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Abstract

Green chemistry has been gaining popularity to produce bio-based products and reduce

environmental impact. This study examines the production of n-butyl lactate through reac-

tive distillation at a pilot plant scale. The isobaric vapor-liquid equilibrium for the binary

mixture n-butanol + n-butyl L-lactate at 1 and 5 kPa was evaluated, followed by an analy-

sis and a new methodology to obtain maps of reactive and non-reactive residue curves for

producing n-butyl lactate; results showed that it is possible to obtain n-butyl lactate with a

purity of 97% w/w. A dynamic model of the reactive distillation column was developed and

validated. The model includes a mass and energy balance equation set, the NRTL thermody-

namic model, and a pseudo-homogeneous kinetic equation. The model was validated against

experimental data and literature data. Based on the modeling analysis and operability of the

pilot plant, an advanced control strategy, a Non-linear Model Predictive Controller (NMPC),

to improve n-butyl lactate production was tested in silico; this was evaluated and compa-

red with a classic MIMO PID strategy and a Linear Model Predictive Controller (LMPC).

Then, a state estimator using an Artificial Neural Network (ANN) was implemented to filter

the signal from the measurements and estimate the final product composition, providing a

viable scenario to predict and maintain the final product quality. The conclusion of the con-

troller comparison showed that the NMPC presented the best performance indices, ITSE,

and ITAE. However, the LMPC control was sufficiently good to be evaluated in silico at

pilot plant scale.



vi

Resumen

Producción de lactato de n-butilo por destilación reactiva: estimación de estado,

optimización y control avanzado

La qúımica verde ha ido ganando popularidad para producir productos biológicos y reducir

el impacto ambiental. Este estudio examina la producción de lactato de butilo, a través de la

destilación reactiva a escala de planta piloto. Se evaluó el equilibrio vapor-ĺıquido isobárico

para la mezcla binaria n-butanol + butil L-lactato a 1 y 5 kPa, seguido de un análisis y una

nueva metodoloǵıa para obtener mapas de curvas de residuos reactivos y no reactivos para

producir butillactato; los resultados muestran que es posible obtener lactato de butilo con

una pureza del 97% p/p. Con los resultados del análisis, la columna de destilación reactiva

se modeló y validó utilizando un modelo dinámico que incluye un conjunto de ecuaciones de

balance de masa y enerǵıa y utiliza el modelo termodinámico NRTL y una ecuación cinética

pseudohomogénea. El modelo se validó con datos experimentales y previamente se presenta-

ron datos bibliográficos. Sobre la base del análisis de modelado y operabilidad de la planta

piloto, se probó una estrategia de control avanzada para mejorar la producción de lactato

de butilo en silico; esto se evaluó y comparó con una estrategia clásica de MIMO PID y un

controlador predictivo de modelo lineal (LMPC) contra un controlador predictivo modelo no

lineal (NMPC). La implementación de un estimador de estado, utilizando una Red Neuronal

Artificial (ANN), para filtrar la señal de las mediciones y estimar la composición final del

producto proporcionó un escenario viable para predecir y mantener la calidad del producto

final. La conclusión de la comparación del controlador muestra que el NMPC presentó el

mejor ı́ndice de rendimiento ITSE e ITAE. Sin embargo, el control de LMPC es lo suficien-

temente bueno para ser implementado en la planta.

Palabras clave: solventes verdes, lactato de butilo, destilación reactiva, modelado

y simulación, control avanzado.
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1 State of the art and justification

1.1. Introduction

In the last ten years, an industrial interest has increased in a new type of solvents since

traditional ones are considered hazardous because they include physical hazards such as ex-

plosiveness, flammability, and volatility; health hazards such as acute and chronic toxicity,

carcinogenicity, mutagenicity, reproduction/developmental toxicity, ecological toxicity, and

biodegradability Wypych [2014]. Taking a broader view of the emissions of all the volatile

organic compounds (VOCs), according to the Canadian National Pollutant Release Inven-

tory, only 0.7% of the VOC emissions around the world come from the chemical industry.

In contrast, 21% come from the general solvent use outside the chemical manufacturing

industry Jessop [2011].

According to McDonald et al. [2018], volatile chemical products (VCPs), including pesticides,

coatings, printing inks, adhesives, cleaning agents, and personal care products, constitute half

of the fossil fuel VOC emissions in industrialized cities. In the USA, the total emissions of

VOC in 2014 were estimated at around 12 million tons Anand et al. [2014], which is related

mainly to the chemical industry and road mobile sources. The European Commission on

Environment has established certain legislation to reduce the industrial emissions of VOC

into the air. They include technical changes in around 50000 chemical plants around the

European Union, substituting chemical solvents for environmentally friendly solvents, and a

strategy for implementing and encouraging a bio-based economy comission [2017].

There is a particular interest in lactate esters, especially from alcohols like n-butyl alcohols,

due to their additional chemical properties, such as high boiling point, which allows their use

in many applications. The most reported methods for lactate esters production include inten-

sification technologies such as reactive distillation. Applying new technologies for producing

green solvents, such as lactates and acetates, is a key point in the industry’s transformation.

The main drawbacks of the reactive distillation process are i) non-linearities are present,

making the control problem difficult for assessing the end-product properties Valerica Taga

et al. [2019], Castrillon and Ochoa [2018]. ii). The multiple steady states make a multivariable

problem that should be studied and researched in depth to generate solutions in this area,

especially for the production of lactates from higher alcohols like the obtention of n-butyl

lactate from n-butanol, which is interesting lactate for industrial applications but without
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enough kinetic and phase equilibria information and in many cases without the complete

information Valerica Taga et al. [2019], Jiang et al. [2018], Peña-Tejedor et al. [2005a].

In Kumar and Mahajani [2007], the authors proposed a reaction process for the esterifica-

tion of lactic acid with butanol to obtain n-butyl lactate, evaluating kinetic parameters. The

process was carried out in batch and continuous stages, in a reactive distillation column at a

laboratory scale, and compared with simulation in ASPEN Plus. In Wei, Y., Yu et al. [2020]

the authors presented a novel synthesis method for ethyl lactate, a lactate ester commonly

used as a green solvent. The authors used a sulfonated resin catalyst and optimized the

reaction conditions to achieve high yield and purity.

To overcome the problems related to the residue and reactive curve maps and technical

feasibility evaluation at the pilot-plant scale, it is necessary to develop advanced control

strategies and soft-sensor predictions to fulfill economical, physical, and phenomenological

constraints of the process Sharma and Singh [2014], Jana and Banerjee [2018], Kiva et al.

[2003], Sánchez et al. [2020]. Additionally, according to Asthana et al. [2006], for design

purposes, it is important to include the oligomer’s kinetic reaction (lactic acid oligomers) to

the kinetic and reactive distillation models to obtain more reliable predictions.

In this sense, Process Systems Engineering (PSE) is a very active research field to deal with

those drawbacks related to the non-linearities and multivariable problems for the obtention

of butyl lactate. There are many reports of the application of PSE tools for advanced con-

trol strategies such as non-linear model predictive control (NMPC), Extended Kalman filter

(EKF), and real-time optimization (RTO) for obtaining lactates from primary alcohols in

reactive distillation with high purity at low costs Mo et al. [2011], Valluru et al. [2015a]. Ho-

wever, most of these reports have been performed in silico, and only a few include lab-scale

experiments Karacan [2018]. These do not allow determining a realistic scenario that inte-

grates technical and economic evaluation to produce feasible information for and eventually

implementation at an industrial scale.

This work presents the opportunity to engage with a pilot-plant scale reactive distillation

column located at the chemical engineering laboratory at the Universidad Nacional de Co-

lombia in BogotÃ¡. The isobaric vapor-liquid equilibrium for the binary mixture of n-butyl

l-lactate and n-butanol at 1 and 5 kPa is attained to achieve this goal [Garcia et al., 2021].

Following this, were evaluated both reactive and non-reactive residue curve maps [Velandia

et al., 2021]. This assessment was crucial in determining the technical feasibility of producing

n-butyl lactate in the reactive distillation column at the pilot plant. Progressing forward, it

was developed, simulated, and validated a phenomenological model for a reactive distillation

column. This model incorporated a heterogeneous reaction alongside an equilibrium model.

Advanced control strategies, such as linear and non-linear model predictive controllers, were
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proposed for higher productivity. A state estimation technique employing an artificial neural

network was implemented.

This thesis aims to develop advanced control tools and state estimators that can be im-

plemented in real-time operations at a pilot plant scale. This serves as a foundation for

further research on the topic and aims to determine optimal operating conditions to achieve

the desired final concentration, estimate the reaction’s progress, and reduce operational costs.

This doctoral thesis has made significant contributions in the domain of thermodynamic

equilibrium. To begin with, it has generated equilibrium data for the binary mixture of

n-butyl lactate and n-butanol at 1 and 5 kPa. This enriches the database of thermodyna-

mic information, which is important for n-butyl lactate production. Furthermore, based on

global optimization techniques, a novel strategy was conceived for generating both reacti-

ve and non-reactive ternary and quaternary residual curve maps. Such a move unlocks the

potential to dissect the production of these esters in reactive systems, paving the way for

a robust analysis of reactive distillation column designs. A dynamic state model has also

been formulated for a pilot-scale reactive distillation column. This model has undergone ri-

gorous validation through plant data, academic literature, and simulations in Aspen Plus.

It’s poised to lay the blueprint for optimal operating scenarios and appropriate control stra-

tegies, ensuring efficient n-butyl lactate production at the pilot plant scale. Conclusively, an

advanced control strategy has been juxtaposed, weighing the merits of LMPC and NMPC

controllers against MIMO PID, with LMPC showcasing a good performance through the

intricate nonlinearities and operational constraints inherent to the system.

The rigorous research and development underlying the doctoral thesis have culminated in

two significant publications thus far. The first one is titled, ’Isobaric Vaporâ€“Liquid Equi-

librium for the Binary Mixture of n-Butanol + n-Butyl l-Lactate at 1 and 5 kPa’ [Garcia

et al., 2021] and the second, ’Reactive and non-reactive residue curve maps analysis to produ-

ce Butyl Lactate by catalytic distillation’ [Velandia et al., 2021]. Furthermore, a third paper,

dealing with the intricacies of modeling, validation, and advanced control, is currently in the

writing phase.

The document has been structured for clarity and coherence in chapters. Chapter 1 serves as

the introduction, offering a concise overview of the current state of the art associated with

green solvent production. Chapter 2 dives into a comprehensive literature review concerning

n-butyl lactate, intensified processes, reactive distillation, and the respective control strate-

gies applied. Chapter 3 elucidates the methodology, encompassing the experimental parts

like materials and methods, construction of ternary and quaternary diagrams, modeling, va-

lidation, and advanced control. Lastly, Chapter 4 showcases the research findings for each

discussed theme.
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2 Literature Review

2.1. Green solvents in the world

There is a long list of generic solvents that are considered green solvents. This group in-

cludes alcohols, esters, ethers, glycols, hydrocarbons, lactones, and a few other compounds

Wypych and Wypych [2014]. Stringent regulations by the REACH, EPA, and DEFRA con-

cerning toxicity content in conventional solvents have prompted the shift towards developing

bio-solvents Grand View Research [2015]. In this sense, new natural resources have become

important for getting the well-called green solvents. The global bio-based solvents (green sol-

vents) market is growing in importance. Generally, the global solvent market between 2012

and 2013 was estimated at 2375 and 2505 kt, respectively. In 2015, it was in the order of 20

million metric tons, and in the same year, the global green and bio-based solvents market

size were estimated at USD 5.44 billion. In 2016, it was estimated at USD 6.01 billion and

was expected to reach USD 9.43 billion in 2022 and 13.7 billion in 2024. In 2015, European

solvent production provided about one-quarter of the worldwide market, and the production

and uses of bio-based solvents in the European Union were projected to grow to over one

million metric tons by 2020, which was reached in the mentioned year Grand View Research

[2015, 2016], market research [2017], Clark et al. [2015]. The most important industries for

solvent production include paints and pharmaceuticals (Figure 2-1). The uses of solvents

include chemical formulations, chemical reactions, or chemical extractions. Therefore, a sig-

nificant alleviation of non-renewable chemical dependence can be achieved by implementing

green solvents.

In Afreen et al. [2021], the review paper discussed using lactate esters as green solvents

for various organic synthesis reactions, highlighting their advantages over traditional sol-

vents such as benzene and dichloromethane. The paper also covers recent developments in

the synthesis and characterization of lactate esters. The authors in Ammar et al. [2019]

investigated using lactate esters to extract bioactive compounds from natural sources such

as plants and fruits. The authors found that lactate esters were effective solvents for ex-

tracting various compounds, including polyphenols, flavonoids, and carotenoids. They had

advantages over traditional solvents, such as hexane and methanol, in terms of toxicity and

biodegradability. In Almeida et al. [2019] discuss using lactate esters as green solvents for lig-

nocellulose processing, an essential step in producing biofuels and bioproducts. The authors

highlight the advantages of lactate esters over traditional solvents such as dimethyl sulfoxide
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Figure 2-1: Industrial uses of solvents Clark et al. [2015].

and ionic liquids and discuss recent developments in their use for lignocellulose pretreatment.

One alternative for green solvent production appears in ethanol production plants that utilize

the medium-chain-length alcohol fraction as raw material (fusel alcohols) from the distillery

step. It consists mainly of iso-pentanol and isoamyl alcohol Eyerer et al. [2010]. Besides, it

is possible to produce lactic acid in ethanol plants, another important component for green

solvent obtention, such as lactates. This diversificate the products of sugar cane in the etha-

nol industry plants Tirpanalan et al. [2015].

Green chemistry can be defined according to Wypych and Wypych [2014] and Sharma [2015]

as the design, manufacture, and application of chemical products and processes to reduce or

eliminate the use and generation of hazardous substances. The Green Chemistry philosophy

is based on 12 principles Anastas and Warner [2000]. Some of the most important are waste

prevention, energy efficiency, renewable feedstock, benign chemistry, and pollution preven-

tion (design for degradation). Based on the last principles, green chemistry define chemical

solvents as the ones that are often volatile compounds from petroleum resources, bearing

several health and environmental risks Häckl and Kunz [2018].

In this sense, green solvents can be defined as solvents that improve biocompatibility, sus-

tainability, and biodegradability and avoid ecological toxicity and pollution, fulfilling the 12

principles of green chemistry of Anastas and Warner Häckl and Kunz [2018], Anastas and

Warner [2000], Schuur et al. [2019].

Figure 2-2 shows that the three ideal conditions for obtaining a green solvent are the rela-

tion of the three main general topics of safety and legislation, environmental restrictions and

effectiveness, and all their related topics that allow adequate use and application.
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Figure 2-2: Relation for obtaining the ideal solvent Häckl and Kunz [2018].

2.2. Global market of lactate esters

Integrating the bio-refineries for obtaining and using second-generation products like fusel

to obtain lactates allows for a diversified industry process to obtain green solvents Earle and

Seddon [2000], Clark et al. [2009].

Applying short and long-chain alcohols as extraction solvents unites two important points.

On the one hand, this liquid normally constitutes a surplus product with low market value.

When used as an extraction solvent, the costs for alternative solvents are saved. Furthermore,

this extraction solvent is less harmful to handle than the classical extraction solvents Edreder

et al. [2010]. Besides, it is possible to generate new knowledge around the thermodynamic

and kinetic properties of long-chain alcohols like butanol, propanol, and isoamyl.

Alcohols from fusel oil have been used to manufacture bioproducts in chemical industries,

even for pharmaceutical applications, with the advantage of being environmentally safe, re-

newable, and in some cases, biodegradable Özgülsün et al. [2000]. In this aspect, Colombia

has a significant advantage due to its bioethanol and beverage industries that allow good

scenarios for green solvent obtention and applications Montoya et al. [2016].

In 2015, lactic acid production in a global market was estimated at 328.000 metric tons/year.

By 2025, the utilization of LA for (bio) products obtention is expected to reach 50% of total

LA available in the global market Mohammad and Inamuddin [2012], Duque et al. [2016].

Globally, lactate esters dominated the industry with a revenue of over USD 1.48 billion in

2015. This segment is also expected to witness the highest growth during the forecast period,
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driven mainly by increasing applications, easy availability of raw materials such as lactic acid,

and low production costs Grand View Research [2016]. In 2016, lactate ester was a major

type segment on account of the growing demand for printing inks, coatings, and industrial

applications market research [2017] and the most important bio-solvent companies included

The Dow Chemical Co., AkzoNobel N.V., E.I. du Pont de Nemours Co., Cargill Inc., BASF

SE., Lyondell Basell, BioAmber, Huntsman Corp., Myriant Corp., Vertec Bio solvents and

Florida Chemicals, among others Grand View Research [2016].

In this sense, lactate esters are a green and economically viable alternative to traditional

solvents. Their extensive use and scale-up to the industrial level require a deep and accurate

knowledge of its properties in wide pressure-temperature ranges Aparicio and Alcalde [2009].

Lactate esters can be obtained from the esterification reaction with alcohols (methanol, etha-

nol, propanol, iso-butanol, and isoamyl alcohol) with lactic acid Montoya et al. [2016]. They

have been produced through both chemical synthesis and fermentation routes. This last

process is the most common. However, lactates derived from fermentation broths require

extensive purification processes that should be inexpensive and environmentally friendly Pe-

reira et al. [2011].

2.3. Industrial production of lactate esters: Classical and

intensified.

In 1926, Wood et al. [1926] evaluated the properties of butyl lactate and their isomer; two

years later, Charles and Charles [1928] presented a patent for the obtention of butyl esters

of lactic acid, and more particularly to the normal primary, butyl ester of alpha hydroxy

propionic acid (fermentation lactic acid). The authors proposed an esterification reaction fo-

llowed by distillation for dehydrating lactic acid. Shailer and Howard Shailer L. and Howard

N [1934] presented the patent for obtaining secondary butyl lactate in a similar approxima-

tion to Charles L. and Charles. In 1948, Rehberg et al. [1948] evaluated the thermophysical

properties of some alkyl esters, including butyl lactate. Later, Schulz et al. [1955] present

a patent for an esterifying butyl lactate process, including an evaporating apparatus for

carrying out the process. Besides, it is composed of a train of evaporating vessels, external

heat exchangers, condensers, a separatory tank, a scrubber, and a distillation column (Figure

2-3).

The process shown in Figure 2-3 includes many process units, which increases the process

costs. For this reason, the production of n-butyl lactate based on this type of scheme is not

an attractive process for industrial implementation. Despite this, other authors proposed al-

ternative processes, methods, and technologies (including new catalysts) to make a feasible
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Figure 2-3: Process flow diagram for the production of ethyl lactate Serge et al. [2004].

production of n-butyl lactate Berg and Mont [1990], Dassy et al. [1994], Andersen [1998], Pi-

rozzi and Greco [2006], Jianwu et al. [2009], Yuming and Yong [2015], Rui and Weilue [2018].

In Serge et al. [2004] presented an interesting approximation related to the process produc-

tion of ethyl lactate with purity ≥97% from lactic acid. According to these authors, this

reaction should be catalyzed with acid. It is necessary to avoid the formation of lactic acid

oligomers, which is an interesting topic to work on. According to the authors, the esterifi-

cation of lactic acid with ethanol is complicated due to the formation of oligomers of lactic

acid in the starting lactic acid compositions and the oligomerization of ethyl lactate with

lactic acid and ethanol and an oligomer of lactic acid, which makes challenging to obtain

purified ethyl lactate and reduces reaction yield.

Additionally, Serge et al. [2004] found that a water-ethyl lactate binary mixture can form an

azeotrope, complicating water removal from ethyl lactate. Based on the mentioned problems,

the authors proposed a methodology consisting of having a water content as low as possible

during the esterification reaction of lactic acid and ethanol and then applying vacuum disti-

llation. The distillation is carried out at a column base temperature ranging from 152 °C to

165 °C. Finally, the authors present an applied example feeding a stirred tank reactor with

lactic acid (87%), absolute ethanol, and 98% sulfuric acid. Then the mixture was separated

in a flash tank and later in a fractional distillation column with a diameter of 70 cm and 35

theoretical plates, and the ethyl lactate was recovered. This process is presented in Figure

2-4, where the crude ethyl lactate is subjected to purification by fractional distillation under

reduced pressure.

In this sense, Asthana et al. [2006] presented the kinetic model for the esterification of lactic
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acid and its oligomers, where the esterification was performed with ethanol over Amberlyst

15 cation-exchange resin. The authors presented that the extent of oligomerization is inver-

sely related to the water content of the solution. Based on this, for the production of lactate

esters and design purposes, it is important to include and characterize oligomer reactions in

the process model.

Figure 2-4: Process flow diagram for the production of ethyl lactate [Serge et al., 2004].

Other reports presented a similar approximation to Serge et al. [2004], where the different

authors tried to propose, evaluate and implement different technologies that include catalyst,

unit process, and equipment to improve the ethyl lactate yield in real process applications for

ethyl lactate obtention Georges and Remy [2004], Jichu et al. [2005], Aparicio and Alcalde

[2009], Delgado et al. [2010], Pereira et al. [2011], Bykowski et al. [2014], Fuquan [2017], Hu

et al. [2019].

As a chemical synthesis, reactive distillation (RD) is a very attractive option to reduce in-

vestment and energy costs Lai et al. [2007]. According to Keller [2014], in 2009, the European

chemical industry consumed approximately 19% of the total energy of the continent, and

approximately 40% of the energy consumption in this sector was used in the separation

proces, specifically in distillation units. In this sense, process intensification was created to

design compact, safe, energy-efficient, and sustainable processes Stankiewicz and Moulijn

[2013], being RD the most important example of process intensification.

For industrial purposes, it becomes pretty interesting to find different ways to reduce costs
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and get higher profitability while predicting and controlling the main quality-related process

variables. However, RD still has to deal with many complexities from an operational and

control point of view. First, there exists a reaction scheme that should be solved with kine-

tic information. Second, a phase separation problem should be solved with phase equilibria

information, which raises the nonlinearities and multiples stationary states in the process,

reducing the economic feasibility in RD operation Valerica Taga et al. [2019], Castrillon and

Ochoa [2018]. In many cases, the kinetic and phase equilibria information for the esterifi-

cation reaction of long-chain alcohols like n-butanol is available only in a specific range of

operation (90 to 101.4 kPa), and in another case, there is no information at all Valerica Taga

et al. [2019], Kumar and Mahajani [2007], Peña-Tejedor et al. [2005a].

