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Aspectos internos y externos de lógica continua y lógica categórica para haces sobre

cuantales

Resumen
En este texto exploramos y proponemos nociones de haces sobre cuantales conmutativos e inte-

grales, basadas en extensiones de resultados de la teoría de haces sobre locales: la interacción de

los haces como conjuntos valuados y la analogía de los haces como categorías enriquecidas. Sobre

estas propuestas, definimos lógicas que encuentran su semántica en estos objetos tipo haz; por

un lado, una lógica categórica que caracteriza la noción de haces asociada a conjuntos valuados

completos como un modelo de cierta construcción interna, y en contraste, una lógica definida

externamente cuya naturaleza se basa en la lógica continua para espacios métricos, la cual en-

cuentra en la propuesta de haces como categorías enriquecidas una estructura para interpretar

su semántica.

Palabras clave: Haces, cuantales, categorías enriquecidas, espacios métricos, lógica cuantal-

valuada.
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Internal and external aspects of continuous logic and categorical logic for sheaves

over qantales

Abstract
In this text we explore and propose notions of sheaves over commutative, integral quantales,

which are based on extensions of results of the theory of sheaves over locales: the interplay of

sheaves as valued-sets and the analogy of sheaves as enriched categories. Over these proposals,

we define logics that find semantics in these sheaf-like objects, on the one hand, a categorical

logic that characterize the notion of sheaves associated to complete valued sets as a model of cer-

tain internal construction, and in contrast an externally defined logic whose nature is based on

continuous logic for metric spaces which finds in the proposal of sheaves as enriched categories

an structure for interpret the semantic.

Keywords: Sheaves, quantales, enriched categories, metric spaces, quantale valued logic.
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Introduction

In this thesis, we study and propose a notion of sheaves over quantales in terms of enriched cat-

egories. Under this representation, we define a "continuous" logic (in the spirit of (co)quantale-

valued logic ([DP21]) which in turn is based on the proposed continuous logic for metric spaces

([BYBHU08]) and, in contrast, a categorical semantics based on the notion of hyper-doctrines

([Hyl80]). This work resides within mathematical logic, based on the interplay between metric

spaces and sheaves mediated by enriched category theory. We utilize this interplay to propose

the continuous (external) - categorical (internal) contrast in our definitions of syntax and seman-

tics. We present the aforementioned proposals, demonstrate their extension beyond the classical

Cartesian case (the case of locales), and perform specific calculations.

The notion of sheaf on topological spaces and, in general, on locales, is rich in presentations

and approaches, showcasing equivalences between geometric versions (in the original intention

of the theory as an object of algebraic/differential topology and geometry), functorial version (in

purely categorical terms), in terms of valued-sets (a viewpoint stemming frommathematical logic

particularly from set-theoretical perspectives), and prominently, in this text, in terms of enriched

categories that serve as a bridge to the metric-theoretical perspective.

Based on these multiple equivalences we explore in the context of quantales, categories of what

we call, sheaf-like objects, mean that they extend to quantale based case objects that result equiv-

alent to sheaves in the case of locales. Specifically, in this work there is twomain versions of what

a sheaf over a commutative integral (in general semi-cartesian) quantale is, the first version of
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Alvim, Mendez, Mariano proposed and developed in [AdAMM23b], [AdAMM23a] of sheaves over

semicartesian commutative quantales as valued sets with a suitable notion of completeness, we

revisit the general definitions of this notion and propose it as a result of a generic construction

based on categorical semantics, however, we do not delve deeply into its theory directly because

our interest lies in focusing on the perspective we propose, grounded in enriched categories. The

second version is based in a construction (presented in section 2.3) which extends for a several

classes of quantales the proposal of [Wal81] given by Walters, that aloud present the category of

sheaves over a locale as a category of certain enriched categories over a locally ordered bicate-

gory constructed from the locale, in this perspective sheaves over quantales are certain (Cauchy

complete) enriched categories over suitable ordered bi-categories, this perspective naturally ex-

tend the theory of continuity spaces (see [Fla97]) as categories enriched over quantales and the

logical framework for this introduced in [DP21]1 is also extended in section 3.3 where this kind

of sheaf-like object arise as the semantic structure for the proposed logic.

So in one hand we have a in nature categorical logic in which the notion of sheaf over a quantale

proposed by Alvim, Mendez, Mariano constitutes a semantical example, and a proposal of notion

of sheaf over quantales which extends the presentation of Walters in [Wal81] with a semantic

externally defined which enables this sheaf-like object as a structure. These proposed notions of

sheaves on quantales are based on extensions of the multiple (of course equivalent) versions that

exist in the case over locales, we briefly present them in the section 1.3.

In addition to the aforementioned, an important part of the work is focused on establishing a

relationship between both notions of sheaf over a quantale proposals that are studied. We do this

through the work of Isar Stubbe who, interested in the concept of internal order in categories of

sheaves over quantaloids ([Stu05a]), introduces the notion of enriched totally regular semicate-

gory on a quantaloid and its Cauchy completions [Stu05b], [Stu05c] notion that is surprisingly

parallel to the one developed at IME-USP by Mariano’s students, not just by the basic axioms

1This work constitutes the undergraduate thesis of the author of this text.
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they find for construct the theory but also for the way the theory goes, both of them connect the

completion notions with relational morphism and has pretty much the same crucial main theo-

rems, so related their works can be consider as a bibliographic accomplished, and is because a

note in Stubbe work that we find that our construction in section 2.3 is an equivalent of a canon-

ical construction called Karoubi envelope or split-idempotent completion (Cauchy completion

for categories, see [nLa23]) which enable us to recognize the similarity between the mentioned

approaches in the section 2.4.

The main technical concept is that of Cauchy complete enriched (totally regular semi-) categories

over quantal(oids), for our perspective and proposed is crucial the relationship between enriched

categories and (generalized) metric spaces, the foundational article of Lawvere [Law73] where he

already points out the importance of this analogy as a methodological object to export notions

and techniques between the theory of categories and that of metric spaces, in addition to his pio-

neering approach in using logical translation subject to change the base quantale as a mechanism

for that. This is why the short article [Wal81] in its simplicity it is one of our greatest inspirations,

since in a quite neat way it not only poses sheaves in terms of enriched categories but also reveals

Cauchy’s completeness as the adequate translation of the gluing condition for pre-sheaves.

In the following, we provide a brief summary of what is covered in each chapter, aiming to offer

a general perspective of the work before delving into the main body.

The thesis is divided into 3 chapters:

Chapter 1: Preliminaries

- Enriched categories: monoidal categories, enriched categories over a monoidal category. We

focus on enriched categories over quantales, emphasizing their similarity to metric spaces. The

primary example in this context lies within the monoidal category ([0,∞],≥,+,0), where en-

riched categories result in generalized metric spaces termed Lawvere spaces. Finally, we recapit-

ulate multiple equivalences in the context of topological spaces (and locales in general) concern-

ing the notion of sheaf: geometric, functorial, based on valued sets (Omega-Sets), and notably
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based on enriched categories (work by Walters [Wal81],[Wal82] foundational for our perspec-

tive). Through this last representation, we introduce the notion of quantaloid and discuss some

generalities. Everything presented in this chapter is part of known literature, and proper citations

are made.

Chapter 2: Sheaf-like categories over quantales

This chapter comprises 4 sections, the first two being monographic work, while the latter two

mainly consist of original work:

Section 2.1: The proposal of sheaves over quantales extending the representation in terms ofΩ-

Sets for sheaves over a local Ω. These are termed Q-sets ([AdAMM23b],[AdAMM23a]), where

Q is a commutative, semicartesian quantale. This proposal, developed by students under the

guidance of the director of this thesis, is compared with our proposal towards the end of the

chapter.

Section 2.2: Following Isar Stubbe’s work ([Stu05a],[Stu05c],[Stu05b]) on sheaves over quan-

taloids Q (he works directly in this more general context) as totally regular, symmetric, and

Cauchy-complete semicategories over Q. This is important for us due to its work in enriched

structures and its clean reflection of the relationship with the proposal in the previous section.

Section 2.3: Original work. Based on a commutative and integral quantale Q, we construct a

quantaloid Rel(Q) resulting from "dividing Q". The main achievements of this construction are:

1. To define it in a way that extends the construction enabling the connection with sheaves

in the case of locales.

2. To provide the definition that also integrates the "Lawvere quantale" ([0,∞],≥,+,0), al-
lowing us to draw an analogy with continuous logic.

We specify sufficient conditions on the quantale Q for Rel(Q) to indeed be a quantaloid. For

this class of quantales, we propose our notion of sheaf: A sheaf over Q is an enriched category

over Rel(Q) that is symmetric, skeletal (a technically transparent condition in its meaning), and
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Cauchy complete.

Section 2.4: Building on the clarity of Section 2 and considering our definition in Section 3, we

independently find that Rel(Q)-categories correspond to Q-semicategories that are totally regular.

Therefore, the proposals from Section 2 (Stubbe) and Section 3 (ours) are equivalent, and it is also

transparently evident that these are included in the proposal of Section 1. This comparison is

crucial in our contexts, where for us, the gluing condition is Cauchy completeness, while for them,

it is a notion (indeed, they work with several) of completeness called Scott-completeness, slightly

weaker, making their context more general. This sharp comparison contributes significantly to

the ongoing research and stands out as a monographic achievement in this work.

Chapter 3: Except for some definitions in the initial part, the content of this chapter is original:

As mentioned, the aim is to contrast the continuous (external)/categorical (internal) semantics.

Sections 3.1 and 3.2 are dedicated to introducing and developing a notion we propose in this the-

sis: the notion of first-order monoidal hyper-doctrine, formulated for quantales as an extension

in the monoidal context of the Cartesian notion of first-order hyper-doctrine. We use this no-

tion to characterize the category of Q-sets (with morphisms as relations) as a category of sets

and relations internal to the hyper-doctrine of Q-families. We also calculate the hyper-doctrine

associated with the sub-object functor in the category of Q-sets with functional morphisms. All

these computations, as well as the proposal, constitute original work.

Section 3.3: We define a logic interpreted over Rel(Q)-categories, extending the quantale-valued

logic in the context of quantaloids, which further extends the continuous logic for metric spaces.

Hence, we term it continuous logic for enriched categories over quantaloids. An interesting

initial finding is that this logic specializes into: - Classical logic (0,1-valued) for pre-orders. -

Intuitionistic logic (local-valued) for sheaves over locales. - Continuous logic [0,∞]op-valued for

Lawvere spaces (generalized metric spaces).

As future work, using these logics to understand our sheaves over quantales is intended, along

with the development of theoretical model notions within these logics.
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Original proposes and achivements

• Showing sufficient conditions to construct a quantaloid from a quantale, to extend the con-

struction of the subsection 1.3.5 for which the relation with sheaf categories is based. See

section 2.3. In particular, Theorem 2.3.6 seems to be a novelty.

• Propose a notion of sheaf over commutative, integral, divisible and strict linear quantales,

that extent Walter´s characterization of the localic case.

• Using this presentation to naturally give an interpretation of continuous (external) first-

order logic in analogy with [BYBHU08] and extending [DP21]. See section 3.3.

• Proposing a generalized notion of first-order hyperdoctrines based in quantales giving a

framework to study categorical (internal) logic of this sheaf like categories. See section

3.2.1.

• Use the aforementioned notion to presentQ−Setrel as a category of partial internal equiv-

alence relation of the monoidal hyperdoctrine of Q−families. See section 3.2.3.

• Calculate the hyperdoctrine (characterize equality, quantifiers and connectives) associated

to the sub-object functor over Q−Setfun. See sub-section 3.2.2

Monograph achievements

• Applying the theory of [Stu05c], [Stu05a] to compare the set-valued version of sheaves

with the enriched-category version.

• Exposing the similitude of the work of Alvim, Mariano, Mendez in the theory of Q−sets

and the theory of totally regular semi-categories enriched over quantaloids introduced by

Stubbe.



1 Preliminaries

In this chapter we introduce the elements and results that will be generalized and used as a basis

in subsequent chapters.

We begin by exposing the general framework of the theory of enriched categories since many

of the structures at stake in the thesis are of this type, and it is through this concept that one

of the most important analogies for us is established, that of metric spaces as categories. We

quickly focus on the type of basic category that we want to enrich, the quantales. Since one of

the intentions of this text is to connect at the level of quantales the theory of enriched categories

with that of sheaves, we make a section dedicated to studying multiple representations under

equivalence of the category of sheaves on a local, one of which (that we put at the end) is the

bridge with enriched categories, it reveals the general type of structure that interests us in the

base, the so-called quantaloids, we dedicate a final section to some generalities of these.

1.1 Enriched categories

The basic structure in categorical thinking is the monoid, beyond the fact that a single object

category is just a rephrasing of the structure of a set-theoretical monoid, the existence of an

associative binary operation with identity element is at the core of the principal concepts in

category theory, often through the structural amalgamation of various monoids it is possible to
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uniformly re-capture notions and concepts coming from almost any field of mathematics. This

is the case of monoidal categories which take over the multi-monoidal structure of category, an

additional external structure of monoid, the first examples come from real analysis, commutative

algebra, topology, and other areas that at first seem independent of categorical approach. The

main references we use for these preliminaries is founded in the encyclopedic book of Kelly

[Kel05] for the basic theory of enriched categories over monoidal categories, for us is central

to the step to enriched categories over bicategories, a very general theory that is introduced by

Benabou in [J.67] and explored to in [Ben73].

Definition 1.1.1. A monoidal category V=(V,⊗,I) consist in a category V , a functor1

⊗ :V ×V→V

an object I in V and for every X,Y,Z ∈Obj(V), natural isomorphism

aXYZ : (X⊗Y)⊗Z→X⊗ (Y⊗Z)
lX : I⊗X→X

rX :X⊗ I→X

Axioms of coherence are imposed over a requiring associativity of (V,⊗) and the role of module of

(I,l,r) respect to ⊗.

((W⊗X)⊗Y)⊗Z (W⊗X)⊗ (Y⊗Z) W⊗ (X⊗ (Y⊗Z))

(W⊗ (X⊗Y))⊗Z W⊗ ((X⊗Y)⊗Z)
a⊗1Z

a a

a

1W⊗a

(X⊗ I)⊗Y X⊗ (I⊗Y)

X⊗Y

a

rX⊗1Y
1⊗lY

The category is said to be strict if a,r and l are equality’s rather than natural isomorphism´s.
1Consider in the domain the product category structure.
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Definition 1.1.2. A monoidal category (V,⊗,I) is said to be symmetric if for every A,B objects

of V there are is a natural ismorphism A⊗B→B⊗A

Again we say that (V,⊗,I) if is symmetric and the cited isomorphism becomes an identity.

Definition 1.1.3. A monoidal category (V,⊗,I) is said to be closed when for every Y object in V

the functor−⊗Y :V→V has a right adjoint usually note as [Y,−] :V→V . If the monoidal product

is not naturally commutative then is necessarily a right adjoint for Y⊗−, noted by [−,Y].

Examples 1.1.4. A structural source of examples of monoidal categories is the cartesian categories:

Those whose monoidal product is given by the cartesian product, i.e. categories with product. Partic-

ular interest examples are:

• Set the category of sets and functions with the usual product of sets performed by sets of order

pairs. The exponentiation of sets AB = {f :B→A : f is a function} determines a right adjoint

of the product, so this a monoidal (cartesian) closed category.

• For any category C, its associated presheaf category SetC
op

is a cartesian category with prod-

uct calculated pointwise so as exponentiation, then is closed to.

• Top the category of topological spaces and continuous functions with the usual product topol-

ogy for the underline product of sets, the space based in the singleton {⋆} is a module. This

category have some interesting subcategories for which the product finds a right adjoint, but

(Top,×, {⋆}) is not closed.

• Ord the category of order sets and isotone functions determines a cartesian category with

products based in the underlying product of sets and component by component order.

• (L,≤) a lattice as a category which are precisely the complete pre-orders as categories with

finite products (meets) and coproducts (joins). The requirement of being closed is exactly the

definition of Heyting algebra, so the cartesian closed pre-orders as categories are the Heyting

algebras.
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Some interesting non cartesian examples are

Examples 1.1.5. For a field k the category of vector spaces over k, determines a monoidal category

with tensorial product of vector spaces

V1⊗kV2=(V1×V2)/ ∼

Which is given by the quotient of the equivalence relation generated by the necessarily identifications

that allows turn bi-linearmapsV1×V2→V3 to linearmapsV1⊗kV2→V3 through the the projection

to the quotient (v1,v2) 7→ [(v1,v2)]. The module object is k itself as a k−vector space, this naturally

arise the associativity of this monoidal product. Precisely the cited property of turn the bi-linear to

linear, makes that Hom(V1,V2) the vector space of linear maps V1 → V2 between vector spaces,

constitutes a right adjoint −⊗kV ⊣Hom(V,−). So this an example of monoidal closed category.

Examples 1.1.6. The collection of endofunctors of a small category C, {F : C → C : F is a functor},

like composition is associative and the identical functor is a module for composition, this collection

with this monoidal structure define a monoidal category.

Examples 1.1.7. Consider the natural numbers and co-functions as a subcategory of Setop then the

products in this category are the coproducts of sets and for natural numbers n,m ∈N this coproduct

corresponds to the sum n+m off course the module object is the 0.

Thinking this is cartesian structure the importance of this example finds in it is the initial pointed

cartesian category, indeed define a functor that respects products with this domain is just choos-

ing an image of 1.

Examples 1.1.8. The closed interval [0,1] with the usual order and usual product of reals deter-

mines a non-cartesian monoidal category, indeed like the category structure is given by the order the

cartesian product is the wedge that in this linear order is the minimum, so the product constitutes a

monoidal extra structure. ([0,1],≤, ·,1)

In general a monoidal structure over the unit interval is called a t−norm.



12 1 Preliminaries

Examples 1.1.9. ([0,∞],≥usual,+,0) again we are taking the pre-order ([0,∞],≥usual) as a cat-
egory and the sum a+b as the monoidal product of the objects a,b then 0 is a module, off course this

operation is associative. Note that truncated subs-traction a−̂b=max{0,a−b} defines the adjoint

relation a−̂b≤ c if and only if a≤b+c so this is a monoidal closed category.

The function −ln : [0,1]→ [0,∞], 0 7→∞, x 7→−ln(x) determines an isomorphism of monoidal

categories, so ([0,1],≤, ·,1) is closed to.

The main example for monoidal closed us are quantales

Definition 1.1.10. A quantale is tripleQ=(Q,≤,⊗) such that (Q,≤) is a complete lattice, (Q,⊗)
is a semigroup and the followings distributions always holds:

a⊗∨
i∈Iai=

∨
i∈I(a⊗ai),

(
∨
i∈Iai)⊗a=∨

i∈I(ai⊗a)

Fact 1.1.11. A quantale with a unit is a monoidal closed category.

Indeed in the framework of pre-orders as categories for a functor have a right adjoint is enough

to respect arbitrary colimits that is to say preserve joins, so an equivalent definition of a quantale

with module could be: a pre-order that as a category is a complete monoidal closed one.

Definition 1.1.12. Given a quantale Q and an element a ∈Q, the residuum of

−⊗a :Q→Q

and

a⊗− :Q→Q

are denoted by a =⇒ r− :Q→Q, and a =⇒ l− :Q→Q respectively.

This means that for all b,c ∈Q, a⊗b≤ c iff b≤a =⇒ l c and b⊗a≤ c iff b≤a =⇒ r c.

A locale is a quantale where ⊗=∧, as we mentioned before, this corresponds to the version for

categories that are orders of the conception of a monoidal product like a generalization of the
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cartesian product.

The poset of all open sets of a topological space X constitute a locale. Locales coincide with

complete Heyting algebras2.

We give the previous definition, because of the generality of the frame-work that bring the theory

of enriched-categories over a monoidal closed category, but in the practice this text use only

monoidal closed categories that are quantales or their inmediate 2-structural3 generalization that

are called quantaloids.

Definition 1.1.13. For a monoidal category V = (V,⊗,I), a enriched category over V or a V-

category A consist on: a set A of objects, a function

A(−,−) :A×A→Obj(V)

Such that every a,b,c ∈A, there are morphisms in V

• (Identities) ida : I→A(a,a)

• (Composition) ◦abc :A(a,b)⊗A(b,c)→A(a,c)

that make the later diagrams commute

(A(c,d)⊗A(b,c))⊗A(a,b) A(c,d)⊗ (A(b,c)⊗A(a,b))

A(b,d)⊗A(a,b) A(c,d)⊗A(a,c)

A(a,d)

A(b,b)⊗A(a,b) A(a,b) A(a,b)⊗A(a,a)

I⊗A(a,b) A(a,b)⊗ I

◦bcd⊗1A(a,b)

a

1A(c,d)⊗◦abc

◦abd ◦acd

◦abb ◦aab

idb⊗1A(a,b)
l

1A(a,b)⊗idar

2Recall that the class of all Heyting algebras provides the natural algebraic semantics for the intuitionistic propo-

sitional logic, that is the “constructive fragment" of the classical propositional logic.
3in the sense of the n−categorical framework
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The former diagrams are a good example of what it means to export in terms of morphism and

commutative diagrams the version of a concept that is clear in set-theoretical diagrams, with

concrete objects indeed the first diagram is the commutativity of the procedures of associating

and composing, that is, the associativity of composition and the second one in concrete terms

(well-pointed among other) means that the element that “choose" the ida morphism is a local

identity of this locally defined composition, let us make this our first example:

Examples 1.1.14. For the monoidal (cartesian) closed category (Set,×, {⋆}) a Set−enriched cate-

gory is exactly the definition of small category, in that sense enriched category theory extent category

theory as sets and functions constitute a category.

Examples 1.1.15. Our example of vector spaces over a field k as a monoidal category in which the

monoidal structure is not the cartesian product can be generalized to modules over a commutative

ringR, in particular the categoryAb of abelian groups (modules overZ) is amonoidal closed category,

anAb enriched category is an election of not just a set ofmorphism between two objects but an abelian

group of it, all the involved morphism are group homomorphism, this structures are called additive

categories.

The following example constitute the kind of object which in this thesis extensively about, is the

first example of an enriched category over a quantale, and from this example is extracted huge

part of the intuition in at least three level, at a logical level (is the grounded classical example)

and at a categorical level in which the permanent translation of the concepts of pre-sheaf theory

for enriched categories let us an spacial notion, and as is already mentioned as a kind of metric

space, intuition that comes from Hausdorff himself [F.14].

Examples 1.1.16. Take the boolean algebra 2= ({⊥,⊤},⊥≤⊤,∧), like in particular is a Heyting

algebra, constitute (as a pre-order) a cartesian category and then monoidal category, for a set objects

X under the translationX(a,b)= 1 if and only if aRb, for R⊆X the composition and identity arrows

are respectively transitivity and reflexivity of R. Then the 2−categories are the pre-orders.
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As mentioned, we will focus on the case where the monoidal category on which it is enriched is

a quantale, the previous is the first example but this matter deserves a separate hole section.

