:] 
    
    # Define Column Material  
    column_mat = g_i.anchormat() 
    column_mat.setproperties( 
     # Material Set 
    "MaterialName", "Column", 
    "Colour", 0, 
    "Comments", "Structural Column Properties", 
    "Elasticity", 0, 
    "EA", 3.0E7*math.pi*math.pow(0.8, 2) / 4, 
    "Lspacing", 10 
    ) 
    # Assign nod2node anchor (columns) to each axis lines 
    Columns7_7 = g_i.n2nanchor(C7_7,"Material", column_mat) 
    Columns6_6 = g_i.n2nanchor(C6_6,"Material", column_mat) 
    Columns5_5 = g_i.n2nanchor(C5_5,"Material", column_mat) 
    Columns4_4 = g_i.n2nanchor(C4_4,"Material", column_mat) 
    Columns3_3 = g_i.n2nanchor(C3_3,"Material", column_mat) 
    Columns2_2 = g_i.n2nanchor(C2_2,"Material", column_mat) 
    Columns1_1 = g_i.n2nanchor(C1_1,"Material", column_mat) 
     
    # FOUNDATIONS SLAB 
    foundation_slab_line  = g_i.line(-35.50, 39, 36.50, 39) [-1] # Left wall. the value [-1] creates the object in plaxis 
     
    # Foundation Slab Material 
    foundation_mat = g_i.platemat()                                              # Create a plate (wall) material 
    foundation_mat.setproperties(                                                # Set the properties of the wall material 
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    # Material set 
    "MaterialName", "Foundation", 
    "Colour", 16681509, 
    "Comments", "Foundation Slab Properties", 
    "Elasticity", 0, 
    "IsIsotropic", True, 
    #Properties 
    "EA", 3.0E7*(1.0*1.638),                                                       # E=3.0E7 ; A: deduce from slab geometry 
    "EA2", 3.0E7*(1.0*1.638),    
    "EI", 3.0E7*1.0*math.pow(1.638, 3)/12,                                                       # I: deduce from slab geometry 
    "nu", 0.2, 
    "w", 8.0,                                                         # weight per length. 24*0.4 
    "d", math.sqrt(12 * (3.0E7*1.0*math.pow(1.638, 3)/12) / (3.0E7*(1.0*1.638))), 
    "Gref", 3.0E7 / (2 * (1 + 0.2)),                                   # Gref = E / (2 * (1 + nu)) 
    "PreventPunching", False 
    ) 
     
    # Create Foundation slab 
    Foundation_Slab= g_i.plate(foundation_slab_line,  "Material", foundation_mat) 
     
    # BASEMENT SLABS 
    basement_0_line = g_i.line(-35.50, 50, 36.50, 50) [-1]  
    basement_1_line = g_i.line(-35.50, 46, 36.50, 46) [-1]  
    basement_2_line = g_i.line(-35.50, 42.3, 36.50, 42.3) [-1]  
     
    # Basement Slab Material 
    basement_mat = g_i.platemat() 
    basement_mat.setproperties( 
    # Material set 
    "MaterialName", "Basement Slab", 
    "Colour", 16681509, 
    "Comments", "Basement Slab Properties", 
    "Elasticity", 0, 
    "IsIsotropic", True, 
    #Properties 
    "EA", 3.0E7*(1.0*1.219),                                                       # E=3.0E7 ; A: deduce from slab geometry 
    "EA2", 3.0E7*(1.0*1.219),   
    "EI", 3.0E7*1.0*math.pow(1.219, 3)/12,                                                       # I: deduce from slab geometry 
    "nu", 0.2, 
    "w", 6.0,                                                         # weight per length. 24*0.4 
    "d", math.sqrt(12 * (3.0E7*1.0*math.pow(1.219, 3)/12) / (3.0E7*(1.0*1.219))), 
    "Gref", 3.0E7 / (2 * (1 + 0.2)),                                          # Gref = E / (2 * (1 + nu)) 
    "PreventPunching", False 
    ) 
     