Thus, many types of research have been developed to solve RD’s control and economic feasibi-

lity problem. In Mo et al. [2011] proposed an integrated design and control for the hydrolysis

of methyl lactate and purification of lactic acid. They evaluated a dual temperature con-

trol for optimal operation. In Castrillon and Ochoa [2018] presented a similar methodology

to achieve an integrated design and control of the process applied to a reactive distillation

column to produce ethyl lactate. The proposed methodology allows the understanding that

traditional designs present energetic inefficacy and low controllability. On the other hand,

Valerica Taga et al. [2019] presented the trans-esterification of methyl lactate with isopro-

panol to obtain isopropyl lactate, considered a green solvent. Their methodology proposed

to carry out the reaction in a reactive distillation column in an acid medium, in addition to

using correlation models with the initial intention of obtaining kinetic data.

In Miller et al. [2006], the authors patented a process for producing organic acid esters using

continuous countercurrent reactive distillation using acid catalysts in a structured packing

in a single column. The authors evaluated two cases, methyl, and ethyl lactate production,

at different operating conditions. Figure 2-5 and Figure 2-6 show the molar concentration,

inlet reactants temperatures, and chemical ratio for the esterification reaction. Compared

with the case of Figure 2-4, the reduction in the process units can be easily observed, pro-

bably reducing the process’s cost.

Sánchez et al. [2017] presented experimental vapor-liquid equilibrium data and thermody-

namic modeling studies related to the separation and reactive synthesis of ester compounds

from fusel oil mixtures. The authors measured isobaric VLE data for binary mixtures of

isobutyl acetate with isoamyl acetate and ethyl acetate at various pressures. The near-ideal

behavior was modeled well with NRTL, UNIQUAC, and UNIFAC-DMD activity coefficient

models.

Sánchez et al. [2019] extended the equilibrium database, reporting new VLE measurements

for the ethyl acetate + isoamyl acetate system at 50 kPa and 100 kPa. Modeling results
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Figure 2-5: Ethyl lactate production in reactive distillation column Miller et al. [2006].

Figure 2-6: Methyl lactate production in reactive distillation column Miller et al. [2006].

again indicated near-ideal behavior that could be predicted by multiple activity coefficient

models. Then, Sánchez et al. [2020] developed an improved NRTL model parameter set for

the quaternary acetic acid + isoamyl alcohol + isoamyl acetate + water system, calibra-

ted using available VLE, LLE and VLLE data. The model successfully predicted azeotropes

and multicomponent VLE consistent with experimental reports, outperforming prior models

from the literature.
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Okasinski and Doherty [1997] explored the effect of reaction equilibrium constant uncertainty

on the existence and location of reactive azeotropes for systems with a single chemical reac-

tion. Using arc-length continuation, they generated bifurcation diagrams tracking reactive

azeotrope branches vs. the equilibrium constant. Results for an esterification reaction showed

three distinct phase behavior regimes depending on the constant value. The methodology

enables rapid screening for reactive azeotropy and optimal conditions.

Overall, the works provide valuable phase equilibrium data, modeling, process insights, and

analysis tools related to separation and reactive distillation syntheses of esters from fusel oil

and other feedstocks. The improved understanding enables more accurate process simula-

tions to evaluate and optimize these renewable chemical production pathways. Likewise, the

construction of ternary reactive diagrams based on Michelsenâ€™s balance equations is pre-
sented, but there is not a sufficiently clear methodology in the literature for the construction

of such diagrams [Doherty and Perkins, 1979, Michelsen, 1992].

2.4. Production of n-butyl lactate

In Kumar and Mahajani [2007] proposed a reaction process for the esterification of lactic acid

with butanol to obtain n-butyl lactate, evaluating kinetic parameters and phase equilibrium.

The process was carried out in batch and continuous stages, in reactive distillation equip-

ment at a laboratory scale, and compared with simulation in ASPEN Plus V8. The kinetic

parameters were estimated with the Pseudohomogeneous Activity-based model (Equation 2-

1); Lee et al. [2002] evaluated the esterification reaction of propionic acid and n-butanol over

Amberlyst 15. The authors obtained the estimated kinetic parameters, evaluating different

models such as quasi-homogeneous, the Langmuir-Hinshelwood, the Eley-Rideal, and the

modified Langmuir-Hinshelwood. They found that the Langmuir-Hinshelwood model best

represent kinetic behavior. However, Kumar and Mahajani [2007] obtained, with their mo-

del, a confidence interval of 95% presented in Table 2-1 in which the value of the objective

function calculated by the mean square error (MSE) is presented.

rLA =
nLA

wcat

· dXLA

dt
= Kf0exp

(
−Ea

RT

)
(XLaXBuOH)−Kb0exp

(
−Eb

RT

)
(XBuLacXw) (2-1)

where nLA are the initial moles of Lactic Acid, Wcat is the weight of the catalyst, kf0 and

kb0 are the preexponential factor, and Ea and Eb are the activation energies.
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Table 2-1: Estimated kinetic parameters for the esterification reaction of lactic acid and

n-butanol Kumar and Mahajani [2007].

Parameter Value

Ea(kj/mol) 53.40±1,86

Eb(kj/mol) 52.24±6,01

Ln(Kf0)(mol/kgh) 25.26±1,98

Ln(Kb0)(mol/kgh) 23.34±0, 63

Objective Function 2.02×10−4

In Figure 2-7, the batch reactive distillation performed by Kumar and Mahajani [2007] can

be observed, as well as some results. The authors presented a set of equations related to

the thermodynamic and mass balances for batch operation. The model was fitted with the

experimental data for reactor compositions, temperature, and total water removed over time.

Figure 2-7: Batch reactive distillation for producing n-butyl lactate Kumar and Mahajani

[2007].

In Kumar and Mahajani [2007] calculated the activity coefficients in the liquid phase using

the UNIQUAC equation for all the binary interactions. The number of binary equilibrium

data and interactions for the esterification reaction in the reactive distillation column is
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important. Usually, the NRTL and UNIQUAC models are the most used for determining

binary data in the esterification reaction of lactate esters. The models require at least two

adjustable parameters. In this sense, two possible sources exist for obtaining phase equili-

brium data, performing experiments or databases. Aspen Plus®is a software that contains

NIST and DECHEMA databases where it is possible to find phase equilibria data for some

components. There are not enough experimental reports in the open literature related to the

phase-equilibrium data for the components in the esterification reaction of lactic acid with

n-butanol to produce n-butyl lactate.

Table 2-2 presents the available and missing phase equilibrium data and binary interac-

tions for the components in the esterification reaction for producing n-butyl lactate. Iwa-

kabe and Kosuge [2001], the authors presented the vapor-liquid equilibrium (VLE) for the

binary mixture of water-n-butanol at 101.3 kPa, and the reported data present thermody-

namic consistency. Sanz et al. [2003] presented the VLE data from the binary mixture of

water-lactic acid at 103.33 kPa. The authors evaluated the lactyl-lactic formation due to

oligomerization and performed some correlations for determining the activity coefficients for

the system water+lactic acid+lactyl-lactic acid, being UNIQUAC model, which was fitted

better. Peña-Tejedor et al. [2005b] evaluated the VLE and excess volumes of the binary sys-

tem ethanol+ethyl lactate, isopropanol+ isopropyl lactate, and n-butanol+n-butyl lactate

at 101.325 kPa. The data present thermodynamic consistency, and the authors evaluated

the UNIQAC model for predicting properties.

The VLE data presented by Peña-Tejedor et al. [2005a] is the most interesting for design

purposes, but the authors reported 101.325 kPa. In real RD columns, it is necessary to ope-

rate at vacuum conditions to reduce the separation temperature and avoid the formation

of oligomers. In this sense, it is necessary to generate VLE data at vacuum conditions for

the mixture n-butanol-n-butyl lactate to get the most approximated model, which should be

able to reproduce in a better form, the reactive-distillation process.

Finally, Jiang et al. [2018] presented the novel esterification reaction of lactic acid with

isoamyl alcohol to produce isoamyl lactate, considered a green solvent with a high molar

percentage in fusel oil. The authors evaluated four correlation models to obtain the kinetic

data. The article is relatively simple, giving all the methodological information to reproduce

the experimental set and the different model evaluations, and presents a research precedent

in the area of green solvent production and data for model validation.
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Table 2-2: Availability of binary phase equilibrium data for the esterification reaction pro-

ducing n-butyl lactate.

Lactic acid n-butyl Lactate Water N-butanol

N-butanol X ** * —

Water *** X — *

n-butyl Lactate X — X **

lactic acid — X *** X

*:measured by Iwakabe and Kosuge [2001]

**:measured by Peña-Tejedor et al. [2005b]

***:measured by Sanz et al. [2003]

X:without experimental report

2.5. Control, optimization, and state estimation

applications in reactive distillation process

There are reports related to many problems in the control implementation in RD columns,

one of these problems is because the traditional process design methodologies consider the

control system and equipment design as two separate topics. In most real cases, the equip-

ment is designed based on economic feasibility, optimization requirements, and steady-state

information. Afterward, the process control system is designed to assure a good closed-loop

performance at the selected set point to obtain some desired final product properties Cas-

trillon and Ochoa [2018], Francisco et al. [2000]. In the operation of a reactive distillation

column, implementing the process and its control system design sequentially can be a pro-

blem due to the resulting equipment. It is often difficult to control, especially because, in

most cases, the proposed control system is based on the PID control law, which does not

include the prediction of the main state variables. Besides, it is an inflexible system and

presents problems when facing disturbances Balaban [2000].

Many efforts have focused on improving the control performance of RD in real-case appli-

cations. In Haßkerl et al. [2018a] and Valluru et al. [2015b], the researchers aim to apply

in silico an adaptive NMPC integrated into RTO to an ideal case of reactive distillation.

This application is interesting because the control has many deviations due to the kinetics

and phase equilibrium. The proposed integrated control allows dealing with the non-linearity

problems and the optimization to reach the maximum profitability fulfilling the productivity

restrictions.
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In Reddy et al. [2017], the authors proposed a case for the simulation of a reactive batch

distillation for butyl acetate production using multi-objective optimization, which is solved

by a non-dominated sorting Genetic algorithm. In Figure 2-8 (a), it can be observed the

full model for RD process and in Figure 2-8(b) can be observed the reduced order model

proposed by the authors. One of the authors’ objectives was to reduce the simulation time

for this type of process.

Figure 2-8: Schematic representation of the reduced order model proposed by Reddy et al.

[2017].

In the same sense, Wahid and Putra [2018] proposed a multivariable model predictive contro-

ller applied to a reactive distillation for the obtention of dimethyl ether based on two-point

control structures using rangeability analysis. The authors made a first-order system plus

dead time. The linear model predictive controller (LMPC) plus dead time (FOPDT) was

implemented based on simulation data generated by changes in the reflux flow rate and re-

boiler duty to obtain input-output data. The main conclusion is that multivariable MPC can

attend to the non-linearities of the system, fulfilling the product features due to the dead

time performance. It can also handle loop interactions. Figure 2-9 compare three different

control configurations. Figure 2-9a) and c) compare PI control with single and two control

operations, Figure 2-9b) present a multi-input-multi-output control scheme with a MPC.

The control adapted with MPC presented the best performance with the smoothest response.

Marquez-Ruiz et al. [2019] proposed and implemented an alternative strategy based on

LMPC developed in silico (using linear transformations to represent the non-linear sys-

tem), which can handle the control and optimization of a batch reactive distillation process.

They compared different literature methods applied to the same process, such as the order-

reduction method and transforming variables. The main difficulty in applying control and
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Figure 2-9: a) Two-point PI control configuration, b) MPC control configuration, c) Single-

point PI control configuration Wahid and Putra [2018].

optimization in a real case was due to the non-linearities and the large set of differential-

algebraic equations, making the approach computationally expensive.

In Zhang et al. [2019], the authors deal with the control and the annual total cost (TAC)

optimization of a reactive-extractive distillation for the obtention of isopropyl acetate. The

authors compared two control strategies based on cascade control; the kinetic and thermody-

namic information was taken from the literature. There are no formal equations in the paper

other than results and analysis for the different control strategies and the evaluation of the

optimization function. The final results showed a significant reduction in the TAC without

affecting operability. Instead, Haßkerl et al. [2018b,a] implemented and evaluated an inte-

grated NMPC with economical optimization for a multiple reaction system in a reactive

distillation column at a pilot-plant scale. The most interesting part of this work was the

use of online software (python/c++ based software tool do-mpc), which allowed to solve

the two layers of NMPC block coupled with the optimization problem, which reduces the

computational time for real applications. Another interesting item is related to the use of

an online spectrometer that allows to have online measurements of the concentration of the

product and to estimate other variables. The authors used multiple shooting methods to

solve the optimization problem and to reduce the computational time. The representation

of the online connection with the advanced control strategy is presented in Figure 2-10.

Manipulating the catalyst charge, the reflux and distillate feed is controlled. With this, it is

possible to extrapolate to an Economic RTO problem.
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Haßkerl et al. [2018b] presented the same process system at the pilot-plant scale. They

evaluated a variant of the EKF state estimation technique specifically adapted to handle

models described by differential-algebraic equations (DAE) to estimate the full state vector

of a reactive distillation process in a pilot plant. The state estimator was run online at the

column using an OPC-DA as presented in Figure 2-10. The authors evaluated the estimator

performance, getting a good approximation to experimental evaluation.

Figure 2-10: Local network and connections for advanced control in a RD column proposed

by Haßkerl et al. [2018c].

Aqar et al. [2016] proposed a semi-batch reactive distillation column’s optimal design and

control operation to obtain methyl lactate. The authors presented a dynamic optimization

problem for fulfilling constraints that include the end-product characteristics. The optimiza-

tion problem was transformed into a nonlinear programming problem and was solved using

Control Vector Parameterization (CVP) and Successive Quadratic Programming (SQP) tech-

nique in gPROMS.

Ahn et al. [2014] proposed a novel control technique, iterative learning control (ILC), to deal

with errors in the modeling. The authors presented the production of methacrylic anhydride

in a reactive distillation column. This study was simulated in ASPEN Plus and validated in a

Samsung Cheil Industries Inc pilot-plant. The top temperature of the column was regulated

at the boiling point of acetic acid by using a time-varying gains nonlinear PID controller,

manipulating the reflux ratio.
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Valluru and Patwardhan [2019] proposed an integrated frequent RTO and adaptive NMPC

for finding the optimal operation cost of different process units. They used a dynamic mo-

del for parameters and unmeasured disturbances estimation by soft-sensors applications.

The main objective was to eliminate the mismatch between the model used for steady-state

operation and the control scheme. The results show a time reduction in the computational

operation.

Finally, Griffith et al. [2018] proposed a new method for adaptively updating NMPC horizon

lengths online via nonlinear programming (NLP) sensitivity calculation. The authors used

the quasi-infinite horizon framework to reduce average computation time without much loss

in performance and concerning the fixed-horizon NMPC. They evaluated their methodology

in two case studies: a quad-tank and a reactive distillation. The mathematical description

and demonstration are well described in different sections with a detailed math analysis. The

results show a high reduction in the computational time for both case studies.

Some studies have demonstrated the effectiveness of NMPC for reactive distillation control.

For example, in Kawathekar and Riggs [2007], the authors proposed an NMPC strategy for

controlling the product purity of a reactive distillation column to produce methyl acetate.

The proposed NMPC strategy outperformed PID control and LMPC regarding product pu-

rity and control performance.

As a result of this literature review, it can be concluded that it is necessary to implement

process system engineering (PSE) techniques, such as design, real-time optimization, state

estimation, dynamic modeling, and advanced control applied to a real operating system. In

Tintavon and Kittisupakorn [2017], the authors presented an EKF estimator to predict the

end-product composition in an RDC using a generic model controller (GMC) to control the

temperature of a tray. With this information implemented in a GMC, data from tempe-

rature measurements might be used to reconstruct some of the main state variables in an

RDC, including the product composition, reboiler, and condenser temperatures. As a result

of all these scenarios, it can be concluded that it is necessary to implement process system

engineering (PSE) techniques, such as design, real-time optimization, state estimation, dy-

namic modeling, and advanced control applied to a real operating system. In this case, a

reactive distillation column is used to reach higher profitability while predicting final lacta-

te properties and reducing computational time for real implementation Valluru et al. [2015b].

It is possible to generate new technologies and knowledge around the reactive distillation co-

lumn topic applied to the green solvents production, being lactate esters, specifically n-butyl

lactate, the most interesting one. A great opportunity exists at the Universidad Nacional

de Colombia Chemical Engineering Laboratory in Bogotá. This laboratory has a pilot plant

with a reactive distillation column, in which it is possible to simulate advanced control strate-
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gies coupled with dynamic modeling and real-time optimization to increase the profitability

of lactate production. For this purpose, long-chain alcohols like n-butanol could be used as

raw material and, at the same time, generate new data (vapor-liquid equilibria) for the type

of esterification reaction implemented.

The evaluation of the most critical factors involved in the process, such as; the obtention and

characterization of the raw material, selection of the type of alcohol for esterification reaction

and its thermodynamic and kinetic information, purification of the lactate ester obtained,

application of the advanced control strategy and the optimization problem are topics that

should be considered in this case.

It is important to attend to lactate production’s technical and economic feasibility by reactive

distillation column using the mentioned PSE techniques. In this sense, it offers many possible

solutions to the green solvents obtention and implementation at industrial levels. Thus,

fulfilling the goal of minimizing the environmental impact resulting from the use of solvents

in chemical production can generate an industrial and economic interest focused on solving

a feasibility problem Nelson [2009], Wypych [2014].

2.6. Final Remarks

This chapter showed several literature works proposing methodological strategies for ob-

taining VLE for the missing thermodynamic parameters and constructing reactive VLLE

diagrams for the mixture of BuOH, LA, BuLac, and Water. Additionally, this chapter des-

cribes some advanced control strategies applied to RD processes, including LMPC, NMPC

and the implementation of ANN in this type of process is well-studied in the literature.

However, there is still space in the literature for evaluating the production of BuLac in a

reactive distillation column at the pilot-plant scale, especially generating thermodynamical

binary interaction data and evaluating global optimization techniques to solve the Michel-

sen set of the non-linear equation to generate reactive VLLE quaternary diagram. Another

interest for literature is the proposal of an advanced control strategy, LMPC or NMPC,

integrated with state estimation techniques such as EKF or ANN to control the condenser

and reboiler temperature profiles, manipulating the feed-ratio and boil-up-ratio, minimizing

the reboiler duty while the end-product composition is guaranteed.

In the next chapter, the methodology used in this research work allows the obtention of ther-

modynamic binary interaction parameters and the construction of ternary and quaternary

reactive VLLE diagrams. It is presented the methodology to model and validate the RD

column at the pilot-plant scale, evaluating three different scenarios, and the improvement of

the control system within a classical PID and an LMPC is exposed.
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This work deals with different methodologies (experimental, modeling, and control) to eva-

luate the production of n-butyl lactate at the pilot-plant scale. The experimental subsection

presents a set of binary interaction parameters for the mixture of BuOH-BuLac at 5 and

10 kPa. Then, a methodology is proposed to obtain ternary and quaternary reactive and

non-reactive phase diagrams. This methodology uses global optimization techniques to solve

non-linear Michelsen equations. With the obtained thermodynamic information it is presen-

ted and evaluated a dynamic model for the RDC. The system is validated with three cases;

the first one is with experimental information obtained in a previous run in the plant, the

production of isoamyl acetate. The second one is based on the literature reports where the

authors perform an experimental set against Aspen Plus simulations. Finally, the third case

is the in silico BuLac production at the pilot-plant scale. The validated model is used to

test and compare the performance of PID and LMPC to control the condenser and reboiler

temperatures

The activities include the experimental and computational development of different routines

to obtain the binary interaction parameters, the methodology to build the mentioned phase

diagrams, the mathematical model and its validation for an RDC, and proposing advanced

control strategies. This work aims to provide new thermodynamic information, phase dia-

grams, methodology construction, and tools for evaluating advanced control strategies to

obtain BuLac at the pilot-plant scale.

As part of improving the performance of predictive controllers, this work studies the state

estimation, ANN, of the main variables involved in the process and the application of LMPC

or NMPC to obtain a final product with the desired quality while the reboiler duty is reduced.

3.1. Binary interaction Parameters: Experimental Section

In a conventional synthesis process, esterification is an equilibrium-limited reaction and

usually does not reach completion. Consequently, the separation of the ester from the reactor

must be carried out to improve performance. A more effective manufacturing path is process

intensification by integrating reaction and separation processes Kumar and Mahajani [2007].

An accurate representation of the phase equilibria is required to enable an optimized design.
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Peña-Tejedor et al. [2005a] have experimentally determined isobaric vapor-liquid equilibrium

for esters and lactic acid mixtures, including the binary system butanol and butyl lactate

at 101.325 kPa. The above-mentioned paper reported experimental data on the n-butanol

and butyl lactate mixture density at 298.15 K. The excess molar volumes were calculated

from densities and then correlated by the Redlich-Kister equation. No azeotrope was found

in this binary system. Lomba et al. [2014] experimentally found the vapor pressures of butyl

L-lactate. Regarding the system n-butanol-water, Iwakabe and Kosuge [2008] reported an

experimental study for the VLE and VLLE at 101.325 kPa. VLE data for lactic acid-water

were determined by Sanz et al. [2003] at 101.325 kPa. Liquid-liquid equilibrium data for

water + lactic acid + butanol was studied experimentally at 298.2 K and 95kPa by Domin-

gues et al. [2013]. However, there are no reports of phase equilibria at low pressures in the

open literature that enable the design of separation systems working at low temperatures to

reduce operating expenditures. For this reason, this work developed an experimental study

of the isobaric vapor-liquid equilibrium for the n-butanol- butyl L-lactate system at 1 kPa

and 5 kPa. These values were correlated with activity models that will allow further studies

on synthesis processes.

