

Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

Daniel Felipe Santos Gil, BSc

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Química Bogotá, Colombia 2023

Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

Daniel Felipe Santos Gil, BSc

Tesis presentada como requisito parcial para optar al título de: Magíster en Ciencias-Bioquímica

Director (a): Gonzalo Humberto Arboleda Bustos MD MSc PhD

Línea de Investigación: Biología del envejecimiento Grupo de Investigación: Grupo de Investigación en Muerte Celular Instituto de Genética

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Química Bogotá, Colombia 2023

Dedicatoria

A mis padres y a mi abuela, por todo el soporte y el cariño.

A Jennifer Caicedo, por su apoyo incondicional y su amor inconmensurable.

La vida, por larga que sea, siempre será muy breve. Demasiado breve para añadir algo.

Wislawa Szymborska

Declaración de obra original

Yo declaro lo siguiente:

He leído el Acuerdo 035 de 2003 del Consejo Académico de la Universidad Nacional. «Reglamento sobre propiedad intelectual» y la Normatividad Nacional relacionada al respeto de los derechos de autor. Esta disertación representa mi trabajo original, excepto donde he reconocido las ideas, las palabras, o materiales de otros autores.

Cuando se han presentado ideas o palabras de otros autores en esta disertación, he realizado su respectivo reconocimiento aplicando correctamente los esquemas de citas y referencias bibliográficas en el estilo requerido.

He obtenido el permiso del autor o editor para incluir cualquier material con derechos de autor (por ejemplo, tablas, figuras, instrumentos de encuesta o grandes porciones de texto).

Por último, he sometido esta disertación a la herramienta de integridad académica, definida por la universidad.

Nombre: Daniel Felipe Santos Gil **Fecha:** 26 de Junio de 2023

Agradecimientos

Los autores agradecemos al Ministerio de Ciencia, Tecnología e Innovación, por la financiación de esta investigación mediante el proyecto: "Análisis funcional celular/molecular de la RNA polimerasa III A (POLR3A) asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)", convocatoria 844-2019.

A la Universidad Nacional de Colombia y a los docentes de la maestría, quienes contribuyeron a fortalecer mi formación profesional y científica.

A la facultad de Ciencias y al departamento de Química por los apoyos administrativos y de acompañamiento.

Al Instituto de Genética y a sus trabajadores, por hacer de ese lugar un espacio acogedor y entrañable.

Al Doctor Gonzalo Arboleda por la dirección, el apoyo y la confianza en el desarrollo de este trabajo.

Al Doctor Eduardo Arboleda por su orientación y enseñanza para el análisis bioinformático.

Al Doctor Adrián Sandoval por la confianza y el acompañamiento.

Al Doctor Humberto Arboleda por su retroalimentación en el proceso formativo.

A mis compañeros del grupo de investigación, en particular a Juan Carlos Ruiz. A los muchachos con los cuales desarrollamos el proyecto: Jerónimo Gómez, Paula Gaete, Camilo Delgado, Juan David Caicedo, Andrés Bustamante y Karen Velásquez, con quienes aprendí y compartí valiosos momentos de la maestría.

Resumen

Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

El síndrome de Wiedemann-Rautenstracuh (WRS) ha sido caracterizado como una entidad progeroide neonatal o de envejecimiento prematuro. Este grupo de síndromes tienen en común cambios monogenéticos que contribuyen a la aparición de fenotipos de envejecimiento que se evidencian en distintas etapas del desarrollo del individuo e in vitro presentan senescencia celular prematura. El WRS presenta un patrón de herencia autosómica recesiva cuya etiología es poco conocida. Recientemente se han descrito mutaciones en el gen POLR3A que codifica la subunidad catalítica A de la RNA polimerasa III. Esta enzima sintetiza un grupo de RNAs pequeños no codificantes (snRNAs), entre ellos tRNAs, 5S rRNA y U6 snRNA, que son importantes para el correcto funcionamiento del nucleolo, el ensamblaje de ribosomas, la traducción de proteínas y el metabolismo celular. Se planteó como objetivo describir las características celulares y moleculares de los fibroblastos WRS y la relación con un modelo de pérdida de función. Métodos: Se cultivaron fibroblastos primarios de dos pacientes WRS con variantes monoalélicas: WRS1[POLR3A c.3772 3773delCT (p. Leu1258Glyfs*12)] y WRS2 [POLR3A c.3G>T (p. Met1Leu*)]; fibroblastos knockout (KO) [POLR3A -/-] y fibroblastos control [POLR3A +/+]. Se determinó la expresión global de RNA mediante RNAseq, identificando los genes diferencialmente expresados de cada conjunto de datos, los cuales fueron filtrados y analizados según los criterios de exclusión a nivel estadístico y biológico. Se llevó a cabo un análisis de enriquecimiento funcional con las bases de datos Gene Ontology (GO) y Kyoto Encyclopedia of Genes and Genomes (KEGG). Por RTqPCR, inmunofluorescencia y western blot, se analizaron los patrones de expresión de POLR3A, la expresión y localización de marcadores nucleolares y los niveles de marcadores de senescencia celular. Resultados: Se observó que hay un desbalance en la transcripción de los genes diana de la RNA Polimerasa III. Se encontraron perfiles de expresión diferenciales y se

identificaron los genes diferencialmente expresados (DEGs) de cada conjunto de datos, siendo 204 en común entre el fenotipo WRS y 147 con la condición KO. El análisis de enriquecimiento funcional mostró sobrerrepresentadas múltiples categorías, entre ellas la vía PI3K-Akt, la interacción del receptor con la matriz extracelular, el metabolismo del retinol y la regulación de la respuesta inflamatoria. Se detectó una mayor área de inmunoreactividad de los componentes nucleolares en los fibroblastos WRS, mientras que el grupo KO muestra una reducción; a nivel transcripcional y traduccional, hay un desbalance de los distintos componentes estructurales, acompañado de la reducción de la síntesis de los precursores ribosomales. Por último, se encontró una regulación al alza de los marcadores de senescencia celular P53/P21, P16/RB y GLB1. Conclusión: Las células WRS experimentan un proceso de senescencia celular prematura asociado a las mutaciones de POLR3A que conducen a una alteración de su función transcripcional. Esto resulta en un aumento en el área nucleolar, un desequilibrio en la producción de los componentes nucleolares y una alteración en la biogénesis ribosomal. Además, el análisis de enriquecimiento funcional reveló que múltiples vías de señalización están comprometidas como la supervivencia celular, la interacción y organización de la matriz extracelular y regulación de la respuesta inflamatoria. Estos hallazgos contribuyen a mejorar nuestra comprensión de los mecanismos subyacentes del WRS, que explican la alteración funcional de POLR3A y que dan lugar al fenotipo de envejecimiento prematuro y senescencia celular. También, amplían nuestra comprensión del panorama funcional del complejo RNA Polimerasa III en diversos componentes celulares, procesos biológicos y funciones moleculares.

Palabras clave: Síndrome Progeroide, Senescencia Celular, Envejecimiento humano, RNA Polimerasa III Subunidad A, POLR3A, Nucleolo, RNA-seq

Abstract

Cellular and Molecular Study of the POLR3A Gene Associated with Neonatal Progeroid Syndrome (Wiedemann-Rautenstrauch Syndrome)

Wiedemann-Rautenstracuh Syndrome (WRS) has been characterized as a neonatal progeroid entity or premature aging disorder. This group of syndromes share monogenetic changes that contribute to the emergence of aging phenotypes manifested at different stages of individual development and display premature cellular senescence in vitro. WRS follows an autosomal recessive inheritance pattern, and its etiology is poorly understood. Recently, mutations in the POLR3A gene, which encodes the catalytic subunit A of RNA polymerase III, have been described. This enzyme synthesizes a group of small non-coding RNAs (snRNAs), including tRNAs, 5S rRNA, and U6 snRNA, which are crucial for proper nucleolar function, ribosome assembly, protein translation, and cellular metabolism. The objective of this study was to describe the cellular and molecular characteristics of WRS fibroblasts and their relationship with a loss-of-function model. Methods: Primary fibroblasts were cultured from two WRS patients with monoallelic variants: WRS1 [POLR3A c.3772 3773delCT (p. Leu1258Glyfs12)] and WRS2 [POLR3A c.3G>T (p. Met1Leu)], as well as knockout (KO) fibroblasts [POLR3A -/-] and control fibroblasts [POLR3A +/+] were included. Global RNA expression was determined using RNAseq, identifying the differentially expressed genes in each dataset, which were filtered and analyzed based on statistical and biological exclusion criteria. Functional enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Expression patterns of POLR3A, nucleolar marker expression and localization, and cellular senescence markers were analyzed using RT-qPCR, immunofluorescence, and western blotting. Results: It was observed that there is an imbalance in the transcription of target genes of RNA Polymerase III. Differential expression profiles were found, and the differentially expressed genes (DEGs) were identified in each dataset, with 204 genes in common between the WRS phenotype and 147 genes compared to the KO condition. Functional enrichment analysis showed multiple overrepresented categories, including the PI3K-Akt pathway, receptor interaction with the extracellular matrix, retinol metabolism, and regulation of the inflammatory response. A greater area of immunoreactivity in nucleolar components was detected in WRS fibroblasts, while the KO group showed a reduction. At the transcriptional and translational level, there was an imbalance in different structural components, accompanied by a decrease in the synthesis of ribosomal precursors. Finally, an upregulation of cellular senescence markers P53/P21, P16/RB, and GLB1 was found. **Conclusion:** WRS cells undergo a process of premature cellular senescence associated with POLR3A mutations, which lead to an alteration in their transcriptional function. This results in an increase in nucleolar area, an imbalance in the production of nucleolar components, and a disruption in ribosomal biogenesis. Furthermore, the functional enrichment analysis revealed that multiple signaling pathways are compromised, including cell survival, interaction and organization of the extracellular matrix, and regulation of the inflammatory response. These findings contribute to improving our understanding of the underlying mechanisms of WRS, explaining the functional impairment of POLR3A, and resulting in the phenotype of premature aging and cellular senescence. They also broaden our understanding of the functional landscape of the RNA Polymerase III complex in various cellular components, biological processes, and molecular functions.

Keywords: Progeroid Syndrome, Cellular Senescence, Human Aging, RNA Polymerase III Subunit A, POLR3A, Nucleolus, RNA-seq

XII

Contenido

1. Introducción	18
1.1 Envejecimiento	18
1.2 Síndromes Progeroides	19
1.3 Senescencia Celular	21
2. Estado del Arte	23
2.1 Síndrome de Wiedemann-Rautenstrauch	23
2.1.1 Aspectos Genéticos y Moleculares	24
2.1.2 Características Celulares y Moleculares de POLR3A	25
2.1.3 El Nucleolo y POLR3A	27
3. Planteamiento del problema	29
4. Justificación	30
5. Objetivos	31
5.1 Objetivo General	31
5.2 Objetivos Específicos	31
6. Metodología	32
6.1 Cultivo Celular	32
6.1.1 Consideraciones éticas	32
6.1.2 Muestras biológicas y características de los individuos	32
6.1.3 Fibroblastos KO para POLR3A	32
6.1.4 Condiciones de cultivo	33
6.2 Extracción de RNA	33
6.3 RNAseq	34
6.3.1 Análisis de expresión diferencial	34
6.3.2 Análisis de enriquecimientos funcional de los genes diferencialmente	~ ^ /
expresados	34
6.4 RT-qPCR	34
6.5 Western Blot	35
6.6 INMUNOTIUORESCENCIAS	3/
6.7 Analisis Estadístico	38
7. Resultados	39
7.1 Niveles de expresión de POLR3A	39
7.2 Genes transcritos por RNA polimerasa III	41
7.3 RNA seq	42
7.3.1 Identificación de DEGs	42

XIV Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

 7.3.2 Análisis de Enriquecimiento Funcional 7.4 Análisis Nucleolar 7.4.1 Estructura Nucleolar 7.4.2 Precursores ribosomales 7.5 Expresión de Marcadores de Senescencia Central de Cartes de Cartes de Senescencia Central de Cartes de Cartes	47 55 55 55 57 91ular
8. Discusión	
9. Conclusiones y recomendaciones 9.1 Conclusiones	65
 9. Conclusiones y recomendaciones	

Lista de figuras

Pág.

Figura 1.1. Hallmarks del envejecimiento	. 19
Figura 1.2. Hallmarks de los síndromes progeroides	. 20
Figura 2.1. Fenotipo facial de 3 pacientes con 8 meses de edad diagnosticados con	
síndrome Wiedemann-Rautenstrauch	. 24
Figura 2.2. Blancos transcripcionales de la RNA Polimerasa III	. 26
Figura 2.3. Estructura y función del nucleolo	. 28
Figura 7.1. Expresión de POLR3A en fibroblastos WRS y KO	. 40
Figura 7.2. Alteración en la expresión de los genes transcritos por la RNA Polimerasa l	III
	. 41
Figura 7.3. Análisis de expresión diferencial para el conjunto de datos WRS1, WRS2 y	
КО	. 45
Figura 7.4. Análisis de expresión de genes compartidos en WRS	. 46
Figura 7.5. Mapas de redes de las subcategorías Gene Ontology (GO) enriquecidas pa	ara
el conjunto de datos WRS1, WRS2 y KO	. 51
Figura 7.6. Mapas de redes de las categorías KEGG sobrerrepresentadas para cada	
conjunto de datos	. 55
Figura 7.7. Análisis de estructura nucleolar	. 56
Figura 7.8. Desbalance en los niveles de expresión de precursores ribosomales	. 57
Figura 7.9. Análisis de expresión de marcadores de senescencia celular	. 58

Lista de tablas

Pág.

Tabla 5-1. Lista de primers empleados para la RT-qPCR	
Tabla 5-2. Anticuerpos primarios empleados para Western Blot	
Tabla 5-3. Anticuerpos secundarios empleados para Western Blot	
Tabla 5-4. Anticuerpos primarios para inmunofluorescencia	
Tabla 5-5. Anticuerpos secundarios para inmunofluorescencia	

Abreviaturas

Abreviatura	Término
WRS	Síndrome de Wiedemman-Rautenstrauch
POLR3A	Subunidad A de la RNA Polimerasa III
SASP	Fenotipo Secretor asociado a la Senescencia
HGPS	Síndrome progeroide de Hutchinson-Gilford
HDL	Leucodistrofia Hipomielinizante
NPM1	Nucleofosmina 1
POLR1A	Subunidad A de la RNA Polimerasa I
rRNA	RNA ribosomal
tRNA	RNA de transferencia
mRNA	RNA mensajero
miRNA	Micro RNA
snRNA	RNA pequeño nuclear
snoRNA	RNA pequeño nucleolar
ncRNA	RNA no codificantes
IncRNA	RNA largo no codificante
gRNA	RNA guía
FC	Componente Fibrilar
DFC	Componente Denso Fibrilar
GC	Componente Granular
DEGs	Genes diferencialmente expresados
uDEGs	Genes diferencialmente expresados al alta
dDEGs	Genes diferencialmente expresados a la baja
GFP	Proteína Verde Fluorescente
RFP	Proteína Roja Fluorescente
GO	Ontología Génica
CC	Componente Celular
BP	Proceso Biológico
MF	Función Molecular
KEGG	Enciclopedia de Genes y Genomas de Kyoto
DAVID	Base de datos para anotación, visualización y descubrimiento
	integrado
ECM	Matriz Extracelular
MMP	Metaloproteinasa de la matriz

1.Introducción

1.1 Envejecimiento

No hay unanimidad respecto a la definición del envejecimiento, pero una aproximación desde el punto de vista biológico lo considera como un proceso universal, progresivo e intrínseco en el cual se acumulan cambios perniciosos, que comprometen la fisiología del organismo, acompañado por la disminución de la fertilidad y el incremento de la mortalidad con el paso del tiempo (Kipling et al., 2004). Alrededor del envejecimiento se han planteado distintas teorías entre ellas la teoría del soma dispensable (Kirkwood & Rose, 2020), la teoría del pleiotropismo antagónico (Austad & Hoffman, 2018; Ungewitter & Scrable, 2009), la teoría de acumulación de mutaciones, entre otras. A partir de estas teorías se ha sugerido que los cambios asociados al envejecimiento pueden ser programados o estocásticos y también impredecibles, junto con la existencia de un conjunto articulado de mutaciones y polimorfismos que pueden tener como efecto potencial uno o varios fenotipos senescentes (Troen, 2003; Warner & Sierra, 2003).

En cuanto a la historia de la biología del envejecimiento, inicialmente se consolidó como una disciplina descriptiva que ahora ha adoptado un enfoque intervencionista y experimental, resultando en la diversificación de modelos para el estudio y manipulación del envejecimiento. Dentro de los modelos animales, se han descrito varios genes que regulan el envejecimiento y que son determinantes en la longevidad en organismos invertebrados como nemátodos, moscas y mamíferos murinos (Hsu et al., 2003; Clancy et al., 2002; Carter et al., 2002). No obstante, las conclusiones derivadas de estos estudios pueden tener una aplicación limitada a la especie humana debido a las propiedades biológicas intrínsecas de cada especie que puede variar según la proximidad filogenética. Posteriormente, se han estudiado mutaciones causantes de síndromes de envejecimiento acelerado en humanos y el desarrollo de modelos animales que recrean estas enfermedades, cuyos fenotipos han contribuido a la caracterización de tejidos y órganos para explicar los cambios durante el proceso de envejecimiento normal. Por otra parte, existen algunas entidades patológicas que han sido caracterizadas como enfermedades vinculadas con procesos de envejecimiento (Burtner & Kennedy, 2010; Harkema et al., 2016).

Sin embargo, si el envejecimiento se considera como un proceso biológico atípico, los eventos subyacentes a este proceso podrían variar entre especies (Kirkwood & Rose, 2020; Partridge & Gems, 2002; Kirkwood, 1996). En efecto, es aceptado que los cambios relacionados con la edad son un ejemplo de un fenómeno biológico donde los resultados no son programados de la selección estricta sobre los mecanismos que aseguran el éxito reproductivo temprano para los cuales no parecen conservarse los mecanismos entre las especies (Hughes et al., 2002; Ricklef, 1998). En 2013, se habían planteado las principales características que sintetizan el fenómeno del envejecimiento en nueve eventos celulares

y moleculares: inestabilidad genómica, acortamiento de los telómeros, alteraciones epigenéticas, pérdida de proteostasis, desregulación en el sensado de nutrientes, disfunción mitocondrial, senescencia celular, agotamiento de células madre y alteración en la comunicación intercelular. (Lopez-Otin et al. ,2013). Recientemente, los mismos autores actualizaron la información disponible hasta la fecha, añadiendo 3 rasgos distintivos más: macroautofagia discapacitada, inflamación crónica y disbiosis; y compilando los estudios que emplean distintos modelos y terapias dirigidas a cada hallmark (**Figura 1.1**).

Figura 1.1. Hallmarks del envejecimiento. El esquema tomado del artículo de revisión de Lopez-Otin et al. (2023), ilustra los doce hallmarks del envejecimiento clasificadas en tres categorías jerárquicas: primarias, referidos a aquellos eventos que reflejan el daño biomolecular donde se incluyen inestabilidad genómica, acortamiento de los telómeros, alteraciones epigenéticas, pérdida de proteostasis y macroautofagia discapacitada; antagonistas, los cuales reflejan una respuesta al daño, entre ellos desregulación en el sensado de nutrientes, disfunción mitocondrial y senescencia celular; e integrativos, los cuales surgen cuando el daño infligido por los primarios y los antagonistas no puede ser compensado más, y conduce al agotamiento de células madre, alteración en la comunicación intercelular, inflamación crónica y disbiosis.

1.2 Síndromes Progeroides

El establecimiento de un modelo de envejecimiento humano debe permitir el estudio directo en nuestra especie, empero, esta alternativa supone dificultades prácticas debido al carácter poligénico de muchas patologías asociadas al envejecimiento. Una opción alterna es el estudio de enfermedades genéticas humanas conocidas como síndromes progeroides, cuyos fenotipos exhiben algunas características del envejecimiento humano (Brown, 1992).

Los síndromes progeroides suelen clasificarse entre entidades unimodales, en los cuales se afectan un sistema, órgano o tejido; o segmentales, si se ven afectados un conjunto de tejidos o sistemas (Martin, 2005; Puzianwska-Kuznicka & Kuznicki, 2005). A pesar de ser condiciones propias de la especie humana, estas no resultan ser fenocopias exactas del proceso de envejecimiento normal, de forma tal que se constituyen como una herramienta para el análisis de cambios genéticos, moleculares y celulares específicos que pueden extrapolarse a los del envejecimiento normal.

Dentro de los síndromes progeroides segmentales más estudiados se encuentran el síndrome de Progeria de Hutchinson-Gilford (HGPS), síndrome de Werner, el síndrome de Cockayne, Rothmund-Thompson, Bloom, Xeroderma Pigmentosa y Tricotiodistrofia (Puzianwska-Kuznicka & Kuznicki, 2005). En los anteriores, se han descrito cambios monogenéticos específicos que influyen en la aparición de características fenotípicas senescentes en diversas etapas de la vida post-natal (Eriksson et al., 2003). De forma paralela, se han descrito patrones transversales a los síndromes progeroides en los cuales se destacan eventos moleculares tales como defectos metabólicos, inflamación, agotamiento de las células madre, entre otros procesos (Figura 1.2), que se asemejan a los patrones del envejecimiento fisiológico y se consolidan como modelos de estudio de este fenómeno biológico.

Figura 1.2. Hallmarks de los síndromes progeroides. La figura tomada de Carrero et al. (2016) muestra los 9 hallmarks comunes entre los síndromes progeroides, los cuales

recapitulan las características más notables y definen los mecanismos a nivel celular y molecular que subyacen a la patogenia de estas enfermedades.

1.3 Senescencia Celular

La senescencia celular se define como un estado de salida indefinido del ciclo celular en respuesta a diferentes tipos de estrés intra y extra celular, asociado a cambios en el fenotipo y metabolismo celular (Campisi, 1997; Campisi & Robert, 2014; Herranz & Gil, 2018). Durante este proceso ocurren varios eventos que incluyen la alteración en el comportamiento de los lisosomas (Dimri et al., 1995), la secreción de diversos factores proinflamatorios, también conocido como fenotipo secretor asociado a la senescencia (SASP) (Herranz & Gil, 2018; Ovadya & Krizhanovsky, 2014) y reacomodación del material genético en el núcleo (Romá-Mateo et al., 2019; Ellis & Shackleton, 2011).

Uno de los fenómenos asociados a la senescencia es el límite de Hayflick. Este se refiere al número limitado de doblajes poblacionales en cultivo que observó Leonard Hayflick trabajando con fibroblastos humanos, que supone la base de la denominada senescencia replicativa, y que corresponde al desgaste progresivo de los telómeros a un punto crítico que puede afectar las regiones codificantes (Hayflick, 1974; Childs et al., 2015). En concatenación con lo anterior, estudios adicionales con fibroblastos provenientes de biopsias humanas reportaron una relación inversamente proporcional entre el número de pases necesarios para alcanzar el límite Hayflick y la edad del donante (Allsopp et al., 1995). En otras palabras, se refiere a la relación directa entre la senescencia replicativa *in vitro* y el envejecimiento *in vivo*. No obstante, otros reportes muestran evidencia de cultivos primarios que sobrepasan el número de doblajes estimado (Mathon et al., 2001), sugiriendo la posibilidad de un proceso de crecimiento indefinido de las células que se ve limitado por las condiciones del cultivo (Sherr & DePinho, 2000).

En la actualidad, se reconoce la senescencia como un proceso dinámico, en el que participan en general dos vías moleculares principales que inducen el proceso de senescencia en respuesta a factores celulares internos y externos, controlados por los genes supresores tumorales p16/Rb y p53/p21 (Campisi & Robert, 2014). Sin embargo, existen otros cambios moleculares que son requeridos posteriormente para el mantenimiento del fenotipo senescente, muchos de los cuales continúan siendo desconocidos (Herranz & Gil, 2018). La activación de las vías de señalización reguladas por p53 y p16 conducen a un estado de arresto del crecimiento relacionado con senescencia. Por una parte, p53 conduce a incremento en la expresión de p21, inhibición de CDK2 e hipofosforilación de RB, con la posterior salida del ciclo celular. Se considera que la senescencia controlada por p53 es un proceso que puede ser reversible dependiendo del tipo de estrés y la capacidad de reparación (Childs et al., 2015). Por otra parte, la activación de p16 inhibe a CDK4 y CDK6 y se asocia a arresto del ciclo celular más duradero e irreversible al prevenir la degradación de p53. Adicionalmente, existe una mayor expresión de p16 y p21 en tejidos de organismos adultos comparado con organismos jóvenes, e in vitro el establecimiento del fenotipo senescente en fibroblastos está acompañado de la expresión de p16 (Sherr & DePinho, 2000; Ressler et al., 2006). Recientemente, la expresión de p16 es el biomarcador más aceptada para senescencia (Krishnamurthy et al., 2004).

El potencial replicativo celular en relación con la longevidad se ha asociado a la aparición de enfermedades, en particular el cáncer, que a través del estudio de este fenómeno se han encontrado mecanismos asociados al control de la senescencia que podrían contrarrestar esta desregulación del crecimiento celular (Campisi, 2005). La senescencia celular al igual que la muerte celular, son los mecanismos más importantes para el control de las divisiones celulares indiscriminadas de las células potencialmente cancerosas, pero a la vez pueden generar alteraciones que deriven en procesos patológicos. En ese sentido, surge la idea del costo que representa el uso de esos mecanismos de control que evitan el cáncer, pero inhiben el recambio celular (pérdida de células madre) requerido en la fisiología normal. Es en particular este último punto, donde se ha planteado que la capacidad de retrasar la acumulación, o incluso reducir la aparición de células senescentes, constituye una posibilidad de prevenir y tratar muchas condiciones patológicas asociadas a la senescencia (Kirkland & Tchkonia, 2017).

2. Estado del Arte

2.1 Síndrome de Wiedemann-Rautenstrauch

El síndrome de Wiedemann-Rautenstrauch o síndrome progeroide neonatal (WRS) (OMIM: 264090) es un desorden genético con herencia autosómica recesiva, que pertenece al grupo de progerias segmentales y cuya etiología es poco conocida. En 1977 se relacionaron por primera vez reportes de estos pacientes por Thomas Rautenstrauch y Friedemann donde se describían en dos hermanas características progeroides al nacimiento. Poco tiempo después, en 1979, Wiedemann reportaría en dos infantes masculinos pseudohidrocefalia y dientes natales que sugerían una entidad progeroide no reconocida previamente (Rautenstrauch & Snigula, 1977; Wiedemman, 1979). Entre las características clínicas (Figura 2.1) se incluyen baja talla y peso al nacer, facies envejecida, pseudohidrocefalia, suturas abiertas, alteración generalizada en osificación, dentición neonatal, atrofia de tejido celular subcutáneo, depósitos paradójicos de grasa en flancos y falanges, alteraciones bioquímicas particularmente disfunción endocrina como hipertrigliceridemia, hipercolesterolemia, hiperinsulinismo, entre otras (Arboleda et al., 1997; Arboleda et al., 2011; Paolacci et al., 2017). Debido a características fenotípicas relacionadas con otros síndromes progeroides, el diagnóstico suele ser errado, lo que requiere un conocimiento profundo del fenotipo. Una de las características más importantes, que es transversal a la mayoría de los pacientes, es su corta sobrevida, siendo la expectativa de supervivencia media de 7 meses. Sólo 6 casos han mostrado una mayor sobrevivencia de entre los 6 meses a los 16 años (Wiedemman, 1979; Rautenstracuh et al., 1994; Thorey et al., 2003).

En particular, los únicos dos reportes de seguimiento clínico a largo plazo de casos de WRS se ha llevado a cabo en un caso denominado paciente "G" descrito en 1977 para el cual se reportó una supervivencia de más de 16 años (Rautenstracuh et al., 1994). Así mismo, en Colombia se han reportado un par de casos con larga sobrevida que, al compararse el curso entre estos dos casos, se evidencian diferencias importantes específicamente a nivel neurológico, que muestran la variabilidad en la expresión del fenotipo (Arboleda et al., 2005).

Figura 2.1. Fenotipo facial de 3 pacientes con 8 meses de edad diagnosticados con síndrome Wiedemann-Rautenstrauch. En la figura tomada de Wiedemann (1979), se observa la similaridad de algunas características faciales en tres pacientes, los dos de la izquierda reportados por Rautenstrauch y el de la derecha por Wiedemann, los cuales presentan cráneo hidrocefaloide, cabello escaso, venas prominentes en el cuero cabelludo, orejas de implantación baja, hipoplasia de los huesos faciales, cara triangular y deficiencia generalizada de grasa subcutánea.

2.1.1 Aspectos Genéticos y Moleculares

Hasta hace poco, la etiología del WRS se mantenía desconocida. En conjunto, a partir de la colaboración de varios grupos de investigación nacionales e internacionales, se determinó que el WRS tiene un patrón de herencia autosómico recesivo, basado principalmente en datos de consanguinidad entre los padres, reportes de hermanos afectados y en la procedencia de la misma área geográfica (Wiedemann, 1937; Rautenstrauch et al., 1994; Pivnick et al., 2000; Arboleda et al., 2011; Paolacci et al., 2017).

Una de las principales características del WRS son sus alteraciones endocrinas y metabólicas. Dentro de estas, se encuentran el hiperinsulinismo, que ha sido reportado en diversos casos, que podría reflejar resistencia a la insulina que ha sido vinculada a lipodistrofia generalizada (Arboleda et al., 1997; Pivnick et al., 2000; Arboleda & Arboleda, 2005). Recientemente George y colaboradores, demostraron que mutaciones en la proteína kinasa B (AKT2) cursan con un cuadro de resistencia severa a la insulina, hiperinsulinemia y diabetes mellitus tipo 2 (George et al., 2004). Este grupo ha enfatizado la importancia de tales mutaciones en el metabolismo lipídico que se asocian con atrofia del tejido adiposo como lo demuestran en modelos de ratones AKT2 -/-.

En cuanto a la longitud de los telómeros, un estudio de un caso de WRS no evidenció diferencias significativas al compararlo con controles normales (Korniszewski et al., 2001). Recientemente se definió que la dinámica de los telómeros en cultivos primarios de

fibroblastos de un paciente con WRS, sufren acortamiento telomérico de manera similar a los controles, aunque se presenta en doblajes poblacionales más tempranos (Báez-Becerra et al., 2020). El síndrome progeroide de Hutchinson-Gilford (HGPS) es el síndrome progeroide más estudiado y caracterizado. En esta entidad, el gen LMNA, presenta mutaciones heterocigóticas de una sola base en el exón 11 que generan un sitio donante críptico de splicing, causando la deleción de 50 resiuduos de aminoácidos en la proteína codificada y la acumulación de una proteína anómala denominada progerina (Eriksson et al., 2003). El gen LMNA codifica para las proteínas lámina A y C, cuya función es importante en la arquitectura de la envoltura nuclear, en la regulación del movimiento de macromoléculas entre el citoplasma y el núcleo, en la organización de la estructura nuclear al proveer sitios de anclaje para la cromatina, entre otras (Eriksson et al., 2003). Adicionalmente, a las mutaciones en este gen que están presentes en otros síndromes, se les asocian con enfermedades que incluyen cardiomiopatías, lipodistrofias, neuropatías que, en conjunto, se han denominado laminopatías (Burke & Stewart, 2002). No obstante, un estudio de análisis de alteraciones en LMNA en dos líneas celulares de WRS obtenidas del Coriell Cell Repositories (Camden, NJ, USA) y de cuatro de pacientes colombianos, mostraron la ausencia de mutaciones en este gen (Cao & Hegele, 2003; Morales et al., 2009). A nivel celular, la envoltura nuclear de las células de pacientes con HGPS presentan graves alteraciones en la morfología nuclear como lobulaciones y herniaciones: en la interacción de lámina A con lámina B, en la estructura de la cromatina, en la función de las histonas y en la expresión génica (Scaffidi & Misteli, 2006). Sin embargo, aunque los núcleos de los fibroblastos de WRS presentan morfología normal, sin lobulaciones y son significativamente más pequeños pero no acumulan progerina (Báez-Becerra et al., 2020).

Recientemente, con el advenimiento y uso más extendido de las nuevas tecnologías de secuenciamiento del DNA, han permitido el desarrollo de estrategias para el análisis de enfermedades monogénicas. En particular, los análisis de exoma permiten el estudio del gen candidato así como las posibles mutaciones causantes de la enfermedad (Majewski et al., 2011). El exoma corresponde a la secuencia de todos los exones del genoma, i.e. aquellas regiones codificantes de proteínas. Estas regiones comprenden sólo alrededor del 1% del genoma humano (cerca de 30 millones de bases) que están distribuidas en 180.000 exones aproximadamente. Por lo tanto, la anterior metodología permite determinar el gen responsable dado que la mayoría de mutaciones causantes de enfermedades monogénicas que producen cambio de aminoácido (mutaciones *missense*), que introducen un codón de parada (mutaciones *nonsense*) o que generan inserciones y deleciones que pueden alterar el marco abierto de lectura y cambiar la secuencia de la proteína (Adams & Eng, 2018). De esta forma, se realizó un análisis de exoma a un grupo amplio de pacientes no emparentados con diagnóstico de WRS y de sus padres, lo que permitió la identificación de mutaciones en el POLR3A en el WRS (Paolacci et al., 2018).

