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Resumen

Sobre soluciones numéricas a problemas de optimización topológica

Este trabajo de investigación estudia las técnicas de optimización topológica aplicadas al

problema clásico del calor y al problema de la elasticidad. El estudio destaca varios aspectos

clave encontrados durante el proceso de búsqueda de soluciones para problemas espećıficos,

incluida la influencia de las condiciones iniciales y los parámetros del optimizador. Además,

el documento explora enfoques novedosos y variaciones de métodos fundamentales encami-

nados a lograr soluciones finales mejoradas para cada problema. Estas adaptaciones abarcan

ajustes del funcional minimizado, la representación del espacio de densidad y la aplicación

de métodos de regularización.

Palabras clave: Optimización Topológica, Optimización Estructural, Ecuaciones Diferen-

ciales Parciales, Elementos Finitos, Análisis Numérico, Regularización.

Abstract

On numerical solutions of topology optimization problems

This work studies topological optimization techniques applied to the classical heat problem

and the elasticity problem. The study highlights various key aspects encountered during

the solution search process for specific problems, including the influence of initial conditions

and optimizer parameters. Moreover, the paper explores novel approaches and variations of

fundamental methods aimed at achieving improved final solutions for each problem. These

adaptations encompass adjustments to the minimized functional, the representation of den-

sity space, and the application of regularization methods.

Palabras clave: Topology Optimization, Structural Optimization, Partial Diferential Equa-

tions, Finite Elements, Numerical Analysis, Regularization.
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1 Introduction

Modern industry makes it possible to find a wide variety of solutions to engineering problems

using a variety of manufacturing processes and design techniques. Given certain criteria and

defined constraints, we can search for the optimal solution among these solutions. To ob-

tain such a solution, numerous approaches have been developed. Among them, we find the

framework of topology optimization, which approximates an optimal distribution of mate-

rial in the domain satisfying the physical requirements, see [Bendsøe and Sigmund, 2004].

This area of development and research is mature in problems of stress and deformation of

solids, thermal conductivity and cooling of systems, fluid dynamics, electrodynamics, and

multiphase interactions, among others [Deaton and Grandhi, 2014]. An optimal solution can

improve material usage, system performance, usability, and manufacturability. The influence

of optimization on physical problems can be seen in many industries such as transportation,

construction, manufacturing, and many others. See for example [Cavazzuti et al., 2011, Mat-

simbi et al., 2021, Beghini et al., 2014, Donofrio, 2016, Zhu et al., 2016, Orme et al., 2017].

There are families of methods in topology optimization, for example, there are evolutionary

methods that optimize on a discrete but extremely large feasible set of possible designs.

Others use a relaxation of the problem to implement a search in a continuous set of finite

dimension. In between we find the density method with numerous variations and three-phase

methods that implement a third field to improve the convergence to 0-1 designs, see [Sigmund

and Maute, 2013]. The relaxation methods use efficient and robust optimization techniques

to deliver the design found in a reasonable time and with sufficient accuracy or performance

gain, see for example [Sigmund and Maute, 2013]. However, the problem is complex, even

when relaxed, and additional corrections and post-processing may be required to produce a

practical design. Also, it is very common to find numerous solutions within small variations

(or perturbations) in the parameters of the simulation. Therefore, designers often implement

a sub-optimal design or use the best optimum to inspire a solution rather than looking for

a global optimum [Sigmund and Maute, 2013, Beghini et al., 2014, Papadopoulos et al., 2021].

In the geometry projection method studied in this work, which is based on the method of

densities, see [Smith and Norato, 2020], the issues caused by the numerous local minima

and non-convexity of the performance functional are still present in a way to be explored in

Chapter 5. As the description of material is based on a fewer number of variables the num-

ber of local minima is reduced but, the solutions found have overall a poorer performance
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than the minima in the method of the densities, see [Wein et al., 2020]. The motivation for

this work comes from the interest in improving the performance of the minima found by the

optimizer. We have decided to review and explore several aspects related to numerical local

solutions of topology optimization problems in the general density formulation and GPTO.

The objective of this thesis is to examine issues related to the appearance of different lo-

cally optimal solutions depending on different conditions in the process, such as relaxation

approach, initial guess, computational mesh, and accuracy of linear solvers, among others.

The rest of the manuscript is organized as follows. In Chapter 2 we present the theory for

the numerical approximation of the physical problems we deal with in this thesis. In Chapter

3 we present two topology optimization frameworks, the classical method of densities and

the geometry projection method. In Chapter 4 we present the optimization strategy used

to solve the problem and we analyze the results of numerical simulations, with different

modifications to the method. In Chapter 5 we test some regularization methods to further

improve solutions to TO problems.



2 Theoretical background

Our study of topology optimization begins with the presentation of the tools for representing

certain physical phenomena. This chapter examines the systems of partial differential equa-

tions (PDEs) that model such phenomena, and the numerical methods that approximate the

solutions to these equations

2.1 Physical models

This section describes the systems of equations for the heat transfer problem and the linear

elasticity problem. Excerpts from [Gockenbach, 2006, Yan et al., 2018, Andreassen et al.,

2010, Gelfand and Fomin, 2012] are used to explain the background theory used in this work.

2.1.1 Heat transfer

A simple problem we can study in topology optimization consists of the evacuation of heat

outside a domain, see [Bendsøe and Sigmund, 2004]. To pose this problem we assume there

is a material capable of transporting heat by conduction in a domain Ω with two or three

dimensions. Fourier’s law tells us that the heat flux is proportional to the temperature

gradient. In a two-dimensional domain, we can understand this problem as a thin plate of

conductive material where the out-of-plane direction has no heat transfer. Assuming initially

that we have a homogeneous isotropic material in the plate, the equation reads

θ∆u(x) + f(x) = 0 . (2-1)

We call this equation the stationary diffusion equation or Poisson equation. Here θ > 0 is

a proportionality constant of Fourier’s law called thermal conductivity, u is the value of the

temperature at the point x, f(x) is a rate at which heat is added to the domain and ∆ is

the Laplace operator applied to u and defined as

∆u(x) =
∂2u

∂x2
+
∂2u

∂y2
.

If the thermal conductivity is not constant in the domain, that is, the material is not homo-

geneous, then the model is better described by the equation

∇ · (θ(x)∇u(x)) + f(x) = 0 . (2-2)
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Here, the dependence of θ on the position in the domain becomes explicit. Finally, if the

material is not isotropic, the thermal conductivity depends on the direction and instead of

a constant θ it is better to introduce a material conductivity tensor Θ(x, y). We have

∇ · (Θ(x)∇u) + f(x) = 0 . (2-3)

The tensor Θ(x) can be represented by the parameters λ1(x) and λ2(x) calculated as

Θ(x) =
d∑

i=1

λi(x) eie
T
i .

Here ei represents the principal directions of conductivity and d the number of dimensions.

It can be seen that (2-1) and (2-2) are particular cases of (2-3). The heat generation rate

f(x) is treated in this work as independent of the material properties. In order to have a

well-posed problem, equation (2-3) must be supplemented with boundary conditions (BC).

The BC describes a piece of known information in the boundary ∂Ω of the domain Ω. In

this work, we deal only Dirichlet BC in a subset Γ1 ⊆ ∂Ω and Neumann BC in a subset

Γ2 ⊆ ∂Ω. These two subsets of the boundary must satisfy

Γ1 ∪ Γ2 = ∂Ω,

Γ1 ∩ Γ2 = ∅.

The Dirichlet BC are described by the equation

u(x) = g(x) , for all x in Γ1 . (2-4)

Here g(x) is a function that determines the value of the temperature in the boundary. For

instance, if the value of the temperature in Γ1 is always lower than the temperature inside the

domain, we can interpret the Dirichlet boundary as a heat sink, if it has a higher temperature

then it can be understood as a heat source. The Neumann BC is described by

(Θ(x)∇u(x)) · n = h(x) , for all x in Γ2 . (2-5)

The function h(x) sets the heat flux, the rate at which heat is evacuated, through the

boundary Γ2 outside the domain. For instance, if h(x) = 0 the boundary does not transfer

heat outside the domain. This is known in the context of heat transfer as adiabatic conditions.

In a more general context, the boundary conditions h(x) = 0 are called natural conditions,

as they appear naturally in the integration by parts when deriving the weak or variational of

the equation. In this work, we assume natural boundary conditions always that a Dirichlet

BC is not specified. The problem of finding a solution to a PDE with boundary conditions

is called a boundary value problem (BVP). The BVP for the heat equation treated in this

work is given below.
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Problem 1 Find u(x) such that

∇ · (Θ(x)∇u(x)) + f(x) = 0 ,

u(x) = g(x) , for all x in Γ1 ,

(Θ(x)∇u(x)) · n = 0 , for all x in Γ2 .

In topology optimization, as will be seen in Chapter 3, we are interested in filling Ω with

a certain amount of conductive material and leaving the rest of the domain without mate-

rial. This distribution is understood as a domain with two materials with different thermal

conductivity as described by (2-2), for example

Θ(x) =

{
1, In the domain with material

ε, In the domain with no material

Ideally, ε = 0, however, this would lead to non-uniqueness of the solution of the BVP, see

[Bendsøe and Sigmund, 2004]. Therefore, to ensure a unique solution it is customary in the

method of densities described in Chapter 3 to choose 0 < ε << 1.

2.1.2 The linear elasticity equations

The linear elasticity problem is probably the best-known application of the topology op-

timization framework, see [Bendsøe and Sigmund, 2004]. Although it shares similarities

with the heat equation presented earlier, the system of PDEs governing the relations of an

isotropic linearly elastic material are vector equations, since the deformation u is a vector

quantity. This is the system of PDEs

−∇ · σ = f , (2-6)

σ = λ tr(∇su) I + 2µ∇su and (2-7)

∇su =
1

2
(∇u+∇uT ) . (2-8)

Here σ is the stress, f represents a body force per unit of area or volume depending on the

dimensions of the problem, λ and µ are the Lamé parameters and I is the identity matrix

of appropriate dimension. For an isotropic material in a bidimensional domain, this system

is equivalent to a pair of second-order equations. However, this form of representation is

more convenient as it makes explicit the balance equation (2-6), which indicates that the

divergence of the stress tensor σ is in static equilibrium with the external forces f (forces

on the boundary), and the constitutive equation (2-7), which is an assumption related to

the behavior of the material. Equation (2-8) helps simplify the notation of the constitutive

equation and can be understood as the symmetric part of the gradient of the displacement

∇u(x). The boundary conditions, can be Dirichlet conditions:

u(x) = g(x) , for all x in Γ1 . (2-9)
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As in the previous section, this equation indicates that the field has a determined value in

the boundary, that is, the deformation has a specific value in the subset Γ1. Similarly,

σ(x) = h(x) , for all x in Γ2 . (2-10)

The function h represents traction applied in the boundary subset Γ2 of the domain. In this

work, we assume that there is no traction on the boundary, as we did with the heat flux in

the boundary in the heat equation BVP.

2.1.3 Weak form of the equations

In Problem 1, if f ∈ Ck(Ω), then a solution u would have two orders of regularity more than

f , that is, u(x) ∈ Ck+2(Ω). More generally, a function u(x) ∈ Ck+2(Ω) ∩ Ck(Ω̄) satisfying

the BVP 1 is called a classical solution. In the finite element method, we are interested

in weakening this requirement to approximate our solution using a space with minimal

smoothness. To do this we can use the fundamental lemma of the calculus of variations,

[Gelfand and Fomin, 2012].

Lemma 1 If β(x) is a function which is continuous in a closed domain Ω, the integral∫
Ω

β(x)v(x)dΩ (2-11)

vanishes for every function v ∈ C2(Ω) and β equals 0 in the boundary ∂Ω, then β(x) = 0,

for all x ∈ Ω.

A function v is called a test function and to highlight the vanishing value in the boundary

the vector space to which v belongs is usually written as

C2
0(Ω) = {v : Ω 7→ R : v|Γ1 = 0} . (2-12)

In problem (1) we multiply and integrate to obtain∫
Ω

(∇ · (Θ(x)∇u(x)) + f(x)) v(x) = 0 , v ∈ C2
0(Ω) . (2-13)

Here the Green identity is applied∫
Ω

Θ(x)∇u(x)∇v(x) =
∫
Ω

f(x)v(x) +

∫
Γ2

h(x)v(x) , v(x) ∈ C1
0(Ω) . (2-14)

The boundary term due to the Green identity on the right-hand side of the equation cancels

out since there are natural boundary conditions (h(x) = 0 in Γ1). A similar deduction allows

us to obtain the weak form (2-15) for the elasticity problem in Equations (2-6) and (2-7).

See [Gockenbach, 2006] for details.∫
Ω

2µ∇su(x)∇v(x)+λtr (∇su(x)) tr (∇sv(x)) =

∫
Ω

f(x)v(x)+

∫
Γ2

h(x)v(x) , v(x) ∈ C1
0(Ω) .

(2-15)
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We can see that the regularity of the space in this weak form is lower, then we could obtain

a solution to the original problem in a space with fewer derivatives, more on this in the next

section.