    # Pavement Material 
    pav_mat = g_i.platemat()                                              # Create a plate (wall) material 
    pav_mat.setproperties(                                                # Set the properties of the wall material 
    # Material set 
    "MaterialName", "Pavement", 
    "Colour", 16711680, 
    "Comments", "Pavement Properties", 
    "Elasticity", 0, 
    "IsIsotropic", True, 
    #Properties 
    "EA", 3.0E7*(0.4*1.0),                                                  # E=3.0E7 ; A=0.4*1.0 
    "EA2",3.0E7*(0.4*1.0),  
    "EI", 3.0E7*1.0*math.pow(0.4, 3)/12,                                    # I=1.0*d^3/12 = 5.33E-3, 
    "nu", 0.2, 
    "w", 24*1.0*0.4,                                                        # weight per length. 24*0.4 
    "d", math.sqrt(12 * (3.0E7*1.0*math.pow(0.4, 3)/12) / (3.0E7*0.4*1.0)), # d = math.sqrt(12 * EI / EA) 
    "Gref", 3.0E7 / (2 * (1 + 0.2)),                                          # Gref = E / (2 * (1 + nu)) 
    "PreventPunching", True) 
     
    # Create Basement slab 
    Foundation_Slab= g_i.plate(basement_0_line, basement_1_line, basement_2_line,  "Material", basement_mat) 
     
    # Pavament and Other Buildings 
    pavement1_line = g_i.line(+37.00, 50, +69.0, 50) [-1] # Pavement 1 
    building_line  = g_i.line(+69.50, 50, +100.00, 50) [-1] # Adjacent building 
     
    Pavement_Building = g_i.plate(pavement1_line, building_line,  "Material", pav_mat) 
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In [6]: 
# DEFINE AND ASSIGN POINT AND LINE LOADS (STRUCTURES MODE) 
def line_point_loads(s_i, g_i): 
    # Adjacent Building 
    building_line  = g_i.line(+69.50, 50, +100.00, 50) [-1] # Adjacent building 
    building_load =  g_i.lineload(building_line, "qy_start", -20) 
     
    # Traffic Point loads 
    points_traffic_loads = g_i.point((43,50), (45.8,50), (47,50), (49.5,50), (55,50), (57.5,50), (59,50), (61.5,50)) [-8:] 
    traffic_loads = g_i.pointload(points_traffic_loads, "Fy", -90) 
     
    # Pijao building load 
    pijao_line1 = g_i.line((-35.5, 50), (36.5, 50))[-1] 
    pijao_load1 = g_i.lineload(pijao_line1, "qy_start", -21)  # LineLoad_3 

In [7]: 
# GENERATE THE MESH 
def meshing_model(): 
    g_i.gotomesh()                                  # Move to Mesh tab 
    g_i.mesh(0.12, True)                            # Generate a mesh. 0.06: medium coarse. True: Enhance mesh refinements 
    #g_i.viewmesh()                                 # To view the generated mesh 

In [ ]: 
  

In [8]: 
# CONSTRUCTION STAGE 
def construction_stages(s_i, g_i): 
    g_i.gotostages() 
    # Initial phase 
    g_i.InitialPhase.Identification = "InitialPhase"    # Name of the phase  
    g_i.InitialPhase.DeformCalcType = "K0 procedure"    # K0 procedure to generate initial stresses 
    g_i.InitialPhase.PorePresCalcType = "Phreatic"      # Phreatic is selected as the initial pore presure calculation 
    g_i.InitialPhase.Deform.IgnoreSuction=True          # Ignore suction 
     