2.1.2 Características Celulares y Moleculares de POLR3A

Las células eucariotas utilizan diversas RNA polimerasas para la transcripción de clases específicas de genes nucleares (Figura 2.2). Entre ellas las principales son RNA

polimerasa I (POLR1), que sintetiza la mayoría de RNA ribosomales (rRNA); RNA polimerasa II (POLR2), que sintetiza RNA mensajero (mRNA), RNA nucleares pequeños (snRNA) y microRNA (miRNA); y RNA polimerasa III (POLR3), que sintetiza un grupo amplio de RNAs pequeños no-codificantes (ncRNA) derivados de la regulación transcripcional de diferentes promotores, involucrados en diversos procesos celulares constitutivos como la biogénesis de ribosomas, síntesis de proteínas, procesamiento de RNA y regulación de la cromatina (Arimbasseri & Maraia, 2016). Entre estos ncRNA se incluyen todos los tRNA, rRNA 5S (involucrado en el ensamble de ribosomas), U6 RNA (parte de la maquinaria del splicing), 7SK RNA que regula la actividad de la POLR2, algunos microRNA, entre otros (Dieci et al., 2007). La POLR3 está compuesta por 17 sub-unidades con un peso molecular de 700 kDa. Dentro de estas, las subunidades POLR3A y POLR3B son las responsables de la función catalítica de la enzima, siendo la subunidad A la más grande (Han et al., 2018). El complejo proteico de POLR3 se ensambla en el citosol y es translocado al núcleo en un proceso mediado por chaperonas (Han et al., 2018).

Figura 2.2. Blancos transcripcionales de la RNA Polimerasa III. La ilustración tomada de Lieberman (2018), muestra el proceso de transcripción llevado a cabo por las tres RNA Polimerasa (I, II y III). En particular, en la derecha se observan los distintos tipos de RNAs no codificantes (ncRNA) que transcribe la RNA polimerasa III, como lo son RNAs pequeños nucleolares (snoRNAs), el RNA ribosomal 5S (5S rRNA), los RNAs de transferencia (tRNAs), RNAs pequeños nucleares (snRNAs) y algunos micro RNAs (miRNAs), regulando

en conjunto diferentes procesos celulares como la biogénesis ribosomal, el splicing y la síntesis de proteínas.

La función transcripcional de POLR3A está regulada durante los procesos celulares, como proliferación y crecimiento, por factores como la proteína Rb1, P53, MYC y MAF1 (Han et al., 2018). Se ha demostrado que la inhibición de la función de la POLR3A mediante la utilización de siRNA o inhibidores farmacológicos, genera alteraciones en la biogénesis de ribosomas, en la estabilización de la función de P53 y alteraciones en la regulación del ciclo celular (Arimbasseri & Maraia, 2016; Turowski & Tollervey, 2016). El estudio de la regulación de la función de la POLR3 ha tomado un interés especial, por un lado, debido a su potencial en la regulación del cáncer, ya que se han determinado sus efectos oncogénicos como resultado de un incremento en los niveles de expresión de tRNAMet, el tRNA que media el inicio de la traducción (Arimbasseri & Maraia, 2016). Por otro lado, diversos síndromes genéticos han sido asociados con diferentes mutaciones en el gen POLR3A relacionadas con alteraciones del desarrollo de la sustancia blanca cerebral, como dismielinización del sistema nervioso central, denominadas leucodistrofias (Bernard et al., 2011). Otros estudios, han descrito mutaciones de POLR3A en leucodistrofia con oligodoncia, síndrome 4H (hipomielinización, hipodoncia hipogonadismo е hipogonadotrópico) y síndrome de tremor-ataxia con hipomielinización (Bernard et al., 2011; Saitsu et al., 2011; Shimojima et al., 2014). La mayoría de pacientes con estos síndromes presentan mutaciones en forma de heterocigotos compuestos, y ninguno ha presentado mutaciones de pérdida de sentido de forma homocigota. Estos hallazgos sugieren que estas leucodistrofias podrían considerarse síndromes alélicos junto con el WRS, aunque poseen claras diferencias en la expresión fenotípica muy posiblemente asociado con diversos grados de disminución en la expresión de la POLR3A o con cambios genéticos adicionales no aclarados en la actualidad (Wolf et al., 2014).

2.1.3 El Nucleolo y POLR3A

Los nucleolos constituyen la principal estructura subnuclear encargada de la síntesis de ARN ribosomal (rRNA) y traducción de proteínas en las células, por lo que está ligada directamente a la homeostasis celular global (Boulon et al., 2010). Según lo anterior, la función de la POLR3A determina la adecuada función del nucleolo y la traducción de proteínas que, en síntesis, regula el estado metabólico de la célula (Tiku et al., 2018). La estructura del nucléolo se caracteriza por una organización constituida por tres regiones: un centro denominado componente fibrilar en donde ocurre la transcripción de rRNA; un componente denso fibrilar en donde ocurre el procesamiento del pre-rRNA, rica en la proteína fibrilarina y nucleolina; y por último, un componente granular en donde ocurre el ensamblaje del pre-ribosoma (Figura 2.3) (Nunes & Moretti, 2017).

Recientes hallazgos han asociado la función del nucléolo con procesos de senescencia celular y envejecimiento humano (Buchwalter & Hetzer, 2017; Tiku et al., 2018; Wang & Lemos, 2019). Respecto a lo anterior, en levaduras se ha descrito que las células jóvenes

poseen 1 u 2 nucléolos, mientras que su número y fragmentación aumentan en células envejecidas (Sinclair & Guarente, 1997).

Figura 2.3. Estructura y función del nucleolo. La imagen tomada de Boisvert et al. (2007) ilustra el modelo de biogénesis ribosomal. Este consiste principalmente en la transcripción del DNA ribosomal (rDNA) por la RNA Polimerasa I en el centro fibrilar (FC) o en el límite entre FC y la región del componente denso fibrilar (DFC). Luego, los transcritos de RNA pre-ribosomal son clivados y procesados por ribonucleoproteínas pequeñas nucleolares (snoRNPs) en el DFC. El paso final de maduración ocurre en el componente granular (GC), en el cual los RNAs ribosomales 5.8S y 28S se ensamblan con el 5S para formar la subunidad 60S, mientras que solo el 18S se ensambla para formar la subunidad 40S. Por último, las subunidades ribosomales 40S y 60S se exportan al citoplasma donde se unen a los mRNAs para formar ribosomas funcionales.

3. Planteamiento del problema

El estudio del WRS ha sido intrincado por el número limitado de casos reportados, al igual que otras enfermedades huérfanas. De manera tal que hasta la fecha sólo se conocen alrededor de 28 casos en el mundo (baja incidencia) sumado a la corta expectativa de vida de los pacientes que en promedio es de 7 meses (baja prevalencia). Aunque actualmente se sabe que el gen POLR3A presenta mutaciones que son las responsables de esta condición, no se conoce el efecto sobre los mecanismos celulares y moleculares que desencadena la senescencia y la manifestación clínica del fenotipo progeroide neonatal. Asimismo, es limitado el número de publicaciones que relacionan la función de POLR3A, entre ellas la regulación transcripcional de miRNAs, tRNA, rRNAs, la biosíntesis de ribosomas y de proteínas, con el nucleolo, el proceso de senescencia celular y el envejecimiento humano.

Por otra parte, el estudio de los síndromes progeroides se constituye como una alternativa a la dificultad en el estudio del envejecimiento humano, que no ha sido completamente resuelto por el uso de modelos animales que se alejan filogenéticamente y que posiblemente describen características exclusivas de cada especie, limitando la extrapolación de los mecanismos a la especie humana.

Por esta razón, este proyecto de investigación plantea estudiar los eventos moleculares que ocurren en un modelo celular de fibroblastos humanos derivados de pacientes de síndrome progeroide neonatal o WRS y desarrollar una línea celular *knockout* que resuelva la limitación de material biológico y potencialmente recree o asemeje la progresión de la disfunción génica de POLR3A.

4. Justificación

Con el aumento generalizado de la expectativa de vida en las poblaciones humanas a nivel mundial, se ha vuelto imprescindible conocer las bases fundamentales del proceso de envejecimiento y las enfermedades asociadas a este. Actualmente el envejecimiento es el factor de riesgo más importante para un amplio conjunto de enfermedades de importancia epidemiológica que afectan diferentes sistemas incluyendo enfermedades neurodegenerativas, cardiovasculares, cáncer, diabetes tipo II, osteoporosis, entre otras.

La identificación de mutaciones en el gen POLR3A consolida una nueva área de investigación en la biología del envejecimiento humano que ha sido poco estudiada. En consecuencia, el establecimiento de un modelo celular que permita elucidar los mecanismos celulares asociados al síndrome progeroide WRS, podrían contribuir al entendimiento de nuevas vías moleculares que eventualmente pueden constituir potenciales blancos farmacológicos para el tratamiento de enfermedades asociadas al envejecimiento. En conjunto, todos estos estudios permitirán comprender la asociación con la capacidad de supervivencia, proliferación y metabolismo celular al igual que la interrelación con la senescencia y la muerte celular, que conduce a la aparición de un fenotipo como el WRS.

Por último, también permitirá comprender mejor la relación de WRS con otros síndromes progeroides, abriendo el panorama de investigación a nuevas hipótesis fisiopatológicas del envejecimiento humano y determinar la relación celular y molecular con algunas leucodistrofias como el síndrome 4H y la ataxia espástica que también están asociados a mutaciones en POLR3A.

5.Objetivos

5.1 Objetivo General

Determinar los perfiles diferenciales de expresión génica y cambios subcelulares en el nucleolo entre fibroblastos derivados de pacientes con WRS, fibroblastos knockout de POLR3A y fibroblastos control.

5.2 Objetivos Específicos

1. Evaluar los perfiles de expresión génica diferencial entre fibroblastos derivados de pacientes WRS, fibroblastos *knock out* y fibroblastos control.

2. Determinar cambios en la morfología y número de nucléolos en fibroblastos derivados de pacientes WRS, fibroblastos *knock out* y fibroblastos control.

3. Determinar cambios en la expresión y distribución subnuclear de proteínas asociadas al nucléolo en fibroblastos derivados de pacientes WRS, fibroblastos *knock out* y fibroblastos control.

4. Analizar marcadores de senescencia celular en fibroblastos derivados de pacientes WRS, fibroblastos *knock out* y fibroblastos control.

6. Metodología

6.1 Cultivo Celular

6.1.1 Consideraciones éticas

Este estudio fue aprobado por el Comité de Revisión Institucional de la Universidad Nacional de Colombia, de acuerdo con los estándares éticos establecidos por la Declaración de Helsinki (1964) y modificaciones posteriores. Todos los pacientes, o los representantes legalmente autorizados de los pacientes que no pueden dar su consentimiento por sí mismos, firmaron un consentimiento informado antes de su inclusión en el estudio.

6.1.2 Muestras biológicas y características de los individuos

Fibroblastos primarios se obtuvieron a partir de biopsias de la parte interna de la piel del antebrazo de dos pacientes femeninas con WRS: WRS1[variante monoalélica de POLR3A c.3772_3773delCT (p. Leu1258Glyfs*12)] y WRS2 [variante monoalélica de POLR3A c.3G>T (p. Met1Leu*)] descritos previamente por Paolacci, et al., 2018 y Lessel, D., et al., 2018 (individuos 07 y 11, respectivamente). Se emplearon células de control pareadas a partir de un control femenino sano de edad similar. La paciente WRS1 es una mujer de 26 años que aún vive, producto del cuarto embarazo de una pareja sana no consanguínea que ha reportado casos previos de aborto espontáneo. Al nacer, presentó características comunes al Síndrome Wiedemann-Rautenstrauch como venas prominentes en el cuero cabelludo, cara triangular, extremidades delgadas y lipodistrofia. La paciente WRS2 de 10 años es la única hija de una pareja sana no emparentada que nació a las 37 semanas de gestación. De forma similar a la anterior paciente, al nacer presentó cara triangular, ausencia de cabello, piel fina, orejas con implantación baja, microstomía y lipodistrofia. Los fibroblastos fueron obtenidos previamente y se almacenados en nitrógeno líquido hasta el momento del estudio.

6.1.3 Fibroblastos KO para POLR3A

Fibroblastos control fueron empleados para realizar el *knockout* de POLR3A. Para ello, se cotransfectaron los plásmidos POLR3A CRISPR/Cas9 KO Plasmid (h) (Santa Cruz Biotechnology, Ref. sc-406851), el cual contiene principalmente el sistema CRISPR/Cas9, 3 RNAs guías (gRNAs) de 20 nucleótidos dirigidos a POLR3A y el gen codificante para la proteína GFP como reportero; y POLR3A HDR Plasmid (h) (Santa Cruz Biotechnology, Ref. sc-406851-HDR), el cual contiene principalmente dos brazos de homología de 800 pares de bases, diseñados para unirse específicamente al DNA genómico que rodea el sitio de ruptura de doble cadena correspondiente inducido por Cas9, el gen de resistencia

a la puromicina y el gen codificante para la proteína RFP como reportero. Adicionalmente, se empleó en fibroblastos control el plásmido Control CRISPR/Cas9 Plasmid (Santa Cruz Biotechnology, sc-418922), el cual contiene el mismo sistema CRISPR/Cas9 y gen reportero GFP, pero contiene un gRNA inespecífico (off target), como control de transfección. La transfección se realizó empleando Lipofectamine™ 2000 Reagent (Invitrogen™, Ref. 11668019) en las condiciones sugeridas por el fabricante para una placa de 6 pozos. Las células se sembraron a un 80% de confluencia en medio estándar libre de antibióticos durante 24 horas. Luego, se prepararon los plásmidos en Opti-MEM™ (Gibco™, Ref. 31985088) a una concentración de 3 µg/µL y la lipofectamina en una relación 1:25 en Opti-MEM para formar los complejos DNA-lípidos en una relación 1:1. El medio se agregó a las células y se incubó durante 24 horas a 37 °C. Paso seguido, se reemplazó por medio estándar de cultivo y 48 horas post-transfección se sustituyó por medio de selección, conteniendo 5 µg/mL de puromicina, el cual se cambió cada 3 días durante un mes. Las células positivamente transfectadas fueron verificadas por microscopía de fluorescencia y posteriormente por RTqPCR, western blot e inmunofluorescencia (Anexo 1).

6.1.4 Condiciones de cultivo

Los fibroblastos primarios se cultivaron en condiciones estándar en medio DMEM (Dulbecco's Modified Eagle Medium) con 4,5 g/L de glucosa y L-glutamina 2 mM (Gibco[™], Ref. 12100046) suplementado con suero bovino fetal al 10% (Thermo Scientific, Ref. 12657) y penicilina/estreptomicina al 1% (Gibco[™], Ref. 15140122) a 37 °C en una incubadora humidificada de CO2 al 5%. El medio se cambió cada 3-4 días. El análisis celular se realizó en un número de pasajes tempranos correspondientes a 4-6.

6.2 Extracción de RNA

Se cultivaron fibroblastos de pacientes con WRS y de controles sanos en placas de Petri de 100 mm hasta una confluencia del 80%. El RNA se extrajo con el reactivo TRIzol ™ (ThermoFisher Scientific, Ref. 15596026) de acuerdo con el protocolo del fabricante. Se añadió el reactivo TRIzol ™ (300 µL) a cada placa. Posteriormente, se añadió 60 µl de cloroformo, luego las muestras se agitaron con vórtex durante 2 min hasta que se formó una emulsión. Se centrifugó a 12.000 g por 15 min a 4 °C. Se recuperó la fase acuosa en un nuevo tubo y se precipitó el RNA con 150 µL de isopropanol, incubándose durante 10 minutos a 4 °C y centrifugándose a 12.000 g por 15 min a 4 °C. El RNA se lavó dos veces con 300 µL de etanol absoluto y se centrifugó por 10 min a 12.000 g a 4 °C. Una vez descartado el sobrenadante se dejó secar al aire el precipitado obtenido durante 5 min para luego resuspender en 20 µL de agua libre de RNAsas. Se cuantificó usando un espectrofotómetro NanoDrop ™ (ThermoFisher Scientific) obteniendo concentraciones desde los 200 hasta los 3000 ng/ µL. El RNA total fue almacenado a -80°C.

6.3 RNAseq

6.3.1 Análisis de expresión diferencial

Se llevó a cabo un secuenciamiento estándar de 40 millones de lecturas con Illumina RNA-Seq con selección poliA sobre las muestras que pasaron el control de calidad (RIN>7.0 y cantidad total >1.0 µg). Las librerías de RNA-seq paired-ended se construyeron utilizando el kit de preparación de muestras TruSeq Strand mRNA LT y se secuenciaron utilizando Illumina NovaSeq 6000 (100 pb). Una vez obtenidos los datos, se realizó el control de calidad de las lecturas mediante FastQC y MultiQC. Las lecturas se mapearon respecto al transcriptoma de referencia (GRCh39) utilizando Salmon versión 1.9.0 (Patro et al, 2017). El análisis de expresión génica diferencial se realizó utilizando DESeq2 (Love et al., 2014), empleando la anotación de los genes Ensembl 103 y los parámetros estándar (estimaciones de dispersión paramétrica, estadística de Wald y corrección de pruebas múltiples de Benjamini-Hochberg). Los niveles de expresión génica de los grupos experimentales se compararon respecto a los fibroblastos control para identificar los genes expresados diferencialmente (DEGs). Entre los DEGs, se seleccionaron aquellos que cumplieran los siguientes criterios: |log2foldchange (fc)| \geq 1y valor P ajustado <0,05 en comparación con los fibroblastos control.

6.3.2 Análisis de enriquecimientos funcional de los genes diferencialmente expresados

A partir de los DEGs se empleó ClusterProfiler para analizar y visualizar perfiles funcionales de genes y clusters de genes (GO [Gene Ontology] y KEGG [Kyoto Encyclopedia of Genes and Genomes]) (Wu et al., 2021). Posteriormente, se determinaron los genes diferencialmente expresados compartidos en el conjunto de datos de los fibroblastos de ambos pacientes y se realizó el enriquecimiento funcional utilizando la herramienta de anotación DAVID (Database for Annotation, Visualization and Integrated Discovery, (DAVID, http://david.abcc.ncifcrf.gov/) empleando como punto de exclusión valor P ajustado <0.05 (Huang et al., 2009).

6.4 RT-qPCR

Los ensayos de detección y cuantificación de mRNA se llevaron a cabo usando la transcripción reversa y amplificación en tiempo real con Luna®Universal One Step RT-qPCR kit (New England Biolabs , Ref. E3005L) de acuerdo al protocolo del fabricante. 500 ng/µL de RNA total se emplearon para cada reacción en un volumen final de 10 µL. La RT-qPCR se realizó en un CFX96 TouchTM Real-Time PCR Detection System (BioRad) con 48 ciclos. En la **Tabla 6.1**, se muestran los pares de primers usados para la detección de cada transcrito. El análisis de datos se realizó en el software CFX Manager™ (BioRad) y GraphPad™ Prism 5.0 (GraphPad Software Inc.) con el método de cuantificación relativa.

Target		Primers (5'-3')
POLR3A	Forward	AATCCAGTGAGGGCCAACCT
	Reverse	TCCCCAGTCTCGCAGCAAAA
U6 RNA	Forward	CAGCACATATACTAAAATTGGAACG
	Reverse	ACGAATTTGCGTGTCATCC
5S rRNA	Forward	GCCATACCACCCTGAACG
	Reverse	AGCCTACAGCACCCGGTATT
28S rRNA	Forward	AGAGGTAAACGGGTGGGGTC
	Reverse	GGGGTCGGGAGGAACGG
18S rRNA	Forward	GTAACCCGTTGAACCCCATT
	Reverse	CCATCCAATCGGTAGTAGCG
7SK	Forward	AGAGGACGACCATCCCCGAT
	Reverse	TGGAAGCTTGACTACCCTACGT
tRNA-Leu-CAA	Forward	CTCAAGCTTGGCTTCCTCGT
	Reverse	GAACCCACGCCTCCATTG
POLR1A	Forward	GGTGAAGCCAAAGGCAGATGTC
	Reverse	TATGATGCGGCTTCTGGCAGGT
Fibrillarin	Forward	TGGACCAGATCCACATCAAA
	Reverse	GACTAGACCATCCGGACCAA
NPM1	Forward	TGTCTATGAAGTGTTGTGGTTCC
	Reverse	TCTTGGCAATAGAACCTGGA
MDM2	Forward	GGCAGGGGAGAGTGATACAGA
	Reverse	GAAGCCAATTCTCACGAAGGG
p53	Forward	CAGCACATGACGGAGGTTGT
	Reverse	TCATCCAAATACTCCACACGC
p21	Forward	TGGAGACTCTCAGGGTCGAAA
	Reverse	AGATGGTGATGGGCTTCCC
p16	Forward	CCAACGCACCGAATAGTTACG
	Reverse	GCGCTGCCCATCATCATG
RB1	Forward	CTCTCGTCAGGCTTGAGTTTG
	Reverse	GACATCTCATCTAGGTCAACTGC
GLB1	Forward	TATACTGGCTGGCTAGATCACTG
	Reverse	GGCAAAATTGGTCCCACCTATAA
B-actin	Forward	TTCCAGCCTTCCTTCCTGGG
	Reverse	ATCTTCATTGTGCTGGGTGCC

Tabla 6.1. Lista de primers empleados para la RT-qPCR.

6.5 Western Blot

La extracción de proteínas se realizó con 50 µL de Buffer de lisis RIPA (RIPA lysis buffer Santa Cruz Biotechnology, Ref. sc-24948) con cóctel de inhibidores de proteasas cOmplete[™] Protease Inhibitor Cocktail (Roche, Ref. 4906845001) y cóctel de inhibidores de fosfatasas PhosSTOP[™] (Roche, Ref. 4906845001). Para la extracción de la proteína se incubaron las células durante 3 días con medio suplementado en placas de Petri de 10 mm. Luego, las células se rasparon en hielo a 4°C, se aplicó ultrasonido (QSonica CL-18) a una amplitud del 30% durante 10 segundos. Posteriormente, las muestras se centrifugaron a 12500 g durante 15 minutos a 4 °C durante 15 minutos en microcentrífuga (Thermo Scientific[™] Microcentriifuge Sorvall[™] Legend[™] Micro 17R). Se recuperó el sobrenadante obtenido y se cuantificó la proteína total usando el método de ácido bicinconínico (BCA) con el kit Pierce™ BCA (ThermoFisher Scientific, Ref. 23209) empleando una curva con patrones de referencia de BSA, de acuerdo a las recomendaciones del fabricante. Se realizó electroforesis en gel de poliacrilamida desnaturalizante (SDS-PAGE) usando 30 µg de proteína total de a 100 V durante 2 horas. Posterior a la electroforesis, las proteínas se transfirieron a una membrana de PVDF de 0.45 µm (Amersham HybondTM-P, Ref. GE10600023) previamente activada con metanol absoluto en el equipo de transferencia (Trans-Blot Turbo Transfer system - BioRad). La membrana se bloqueó con buffer de bloqueo (BSA al 5 % o leche sin grasa al 5 % y 0.1% Tween 20 en buffer salino Tris 1X (TTBS) pH 7,6). Todas las membranas se incubaron en anticuerpo primario (Tabla 6.2) preparado en buffer de bloqueo durante la noche a 4 °C. Paso seguido, las membranas se lavaron 3 veces durante 5 min en TTBS y después se incubaron en anticuerpo secundario (Tabla 6.3) conjugado con peroxidasa durante 2 horas a temperatura ambiente. Finalizada la incubación, se lavaron nuevamente 3 veces durante 5 min en TTBS. Las bandas de proteínas se detectaron con el kit de quimioluminiscencia Novex[™] ECL Chemiluminescent Substrate Reagent Kit (Thermo Scientific, Ref. WP20005) en un fotodocumentador ChemiDocTM Imaging Systems con Image LabTM Software (BioRad, EE. UU.). El análisis densitométrico se realizó con el mismo software y todas las muestras se normalizaron con respecto a las bandas de beta actina.

Anticuerpo	Referencia	Concentración	Host
POLR3A	NBP1-83204(Novusbio)	1:1000	Rabbit
RP194 (C-1)	sc-48385 (Santa Cruz Biotechnology)	1:1000	Mouse
Fibrillarin	2639S (Cell Signaling)	1:1000	Rabbit
(C13C3)			
Nucleophosmin	ab31319 (Abcam)	1:1000	Goat
B-actin-HRP	A3854 (Sigma-Aldrich)	1:2000	Mouse

Tabla 6.2 Antiquer	nns	nrimarios	empleados	nara	Western	Blot
Tabla 0.2. Anticuer	pus	primarios	empleauos	para	Western	DIUL.

Tabla 6.3. Anticuerpos secundarios empleados para Western Blot.

Anticuerpo	Referencia	Concentración	Host
Goat anti-rabbit IgG-HRP	sc-2004 (Santa Cruz Biotechnology)	1:2000	Goat
Goat anti-mouse IgG-HRP	sc-2008 (Santa Cruz Biotechnology)	1:2000	Goat

mouse anti-goat	sc-2354 (Santa Cruz Biotechnology)	1:2000	Rabbit
IgG-HRP			

6.6 Inmunofluorescencias

Los fibroblastos se sembraron en placas de 12 pozos que contenían cubreobjetos pretratados con polilisina al 0.1% y fueron cultivados hasta alcanzar el 70 % de confluencia. Las células se fijaron con paraformaldehído al 4 % con sacarosa al 4 % en PBS 1X a temperatura ambiente durante 15 minutos. Luego de la fijación, las células se permeabilizaron con Triton X-100 al 0,1 % en PBS durante 15 min y se lavaron tres veces con PBS 1X. Paso seguido, se bloquearon con buffer de bloqueo (0,5 % SFB, 0,1 % BSA en TTBS) durante una 1 hora a temperatura ambiente. Después del bloqueo, las células se incubaron con los anticuerpos primarios correspondientes (Tabla 6.4) durante la noche a 4 °C en buffer de bloqueo. Se lavaron con PBS 1X tres veces. Posteriormente, se incubaron los cubreobjetos durante 2 horas con los anticuerpos secundarios (Tabla 6.5). Faloidina conjugada con Alexa Fluor™ 488, se empleó para marcar el citoesqueleto y 1.5 µg/mL de DAPI (Santa Cruz Biotechnology, Ref. sc-3598) fue usado para marcar los núcleos. Finalmente, los cubreobjetos se montaron en un portaobjetos con medio de montaje (70 % de glicerol en PBS 1X) y se sellaron con esmalte de uñas incoloro. Las muestras se almacenaron a 4 °C hasta su posterior análisis. Las imágenes se tomaron con un microscopio de fluorescencia Nikon Eclipse C1 Plus Ti (Tokio, Japón) con una magnitud de amplificación de 40X. La cuantificación de las imágenes se realizó con el software ImageJ (NIH, EE. UU.).

Anticuerpo	Referencia	Concentración	Host
POLR3A	NBP1-83204(Novusbio)	1:500	Rabbit
Fibrillarin (C13C3)	2639S (Cell Signaling)	1:400	Rabbit
Nucleophosmin	ab31319 (Abcam)	1:200	Goat

Tabla 6.4. Anticuerpos primarios para inmunofluorescencia

Tabla (6.5.	Anticuerpo	s secundarios	para inm	unofluores	scencia

Anticuerpo	Referencia	Concentración	Host
Goat anti-Rabbit IgG Alexa Fluor ™ 488	A11008 (Invitrogen™)	1:1000	Goat
Goat anti-Rabbit IgG Alexa Fluor™ 568	A11004 (Invitrogen™)	1:1000	Goat
Donkey Anti-Goat IgG H&L Alexa Fluor® 405	ab175664 (Abcam)	1:1000	Rabbit
Alexa Fluor™ 488	A12379 (Invitrogen™)	1:1000	Death
Phalloidin			сар

6.7 Análisis Estadístico

Todos los valores se presentan como la media \pm el error estándar de la media (SEM). La significancia estadística entre los grupos se determinó mediante ANOVA de una vía para distribuciones normales con corrección post-hoc con test de Bonferroni y pruebas U de Mann-Whitney para distribuciones no normales (PRISM 9 GraphPad, San Diego, CA, EE. UU.). Se consideraron diferencias estadísticamente significativas cuando el valor p < 0,05.

7.Resultados

7.1 Niveles de expresión de POLR3A

La cotransfección de los plásmidos POLR3A CRISPR/Cas9 KO Plasmid (h) y POLR3A HDR Plasmid se verificaron cualitativamente a través de la detección por microscopía de fluorescencia de las proteínas GFP y RFP en el grupo knockout de POLR3A (KO), así como del plásmido Control CRISPR/Cas9 Plasmid (gRNA Control) por la detección de GFP **(Anexo 1 A).** Luego, se analizaron los niveles de expresión de POLR3A cuantitativamente a nivel de expresión de mRNA por RTqPCR (**Anexo 1 B)** y a nivel de proteína por western blot e inmunofluorescencia (**Anexo 1 C-E)**. En primer lugar, se determinó que la expresión en los niveles de POLR3A, tanto a nivel de mRNA como a nivel de proteína, en los fibroblastos transfectados con el plásmido control no se ven afectados respecto al control. En segundo lugar, se validó la expresión nula para POLR3A en los fibroblastos KO con el sistema CRISPR/Cas9. Posteriormente, los niveles de POLR3A fueron evaluados entre los fibroblastos control, los fibroblastos de los pacientes (WRS1 y WRS2) y los fibroblastos knockout para POLR3A (KO).

Figura 7.1. Expresión de POLR3A en fibroblastos WRS y KO. A) Cuantificación de la expresión génica de POLR3A por RTqPCR. B) Análisis de expresión de la proteína codificada por el gen POLR3A por western blot. C) Inmunofluorescencia de la subunidad A de la RNA polimerasa III. D) Cuantificación del área de inmunorreactividad normalizada de la subunidad A de la RNA polimerasa III. (p<0.05*, p<0.01***, p<0,001***, p<0,0001****). En azul se muestran teñidos los núcleos con DAPI; en verde se muestra el citoesqueleto, detectado con Alexa Fluor™ 488 Phalloidin, toxina fúngica que tiene alta afinidad por la F-actina; en rojo se muestra POLR3A. En los recuadros se muestra una ampliación del patrón de expresión nuclear y citoplásmatico para los fibroblastos WRS.

Se encontraron que los niveles de POLR3A a nivel de mRNA, dirigido a la detección de la forma silvestre (WT), son ligeramente más altos en WRS2 respecto al control, aunque no hay diferencias significativas respecto a WRS1; los niveles para el grupo KO son significativamente inferiores respecto al control y a los pacientes WRS (p<0.0001) (Figura 7.1 A). En la Figura 7.1 B, se muestra la detección de los niveles de proteína de POLR3A por western blot, normalizados respecto a los niveles de β -actin. Se encontró una ligera reducción en los niveles de POLR3A en WRS2 respecto a WRS1 (p<0.05) pero sin diferencias significativas respecto al control; para el grupo KO se observa el mismo patrón de reducción en la expresión comparado con los otros grupos. En la Figura 7.1 C, se determinó la expresión a nivel espacial de la subunidad A de la Polimerasa III (rojo) en los fibroblastos a partir del co-marcaje de los núcleos con DAPI (azul) y el citoplasma con Phalloidin (verde). Se encontró que los niveles de área inmunorreactiva para WRS1 y WRS2 fueron significativamente mayores respecto al control (p<0.0001) mientras que para

los fibroblastos KO fueron indetectables (p<0.001) (Figura 7.1 D). En los fibroblastos control se observa que el marcaje de POLR3A es predominantemente nuclear a diferencia de los fibroblastos WRS que tienen un patrón mayormente citoplasmático (Figura 7.1, C).

7.2 Genes transcritos por RNA polimerasa III

Luego de haber analizado los cambios en la expresión y en la localización general de POLR3A, se evaluó la potencial afectación funcional del complejo RNA polimerasa III mediante la expresión de algunos de sus transcritos constitutivos para los tres promotores que reconoce en conjunto con otros factores de transcripción. La RNA polimerasa III transcribe una gran variedad de RNAs no codificantes (ncRNAs) según los tres tipos de promotores que contengan los genes diana. Se emplearon el RNA ribosomal 5S (5S rRNA) para el promotor tipo I, el isoaceptor RNA de transferencia para leucina CAA (tRNA-Leu) para el promotor tipo II, y el RNA regulador de la transcripción 7SK, para el promotor tipo III mediante análisis de expresión por RT-qPCR.

Figura 7.2. Alteración en la expresión de los genes transcritos por la RNA Polimerasa III. Cuantificación de los transcritos por RTqPCR de A) 5S rRNA, B) tRNA-Leucina CAA y C) 7SK RNA. Los datos se normalizaron respecto al gen constitutivo β -actin. (p<0.05*, p< 0.01**, p<0.001***, p<0.0001***).

En la **Figura 7.2 A**, se ilustran los niveles de expresión relacionados con el promotor tipo I, donde se observa que tanto los fibroblastos WRS como los fibroblastos KO tienen una reducción significativa en los niveles de 5S rRNA respecto al control (p<0.01 y p<0.001). Para el promotor tipo II, se encontró que la expresión del isoaceptor de Leucina CAA para los fibroblastos WRS está aumentada alrededor del doble de veces respecto al control (p<0.0001), mientras que para los fibroblastos KO está disminuido alrededor de la mitad de la expresión respecto al control (p<0.001) (Figura 7.2 B). Por último, en la Figura 7.2 C, se muestran los resultados para el promotor tipo III, donde se puede ver que no hay

diferencias significativas en los niveles de expresión de 7SK RNA en los fibroblastos KO respecto al control, aunque hay una reducción considerable. Por otra parte, en los fibroblastos WRS se encontró el mismo patrón de sobreexpresión como aquellos transcritos regulados por el promotor tipo II respecto al control, llegándose a detectar hasta alrededor de tres veces la expresión de los fibroblastos control (p<0.01 y p<0,001).