2.1.4 Existence of solutions

The space of representation of solutions to the previous weak problem lacks completeness.

See [Kreyszig, 2007].

Definition 1 Let {vn} be a sequence of vectors in a normed space H. The sequence is called

Cauchy if given any ε > 0 there exists a positive integer N such that

n,m > N , implies ∥vm − vn∥H < ε . (2-16)

Here ∥·∥H is the norm of the space. The space H is said to be complete if every Cauchy

sequence in H converges to an element in H.

For example, to complete the space C(Ω) we need to define a norm and find a closure in it

[Kreyszig, 2007]. This can be accomplished for instance in the following way.

Definition 2 A function v is said to be square-integrable on an open bounded domain Ω if∫
Ω

|v|2 <∞ . (2-17)

That is, the value of the integral over the domain has a finite value for every element v. The

set of all functions satisfying the previous inequality forms a complete vector space

L2 = L2(Ω) =

{
v :

∫
Ω

|v|2 <∞
}
, (2-18)

with norm

∥v∥2L2
=

∫
Ω

|v|2 . (2-19)

We can extend this space L2(Ω) by including a similar bound for the derivative of the

functions in a space of higher regularity. To accomplish this we need integrable derivatives,

then we define the weak derivative.

Definition 3 A function g ∈ L2(Ω) is called the weak partial derivative of u ∈ L2(Ω) with

respect to the variable xi, a component of x ∈ Ω, if the following equation holds∫
Ω

u
∂v

∂xi
=

∫
Ω

gv , for all v ∈ C∞
0 (Ω) . (2-20)
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Functions with integrable weak derivatives are differentiable in almost every point of their

domain, except for a set of null size, see [Johnson, 2012]. We can now define also a special

Hilbert space with a higher degree of smoothness. Define

H1(Ω) =

{
u ∈ L2,

∂u

∂xi
∈ L2, i = 1, ..., n

}
, with norm

∥u∥2H1 = ∥u∥2L2
+
∑
i

∥∥∥∥ ∂u∂xi
∥∥∥∥2
L2

, i = 1, ..., n .

(2-21)

This new space is appropriate to find solutions to Problem 1 thanks to the regularity and

the properties obtained by adding a norm to the space. We can now define the following

mappings.

Definition 4 A linear form in the Hilbert space H1(Ω) is a mapping L : H1(Ω) −→ R. The

linear form of the problem (2-14) is the right-hand side (RHS) of the equation, that is,

L(v) =

∫
Ω

fv , for all v ∈ H1(Ω) .

Similarly, a bilinear form is a mapping a : H1(Ω)×H1(Ω) −→ R and in the case mentioned

before is the left-hand side (LHS), that is,

a(u, v) =

∫
Ω

Θ(x, y)∇u∇v , for all u ∈ H1(Ω) and v ∈ H1
0(Ω) .

We can write then Problem (2-14) as

a(u, v) = L(v) , for all v ∈ H . (2-22)

To guarantee the existence and uniqueness of the solution to Problem 1 we use the Lax-

Milgram theorem, see [Gockenbach, 2006].

Theorem 1 Let H be a Hilbert space with inner product (·, ·) and norm || · ||. Let a(u, v) be
a bilinear form in H. If

• a is continuous, that is, exists a constant M such that

|a(u, v)| ≤M∥u∥∥v∥, for all u, v ∈ H .

• a is coercive. This is, exists a constant α > 0 such that

α∥u∥2 ≤ a(u, u), for all u ∈ H .

Then there exists a unique solution ū ∈ H for the equation (2-22).
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In this work V = H1(Ω). The following Lemma derived from the Lax-Milgram theorem give

us the properties of matrix Θ to satisfy the theorem, see [Marheineke, 2020].

Lemma 2 Let Θ(x) = aij(x) a symmetric, bounded, positive definite matrix such that there

exists α

α∥ζ∥2 ≤ ζTΘ(x)ζ , for all ζ ∈ Rd .

Then the bilinear form a : H1 ×H1 −→ R given by∫
Ω

Θ(x)∇u(x)∇(v)

is symmetric, continuous and coercive.

2.2 The finite element method

The finite element method is a strategy for numerical approximation of solutions to partial

differential equations. Here we explain the most common form of the method, the Galerkin

method. See [Gockenbach, 2006].

2.2.1 Galerkin method and discretization

We look for an approximation of the solution u. This approximation will be represented in

a subspace Hh of (finite dimension dim(Hh) = n < ∞) of the Hilbert space H of infinite

dimension. In this subspace, the bilinear form and the linear form are still defined. We

use the same subspace for the approximate solution and the test functions in the Galerkin

method. Equation (2-22) becomes

a(uh, vh) = L(vh) , for all uh, vh ∈ Hh ⊂ H . (2-23)

As this new subspace Hh has finite dimension, then we can find a basis of Hh, say

Φ = {ϕ1, ϕ2, ..., ϕn} .

And we can represent our solution as a linear combination of this basis with coefficients ui.

That is,

uh =
∑
i

ujϕj . (2-24)

In the same way, each test function ϕi can be taken to be one function of the chosen basis

for Hh. Replacing in equation (2-25) and then using the linearity of a(u, v) we get

a

(∑
j

ujϕj, ϕi

)
= L(ϕi) , i = 1, ..., n .∑

j

uja (ϕj, ϕi) = L(ϕi) , i = 1, ..., n .

(2-25)
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This is a system of linear equations Au = f with

A = aij = a (ϕj, ϕi) ,

u = uj ,

f = fi = L (ϕi) .

Here we use the notation a for the bilinear form and A for the stiffness matrix. However, it is

common in topology optimization to note the matrix with the letter K. The approximation

uh is the best approximation to the solution u in the subspace Hh ⊆ H. For this, we have

the lemma of Ceà, see [Johnson, 2012].

Lemma 3 Let a be a bilinear form in the Hilbert space H with continuity constant M and

coercivity constant α. The solutions u to the equation (2-22) and uh to the equation (2-25)

satisfy

∥u− uh∥H ≤ M

α
inf

vh∈Hh

∥u− vh∥ . (2-26)

In this work, the Hilbert space H is the space H1(Ω) mentioned in the previous section.

Basis functions ϕi can be chosen to have compact support, then before choosing such func-

tions, we divide the domain Ω into a finite set of subdomains. This partition of the domain

can be denoted K. Each element Ωe of this partition is called a finite element (FE) and the

collection of elements is called a mesh. In this partition, we select our basis functions, for

example of polynomial form.

The FE can be as complex as desired, but they are usually chosen as simple polygonal sub-

domains to simplify the basis functions and the quadrature used to compute the required

integrals. The most commonly used discretization is made of triangles. In topology opti-

mization, any mesh can be used, but to keep the code simple and use little memory, it is

common to use elements of the same shape, for example, use squared elements of the same

size, see [Andreassen et al., 2010] In this work, we follow this approach.

2.2.2 Finite element spaces used in this work

We use square elements in our partition and we also restrict ourselves to rectangular do-

mains. These conditions ensure that in general, the mesh is conforming, see [Gockenbach,

2006]. We define additionally a constant h as the element width. An example of a mesh with

square elements is presented in Figure 2-1. In this figure, we can see that we use two dif-

ferent enumerations, both useful in this work. In Figure 2-1a, the first coordinate increases

downwards and the second coordinate increases to the right. The second enumeration of

nodes in 2-1b has an index that increases downwards and then continues up on the next

column to the right.
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(a) Double index i, j (b) Single index k

Figure 2-1: Example of a mesh with squared elements. The mesh has a size of 4×4 elements

and we represent two different enumerations of the nodes and the elements

(a) Basis ϕi ∈ Q0 (b) Basis ϕi ∈ Q1

Figure 2-2: Basis functions for the Q0 and Q1 spaces.

In this document, we work mainly with Q0 (Figure 2-2a) and Q1 (Figure 2-2b) finite el-

ements. The Q0 elements represent a discontinuous function that in each subdomain is

constant. The weak formulation would allow us to work with this type of element depending

on the discretization. However, our interest in this sort of element is only to represent the

distribution of the material in each subdomain and not the physical field. Define

Q0 = {ϕi : ϕi|Ωi
∈ P0} . (2-27)

Here P0 represent the space of polynomials of degree 0 or constant functions. The space Q1

is more suitable to work if we want to solve a system of PDE using a Galerkin (conforming)

approximation. With this type of element, we represent bilinear functions in each element.

Polynomials of the form

p(x) = (γ0 + γ1x1)(δ0 + δ1x2) = a0 + a1x1 + a2x2 + a3x1x2 .

In this representation, the value of the approximation uh =
∑

j ujϕj in the nodes of the

mesh is defined by the nodal value uj = uh(xj). For example, consider the nodes xi,j, xi+1,j,
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xi,j+1 and xi+1,j+1, then there is a unique polynomial p(x) satisfying

ui,j = a0 + a1x
(1)
i,j + a2x

(2)
i,j + a3x

(1)
i,j x

(2)
i,j ,

ui+1,j = a0 + a1x
(1)
i+1,j + a2x

(2)
i+1,j + a3x

(1)
i+1,jx

(2)
i+1,j ,

ui,j+1 = a0 + a1x
(1)
i,j+1 + a2x

(2)
i,j+1 + a3x

(1)
i,j+1x

(2)
i,j+1 ,

ui+1,j+1 = a0 + a1x
(1)
i+1,j+1 + a2x

(2)
i+1,j+1 + a3x

(1)
i+1,j+1x

(2)
i+1,j+1 .

An additional property of this representation is that for each rectangle, the function is linear

on the edges. Finally, we define the following space

Q1 =
{
ϕi ∈ C0 (Ω) : ϕi|Ωe is a degree-one polynomial

}
. (2-28)

When we compute the stiffness matrix for the studied field, temperature or deformation, we

combine the representation of the material with the basis functions of the main field. For

example, we consider the set of equations for the heat problem

Kiu =

∫
Ω

Θ(x)∇u∇ϕi =
∑
j

uj

∫
Ω

Θ(x)∇ϕj∇ϕi , i = 1, 2, ..., N .

Here the thermal conductivity Θ(x) depends on the position in the mesh and Ki is the

i-th row of the stiffness matrix K. If the thermal conductivity is represented by a linear

combination of a set of basis functions

Θ(x) ≈
∑
k

θkψk , ψk ∈ Q0 or Q1

Then we compute the i, j term of the global rigidity matrix as the integral over the inter-

section of supports supp(ϕi) ∩ supp(ϕj)

Ki,j =

∫
Ω

∑
k

θkψk∇ϕj∇ϕi , i, j = 1, 2, ..., N . (2-29)

Here the sum k is in the elements such that xk ∈ supp(ϕi) ∩ supp(ϕj).

Material properties represented by the Q0 space

Consider the specific case when the meshes for the material properties and main field match

and ψ ∈ Q0. Each basis function ϕh ∈ Q1 is composed of 4 bilinear segments in different

elements Ωe sharing the node i. Similarly, there are 4 different test and trial basis functions

acting in a single element Ωe with a single quadrature point of material, then we compute a

stiffness matrix for a single element in the following way

Ke = θe

∫
Ωe

∇ϕj∇ϕi , i, j such that xi, xj ∈ Ωe . (2-30)
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HereKe is the stiffness matrix of the element Ωe. We can easily construct a complete stiffness

matrix K by computing the integrals ki,j for each element and adding them together with

all the DOFs in the domain. Since the basis functions are bilinear, the gradients are linear

in the orthogonal direction to the derivation. Then, (2-30) is the integral of a second-degree

polynomial that we compute directly. The local stiffness matrix of an element Ωe is

Ke =
θe
6h2


4 −1 −2 −1

−1 4 −1 −2

−2 −1 4 −1

−1 −2 −1 4

 . (2-31)

This is a diagonally dominant matrix for 0 < θe, then it is positive semidefinite.

Material properties represented by the Q1 space

We consider also the case when the material property is represented by basis functions

ψk ∈ Q1. In this case, the basis functions for the material properties in a single square

element are 4. Then we can compute the element local stiffness matrix as the sum of the

contributions of each basis function for material properties ψk

Ke =
∑
k

θk

∫
Ωe

ψk∇ϕj∇ϕi , i, j, k such that xi, xj, xk ∈ Ωe . (2-32)

As ψk is bilinear and∇ϕi, ∇ϕj are linear, we obtain a third-degree polynomial in one variable

times a first-degree in the other one. The partial local stiffness matrix for one of the nodal

variables θk is given by

Ke,k =
θe
6h2


3 −1 −1 −1

−1 2 −2

−1 1

−1 −1 2

 . (2-33)

Here the first degree of freedom (DOF) corresponds to the node of the material basis function.

The second and fourth degrees of freedom are related to the neighboring nodes in the same

cell, while the third one is related to the opposite corner. The stiffness matrices for the other

nodes are permutations of the DOF of (2-33). Mixing (2-32) and (2-33) we obtain

Ke =
∑
k

Ke,k .