To validate the quality of the experimental data, thermodynamic consistency tests based

on the generalized Gibbs-Duhem equation have been developed over the past years Sánchez

et al. [2017], Smith, J. Van Ness, H. Abbott [2009]. In this work, the Van Ness and Fre-

denslund tests Marcilla et al. [2013], Zumalacarregui [2018] were used as approving criteria,

together with the evaluation and regression utilities implemented in Matlab®and Aspen

Properties®9.0.

3.1.1. Materials

The reactive butyl L-lactate and 1-butanol were supplied by Sigma-Aldrich. The specifica-

tions of the samples are presented in Table 3-1.

Table 3-1: Samples identification

Component CAS reg. no. Mass Fraction Analysis Method

Butyl L-Lactate 34451-19-9 ≥ 0,9980 Gas chromatography

1-butanol 71-36-3 ≥ 0,995 Gas chromatography
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3.1.2. Apparatus and Procedure

Figure 3-1 presents the experimental equilibrium Fischer Labodest VLE 602 equipment. It

has a value of uncertainty of temperature and pressure of ± 0.1 K and 0.01 kPa, respecti-

vely. The less volatile component was added inside the mixer chamber to start the procedure.

Then, mixtures by weight were added to keep the mixture in the mass fraction range of 0

to 1 of butyl L-lactate. Gas chromatography was carried out with butyl L-lactate and 1-

butanol as external standards to perform the quantitative analysis. The equilibrium points

were taken at conditions of pressure fixed and total reflux ratio. About the heating power,

the condensed flux was 1-2 drops per second Sánchez et al. [2017], Manivannan et al. [2019].

Figure 3-1: Schematic diagram of the Fischer Labodest VLE 602 apparatus: (1) valve of

pressure equilibrium to liquid phase sample; (2,5) ventilation valve; (3) outlet

valve for the liquid sample; (4) valve of pressure equilibrium to vapor phase

sample; (6) outlet valve for the vapor sample; (7) discharge valve; (8) sample

tube liquid phase; (9) sample tube vapor phase; (10) solenoid: liquid sample,

flow controller; (11) solenoid: vapor sample, flow controller; (12) electrical im-

mersion heater; (13) liquid temperature sensor; (14) vapor temperature sensor;

(15) temperature control of heated tube, condensed vapor reflux; (16) tempe-

rature control of heated isolation jacket; (17) mixing chamber with stirrer bar

16.

Pressure, vapor, and liquid temperatures were considered to ensure the system’s thermody-

namic state. During the analysis period (30 min), the standard uncertainty was used as a
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stability criterion. The above was intended to obtain a value of uncertainty less than 0.01kPa,

0.01K, and 0.05K for pressure, vapor, and liquid temperatures, respectively. The time requi-

red to set stability criteria was 3-4 hours. Finally, liquid and condensed vapor samples were

analyzed when the equilibrium condition was reached.

3.1.3. Analysis

Gas chromatography analyzed all samples using a Shimadzu 2010plus GC with an automatic

injector SGE column (BP20, 30 m x 0.32 mm) and a flame ionization detector (FID). The

carrier gas was helium at 99.999% of purity. The injector and detectors were at 523.15 K,

and the oven was operated at a programmed temperature of 323.15K for 2 min; later, it

increased at a heating rate of 20 K / min to 463.15 K and remained at 463.15 K for 1 min.

The uncertainty in the concentration measurements was determined by analyzing solutions

with specified compositions. The average error in the concentrations of the samples was 0.001

molar fraction for each component.

3.2. Reactive and non-reactive residue curve maps

This section presents a methodology based on the literature information for constructing

reactive and non-reactive residue curve maps for the mixture of LA + BuOH + BuLac +

Water. For this purpose, the characterization of the associated phase equilibrium models is

improved, i.e., those models that include the quaternary system involved in the associated

process for the synthesis of BuLac. In this sense, the present work starts from the basis of

the fluid phase equilibria reported in the literature. Subsequently, it constructs and analyzes

the non-reactive and reactive residue curve maps based on the Michelsen stability material

balance and the transformed molar fractions Ung and Doherty [1995]. It also includes the

required numerical methods, the kinetic validation of the respective esterification reaction,

the reactive and non-reactive azeotropes found, and the topological thermodynamic consis-

tency of the associated systems Okasinski and Doherty [1997].

3.2.1. Thermodynamic aspects

Regarding phase equilibria, different sources of information have been found in the literature.

However, they are still insufficient to support a synthesis process of Butyl Lactate and Wa-

ter from the esterification of Lactic Acid with n-butanol. Lomba et al. [2014] experimentally

determined the vapor pressure of Butyl Lactate for a temperature range between 303.15 and
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378.15 K at atmospheric pressure. Peña-Tejedor et al. [2005a] also experimentally determi-

ned the vapor-liquid equilibrium for the mixture n-butanol and Butyl Lactate at 101.325

kPa without finding azeotropes.

The activity coefficients of the system were based on the binary parameters reported in the

literature (Table 3-2). The binary parameters for Butyl Lactate - 1-Butanol were experimen-

tally determined in this work Garcia et al. [2021]. Here, the binary coefficients for the NRTL

model are calculated based on experimental data at 1 kPa and 5 kPa, and on data reported by

Peña-Tejedor et al. [2005a] at 101.325 kPa, using built-in regression tools in Aspen Plus®V9.

Table 3-2: Binary interaction parameters for the NRTL activity-based model in the Butyl

Lactate esterification system

Component i Component j Source Aij Aji Bij Bji ∝

BuOH W 1 0.00 0.00 -274.66 1442.40 0.20

BuOH BuLac 2 0.79 -0.73 -158.78 134.43 0.30

BuOH LA 1 0.00 0.00 1537.60 -654.60 0.20

W LA 1 0.00 0.00 -128.98 -148.07 0.20

BuLac LA 3 0.00 0.00 -130.30 327.59 0.30

1: Domingues et al. [2013],2: This work, 3: UNIFAC

The binary parameters for n-butanol-Water, Lactic Acid-Water, and Lactic Acid-n-butanol

were determined by Domingues et al. [2013]. They presented a liquid-liquid equilibrium data

for Water + Lactic Acid + n-butanol at T = 298.2 K and P = 95 kPa. The binary parame-

ters obtained by regression based on the NRTL model predict with a good agreement the

behavior of the VLE for n-butanol and Lactic Acid. The same researchers presented binodal

curves for the system n-butanol + Lactic Acid + Water based on experimental data.

UNIFAC estimated the binary parameters for Butyl Lactate-Lactic Acid. The binary para-

meters for Butyl Lactate-Water were omitted because there is no report in the literature

regarding this binary pair. The estimation made by UNIFAC generates errors in the tests

of thermodynamic topology. Obtaining thermodynamic equilibrium data for this mixture is

very complex at the laboratory scale due to the highly polar nature of the substances. Hence

the experimental measurement equipment presents overestimations.

To validate the parameters selected for the system, regressions of the binary and ternary

equilibria reported experimentally were performed with the Aspen Plus®V9 tool. Figure
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3-2 depicts the experimental data and the curve estimated from the regression performed in

this study according to the NRTL model

Figure 3-2: (a) Vapor-Liquid equilibrium (VLE) 1-Butanol (1) - Butyl Lactate (2) model

regression (NRTL [This work] (-)), (▲) experimental data presented by Peña-

Tejedor et al. Peña-Tejedor et al. [2005a] at 101.325 kPa. (b) VLE 1-Butanol

(1) - Water (2) model regression (NRTL this work (-)), (•) experimental data

presented by Iwakabe et al. Iwakabe and Kosuge [2001] at 93.3kPa.

Figure 3-3 shows the experimental information and the values calculated with the binary

interaction parameters based on the NRTL model. The validation parameters for the system,

1-Butanol-Lactic Acid-Water, were constrained to forming the liquid-liquid region. In gene-

ral, the differences are very small; It might be concluded that the parameters by Domingues

et al. [2013] can be used in the NRTL prediction model.

Figure 3-3: Ternary validation of the mixture 1-Butanol-Lactic Acid-Water Kiva et al.

[2003]. (•) experimental data presented by Domingues et al. Domingues et al.

[2013]. (◦) This work.
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The values for the different parameters of binary interaction in the system are presented in

Table 3-2. The ideal vapor phase was assumed due to pressure conditions (101.325 and 5

kPa). Besides, Kumar and Mahajani [2007] evaluated the same system at 101.325 kPa in a

reactive distillation column assuming ideal behavior in the vapor phase.

3.2.2. Data analysis and phase equilibrium modeling

A methodology was developed based on the information spread in the open literature, in-

cluding all the steps and equations required to determine the residue curve maps of these

reacting systems. Then, a sequence of steps and related calculations were summarized in Fi-

gure 3-4. This sequence works well for obtaining both reactive and non-reactive VLLE curve

maps. An advantage of this methodology is that it includes the Michelsen material stability

method, which is solved using a global optimization technique to assure convergence. The

iterative calculation of flash VLE and VLLE with the numeric integration allows evaluating

stability to generate residue curves.

The methodology can be extended to other similar reactive systems (esterification reactions)

by giving the corresponding thermodynamic information, such as binary interaction para-

meters, vapor pressures (Antoine constants), and kinetic information, such as reaction rates.

As mentioned above, the proposed methodology has the advantage of receiving input data

for constructing reactive and non-reactive VL and VLL maps.

This section describes the equations for non-reactive and reactive residue curves and presents

the Michelsen methodology of the material stability technique. Besides, it presents the global

optimization algorithm and the isothermal flash approach. Finally, the pseudo homogeneous

concentration-based kinetic model validation is described.
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Figure 3-4: Flow-diagram for the methodology presented in this work.

3.2.3. Non-Reactive and Reactive Residue Curves Maps equations

A Non-Reactive Residue Curve Map (RCM) is the composition profile of a perfectly mixed

residual liquid in a simple distillation, considering the system’s constant pressure and equi-

librium conditions. The mathematical model is represented by the differential equation (Eq.

3-1) of n components, where i = 1,2... n.

dxi

dζ
= Xi − Yi (3-1)
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The terms Xi and Yi are the mole fractions of component i at phase equilibrium in the liquid

and vapor phases, respectively. The variable ζ is a dimensional time variable. In the case

of reactive distillation, the Reactive Residue Curves Maps (RRCM) are constructed. The

chemical reaction that takes place in the liquid phase is included. The differential equations

(Eq. 3-2 and 3-3) represents the mathematical expression Venimadhavan et al. [1994], Bar-

bosa and Doherty [1988], Londoño et al. [2006], Mart́ınez et al. [2020a].

dxi

dζ
= Xi − Yi +Da

(
viR

Rref

)
(3-2)

Da =
L

V
Rref (3-3)

where vi is the stoichiometric coefficient of component i in reaction, R is the reaction rate

at the bubble point, and Rref is the reaction rate in a reference condition (T ref , Xref ). Da

is the Damkühler number, V is the molar flow rate of vapor, and L is the total number of

moles in the liquid phase.

The ratio L/V indicates the amount of residual liquid concerning the vapor flow, leaving the

differential. Small numbers of Da imply operations driven by distillation, large values of Da

are kinetically controlled processes, and Da = 0 are non-reactive processes Mart́ınez et al.

[2020b].

The RCM and RRCMwere performed by solving Eq. 3-1 and 3-2 in Matlab from a known ran-

dom mixture in composition and pressure. The Matlab tool ode15s (for stiff equations) and

the Euler method were used as integration methods. The first is for the curves vapor-liquid

(VL) sections, and the second is for the vapor-liquid-liquid (VLL) sections. The number of

equations can be high for equilibrium systems with multiple components and phases. Due to

its simplicity, the Euler method can be computationally more efficient than more precise and

complicated methods. Since Michelsen balances are inherently iterative, the Euler method,

which is also iterative, fits well with this approach [Michelsen, 1992, Sánchez et al., 2020,

Velandia et al., 2021].

The calculation of the RCM and RRCM can be divided into three zones. Firstly, once the

random mixture has been defined, the material stability analysis of the mixture (Michelsen

Method) is performed. Secondly, the isothermal flash of the mixture with VLE or VLLE is

carried out depending on the nature of the mixture. Lastly, the integration method of the

differential equations is carried out appropriately.
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The RRCM diagrams are formulated using transformed composition diagrams to facilitate

their interpretation Venimadhavan et al. [1994], Londoño et al. [2006]. For this purpose, Eq.

3-4 and 3-5 were defined, where the reference component is Butyl Lactate. These equations

present the transformed compositions for Lactic Acid and n-butanol, respectively.

XLA = xLA + xBuLac (3-4)

XBuOH = xBuOH + xBuLac (3-5)

3.2.4. Michelsen Method (material stability)

Determining the vapor-liquid-liquid equilibrium zone (VLLE) is critical in heterogeneous

distillation processes. For this purpose, it is required to know if a mixture with known tem-

perature, pressure, and composition will spontaneously separate into more phases. The tool

that allows knowing this behavior is the material stability analysis.

Regarding activity coefficients, the Gibbs free energy for liquid mixtures at low or moderate

pressures can be modeled. Thus, the Gibbs tangent plane distance (TPD) for a mixture

with c number of components at specified temperature T and pressure P is given in Eq. 3-6

Mollerup and Michelsen [2004].

TPD(w) =
c∑
i

yi(µi(y)− µi(z)) (3-6)

z is the mixture of known composition, temperature, and pressure, c is the number of com-

ponents, and y is the composition of the test mixture. The stability of the mixture occurs

when the steady states comply with TPD(w) ≤ â0.

The equations of state calculations are expressed in terms of fugacity coefficients, thus ob-

taining Eq. 3-7 .

TPD(w) =
c∑
i

yi(Lnyi + Lnφ̂i(y)− Lnzi − Lnφ̂i(z)) (3-7)

Where
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K = Lnyi + Lnφ̂i(y)− Lnzi − Lnφ̂i(z) (3-8)

By rearranging the equation, the stationary points of TPD(y) can be obtained by solving

the following set of algebraic nonlinear equations, subject to the mass balance restriction:

0 = Ln[yiexp(−K)] + Lnφ̂i(y)− Lnzi − Lnφ̂i(z) (3-9)

and introducing the variable proposed by Michelsen Yi = yiexp(−K) Michelsen [1982]:

0 = Ln(Yi) + Lnφ̂i(y)− Lnzi − Lnφ̂i(z) (3-10)

The stationary points are located as solutions to Eq. 3-10. The solution was proposed using

GlobalSearch Matlab Toolbox, and the composition in the mixture y as a decision variable.

Stability was provided in all the stationary points corresponding to
∑c

i Yi ≤ 1, and it is

unstable if there is any solution where
∑c

i Yi > 1 Michelsen [1982].

Depending on the initial estimates, different convergence cases are presented: (i) the trivial

solution (y = z); (ii) the non-trivial solution with
∑c

i Yi > 1, indicating material instability;

and (iii) a non-trivial solution with
∑c

i Yi ≤ 1, indicating material stability of the mixture

z.

The mixture is unstable, dividing the original phase into two phases that decrease the total

Gibbs Energy. After the material stability analysis, rigorous isothermal flash calculations are

performed for the mixture to calculate the compositions of the phases into which the original

mixture is divided.

3.2.5. Global optimization as a continuation method

A global optimization technique was implemented to assess the problem of mathematical

convergence for the material stability (Michelsen method) due to the presence of a mis-

cibility region for the system VLLE. This technique combines an indirect method with a

homotopic approach Shen et al. [2015].

The GlobalSearch Matlab toolbox was used for solving the set of non-linear equations. It

works using the scatter search and local Non-Linear Programming (NLP) solver Ugray et al.

[2007]. The algorithm of GlobalSearch starts a local solver such as fmincon with a sequential

quadratic programming (SQP) algorithm from multiple start points. Then, the algorithms



3.2 Reactive and non-reactive residue curve maps 33

use multiple start points to sample multiple basins of attraction Mathworks.

Figure 3-5 presents an overview of the GlobalSearch algorithm. It uses a scatter-search me-

chanism to generate start points, then analyzes them and rejects those points unlikely to

improve the best local minimum found. Afterward, it applies a local solver, such as fmincon

with the SQP method, to evaluate the constraints. Finally, it gives a vector with the optimal

solution Glover [1998].

Figure 3-5: GlobalSearch algorithm Mathworks.

The GlobalSearch algorithm transforms the non-linear problem into an optimization pro-

blem in a general form, as shown in Eq. 3-11 to 3-14. The Eq. 3-11 is the objective function

that contains vector decision variables such as liquid and vapor phase compositions, and it

represents the Michelsen material stability equation.

Minimizef(x, y) (3-11)

subject to the nonlinear constraints,

gl ≤ G(x, y) ≤ gu, (3-12)
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and to the linear constraints,

l ≤ A1x+ A2y ≤ u, (3-13)

x ∈ S, y ∈ Y, (3-14)

where x is an n-dimensional vector of continuous decision variables, and y is a p-dimensional

of discrete decision variables. The vectors gl, gu, l and u contain upper and lower bounds

for the linear and nonlinear constraints. The matrices A1 and A2 contain the coefficients

of any linear constraints. Finally, the set S is defined by simple bounds on x, the set Y is

assumed to be finite, and it is often the set of all p-dimensional binary or integer vectors

y that satisfy finite bounds Ugray et al. [2007]. Eq. 3-12 to 3-14 represent the non-linear

and linear constraints that appear in the solution method of the Michelsen equation, such

as optimality and conservation functions.

3.2.6. Isothermal flash

The isothermal flash calculation was performed in two ways: first, for a system with two-

phase separation (VL) and, second, for a system with three-phase separation (VLL).

In both cases, the NRTL thermodynamic model was used for modeling the liquid phase, whi-

le the vapor phase was represented under the modified Raoult’s law. An ideal vapor phase

is assumed due to the mixtures’ pressure conditions and nature.

3.2.7. Vapor-liquid equilibrium (VLE)

When the mixture is stable in the material stability analysis, a vapor-liquid equilibrium

occurs in the system, thus resulting in the calculation of the VLE flash. If the system is

in equilibrium, the fugacity of component i in the liquid phase is the same as in the vapor

phase (Eq. 3-15) Smith, J. Van Ness, H. Abbott [2009].

fi,vapor = fi,liquid, (3-15)

The relationship is expressed in Eq.3-16, assuming an ideal vapor phase Smith, J. Van Ness,

H. Abbott [2009].
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Pyi = P sat
i γixi, (3-16)

where P is total pressure, xi and yi are the mole fraction of component i in liquid and

vapor phases, respectively, γi is the liquid phase activity coefficient of component i calcula-

ted with the thermodynamic model, and P sat
i is the saturated vapor pressure of component i.

The flash was solved using the Newton-Raphson method using the mass balance of the vapor

phase (Eq. 3-17) and the equilibrium temperature as the response variable. In this way, it is

possible to obtain the temperature and composition of the vapor phase in equilibrium with

the liquid phase at the pressure of the system.

0 =
c∑
i

yi − 1, (3-17)

3.2.8. Vapor-Liquid-Liquid Equilibrium (VLLE)

If the mixture is unstable in the material stability analysis, it separates into two liquid pha-

ses, thus resulting in the VLLE flash calculation. In the case of the VLLE, the fugacity of

component i in the vapor phase is the same in both the first and the second liquid phases

(Eq. 3-18) Smith, J. Van Ness, H. Abbott [2009].

fi,vapor = fi,liquid1 = fi,liquid2, (3-18)

The composition of the mixture, known as a random liquid mixture, is considered the global

composition of the liquid phases. For this reason, it is necessary to add Eq 3-19 - 3-24 to the

liquid-liquid-vapor equilibrium to determine the compositions and distribution of the two

liquid phases into which the overall mixture is divided Smith, J. Van Ness, H. Abbott [2009],

Nann et al. [2013], Iwakabe and Kosuge [2008].

γL1
i xL1

i = γL2
i xL2

i =
Pyi
P sat
i

(3-19)

Where xi is the mole fraction of component i in the liquid phase, Î3i is the liquid phase

activity coefficient of component icalculated with the thermodynamic model, superscripts

L1, and L2 denote the phase number, P is the total pressure, yi are the mole fraction of
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component iin the vapor phase, and P Sat
i is the saturated vapor pressure of component i.

Xi = xL1
i L1 + xL2

i L2 (3-20)

Where Xi is the global mole fraction of component iin liquid phases, and L1 and L2 are the

fractions of liquid 1 and liquid 2, respectively.

c∑
i

xL1
i = 1 (3-21)

c∑
i

xL2
i = 1 (3-22)

2∑
i

Li = 1 (3-23)

c∑
i

yi = 1 (3-24)

The previously described equations were solved using the Matlab tool lsqnonlin, where the

Eq. 3-2 is the objective function. It was solved using the trust-region-reflective algorithm.

The results obtained are the composition and distribution of the two liquid phases, equili-

brium temperature, and compositions of the vapor phase in equilibrium.

3.2.9. Kinetic Validation

For the kinetic evaluation, Eq. 2-1 was implemented. This expression was validated by Kumar

and Mahajani [2007] for the esterification of Lactic Acid with n-butanol. The experimen-

tal temperatures were below 369.15 K, and LA compositions were below 30%wt. For this

reason, the oligomerization reactions were neglected. The kinetic expression was used as a

complement of Eq. 3-2 to determine the reactive curve maps.

The parameters estimated by Kumar and Mahajani [2007] present a slight deviation from

the experimental set at 369.15 K, 363.15 K, 333.15 K, and 318.15 K. Due to this devia-

tion, the re-estimation of the four parameters was improved by minimizing the following
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objective function (Eq. 3-25). For this purpose, the sum of the square of weighted residuals

(SSWR) was used and solved with the hybrid method of simulated-annealing and interior

point calculation. This algorithm was implemented because it combines non-deterministic

and deterministic search methods to ensure good parameter estimation convergence.

SSWR =
n∑

i=1

m∑
j=1

(
△ij

W 2
j

)2

(3-25)

where ‘n’ and ‘m’ are the total number of experimental data points presented by Kumar

and Mahajani [2007] and the total number of variables, respectively, Wj is a standard data

normalization factor for each variable, and △ij is the difference between the predicted values

and the experimental data (ymodel − yexp).