   # PHASE 1: Adjacent building and traffic 
    # The features not defaind here remain as default (Calculation Type=Plastic, Pore pressure=Phreatic, ...) 
    g_i.phase(g_i.InitialPhase)                                                     # Create a new phase from InitialPhase. Default name Phase_1 
    g_i.setcurrentphase(g_i.Phase_1)                                                # Make Phase_1 current 
    g_i.Phase_1.Identification = "Building+traffic"        # Name the phase 
    g_i.activate((g_i.Plate_7, g_i.Plate_8), (g_i.Phase_1))  
    g_i.LineLoad_1.activate(g_i.Phase_1)                                            # Line load adjacent building    
    g_i.PointLoads.activate(g_i.Phase_1) 
      
     
    # PHASE 2: Activation of walls 
    # The features not defaind here remain as default (Calculation Type=Plastic, Pore pressure=Phreatic, ...) 
    g_i.phase(g_i.Phase_1)                                                     # Create a new phase from InitialPhase. Default name Phase_1 
    g_i.setcurrentphase(g_i.Phase_2)                                                # Make Phase_1 current 
    g_i.Phase_2.Identification = "Walls+Foundation"        # Name the phase 
    g_i.Phase_2.Deform.ResetDisplacementsToZero = True 
     
    g_i.activate((g_i.Plate_1,g_i.Plate_2, g_i.Plate_4), (g_i.Phase_2))             # Chech the Plate_number in the graphical model 
     
    g_i.Interfaces.activate(g_i.Phase_2)                                            # Activate all interfaces at phase 1  
    g_i.NodeToNodeAnchors.activate(g_i.Phase_2) 
    g_i.EmbeddedBeamRows.activate(g_i.Phase_2)     
                         
    # PHASE 3 First excavation 
    g_i.phase(g_i.Phase_2)                                                          # Create a new phase from InitialPhase. Default name Phase_2 
    g_i.Phase_3.Identification = "First Exavation"                                  # Name the phase 
    g_i.setcurrentphase(g_i.Phase_3)                                                # Make Phase_2 current 
    g_i.BoreholePolygon_1_1.deactivate(g_i.Phase_3) 
     
    WT_1 = g_i.waterlevel((-120,50), (-35.5,46), (36.5,46), (120,50)) 
    g_i.set(g_i.Water.GlobalWaterLevel, (g_i.Phase_3), WT_1) 
    g_i.Phase_3.PorePresCalcType = "Steady state groundwater flow" 
    g_i.Plate_5.activate(g_i.Phase_3) 
    #g_i.PointLoads.activate(g_i.Phase_3) 
     
    # PHASE 4 Second excavation 
    g_i.phase(g_i.Phase_3)                                                          # Create a new phase from InitialPhase. Default name Phase_2 
    g_i.Phase_4.Identification = "Second Exavation"                                  # Name the phase 
    g_i.setcurrentphase(g_i.Phase_4)                                                # Make Phase_2 current 
    g_i.BoreholePolygon_1_4.deactivate(g_i.Phase_4) 
    g_i.BoreholePolygon_2_1.deactivate(g_i.Phase_4) 
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    WT_2 = g_i.waterlevel((-120,50), (-35.5,42.3), (36.5,42.3), (120,50)) 
    g_i.set(g_i.Water.GlobalWaterLevel, (g_i.Phase_4), WT_2) 
    g_i.Phase_4.PorePresCalcType = "Steady state groundwater flow" 
    g_i.Plate_6.activate(g_i.Phase_4) 
    #g_i.borehole_1.setproperties("Head ",-30) 
     
    # Phase 5 Third excavation 
    g_i.phase(g_i.Phase_4)                                                          # Create a new phase from InitialPhase. Default name Phase_2 
    g_i.Phase_5.Identification = "Third Excavation"                                  # Name the phase 
    g_i.setcurrentphase(g_i.Phase_5)                                                # Make Phase_2 current 
    g_i.BoreholePolygon_2_2.deactivate(g_i.Phase_5) 
     