A complete matrix for a ψk ∈ Q1 basis function of material includes the relations with the

eight nodes around selected the node (for a non-boundary node), this means a 9× 9 matrix.
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Using the numeration in 2-1b, this matrix is

Kk =
∑
e

Ke,k =
θk
6h2



1 −1

2 −1 −1 −1 −1

1 −1

−1 2 −1 −1 −1

−1 −1 −1 −1 −3 −1 −1 −1 −1

−1 −1 −1 2 −1

−1 1

−1 −1 −1 −1 2

−1 1



. (2-34)

Here the sum over the index e is in the support of ψk. Matrices (2-31) and (2-34) are used

to assemble Q0 and Q1 density representation schemes respectively for the optimization

of material, as we see in Chapter 3. Similar integration procedures are performed with

equations (2-6), (2-7) and (2-8) to obtain the rigidity matrix for the elasticity problem.

Change of representation

Suppose that we have the information of the conductivity (or any other material property)

of a domain Ω represented by the linear combination

Θ(1)(x) =

N1∑
j=1

θ
(1)
j ψ

(1)
j (x) , ψ

(1)
j ∈ V (1) , N1 = dim

(
V (1)

)
.

And we want to represent the information in another space V (2)

Θ(2)(x) =

N2∑
i=1

θ
(2)
i ψ

(2)
i (x) , ψ

(2)
i ∈ V (2) , N2 = dim

(
V (2)

)
.

We can use then the L2-projection between spaces. In this projection, we compute every

coefficient of the V (2) representation in the following way

θ
(2)
i =

N1∑
j=1

θ
(1)
i

∫
Ω

ψ
(1)
j ψ

(2)
i , i = 1, ..., N2 . (2-35)

Notice that (2-35) is a system of linear equations, that can be represented as

Θ(2) = T(1,2)Θ(1) . (2-36)

Here T(1,2) is a matrix of coefficients Tij =
∫
Ω
ψ

(1)
j ψ

(2)
i . In a similar way

Θ(1) = T(2,1)Θ(2) . (2-37)



16 2 Theoretical background

Spaces V (1) and V (2) can be any of the finite subspaces of L2(Ω) presented before, like the

spaces Q0(Ω) and Q1(Ω). These spaces can be of the same type but different mesh too,

for example, two Q0 spaces, one with a coarse and one with a fine mesh. We will use

these projections in Chapter 5 to analyze some properties of the solutions to the topology

optimization problems in this work.



3 Topology optimization

Optimizing material distribution is a problem that depends on the representation we use

for the material field. This representation, in turn, depends on the mathematical tools

available to solve the physical problem. After the successful development of the solid isotropic

material penalization (SIMP) method to improve material distribution in applied problems,

see [Bendsøe and Sigmund, 2004], many new approaches to the problem have been developed,

see [Rozvany, 2009, Sigmund and Maute, 2013]. To study the problem, we choose a set of

methods we believe could improve our understanding of the broad problem. In this chapter

we draw from several sources, mainly [Bendsøe and Sigmund, 2004, Smith and Norato,

2020, Wein et al., 2020].

3.1 Introduction

A comprehensive introduction to topology optimization is given in [Bendsøe and Sigmund,

2004]. Here a rather straightforward description of topology optimization is given. In a

domain Ω ⊂ Rn, with n = 2 or n = 3, the main problem is to find an optimal material

disposition for a mathematical model of some physical phenomenon that depends on that

disposition. The material distribution can be given in terms of a variable ρ describing, for

example, the density distribution or a parameterization of a material boundary [Wein et al.,

2020]. The performance of a particular material distribution is measured by a functional F ,

which is the description of a set of requirements. Mathematically, we need to solve

min
ρ
F (u(ρ), ρ) . (3-1)

The functional F is given in terms of u, a quantity that depends on ρ through a physical

model equation. The quantity u can be a displacement field or a temperature and often the

relation with ρ is given by a system of partial differential equations (PDE). In this case, in

order to solve the minimization problem, the numerical approximation of the physical model

must be computed in each iteration of the optimization procedure. The most common

formulation of this problem is the optimization of the energy in the system, also known as

the minimum compliance problem. This problem depends on the cost functional

c(u(ρ)) =

∫
Γf

u(ρ) · f dΩ. (3-2)
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Here c is the compliance of the system and f is the load over the boundary Γf . It is also

possible to minimize the overall magnitude of the field, computed in terms of a q-norm:

m(u(ρ)) =

(∫
Ω

|u(ρ)|q dΩ
)1/q

. (3-3)

As q increases, (3-1) with (3-3) becomes a minmax problem, see [Yan et al., 2018]. The

problem can be constrained in an arbitrary way, but commonly a volume constraint V ∗
f is

used. Adding a restriction on the volume, the minimum compliance topology optimization

problem is stated as follows.

Problem 2 Find a distribution of material ρ such that the following functional in terms of

the field u is optimized, that is,

min

∫
Γf

u(ρ) · f dΩ,

subject to Vf (ρ) ≤ V ∗
f ,

0 ≤ ρi ≤ 1 .

(3-4)

Here Vf is the volume of material over the domain

Vf (ρ) =

∫
Ω

ρ dΩ. (3-5)

3.2 The density problem

Assume that we have a partition in squared FEs for the domain Ω in Problem 2, as described

in Chapter 2. This partition is a mesh of size n×m. One can assign full-density material or

void in each finite element Ωe, which means we are using a constant value of density inside

each FE, see [Bendsøe and Sigmund, 2004]. It is important to note the meaning of this

computation, that is, the stiffness corresponding to the Q1 displacement field with a ρ ∈ Q0

density representation. In the original problem, we are trying to find a vector of densities ρ

of dimension N = nm with

ρe ∈ {ρmin, ρmat} . (3-6)

Here ρe is a component of the density vector ρ corresponding to the element Ωe, ρmat is the

material density, and we use a minimum density ρmin. As noted in the previous chapter,

the density ρmin is usually chosen as a small positive value to ensure a well-posed BVP. The

main advantage of the density representation is that we can always use the same mesh and

represent the void elements as elements with very low stiffness, see [Bendsøe and Sigmund,

2004]. This representation is known as an Ersatz material, and the constant value of density
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allows us to compute a part of the stiffness matrix independently of the value of the density,

see [Wein et al., 2020]. The main difficulty is that the search becomes proportional to the

term 2nm and classical methods for solving it perform poorly in terms of computation time.

The most common approach consists in relaxing the feasible set of the variable ρi to be a

continuous interval for each cell, that is

ρe ∈ [ρmin, ρmat] . (3-7)

Allowing intermediate density values allows the use of gradient and Lagrange multipliers-

based optimization methods, see [Deaton and Grandhi, 2014]. This approximation to the

problem also allows for a better description of the resulting shape if the mesh remains static

throughout the optimization, which leads to limitations in the description of boundaries

between regions with and without material, see [van Dijk et al., 2010]. It is also convenient

to bound away from zero the design variables, using instead

ρe ∈ [ρmin, 1] . (3-8)

All information concerning the stiffness is wrapped in a local stiffness matrix Ke that is

computed using the normalized density also known as the pseudo-density, that is,

Ke = ρeK0,e . (3-9)

Here K0,e is a local stiffness matrix for element Ωe computed with ρ = 1. In the discretized

domain, the optimization problem is given as follows.

Problem 3 Find an optimal distribution of material ρ ∈ Q0, such that the following func-

tional in terms of the vector of temperature (or displacement) u and the load vector f is

minimized.
min
ρ∈Q0

uT (ρ)f ,

subject to
1

N

N∑
e=1

ρe ≤ V ∗
f ,

0 < ρmin ≤ ρe ≤ 1 , e = 1, ..., N .

(3-10)

Here V ∗
f is a maximum fraction of material in the domain. Vectors u and f must satisfy

the additional restriction

K(ρ)u =
Ne∑
e=1

ρeK0,eue = f . (3-11)

Here K is the global stiffness matrix, N is the number of elements, ρe is the density in the

element Ωe, K0,e is a local stiffness matrix for the element and ue is the nodal displacement
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in the element Ωe. In the case of same-size elements the local stiffness matrix is computed

using the same stiffness matrix K0. The functional in (3) can be rewritten as

c(u) = uTK(ρ)u = fT

(
Ne∑
e=1

ρeK0,e

)−1

f .

Problem 3 is convex, therefore it has a unique solution, see [Bendsøe and Sigmund, 2004]. A

vector solution should have most (if not all) densities as described in equation (3-6). If this

is not the case, the solutions could have significant portions with intermediate densities also

known as gray zones which are very common when implementing this convex minimization

problem.

To overcome the existence of gray areas in the solution, the effective density used to describe

the domain is penalized or interpolated [Bendsøe and Sigmund, 1999]. In the eighties and

nineties, the Solid Isotropic Material with Penalization (SIMP) method was proposed: a

power law is applied homogeneously to every density. That is, we consider the penalized

density

ρpen = ρp . (3-12)

Here p is a penalization constant commonly set to the value of 3 as is it the minimum

exponent satisfying the upper Hashin-Shtrikman bounds, see [Sigmund and Petersson, 1998]

and Figure 3-1. A simple implementation of this method is presented in [Andreassen et al.,

2010]. When using the SIMP method is possible to find solutions without gray zones and

with the help of post-processing algorithms we can also find a parametrized description of

the boundary, see [Bendsøe and Sigmund, 2004]. There is a difficulty when applying such

penalization directly: the power law applied to a small number ρi = ρmin could transform

it into a number even closer to 0, causing the singularity of the stiffness matrix. Then the

element stiffness is computed using the following updated formula (the so-called modified

SIMP scheme)

Ee(ρe) = Emin + ρpe(E0 − Emin) , (3-13)

with Ee the stiffness of the element, Emin a small lower bound to prevent singularity in the

global stiffness matrix, E0 is the base stiffness and ρe is the density term. In a discretized

domain, the optimization problem is posed as follows.

Problem 4 Find an optimal distribution of material ρ ∈ Q0, such that the following func-

tional in terms of the vector of temperature (or displacement) u and the load vector f is

minimized,
min
ρ

uT (ρ)f ,

subject to
1

Ne

Ne∑
i=1

ρi ≤ V ∗
f ,

0 < ρmin ≤ ρi ≤ 1 .

(3-14)
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Here V ∗
f is a maximum fraction of material in the domain. Vectors u and f must satisfy

the additional restriction

K(ρ)u =
N∑
e=1

Ep (ρe)K0,eu = f . (3-15)

The constant p is chosen in [1,∞) and Ep(ρ) as in (3-13).

Choosing an appropriate value of p delivers 0−1 designs for this problem, but it is no longer

convex and usually presents mesh dependence problems, see [Sigmund and Petersson, 1998].

We see solutions to this problem in Chapter 4, which are generally formed by a connected

composition of elongated zones of material transporting a flux of temperature or traction;

we refer to these zones as members in this work.

3.2.1 Interpolation of material

Figure 3-1: Material interpolation schemes for the stiffness constant as a function of the

pseudo-density.

From an optimization point of view, penalizing variables is a numerical strategy to obtain

0-1 solutions. However, there is a physical interpretation to the penalization related to the

homogenization method, [Bendsøe and Sigmund, 2004]. In the homogenization method, we

suppose that we only have two types of material (full or void) in our domain with details

in the material distribution smaller than the minimum scale of our design problem. In the

mixed material zones, we have some micro-structure with some elasticity tensor that we

in turn approximate as a simpler tensor in the macro-structure. This interpretation of the
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material distribution gives us a physical justification for the relaxation of the design space,

and in this sense, we can call the penalization used a material interpolation scheme. In

this work, we assume that the material and the microstructure are isotropic (since we could

also consider an anisotropic modeling of the material or the homogenization) and that the

Poisson’s ratio of the elastic material is independent of the pseudo-density of the design

variables, see [Bendsøe and Sigmund, 1999]. Following the homogenization method, we can

obtain bounds for the behavior of the isotropic composite two-phase material microstructure,

known as Hashin-Strikhman bounds. We are generally interested in the upper Hashin-

Strikhman bound, which for a material interpolation scheme E(ρ) in two dimensions gives

us the following (3-16), see [Bendsøe and Sigmund, 1999],

0 ≤ E(ρ) ≤ ρE0

3− 2ρ
. (3-16)

The bound becomes for the SIMP method

max

{
2

1− v0
,

4

1 + v0

}
≤ p . (3-17)

Here the Poisson ratio of the full-density material is v0 and p the penalization exponent in

(3-12). For v0 = 13 the minimum exponent satisfying the upper bound is p = 3. In [Bendsøe

and Sigmund, 1999] the authors also explore the realization of the micro-structure of a

SIMP interpolation. An alternative scheme for interpolation is the Rational Approximation

of Material Properties (RAMP), given by

E(ρ) =
ρ

1 + q(1− ρ)
E0 . (3-18)

Here q is a parameter we can increase to increase the penalization of intermediate densities.

Notice that for q = 2, equation (3-18) equals (3-16). See [Bendsøe and Sigmund, 2004]. In

this work we focus mainly on the SIMP interpolation in the simulations presented in the

following chapters.