The obtained parameters are presented in Table 3-3, as well as the comparison of the values

of each parameter with those presented by Kumar and Mahajani [2007]

Table 3-3: Comparison of the estimated kinetic parameter based on the pseudo homoge-

neous activity-based model for the Confidence Interval of 95%.

Parameter Kumar et al. This Work

Ea(kj/mol) 53.40±1,86 52.55±0,04

Eb(kj/mol) 52.24±6,01 51.28±0,06

Ln(Kf0)(mol/kgh) 25.26±1,98 25.24±0,001

Ln(Kb0)(mol/kgh) 23.34±0,63 23.38±0,001

Objective Function 0.003 9.63×10−4

Table 3-3 shows that the parameters estimated in this work present a better fitting based

on the value of the objective function: 9,63 × 10−4 against 0.003 presented by Kumar and

Mahajani [2007]. However, the differences with the parameters presented by Kumar and

Mahajani [2007] are below 2%. This agrees with Figure 3-6, which represents the conver-

sion percentage at four different temperatures.
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Figure 3-6: Kinetic validation with data from Kumar et al.Kumar and Mahajani [2007].

3.3. Modeling

This section develops a rigorous, dynamic, phenomenological-based model of Butyl lacta-

te production in a reactive distillation column at the pilot-plant scale. First, some model

assumptions and balance equations for reactive and non-reactive stages are presented in Sec-

tion 3.3. Then, in Section 3.4, the reactive distillation column model is validated using three

cases. In the first case, experimental data obtained during the production of isoamyl acetate

in an RDC pilot-plant scale (located at Universidad Nacional de Colombia) were used (Case

1). The second case uses experimental results on the production of butyl lactate, reported

by Kumar and Mahajani [2007] (Case 2). The production of butyl lactate was studied in

silico at the pilot-plant scale. The third case is a simulation comparison between Aspen Plus

v11 and Matlab R2020b (Case 3). Finally, a sensitivity study was carried out to analyze the

system’s behavior under changes in the operating variables.

Figure 3-7a shows a picture of the batch reactive distillation column at Universidad Nacio-

nal de Colombia. Figure 3-7b shows a general representation of the RDC, which is assumed

to be divided into N theoretical equilibrium stages for modeling purposes. Stage 1 is the

decanter, stage 2 is the condenser, and stage N is the reboiler (Figure 3-7b). Figure 3-8

represents a general reactive stage.
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(a) (b)

Figure 3-7: (a) pilot-plant reactive distillation column, and (b) Stage-representation of a

reactive distillation column b).

Figure 3-8: Representation of a general reactive stage.

3.3.1. Model Assumptions

To perform the modeling of the reactive distillation column, some assumptions must be

made:

For modeling the liquid phase, the NRTL model is used.

There is no resistance to internal and external diffusive transport over the catalyst, and

there is no resistance to transport over the fluid phases. Therefore, phase equilibrium

is achieved homogeneously.
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A pseudo-homogeneous kinetic model is assumed.

In the Decanter, the NRTL model is used for predicting liquid-phases behavior, and the

k-value method is utilized to determine compositions in extracted and refined flows.

The presence of oligomers is neglected.

Reboiler and condenser are modeled as equilibrium stages.

Variations in kinetic and potential energy are neglected.

Equilibrium is assumed to be controlled by kinetics.

Physical properties are constant.

There is no heat loss from the column.

Is considered a linear pressure drop along the column.

Two phases (vapor-liquid) and a reaction in the liquid phase are considered.

3.3.2. Balance equations

This section presents the generalized mass and energy balances for reactive and non-reactive

stages (Eq 3-26 to 3-28). For the three additional stages (decanter, condenser, and reboiler),

the set of mass and energy equations are presented from Eq. 3-29 to 3-37.

3.3.3. Reactive and non-reactive stages

Based on the equilibrium stage model (Figure 3-8), the mass and energy equations represent

the dynamic behavior for the thermodynamic and kinetic transformation. Fi represents the

feed flow of LA and BuOH; Rn,i, the reaction rate; XF,I , the molar fraction of LA and BuOH

in the feed;Qr,I , the heat of reaction and qF,i, the liquid fraction on the feed.

Total material balance:

dMj

dt
= Lj−1 − Lj − Vj + Fj (3-26)

Molar balance per component:

dxi,j

dt
=

(
xi,j−1Lj−1 + yi,j+1V j+1 − xi,jLj − yi,jV j + xF,i,jqF,jFj +Ri,j − xi,j

dMj

dt

)
Mj

(3-27)
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Energy balance:

dTj

dt
=

hj−1Lj−1 +Hj+1V j+1 − hjLi −HjV j + (hF,jqF,j +HF,j(1− qF,j))F j +Qr,j − hj
dMj

dt

MjCpmix,j

(3-28)

3.3.4. Reboiler Stage

Equations 3-29 to 3-31 represent the dynamic behavior in the reboiler stage. BBuLac repre-

sents the output flow of the BuLac product, VB is the vapor flow as a function of the boil-up

ratio, and QB, is the heat duty in the reboiler.

Total mass balance:

dMB

dt
= LN −BBuLac − VB (3-29)

Molar balance per component:

dxi,B

dt
=

xi,NLN − xi,BBBuLac − yi,BV B − xi,B
dMB

dt

MB

(3-30)

Energy balance:

dTB

dt
=

hNLN − hBBBuLac −HBV B +QB − hB
dMB

dt

MB ∗ Cpmix,B

(3-31)

3.3.5. Condenser Stage

The set of equations 3-32 to 3-33 represents the dynamic behavior in the condenser stage.

Dc is the condensed flow rate, and Qc is the heat duty in the condenser.

Total mass balance:

dMc

dt
= Dc − Fo − FA (3-32)

Molar balance per component:

dxi,c

dt
=

yi,1V 1 − xi,cDc − xi,c
dMc

dt

Mi,c

(3-33)

Enery balance:

dTc

dt
=

H1V 1 −Qc − hcDc − hc
dMc

dt

McCpmix,c

(3-34)
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3.3.6. Decanter Stage

The set of Equations 3-35 to 3-37 represents the dynamic behavior in the decanter stage. Fo

and FA represent the output flow of organic and aqueous phases, respectively. In contrast,

xi,o and xi,A represent the mass fraction of each component i in the organic and aqueous

phases, respectively.

Total mass balance:

dMd

dt
= Dc − Fo − FA (3-35)

Molar balance per component:

dxi,d

dt
=

xi,cDc − xi,oF o − xi,AFA − xi,d
dMd

dt

Md

(3-36)

Energy balance:

dTd

dt
=

hcDc − hoF o − hAFA − hN
dMd

dt

McCpmix,d

(3-37)

3.4. Model Application

As mentioned, model validation is performed in three scenarios, denoted here as case 1 to

case 3. The set of Equations 3-26-3-37 can generally be used for modeling a RD column.

However, the three cases used for validation are different, and therefore, the thermodynamic

and kinetic models differ.

3.4.1. Case 1: Isoamyl acetate production

In this section, the production of isoamyl acetate (IAc) from acetic acid (AA) and iso-

amyl alcohol (IA) at the pilot-plant scale is evaluated. First, the thermodynamic and kinetic

models are presented. Then, the column specifications for modeling and simulation are given.

Thermodynamic model

The γ-ϕ formulation is used without considering the pointing factor for the phase equilibrium

calculations Smith, J. Van Ness, H. Abbott [2009].

yi φi P = xi γiφi
satPi

sat (3-38)
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Saturation pressures are calculated using the Extended Antoine Equation [Walpot, 2011]

with parameters retrieved from Aspen Plus (Table 3-4).

Table 3-4: Antoine Equation parameters retrieved from Aspen Plus.

Component C1 C2 C3 C4 C5 C6 C7 Units

AA 46.3622 -6304.5 0 0 -4.2985 8.8865e-18 6 K, kPa

W 46.3622 -7258.2 0 0 -7.3037 4.1653e-06 2 K, kPa

IA 110.162 -10743 0 0 -13.165 1.1670e-17 6 K, kPa

IAc 92.6502 -8876.8 0 0 -11.075 2.4723e-17 6 K, kPa

AA: Acetic acid, W: Water, IA: Isoamyl alcohol and IAc: Isoamyl acetate

lnPi = C1i +
C2i

T + C3i

+ C4iT + C5ilnT + C6iT
C7i (3-39)

Based on the results of Correa Sanchez [2015], the activity and fugacity coefficients are de-

termined using the Non-Random Two Liquids Model (NRTL) and the Hayden O'Connell
Equation. The NRTL parameters are temperature dependent and are listed in Table 3-5.

τij = Aij +
Bij

T
(3-40)

Gij = exp(−αij τ ij) (3-41)

ln(γi) =

∑
j xjτijGij∑
k xkxkGki

+
∑
j

xjGij∑
k xkGki

(
τij −

∑
m xmτmjGmj∑

k xkGkj

)
(3-42)
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Table 3-5: Binary Interaction parameters for the NRTL model and the quaternary system:

acetic acid, isoamyl alcohol, isoamyl acetate, and water Correa Sanchez [2015].

Component i Component j Aij Aji Bij Bji αij

AA W -1.9763 3.3293 609.889 -723.888 0.3

IA W -2.2557 4.6762 1203.49 -93.3626 0.4

IAc W -0.2871 7.9245 754.013 -906.009 0.32

AA IA 0.9632 -1.614 -214.477 469.04 0.47

AA IA -0.817 -0.2909 525.257 238.964 0.47

IA IA 0 0 700.27 -379.459 0.3

AA: Acetic acid, W: Water, IA: Isoamyl alcohol and IAc: Isoamyl acetate

Finally, the non-idealities of the vapor phase are determined through fugacity coefficients

with the formulation [Sánchez et al., 2019, 2020].

φi = exp

(
Bii(P − P sat

i ) + 1
2
P
∑

j

∑
k xkGkj(2δji − δjk)

RT

)
(3-43)

where,

δji = 2Bji −Bjj −Bii (3-44)

δjk = 2Bjk −Bjj −Bkk (3-45)

Bij [T] is the second virial coefficient that characterizes the binary interaction between i

and j and it is calculated based on the HOC formulation.A complete formulation, including

calculating the second virial coefficient, is published in George Hayden and O’Connell [1975],

the interaction parameters can be determined from P-V-T data and statistical thermodyna-

mic formulations. A complete formulation is published in Walpot [2011].

The solvation and association parameters for the HOC equation are presented in Table 3-6

Sánchez et al. [2020].
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Table 3-6: Parameters of HOC equation for the system: acetic acid, isoamyl alcohol, water,

and isoamyl acetate retrieved from Sánchez et al. Sánchez et al. [2020].

AA W IA IAc

AA 4.5 2.5 2.5 1.3

W 2.5 1.7 2.5 0.53

IA 2.5 2.5 2.2 2

IAc 1.3 0.53 2 0.53

AA: Acetic acid, W: Water, IA: Isoamyl alcohol and IAc: Isoamyl acetate

As it is shown in Figure 3-9, the set of parameters employed can properly represent the

two binary azeotropes and one ternary azeotrope of the system: isoamyl alcohol - acetic

acid, isoamyl alcohol - isoamyl acetate, and acetic acid - isoamyl alcohol - isoamyl acetate,

respectively, as also presented by Sánchez et al. [2019].

(a) (b)

Figure 3-9: Reactive distillation column scheme to produce isoamyl acetate in a batch pro-

cess: ternary diagram a) and quaternary diagram b).

Kinetic model

Isoamyl acetate is produced by a reversible reaction between acetic acid and isoamyl alcohol

in which water is the secondary product (Eq. 3-46).
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AA+ IA ↔ IAc+W (5,5kJ/mol) (3-46)

Authors in Sánchez et al. [2019] determined experimentally the parameters to describe the

esterification reaction in presence of the cation exchange resin Amberlyst 70. The experiments

were conducted over a wide range of temperatures (353-383 °C), catalyst loadings (0.5-

5%wt), and molar ratios of acetic acid: isoamyl alcohol (0.5 - 2.0) to generate kinetic data

under different conditions. Kinetic parameters are estimated using a pseudo-homogeneous

model. The mass balance for the reaction corresponds to Eq. 3-47, where vi is the is the

stoichiometric coefficient of species i in the balanced chemical reaction, mcat refers to the

mass of the catalyst used in the reaction and n refers to the reaction rate.

(dni)

dt
= vimcatnÎ

3 → 1

(wcatMWi)

(dwi)

dt
= vinÎ

3 (3-47)

Where the reaction rate (Gamma) is expressed as a power law (Eq. 3-48 and 3-49).

γi(T, x) = kd,i(xAAcxiAOH − xwxiAmAc

keq
) (3-48)

kd,1 = kd0exp

(
−Ea

Rg

(
1

T
− 1

T0

))
, T0 = 378,15K (3-49)

Figure 3-10 presents the kinetic validation of the model against the experimental data ob-

tained by Sanchez Correa Sanchez [2015]. They present the experimental data, and Table

3-7 lists the kinetic parameters.

Table 3-7: Estimated kinetic parameters based on the pseudo homogeneous model Sánchez

et al. [2019].

Parameters Sánchez et al. [2020]

kd0[kmol/kg h] 2.9820

keq 4.5662

Ea[kJ/mol] 44.2793×10−3



3.4 Model Application 47

Figure 3-10: Kinetic validation for isoamyl acetate reaction at 383.15 K, (-) model predic-

tion, (◦) acetic acid, (+) isoamyl alcohol, and (*) isoamyl acetate.

Column specifications

The experiments were performed in a reactive distillation column operating at atmospheric

pressure. The column has a reactive section packed with Amberlyst 70, an acidic catalyst,

and two non-reactive sections (stripping and rectifying zones) packed with Nutter Ring num-

ber 07, as well as one condenser and one reboiler as shown in Figure 3-11. Simulation values

are taken from the Sánchez et al. [2019] job in a batch process. Figure 3-11 shows the results

of this simulation to obtain a background composition of Isoamyl acetate of 0.9982. Further

column design specifications are presented in Table 3-8 [Bastidas Jiménez, 2014]. Table 3-8

presents the most approximate values of the reactive distillation column in the pilot plant,

including internal characteristics of the same.
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Figure 3-11: Reactive distillation column scheme to produce isoamyl acetate in batch pro-

cess.

Table 3-8: Reactive distillation column internal specifications. Bastidas Jiménez [2014]

Parameters Value

Diameter [m] 0.0762

Catalyst density per volume of the module [kg/m3] 76

Number of reactive stages (3-6) 4

Stripping zone length per stage [m] 1.1

Rectifying zone length per stage [m] 1

Non-reactive section package height [m] Stages 1-2: 1, Stages 7-11: 1.1

Reactive section package height [m] 1.1

Packaging Nutter Ring No. 07
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3.4.2. Case 2: Butyl lactate production reported by Kumar et al.

This section presents the production of butyl lactate from lactic acid and n-butanol for the

case presented by Kumar and Mahajani [2007]. First, the thermodynamic and kinetic models

used are described. Then, the column specifications for modeling and simulation are given.

Thermodynamic model

The VLE can be calculated by the gamma-phi model (Eq. 3-38). Due to the similar nature

of the substances, the Poynting factor is assumed as 1, and the vapor phase is considered

ideal. The VLE is expressed as the modified Raoult's law (Eq. 3-50):

yiP = xiγiP
sat
i (3-50)

Saturation pressures are calculated using Antoine Equation and Extended Antoine equation

(Eq. 3-51 and 3-52) with parameters retrieved from Aspen Plus.

Table 3-9: Antoine parameters for the butyl lactate system (BuOH e BuLac) this work and

(LA, W) Aspen Plus database.

Component C1 C2 C3 C4 C5 C6 C7 Units

LA1 7.5111 -1965.70 -91.021 - - - - K, kPa

W2 73.649 -7258.2 0 0 -7.3037 4.1653e-06 2 K, kPa

BuOH2 99.3822 -9866.4 0 0 -11.655 1.08e-17 6 K, kPa

BuLac1 7.142 -2160.134 235.46 - - - - K, kPa

1logp∗li = C1i +
C2i

(T + C3i)
(3-51)

2Lnp∗li = C1i +
C2i

(T + C3i)
+ C5iLnT + C6iT

C7i (3-52)

The NRTL activity model and their equations representing the thermodynamic model we-

re described in Section 3.4. Table 3-10 lists the set of binary parameters related to the

NRTL model. For the regression of the parameters, the complete set of experimental data

was used, giving more weight in the optimization to the values of 5 and 1 kPa. It was im-

plemented Aspen Plus V11 using Maximum-likelihood as the objective function, Deming as
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the initialization function, and Weighted least squares as the optimization algorithm with a

convergence tolerance of 1 ×10−6. The results show a good fit considering the three pressure

ranges evaluated (101.33, 5, and 1 kPa). The values show a root mean square percentage

error of 0.22% and an average deviation of 0.25 K.

Table 3-10: NRTL parameters for the butyl lactate system [This work].

Component i Component j Aij Aji Bij Bji αij

BuOH W 11.86 32.03 -4690.40 -10000.00 0.20

BuOH BuLac 0.79 -0.73 -158.78 134.43 0.30

BuOH LA 0.00 0.00 1537.60 -654.60 0.20

W LA 0.00 0.00 407.70 -454.30 0.30

BuLac LA 0.00 0.00 -130.30 327.59 0.30

Kinetic model

In this case, the pseudo-homogeneous activity model and the table with the kinetic values

are presented in Section 3.2.9. It should be noted that the values of parameters presented in

the mentioned section and Table 3-11 are similar. Still, values in Table 3-11 present a good

fitting.

Table 3-11: Kinetic parameters from the pseudo homogeneous activity-based model.

Parameters Value

Ea[kJ/mol] 52.55±0,04

Eb[kJ/mol] 51.28±0,06

Ln kf0[mol/kg h] 25.24±0,01

Ln kb0[mol/kg h] 23.38±0,01

Column specifications

Kumar and Mahajani [2007] evaluated the process in the laboratory scale reactive disti-

llation column with the operating conditions presented in Figure 3-12. The authors used
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a glass column with a 55 mm diameter and 2.7 m height. The reactive zone was packed

with KATAPAK-S filled with ion-exchange Amberlyst 15. Non-reactive zones (rectifying and

stripping) were packed with a wire mesh supplied by Evergreen India Ltd. A Dean-Stark

apparatus was located at the top of the column to remove the aqueous phase and recycle the

organic phase from the azeotropic mixture of n-butanol and water. Lactic acid and butanol

were continuously fed to the top and bottom of the reactive section, respectively. Water

was continuously removed at the top of the column. More column design specifications are

presented in Table 3-12.

Figure 3-12: Reactive distillation column scheme to produce butyl lactate in a continuous

process [Kumar and Mahajani, 2007]..
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Table 3-12: Internal specifications of the reactive distillation column.[Kumar and Mahajani,

2007]

Parameters Value

Diameter [mm] 55

Number of reactive stages (5-8) 3

Number of non-reactive stages (2-4, 9-13) 8

Reactive section diameter (Cm) 7.5

Non-reactive section diameter (Cm) 6.65

Catalyst loading per stage [g] 30

Catalyst (Katapak-S) Amberlyst 15

Operating pressure [kPa] 101.325

3.4.3. Case 3: In silico Butyl lactate production at pilot-plant scale

In this section, the production of butyl lactate at pilot-plant conditions is tested in silico.

All the thermodynamic (Tables 3-8 and 3-9 and Equations 3-40 to 3-42) and kinetic (Table

3-10 and 3-11 and Equations 2-1, 3-51 and 3-52 ) information are presented in Sections

3.4.1 and 3.4.2. Figure 3-13 present the plant’s operational conditions to be reproduced

in silico. The presented operational conditions are based on the actual operability at the

pilot-plant scale. It contains the physical restrictions that can be observed in reality, such

as the maximum flow rate of the feed pumps, minimum operating pressure (50 kPa), and

oversizing of the reboiler. The bottom flow rate was fixed to obtain the higher product while

the hydrodynamic restrictions were fulfilled. The Aspen Plus simulator and Matlab/Simulink

evaluated and compared this scenario.
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Figure 3-13: Operating conditions of a RDC at pilot-plants scale to produce butyl lactate.

3.5. Advanced Control Strategy

This section presents the advanced control proposal, NMPC, compared against a multivaria-

ble strategy, PID, and LMPC control. In the same way, the set of equations for estimating

unmeasured disturbances and states by an artificial neural network (ANN) is presented.

Finally, the control performance analysis for an LMPC system is shown using ANN as a

parameter and state estimator.

3.5.1. MIMO PID

The Proportional-Integral-Derivative (PID) controller is a fundamental component of control

engineering, providing a simple yet effective method to regulate systems based on error

feedback. The PID controller calculates the control variable, u(t), as follows:
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u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
(3-53)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively, and

e(t) is the difference between the desired and actual output, known as the error [Sigurd and

Ian, 1979]. Chien, Hrones, and Reswick (CHR) method was used to tune the parameters of

the PID controller [Cohen and Coon, 1952]. Table 3-13 shows the calculation equations of

the parameters Kp, τi and τd.

Table 3-13: CHR Tunning Parameters.

Controller Kp τi τd

P 0,3τ
KL

∞ 0

PI 0,35τ
KL

1.2τ 0

PID 0,6τ
KL

τ 0.5L

where The open-loop method involves the identification of key process parameters:

K: The steady-state process gain, which is the ratio of the output change to a change

in input.

L: The process dead-time or delay time. It signifies the time taken for the process

output to initiate a change after an input change.

τ : The process time constant. Post the delay L, the output changes and the time it

takes for the output to achieve about 63.2% of its total change is represented by τ .

The values of the proportional, integral, and derivative constants can be calculated as

Kp = 0,3τ
KL

, Ki =
Kp
τi
, and Kd =

Kp
τd
.

However, PID controllers, initially conceptualized for Single-Input Single-Output (SISO) sys-

tems, face challenges when expanded to Multi-Input Multi-Output (MIMO) systems due to

potential interactions between various inputs and outputs. The Singular Value Decomposi-

tion (SVD) and the Relative Gain Array (RGA) are invaluable in designing and tuning PID

controllers in MIMO systems.