Before this we make some remark about concepts which are going to be studied in a slightly

more general context in chapter 2 but which are of importance in representing the category

theory-metric space theory connection, which is found in categories enriched over quantales.

Again [Kel05] is a good reference for the results, but [Law73] it is central because it was in this

article that the axiomatic analogy that leads to the formulation of metric spaces as categories is

evidenced, in addition to capturing the notion of Cauchy completeness through the bi-categorical

notion of distributor introduced by Benabou in [Ben73].

For it To formulate this we make a few brief notes on the theory of V−functors and V-natural

transformations, for a monoidal closed (and usually symmetric) category (V,⊗,I). A V−functor

X
F
−→ Y (or an enriched functor over V) between V−categoriesX and Y has two parts: one is given

by a function

Obj(X)
F0−→Obj(Y)

a 7→ F(a)

that maps objects of X into objects of Y and the other is a coherent assignation of morphism in

V indexed with couples of objects of X

Obj(X)×Obj(X) F1−→Morp(V)

(a,b) 7→X(a,b)
Fab−−→ Y(F(a),F(b))

subject to axioms (commutative diagrams in V) who assert that this assignment respects the

composition maps on X and Y as well as carrying identities in identities.
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X(a,b)⊗X(b,c) X(a,c)

Y(F(a),F(b))⊗Y(F(b),F(c)) Y(F(a),F(c))

X(a,a)

I Y(F(a),F(a))

◦X
abc

Fab⊗Fbc Fac

◦Y
FaFbFc

Faa
ida

idF(a)

With this in mind can be formulated the notion of V−natural transformation between paral-

lel V−functors as an object of V , then perform the V−category of functors. For this consider

F,G :X→ Y V−functors then the V−objects of natural transformations is noted by YX(F,G) and

calculated as the V−object that makes the following an equalizer diagram in V .

YX(F,G)
∏
a∈X
Y(F(a),G(a))

∏
a,b∈X

V(X(a,b),Y(Fa,Gb))
r

s

This proposes the V−category of V−functors between two V−categories YX = {X
F
−→ Y}, with

homs as above. In the usual category a natural question is the role of this construction as an

exponentiation, i.e. the question if it is the right adjoint of a certain product. The answer is

affirmative and the mentioned product work by component perfectly well, this means that if

X and Y are V−categories then taken the set-product of the collections of objects, making X⊗
Y((x1,y1)(x2,y2)) :=X(x1,x2)⊗Y(y1,y2) and multiplying composition morphism and identities

determine a V−category X⊗Y, the thing is that there is a natural and bijective correspondence

of V−functors

(X⊗A→ Y)⇆ (A→ YX)

.

The context of monoidal symmetric closed categories is robust enough that the basic theory

of categories, functors, and natural transformations can be fully translated into the enriched

case. We will limit ourselves to citing the Yoneda lemma in a schematic version that allows us to
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stress and introduces4 the central notion of chapter 2, the concept of a complete Cauchy enriched

category.

The importance of a category V to being monoidal closed is that of the existence of an internal

hom for every pair of object V(u,v), this is just the fact that V it itself a V−category if we make

V(u,v)=u =⇒ v (recall that the monoidal structure is symmetric the left and right implications

are isomorphic). Then we can perform VA for every V−category A, and this behaves like a

usual functorial category. Remark that the central notion is that of pre-sheaf then take better

VA
op , this is just the remark that if A is V−category, define Aop with the same objects of A

andAop(a,b)=A(b,a) for every couple of objects. With this, we can cite the enriched Yoneda-

lemma.

Lemma 1.1.17. ( enriched Yoneda lemma, see[Kel05], [Law73]) For every V−category A, object

a ofA and V−functorAop F
−→V there is a natural correspondence between natural transformations

hA(a)→ F and morphism I→ F(a).

Where hA(a) :Aop → V , b 7→A(b,a) is the (in A) pre-sheaf of the object a, and a morphism

I→ F(a) is the version of an "element" of F(a). As in usual category theory, the above implies

the existence of an enriched Yoneda immersion that behaves like an (enriched) immersion, in the

sense that meets the enriched versions of being full and faithfully.

A→VA
op

a 7→hA(a)

In this sense an enriched functorX→VY
op is a generalized enriched functor fromX to Y, because

of the adjunction cited earlier, this generalized functor corresponds to an actually enriched arrow

Yop⊗X→V which can be thinking as an “valued relation" on V , which measures “truth value of

the relatedness of an element of Y to an element of X" ([Law73]).

This information arises as the concept of bimodule where the category of enriched in Ab, the
4and justify its name
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monoidal category of abelian groups, or as the bicategorical concept of distributors (also called

profunctors) (see [Ben73]). In this general setting, the name of distributors is inherited.

A distributor between V−categories

ϕ :X Y

is given by a functionObj(Y)×Obj(X)→Obj(V) such that for every x,x′ objects of X and y,y′

objects of Y there is arrows: Y(y′,y)⊗ϕ(y,x)→ϕ(y′,x) and ϕ(y,x)⊗X(x,x′)→ϕ(y,x′), that

are coherent for the associativity and unities in both X and Y, and commutes with the composi-

tion in both V-categories.

As is natural to think every "normal" arrow (V−functor) induce a “generalized" arrow (a distrib-

utor). In fact induces two an this has an spacial behavior which allows the formulation of the

Cauchy completeness.

Given a V−functor X f
−→ Y there is a couple of distributors f∗ : X Y and f∗ : Y X with

f∗(y,x)= Y(y,f(x)) and f∗(x,y)= Y(f(x),y). There is an adjunction property (in the 2−Category

V−Cat of V−categories, V−functors and V−natural transformations) between them, and a cat-

egory is said to be Cauchy complete if every couple of distributors with this adjoint relation

arises from a V−functor in the form of f∗ and f∗, in a nutshell: Every adjunction between distrib-

utors (relations/generalized maps) is induced by a functor (map).

We give this notion a bit vague because the concept will be well treated in chapter 2 (in the midst

of a structural elevation as will be seen), however we are left with the intuition of what happens

in pre-orders and Lawvere’s central result.

Theorem 1.1.18. (see [Law73]) For a metric space seen as ([0,∞],≥,+,0)−category to being

Cauchy complete means that every Cauchy succession (as in real analysis) converge in it (as in

real analysis).
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1.2 OnQuantales

Quantales are an algebraic-theoretic generalization of Locales, proposed in [C.86] as a non-

commutative, non-idempotent version of the locale of open sets of a topological space which

is the prototype example of locale, then open a framework for non-commutative topology, that

aloud interpretation in diverse fields inside and outside of strictly pure mathematics. Our in-

tention is sheaf theory and its related logic(s) over quantales and this is a partially very well

field of study, however, there are many efforts and victories in the part of the theory related

with commutative (or sometimes no) but importantly idempotent quantales, see for example

[BF86],[FU98],[U98],[P.11], our work has the focus on an “orthogonal"5 kind of quantales. The

following definitions show the general framework and the usual extra properties, but in general,

we focus on commutative integral quantales.

Definition 1.2.1. We said that a quantale Q is

• Commutative If (Q,⊗) is commutative.

• Unital If (Q,⊗) is a monoid. In this case, the unity will be denoted by 1.

• Semi-cartesian If for all a,b ∈Q we have a⊗b≤a,b.

• Integral If it is unital and the module element coincides with the top element of the lattice

structure: 1=⊤.

• Right-sided If for all a ∈Q we have a⊗⊤=a.

• Idempotent If all the elements of Q are idempotent in the semigroup structure (Q,⊗).

• Right divisible If for all a,b ∈Q such that a≤b then exist c such that a=b⊗c

• Left strict monotone If for all a,b,c ∈Q such that a<b and c ̸= 0, then c⊗a< c⊗b
5first propositions makes clear the use of this expression
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In the section 2.1 in [AdAMM23a], we can find the following results:

Proposition 1.2.2. 1. locale=⇒ divisible=⇒ integral=⇒ unital, semicartesian

2. locale=⇒ divisible=⇒ T·T= T

3. locale=⇒ idempotent =⇒ strong=⇒ T·T= T

4. idempotent+semicartesian=⇒ locale

5. A commutative quantale (Q,≤,⊗) is divisible if and only if for all a,b ∈Q, if a ≤ b then

a=b⊗ (b =⇒ a)

Examples 1.2.3. 1. ([0,∞],≥,+): is a commutative, integral and divisible quantale. Moreover,

it is a left/right strict monotone quantale.

2. (ω,≤,+): is a commutative, integral, and divisible quantale. Moreover, it is a left/right strict

monotone quantale.

3. The inclusion poset of the ideals of commutative unital rings endowed with the product of

ideals: is a commutative and integral quantale; moreover it is a divisible quantale whenever

the ring is a PID.

4. The poset of closed right ideals of aC∗−algebra endowedwith the operation of the topological

closure of product of the right ideals is an idempotent and right-sided quantale.

5. Denote by ∆ the set of left continuous functions from [0,∞] to [0,1] with the pointwise order-

ing, a structure of integral commutative quantale over it ⊗ : ∆×∆→ ∆ is called a triangle

function, in [SS] are presented many kinds of triangle functions and then many kinds of (ac-

tually continuous) commutative quantales.

6. For any set R the collection, the collection of ⊆-down closed collection of finite subsets of R,

constitutes a quantale with the order given by inclusion and the operation given by intersection.
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This constitutes a locale and then a commutative idempotent integral quantale. We refer to

this example as the free locale over R.

Notation 1.2.4. For Q an integral quantale we write (X,dX) denoting a enriched category over Q

as a monoidal closed category.

Explicitly Q=(Q,≤,⊗,1), a enriched category overQ consist in a set X of objects, and a func-

tion

d :X×X→Q

such that for every x,y,z ∈X we have

1≤d(x,x)
d(a,b)⊗d(b,c)≤d(a,c)

As is already mentioned in example 1.1.16 the 2-categories are the pre-orders, and in certain way

a pre-order is a kind of space ( a hierarchy of positions), the following examples aims to stress

the intuition that enriched categories over commutative, integral quantales are in a own-way

certain notion of space.

Examples 1.2.5. 1. A ([0,∞],≥,+,0)−category is a generalized pseudo-metrical space, a kind

of metric space where the distant assignation is not necessarily symmetric, the existence of

different elements at distance 0 is admitted, as well as elements at infinite distance.

2. Probabilistic distributions spaces, this notion was defined in [SS], this theoretical approxima-

tion allows us to consider a kind of parameterized metric space where for each non-negative

real r there is an associated metric structure δr that calculates the probability between points

in the space of being at distance r.

3. In [Fla97] is show that for any topological space (X,τ) the free locale (as in the last example

of 1.2.3) over τ, called Ω(τ), the Ω(τ)−categories carries a metric topology that coincides



22 1 Preliminaries

with τ. This is, any topology arises a “metric" topology where, “metric" means enriched over a

quantale.

As mentioned, the previous examples try to justify the analogy of enriched categories over com-

mutative integral quantales as a kind of (perhaps quite general) metric spaces. One of the main

points of this preliminaries chapter is to expose how this notion of enriched category also con-

nect with the notion of sheaf for the case of locales, this connection can be made more clear if

we note the axiomatic similarity between a enriched categories and a valued set, and how valued

sets connects with sheaf theory, for all of this lets an overview of the case for locales that is the

ground for the constructions presented in chapter 2.

1.3 Sheaves-like categories: the localic case

The notion of sheaf of structures on a topological space depends only on the structure of the

lattice of the open subsets of the space: this lattice constitutes a complete Heyting algebra that

coincides with the notion of locale.

There are many equivalent descriptions of the notion of the sheaf of sets over a locale. We reserve

this section to briefly present these notions since some of these are generalized to the quantalic

setting.

1.3.1 Geometric and functorial sheaves over topological spaces

The following results can be taken as folklore of sheaf theory, [LM92] is a good reference for the

proofs and details.

Let X be a topological space. A geometric sheaf of sets over X is just a local homeomorphism

from a topological space Y into X, f : Y→X. Note that a local homeomorphism is automatically

a continuous open map and that the for each x ∈ X, the topological subspace p−1[{x}] ⊂ Y is a

(possibly empty) discrete subspace of Y. A morphism between geometric sheaves (Y,f)→ (Y ′,f ′)
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is a continuous function h : Y→ Y ′ such that f ′◦h= f. Such continuous function is automatically

a local homeomorphism, thus it is an open map too. With the obvious definition of composition

and identities, this data provides a category, GSh(X), the category of geometric sheaves (of sets)

over the space X.

Now denote by O(X) the category associated to the poset of all open sets of X. A presheaf of

sets is a functor F :O(X)op→ Set, and a morphism of presheaves is just a natural transformation

between functors. Vertical composition of natural transformations (with the obvious identities)

provides a category, pSh(X), the category of presheaves (of sets) over the space X.

Consider a presheaf F :O(X)op→ Set. Given inclusions U⊆V , we use s|V
U
(or just s|U) to denote

the “restriction map" from F(V) to F(U). If U ⊆ X is open and U =
⋃
i∈I
Ui is an open cover, a

presheaf F is a (functorial) sheaf (of sets) when we have the following diagram

F(U)
∏
i∈I
F(Ui)

∏
i,j∈I

F(Ui∩Uj)e
p

q

is an equalizer in the category Set, where:

1. e(t)= {t|Ui
| i ∈ I}, t ∈ F(U)

2. p((tk)k∈I)= (ti|Ui∩Uj

)(i,j)∈I×I

q((tk)k∈I)= (tj|Ui∩Uj

)(i,j)∈I×I, (tk)k∈I ∈
∏
k∈I
F(Uk)

We denote Sh(X) the full subcategory of pSh(X) determined by the class of all functorial sheaves

of sets over X.

The traditional development of sheaf theory provides the construction of a pair of functors that

establishes an equivalence of categories between the category of geometric sheaves on X and the

category of functorial sheaves over X, GSh(X)
≃
⇆ Sh(X).
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1.3.2 (Functorial) sheaves on a locale

Note that in the definition of functorial sheaf over a topological space we did not use the points

of the space, that is, only their locale structure was necessary. In fact, we can define sheaves

for a presheaf F :Hop→ Set, where L is the category associated to a locale H, since it is a poset.

Consider a presheaf F :Hop→ Set. Given u,v ∈H, if u≤ v, then s|vu denote the “restriction map"

from F(v) to F(u). If u,ui ∈H and u=
∨
i∈I
ui is a “cover", a presheaf F is a (functorial) sheaf (of

sets) when we have the following diagram

F(u)
∏
i∈I
F(ui)

∏
i,j∈I

F(ui∧uj)
e

p

q

is an equalizer in the category Set, where:

1. e(t)= {t|ui
| i ∈ I}, t ∈ F(U)

2. p((tk)k∈I)= (ti|ui∧Uj

)(i,j)∈I×I

q((tk)k∈I)= (tj|ui∧uj

)(i,j)∈I×I, (tk)k∈I ∈
∏
k∈I
F(uk)

Another generalization of the notion of sheaf over sets is available for small categories by intro-

ducing an abstract idea of coverings of an object: this is the theory of Grothendieck topos.

1.3.3 Locale valued sets: sheaves in terms of sets with valued sameness

Let H be a locale. In this subsection, our presentation is close to [Bor94].

• A H-set is a pair (X,δ) where X is a set and δ :X×X→H is a function satisfying

δ(x,y)= δ(y,x)

δ(x,y)∧δ(y,z)≤ δ(x,z)

As immediate consequences, we have that: (i) δ(x,y) ≤ δ(x,x)∧δ(y,y); (ii) δ(x,y)∧δ(y,y) =
δ(x,y).
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• If F : (H,≤)op→ Set is a sheaf over the localeH, then assignment

F 7→ (XF,δF), where

XF :=
∐
b∈H

F(b)

δF :XF×XF→H is such that

δF((s,b),(t,c)) 7→∨
{d≤b∧c : s ↾bd= t ↾cd}

determines aH-set. In fact, it is a complete H-set, see [Bor94].

• A functional morphism ofH-sets, f : (X,δ)→ (X ′,δ ′), is a function f :X→X ′ such that:

δ ′(f(x),f(x))= δ(x,x)

δ ′(f(x),f(y))≥ δ(x,y)

The usual identity function and composition of functions induces a structure of category on the

classes of H-sets and functional morphisms: H− setsfunc. We denote compH− setsfunc the

full subcategory ofH−setsfunc of all completeH-sets.

• A relationalmorphism ofH-sets, ϕ : (X,δ)→ (X ′,δ ′), is a function ϕ :X×X ′ →H such that “ϕ

is a functional relation”:

δ ′(x ′,y ′)∧ϕ(x,y ′)≤ϕ(x,x ′)

δ(x,y)∧ϕ(x,x ′)≤ϕ(y,x ′)

ϕ(x,x ′)∧ϕ(x,y ′)≤ δ ′(x ′,y ′)

∨
x ′∈X ′

ϕ(x,x ′)= δ(x,x)

δ : (X,δ)→ (X,δ) is a relational morphism denoted id(X,δ). There is natural way to compose rela-

tional morphisms: if ϕ ′ : (X ′,δ ′)→ (X ′′,δ ′′) is a relational morphism then ϕ ′ ◦ϕ :X×X ′′ →H is
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given byϕ ′◦ϕ(x,x ′′)=∨
y ′∈X ′ϕ ′(y ′,x ′′)∧ϕ(x,y ′). In this waywe obtain a category,H−setsrel

or simplyH−sets; compH−set denotes the full subcategory ofH−sets of all completeH-sets.

• The following categorial relations hold:

Sh(H)≃ compH−setsfunc ∼= compH−setsrel ≃H−setrel;

see sections 2.8 and 2.9 in [Bor94] for the details.

1.3.4 The category of Heyting valued models of sets

LetH be a complete Heyting algebra, i.e., a locale. In this subsection, our presentation is close to

[Bel05] and [ACM22].

• Define for a successor ordinal and for a limit ordinal λ:

VH0
=;

VHα+1
=
{
f :dom(f)⊆V(H)

α ∧ im(f)⊆H
}

VHλ
=

⋃
β<λ

V(H)
β

• From this recursive construction we obtain the proper class

VH =
⋃

α∈Ord
V(H)
α

and also a rank map ρ :VH →Ord:

ρ(x)=min{α ∈Ord :dom(x)⊆V(H)
α }

• Heyting-valued semantics:

There is a "natural interpretation" of set theory in V(H), at least a Heyting one. More precisely:

There are valuations functions:
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J· ∈ ·KH ,J·= ·KH :V(H)×V(H)−→H

They are defined by simultaneous recursion on the well-founded relation:

(f,g)≺ (x,y) ⇐⇒ f= x∧g ∈dom(y)∨f ∈dom(x)∧g=y

Defined by:

Jy ∈ xKH =
∨

t∈dom(x)

x(t)∧ Jy= tKH

Jy= xKH =
∧

u∈dom(x)
v∈dom(y)

(x(u)→ Ju ∈yKH)∧ (y(v)→ Jv ∈ xKH)

We can extend these valuations to a valuations of formulae in general. The connectives are de-

fined naturally with the functions of the H.

For quantifiers we put:

J∀x :φ(x)KH =
∧

x̂∈V(H)

Jφ(x̂)KH

J∃x :φ(x)KH =
∨

x̂∈V(H)

Jφ(x̂)KH

• The resulting semantic identifies a lot of sets as J·= ·KH.
• If H = B is a complete boolean algebra, and we put that V(B) ⊨ φ ⇐⇒ JφKB = 1B then

the structure V(B) satisfies all axioms of ZF set theory, preserves inference and doesn’t validate

falsehoods.

•Whenwe are simply in the context of locales (=cHA)H, we have that the correspondingHeyting

Universe models intuitionistic ZF (IZF), in an intuitionistic sense.

• VH andH−sets

In [ACM22] is presented an extension of a result sketched in [Bel05] to the setting of complete

Heyting algebras, we present, for the reader’s convenience, many equivalent description of cate-

gory of sheaves of a cHA H, Sh(H)≃H-Set≃ Set(H), where the later is obtained by the cumu-

lative hierarchy V(H) by taking quotients as below:
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Consider the equivalence relation in V(H) given by f≡ g if, and only if, Jf= gK= 1. The category
Set(H) is defined as:

Obj(S(H)) :=V(H)/≡

Set(H) ([x], [y]) :=
{
[ϕ] ∈ Set(H) | Jfun(ϕ : x→y)K= 1

}
The arrows do not depend on the choice of representative of the equivalence classes [x] and [y].

The composition and identity are defined as in Set.

Finally, to show the equivalence between H-Set and Set(H), two constructions in V(H) (here we

follow closely [Bel05]). Firstly, given x ∈V, we define its “natural representative" x̂ in V(H) using

recursion over the (well-founded) membership relation: x̂ := {〈y,1〉 |y ∈ x}. This allows us to

define an ordered pair in V(H): given u,v ∈V(H),

{u}(H) := {〈u,1〉} {u,v}(H) := {u}(H)∪ {v}(H)

〈u,v〉(H) :=
{
{u}(H) , {u,v}(H)

}(H)

Now let 〈X,δ〉 be anH-set. For each x ∈X, define ẋ ∈V(H) as:

domẋ := {ẑ | z ∈X} and ẋ(ẑ) := δ(x,z), for all z ∈X

Then, define X† ∈V(H) as

domX† := {ẋ | x ∈X} and X†(ẋ) := δ(x,x), for all x ∈X

Similarly, given a morphism ϕ : 〈X,δ〉→ 〈
X ′,δ ′

〉
ofH-sets, we may consider φ† ∈V(H) given by:

domϕ† :=
{〈
ẋ, ẋ ′

〉(H)
| x ∈X,x ′ ∈X ′

}
ϕ† (

〈
ẋ, ẋ ′

〉(H)
) :=ϕ(x,x ′), for all x ∈X,x ′ ∈X ′

Since V(H) |= fun(ϕ†), we may define a functor Φ :H-Set→ Set(H) by taking Φ(X,δ) = [X†],

for everyH-set 〈X,δ〉, and Φ(ϕ)=ϕ†, for every arrow ϕ H-Set.
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On the other hand, given u ∈V(H), define Xu :=domu and δu :Xu×Xu→H as

δu(x,y) := Jx ∈uK∧ Jx=yK∧ Jy ∈uK , for all x,y ∈Xu

Notice, however, that Ju=u ′K = 1 does not imply Xu = domu = domu ′ = Xu ′ , and that we

may not define an H-set using [domu] since this class is not a set (later we will show that{
u ′ ∈V(H) | Ju=u ′K= 1

}
is a proper class). In that case, we will use Scott’s trick to define a

functor Ψ : Set(H)→H-Set.