3.2.2 Checkerboard patterns and mesh dependency

These algorithms often deal with mesh dependency problems (the computation and results

depend on the mesh and the discretization) and very commonly also deal with the existence

of checkerboard patterns, a problem related to the overestimation of stiffness values cell

corners, [Sigmund and Petersson, 1998]. The checkerboard patterns consist of artificially

high-stiffness regions in the form of alternating 0-1 meshes as illustrated in Figure 3-2.

Consider the domain in Figure 3-2a and the distributions of material in Figure 3-2b and

Figure 3-2c. If the stiffness matrix for the heat problem is computed and the submatrix

consisting of the red nodes is extracted, then one can see that the matrices have important



3.2 The density problem 23

(a) Domain (b) Homogeneous (c) Checkerboard

Figure 3-2: Distributions of material in a squared domain of 4× 4 elements and size 4× 4.

Although the distributions are quite different, in the nodes signaled with · in
red in (a) the stiffness matrix entries are similar.

similarities. We have for distribution in Figure 3-2b

Kb =
1

6



8 −1 −1 −1

−1 8 −1 −1 −1 −1

−1 8 −1 −1

−1 −1 8 −1 −1 −1

−1 −1 −1 −1 8 −1 −1 −1 −1

−1 −1 −1 8 −1 −1

−1 −1 8 −1

−1 −1 −1 −1 8 −1

−1 −1 −1 8



. (3-19)

And for the distribution in Figure 3-2c

Kc =
1

6



8 −1 −1 −2

−1 8 −1 −2 −1

−1 8 −1

−1 −2 8 −1 −1

−2 −1 −1 8 −1 −1 −2

−1 −1 8 −2 −1

−1 8 −1

−1 −2 −1 8 −1

−2 −1 −1 8



. (3-20)
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Comparing these two matrices we see that,

∥Kb∥∞ = 2.67 , ∥Kc∥∞ = 2.67 , and ∥Kb −Kc∥∞ = 0.67 .

These regions have almost the same stiffness as a gray region, but satisfy the requirement

to provide 0-1 designs. This problem introduces small holes of material into the discretized

domain as small as the mesh, and in turn causes a high dependence on the solution: the

finer the mesh the more holes with artificial stiffness are introduced, and a material with

microscopic holes does not behave as predicted by the FEM method with these patterns, as

the real effect in the stiffness of a porous material is worse [Bendsøe and Sigmund, 2004]. If

a region in the solution of the non-penalized problem is gray (has partial pseudo-density),

then the penalized solution could have a zone with checkerboard patterns. Solutions to this

problem vary, the simplest being to introduce an image filter [Sigmund and Petersson, 1998].

More on this in the following section.

3.2.3 Filtering

A linear image filter is a linear mapping, defined over the space of densities R

H :R −→ R

ρ 7→ ρ̃ = Hρ
(3-21)

Depending on the definition of the problem we have R = Q0 or R = Q1, see Section 3.2.

Figure 3-3: Elements used to compute the final filtered pseudo-density of the central ele-

ment. The weight of each element in the average is represented in a gray scale

and is dependent on the distance to the center of the element.

The action of the filter can be understood in terms of a kernel. For example, see Figure 3-3,

this image represents the local elements used to compute the final value of the pseudo-density

of an element i, consisting of the neighboring elements. To compute the final value for the

position i, a weighted average can be used. That is

ρ̃i =

∑N
j=1 ajρj∑N
j=1 aj

. (3-22)
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Figure 3-4: Representation of the effect of a linear filter on a checkerboard pattern. The

blurring effect of the mapping transforms the patterns in grey designs, and in

turn, the penalization makes them expensive. This way, the optimizer avoids

these patterns and gives preference to wide regions of homogeneous material.

Figure 3-5: Example of a squared domain consisting of four elements. The application of a

weighted average kernel changes the gain in different principal directions. Al-

ternate patterns of material get blurred and optimization avoids them because

of the penalization.

The coefficients can be computed with the formula

aj = max{0, r − dj} .

Here r is a prescribed radius known as the filter width and dj the Euclidean distance between

the quadrature points ρi and its neighbor ρj. When using this average, the effect over an

image is that of blurring it. In a very intuitive way, we could say that the blurring can

make checkerboard patterns and other small details on the density distribution lose some

contrast, making the penalization see them as gray areas, see Figure 3-4. These filtered and

penalized gray areas are then avoided by the optimizer. To understand a little better this

effect, consider for example the simple and small domain in Figure 3-5, consisting of only

two neighboring elements. And consider a filter with the following kernel

H =
1

5


3 1 1

1 3 1

1 3 1

1 1 3

 .
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In this filter the main element is given three times the weight given to the neighboring

elements. Now, using eigenvalue decomposition we see the eigenvectors and the eigenvalues

v1 =


1/2

−1/2

−1/2

1/2

 , v2 =

−
√
2/2

√
2/2

 , v3 =


√
2/2

−
√
2/2

 , v4 =

1/2

1/2

1/2

1/2

 .

λ1 = 1/5, λ2 = 3/5, λ3 = 3/5, λ4 = 1 .

In the direction v4, the kernel matrix does not produce any effect. This is the direction

where the densities are uniform, that is, every density has the same value. In the direction

v1 representing alternated tiles of material, the filter diminishes the gain to 1/5. If the filter

is embedded in the optimization process, then the optimizer cannot reach the corner values

[0, 1, 1, 0] and [1, 0, 0, 1], but will have a preference to uniform points, and will try to avoid

checkerboard patterns, see [Bendsøe and Sigmund, 2004]. This effect increases with the

radius of the filter and can have local and non-local effects. More on this in Chapter 4.

3.3 Some variations of the method of densities

The element-uniform density representation is not the only one used in TO. In general,

different combinations of representation spaces for the densities and the physical field have

been explored and some have proven to have advantages over the previous method. In

this section, we explore an alternative formulation found in the literature and a different

formulation proposed in this work. See [Rahmatalla and Swan, 2004].

3.3.1 Continuous density representation

If we choose a density field represented by Q1 basis functions the density field becomes

a continuous function. The procedure is analogous to the method originally presented in

Section 3.2, the difference is that each optimization variable is now the nodal value of the

density, rather than the element value, see Figure 3-6. In general, we can choose any

density representation including higher degree-polynomials or quadrature points of density

located in other points instead of the center or the nodes of the element, see for example

[Paulino and Le, 2009]. Additionally, smooth spaces of polynomials of degree greater than

five eliminate the need for a filter to prevent mesh-dependency problems, see [Sigmund and

Petersson, 1998]. Keeping the assumption of a correspondence between material properties

and pseudo-density, for instance, for the heat problem we can write,

Θ(x) =
∑
k

θkψk =
∑
k

ρkψk .
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Figure 3-6: DOF of the fields in Q0 and Q1 density representations. Figure adapted from

[Rahmatalla and Swan, 2004]

Here ψk are the basis functions of the spaceQ1. The mapping from the density to the physical

field is straightforward: each nodal density basis function ψk in the node k is integrated with

the basis functions for the trial and test spaces

Ki,j =

∫
Ω

Θ(x)∇ϕj∇ϕi =
∑
k

ρk

∫
Ω

ψk∇ϕj∇ϕi , i, j = 1, 2, ..., N .

Here the sum on the index k is in k such that xk ∈ supp(ϕi) ∩ supp(ϕj). The result of this

integration for a single basis function ψk is presented in (2-34). When the interpolation is

linear, we extract the optimization variables from the resulting stiffness matrix associated

with the 9 nodes (or less in the boundaries and the corners of the domain) influenced by

the Q1 basis, see Figure 3-7. We have now the following representation for the full rigidity

matrix

K(ρ)u =
Nn∑
k=1

ρkK0,kuk = f . (3-23)

Here we have changed the sum index to represent the sum on every node k, and K0,k

represents a local stiffness matrix of 9 nodes in central elements, 6 in the boundaries and 4

in the corners. When we penalize the stiffness matrix we can assume that the penalization

only will affect the density variable, see the proportional combination in Figure 3-7,

Kk = ρpkK0,k , (3-24)

or that it will affect the density value in every point of the domain, see theoretical in Figure

3-7. When this happens, we cannot use (2-29), rather we compute the integrals of the
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Figure 3-7: The penalization of the density variable can be interpreted in different ways.

When the interpolation is linear (left) the height of the density segment is scaled

proportionally to the density variable. When the interpolation implements

penalization, it can affect the basis function linearly (center) or the whole basis

function (right) and the combination over a single element, adding complexity

to the computation.

components of the global stiffness matrix for each iteration of the optimization

Ki,j =

∫
Ω

(∑
k

ρkψk

)p∑
j

∇ϕj∇ϕi , i, j = 1, 2, ..., N .

Here the sum on the index k is done in k such that supp(ϕi)∩ supp(ϕj)∩ supp(ψk) ̸= ∅. This
acts in practice like a filter of densities, provided that contiguous nodal variables interact

directly in the optimization. In this work, we consider for simplicity the equation (3-24).

The method presents an overestimation of the stiffness values in certain components ki,j
and then presents solutions with structures similar to checkerboard patterns, called layering

and islanding. Due to this situation, the method must also implement a filter of densities

or perimeter control to yield useful results. In [Rahmatalla and Swan, 2004] the authors

explore the stability of the method with perimeter control.

3.3.2 Discontinuous density representation

The previous two methods share most of the design calculation steps except for the repre-

sentation of the density field. Due to the similitude, we studied the possibility of a density

representation able to generalize the two methods. In this work, we explored a generalization

based in the decomposition of the basis functions for the Q0 and Q1 spaces. In Figure 3-8

we can see how the Q1 basis for densities is a composition of 4 bilinear functions C1(Ωe) in

different elements Ωe sharing a common nodal point. That is, the basis function ϕi,j for the
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Figure 3-8: Representation of the construction of the Q0 and Q1 basis functions for den-

sity representation using bilinear functions ρ(k), this bilinear functions have 3

corners with 0 value and one corner with 1 value. Full density is represented

in black and the absence of material is in white. In Q1, the basis functions are

constructed by gluing 4 segments ρ by the same node. In Q0, the segments are

added to the same element.

node i, j can be computed as

ϕi,j = ρ
(1)
i,j + ρ

(2)
i,j+1 + ρ

(3)
i+1,j + ρ

(4)
i+1,j+1

The indices in this sum indicate the element where the support of the bilinear segment lies.

The point of this decomposition is that the Q0 basis functions can be also represented by

the sum of the same basis functions, but in the same element i, j

ϕi,j = ρ
(1)
i,j + ρ

(2)
i,j + ρ

(3)
i,j + ρ

(4)
i,j

Figure 3-9: Centroid of a DQ0 element with value ϕ(x) = 1 in the bottom right corner.
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We call this new space DQ1 and note that Q0, Q1 ⊂ DQ1, this is, the new representation

contains the previous density representations. The direct implementation of an optimiza-

tion process with these bilinear segments delivers solutions with a mixture of checkerboard

patterns and islanding, problems of the Q0 and Q1 representations, respectively. Then it is

necessary to apply filtering to obtain reasonable solutions. In general, it is possible to build

a linear filter, similar to those implemented for Q0 and Q1 representations. Here we consider

an approach based on the centroid of the DQ0 basis function.

In Fig. 3-9 we can observe that the centroid of the basis function is located at 1/3 of the

height/width of the corner where the basis function is 1. Based on this we can build a linear

filter HDQ0 based on distances as we did in Subsection 3.2.3. With this implementation, the

coefficients of the linear combination of basis functions with a higher coefficient and influence

in the filter applied on each density value would be those in the same element. We present

results of this method for the heat problem in Chapter 4.

3.4 Geometry projection topology optimization (GPTO)

There is a set of methods referred to as feature-mapping methods [Wein et al., 2020], that use

an explicit representation of geometric forms to place material in the domain. This method

was introduced in [Bell et al., 2012] and [Norato et al., 2015] with bar primitives and an

educational code library was made available in [Smith and Norato, 2020]. In this section,

we follow the description of the method in [Smith and Norato, 2020].

3.4.1 Bar primitives

A set of geometric primitives is placed in the domain to represent the distribution of material,

which is mapped or projected onto a density field. Each primitive b is described in the domain

using a set of parameters hereafter denoted by zb.

In [Smith and Norato, 2020], the authors consider bar-shaped primitives, as an example of

this methodology. Each bar b has a pair of end points x1b and x2b and a radius rb, see Figure

3-10a. The radius represents an offset surface from the line formed by the endpoints. This is

a straightforward and convenient parameterization as we will see in the following subsections.

For the parameters zb, the following constraints are included

x1b, x2b ∈ Ω ,

rb−min ≤rb ≤ rb−max .
(3-25)

The first constraint tells us that the endpoints of the bars must always lie inside the design

domain. The bounds on the radius rb−min and rb−max are modified to control the length

scale of the members in the solution. If rb−min = rb−max, the radius of the bar is fixed in the

optimization process. A parameter αb ∈ [0, 1] is added to each bar as a design variable in the
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(a) (b)

(c) (d)

Figure 3-10: Geometry Projection Method with offset bars as primitives in a 2D domain.