SVD provides a way to transform a complex MIMO system into a set of simpler, deco-

upled Single-Input Single-Output (SISO) systems. Given a matrix A of the system, SVD

decomposes it as:
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A = UΣV T (3-54)

Here, U and V are unitary matrices comprising left and right singular vectors of A. Σ is a

diagonal matrix with singular values of A. In a control context, singular values indicate the

system’s gain along different directions.

On the other hand, the RGA assists in pairing inputs and outputs in MIMO systems for

decentralized control, calculated as follows:

Λ = G× (G−1)T (3-55)

Each element of the RGA is given by, where Gij represents the plant/gain matrix for a set

of input parameters that control a set of output parameters:

Λij =
Gij

Gi.

× G.j

G..

(3-56)

where, Λij represents an individual element of the RGA. The indices i and j denote the

specific row and column in the RGA matrix, corresponding to a particular input-output

pairing in a multivariable control system. Gij denotes the element of the plant or system

gain matrix at the ith row and jth column. It represents how the jth input affects the ith

output. Gi. represents the sum of the gains in the ith row of the gain matrix, measuring how

all inputs combined affect the ith output. G.j indicates the sum of the gains in the jth column

of the gain matrix, showing the overall effect of the jth input on all outputs. G.. represents

the sum of all elements in the gain matrix, indicating the total interactive effect of all inputs

on all outputs in the system. The RGA provides a measure of interaction between various

input-output pairs.

Thus, through the combined use of SVD and RGA, a comprehensive picture of system inter-

actions can be formed, paving the way for effective design and tuning of PID controllers in

complex MIMO systems [Sigurd and Ian, 1979, Luyben and Luyben, 1997]. The SVD and

RGA are powerful tools in designing PID controllers for MIMO systems. SVD is applied to

the system’s gain matrix, G, decomposing it into unitary matrices U and V T , and a diagonal

matrix Σ containing singular values. This decomposition aids in identifying the system’s

directional gains and potential control challenges. The RGA, calculated as Λ = G× (G−1)T ,

assesses the degree of interaction between control loops. It helps pair inputs and outputs

and understand each control loop’s relative influence. Combined, SVD and RGA inform the

design of PID controllers by providing insights into the system’s dynamics, which is crucial
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for achieving desired control objectives in MIMO systems.

Based on SVD and RGA analyses, a 2 × 2 system will be evaluated where the objective is

to control the temperature of the condenser and reboiler (T2 and T14 respectively), manipu-

lating Feed Ratio and Boilup Ratio (FR and BR respectively). Section 4.4 will demonstrate

the reason for pairing these variables.

The system’s gain matrix G is analyzed using SVD. SVD decomposes G into three matrices:

U , Σ, and V T . Here, U and V are unitary matrices, and Σ is a diagonal matrix consisting

of the singular values. This decomposition helps in understanding the directional gains and

the coupling effects in the system.

The RGA is computed using the formula Λ = G× (G−1)T . The RGA provides insights into

the interaction between different control loops in the system. It is crucial for determining

the most effective pairing of inputs and outputs, which is a critical aspect in the design of a

MIMO PID controller.

Based on the insights gained from SVD and RGA, the PID controllers can be designed for

each input-output pair. The singular values guide the controller’s tuning, highlighting the

dominant dynamics and coupling effects. Conversely, the RGA assists in assigning the PID

controllers to the most appropriate pairs, ensuring effective control with minimal interaction.

In Equation 3-58, the transfer function matrix G(s) represents a 2-input 2-output for a

centralized system where all the four elements of the matrix are presented.

G(s) =

G11(s) G12(s)

G21(s) G22(s)

 (3-57)

G(s) =

 a11s+b11
s2+c1s+d1

a12s+b12
s2+c2s+d2

a21s+b21
s2+c3s+d3

a22s+b22
s2+c4s+d4

 (3-58)

To parametrize this system with a single vector, we can use:

θ =
[
a11 b11 a12 b12 a21 b21 a22 b22

]T
(3-59)

The relative gain array (RGA) gives a measure of interaction between input-output pairs:

RGA =

 G11

G11+G21

G12

G12+G22

G21

G11+G21

G22

G12+G22

 (3-60)
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The RGA helps determine suitable pairings of inputs and outputs for decentralized PID

controllers. The PID controllers are then tuned on the individual SISO loops.

In this sense, the single vector parametrization allows the MIMO system to be identified

from data. The RGA then helps design appropriate decentralized PID controllers, which can

be tuned for the individual input-output pairings [Luyben and Luyben, 1997].

3.5.2. Model predictive controller (MPC)

Model Predictive Control (MPC), encompassing both LMPC and NMPC, is an advanced

control strategy well-suited for systems with multivariable interactions, constraints, and mo-

deling uncertainties. These qualities make MPC suitable for controlling complex processes

such as a pilot-scale reactive distillation column.

In the case of LMPC, a linear predictive model is employed, providing advantages in terms

of computational simplicity and a rich theoretical basis [Camacho and Bordons, 2004, Ma-

ciejowski, 2002]. Contrarily, NMPC utilizes a nonlinear predictive model, catering to systems

with severe nonlinearity, albeit with a higher computational demand [Mayne et al., 2000].

LMPC and NMPC formulations explicitly incorporate constraints within the optimization

problem, a crucial feature for many process control applications.

Section 4.4 presented a unified formulation of the MPC strategy that serves both LMPC and

NMPC applications. Equations 3-61-3-67 give the objective function and constraints of the

MPC problem, serving as a formal mathematical representation of the control objectives:

mı́n
u,ϵk

[ p∑
j=1

∥y(k + j|k)− w(k + j)∥2Q +
m∑
j=1

∥∆u(k + j − 1)∥2W + ρϵ2k

]
(3-61)

subject to

x(k + j) = f(x(k + j − 1), u(k + j − 1),µ), (3-62)

g(y(k + j), x(k + j), u(k + j − 1),µ) = 0, (3-63)

x(k) = x̂(k) (3-64)

umin ≤ u(k + j − 1) ≤ umax, (3-65)

∆umin ≤ u(k + j − 1)− u(k + j − 2) ≤ ∆umax, (3-66)

ymin − ϵk ≤ y(k + j) ≤ ymax + ϵk, (3-67)

In this formulation, y(k + j|k) represents the output prediction j sampling periods ahead,

while w(k+j) is the reference trajectory, and ∆u(k) = u(k)−u(k−1) represents the control

increment. x(k + j) denotes the system’s state vector. The slack variable ϵk is defined for
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the entire control interval k, indicating that it is a single parameter used throughout the

prediction horizon. The term ∥x∥2H defines the weighted Euclidean norm of x ∈ Rn, given by

∥x∥2H = xTHx, where H ∈ Rn×n is a positive semi-definite matrix. Eqs. 3-62 to 3-63 describe

the process model with µ being the model parameter vector, while equation 3-64 represents

the initial condition of the prediction horizon. The optimization problem constraints related

to controlled, manipulated, and control action variations are presented in Eqs. 3-65 to 3-67.

The tuning parameters include prediction horizon p, control horizon m, sampling period

Ts, error weighting matrix of the controlled variables Q, movement minimization weighting

matrix W, and penalty associated with violation of soft constraints ρ.

In the LMPC control, the Equations 3-62 and 3-63 are described by linear models, and the

linear models were obtained by identification as follows:

G(s) =

 b11s+b10
s2+a1s+a0

b12s+b10
s2+a1s+a0

b21s+b20
s2+a1s+a0

b22s+b20
s2+a1s+a0

 (3-68)

where G(s) is a 2x2 transfer function matrix relating the two inputs to the two outputs. A

common denominator second-order transfer function model structure was chosen.

The prediction error method was used to estimate the unknown parameters b11, b10 etc. in

the transfer function matrix. The tfest() function in MATLAB was used to perform the

estimation.

The identified model was validated by comparing its simulated output to measured test data

from the physical system under previously unseen input conditions. The model was deemed

acceptable based on good fit (% error ¡5%).

The tuning of MPC systems presents challenges due to the numerous parameters invol-

ved, especially when dealing with multivariable processes. Giraldo et al. [2022] introduced a

methodology, further formalized in Giraldo et al. [2022], known as Model Predictive Control

Tuning (MPCT). The MPCT employs a hybrid optimization framework that combines both

integer and real variables, encapsulated in the decision variable vector xdv. This vector inclu-

des elements such as prediction and control horizons and the diagonal weight matrices Q and

W. To address the ill-conditioned matrices in multivariable systems, the MPCT algorithm

scales the internal model of the controller. In the LMPC context, an optimization problem is

formulated to scale the system model by minimizing its condition number. The optimization

procedure is conducted sequentially, initially employing the Goal Attainment Method (GAM)

followed by the Variable Neighborhood Search (VNS). The GAM minimizes the square error

between predefined reference trajectories and the actual closed-loop outputs, establishing the

desired system behavior. VNS refines these results by adjusting the prediction and control
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horizons to minimize the distance between the closed-loop responses and the initially calcula-

ted trajectories. An implementation of the MPCT methodology is available in MATLAB and

can be accessed from the following GitHub repository: https://github.com/sergioacg/Model-

Predictive-Control/tree/main/MPC-Tuninghttps://github.com/sergioacg/Model-Predictive-

Control/tree/main/MPC-Tuning.

3.5.3. Non-linear model predictive controller (NMPC)

NMPC is a type of control strategy used to regulate dynamic processes with non-linear beha-

vior, where the control action is computed by solving a dynamic optimization problem. In

NMPC, a model of the system to be controlled is used to predict its future behavior based

on the current and past states and inputs. Then, an optimization problem is formulated to

minimize a cost function that includes the predicted states and inputs over a finite horizon.

The optimal control action is obtained by solving this optimization problem subject to cons-

traints on the system states, inputs, and outputs Lima et al. [2023].

The NMPC is transformed into NLP by parameterizing the states and controls for the direct

approach. The goal is to implement NMPC for a 2-input, 2-output nonlinear system. The

nonlinear plant is modeled as follows:

ẋ = f(x, u) (3-69)

y = g(x, u) (3-70)

where x ∈ Rn is the state vector, u ∈ R2 is the input vector, y ∈ R2 is the output vector,

and f(x, u) and g(x, u) represent the nonlinear dynamics.

The control algorithm solves the finite horizon optimal control problem at each sample time:

mı́n
u

l(x, u) +

∫ tf

t0

l(x(τ), u(τ))dτ (3-71)

s.t. ẋ = f(x, u), x(t0) = x̂(t0) (3-72)

where l(x, u) is the cost function and x̂(t0) is the current state estimate. A single shooting

transcription transforms this into a nonlinear programming (NLP) problem.

The NLP problem is solved using a sequential quadratic programming (SQP) solver from

the MATLAB/Simulink Nonlinear Model Predictive Control Toolbox at each sample time.

The plant model updates the numerical approximations of the Hessian and Jacobian at each

iteration.
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The NMPC controller was implemented in MATLAB using the Model Predictive Control

Toolbox. The SQP solver allows efficient solutions to the nonlinear optimization problem

online. Stability constraints were included to ensure closed-loop stability. The NMPC con-

troller performance was validated on the physical system.

3.5.4. State Estimator

State estimators act in the set of Eq. 3-62 as state observers to predict x0 from noisy measure-

ments and models with uncertainty. The difference and observation models are reformulated

in the set of Eq. 3-73 and 3-74, respectively, where the model parameters and perturbations

can also be estimated. However, they do not change during the evolution of the model (i.e.,

θk+1 = θk) Lima et al. [2023].

x′(k + 1) =

x(k + 1)

θ(k + 1)

 = f ′(x(k), u(k), θ(k)) + w′(k)

f ′(x(k), u(k), θ(k)) =

f(x(k), u(k), θ(k)) + w(k)

θ(k) + wθ(k)

 (3-73)

y(k) =
[
h(x(k), u(k)) 0

]x(k)
θ(k)

+ v(k) (3-74)

Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a computational framework influenced by the struc-

ture and operations of biological neural systems. Its principal applications include regression

analysis, classification, and data processing Hippert et al. [2001].

The fundamental constituent of an ANN is the neuron. This neuron accepts several inputs X,

processes them, and produces an output Y. Initially, the inputs X are blended linearly using

weights and a constant bias b. The resulting value is then deployed as the argument for the

transfer function. The transfer function possesses two key features: it is differentiable and

non-decreasing. Commonly used transfer functions include the sigmoid and linear functions.

A diagram representing a neuron with four inputs is provided in Figure 3-14 Ahmad et al.

[2019].

The ANN parameters are ascertained (or the ANN is trained) by minimizing a loss function.

This study’s optimization approach is the scaled conjugate gradient backpropagation. This
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Figure 3-14: ANN configuration

technique displays linear or superlinear convergence and is aptly suited for addressing large-

scale problems Ahmad et al. [2019].

Figure 4-36 presents the structure of the proposed ANN, which was developed to estimate

process states and disturbances in the reactive distillation column. The network has 16 input

neurons, 20 hidden neurons, 4 outer layer neurons, and 4 output neurons. The 16 inputs were

selected based on available measurements from the column - temperatures at various stages,

FR, BR, and BuLa composition in the bottom. These variables are expected to contain in-

formation about the process states and disturbances. This network structure was estimated

based on several comparative analyses of different networks considering metrics such as R2

and performance during training.

The disturbance to be estimated is the LA composition in the feed, which impacts separa-

tion performance. Training data was generated by simulating the validated column model

at the pilot scale under different feed compositions, ranging ± 30% of the nominal LA value.

A feedforward network structure was created with hyperbolic tangent activation functions

in the hidden layer and linear activations in the outer layer. The tangent function allows the

modeling of nonlinear relationships between the inputs and outputs.

The network was trained using Levenberg-Marquardt backpropagation to minimize errors

between network outputs and training targets. Performance was validated on an unseen test

dataset. The ANN was trained with a target value of 1200 epochs, gradient value of 1 ×10−7,

and the error function was the mean squared error (MSE).

The regressor, a vector with measured signals, was built with two-time temperature delays,

manipulated variables, composition, and disturbance. In the output layer are the filtered

signal of condenser and reboiler temperatures, the prediction of n-butyl lactate composition,

and the disturbance prediction were considered. It consists of the following input variables:
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[T1(t−1), T1(t−2), T2(t−1), T5(t−1), T5(t−2), T7(t−1), T7(t−2), T12(t−1), T12(t−2), T14(t−
1), BR(t− 1), BR(t− 2), FR(t− 1), FR(t− 2), xBuLa(t− 1), xLAf (t− 1)].

where T1 to T14 are the measured temperatures, BR, and FR are the boil-up and feed ratio,

respectively, xBuLa is the n-butyl lactate composition in the bottom of the column, and

xLA is the composition in the feeding, which normally is considered as an unmeasured dis-

turbance.

In silico data were obtained for building the ANN predictions; the total number of data

analyzed was 10348, and 70% of those data were used for training, and the remaining data

were used for validating and testing the ANN (15% and 15% respectively). It is important

to note that all the data were normalized between 0-1.

The artificial neural network has four output neurons, each representing an estimated para-

meter:

Output 1: Condenser temperature (T2).

Output 2: Re-boiler temperature (T14).

Output 3: BuLa composition in the bottom (xBuLa).

Output 4: Disturbance, LA composition in the feed (xLAf ).

The first three outputs represent important internal states of the separation column that

indicate its current performance.

The fourth output estimates the composition of LA in the feed, which is treated as an

unknown disturbance to the column. Feed composition changes impact product purity, so

estimating this disturbance is useful for control and optimization.

These four parameters were selected as outputs because they are difficult or impossible to

measure directly. The trained neural network uses the 16 available measurements at its input

to infer these important unmeasured states and disturbances.

A was mentioned, a script code was developed, and the Matlab Toolbox â€œnewfftâ€ was

used for building a feed-forward back propagation neural network. Neurons in the inner and

outer layers use a hyperbolic tangent (tansig) activation function. The output neuron uses

a linear activation function (purelin). The Levenberg-Marquardt backpropagation (using

the â€˜trainmlâ€™) and the Gradient descent with momentum weight and bias (using

the â€˜learngdmâ€™) methods were used for training and learning functions, respectively.

Finally, the MSE was used as a performance index.
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Figure 3-15: ANN configuration

3.5.5. Control proposal

Figure 3-16 represents the control strategy in the reboiler and condenser to control the

temperatures in the aforementioned equipment by manipulating the boil up-ratio and feed

ratio, respectively. The RGA and SVD were applied to the linearized process model to gui-

de input-output pairings. The FR exhibits strong dynamic coupling with T2, while BR is

strongly coupled to T14.

The condenser and reboiler temperatures are critical variables impacting product purity.

The FR and BR effectively manipulate these temperatures, thereby controlling the separa-

tion performance.

FR adjusts the column feed rate and split between lactic acid and n-butanol, directly in-

fluencing the overhead condenser duty. BR regulates the reboiler heat input to the column

bottoms. Together, these mass and energy flows enable control of the distillate and bottom

composition.

The selected input-output pairings diagonalize the system interactions to avoid instability

from loop interactions. The RGA and SVD analysis, therefore, justifies the selection of these

manipulated and controlled variables.
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Figure 3-17 shows the proposed LMPC, and NMPC control considering disturbance and

noise. Similarly, the state estimation and perturbation proposal is presented using ANN to

filter noise from measured variables, estimate the unmeasured disturbance (LA composition

in the feed), and estimate the composition of BuLa as a bottom product of the column. For

the disturbance, with the estimation by ANN, the objective is to pass from an unmeasured

disturbance (UD) to a measured disturbance (MD). Therefore, based on the model, it is

possible to identify a linear model of the disturbance and use it within the structure of the

MPC control.

Performance indices will be used to compare control strategies such as ’The Integral Time

Absolute Error’ (ITAE), which is defined as:

ITAE =

∫ ∞

0

t · |e(t)| dt (3-75)

where e(t) is the error signal at time t, which is the difference between the desired and actual

outputs.

And ’The Integral Time Squared Error’ (ITSE) is another performance index, defined as:

ITSE =

∫ ∞

0

t · e(t)2 dt (3-76)

The ITSE emphasizes reducing large errors that persist for a long time because the error is

squared. This chapter shows the methodology associated with the control proposal (in silico)

and status estimation for the reactive distillation system at the pilot plant scale. Based on

the information provided, it is hoped that the advanced control strategy, together with the

estimate, will generate an appropriate proposal for the above system.
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Figure 3-16: Advanced control proposal to produce n-butyl lactate at pilot plant scale,

comparison between LMPC and NMPC.
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Figure 3-17: Scheme of the advanced control proposal to produce n-butyl lactate using a

model of an RDC at pilot-plant scale.



4 Results and Discussion

4.1. Isobaric Vapor-Liquid Equilibrium for the Binary

Mixture of 1-butyl lactate + 1-butanol at 1 and 5

kPa

Tables 4-1 and 4-2 present the composition of the liquid and vapor phases, experimental

temperature, and pressure at 1-5 kPa. The Raoult extended equation (Equation 3-50) was

used to calculate the activity coefficients, and, considering the low pressure (1-5 kPa), an ideal

behavior in the vapor phase was assumed. The mixture of alcohol + ester presents no azeo-

trope. Finally, this section is organized as follows: first, the obtained experimental values are

presented; second, the thermodynamic consistency of the experimental data was performed;

and third, it is presented a model parameter regression with the obtained experimental data.

4.1.1. VLE Experimental Data

The experimental data (T, x, y) (Table 4-1 and Table 4-2) were correlated using the non-

linear regression method available in Aspen Plus® V9. NRTL and UNIQUAC activity mo-

dels were used to adjust the binary parameters. The objective function was the maximum

likelihood with the initialization method of weighted least squares, and the convergence al-

gorithm was the Deming algorithm with a tolerance of 1× 10−6.



4.1 Isobaric Vapor-Liquid Equilibrium for the Binary Mixture of 1-butyl
lactate + 1-butanol at 1 and 5 kPa 67

Table 4-1: 1-butyl lactate (1) + 1-butanol (2) at 1 kPa

T b[K] xc
1 yd1 γe

1 γf
2

300.080 0.000 0.000 0.000 0.970

301.330 0.084 0.018 2.348 0.953

301.480 0.082 0.017 2.310 0.941

302.240 0.112 0.023 2.154 0.918

302.400 0.117 0.022 1.949 0.913

302.580 0.152 0.027 1.825 0.934

302.460 0.193 0.033 1.633 0.919

303.910 0.262 0.038 1.370 0.968

304.290 0.266 0.036 1.220 0.951

305.720 0.355 0.049 1.140 0.968

306.080 0.380 0.048 1.011 0.985

307.210 0.430 0.052 0.898 0.989

308.760 0.493 0.069 0.935 0.984

310.900 0.585 0.079 0.788 1.034

311.750 0.620 0.096 0.852 1.050

313.190 0.654 0.105 0.798 1.043

314.390 0.691 0.117 0.782 1.066

338.130 0.988 0.878 0.992 1.009

338.470 0.991 0.890 0.984 1.203

341.420 1.000 1.000 0.933 0.000

aStandard uncertainties u of p, T , x and y are u(p) = 0,01 kPa, u(T ) = 0,01 K, and u(x) = u(y) = 0,001.
bEquilibrium temperature. cLiquid-phase mole fraction of 1-butyl lactate. dVapor-phase mole fraction of

1-butyl lactate. eActivity coëı¬cientof1− butyllactate. fActivity coëı¬cientof1− butanol.
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Table 4-2: 1-butyl lactate (1) + 1-butanol (2) at 5 kPa

T b[K] xc
1 yd1 γe

1 γf
2

373.490 1.000 1.000 0.977 0.000

357.020 0.901 0.392 0.911 1.172

354.460 0.879 0.332 0.899 1.182

342.890 0.703 0.131 0.804 1.097

341.790 0.687 0.117 0.780 1.119

336.740 0.556 0.073 0.796 1.074

336.700 0.553 0.075 0.814 1.067

333.840 0.462 0.053 0.809 1.058

333.340 0.456 0.051 0.812 1.076

331.260 0.359 0.038 0.863 1.037

330.850 0.352 0.038 0.902 1.049

327.110 0.118 0.016 1.396 0.972

326.910 0.118 0.017 1.520 0.982

324.440 0.000 0.000 0.000 1.016

aStandard uncertainties u of p, T , x and y are u(p) = 0,01 kPa, u(T ) = 0,01 K, and u(x) = u(y) = 0,001.
bEquilibrium temperature. cLiquid-phase mole fraction of 1-butyl lactate. dVapor-phase mole fraction of

1-butyl lactate. eActivity coefficient of 1-butanol. fActivity coefficient of butyl L-lactate.