Firstly, if Ju=u ′K= 1, then 〈Xu,δu〉 ∼= 〈Xu ′,δu ′〉. Indeed, define λu,u ′ : 〈Xu,δu〉→ 〈Xu ′,δu ′〉 such
that

λu,u ′(x,x ′) := Jx ∈uK∧ Jx= x ′K∧ Jx ′ ∈u ′K , for all x ∈domu,x ′ ∈domu ′

Now, for each [u] ∈ Set(H), let I[u] be the category given by:

Obj(I[u]) := [u]m Arr(I[u]) := [u]m× [u]m

where [u]m is the equivalence class of the elements with minimum rank. Consider the functor

F[u] : I[u]→H-Set such that

F[u](u ′) := 〈Xu,δu〉 , for all u ′ ∈ [u]m

F[u](u ′,u ′′) := λu ′,u ′′ : 〈Xu ′,δu ′〉→ 〈Xu ′′,δu ′′〉 , for all u ′,u ′′ ∈ [u]m

At last, we may define the functor Ψ : Set(H)→H-Set as Ψ([u]) = lim
u ′∈[u]m

F[u](u ′).

1.3.5 Sheaves in terms of enriched categories

Remark that in the definition of enriched category over a monoidal category (see 1.1.13) the

existence of "the identity of an object a" is given by a morphism in the monoidal category from

the module object to every "reflexive hom"

I
ida−−→A(a,a)
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In the setting of enriched categories over integral quantales this axioms becomes

⊤= 1≤d(a,a)

So if we are based ourselves in the analogy of sheaves over a locale like sets with a locale-valued

sameness as is put in the subsection 1.3.3 , the reflexivity axiom says that:

⊤= 1≤ δ(a,a)

In the connection with sheaves δ(a,a) calculates the domain of the section a, so this axioms

becomes

a is a global section

So this collapse sheaf theory over locales to set theory: sheaves with only global sections or

equivalently sheaves over a space with the trivial topology, can be taken as sets that vary about a

point i.e. just sets. In this situation for make a connection with sheave theory in terms of enriched

categories this axioms must be dropped, and the theory decide between two natural choices

1. Assume the lack of identities morphism and search for weaker versions of it that still allows

us to make certain nodal constructions, importantly completions.

2. Interpret the strength of the reflexivity axiom in terms of a locality that can be discarded

in a structural elevation of the base object, that is, if the problem is that the identities are

"too big", just split them.

The first choice lets us in a weaker framework that the enriched category theory but the role of

the quantale of "truth values" remains, in the second choice we stay in enriched category theory

but we must to change the base quantale for a higher structure.

In the next chapter we will briefly present the construction that expose sheaf theory in terms of

enriched categories, framework developed by R. Walters in [Wal81] for sheaves over locales and

pretty soon widely extended to sheaves over sites in [Wal82]. This construction exposes what we
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mean in the second way of assume the necessarily absence of identities for categories enriched

in a locale if we search an analogy with sheaves over it.

ConsiderH a complete Heyting algebra from it defines the following category Rel(H):

Objects: elements of |H|

Morphism: u R
−→ v is given by R≤u∧v.

Composition is given by S ◦R = S∧R of H. Note that for every u,v ∈ | H| if we denote by

Rel(H)(u,v) := {R | R≤u∧v} this result in a complete Heyting algebra restricting the structure

ofH. Then we have a category in which every hom-set has an extra structure of Heyting Algebra

and the composition preserves that structure.

The idea is consider a category enriched over this “2-monoidal" (actually “2-cartesian") object, this

is just as in the quantale enriched case but with an extra assignment which specify coherently

the Heyting algebra. More precisely a Rel(H)−enriched category consist in, a set of objects X

together with a domain assignment

e :X→Obj(Rel(H))= |H|

and a hom-assignment

d :X×X→Morp(Rel(H))

such that for every x,y,z ∈X the following holds:

1. d(x,y) : e(y)→ e(x) (i.e. d(x,y)≤ e(x)∧e(y))

2. 1e(x) ≤d(x,x)

3. d(z,y)∧d(y,x)≤d(x,z)

Note that the only additional axiom is the first one that speaks about the domains, then locally

this object is an enriched category over a Heyting algebra.
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Now let’s note how this consideration of split the original Heyting algebra H solves the prob-

lem of formalizing pre-sheafs with not only global section as an enriched categories, even more

with certain main enriched-category notion can be characterized sheaf (functorial)condition, i.e.

gluing property.

Consider a pre-sheaf of sets over H as a category (like a pre-order) F :Hop→ Set, the following

define a enriched category over Rel(H).

XF=
∐
u∈|H|

F(u)

eF :XF→H

(s,u) 7→u

dF :XF×XF→Morph(Rel(Q))

((s,u),(t,v)) 7→∨
{w ∈ |H| :w≤u∧v,s|w= t|w }

Is a direct calculation matter prove that this actually defines an enriched category, even more

note that for every sheaf the following extra properties always holds:

symmetry dF(((s,u),(t,v)))=dF((t,v),(s,u))

Note also that the condition of being a separated 6 pre-sheaf can be formalized in this language

very directly, by the following property:

skeletal dF((s,u))= eF((s,u))= eF((t,v)) implies s= t.

The following notion is central in general for thewhole text because being themain concept of the

real analysis, captures the sheaf theoretic essence to, the existence of lifting for local properties

to a global ones.

We say that an enriched category over Rel(H), (X.d,e) isCauchy complete if for every u ∈ |H|,

and every couple of functions ϕ,ψ :X→morph(Rel(Q)) such that

1. ϕ(x) :u→ e(x), ψ(x) : e(x)→u

6means that sections that has the same restrictions in an open cover of their domain are equals
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2. d(x,x′)∧ϕ(x)≤ϕ(x′), ψ(x)∧d(x′,x)≤ψ(x′)

3. u≤ ∨
x∈X

(ψ(x)∧ϕ(x))

4. ϕ(x′)∧ψ(x)≤d(x,x′)

exist an element a ∈X, such that ϕ(x)=d(a,x) and ψ(x)=d(x,a) for every x ∈X.
Note the analogy of this definition and the mentioned in the end of first section of this chapter,

here is unfolded what it means and internal adjunction, plus the (always necessary) first domain

(or type) axiom, natural consequence of this 2−categorical stance.

Now the strong results presented in [Wal81] and brings much of the inspiration of the original

work of this thesis.

Theorem 1.3.1. ([Wal81]) The category of sheaves over a Heyting algebraH is bi-equivalent to the

full subcategory of Rel(H)−Catfun given by the Cauchy complete, symmetric, skeletal enriched

categories over Rel(H).

More impressive is the (rather elegant) generalization of the result to any Grothendieck topos.

Theorem 1.3.2. ([Wal82]) Given any small site (C,J) there is local monoidal (cartesian) category

Rel(C,J) such that the category Sh(C,J) of sheaves over that site is bi-equivalent to the full sub-

category of Rel(C,J)−Cat given by the Cauchy complete, symmetric, skeletal enriched categories

over Rel(C,J).

This local monoidal categorically structure, has a proper name and is the topic of the next section.

In resume, this kind of object can be constructed starting from a local or more generally from a

site, an enables to capture the existence of gluing sections for compatible families of section in

pre-sheafs over the site as the concept of being Cauchy complete for enriched categories over it.
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1.4 Quantaloids

A bit of the moral of Walters’ Rel(H) construction is to divide a single base on which you are

working and allow for multiple bases. So if we conceptualize a quantal as an object that only has

one underlying point and allow this situation to be multiplied, we get the following definition.

This section is based in the monographic work of Isar Stubbe in the study of quantaloids and

their relation with sheaf theory and other areas. Much of the monographic work that we do in

the second chapter is also in reference to the work of Stube. For this section see [Stu05a].

Definition 1.4.1. A quantaloid Q is a category enriched over the category Sup of complete lattices

and join-preserving lattices morphisms.

This means that for every a,b ∈Obj(Q), the Hom-set has an extra structure of complete lattice

and the composition of the category distributes arbitrary joins.

Concretely for every a,b ∈Obj(Q), Q(a,b) is a complete lattice and for every a,b,c ∈Obj(Q),

if {fi}i∈I ⊆Q(a,b) and g ∈Q(b,c) then

g◦∨
i∈I fi=

∨
i∈I(g◦fi)

also if {gi : i ∈ I}⊆Q(b,c) and f ∈Q(a,b) then

(
∨
i∈Igi)◦f=∨

i∈I(gi ◦f)

Examples 1.4.2. 1. A quantaloid with only one object is just a quantal.

2. An example of quantaloid that is not a quantal is the category Setrel whose class of objects

is the class of all sets and Homrel(X,Y) = {(X,R,Y) : R⊆X×Y}. Note that Homrel(X,Y) is

a complete lattice where sup = reunion and, since the composition of relations distributes over

suprema, then Setrel is a quantaloid.

Like in a pre-order view as a category the colimits are joins, that composition distributes over

arbitrary local joins for arrows in quantaloid means that for every f :a→b in a quantaloid Q the

induced Yoneda morphism
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Q(−,a)
f◦−
−−→Q(−,b)

and also

Q(b,−)
−◦f
−−→Q(a,−)

are no just natural transformation between hom sets, but locally a morphism between complete

categories (lattices because theay are categories as pre-ordes) with right adjoints. Indeed for

every c object in the category Q, the property of being a quantaloids means that

Q(b,c)
−◦f
−−→Q(a,c)

g 7→ g◦f

and also

Q(−,a)
f◦−
−−→Q(−,b)

h 7→ f◦h

preserves colimits, so in the context of pre-orders as categories this is equivalent to say that this

morphism have right adjoints (calculation can be made by hand but if one prefers can use the

adjoint functor theorem) respectively noted by

Q(a,−)
{f,−}
−−→Q(b,−), −◦f⊣ {f,−}

Q(−,b)
[f,−]
−−→Q(−,a) f◦−⊣ [f,−]

Explicitly

{f,g} := {f,−}(g)=
∨
{h ∈Morp(Q) :h◦f≤ g}

and

[f,h] := [f,−](h)=
∨
{p ∈Morp(Q) : f◦p≤h}

The adjuntion equation lets us think in {f,h} as the extension of h through f, for every possible

composable morphism in Q we have: h◦f≤ g if and only if h≤ {f,g}
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a b

c

f

g
{f,g}

For [f,h] there is an intuition of it as: the lifting of h through f: f◦p≤h if and only if p≤ [f,h]

a

c b

f

h

[f,h]

A quantaloid is in particular a kind of bicategory, so the notion of adjunction that is a sentence

that talks about categories, functors and natural transformations, say objects, arrows and 2-cells

can be interpreted in any bicategory, so in particular in a quantaloid comes with the facility

that every diagram of 2-cells commute (because in quantaloids this is a pre-order structure) so

just with the existence of unities and co-unities is enough for the adjunction, because the usual

triangular factorization speak about diagrams of natural transformations i.e. 2-cells.

Definition 1.4.3. Given a quantaloid Q and two morphisms F :a→ b, G : b→a we say that F is

a left adjoint of G if 1a ≤G◦F and F◦G≤ 1b

The definitions that we have just put in this section are what is necessary to state and contex-

tualize the subsequent chapters. However there is a fair amount of theory that we are omitting

and it is quite interesting, a monographic presentation of this can be found in the first pages of

[Stu05a].
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In this chapter, are presented generalizations of the wide gamma of (equivalent) categorical pre-

sentations of sheaves over locales to the quantalic setting. The first section is limited to give

the principal definition of the work of Tenorio [TdAMM22] in functorial versions of sheaf over

quantales and Mendez, Alvim, Mariano in [AdAMM23b],[AdAMM23a] defining the extension of

the theory of valued-sets over Locales to the case of commutative semi-cartesian quantales, they

have calculated a large part of the categorical structure of these objects and have studied in depth

several notions of completion that, in the case of Locales (as it was exposed in the preliminaries

chapter), allow us to connect by equivalence with the theory of sheaves. It is in this sense that is

in its own right a theory of sheaves over quantales.

Their results are used in chapter 3 for some original calculations, and at the end of this chapter

to show how it connects with an independent work done by Stubbe ([Stu05c]) on the notion of

totally regular semicategory enriched over a quantaloid, and with another equivalent presenta-

tion that we give in the section 2.3.

2.1 Q-sets and sheaves over Q

In this short section we describe some recent (in fact, ongoing) generalizations of the notions of

sheaves over a locale and locale-valued sets, described in the previous chapter, to the setting of
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commutative, semicartesian quantales Q.

Definition 2.1.1. (see [TdAMM22]) Let Q be a commutative, semicartesian quantale.

A presheaf over Q is just a contravariant functor, F :Qop→ Set. A morphism from presheaf F into

a presheaf G, both overQ, is just a natural transformation η : F→G. pSh(Q) denotes the category

of all presheaves over Q with the composition of natural transformation as composition.

A presheaf F :Qop→ Set is a sheaf if for any cover u=
∨
i∈I
ui of any element u ∈Q, the following

diagram is an equalizer

F(u)
∏
i∈I
F(ui)

∏
(i,j)∈I×I

F(ui⊗uj)e
p

q

where

e(t)= {t↾ui
: i ∈ I}, p((tk)k∈I)= (ti↾ui⊗uj

)(i,j)∈I×I

q((tk)k∈I)= (tj↾ui⊗uj
)(i,j)∈I×I

Note that, these maps make sense since ui ⊗uj ≤ ui,uj, because we have assumed that Q is a

semicartesian quantale.

Denote by Sh(Q) the full subcategory of pSh(Q) determined by the subclass of all sheaves overQ.

In [TdAMM22] are established many interesting properties of the category Sh(Q), in particular

it: is a complete and cocomplete category; is a monoidal closed reflexive subcategory of pSH(Q);

it is not a topos, in general.

Definition 2.1.2. (see [AdAMM23b],[AdAMM23a]) For a commutative, semicartesian quantaleQ,

a Q−set (X,δ) is given by a set X together with a Q−valued binary predicate over X.

δ :X×X→Q

such that

1. δ(x,y)= δ(y,x)
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2. δ(x,y)⊗δ(y,z)≤ δ(x,z)

3. δ(x,y)⊗δ(y,y)= δ(x,y)

SinceQ is a semicartesian quantale, it follows that δ(x,y)= δ(x,x)⊗δ(x,y)⊗δ(y,y)≤ δ(x,x)⊗
δ(y,y).

Notation 2.1.3. For x ∈X aQ−set lets write δ(x,x) asE(x), note that the axiom 3. in the definition

of Q−set implies that E(x) is an idempotent of Q.

Definition 2.1.4. If (X,δX) and (Y,δY) are Q− sets a functional morphism from (X,δX) to

(Y,δY) is given by a function f :X→ Y such that:

δX(x,y)≤ δY(f(x),f(y))
δX(x,x)= δY(f(x),f(x))

If the context is clear we use indistinct the notation f :X→ Y for a functional morphism and for

the function that brings with it.

Definition 2.1.5. If (X,δX) and (Y,δY) are Q− sets a relational morphism from (X,δX) to

(Y,δY) is given by a function φ : Y×X→Q such that

φ(y,x)⊗δX(x,x′)≤φ(y,x′)
δY(y,y

′)⊗φ(y′,x)≤φ(y,x)
φ(y,x)⊗E(x)=φ(y,x)
E(y)⊗φ(y,x)=φ(y,x)

φ(y,x)⊗φ(y′,x)≤ δY(y′,y)∨
y∈Y
φ(y,x)=E(x)

In [AdAMM23a] is explored the categorical properties of the category of Q-sets and functional

morphisms and, in [AdAMM23b], are developed connections between diverse (sub)categories of

Q-sets endowed with functional morphisms and relational morphisms.
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2.2 Enriched semicategories and categories

As is said in the subsection 1.3.5 for formalizing sheaves as enriched categories in view of the ex-

istence of identities axiom there are (at least) two alternatives, one is to split the base object and

make a kind of Rel(H) construction (this alternative is explored in a posterior section and con-

stitutes original work, section 2.3) and the other alternative is to just not work with this axioms,

work in categories with out identities, this makes the problem “disappear", now the problem is:

What kind of (enriched)category theory can you do without identities?. First of all, the observa-

tions of [Stu05c] tells that for beginning the Yoneda lemma can not hold, and for pre-sheaf theory

which is the one that finally leads to the Cauchy completeness (a key concept that gives us the

connection with sheaves), this could be a serious structural problem.

In the following sections we will follow (outlining) a part of the path that Isar Stubbe built in

great detail in [Stu05a],[Stu05c],[Stu05b] to minutely scale in structure from the categories with-

out identities to where it is strictly necessary and sufficient to get a good notion of Cauchy com-

pleteness.

Definition 2.2.1. For a quantaloid Q an enriched semi-category over Q is given by a triple

(X,dx,ex) where X is a set, d : X×X→Morp(Q) and e : X→ Obj(Q) are functions such that

for all x,y,z ∈X

1. d(x,y) : e(y)→ e(x)

2. d(x,y)◦d(y,z)≤d(x,z)

Definition 2.2.2. GivenQ a quantaloid, an enriched category overQ is a semi-category (X,dX,eX)

with the extra property that for every x ∈X

1e(x)≤dX(x,x)

Definition 2.2.3. Given Q a quantaloid and Q-enriched semi-categories (X,dX,eX) and (Y,dY ,eY)

an enriched functor
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f : (X,dX,eX)→ (Y,dY ,eY)

is given by a function f :X→ Y such that for all x,y ∈X

eX(x)= eY(f(x))

dX(x,y)≤dY(f(x),f(y))

For measuring the gap between semi-categories and categories think that the most simple ex-

ample of enriched category over quantale(oids) is the enrichment over 2= {⊤,⊥} for which as

say in example 1.1.16, the 2−Categories are pre-orders the existence of identities corresponds

to reflexivity, then the 2−Semicategories are sets with transitive binary relations, for example,

(R,<) is a 2−semicategory but isn´t a 2−category.

The following can be proven very directly, and are presented in [Stu05a] for the theory over

enriched categories and in [Stu05c] for the theory over semicategories.

Proposition 2.2.4. For every quantaloid Q, enriched semi-categories over Q and enriched functors

determine a category with the composition given by composing the underlying functions between the

sets of objects, we note this category by:

Q−SCatfun

Proposition 2.2.5. For every quantaloid Q enriched categories over Q and enriched functors deter-

mine a full sub-category of Q−SCatfun, we note this category by:

Q−Catfun

Definition 2.2.6. Given Q a quantaloid and Q-enriched semi-categories (X,dX,eX) and (Y,dY ,eY)

a distributor:

Ψ : (X,dX,eX) (Y,dY ,eY)

is given by a function Ψ : Y×X→Morp(Q), such that for all x,x′ ∈X and y,y′ ∈ Y we have
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Ψ(y,x) : eX(x)→ eY(y)

dY(y
′,y)◦Ψ(y,x)≤Ψ(y′,x)

Ψ(y,x)◦dX(x,x′)≤Ψ(y,x′)

Lemma 2.2.7. For (X,dx,eX), (Y,dY ,eY) and (Z,dZ,eZ) enriched semi-categories over a quan-

taloid Q, and distributors, ϕ : (X,dX,eX) (Y,dY ,eY), ψ : (Y,dY ,eY) (Z,dZ,eZ), the

following assignment for every x ∈ X and z ∈ Z determines a distributor between (X,dX,eX) and

(Z,dZ,eZ)

ψ⊗Yϕ : (X,dx,eX) (Z,dZ,eZ)

(x,z) 7→∨
y∈Y(ψ(z,y)◦ϕ(y,x))

Proof. We are taking joins over sets of morphisms, like Q is a quantaloid this join is actually an

arrow, the two action inequalities are direct consequences of that compose with an arrow in an

quantaloid is an join-preserving and in particular monotone application between the hom lattices,

together with the hypothesis that ψ and ϕ are distributors.

dZ(z
′,z)◦ψ(z,y) ≤ ψ(z′,y)

dZ(z
′,z)◦ψ(z,y)◦ϕ(y,x) ≤ ψ(z′,y)◦ϕ(y,x)∨

y∈Y
dZ(z

′,z)◦ψ(z,y)◦ϕ(y,x) ≤ ∨
y∈Y
ψ(z′,y)◦ϕ(y,x)

so

dZ(z
′,z)◦ (ψ⊗Yϕ)(z,x) = dZ(z

′,z)◦ ∨
y∈Y
ψ(z,y)◦ϕ(y,x)

=
∨
y∈Y
dZ(z

′,z)◦ψ(z,y)◦ϕ(y,x)

≤ ∨
y∈Y
ψ(z′,y)◦ϕ(y,x)

= (ψ⊗Yϕ)(z′,x)

The other axiom is verified analogously.
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Although the previous lemma asserts that in the context of semi-categories and distributors be-

tween them the above defined operation determines a well defined composition, unfortunately

there is not a category of enriched semi-categories over a quantaloid and distributors (at least with

this composition), the main reason is that there is not identities for that composition, for

this is quite essential at least a weaker version of the existence of identity morphisms axiom

(1e(x) ≤ d(x,x)) in the semi-enriched categories. So by the moment we can perform a category

of enriched categories and distributors between them.

Proposition 2.2.8. Given a quantaloid Q the collection of enriched categories over Q and distribu-

tors between them with composition as in lemma 2.2.7, determines a category which we note as:

Q−Catrel

We put the proof for stress the role of the existence of identities axiom in this structure.

Proof. The previous lemma asserts that the composition is well defined, clearly is associative,

then only rest to see that for every (X,dX,eX) there is an identity distributor over it, for this we

take

1X=dX :X×X→Mor(Q)

That (X,dX,eX) is (in particular) an enriched semi-category is exactly that dX is a distributor

from X to X

dX :X X

Now for every distributor ϕ :X Y, x,x′ ∈X and y ∈ Y we have

ϕ(y,x′)◦dX(x′,x) ≤ ϕ(y,x)∨
x′∈X

ϕ(y,x′)◦dX(x′,x) ≤ ϕ(y,x)

(ϕ⊗XdX)(y,x) ≤ ϕ(y,x)
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But also we have the following (note the use of the extra axiom 1eX(x) ≤ dX(x,x) which is the

difference between categories and semi-categories).

ϕ(y,x) = ϕ(y,x)◦1eX(x)

≤ ϕ(y,x)◦dX(x,x)

≤ ∨
x′∈X

ϕ(y,x′)◦dX(x′,x)

= (ϕ⊗XdX)(y,x)

Proof that dX is also neutral for this composition on the left is analogous.

There is a main fact about quantaloid enriched categories and relational morphisms (distributors);

they form quantaloids again. Indeed, given any enriched categories (X,dX,eX) and (Y,dY ,eY), the

set of distributors with domain X and codomain Y,Q−Catrel(X,Y) can be ordered "pointwise",

ϕ≤ψ if ϕ(y,x)≤ψ(y,x) for every x ∈X and y ∈ Y, then is straightforward that it is a complete

lattice, with joins calculated pointwise, moreover like composition is also a join, and of course

joins commute with joins, composition distributes over arbitrary joins taken in this local hom

lattices, that is to say, the category Q−Catrel is a (large) quantaloid.