7.3 RNA seq

7.3.1 Identificación de DEGs

Los datos de conteos de expresión de mRNA de los fibroblastos de pacientes WRS, KO y control fueron empleados para analizar e identificar los DEGs usando como criterios valor P ajustado < 0.05 y |log2foldchange (fc)| \geq 1. En cuanto a los perfiles de expresión de los fibroblastos WRS comparado con el control, fueron identificados un total de 592 DEGs del conjunto de datos de WRS1, de los cuales 355 fueron regulados al alta (upregulated Differential Expressed Genes (uDEGs)) y 237 regulados a la baja (downregulated Differential Expressed Genes (dDEGs)) (**Figura 7.3 A y B**). Para el conjunto de datos WRS2, un total de 984 DEGs fueron encontrados del análisis, los cuales consisten en 630 uDEGs y 354 dDEGs comparado con el control (**Figura 7.3 C y D**). Por otra parte, en la **Figura 7.3 E y F**, se ilustran 13927 DEGs que comprendían 4071 regulados al alta y 9856 regulados a la baja para el conjunto de datos KO.

Figura 7.3. Análisis de expresión diferencial para el conjunto de datos WRS1, WRS2 y KO. A) Volcano Plot del conjunto de datos WRS1 donde se muestran 592 DEGs (puntos rojos), de los cuales 355 estaban regulados al alta (log2FoldChange cuadrante positivo) y 237 regulados a la baja (log2FoldChange cuadrante negativo). B) Heatmap de los perfiles transcripcionales de los DEGs para el conjunto de datos WRS1(Log2FoldChange entre -2 y 2, donde genes regulados a la baja se muestran en escala de color azul y genes regulados al alta se muestran en escala de color rojo). C) Volcano Plot del conjunto de datos WRS2 donde se identifican 984 DEGs, que comprenden 630 uDEGs y 354 dDEGs. D)Heatmap de los perfiles transcripcionales de los DEGs para el conjunto de datos WRS2. E) Volcano Plot del conjunto de datos KO donde se muestran 13927 DEGs, de los cuales 4071 son uDEGs y 9856 son dDEGs. F) Heatmap de los perfiles transcripcionales de los DEGs = downregulated differentially expressed genes, uDEGs = upregulated differentially expressed genes.

Adicionalmente, se determinaron 147 genes diferencialmente expresados compartidos entre las tres condiciones (Figura 7.4 A). En cuanto al conjunto de datos WRS1-WRS2, 204 DEGs se encontraron en común presentando un patrón de expresión similar en las dos condiciones, con genes mayoritariamente regulados al alta (Figura 7.4 B), y 57 exclusivos de la condición WRS con relación al grupo KO. Respecto a la intersección entre WRS1-KO y WRS2-KO, 453 y 660 DEGs respectivamente, fueron encontrados en común, siendo 306 exclusivos entre WRS1-KO y 513 entre WRS2-KO, con un patrón de expresión predominantemente a la baja en el grupo KO (Figura 7.4 B).

En la **Tabla 7.1**, se muestran los diez genes con mayor significancia estadística (padj) para los genes diferencialmente expresados compartidos en las tres condiciones con sus respectivos valores de expresión (log2FoldChange). Se puede observar una mayor tendencia de regulación al alta de los genes y la mayoría de los perfiles de expresión para cada gen son directamente proporcionales en las 3 condiciones. Adicionalmente, en la columna Gene Biotype se puede identificar que la mayoría de los genes son codificantes

para proteínas, aunque también hay otro tipo de genes no codificantes como pseudogenes, procesados y no procesados, así como RNAs largos no codificantes (IncRNA).

Tabla 7.1. Top 10 de los genes diferencialmente expresados compartidos en las tres condiciones. El identificador (Gene Name) y la descripción de los genes (Description) se incluyen en la tabla. Los DEGs están ordenados según el valor p ajustado (padj) por pruebas múltiples (corrección FDR).

Gene Name	log2FoldChange WRS1	padj WRS1	log2FoldChange WRS2	padj WRS2	log2FoldChange KO	padj KO	Description	Gene Biotype
AC243919.1	4,9284	3,5557,E-55	5,9771	2,2829,E-39	6,1903	1,6252,E-33	ribosomal protein L9 pseudogene 9	transcribed processed pseudogene
SMN2	-6,3147	2,7552,E-37	-1,3477	1,7646,E-06	-11,1430	5,8943,E-19	survival of motor neuron 2, centromeric	protein coding
EPDR1	5,1372	6,3416,E-37	6,9236	5,4990,E-86	5,4452	4,3552,E-37	ependymin related 1	protein coding
IL20RB	4,5411	6,3416,E-37	5,3474	1,4239,E-38	-6,2047	1,8624,E-05	interleukin 20 receptor subunit beta	protein coding
LMO7-AS1	-3,8731	4,1228,E-27	-3,2708	1,0241,E-08	-9,5279	1,3366,E-13	LMO7 antisense RNA 1	IncRNA
VCAM1	3,7900	5,2135,E-25	2,6048	2,3900,E-11	-3,8112	5,3781,E-03	vascular cell adhesion molecule 1	protein coding
GSTM1	9,5348	5,3710,E-24	9,4180	3,0657,E-21	7,0272	7,4131,E-11	glutathione S-transferase mu 1	protein coding
EDIL3	-3,3267	5,9965,E-21	-1,8269	1,0020,E-02	-1,1703	2,1412,E-03	EGF like repeats and discoidin domains 3	protein coding
PLPP2	4,9082	8,3264,E-20	5,6186	6,9056,E-19	-5,1784	3,1676,E-03	phospholipid phosphatase 2	protein coding
PSG4	-4,9872	9,4583,E-20	-2,1508	4,1543,E-05	-12,7080	5,3541,E-22	pregnancy specific beta-1-glycoprotein 4	protein coding
PSG4	-4,9872	9,4583,E-20	-2,1508	4,1543,E-05	-12,7080	5,3541,E-22	pregnancy specific beta-1-glycoprotein 4	protein coding

7.3.2 Análisis de Enriquecimiento Funcional

Enriquecimiento GO

Para conocer el significado biológico asociado al patrón de expresión masivo de los transcritos, se llevó a cabo un análisis de enriquecimiento funcional. En primer lugar, se hizo uso de la base de datos de Gene Ontology (GO) haciendo distinción de las tres categorías principales: componente celular (CC), proceso biológico (BP) y función molecular (MF).

En la **Figura 7.5** se muestran las redes de expresión de algunas de estos términos enriquecidos, donde se observa que el tamaño del nodo central varía según el número de DEGs que participan y conectado a este se muestran los genes con su respectivo perfil de expresión génica según el color indicado por la barra de fold change. Para el conjunto de datos WRS1 (Anexo 2) se encontraron 15 términos de CC como matriz extracelular, complejo de integrina, pericarion, complejo receptor de señalización de la membrana plasmática y complejo de transportador transmembrana; 301 términos para BP como morfogénesis embriónica, organización de la matriz extracelular, homeostasis de iones metálicos y regulación positiva de la producción de citoquinas; y 38 términos para MF como unión a iones de calcio, actividad de factores de crecimiento y actividad metalopeptidasa (Figura 7.5 A, B y C, respectivamente).

Para el conjunto de datos WRS2 (Anexo 3) se obtuvieron para CC 61 términos como cromosoma condensado, matriz extracelular, fibra polimérica del citoesqueleto, complejo receptor y huso mitótico; para BP 382 términos como homeostasis celular del ion calcio, morfogénesis embriónica, organización de los microtúbulos del citoesqueleto, división nuclear, fisión de organelos y regulación positiva de la cascada MAPK; y para MF 21 términos como unión a iones de calcio, actividad citoquina, actividad de factores de

crecimiento, unión a microtúbulos y actividad inhibidora peptidasa (Figura 7.5 D, E y F, respectivamente).

Por otro lado, para el conjunto de datos KO (**Anexo 4**), se identificaron 61 términos CC, en las que se resaltan centro fibrilar, cuerpo nuclear, peroxisoma y cadena respiratoria; 54 términos BP como envejecimiento, organización de la cromatina, reparación del DNA, organización de la matriz extracelular y regulación positiva de la actividad del factor de transcripción NF-kappa β ; y 21 términos MF de las cuales se ilustran constituyente estructural de la matriz extracelular, actividad NADH deshidrogenasa (ubiquinona), unión a DNA específica de secuencia de la región reguladora de la RNA polimerasa II, unión a tRNA y actividad transferasa de proteína-ubiquitina (Figura 7.5 G, H y I, respectivamente).

size 30

fold

Figura 7.5. Mapas de redes de las subcategorías Gene Ontology (GO) enriquecidas para el conjunto de datos WRS1, WRS2 y KO. Términos representativos de ontología génica para el conjunto de datos WRS1 de los 15 obtenidos para (A) componente celular (CC), 301 para (B) proceso biológico (BP) y 38 para (C) función molecular (MF). Términos representativos de ontología génica para el conjunto de datos WRS2 de los 61 obtenidos para (D) CC, 382 para (E) BP y 21 (F) para MF. Términos representativos de ontología génica para el conjunto de datos KO de los 61 para (G) CC, 54 para (H) BP y 21 para (I) MF.

Enriquecimiento KEGG

Se empleó la base de datos KEGG para comprender las vías de señalización y procesos biológicos en los cuales participan los genes obtenidos. Para el conjunto de datos WRS1 se obtuvieron 10 términos estadísticamente significativos **(Tabla 7.2)**, entre los cuales se ilustran en los mapas de redes los términos con altos conteos como las vías de señalización PI3K-Akt y Rap1, la interacción matriz extracelular-receptor, el metabolismo del retinol, respuesta inflamatoria entre otras vías asociadas a enfermedades como cardiomiopatía arritmogénica ventricular derecha, artritis reumatoide **(Figura 7.6 A)**.

Tabla 7.2. Términos KEGG enriquecidos para el conjunto de datos WRS1. El identificador de la categoría KEGG (ID) y la descripción (Description) de la vía o término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes dentro de la distribución que están anotados en relación al conjunto de genes de interés. p.adjust se refiere al valor p ajustado

por pruebas múltiples (corrección FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

ID	Description	GeneRatio	BgRatio	p.adjust	Count
hsa04151	PI3K-Akt signaling pathway	20/207	273/5930	3,5412,E-02	20
hsa04015	Rap1 signaling pathway	15/207	176/5930	3,5412,E-02	15
hsa04080	Neuroactive ligand-receptor interaction	15/207	144/5930	1,1684,E-02	15
hsa05412	Arrhythmogenic right ventricular cardiomyopathy	10/207	59/5930	7,7549,E-03	10
hsa05323	Rheumatoid arthritis	10/207	74/5930	1,4037,E-02	10
hsa04512	ECM-receptor interaction	9/207	68/5930	2,2638,E-02	9
hsa05146	Amoebiasis	9/207	75/5930	3,5412,E-02	9
hsa05134	Legionellosis	8/207	51/5930	1,7153,E-02	8
hsa05144	Malaria	7/207	34/5930	1,1684,E-02	7
hsa00830	Retinol metabolism	5/207	25/5930	3,7797,E-02	5

Para WRS2, se determinaron 9 términos estadísticamente significativos (Tabla 7.3) dentro de los cuales se encuentran los términos con mayor número de conteos como vía de señalización PI3K-Akt, interacción citoquina-receptor de citoquina, interacción receptormatriz extracelular, moléculas de adhesión celular, entre otras categorías relacionadas con el metabolismo del ácido araquidónico, el metabolismo del retinol y la biosíntesis de Oglicanos tipo mucina (Figura 7.6 B).

Tabla 7.3. Términos KEGG enriquecidos para el conjunto de datos WRS2. El identificador de la categoría KEGG (ID) y la descripción (Description) de la vía o término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes dentro de la distribución que están anotados en relación al conjunto de genes de interés. p.adjust se refiere al valor p ajustado por pruebas múltiples (corrección FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

ID	Description	GeneRatio	BgRatio	p.adjust	Count
hsa04151	PI3K-Akt signaling pathway	31/345	286/6077	2,3457,E-02	31
hsa04060	Cytokine-cytokine receptor interaction	23/345	180/6077	1,7822,E-02	23
hsa04514	Cell adhesion molecules	15/345	106/6077	2,7972,E-02	15
hsa04512	ECM-receptor interaction	12/345	71/6077	2,7972,E-02	12
hsa00590	Arachidonic acid metabolism	10/345	35/6077	4,3788,E-03	10
hsa04610	Complement and coagulation cascades	10/345	54/6077	2,7972,E-02	10
hsa00512	Mucin type O-glycan biosynthesis	8/345	28/6077	1,5878,E-02	8
hsa04913	Ovarian steroidogenesis	8/345	37/6077	2,7972,E-02	8
hsa00830	Retinol metabolism	7/345	28/6077	2,7972,E-02	7

Finalmente, para el conjunto de datos KO, se identificaron 37 términos representativas **(Tabla 7.4)**, entre los cuales se ilustran en el mapa de redes: autofagia, senescencia celular, carcinogénesis química-especies reactivas de oxígeno, fosforilación oxidativa y vía de señalización MAPK **(Figura 7.6 C)**. Asimismo, también se encontraron términos como vías de neurodegeneración en múltiples enfermedades, vía de señalización TNF, vía de señalización del receptor similar a NOD, proteoglicanos en cáncer, infecciones virales,

adhesión focal, metabolismo de nucleótidos, resistencia al inhibidor de la tirosina quinasa del EGFR, entre otros términos relacionados con diversas condiciones patológicas.

Tabla 7.4. Términos KEGG enriquecidos para el conjunto de datos KO. El identificador de la categoría KEGG (ID) y la descripción (Description) de la vía o término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes dentro de la distribución que están anotados en relación al conjunto de genes de interés. p.adjust se refiere al valor p ajustado por pruebas múltiples (corrección FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

ID	Description	GeneRatio	BgRatio	p.adjust	Count
hsa05168	Herpes simplex virus 1 infection	379/3932	495/8156	1,9644,E-37	379
hsa05022	Pathways of neurodegeneration - multiple diseases	268/3932	476/8156	4,7097,E-03	268
hsa05010	Alzheimer disease	214/3932	384/8156	2,5532,E-02	214
hsa05165	Human papillomavirus infection	191/3932	331/8156	7,3261,E-03	191
hsa04010	MAPK signaling pathway	179/3932	294/8156	8,2009,E-04	179
hsa05012	Parkinson disease	150/3932	266/8156	4,7977,E-02	150
hsa04714	Thermogenesis	141/3932	232/8156	4,2166,E-03	141
hsa05208	Chemical carcinogenesis - reactive oxygen species	140/3932	223/8156	8,2009,E-04	140
hsa05415	Diabetic cardiomyopathy	133/3932	203/8156	1,2977,E-04	133
hsa05166	Human T-cell leukemia virus 1 infection	131/3932	222/8156	1,6311,E-02	131
hsa05205	Proteoglycans in cancer	125/3932	205/8156	4,7097,E-03	125
hsa04510	Focal adhesion	123/3932	201/8156	4,7097,E-03	123
hsa05225	Hepatocellular carcinoma	109/3932	168/8156	9,3377,E-04	109
hsa04360	Axon guidance	108/3932	182/8156	2,7162,E-02	108
hsa04621	NOD-like receptor signaling pathway	108/3932	184/8156	3,5885,E-02	108
hsa04932	Non-alcoholic fatty liver disease	98/3932	155/8156	4,7097,E-03	98
hsa04218	Cellular senescence	93/3932	156/8156	3,6713,E-02	93
hsa04261	Adrenergic signaling in cardiomyocytes	90/3932	150/8156	3,5885,E-02	90
hsa00190	Oxidative phosphorylation	87/3932	134/8156	4,3048,E-03	87
hsa04120	Ubiquitin mediated proteolysis	87/3932	142/8156	2,4349,E-02	87
hsa04210	Apoptosis	86/3932	136/8156	8,4734,E-03	86
hsa04140	Autophagy - animal	86/3932	141/8156	2,7162,E-02	86
hsa05418	Fluid shear stress and atherosclerosis	84/3932	139/8156	3,5885,E-02	84
hsa04668	TNF signaling pathway	73/3932	112/8156	7,3948,E-03	73
hsa05145	Toxoplasmosis	69/3932	112/8156	4,3046,E-02	69
hsa04933	AGE-RAGE signaling pathway in diabetic complications	68/3932	100/8156	4,2166,E-03	68
hsa05414	Dilated cardiomyopathy	65/3932	96/8156	4,7097,E-03	65
hsa05410	Hypertrophic cardiomyopathy	60/3932	90/8156	9,9769,E-03	60
hsa05210	Colorectal cancer	58/3932	86/8156	8,4734,E-03	58
hsa01232	Nucleotide metabolism	55/3932	85/8156	3,2956,E-02	55
hsa05412	Arrhythmogenic right ventricular cardiomyopathy	54/3932	77/8156	4,7097,E-03	54
hsa04146	Peroxisome	53/3932	82/8156	3,5885,E-02	53
hsa01521	EGFR tyrosine kinase inhibitor resistance	52/3932	79/8156	2,7162,E-02	52
hsa05133	Pertussis	49/3932	76/8156	4,9277,E-02	49
hsa01212	Fatty acid metabolism	40/3932	57/8156	2,0899,E-02	40
hsa05134	Legionellosis	39/3932	57/8156	3,5885,E-02	39
hsa00280	Valine, leucine and isoleucine degradation	37/3932	48/8156	4,3048,E-03	37
hsa03410	Base excision repair	26/3932	33/8156	1,6659,E-02	26
hsa00630	Glyoxylate and dicarboxylate metabolism	24/3932	30/8156	1,9147,E-02	24
hsa00100	Steroid biosynthesis	17/3932	20/8156	3,5885,E-02	17

Figura 7.6. Mapas de redes de las categorías KEGG sobrerrepresentadas para cada conjunto de datos. Términos KEGG representativos de los 10, 9 y 37 estadísticamente significativos obtenidos para el conjunto de datos (A) WRS1, (B) WRS2 y (C) KO, respectivamente.

7.4 Análisis Nucleolar

7.4.1 Estructura Nucleolar

Para evaluar el estatus del nucleolo, se analizó la expresión de las proteínas estructurales del nucleolo que se localizan en las diferentes subcapas por RTqPCR y Western Blot; asimismo, se evaluó la morfología e integridad de los nucleolos para cada grupo a través del análisis por inmunofluorescencia.

Figura 7.7. Análisis de estructura nucleolar. Cuantificación de la expresión génica de los transcritos de: (A) POLR1A, (B) Fibrillarin y (C) NPM1 por RTqPCR. (D) Análisis de expresión por western blot de las proteínas nucleolares y cuantificación para (E) POLR1A, (F) Fibrillarin y (G) NPM1. (H) Inmunofluorescencia de las proteínas Fibrillarin y NPM1. (I) Cuantificación del área de inmunoreactividad normalizada de las proteínas nucleolares. (p<0.05*, p< 0.01**, p<0,001***, p<0,0001****).

En la **Figura 7.7 (A, B y C)**, se muestran los niveles de expresión de los transcritos para la subunidad A de la RNA Polimerasa I (POLR1A), fibrilarina (Fibrillarin) y nucleofosmina (NPM1), respectivamente. Con relación al grupo control, se observa que el grupo WRS1 tiene un aumento significativo (p<0.05) en la expresión de POLR1A (**Figura 7.7 A**); el grupo WRS2 tiene un leve incremento en POLR1A que no es estadísticamente significativo y el grupo KO tiene una regulación negativa (p<0.001). En (B) se observa que los niveles de fibrilarina están regulados al alta significativamente para los fibroblastos WRS (p<0.05), mientras que no hay diferencias significativas en los fibroblastos KO respecto al control. En (C) se muestra que los niveles de nucleofosmina para los grupos WRS son invariables, pero para el grupo KO están significativamente reducidos (p<0.001).

Adicionalmente se determinó por western blot la cuantificación en los niveles de las respectivas proteínas nucleolares (Figura 7.7 D-G). Se identificó que en las células WRS1 los niveles tanto de POLR1A como de fibrilarina, están sobre-expresados respecto al control, pero los de nucleofosmina están disminuidos (Figura 7.7 E-G). Para el grupo WRS2 y KO, se encontró un patrón similar de expresión de regulación a la baja para las tres proteínas nucleolares (Figura 7.7 E-G).

Con el objetivo de visualizar la estructura nucleolar se cuantificó el área de inmunorreactividad normalizada respecto al control, de las proteínas fibrilarina y nucleofosmina (Figura 7.7 H-I). En cuanto, a los niveles de fibrilarina, que se distribuyen en el componente denso fibrilar del nucleolo, se encontró que para WRS1 el área de inmunomarcaje es significativamente mayor respecto al control (p<0,0001) y está ampliamente distribuida por el núcleo. De forma similar, el grupo WRS2 presenta mayores niveles de inmunomarcaje (p<0,05) mientras que el grupo KO exhibe menores niveles de distribución nuclear (p<0,05) (Figura 7.7 I). Los niveles de nucleofosmina, que se son un marcador del componente granular del nucleolo, muestran un área inmunorreactiva significativamente mayor (p<0,001) para los fibroblastos de los pacientes WRS, mientras que en el grupo KO el área está significativamente reducida (p<0,05).

7.4.2 Precursores ribosomales

Teniendo en cuenta que las mutaciones en POLR3A y/o su ausencia podrían afectar diferencialmente la cantidad relativa de los transcritos ribosomales 18S y 28S que son sintetizados y procesados en el nucleolo, en la Figura 7.8, se muestra la cuantificación de los datos obtenidos por RTqPCR para estos precursores ribosomales. Por un lado, los niveles de 18S detectados fueron significativamente menores para los grupos WRS2 y KO comparados con el control (p<0.001) (Figura 7.8 A); mientras que los niveles de expresión para 28S fueron similares en los grupos WRS, con una detección significativamente menor respecto al control (p<0.0001), mientras que el grupo KO no presenta cambios significativos (Figura 7.8 B).

Figura 7.8. Desbalance en los niveles de expresión de precursores ribosomales. Cuantificación de los transcritos por RTqPCR de (A) 18S rRNA y (B) 28S. Los datos se normalizaron respecto al gen constitutivo β -actin. (p<0.05*, p< 0.01**, p<0.001***, p<0.001****).

7.5 Expresión de Marcadores de Senescencia Celular

A lo largo del estudio de la senescencia celular se han determinado un amplio conjunto de marcadores clásicos de senescencia celular que están vinculados principalmente con la regulación del ciclo celular y otros con la alteración del metabolismo, como el incremento de la actividad lisosomal. En ese sentido, se evaluó la expresión a nivel de mRNA de algunos marcadores clásicos de senescencia celular a través de RTqPCR (Figura 7.9 A-F).

Figura 7.9. Análisis de expresión de marcadores de senescencia celular. Cuantificación de los transcritos por RTqPCR de (A) Mmdm2, (B) p53, (C) p21, (D) p16, (E) RB1 y (F) GLB1. Los datos se normalizaron respecto al gen constitutivo β -actin. (p<0.05*, p<0.01***, p<0,001****, p<0,0001****).

En la Figura 7.9 (A, B y C), se muestran los niveles de expresión del eje MDM2/P53 y P21. Se encontró que los niveles de la ubiquitin ligasa MDM2, que regulan negativamente a p53 mediando su degradación mediante el proteosoma, están aumentados en los dos pacientes (p<0.01), así como P53 (p<0.0001). Sin embargo, se encontró que P21, una de las dianas transcripcionales de P53 que codifica el inhibidor de la quinasa dependiente de ciclina 1, esta aumentado significativamente en ambos pacientes (p<0.05 y p<0.0001). Las células KO presentan una disminución significativa en los niveles de P53, y no se demostraron cambios en las proteínas MDM2 y P21.

Por otro lado, se evaluaron los transcritos de las proteínas supresoras tumorales de la vía P16/RB (Figura 7.9 D y E). P16 codifica una proteína que inhibe a CDK4 y CDK6, quinasas que en conjunto con las ciclinas D, fosforilan la proteína RB, liberando su acción represora de la transcripción sobre la familia de factores de transcripción E2F, los cuales permiten la progresión del ciclo celular hacia la fase S. Se identificó que tanto P16 como RB1 estaban reguladas al alta en ambos pacientes respecto al control (p<0.0001 y p<0.001), sugiriendo que esta vía represora del ciclo celular está fuertemente activada. Para el grupo KO, RB1 estaba disminuido respecto al control (p<0.01).

Por último, se evaluó la expresión del gen GLB1 que codifica para la enzima lisosomal β galactosidasa (**Figura 7.9 F**). Se determinó que no hay cambios en el grupo KO respecto al control, mientras que la expresión es significativamente mayor en los fibroblastos de los dos pacientes (p<0,0001).

8. Discusión

Estudios previos han descrito mutaciones compuestas en el gen POLR3A como responsables del fenotipo WRS en los pacientes. Estas mutaciones pueden ser tanto intrónicas como exónicas, del mismo modo que causan mutaciones por desplazamiento del marco de lectura (frameshift), sin sentido (non-sense), que resultan en un codón de parada, y con cambio de sentido (missense), en el que se sustituye el residuo de aminoácido (Paolacci et. al. 2018; Lessel et. al, 2018; Jay et al., 2016). En este estudio, el análisis del gen POLR3A se llevó a cabo en fibroblastos de dos pacientes cuyas mutaciones han sido reportadas en la literatura (Paolacci et. al. 2018; Lessel et. al, 2018). La paciente WRS1 presenta una mutación monoalélica en la posición c.3772 3773 que provoca una deleción del par de nucleótidos CT provocando el cambio del residuo de aminoácido Leu1258 a Gly1258*. Simultáneamente, esto produce un cambio en el marco de lectura que genera un codón de parada temprano 12 residuos corriente abajo del sitio de la mutación. El resultado es una proteína mutante que ha perdido la última parte de su dominio 5' y tiene una nueva secuencia en sus últimos 11 aminoácidos. Esta mutación conduce a un cambio en las interacciones con las otras subunidades del complejo de RNA polimerasa III, que son mediados por residuos de aminoácidos altamente conservados, como se ha reportado previamente por análisis in silico (Báez-Becerra et al., 2020). En el caso de la paciente WRS2, la mutación con cambio de sentido c.3G>T (p. Met1?) afecta el codón de inicio de la traducción, el cual conduciría a una traducción ausente. Sin embargo, de acuerdo con la presencia de tripletes ATG cascada abajo, existen 4 potenciales sitios de iniciación con sus respectivos codones de parada, que producirían proteínas con distinto marco de lectura y truncadas hacia los dos extremos (https://atgpr.dbcls.jp/).

Previamente se había reportado que los fibroblastos de los pacientes exhiben niveles de transcripción de POLR3A WT sin diferencias respecto al control (Baez et al., 2020; Velásquez, 2019). Para los niveles de proteína detectados por western blot, se han reportado niveles de expresión variables. Por una parte, Baez et al. (2020) reportaron la sobreexpresión de POLR3A en el grupo WRS1, mientras que Velasquez (2019) muestra una disminución en ambos pacientes respecto al control. En contraste, el presente trabajo muestra que no hay diferencias significativas aunque hay una tendencia hacia mayores niveles de expresión para WRS1 y menores para WRS2. Adicionalmente, los análisis de inmunofluorescencia para POLR3A, coinciden con el mismo comportamiento para ambos pacientes, en el que la detección por microscopía tiene una marcación nuclear y citoplasmática. Lo anterior, puede estar asociada a la pérdida de la secuencia de reconocimiento de señal detectada por las importinas, la cual permite que la proteína ingrese al núcleo donde realiza su función, resultando en la acumulación en la periferia del núcleo y el citosol. Estudios realizados en la línea celular HeLa en los que se evaluaron mutaciones de POLR3A y POLR1C en el contexto de la leucodistrofia hipomielinizante (HDL), muestran la alteración en el ensamblaje del complejo RNA Polimerasa III, lo que conduce a una acumulación de las subunidades mutadas en el citoplasma y una disminución de la unión de RNA Polimerasa III en la mayoría de los genes diana (Choquet et al, 2017; Thiffault et al., 2015). Aproximaciones experimentales más recientes han empleado CRISPR-Cas9 para el estudio de genes con función desconocida o en un contexto patogénico por pérdida de función (Wang et al., 2014; Shalem et al., 2014). El modelo de disrupción génica de POLR3A (grupo KO) es el primero en evaluarse en fibroblastos humanos. Se ha reportado la introducción de mutaciones puntuales monoalélicas en POLR3A, relacionadas con HDL, a través del sistema CRISPR-Cas9 en células HEK293 mas no de pérdida de función total (Choquet et al., 2019). Choquet y colaboradores (2017), desarrollaron un modelo de ratón KO bialélico para POLR3A que fue embrionariamente letal. Adicionalmente, desarrollaron un heterocigoto compuesto con un alelo noqueado y otro con una mutación de HDL (KI/KO), que fueron viables, fértiles y no tenían diferencias significativas en los niveles de expresión de los transcritos de RNA Polimerasa III en el cerebro. Esto puede sugerir que la función de POLR3A puede ser más importante en etapas del desarrollo embrionario y que afecta a unos tejidos con mayor magnitud que a otros.

En principio, tanto las mutaciones descritas en los pacientes (WRS) como la pérdida de expresión de POLR3A (KO), conducen a una desregulación diferencial en la unión a los promotores de los genes diana de la RNA Polimerasa III y su actividad transcripcional. Los altos niveles del isoaceptor tRNA-Leu-CAA indican una desregulación del promotor tipo II, comportamiento que ha sido relacionado al cáncer (Gingold et al., 2014). Otro estudio reportó para una mutación en POLR3A, en pacientes con un fenotipo inusual de afectación en el estriado, un patrón opuesto de reducción en los niveles de expresión de diferentes isoaceptores de tRNAs y un aumento en los niveles de 5S RNA, atribuyéndolo a una respuesta compensatoria (Azmanov et al., 2016). El aumento del RNA 7SK puede tener un efecto negativo sobre la transcripción de los mRNAs, mediada por la RNA Polimerasa II, al reprimir el factor de elongación de la transcripción P-TEFb, el cual estimula la elongación a través de la fosforilación. 7SK junto con otras proteínas antagonizan a P-TEFb mediante el secuestro de este en una ribonucleoproteína catalíticamente inactiva (7SK RNP) (Markert et al., 2008).