(a)The bar as an offset surface generated by a line. (b) Example bar in some

domain and two possible representations in a density field (c) and (d)

optimization process, to describe the influence of the bar in the final design. This parameter

is understood in [Smith and Norato, 2020] as a size of the bar and it can be thought of as

the maximum pseudo-density that a primitive can add to a density variable in the density

field, as detailed later.

3.4.2 Mapping of the primitives to a density field

To transform the geometric representation of the problem into a density representation in a

Q0 or a Q1 space, we need a strategy to map the primitives to values of the coefficients of

the linear combination
∑

k ρkψk(x). To do this, we take advantage of the compact support

of the basis functions ψk. We assume initially that if there is a geometric primitive in the

domain, it will add to the pseudo-density value ρk only if the primitive overlaps with the

support of ψk. In [Smith and Norato, 2020], the Q0 representation space is used. With this

space, the support of a basis function ψk is just the element Ωk. Then we search for a way to

compute the intersection of the area Ωb covered by a primitive b with each squared element

Ωk. This intersection would be represented in the following way

ρk =
|Ωk ∩ Ωb|

|Ωk|
. (3-26)

Here | · | is the value of the area. It is possible to generalize the method to any space and

in the case of the Q0 space is numerically possible to find the value of this intersection with

an efficient implementation. However, in [Smith and Norato, 2020] the authors choose a

different approach to compute the value of each ρk. They assume initially that each squared
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Figure 3-11: Signed distance computation.

(cubic in three dimensions) subdomain Ωk can be represented by a ball Bx centered in the

point x, matching the center of the FE Ωk. The radius rk of this ball can be chosen as the

width of the element h = rk, and can be computed to match the area |Ωk| = πr2k (or any

other criterion chosen by the designer of the method). This approach is convenient, since we

have a simple description of the area covered by the bar and the area covered by a ball, and

we can easily determine if a point is inside the bar or the ball, if the two of them intersect

and we can even compute a distance between the surfaces of the primitive and the ball.

(a) Function h(x). (b) Derivative h’(x).

Figure 3-12: Original projection function used in [Smith and Norato, 2020], based on the

intersection of a ball with a straight boundary.
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The signed distance ϕb is a distance that includes the case when there is an intersection,

see Figure 3-11. When there is no intersection, ρk = 0 and consequently ϕb ≤ −rk. If the

ball is fully inside the primitive, that is ρk = 1, then rk ≤ ϕb. The partial intersection is

represented by a value in the interval ϕb ∈ [−rk, rk], attaining ϕb = 0 if the center of Bx is in

the surface of the primitive. We can choose a function h (ϕb/rk) mapping between the signed

distance and a value of pseudo-density in [0, 1]. The exact details of the computation of ϕb

are found in [Smith and Norato, 2020] and we limit ourselves to mention that this function

is continuous and differentiable. In the same article the authors choose

h (ϕb/rk) =


0 , if ϕb/rk < −1 ,

a(ϕb/r) , if − 1 ≤ ϕb/rk ≤ 1 ,

1 , if 1 < ϕb/rk .

(3-27)

Here ϕb/r is the distance from the boundary of the bar to the centroid of the element, and

a(ϕb/r) depends on the problem treated. For example, in [Smith and Norato, 2020] the

function for a 2D domain is described by an approximation to the area fraction of a circular

segment described in (3-26), given by

a(x) = 1− arccos(x) + x
√
1− x2

π
.

Here, we refer to this function h in this work as projection function. In 3D, this formula

corresponds to an approximation of the volume fraction of a spherical cap. Multiple primi-

tives can overlap and their densities are combined using a differentiable max-norm, see [Wein

et al., 2020], for example, the p-norm

max(ρ) =

(∑
j

ρpj

)(1/p)

. (3-28)

Here, we combine the independent contributions of each primitive to the value of the density

cell in the density variable, representing the superposing primitive densities by j. As we now

have an analytical description of the densities ρk in terms of the parameters zb for each bar

b, the sensitivities of the compliance and volume with respect to the parameters described

above can be computed using the chain rule. Since h(x) is constant in empty and full

elements the gradient is null for these elements. It is possible to see then that intermediate

zones, elements on the boundary of the primitive, are the ones driving the optimization as

a′(x) ̸= 0, see [Wein et al., 2020].

3.4.3 Comments on other projection functions

Alternative functions to map primitives to the density representation could be beneficial for

improving the solutions or obtaining different designs. For example, increasing the smooth-

ness of h could help the optimization process. One way of doing this is using a fifth-degree
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polynomial like the following

p (x) = 0.1875x5 − 0.625x3 + 0.9375x+ 0.5 . (3-29)

(a) Fifth degree polynomial p(x). (b) Derivative p′(x).

Figure 3-13: Projection with polynomial function.

(a) Logistic function l(x). (b) Derivative l′(x).

Figure 3-14: Projection with logistic function.

When inserted in Equation (3-27), h ∈ C2(R) and is used for example with the GPTO

method in [Smith and Norato, 2022] to project fiber reinforced plate primitives, demonstrat-

ing a small improvement in performance without the significant computational overhead.

The form of this polynomial is shown in Figure 3-13a and its derivative in Figure 3-13b.

In [Wein et al., 2020], it is mentioned that with a spline parameterization the derivative

of the element with respect to the parameters of a primitive cancels when the boundary of
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(a) Arctan function at(x). (b) Derivative at’(x).

Figure 3-15: Projection with arc-tangent function.

the primitive matches the mesh partition, this in turn causes the bar to remain fixed in a

position. However, it is also true that this is a very specific phenomenon that hardly occurs

in practice. Another function h(x) to be considered could be the sigmoid logistic function,

used also in [Wein and Stingl, 2018],

l(x) =
1

1 + exp(−4x)
. (3-30)

The graph of the sigmoid function is presented in Figure 3-14a. This function is not of

compact support, but converges rapidly to its asymptotes in y = 0 and y = 1. The derivative

of the function in Figure 3-14b shows that the derivative is not zero in the boundary of the

element, but retains a small value away from the boundary of the primitive. The optimization

could benefit from this small influence, provided that distant FE without density value, can

add to the gradient in the boundary of the primitive closest to the element. This hypothesis

is tested later. Finally, we consider the arc-tangent function

at(x) =
arctan(πx)

π
+ 0.5 . (3-31)

This function is not of compact support and does not move towards the asymptote as fast

as the logistic function, then we can expect primitives with a density less than one near

the boundary and elements outside the primitives with a small density value. In both these

senses, the use of the material would be less than ideal. The only apparent benefit from the

use of this function is that the influence of distant elements on the primitive is stronger, then

we could expect an improvement in the final bar disposition but not in the compliance.
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Previously we have discussed the topology optimization framework using finite elements to

numerically solve the physical problem. This chapter presents solutions to benchmark prob-

lems, introduces the analytical formula for the gradient of the objective function, the most

commonly used optimizer, and explores these local solutions. Additionally, we review several

modifications to the topology optimization framework aimed at improving local numerical

solutions. The works cited in this chapter include [Bendsøe and Sigmund, 2004, Sigmund,

2022, Andreassen et al., 2010, Smith and Norato, 2020, Watada and Oshaki, 2009, Svanberg,

1998, Yan et al., 2018].

4.1 Benchmark problems

Several problems have become standard in the field of topology optimization. These methods

are simple enough to analyze the effect of modifications or proposals to the base and long-

established methods. Using these benchmarks to validate new concepts and methods is a

common practice. This section introduces some of these benchmark problems. See [Sigmund,

2022] and [Bendsøe and Sigmund, 2004].

4.1.1 Benchmark heat conduction problems

The area-to-point problem is a well-known problem to test the heat topology optimization

method. It is presented in [Bendsøe and Sigmund, 2004] and has been thoroughly examined

both theoretically and numerically in [Yan et al., 2018], where they analyze the properties

of a good solution given a specific set of simulation parameters. This problem is suggested

in [Sigmund, 2022] to analyze the properties of the method in characteristics related to the

minimum length scale. A variant of this problem is used in Chapter 5 to test some properties

of the GPTO method, as indicated in Subsection 5.1.1. The definition of this variant problem

is provided in the same chapter.

4.1.2 Benchmark elasticity problems

For the linear elasticity model, two classical problems are commonly used: the Michell

bridge and the Messerschmitt–Bölkow–Blohm (MBB) beam. The work in [Watada and
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Figure 4-1: Area-to-point problem. Heat is constantly generated at a certain rate g in all

the domains, the goal is to distribute certain conductive material of amount v∗f
such that the heat is dissipated to the sink. The size of the domain is 300×300.

Figure 4-2: Half MBB-beam elasticity problem, a common benchmark problem for topology

optimization methodologies. A force of magnitude 1 is applied to the upper

left corner. The beam has a horizontal constraint in the left boundary of the

domain and a vertical constraint in the bottom right corner. The size of the

domain is 200× 50. The traction in the subset Γ2 of the boundary is h(x) = 0.

Oshaki, 2009] is also relevant to this document, an illustration of the domain and boundary

conditions used is shown in Figure 4-4.

4.1.3 Code used in this work

We studied the method of densities for topology optimization method with the 88-line code

from [Andreassen et al., 2010]. In this code we used the method of moving asymptotes

(MMA) algorithm for the optimization [Svanberg, 1998]. We adapted the code to work for

the heat problem with the lines of code in [Bendsøe and Sigmund, 2004]. Further modifica-

tions used to test the code with alternative filters or density representation spaces were tested

here. The repository for a short version of this code can be found in [Ortegón-Villacorte,

2023].

The GPTO method was studied with the code from [Smith and Norato, 2020] and modified
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Figure 4-3: Michell bridge elasticity problem. This problem is used in [Zhang and Norato,

2018] to test the tunneling method in Chapter 5. It consists of a rectangular

domain with a central force applied in the center of the top boundary and two

constraints in the bottom corners in both horizontal and vertical directions.

Here we use this problem too to test the tunneling method. The size of the

domain is 150 × 50. As in the previous case, the traction in the subset Γ2 of

the boundary is h(x) = 0.

to work with the heat problem. Additionally, we implemented a Python version of the GPTO

code to work with freely available numeric and plotting libraries. This version is available

in [Ortegón-Villacorte, 2021].

4.1.4 Comparison of different numerical solutions

To compare two different methods we follow the recommendation in [Sigmund, 2022]. We

force vectors ρ of the designs to consist only of 0 or 1 values in the components ρi by sorting

the elements and mapping those elements with a higher density value to 1 until we complete

the maximum fraction of material V ∗
f . The remaining elements are mapped to 0 (and in

turn to ε). We use this method to compare solutions to the original density problem and to

the primitives method and between different projection functions.

4.2 Optimization

The relaxation of variables justified under the homogenization method allows for the use

of an optimizer and the convergence to a local minimum that may be good enough for the

considered application, as it will be seen later. However, depending on the problem, it is

difficult to reach the global optimum, see for example [Yan et al., 2018]. Experiments also

show that a simple change in initial conditions, move limit in the optimizer, tolerance, and

many other simulation parameters is enough to obtain different numerical solutions, that is,

different numerically valid local minima.
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Figure 4-4: Cantilever 2D domain to test continuation paths, based on the domain in

[Watada and Oshaki, 2009]. The experiment consists of a beam embedded

on the left side with a force of 1.0 N at the lower right end and a fixed mesh of

10× 10 elements with a size of 10× 10.

It is also possible to experimentally verify that some attraction valleys can be very extensive

and that there can be many local minima in small regions of the design domain, see Sub-

section 4.2.1 and 4.5.2. This situation is common also to the geometry projection method

approach and it is more notorious when using the SIMP penalization (provided that the

derivative of the compliance respect to an element e is always 0 for p > 1, see Subsection

4.2.1). This situation can be circumvented using alternative interpolation schemes or meth-

ods that progressively modify the objective function. More about this in Section 4.4 and

Section 5.1.

When choosing an optimizer, it is possible to use an optimality criteria (OC) based algorithm

or any gradient-based mathematical programming method able to handle large amounts

of design variables. One of the most widely used algorithms is the Method of Moving

Asymptotes (MMA). See [Bendsøe and Sigmund, 2004].

4.2.1 Gradient computation

To use a gradient-based optimization method, we must have an efficient method for com-

puting derivatives of the objective function and constraint functions in the problem. The

expression for the gradient is computed for the compliance problem using the adjoint method,

see [Bendsøe and Sigmund, 2004]. The expression is the following

∂c

∂ρe
= −uTe (ρ)

∂K

∂ρe
ue(ρ) . (4-1)

Notice that this expression does not include the filter, but a filter like the one explained in
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(a) The graphs in pairs represent the temperature T and the density ρ in three different

moments of the optimization. Without penalization, the magnitude of the gradient

of the compliance in the local density depends on the local temperature.

(b) With penalization, the magnitude of the gradient of the compliance in the local

density depends on the local temperature and the local density.

Figure 4-5: Representation of the gradient influence (arrows) according to the temperature

T and the density ρ with (a) and without penalization (b). This representation

is a simplification and it can ignore more complex effects in the optimization.

Three distributions of material are shown for each case, representing an opti-

mization process.