Explicitly for a family of distributors with the same domain and codomain {ϕi :X Y}i∈I, the

join of the family is given by (
∨
i∈Iϕi)(y,x) =

∨
i∈I(ϕi(y,x)), then for every ψ : Z X and

φ : Y W

(
∨
ϕi)⊗Xψ=

∨
(ϕi⊗Xψ)

φ⊗Y (∨ϕi)=∨
(φ⊗Yϕi)

The importance of this specific structure over quantaloid enriched categories and relation mor-

phisms lies on the following functor, that assigns to every enriched functor their "graph" as a

relation, more over this assignation always comes with an extra structure over the graph; it is an

internal adjoint (in the sense of 1.4.3) in the quantaloid Q−Catrel

Q−Catfun→Q−Catrel
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(X,dX,eX) 7→ (X,dX,eX)

X
F
−→ Y 7→ dY(−,F−) :X Y

There is also a contravariant form of this graph assignation

X
F
−→ Y 7→dY(F−,−) : Y X

For clarity, the distributor that we call the graph of F :X→ Y is given by:

dY(−,F−) :X Y

dY(−,F−) : Y×X→Morp(Q)

dY(y,F(x)) : eX(x)= eX(F(x))→ eY(y)

where eX(x)= eX(F(x)) is because the functoriality of F.

The theory of enriched semi-categories stars with the lack of unities, but searching for exactly

enough structure to make Cauchy-completion theory work gives the extra axioms for enriched

structures that we are going to use.

The following notation is actually pretty usual in the context of enriched categories and category

theory in general. If we have an (small) enriched category C with a set C of objects, is usual to

denote by

C(a,b)

the set (or object in a monoidal category) of morphisms between two objects a and b in C, so

in our context of enriched categories over a quantaloid (a kind of bicategory) seems natural to

denote by X(a,b) for the arrow of morphisms between to objects a,b ∈X, off course we already

give the notation dX(a,b) for this, but we allow ourselves to change the notation when we are

talking about categories (or semi-categories) and relational morphism between them.

Notation 2.2.9. For now on we are going to write the distributor dX :X X as

X :X X
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The proposition 2.2.8 says that for an enriched category (X,dX,eX) and any distributors ϕ :

X Y and ψ : Y X, we have

ϕ⊗XX=ϕ

X⊗Xψ=ψ

2.2.1 Regular semicategories

In this section we explore the very necessarily axioms which enables the quantaloid structure in

Q−Catrel, how we can explore this theory based in the study of pre-sheaf (enriched) categories

are as well as the following result and definition, is all work of [Stu05c].

Definition 2.2.10. For (X,dX,eX) and (Y,dY ,eY) semicategories enriched over a quantaloid Q, a

distributor

ϕ :X Y

is said to be a regular distributor if

ϕ⊗XX=ϕ

Y⊗Yϕ=ϕ

This means that for every x ∈X and y ∈ Y the following identities holds

∨
x′∈X(ϕ(y,x′)◦dX(x′,x))=ϕ(y,x)∨
y′∈Y(dY(y,y′)◦ϕ(y′,x))=ϕ(y,x)

Definition 2.2.11. For a semicategory (X,dX,eX) enriched over a quantaloid Q we say that is a

regular semicategory if the distributor

X :X X

(x,y) 7→dX(x,y)
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is regular

That is to say X⊗XX=X which in terms of factorization of morphism means that

∨
y∈X(dX(x,y)◦dX(y,z))=dX(x,z)

Definition 2.2.12. Regular semicategories and regular distributors with is defined composition de-

termines a category that we note as:

Q−RSCatrel

Note 2.2.13. Thinking regular semi-categories are in particular semi-categories we can put enriched

functors as morphims of a obviously category of enriched regular semi-categories and enriched func-

tors, but it happens that the induced graphs of certain functors are no regular distributors and then

there will no be a canonical induced functor from the functional side to the relational (quantaloid)

side, so the functional morphism must be reduced to only those whose induced graph are regular

distributor

Definition 2.2.14. An enriched functor between regular semi-categories F : (X,dX,eX)→ (Y,dY ,eY)

is said to be a regular if

dY(−,F−)=dY(−,F−)⊗XX

and

dY(F−,−)=X⊗XdY(FX,Y)

.

Lemma 2.2.15. F :X→ Y is a enriched regular functor between enriched regular semi-categories if

and only if dY(−,F−) and dY(F−,−) are regular distributors

Proof. The definition of being regular for an enriched functor is the half of the regularity of the
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graphs, the point is because of the functoriality of F is given the other half.

dY(−,F−)(y,x) = dY(,F−)⊗XX(y,x)

=
∨
x′∈X

(dY(y,F(x
′))◦dX(x′,x))

≤ ∨
x′∈X

(dY(y,F(x
′))◦dX(F(x′),F(x)))

≤ ∨
y′∈Y

(dY(y,y
′)◦dX(y′,F(x)))

= Y⊗Y dX(−,F−)(y,x)

Then dY(−,F−)= dY(,F−)⊗XX and the functoriality of F implies dY(−,F−)≤ Y⊗Y dX(−,F−)

and thinking dY(−,F−) ≥ Y ⊗Y dX(−,F−) is just the structure of semicategory in (Y,dY ,eY),

we can say that dY(−,F−) is a regular distributor. The prove of the regularity of dY(F−,−) is

completely analogous.

With this definition there is a clear category of regular semi-categories and regular functors, and

a functor that assigns (in a covariant way) graphs.

Q−RSCatfun→Q−RSCatrel

2.2.2 Cauchy completions

This central idea of how work the following construction is the key of the extra axiom for regular

semicategories that conduce to the precisely structure that is taken as a sheaf. The point is that

the enriched categories are "well-pointed". The original work is fund in [Stu05b], there are all the

proofs and a more extensive discussion about it.

Remark 2.2.16. For every enriched functor F : (X,dX,eX)→ (Y,dY ,eY) the following is an adjunc-

tion in Q−Catrel

dY(−,F−)⊣dY(F−,−).
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This observation are the framework for the notion of Cauchy-complete enriched structure that in

the localic case is the key to connect sheaves with enriched categories. Note that the proposition

2.2.8 tells us that every distributor betweenQ−categories is a regular distributor, so lets give first

the discussion over Q−categories where we can use all the distributors.

Definition 2.2.17. For (X,dX,eX) and (Y,dY ,eY) enriched categories over a quantaloid Q, we say

that a distributorϕ :X Y converge if exist an enriched functor F :X→ Y such that dY(−,F−)=

ϕ.

Definition 2.2.18. For (X,dX,eX) and (Y,dY ,eY) enriched categories over a quantaloid Q, we say

that a distributor ϕ :X Y is a Cauchy distributor if exist a distributor ψ : Y X such that

ϕ⊣ψ in Q−Catrel

Notation 2.2.19. Wherever ϕ :X Y is a Cauchy distributor, we write ϕ⋆ for the right adjoint

of ϕ

Remark 2.2.16 tells us that every convergent distributor is a Cauchy one, Cauchy completeness

means that the reverse implication also holds.

Definition 2.2.20. For aQ−enriched category (Y,dY ,eY)we say that isCauchy complete if every

Cauchy distributor ϕ :X Y converge

As will be mentioned later, to verify Cauchy completeness, it is only necessary to review certain

types of distributors. We give examples based on quantales and in the Rel(H) quantaloid induced

by a Locale H.

Examples 2.2.21. A 2−Category i.e. a pre-order is Cauchy complete if every ideal-filter pair in the

pre-order that determines a gap (exactly what it means a Dedekind cut) is determined by a unique

element a in the pre-ordr in the sense that the filter corresponds to the upper bounds and the ideal

corresponds to the lower bounds. This is 2−category is Cauchy-complete if and only if as a pre-order

is Dedekind complete.
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Examples 2.2.22. The Cauchy-completeness for a metric space as a ([0,∞],≥,+,0)−category

means that every Cauchy succession in the space converges in the space.

Examples 2.2.23. In [Wal81] is shown that for a localeH, there is an associated quantaloid Rel(H)

(as in section 1.3.5) such that given a pre-sheaf F overH, this induces a Rel(Q)−category for which

the Cauchy-completeness means that every compatible family of sections has glue.

To prove that an enriched category is Cauchy complete it is enough to see certain simple kind of

Cauchy distributors converge. Consider a fixed object u in a quantaloid Q, then we can form a

canonical enriched Q−category associating to u

Definition 2.2.24. Given Q a quantaloid and u ∈Obj(Q) consider the following category

û=({⋆},du,eu)

Where eu(⋆)=u and du(⋆,⋆)= 1u

Is straightforward that this define a Q−enriched category, so in base of this we can in certain

way decompose distributors through the notion of enriched presheaf.

Definition 2.2.25. Given a quantaloid Q and a object u ∈ Obj(Q), for a Q−enriched category

(X,dX,eX) a enriched presheaf of type u over (X,dX,eX) is a distributor with domain û and

codomain (X,dX,eX)

Proposition 2.2.26. Consider a quantaloidQ and aQ−enriched category (Y,dY ,eY), the collection

of all presheaves (of any type) over Y determines a Q−enriched category PY where for presheaves

ϕ : û Y, ψ : v̂ Y, define ePY(ϕ)=u and

dPY(ϕ,ψ) := [ϕ,ψ](⋆,⋆)

where [ϕ,ψ] : v̂ û is the lifting of ψ through ϕ in Q−Catrel (see section 1.4)
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For an enriched category it is enough to see that the Cauchy pre-sheaf converge to know that

all the Cauchy distributors converge. We put this as a result whose proof is simply based on

indexing pre-sheaves to form distributors.

Theorem 2.2.27. An enriched category (X,d,e) is Cauchy-complete if and only if every Cauchy

presheaf1 ϕ : û X converge.

Another basic result is that "pre-sheaves classifies distributors"

Theorem2.2.28. For everyQ−enriched categories (X,dX,eX), (Y,dY ,eY) the following assignation

determines a isomorphism of pre-orders

Q−Catrel(X,Y) ∼=Q−Catfun(X,PY)

ϕ :X Y 7→ϕ :X→PY

Where ϕ(x) : ^eX(x) Y makes ϕ(x)(y,⋆) :=ϕ(y,x)

Then is clear that

Q−Catcc,fun ∼=Map(Q−Catcc,rel)

The construction of the Cauchy-completion for an enriched category lets the equivalence of cat-

egories Q−Catcc,rel ∼=Q−Catrel, we briefly expose this construction

Cauchy completion of an enriched category

Compare this idea of what is the Cauchy completion of a enriched category with the for exam-

ple: the Cauchy completion of a metric space, or a uniform space, a sheafification functor or any

completion of the style "put what is missing" and recall the role of the immersion of the original

category in the completion as the collection of "constant objects" (constant successions, diago-

nals, representable functors). The main note that conduces to the totally regular axiom is that
1i.e. with a right adjoint in Q−Catrel



52 2 Sheaf-like categories over quantales

the representable enriched presheaf of any object in an enriched category is a Cauchy distributor

and this is because we can identify any object in the category by a point (in a categorical sense)

of the category.

Again all this theory is constructed and explained in the original work of [Stu05b], we explore

this through some remarks and propositions that are usually left without proof. The work on

enriched categories is quite standard and can be considered practically folklore but the work on

semi-categories is part of Stubbe’s main contribution in [Stu05b].

For (X,dX,eX) and enriched Q-category consider Xcc the full sub(enriched)category of the en-

riched category PX of presheaves over X, whose objects are the Cauchy presheaves, the Yoneda

immersion factorize through the inclusion ofXcc intoPX, because every representable is a Cauchy

distributor, so let us examine how this is concluded in the case of categories and from this the

axiom on semi-categories is extracted. First a note about well-pointness of an enriched category.

Proposition 2.2.29. If (X,dX,eX) is an Q−enriched category then there is a correspondence be-

tween elements x ∈X, and functors with domain a singleton enriched-categories û, the assignation

⋆ 7→ x

determines a functor

∆x : ^e(x)→X

and every functor F : û→X determines a object F(⋆) ∈X

The important note is that the existence of identities axiom for the enriched category ^e(x) is

exactly the functoriality of ∆x

d ^e(x)(⋆,⋆)= 1e(x) ≤dX(x,x)=dX(∆x(⋆),∆x(⋆))

like the the graph of any functor is a Cauchy distributor (see 2.2.16) then

dX(−,∆x(−))=dX(−,x) : eX X
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the representable enriched presheaf of the object x is left adjoint of the covariant versiondX(x,−),

this way the Yoneda embedding factorize thought the enriched functor

kX :X→Xcc

x 7→dX(−,x)

Proposition 2.2.30. For every Q−enriched category (X,dX,eX) the graph of the enriched functor

kX is an isomorphism in Q−Catrel

X Xcc

(ϕ,x) 7→dXcc(ϕ,kX(x))= [ϕ,dX(−,x)]

For ϕ : û X, [ϕ,dX(−,x)] is the lifting of the representable presehaf of x throughout ϕ, ex-

plicitly this calculate [ϕ,dX(−,x)] =
∧
y∈X[ϕ(y,⋆),dX(y,x)] where the lifting´s and wedge are

calculated in Q.

Now lets us examine what means in the context of regular semi-categories that an object can

be pointed-out by a functor from a singleton regular semi-category.

Note 2.2.31. Consider u an object in a quantaloid Q, define a one-object enriched regular semicat-

egory with domain u, is choose an idempotent morphism i :u→u in Q

Indeed given a enriched semi-category (⋆,e,d) with only one object ⋆, and domain e : ⋆ 7→u, the

hom assignation must comply for the structure of semi-category

d(⋆,⋆) :u→u

d(⋆,⋆)◦d(⋆,⋆)≤d(⋆,⋆)

up here any endomorphism of u it works to define as d(⋆,⋆), but the regular axioms is exactly

the idempotency of this morphism

d(⋆,⋆)◦d(⋆,⋆)=d(⋆,⋆)
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so there is a correspondence between idempotents i : u→ u and structures of enriched regular

one object semi-category with domain u. This note makes the following definition and proposi-

tion very natural.

Definition 2.2.32. For an object x ∈X in an enriched regular semi-category (X,dX,eX) we say that

x is stable when exist a functor from a one object regular semi-category to X such that the image of

the single object in the domain is x.

Lemma 2.2.33. For an object x in a regular semi-category (X,dX,eX) the following are equivalent

1. x is stable

2. There is an idempotent arrow i : eX(x) → eX(x) with i ≤ dX(x,x) such that for all y ∈ X,
dX(y,x)◦ i=dX(y,x) and i◦dX(x,y)=dX(x,y).

3. For all y ∈X, dX(y,x)◦dX(x,x)=dX(y,x) and dX(x,x)◦dX(x,y)=dX(x,y)

Proof. The previous note tells us that the structure of regular semicategory over a singleton is

an idempotent of the base quantaloid, so if we write ui for the regular semicategory induced by

an idempotent i :u→u, the existence of an enriched regular functor F :ui→X such that ⋆ 7→ x,

tells us that necessarily the type of x is u, u= e(⋆) = eX(F(⋆)) = eX(x), so the idempotent is an

endomorphims of the type of x, i=d(⋆,⋆)≤dX(F(⋆),F(⋆)) =dX(x,x) and the regularity of F is

dX(y,x) = dX(y,F(⋆)) = dX(y,F(⋆))◦dX(F(⋆),F(⋆)) = dX(y,x)◦dX(x,x), similarly dX(x,y) =

dX(x,x)◦dX(x,y), so 1 and 2 are equivalent, and for 2) implies 3) the observation is that

dX(y,x)◦dX(x,x) ≤ ∨
x′∈X

(dX(y,x
′)◦dX(x′,x))

= dX(y,x)

= dX(y,x)◦ i

≤ dX(y,x)◦dX(x,x)
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ThendX(y,x)=dX(y,x)◦dX(x,x), thatdX(x,y)=dX(x,x)◦dX(x,y) follows a similar argument.

If 3) happens is directly that dX(x,x) : e(x)→ e(x) is an idempotent of Q, so we have 2) with

i=dX(x,x)

So the kind of enriched semi-category where Cauchy completion can be raised and is strictly

weaker than enriched categories where the analogy with sheaf theory disappears, is brought by

a regular semicategories (the quantaloid structure with the relational morphism is completely

basic for the notion of Cauchy-completeness) in which all of its objects can be pointed-out by a

regular functor. They are named as totally regular enriched semi-categories.

Definition 2.2.34. For a semicategory (X,dX,eX) we said that is totally regular is for every

x,y ∈X dX(x,x)◦dX(x,y)=dX(x,y) and dX(y,x)◦dX(x,x)=dX(y,x)

Note that this is stronger than the regular axiom for a semicategory, because d(x,y)=dX(x,x)◦
dX(x,y) ≤

∨
x′∈X

(dX(x,x
′) ◦dX(x′,y) ≤ dX(x,y), so every every totally regular semicategory is a

regular semicategory, with this objects verifying the regularity of the functional and relational

morphism is more direct.

Lemma 2.2.35. If (X,dX,eX) and (Y,dY ,eY) are totally regular enriched semicategory then for an

enriched functor F :X→ Y to be regular is enough that for all x,y ∈X,

dY(y,F(x))◦dX(x,x)=dY(y,F(x))

and

dX(x,x)◦dY(F(x),y)=dY(F(x),y)

also if ϕ :X Y is a distributor for being regular is enough

ϕ(y,x)◦dX(x,x)=ϕ(y,x)

and

dY(y,y)◦ϕ(y,x)=ϕ(y,x)
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Definition 2.2.36. totally regular Q-semicategories as objects and regular enriched functors de-

termines a category with the usual composition of enriched functors. This category is denoted by

Q−TRSCatfun

Definition 2.2.37. totally regular Q-semicategories as objects and regular distributors determines

a quantaloid with the usual composition and local point-wise order of distributors. This category is

denoted by Q−TRSCatrel

there is also a canonical covariant graph immersionwith this respective adjunction inQ−TRSCatrel

Q−TRSCatfun→Q−TRSCatrel

F :X→ Y 7→dY(−,F−)

dY(−,F−)⊣dY(F−,−)

Given the well-pointness of a totally regular semi-category every enriched representable functor

is the induced graph of an enriched functor, then comes with a right adjoint in Q−TRSCatrel

this is the framework of the Cauchy-completeness for enriched categories

Cauchy complete totally regular semi-categories

For enriched totally regular semicategories the definition of cauchy regular distributor, con-

vergence and cauchy completeness are the same that in the context of enriched categories,

that is to say a regular distributor between totally regular semicategories is one with a right ad-

joint inQ−TRSCatrel, we say that a regular distributor converge if exist a enriched (necessarily

regular) functor such that the distributor is the graph of the functor, and finally we say that a

totally regular semicategory is cauchy complete if all the cauchy regular distributors with this

codomain converge, the following lemma characterize cauchy completeness of a enriched totally

regular semicategory and is an extension of an enriched categories result.

Lemma 2.2.38. A enriched totally regular Q semicategory (X,dX,eX) is Cauchy complete if only
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if for every i :u→u idempotent arrow in Q, the induced one object totally regular semicategory ûi

is such that every Cauchy regular distributor ϕ : ûi X converge

Lets note as ϕ∗ the right adjoint of a distributor ϕ in the quantaloid Q− TRSCatrel, for the

Cauchy completeness of (X,dX,eX) is enough to check the convergence of the left adjoint dis-

tributors over X defined in a single object totally regular semicategory, so considering over the

following collection

Xcc= {ϕ : ûi X :ϕ⊣ϕ∗}

the natural structure ecc(ϕ : ûi X) = u and dcc(ψ,ϕ) = [ψ,ϕ](⋆,⋆) =
∧
x∈X

[ψ(x,⋆),ϕ(x,⋆)]

where [ψ(x,⋆),ϕ(x,⋆)] is a lifting in Q determines again a totally regular semicategory, in what

follows we cite the results that characterize Xcc as the Cauchy completion of (X,dx,ex) and how

this implies the equivalence between taken cauchy complete object and take relational morphism.

Proposition 2.2.39. For every totally regularQ semicategory (X,dX,eX), the structure (Xcc,ecc,dcc)

define a totally regular Q semicategory

So is in this part where the totally regular axioms plays a role, because, for every object x in X,

there is regular functor

∆x : ^e(x)d(x,x)→X

, ⋆ 7→ x so the induced graph of ∆x which is the representable distributor of x, is a Cauchy

distributor dX(−,∆x−) = dX(−,x) ⊣ dX(x,−) = dX(∆x−,−). Then there is induced enriched

regular functor

KX :X→Xcc

x 7→dX(−,x)

which reflects enriched Yoneda lemma

Proposition 2.2.40. For every totally regular Q semicategory (X,dX,eX), every Cauchy distributor

ϕ ∈Xcc and every x ∈X,
dcc(dX(−,x),ϕ)=ϕ(x)
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we are writing ϕ(x) as an abbreviation of ϕ(x,⋆).

The following propositioon lets us identify up to equivalence the category of totally regular sem-

icategories with relational morphism with its full subcategory of Cauchy complete objects, first

the main isomorphism

Theorem2.2.41. For every totally regular semicategory (X,dX,eX) the induced graph of the partial

Yoneda immersion KX :X→Xcc is an isomorphism in Q−TRSCatrel

dcc(−,Kx−) :X Xcc

So the full reflexive subcategory ofQ−TRSCatrel given by the Cauchy completions determines

a equivalent subcategory, naturally this is formed by the Cauchy complete objects.

Lemma 2.2.42. If (X,dX,eX) totally regular semicategory, its cauchy completion is a Cauchy com-

plete totally regular semicategory

So the indicated equivalence is

Q−TRSCatrel ∼=Q−TRSCatrel,cc

which says that with relational morphism the category of totally regular semicategories is equiv-

alent to its full subcategory of cauchy complete objects, but in the later this is equivalent to keep

cauchy complete objects but changing morphism with functional ones, says enriched regular

functors, the conclusion of this is that we can take equivalently relational morphism and all the

totally regular semicategories or take functional morphism but keeping only the cauchy complete

totally regular semicategories. For this result consider the following reflection

Proposition 2.2.43. The inclusion i : Q− TRSCatfun,cc → Q− TRSCatfun of the category of

enriched Cauchy complete totally regular semicategories and regular distributors in TRSCatfun,

find in the functor based in the construction (X,dX,eX) 7→ (Xcc,dcc,ecc)

(−)cc : TRSCatfun→Q−TRSCatfun,cc
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a left adjoint and the unity of this adjunction is given by the partial Yoneda embedding in the Cauchy

completion KX :X→Xcc for (X,dX,eX) in Q−TRSCatfun

(−)cc ⊣ i

this says that for every totally regular semicategory X if Y is a Cauchy complete totally regular

semicategory then every regular functor F : X→ Y corresponds to a canonical extension to Xcc

through KX.