    WT_3 = g_i.waterlevel((-120,50), (-35.5,39), (36.5,39), (120,50)) 
    g_i.set(g_i.Water.GlobalWaterLevel, (g_i.Phase_5), WT_3) 
    g_i.Phase_5.PorePresCalcType = "Steady state groundwater flow" 
    g_i.Plate_3.activate(g_i.Phase_5) 
    g_i.activate(g_i.LineLoad_2, g_i.Phase_5) 

In [9]: 
# RUN THE MODEL 
for index, row in tqdm(df.iterrows()): 
    soil_stratigraphy(s_i, g_i) 
    soil_material(s_i, g_i, df.iloc[index,0], df.iloc[index,1], df.iloc[index,2], df.iloc[index,3], df.iloc[index,4], 
                 df.iloc[index,5], df.iloc[index,6], df.iloc[index,7], df.iloc[index,8], df.iloc[index,9]) 
     
    structural_elements(s_i, g_i) 
    line_point_loads(s_i, g_i) 
    meshing_model() 
    construction_stages(s_i, g_i) 
     
   # RUN THE MODEL  
    g_i.calculate() 
    g_i.view(g_i.Phase_1) 
    # Read deformation results and put them in the dataframe 
     
    #PHASE 3 FIRST EXCAVATION 
    #Street and near building 
    df.iloc[index,10]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (37, 50)) 
    df.iloc[index,11]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (41, 50)) 
    df.iloc[index,12]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (45, 50)) 
    df.iloc[index,13]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (49, 50)) 
    df.iloc[index,14]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (53, 50)) 
    df.iloc[index,15]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (57, 50)) 
    df.iloc[index,16]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (61, 50)) 
    df.iloc[index,17]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (65, 50)) 
    df.iloc[index,18]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (69, 50)) 
    df.iloc[index,19]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (73, 50)) 
     
    # Soil adjacent to wall 
    df.iloc[index,20]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 50)) 
    df.iloc[index,21]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 47)) 
    df.iloc[index,22]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 44)) 
    df.iloc[index,23]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 41)) 
    df.iloc[index,24]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 38)) 
    df.iloc[index,25]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 35)) 
    df.iloc[index,26]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 32)) 
    df.iloc[index,27]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 29)) 
    df.iloc[index,28]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 26)) 
    df.iloc[index,29]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Ux, (37, 23)) 
     
    # Soil at the bottom of excavation 
    df.iloc[index,30]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (0.0, 46)) 
    df.iloc[index,31]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (3.5, 46)) 
    df.iloc[index,32]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (7.0, 46)) 
    df.iloc[index,33]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (10.5, 46)) 
    df.iloc[index,34]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (14.0, 46)) 
    df.iloc[index,35]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (17.5, 46)) 
    df.iloc[index,36]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (21.0, 46)) 
    df.iloc[index,37]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (24.5, 46)) 
    df.iloc[index,38]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (28.0, 46)) 
    df.iloc[index,39]   =  g_o.getsingleresult(g_o.Phase_3, g_o.ResultTypes.Soil.Uy, (31.5, 46)) 
     
    #PHASE 4 SECOND EXCAVATION 
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    #Street and near building 
    df.iloc[index,40]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (37, 50)) 
    df.iloc[index,41]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (41, 50)) 
    df.iloc[index,42]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (45, 50)) 
    df.iloc[index,43]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (49, 50)) 
    df.iloc[index,44]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (53, 50)) 
    df.iloc[index,45]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (57, 50)) 
    df.iloc[index,46]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (61, 50)) 
    df.iloc[index,47]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (65, 50)) 
    df.iloc[index,48]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (69, 50)) 
    df.iloc[index,49]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (73, 50)) 
     