Por otra parte, se ha descrito que mutaciones en POLR3A alteran su capacidad para interactuar con el DNA, causando por lo tanto una alteración drástica de su función transcripcional (Bernard et al., 2011; Paolacci et al., 2018). Para evaluar el efecto de las mutaciones en POLR3A del presente estudio y su ausencia, se realizó el análisis de expresión diferencial mediante RNAseq. Los genes diferencialmente expresados en los dos pacientes WRS y el grupo KO fueron analizados, observándose un patrón transcripcional relativamente distinto debido a la heterogeneidad alélica entre los pacientes. Sin embargo, también se encontró un conjunto de genes compartido intrínseco a la condición fenotípica del WRS y comunes a los tres conjuntos de datos. Si bien la RNA Polimerasa III no está directamente involucrada en la regulación de la transcripción de mRNAs, los resultados obtenidos sugieren que la alteración en su subunidad catalítica afecta de forma significativa e indirectamente, el perfil transcripcional de genes codificantes

de proteínas. Estos participan en una amplia gama de procesos biólogicos que se pueden agrupar, de forma general, en tres grandes categorías como la regulación de la respuesta inmune e inflamatoria, la regulación de procesos de morfogénesis y desarrollo embrionario relacionada a distintos tejidos, y procesos relacionados con el metabolismo celular. Esto es muy relevante dado que recientemente se ha resaltado la importancia de un comportamiento sistémico de inflamación crónica y de respuesta inmune sostenida, definida en inglés como inflammaging o inflamación intrínseca al envejecimiento y a enfermedades relacionadas con el envejecimiento (Franceschi et al., 2018). En este fenómeno, están involucrados varios mecanismos celulares y moleculares incluyendo la senescencia celular, la disfunción mitocondrial, la afectación en la autofagia y la mitofagia, la activación del inflamosoma, la desregulación del sistema ubiguitin-proteosoma, la activación de la respuesta al daño del DNA, así como la activación de sensores que desencadenan la inflamación como los receptores similares a NOD y los similares a TOL (Vitale et al., 2013); todos estos sobrerrepresentados en el grupo KO. Sumado a ello, el análisis de vías KEGG reveló que tanto en WRS1 como en WRS2 estaban enriquecidos la ruta de señalización PI3K-Akt, la interacción del receptor con la matriz extracelular (ECM) y metabolismo del retinol. A nivel celular, se mencionó previamente el hallmark asociado a la senescencia celular SASP. Este se caracteriza por la elevada síntesis y secreción de citoquinas, quimioquinas y factores de crecimiento y factores remodeladores de la ECM (Coppé et al., 2010). Adicionalmente, aunque no se conoce completamente la relación entre la ECM y la senescencia celular, se ha reportado que esta se asocia con cambios tanto en los componentes de la matriz extracelular como en la expresión y secreción de enzimas remodeladoras (Campisi, 1998; Levi et al., 2020), Cabe destacar que las células mesenquimales, en particular los fibroblastos en tránsito, son los responsables de la producción y el mantenimiento de la ECM dentro de los tejidos a lo largo de la vida (Blogland et al., 2020). En ese sentido, se ha propuesto que los productos de secreción de las células senescentes pueden interactuar y modificar esta estructura periférica de las células (Levi et al., 2020). Por otro lado, múltiples estudios han reportado que la vía PI3K/Akt es un regulador de la senescencia celular, incluso mediando el proceso independiente al daño al DNA (Breitschopf et al., 2001; Astle et al., 2012; Li et al., 2017). Comparado con el síndrome progeroide más estudiado, la progeria de Hutchinson-Gilford, Csoka et al. (2004) compararon los patrones de expresión génica de fibroblastos de pacientes HGPS respecto al control y encontraron que los genes diferencialmente expresados más destacados codifican para factores de transcripción y proteínas de la ECM, muchas de las cuales se sabe que funcionan en los tejidos gravemente afectados en este síndrome progeroide (Csoka et al., 2004). Los fibroblastos HGPS presentan una alta expresión de proteínas de la ECM y una expresión baja de las enzimas de remodelación de esta, lo que puede dar lugar a una acumulación anómala de la misma (Gonzalo et al., 2017). En consonancia con lo anterior, la señalización MAPK estuvo sobrerrepresentada en los tres conjuntos de datos. Las MAPK regulan una amplia variedad de procesos celulares en respuesta a estímulos, incluidos la proliferación, la diferenciación, la apoptosis y la respuesta al estrés; y abarcan una gran cantidad de quinasas, de las cuales las más conocidas son las ERK (1 y 2), las p38 (α , β , γ y δ) y las JNK (1, 2 y 3) (Plotnikov et al., 2011). Se ha reportado que estas, en primer lugar, regulan los inhibidores de las guinasas dependientes de ciclinas (CDKs) que permiten la detención indefinida del ciclo celular, mediando el aumento de la producción de p21 y p16 (Xu et al., 2016; Anerillas et al., 2020); en segundo lugar, median transcripcionalmente la producción y secreción de factores SASP por vías dependientes e independientes de NF-kB (Freund et al., 2011; Herranz et al., 2015); y en tercer lugar, son esenciales para sostener el fenotipo antiapoptótico que garantiza la supervivencia de las células senescentes (Yosef et al., 2017). En cuanto al metabolismo del retinol, se conoce que los retinoides son necesarios para un gran número de procesos biológicos, en particular, en embriogénesis, reproducción, visión, crecimiento, inflamación, diferenciación, proliferación y apoptosis (Mukherjee et al., 2016). Sin embargo, la relación de los retinoides endógenos con el envejecimiento no es completamente clara. Se ha reportado que la administración tópica de retinol durante 7 días redujo la expresión de MMP (metaloproteinasa de la matriz), colagenasa y gelatinasa con un aumento en el crecimiento de fibroblastos y la síntesis de colágeno en las muestras de tejido estudiadas; sugiriendo que el retinol debería ser eficaz en el tratamiento del envejecimiento y el fotoenvejecimiento (Varani et al., 2000). VCAM1, uno de los genes diferencialmente expresados de mayor valor estadístico y expresión al alta en los pacientes. Recientemente fue reportado como un marcador detrimental del envejecimiento en un estudio de GWAS en una población europea (Timmers et al., 2022). VCAM1 es una glicoproteína de adhesión celular localizada predominantemente en las superficies de las células endoteliales y su expresión aumenta en respuesta a señales inflamatorias, que median la adhesión y la transducción de leucocitos a través de las paredes endoteliales (Kong et al., 2018). Adicionalmente, se ha reportado que los niveles de VCAM1 detectados en sangre aumentan con la edad tanto en humanos como en ratones (Yousef et al., 2019).

El rRNA 5S, cuyo gen tiene un promotor tipo I para la RNA Polimerasa III, hace parte de la subunidad grande de los ribosomas eucariotas (60S), se localiza entre la unión con la subunidad pequeña (40S) y forma parte de la protuberancia central, complejo ribonucleoprotéico especializado en la síntesis de proteínas (Ciganda & Williams, 2011). La reducción en los niveles de 5S rRNA tanto en los pacientes WRS como en el grupo KO. así como la alteración en los de las subunidades ribosomales 18S y 28S, sugieren una grave afectación en la biogénesis ribosomal y, por lo tanto, en la síntesis general de proteínas. A nivel estructural, se observa un comportamiento de alteración en la expresión de los componentes, así como en la morfología del nucleolo. Además, las alteraciones en las funciones canónicas como la síntesis de ribosomas, conducen a un estado denominado como el estrés del nucléolo, que conllevan al arresto del ciclo celular e inducción de senescencia celular asociado a la activación de p53 (Boulon et al., 2010). Recientemente, varios reportes han involucrado proteínas asociadas al nucleolo con el proceso de senescencia celular. En uno de ellos, Buchwalter y colaboradores reportaron que la disminución a la baja en la expresión de los componentes nucleoalres se asocia con la disminución en la proliferación celular, inducción de senescencia celular, incremento en el área nucleolar y disminución en el número de nucléolos (Buchwalter & Hetzer, 2017). Se ha reportado que en pacientes con HGPS hay un aumento en el área promedio nucleolar

por célula, lo que se relaciona con una mayor demanda de síntesis de proteínas (Buchwalter & Heltzer, 2017).

Los fibroblastos WRS exhibieron un proceso de senescencia celular incipiente revelado por el incremento en la transcripción de marcadores clásicos como P16, RB, P53, P21 y GLB1. Recientemente se reportó este fenotipo senescente mediante el incremento en la tinción de β -galactosidasa *in situ*, los niveles incrementados de la proteína P16 y el acortamiento de los telómeros en pasajes tardíos (PD 36), todo esto acompañado con el incremento al daño al DNA detectado por los niveles de las proteínas pP53(Ser15) y pH2AX(Ser139) (Baez et al., 2020).

9. Conclusiones y recomendaciones

9.1 Conclusiones

Las mutaciones en el gen POLR3A de los fibroblastos WRS analizados, así como la disrupción génica del mismo (KO), provocan la desestabilización del complejo de la RNA polimerasa III, lo que conlleva una desregulación en la transcripción de sus genes diana. Los genes diferencialmente expresados en cada conjunto de datos fueron filtrados y analizados según criterios de exclusión estadística y biológica. Se realizó un análisis de enriquecimiento funcional utilizando las bases de datos GO y KEGG, revelando la afectación de múltiples vías de señalización, especialmente aquellas relacionadas con la supervivencia celular, la interacción del receptor con la matriz extracelular, la regulación de la respuesta inflamatoria y el metabolismo del retinol. Se observó una mayor área de inmunoreactividad de los componentes nucleolares en los fibroblastos WRS, mientras que el grupo KO mostró una reducción, lo que sugiere la presencia de distintos eventos de estrés nucleolar. Los patrones de expresión a nivel transcripcional y traduccional de los marcadores para cada uno de los componentes nucleolares revelaron un desequilibrio relacionado con la alteración en los niveles de los precursores ribosomales, evaluados mediante los precursores 18S, 28S y 5S. Esto indica una afectación en el proceso de biogénesis ribosomal y posiblemente en la síntesis global de proteínas. Por último, se encontró que las mutaciones en los fibroblastos WRS inducen una regulación al alza de la transcripción de genes inhibidores del ciclo celular, como P53/P21 y P16/RB, así como la transcripción de la enzima lisosomal β-galactosidasa, que son marcadores clásicos de la senescencia celular.

Este estudio proporciona hallazgos valiosos para comprender la biología celular y molecular del WRS, así como identificar posibles rutas implicadas en la alteración funcional de POLR3A que resulta en el fenotipo de envejecimiento prematuro. El modelo de pérdida

de función de POLR3A (KO) amplía nuestro conocimiento sobre las funciones que puede ejercer indirectamente el complejo de la RNA Polimerasa III al perder las interacciones con los diferentes promotores y genes diana. Esto provoca una desregulación abrupta en el perfil transcriptómico de genes que participan en diversos componentes celulares, procesos biológicos y funciones moleculares.

9.2 Recomendaciones

Considerando la alteración en los niveles de expresión de los transcritos del complejo RNA Polimerasa III, se recomienda llevar a cabo los análisis de expresión diferencial sobre los RNAs no codificantes (ncRNA-seq), para detectar los niveles de los transcritos directos de la polimerasa III como tRNAs, snRNAs, snoRNAs y miRNAs. Adicionalmente, se recomienda realizar otro tipo de experimentos, como RT-qPCR, para validar la expresión de algunos DEGs de interés identificados en el presente estudio. Con base en los resultados de los perfiles transcriptómicos y en los análisis de enriquecimiento funcional, se sugiere estudiar la estructura y función de la matriz extracelular, las vías de señalización relacionadas con la inflamación, por ejemplo, la vía NF-kB, y su relación con el fenotipo secretor asociado a la senescencia (SASP). Adicional a ello, ahondar en las rutas de supervivencia celular enriquecidas como PI3K/AKT y MAPKs (ERK, P38 y JNK) con relación a la resistencia a la apoptosis y a la ausencia de respuesta ante factores de crecimiento. Respecto al desbalance en los componentes nucleolares y algunos de los precursores ribosomales, se recomienda el estudio de la síntesis global de proteínas, así como caracterizar en detalle la biogénesis ribosomal. Sumado a ello, se sugiere analizar las subestructuras nucleolares con técnicas de microscopía de mayor resolución (eg. microscopía confocal o microscopía de dos fotones) para identificar con mayor precisión los componentes nucleolares y caracterizar el tipo de disrupción nucleolar.

10. Anexos

Anexo 1. Evaluación de la transfección del plásmido Control CRISPR/Cas9 Plasmid (gRNA Control) y los plámidos POLR3A CRISPR/Cas9 KO Plasmid y POLR3A HDR Plasmid (KO). A) Microfotografías representativas de la detección de las proteínas fluorescentes GFP y RFP en los grupos transfectados(KO y gRNA) en relación al grupo no transfectado (Control). B) Cuantificación de la expresión génica de POLR3A por RTqPCR. C) Análisis de expresión de la proteína codificada por el gen POLR3A por western blot. D) Inmunofluorescencia de la subunidad A de la RNA polimerasa III y Cuantificación del área de inmunorreactividad normalizada (p<0.05*, p< 0.01**, p<0.001****).

Anexo 2. Términos GO enriquecidos para el conjunto de datos WRS1. El identificador de la categoría GO (ID) y la descripción (Description) del término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes de interés. p.adjust se refiere al valor p ajustado por pruebas múltiples (corrección FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0031012	extracellular matrix	43/472	394/13529	1,0679,E-08	43
GO:0062023	collagen-containing extracellular matrix	35/472	313/13529	2,1188,E-07	35
GO:0098797	plasma membrane protein complex	29/472	387/13529	1,1990,E-02	29
GO:0098793	presynapse	28/472	388/13529	1,7538,E-02	28
GO:0009897	external side of plasma membrane	18/472	203/13529	1,7538,E-02	18
GO:0034702	ion channel complex	17/472	179/13529	1,7101,E-02	17
GO:1902495	transmembrane transporter complex	17/472	192/13529	1,8631,E-02	17
GO:1990351	transporter complex	17/472	200/13529	2,0921,E-02	17
GO:0098802	plasma membrane signaling receptor complex	13/472	127/13529	1,8631,E-02	13
GO:0043204	perikaryon	12/472	112/13529	1,8631,E-02	12
GO:0031225	anchored component of membrane	11/472	95/13529	1,8631,E-02	11
GO:0008305	integrin complex	5/472	25/13529	3,8988,E-02	5
GO:0031094	platelet dense tubular network	4/472	11/13529	1,8631,E-02	4
GO:0043083	synaptic cleft	4/472	14/13529	3,3068,E-02	4
GO:0031092	platelet alpha granule membrane	4/472	15/13529	3,8988,E-02	4

Cellular Component (CC)

Biological Process (BP)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0048598	embryonic morphogenesis	39/442	476/12993	3,1921,E-04	39
GO:0006935	chemotaxis	38/442	477/12993	4,9529,E-04	38
GO:0042330	taxis	38/442	479/12993	4,9529,E-04	38
GO:0007268	chemical synaptic transmission	37/442	493/12993	1,0849,E-03	37
GO:0098916	anterograde trans-synaptic signaling	37/442	493/12993	1,0849,E-03	37
GO:0099537	trans-synaptic signaling	37/442	498/12993	1,2356,E-03	37
GO:0007610	behavior	36/442	433/12993	4,7417,E-04	36
GO:0051046	regulation of secretion	36/442	493/12993	1,6908,E-03	36
GO:0001501	skeletal system development	34/442	425/12993	9,0572,E-04	34
GO:0030198	extracellular matrix organization	33/442	320/12993	2,5272,E-05	33
GO:0043062	extracellular structure organization	33/442	320/12993	2,5272,E-05	33
GO:0051962	positive regulation of nervous system development	33/442	431/12993	1,5393,E-03	33
GO:1903530	regulation of secretion by cell	33/442	457/12993	3,4019,E-03	33
GO:0007507	heart development	33/442	463/12993	3,7831,E-03	33
GO:0048514	blood vessel morphogenesis	33/442	495/12993	8,2323,E-03	33
GO:0009617	response to bacterium	31/442	400/12993	2,0347,E-03	31
GO:0043269	regulation of ion transport	31/442	460/12993	9,3744,E-03	31
GO:0044057	regulation of system process	30/442	395/12993	3,1826,E-03	30
GO:0010720	positive regulation of cell development	30/442	450/12993	1,1389,E-02	30
GO:0009611	response to wounding	30/442	479/12993	2,2912,E-02	30
GO:0050808	synapse organization	29/442	330/12993	8,4613,E-04	29
GO:0007517	muscle organ development	28/442	300/12993	5,0344,E-04	28
GO:0023061	signal release	28/442	389/12993	7,8030,E-03	28
GO:0050769	positive regulation of neurogenesis	28/442	392/12993	8,2323,E-03	28
GO:0030900	forebrain development	27/442	292/12993	7,7727,E-04	27
GO:0060537	muscle tissue development	27/442	299/12993	9,7434,E-04	27
GO:0050804	modulation of chemical synaptic transmission	27/442	335/12993	3,1445,E-03	27
GO:0099177	regulation of trans-synaptic signaling	27/442	336/12993	3,1445,E-03	27
GO:0048568	embryonic organ development	27/442	353/12993	5,1005,E-03	27
GO:0010975	regulation of neuron projection development	27/442	434/12993	3,2375,E-02	27

GO:0055065	metal ion homeostasis	27/442	445/12993	3,9169,E-02	27
GO:0050727	regulation of inflammatory response	26/442	258/12993	4,7417,E-04	26
GO:0014706	striated muscle tissue development	26/442	283/12993	1,0093,E-03	26
GO:0007389	pattern specification process	26/442	331/12993	4,6331,E-03	26
GO:0072507	divalent inorganic cation homeostasis	26/442	337/12993	5,6049,E-03	26
GO:0007423	sensory organ development	26/442	415/12993	3,4696,E-02	26
GO:0001525	angiogenesis	26/442	421/12993	3,7605,E-02	26
GO:0055074	calcium ion homeostasis	25/442	306/12993	3,7198,E-03	25
GO:0045666	positive regulation of neuron differentiation	25/442	312/12993	4.6331.E-03	25
GO:0003013	circulatory system process	25/442	374/12993	2.2995.E-02	25
GO:0032103	positive regulation of response to external stimulus	25/442	383/12993	2,8033,E-02	25
GO:0042060	wound healing	25/442	389/12993	3 1454 E-02	25
GO:0006875	cellular metal ion homeostasis	25/442	395/12993	3 5253 E-02	25
GO:0006874		20/442	207/12003	5,3715 E-03	24
GO:0050900		24/442	314/12993	8 5715 E-03	24
GO:0072503	cellular divalent inorganic cation homeostasis	24/442	321/12003	9,9003 E-03	24
GO:0072303	cellular underst inorganic cation noneostasis	24/442	340/12993	1,6476 E.02	24
GO:0034329	blood eigevilation	24/442	340/12993	1,0470,E-02	24
GO:0008015		24/442	356/12993	2,3917,E-02	24
GO:0034762	regulation of transmembrane transport	24/442	388/12993	4,7279,E-02	24
GO:0003012	muscle system process	23/442	315/12993	1,4163,E-02	23
GO:0001503	ossification	23/442	340/12993	2,7437,E-02	23
GO:0032970	regulation of actin filament-based process	23/442	342/12993	2,8445,E-02	23
GO:0048732	gland development	23/442	355/12993	3,6631,E-02	23
GO:0048562	embryonic organ morphogenesis	22/442	228/12993	1,5393,E-03	22
GO:0002237	response to molecule of bacterial origin	22/442	255/12993	4,5294,E-03	22
GO:0001655	urogenital system development	22/442	271/12993	7,8030,E-03	22
GO:0034765	regulation of ion transmembrane transport	22/442	321/12993	2,8444,E-02	22
GO:0050673	epithelial cell proliferation	22/442	321/12993	2,8444,E-02	22
GO:0001819	positive regulation of cytokine production	22/442	331/12993	3,5253,E-02	22
GO:0070371	ERK1 and ERK2 cascade	21/442	229/12993	3,3177,E-03	21
GO:0003002	regionalization	21/442	258/12993	8,8108,E-03	21
GO:0048638	regulation of developmental growth	21/442	261/12993	9,3744,E-03	21
GO:0050678	regulation of epithelial cell proliferation	21/442	276/12993	1,4309,E-02	21
GO:0042493	response to drug	21/442	302/12993	2,9536,E-02	21
GO:0060485	mesenchyme development	20/442	234/12993	7,8030,E-03	20
GO:0032496	response to lipopolysaccharide	20/442	245/12993	1,0005,E-02	20
GO:0051047	positive regulation of secretion	20/442	250/12993	1,1389,E-02	20
GO:0031349	positive regulation of defense response	20/442	272/12993	2,2995,E-02	20
GO:0042692	muscle cell differentiation	20/442	292/12993	3,6631,E-02	20
GO:0007204	positive regulation of cytosolic calcium ion concentration	19/442	198/12993	3,7198,E-03	19
GO:0051480	regulation of cytosolic calcium ion concentration	19/442	218/12993	8,0651,E-03	19
GO:0050890	cognition	19/442	223/12993	9,3744,E-03	19
GO:1903532	positive regulation of secretion by cell	19/442	232/12993	1,1389,E-02	19
GO:0045165	cell fate commitment	18/442	161/12993	1,5298,E-03	18
GO:0007611	learning or memory	18/442	192/12993	6.0473.E-03	18
GO:0003007	heart morphogenesis	18/442	196/12993	7.2848.E-03	18
GO:0021537	telencephalon development	18/442	199/12993	7 8030 E-03	18
GO:0070372	regulation of ERK1 and ERK2 cascade	18/442	211/12993	1,1023.E-02	18
GO:0072001	renal system development	18/442	240/12993	2 8236 E-02	18
GO:0006936	muscle contraction	18/442	243/12993	3 0422 E-02	18
GO:0010976	positive regulation of neuron projection development	18/442	248/12003	3 4817 E-02	18
GO:0051271	negative regulation of cellular component movement	18/442	257/12993	4 2727 E-02	18
GO:0097529	myeloid leukocyte migration	17/442	153/12003	2 0455 E-03	17
GO-1002523	regulation of blood airculation	17/442	183/12002	8 1306 E 03	17
GO:0049762		17/442	100/12993	0,1000,E-03	47
GO:0040702	developmental growth involved in memberganesis	17/442	10//12002	1 1380 E 03	17
GO:0000500	ceveropmental growth involved in morphogenesis	17/442	194/12993	1,1309,E-02	17
GO:0007495	sensory organ morphogenesis	17/442	190/12993	1,1720,E-02	17
60:0097485	neuron projection guidance	17/442	221/12993	2,0444,E-U2	17
GO:0008544	epidermis dévelopment	17/442	233/12993	3,8599,E-02	1/
GO:0050729	positive regulation of inflammatory response	16/442	101/12993	3,1921,E-04	16

Estudio Celular y Molecular del Gen POLR3A asociado al Síndrome Progeroide Neonatal (Síndrome de Wiedemann-Rautenstrauch)

GO:0007416	synapse assembly	16/442	132/12993	1,5393,E-03	16
GO:0070374	positive regulation of ERK1 and ERK2 cascade	16/442	142/12993	2,8518,E-03	16
GO:0061138	morphogenesis of a branching epithelium	16/442	149/12993	3,7198,E-03	16
GO:0007369	gastrulation	16/442	153/12993	4,6331,E-03	16
GO:0001763	morphogenesis of a branching structure	16/442	161/12993	6,9625,E-03	16
GO:0060326	cell chemotaxis	16/442	210/12993	3,5253,E-02	16
GO:0007411	axon guidance	16/442	220/12993	4,7279,E-02	16
GO:0048754	branching morphogenesis of an epithelial tube	15/442	124/12993	2,2453,E-03	15
GO:0003205	cardiac chamber development	15/442	140/12993	5,3995,E-03	15
GO:1904018	positive regulation of vasculature development	15/442	154/12993	9,3744,E-03	15
GO:0048738	cardiac muscle tissue development	15/442	160/12993	1,1389,E-02	15
GO:0009952	anterior/posterior pattern specification	15/442	161/12993	1,1720,E-02	15
GO:0090257	regulation of muscle system process	15/442	164/12993	1,3969,E-02	15
GO:0098742	cell-cell adhesion via plasma-membrane adhesion molecules	15/442	184/12993	2,9536,E-02	15
GO:0048588	developmental cell growth	15/442	185/12993	3,0308,E-02	15
GO:0048705	skeletal system morphogenesis	15/442	188/12993	3,2978,E-02	15
GO:0048565	digestive tract development	14/442	97/12993	1,0801,E-03	14
GO:0001704	formation of primary germ layer	14/442	104/12993	1,5393,E-03	14
GO:0055123	digestive system development	14/442	106/12993	1,6939,E-03	14
GO:0007626	locomotory behavior	14/442	144/12993	1,1720,E-02	14
GO:0048736	appendage development	14/442	150/12993	1,6452,E-02	14
GO:0060173	limb development	14/442	150/12993	1,6452,E-02	14
GO:0050679	positive regulation of epithelial cell proliferation	14/442	157/12993	2,2462,E-02	14
GO:0030595	leukocyte chemotaxis	14/442	159/12993	2,3369,E-02	14
GO:0001505	regulation of neurotransmitter levels	14/442	166/12993	3,0004,E-02	14
GO:0009612	response to mechanical stimulus	14/442	168/12993	3,1454,E-02	14
GO:0060047	heart contraction	14/442	175/12993	3,9038,E-02	14
GO:0003206	cardiac chamber morphogenesis	13/442	100/12993	3,1531,E-03	13
GO:0010469	regulation of signaling receptor activity	13/442	116/12993	7,8030,E-03	13
GO:0051048	negative regulation of secretion	13/442	120/12993	9,3744,E-03	13
GO:0035107	appendage morphogenesis	13/442	126/12993	1,1389,E-02	13
GO:0035108	limb morphogenesis	13/442	126/12993	1,1389,E-02	13
GO:0045766	positive regulation of angiogenesis	13/442	137/12993	1,9874,E-02	13
GO:0008016	regulation of heart contraction	13/442	153/12993	3,5253,E-02	13
GO:0048015	phosphatidylinositol-mediated signaling	13/442	153/12993	3,5253,E-02	13
GO:0006836	neurotransmitter transport	13/442	156/12993	3,8599,E-02	13
GO:0048017	inositol lipid-mediated signaling	13/442	157/12993	3,9169,E-02	13
GO:1901888	regulation of cell junction assembly	13/442	160/12993	4,4112,E-02	13
GO:0015850	organic hydroxy compound transport	13/442	162/12993	4,7561,E-02	13

GO:0032675	regulation of interleukin-6 production	12/442	97/12993	6,5303,E-03	12
GO:0007498	mesoderm development	12/442	101/12993	7,8030,E-03	12
GO:0097530	granulocyte migration	12/442	101/12993	7,8030,E-03	12
GO:0032635	interleukin-6 production	12/442	104/12993	9,1494,E-03	12
GO:0006937	regulation of muscle contraction	12/442	108/12993	1,0481,E-02	12
GO:0030326	embryonic limb morphogenesis	12/442	108/12993	1,0481,E-02	12
GO:0035113	embryonic appendage morphogenesis	12/442	108/12993	1,0481,E-02	12
GO:0007519	skeletal muscle tissue development	12/442	118/12993	1,8119,E-02	12
GO:0030879	mammary gland development	12/442	122/12993	2,1946,E-02	12
GO:0007269	neurotransmitter secretion	12/442	123/12993	2,2989,E-02	12
GO:0099643	signal release from synapse	12/442	123/12993	2,2989,E-02	12
GO:0060538	skeletal muscle organ development	12/442	124/12993	2,3283,E-02	12
GO:0048639	positive regulation of developmental growth	12/442	130/12993	2,9768,E-02	12
GO:0001659	temperature homeostasis	12/442	137/12993	3,7278,E-02	12
GO:0021543	pallium development	12/442	137/12993	3,7278,E-02	12
GO:0014033	neural crest cell differentiation	11/442	75/12993	3,5692,E-03	11
GO:0032963	collagen metabolic process	11/442	86/12993	7,8030,E-03	11
GO:0003231	cardiac ventricle development	11/442	102/12993	1,8228,E-02	11
GO:1903531	negative regulation of secretion by cell	11/442	107/12993	2,2995,E-02	11
GO:0007612	learning	11/442	108/12993	2,3585,E-02	11
GO:0042742	defense response to bacterium	11/442	114/12993	3,1088,E-02	11
GO:0072006	nephron development	11/442	114/12993	3,1088,E-02	11
GO:2000241	regulation of reproductive process	11/442	114/12993	3,1088,E-02	11
GO:0106106	cold-induced thermogenesis	11/442	115/12993	3,1998,E-02	11
GO:0120161	regulation of cold-induced thermogenesis	11/442	115/12993	3,1998,E-02	11
GO:1990845	adaptive thermogenesis	11/442	122/12993	4,1353,E-02	11
GO:0001707	mesoderm formation	10/442	60/12993	3,1445,E-03	10
GO:0007422	peripheral nervous system development	10/442	62/12993	3,5149,E-03	10
GO:0048332	mesoderm morphogenesis	10/442	62/12993	3,5149,E-03	10
GO:0032755	positive regulation of interleukin-6 production	10/442	67/12993	5,3995,E-03	10
GO:0014032	neural crest cell development	10/442	68/12993	5,8451,E-03	10
GO:0014031	mesenchymal cell development	10/442	70/12993	6,9625,E-03	10
GO:0048864	stem cell development	10/442	71/12993	7,6035,E-03	10

GO:1901222	regulation of NIK/NF-kappaB signaling	10/442	92/12993	2,3664,E-02	10
GO:0009799	specification of symmetry	10/442	100/12993	3,5153,E-02	10
GO:0048706	embryonic skeletal system development	10/442	108/12993	4,8053,E-02	10
GO:0021536	diencephalon development	9/442	43/12993	1,5393,E-03	9
GO:0003151	outflow tract morphogenesis	9/442	63/12993	9,9003,E-03	9
GO:0030510	regulation of BMP signaling pathway	9/442	70/12993	1,6231,E-02	9
GO:0051963	regulation of synapse assembly	9/442	74/12993	2,1493,E-02	9
GO:0060993	kidney morphogenesis	9/442	78/12993	2,6255,E-02	9
GO:1990266	neutrophil migration	9/442	79/12993	2,7865,E-02	9
GO:0001823	mesonephros development	9/442	85/12993	3,6137,E-02	9
GO:0042471	ear morphogenesis	9/442	87/12993	3,9169,E-02	9
GO:1903409	reactive oxygen species biosynthetic process	9/442	87/12993	3,9169,E-02	9
GO:0034754	cellular hormone metabolic process	9/442	89/12993	4,4112,E-02	9
GO:0060048	cardiac muscle contraction	9/442	89/12993	4,4112,E-02	9
GO:0007613	memory	9/442	90/12993	4,7007,E-02	9
GO:0048333	mesodermal cell differentiation	8/442	27/12993	7,3662,E-04	8
GO:0001755	neural crest cell migration	8/442	45/12993	6,9625,E-03	8
GO:0060688	regulation of morphogenesis of a branching structure	8/442	48/12993	8,6561,E-03	8
GO:0086003	cardiac muscle cell contraction	8/442	51/12993	1.0481.E-02	8
GO:0048644	muscle organ morphogenesis	8/442	53/12993	1.1720.E-02	8
GO:0051145	smooth muscle cell differentiation	8/442	53/12993	1.1720.E-02	8
GO:0007200	phospholipase C-activating G protein-coupled receptor signaling pathway	8/442	56/12993	1,6061 E-02	8
GO:0099601	regulation of neurotransmitter recentor activity	8/442	57/12993	1 7372 E-02	8
GO:0006942	regulation of striated muscle contraction	8/442	58/12993	1,9023,E-02	8
GO:2000243		8/442	58/12993	1 9023 E-02	8
GO:0032637	interleukin-8 production	8/442	62/12993	2 3917 E-02	8
GO:0002007	odontogenesis of dentin-containing tooth	8/442	63/12003	2,0017,E-02	8
GO:0061333	renal tubule mornhogenesis	8/442	63/12993	2,0029,E-02	8
GO:2001057	reactive nitrogen species metabolic process	8/442	65/12003	2,0029,E-02	8
GO:1001224	nocitive regulation of NIK/NE-kappaB signaling	8/442	68/12003	2,3330,E-02	8
GO:1001224	positive regulation of phoenbatidylinesitel 2 kinase signaling	9/442	60/12993	3,4017,E-02	0
GO:0014000	spinal cord development	8/442	60/12003	3,5393,E-02	9
GO:0021310	primary alcohol metabolic process	8/442	69/12993	3,5393 E-02	8
GO:0110110	positive regulation of animal organ morphogenesis	8/442	69/12993	3 5393 E-02	8
GO:0019233	sensory perception of pain	8/442	71/12993	3 9169 E-02	8
GO:0019200	neuromuscular process	8/442	71/12003	3,9169,E-02	8
GO:0050305	renal tubula development	8/442	74/12003	4 7310 E-02	8
GO:0001520	detection of histic stimulus	7/442	23/12003	4,7310,E-02	7
GO:0009355	provimal/distal pattern formation	7/442	28/12993	3 1445 E-03	7
GO:0008546	digestive tract morphogenesis	7/442	36/12003	8 2323 E-03	7
GO:0050919		7/442	30/12003	1 0481 E-02	7
GO:0010463	mesonchymal call proliferation	7/442	40/12003	1,0401,E-02	7
GO:0010403	branching involved in ursterie hud mershegeneeis	7/442	46/12993	1,1309,E-02	7
GO:00015844	monoamina transport	7/442	40/12993	2,1089,E-02	7
GO:0013844	nonoanine transport	7/442	40/12993	2,1089,E-02	7
GO:0050922	musele tisque merchagenesie	7/442	40/12993	2,3565,E-02	7
GO:0060415	muscle ussue morphogenesis	7/442	40/12993	2,3585,E-02	7
GO:0003208	cardiac ventricle morphogenesis	7/442	50/12993	2,7960,E-02	7
GO:0040044	anery morphogenesis	7/442	52/12995	3,1454,E-02	7
GO.0050918	positive chemotaxis	7/442	52/12993	3,1454,E-02	7
GO:0000075	ureteric bud morphogenesis	7/442	52/12993	3,1434,E-02	7
GO:0055117	regulation of cardiac muscle contraction	7/442	53/12993	3,3905,E-02	7
GO:00/21/1	mesonephric tubule morphogenesis	7/442	53/12993	3,3965,E-02	-
GO:0001708	cell tate specification	7/442	54/12993	3,5253,E-02	-
GO:0002532	production of molecular mediator involved in inflammatory response	//442	54/12993	3,5253,E-02	7
GO:0046579	positive regulation of Ras protein signal transduction	7/442	54/12993	3,5253,E-02	7