X

Xcc Y

KX
F

F

So the construction K(−) : (−)→ (−)cc induces an isomorphism with relational morphism and is

a reflection with functional morphism, lets examine the consequence of this:

Because of the very definition of Cauchy completeness if (X,dX,ex) and (Y,dX,eX) are Cauchy

complete totally regular semicategories thenQ−TRSCatfun(X,Y) ∼=Q−TRSCatrel(X,Y), so the

graph assignation become locally an equivalence between ordered categories and is the identity

in objects, given a biequivalence

Q−TRSCatfun,cc ∼Map(Q−TRSCatrel,cc) ∼Map(Q−TRSCatrel)

where the later equivalence is because even as quantaloidsQ−TRSCatrel,cc ∼Q−TRSCatrel and

Map(−)makes reference to the category structure (even a fragment of the quantaloid structure

with the relational morphism can be translated to the functional context but the resulting pre-

orders are no necessarily co-complete or antisymmetrical).

A final but important note.

Note 2.2.44. Take a semicartesian commutative quantale Q, seeing as a quantaloid with only

one object, a Q− set corresponds with a symmetric totally regular semi-category, the Q−Setrel

and Q− TRSCatrel has the same objects. Now note that every adjunction of distributors Q−
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TRSCatrel,sym,cc ∼=Q−TRSCatrel,sym induces a relational morphism ofQ−sets, indeed ifϕ⊣ϕ∗

is an adjunction of presheaves, if we take only Cauchy complete and symmetric totally regular

semicategories then ϕ converges, so there is an element a that makes ϕ(b) = d(b,a) = d(a,b) =

ϕ∗(b) then ϕ=ϕ∗. With this in mind is immediate that the axioms which verifies the adjunction

implies the relational nature of ϕ.

Then we have the following

Theorem 2.2.45. If we take a semicartesian commutative quantale Q as a one object quantaloid,

the identity assignation in objects and morphism determines a full and faithfully functor.

Q−TRSCatrel,sym→Q−Setrel

We explore this situation but we the other notion of sheave that we are interested to, for this is

important the following construction, that recover "the other way to get to sheaves".

2.2.3 Skeletal categories

One of the conditions for characterizing sheaves through enriched categories is that the category

associated with a sheaf must reflect the locality condition of the sheaf. That is, if two sections are

locally equal (their restrictions to a covering are equal), they must be the same section. In terms

of enriched categories, if s,s′ are objects of an enriched category (X,dX,eX), then if dX(s,s′) =

dX(s
′,s)= eX(s)= eX(s′), then s= s′. This condition for a category is called to be skeletal.

This condition, if not fulfilled by a category, can always be assumed modulo equivalence, as

demonstrated by the following claim found in [Stu05a] (Prop 4.7).

Fact 2.2.46. For any enriched category over a quantaloid Q, (X,dX.eX) there is a associated equiv-

alent skeletal category Xske:

Objects: {[x] : x ∈X}where [x] is the class of x ∈X under the equivalence relation x ∼ x′ iff dX(x,x′)=

dX(x
′,x)= eX(x)= eX(x′).
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Morphism: dXske([x], [y]) =dX(x,y)

Type: eXske([x]) = eX(x). Specifically

X−→Xske

x 7→ [x]

determines an equivalence of Q−enriched categories.

For this reason, even though our proposal concerning sheaves on quantales is grounded in en-

riched categories that should be particularly skeletal, it’s not a hypothesis we’re emphasizing in

our theory, as the aforementioned fact allows us to assume this modulo equivalence of enriched

categories.

2.3 Rel(Q) construction

The previous sections shows a kind of structural climbing from the theory of semi-categories

(categories with out identities) to the totally regular semi-categories that a little loose but with-

out lying, constitute the necessary and sufficient structure to raise the Cauchy completeness that

allows the connection with sheaves.

In this section we explore the other alternative put in and developed for the case of locales in

subsection 1.3.5, this alternative lead us in enriched category setting, in where we have Yoneda

lemma and other wonderfully structural result, the exchange for stay in this paradise is that we

must divide carefully our base object. The goal of this section is make this construction in a way

that extent Walters construction for locales and admit some other interesting examples of quan-

tales.

The work and calculations in this section are originals.

Consider a commutative, integral quantal Q, if Q has certain properties, we can construct a

quantaloid Rel(Q).



62 2 Sheaf-like categories over quantales

Definition 2.3.1. LetQ be a commutative and integral quantale, then define the following category

Objects u u ∈Q

Morphisms u v R ∈Q,R≤u⊗v

Composition u v R≤u⊗v

w S≤ v⊗w

S◦R=(v̂ =⇒ R)⊗ (v̂ =⇒ S)

v̂= v =⇒ (v⊗v)

R

R

S◦R
S

The lattice structure in Rel(Q)(u,v) is just the restriction of the lattice structure (Q,≤)

Lemma 2.3.2. If v is an idempotent of Q, then for all S,R ∈Q we have

(v̂ =⇒ S)⊗ (v̂ =⇒ R)= S⊗R

Proof. v̂= v =⇒ (v⊗v), if v is an idempotent, v⊗v= v, then v̂= v =⇒ v= 1, leaving:

(v̂ =⇒ S)⊗ (v̂ =⇒ R) = (1 =⇒ S)⊗ (1 =⇒ R)

=
∨
{r ∈Q : r⊗1≤ S}⊗∨

{r ∈Q : r⊗1≤R}

=
∨
{r ∈Q : r≤ S}⊗∨

{r ∈Q : r≤R}

= S⊗R

Remark 2.3.3. If the quantalQ is a locale, then this construction corresponds to Walter´s construc-

tion.

Lemma 2.3.4. If (Q,≤,⊗,1) is a commutative, integral, divisible and strict monotone quantale,

then for all a,b,c ∈Q if b≤ c and c ̸= 0=minQ then
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c =⇒ (a⊗b)=a⊗ (c =⇒ b)

Proof. First note that c =⇒ b≤ c =⇒ b then (c =⇒ b)⊗c≤b, this waya⊗(c =⇒ b)⊗c≤a⊗b,
using the adjunction find a⊗ (c =⇒ b)≤ c =⇒ (a⊗b).
Next note that like a⊗b≤b≤ c and the quantale is divisible we obtain

1. a⊗b= c⊗ (c =⇒ (a⊗b))

2. b= c⊗ (c =⇒ b)

With this in mind and that we already have a⊗ (c =⇒ b)≤ c =⇒ (a⊗b), if
a⊗ (c =⇒ b)< c =⇒ (a⊗b), like c ̸= 0 and the quantale is strict linear, gets

a⊗b = a⊗c⊗ (c =⇒ b)

< c⊗ (c =⇒ (a⊗b))

= a⊗b

A contradiction that comes from the strict inequality, then what really happens is

a⊗ (c =⇒ b)= c =⇒ (a⊗b)

Lemma 2.3.5. If (Q,≤,⊗) is an integral, strict monotone quantale then the only idempotent are the

top and the bottom elements.

Proof. Consider v ∈Q, such that 0< v< 1, then like 0 ̸= v and 1 is the unity, if v is an idempotent

for the strict monotony we have

v = v⊗v

< v⊗1

= v

leaving v < v, a contradiction that comes from suppose that v is an idempotent, then the only

idempotent are 0 and 1.
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Theorem 2.3.6. ConsiderQ a commutative and integral quantale, ifQ is divisible and strict mono-

tone, then the construction Rel(Q) produces a quantaloid.

Proof. First of all, we prove the composition is well defined, considering u R
−→ v

S
−→w, that means

R≤u⊗v and S≤ v⊗w, we divide this part of the prove in two cases:

v is idempotent:

If v is idempotent, then the lemma 2.3.2, tell us that

S◦R := (v̂ =⇒ S)⊗ (v̂ =⇒ R)

= S⊗R

≤ (u⊗v)⊗ (v⊗w)

≤ u⊗w

from where we say that u S◦R
−−→w.

v is not an idempotent:

First note that since v is not an idempotent v ̸= 0, then we apply lemma 2.3.4 and obtain

v̂= v =⇒ (v⊗v)= v⊗ (v =⇒ v)= v⊗1= v

from where we say that

S◦R=(v̂ =⇒ R)⊗ (v̂ =⇒ S)= (v =⇒ R)⊗ (v =⇒ S)

Since Q is divisible and R≤u⊗v≤ v for the lemma 5 we obtain

1. R=u⊗v⊗ ((u⊗v) =⇒ R)

2. R= v⊗ (v =⇒ R)

in particular from 1

R≥ (u⊗v)⊗ ((u⊗v) =⇒ R)

then using the adjunction we conclude that
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v =⇒ R≥u⊗ ((u⊗v) =⇒ R)

if v =⇒ R>u⊗ ((u⊗v) =⇒ R) then like Q is linear and v ̸= 0 (because is not an idempotent),

we have

R = v⊗ (v =⇒ R)

> v⊗ (u⊗ ((u⊗v) =⇒ R))

= (v⊗u)⊗ ((u⊗v) =⇒ R)

= R

that is to say R> R a contradiction. Therefore v =⇒ R= u⊗ ((u⊗v) =⇒ R)≤ u, analogously
we obtain v =⇒ S≤w, therefore

S◦R=(v =⇒ R)⊗ (v =⇒ S)≤u⊗w

from where we say that u S◦R
−−→w.

Next, we focus in the associativity of this well-defined composition

u v

v′ w

R

S◦R
ST◦(S◦R)

T

u v

v′ w

R

S
T◦S

(T◦S)◦R

T

T ◦ (S◦R)= (ŵ =⇒ T)⊗ (ŵ =⇒ ((v̂ =⇒ S)⊗ (v̂ =⇒ R)))

(T ◦S)◦R=(v̂ =⇒ R)⊗(v̂ =⇒ ((ŵ =⇒ S)⊗(ŵ =⇒ T))) Divide the proof of the associativity

in the idempotency of v and w

v is idempotent

Then v̂ = v =⇒ (v⊗ v) = v =⇒ v = 1, then v̂ =⇒ X = 1 =⇒ X = X for all X ∈ Q, then:

T ◦ (S◦R)= (ŵ =⇒ T)⊗ (ŵ =⇒ (S⊗R))
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(T ◦S)◦R=R⊗ (ŵ =⇒ S)⊗ (ŵ =⇒ T)

If w is also an idempotent then ŵ= 1 and ŵ =⇒ X=X for all X ∈Q, from where we say that

T ◦ (S◦R) = T ⊗ (S⊗R)

= (T ⊗S)⊗R

= (T ◦S)◦R

If w is not an idempotent, then w ̸= 0 and for lemma 2.3.4 we can conclude:

ŵ=w =⇒ (w⊗w)=w⊗ (w =⇒ w)=w⊗1=w, so
T ◦ (S◦R)= (w =⇒ T)⊗ (w =⇒ (S⊗R))
(T ◦S)◦R=R⊗ (w =⇒ S)⊗ (w =⇒ T)

Now note that S≤ v⊗w≤w because S is an arrow from v tow, likew is not an idempotent then

w ̸= 0, so we apply again lemma 2.3.4 and obtain

w =⇒ (S⊗R)=R⊗ (w =⇒ S), then

T ◦ (S◦R)= (w =⇒ T)⊗ (w =⇒ (S⊗R)) = (w =⇒ T)⊗ (R⊗ (w =⇒ S))

= (w =⇒ T)⊗R⊗ (w =⇒ S)

= R⊗ (w =⇒ S)⊗ (w =⇒ T)

= (T ◦S)◦R

Then we can say that if v is an idempotent the composition we study is associative.

If v is not an idempotent

Then we study in two cases, whenw is an idempotent which is completely analogous to the case

where v is an idempotent and w it is not, and the case of interest where neither are idempotent.

w is not and idempotent In this case like neither are idempotent we have: v̂= v and ŵ=w so

T ◦ (S◦R)= (w =⇒ T)⊗ (w =⇒ ((v =⇒ S)⊗ (v =⇒ R)))

(T ◦S) ◦R= (v =⇒ R)⊗ (v =⇒ ((w =⇒ S)⊗ (w =⇒ T))) in this case we use the study we
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did when we wanted to see the composition was well defined. Remember that when v is not and

idempotent and S :u→ v that is to say S≤u⊗v, we find v =⇒ S≤u, use this for say that like

S : v→w and v,w are not idempotent, we have: v =⇒ S ≤w and w =⇒ S ≤ v, using lemma

2.3.4 we find:

(w =⇒ ((v =⇒ S)⊗ (v =⇒ R)))= (v =⇒ R)⊗ (w =⇒ (v =⇒ S)) and

(v =⇒ ((w =⇒ S)⊗ (w =⇒ T)))= (w =⇒ T)⊗ (v =⇒ (w =⇒ S)).

Now is a general fact about quantales that: a =⇒ (b =⇒ c)= (a⊗b) =⇒ c, so combining this,

we obtain

T ◦ (S◦R) = (w =⇒ T)⊗ (w =⇒ ((v =⇒ S)⊗ (v =⇒ R)))

= (w =⇒ T)⊗ ((v =⇒ R)⊗ (w =⇒ (v =⇒ S)))

= (w =⇒ T)⊗ (v =⇒ R)⊗ ((v⊗w) =⇒ S)

= (v =⇒ R)⊗ ((w =⇒ T)⊗ ((v⊗w) =⇒ S))

= (v =⇒ R)⊗ ((w =⇒ T)⊗ (v =⇒ (w =⇒ S)))

= (v =⇒ R)⊗ (v =⇒ ((w =⇒ T)⊗ (w =⇒ S)))

= (T ◦S)◦R

Finally, we are going to prove that for everyu ∈Obj(Rel(Q)) exist amorphism 1u ∈Rel(Q)(u,u)

which is an identity for the well defined and associative composition.

So for every u ∈Obj(Rel(Q))=Q take

1u=u⊗u

lets prove that R◦1u=R if R :u→ v, and 1u ◦S= S if S : v→u, for every v ∈Obj(Rel(Q))=Q.

Again we divide the proof based in the idempotency.

If u is an idempotent

Using lemma 2.3.5, we have that u= 0 or u= 1. If u is the bottom element of the quantale, then

1u = u⊗u = 0⊗0 = 0, so 1u = u = 0 and then if R : u→ v, we have R ≤ u⊗v = 0⊗v = 0, so
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necessarily R= 0, so we have

R◦1u = (û =⇒ 1u)⊗ (û =⇒ R)

(u is an idempotent) = 1u⊗R

= 0⊗0

= 0

= R

Is analogous show that 1u ◦S= S.
If u= 1 then 1u=u⊗u= 1⊗1= 1, and then R◦1u= 1u⊗R= 1⊗R=R, equally 1u ◦S= S
If u is not an idempotent. Then û = u, and like u ̸= 0, we can use lemma 2.3.4 to say that

u =⇒ (u⊗u) = u⊗ (u =⇒ u), additionally like R ≤ u for lemma 5, u⊗ (u =⇒ R) = R so we

have:

R◦1u = (u =⇒ 1u)⊗ (u =⇒ R)

= (u =⇒ (u⊗u))⊗ (u =⇒ R)

= (u⊗ (u =⇒ u))⊗ (u =⇒ R)

= (u⊗1)⊗ (u =⇒ R)

= u⊗ (u =⇒ R)

= R

Remark 2.3.7. If the quantale Q of the previous construction is locale, we obtain the Walter´s

construction.

Indeed if every element is idempotent then the composition is just the quantale product, see

lemma 2.3.2, based in this and the result in the final section of chapter 1, we consider Cauchy

complete, symmetric, and skeletal Rel(Q) categories as sheaves over Q.



2.3 Rel(Q) construction 69

Rel(Q) is a closed bicategory, so we can enrich over the monoidal structure given by the com-

position of arrows, then there is focus in the category

Rel(Q)−Catfun,cc,sym ∼=Rel(Q)−Catrel,sym

The following lemmas let us characterize the Rel(Q) construction as a canonical construction,

proper of the enriched category theory.

For the following definition we take as a reference the nLab article [nLa23].

Definition 2.3.8. In a category C a C−arrow a e
−→ a is said has a retract if there is a C−arrows

r :b→a, s :a→b such that r◦s= e and s◦r= 1b, we also said that b is a retract of a

Note that if an endomorphism a
e
−→ a has a retract then is an idempotent arrow. Indeed e◦e=

(r ◦ s) ◦ (r ◦ s) = r ◦ (s ◦ r) ◦ s = r ◦ 1b ◦ s = r ◦ s = e. The property that every idempotent in a

category arises in this way, is called Cauchy-completeness for categories (because is the Cauchy-

completeness over the monoidal category, Set.2)

It happens that for every categoryC it exist a categoryD and an immersionC i
−→D such thatD is

idempotent-complete in the sense that every idempotent ofD has a retraction and is the smaller

one in the sense that every object of D is a retract of the image of some object of C, because of

this D is considered a completion of C, for which it is a call split-idempotent completion of

C. Always exists because is defined in terms of pre-sheaves, but as we will see admits several

different constructions. To detect when we are in the presence of this completion there is a test

lemma that comes from the very definition. See [nLa23]

Lemma 2.3.9. For any full and faithful embedding i :C→D, if

1. i(e) splits for any idempotent e : x→ x ∈C.

2. For every object d in D exist a object cd in C such that d is a retract of i(cd) in D.

2Remark that Set−categories are (small) usual categories
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then (D,i) represent a split-idempotent completion of C.

Proposition 2.3.10. Rel(Q) is the split-idempotent completion of Q like a one-object quantaloid.

Proof. Let´s see that

i :Q→Rel(Q)

⋆ 7→ 1

⋆
u
−→ ⋆ 7→ 1

u
−→ 1

is in the hypothesis of lemma 2.3.9. Because 1 is an idempotent i is a functor, clearly is full and

faithful. The rest is see that

i(⋆
e
−→ ⋆) := 1

e
−→ 1

splits in Rel(Q) if e is an idempotent ofQ, besides of showing that every u ∈Obj(Rel(Q))=Q

is a retract of i(⋆)= 1. Both facts are very clear, in the light of the commutativity of the following

diagrams in Rel(Q).

1 e e 1

1 e

u 1

u

e

e⊗e=e e

e

e⊗e=1e
e

u

1u=u⊗u
u

With this, we can give a comparison between the both notions of quantales in study.

2.4 Q−sets vs Rel(Q)−Catsym

Fact 2.4.1. Taking a quantale as one object quantaloid the axioms of Q− set (see 2.1.2) and the

axioms of Q−TRSCat ( see 2.2.36) are the same
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For functional morphisms is pretty literal the correspondence, for relational morphism we need

to take note, since:

Q−TRSCATrel,cc ∼Q−TRSCATrel

for comparingQ−TRSCatrel withQ−Setrel we can suppose that our objects are Cauchy com-

plete totally regular semi-categories and consider that the morphism are Cauchy distributors this

plus the symmetry implies that if ϕ :X Y is a regular Cauchy distributor then the right ad-

jointϕ∗ : Y Xmakesϕ(y,x)=ϕ∗(x,y), indeed like the semicategories are Cauchy complete

then exist a functor F :X→ Y such that ϕ(y,x) = dY(y,F(x)) = dY(F(x),y) =ϕ∗(x,y) then the

unity and co-unity of the adjunction becomes

dX(x,x
′)≤ ∨

y∈Y
ϕ∗(x,y)⊗ϕ(y,x′)= ∨

y∈Y
ϕ(y,x)⊗ϕ(y,x′)

and

dY(y,y
′)≥ ∨

x∈X
ϕ(y,x)⊗ϕ∗(x,y′)=

∨
y∈Y
ϕ(y,x)⊗ϕ(y′,x)

The co-unity is explicitly present in the definition of relational morphism between Q−sets but

there is only a trace of the unity that is only required over the diagonal δ(x,x) and in a weaker

version. Explicitly the extra axiom for relational morphism in Q−Set and the only who is not

explicitly translated to regular Cauchy distributors is:

δ(x,x)≤ ∨
y∈Y
ϕ(y,x)

which is clearly implied by the unity of the adjunction ϕ⊣ϕ in Q−TRSCatrel.

So the identical assignations naturally give a functor

Q−TRSCatsym,cc,rel→Q−Setrel

(X,d,e) 7→ (X,d)

ϕ 7→ϕ

Proposition 2.4.2. The following define a functor Q−Setfun→Rel(Q)−Catfun,sym
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(X,δ) 7→ (X,d,e)

d(x,y) := δ(x,y)

e(x) := δ(x,x)

and is identical in morphism.

F :X→ Y 7→ F :X→ Y

Proof. This is pretty direct, since d(x,y)= δ(x,y)= δ(x,x)⊗δ(x,y)⊗δ(y,y)≤ δ(x,x)⊗δ(y,y)=
e(x)⊗e(y) = e(y)⊗e(x) then d(x,y) : e(y)→ e(x) is an arrow in Rel(Q), the composition in-

equality and the symmetry are explicit in the axioms of Q− set and the existence of identities

axiom comes from the idempotency of δ(x,x), 1e(x) = e(x)⊗e(x) = δ(x,x)⊗δ(x,x) = δ(x,x) =
d(x,x) so this map objects to objects, and given that the axioms for functional morphism be-

tween Q−Sets and enriched functors between enriched categories are the same, the identical

assignation in morphism determines a functor.

Remark 2.4.3. Note that for the assignation (X,d,e) 7→ (X,d) fromObj(Rel(Q)−Catsym,rel,cc)

toObj(Q−Setrel) happens that in the definition of enriched category over quantaloids of the form

Rel(Q) the hom arrows are always composed over idempotent elements ofQ, so as the distributors.

Indeed note that the diagrams presented in the definitions are

e(y) e(x) e(x) e(y)

e(z) e(x′)

d(x,y) ϕ(y,x)

d(y,z)
d(x,y)◦d(y,z) d(x,x′)

ϕ(y,x)◦d(x,x′)

and because of the composition and identities in Rel(Q) happens that 1e(x)= e(x)⊗e(x)

With all this just remaind a theorem of [Stu05b], that relates enriched categories over splitt idem-

potent completions with totally regular semicategories.

Theorem 2.4.4. For any quantaloid Q if Q note is the (a) splitt-idempotent completion of Q, then

there is an equivalence

Q−TRSCatrel ∼=Q−Catrel
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With this in mind and the result of lemma 2.3.10, if Q is a quantale and we take as a one object

quantaloid, then:

Rel(Q)−Catsym,cc,fun ∼=Rel(Q)−Catsym,rel ∼=Q−TRSCatrel,sym ∼=Q−TRSCatfun,cc,sym

Then with the result of the theorem 2.2.45, gives

Theorem 2.4.5. IfQ is a semicartesian commutative quantale the identity assignation determines

the following arrow, which is an immersion

Rel(Q)−Catrel,sym ∼=Q−TRSCatrel,sym→Q−Setrel



3 Internal and external logic over

sheaf-like categories

The intention of this chapter is to define logics for which the sheaf-like structures of the previous

chapter become semantics, it is the interest of this text that in nature we present two different

perspectives, one extending the categorical approach of hyperdoctrines (see [Hyl80], [Pit99]) and

other extending the perspective presented in [DP21] which in turn extends continuous logic for

metric spaces. We give a section to each of these purposes, in both original work is presently

related to basic definitions that extend the classical theory based on locales to the quantale-based

context and the formulation and resolution of test questions regarding the operation and inter-

pretation of these logics.