Chapter 3 is a linear mapping that can be applied directly to the derivative. Using equation

(3-12) for the SIMP method we have

∂c

∂ρe
= −pρ(p−1)uTe (ρ)Kue(ρ) . (4-2)

In the case of three-field methods, where the density variables are dependent on a parameter,

we can apply the chain rule. For example, in the case of the GPTO, we continue to differen-

tiate with respect to each function until we differentiate the parameters of the primitives, see

(4-3). Each density cell depends on the possible combination of primitives using a softmax

function, see (4-4) below. The independent contributions of each primitive depend on the
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projection function and the parameter αb, as in (4-5).

∂c

∂zb
=

∂c

∂ρe

∂ρe
∂zb

, (4-3)

=
∂c

∂ρe

∂ρe
∂ρ̃be

∂ρ̃be
∂zb

=
∂c

∂ρe

∂max(ρ)

∂ρbe

∂ρ̃be
∂zb

, (4-4)

=
∂c

∂ρe

∂ softmax(ρ)

∂ρ̃be

∂αbh(zb)

∂zb
=

∂c

∂ρe

∂ softmax(ρ)

∂ρ̃be

(
αb
∂h(zb)

∂zb
+ h(zb)

∂αb

∂zb

)
. (4-5)

From there we get

h(zb)
∂αb

∂zb
= h(zb)

and

∂h(zb)

∂zb
= h′(zb)

∂ϕ(zb)

∂zb
.

Details on the derivative ∂ϕ(zb)
∂zb

are found in [Smith and Norato, 2020]. Before using the gradi-

ent in an optimization algorithm, we can analyse some properties using the gradient formula.

For example, expression (4-1) tells us that the addition of material always decreases the gra-

dient [Bendsøe and Sigmund, 2004] and that regions with higher temperature (or stress)

increase the amount of material first. With a constraint on the amount of material, the

material must be distributed according to the temperature and regions with higher temper-

atures will have preference. In subsequent optimization phases, the local addition of material

decreases (or increases, depending on the boundary conditions) the local temperature (or

stress). Given that the temperature is possibly lower in the area that has accumulated ma-

terial first than in the rest of the domain, other regions with higher temperatures attract

the remaining material. Without penalty, the optimizer finds the global minimum which

generally has gray areas with average temperature and black areas (with pseudo-density 1)

connected to the gray areas, see Figure 4-5a.

The local accumulation of material is more pronounced when penalty (p > 1) is added,

because the gradient is now also proportional to the term nρ
(n−1)
e . With uniform initial

conditions, this term has no influence since ρe = Vf for every element Ωe, then the gradient

of the penalized functional is a multiple of the gradient of the non-penalized functional.

However, once the material starts to concentrate in certain zones, a feedback effect occurs:

zones more dense will attract more material until the local temperature decreases below the

average temperature and probably the upper bound of material is reached. Then the remain-

ing material forms new members away from the initial members, where the temperature has

not decreased. The higher the material penalty, the more pronounced this effect, see Figure

4-5b.
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4.2.2 Method of moving asymptotes

The method of moving asymptotes (MMA) is a general-purpose gradient-based optimization

algorithm presented originally in [Svanberg, 1987]. As described in the original paper, it

is a method specially designed to handle structural optimization problems with inequality

constraints, where the function evaluations could be expensive, but the gradient computation

is available. Equality constraints can be handled by adding upper and lower inequality

constraints differing by a small constant. Here we follow the more recent discussion of

the method in [Svanberg, 1998] in terms of the design variable x. Consider the general

optimization problem stated next.

Problem 5 Find x∗ that solves

min
x

f0(x) ,

subject to fi(x) ≤ 0 , i = 1, ..., Nc ,

xi−min ≤ xi ≤ xi−max .

(4-6)

Here xi is the i-th component of vector x, and Nc is the number of nonlinear constraints.

In MMA, local approximations of the objective and constraint functions are done around

the point x(k−1) in the time step k, in order to solve the Problem 6 stated next.

Problem 6 Find x(k) that solves

min
x(k)

f̃0(x
(k)) ,

subject to f̃1(x
(k)) ≤ 0 ,

αi ≤ xi ≤ βi .

(4-7)

with

f̃j(x
(k)) = fj(x

(k)) +
N∑
i=1

(
rij

Ui − xi
+

sij
xi − Li

)
−

N∑
i=1

(
rij

Ui − x
(k)
i

+
sij

x
(k)
i − Li

)
, j = 0, 1 ,

rij = (Ui − x
(k)
i )2

((
∂

∂xi
fij(x

(k))

)+

− k
(k)
ij

)
, j = 0, 1 ,

sij = (x
(k)
i − Li)

2

((
∂

∂xi
fij(x

(k))

)−

− k
(k)
ij

)
, j = 0, 1 .

Here rij and sij activate the asymptotes Li and Ui, which control the range of the approxi-

mation. The symbols (z)+ and (z)− in the exponent of the derivatives indicate the positive

and negative part of z, respectively, and we have

Li = x
(k)
i − γ

(k)
i (x

(k−1)
i − L

(k−1)
i ) ,

Ui = x
(k)
i + γ

(k)
i (U

(k−1)
i − x

(k−1)
i ) .
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(a) The component of the step in direction xi is too big and the variable returns between

values. In the next step the distance between asymptotes is decreased.

(b) The local approximation is too conservative in direction xi and the optimizer makes

small steps in the same direction. Then the distance between asymptotes is increased.

Figure 4-6: Influence of factor γi in the optimization. Illustration of the first two cases of

equation (4-8) done by us.

In the local approximation to the problem, an asymptote is introduced for each component

of the vector x in the objective function and the constraint functions. The asymptote is

updated based on the distance to the previous point and the factor

γ
(k)
i =


0.7 , (x

(k)
i − x

(k−1)
i )(x

(k−1)
i − x

(k−2)
i ) < 0 ,

1.2 , (x
(k)
i − x

(k−1)
i )(x

(k−1)
i − x

(k−2)
i ) > 0 ,

1 , (x
(k)
i − x

(k−1)
i )(x

(k−1)
i − x

(k−2)
i ) = 0 .

(4-8)

The factor decreases for a negative angle in the last two iterations (this means that in the

component the function describes a zig-zag), Figure 4-6a. Similarly, the factor grows when

the step of the previous two iterations has the same direction, meaning that the distance

between asymptotes grows 4-6b. When there is no change in the component xi in one of the
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previous two steps, then the factor γi stays the same. In the optimization step, the limits of

the variable used are the following

αi = max
{
xmin, 0.9Li + 0.1x

(k)
i

}
,

βi = min
{
xmax, 0.9Ui + 0.1x

(k)
i

}
.

Based on the approximation, we follow these steps, see [Svanberg, 1998]:

• Direction: The optimization problem is expressed in terms of Lagrange multipliers.

The active constraints are represented by a partial derivative equal to zero. This

constraint is relaxed by equaling the partial derivative to a small negative parameter

ε. Then a Newton direction is found by solving a system of linear equations, [Svanberg,

1998].

• Updating: Then the vector is updated to the new values.

• Parameter updating: The parameter ε can be also updated, reducing its absolute

value until some tolerance is satisfied.

The method is efficient and needs only the gradient of the function and nowadays it is one

of the preferred optimization algorithms for TO. See [Bendsøe and Sigmund, 2004]. A line

search and other small modifications are added after the Direction search in the globally

convergent version of the MMA (GCMMA), see [Svanberg, 1998]. This method is also

suitable to treat the GPTO method and will be used in the simulations.

4.3 Numerical experiments

In this section, we present basic numerical results for Problem 4, of the heat problem and the

elasticity problem with the original method of densities and the GPTO. We use the experi-

ments to compare the results with and without penalization and perform small modifications

to the conditions to point out phenomena we consider relevant for the discussion.

4.3.1 Area-to-point problem

Let us consider the benchmark heat diffusion problem presented in Section 4.1. The solution

to the non-penalized problem and for the penalized problem with a small radius in the filter

is shown in Figures 4-7a and 4-7b. The initial conditions are described as uniform, which

means the starting density for every element is the maximum volume proportion ρi = V ∗
f .

In the non-penalized solution, we can see a smooth distribution of material that diminishes

away from the heat sink, see Figure 4-7a. Close to the sink, a bulk of full-density material

connects with the grey region. It is possible to see that tracing rays from the sink to the
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(a) Area-to-point problem without penalization,

p = 1.

Compliance c/c0 = 1.000

(b) Area-to-point problem with penalization, ,

p = 3 and without continuation.

Compliance c/c0 = 1.161

Figure 4-7: Basic solutions to the area-to-point problem with and without penalization in

a Q0 representation. Simulation parameters in Table 4-1.

(a) Solution without penalization, p = 1.

Compliance c/c0 = 1.000

(b) Penalization p = 3 and no continuation.

Compliance c/c0 = 1.186

Figure 4-8: Solutions of the area-to-point problem with and without penalization for the

DQ1 space representation of densities. Simulation parameters in Table 4-1.
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Problem Heat Mesh size 300x300

Opt. algorithm MMA Move limit 0.2

Initial point Uniform Stop criterium Rel. Ch. 10−5

Interpolation SIMP Penal. factor p = 1, 3

Filtering Densities Filter Radius 2

Linear solver Default Volume fraction 0.45

Emin/E0 10−3

Table 4-1: Simulation parameters for the area-to-point experiments in Figures 4-7 and 4-

19. We use these parameters from now on to compare modifications of the

method through Chapters 4 and 5.

boundary, the longer rays are where a higher density of material accumulates, particularly

in the directions of the corner of the domain. In the penalized solution with filtering, the

mentioned rays accumulate material forming big branches pointing towards the opposite

corners, as predicted from the gradient expression (4-2). From bigger branches, smaller ones

detach seemingly random, filling close regions to cover almost uniformly the entire domain.

The value of the compliance is normalized based on the compliance of the global solution

without penalization c0, since we know this is the minimum attainable value for compliance

for a given volume proportion. Additional simulations were performed with the alternative

representation space DQ1. There are no significant differences in the non-penalized solution

for the Q0 representation. The penalized solution has a similar disposition of material to

the original Q0 representation, but due to numerical differences of the problem, even with

the same simulation parameters, the solutions converge to different distributions of material.

The results for the method of densities and the method of primitives suggest that a method

that can keep a local amount of material similar to the non-penalized solution and in the

case of the GPTO methods, if all members align towards the sink could have improved com-

pliance, see [Yan et al., 2018]. Based on this we follow the discussion in Section 4.5.

Problem Heat Mesh size 300x300

Opt. algorithm MMA Move limit 0.1

Initial point Uniform Stopping criteria Variable change 10−3.

Max. 200 Iterations.

Interpolation RAMP Penalization factor p = 3

Linear solver Default Volume fraction 0.40

Bar radius Fixed Projection Arccos function

Emin/E0 10−2

Table 4-2: Simulation parameters for the area-to-point heat problem with the GPTO

method in experiments presented in Figures 4-9 and 4-19.
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(a) Initial conditions.

Bar radius r = 1.5.

(b) Initial conditions.

Bar radius r = 3.0

(c) Initial conditions.

Bar radius r = 10.0.

(d) Final result (200 iterations).

Compliance c/c0 = 1.276

(1.226)

(e) Final result (200 iterations).

Compliance c/c0 = 1.426

(1.122)

(f) Final result (200 iterations).

Compliance c/c0 = 2.521

(1.158)

Figure 4-9: Solutions to the area-to-point problem with GPTO. Simulation parameters in

Table 4-2. Two values of compliance are presented, the 0-1 design value and

between parenthesis the value of the compliance with gray elements.

Solutions with a modified implementation of the code of the method of primitives from

[Smith and Norato, 2020] for the heat problem is shown in Figure 4-9. In the figure, we

can see 3 simulations with different fixed bar radii, 1.5, 3.0, and 10.0, in a 300× 300 mesh.

The initial condition is chosen as a uniform distribution of 100 bars in the domain with a

size of 0.5 for each bar. The 1.5 radius was chosen to represent a similar minimum length

scale to the 2.0 radius filter in the density method. It is possible to see that most of the

bars align towards the sink, but several bars cross other bars and in general, the amount of

material near the sink is deficient. This last situation does not happen with a bigger radius,

but crossed bars are still present and intermediate size (density) bars appear in the regions

far from the sink. as the members’ width can not be satisfied by the bar radius.
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4.3.2 Half-MBB problem

(a) No penalization p = 1.

Compliance c0/c0 = 1.000.

(b) With penalization p = 3.

Compliance c/c0 = 1.106.

Figure 4-10: Optimization of the half-MBB beam. Simulation parameters in Table 4-3.

Problem Elasticity Mesh size 200× 50

Opt. algorithm MMA Move limit 0.20

Initial point Uniform Stopping criteria Variable change 10−3.

Max. 200 Iterations.

Interpolation SIMP Penalization factor -

Filtering Densities Filter radius 2

Linear solver Default Volume fraction 0.45

Emin/E0 10−9 ν 0.3

Table 4-3: Simulation parameters for half-MBB beam experiments presented in Figures 4-

10 and 4-17.