GO:0009953	dorsal/ventral pattern formation	7/442	59/12993	4,8053,E-02	7
GO:0032677	regulation of interleukin-8 production	7/442	59/12993	4,8053,E-02	7
GO:0035050	embryonic heart tube development	7/442	59/12993	4,8053,E-02	7
GO:0072078	nephron tubule morphogenesis	7/442	59/12993	4,8053,E-02	7
GO:0098543	detection of other organism	6/442	12/12993	4,9529,E-04	6
GO:0098581	detection of external biotic stimulus	6/442	15/12993	1,1064,E-03	6
GO:0010743	regulation of macrophage derived foam cell differentiation	6/442	22/12993	4,8960,E-03	6
GO:0021983	pituitary gland development	6/442	25/12993	7,8030,E-03	6
GO:0061311	cell surface receptor signaling pathway involved in heart development	6/442	25/12993	7,8030,E-03	6
GO:0010742	macrophage derived foam cell differentiation	6/442	27/12993	9,3744,E-03	6
GO:0035137	hindlimb morphogenesis	6/442	27/12993	9,3744,E-03	6
GO:0090077	foam cell differentiation	6/442	27/12993	9,3744,E-03	6
GO:0086004	regulation of cardiac muscle cell contraction	6/442	28/12993	1,0481,E-02	6
GO:0048663	neuron fate commitment	6/442	29/12993	1,1389,E-02	6
GO:1905332	positive regulation of morphogenesis of an epithelium	6/442	29/12993	1,1389,E-02	6
GO:1903115	regulation of actin filament-based movement	6/442	30/12993	1,3086,E-02	6
GO:0042572	retinol metabolic process	6/442	32/12993	1,7372,E-02	6
GO:0045429	positive regulation of nitric oxide biosynthetic process	6/442	33/12993	1,9150,E-02	6
GO:0048846	axon extension involved in axon guidance	6/442	33/12993	1,9150,E-02	6
GO:1902284	neuron projection extension involved in neuron projection guidance	6/442	33/12993	1,9150,E-02	6
GO:1904407	positive regulation of nitric oxide metabolic process	6/442	34/12993	2,1738,E-02	6
GO:2000249	regulation of actin cytoskeleton reorganization	6/442	34/12993	2,1738,E-02	6
GO:0030574	collagen catabolic process	6/442	35/12993	2,3283,E-02	6
GO:2000826	regulation of heart morphogenesis	6/442	36/12993	2,5526,E-02	6
GO:1904645	response to amyloid-beta	6/442	38/12993	3,0308,E-02	6
GO:0071526	semaphorin-plexin signaling pathway	6/442	39/12993	3,2375,E-02	6
GO:0055008	cardiac muscle tissue morphogenesis	6/442	40/12993	3,5253,E-02	6
GO:0061900	glial cell activation	6/442	41/12993	3,7278,E-02	6
GO:0030850	prostate gland development	6/442	42/12993	3,9169,E-02	6
GO:0051646	mitochondrion localization	6/442	42/12993	3,9169,E-02	6
GO:1903428	positive regulation of reactive oxygen species biosynthetic process	6/442	42/12993	3,9169,E-02	6
GO:0060425	lung morphogenesis	6/442	44/12993	4,7279,E-02	6
GO:1903524	positive regulation of blood circulation	6/442	44/12993	4,7279,E-02	6
GO:0016045	detection of bacterium	5/442	10/12993	1,5393,E-03	5
GO:0090189	regulation of branching involved in ureteric bud morphogenesis	5/442	17/12993	8,7487,E-03	5
GO:1900017	positive regulation of cytokine production involved in inflammatory response	5/442	18/12993	9,9003,E-03	5
GO:0051482	positive regulation of cytosolic calcium ion concentration involved in phospholipase C	5/442	19/12993	1,1389,E-02	5
GO:0061217	regulation of mesonephros development	5/442	19/12993	1,1389,E-02	5
GO:0008045	motor neuron axon guidance	5/442	24/12993	2,3585,E-02	5
GO:0050926	regulation of positive chemotaxis	5/442	24/12993	2,3585,E-02	5
GO:0060441	epithelial tube branching involved in lung morphogenesis	5/442	24/12993	2,3585.E-02	5
GO:0003401	axis elongation	5/442	25/12993	2,7016,E-02	5
GO:0051654	establishment of mitochondrion localization	5/442	25/12993	2,7016.E-02	5
GO:0055094	response to lipoprotein particle	5/442	26/12993	3,0158,E-02	5
GO:0071402	cellular response to lipoprotein particle stimulus	5/442	28/12993	3,5393,E-02	5
------------	--	-------	----------	-------------	---
GO:0044060	regulation of endocrine process	5/442	29/12993	3,9169,E-02	5
GO:0048841	regulation of axon extension involved in axon guidance	5/442	29/12993	3,9169,E-02	5
GO:0050433	regulation of catecholamine secretion	5/442	29/12993	3.9169.E-02	5
GO:0090184	positive regulation of kidney development	5/442	29/12993	3,9169,E-02	5
GO:0002755	MyD88-dependent toll-like receptor signaling pathway	5/442	30/12993	4,3455,E-02	5
GO:0003156	regulation of animal organ formation	5/442	30/12993	4.3455.E-02	5
GO:0010464	regulation of mesenchymal cell proliferation	5/442	30/12993	4 3455 E-02	5
GO:0043902	positive regulation of multi-organism process	5/442	31/12993	4 7800 E-02	5
GO:0048806	denitalia development	5/442	31/12003	4,7800 E-02	5
GO:0050432	catecholamine secretion	5/442	31/12003	4,7800 E-02	5
CO:0030432	peripheral perious system peuron differentiation	4/442	10/12003	9,7000,E-02	4
GO:0048934	peripheral nervous system neuron development	4/442	10/12995	9,3744,E-03	4
GO:0048933	peripheral nervous system neuron development	4/442	10/12993	9,3744,E-03	4
GO:0140052	mideut development	4/442	10/12993	9,3744,E-03	4
GO:0007494	negative regulation of magraphage derived from cell differentiation	4/442	12/12002	1,1505,E-02	4
GO:0010744	positive regulation of macrophage derived loam cell differentiation	4/442	12/12993	1,4935,E-02	4
GO:0060601	lateral sprouting from an epimelium	4/442	12/12993	1,4935,E-02	4
GO:0010935	regulation of macrophage cytokine production	4/442	13/12993	1,9023,E-02	4
GO:0023019	signal transduction involved in regulation of gene expression	4/442	13/12993	1,9023,E-02	4
GO:0072189	ureter development	4/442	13/12993	1,9023,E-02	4
GO:0001710	mesodermal cell fate commitment	4/442	14/12993	2,2989,E-02	4
GO:0050930	induction of positive chemotaxis	4/442	14/12993	2,2989,E-02	4
GO:0060572	morphogenesis of an epithelial bud	4/442	14/12993	2,2989,E-02	4
GO:0090190	positive regulation of branching involved in ureteric bud morphogenesis	4/442	14/12993	2,2989,E-02	4
GO:1900225	regulation of NLRP3 inflammasome complex assembly	4/442	14/12993	2,2989,E-02	4
GO:0010934	macrophage cytokine production	4/442	15/12993	2,7016,E-02	4
GO:0044546	NLRP3 inflammasome complex assembly	4/442	15/12993	2,7016,E-02	4
GO:0060065	uterus development	4/442	16/12993	3,1088,E-02	4
GO:0061213	positive regulation of mesonephros development	4/442	16/12993	3,1088,E-02	4
GO:0001964	startle response	4/442	17/12993	3,5253,E-02	4
GO:0002043	blood vessel endothelial cell proliferation involved in sprouting angiogenesis	4/442	17/12993	3,5253,E-02	4
GO:0015874	norepinephrine transport	4/442	17/12993	3,5253,E-02	4
GO:0018149	peptide cross-linking	4/442	17/12993	3,5253,E-02	4
GO:0071402	cellular response to lipoprotein particle stimulus	5/442	28/12993	3,5393,E-02	5
GO:0044060	regulation of endocrine process	5/442	29/12993	3,9169,E-02	5
GO:0048841	regulation of axon extension involved in axon guidance	5/442	29/12993	3,9169,E-02	5
GO:0050433	regulation of catecholamine secretion	5/442	29/12993	3,9169,E-02	5
GO:0090184	positive regulation of kidney development	5/442	29/12993	3,9169,E-02	5
GO:0002755	MyD88-dependent toll-like receptor signaling pathway	5/442	30/12993	4,3455,E-02	5
GO:0003156	regulation of animal organ formation	5/442	30/12993	4,3455,E-02	5
GO:0010464	regulation of mesenchymal cell proliferation	5/442	30/12993	4,3455,E-02	5
GO:0043902	positive regulation of multi-organism process	5/442	31/12993	4,7800,E-02	5
GO:0048806	genitalia development	5/442	31/12993	4,7800,E-02	5
GO:0050432	catecholamine secretion	5/442	31/12993	4,7800,E-02	5
GO:0048934	peripheral nervous system neuron differentiation	4/442	10/12993	9,3744,E-03	4
GO:0048935	peripheral nervous system neuron development	4/442	10/12993	9,3744,E-03	4
GO:0140052	cellular response to oxidised low-density lipoprotein particle stimulus	4/442	10/12993	9,3744,E-03	4
GO:0007494	midgut development	4/442	11/12993	1,1389,E-02	4
GO:0010744	positive regulation of macrophage derived foam cell differentiation	4/442	12/12993	1,4935,E-02	4
GO:0060601	lateral sprouting from an epithelium	4/442	12/12993	1,4935,E-02	4
GO:0010935	regulation of macrophage cytokine production	4/442	13/12993	1,9023,E-02	4
GO:0023019	signal transduction involved in regulation of gene expression	4/442	13/12993	1,9023,E-02	4
GO:0072189	ureter development	4/442	13/12993	1,9023,E-02	4
GO:0001710	mesodermal cell fate commitment	4/442	14/12993	2,2989,E-02	4
GO:0050930	induction of positive chemotaxis	4/442	14/12993	2,2989,E-02	4
GO:0060572	morphogenesis of an epithelial bud	4/442	14/12993	2,2989,E-02	4
GO:0090190	positive regulation of branching involved in ureteric bud morphogenesis	4/442	14/12993	2,2989,E-02	4
GO:1900225	regulation of NLRP3 inflammasome complex assembly	4/442	14/12993	2,2989,E-02	4
GO:0010934	macrophage cytokine production	4/442	15/12993	2,7016.E-02	4
GO:0044546	NLRP3 inflammasome complex assembly	4/442	15/12993	2,7016.E-02	4
GO:0060065	uterus development	4/442	16/12993	3,1088.E-02	4
GO:0061213	positive regulation of mesonephros development	4/442	16/12993	3,1088.E-02	4
GO:0001964	startle response	4/442	17/12993	3.5253.E-02	4
GO:0002043	blood vessel endothelial cell proliferation involved in sprouting angiogenesis	4/442	17/12993	3.5253.E-02	4
	anglogenesis			5,5255,2-02	-

GO:0015874	norepinephrine transport	4/442	17/12993	3,5253,E-02	4
GO:0018149	peptide cross-linking	4/442	17/12993	3,5253,E-02	4
GO:0060571	morphogenesis of an epithelial fold	4/442	18/12993	3,9169,E-02	4
GO:0042474	middle ear morphogenesis	4/442	19/12993	4,6341,E-02	4
GO:0048745	smooth muscle tissue development	4/442	19/12993	4,6341,E-02	4
GO:0003149	membranous septum morphogenesis	3/442	10/12993	4,9966,E-02	3
GO:0006837	serotonin transport	3/442	10/12993	4,9966,E-02	3
GO:0007620	copulation	3/442	10/12993	4,9966,E-02	3
GO:0060033	anatomical structure regression	3/442	10/12993	4,9966,E-02	3

Molecular Function (MF)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0005509	calcium ion binding	37/444	470/13320	1,0437,E-04	37
GO:0030545	receptor regulator activity	36/444	288/13320	3,9880,E-09	36
GO:0048018	receptor ligand activity	33/444	268/13320	2,3080,E-08	33
GO:0030546	signaling receptor activator activity	33/444	272/13320	2,3080,E-08	33
GO:0004888	transmembrane signaling receptor activity	30/444	487/13320	1,8492,E-02	30
GO:0005539	glycosaminoglycan binding	24/444	158/13320	6,5650,E-08	24
GO:0001228	DNA-binding transcription activator activity, RNA polymerase II-specific	24/444	385/13320	4,2729,E-02	24
GO:0001216	DNA-binding transcription activator activity	24/444	388/13320	4,3198,E-02	24
GO:1901681	sulfur compound binding	21/444	201/13320	2,9358,E-04	21
GO:0005216	ion channel activity	20/444	250/13320	9,1173,E-03	20
GO:0015267	channel activity	20/444	269/13320	1,5880,E-02	20
GO:0022803	passive transmembrane transporter activity	20/444	269/13320	1,5880,E-02	20
GO:0022836	gated channel activity	18/444	180/13320	1,6716,E-03	18
GO:0046873	metal ion transmembrane transporter activity	18/444	259/13320	4,3198,E-02	18
GO:0008201	heparin binding	17/444	119/13320	4,6261,E-05	17
GO:0042277	peptide binding	17/444	215/13320	1,8472,E-02	17
GO:0005261	cation channel activity	16/444	190/13320	1,5880,E-02	16
GO:0005201	extracellular matrix structural constituent	15/444	128/13320	1,4400,E-03	15
GO:0005125	cytokine activity	15/444	129/13320	1,4400,E-03	15
GO:0008237	metallopeptidase activity	14/444	145/13320	1,0345,E-02	14
GO:0008083	growth factor activity	12/444	103/13320	6,1916,E-03	12
GO:0005244	voltage-gated ion channel activity	12/444	104/13320	6,1916,E-03	12
GO:0022832	voltage-gated channel activity	12/444	104/13320	6,1916,E-03	12
GO:0005178	integrin binding	12/444	125/13320	1,8572,E-02	12
GO:0001540	amyloid-beta binding	10/444	59/13320	1,4400,E-03	10
GO:0004222	metalloendopeptidase activity	10/444	81/13320	1,0345,E-02	10
GO:0061135	endopeptidase regulator activity	10/444	99/13320	2,9937,E-02	10
GO:0022843	voltage-gated cation channel activity	9/444	73/13320	1,5880,E-02	9
GO:0015085	calcium ion transmembrane transporter activity	9/444	89/13320	4,3198,E-02	9
GO:0004866	endopeptidase inhibitor activity	9/444	91/13320	4,8931,E-02	9
GO:0050840	extracellular matrix binding	8/444	48/13320	6,1916,E-03	8
GO:0005267	potassium channel activity	8/444	58/13320	1,5880,E-02	8
GO:0005249	voltage-gated potassium channel activity	7/444	42/13320	1,2158,E-02	7
GO:0005179	hormone activity	7/444	47/13320	1,8472,E-02	7
GO:0001968	fibronectin binding	6/444	25/13320	6,1916,E-03	6
GO:0042056	chemoattractant activity	5/444	25/13320	2,2545,E-02	5
GO:0045499	chemorepellent activity	5/444	25/13320	2,2545,E-02	5
GO:0005251	delayed rectifier potassium channel activity	4/444	18/13320	4,2925,E-02	4

Anexo 3. Términos GO enriquecidos para el conjunto de datos WRS2. El identificador de la categoría GO (ID) y la descripción (Description) del término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes dentro de la distribución que están anotados en relación al conjunto de genes de interés. p.adjust se refiere al valor p ajustado por pruebas múltiples corrección

FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

Cellular Component (CC)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0031012	extracellular matrix	52/754	416/13872	7,1664,E-06	52
GO:0062023	collagen-containing extracellular matrix	42/754	329/13872	1,6685,E-05	42
GO:0044297	cell body	41/754	471/13872	1,9147,E-02	41
GO:0098978	glutamatergic synapse	40/754	296/13872	1,6685,E-05	40
GO:0045177	apical part of cell	40/754	305/13872	1,6685,E-05	40
GO:0097060	synaptic membrane	38/754	282/13872	1,6685,E-05	38
GO:0098984	neuron to neuron synapse	38/754	317/13872	1,7796,E-04	38
GO:0005819	spindle	38/754	340/13872	6,9809,E-04	38
GO:0043025	neuronal cell body	37/754	414/13872	1,9472,E-02	37
GO:0005874	microtubule	36/754	374/13872	7,9502,E-03	36
GO:0098793	presynapse	36/754	410/13872	2,6132,E-02	36
GO:0099572	postsynaptic specialization	35/754	310/13872	8,6342,E-04	35
GO:0014069	postsynaptic density	34/754	295/13872	8,6342,E-04	34
GO:0032279	asymmetric synapse	34/754	300/13872	9,7743,E-04	34
GO:0016324	apical plasma membrane	33/754	248/13872	9,3755,E-05	33
GO:0150034	distal axon	28/754	247/13872	3,3460,E-03	28
GO:0043235	receptor complex	27/754	286/13872	3,0838,E-02	27
GO:0009897	external side of plasma membrane	26/754	209/13872	1,4538,E-03	26
GO:0000793	condensed chromosome	25/754	195/13872	1,3364,E-03	25
GO:0045211	postsynaptic membrane	25/754	196/13872	1,3856,E-03	25
GO:0000775	chromosome, centromeric region	23/754	187/13872	3,6258,E-03	23
GO:0099240	intrinsic component of synaptic membrane	21/754	111/13872	3,1514,E-05	21
GO:0030427	site of polarized growth	21/754	170/13872	5,5311,E-03	21
GO:0000779	condensed chromosome, centromeric region	20/754	117/13872	1,9439,E-04	20
GO:0000776	kinetochore	20/754	133/13872	8,6342,E-04	20
GO:0000922	spindle pole	20/754	155/13872	4,7066,E-03	20
GO:0030426	growth cone	20/754	164/13872	7,6966,E-03	20
GO:0030496	midbody	20/754	175/13872	1,3944,E-02	20

GO:0016323	basolateral plasma membrane	20/754	184/13872	2,1240,E-02	20
GO:0099699	integral component of synaptic membrane	19/754	101/13872	9,3755,E-05	19
GO:0034702	ion channel complex	19/754	187/13872	4,9669,E-02	19
GO:0034703	cation channel complex	18/754	140/13872	7,6966,E-03	18
GO:0000777	condensed chromosome kinetochore	17/754	102/13872	8,6342,E-04	17
GO:0042734	presynaptic membrane	16/754	115/13872	6,8361,E-03	16
GO:0031225	anchored component of membrane	15/754	100/13872	5,0961,E-03	15
GO:0072686	mitotic spindle	15/754	121/13872	2,1094,E-02	15
GO:0098839	postsynaptic density membrane	14/754	67/13872	4,5506,E-04	14
GO:0099634	postsynaptic specialization membrane	14/754	84/13872	3,0057,E-03	14
GO:0098936	intrinsic component of postsynaptic membrane	13/754	82/13872	6,6153,E-03	13
GO:0005604	basement membrane	13/754	89/13872	1,1203,E-02	13
GO:0099055	integral component of postsynaptic membrane	12/754	78/13872	1,1203,E-02	12
GO:0098889	intrinsic component of presynaptic membrane	10/754	57/13872	1,1119,E-02	10
GO:0005876	spindle microtubule	10/754	64/13872	2,0642,E-02	10
GO:0045171	intercellular bridge	10/754	65/13872	2,1545,E-02	10
GO:0031045	dense core granule	9/754	18/13872	1,6685,E-05	9
GO:0099061	integral component of postsynaptic density membrane	9/754	35/13872	1,5927,E-03	9
GO:0099146	intrinsic component of postsynaptic density membrane	9/754	37/13872	2,4388,E-03	9
GO:0099060	integral component of postsynaptic specialization membrane	9/754	48/13872	1,1203,E-02	9
GO:0098948	intrinsic component of postsynaptic specialization membrane	9/754	50/13872	1,3944,E-02	9
GO:0060076	excitatory synapse	8/754	36/13872	7,6966,E-03	8
GO:0099056	integral component of presynaptic membrane	8/754	50/13872	4,2166,E-02	8
GO:0098686	hippocampal mossy fiber to CA3 synapse	7/754	26/13872	5,5311,E-03	7
GO:0000780	condensed nuclear chromosome, centromeric region	7/754	30/13872	1,1184,E-02	7
GO:0008328	ionotropic glutamate receptor complex	7/754	31/13872	1,2496,E-02	7
GO:0098878	neurotransmitter receptor complex	7/754	32/13872	1,4261,E-02	7
GO:0051233	spindle midzone	7/754	35/13872	2,1240,E-02	7
GO:0046658	anchored component of plasma membrane	7/754	40/13872	4,2242,E-02	7
GO:0000940	condensed chromosome outer kinetochore	6/754	13/13872	8,6342,E-04	6
GO:0000778	condensed nuclear chromosome kinetochore	5/754	17/13872	1,6822,E-02	5
GO:0043256	laminin complex	4/754	11/13872	1,9836,E-02	4
GO:0031233	intrinsic component of external side of plasma membrane	4/754	14/13872	4,4000,E-02	4

Biological Process (BP)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0045860	positive regulation of protein kinase activity	58/717	457/13311	1,4933,E-06	58
GO:0001501	skeletal system development	52/717	440/13311	3,6898,E-05	52
GO:0006935	chemotaxis	52/717	489/13311	3,4591,E-04	52
GO:0042330	taxis	52/717	491/13311	3,7606,E-04	52
GO:0043410	positive regulation of MAPK cascade	51/717	440/13311	7,5068,E-05	51
GO:0048598	embryonic morphogenesis	51/717	492/13311	5,7634,E-04	51
GO:0007610	behavior	48/717	455/13311	6,6640,E-04	48
GO:0071900	regulation of protein serine/threonine kinase activity	48/717	459/13311	7,5522,E-04	48
GO:2000147	positive regulation of cell motility	48/717	475/13311	1,3732,E-03	48
GO:0040017	positive regulation of locomotion	48/717	486/13311	1,9419,E-03	48
GO:0051272	positive regulation of cellular component movement	48/717	489/13311	2,1903,E-03	48
GO:0000280	nuclear division	47/717	374/13311	3,6898,E-05	47
GO:0048285	organelle fission	47/717	421/13311	3,0916,E-04	47
GO:0007423	sensory organ development	46/717	436/13311	8,5685,E-04	46
GO:0030335	positive regulation of cell migration	46/717	459/13311	1,9499,E-03	46
GO:0043269	regulation of ion transport	46/717	485/13311	4,6545,E-03	46
GO:0050808	synapse organization	45/717	351/13311	3,6898,E-05	45
GO:0001525	angiogenesis	45/717	435/13311	1,3732,E-03	45
GO:0002009	morphogenesis of an epithelium	44/717	466/13311	6,4400,E-03	44
GO:0045936	negative regulation of phosphate metabolic process	43/717	500/13311	2,5396,E-02	43
GO:0044057	regulation of system process	42/717	417/13311	3,0916,E-03	42
GO:0010975	regulation of neuron projection development	42/717	443/13311	7,4792,E-03	42
GO:0140014	mitotic nuclear division	41/717	266/13311	1,4933,E-06	41
GO:0051962	positive regulation of nervous system development	41/717	440/13311	1,0712,E-02	41
GO:0007507	heart development	41/717	475/13311	2,8521,E-02	41
GO:0030855	epithelial cell differentiation	41/717	475/13311	2,8521,E-02	41
GO:0090066	regulation of anatomical structure size	40/717	429/13311	1,1830,E-02	40
GO:0042326	negative regulation of phosphorylation	39/717	400/13311	7,2771,E-03	39
GO:0019932	second-messenger-mediated signaling	38/717	315/13311	4,3044,E-04	38
GO:0034329	cell junction assembly	38/717	361/13311	2,7937,E-03	38
GO:0001933	negative regulation of protein phosphorylation	38/717	372/13311	4,1769,E-03	38
GO:0010817	regulation of hormone levels	38/717	374/13311	4,5297,E-03	38
GO:0008015	blood circulation	38/717	385/13311	7,0034,E-03	38
GO:0003013	circulatory system process	38/717	403/13311	1,2387,E-02	38
GO:0034762	regulation of transmembrane transport	38/717	410/13311	1,5568,E-02	38
GO:0032147	activation of protein kinase activity	37/717	290/13311	2,6433,E-04	37
GO:0007059	chromosome segregation	37/717	295/13311	2,7929,E-04	37
GO:0048568	embryonic organ development	37/717	368/13311	6,1681,E-03	37
GO:0018212	peptidyl-tyrosine modification	36/717	299/13311	5,7634,E-04	36
GO:0043405	regulation of MAP kinase activity	36/717	299/13311	5,7634,E-04	36
GO:0050900	leukocyte migration	36/717	326/13311	1,9339,E-03	36
GO:0007409	axonogenesis	36/717	394/13311	2,3186,E-02	36
GO:0051656	establishment of organelle localization	36/717	395/13311	2,3445,E-02	36
GO:0018108	peptidyl-tyrosine phosphorylation	35/717	296/13311	8,9601,E-04	35
GO:0071902	positive regulation of protein serine/threonine kinase activity	35/717	303/13311	1,2706,E-03	35

GO:0001503	ossification	35/717	343/13311	6,6474,E-03	35
GO:0001655	urogenital system development	34/717	278/13311	6,6659,E-04	34
GO:0072507	divalent inorganic cation homeostasis	34/717	353/13311	1,5018,E-02	34
GO:0072001	renal system development	33/717	246/13311	2,7859,E-04	33
GO:0050804	modulation of chemical synaptic transmission	33/717	351/13311	2,3132,E-02	33
GO:0099177	regulation of trans-synaptic signaling	33/717	352/13311	2,3292,E-02	33
GO:0001667	ameboidal-type cell migration	33/717	360/13311	2,9403,E-02	33
GO:0043406	positive regulation of MAP kinase activity	32/717	233/13311	2,7112,E-04	32
GO:0048562	embryonic organ morphogenesis	32/717	236/13311	2,7862,E-04	32
GO:0098813	nuclear chromosome segregation	32/717	236/13311	2,7862,E-04	32
GO:0032102	negative regulation of response to external stimulus	32/717	286/13311	3,1088,E-03	32
GO:0007517	muscle organ development	32/717	310/13311	8,8983,E-03	32
GO:0007389	pattern specification process	32/717	333/13311	2,0322,E-02	32
GO:0050673	epithelial cell proliferation	32/717	334/13311	2,0921,E-02	32
GO:0072503	cellular divalent inorganic cation homeostasis	32/717	338/13311	2,3292,E-02	32
GO:0034765	regulation of ion transmembrane transport	32/717	339/13311	2,3861,E-02	32
GO:0050730	regulation of peptidyl-tyrosine phosphorylation	31/717	202/13311	5,6264,E-05	31
GO:0001822	kidney development	31/717	238/13311	5,6817,E-04	31
GO:0060562	epithelial tube morphogenesis	31/717	270/13311	2,7272,E-03	31
GO:0042692	muscle cell differentiation	31/717	304/13311	1,1464,E-02	31
GO:0055074	calcium ion homeostasis	31/717	319/13311	2,0322,E-02	31
GO:0032535	regulation of cellular component size	31/717	337/13311	3,5899,E-02	31
GO:1901342	regulation of vasculature development	30/717	282/13311	8,1694,E-03	30
GO:0060537	muscle tissue development	30/717	310/13311	2,3292,E-02	30
GO:0051346	negative regulation of hydrolase activity	30/717	330/13311	4,5207,E-02	30
GO:0050731	positive regulation of peptidyl-tyrosine phosphorylation	29/717	144/13311	1,4933,E-06	29
GO:0000819	sister chromatid segregation	29/717	176/13311	3,6898,E-05	29
GO:0070371	ERK1 and ERK2 cascade	29/717	244/13311	2,5679,E-03	29
GO:0006874	cellular calcium ion homeostasis	29/717	311/13311	3,8881,E-02	29
GO:0098742	cell-cell adhesion via plasma-membrane adhesion molecules	28/717	204/13311	5,7634,E-04	28
GO:0061448	connective tissue development	28/717	224/13311	1,7602,E-03	28
GO:0045765	regulation of angiogenesis	28/717	254/13311	7,4110,E-03	28
GO:0040013	negative regulation of locomotion	28/717	261/13311	1,0352,E-02	28
GO:0051047	positive regulation of secretion	28/717	262/13311	1,0712,E-02	28
GO:0051271	negative regulation of cellular component movement	28/717	263/13311	1,0747,E-02	28
GO:0050678	regulation of epithelial cell proliferation	28/717	288/13311	2,7809,E-02	28
GO:000070	mitotic sister chromatid segregation	27/717	152/13311	3,6898,E-05	27
GO:0051783	regulation of nuclear division	27/717	165/13311	8,1519,E-05	27
GO:1904062	regulation of cation transmembrane transport	27/717	255/13311	1,3200,E-02	27
GO:0010721	negative regulation of cell development	27/717	266/13311	2,1156,E-02	27
GO:0050727	regulation of inflammatory response	27/717	269/13311	2,3292,E-02	27
GO:0010959	regulation of metal ion transport	27/717	286/13311	4,3050,E-02	27
GO:0007416	synapse assembly	26/717	146/13311	3,6898,E-05	26
GO:0051216	cartilage development	26/717	169/13311	2,7859,E-04	26
GO:0048705	skeletal system morphogenesis	26/717	191/13311	1,0118,E-03	26
GO:0050803	regulation of synapse structure or activity	26/717	191/13311	1,0118,E-03	26
GO:0060485	mesenchyme development	26/717	233/13311	9,3584,E-03	26
GO:0046942	carboxylic acid transport	26/717	245/13311	1,5073,E-02	26
GO:0015849	organic acid transport	26/717	248/13311	1,7311,E-02	26

GO:0048638	regulation of developmental growth	26/717	274/13311	4,6240,E-02	26
GO:0007088	regulation of mitotic nuclear division	25/717	147/13311	9,9421,E-05	25
GO:0043583	ear development	25/717	169/13311	5,4757,E-04	25
GO:0050807	regulation of synapse organization	25/717	182/13311	1,1802,E-03	25
GO:0090596	sensory organ morphogenesis	25/717	207/13311	4,6459,E-03	25
GO:0070372	regulation of ERK1 and ERK2 cascade	25/717	226/13311	1,1830,E-02	25
GO:0097485	neuron projection guidance	25/717	227/13311	1,2265,E-02	25
GO:0090287	regulation of cellular response to growth factor stimulus	25/717	239/13311	2,0953,E-02	25
GO:0090068	positive regulation of cell cycle process	25/717	253/13311	3,5460,E-02	25
GO:0003002	regionalization	25/717	259/13311	4,4637,E-02	25
GO:0009636	response to toxic substance	24/717	194/13311	4.5052.E-03	24
GO:0043491	protein kinase B signaling	24/717	203/13311	7.3098.E-03	24
GO:0048863	stem cell differentiation	24/717	215/13311	1.2515.E-02	24
GO:0007411	axon quidance	24/717	226/13311	2 1098 E-02	24
GO:0051480	regulation of cytosolic calcium ion concentration	24/717	229/13311	2.3292.E-02	24
GO:1903532	positive regulation of secretion by cell	24/717	244/13311	4 2350 E-02	24
GO:1902850	microtubule cytoskeleton organization involved in mitosis	23/717	141/13311	3 2705 E-04	23
GO:0048588	developmental cell growth	23/717	191/13311	7 3741 E-03	23
GO:0043270	positive regulation of ion transport	23/717	201/13311	1 2045 E-02	23
GO:0060560	developmental growth involved in morphogenesis	23/717	201/13311	1 2045 E-02	23
GO:2000027	regulation of animal organ mornhogenesis	23/717	218/13311	2 5396 E-02	23
GO:0050768	negative regulation of neurogenesis	23/717	210/10011	2,3330,E-02	23
GO:0048762	mesonchymal cell differentiation	23/717	180/13311	1,3477,E-02	20
GO:0022898	regulation of transmembrane transporter activity	22/717	203/13311	2 3412 E-02	22
GO:0022098	positive regulation of extension colour ion concentration	22/717	203/13311	2,3412,E-02	22
GO:0007204	positive regulation of cytosolic calcium for concentration	22/717	207/13311	2,7700,E-02	22
GO:0052409		22/717	215/15511	3,0230,E-02	22
GO:000328		22/717	215/15511	3,9200,E-02	22
GO:0007548	sex unerentiation	22/717	217/10011	4,2017,E-02	22
GO:0000187	activation of MAPK activity	21/717	130/13311	9,2640,E-04	21
GO:0001138	morphogenesis of a branching epithelium	21/717	155/15511	3,1066,E-03	21
GO:0048738	limb development	21/717	100/10011	3,7287,E-03	21
GO:0060173		21/717	100/10011	3,7287,E-03	21
GO:0001763	cell fate commitment	21/717	167/13311	7,0821,E-03	21
GO:0030278	regulation of ossification	21/717	173/13311	1,0510 E-02	21
GO:0007051	spindle organization	21/717	174/13311	1,0310,E-02	21
GO:0050920	regulation of chemotaxis	21/717	180/13311	1,07 12,E-02	21
GO:0051896	regulation of protein kinase B signaling	21/717	180/13311	1,4552 E-02	21
GO:0032412	regulation of potent kinase b signaling	21/717	194/13311	2 7708 E-02	21
GO:0060047	heart contraction	21/717	104/13311	2,7708 E-02	21
GO:0003015	heart process	21/717	203/13311	4 1511 E-02	21
GO:0072073	kidney enithelium development	20/717	116/13311	5 1688 E-04	20
GO:0072075	nanby epitielium development	20/717	118/13311	5,1000,E-04	20
GO:00/2000	branching morphogenesis of an epithelial tube	20/717	128/13311	1 2352 E-03	20
GO:0035107		20/717	120/13311	1,2352,E-03	20
GO:0035107	limb membergeneeis	20/717	121/12211	1,5220,E-03	20
GO-0051202	regulation of cell division	20/717	1/1/12214	3 0576 5-03	20
GO:0001302	inner ear development	20/717	144/12211	3,0570,E-03	20
GO:0040039		20/717	151/10011	5,0009,E-03	20
CO-0070274	cyclic-indicated signaling	20/717	154/10011	7.0034 E 03	20
GO:00/03/4	positive regulation of ERKT and ERKZ cascade	20/717	154/13311	7,0034,E-03	20
GO:009/529	myelolu leukocyte migration	20/717	104/13311	7,0034,E-03	20