3.1 Categorical logic

3.1.1 Hyperdoctrines and (Heyting) tripos

The notion of tripos (Hyland, Johnstone, and Pitts 1980; Pitts 1981) provides a unified approach

of two very different classes of toposes: the realizability toposes and the localic toposes (in the

sense Higg’s description of sheaf toposes as H-valued sets, see Section 4 of Chapter 1)

A tripos is a first-order hyperdoctrine with equality satisfying an additional property that allows

it to interpret impredicative higher-order logic as well. In particular, every tripos gives rise to a
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corresponding topos and every topos gives rise to a tripos. The tripos construction can be seen

as the universal solution to the problem of realizing the predicates of a first-order hyperdoctrine

as subobjects in a logos (a.k.a. Heyting category) with effective equivalence relations.

Definition 3.1.1. Let C be a category with finite products. A doctrine P over C is specified by a

contravariant functor P :Cop→Poset, the category of partially ordered sets andmonotone functions,

we call it a hyperdoctrine if meets the following conditions

• For each object X in C, the poset P(X) is a Heyting algebra, i.e. has top element (⊤) a bottom
element (⊥), binary meets (∧), finite joins (∨) and pseudo complements (=⇒ ).

• For each morphism X
f
−→ Y in C, the monotone function P(Y)

P(f)
−−→ P(X) is a morphism of

Heyting algebras.

we say that is a first-order hyperdoctrine if additionally have the following properties

1. For every diagonal morphism in C, X
∆X−→X×X there is a left adjoint for P(X×X) P(∆X)

−−−→P(X)

at the level of the top element of P(X), ⊤X = ⊤P(X) ∈ P(X). That is to say, exist an element

=X∈P(X×X) such that for every A ∈P(X)

⊤X ≤P(∆)(A) if and only if =x≤A

2. For every projection in C Y ×X πY−→ Y its image P(Y)
P(πY)
−−−→ P(Y ×X) has a left and a right

adjoint, that are noted respectively by (∃X)Y and (∀X)Y . This means that for allA ∈P(Y) and
B ∈P(Y×X) we have

(∃X)Y(B)≤A if and only if B≤P(πY)(A)
P(πY)(A)≤B if and only if A≤ (∀X)Y(B)

Besides this we must ask for the naturality of this construction, this is that for every morphism

Y
f
−→ Y′ in C the following diagrams commute
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P(Y′×X) P(Y×X) P(Y′×X) P(Y×X)

P(Y′) P(Y) P(Y′) P(Y)

P(f×1X)

(∃X)Y′ (∃X)Y

P(f×1X)

(∀X)Y′ (∀X)Y

P(f) P(f)

We call the elements of the Heyting algebras P(X) P−predicates and the Heyting algebras mor-

phismP(f) :P(Y)→P(X) re-indexingmorphism (through f if wewant to specify themorphisms

where is come from), this terminology comes from the following main example:

Examples 3.1.2. For (H,≤,∧,1) a Heyting algebra consider the functor

Setop→Poset

X
f
−→ Y 7→HY

−◦f
−−→HX

which assigns to every set X, the Heyting algebra HX := {f :X→H : f is a function} with operation

and order defined pointwise, and to every function f : X→ Y the Heyting algebra morphism given

by precomposition with f

HY
−◦f
−−→HX

Y
α
−→H 7→X

α◦f
−−→H

Let’s examine the structure of this specific hyperdoctrine: The fact that for every set X, defined

pointwise the structure of Heyting algebra over HX is completely straightforward (the particu-

lar structure in H can be translated for the fold product HX). The equality =X∈ HX is a delta

Kronecker function =X:X×X→H defined by:

=X (x,y)=


⊤ if x=y

⊥ if x ̸=y

From this is clear that for ⊤X : X→H, x 7→ ⊤ and any α : X×X→H we have for all x,y ∈ X,
=X (x,y)≤α(x,y) if and only if ⊤≤α(x,x) which is ⊤X(x)≤α(∆X(x))=α◦∆X(x), so
=X≤ α if and only if ⊤X ≤− ◦∆X(α). Note that for the only property is that (H,≤,∧,⊤) have
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top and bottom elements.

Lets see how are the quantifiers in this hyperdoctrine. Considerβ : Y×X→H, γ : Y→H arbitrary

functions, soβ≤−◦πY(γ)means that for every (y,x) ∈ Y×Xwe haveβ(y,x)≤−◦πY(γ)(y,x)=
γ◦πY(y,x)=γ(y), so this is equivalent to ask that

∨
x∈X
β(y,x)≤γ(y), so defining (∃X)Y(β)(y) :=∨

x∈Xβ(y,x), find out that

(∃X)Y ⊣−◦πY

Dual argument shows that if we define for all y ∈ Y, (∀X)Y(β)(y) :=
∧
x∈X
β(y,x) then

−◦πY ⊣ (∀X)Y

. The naturality is simply because of the commutativity of the process of pre-compose and taking

joins: for every functions β : Y×X→H, g : Y→ Y′ and y ∈ Y we have

(
∨
x∈X
β(−,x)◦g)(y) =

∨
x∈X
β(−,x)(g(y))

=
∨
x∈X

(β(g(y),x)

= (
∨
x∈X

(β(g(−),x))(y)

Similar happens for meets.

A way of thinking in a function X α
−→H is as its image, that is to say as a family of elements of

H indexed by elements of X as {α(x)}x∈X so we can refer to the elements of the Heyting algebra

HX as H−families over X, lists of elements of H indexed by the set X, and the role of the image

of a function f : Y→X is just to re-index this H−families, {α(x)}x∈X 7→ {α(f(y))}y∈Y .

The specific distribution property of Heyting algebras is not used here, so lets make the following

note

Note 3.1.3. The argument for showing the existence of the equality predicate and quantifiers can

be perform in any complete lattice.

So this justify in first instance the name of re-indexing morphism for P(f) : P(Y)→ P(X), the

name of predicate over X for an element a ∈ P(X) comes clearly by taking in the previous ex-

ample the boolean algebra 2 = {⊥,⊤}, and the correspondence between subsets, characteristic



78 3 Internal and external logic over sheaf-like categories

functions and first-order properties over a set X. So there is this intuition of thinking that the

elements of P(X) are generalized first-order properties (more accurately local properties) over X.

Another interesting example of first-order hyperdoctrine came from the notion of Heyting

category (a.k.a. logos) C: This is a first-order hyperdoctrine where the contravariant functor is

just the subobject poset functor Sub :Cop→HeytAlg and, for each morphism f : a→ a ′ in C,

the Heyting algebra morphism f∗ : Sub(a ′)→ Sub(a) has a left adjoint, ∃f : Sub(a)→ Sub(a ′),

and a right adjoint ∀f : Sub(a)→ Sub(a ′).

3.1.2 C[P] construction

The main first construction in the theory of hyperdoctrines concerns is based in the fact that we

can interpret and extract first-order signatures in arbitrary first-order hyperdoctrines, for this

let’s remark first on the interpretation part:

Consider Σ = (X,F,R) a multi-sorted first-order signature where X = {Xi}i∈I is a set of sorts,

F= {fj(x1 :X1, ...,xn :Xn) : Y}j∈J a set of function symbols andR= {Rk :X1, ...,Xm}k∈K is a set of

predicate symbols. In any quantalic tripos (C,P) can be interpreted this signature by giving an

object ofC for every sort (type) symbol, amorphism for every function symbol, and aP−predicate

for every predicate symbol, so lets put between double lines the interpretation of a symbol ∥−∥,
then we just said that

X ∈X ∥∥
−→ ∥X∥ ∈Obj(C)

f(x1 :X1, ...,xn :Xn) : Y ∈F ∥∥
−→ ∥f∥ : ∥X1∥×· · ·×∥Xn∥→ ∥Y∥

R(X1, ...Xn) ∈R ∥∥
−→ ∥R∥ ∈P(∥X1| ×· · ·×∥Xn∥)

Proceeding by induction there is an interpretation for every first-order term over the signature Σ

as amorphism inC. So consider a term t(x1 :X1, ...,xn :Xn) : Y, define ∥t∥ : ∥X1∥×···×∥Xn∥→ ∥Y∥
recursively in the complexity of t by:
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• If t is xi :X1× ...×Xn then ∥t∥ := ∥X1∥× ...×∥Xn∥ πi−→ ∥Xi∥

• If t is f(t1(x1, ...xn) : Y1, ...,tm(x1, ...,xn) : Ym) : Y where for every 1≤ j≤m, tj(x1, ...,xn) :

Yj is a term such that there is already defined an interpretation ∥tj∥ : ∥X1∥×···×∥Xn∥→ ∥Yj∥
and f(y1 : Y1, ...,ym : Ym) : Y is a function symbol, define ∥t∥= ∥f∥◦ (∥t1∥, ...,∥tm∥) where
(∥t1∥, ...,∥tm∥) is a product of morphism in C given by the universal property of cartesian

product.

Off course there is also a recursive canonical interpretation of first-order formulas over the sig-

nature Σ, predicates are already interpreted, and with the structure of Heyting Algebra in each

P(X) interpret equality of terms, disjunctions and conjunctions, the morphism (∃X)Y and (∀X)Y
are used to interpret existential and universal quantifiers.

∥t1 : Y= t2 : Y∥ : =Y (∥t1∥,∥t2∥)
∥ϕ∧ψ∥= ∥ϕ∥∧∥ψ∥
∥ϕ∨ψ∥= ∥ϕ∥∧∥ψ∥

∥ϕ =⇒ ψ∥= ∥ϕ∥ =⇒ ∥ψ∥
∥ϕ =⇒ ψ∥= ∥ϕ∥ =⇒ ∥ψ∥
∥∀xϕ(x,y)∥=(∀X)Y(∥ϕ∥)
∥∃xϕ(x,y)∥=(∃X)Y(∥ϕ∥)

Given a first-order hyperdoctrine P : Cop→ Poset there is a internal language of it, given by

the first-order signature conformed by a symbol of type (a sort) for every object X of C, a symbol

of function for every morphisms X f
−→ Y in C and a symbol of predicate R(x) for every element

R ∈P(X), there is a canonical interpretation for this signature in Cop→Poset, formulas based in

this signature and interpreted in this obvious canonical way express properties that speak about

the category C and more precisely the functor P, and can be used to make constructions using the

internal logic. More precisely if the validity of a sentence in this language is required by ask for

the interpretation of the sentence be the top element of the respective Heyting algebra in which
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is interpreted, we perform several sentences that codify for example the behavior of categories

such as Q−Setsrel, for this consider the following construction.

Given P :Cop→Poset a first-order hyperdoctrine, consider the category C[P] whose objects are

couples (X,E) where X is an object of C and E is binary predicate over X, i.e. E ∈ P(X×X) such
that is a partial equivalence relation in the internal logic, that is to say the following sentences

are true:

∀x,y :X E(x,y) =⇒ E(y,x)

∀x,y,z :X E(x,y)∧E(y,z) =⇒ E(x,z)

The morphisms of this category are binary predicates that in the internal logic are well-defined

functions between the "co-sets" given by the partially equivalence relations in its domain and

co-domain. Concretely a morphism (X,E)
F
−→ (Y,E′) is given by a predicate F ∈P(X×Y) such that

the following sentences are true in the internal logic:

1)∀x :X ∀y : Y F(x,y) =⇒ E(x,x)∧E(y,y)

2) ∀x,x′ :X ∀y,y′ : Y E(x,x′)∧E′(y,y′)∧F(x,y) =⇒ F(x′,y′)

3) ∀x :X ∀y,y′ : Y F(x,y)∧F(x,y′) =⇒ E′(y,y′)

4) ∀x :X E(x,x) =⇒ ∃y : Y F(x,y)

Proposition 3.1.4. Given a first-order hyperdoctrine P : Cop→ Poset the internal partial equiva-

lence relations (X,E) as objects and internal well defined functions (X,E) F
−→ (Y,E′) as morphisms de-

termines a category with the following composition and identities:for (X,E) F
−→ (Y,E′) and (Y,E′) G−→

(Y,E′′), G◦F(x,z) := ∃y : Y(F(x,y)∧G(y,z)) and id(X,E)=E

Theorem 3.1.5. For every first-order hyperdoctrine P : Cop→ Poset, the category C[P] is a logos

with effective equivalence relations, and classifies in the category of logos with effective equivalence

relations the interpretation of P-predicates.

Recall what means for the hyperdoctrine of H−families for a fixed complete Heyting algebra

H as in example 3.1.2, the construction C[P]: A binary predicate E ∈ P(X×X) is given by a
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function X×X E
−→H and to being an internal partial equivalence relation is given by ask that the

following equality’s holds in H,
∧
x,y∈X

(E(x,y) =⇒ E(y,x)) = 1,
∧

x,y,z∈X
((E(x,y)∧E(y,z)) =⇒

E(x,z)) = 1, that is to say that for every x,y,z ∈X it happens that E(x,y) =⇒ E(y,x) = 1 and

((E(x,y)∧E(y,z)) =⇒ E(x,z)) = 1 the later is equivalent to the inequalities E(x,y) ≤ E(y,x)
and E(x,y)∧E(y,z) ≤ E(x,z), note that they are exactly the axioms 1. and 2. of the definition

2.1.2 taking H as a commutative semicartesian quantale.

Now lets note that the first axiom for a morphism in C[P] for this hyperdoctrine of H−families;

a binary predicate F ∈P(X×Y) is given by a function F :X×Y→H, that the axiom

∀x :X ∀y ∈ Y F(x,y) =⇒ E(x,x)∧E(y,y)

comes true in this specific hyperdoctrine means that
∧

x∈X, y∈Y
(F(x,y) =⇒ (E(x,x)∧E(y,y))) =

1 so for every x ∈ X and y ∈ Y, it happens that F(x,y) =⇒ (E(x,x)∧E(y,y)) = 1 which is

equivalent to F(x,y) ≤ E(x,x)∧E(y,y) but this in Heyting algebras only means that F(x,y) ≤
E(x,x) and F(x,y)≤E(y,y) or in amore useful presentation for us that F(x,y)∧E(x,x)= F(x,y)

and F(x,y)∧E(y,y)= F(x,y), so this axiom can replaced by the axioms:

∀x :X∀y : Y F(x,y)∧E(x,x)= F(x,y)

∀x :X∀y : Y F(x,y)∧E(y,y)= F(x,y)

Now lets examine this applied to the second axiom for morphism in C[P], ∀x,x′ : X ∀y,y′ :
Y E(x,x′)∧E′(y,y′)∧ F(x,y) =⇒ F(x′,y′) which means that for all x,x′ ∈ X and y,y′ ∈ Y,
E(x,x′)∧E′(y,y′)∧F(x,y)≤ E′(y,y′), so taking x= x′ and using the equivalent version of the

axiom 1) obtain E(x,x)∧E′(y,y′)∧F(x,y)=E′(y,y′)∧F(x,y) the axioms says that

E′(y,y′)∧F(x,y)≤ F(x,y′)

and making y=y′ we obtain

E(x,x′)∧F(x,y)≤ F(x′,y)
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Reciprocally assuming the later two inequalities obtain the axiom 2): E(x,x′)∧E′(y,y′)∧F(x,y)≤
E(x,x′)∧F(x,y′)≤ F(x′,y′). From this is clear that for the example of H−families if we change

the first two axioms for morphisms C[P] by the following axioms (in the first two we prefer fall

in redundant writing for make an explicit translation of the axiom to the quantale case.)

I) ∀x :X ∀y : Y F(x,y) =⇒ (F(x,y)∧E(x,x))

II) ∀x :X ∀y : Y F(x,y) =⇒ (F(x,y)∧E(y,y))

III ∀x :X ∀y,y′ : Y E′(y,y′)∧F(x,y) =⇒ F(x,y′)

IV) ∀x,x′ :X ∀y : Y E(x,x′)∧F(x,y) =⇒ F(x′,y)

This notes are for make explicit the very direct relation of the construction C[P] for the hyperdoc-

trine of H−families H(−) : Setop→Poset with the definition of the category Q−Setrel applied

to a Heyting algebra. Indeed for objects, define an H−set is equivalent that define an internal

partial equivalence relation with the extra property ∀x,y : X E(x,y) =⇒ E(x,x) and the mor-

phism are exactly the same, compare what means the axioms 3) and 4) in this hyperdoctrine and

note that is exactly the last two axioms of the definition 2.1.5 of relational morphism between

Q-sets applied to the Heyting algebra (H,≤,∧,⊤) as a quantale. The axioms 1) and 2) are equiv-

alent to the axioms I,II,III,IV and this are exactly the first four axioms of the definition 2.1.5. So

we put this as a fact that we use in the next section for give a version of the C[P] construction in

the context of first-order doctrines valued over quantales.

Fact 3.1.6. Given a complete Heyting algebra H, for the hyperdoctrine of H−families

H(−) : Setop→Poset

X 7→HX

the logos Set[H(−)] is isomorphic to the topos H−Setrel ∼ Sh(H)
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3.1.3 Generalized quantifiers and Beck-Chevalley condition

The interpretation of the adjoints to the induced maps of projections are interpreted as the usual

quantifiers but, we can ask to for adjoints of the induced arrow of every morphism, and then

get to the concept of generalized quantifiers. The existence of it actually only depends on the

existence of the usual ones, that is to say if re-index along projections finds adjoint, then re-

indexing along any morphism finds adjoints to. We won’t focus on these generalized quantifiers

then, but the extra logical property of replacing terms in formulas with quantifiers is a property

that is categorically caught using the so-called Beck-Chevalley property. Something important to

note is that having it for reindexing morphisms through projections, that is, having it on classical

quantifiers does not imply having it on all morphisms, which is why it is usually requested in

general.

Note 3.1.7. Ask for left and right adjoints of the images of projections implies right and left adjoint

for the image of every morphism

The Beck-Chevalley condition for a hyperdoctrine P :Cop→Poset says that for every morphism

Y
f
−→ Y′ in C, the horizontal composition specified in the following diagram

P(X×Y) P(X×Y) P(X×Y′) P(Y′)

P(X×Y) P(Y) P(Y′) P(Y′)

idP(X×Y) (∃X)Y

idP(X×Y) P(idX×f)

(∃X)′Y

P(πY′)

idP(Y′)

P(πY)

ϵX,Y

P(f)

idα ηX,Y′

idP(Y′)

is an isomorphism.

As it said this categorical property corresponds to the logical property that replaces terms in for-

mulas commute with the process of taking quantifiers. To make explicit this relation, is necessary

to consider a syntactic hyperdoctrine over a category formed by context (order list of variables)

and arrows as terms, the functor that gives the hyperdoctrine takes a context and leaves the set

of formulas in this variables, re-indexing along a term is given by replacement. Interpret the pre-

vious diagram over this syntactic hyperdoctrine makes appear the mentioned logical property,
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moreover we can extend this to every hyperdoctrine because as is said at the beginning of section

3.1.2, every hyperdoctrine arises a language.

The theory thatwewant to extend to quantale based hyperdoctrines don’t use this logical/categorical

property, we omit get deeper into it because of this, but if one want to make some serious ap-

plications (for example model-theoretic questions) then it should be taken into account as a hy-

pothesis.

3.2 Monoidal hyperdoctrines

In this section we propose an extension of the theory of first-order hyperdoctrines with values

in quantales rather than in Heyting algebra, and explore how the categoryQ−Setrel appears as

an example of the C[P] construction in this context.

Definition 3.2.1. Given C a category with finite products, a doctrine Cop→ Poset is said to be a

monoidal hyperdoctrine if:

1. For every object X of C the poset P(X) has structure of commutative integral quantale natural

in the variable X, that is:

2. For every morphism X
f
−→ Y in C its image P(Y)

P(f)
−−→ P(X) is a morphism of quantales (a

morphism of complete lattices that preserve the monoidal product).

we say that is a first-order monoidal hyperdoctrine if as a functor meets exactly the two extra

properties explicit in the definition 3.1.1 that makes an hyperdoctrine first-order (i.e. has a equality

predicate and quantifiers)

As in the cartesian case (with Heyting algebras) we call predicates to the elements of the quan-

tales P(X) forX in C, and re-indexing along f to the image of an arrowX f
−→ Y. This corresponds

to the very direct fact that the hyperdoctrine of set indexed families of a fixed quantale, makes

an example of first-order monoidal hyperdoctrine.
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Examples 3.2.2. Consider a commutative integral quantale (Q,≤,⊗,1), the functor

Setop
Q(−)

−−−→Poset

X
f
−→ Y 7→QX

−◦f
−−→QY

is a monoidal first-order hyperdoctrine.

The quantale structure in Qx is defined by components and is direct calculation matter check

this. The first-order structure can be justified for the note 3.1.3, so as a quantale is in particular

a complete lattice has arbitrary meets and joins, given the first-order quantifiers ∀ and ∃. Note
that for this example the equality predicate has a discrete nature.

3.2.1 C[P] construction for monoidal first-order hyperdoctrines

The extra monoidal structure naturally requires additional syntax that allows us to talk about it,

so for this consider the usual syntax of first-order logic, i.e. logical symbols for equality (=), con-

junction (∧), disjunction (∨), a symbol for implication (=⇒ ), symbols for quantifiers, existential

(∃) and universal (∀), and no logical symbols given by symbols of function, relation and constant

(this one can be put as certain class of function symbol), this comes with arities and types (sorts)

for each as implicitly we perform them in the hyperdoctrines section, the new syntaxes comes

with a new symbol & which plays the logic role of a strong conjunction, because its interpreta-

tion ⊗ in semi-cartesian quantales meets a⊗b≤a∧bwhich a posteriori says thatϕ&ψ≤ϕ∧ψ,
there is another change which no comes with a new symbol or with withdraw a old one, but with

re-interpreted the meaning of the implication symbol (=⇒ ), this is because the lattices structure

is not necessarily a Heyting algebra, so calculate infima with a fixed element has no necessarily

a right adjoint which becomes the interpretation of the (cartesian) implication, instead of this

we have a right adjoint with the process of make monoidal products with fixed elements, then a

monoidal implication, for which in the general theory use the same logical symbol.

So in resume, the logical framework is that of a weak first-order logic in which the conjunc-



86 3 Internal and external logic over sheaf-like categories

tion symbol is & and weak means that the contraction rule for first-order deductive calculus

is dropped, remark that this says that from a formula ϕ we can deduce ϕ&ϕ which force the

idempotency axiom on ⊗ and makes or quantale a locale, so explicitly avoid this deductive rule,

additionally have a weak conjunction symbol ∧ that responds to the complete lattice structure

in our quantales that are the algebraic models of this logical gadget that we are describing (in a

somehow parallel way) this means that contraction, weakening and exchange are valid for this

connective.