(a) Initial conditions. (b) Final result. Compliance c/c0 = 1.180

Figure 4-11: GPTO method applied to the half-MBB beam problem. The problem setting

was adjusted from the examples found in [Smith and Norato, 2020]. See Table

4-4 for the simulation parameters.

Next, we will focus our discussion on the Half-MBB beam shown in Figure 4-10. Regarding

this problem, the non-penalized global optimum, presented in Figure 4-10a, exhibits two

zones with a significant amount of black material located at the top and bottom of the

domain. In the central part of the domain, there exists an intermediate density zone where

new full-density members are expected to appear with penalization, as previously discussed.

Additionally, there is a connecting zone of high density on the right side of the domain,
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which resembles a curved member but is not entirely dense. Figure 4-10b presents a solution

with the same parameters as the non-penalized solution, but with a penalization factor of

p = 3. In this penalized solution, the two bulks of material described in Figure 4-10a

remain present, and internal members have formed to replace the gray zone as expected,

similar to the heat problem. One major difference here is that, in the elasticity problem,

straight members are preferred (this makes physical sense, as mentioned in [Sigmund, 2022]).

Figure 4-11 illustrates the solution for a fixed bar radius of the same problem in the GPTO

method. The bulks of material described earlier are formed by overlapping members, and a

random disposition of members in the center is reminiscent of the solution obtained using the

method of densities. The overall performance of the design is hampered by a reduced number

of degrees of freedom in the optimization process. However, the design features members

with similar width, which may be preferred by the designer depending on the application.

Figure 4-11b depicts the last design, where partially sized elements in gray are located on

the right side instead of the expected curved boundary. This is due to the limitations of the

GPTO method with bar primitives to represent complex geometries. This is attributed to

the limitations of the GPTO method with bar primitives in representing complex geometries.

4.4 Methods with progressive change in the cost functional

The objective function can present non-convex directions and is possible to fall in an at-

traction valley leading to a non-satisfactory distribution of material, see [Yan et al., 2018].

There are several strategies to improve solutions to TO problems. In this section, we present

particularly the continuation method in TO and another possible method based on the

modification of the filters, we discuss ideas from [Bendsøe and Sigmund, 2004].

Problem Elasticity Mesh size 200× 50

Max. 200 Iterations.

Opt. algorithm MMA Move limit 0.1

Initial point In 4-11a Stopping criteria Variable change 10−3.

Interpolation SIMP Penalization factor p = 3

Bar radius 2.0 fixed Linear solver Default

Volume fraction 0.45 Projection Arccos function

Emin/E0 10−3 ν 0.3

Table 4-4: Simulation parameters for the Half-MBB beam problem with the GPTO method

in the experiment presented in Figure 4-11.
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4.4.1 Continuation

In the continuation strategy the parameter of the interpolation scheme changes in a pro-

gressive way starting from some initial value p0 (for example, no penalization). Then, the

parameter moves towards pf usually in a linear manner. For instance, in Problem 4 starting

from iteration k = 0, the problem on each subsequent iteration has a different form described

by

N∑
i=1

ρ
p(k)
i Kiu = f , (4-9)

p(i) = p0 + (pf − p0)
k

I
. (4-10)

Figure 4-12: Schematic of the effect of the continuation in the trajectory of the optimiza-

tion. In a feasible set F the optimization has initial conditions ρu and con-

verges without continuation to the optimal point ρ∗nc, describing the trajectory

represented by the curved arrow. If continuation is used, the optimization con-

verges to the point ρ∗c , passing closer to the non-penalized solution ρ∗np than

the trajectory without continuation.

Here I is the maximum number of iterations where the continuation parameter is allowed

to change, for example, I = 100. Once the maximum parameter value pf is reached, the

optimization can continue as described in Problem 4. The same modification in the expo-

nent in (4-9) can be used to modify the parameter of interpolation schemes like RAMP in

(3-18). In such cases (4-10) is not modified. The continuation approach can avoid strong

local minima that accumulate material in the first steps of the optimization process, see

[Yan et al., 2018]. This modification is highly effective for improving the quality of the nu-

merical solution, for instance, in the area-to-point problem as shown in Figures 4-13a and

4-13b, although sometimes a global optimum cannot be reached through the continuation

trajectory, see [Stolpe and Svanberg, 2001] and Subsection 4.5.2. Adding a continuation
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(a) Continuation step 0.02.

Compliance c/c0 = 1.137

(b) Continuation step 0.002.

Compliance c/c0 = 1.106

Figure 4-13: Area-to-point heat problem with continuation, simulation parameters in 4-1.

The progressive penalization improves the distribution of material and the

overall compliance of the structure.

strategy in the optimization constrains the optimizer the stay close to the optimum in the

non-penalized solution during the first steps of the optimization, see Figure 4-12. This effect

leads the optimizer to local minima with local distributions of material more similar to the

non-penalized solution; more on this in Chapter 5. In Figure 4-13b, we can see that random

branches departing from bigger ones have mostly disappeared with this strategy. In [Yan

et al., 2018] the authors prove that without an imposed minimum scale, the optimal theoret-

ical solution corresponds to infinitesimally small needles mimicking the material distribution

of non-penalized functional of the compliance problem (problem 2) pointing towards the sink

of the domain. A minimum length scale is imposed due to mesh size or the use of a filter,

then we can expect that as we refine the mesh a higher number of members appear close

to optimal solutions. In Figure 4-14 we observe the effect of the continuation strategy with

the DQ1 representation. We observe that there is a clear improvement in performance with

the continuation method but not as good as in the Q0 representation. Large members that

accumulate material are still dominant for this representation.

We can apply also the method of continuation to the elasticity problems, for instance, the

half-MBB beam in Figure 4-15. At the beginning of the optimization, the distribution

of material mimics the distribution of the non-penalized solution, Figure 4-10a, with thin

and numerous members, similar to the situation of the area-to-point problem in Figure 4-

13. However, due to linear filtering, which produces boundaries with gray transitions, thin
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(a) Penalization p = 3.

Continuation step 0.02.

Compliance c/c0 = 1.166.

(b) Penalization p = 3.

Continuation step 0.002.

Compliance c/c0 = 1.138.

(c) Penalization p = 3.

Continuation step 0.001.

Compliance c/c0 = 1.130.

Figure 4-14: Continuation solutions to the area-to-point problem with DQ1 representation.

Compared to the Q0 representation the performance is worse with and without

continuation.

(a) Step 50 of the optimization process (b) Final result. Compliance c/c0 = 1.111.

Figure 4-15: Half-MBB beam optimization with continuation, step of (0.02) applied as in

formula (4-9). Simulation parameters are kept as in Table 4-3. Here is one

design in the first steps of the optimization (a) and then the final result (b).

members are expensive and disappear progressively with the increasing penalization. The

final result is similar to designs without continuation, as in Figure 4-10b, and sometimes

there is no gain in performance of the design. Notice that the members in intermediate

steps of the optimization process resemble the analytical solution with infinitesimally thin

members for the elasticity problem presented in [Rozvany, 1998].

4.4.2 Filtering

Experiments show that the representation of members of the structure in a mesh can gener-

ate local minima, depending also in the penalization strategy, see [van Dijk et al., 2010, Wein

et al., 2020]. Filtering can modify this local minimum in such a way that is possible to find

the best position for the members with a wider filter. However, these strongly filtered de-

signs are not useful as they consist mostly of grey regions of material. Combining these two
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(a) Result of the first phase with r = 5. Compli-

ance c/c0 = 1.140

(b) Final result with radius r = 2. Compliance

c/c0 = 1.114.

Figure 4-16: A single optimization with two phases, first an optimization with a radius

r = 5 is performed. Then a second optimization with the local minima as the

initial condition is performed with a smaller radius r = 2. The use of a wider

radius imposes a larger minimum scale. Other simulation parameters are kept

as in Table 4-3.

observations, it is possible to propose a strategy where we start a minimization with a wide

filter and then diminish the radius to obtain an improved design, as presented in Figure

4-16. This method would impose a larger minimum scale on the design, then we expect

wider members and a smaller number of them. A strategy similar to the one implemented

in Figure 4-16 is proposed in [Bendsøe and Sigmund, 2004]. We do not implement this

strategy with the area-to-point problem because this strategy directly affects the minimum

length scale and we are trying to improve the layout of thin members in that problem, in

other words, we expect big members with the strategy and that opposes our objective with

the problem.

In the MBB beam problem, we can see that the final compliance value for the two-phase

filtering strategy is slightly worse than the values of compliance of simple experiments like

the initial half-MBB in Figure 4-10. We think that this difference is due to the higher

number of degrees of freedom of the smaller length scale in the 1-step filtering experiments.

However we must point out that the values of compliance with a higher number of members

are not better when the design is not forced to be 0-1, but computed only with a linear filter.

In such cases, a higher number of members means a longer blurry boundary (higher number

of gray elements) and a lower stiffness in general due to the penalization of intermediate

densities.

4.5 Local minima

Most of the time, an optimization procedure is able to deliver a reasonable design in a sub-

optimal point, see [Bendsøe and Sigmund, 2004] and the example in Figure 4-22. In some

problems, using modified and computationally intensive approaches, it is possible to obtain

a solution even closer to a possible global optimum. However, due to the high number of

local optima, these solutions may not represent significant improvements with respect to the
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solutions obtained in a reasonable time. For this reason, it is common to use sub-optimal

solutions. In this section, we explore factors that affect the local minima in elasticity and

heat problems and their dependence on simulation parameters.

4.5.1 Effect of the initial conditions

We test the effect of the initial conditions in the half-MBB problem with a simple exper-

iment: we use slightly perturbed uniform initial conditions in the optimization process as

shown in Figure 4-17a but with the same parameters of experiment 4-10b, and we do not

use continuation. The small square of full material (affected by the filter) is located where

gray zones are usually found. Note that the variables corresponding to the small square

are included in the optimization. This means the optimizer can eliminate these cells of the

material if it is convenient. The final result shows that the chunk of black material remains

in the final design inside a connecting member, and this affects the overall distribution of

the material in the domain.

(a) Initial conditions. (b) Final result. Compliance c/c0 = 1.104

Figure 4-17: A simulation with a small perturbation in the initial conditions (a) renders

a completely different design (b), from the final result in Figure 4-10b. The

initial conditions were adjusted to satisfy the volume fraction constraint. Sim-

ulation parameters in Table 4-3.

Problem Heat Mesh size 300x300

Opt. algorithm MMA Move limit 0.01

Initial point Figure 4-19a Stopping criteria Variable change 10−3.

Max. 200 Iterations.

Interpolation RAMP Penalization factor p = 3

Linear solver Default Volume fraction 0.40

Bar radius 1.5 fixed Projection Arccos function

Emin/E0 10−2

Table 4-5: Simulation parameters for the area-to-point heat problem with the GPTO

method in experiments presented in Figure 4-19.
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(a) IC with 42 members. (b) IC with 32 members. (c) IC with 20 members.

(d) Compliance c/c0 = 1.125. (e) Compliance c/c0 = 1.116. (f) Compliance c/c0 = 1.116.

Figure 4-18: Area-to-point problem with manufactured initial conditions. The initial con-

ditions were chosen as members pointing towards the center of the sink. Due

to the penalization and the strong attraction valleys, the final solutions main-

tain the members of the initial conditions but fill vacant spaces with small

branches of material. The simulation parameters are the same in Table 4-1,

except for the initial conditions.

The result of the modification of the initial conditions in the previous experiment matches

the observations about the gradient in Subsection 4.2.1. This effect could be used, for

example, to manufacture solutions for the area-to-point problem. Knowing that the final

design should resemble needles pointing in the direction of the sink, one could insert nails

as initial conditions to the optimizer and then let the problem run without continuation as

in Figure 4-18. This strategy is used in [Yan et al., 2018] to study the optimal points of the

heat problem. Different amounts of nails can deliver different thermal compliance values but

the number and position of members are almost not modified in the optimization process.

Similarly, this can be used to place the initial positions of the bars for the GPTO method to

obtain a design with bars pointing towards the sink, see Figure 4-19. The final result shows

that orientation towards the sink is indeed the preferred direction, and only the opposite
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(a) Initial conditions. (b) Final result. Compliance c/c0 = 1.211(1.130)

Figure 4-19: Area-to-point problem optimization with the GPTO method for fixed radius

bars of 1.5 with initial conditions adjusted with bars pointing towards the sink

in two groups: one composed of short bars and one of long bars. Simulation

parameters in Table 4-5.

endpoint changes, adjusting according to the proportion of material in this zone. Almost no

overlapping far from the sink occurs and most of the bars of short length keep their position

filling the gaps between long bars as the last ones increase their distance away from the sink,

see Figure 4-19b. Finally, we use the mapped densities in this design with bars as initial

conditions for the optimization with the method of densities, using the parameters of Table

4-1, whose results are presented in Figure 4-20. We observe that some bars have merged

close to the sink, the bulk of material close to the sink has acquired a rounded appearance

and some small branches detach from the endpoints of the bars. The final compliance value is

better than all the other experiments with special initial conditions and from the value with

a simple continuation; however, it does not have a better value than the slow continuation

approach.