GO:0048015	phosphatidylinositol-mediated signaling	20/717	158/13311	8,9577,E-03	20
GO:0048017	inositol lipid-mediated signaling	20/717	162/13311	1,0747,E-02	20
GO:0060348	bone development	20/717	173/13311	1,9806,E-02	20
GO:0045665	negative regulation of neuron differentiation	20/717	183/13311	3,0039,E-02	20
GO:0001649	osteoblast differentiation	20/717	193/13311	4,7445,E-02	20
GO:0051983	regulation of chromosome segregation	19/717	97/13311	2,5419,E-04	19
GO:0007292	female gamete generation	19/717	113/13311	8,1773,E-04	19
GO:0010469	regulation of signaling receptor activity	19/717	119/13311	1,3732,E-03	19
GO:0030595	leukocyte chemotaxis	19/717	161/13311	2,0322,E-02	19
GO:0050679	positive regulation of epithelial cell proliferation	19/717	164/13311	2,3186,E-02	19
GO:0031214	biomineral tissue development	18/717	125/13311	4,5297,E-03	18
GO:0110148	biomineralization	18/717	125/13311	4,5297,E-03	18
GO:0001764	neuron migration	18/717	127/13311	5,3577,E-03	18
GO:0035637	multicellular organismal signaling	18/717	133/13311	7,9236,E-03	18
GO:0019722	calcium-mediated signaling	18/717	153/13311	2,4282,E-02	18
GO:0042445	hormone metabolic process	18/717	155/13311	2,6767,E-02	18
GO:0010951	negative regulation of endopeptidase activity	18/717	158/13311	3,0983,E-02	18
GO:0006814	sodium ion transport	18/717	162/13311	3,8523,E-02	18
GO:0009952	anterior/posterior pattern specification	18/717	163/13311	3,9785,E-02	18
GO:0010466	negative regulation of peptidase activity	18/717	163/13311	3,9785,E-02	18
GO:0061326	renal tubule development	17/717	76/13311	1,4338,E-04	17
GO:0001823	mesonephros development	17/717	86/13311	4,3455,E-04	17
GO:0072009	nephron epithelium development	17/717	87/13311	4,9634,E-04	17
GO:0002062	chondrocyte differentiation	17/717	99/13311	1,3732,E-03	17
GO:0030326	embryonic limb morphogenesis	17/717	112/13311	3,7883,E-03	17
GO:0035113	embryonic appendage morphogenesis	17/717	112/13311	3,7883,E-03	17
GO:2000241	regulation of reproductive process	17/717	120/13311	7,0821,E-03	17
GO:0014065	phosphatidylinositol 3-kinase signaling	17/717	125/13311	1,0021,E-02	17
GO:0006959	humoral immune response	17/717	128/13311	1,1830,E-02	17
GO:0051897	positive regulation of protein kinase B signaling	17/717	130/13311	1,3094,E-02	17
GO:0045931	positive regulation of mitotic cell cycle	17/717	141/13311	2,4771,E-02	17
GO:0003205	cardiac chamber development	17/717	144/13311	2,8521,E-02	17
GO:0060993	kidney morphogenesis	16/717	79/13311	5,4757,E-04	16
GO:0042471	ear morphogenesis	16/717	93/13311	1,9311,E-03	16
GO:0030282	bone mineralization	16/717	99/13311	3,1088,E-03	16
GO:0007052	mitotic spindle organization	16/717	115/13311	1,0712,E-02	16
GO:2001257	regulation of cation channel activity	16/717	135/13311	3,5019,E-02	16
GO:0140013	meiotic nuclear division	16/717	137/13311	3,9013,E-02	16
GO:0061333	renal tubule morphogenesis	15/717	64/13311	2,7859,E-04	15
GO:0072080	nephron tubule development	15/717	74/13311	7,5522,E-04	15
GO:0001657	ureteric bud development	15/717	82/13311	1,7565,E-03	15
GO:0072163	mesonephric epithelium development	15/717	83/13311	1,8843,E-03	15
GO:0072164	mesonephric tubule development	15/717	83/13311	1,8843,E-03	15
GO:0051304	chromosome separation	15/717	85/13311	2,2575,E-03	15
GO:0048565	digestive tract development	15/717	102/13311	9,5156,E-03	15
GO:0055123	digestive system development	15/717	111/13311	1,7260,E-02	15
GO:0071772	response to BMP	15/717	124/13311	3,7681,E-02	15
GO:0071773	cellular response to BMP stimulus	15/717	124/13311	3,7681,E-02	15

GO:1901890	positive regulation of cell junction assembly	14/717	77/13311	2,6653,E-03	14
GO:0033045	regulation of sister chromatid segregation	14/717	78/13311	2,9357,E-03	14
GO:0051963	regulation of synapse assembly	14/717	79/13311	3,1088,E-03	14
GO:0120254	olefinic compound metabolic process	14/717	83/13311	4,5819,E-03	14
GO:0014066	regulation of phosphatidylinositol 3-kinase signaling	14/717	101/13311	1,9368,E-02	14
GO:1901343	negative regulation of vasculature development	14/717	107/13311	2,7434,E-02	14
GO:0048706	embryonic skeletal system development	14/717	112/13311	3,7812,E-02	14
GO:0035725	sodium ion transmembrane transport	14/717	115/13311	4,5207,E-02	14
GO:0006865	amino acid transport	14/717	116/13311	4,7385,E-02	14
GO:0030071	regulation of mitotic metaphase/anaphase transition	13/717	54/13311	5,4757,E-04	13
GO:1902099	regulation of metaphase/anaphase transition of cell cycle	13/717	54/13311	5,4757,E-04	13
GO:0007091	metaphase/anaphase transition of mitotic cell cycle	13/717	56/13311	6,6659,E-04	13
GO:0044784	metaphase/anaphase transition of cell cycle	13/717	56/13311	6,6659,E-04	13
GO:0010965	regulation of mitotic sister chromatid separation	13/717	57/13311	7.5789.E-04	13
GO:0051306	mitotic sister chromatid separation	13/717	60/13311	1,1421,E-03	13
GO:0051785	positive regulation of nuclear division	13/717	60/13311	1.1421.E-03	13
GO:1905818	regulation of chromosome separation	13/717	60/13311	1,1421.E-03	13
GO:0072088	nephron epithelium morphogenesis	13/717	62/13311	1,4391.E-03	13
GO:0072028	nephron morphogenesis	13/717	64/13311	1.8206.E-03	13
GO:0033047	regulation of mitotic sister chromatid segregation	13/717	68/13311	2,7843,E-03	13
GO:0110110	positive regulation of animal organ morphogenesis	13/717	70/13311	3.3035.E-03	13
GO:0048864	stem cell development	13/717	71/13311	3.6836.E-03	13
GO:0014033	neural crest cell differentiation	13/717	75/13311	5,5793,E-03	13
GO:0061097	regulation of protein tyrosine kinase activity	13/717	80/13311	8.9577.E-03	13
GO:0003014	renal system process	13/717	92/13311	2.2219.E-02	13
GO:0034754	cellular hormone metabolic process	13/717	94/13311	2,2210,202	13
GO:0016525	negative regulation of angiogenesis	13/717	96/13311	2,8237 E-02	13
GO:2000181	negative regulation of blood vessel morphogenesis	13/717	98/13311	3.2289.E-02	13
GO:0031644	regulation of pervous system process	13/717	99/13311	3.5063.E-02	13
GO:0098754	detoxification	13/717	103/13311	4.5207.E-02	13
GO:0051261	protein depolymerization	13/717	104/13311	4.7445.E-02	13
GO:0045840	positive regulation of mitotic nuclear division	12/717	49/13311	7.5789.E-04	12
GO:0060675	ureteric bud morphogenesis	12/717	53/13311	1.3732.E-03	12
GO:0072171	mesonephric tubule morphogenesis	12/717	54/13311	1,5390,E-03	12
GO:0072078	nephron tubule morphogenesis	12/717	60/13311	3,1088,E-03	12
GO:0014032	neural crest cell development	12/717	68/13311	7,3376,E-03	12
GO:0014031	mesenchymal cell development	12/717	70/13311	8,9664,E-03	12
GO:0014068	positive regulation of phosphatidylinositol 3-kinase signaling	12/717	70/13311	8,9664,E-03	12
GO:0007215	glutamate receptor signaling pathway	12/717	71/13311	9,8629,E-03	12
GO:0048477	oogenesis	12/717	71/13311	9,8629,E-03	12
GO:0006690	icosanoid metabolic process	12/717	74/13311	1,2387,E-02	12
GO:0042472	inner ear morphogenesis	12/717	74/13311	1,2387,E-02	12
GO:0070167	regulation of biomineral tissue development	12/717	76/13311	1,4552,E-02	12
GO:0110149	regulation of biomineralization	12/717	76/13311	1,4552,E-02	12
GO:0060349	bone morphogenesis	12/717	77/13311	1,5851,E-02	12
GO:0001676	long-chain fatty acid metabolic process	12/717	81/13311	2,2219,E-02	12
GO:0033559	unsaturated fatty acid metabolic process	12/717	81/13311	2,2219,E-02	12
GO:0010771	negative regulation of cell morphogenesis involved in differentiation	12/717	87/13311	3,3634,E-02	12
GO:0051965	positive regulation of synapse assembly	11/717	46/13311	1,5922,E-03	11
GO:0001658	branching involved in ureteric bud morphogenesis	11/717	47/13311	1,8246,E-03	11
GO:0061098	positive regulation of protein tyrosine kinase activity	11/717	48/13311	2,0655,E-03	11

GO:0051784	negative regulation of nuclear division	11/717	52/13311	3,3712,E-03	11
GO:0007422	peripheral nervous system development	11/717	64/13311	1,2387,E-02	11
GO:0030500	regulation of bone mineralization	11/717	64/13311	1,2387,E-02	11
GO:0051781	positive regulation of cell division	11/717	65/13311	1,3689,E-02	11
GO:0001656	metanephros development	11/717	70/13311	2,1654,E-02	11
GO:0050000	chromosome localization	11/717	72/13311	2,4868,E-02	11
GO:0051303	establishment of chromosome localization	11/717	72/13311	2.4868.E-02	11
GO:0019233	sensory perception of pain	11/717	73/13311	2.6767.E-02	11
GO:0034308	primary alcohol metabolic process	11/717	73/13311	2.6767 E-02	11
GO:0006029	proteoglycan metabolic process	11/717	74/13311	2,8521,E-02	11
GO:0060191	regulation of linase activity	11/717	74/13311	2,8521,E-02	11
GO:0033046	negative regulation of sister chromatid segregation	10/717	41/13311	2,3966 E-03	10
GO:0051985	negative regulation of chromosome segregation	10/717	41/13311	2,3966 E-03	10
GO:0009994		10/717	43/13311	2,0000,E-00	10
GO:0001755	neural creat cell migration	10/717	45/13311	4 1769 E-03	10
GO:0045839	negative regulation of mitotic nuclear division	10/717	48/13311	6.3474.E-03	10
GO:1900449	regulation of glutamate receptor signaling pathway	10/717	48/13311	6.3474 E-03	10
GO:0051145	smooth muscle cell differentiation	10/717	54/13311	1 2265 E-02	10
GO:0001708	cell fate specification	10/717	55/13311	1,2200,E-02	10
GO:0099601	regulation of neurotransmitter recentor activity	10/717	56/13311	1,0400,E-02	10
GO:0051310	metanhase plate congression	10/717	50/13311	2 0496 E-02	10
GO:0050771	negative regulation of avonogenesis	10/717	61/13311	2,0430,E-02	10
GO:0042102	negative regulation of T cell proliferation	10/717	66/13311	2,5045,E-02	10
GO:0001522	positive regulation of 1 cell promeration	10/717	67/12211	3,0505,E-02	10
GO:0001525	regulation of cartilage development	10/717	67/10011	3,9525,E-02	10
GO:0007035		10/717	60/10011	3,9525,E-02	10
GO:0035418	protein localization to synapse	10/717	09/13311	4,6929,E-02	10
GO:0045132		10/717	70/13311	4,9991,E-02	10
GO:0002063		9/717	31/13311	1,6255,E-03	9
GO:0007094	mitotic spindle assembly checkpoint	9/717	33/13311	2,2575,E-03	9
GO:0031577	spindle checkpoint	9/717	33/13311	2,2575,E-03	9
GO:0071173	spindle assembly checkpoint	9/717	33/13311	2,2575,E-03	9
GO:0071174	mitotic spindle checkpoint	9/717	33/13311	2,2575,E-03	9
GO:0045841	negative regulation of mitotic metaphase/anaphase transition	9/717	35/13311	3,1088,E-03	9
GO:1902100	negative regulation of metaphase/anaphase transition of cell cycle	9/717	35/13311	3,1088,E-03	9
GO:1905819	negative regulation of chromosome separation	9/717	36/13311	3,6836,E-03	9
GO:2000816	negative regulation of mitotic sister chromatid separation	9/717	36/13311	3,6836,E-03	9
GO:0033048	negative regulation of mitotic sister chromatid segregation	9/717	39/13311	5,9212,E-03	9
GO:0048599	oocyte development	9/717	40/13311	6,9355,E-03	9
GO:0019226	transmission of nerve impulse	9/717	45/13311	1,2387,E-02	9
GO:0051653	spindle localization	9/717	47/13311	1,5801,E-02	9
GO:0050922	negative regulation of chemotaxis	9/717	48/13311	1,7839,E-02	9
GO:0032330	regulation of chondrocyte differentiation	9/717	51/13311	2,3845,E-02	9
GO:0019730	antimicrobial humoral response	9/717	52/13311	2,6097,E-02	9
GO:0042733	embryonic digit morphogenesis	9/717	54/13311	3,1419,E-02	9
GO:0030042	actin filament depolymerization	9/717	55/13311	3,5266,E-02	9
GO:0046427	positive regulation of receptor signaling pathway via JAK-STAT	9/717	59/13311	4,9711,E-02	9
GO:2000310	regulation of NMDA receptor activity	8/717	27/13311	2,8588,E-03	8
GO:0019369	arachidonic acid metabolic process	8/717	33/13311	8,1474,E-03	8

GO:0046456	icosanoid biosynthetic process	8/717	34/13311	9,5156,E-03	8
GO:0006584	catecholamine metabolic process	8/717	35/13311	1,0712,E-02	8
GO:0009712	catechol-containing compound metabolic process	8/717	35/13311	1,0712,E-02	8
GO:0040001	establishment of mitotic spindle localization	8/717	35/13311	1,0712,E-02	8
GO:0042572	retinol metabolic process	8/717	35/13311	1,0712,E-02	8
GO:0099054	presynapse assembly	8/717	35/13311	1,0712,E-02	8
GO:0043090	amino acid import	8/717	36/13311	1,2265,E-02	8
GO:0035850	epithelial cell differentiation involved in kidney development	8/717	38/13311	1,5816,E-02	8
GO:0099172	presynapse organization	8/717	38/13311	1,5816,E-02	8
GO:0071526	semaphorin-plexin signaling pathway	8/717	39/13311	1,8343,E-02	8
GO:0050919	negative chemotaxis	8/717	40/13311	2,0910,E-02	8
GO:0006636	unsaturated fatty acid biosynthetic process	8/717	43/13311	2,8067,E-02	8
GO:0051293	establishment of spindle localization	8/717	43/13311	2,8067,E-02	8
GO:0090183	regulation of kidney development	8/717	44/13311	3,1192,E-02	8
GO:0061005	cell differentiation involved in kidney development	8/717	46/13311	3,9288,E-02	8
GO:0060688	regulation of morphogenesis of a branching structure	8/717	48/13311	4,7445,E-02	8
GO:1905606	regulation of presynapse assembly	7/717	22/13311	4,0935,E-03	7
GO:0099174	regulation of presynapse organization	7/717	23/13311	5,1876,E-03	7
GO:0002828	regulation of type 2 immune response	7/717	24/13311	6,3595,E-03	7
GO:1902668	negative regulation of axon guidance	7/717	26/13311	9,3584,E-03	7
GO:0007143	female meiotic nuclear division	7/717	27/13311	1,0712,E-02	7
GO:0098801	regulation of renal system process	7/717	27/13311	1,0712,E-02	7
GO:0042092	type 2 immune response	7/717	29/13311	1,4552,E-02	7
GO:2000273	positive regulation of signaling receptor activity	7/717	29/13311	1,4552,E-02	7
GO:0048011	neurotrophin TRK receptor signaling pathway	7/717	31/13311	2,0322,E-02	7
GO:0090184	positive regulation of kidney development	7/717	31/13311	2,0322,E-02	7
GO:0089718	amino acid import across plasma membrane	7/717	32/13311	2,3141,E-02	7
GO:0008608	attachment of spindle microtubules to kinetochore	7/717	33/13311	2,5396,E-02	7
GO:0009187	cyclic nucleotide metabolic process	7/717	33/13311	2,5396,E-02	7
GO:0030261	chromosome condensation	7/717	34/13311	2,8521,E-02	7
GO:0032663	regulation of interleukin-2 production	7/717	34/13311	2,8521,E-02	7
GO:0045103	intermediate filament-based process	7/717	36/13311	3,7681,E-02	7
GO:0038179	neurotrophin signaling pathway	7/717	37/13311	4,2218,E-02	7
GO:0006692	prostanoid metabolic process	7/717	38/13311	4,6998,E-02	7
GO:0006693	prostaglandin metabolic process	7/717	38/13311	4,6998,E-02	7
GO:0032623	interleukin-2 production	7/717	38/13311	4,6998,E-02	7
GO:1900047	negative regulation of hemostasis	7/717	38/13311	4,6998,E-02	7
GO:1902667	regulation of axon guidance	7/717	38/13311	4,6998,E-02	7
GO:0001502	cartilage condensation	6/717	13/13311	1,8206,E-03	6
GO:0098743	cell aggregation	6/717	14/13311	2,4852,E-03	6
GO:0032753	positive regulation of interleukin-4 production	6/717	15/13311	3,3035,E-03	6
GO:0044062	regulation of excretion	6/717	17/13311	5,9185,E-03	6
GO:0061217	regulation of mesonephros development	6/717	19/13311	9,5156,E-03	6
GO:0007263	nitric oxide mediated signal transduction	6/717	20/13311	1,1522,E-02	6
GO:0019934	cGMP-mediated signaling	6/717	21/13311	1,3722,E-02	6
GO:0032673	regulation of interleukin-4 production	6/717	21/13311	1,3722,E-02	6
GO:0032633	interleukin-4 production	6/717	22/13311	1,6830,E-02	6

GO:0001516	prostaglandin biosynthetic process	6/717	23/13311	2,0484,E-02	6
GO:0046457	prostanoid biosynthetic process	6/717	23/13311	2,0484,E-02	6
GO:0048843	negative regulation of axon extension involved in axon guidance	6/717	24/13311	2,3412,E-02	6
GO:0007618	mating	6/717	26/13311	3,1419,E-02	6
GO:0035115	embryonic forelimb morphogenesis	6/717	29/13311	4,8395,E-02	6
GO:0048841	regulation of axon extension involved in axon guidance	6/717	29/13311	4,8395,E-02	6
GO:1905332	positive regulation of morphogenesis of an epithelium	6/717	29/13311	4,8395,E-02	6
GO:0032634	interleukin-5 production	5/717	11/13311	5,3661,E-03	5
GO:0032674	regulation of interleukin-5 production	5/717	11/13311	5,3661,E-03	5
GO:0032736	positive regulation of interleukin-13 production	5/717	11/13311	5,3661,E-03	5
GO:0051386	regulation of neurotrophin TRK receptor signaling pathway	5/717	11/13311	5,3661,E-03	5
GO:0045741	positive regulation of epidermal growth factor-activated receptor activity	5/717	12/13311	7,4814,E-03	5
GO:0032656	regulation of interleukin-13 production	5/717	13/13311	1,0394,E-02	5
GO:0051988	regulation of attachment of spindle microtubules to kinetochore	5/717	13/13311	1,0394,E-02	5
GO:0002830	positive regulation of type 2 immune response	5/717	14/13311	1,2999,E-02	5
GO:0042107	cytokine metabolic process	5/717	14/13311	1,2999,E-02	5
GO:0032616	interleukin-13 production	5/717	15/13311	1,6830,E-02	5
GO:0035813	regulation of renal sodium excretion	5/717	15/13311	1,6830,E-02	5
GO:0030539	male genitalia development	5/717	16/13311	2,1333,E-02	5
GO:0032703	negative regulation of interleukin-2 production	5/717	16/13311	2,1333,E-02	5
GO:0045109	intermediate filament organization	5/717	16/13311	2,1333,E-02	5
GO:0061213	positive regulation of mesonephros development	5/717	16/13311	2,1333,E-02	5
GO:0035812	renal sodium excretion	5/717	17/13311	2,5396,E-02	5
GO:0042104	positive regulation of activated T cell proliferation	5/717	17/13311	2,5396,E-02	5
GO:0051382	kinetochore assembly	5/717	17/13311	2,5396,E-02	5
GO:0090189	regulation of branching involved in ureteric bud morphogenesis	5/717	17/13311	2,5396,E-02	5
GO:0030728	ovulation	5/717	18/13311	3,0983,E-02	5
GO:0060065	uterus development	5/717	18/13311	3,0983,E-02	5
GO:0008356	asymmetric cell division	5/717	19/13311	3,8184,E-02	5
GO:0002825	regulation of T-helper 1 type immune response	5/717	20/13311	4,5207,E-02	5
GO:0032332	positive regulation of chondrocyte differentiation	5/717	20/13311	4,5207,E-02	5
GO:0048745	smooth muscle tissue development	5/717	20/13311	4,5207,E-02	5
GO:0009713	catechol-containing compound biosynthetic process	4/717	10/13311	2,3186,E-02	4
GO:0019371	cyclooxygenase pathway	4/717	10/13311	2,3186,E-02	4
GO:0035815	positive regulation of renal sodium excretion	4/717	10/13311	2,3186,E-02	4
GO:0042423	catecholamine biosynthetic process	4/717	10/13311	2,3186,E-02	4
GO:0042035	regulation of cytokine biosynthetic process	4/717	11/13311	2,9938,E-02	4
GO:0007077	mitotic nuclear envelope disassembly	4/717	12/13311	3,9288,E-02	4
GO:0007620	copulation	4/717	12/13311	3,9288,E-02	4
GO:0045064	T-helper 2 cell differentiation	4/717	12/13311	3,9288,E-02	4
GO:0072160	nephron tubule epithelial cell differentiation	4/717	12/13311	3,9288,E-02	4
GO:0023019	signal transduction involved in regulation of gene expression	4/717	13/13311	4,9633,E-02	4
GO:0042089	cytokine biosynthetic process	4/717	13/13311	4,9633,E-02	4

Molecular Function (MF)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0048018	receptor ligand activity	49/720	284/13641	8,6606,E-11	49
GO:0030546	signaling receptor activator activity	49/720	288/13641	8,6606,E-11	49
GO:0030545	receptor regulator activity	49/720	306/13641	5,9808,E-10	49
GO:0003779	actin binding	36/720	368/13641	1,0305,E-02	36
GO:0005539	glycosaminoglycan binding	31/720	169/13641	1,7492,E-07	31
GO:0015631	tubulin binding	31/720	323/13641	2,4453,E-02	31
GO:1901681	sulfur compound binding	28/720	211/13641	4,5048,E-04	28
GO:0008017	microtubule binding	28/720	238/13641	2,8208,E-03	28
GO:0004930	G protein-coupled receptor activity	25/720	252/13641	3,7384,E-02	25
GO:0008201	heparin binding	23/720	127/13641	2,6105,E-05	23
GO:0001664	G protein-coupled receptor binding	22/720	193/13641	1,5814,E-02	22
GO:0008083	growth factor activity	21/720	112/13641	4,0480,E-05	21
GO:0005201	extracellular matrix structural constituent	21/720	133/13641	4,5048,E-04	21
GO:0005125	cytokine activity	21/720	134/13641	4,5067,E-04	21
GO:0005126	cytokine receptor binding	20/720	177/13641	2,4453,E-02	20
GO:0004866	endopeptidase inhibitor activity	18/720	99/13641	3,7724,E-04	18
GO:0030414	peptidase inhibitor activity	18/720	101/13641	4,4358,E-04	18
GO:0061135	endopeptidase regulator activity	18/720	107/13641	6,8307,E-04	18
GO:0061134	peptidase regulator activity	18/720	137/13641	1,0305,E-02	18
GO:0070851	growth factor receptor binding	16/720	113/13641	1,0305,E-02	16
GO:0005244	voltage-gated ion channel activity	16/720	114/13641	1,0305,E-02	16
GO:0022832	voltage-gated channel activity	16/720	114/13641	1,0305,E-02	16
GO:0046906	tetrapyrrole binding	14/720	92/13641	1,0305,E-02	14
GO:0020037	heme binding	13/720	84/13641	1,2961,E-02	13
GO:0004867	serine-type endopeptidase inhibitor activity	11/720	49/13641	1,9964,E-03	11
GO:0003777	microtubule motor activity	10/720	63/13641	3,3734,E-02	10
GO:0045499	chemorepellent activity	8/720	26/13641	1,9964,E-03	8
GO:0017147	Wnt-protein binding	8/720	29/13641	4,1682,E-03	8
GO:0030215	semaphorin receptor binding	6/720	21/13641	1,6117,E-02	6
GO:0008191	metalloendopeptidase inhibitor activity	5/720	13/13641	1,1444,E-02	5
GO:0004653	polypeptide N-acetylgalactosaminyltransferase activity	5/720	16/13641	2,4453,E-02	5
GO:0005001	transmembrane receptor protein tyrosine phosphatase activity	5/720	16/13641	2,4453,E-02	5
GO:0005540	hyaluronic acid binding	5/720	16/13641	2,4453,E-02	5
GO:0019198	transmembrane receptor protein phosphatase activity	5/720	16/13641	2,4453,E-02	5
GO:0016638	oxidoreductase activity, acting on the CH-NH2 group of donors	5/720	17/13641	3,2145,E-02	5
GO:0005104	fibroblast growth factor receptor binding	5/720	18/13641	3,9045,E-02	5

Anexo 4. Términos GO enriquecidos para el conjunto de datos KO. El identificador de la categoría GO (ID) y la descripción (Description) del término enriquecido se incluyen en la tabla. Gene Ratio se refiere a la relación entre k/n, donde n es el tamaño de la lista de genes de interés y k es el número de genes dentro de esa lista que están anotados en el conjunto de genes. BgRatio se refiere a la distribución del background que consiste en M/N, donde N es el número total de genes en la distribución de fondo (background) y M es el número de genes dentro de la distribución que están anotados en relación al conjunto de genes de interés. p.adjust se refiere al valor p ajustado por pruebas múltiples (corrección FDR). El conteo (Count) es el número neto de genes que contribuyen a la categoría sobrerrepresentada.

Cellular Component (CC)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0005743	mitochondrial inner membrane	265/8776	464/20472	6,7955,E-08	265
GO:0005759	mitochondrial matrix	247/8776	390/20472	1,0433,E-13	247
GO:0005925	focal adhesion	244/8776	424/20472	1,2120,E-07	244
GO:0070161	anchoring junction	240/8776	481/20472	3,2646,E-02	240
GO:0043025	neuronal cell body	214/8776	407/20472	2,9701,E-03	214
GO:0016604	nuclear body	213/8776	339/20472	2,8431,E-11	213
GO:0005765	lysosomal membrane	193/8776	373/20472	1,4115,E-02	193
GO:0030424	axon	192/8776	361/20472	2,9701,E-03	192
GO:0098978	glutamatergic synapse	192/8776	373/20472	1,7614,E-02	192
GO:0031410	cytoplasmic vesicle	185/8776	325/20472	2,6321,E-05	185
GO:0005788	endoplasmic reticulum lumen	181/8776	306/20472	1,1217,E-06	181
GO:0005764	lysosome	178/8776	309/20472	1,5733,E-05	178
GO:0005874	microtubule	171/8776	326/20472	1,3765,E-02	171
GO:0005768	endosome	170/8776	317/20472	3,7205,E-03	170
GO:0014069	postsynaptic density	147/8776	267/20472	2,9161,E-03	147
GO:0031012	extracellular matrix	146/8776	259/20472	7,7487,E-04	146
GO:0015629	actin cytoskeleton	144/8776	258/20472	1,5631,E-03	144
GO:0005694	chromosome	137/8776	256/20472	1,7099,E-02	137
GO:0045121	membrane raft	135/8776	251/20472	1,4608,E-02	135
GO:0031965	nuclear membrane	134/8776	241/20472	3,0075,E-03	134
GO:0005929	cilium	134/8776	242/20472	3,5612,E-03	134
GO:0010008	endosome membrane	133/8776	253/20472	3,6915,E-02	133
GO:0005802	trans-Golgi network	108/8776	191/20472	5,5465,E-03	108
GO:0005911	cell-cell junction	106/8776	192/20472	1,7173,E-02	106
GO:0005741	mitochondrial outer membrane	105/8776	191/20472	2,1172,E-02	105
GO:0030027	lamellipodium	104/8776	192/20472	3,6064,E-02	104
GO:0005814	centriole	102/8776	159/20472	9,4041,E-06	102
GO:0005815	microtubule organizing center	98/8776	160/20472	2,7091,E-04	98
GO:0036064	ciliary basal body	98/8776	168/20472	2,9701,E-03	98

GO:0043197	dendritic spine	98/8776	168/20472	2,9701,E-03	98
GO:0001650	fibrillar center	93/8776	149/20472	1,7198,E-04	93
GO:0031966	mitochondrial membrane	89/8776	157/20472	1,7121,E-02	89
GO:0005819	spindle	87/8776	148/20472	4,5136,E-03	87
GO:0005770	late endosome	83/8776	148/20472	3,3000,E-02	83
GO:0016363	nuclear matrix	78/8776	129/20472	3,3328,E-03	78
GO:0055037	recycling endosome	77/8776	133/20472	1,7173,E-02	77
GO:0000922	spindle pole	75/8776	129/20472	1,7173,E-02	75
GO:0005777	peroxisome	69/8776	112/20472	3,7205,E-03	69
GO:0042383	sarcolemma	68/8776	106/20472	1,0554,E-03	68
GO:0016605	PML body	67/8776	106/20472	2,1309,E-03	67
GO:0034451	centriolar satellite	67/8776	117/20472	4,3894,E-02	67
GO:0000151	ubiquitin ligase complex	66/8776	115/20472	4,3894,E-02	66
GO:0005604	basement membrane	62/8776	94/20472	7,7487,E-04	62
GO:0043202	lysosomal lumen	61/8776	96/20472	3,2719,E-03	61
GO:0042470	melanosome	61/8776	103/20472	2,8636,E-02	61
GO:0001726	ruffle	60/8776	101/20472	2,8636,E-02	60
GO:0044297	cell body	53/8776	87/20472	2,7575,E-02	53
GO:0030670	phagocytic vesicle membrane	50/8776	74/20472	2,1309,E-03	50
GO:0030175	filopodium	50/8776	81/20472	2,6600,E-02	50
GO:0005901	caveola	49/8776	77/20472	1,4115,E-02	49
GO:0033116	endoplasmic reticulum-Golgi intermediate compartment membrane	49/8776	79/20472	2,6466,E-02	49
GO:0035861	site of double-strand break	47/8776	77/20472	4,3753,E-02	47
GO:0001725	stress fiber	45/8776	73/20472	4,2949,E-02	45
GO:0005762	mitochondrial large ribosomal subunit	41/8776	57/20472	1,5023,E-03	41
GO:0005747	mitochondrial respiratory chain complex I	36/8776	50/20472	3,5612,E-03	36
GO:0005782	peroxisomal matrix	35/8776	53/20472	3,3134,E-02	35
GO:0005876	spindle microtubule	30/8776	44/20472	3,6966,E-02	30
GO:0032839	dendrite cytoplasm	26/8776	35/20472	1,7173,E-02	26
GO:0090734	site of DNA damage	23/8776	31/20472	3,3134,E-02	23
GO:0070469	respiratory chain	22/8776	30/20472	4,9371,E-02	22
GO:0005652	nuclear lamina	11/8776	11/20472	3,3019,E-02	11

Biological Process (BP)