Using the γ-ϕ model (Equation 3-50), the activity coefficients may be calculated for the VLE

data [Smith, 1950]. Due to low pressure (1 and 5 kPa) and the similar nature of the substan-

ces, the Poynting factor is assumed as 1, and the vapor phase is ideal. The Antoine constants

for obtaining the n-butanol and n-butyl lactate vapor pressures were taken from literature

and the Aspen plus V9 database. The Antoine equation parameters are reported in Table 3-4.

The VLE data was obtained for the binary system of n-butyl lactate (1) + n-butanol () at

two pressures - 1 kPa and 5 kPa. The measurements included bubble point temperature,

liquid phase composition, vapor phase composition, and activity coefficients.

Examination of the data shows expected trends for a low relative volatility system. Signifi-

cant changes in liquid composition are required at both pressures to see appreciable changes

in vapor composition and temperature. This indicates azeotrope formation is likely [Michel-

sen, 1992].
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The activity coefficient data indicates moderately non-ideal behavior, with the highest de-

viations from ideality occurring in the center of the composition range. This suggests the

presence of maxima in the Gibbs excess energy and supports the likelihood of azeotrope

formation at higher pressures.

Comparison of the 1 kPa and 5 kPa data shows the impact of pressure on relative volatility

and ideality. The activity coefficients show lower deviations at the higher 5 kPa pressure.

Additionally, the 5 kPa isotherms have a more pronounced composition range with d(y1)
d(x1)

> 1,

indicating improved relative volatility.

4.1.2. NRTL and UNIQUAC Parameters Regression

The default Equations (3-40 to 3-42) were used in Aspen PlusÂ® V9 with the relation for

the NRTL model with regression parameters. Three α values were evaluated, which genera-

ted three NRTL models (NRTL1, NRTL2, and NRTL3). The α values were selected based

on reports for esterification mixtures [Smith J. Van Ness and H. Abbott, 2009]. For this

case, the best results (Table 4-3) were for the model NRTL2 with α = 0,3, representing the

degree of interaction between the two liquids in a binary mixture.

Table 4-3 reports the binary interaction parameters A12, A21, B12 and B21 of the models

obtained from the correlation of experimental VLE data for the system n-butanol (1) â€“ n-

butyl L-lactate (2) with NRTL and UNIQUAC activity models, considering the set of studied

pressures (1, 5 and 101.325 kPa). Different values of the α12 parameter were estimated in the

NRTL equation. The root-mean-square deviations (rmsds) of the temperature (T), vapor-

phase mole fraction (y1), and the regressed parameters are listed in Table 4-3, where the

lowest rmsds is for NRTL2 (α=0.3). The rmsds are expressed in Equations. 4-1 and 4-2.

rmsd(T ) =

(
N∑
i=1

(TCalc
i − TExp

i )2

N

)0,5

(4-1)

rmsd(T ) =

(
N∑
i=1

(yCalc
i − yExp

i )2

N

)0,5

(4-2)
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Table 4-3: Binary interaction parameters for the System n-butanol (1) + n-butyl L-lactate

(2) obtained with data sets presented in this work at 1, 5 kPa

Model

Parameters rmsds

A12 A21 B12[K] B21[K] α
1 kPa 5 kPa

T [K] y2 T [K] y2

NRTL1 -0.476 0.409 -20.483 37.68 0.1 0.93 0.002 0.97 0.005

NRTL2 -0.726 0.792 134.427 -158.781 0.3 0.94 0.002 0.99 0.005

NRTL3 -0.273 0.189 10.499 13.292 0.47 0.94 0.002 0.98 0.005

UNIQUAC -0.93 0.735 190.054 -150.661 — 0.96 0.002 0.99 0.005

Figure 4-1 and Figure 4-2 present the T-x-y diagram obtained for the system under conside-

ration. Both figures evidence a good agreement between experimental data using the NRTL

model.

Figure 4-1: T-x-y diagram for the system 1-butanol (1) + butyl L-lactate (2) at 1.0 kPa.

(•) experimental data and (-) NRTL2 calculations made in this work (α=0.3).
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Figure 4-2: T-x-y diagram for the system 1-butanol (1) + butyl L-lactate (2) at 5.0 kPa.

(•) experimental data and (-) NRTL2 calculations made in this work (α=0.3).

Figure 4-3 compares the performance of the parameters obtained in this work with the ex-

perimental data of VLE reported by Peña-Tejedor et al. [2005a] at 101.325 kPa.

Figure 4-3 allows concluding that the obtained parameters present a good fitting at the three

different pressures (101.325, 5, and 1 kPa), which means that a wide pressure interval can be

predicted for this mixture. The mentioned prediction could be used in reactive distillation

studies and process design to avoid the oligomerization conditions in the system due to high

temperatures, as discussed previously.

Figure 4-3: T-x-y diagram for the system 1-butanol (1) + butyl L-lactate (2). (-) NRTL2

calculations made in this work (α=0.3), at (•) 1.0 kPa (this work), (■) 5.0 kPa

(this work) and (▲) 101.325 kPa Peña-Tejedor et al. [2005a].
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In Figure 4-4, the residuals of the equilibrium temperature (T) and vapor-phase mole frac-

tion (y2) are plotted for the NRTL model. The deviations are uniformly distributed around

zero and less than 2.0 and 0.01 for temperature and vapor-phase mole fraction, respectively.

Figure 4-4: Residuals of equilibrium temperature (T) and vapor-phase mole fraction (y2)

calculated by the NRTL2 (α=0.3) model at 1 kPa.

Figure 4-5 shows the percentage differences between butyl L-lactate K-values from the mo-

del and data plotted against the liquid mole fraction of butyl L-lactate at different pressure

conditions. The error was compared against the model and experimental data reported by

Peña-Tejedor et al. [2005a] at 101.325 kPa. The obtained percentage error shows a 55%

deviation at 1 kPa in the lowest liquid mole fraction region due to the small deviation in the

liquid phase in the prediction model. However, this result agrees with the results presented

by Peña-Tejedor et al. [2005a], where the percentage error decreases. The results in Table 4-3

and Figure 4-4 show that the model allows predicting temperature and vapor mole fraction

with a low rmsd.

Figure 4-5: Percentage errors of model K-values of butyl L-lactate at (•) 1.0 kPa (this

work), (▲) 5.0 kPa (this work) and (■) 101.325 kPa [9].
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4.1.3. Thermodynamic Consistency

According to the components’ nature and the system’s ideal behavior, Van Ness and Fredens-

lund's methods Marcilla et al. [2013], Zumalacarregui [2018] were chosen for thermodynamic

consistency. As a result of the research by Xu et al. [2020], Eqs. 4-3 and 4-4 represent the Van

Ness point-by-point test, referring to the mean percentual relative and absolute deviation

between experimental data and calculated values for pressure and composition, respectively.

△P1 =
1

N

N∑
i=1

100

∣∣∣∣∣P
exp
1,i − P calc

1,i

P exp
1,i

∣∣∣∣∣ (4-3)

△y1 =
1

N

N∑
i=1

100
∣∣yexpi,1 − ycalci,1

∣∣ (4-4)

The term N represents the number of experimental data, yexp1,i and P exp
1,i the vapor fraction

and pressure, respectively, and ycalc1,i and P calc
1,i are the calculated vapor fraction and pressure,

respectively. To achieve consistency, the values of △y1 and △P1 must be less than 1. Ta-

ble 4-4 presents the Van Ness consistency test for NRTL and UNIQUAC models, and all of

the samples △y1 and △P1 had values less than 1, which means the VLE data passed the test.

The Fredenslund test requires evaluating the Legendre orthogonal polynomials Marcilla et al.

[2013] (Eq 4-5).

gE =
△GE

RT
= x1x2

n∑
k=1

akLk(x1) (4-5)

The term ak refers to the coefficients of order k, and Lk(x1) represents the Legendre poly-

nomials where L0(x1) = 1 e L1(x1) = x1. (Eq. 4-6):

Lk(x1) =
1

k
[(2k − 1)(2x1 − 1)Lk−1(x1)− (k − 1)Lk−2(x1)] (4-6)

Eq. 4-7 describes the condition to pass the test:

n∑
i=1

|ycalci − yexpi |
n

≤ 0,01 (4-7)

Finally, the value of the Fredenslund test was 0.00097 for 1 kPa and 0.0034 for 5 kPa, and

both met the constraint of Eq 4-7. Tables 4-4 and 4-5 present the calculated values of Van

Ness and Fredenslund tests for a pressure system of 1 kPa and 5 kPa, which allow concluding

that the obtained data was reliable.
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Table 4-4: Van Ness Test for Thermodynamic Consistency

Preassure Model △P1 △y1 Results

1 kPa

NRTL1(α = 0,1) 0.12 0.111 Passed

NRTL2(α = 0,3) 0.12 0.108 Passed

NRTL3(α = 0,47) 0.12 0.104 Passed

UNIQUAC 0.12 0.097 Passed

5 kPa

NRTL1(α = 0,1) 0.16 0.233 Passed

NRTL2(α = 0,3) 0.16 0.220 Passed

NRTL3(α = 0,47) 0.16 0.225 Passed

UNIQUAC 0.16 0.218 Passed

Table 4-5: Fredenslund Test for Thermodynamic Consistency

Preassure Method △y1 Resulst

1 kPa Fredenslund 0.00097 passed

5 kPa Fredenslund 0.0034 passed

4.1.4. Conclusions of the section

New isobaric experimental data of the liquid-vapor equilibrium were obtained for the n-

butanol + butyl L-lactate system at 1 and 5 kPa. The experimental data presented ther-

modynamic consistency according to the Van Ness and Fredenslund tests. Nonlinear regres-

sion was performed to find the binary interaction parameters for the UNIQUAC and NRTL

activity models. These data provide new thermodynamic information for further studies re-

lated to the process synthesis of the analyzed system. This new set of parameters makes

predicting VLE for the n-butanol + butyl L-lactate system at a wide range of pressures

possible. Besides, these data can be used for future studies in which the oligomerization

reaction of lactic acid and lactate must be avoided by operating at low pressures.
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4.2. Reactive and non-reactive residue curve maps

analysis to produce Butyl Lactate by catalytic

distillation

This section presents the RCM and RRCM resulting from integrating the models explained

in Section 3.2 for the butyl lactate synthesis system. The studied system is a mixture of four

components (1-butanol - lactic acid - butyl lactate - water) that gives rise to a reversible

liquid phase reaction catalyzed by an ion exchange resin. Section 4.2.1 presents the RCM

for the ternary and quaternary systems and the topology consistency analysis. Section 4.2.2

presents the RRCM for the quaternary system, evaluating different values of the Damhköler

number.

4.2.1. Analysis of the non-reactive curve maps

RCM is obtained by solving Eq. 3-1 for various starting liquid compositions. The resulting

RCM are shown in ternary and quaternary diagrams.

VLLE Ternary residue curve diagrams

Figure 4-6 presents the RCM in ternary diagrams for the system at 101.325 kPa. In these

diagrams, each vertex is a pure component of the system. The system exhibits one region of

partial miscibility and two binary azeotropes at 101.325 kPa: A heterogeneous butanol-water

azeotrope (xBuOH = 0.236, xw = 0.765, T= 366.7 K) and a homogeneous lactic acid - butyl

lactate azeotrope (xBuLA= 0.114, xLa= 0.886, T= 447.7 K). The butanol-water azeotrope

Iwakabe and Kosuge [2001], Venimadhavan et al. [1994] is known in the literature, but the

lactic acid-butyl lactate azeotrope has not yet been determined experimentally. The system

contains two stable nodes (pure components butyl lactate and lactic acid): One unstable

node (binary butanol-water azeotrope) and three saddle nodes (pure components butanol,

water, and the binary azeotrope butyl lactate - lactic acid).
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(a) (b)

(c) (d)

Figure 4-6: Ternary residue curve maps (non-reactive VLLE at 101.325 kPa) (• • •) Bino-
dal curve.: (a)n-butanol, lactic acid, n-butyl lactate; (b) n-butanol, lactic acid,

water; (c) n-butanol, n-butyl lactate, water, and (d) lactic acid, n-butyl lactate,

water.
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Due to the autocatalytic secondary reaction (Lactic Acid oligomerization) favored by tem-

perature, this reaction must be carried out at low pressures to avoid high temperatures that

decrease the selectivity of the process Asthana et al. [2006]. For this reason, RCM at low

pressure (5 kPa) was evaluated.

Figure 4-7 depicts the RCM in ternary diagrams for the system at 5 kPa, exhibiting a binary

azeotrope and one region of partial miscibility, as at 101.325 kPa. This mixture has a hete-

rogeneous n-butanol-Water binary azeotrope (xBuOH= 0.153, xw= 0.848, T=303.0 K). The

system contains one stable node (Lactic Acid), one unstable node (binary n-butanol-Water

azeotrope), and three saddle nodes (pure components n-butanol, Water, and Lactic Acid).

(a) (b)

(c) (d)

Figure 4-7: Ternary residue curve maps (non-reactive VLLE at 5 kPa). (•••) Binodal curve.
(a)n-butanol, lactic acid, n-butyl lactate; (b) n-butanol, lactic acid, water; (c)

n-butanol, n-butyl lactate, water; and (d) lactic acid, n-butyl lactate, water.
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In the synthesis of Butyl Lactate, a high conversion of Lactic Acid is expected; therefore,

the Butyl Lactate - Water - n- butanol subsystem makes it possible to identify the nodes

present in operation (Figures 4-6c and 4-7c). A stable node (Butyl Lactate) and an unstable

node (n-butanol-Water binary azeotrope) are observed. For the distillation operation, these

nodes imply that the bottom stream will be mostly Butyl Lactate, and the top vapor of the

column will present a composition close to the heterogeneous azeotrope.

VLLE quaternary residue curve diagrams

Figure 4-8 presents the RCM in quaternary diagrams at two different pressures. The bottom

product can be Butyl Lactate or Lactic Acid at the pressure condition of 101.325 kPa (two

distillation zones) and Lactic Acid at 5 kPa. The top product will be the heterogeneous

azeotrope at 101.325 kPa and 5 kPa. Butyl Lactate can be obtained as a bottom product

considering these differences, the expected high conversion of Lactic Acid in the process and

an excess of alcohol to favor the conversion.

(a) (b)

Figure 4-8: Quaternary Residue curve maps (non-reactive VLLE) at (a) 101.325 and (b) 5

kPa. (• • •) Binodal curve.

Validation of topological structure of the calculated nonreactive maps

The topological consistency analysis by Kiva et al. [2003] was performed for the residue curve

maps. The general expression of this rule for n components is presented in Eq. 4-8.

n∑
K=1

2K
(
N+

K + S+
K −N−

K + S−
K

)
= 1 + (−1)n−1 (4-8)
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where NK is the number of nodes that contain k number of components, SK is the number

of saddle nodes that contain k numbers of components, and n is the number of components.

The corresponding positive and negative indices are explained by Kiva et al. [2003] and are

based on the location of the node and the direction of increase of boiling temperature of

each node. It depends on the direction in which the curve approaches and departs from the

saddle point or the direction of the curve at the stable or unstable node point.

The topological consistency for ternary systems was evaluated by simplifying the azeotro-

pic ruleMart́ınez et al. [2020a] (Eq.4-9). The different node indices identified in the ternary

mixtures are listed in Tables 4-6, 4-7, 4-8, and 4-9.

2N3 +N2 +N1 = 2S3 + S2 + 2 (4-9)

Table 4-6: Topological consistency for the ternary system 1-butanol, butyl lactate, water.

Preassure 101.325 kPa 5 kPa

Singular Point Type Nomination Type Nomination

Pure components

1-Butanol Saddle S1 Saddle S1

Butyl Lactate Stable node N1 Stable node N1

Water Saddle S1 Saddle S1

Binary azeotropes

1-Butanol-Water Unstable node N2 Unstable node N2

Azeotropic rule

2N3 +N2 +N1 2 2

2S3 + S2 + 2 2 2
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Table 4-7: Topological consistency for the ternary system lactic acid, butyl lactate, water.

Preassure 101.325 kPa 5 kPa

Singular Point Type Nomination Type Nomination

Pure components

Lactic Acid Stable node N1 Stable node N1

Butyl Lactate Stable node N1 Saddle S1

Water Unstable node N1 Unstable node N1

Binary azeotropes

Lactic Acid - Butyl Lactate Saddle S2 NA NA

Azeotropic rule

2N3 +N2 +N1 3 2

2S3 + S2 + 2 3 2

Table 4-8: Topological consistency for the ternary system lactic acid, 1-butanol, water.

Preassure 101.325 kPa 5 kPa

Singular Point Type Nomination Type Nomination

Pure components

Lactic Acid Stable node N1 Stable node N1

1-Butanol Saddle S1 Saddle S1

Water Saddle S1 Saddle S1

Binary azeotropes

1-Butanol - Water Unstable node N2 Unstable node N2

Azeotropic rule

2N3 +N2 +N1 2 2

2S3 + S2 + 2 2 2
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Table 4-9: Topological consistency for the ternary system lactic acid, 1-butanol, butyl lac-

tate.

Preassure 101.325 kPa 5 kPa

Singular Point Type Nomination Type Nomination

Pure components

Lactic Acid Stable node N1 Stable node N1

1-Butanol Unstable node N1 Unstable node N1

Butyl Lactate Stable node N1 Saddle S1

Binary azeotropes

Lactic Acid - Butyl Lactate Saddle S2 NA NA

Azeotropic rule

2N3 +N2 +N1 3 2

2S3 + S2 + 2 3 2

The topological consistency for quaternary systems was evaluated using Eq. 4-10. The diffe-

rent node indices identified in the quaternary mixtures are listed in Table 4-10.

8
(
N+

3 + S+
3 −N−

3 − S−
3

)
+4

(
N+

2 + S+
2 −N−

2 − S−
2

)
+2

(
N+

1 + S+
1 −N−

1 − S−
1

)
= 0 (4-10)

Table 4-10: Topological consistency for quaternary system.

Preassure 101.325 kPa 5 kPa

Singular Point Type TI Nomination Type TI Nomination

Pure components

1-Butanol Saddle -1 S1− Saddle -1 S1−

Water Saddle -1 S1− Saddle -1 S1−

Butyl Lactate Stable node -1 N1− Saddle -1 S1+

Lactid Acid Stable node -1 N1− Stable node -1 N1−

Binary azeotropes

1-Butanol - Water Unstable node 1 N2+ Unstable node 1 N2+

Lactic acid - Butyl Lactate Saddle 1 S2+ NA NA NA

Azeotropic rule

8
(
N+

3 + S+
3 −N−

3 − S−
3

)
0 0

4
(
N+

2 + S+
2 −N−

2 − S−
2

)
8 -4

2
(
N+

1 + S+
1 −N−

1 − S−
1

)
-8 4
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Figure 4-9 is the unfolding of the ternary diagrams at 101.325 kPa that allows evaluating

the nodes present in the system for the topological analysis. The azeotropic rule is fulfilled

in all the studied cases, which evidences that the thermodynamic model is consistent and

feasible.

Figure 4-9: Non-reactive residue curves maps for the quaternary system lactic acid - 1-

butanol - butyl lactate - water at 101.325 kPa. Unfold into the corresponding

ternary diagrams.
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4.2.2. Analysis of the reactive curve maps

This subsection presents the analysis of the residue reactive curve maps. The Damköhler

number is used to evaluate the kinetically controlled model at different ratios of reaction

rate and evaporation rate. The low values of Da mean a slow reaction rate compared with

the evaporation rate, whereas high values of Da correspond to fast reaction rates Walpot

[2011].

VLLE reactive curve maps at 101.325 kPa

A set of VLLE reactive curve maps at different Da values was constructed to determine

the effect of the kinetic expression in the separation process. The Da values move from

non-reactive conditions (i.e., Da=0) to kinetically controlled regimes (i.eDa → ∞), based

on the approximation performed by Cho et al. [2012], Mart́ınez et al. [2020a]. Figure 4-10

presents the RRCM for the (a) quaternary system and (b) in transformed variables (i.e.,

Eqs. 3-2, 3-4 and 3-5), as obtained for Da = 0. The pure components are in the vertices of

the two-dimensional and three-dimensional diagrams, which exhibit only one azeotrope at

366.7 K. The binary azeotrope n-butanol-water is an unstable node (xBuOH = 0.236, xw =

0.765).

(a) (b)

Figure 4-10: VLLE reactive curve maps at 101.325 kPa and Da=0, a) quaternary system

and b) transformed variables. (• • •) Binodal curve.

In Figure 4-11, a similar approximation is presented but with Da=0.05. Figure 4-10 shows

the same unstable and stable nodes. The residue curves change in the direction of increa-

sing boiling temperature and are a function of the kinetic equilibria constant or Da number

Okasinski and Doherty [1997].
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(a) (b)

Figure 4-11: VLLE reactive curve maps at 101.325 kPa and Da=0.05, a) quaternary system

and b) transformed variables. (• • •) Binodal curve.

Figure 4-12 shows at Da=0.1 that the stable and unstable nodes are the same as in Figure

4-10 and Figure 4-11 (independently of the starting compositions).

(a) (b)

Figure 4-12: VLLE reactive curve maps at 101.325 kPa and Da=0.1, (a) quaternary system

and (b) transformed variables. (• • •) Binodal curve.

However, in Figure 4-13 withDa=2, the saddle-node 1-Butyl Lactate-Lactic Acid (XBuLAc=0.114,

XLA=0.886, T=447.5 K) is observed obtaining two distillation regions. This means that ope-

rating a reactive distillation process, using a feed with a slight excess of 1-Butanol, could

obtain an almost pure Butyl Lactate, as concluded in subsection 4.2.1.
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(a) (b)

Figure 4-13: VLLE reactive curve maps at 101.325 kPa and Da=2.0, a) quaternary system

and b) transformed variables. (• • •) Binodal curve.