Definition 3.2.3. For a first-order monoidal hyperdoctrineCop P
−→Poset consider the categoryC[P]

whose objects are couples (X,E)where X is an object ofC and E ∈P(X×X) is a binary predicate over
X such that the following sentences of the internal language are true in the canonical interpretation

of it in Cop P
−→Poset

∀x,y :X E(x,y) =⇒ E(y,x)

∀x,y,z :X E(x,y)&E(y,z) =⇒ E(x,z)

∀x,y ∈X E(x,y) =⇒ (E(x,y)&E(x,x))

A morphism between two objects (X,E1)
F
−→ (Y,E2) is given by a binary predicate F ∈P(Y×X) such

that the following sentences are true (again in their canonical interpretation)

∀x,x′ :X ∀y : Y F(y,x)&E1(x,x′) =⇒ F(y,x′)

∀y,y′ : Y∀x :X E2(y,y′)&F(y′,x) =⇒ F(y,x)

∀y : Y∀x :X F(y,x)&E(x,x) ⇐⇒ F(y,x)

∀y : Y∀x :X E(y,y)&F(y,x) ⇐⇒ F(y,x)

∀y,y′ : Y∀x :X F(y,x)&F(y′,x) =⇒ E2(y,y
′)

∀x :X ∨
y∈Y
F(y,x) ⇐⇒ E(x,x)

The composition of two (composable) morphism G◦F := ∃y : Y(G(z,y)&F(y,x)) and the identities

are given by 1(X,E)=E(x,y)
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3.2.2 Internal equivalence relations in the sub-object doctrine

see [AdAMM23a]

Fact 3.2.4. The monomorphism of Q−setsfun are given by underling injective functions, the epi-

morphism by underling surjective functions and the isomorphism by bijective δ-preserving functions.

Note that in particularQ−setfun is not a balanced category, that is can be mono+epi morphism

that are not isomorphism, take for example the Lawvere´s quantale ([0,∞],≥,+,0), then a bi-

jective contraction determines a mono and an epi but no an iso.

Given aQ−set (X,δ) the slice categoryQ−Setfun/X of functional maps into X induce a poset

if we consider the quotient of it by the isomorphism relation, i.e. if f : Y → X, g : Z→ X are

functional maps such that exist an isomorphism Y h
−→Z with g◦h= f then we take two objects

as the same, because of this is immediate that the relation (A
p
−→X)≤ (B

q
−→X) if exist an arrow

inQ−Setfun/X fromA p
−→X to B q

−→X determines a poset that will be noted by Sub(X), lets put

this into a doctrine.

Definition 3.2.5. Consider the doctrine

Sub(−) :Q−setfun→Poset

(X,δ) 7→ Sub(X)

For give a more precisely structure of this doctrine we use the following results of [AdAMM23a].

Theorem 3.2.6. Consider a commutative semi-cartesian quantale Q, then the category of Q−

setsfun is a complete and co-complete category

Indeed the following are the (co)limits and (co)equalizers:

Consider (X,δx) and (Y,δY)Q-sets and f,g : (X,δx)→ (Y,δY) functionalmorphism, and ((Xi,δi))i∈I

a family ofQ−sets indexed by a set I, if we denote by E(x)= δ(x,x) the extent of an element in

a Q−set then:
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∏
i∈I

(Xi,δi)= ({(xi)i∈I ∈
∏
i∈I
Xi | E(xi)=E(xj) for every i, j ∈ I},δ∏)

δ∏((xi)i∈I,(yi)i∈I)=
∧
i∈I
δi(xi,yi)

eq(f,g)= ({x ∈X | f(x)= g(x)},δX|{x∈X|f(x)=g(x)})∐
i∈I

(Xi,δi)= (
∐
i∈I
Xi,δ

∐)

δ∐((x,i),(y,j))=


δi(x,y) if i= j

⊥ if i ̸= j
coeq(f,g)= (Y/ ∼,dY/∼) 1

dY/∼([y], [y
′]) =

∨
a∼y,a′∼y′

δY(a,a
′)

Like in any category all the limits are formed by the equalizer over suitable arrows defined in a

product, and the colimits arise as the co-equalizers of suitable morphism defined in a coproduct,

in particular if (A,δA)
f
−→ (X,δX) and (B,δB)

g
−→ (X,δX) are monomorphism in Q−Setfun then

the pullback is calculated based in the previous result as

A∧B=({(a,b) ∈A×B | E(a)=E(b),f(a)= g(b)},δA∧B)

with δA∧B((a1,b1)(a2,b2)) = δA(a1,a2)∧δB(b1,b2), the universal property of pullback is ex-

actly the definition of wedge in the poset Sub(X).

Joins are given by

A∨B=((A
∐

B)/ ∼f,g,δA∨B)

where (A
∐
B)/f,g is the quotient of the coproduct A

∐
B by the equivalence relation ∼f,g gen-

erated by a ∼b if f(a)= g(b), and δA∨B([a], [b]) is δA(a,a′) if b ∈B and there is an a′ ∈A such

that a′ ∼ b, δA(a,b) if a,b ∈A, is δB(a,b) if a,b ∈ B and is ⊥ if neither of the previous cases

happens.

There is an important notemade and developed in [AdAMM23a], is the fact that even ifQ−setfun

is a cartesian category this is not a closed one, for which they give multiples monoidal closed
1where Y/ ∼ is the quotient in Y given by the equivalence relation ∼⊆ Y×Y generated by the identification f(x) ∼

g(x)
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structures over this category, one for each suitable equivalence relation over the set of idempo-

tent element ofQ, for the quantale structure in the poset of subobjects of a givenQ−set we use

the monoidal closed structure given by the equality relation, more precisely consider

A⊗B=({(a,b) ∈A×B :E(a)=E(b)},δA⊗B) δA⊗B((a,b),(a′,b′))= δA(a,a′)⊗δB(b,b′)

Now ifA f
−→X, B g

−→X are in Sub(X) for calculated a monoidal product in Sub(X) note thatA⊗B
has the same underling set as A×B, given that u⊗v ≤ u∧v, the identity assignation (a,b) 7→
(a,b) is a bijective functional map (mono+epi), so following the projections and composing with

f, g gives a couple of parallel arrows from A⊗B to X, the equalizer of this arrows works a the

monoidal product operation of the quantale structure in Sub(X), explicitly:

A⊗XB=({(a,b) ∈A×B | E(a)=E(b),f(a)= g(b)},δA⊗XB)

δA⊗XB((a,b),(a
′,b′))= δA(a,a′)⊗δB(b,b′)

Note that the underlying subset of A⊗X B and A∧B is the same and because of δA(a,a′)⊗
δB(b,b

′)≤ δA(a,a′)∧δB(b,b′) the identical function is a functionalmorphismwhich is amonomor-

phism and an epimorphism but isn’t an isomorphism.

A⊗XB

A∧B

A B

X

The square in the above diagram is a pullback, and like pulback preserves monos, all the arrows

are monomorphism, then is clear that A⊗B ∈ Sub(X).
That this product is associative follows easily from themonoidal closed structure of (Q−Setfun,⊗),
but the module object for ⊗X is not the module object for ⊗. If we denote by EQ the subset of

idempotents elements of Q is proven in [AdAMM23a] that for every (Y,δY) there is a natural
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isomorphism Y⊗EQ ∼= Y, the think is that E is not a subobject of every Q−set, then this unit

must change with every product ⊗X, for this we use the axiom of choice for pick a right inverse

of the extent function EX :X→ EQ x 7→ EX(x) = δX(x,x) this is not a necessarily surjective ap-

plication so we restrict to 1X= {E(x) ∈EQ|x ∈X}with this codomain EX is obviously a surjection

so we ask for a right inverse s : 1X→X, E◦s= id1X , from this smust be an injective map an then

a subobject of X. We are taking the structure of Q− set over 1X as δ1X(e,e′) = e⊗e′, so for a

sub-object A f
−→X the assignation

A⊗X 1X→A

(a,E(a)) 7→a

determines an isomorphismA⊗X1X ∼=A, indeed like s(EX(x))= x, δA⊗X1X((a,E(a)),(b,E(b)))=

δA(a,b)⊗δ1x(E(a),E(b))= δA(a,b)⊗E(a)⊗E(b)= δA(a,b), so the previous map preserves δ

assignment.

This situation of given a definition dependingonf the choice of a section (a right inverse) of a

certain map (typically a projection or an extent assignation), is present when we try for example

to expose the universal property of a join that we define in the poset of the functional sub-objects

of a given Q−Set.

The general picture will be: a Q−Set (X,δX) and a collection of sub-objects of it indexed by a

set (Ai
fi−→X)i∈I, the first intuitive candidate is the arrow given by the universal property of the

co-product
∐
i∈I
Ai

∐
fi

−−→ X, again the thing is that this is not, in general, a monomorphism even

if each component is, the problem is that exist necessarily different i, j ∈ I and ai ∈Ai, aj ∈Aj
such that fi(ai) = fj(aj), so it necessarily identifies ai ∼aj and actually with this is sufficient to

for give the join of the sub-objects, this idea es the canonical epi-mono factorization which exists

in the category of sets and in many concrete categories, but is, in general, a delicate question in

sheaf-like categories over quantales (see [TdAMM22] for categories of functorial sheaves over

semicartesian commutative quantales).
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∐
i

Ai (a,i)

∐
i

Ai/ ∼=
∨
i

Ai X [(a,i)] fi(a)

∐
i

fi

∨
i

fi

One role of this cited factorization is to expose the necessary (partial) inversion of the epi part

of the factorization, i.e. the projection to the quotient. For this consider a sub-object of (X,δX)

given by a monomorphism C q
−→X, if we assume that in Sub(X) this later sub-object is an upper

bound of the family (Ai
fi−→X)i∈I, there is also exists (necessarily mono)morphism Ai

qi−→C such

that q◦qi= fi for each i ∈ I. The joining property tells us that exists an arrow
∨
i∈I
Ai

φ
−→C that let

us
∨
i∈I
Ai ≤C in Sub(X) so followed by C q

−→X factorize the injection
∨
i∈I
Ai→X, for find such an

arrow is enough have a section to the quotient map to the join from the coproduct, indeed if s is

a section (a right inverse) of the projection then φ=
∐
qi ◦s is a function that gives the desire

factorization. ∐
i

Ai C

∨
i

Ai X

p

∐
fi

∐
qi

q

s

The quotient map p :
∐
i

Ai → ∨
i

Ai possibly has many sections, each one deliver a factoriza-

tion function φ :
∨
i

Ai→C note that any of this determines a functional map between Q−Set

i.e. such that δ∨
Ai
([(a,i)], [(b,j)]) ≤ δC(φ([(a,i)]),φ([(b,j)])), indeed first remember that for

classes c1,c2 ∈
∨
i∈I
Ai, δ∨

Ai
(c1,c2) is δj(a,b) if exist j ∈ I and a,b ∈Aj such that [(a,j)] = c1 and

[(b,j)] = c2, and is ⊥ in other case. So lets take classes c1,c2 in the previous situation where

δ∨
Ai
(c1,c2) = δj(a,b) if the section s :

∨
i

Ai→∐
i

Ai makes s(c1) = [(c,i)] and s(c2) = [(d,k)]

then [(a,j)] = [(c,i)] and [(b,j)] = [(d,k)] which means fj(a) = fi(c) and fj(b) = fk(d) but

like the qiťs factorize fi through q, we have q ◦qj(a) = fj(a) = fi(c) = q ◦qi(c) like q is

injective we have qj(a) = qi(c), also qj(b) = qk(d) and like qj is a functional map obtain
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δ∨
i

Ai
(c1,c2)= δj(a,b)≤ δC(qj(a),qj(b))= δC(qi(c),qk(d))= δC(φ(c1),φ(c2)).

In resume
∨
i

Ai

∨
fi−−→ X is the join of the family (Ai

fi−→ X) but the universal property depend of

the existence of the section s :
∨
i

Ai→∐
i

Ai and is not a colimit inQ−Setfun, this must affect

the distributions over ⊗x which will be immediate if it is a colimit because the of monoidal closed

structure in (Q−setfun,⊗,EQ) however this property is easily obtained:

Take (Ai
X
−→)i∈I a family of monomorphism in Q−setfun and another sub-object of X, B g

−→X,

then∨
A i⊗XB=({([(a,i)],b) | fi(a)= g(b),E(a)=E(b)},δ)with δ(([(a1, i)],b1),([(a2, j)],b2))=

δ∨
Ai
([(a1, i)], [(a2, j)])⊗δB(b1,b2) and

∨
i

(Ai⊗XB)= ({[(a,b), i] |E(a)=E(b),fi(a)= g(b)},δ
′)

with δ′([(a1,b1), i], [(a2,b2), j]) = δ∨
(Ai⊗XB)([(a1,b1), i], [(a2,b2), j]), so the assignation ([(a,i)],b) 7→

[(a,b), i] is a bijection and an isomorphism in Q−Setfun, indeed, suppose in the previous pre-

sentation of δ and δ′ that exist k ∈ I and c,d ∈ Ak such that [(a1, i)] = [(c,k)] and [(a2, j)] =

[(d,k)] then δ∨
Ai
([(a1, i)], [(a2, j)]) = δk(c,d), under this hypothesis is true to that [(a1,b1), i] =

[(c,b1),k] and [(a2,b2), j] = [(d,b2),k] because this only means that fi(a1)= g(b1)= fk(c) and

fj(a2)= g(b2)= fk(d), because of this

δ′([(a1,b1), i], [(a2,b2), j]) = δ∨
(Ai⊗XB)([(a1,b1), i], [(a2,b2), j])

= δk(c,d)⊗δB(c,d)

= δ∨
Ai
([(a1, i)], [(a2, j)])⊗δB(c,d)

= δ(([(a1, i)],b1),([(a2, j)],b2))

with justifies the mentioned isomorphism, then in the poset of subjects obtain (
∨
i∈I
Ai)⊗XB =∨

i∈I
(Ai⊗XB).

To this point we give a structure of quantale to Sub(X) for each X inQ−setfun, the usual pull-

back assignation which naturally works for morphism assignment of the doctrine of sub-objects

must be a morphism of quantales, this is a morphism of complete lattices that preserves the

monoidal product, is in general a delicate question (see [dCTCdAMJGAM2X] for this question

over functorial sheaves over semicartesian quantales) and we restrict only to morphism like di-
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agonal and projections for characterize equality’s predicates and quantifiers.

So for the equality’s predicate consider a diagonal map inQ−setfun which as in every cartesian

category is given by the product of the identities, (1x,1x) =∆X :X
X
−→×X, pulling back through

this arrow sub-object of X×X leads

Sub(X×X) ∆
∗
X−→ Sub(X)

(Y
g
−→X×X) 7→ (∆∗(Y) πX−→X)

where ∆∗(Y)= ({(y,x) : g(y)= (x,x)},δ∆∗(Y)) with

δ∆∗(Y)((y1,x1),(y2,x2)) = δY(y1,y2)∧ δX(x1,x2) ≤ δX(x1,x2), like g is injective the projec-

tion (y,x) 7→ x is a monomorphism, a routine count shows that this assignation preserves the

monoidal product (the lattice structure is a folklore result). Let’s give a left adjoint for this quan-

tale map, consider

ΣX : Sub(x)→ Sub(X×X)
(A

f
−→X) 7→ (ΣX(A)

Σ(f)
−−→X×X)

where for a Q−set (A,δA) and a monomorphism in Q−setfun f :A→X is assigned ΣX(A) =

({(a,a) | a ∈ A},δΣ(A)) where δΣ(A)((a,a),(b,b)) = δA(a,b)∧δA(a,b) = δ(a,b) and Σ(f) =
(f,f) i.e. Σ(f)(a,a) = (f(a),f(a)). Like f is injective, (f,f) is injective and is a functional mor-

phism as the product of two (the same) functional morphisms. This determines a morphism of

quantales, only proof that preserves the monoidal structure:

For what it follows, denote by x2 a couple (x,x). Consider two subobjects of (X,δX), say A
f
−→X

and B g
−→ X, the elements in ΣX(A)⊗X×XΣX(B) are of the form (a2,b2) with E(a) = E(a2) =

E(b2) = E(b) and the distance is given by δ((a2
1
,b2
1
),(a2

2
,b2
2
)) = δΣ(A)(a

2
1
,a2
2
)⊗δΣ(B)(b21,b22) =

δA(a1,a2)⊗ δB(b1,b2). In the other hand the elements of ΣX(A⊗XB) are squares of couples

(a,b)2 and the structure is given by δ′((a1,b1)2,(a2,b2)2)= δA⊗XB((a1,b1),(a2,b2))= δA(a1,a2)⊗
δB(b1,b2), then the assignation (a2,b2) 7→ (a,b)2 determines an isomorphism that represent
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the equality of sub-objects Σ(A)⊗X×X Σ(B) = Σ(A⊗X B). With this morphism clear let ex-

press the adjunction ΣX(−)⊣∆∗
X
(−), that is: For every (B

(p,q)
−−−→X×X) ∈ Sub(X×X) and every

(A
f
−→X) ∈ Sub(X) there is a natural bijective correspondence between the following commuta-

tive triangles of monomorphism in Q−setfun

ΣX(A) B A ∆∗
X
(B)

X×X X

(f,f) (p,q) f πx

We give assignation for morphisms in Q− setfun/X×X to morphism in Q− setfun/X, so lets

first go left to right, this is consider an arrow ΣX(A)
h
−→B such that (p,q)◦h= (f,f) this means

that p◦h(a2)= f(a)=q◦h(a2) for every a ∈A, this means precisely that (f(a),h(a2)) ∈∆X(B)
so consider A ĥ

−→ δ∗
X
(B) given by ĥ(a) = (f(a),h(a2)) , then πx(ĥ(a)) = f(a) given the com-

mutative of the right triangle. That h is an arrow in Q− setfun is given by δΣX(A)(a
2
1
,a2
2
) =

δA(a1,a2) ≤ δB(h(a21),h(a22)), for seeing that ĥ is functional map to, lets first make a note

about the structure in ∆⋆
X
(B), for elements couples (x1,b1),(x2,b2) being in ∆∗

X
(B) means that

p(b1)= x=q(b1) and p(b2)= x2=q(b2), so like B
(p,q)
−−−→X×X is a functional map one obtains

δB(b1,b2)≤ δX×X((p,q)(b1),(p,q)(b2)) = δX(p(b1),p(b2))∧δX(q(b1),q(b2))

≤ δX(p(b1),p(b2))

so δ∆∗
X
(B)((x1,b1),(x2,b2))= δX(x1,x1)∧δB(b1,b2)= δX(p(b1),p(b2))∧δB(b1,b2)= δB(b1,b2).

With this in mind the hypothesis of functional map for h is exactly

δA(a1,a2) = δΣX(A)(a
2
1,a

2
2)

≤ δB(h(a
2
1),h(a

2
2))

= δ∆∗
X
(B)((f(a1),h(a

2
1)),(f(a2),h(a

2
2)))

= δ∆∗
X
(B)(ĥ(a1), ĥ(a2))

In the other direction a morphismA t
−→∆∗

X
(B) such that πx◦t= f is given by an assignation a 7→

(f(a),ba) with p(ba) = f(a) =q(fa), so this induce a map ť :ΣX(A)→B, a2 7→ ba=πB(t(a)),
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that t is a morphism implies (an actually is) that

δΣX(A)(a
2
1,a

2
2) = δA(a1,a2)

≤ δ∆∗
X
(B)(t(a1),t(a2))

= δ∆∗
X
(B)((f(a1),ba1),(f(a2),ba2))

= δB(ba1,ba2)

= δB(ť(a
2
1), ť(a

2
2))

and (p,q)◦ť(a2)= (p(ť(a2)),q(ť(a2)))= (p(ba),q(a))= (f(a),f(a))= (f,f)(a) so ť :ΣX(A)→
B is a morphism in Q−setfun/X×X from ΣX(A)

(f,f)
−−→X×X to B (p,q)

−−−→X×X. Finally note that
ˇ̂h(a2)=h(a2) and ^̌t(a)= t(a), so this is a bijective correspondence.

Now let’s give attention to the quantifiers of this monoidal hyperdoctrine of sub-objects. For this,

first remark how is pullback through projections monomorphism in Q−set, so for (X,δX) and

(Y,δY) take the projection to Y X×Y πY−→ Y, pulling back a sub-object (B g
−→ Y) of (Y,δY) through

πY let Π∗
Y
(B)= ({((x,g(b)),b) : x ∈X,b ∈B}),δΠ∗

Y
(B)

Π∗
Y
(B)

Π∗
Y
(g)=πX×Y

−−−−−−−→X×Y
((x,g(b)),b) 7→ (x,g(b))

with δΠ∗
Y
(B)(((x1,g(b1)),b1),((x2,g(b2)),b2)) := δX(x1,x2)∧δB(b1,b2). The existential quan-

tifier is given by a adjoint of (∃X)Y ⊣π∗Y so defining

(∃X)Y : Sub(X×Y)→ Sub(Y)

(C
(p,q)
−−−→X×Y) 7→ ((∃X)Y(C) ∃(p,q)

−−−→ Y)

given by (∃X)Y(C)= ({q(c) ∈ Y | c ∈C},δ∃X)whit δ∃X(q(c),q(c′)) := δC(c,c′) and ∃(p,q)(q(c))=
q(c), so ∃(p,q)= i the inclusion of (∃X)Y(C) in Y, the adjunction thenmeans that there is natural

bijective correspondence between commutative triangles of sub-objects

C π∗
Y
(B) ∃X(C) B

X×Y Y

(p,q) πX×Y i
g



96 3 Internal and external logic over sheaf-like categories

This is simple because give a functional map C α
−→π∗

Y
(B) such that πX×Y ◦α=(p,q) is to choose

for each c ∈ C an element bc ∈ B such that q(c) = g(bc), indeed with this condition gives a

well defined α(c) = ((p(c),q(c)),bc) ∈Π∗
Y
(B) and such an election determines the assignation

q(c) 7→bc=πB(α(c)) which becomes a functional map ∃X(C) α̂−→B, like α is a functional map

δ∃X(C)(q(c1),q(c2)) = δC(c1,c2)

≤ δπ∗
Y
(B)(α(c1),α(c2))

= δπ∗
Y
(B)(((p(c1),q(c1)),bc1),((p(c2),q(c2)),bc2))

= δX(p(c1),p(c2))⊗δB(bc1 ,bc2)

≤ δB(bc1 ,bc2)

Like g(bc) = q(c) = i(q(c)) the right triangle commute. In the other direction a functional

map ∃X(C) β−→ B, is again chose for every c ∈C, an element bc ∈ B, such that q(c) = g(bc), for

such an election β(q(c)) = bc is a well defined function with the required commutativity con-

dition, the associated map β̌ : C→ Π∗
Y
(B), c 7→ ((p(c),q(c)),β(q(c))) = ((p(c),q(c)),bc), we

already mentioned why this is well defined and makes commute the left triangle, the condition

of β to being a functional map says that δ∃X(C)(q(c1),q(c2))= δC(c1,c2)≤ δB(bc1 ,bc2) and like
C

(p,q)
−−−→ X×Y is a morphism, δC(c1,c2) ≤ δX(p(c1),p(c2))∧ δY(q(c1),q(c2)), so δC(c1,c2) ≤

δX(p(c1),p(c2))∧δB(bc1 ,bc2) = δΠ∗
Y
(B)(β̌(c1), β̌(c2)), then β̌ is a morphism. Note the assig-

nation −̂ and −̌ are inverses, because ˇ̂α(c) = α(c) and ^̌β(q(c)) = β(q(c)), so this a bijective

correspondence.