    # Soil adjacent to wall 
    df.iloc[index,50]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 50)) 
    df.iloc[index,51]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 47)) 
    df.iloc[index,52]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 44)) 
    df.iloc[index,53]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 41)) 
    df.iloc[index,54]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 38)) 
    df.iloc[index,55]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 35)) 
    df.iloc[index,56]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 32)) 
    df.iloc[index,57]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 29)) 
    df.iloc[index,58]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 26)) 
    df.iloc[index,59]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Ux, (37, 23)) 
     
    # Soil at the bottom of excavation 
    df.iloc[index,60]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (0.0, 42.3)) 
    df.iloc[index,61]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (3.5, 42.3)) 
    df.iloc[index,62]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (7.0, 42.3)) 
    df.iloc[index,63]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (10.5, 42.3)) 
    df.iloc[index,64]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (14.0, 42.3)) 
    df.iloc[index,65]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (17.5, 42.3)) 
    df.iloc[index,66]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (21.0, 42.3)) 
    df.iloc[index,67]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (24.5, 42.3)) 
    df.iloc[index,68]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (28.0, 42.3)) 
    df.iloc[index,69]   =  g_o.getsingleresult(g_o.Phase_4, g_o.ResultTypes.Soil.Uy, (31.5, 42.3)) 
 
    #PHASE 5 THIRD EXCAVATION 
    #Street and near building 
    df.iloc[index,70]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (37, 50)) 
    df.iloc[index,71]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (41, 50)) 
    df.iloc[index,72]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (45, 50)) 
    df.iloc[index,73]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (49, 50)) 
    df.iloc[index,74]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (53, 50)) 
    df.iloc[index,75]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (57, 50)) 
    df.iloc[index,76]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (61, 50)) 
    df.iloc[index,77]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (65, 50)) 
    df.iloc[index,78]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (69, 50)) 
    df.iloc[index,79]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (73, 50)) 
     
    # Soil adjacent to wall 
    df.iloc[index,80]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 50)) 
    df.iloc[index,81]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 47)) 
    df.iloc[index,82]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 44)) 
    df.iloc[index,83]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 41)) 
    df.iloc[index,84]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 38)) 
    df.iloc[index,85]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 35)) 
    df.iloc[index,86]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 32)) 
    df.iloc[index,87]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 29)) 
    df.iloc[index,88]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 26)) 
    df.iloc[index,89]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Ux, (37, 23)) 
     
    # Soil at the bottom of excavation 
    df.iloc[index,90]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (0.0, 39)) 
    df.iloc[index,91]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (3.5, 39)) 
    df.iloc[index,92]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (7.0, 39)) 
    df.iloc[index,93]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (10.5, 39)) 
    df.iloc[index,94]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (14.0, 39)) 
    df.iloc[index,95]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (17.5, 39)) 
    df.iloc[index,96]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (21.0, 39)) 
    df.iloc[index,97]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (24.5, 39)) 
    df.iloc[index,98]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (28.0, 39)) 
    df.iloc[index,99]   =  g_o.getsingleresult(g_o.Phase_5, g_o.ResultTypes.Soil.Uy, (31.5, 39)) 
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    #g_i.Phase_1.ShouldCalculate=True 
    #g_i.Phase_2.ShouldCalculate=True 
    #g_i.Phase_3.ShouldCalculate=True 
    #g_i.Phase_4.ShouldCalculate=True 
    #g_i.Phase_5.ShouldCalculate=True 
     
    g_o.update() 
#save_path = r'C:\Users\mgfer\OneDrive - Universidad Nacional de 
Colombia\D_drive\Simulations\Excavation\pruebas\Model_ERTC7_plaxis_V1.p2dx' 
    #g_i.save(save_path) 
#g_i.view(g_i.Phase_4) 
 

 

  



Annex A A - xxix
 

A8. R Script. The Green Office Excavation Failure. Bayesian Network and K MPE 

#_______________________________________________________________________________ 
# 2020-01-05 
# By: wmgarciaf@unal.edu.co 
# 
# R SCRIPT para an?lisis Bayesiano 
# Red Bayesiana para an?lisis modelo Pijao 
#_______________________________________________________________________________ 
 