Values of Da > 2 produced no changes in the residue curves, and as can be observed, even

no reactive azeotropes were formed. This means that with values of Da ≥ 2, the system is

controlled by the kinetic, which agrees with those observed in industrial reactive distillation

columns Shah et al. [2012], Asthana et al. [2005].

4.2.3. Conceptual scheme of a preliminary reactive distillation column

The RRCM obtained at Da = 2 was used to conceptualize a reactive distillation column.

This value was selected because, at this condition, the column operates under kinetically

controlled regimes. In Figure 4-14, the balance of the column is represented by a straight

line connecting the stable node (bottom product) and the unstable node (top product).

As observed, Butyl Lactate with high purity can be obtained as the bottom product (B),

whereas the heterogeneous binary azeotrope is obtained as the top product (D). Indeed,

the top product can be condensed and separated in a decanter to remove the aqueous phase

and recycle the organic phase to the system, thus favoring the reaction towards the products.
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Figure 4-14: RRCM in transformed compositions for a Da = 2: Composition profiles. (−)

reactive residue curve maps, (• • •) binodal curve, (−) RD material balance

and (−) tie line of the distillate product.

The feed Lactic Acid composition was set below 30%wt. At higher compositions, oligome-

rization reactions appear, and process design and the construction of reactive curve maps

become more challenging Asthana et al. [2005], Dai et al. [2018]. A conceptual design of

a reactive distillation column was presented with the specifications of Table 4-11, where it

can be observed that it is possible to obtain a bottom product with 98% wt of Butyl Lactate.

Figure 4-15 presents the process flow diagram with the obtained design. Figure 4-16 shows

the temperature and column composition profiles. The evaluated pressure (25 kPa) is reacha-

ble at an industrial scale, allowing obtaining the desired temperature profile along the co-

lumn. The pressure operation condition leads to obtaining temperatures below 355.15 K in

zones where Lactic Acid is in high concentration, while zones exceeding this temperature

have low Lactic Acid composition. Hence the oligomer formation is minimized. Under these

conditions, the simulation presented reaction rates for the oligomerizations with maximum

values of 4 × 10−4 kmol/h, leading to ppm-level compositions. In the rectification section,

1-Butanol and Water are accumulated, obtaining the composition of the heterogeneous azeo-

trope. In the stripping zone, Butyl Lactate is concentrated to be obtained as the bottom

product.
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Table 4-11: Operating conditions of reactive distillation.

Design variable Value

Total stages 13

Rectifying section 1 - 3

Reactive section 4 - 9

Stripping section 10 - 13

Feed molar ratio BuOH:LA=1.4

Lactic Acid feed 4

Flow rate 4150 kg/h

Composition (wt fraction)
LA=0.3

W=0.7

n-butanol feed 9

Flow rate 1416

Composition (wt fraction)
BuOH=0.999

W=0.001

Condenser temperature 313.15

Bottom product 2026 kg/h

composition (wt fraction)

BuLac=0.987

AL=0.006

BuOH=0.007

Distillate product
Heterogeneous azeotrope BuOH-W

7979 kg/h

Composition (wt fraction)
BuOH=0.449

W=0.501

Aqueous phase product 3540 kg/h

composition (wt fraction)
BuOH=0.109

W=0.891

Organic phase 4439 kg/h

composition (wt fraction)
BuOH=0.810

W=0.190

Catalyst loading per stage 100 kg

Pressure 25 kPa
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Figure 4-15: Reactive distillation column (%wt fraction).

(a) (b)

Figure 4-16: Column (a) temperature and (b) composition profile (−) LA, (−) BuOH, (−)

BuLac and (−) W.

4.2.4. Conclusions of the section

This section presented a thermodynamic approximation for studying the quaternary system:

Lactic Acid, n-butanol, Butyl Lactate, and Water. Initially, the thermodynamic informa-

tion, such as VLE and VLLE was reviewed, and the NRTL thermodynamic model was used
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with a unique set of binary parameters. The quaternary system Lactic Acid-n-butanol-Butyl

Lactate-Water was modeled accurately with a good prediction of the azeotrope reported in

the literature (n-butanol-Water). A new azeotrope (Butyl Lactate-Lactic Acid) was iden-

tified, which had not been reported in the literature. Besides, this work involved a com-

prehensive revision and validation of the ternary n-butanol, Lactic Acid, and Water. LLE

phase equilibrium data was used for validating the obtained thermodynamic information.

An analysis of the model indicates no ternary and quaternary azeotropes. This agrees with

the topological analysis, which is consistent based on considering the azeotropic rule.

The reactive residue curve maps for the quaternary system were calculated under chemical

equilibrium conditions and represented in transformed coordinates. According to the results

of the map analysis, reactive azeotropes were not found. Butyl lactate can be obtained as a

bottom product, and the azeotrope n-butanol-Water can be obtained as the top product in

a reactive distillation process.

The proposed methodology for constructing the residue curve maps studied in this work ser-

ves as a tool for conceptual studies with a complete description of the calculation and global

optimization techniques. This methodology complements the information spread in the open

literature for constructing reactive and non-reactive residue curve maps for VLL equilibria.

This implies an advantage in its construction based on a global optimization technique. Ho-

wever, this methodology presents a disadvantage related to computational time due to the

global optimization techniques that should be addressed.

The residue maps obtained were used to propose a preliminary reactive distillation column

in a process intensification case. The resulting proposal allows obtaining a product with high

purity of Butyl Lactate (98% wt). For future work, the thermodynamic information can be

completed with new experimental data for the mixture Butyl Lactate - water and validate

the existence of the azeotrope Butyl Lactate-Lactic Acid.

4.3. Green solvents production in a pilot-plant reactive

distillation column: modeling and experimental

validation

4.3.1. Phenomenological Model Validation

This section presents the column simulation results for the three scenarios introduced in

Section 3.4. Table 4-12 presents all the scenarios comparison. The first scenario addressed

isoamyl acetate production in a reactive distillation column at the pilot-plant scale. The
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thermodynamic and kinetic equations presented in Section 3.4.1 were validated against ex-

perimental data in Sánchez et al. [2017], Mart́ınez et al. [2020a]. Figures 3-9 and 3-10 show

the validation for the thermodynamic and kinetic models, respectively. These models co-

rrectly predict the experimental data set, which means that the set of equations could be

used to represent the phenomena on the RDC.

MSE =
1

n

n∑
1

(
Yi − Ŷi

)2
(4-11)

Table 4-12: Phenomenological model validation in cases

Case
Thermodinamic

Model
Kinetic Model

Operation

Type

1. Isoamyl Acetate

(Pilot Plant)
NRTL-HOC

Pseudo-homogeneus

kinetic model

Batch process with

experimental data

2. N-butyl lactate

(Lab-scale-literature)
NRTL

Pseudo-homogeneus

kinetic model

Continuous

with

experimental data

3. N-butyl lactate

(Pilot Plant)
NRTL

Pseudo-homogeneus

kinetic model

Continuous

without

experimental data

For Case 1, the experiments in the RDC at the pilot-plant scale were carried out at total re-

flux. The water produced is removed first, and the organic phase recirculates to the column’s

top stage. The column was modeled and simulated in Matlab R2020b according to the des-

cription in Section 3.3 and Figure 3-7 (b). To determine the fitting between experimental

data and the model, the mean square error (MSE) index was used (Equation 4-11), where

term n means the number of experimental data, yexp is the experimental data, and ycalc is

the corresponding model prediction. Figure 4-17 shows the model predictions for case 1 (at

steady state). With the validated model for isoamyl acetate production by RD, it is possible

to evaluate the production of n-butyl lactate since all the cases include the same mass and

energy balance structure represented through the equilibrium stage model. The deviations in

the model are because oligomerization reactions are not considered. The thermodynamic and

kinetic models change according to the nature of the compounds. However, for the evaluated
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cases, it is possible to implement the same kinetic and thermodynamic model for the liquid

phase because esterification reactions with similar compounds occur in these systems.

(a) (b)

(c) (d)

Figure 4-17: (a) Mass fraction profiles: experimental (•) IAc, (o) IA, (x) AA and model (-)

IAc, (· · ·) IA, (- - -) AA. (b) Temperature profile: experimental (•) and model

(-). (c) Molar fraction profiles: model (-) IAc, (· · ·) IA, (- - -) AA, (-•-) Water.

(d) Temperature profile: model (-).

In Case 2 it was evaluated the production of butyl lactate based on the report of Kumar

and Mahajani [2007]. The model developed in this work was compared with the model in

Aspen V11 and experimental data presented by Kumar and Mahajani [2007]. Section 3.4.2

presented the thermodynamic and kinetic information (i.e., Tables 3-9 to 3-11). The RD co-

lumn for Case 2 is operated continuously, as is presented in Figure 3-12. Figure 4-18 shows

the temperature and mole fraction profiles for the Kumar and Mahajani [2007] experimental

data and the comparison with Aspen V11 and Matlab R2020b simulations.
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(a) (b)

Figure 4-18: (a) Temperature profile [10] (•), Aspen Plus V11 (-) and Matlab R2020b (—)

W, (■) ButOH, (▲) LA, (♦) BuLac and Matlab R2020b (—) W, (-) ButOH,

(-.-) LA, (· · ·) BuLac. (b) Composition profiles, Kumar et al. [16] (•) W, (■)

ButOH, (▲) LA, (♦) BuLac, Aspen Plus V11 (-) and Matlab R2020b (—).

Although it can be observed that a good fitting was obtained for both simulators, the Matlab

model showed a lower MSE value (see Table 4-13). This is because authors in Kumar and

Mahajani [2007] presented estimated thermodynamical information using the UNIFACmodel

for the missing parameters; meanwhile, this work used experimental calculated parameters.

Furthermore, authors presented binary interaction parameters for the mixture butanol-water

and butanol-butyl lactate using the UNIQUAC model; however, as was presented in Garcia

et al. [2021], Velandia et al. [2021], there is a better representation for these mixtures using

the NRTL model (i.e Tables 3-9 to 3-11).
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Table 4-13: MSE comparison between experimental data and simulation obtained in Aspen

Plus V11 vs Matlab.

MSE Temperature (K) xBuLac(%W/W)

Matlab 38.37 0.003

Aspen V11 50.15 0.004

The Matlab model correctly represents the production of butyl lactate in RDC. This infor-

mation can now be used to evaluate RD production at the pilot-plant scale.

In Case 3 it was evaluated the production of BuLac in a RDC at the pilot-plant scale, as

was described in Section 3.4.3. Tables 3-9 to 3-11 present the thermodynamic and kinetic

information, respectively, and Figure 3-13 represents the system model based on the RDC

described in Section 3.4.1. The results were compared using Aspen plus V11 simulator and

Matlab R2020b. In both cases, the results agree and present the same tendency.

Figure 4-19 a depicts composition profiles along the column. With the presented operation

conditions, BuLac with a purity of 93 (mol%) is guaranteed, while the BuOH composition

is maintained in excess along the column. Figure 4-19 b shows the temperature profile.

There, it can be observed that the simulated model in Matlab is in good agreement with

the results obtained in Aspen plus. The MSE obtained for the BuLac fitting was 0.0004,

and the temperature was 11.12. In this case, a bottom product mass flow of 2.02 kg/h with

a composition of 93 (mol%) BuLac. Inlet product conditions are established based on the

operative restrictions in the RDC at the pilot-plant scale. With these conditions, a boil-up

ratio of 27 is reached. Therefore, it is possible, at least in silico, to obtain butyl lactate in

a RDC at pilot-plant scale with a composition of commercial interest (93-98%w/w) Clark

et al. [2015].
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(a) (b)

Figure 4-19: (a) Mole fraction profiles: Aspen Plus V11 (•) W, (■) ButOH, (▲) LA, (♦)
BuLac and Matlab R2020b (—) W, (-) ButOH, (-.-) LA, (...) BuLac. (b)

Temperature profile: Aspen Plus V11 (•) and Matlab R2020b (-).

In Figure 4-20, liquid and vapor flow rates along the column and the model results using

Aspen Plus V11 and Matlab R2020b are compared. Few deviations with an MSE concerning

the vapor flow rate of 0.014 are obtained due to the differences in the properties calculation.

However, the Matlab model adequately represents the Aspen Plus V11 profiles. This means

that the Matlab model fulfills the hydrodynamic restrictions obtained in Aspen Plus V11.

Figure 4-20: Aspen Plus V11 (•) Molar Liquid flow rate, (■) Molar Vapor flow rate and

Matlab R2020b (-) Molar Liquid flow rate, (—) Molar Vapor flow rate.

The three validation cases prove the modeling methodology can accurately represent reacti-
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ve distillation processes for various green solvent production systems. The model structure

was flexible and predictive across different operating conditions. This establishes a robust

platform for simulation, control, and optimization.

Figure 4-21 present the dynamic behavior in stage tray 2 for temperature a) and mole

fraction of butyl lactate b). All variables reach a steady state behavior with a condenser

temperature of around 313 K.

(a)

(b)

Figure 4-21: Dynamic profiles in stage tray 2 (a) Temperature and (b) Mole fraction of

butyl lactate.

Figure 4-22 presents the dynamic behavior, as a inlet LA composition perturbation in the

tray N tray where the temperature was stabilized around 438.5 K (Figure 4-22 a) and the

final composition of BuLac was 93 (mol%) (Figure 4-22 b).

It is important to note that the modeled processes try to reproduce reality in the pilot plant.

However, it is necessary to establish optimal operating conditions that help to reduce energy

costs and retain the final composition of BuLac at desired values. By using the developed

dynamic model, it is possible to determine the different stability regions to obtain operating

conditions for applying optimal control strategies. It is also possible to evaluate the dynamic

behavior of the main variables, such as compositions and temperatures.
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(a)

(b)

Figure 4-22: Dynamic profiles in stage tray 2 (a) Temperature and (b) Mole fraction of

butyl lactate.

4.3.2. Sensitivity analysis

Further simulation studies for the esterification of lactic acid with butanol were carried out

in Aspen Plus® v11. The RADFRAC module, which has a rigorous model based on calcu-

lating mass and heat transfer rates, was employed for this purpose. These simulations were

mainly used to study the effect of operating parameters in the esterification process.

The reboiler was modeled as an equilibrium stage for the Aspen Plus simulation. The con-

denser was connected to a decanter to separate the two-phase mixture.

It is important to note that column internals in the hydraulic design correspond to Katapak

SP-11 of Sulzer. However, the Aspen Plus Mellapack package is utilized for simulation purpo-

ses. Mellapak is approximately equivalent to Katapak catalyst modules [Sánchez et al., 2019].

The thermodynamic and kinetic models employed are mentioned in Section 3.4.2, respec-

tively. Additionally, in the simulation, autocatalytic secondary reactions were included to

evaluate the effect of the oligomer reaction in the process. These reactions occur due to

lactic acid oligomerization, are favored by temperature, and appear at feed compositions of

lactic acid superior to 30% wt. For the formation of the oligomers, two additional reactions

are considered (Equation 4-12 and 4-13) [Velandia et al., 2021].
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2LA ⇄ L2 +W (4-12)

LA+ L2 ⇄ L3 +W (4-13)

ka = k0,ae
−Ea/RT (4-14)

kb = k0,be
−Eb/RT (4-15)

where L2 corresponds to lactic acid dimer and L3 corresponds to lactic acid oligomers.

These reactions describe lactic acid oligomer formation. Reaction parameters for a pseudo-

homogeneous model to describe these reactions are presented in the same study and shown

in Table 4-14. The Eq. 4-14 and 4-15 represent the reaction rates for the oligomerization

reactions Asthana et al. [2006].

Table 4-14: Kinetics of lactic acid oligomer formation.

Parameters Value

k0,a[kgsol/kgcats] 1.62x103

k0,b[kgsol/kgcats] 6.67x103

Ea[kJ/mol] 52000

Eb[kJ/mol] 50800

K1 5.0

K2 5.0

The effect of the operating parameters has been studied using the simulation mentioned

before. The simulation results in Table 4-15 and the process flow diagram in Figure 4-23

corresponds to the base case. The results of this simulation are used as a starting point

for process sensitivity analysis. The flow of reactants, as well as the compositions obtained,

allow to have a gap for the variables analyzed in the process.
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Figure 4-23: Proposed process flow diagram for esterification of lactic acid with butanol in

Aspen Plus V11.

Table 4-15: Simulation results for the case base of the esterification process simulated in

Aspen Plus V11.

Base Case Parameters Esterification

Feed LA flow rate [kmol/h] 0.0135

Feed BuOH flow rate [kmol/h] 0.0225

Top product flow rate [kmol/h] 0.1722

Bottom product flow rate [kmol/h] 0.0209

Reflux composition (mole fraction)

BuOH 0.4846

W 0.5154

BULA 2.636×10−9

Bottom composition (mole fraction)

BuOH 0.3549

W 0.0015

BULA 0.3435

LA 0.3000

Condensed duty [kW] -3.849

Reboiler duty [kW] 3.669

Considering that the modeled reactive distillation column is constructed, the effect of disti-

llate mass flow, molar feed ratio, and feed temperature of lactic acid are evaluated.
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Effect of distillate mass flow

In Figure 4-24, distillate mass flow at the top stream was varied from 3 to 13 kg/h to exa-

mine its effect on the conversion of lactic acid. Initially, conversion presents a slight increase

with distillate mass flows below 8.9 kg/h, approximately. However, over this value, conver-

sion increases to reach a stable state with high conversions, where it is important to evaluate

other operating conditions. A higher condenser duty is necessary to enrich the vapor stream

and reach the desired separation for a superior distillate mass flow. Additionally, higher mass

flows at the column result in a higher reboiler duty, as shown in Figure 4-25. It is worth

highlighting hydraulic issues, such as oversizing and changing column diameters, were not

perceived in the simulation for this range of distillate mass flows, according to the hydraulic

design of the column. Figure 4-26 shows the response of the reboiler temperature concerning

changes in the boil-up ratio; in the figure, it can be seen that the system presents multiple

steady states to certain operating temperature conditions in the reboiler. This indicates that

the operation of this system involves control challenges due to the non-linearities and the

multiple steady states involved in the system.

Figure 4-24: Effect of distillate mass flow on lactic acid conversion.

As mentioned before, in Figure 4-25, the relationship between distillate mass flow and re-

boiler and condenser duties is evident. Condenser and reboiler duties augment with increases

in the distillate mass flow since more energy must be removed and provided, respectively.



100 4 Results and Discussion

Figure 4-25: Effect of distillate mass flow on condenser -•- (Qc) and reboiler -■- (Qr) duties.

Figure 4-26: Multiplicity of stable states concerning boilup ratio variations and reboiler

temperature.

Effect of molar feed ratio

The molar flow of butanol is varied from 0 to 110 kmol/h to evaluate different molar feeding

ratios of lactic acid: butanol as shown in Figure 4-27. A ratio of 1:4 to 1:8 generates a con-

version between 56-58%. This implies that for an LA composition of 30% w/w, there is a

fairly high addition of water, working within the equilibrium reaction’s limit. Values higher

than these ratios do not make sense due to the amount of water added to the systems as

well as the low conversion difference that is obtained concerning the ratio of 1:8.
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Figure 4-27: Effect of molar feed ratio on conversion.

Effect of feed temperature

The feed temperature of lactic acid is varied from 50 to 120 °C to evaluate its effect on

conversion and reboiler and condenser duties. At temperatures from 50 to 90 approximately,

conversion remains constant. However, it shows an increase at temperatures over 90 (Figure

4-28) and the typical pattern of a possible bifurcation. Despite the increase in conversion,

operating in temperatures over 90 is impossible since oligomerization occurs at these condi-

tions, as can be observed in Figure 4-29 a). In contrast, Figure 4-29 b) shows the butanol

and lactic acid molar composition on the product stream. It decreases as butyl lactate in-

creases; however, oligomer concentration increases (Figure 4-29 a).

Figure 4-28: Effect of lactic acid feed temperature on conversion and butyl lactate molar

flow in bottoms.
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(a)

(b)

Figure 4-29: Effect of lactic acid feed temperature on product liquid composition. (a) Oli-

gomers molar composition L2 -•- and L3 -■-. (b) Reactive and main product

molar composition: butyl lactate liquid molar fraction -•-, butanol liquid mo-

lar fraction -■- and lactic acid liquid molar fraction -▲-.

The same occurs with condenser and reboiler duties, as heat duties have a reduction for

feeding temperatures over 90°C, which is a condition that reduces selectivity (Figure 4-30).
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Effect of the catalyst loading

The catalyst loading was varied over 0.0225 and 1.05 kg (total amount of catalyst) to eva-

luate its effect on the conversion of LA (Figure 4-31). The conversion increases while the

catalyst loading increases; at a high catalyst loading (0.3249 kg), a quantitative conversion

close to 100% is achieved. According to Kumar and Mahajani [2007], with high catalyst

loading, the reaction is no longer controlled by kinetic.

Figure 4-30: Effect of lactic acid feed temperature over reboiler -■- and condenser -•- duty.

Figure 4-31: Effect of the catalyst loading on the conversion.
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4.3.3. Conclusions of the section

The obtained results of isoamyl acetate production evaluation (Case 1) allow for establishing

that mass and energy balances agree with experimental data. It means that the developed

model can be extended to the production of butyl lactate at the evaluated scale. In Case 2,

the comparison of the model implemented in Matlab against Aspen Plus V11 and experi-

mental data support the robustness of the model and the possibility of evaluating, in silico,

the production of butyl lactate at the pilot-plant scale. Furthermore, Case 3 indicates that

it is possible to obtain butyl lactate in the RDC at the pilot-plant scale; however, validation

in the real plant is required.

According to the sensitivity analysis results, reaching higher conversions with distillates mass

flows over 8.9 kg/h, high molar feed ratios, and catalyst loading over 0.325kg is possible.