Finally for universal quantifiers, consider a monomorphism in Q− setfun,C
(p,q)
−−−→ X× Y and

consider ∀X(C) = ({y ∈ Y | for all x ∈ X, exist c ∈ C such that x= p(c),y= q(c)},δ∀X(C)) with

δ∀X(C))(y1,y2) = δY(y1,y2) and ∀X(C) ∀X((p,q))=i
−−−−−−−→ Y, y 7→ y. Then there is a correspondence

between commutative triangles in Q−Setfun

Π∗
Y
(B) C B ∀X(C)

X×Y Y

πX×Y (p,q) g
i
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For the sub-object B g
−→ Y a functional map ΠY(B)

α
−→C is given by an assignation for each x ∈X,

b ∈ B ((x,g(b)),b) 7→ cxb such that x = p(cxb) and g(b) = q(cxb) then the correspondence

b 7→ g(b) is a well defined functional map B α̂
−→ ∀X(C) because for every x ∈ X, cxb is makes

p(cxb)= x and q(cxb)= g(b), this correspondence is actually the only one who makes the right

triangle commute. For the other correspondence the necessary assignation b 7→ g(b) says that

for every x ∈X exist cxb with p(cxb) = x and q(cxb) = g(b), then ((x,g(b)),b) 7→ cxb is a well

defined function that makes the left triangle commute. Because of the dependence of the same

condition this process are inverse each other.

All of this lets us understand that the structure of the doctrines of sub-objects over the category

Q− setfun produces a very similar situation that the one obtained when we make the hyper-

doctrine of sub-objects over the category of sets and functions Set, the main difference is that in

general the sub-objects are given by subsets in which the structure ofQ−set seem more "tight",

but the role of equality and quantifiers is exactly the interpretation in sub-objects of a set, then

the axioms of the definition 3.2.3 lets the category of Q−Set with partial equivalence relations

and well defined functions between them.

3.3 Continuous logic

The intention is to define in an external way (in terms of structured sets and structure-preserving

functions between them) a logic that use Rel(Q)-categories as a semantic and extent the quan-

tale valued logic presented in [DP21] which in turn extent the continuous logic for metric spaces

proposed in [BYBHU08]. Then the general structure of the following definitions comes inher-

ited by the monograph [BYBHU08] of model theory for metric space, however some restrictions

inherent of the fact that this is a more general framework, for example, our quantales are not nec-

essarily continuous lattices, then there is not a clear version of continuous or uniform continuous

function, the clear translation form the theory of metric spaces is that of 1-Lipschitz functions a
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stronger version of uniform continuity.

Even if the main intention is to use Rel(Q)−categories as semantics is more general and clear

work in the context of enriched categories over quantaloids (and not only over quantaloids of the

form Rel(Q)), because of this we will focus in the constructions and definitions over quantaloids,

and in the later think in the very specific nature of this definitions over quantaloids of the form

Rel(Q).

First of all, for the following definitions makes sense is important to make two clarities, one is

related to the existence of products in the category Q−Catfun because the interpretation of

formulas and terms use lists of variables which will be interpreted as an assignation over a prod-

uct, the other issue is related with the understanding of the version of valued morphism in this

context, because in continuous logic the interpretation of formulas comes through valued assig-

nation over the unit interval [0,1], in quantale valued logic this valuations are taken over the

quantale Q that parameterize the logic, so in our context we must present a suitable notion of

valued morphism.

For the discussion that follows take a fixed quantaloid Q, consider (X,dX,eX) and (Y,dY ,eY) two

Q−categories, define the following structure

X×Y=( ^X×Y,dX×Y ,eX×Y)

where ^X×Y := {(x,y) ∈ X× Y | eX(x) = eY(y)}, dX×Y : ^X×Y × ^X×Y →Morp(Q), is defined

by dX×Y((x1,y1),(x2,y2)) := dX(x1,x2)∧dY(y1,y2) and eX×Y : ^X×Y→ Obj(Q) is defined by

eX×Y(x,y) := eX(x) (= eY(y)). We claim that this define a Q−category and there is canonical

projections to X and Y with enables to X×Y the universal property of products in the category

Q−Catfun. First lets check that the definitions we give actually determines a Q−category,

for this note that like (x,y) ∈ ^X×Y only if eX(x) = eY(y) and like (X,dX,eX) and (Y,dY ,eY)

already determines Q−categories then for (x1,y1),(x2,y2) ∈ ^X×Y we have parallel arrows in

Q, dX(x1,x2),dX(y1,y2) : e(x1)→ e(x2) so the meet dX(x1,x2)∧dY(y1,y2) is calculated in the

lattice Q(eX(x1),eX(x2)) then is an arrow dX×Y((x1,y1),(x2,y2)) := dX(x1,x2)∧dY(y1,y2) :
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eX×Y(x1,y1) → eX×Y(x2,y2), the composition law (or transitivity axiom) is given because for

every (x1,y1),(x2,y2),(x3,y3) ∈ ^X×Y

dX×Y((x1,y1),(x2,y2))◦dX×Y((x2,y2),(x3,y3))

= (dX(x1,x2)∧dY(y1,y2))◦ (dX(x2,x3)∧dY(y2,y3))

≤ dX(x1,x2)◦ (dX(x2,x3)

≤ dX(x1,x3)

and also

≤ dY(y1,y2)◦dY(y2,y3)

≤ dY(y1,y3)

then

dX×Y((x1,y1),(x2,y2))◦dX×Y((x2,y2),(x3,y3))

≤ dX(x1,x3)∧dY(y1,y3)

= dX×Y((x1,y1),(x3,y3))

Finally like eX×Y(x,y)= eX(x)= eY(y), the identity 1eX×Y(x,y)= 1eX(x)= 1eY(y) ≤dX(x,x),dY(y,y)
and then 1eX×Y(x,y) ≤d(x,x)∧dY(y,y)=dX×Y((x,y),(x,y)). With this its show that our defini-

tion actually gives a Q−category.

Rest to see the projections arrows which are based in the usual set-theoretical projections, in-

deed consider πX : ^X×Y→ X, (x,y) 7→ x, note that like eX×Y(x,y) = eX(x) = eX(πX(x,y)) and

dX×Y((x1,y1),(x2,y2))=dX(x1,x2)∧dY(y1,y2)≤dX(x1,x2)=dX(πX(x1,y1),πx(x2,y2)) then
the map πx determines a functional map πx : X×Y→ X between Q−categories as well as πY :

X×Y→ Y. The universal property comes directly from the definition of this projections, for this

if Z f
−→X, Z g

−→ Y are maps that determines arrows from (Z,dZ,eZ) to (X,dX,eX) and (Y,dY ,eY),

if φ :Z→ ^X×Y is a map such that πX ◦φ= f and πX ◦φ= g then necessarily φ= (f,g), which
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makes z 7→ (f(z),g(z)) for every z ∈Z, note that this application is well defined because like f and
g are arrows in Q−Catfun, for every z ∈Z we have eZ(z) = eX(f(z)) and eZ(z) = eY(g(z)) so

eX(f(z))= eY(g(z)) then (f(z),g(z)) ∈ ^X×Y, alsodZ(z1,z2)≤dX(f(z1),f(z2)),dY(g(z1),g(z2)),
which is equivalent todZ(z1,z2)≤dX(f(z1),f(z2))∧dY(g(z1),g(z2))=dX×Y((f(z1),g(z1)),(f(z2),g(z2))),
then Z (f,g)

−−→X×Y is an arrow in Q−Catfun.

With this, it is clear the product structure inQ−Catfun, then we continue to interpret languages

over Q−categories.

3.3.1 Interpret continuous languages in enriched categories over

quantaloids

With the previous clarification on how it works the products inQ−Catfun, let’s see how to define

what will be the interpretations of the formulas of our logic. In the case of continuous logic for

metric spaces the interpretation of formulas are continuously uniform functions (M,dM)→ [0,1]

taken the usual structure of metric space of the unit interval, the generalization for quantale

valued logic (see [DP21]) are uniform continuous functions (X,dX) → Q, in that context the

quantales are in additions continuous lattices and has filter of positive elements then the view

that enables a clear generalization comes from the fact that the so-called continuous spaces are

enriched categories over a quantale then a map (X,dX)→Q is just and enriched presheaf, so the

notion that naturally generalize the context of [DP21] are precisely presheaves over Q enriched

categories.

Let’s make a couple of important notes. For the following notes, we use the notation and remarks

of section 1.4.

Note 3.3.1. If Q is a quantaloid, for any u object of Q, the following defines a Q enriched category

structure over the collection of Q-arrows over u.

Q|u := {v
f
−→u ∈Morph(Q)}
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eQ|u :Q|u→Obj(Q), v f
−→u 7→ v

dQ|u :Q|u×Q|u→Morph(Q), (f,g) 7→ [f,g]

Where [f,g] is the lifting of g through f, recall that this is defined by the adjunction f◦−⊣ [f,−].

v

w u

f

g

[f,g]

This is just because of the very definition dQ|u(f,g) :w→ v and w= eQ|u(g), v= eQ|u(f) then

dQ|u(f,g) : eQ|u(g)→ eQ|u(f) and the co-unity of the adjunction tell us that x◦ [x,y]≤y, then

f◦ ([f,q]◦ [q,r]) = (f◦ [f,q])◦ [q,r]

≤ q◦ [q,r]

≤ r

which is equivalent to

dQ|u(f,q)◦dQ|u(q,r) = [f,q]◦ [q,r]

≤ [f,r]

= dQ|u(f,r)

additionally 1eQ|u(f) = 1v] = 1dom(f) = [f,f] = dQ|u(f,f) in particular 1v ≤ dQ|u(f,f). We note as

Q|u this enriched category.

The above structure codifies the notion of valued morphism as a functional map, lets make a note

a bout this.

Proposition 3.3.2. Enriched functors X→Q|u and pre-sheaves of type u over X, û X are the

same thing

Proof. In fact, give an enriched functor φ : X→Q|u is give an assignation x 7→ ·x ϕ(x)
−−→ u, such

that eX(x) = eQ|u(ϕ(x)) = ·x, then is an Q−arrow of the form eX(x)
ϕ(x)
−−→ u such that meet

the functional axiom dX(x,y) ≤ dQ|u(ϕ(x),ϕ(y)) = [ϕ(x),ϕ(y)] which is equivalent to ϕ(x)◦
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dX(x,y)≤ϕ(y) which means that this assignation determines a distributor û X, in chapter

2 this is the very definition 2.2.25 of what is call a pre-sheaf of type u over X.

For a fixed a quantaloid Q, consider a set of formal symbols which we call logical symbols asso-

ciated to it LS := {CQ,d,e,
∨
,
∧
,X}, d and e are symbols to refer the enriched category structure

and play the role of equality predicate and an extent (or type) predicate respectively, ∨
,
∧ are

symbols that we use as quantifiers, they are the version of the existential and the universal re-

spectively, X= {Xt | t ∈ τ} is set of sorts (or types) each one with a countable set of variables of

that type {xt,n :Xt}n∈N and CQ makes reference to the connectives.

In continuous logic as well as in (co)quantale valued logic a connective is given by a uniformly

continuous function of a finite (Cartesian) power of the unit interval (in general of the valued

quantale) on itself, as Qn c
−→Q. Although it seems like an excessive amount of connectives, in

continuous logic it happens that module uniform convergence is only necessary to add a con-

nective for residuation and a connective for the process of "dividing by 2", in valued quantale

logic it is an open question. In this context, we will define a theory that naturally extends the

valued quantale case and we will propose as future work prospects that include a broader class

of morphisms that approximate a notion of a uniformly continuous map. By CQ, is noted the

collection of connectives.

CQ := {Q|u1 ×· · ·×Q|un
c
−→Q|v :u1, ...,un,v ∈Obj(Q),c is a functional map}

= {c : v̂ Q|u1 ×· · ·×Q|un :u1, ...,un,v ∈Obj(Q),c is a pre-sheaf of type v}

This corresponds to the fact that as we mentioned, the presheaves are our notion of valued mor-

phism.

A signature Θ = (F,R,K) is given by a specifying a set of symbols of function, relation and

constant.

F= {fi(X1 · · ·Xn) : Y}i∈I
R= {Rj :X1 · · ·Xn}j∈J
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K= {kl :X}l∈L

Where the notation f(X1 · · ·Xn) : Y means that f is functional symbol, X1, ...,Xn,Y are sorts (not

necessarily different) this notation also contains the information of the arity of f, (n). Also write

R : X1 · · ·Xn to denote that R is a relation symbol of type X1 · · ·Xn, and k : X to denote that k is

constant symbol in the sort X.

The Terms of the language is an inductive set of formal symbols, for which the basic elements

are symbols of constants and variables, and the functions that generate the structure are given

by concatenation with function symbols, this means that if t1 : X1, ...,tn : Xn are terms of the

specified sorts and f is a function symbol such that f(X1, ...,Xn) : Y then the string ft1 · · · tn is a

term. All the terms arise in this way or are basic terms.

The Formulas of the language again is a inductive set of formal symbols for which the basic

elements are of the form dt1t2 and Rt1 · ·tn where t1, ...,tn are terms, d is the logical symbols

mentioned early and R is any relation symbol, the rest of the terms are given by concatenation of

connectives and quantifiers, i.e. are of the form cϕ1···ϕn and (∨)∧xiϕ(x)where c is a connective
and ϕ1, ...,ϕn are formulas.

Consider Θ a continuous signature then an interpretation of Θ is given by an assignation

• For each type or sort X in Θ an enriched category over Q, [X] = (|X|,dX,eX), in such a way

that:

• For a finite succession of sorts of the form X1 · · ·Xn the product [X1 · · ·Xn] = [X1]×···×[Xn]

in Q−Catfun.

• The interpretation of a variable xi :X1 ···Xn is given by the canonical projection to the i−th

component.

• For each constant symbol k :X an enriched functor from a one-object enriched category to

X, û [k]
−→ [X]
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• For each symbol of function f :X1 ···Xn f
−→X an arrow [X1]×···×[Xn] f−→ [X] inQ−Catfun.

• For each relation symbol R :X an enriched pre-sheaf of some type over [X], [R] : û [X].

Associated with an interpretation there is a canonical extension to interpret the terms of the lan-

guage and later to interpret the formulas of the language.

To interpret the terms of the language we make a recursive definition based in the inductive

structure that this set of symbol has, for a symbol of constant c :X, we already have an interpre-

tation, then like the terms are constructed by function symbols followed of previous terms and

the basic elements are constants, only rest to say that this definition is given by composition,

i.e. if X1 · · ·Xn f
−→ Y and {X

ti−→Xi}1≤i≤n are terms with interpretations {[X] [ti]
−→ [Xi]}1≤n, then the

definition of ft1 · · ·tn is given by: [ft1 · · ·tn] := [f]◦ ([t1], ..., [tn]).
The following remark is essential for the interpretation of formulas

For interpret the formulas we make to an recursive definition, for this consider {Y ti−→Xi}1≤i≤n

a finite set of terms, that have an interpretation {[Y]
[ti]
−→ [Xi]}1≤i≤n, then:

• For interpret formulas of the type dt1t2 where t1 and t2 are terms is necessarily and suffi-

cient that exist a Q−object u and a Q−arrow αy :u→ e[Y](y) such that the compositions

d([t1](y), [t2](y))◦αy :u→ e[Y](y) for every y ∈ [Y] determines a distributor that becomes

the interpretation of [dt1t2] : û [Y]

• if [R] : û [X1]×· · ·× [Xn] is the interpretation of a relation symbol then the collection

(Q−arrows u [R]([t1](y),...,[tn(y)])
−−−−−−−−−−−−→ e[Y](y))y∈[Y] determines the enriched presheaf [Rt1 · · ·tn] :

û Y

• If {[ϕi] : ûi [Xi]}1≤i≤n is the family of interpretations of a finite set of formulas {ϕi}1≤i≤n

and Q|u1 × · · · ×Q|un
c
−→ Q|u is a connective then the arrow [ϕ1]× · · · × [ϕn] := ([ϕ1] ◦

π1, ..., [ϕn]◦πn) follow by c, as

[X1]×· · ·× [Xn]
[ϕ1]×···×[ϕn]
−−−−−−−→Q|u1 ×· · ·×Q|un

c
−→Q|u
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determines the distributor [cϕ1 · · ·ϕn] : û [X1]×· · ·× [Xn]

• If ϕ : X1 · · ·Xn is a formula which is interpreted as [ϕ] : û [X1]× · · · × [Xn], then for

i ∈ {1,...,n} the interpretation of ∨
xiϕ is the presheaf of type u, determined by each x ∈

X1×· · ·×Xn (with out the i-th place) as the Q−arrow given by [
∨
xiϕ](x) =

∨
{[ϕ](x∪x) :

x ∈ [Xi]}.

• If ϕ : X1 · · ·Xn is a formula which is interpreted as [ϕ] : û [X1]× · · · × [Xn], then for

i ∈ {1,...,n} the interpretation of ∧
xiϕ is the presheaf of type u, determined by each x ∈

X1×· · ·×Xn (with out the i-th place) as the Q−arrow given by [
∧
xiϕ](x) =

∧
{[ϕ](x∪x) :

x ∈ [Xi]}.

The technical condition of the first literal, called for the existence of aQ−object, u and aQ−arrow

αy :u→ e[Y](y) such that for every couple of terms t1,t2 the family of compositions (d[Y]([t1](y), [t2](y))◦
αy)y∈[Y] determine a presheaf of typeu over Y, is because for a homogeneous definition for the in-

terpretation of formulas as enriched presheaves, it is required that themorphismsd[Y]([t1](y), [t2](y)) :

e([t1](y))= e(y)→ e(y)= e([t2](y)) have a common domain.

Although this definition is given for any quantaloid (that meets the aforementioned technical

condition) our main intention is based on quantaloids of the form Rel(Q) for a quantaleQ. Pre-

cisely in this case the canonical morphism αy :u→ e(y) is given by take u= 1 the top element

ofQ, and αy= e(y)⊗e(y) : 1→ e(y) that in this kind of quantaloids corresponds to the identity

of the object e(y), then 1 dY([t1](y),[t2](y))◦(e(y)⊗e(y))−−−−−−−−−−−−−−−−−−→ e(y) is 1 dY([t1](y),[t2](y))−−−−−−−−−−→ e(y) which deter-

mines a distributor 1 [Y].

With this, we already give an externally defined semantic which takes use Rel(Q)−categories as

a semantic, and that extends the aim of the quantale valued logic, presented in [DP21].

Finally, we give examples for some quantalesQ, of what the semantics that we have just defined

applied to the quantaloids Rel(Q)mean. We are going to consider that the categories are Cauchy

complete and symmetric since naturally we can restrict our semantics so that it only admits in-
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terpretations in this class, thus making the connection with the theory of sheaves and metric

spaces more present.

Examples 3.3.3. IfΩ is a complete Heyting algebra (a locale), the remark 2.3.7 tells us that Rel(Ω)

is Walter´s construction of section 1.3.5 and then

Rel(Ω)−Catcc,sym,fun ∼= Sh(Ω)

So the associated logic admits sheaves overΩ as structures, natural transformations to interpret func-

tions andΩ−valued assignations to interpret formulas. Future work lead to a deeper understanding

and applications of this interplay.

Examples 3.3.4. Consider the quantale 2= {⊤,⊥}, in [Stu05b], pg 17 it is briefly shown that

2−TRSCatcc,fun ∼= 2−Catcc,fun

then as Rel(2)−Catcc,fun ∼= 2−TRSCatcc,fun, we obtain that Rel(2)−Catcc,fun ∼= 2−Catcc,fun,

then we define a logic to talk about Dedekind complete pre-orders (see 1.1.16) and isotone maps.

Similarly what it happens to the 2 quantale, for the Lawvere quantale ([0,∞],≥,+,0) the Cauchy
complete [0,∞] totally regular semicategories (and then the Rel([0,∞])−categories) correspond

to [0,∞]− categories, then to generalized metric spaces (Lawvere spaces).

Examples 3.3.5. The following equivalences happen to hold

Rel([0,∞])−Catcc,sym,fun ∼= [0,∞]−TRSCatcc,sym,fun ∼= [0,∞]−Catcc,sym,fun

Then the defined logic finds in generalized (and symmetric) metric spaces their structures, the rest of

the behavior imitates a fragment of the (co)quantale valued logic presented in [DP21]

Then the definition that we just give corresponds to a logic scheme that generalizes in the same

framework, a Heyting valued logic for sheaves, a classical logic for pre-orders and a fragment of

continuous logic for metric spaces. The interaction and use of these logics in the understanding

of these mathematical objects is part of a future work.



Further work and conclusions

We give a list that contemplates future work and conclusions that this text leaves us.

• Go deeper in the theory of enriched categories on quantaloids of the type Rel(Q) for suit-

able quantalesQwith particular attention to the interaction betweenmetric/analytic/geometric

interpretation and the categorical theoretical framework.

• Understand the role of the monoidal hyperdoctrines in a categorical (linear) logic setting, as

a test question the categorical properties of the construction C[P] presented in the section

3.2.3.

• Understand the role of completions respect to the logical definitions, specially the question

that if we can reduce the to a smaller (maybe finite) collection of connectives for the "con-

tinuous logic" defined in the lat section, modulo some notion of convergence induced by

the Cauchy completeness.

• In the recent dissertation of Moncayo [MVJR23] was developed a cumulative construction

of von Neumann VQ as a possibility of an approach to an "untyped" version of the uni-

verse with quantalic semantics , as it is the "continuous logic" in an adequate (co)quantale:

this version would allow approaching (as in the case of locales, see 1.3) for example the

categories Q−sets with relational morphisms: it would be a typed logic, like in internal

(categorical) logic of topos. This could provide a clue on the possibility of extending, in a

future work, Schulman’s stack semantics [Shu10] to the quantalic case.
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• A full and complete description of categorical relationships between diverse categories of

sheaf-like objects and the logical aspects that each one naturally supports is an interesting

(and difficult) endeavor, reserved for future works in collaboration with the categorical

community of IME-USP.
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