GO.0016667 protein ubquination 2778342 469110562 21600,E-02 257 GO.00175031 protein transport 2448342 44911226 3,0905,E-04 241 GO.0015031 protein transport 2448342 45911256 3,4902,E-02 233 GO.00015031 cell division 2148342 35911256 3,4902,E-02 233 GO.0001704 cell division 2128342 35911256 3,6902,E-02 216 GO.0001704 regulation of algoptic process 1788342 23911256 1,7242,E-02 176 GO.0000251 DNA regular 1708342 23911256 3,9902,E-01 157 GO.0001726 regulation of cell cycle 1708342 23911256 3,9902,E-01 150 GO.0001726 response to drug 1563342 23911256 1,9904,E-03 150 GO.0001727 cell migration 1593342 23911256 1,9904,E-03 150 GO.0001725 entomatin response to drug 1503342 25911256 2,4944,E-02 150	ID	Description	GeneRatio	BgRatio	p.adjust	Count
GC 0007599 nervous system development 2441832 41419258 24191254 41491256 241 GC 0007501 intracellular ispal transport 2131832 45091256 340012560 212 GC 00050700 negulation of calapica chivino 213832 23591256 3.5912.506 212 GC 00050700 negulation of calapica chivino 2098342 237611256 7.198.505 175 GC 00050700 negulation of calapica chivino 1768484 23011256 1.4728.420 2.998.501 176 GC 00050730 negulation of calapica chivino 16638342 22761256 3.758.51.60 190 GC 00050740 cellular response to GNA 1658342 22619256 2.758.51.60 190 GC 00050740 positive regulation of calimigration 1503432 25619256 3.903.51.61 130 GC 00050740 positive regulation of regulation fragmation 1503432 25619256 2.464.52.61 141 GC 00050740 positive regulation of regulation fragmation 1503432 25619256 2.464.52.61 150	GO:0016567	protein ubiquitination	257/8342	496/19256	2,1600,E-02	257
GO.0015031 prolein transpolt 2418422 4391/205 4,7807.E-04 241 GO.0015505 intracellular rigoult ransfunction 2348342 3601/205 3,4006.E-04 212 GO.0015706 regulation of calarbjć activity 2088422 3501/255 3,790-E-04 290 GO.0005708 positive regulation of calarbjć activity 2088422 3241/252 2,790-E-04 290 GO.00057172 regulation of calarbjć activity 2081/952 2,474/E-02 170 GO.00057172 regulation of cal rigration 1983842 2241/1225 2,768.E-03 165 GO.00057174 cellular response to drug 1668342 22817925 2,768.E-03 169 GO.0005747 positive regulation of cal rigration 1507842 22817925 2,464.E-02 171 GO.0005747 positive regulation of relargic activity 1308342 22917925 2,464.E-03 161 GO.0005125 chromalin assembry 1308342 22917925 2,464.E-03 120 GO.000526 positive regulation of 1-kappa B transcrighon factor activity	GO:0007399	nervous system development	244/8342	414/19256	3,9096,E-07	244
GC 0035565 chinaculuar signal randuction 2348142 44001256 3,0002-02 23 GC 00051701 cell cycle 2148542 359119256 3,5612,E-64 214 GC 0005705 regulation of catalyic activity 2088542 376119256 7,2696,E-64 214 GC 00050750 regulation of catalyic activity 2088142 376119256 2,4464.4 271 GC 00050751 regulation of call cycle 1708342 234119256 2,7464.6 170 GC 00050753 regulation of call cycle 1688342 27191526 2,7664.6 180 GC 00050375 positive regulation of call migration 1508342 268119256 2,4644.E-04 150 GC 00005175 china migration 1508342 226119256 2,4645.E-05 130 GC 00005175 china migration 1478342 226119256 2,4645.E-05 130 GC 00005174 positive regulation of protein hyposhrytation 1488342 249119256 2,4664.E-02 141 GC 00005174 positive regulation of protein hyposhrytation 118834	GO:0015031	protein transport	241/8342	439/19256	4,7687,E-04	241
GC.0007391 cell orycle 214 GC.00070749 regulation of catalytic activity 208/8542 35/91/256 7.299.E-04 29 GC.00050790 regulation of catalytic activity 208/8542 23/91/256 7.299.E-04 29 GC.00050716 positive regulation of all orycle 170/8542 23/91/256 2.775.E-05 170 GC.000507172 regulation of call orycle 170/8542 23/91/256 2.756.E-05 150 GC.00064243 positive regulation of odi rigulation 168/8542 2.96/1256 2.464.E-02 150 GC.0000742 positive regulation of odi rigulation 150/8542 2.269/1256 2.464.E-02 161 GC.0000742 positive regulation of protein phosphatignalling 12/8342 2.29/1256 2.464.E-02 161 GC.0000742 positive regulation of protein phosphatignalling 12/8342 12/97.E-26 16.465.E-3 170 GC.0000756 positive regulation of protein phosphatignaling 12/8342 12/97.E-26 2.464.E-02 161 GC.0000776 positive regulation of protein phosphatignaling	GO:0035556	intracellular signal transduction	233/8342	450/19256	3,9602,E-02	233
GO.007749 col cycle 219 GO.004306 positive regulation of calpicit activity 22981522 37619256 7,299.E.64 209 GO.004306 positive regulation of calpicit process 1788342 22419256 1,772.E.62 178 GO.000574 collular response to drug 1668342 22719256 2,745.E.63 165 GO.000574 collular response to drug 1668342 22819256 2,645.E.63 165 GO.0005740 positive regulation of call ingration 1508342 22819256 2,645.E.63 165 GO.0001747 nell ingration 1508342 22819256 1,315.E.62 174 GO.0001743 positive regulation of protein phosphorylation 1418342 22919256 1,3315.E.62 121 GO.0001323 positive regulation of protein phosphorylation 1418342 22919256 1,646.E.62 131 GO.0001323 positive regulation of protein phosphorylation 118842 22919256 1,646.E.62 131 GO.0001323 positive regulation of protein phosphorylatin 1084322 19419256	GO:0051301	cell division	214/8342	382/19256	3,4906,E-04	214
GO:005790 regulation of calapity cathwy 208732 328/1925 1,728,1-20 178 GO:000521 DNA repair 175,158,242 244/19250 2,748,1-20 170 GO:0005726 regulation of acoptolic process 179,178,242 2414,1250 2,748,1-20 170 GO:0005776 regulation of calapity cathwy 159,8742 22761250 3,752,1-06 159 GO:0005770 positive regulation of calingration 150,8742 22701250 6,434,1-04 150 GO:000525 calingration 150,8742 22719250 6,483,1-04 147 GO:000525 chromatin organization 141,7842 22019250 6,353,1-03 150 GO:000527 gointive regulation of broten phosphorylation 118,8742 22019250 6,353,1-03 150 GO:000528 chromatin organization 118,8742 22019250 5,353,1-03 150 GO:000529 positive regulation of hreen phosphorylation 118,8742 10911252 4,891,1-02 118 GO:0005192 positive regulation of hreen paphotiphorylation	GO:0007049	cell cvcle	212/8342	359/19256	3,5612,E-06	212
GO.0043065 positive regulation of apoptolic process 1788342 328119256 1778 GO.0006271 ONA spain 177618342 244119256 2,744.4-02 170 GO.000674 cellular response to DNA damage stimulus 1698542 27912552 2,758.E-03 155 GO.000674 cellular response to drug 1655842 229119252 2,458.E-04 152 GO.00017420 brain development 1508342 227019256 1,3315.E-02 150 GO.0001523 angiogenesis 14178342 225119256 4,833.4-04 147 GO.0001524 angiogenesis 14178342 225119256 4,838.E-02 150 GO.0001523 obtain organization 14187842 254119256 2,838.E-03 130 GO.0001543 positive regulation of protein phosphorylation 1188342 129119256 1,504.E-02 118 GO.0001543 positive regulation of protein phosphorylation 10819324 199119256 4,073.E-03 104 GO.0002050 positive regulation of herecon ganization 108193256 4,684	GO:0050790	regulation of catalytic activity	209/8342	376/19256	7,2999.E-04	209
GC.0006231 DNA repair 1758342 294/1925 2/1765_65 175 GO.00051729 regulation of cell cycle 1708342 316/19256 2/764_65 175 GO.00051729 cellular response to drug 1698/342 227/19526 3/752_65 169 GO.00042493 response to drug 1698/342 225/19256 2/768_65 152 GO.000573 positive regulation of cell migration 1508/342 225/19256 2/834_67.04 152 GO.0006235 chromatin organization 141/18342 225/19256 2/835_67.04 147 GO.0006237 colimit assem/b-kappa8 isignaling 12/8342 199/19256 2/835_67.03 103 GO.0000132 positive regulation of Inviten inchephorylation 11/88342 109/19256 2/831_67.03 104 GO.0000209 portorin polyubiquitunation 10/48342 179/19256 4/831_67.04 101 GO.0000209 portorin polyubiquitunation 10/8342 169/19256 2/831_67.03 104 GO.0000209 portorin polyubiquitunation 10/8342	GO:0043065	positive regulation of apoptotic process	178/8342	328/19256	1.4724.E-02	178
GO.0051726 cellular regulation of cul cycle 1708342 2178/1252 2.944.E.02 170 GO.0006074 cellular response to drug 1658/342 2.931/252 2.768.E.03 165 GO.000335 positive regulation of cell migration 150/2842 22681/252 2.463.E.604 150 GO.0007420 brain development 150/8342 22701/252 4.883.E.04 147 GO.0006325 chromatin organization 141/8342 22541/252 2.883.E.03 130 GO.0001334 positive regulation of return phosphorylation 118/8342 1291/1526 1.508.4 123 GO.0001333 positive regulation of return phosphorylation 118/8342 1991/1526 1.609.E 118 GO.0000134 positive regulation of neuron apprich probubquitination 106/8342 1891/1526 2.831.E-04 110 GO.000029 protein protein polydapylitination 10/87342 1891/1526 2.831.E-04 100 GO.0000271 positive regulation of NE-KappaB transcription factor activity 10/87342 1691/1526 2.8231.E-02 10	GO:0006281	DNA repair	175/8342	294/19256	2,7195,E-05	175
GO:3006974 cellular response to DNA damage stimulus 1698342 276/19256 3,752,2-06 169 GO:3024283 mesponse to drug 1558342 226/19256 2,7568,2-03 150 GO:0016477 cell migration 1508342 226/19256 8,448,4-03 150 GO:0001525 chomatin organization 141/8342 226/19256 8,488,1-04 147 GO:000525 chomatin organization 141/8342 222/19256 8,488,1-04 147 GO:000526 chomatin organization 141/8342 222/19256 8,498,1-03 130 GO:0007568 positive regulation of protein phosphorylation 118/8342 229/19256 1,498,1-03 149 GO:0000269 portein polybubjquitination 109/8342 198/19256 4,898,4-04 101 GO:0000276 goalive regulation of Protein phosphorylation 109/8342 198/19256 4,898,4-04 101 GO:0000276 positive regulation of norein phosphorylation 96/8342 166/19256 4,848,4-04 101 GO:00002769 posintin dephosphorylation	GO:0051726	regulation of cell cycle	170/8342	316/19256	2.9444.E-02	170
GO.2042493 response to drug 165/8342 233/19256 2,7598,E-03 165 GO.2003335 positive regulation of cell migration 152/8342 286/19256 2,4634,E-04 152 GO.20067420 brain development 150/8342 226/19256 1,331,5E-02 150 GO.20067420 brain development 150/8342 226/19256 2,454,E-02 141 GO.2006121 clium assembly 130/8342 226/19256 2,665,B-03 150 GO.20061323 positive regulation of thexpap8 kinaseNF-kapp8 signaling 123/8342 129/19256 2,681,B-03 160 GO.20070568 aging 121/8342 129/19256 1,480,B-02 112 GO.20070569 positive regulation of N-kapp8 transcription factor activity 10/18342 126/19256 1,480,B-02 112 GO.20030198 extracellular matrix organization 96/8342 166/19256 2,631,E-02 96 GO.2004524 negative regulation of N-kapp8 transcription factor activity 10/18342 121/19256 2,434,E-02 96 GO.2004524 nega	GO:0006974	cellular response to DNA damage stimulus	169/8342	276/19256	3,9752,E-06	169
GO.0030335 positive regulation of cell migration 152/8342 256/19256 2,4634,E-04 152 GO.0016477 cell migration 150/8342 2270/19256 8,483,E-04 147 GO.0007525 angiogenesis 147/8342 2241/19256 8,483,E-04 147 GO.0007125 chromatin organization 141/842 2541/19256 2,463,4.E-04 147 GO.00043123 positive regulation of 1-kappa8 hignating 123/8342 129/19256 1,640,6-05 123 GO.00007568 aging 112/8342 129/19256 1,640,6-02 116 GO.0000209 positive regulation of Protein phosphorylation 10/48342 136/19256 4,834,8-04 101 GO.0000209 positive regulation of N=kappa8 transcription factor activity 10/1842 116/19256 4,834,8-04 101 GO.0000209 positive regulation of neuron appotelic process 9/6/342 16/19256 4,834,8-04 101 GO.0000278 magnity cytakelant organization 8/18/342 13/19256 8,704,7-02 90 GO.0000278 mitocho	GO:0042493	response to drug	165/8342	293/19256	2.7568.E-03	165
GO.0016477 cell migration 150/8342 288/19256 9,0944.E-03 150 GO.0007420 brain development 150/8342 227/19256 1,3315,E-02 160 GO.0001525 angiogenesis 147/8342 225/19256 8,4835,E-04 141 GO.0001832 chromatin organization 141/8342 225/19256 2,4835,E-03 130 GO.0001934 positive regulation of rotein phosphorylation 118/8342 192/19256 1,6945,E-02 112 GO.0001934 positive regulation of protein phosphorylation 118/8342 186/19256 4,891,E-02 116 GO.0000209 protein polyubiquilnation 109/8342 166/19256 4,203,E-03 104 GO.0000216 positive regulation of NF-kappaB transcription factor activity 101/8342 166/19256 2,233,E-02 96 GO.0000226 motoc cell cycle 96/8342 156/19256 2,834,E-03 150 GO.0000226 mitorcubule cytoskeleton organization 81/8342 121/19256 2,834,E-02 81 GO.0000226 mitorotubule cytoskeleton or	GO:0030335	positive regulation of cell migration	152/8342	256/19256	2.4634.E-04	152
GO.0007420 brain development 150/8342 270/19256 1,3315.E-02 150 GO.0001525 angiogenesis 147/8342 252/19256 2,4493,E-02 1417 GO.0006271 clium assembly 130/8342 222/1926 2,3653,E-03 130 GO.00013123 positive regulation of I-kappaB kinase/NF-kappaB signaling 12/8542 129/19256 1,5049,E-05 123 GO.0007568 aging 112/8542 194/19256 1,4800,E-02 112 GO.0000209 protein polyubiquitation 108/8342 186/19256 4,2834,E-04 101 GO.00051902 positive regulation of NE-kappaB transcripton factor activity 101/8342 166/19256 4,2834,E-04 101 GO.000470 protein dephosphorylation 92/8342 156/19256 3,7160,E-03 95 GO.000470 protein dephosphorylation 92/8342 158/19256 3,7160,E-03 95 GO.000470 protein dephosphorylation 92/8342 158/19256 3,647,E-02 91 GO.0002209 morotubule cytrakeledor organziton 81/834	GO:0016477	cell migration	150/8342	268/19256	9.0944.E-03	150
GO:0001525 angiogenesis 147/8342 252/19256 8,4893,E-04 147 GO:0006325 chromatin organization 141/8542 224/19256 2,365,E-03 130 GO:0006325 positive regulation of I-kappaB kinase/NF-kappaB signaling 122/8542 209/19256 1,5048,E-05 123 GO:0005283 positive regulation of protein phosphorylation 148/8342 209/19256 1,6949,E-02 112 GO:0005283 neell profiferation 109/8342 188/19256 9,5939,E-03 109 GO:00051092 positive regulation of NF-kappaB transcription factor activity 101/8342 160/19256 4,2634,E-04 101 GO:00051092 positive regulation of neuro apopticic process 96/8342 158/19256 8,7160,E-02 92 GO:0006270 motoric of cycele 90/8342 158/19256 8,7160,E-02 92 GO:000226 motorotyceleption factor activity 101/8342 158/19256 8,746,E-02 96 GO:000226 motorotyceleption 92/8342 158/19256 8,746,E-02 91 GO:000226	GO:0007420	brain development	150/8342	270/19256	1.3315.E-02	150
GO.0008325 chromatin organization 141/8342 254/19256 2,0454,E-02 141 GO.00060271 oilium assembly 130/842 122/19266 2,0553,E-03 130 GO.0001934 positive regulation of protein phosphorylation 118/8342 209/19256 2,8811,E-02 118 GO.0007568 aging 112/8342 194/19256 1,4980,E-02 112 GO.0000209 protein polyubiquitination 104/8342 136/19256 4,2634,E-04 101 GO.0000219 positive regulation of neuron apoptolic process 96/8342 166/19256 4,2634,E-04 101 GO.0000278 megative regulation of neuron apoptolic process 95/8342 156/19256 8,7616,E-03 95 GO.0000278 mitotic call cycle 90/8342 114/19256 2,624,E-02 81 GO.0000278 mitotic call cycle 90/8342 114/19256 3,6447,E-02 90 GO.0000278 mitotic call cycle 90/8342 114/19256 2,624,E-02 81 GO.000278 mitotic call cycle 90/8342 114/	GO:0001525	angiogenesis	147/8342	252/19256	8,4893,E-04	147
GO:0060271 cilium assembly 130/8342 222/19256 2,3653,E-03 130 GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling 123/8342 192/19256 1,5049,E-05 123 GO:0002134 positive regulation of protein phosphorylation 118/8342 194/19256 1,4960,E-02 112 GO:0002283 Geil proliferation 109/8342 173/19256 4,0073,E-03 104 GO:000290 protein polyubic/jutination 104/8342 173/19256 4,2634,E-04 101 GO:00030188 extracellular matrix organization 96/8342 165/19256 2,2231,E-02 95 GO:0000278 megative regulation of num apoptotic process 95/8342 156/19256 1,8051,E-02 92 GO:0000278 mitotic cell cycle 90/8342 114/19256 2,464,E-04 81 GO:0000226 mitotic cell cycle 90/8342 114/19256 2,464,E-04 81 GO:0000226 mitorubule cytoskeletion organization 81/8342 149/19256 2,594,E-04 86 GO:0000278 mitochondrial	GO:0006325	chromatin organization	141/8342	254/19256	2.0454.E-02	141
GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling 123/8342 192/19256 1,5049,E-05 123 GO:0001934 positive regulation of protein phosphorylation 118/8342 209/19256 2,9911,E-02 112 GO:000209 positive regulation of protein phosphorylation 109/8342 186/19256 9,5339,E-03 109 GO:000209 portein polyubiquitination 104/8342 173/19256 4,0073,E-03 104 GO:000219 positive regulation of neuron apoptolic process 95/6342 166/19256 2,823,E-02 96 GO:0000276 megative regulation of neuron apoptolic process 95/6342 15/19256 1,760,E-03 95 GO:0000276 mitotic cell cycle 90/8342 15/19256 2,674,E-04 81 GO:0000276 mitotic cell cycle 90/8342 15/19256 2,674,E-04 81 GO:0000276 mitotic oll cycles trainalin 81/8342 12/19256 2,923,E-02 73 GO:000276 mitochondrial translation 67/8342 112/19256 2,923,E-02 73 GO:000274<	GO:0060271	cilium assembly	130/8342	222/19256	2.3653.E-03	130
GO:0001934 positive regulation of protein phosphorylation 118/8342 209/19256 2,8911,E-02 118 GO:000768 aging 112/342 194/19256 1,4806,E-02 112 GO:000209 protein polyubiquitination 109/8342 168/19256 4,0073,E-03 104 GO:000209 positive regulation of NF-kappaB transcription factor activity 101/8342 166/19256 4,2634,E-04 101 GO:000470 positive regulation of NF-kappaB transcription factor activity 96/8342 155/19256 1,8051,E-02 92 GO:0000278 megative regulation of protein dephosphorylation 92/8342 155/19256 1,8051,E-02 92 GO:0000278 megative regulation of sequence-specific DNA binding transcription factor activity 73/8342 13/19256 2,9245,E-02 81 GO:0000226 microtubule cycloskeleton organization 81/8342 13/19256 2,923,E-02 69 GO:000226 microtubule cycloskeleton organization 81/8342 13/19256 2,923,E-02 69 GO:000226 wound healing 68/8342 101/19256 2,923,E-02	GO:0043123	positive regulation of I-kappaB kinase/NF-kappaB signaling	123/8342	192/19256	1,5049,E-05	123
GO:0007568 aging 1128342 194/1926 1,4980,E-02 112 GO:0007568 cell proliferation 109/8342 186/19256 9,5939,E-03 109 GO:000209 positive regulation of NF-kappa Branscription factor activity 101/8342 160/19256 4,0073,E-03 104 GO:000209 positive regulation of NF-kappa Branscription factor activity 101/8342 166/19256 2,9231,E-02 96 GO:000278 megalive regulation of neuron apoptotic process 95/6842 156/19256 1,0051,E-02 92 GO:000278 mitotic cell cycle 90/8342 15/19256 2,0784,E-04 81 GO:000278 mitotic cell cycle 90/8342 112/19256 2,0784,E-04 81 GO:000276 mitotic cell cycle 90/8342 112/19256 2,9231,E-02 63 GO:000276 mitotic cell cycle 90/8342 112/19256 2,9231,E-02 63 GO:000276 mitochondrial translation 61/8342 19/19256 2,9231,E-02 63 GO:000274 double-strand break repair via homologous recombinat	GO:0001934	positive regulation of protein phosphorylation	118/8342	209/19256	2.8911.E-02	118
Description 1998/342 186/19256 9,593,E-03 109 GO:000229 protein polyubiquitination 104/8342 173/19256 4,073,E-03 104 GO:00051092 positive regulation of NF-kappaB transcription factor activity 101/8342 166/19256 4,2634,E-04 101 GO:00051092 positive regulation of NF-kappaB transcription factor activity 101/8342 165/19256 8,7160,E-03 95 GO:0006470 protein dephosphorylation 92/8342 156/19256 1,8051,E-02 92 GO:0000278 mitotic cell cycle 90/8342 134/19256 2,9731,E-02 81 GO:0000226 microtuble cytoskeleton organization 81/8342 134/19256 2,9824,E-02 81 GO:000226 microtuble cytoskeleton organization 81/8342 119/19256 2,9824,E-02 69 GO:000226 microtuble cytoskeleton organization 68/8342 119/19256 2,9824,E-02 68 GO:000226 microtuble cytoskeleton organization 68/8342 119/19256 2,9824,E-02 61 GO:000274 double-strand	GO:0007568	aging	112/8342	194/19256	1.4980.E-02	112
CO.000209 probin polyblquitination 104/8342 173/1925 4.0073.E-03 104 GO.000219 positive regulation of NF-kappaB transcription factor activity 101/8342 160/19256 2,9231.E-02 96 GO.0003198 extracellular matrix organization 96/8342 156/19256 2,9231.E-02 92 GO.000276 megative regulation of neuron apoptotic process 95/8342 156/19256 3,6447.E-02 90 GO.000276 mitotic cell cycle 90/8342 134/19256 2,6744.E-02 81 GO.000276 mitoricubule cytoskeleton organization 81/8342 134/19256 2,0454.E-02 81 GO.000226 mitoricubule cytoskeleton organization 81/8342 112/1926 2,9231.E-02 69 GO.0002263 mitoricubule cytoskeleton organization 81/8342 112/1926 2,9231.E-02 69 GO.000274 double-strand hamonlogous recombination 64/8342 103/19256 2,5594.E-03 68 GO.000274 double-strand hamonlogous recombination 64/8342 94/19256 1,2006.D-03 64	GO:0008283	cell proliferation	109/8342	186/19256	9.5939.E-03	109
GO:0051092 positive regulation of NF-kappaB transcription factor activity 1018342 161/1925 4,253,E-04 101 GO:0051092 positive regulation of NF-kappaB transcription factor activity 101/8342 166/19256 2,9231,E-02 96 GO:0051092 negative regulation of neuron apoptotic process 95/8342 156/19256 3,8547,E-02 90 GO:0000278 mitotic cell cycle 90/8342 154/19256 3,5447,E-02 90 GO:0000226 mitotic cell cycle 90/8342 134/19256 2,6784,E-04 81 GO:000226 mitotic cell cycle 90/8342 134/19256 2,6784,E-02 81 GO:000226 mitoricubule cytoskeleton organization 81/8342 112/19256 2,9831,E-02 69 GO:00022543 mitoricubule cytoskeleton organization 67/8342 96/19256 3,0215,E-04 67 GO:0000724 double-strand break repair via homologous recombination 64/8342 94/19256 4,4844,E-02 68 GO:0000724 double-strand break repair via homologous recombination 64/8342 91/19256 4,4844,E-02	GO:0000209		104/8342	173/19256	4 0073 E-03	104
GO:000198 extracellular matrix organization 96/8342 166/19256 2,923,12,-02 96 GO:000198 negative regulation of neuron apoptotic process 95/8342 158/19256 2,923,12,-02 96 GO:0000278 mitotic cell cycle 90/8342 154/19256 3,647,12,-02 90 GO:0000278 mitotic cell cycle 90/8342 154/19256 2,6474,E-02 81 GO:0000260 DNA replication 81/8342 134/19256 2,923,E-02 73 GO:0000261 positive regulation of sequence-specific DNA binding transcription factor activity 7/8/842 113/19256 2,923,1,E-02 69 GO:000226 wound healing 68/8342 103/19256 2,923,1,E-02 69 GO:000274 double-strand break repair via homologous recombination 64/8342 94/19256 1,206,E-03 64 GO:000324 lung development 58/8342 94/19256 1,206,E-03 64 GO:0003292 positive regulation of rotein binding 52/8342 77/19256 1,206,E-03 53 GO:00030329 positiv	GO:0051092	positive regulation of NF-kappaB transcription factor activity	101/8342	160/19256	4 2634 E-04	101
Conception Control Contro Control <thcontrol< th=""> <</thcontrol<>	GO:0030198	extracellular matrix organization	96/8342	165/19256	2 9231 E-02	96
Control Triggint of regulation of National populato process Control Totol 1925 Control Control <thcontrol< th=""> <thcontrol< th=""> Con</thcontrol<></thcontrol<>	GO:0043524	negative regulation of neuron apontotic process	95/8342	158/19256	8 7160 E-03	95
Colonolation Distort opinodin opinodin structure Distort Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total <thtotal th="" total="" total<=""> Total Total</thtotal>	GO:0006470	nrotein denhosphorylation	92/8342	155/19256	1 8051 E-02	92
GC:0000210 Initial can by the second se	GO:0000470	mitotic cell cycle	90/8342	154/19256	3 5447 E-02	90
Octool/20 Dirt replication B1/8342 T1/1226 2,000,000,000 B1 GO:000226 microtubule cytoskeleton organization B1/8342 134/19256 2,0454,000 81 GO:000226 microtubule cytoskeleton organization B1/8342 112/19256 2,0454,000 69 GO:0002263 wound healing 68/8342 103/19256 2,0594,000 64 GO:000274 double-strand break repair via homologous recombination 67/8342 94/19256 1,2000,000 64 GO:0000724 double-strand break repair via homologous recombination 67/8342 94/19256 1,2000,000,000 64 GO:0000724 double-strand break repair via homologous recombination 67/8342 94/19256 1,2000,000,000 64 GO:0000724 double-strand break repair via homologous recombination 67/8342 91/19256 2,9444,E-02 61 GO:0001738 positive regulation of protein binding 52/8342 77/19256 1,1918,E-02 53 GO:00021987 cerebral cortex development 51/8342 70/19256 1,4880,E-02 51	GO:0006260	DNA replication	81/8342	121/19256	2 6784 F-02	81
G0:0051091 positive regulation of sequence-specific DNA binding transcription factor activity 73/8342 119/19256 2,3923,E-02 73 G0:0051091 positive regulation of sequence-specific DNA binding transcription factor activity 73/8342 112/19256 2,3923,E-02 69 G0:005205 response to estradiol 69/8342 113/19256 2,3923,E-02 69 G0:005243 mitochondrial translation 67/8342 96/19256 3,0215,E-04 67 G0:0000724 double-strand break repair via homologous recombination 64/8342 94/19256 4,4844,E-02 61 G0:0003324 lung development 58/8342 91/19256 2,9444,E-02 58 G0:0001938 positive regulation of protein binding 52/8342 77/19256 1,4808,E-02 51 G0:00021987 cerebral cortex development 51/8342 70/19256 1,2852,E-03 49 G0:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 G0:00040776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 3,7007,E-04 46 G0:0045785 positi	GO:0000226	microtubule cytoskeleton organization	81/8342	134/19256	2,0754,E-04	81
GO:0032355 response to estradiol 69/8342 112/19256 2,9231,E-02 69 GO:0032543 mitochondrial translation 67/8342 96/19256 3,0215,E-04 67 GO:000724 double-strand break repair via homologous recombination 64/8342 94/19256 1,2080,E-03 64 GO:0046330 positive regulation of JNK cascade 61/8342 94/19256 2,9444,E-02 61 GO:0030324 lung development 58/8342 91/19256 2,9444,E-02 58 GO:0001938 positive regulation of endothelial cell proliferation 53/8342 77/19256 1,4980,E-02 51 GO:00021987 cerebral cortex development 51/8342 70/19256 5,3622,E-03 49 GO:0004661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 5,3622,E-02 48 GO:0042076 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 2,5594,E-02 44 GO:0042776 palate development 44/8342 66/19256 4,7061,E-02 44 GO:0042775	GO:0051091	positive regulation of sequence-specific DNA binding transcription factor activity	73/8342	119/19256	2,3923.E-02	73
GO:0042060 wound healing 68/8342 103/19256 2,5594,E-03 68 GO:0032543 mitochondrial translation 67/8342 96/19256 3,0215,E-04 67 GO:000724 double-strand break repair via homologous recombination 64/8342 94/19256 1,2060,E-03 64 GO:0046330 positive regulation of JNK cascade 61/8342 94/19256 4,4844,E-02 61 GO:0030324 lung development 58/8342 91/19256 2,9444,E-02 58 GO:0001938 positive regulation of protein binding 52/8342 77/19256 1,0908,E-03 53 GO:00021987 cerebral cortex development 51/8342 70/19256 1,4980,E-02 51 GO:00021987 cerebral cortex development 51/8342 70/19256 3,622,E-03 49 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 3,7007,E-04 46 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 3,5447,E-02 40 GO:0045785 posit	GO:0032355	response to estradiol	69/8342	112/19256	2.9231.E-02	69
GO:0032543 mitochondrial translation G7/8342 96/19256 3,0215,E-04 67 GO:000724 double-strand break repair via homologous recombination 64/8342 94/19256 1,2060,E-03 64 GO:0030324 lung development 58/8342 91/19256 2,9444,E-02 58 GO:0001938 positive regulation of endothelial cell proliferation 53/8342 77/19256 4,9008,E-03 53 GO:00021987 cerebral cortex development 51/8342 76/19256 1,4980,E-02 51 GO:0004661 positive regulation of protein binding 52/8342 77/19256 1,4980,E-02 51 GO:0009060 aerobic respiration 49/8342 70/19256 1,2852,E-02 48 GO:00048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:00042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 3,7007,E-04 46 GO:00042775 palate development 44/8342 66/19256 4,7061,E-02 44 GO:00045785<	GO:0042060	wound healing	68/8342	103/19256	2.5594.E-03	68
GO:0000724 double-strand break repair via homologous recombination 64/8342 94/19256 1,2060,E-03 64 GO:0000724 lung development 58/8342 91/19256 1,2060,E-03 64 GO:00001738 positive regulation of andothelial cell proliferation 53/8342 91/19256 4,4844,E-02 58 GO:0001938 positive regulation of protein binding 52/8342 77/19256 1,1191,E-02 52 GO:0009060 aerobic respiration 49/8342 70/19256 1,2852,E-03 49 GO:004661 positive regulation of smooth muscle cell proliferation 49/8342 70/19256 1,2852,E-02 48 GO:0048661 positive regulation of smooth muscle cell proliferation 49/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0006021 palate development 44/8342 66/19256 4,7061,E-02 44 GO:00045785 positive regulation of cell adhesion 41/8342 59/19256 2,5624,E-02 41 </td <td>GO:0032543</td> <td>mitochondrial translation</td> <td>67/8342</td> <td>96/19256</td> <td>3.0215.E-04</td> <td>67</td>	GO:0032543	mitochondrial translation	67/8342	96/19256	3.0215.E-04	67
GO:0046330 positive regulation of JNK cascade 61/8342 98/19256 4,4844,E-02 61 GO:0030324 lung development 58/8342 91/19256 2,9444,E-02 58 GO:00303292 positive regulation of endothelial cell proliferation 53/8342 77/19256 4,4844,E-02 53 GO:0021987 cerebral cortex development 51/8342 76/19256 1,4980,E-02 51 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 3,7007,E-04 46 GO:0042776 palate development 44/8342 66/19256 3,7007,E-04 46 GO:00405785 positive regulation of cell adhesion 41/8342 58/19256 2,5624,E-02 41 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 <t< td=""><td>GO:0000724</td><td>double-strand break repair via homologous recombination</td><td>64/8342</td><td>94/19256</td><td>1,2060 E-03</td><td>64</td></t<>	GO:0000724	double-strand break repair via homologous recombination	64/8342	94/19256	1,2060 E-03	64
GO:0030324 Jung development 58/8342 91/19256 2,9444,E-02 58 GO:0001938 positive regulation of endothelial cell proliferation 53/8342 77/19256 4,9008,E-03 53 GO:002092 positive regulation of protein binding 52/8342 77/19256 1,1191,E-02 52 GO:0021987 cerebral cortex development 51/8342 76/19256 1,480,E-02 51 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 4,7061,E-02 44 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 4,7061,E-02 44 GO:0045785 positive regulation of cell adhesion 41/8342 58/19256 2,5624,E-02 41 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 GO:0031397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 <	GO:0046330	positive regulation of JNK cascade	61/8342	98/19256	4.4844.E-02	61
GO:0001938 positive regulation of endothelial cell proliferation 53/8342 77/19256 4,9008,E-03 53 GO:0032092 positive regulation of protein binding 52/8342 77/19256 1,1191,E-02 52 GO:0021987 cerebral cortex development 51/8342 76/19256 1,480,E-02 51 GO:0039060 aerobic respiration 49/8342 70/19256 5,3622,E-03 49 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 66/19256 4,7061,E-02 44 GO:0045785 positive regulation of cell adhesion 41/8342 58/19256 2,5624,E-02 41 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 GO:0031397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38	GO:0030324	lung development	58/8342	91/19256	2,9444.E-02	58
GO:0032092 positive regulation of protein binding 52/8342 77/19256 1,191,E-02 52 GO:0021987 cerebral cortex development 51/8342 76/19256 1,4980,E-02 51 GO:00309060 aerobic respiration 49/8342 70/19256 5,3622,E-03 49 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0030199 collagen fibril organization 46/8342 60/19256 3,7007,E-04 46 GO:0045785 positive regulation of cell adhesion 41/8342 59/19256 2,5624,E-02 41 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 4,7061,E-02 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:0010212	GO:0001938	positive regulation of endothelial cell proliferation	53/8342	77/19256	4.9008.E-03	53
GO:0021987 cerebral cortex development 51/8342 76/19256 1,4980,E-02 51 GO:0029060 aerobic respiration 49/8342 70/19256 5,3622,E-03 49 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0030199 collagen fibril organization 46/8342 60/19256 3,7007,E-04 46 GO:0045785 positive regulation of cell adhesion 41/8342 66/19256 4,7061,E-02 44 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 4,7061,E-02 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:001837 epithelial to mesenchymal transition 37/8342 45/19256 3,4906,E-04 37 GO:0001837	GO:0032092	positive regulation of protein binding	52/8342	77/19256	1.1191.E-02	52
GO:0009060 aerobic respiration 49/8342 70/19256 1,2852,E-03 49 GO:0048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0042776 mitochondrial ATP synthesis coupled proton transport 46/8342 60/19256 3,7007,E-04 46 GO:006021 palate development 44/8342 66/19256 4,7061,E-02 44 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 4,7061,E-02 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 38/8342 55/19256 4,7061,E-02 38 GO:001213 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:	GO:0021987	cerebral cortex development	51/8342	76/19256	1.4980.E-02	51
GO:00048661 positive regulation of smooth muscle cell proliferation 48/8342 70/19256 1,2852,E-02 48 GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0030199 collagen fibril organization 46/8342 60/19256 3,7007,E-04 46 GO:0042776 palate development 44/8342 66/19256 4,7061,E-02 44 GO:0045785 positive regulation of cell adhesion 41/8342 59/19256 2,5524,E-02 41 GO:00304097 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:00301397 response to cytokine 38/8342 51/19256 6,7577,E-03 38 GO:001212 chondrocyte differentiation 38/8342 53/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 38/8342 55/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenc	GO:0009060	aerobic respiration	49/8342	70/19256	5.3622.E-03	49
GO:0042776 mitochondrial ATP synthesis coupled proton transport 47/8342 65/19256 2,5594,E-03 47 GO:0030199 collagen fibril organization 46/8342 60/19256 3,7007,E-04 46 GO:0030199 collagen fibril organization 44/8342 66/19256 4,7061,E-02 44 GO:0042776 palate development 44/8342 66/19256 4,7061,E-02 44 GO:0045785 positive regulation of cell adhesion 41/8342 59/19256 2,5624,E-02 41 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:0010212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,984,E-04 37 GO:0006120 mitochondrial el	GO:0048661	positive regulation of smooth muscle cell proliferation	48/8342	70/19256	1,2852,E-02	48
GO:0012110 Minochantal AI M Synthesization 46/8342 60/19256 1,707,E-04 46 GO:0060021 palate development 44/8342 66/19256 4,7061,E-02 44 GO:0006073 palate development 44/8342 66/19256 3,707,E-04 46 GO:0006879 cellular iron ion homeostasis 41/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 GO:0031397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 38/8342 55/19256 4,7061,E-02 38 GO:0001837 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0006120 mitochondrial electron transport, NADH to ubiquiquone 35/8342 47/19256 1,315,E-02 35	GO:0042776	mitochondrial ATP synthesis coupled proton transport	47/8342	65/19256	2 5594 E-03	47
GO:0000100 Go:0000100 Go:00001000 Go:000001000 Go:0000000000 Go:0000000000 Go:0000000000 Go:00000000000 Go:000000000000 Go:00000000000000 Go:0000000000000000 Go:00000000000000000000000000 Go:000000000000000000000000000000000000	GO:0030199	collagen fibril organization	46/8342	60/19256	3 7007 E-04	46
GO:0045785 positive regulation of cell adhesion 41/8342 59/19256 2,5624,E-02 41 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:00045785 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:00034097 response to cytokine 38/8342 51/19256 6,7577,E-03 38 GO:0002062 chondrocyte differentiation 38/8342 53/19256 1,9493,E-02 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:0010212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,984,E-04 37 GO:00068207 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0060021	palate development	44/8342	66/19256	4,7061,E-02	44
GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0006879 cellular iron ion homeostasis 40/8342 58/19256 3,5447,E-02 40 GO:0002062 chondrocyte differentiation 38/8342 51/19256 6,7577,E-03 38 GO:0031397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:0010212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:000620 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0045785	positive regulation of cell adhesion	41/8342	59/19256	2 5624 E-02	41
GO:0034097 response to cytokine 38/8342 51/19256 6,7577,E-03 38 GO:0002062 chondrocyte differentiation 38/8342 53/19256 1,9493,E-02 38 GO:00131397 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0006200 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0006879	cellular iron ion homeostasis	40/8342	58/19256	3.5447.E-02	40
GO:0002062 chondrocyte differentiation 38/8342 53/19256 1,9493,E-02 38 GO:001212 negative regulation of protein ubiquitination 38/8342 55/19256 4,7061,E-02 38 GO:001212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0006120 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0034097	response to cytokine	38/8342	51/19256	6.7577 F-03	38
GO:001212 response to ionizing radiation 38/8342 55/19256 4,7061,E-02 38 GO:0010212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0006120 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35 GO:0006120 mitochondrial electron transport, NADH to ubiquinone 26/2020 25.50.5 201/0025 20	GO:0002062	chondrocyte differentiation	38/8342	53/19256	1 9493 E-02	38
GO:0010212 response to ionizing radiation 37/8342 45/19256 3,4906,E-04 37 GO:0010837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0006120 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0031397	negative regulation of protein ubiguitination	38/8342	55/19256	4 7061 F-02	38
GO:0001837 epithelial to mesenchymal transition 37/8342 46/19256 6,9984,E-04 37 GO:0001837 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35 GO:0006202 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0010212	response to ionizing radiation	37/8342	45/19256	3 4906 E-04	37
GO:0006100 mitochondrial electron transport, NADH to ubiquinone 37/642 40/19256 1,3315,E-02 35 GO:0006202 mitochondrial electron transport, NADH to ubiquinone 35/8342 47/19256 1,3315,E-02 35	GO:0001837	enithelial to mesenchymal transition	37/8342	46/19256	6 9984 E-04	37
	GO:0006120	mitochondrial electron trapsport NADH to ubiquipope	35/8342	47/10256	1 3315 E-02	35
GUUU30297 Interstrand cross-link repair 31/8342 38/19256 2.7568 E-03 31	GO:0036297	interstrand cross-link repair	31/8342	38/19256	2,7568.E-03	31