#-------- PRELIMINARES -------------- 
setwd("C:/Users/mgfer/OneDrive - Universidad Nacional de Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1") 
df = read.csv(file="Condensed_Results_BN_xxx.csv", header = T)  
# Convertir todas las columnas de "numeric" or "character" a "factor"  
for (i in 1: ncol(df)) { 
  df[, i] = as.factor(df[, i])  
} 
# -------- GRAFICOS PRELIMINARES -----------  
windows(20, 20) 
par(mfrow= c(3,3)) 
barplot(table(df$LT)) 
barplot(table(df$WT)) 
barplot(table(df$FoS)) 
barplot(table(df$SC)) 
barplot(table(df$Ro)) 
barplot(table(df$i)) 
barplot(table(df$h)) 
 
 
# -------- CONSTRUCCION RED BAYESIANA -----------  
library(bnlearn) 
model1 = paste0("[Ar]","[Dm]","[LT]", "[Ra|Ar]", "[WT|Dm:Ar]", "[In|Dm]", "[Pz|WT]", 
                "[FoS|LT:WT]", "[SC|FoS]", "[Ro|SC]", "[i|SC]", "[h|SC]", "[Eo|SC]") 
dag1   = model2network(model1) 
windows(20, 20) 
graphviz.plot(dag1) 
 
# LABELS 
In_label = c("Damage", "No_Damage") 
Ar_label = c("True", "False") 
Dm_label = c("True", "False") 
Ra_label = c("Records", "No_Records") 
LT_label = c("LT1", "LT2") 
FoS_label= c("<1.0", ">1.0") 
WT_label = c("0.0m", "-3.0m") 
Pz_label = c("0.0m_lecture", "-3.0m_lecture") 
SC_label = c("Stable", "Unstable") 
Ro_label = c("<0.3", ">0.3") 
i_label  = c("<0.2", ">0.2") 
h_label  = c("<0.3", ">0.3") 
Eo_label = c("Observe_failure", "Do_not_observe_failure") 
 
# CPTs 
In_prob = array(c(0.99, 0.01, 0.05, 0.95), dim = c(2,2),  
                dimnames = list(In=In_label, Dm=Dm_label)) 
Ar_prob = array(c(0.5, 0.5), dim = 2, dimnames = list(Ar=Ar_label)) 
Dm_prob = array(c(0.5, 0.5), dim = 2, dimnames = list(Dm=Dm_label)) 
Ra_prob = array(c(0.99, 0.01, 0.05, 0.95), dim = c(2,2),  
                dimnames = list(Ra=Ra_label, Ar=Ar_label)) 
LT_prob = array(c(0.5, 0.5), dim = 2, dimnames = list(LT=LT_label)) 
WT_prob = array(c(0.99, 0.01, 0.95, 0.05, 0.15, 0.85,0.01, 0.99), dim = c(2,2,2),  
                dimnames = list(WT=WT_label, Ar=Ar_label, Dm=Dm_label)) 
Pz_prob = array(c(0.99, 0.01, 0.05, 0.95), dim = c(2,2),  
                dimnames = list(Pz=Pz_label, WT=WT_label)) 
FoS_prob= array(c(0.999, 0.001, 0.486, 0.514, 0.999, 0.001,0.094, 0.906), dim = c(2,2,2),  
                dimnames = list(FoS=FoS_label, LT=LT_label, WT=WT_label)) 
SC_prob = array(c(0.0, 1.0, 1.0, 0.0), dim = c(2,2),  
                dimnames = list(SC=SC_label, FoS=FoS_label)) 
Ro_prob = array(c(0.64, 0.36, 0.04, 0.96), dim = c(2,2),  
                dimnames = list(Ro=Ro_label, SC=SC_label)) 
i_prob  = array(c(0.999, 0.001, 0.797, 0.203), dim = c(2,2),  
                dimnames = list(i=i_label, SC=SC_label)) 
h_prob  = array(c(0.999, 0.001, 0.225, 0.775), dim = c(2,2),  
                dimnames = list(h=h_label, SC=SC_label)) 
Eo_prob = array(c(0.2, 0.8, 1.0, 0.0), dim = c(2,2),  
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                dimnames = list(Eo=Eo_label, SC=SC_label)) 
 