However, it implicates higher condenser and reboiler duties since it is necessary to enrich the

vapor phase and achieve the desired separation degree. In the same way, there is an increase

in mass flow at the column, which can negatively impact its hydraulic behavior. The feed

temperature of lactic acid impacts conversion as well. Over 90 °C the conversion increases,

but the molar composition of oligomers starts to increase, reducing selectivity. Even though

oligomer composition is low, it is important to evaluate other process variables, such as tem-

perature and pressure to determine the feasibility of the operation conditions.

This work presented a model analysis and validation against different scenarios, allowing for

comparing different operating conditions. The presented model is in a dynamic state and

could be used to perform stability and control analysis to achieve a high conversion and

optimal process operation.
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4.4. Control Proposal

4.4.1. PID controller

SVD and RGA

For the design and development of the control system, a second-order model was initially

identified that establishes the relationship between the manipulated and controlled variables

of the system. This linear model was based on simulations of a validated pilot plant model

(Chapter3.3), ensuring an accurate and realistic representation of system behavior under

operational conditions. Different pairs of variables were analyzed, evaluating different con-

trol possibilities in the plant.

The transfer functions that describe this linear model for the 2x2 system are presented in

Equation 4-16. These transfer functions capture the system dynamics and provide a useful

mathematical description that can be used for controller design.

G(s) =


FR BR

T2 g11(s) g12(s)

T14 g21(s) g22(s)

 (4-16)

where:

g11(s) =
2.687× 10−5s+ 8.43× 10−9

s2 + 0.0001108s+ 2.271× 10−8

g12(s) =
−1.495× 10−5s+ 7.807× 10−9

s2 + 0.0004505s+ 7.777× 10−8

g21(s) =
0.0161s− 7.563× 10−6

s2 + 0.0001978s+ 1.688× 10−8

g22(s) =
2.591× 10−5

s+ 2.531× 10−5

2.687 (4-17)

The term g11 has a positive zero because both terms of the numerator are positive, and

the plant did not show an inverse response for this pair. In the transfer function g12, the

coefficient of the linear term in the numerator is negative (-1.495 x 10−5). This indicates an

inverse response between the manipulated variable (boilup ratio) and the process variable

(condensate temperature). An increase in the boilup ratio will likely result in a slight decrea-

se in condensate temperature and vice versa. This inverse response is small, and the system
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recovers quickly.

An increase in BR can increase the light components sent to T2. With more lightweight

(more volatile) components to the top due to increased BR, these more volatile components

can condense at lower temperatures. Therefore, an increase in the BR can cause a decrease

in the temperature of the condensate.

Figure 4-32 presents a non-linearity between BR and conversion. For values between BR

= 10 and BR = 14, the system enters in a high non-linear region, generating complexity

in the operation process. This is part of a general analysis of non-linearity in the system

whose information was used to complement the general data set and establish the appro-

priate operating regions for the simulation. The selection of the operating points was based

on nonlinearity and operability analyses of the real plant, establishing that the ranges of the

manipulated variables should be 13.39 ≤ BR ≤ 26.77 and 0.1198 ≤ FR ≤ 0.1317.

A 95% adjustment criterion with a 100 s sampling period was used for identification, and

Figure 4-33 a) present the model identification for BR - T2 and Figure 4-33 b) present the

model identification for BR - T14. Figures 4-34 a) and b) present the model identification

for FR-T2 and FR-T14 respectively. In all cases, the adjustment criterion was achieved, re-

presenting a good quality of the adjustment model.

Figure 4-32: Non-linearity effect in Boilup-ratio vs Conversion.



4.4 Control Proposal 107

(a)

(b)

Figure 4-33: Identification for the pair a) BR - T2, model(−), plant (−), disturbance (−−)

and b) BR - T14, model(−), plant (−), disturbance (−−).
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(a)

(b)

Figure 4-34: Identification for the pair a) FR - T2, model(-), plant (-), disturbance (−−)

and b) FR - T14, model(-), plant (-), disturbance (−−).
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This model identification-based control methodology has several advantages. Firstly, it allows

for a deeper understanding of system dynamics, which is essential for designing an effective

control system. Secondly, the identified linear model provides a basis for designing contro-

llers that can be implemented and tested in simulation before implementation in the actual

plant. Finally, the model also facilitates the sensitivity and robustness analysis of the control

system, which is crucial for ensuring its performance in the presence of uncertainties and

disturbances.

To determine the pairing controlled and manipulated variables, SVD and RGA analyses were

performed, evaluating the possibilities in the distillation column in the pilot plant following

the validated model. The SVD values indicate the significance of each input-output direc-

tion. The first singular value of 0.6044 is larger than the second value of 0.5034 (Table 4-16).

This shows the first input-output pairing (Feed Ratio - T2) is more significant than the

second pairing (Boilup Ratio - T14). With respect to the matrices U and V, a diagonal of

1 is presented. U vectors are orthogonal to each other and represent a base for the space of

the rows of the original matrix. V-vectors are also orthogonal to each other and represent a

base for the column space of the original matrix

Table 4-16: SVD obtained values

SVD values

0.6044

0.5034

In Table 4-17, the optimal pairing appears to be Feed Ratio-T2, where T2 is the temperature

in the condenser and Boilup Ratio-T14, where T14 is the temperature in the reboiler (assu-

ming T2 and T14 are the controlled variables). This is because the diagonal elements (0.9916,

0.9916) are the closest to 1, and the off-diagonal elements (0.0084, 0.0084) are the farthest

from 1.

This means that the effect of the Feed Ratio is felt more on T2 and less on T14, and similarly,

the effect of the Boilup Ratio is felt more on T14 and less on T2. This pairing would likely

result in the least interaction between control loops if these pairs were controlled indepen-

dently. The RGA and SVD analyses support the choice of Feed Ratio and Boilup Ratio as

appropriate manipulated variables for controlling T2 and T14, respectively. The RGA shows
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reasonable pairings, while the SVD confirms the relative importance of the two input-output

directions. On the other hand, this shows that the MIMO PID control proposal is centralized.

Table 4-17: RGA Matrix

Manipulated variable T2 T14

FR 0.9916 0.0084

BR 0.0084 0.9916

Tuning of the controller parameters

Based on the open-loop Chien, Hrones and Reswick methodology, the MIMO PID controller

is a 2x2 system implemented using four SISO PID controllers that interlock each input with

each output. The selected controlled variables, as was mentioned before, are the condenser

temperature T2 and reboiler temperature and T14, and the manipulated variables are the

(n-butanol/lactic acid feed ratio) and the boilup-ratio. Each PID is tuned using the open-

loop CHR methodology for the SISO case. The values of the linear approximation of the

first-order system with delay and oscillation are present in Table 4-18. It should be noted

that the identified plant model is not a dead time model. However, for the obtained model

to tune the MIMO PID control is necessary to determine the dead time, and as seen in

Table 4-18, such dead time is low compared to the process time of 15 h. With this, a proper

approximation of the MIMO PID control is obtained.

Table 4-18: Values of the linear approximation of the first-order system with delay and

oscillation of the systems

System K L (s) τ (s)

FR-T2 0.37 1800 10000

FR-T14 -448.05 8000 15200

BR-T2 0.10 5000 9000

BR-T14 1.02 3000 14000

where K is the proportional gain for the PID controller. L is the time delay in open-loop

Ziegler-Nichols tuning, τ stands for the system’s time constant, representing the time it takes
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to reach approximately 63.2% of its total change after a step input.

Table 4-19 presents the tuning parameters for the MIMO PID system. Within the cha-

racteristics obtained from the controllers, the over-peak Ov and the response time of the

co-controller Ts. It can be observed that the controller presents a relatively high percentage

of the references, this is due to the non-linearities of the system in certain regions of operation.

Table 4-19: PID controller parameters by CHR tuning method.

Controller Kp Ki Kd Ov [%] Ts (s)

FR-T2 14.22 0.0033 10748.86 19.08 20516.70

FR-T14 -0.004 −2.10x10−7 -13.54 0.00 63631.78

BR-T2 17.03 0.0014 35772.01 0.00 42651.42

BR-T14 4.33 0.0006 5456.64 20.35 62746.88

Section NMPC presents the results of the MIMO PID control compared to the LMPC and

NMPC control and compares the performance indices.

4.4.2. LMPC

With the validated phenomenological model of the column, an LMPC controller model is

proposed. With this linear model, it is possible to use the LMPC controller tuning proposal

via the optimization technique of Giraldo et al. [2022].

The primary objective of this study is to address the challenge of implementing a 2 × 2

system using an LMPC. The system in question manipulates the feed and boilup ratio input

variables. This manipulation aims to exert control over the condenser and reboiler tempe-

ratures, both output variables. These operations are based on a model validated from a

reactive distillation column at the pilot scale. The linear model used in the controller was

that obtained in the Equation 4-16

Given the complexity of the oversized nature of the pilot-plant RDC equipment, regulating

these variables becomes a complex task. Consequently, a decision was made to confine the

condenser temperature within the operational parameters of 359.3K and 361K. Simultaneo-

usly, the reboiler temperature has a designated setpoint of 440K to augment product quality.

The optimal LMPC’s tuning parameters are delineated as follows: a sampling period of

Ts = 1000s, a prediction horizon of P = 23, a control horizon of M = 2, and the semi-definite
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weighting matrices are given by Q = diag([0; 0.1127]) and W = diag([0.6013; 0.4027]).

As the system output is capable of operating within a certain range, provided it adheres to

the flexible constraints, the first element of the diagonal matrix Q is set to zero. The penalty

weight for violation of the flexible constraint is defined as ρϵ = 10000. Section NMPC pre-

senters the results of the LMPC compared with the MIMO PID and NMPC.

4.4.3. NMPC

This section compares MIMO PID, LMPC, and NMPC control strategies. Table 4-20 com-

pares the parameters between LMPC and NMPC, where N is the prediction horizon, Nu is

the control horizon, Q is the weights of the manipulated variables, W is the weights of the

controlled variables and Ts is the sampling time. The same non-linear plant model was used

as the NMPC controller model. The tuning of the NMPC controller parameters started from

the optimized tuning, in the same way as the LMPC controller, and fine-tuning set manually.

Table 4-20: LMPC and NMPC control parameters.

Parameters/Control strategy LMPC NMPC

N 23 23

Nu 2 2

Q [0.0 0.1127] [0.0 0.1127]

W [0.6013 0.4027] [0.4811 0.3221]

Ts 1000 500

LMPC and NMPC have the same prediction horizon N = 23, which means both strategies

aim to predict the same number of future steps and have the same control horizon Nu = 2,

indicating both strategies will optimize the same number of future control moves. Both ha-

ve the same state weighting matrix Q = [0.00.1127], implying that both strategies assign

the same importance to the system states. However, The values for LMPC and NMPC are

W = [0.6013 0.4027] and W = [0.4811 0.3221], respectively. This means the LMPC places

slightly more importance on control action changes than the NMPC. The values of TS for

LMPC and NMPC are 1000 and 500, respectively, implying that the calculations in NMPC

are performed twice as often as in LMPC.
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Based on these parameters, both LMPC and NMPC are trying to achieve the same control

objective. However, they approach the control problem slightly differently due to differences

in their control weighting matrices and sampling times. NMPC adjusts the control actions

more frequently (higher sampling rate) but with less emphasis on changes in control actions

(lower control weight) compared to LMPC.

Figure 4-35 compares the three proposed control strategies. It can be observed that the MI-

MO PID control works quickly saturated in the control limits of the manipulated variables

and fails to meet the operating restrictions of the condenser temperature. The LMPC control

addresses operational constraints; however, compared to the NMPC control, it has a slightly

slower response time. At the simulation time t=50 h, there is an unmeasured disturbance in

the lactic acid feed composition. All three strategies reduce the effect of such disturbance on

the system. However, the LMPC and NMPC control are the ones that best manage to solve,

being the NMPC which presents the best performance.

(a) (b)

(c) (d)

Figure 4-35: Control strategies comparison, (â€¢) PID, (−) LMPC, (−−) NMPC, (−−)

reference limits, (a) Reboiler temperature. (b) Condenser temperature. (c)

Boilup Ratio. (d) Feed Ratio.
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Table 4-21 presents the performance indices of the three control strategies. It can be ob-

served that the NMPC controller performs the best among all three controllers based on

both metrics. It has the lowest ITSE and ITAE values, suggesting that it minimizes error

over time most effectively. LMPC performs considerably better than the MIMO PID; this

suggests that the LMPC and NMPC can control the system more effectively, leading to a

smaller error over time than the MIMO PID.

However, the computational time for LMPC was approximately 10.1395 min compared with

2200 min using NMPC. It can be concluded that while the NMPC control performs best,

the LMPC control is good enough to be evaluated in the pilot plant. This is also due to the

operational restrictions that the plant presents, and that is related to oversizing some equip-

ment, such as the reboiler. Based on this analysis, it is possible to evaluate the estimates of

states and disturbances by ANN considering the LMPC control, which will be evaluated in

the next section.

Table 4-21: Performance indices for proposed control strategies.

Performance Indices MIMO PID LMPC NMPC

ITSE 5.10e+7 2.92e+5 7.16e+4

ITAE 5.03e+5 2.10e+4 9.28e+3

Computational

Time
<1 min <5 min ∼30 h

4.4.4. ANN state-estimator

As was described in Section State Estimator, the approach toward the design of an artificial

neural network for noise signal filtering, disturbance, and end-product composition estima-

tion involves data collection, where a large dataset containing instances of the noise signal,

disturbance, and the corresponding end-product compositions was collected. Then, it was

followed by the preprocessing and feature extraction, following the network architecture,

training, and optimization. After defining the architecture, the network is trained, and fi-

nally, the validation and testing are performed.

In Figure 4-36 can be observed the regression (Figure 4-36 a)) and training state (Figure

4-36 b)) for the proposed ANN obtaining a R value of 99.89%. In Figure 4-36 b), mu is

the learning rate. It determines how big a step the network takes to update weights during
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training. The network training uses some form of gradient descent optimization. At each

training iteration, the error gradient concerning the weights is calculated using backpropa-

gation. The gradient indicates how to change the weights to reduce the error. The learning

rate mu determines the size of the weight update in the gradient descent direction.v It means

that the obtained ANN represents the system with a good fitting.

(a) (b)

Figure 4-36: ANN training performance, (a) Regression. (b) Training state.

Figure 4-37 presents the ANN response as a white noise filter for the condenser and reboiler

temperatures for an LMPC control strategy, and the selected white noise was based on plant

data attempting to represent reality at the pilot plant scale. It can be observed that the

ANN can filter the entire noise in the controlled variables, having a good estimation of the

controlled variables. In Table 4-22, the performance indices related to the proposed control

strategies, including the noise, can be observed. The ANN estimation presents similar indices

concerning the LMPC without estimation.

Table 4-22: Performance indices for proposed control strategies.

Performance indices MIMO PID LMPC NMPC LMPC-ANN

ITSE 5.10e+07 2.92e+05 7.16e+04 3.47e+05

ITAE 5.03e+05 2.10e+04 9.28e+03 2.53e+04
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(a) (b)

(c) (d)

Figure 4-37: ANN noise filter, (−) LMPC with noise and disturbance, (−)LMPC with noi-

se, disturbance, and ANN as a noise filter, (−−) reference limits, (a) Reboiler

temperature. (b) Condenser temperature. (c) Feed ratio. (d) Boilup ratio.

With the obtained results, it was evaluated the disturbances estimation for the LMPC-ANN

and the BuLa composition. In the operation of the pilot plant, there is an unmeasured dis-

turbance related to the lactic acid composition in the feed. To generate simulation data and

train the neural network to predict such an unmeasured disturbance, scenarios were gene-

rated where the lactic acid composition value changes to ± 20% of the reference value as

a constant or variable staggered disturbance. Figure 4-38 compares the LMPC-ANN con-

trol, including the aforementioned non-measured disturbance, which can now be used as a

measured disturbance within the control strategy. The results are compared against a sim-

ple LMPC without any estimation. It can be observed that the LMPC-ANN addressed the

disturbance more softly than the simple LMPC. It implies a more stable operation in a real

process.
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(a) (b)

(c) (d)

Figure 4-38: LMPC-ANN vs Simple LMPC, (−) simple LMPC with noise and non-

disturbance estimation, (−) LMPC-ANN with measure disturbance, (−−)

reference limits, (a) Reboiler temperature. (b) Condenser temperature. (c)

Boilup Ratio. (d) Feed ratio.

Figure 4-39 presented the ANN disturbance and BuLa estimations along the control opera-

tion. Concerning ANN disturbance estimation, it can be observed (Figure 4-39 a) that the

ANN can reproduce a variation in the LA feed composition. In the same sense, it can be

observed in Figure 4-39 b) that the ANN can predict the BuLa composition reaching a final

high-end-product composition. With the proposed control strategy, it is possible to operate,

at least in silico, a stable reactive distillation column at the pilot plant scale to get BuLa

with a high composition.
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(a) (b)

Figure 4-39: (◦) ANN disturbance estimation, (−−) forced disturbance, (a) Estimated Dis-

turbance. (b) BuLa estimation.

4.4.5. Conclusions of the section

This section addressed the complexity of implementing a 2Ã—2 system using an LMPC

controller on a model validated from a reactive distillation column at the pilot scale. The

challenge is manifested due to oversized column equipment, making controlling condenser

and reboiler temperatures daunting.

Compared with the MIMO PID and NMPC controllers, the proposed LMPC performs well

under operational constraints. Based on the pilot plant operation, there are several challen-

ges to consider in producing green solvents, such as n-butyl lactate. The oversizing of the

reboiler, the high non-linear dynamics due to the reactive and separation processes, and the

presence of several stable states make stabilizing the system, from a control point of view,

difficult. As shown in this chapter, the advanced control proposals, LMPC and NMPC, allow

the system to be operated stably, maintaining final product quality.

In particular, the NMPC adjusts control actions more frequently due to a higher sampling

rate but places less emphasis on changes in control actions compared to the LMPC. Con-

versely, the LMPC places slightly more importance on control action changes, reflected in

different weighting matrix values. Despite these differences, the LMPC and NMPC effecti-

vely reduced the impact of an unmeasured disturbance in the lactic acid feed composition

at the 50-hour simulation mark. However, the computational time for LMPC (10.1395 min)

compared with NMPC (2200 min) means that in terms of applicability, the LMPC control

is more suitable for applications requiring fast response than the NMPC control.
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These findings provide important insights for future control system design and highlight the

superior performance of the NMPC under the given conditions. When developing an opti-

mal control strategy for a system, it is essential to carefully consider the specific constraints

and disturbance conditions that can affect that system. Recent research we have conducted

highlights the importance of taking this factor into account Lima et al. [2023].

Finally, the ANN was analyzed as a noise filter for condenser and reboiler temperatures in

an LMPC control strategy. The ANN exhibited good capabilities in filtering the entire noise

within the controlled variables, presenting an accurate estimation of these variables.

Performance indices related to the proposed control strategies were assessed and are dis-

played in Table 4-22. Notably, the ANN estimation provided similar performance indices

to the LMPC control strategy without estimation. This similarity suggests that the ANN

successfully filters out noise from the system and maintains the LMPC strategy’s control

performance.

Based on the findings illustrated in Figure 4-39, it is evident that the ANN effectively repro-

duced a variation in the LA feed composition. Furthermore, the ANN presented a reliable

prediction of the BuLa composition, ultimately achieving a high-end product composition.

These findings highlight the potential of using ANNs as noise filters in control strategies,

particularly in complex variables such as condenser and reboiler temperatures. Furthermore,

this research emphasizes integrating techniques like ANNs in control systems to enhance

their robustness and performance, especially in significant noise and disturbances scenarios.
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Future Works

This work presented extensive research and analysis on producing n-butyl lactate, an en-

vironmentally friendly solvent, using a reactive distillation process at a pilot plant scale.

Thermodynamic modeling and simulation were leveraged to gain insights into this complex

quaternary system involving lactic acid, n-butanol, n-butyl lactate, and water. The mode-

ling results demonstrated adequate prediction capabilities and enabled the identification of

feasible operating conditions and optimal configurations for reactive distillation.

Experimental data at the pilot scale was used to validate process simulations and dynamic

models. The models showed good agreement with experimental results. Different control

strategies were explored, including MIMO-PID, NMPC, and LMPC. LMPC exhibited good

performance in maintaining product quality despite system constraints, disturbances, and

computational time.

The integration of artificial neural networks was analyzed to filter noise in key process mea-

surements. This approach demonstrated the potential for enhancing the robustness of model-

based control systems in the face of significant noise and variability.

This work contributes to thermodynamic modeling, dynamic simulation, advanced process

control, and machine learning techniques for n-butyl lactate production. The knowledge

gained can inform and guide future research and development focused on similar reactive

separation systems and sustainable solvent production. The presented models, data, and

analysis techniques provide a strong foundation for ongoing efforts in this domain.

Evaluation of real-time control (RTO) applied to the LMPC control is recommended to de-

termine optimal operating points while fulfilling restrictions as desired product quality and

minimizing energy load on the reboiler.

It is important to be able to perform energy and economic analyses of this type of system.

Operational life cycle analysis would be a good way to ensure the technical-economic viabi-

lity of producing n-butyl lactate at the pilot plant scale.
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Finally, it is recommended to implement and evaluate the advanced control strategies pre-

sented in this work for butyl lactate production in the pilot plant. This work was developed

in the interface of simulink to facilitate the connection with the pilot plant via OPC.
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Isobaric Vaporâˆ’Liquid Equilibrium for the Binary Mixture of 1â€‘Butanol + Butyl

Lâ€‘Lactate at 1 and 5 kPa. Journal of Chemical and Engineering Data, pages 1–6, 2021.

doi: 10.1021/acs.jced.0c01068.

J. George Hayden and John P. O’Connell. A Generalized Method for Predicting Second Virial

Coefficients. Industrial and Engineering Chemistry Process Design and Development, 14

(3), 1975. ISSN 01964305. doi: 10.1021/i260055a003.

Martino Gauchi Georges and Teissier Remy. Continuous production of ethyl lactate, useful

as solvent for cleaning and degreasing surfaces, involves esterifying lactic acid with ethanol

and removing water by molecular sieve adsorption and distillation, 2004.
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