Molecular Function (MF)

ID	Description	GeneRatio	BgRatio	p.adjust	Count
GO:0044877	macromolecular complex binding	228/8563	414/18811	1,2204,E-02	228
GO:0019899	enzyme binding	220/8563	390/18811	2,9991,E-03	220
GO:0004674	protein serine/threonine kinase activity	217/8563	392/18811	1,2204,E-02	217
GO:0000977	RNA polymerase II regulatory region sequence-specific DNA binding	199/8563	364/18811	4,2293,E-02	199
GO:0001227	RNA polymerase II transcription regulatory region sequence-specific binding	197/8563	331/18811	9,5951,E-05	197
GO:0031625	ubiquitin protein ligase binding	191/8563	305/18811	1,2261,E-06	191
GO:0016787	hydrolase activity	166/8563	272/18811	9,5951,E-05	166
GO:0004842	ubiquitin-protein transferase activity	149/8563	253/18811	4,3292,E-03	149
GO:0016491	oxidoreductase activity	139/8563	241/18811	2,2420,E-02	139
GO:0000287	magnesium ion binding	136/8563	233/18811	1,3224,E-02	136
GO:0008022	protein C-terminus binding	127/8563	208/18811	1,9791,E-03	127
GO:0005178	integrin binding	111/8563	161/18811	1,6089,E-06	111
GO:0005201	extracellular matrix structural constituent	85/8563	138/18811	2,6679,E-02	85
GO:0003824	catalytic activity	81/8563	132/18811	4,0663,E-02	81
GO:0002020	protease binding	71/8563	109/18811	1,1112,E-02	71
GO:0004725	protein tyrosine phosphatase activity	70/8563	107/18811	1,0871,E-02	70
GO:000049	tRNA binding	50/8563	75/18811	4,5907,E-02	50
GO:0050660	flavin adenine dinucleotide binding	49/8563	68/18811	4,9247,E-03	49
GO:0051539	4 iron, 4 sulfur cluster binding	35/8563	47/18811	2,4772,E-02	35
GO:0008137	NADH dehydrogenase (ubiquinone) activity	32/8563	43/18811	4,2293,E-02	32
GO:0043236	laminin binding	22/8563	26/18811	3,3067,E-02	22

11. Bibliografía

Adams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. The New England journal of medicine, 379(14), 1353–1362. https://doi.org/10.1056/NEJMra1711801

Allsopp, R. C., Chang, E., Kashefi-Aazam, M., Rogaev, E. I., Piatyszek, M. A., Shay, J. W., & Harley, C. B. (1995). Telomere shortening is associated with cell division in vitro and in vivo. Experimental cell research, 220(1), 194–200. <u>https://doi.org/10.1006/excr.1995.1306</u>

Arboleda, H., Quintero, L., & Yunis, E. (1997). Wiedemann-Rautenstrauch neonatal progeroid syndrome: report of three new patients. Journal of medical genetics, 34(5), 433–437. <u>https://doi.org/10.1136/jmg.34.5.433</u>

Arboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): report of three affected sibs. American journal of medical genetics. Part A, 155A(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019

Arboleda, H., & Arboleda, G. (2005). Follow-up study of Wiedemann-Rautenstrauch syndrome: long-term survival and comparison with Rautenstrauch's patient "G". Birth defects research. Part A, Clinical and molecular teratology, 73(8), 562–568. https://doi.org/10.1002/bdra.20166

Arimbasseri, A. G., & Maraia, R. J. (2016). RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends in biochemical sciences, 41(6), 546–559. https://doi.org/10.1016/j.tibs.2016.03.003

Astle, M. V., Hannan, K. M., Ng, P. Y., Lee, R. S., George, A. J., Hsu, A. K., Haupt, Y., Hannan, R. D., & Pearson, R. B. (2012). AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene, 31(15), 1949–1962. <u>https://doi.org/10.1038/onc.2011.394</u>

Austad, S. N., & Hoffman, J. M. (2018). Is antagonistic pleiotropy ubiquitous in aging biology? Evolution, medicine, and public health, 2018(1), 287–294.

https://doi.org/10.1093/emph/eoy033

Azmanov, D. N., Siira, S. J., Chamova, T., Kaprelyan, A., Guergueltcheva, V., Shearwood, A. J., Liu, G., Morar, B., Rackham, O., Bynevelt, M., Grudkova, M., Kamenov, Z., Svechtarov, V., Tournev, I., Kalaydjieva, L., & Filipovska, A. (2016). Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement. Human molecular genetics, 25(19), 4302–4314. https://doi.org/10.1093/hmg/ddw263

Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of ageing and development, 192, 111360. https://doi.org/10.1016/j.mad.2020.111360

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140

Bernard, G., Chouery, E., Putorti, M. L., Tétreault, M., Takanohashi, A., Carosso, G., Clément, I., Boespflug-Tanguy, O., Rodriguez, D., Delague, V., Abou Ghoch, J., Jalkh, N., Dorboz, I., Fribourg, S., Teichmann, M., Megarbane, A., Schiffmann, R., Vanderver, A., & Brais, B. (2011). Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. American journal of human genetics, 89(3), 415–423. <u>https://doi.org/10.1016/j.ajhg.2011.07.014</u>

Boulon, S., Westman, B. J., Hutten, S., Boisvert, F. M., & Lamond, A. I. (2010). The nucleolus under stress. Molecular cell, 40(2), 216–227. https://doi.org/10.1016/j.molcel.2010.09.024

Brown W. T. (1992). Progeria: a human-disease model of accelerated aging. The American journal of clinical nutrition, 55(6 Suppl), 1222S–1224S. <u>https://doi.org/10.1093/ajcn/55.6.1222S</u>

Burtner, C. R., & Kennedy, B. K. (2010). Progeria syndromes and ageing: what is the connection?. Nature reviews. Molecular cell biology, 11(8), 567–578. https://doi.org/10.1038/nrm2944

Buchwalter, A., & Hetzer, M. W. (2017). Nucleolar expansion and elevated protein translation in premature aging. Nature communications, 8(1), 328. <u>https://doi.org/10.1038/s41467-017-00322-z</u>

Burke, B., & Stewart, C. L. (2002). Life at the edge: the nuclear envelope and human disease. Nature reviews. Molecular cell biology, 3(8), 575–585. https://doi.org/10.1038/nrm879

Campisi J. (1997). The biology of replicative senescence. European journal of cancer (Oxford, England : 1990), 33(5), 703–709. <u>https://doi.org/10.1016/S0959-8049(96)00058-5</u>

Campisi J. (1998). The role of cellular senescence in skin aging. The journal of investigative
dermatology.Symposium
proceedings,
proceedings,
3(1),
1–5.Campisi J. (2005). Suppressing cancer: the importance of being senescent. Science (New
York,
N.Y.),
309(5736),
886–887.https://doi.org/10.1126/science.1116801

Campisi, J., & Robert, L. (2014). Cell senescence: role in aging and age-related diseases. Interdisciplinary topics in gerontology, 39, 45–61. <u>https://doi.org/10.1159/000358899</u>

Cao, H., & Hegele, R. A. (2003). LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). Journal of human genetics, 48(5), 271–274. <u>https://doi.org/10.1007/s10038-003-0025-3</u>

Carter, C. S., Sonntag, W. E., Onder, G., & Pahor, M. (2002). Physical performance and longevity in aged rats. The journals of gerontology. Series A, Biological sciences and medical sciences, 57(5), B193–B197. <u>https://doi.org/10.1093/gerona/57.5.b193</u>

Childs, B. G., Durik, M., Baker, D. J., & van Deursen, J. M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine, 21(12), 1424–1435. https://doi.org/10.1038/nm.4000

Ciganda, M., & Williams, N. (2011). Eukaryotic 5S rRNA biogenesis. Wiley interdisciplinary reviews. RNA, 2(4), 523–533. <u>https://doi.org/10.1002/wrna.74</u>

Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J., & Partridge, L. (2002). Dietary restriction in long-lived dwarf flies. Science (New York, N.Y.), 296(5566), 319. https://doi.org/10.1126/science.1069366

Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual review of pathology, 5, 99–118. <u>https://doi.org/10.1146/annurev-pathol-121808-102144</u>

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research, 42(Database issue), D633– D642. <u>https://doi.org/10.1093/nar/gkt1244</u>

Csoka, A. B., English, S. B., Simkevich, C. P., Ginzinger, D. G., Butte, A. J., Schatten, G. P., Rothman, F. G., & Sedivy, J. M. (2004). Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging cell, 3(4), 235–243. <u>https://doi.org/10.1111/j.1474-9728.2004.00105.x</u>

Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M., & Pagano, A. (2007). The expanding RNA polymerase III transcriptome. Trends in genetics : TIG, 23(12), 614–622. <u>https://doi.org/10.1016/j.tig.2007.09.001</u>

Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., & Pereira-Smith, O. (1995). A biomarker that identifies senescent

human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367. https://doi.org/10.1073/pnas.92.20.9363

Ellis, J. A., & Shackleton, S. (2011). Nuclear envelope disease and chromatin organization.BiochemicalSocietytransactions,39(6),1683–1686.https://doi.org/10.1042/BST20110744

Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A. B., Boehnke, M., Glover, T. W., & Collins, F. S. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298. https://doi.org/10.1038/nature01629

Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., & Santoro, A. (2018). Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nature reviews. Endocrinology, 14(10), 576–590. <u>https://doi.org/10.1038/s41574-018-0059-4</u>

Freund, A., Patil, C. K., & Campisi, J. (2011). p38MAPK is a novel DNA damage responseindependent regulator of the senescence-associated secretory phenotype. The EMBO journal, 30(8), 1536–1548. <u>https://doi.org/10.1038/emboj.2011.69</u>

George, S., Rochford, J. J., Wolfrum, C., Gray, S. L., Schinner, S., Wilson, J. C., Soos, M. A., Murgatroyd, P. R., Williams, R. M., Acerini, C. L., Dunger, D. B., Barford, D., Umpleby, A. M., Wareham, N. J., Davies, H. A., Schafer, A. J., Stoffel, M., O'Rahilly, S., & Barroso, I. (2004). A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science (New York, N.Y.), 304(5675), 1325–1328. https://doi.org/10.1126/science.1096706

Gingold, H., Tehler, D., Christoffersen, N. R., Nielsen, M. M., Asmar, F., Kooistra, S. M., Christophersen, N. S., Christensen, L. L., Borre, M., Sørensen, K. D., Andersen, L. D., Andersen, C. L., Hulleman, E., Wurdinger, T., Ralfkiær, E., Helin, K., Grønbæk, K., Ørntoft, T., Waszak, S. M., Dahan, O., ... Pilpel, Y. (2014). A dual program for translation regulation in cellular proliferation and differentiation. Cell, 158(6), 1281–1292. https://doi.org/10.1016/j.cell.2014.08.011

Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing research reviews, 33, 18–29. <u>https://doi.org/10.1016/j.arr.2016.06.007</u>

Han, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell discovery, 4, 40. https://doi.org/10.1038/s41421-018-0044-z

Harkema, L., Youssef, S. A., & de Bruin, A. (2016). Pathology of Mouse Models of Accelerated Aging. Veterinary pathology, 53(2), 366–389. https://doi.org/10.1177/0300985815625169

Hayflick L. (1974). The longevity of cultured human cells. Journal of the American Geriatrics Society, 22(1), 1–12. <u>https://doi.org/10.1111/j.1532-5415.1974.tb02152.x</u>

Herranz, N., Gallage, S., Mellone, M., Wuestefeld, T., Klotz, S., Hanley, C. J., Raguz, S., Acosta, J. C., Innes, A. J., Banito, A., Georgilis, A., Montoya, A., Wolter, K., Dharmalingam, G., Faull, P., Carroll, T., Martínez-Barbera, J. P., Cutillas, P., Reisinger, F., Heikenwalder, M., ... Gil, J. (2015). mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nature cell biology, 17(9), 1205–1217. https://doi.org/10.1038/ncb3225

Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. The Journal of clinical investigation, 128(4), 1238–1246. <u>https://doi.org/10.1172/JCI95148</u>

Hsu, A. L., Murphy, C. T., & Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science (New York, N.Y.), 300(5622), 1142–1145. https://doi.org/10.1126/science.1083701

Hughes, K. A., Alipaz, J. A., Drnevich, J. M., & Reynolds, R. M. (2002). A test of evolutionary theories of aging. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14286–14291. <u>https://doi.org/10.1073/pnas.222326199</u>

Jay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American journal of medical genetics. Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960

Kipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. (2004). What can progeroid syndromes tell us about human aging?. Science (New York, N.Y.), 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587

Kirkland, J. L., & Tchkonia, T. (2017). Cellular Senescence: A Translational Perspective. EBioMedicine, 21, 21–28. <u>https://doi.org/10.1016/j.ebiom.2017.04.013</u>

Kirkwood, T. B., & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 332(1262), 15–24. <u>https://doi.org/10.1098/rstb.1991.0028</u>

Kirkwood T. B. (1996). Human senescence. BioEssays : news and reviews in molecular, cellular and developmental biology, 18(12), 1009–1016. https://doi.org/10.1002/bies.950181211

Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H., & Lee, S. (2018). Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. International journal of molecular sciences, 19(4), 1057. https://doi.org/10.3390/ijms19041057

Korniszewski, L., Nowak, R., Oknińska-Hoffmann, E., Skórka, A., Gieruszczak-Białek, D., & Sawadro-Rochowska, M. (2001). Wiedemann-Rautenstrauch (neonatal progeroid) syndrome: new case with normal telomere length in skin fibroblasts. American journal of medical genetics, 103(2), 144–148. <u>https://doi.org/10.1002/ajmg.1530</u>

Krishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al-Regaiey, K., Su, L., & Sharpless, N. E. (2004). Ink4a/Arf expression is a biomarker of aging. The Journal of clinical investigation, 114(9), 1299–1307. <u>https://doi.org/10.1172/JCl22475</u>

Lessel, D., Ozel, A. B., Campbell, S. E., Saadi, A., Arlt, M. F., McSweeney, K. M., Plaiasu, V., Szakszon, K., Szőllős, A., Rusu, C., Rojas, A. J., Lopez-Valdez, J., Thiele, H., Nürnberg, P., Nickerson, D. A., Bamshad, M. J., Li, J. Z., Kubisch, C., Glover, T. W., & Gordon, L. B. (2018). Analyses of LMNA-negative juvenile progeroid cases confirms biallelic POLR3A mutations in Wiedemann-Rautenstrauch-like syndrome and expands the phenotypic spectrum of PYCR1 mutations. Human genetics, 137(11-12), 921–939. https://doi.org/10.1007/s00439-018-1957-1

Levi, N., Papismadov, N., Solomonov, I., Sagi, I., & Krizhanovsky, V. (2020). The ECM path of senescence in aging: components and modifiers. The FEBS journal, 287(13), 2636–2646. <u>https://doi.org/10.1111/febs.15282</u>

Li, P., Gan, Y., Xu, Y., Song, L., Wang, L., Ouyang, B., Zhang, C., & Zhou, Q. (2017). The inflammatory cytokine TNF- α promotes the premature senescence of rat nucleus pulposus cells via the PI3K/Akt signaling pathway. Scientific reports, 7, 42938. https://doi.org/10.1038/srep42938

Lieberman J. (2018). Unveiling the RNA World. The New England journal of medicine, 379(13), 1278–1280. <u>https://doi.org/10.1056/NEJMcibr1808725</u>

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. <u>https://doi.org/10.1016/j.cell.2013.05.039</u>

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001

Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., & Jabado, N. (2011). What can exome sequencing do for you?. Journal of medical genetics, 48(9), 580–589. <u>https://doi.org/10.1136/jmedgenet-2011-100223</u>

Martin G. M. (1982). Syndromes of accelerated aging. National Cancer Institute monograph, 60, 241–247.

Martin G. M. (2005). Genetic modulation of senescent phenotypes in Homo sapiens. Cell, 120(4), 523–532. <u>https://doi.org/10.1016/j.cell.2005.01.031</u>

Mathon, N. F., Malcolm, D. S., Harrisingh, M. C., Cheng, L., & Lloyd, A. C. (2001). Lack of replicative senescence in normal rodent glia. Science (New York, N.Y.), 291(5505), 872–875. <u>https://doi.org/10.1126/science.1056782</u>

Morales, L. C., Arboleda, G., Rodríguez, Y., Forero, D. A., Ramírez, N., Yunis, J. J., & Arboleda, H. (2009). Absence of Lamin A/C gene mutations in four Wiedemann-Rautenstrauch syndrome patients. American journal of medical genetics. Part A, 149A(12), 2695–2699. <u>https://doi.org/10.1002/ajmg.a.33090</u>

Mukherjee, S., Date, A., Patravale, V., Korting, H. C., Roeder, A., & Weindl, G. (2006). Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clinical interventions in aging, 1(4), 327–348. <u>https://doi.org/10.2147/ciia.2006.1.4.327</u>

Nunes, V. S., & Moretti, N. S. (2017). Nuclear subcompartments: an overview. Cell biologyinternational,41(1),2–7.https://doi.org/10.1002/cbin.10703

Ovadya, Y., & Krizhanovsky, V. (2014). Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 15(6), 627–642. <u>https://doi.org/10.1007/s10522-014-9529-9</u>

Paolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann-Rautenstrauch syndrome: A phenotype analysis. American journal of medical genetics. Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246

Paolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmüller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Müller, C., Novelli, A., Ortega, J., ... Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of medical genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528

Partridge, L., & Gems, D. (2002). Mechanisms of ageing: public or private?. Nature reviews.Genetics,3(3),165–175.https://doi.org/10.1038/nrg753

Pivnick, E. K., Angle, B., Kaufman, R. A., Hall, B. D., Pitukcheewanont, P., Hersh, J. H., Fowlkes, J. L., Sanders, L. P., O'Brien, J. M., Carroll, G. S., Gunther, W. M., Morrow, H. G., Burghen, G. A., & Ward, J. C. (2000). Neonatal progeroid (Wiedemann-Rautenstrauch) syndrome: report of five new cases and review. American journal of medical genetics, 90(2), 131–140.

Plotnikov, A., Zehorai, E., Procaccia, S., & Seger, R. (2011). The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et biophysica acta, 1813(9), 1619–1633. <u>https://doi.org/10.1016/j.bbamcr.2010.12.012</u>

Puzianowska-Kuznicka, M., & Kuznicki, J. (2005). Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing?. The international journal of biochemistry & cell biology, 37(5), 947–960. <u>https://doi.org/10.1016/j.biocel.2004.10.011</u>

Rautenstrauch, T., & Snigula, F. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101–111. <u>https://doi.org/10.1007/BF00477545</u>

Rautenstrauch, T., Snigula, F., & Wiedemann, H. R. (1994). Neonatales progeroides Syndrom (Wiedemann-Rautenstrauch). Eine follow-up-Studie [Neonatal progeroid syndrome (Wiedemann-Rautenstrauch). A follow-up study]. Klinische Padiatrie, 206(6), 440–443. <u>https://doi.org/10.1055/s-2008-1046647</u>

Ressler, S., Bartkova, J., Niederegger, H., Bartek, J., Scharffetter-Kochanek, K., Jansen-

Dürr, P., & Wlaschek, M. (2006). p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging cell, 5(5), 379–389. <u>https://doi.org/10.1111/j.1474-9726.2006.00231.x</u>

Ricklefs R. E. (1998). Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. The American naturalist, 152(1), 24–44. <u>https://doi.org/10.1086/286147</u>

Romá-Mateo, C., Seco-Cervera, M., Ibáñez-Cabellos, J. S., Pérez, G., Berenguer-Pascual, E., Rodríguez, L. R., & García-Giménez, J. L. (2018). Oxidative Stress and the Epigenetics of Cell Senescence: Insights from Progeroid Syndromes. Current pharmaceutical design, 24(40), 4755–4770. <u>https://doi.org/10.2174/1381612824666190114164117</u>

Saitsu, H., Osaka, H., Sasaki, M., Takanashi, J., Hamada, K., Yamashita, A., Shibayama, H., Shiina, M., Kondo, Y., Nishiyama, K., Tsurusaki, Y., Miyake, N., Doi, H., Ogata, K., Inoue, K., & Matsumoto, N. (2011). Mutations in POLR3A and POLR3B encoding RNA Polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. American journal of human genetics, 89(5), 644–651. https://doi.org/10.1016/j.ajhg.2011.10.003

Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science (New York, N.Y.), 312(5776), 1059–1063. https://doi.org/10.1126/science.1127168

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G., & Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, N.Y.), 343(6166), 84–87. https://doi.org/10.1126/science.1247005

 Sherr, C. J., & DePinho, R. A. (2000). Cellular senescence: mitotic clock or culture shock?.

 Cell,
 102(4),
 407–410.
 <u>https://doi.org/10.1016/s0092-8674(00)00046-5</u>

Shimojima, K., Shimada, S., Tamasaki, A., Akaboshi, S., Komoike, Y., Saito, A., Furukawa, T., & Yamamoto, T. (2014). Novel compound heterozygous mutations of POLR3A revealed by whole-exome sequencing in a patient with hypomyelination. Brain & development, 36(4), 315–321. https://doi.org/10.1016/j.braindev.2013.04.011

Sinclair, D. A., & Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell, 91(7), 1033–1042. <u>https://doi.org/10.1016/s0092-8674(00)80493-6</u>

Thiffault, I., Wolf, N. I., Forget, D., Guerrero, K., Tran, L. T., Choquet, K., Lavallée-Adam, M., Poitras, C., Brais, B., Yoon, G., Sztriha, L., Webster, R. I., Timmann, D., van de Warrenburg, B. P., Seeger, J., Zimmermann, A., Máté, A., Goizet, C., Fung, E., van der Knaap, M. S., Bernard, G. (2015). Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nature communications, 6, 7623. https://doi.org/10.1038/ncomms8623

Thorey, F., Jäger, M., Seller, K., Krauspe, R., & Wild, A. (2003). Kyphoskoliose beim Wiedemann-Rautenstrauch-Syndrom (neonatales Progerie Syndrom) [Kyphoscoliosis in Wiedemann-Rautenstrauch-syndrome (neonatal progeroid syndrome)]. Zeitschrift fur Orthopadie und ihre Grenzgebiete, 141(3), 341–344. <u>https://doi.org/10.1055/s-2003-40084</u>

Tiku, V., & Antebi, A. (2018).Nucleolar Function in Lifespan Regulation.Trends in cellbiology,28(8),662–672.https://doi.org/10.1016/j.tcb.2018.03.007

Timmers, P. R. H. J., Tiys, E. S., Sakaue, S., Akiyama, M., Kiiskinen, T. T. J., Zhou, W., Hwang, S. J., Yao, C., Biobank Japan Project, FinnGen, Deelen, J., Levy, D., Ganna, A., Kamatani, Y., Okada, Y., Joshi, P. K., Wilson, J. F., & Tsepilov, Y. A. (2022). Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. Nature aging, 2(1), 19–30. https://doi.org/10.1038/s43587-021-00159-8

Troen B. R. (2003). The biology of aging. The Mount Sinai journal of medicine, New York, 70(1), 3–22.

Turowski, T. W., & Tollervey, D. (2016). Transcription by RNA polymerase III: insights into mechanism and regulation. Biochemical Society transactions, 44(5), 1367–1375. https://doi.org/10.1042/BST20160062

Ungewitter, E., & Scrable, H. (2009). Antagonistic pleiotropy and p53. Mechanisms of ageing and development, 130(1-2), 10–17. <u>https://doi.org/10.1016/j.mad.2008.06.002</u>

Varani, J., Warner, R. L., Gharaee-Kermani, M., Phan, S. H., Kang, S., Chung, J. H., Wang, Z. Q., Datta, S. C., Fisher, G. J., & Voorhees, J. J. (2000). Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. The Journal of investigative dermatology, 114(3), 480–486. <u>https://doi.org/10.1046/j.1523-1747.2000.00902.x</u>

Velasquez-Mendez K. (2019). Analysis of POLR3A gene expression in fibroblasts from Wiedemann-Rautenstrauch Syndrome patients. Autonomous University of Barcelona.

Vitale, G., Salvioli, S., & Franceschi, C. (2013). Oxidative stress and the ageing endocrine system. Nature reviews. Endocrinology, 9(4), 228–240. https://doi.org/10.1038/nrendo.2013.29

Wang, M., & Lemos, B. (2019). Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome research, 29(3), 325–333. https://doi.org/10.1101/gr.241745.118

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics, 10(1), 57–63. <u>https://doi.org/10.1038/nrg2484</u>

Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. <u>https://doi.org/10.1126/science.1246981</u>

Warner, H. R., & Sierra, F. (2003). Models of accelerated ageing can be informative about the molecular mechanisms of ageing and/or age-related pathology. Mechanisms of ageing and development, 124(5), 581–587. <u>https://doi.org/10.1016/s0047-6374(03)00008-3</u>

Warrenburg, B. P., Seeger, J., Zimmermann, A., Máté, A., Goizet, C., Fung, E., van der Knaap, M. S., ... Bernard, G. (2015). Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nature communications, 6, 7623. <u>https://doi.org/10.1038/ncomms8623</u>

Wiedemann H. R. (1979). An unidentified neonatal progeroid syndrome: follow-up report. European journal of pediatrics, 130(1), 65–70. <u>https://doi.org/10.1007/BF00441901</u>

Wolf, N. I., Vanderver, A., van Spaendonk, R. M., Schiffmann, R., Brais, B., Bugiani, M., Sistermans, E., Catsman-Berrevoets, C., Kros, J. M., Pinto, P. S., Pohl, D., Tirupathi, S., Strømme, P., de Grauw, T., Fribourg, S., Demos, M., Pizzino, A., Naidu, S., Guerrero, K., van der Knaap, M. S., ... 4H Research Group (2014). Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology, 83(21), 1898–1905. https://doi.org/10.1212/WNL.00000000001002

Xu, Y., Li, N., Xiang, R., & Sun, P. (2014). Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends in biochemical sciences, 39(6), 268–276. <u>https://doi.org/10.1016/j.tibs.2014.04.004</u>

Yosef, R., Pilpel, N., Papismadov, N., Gal, H., Ovadya, Y., Vadai, E., Miller, S., Porat, Z., Ben-Dor, S., & Krizhanovsky, V. (2017). p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. The EMBO journal, 36(15), 2280–2295. <u>https://doi.org/10.15252/embj.201695553</u>

Yousef, H., Czupalla, C. J., Lee, D., Chen, M. B., Burke, A. N., Zera, K. A., Zandstra, J., Berber, E., Lehallier, B., Mathur, V., Nair, R. V., Bonanno, L. N., Yang, A. C., Peterson, T., Hadeiba, H., Merkel, T., Körbelin, J., Schwaninger, M., Buckwalter, M. S., Quake, S. R., ... Wyss-Coray, T. (2019). Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nature medicine, 25(6), 988–1000. https://doi.org/10.1038/s41591-019-0440-4

Zarei, A., Razban, V., Hosseini, S. E., & Tabei, S. M. B. (2019). Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. The journal of gene medicine, 21(4), e3082. <u>https://doi.org/10.1002/jgm.3082</u>