cpt = list(In=In_prob, Ar=Ar_prob, Dm=Dm_prob, Ra=Ra_prob, LT=LT_prob, WT=WT_prob, 
           Pz=Pz_prob, FoS=FoS_prob, SC=SC_prob, Ro=Ro_prob, i=i_prob, h=h_prob, 
           Eo=Eo_prob) 
 
BN_pijao = custom.fit(x = dag1, dist = cpt) 
 
# -------- PREDICTIVE QUERIES  -----------  
library(gRain) 
junction_BN_Pijao = compile(as.grain(BN_pijao)) 
querygrain(junction_BN_Pijao, nodes = c("FoS", "WT")) 
 
#Table 5.24 
# Evidence e1 
e1 = setEvidence(junction_BN_Pijao, nodes = "Eo", states = "Observe_failure") 
LTxWT_cpt_1 = querygrain(object = e1, nodes = c("LT","WT" ), type = "joint" ) 
 
#Evidence e2 
e2 = setEvidence(junction_BN_Pijao, nodes = c("Eo",  "Ro"), states = c("Observe_failure", ">0.3")) 
LTxWT_cpt_2 = querygrain(object = e2, nodes = c("LT","WT" ), type = "joint" ) 
 
#Evidence e2 
e3 = setEvidence(junction_BN_Pijao, nodes = c("Eo",  "Ro", "i", "h"),  
                 states = c("Observe_failure", ">0.3", ">0.2", "<0.3")) 
LTxWT_cpt_3 = querygrain(object = e3, nodes = c("LT","WT" ), type = "joint" ) 
 
#Examples for section 5.3 
# Case No.1 Evidence> Pz=0.0 m lecture,In=No damage 
jPz = setEvidence(junction_BN_Pijao, nodes = "Pz", states = "0.0m_lecture") 
querygrain(jPz, nodes = c("SC", "WT", "LT")) 
 
# Case # 4. Actual evidence 
jAll = setEvidence(junction_BN_Pijao, nodes =c("Ra", "Pz", "In", "Ro", "h", "i") ,  
           states = c("Records", "-3.0m_lecture", "Damage", ">0.3", 
                              ">0.3", ">0.2")) 
LTxWT_cpt_All = querygrain(object = jAll, nodes = c("LT","WT" ), type = "joint" ) 
 
 
# -------- K-MPE. MOST PROBABLE EXPLANATION -----------                  
# Due to the fact that the BN and the CPTs were created using  a  
# combination of expert opinion and numerical models, it is necessary 
# to create a simulation from the BN. This simulation is created using 
# cpdist function 
 
 
df_sim = cpdist(fitted = BN_pijao, nodes = c("Dm", "Ar", "WT", "LT", "FoS", 
                                             "SC", "Eo", "Ro", "i", "h", "Pz"), 
                evidence = ((Ro==">0.3")&(i=="<0.2")&(h==">0.3")& 
                              (Pz=="-3.0m_lecture")&(In=="Damage")& 
                              (Ra=="Records")), n=10^6) 
 
# Identify unique rows in df_sim an count them 
library(dplyr) 
K_MPE = df_sim%>%group_by_all%>%count 
K_MPE = K_MPE[order(K_MPE$n, decreasing = T),] 
write.csv(K_MPE, file = "C:/Users/mgfer/OneDrive - Universidad Nacional de 
Colombia/D_drive/Simulations/Pijao_V1/Modelos_V1/K_MPE_Pijao.csv") 
 

 