4.5.2 Solutions with continuation

We mentioned previously that the non-penalized problem is convex and it has a global

minimum. Once penalization is applied, it is possible to find a great number of local minima

with similar details of material or similar objective function values. It makes sense to think

that in continuation the minima appear progressively as penalization is increased. In [Watada

and Oshaki, 2009] the authors study a simple linear elasticity problem in a 10 × 10 mesh,

shown in Figure 4-4. In their work, they demonstrate that some locally optimal solutions
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Figure 4-20: Final result of an optimization with the method of densities using as initial

conditions the final result of optimization in Figure 4-19. Compliance c/c0 =

1.111

follow a path in a continuation sense; we explain this next. Recall Problem 4, but now as

a variational problem in terms of the vector function ρ(p) and p as a variable. We consider

then the following problem.

Problem 7 Find a function
ρ(p) : [p0, pf ] −→ Q0

p 7→ ρ(p)

Here ρ represents an optimal distribution of material for the parameter p, and p0 and pf
correspond to the parameters in (4-9) and (4-10). Function ρ solves a minimization problem

for each p with the vector of temperature (or displacement) u and the load vector f .

min
ρ(p)

uT (ρ(p))f ,

subject to
1

N

N∑
i=1

ρi ≤ V ∗
f ,

0 < ρmin ≤ ρi ≤ 1 .

(4-11)

Here V ∗
f is a maximum fraction of material in the domain. Vectors u and f must satisfy

the additional restriction

K(ρ)u =
N∑
e=1

Ep (ρ
p
e)K0,eu = f . (4-12)

Here Ep(ρ
p) is chosen as in (3-13).



58 4 Numerical solutions

The question that the authors in [Watada and Oshaki, 2009] studied experimentally and

partially with some theoretical results, is whether such functions ρ(p), which can be un-

derstood as paths, exist in optimization problems when the continuation formula (4-9) is

applied. They found that sometimes these paths exist from the starting value p0 to pf , in-

cluding the case when p0 corresponds to a value for a non-penalized functional. There were

additional observations in [Watada and Oshaki, 2009], for example, that paths can bifurcate

at some point, indicating a singularity of the Jacobian of the functional and the existence

of paths to multiple local minima. Additionally, not every path is connected to the starting

point p0 and some appear from a non-connected point at some problem-specific point in the

continuation. The theoretical solution of Problem 7 is beyond the scope of this work.

Problem Elasticity Mesh size 10× 10

Opt. algorithm MMA Move limit 0.20

Initial point Random Stopping criteria Relative change 10−7.

Max. 200 Iterations.

Interpolation SIMP Penalization factor {1, 3}
Filtering Densities Filter radius 1.25

Linear solver Default Volume fraction 0.40

Emin/E0 10−9 ν 0.3

Table 4-6: Simulation parameters for the cantilever experiments presented in Figures 4-21

and 4-23.

(a) No penalization p = 1.0 (b) Penalizationp = 3

Figure 4-21: Basic solutions of the 2D-cantilever problem in a 10× 10 mesh. Solution (b)

was obtained with continuation.

We replicated the experiment in [Watada and Oshaki, 2009] in order to study the local

minima for the 2D-cantilever problem in a mesh of size 10 × 10, see Figure 4-4. The

conditions mentioned in [Watada and Oshaki, 2009] are not exactly the same as those used

in this document, considering that in this document a linear filter is used. Nevertheless,

simulation parameters were used to give a similar qualitative result, see Table 4-6. The
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Figure 4-22: Frequency of each different solution vs compliance of the solution in a 1000

randomly started optimization processes for the 2D-cantilever, discriminating

different solutions by criterion (4-13). The continuation solution delivers a

comparatively good design, but other random solutions attain better values

with higher frequency.

(a) Optimum ρ∗1 (b) Optimum ρ∗2 (c) |ρ∗1 − ρ∗2|

Figure 4-23: Two best local minima ρ∗1 and ρ∗2 in the 2D-cantilever elasticity problem.

Visually both solutions are almost identical. Their absolute difference is shown

in (c). These two solutions are not connected by a gradient descending path.

solutions without penalization and penalization with continuation of 100 steps are shown

in Figure 4-21. We can see in Figure 4-21b that the continuation minimum is similar to

the solution without penalty. Then, we generated 100 different initial conditions, using the

values of a uniform probability distribution as starting density value for each cell in each

experiment. With continuation, all initial conditions deliver the same minimum; without

continuation, 12 distinct local minima were found using the same criterion as in [Watada

and Oshaki, 2009], i.e., two local minima ρ∗i and ρ∗j are considered to be equivalent if

∥ρ∗i − ρ∗j∥∞ < 0.1 , i ̸= j . (4-13)

With this criterion, in [Watada and Oshaki, 2009] about 38 local minima are found. We

attribute the difference to the difference in the procedures for filtering in the experiments. We

generated then 1000 different initial conditions and found 28 different local minima. Figure

4-22 presents the frequency of different solutions vs the compliance value of each solution.
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Figure 4-24: Graphs of the functional obtained by applying a convex combination of the

two best optimal points ρ∗1 and ρ∗2 for the 2D-cantilever problem. We use

two different values for the penalization parameter of the SIMP scheme in the

construction of the two graphs. With a lower penalization p = 2.95 the two

points are connected by a gradient descending direction, but with p = 3.00

the two points are disconnected. It is possible to see that the disconnection

by a gradient path occurs close to p = 3.

Notice that we did not force the designs to have only 0-1 values. Figure 4-22 shows that

numerical solutions with compliance similar to the global optimum are found with high

frequency. In Figure 4-23 the best two local minima are shown with the absolute difference

between the solutions on the right. This difference is small, max(|ρ∗1−ρ∗2|) = 0.150. A natural

question is whether these two minima are the same but due to the numerical tolerance of the

convergence criterion they seem different, or one of the minima has converged to a saddle

point. For the analysis we consider the convex combination between the two points ρ1 and

ρ2 is defined as

ρi = (1− β)ρ1 + βρ2

Here β ∈ [0, 1] is the parameter of the convex combination. We varied the parameter in

the convex path in its domain between the two optimal solutions, and present the results

in Figure 4-24. There we see that the compliance in the convex path increases and then

diminishes before reaching the second solution. We conclude that both solutions are not

connected by a gradient-descend path. By applying a slightly smaller penalty p = 2.95 we

observe that locally with a continuation strategy the process would most likely converge

to optimum ρ∗2 and the minimum ρ∗1 seems to appear due to the p = 3.00 penalty. This

observation coincides with conclusions in [Watada and Oshaki, 2009], where the authors

proved that certain local minima appear without being connected in a continuation sense to

other optima. We make the following observations about this problem:

• The frequencies for the two best local minima are f1000(ρ
∗
1) = 2 and f1000(ρ

∗
2) = 9.

These values and the graph in Figure 4-24 suggest that the valley of attraction of the

minimum ρ∗2 is larger. Hence, the local minimum with a larger valley of attraction was
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obtained a greater number of times from random initial conditions. This points out

that solutions with larger valleys of attraction will appear a greater number of times

in an optimization process with random initial conditions.

• The probability of obtaining the lowest minimum ρ∗2 with random initial conditions is

low. The relative frequency for the 2D cantilever experiment in this section is 9/1000 or

0.9%. This further suggests that random initiation is not a good strategy for obtaining

better local minima, but it might be a good strategy to find significantly different

layouts of members in the design.

• 15 of the 28 minima were found with an added relative frequency of 22/1000. This

is, more than half of the minima appeared with a very low probability. We suppose

there might be a greater amount of minima that appear with similar small probability

starting from random initial conditions.

• Close to half of the solutions, 13/28, have a lower compliance than the continuation

solution and add a relative frequency of 527/1000 or 52.7%. This is, for this problem a

random start can deliver a numerically better solution than the continuation strategy.

Figure 4-25: Method of densities area-to-point optimization with the same parameters in

Table 4-1 and random initial conditions. Compliance c/c0 = 1.119

These observations are specific to the settings of this problem and we cannot generalize them

to all elasticity problems or to the heat sink problem. Nevertheless, we can use the knowledge

gained in this problem to conclude that repeated random starting can be a strategy to explore

the set of optimal points, but might not be a good strategy to make improvements in topology

optimization problems. Provided that topology optimization problems are highly dependent
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on the initial conditions, we conclude that a problem like the heat area-to-point problem,

which presents organized members, should not be randomly started. We exemplify this in

Figure 4-25, where we use as the initial point a random vector generated with uniform

distribution scaled to satisfy the volume fraction constraint. Non-straight branches appear

in the design and some zones of enclosed void that, as we know, are suboptimal details of

this problem. This last conclusion has implications in the analysis in Chapter 5.
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In the previous chapters, we explored local minima and factors that influence the convergence

to different designs. Randomly restarting the optimization or making small adjustments can

significantly alter the final design, as discussed in Chapter 4. In this chapter, we aim to search

for local minima in a different way—for example, by exploring a method that searches for

different local minima after finding a specific one. Motivated by this proposal the tunneling

method was studied from [Gómez and Levy, 1970, Barrón-Romero and Gómez, 1991]. This

method modifies the objective function based on past iterations of the optimization. Ad-

ditionally, we investigated the benefits of introducing a regularization term to enhance the

final values of the minimized functional.

5.1 The shape of the functional

The number of design variables in topology optimization makes difficult the visualization

of the functional of the problem. This issue is more pronounced in the method of densities

than in the GPTO. We have seen in Chapter 4 how along the segment joining local minima

there are well-defined convex directions that allow the rapid convergence of the optimization

to some local minimum, but also the presence of concave directions, for example, between

minima. In this section, we explore a strategy to understand the functional of the compliance

problem in topology optimization and possibly establish some regularization techniques to

improve solutions.

5.1.1 The functional in GPTO

During the optimization process in GPTO, it is common to see one or both endpoints of

some geometric primitive bounce in a small region of the domain, see Figure 5-1. This effect

is due to the discretization of the density field, where the primitives are projected and can

prolong the optimization more iterations than necessary to find an acceptable solution to

the problem. For this reason, it is advisable to stop the optimization after a certain number

of iterations. We used this fact as motivation to design an experiment that could give us

some idea of the graph of the functional in GPTO.

Consider the experiment in Figure 5-2a, similar to the area-to-point experiment in Chapter

4. In a squared domain with a 20 × 20 mesh, we place 3 geometric primitives of fixed ra-
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Figure 5-1: Representation of the bouncing effect of the primitives in some domain during

the optimization process. In step k + 2 the primitive endpoint returns to a

point similar to the point in step k.

(a) Domain of the problem with 3 primitives in the

GPTO method.

(b) Non-penalized solution in the

method of densities.

Figure 5-2: GTPO experiment similar to the area-to-point presented in the previous chap-

ter. Three bars of fixed radius 1.0 and fixed size 1.0 are placed in a domain to

evacuate the heat. The disposition is kept symmetrical and the left endpoints

are fixed. V ∗
f = 0.2. The solution to the non-penalized problem for the density

method is shown on the right.

dius rb = 1.0 to evacuate the heat produced homogeneously in the domain, with maximum

volume fraction V ∗
f = 0.2. There is a sink of temperature T = 0 and adiabatic conditions

in the rest of the boundary, see Figure 5-2a. We fixed the left endpoint of the bars at

points (0, 8), (0, 10) and (0, 12) and every bar has a size a = 1.0, that is, they project to

maximum pseudo-density in a completely covered element. The right-hand side endpoints of

the primitives have also a special setting. The central bar has the y coordinate fixed at the

same height of the left endpoint, but the x coordinate (or the length of the bar L2) is free.

Top and bottom bars are symmetric with respect to the central bar, and we move freely the

right endpoint of the bars with the condition that Vf = V ∗
f , that is, we satisfy the volume

constraint. We parameterize the position of the endpoint of the top and bottom bars in

terms of the angle between the central line of the top and central bars α1, and adjust the
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length L1 to satisfy the volume constraint. This setup is a higher-dimensional variation of the

problem presented in [Wein et al., 2020] to discuss local minima in feature-mapping methods.

The solution with the density method and without penalization is presented in Figure 5-2b.

We first notice that the local minima found with these degrees of freedom in the described

problem may not correspond to local minima in the problem if every possible degree of

freedom is considered as a design variable since the solutions of the problem could contain

partial-size elements and we restricted the bar size in the problem to 1.0.

Figure 5-3: Graph and contour plot of the compliance value c/c0 for the GPTO problem in

Figure 5-2a. We can observe that the functional has several local minima and

irregular contour curves.

Figure 5-4: Contour plots for the compliance value c/c0 for the alternative projection func-

tions in problem of Figure 5-2a.

The value of the compliance c/c0 (with the value in the non-penalized density method so-

lution as c0) using the arccos projection function is presented in Figure 5-3. In general,

there are two large attraction basins, but these regions are not convex. Inside the regions,
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we can see there are multiple local minima and many saddle points. We have used a small

number of levels in the contour plot to visualize the functional to keep clarity, however, if

we increase the levels we can see a greater number of irregularities. Alternative projection

contour plots are presented in Figure 5-4, see Subsection 3.4.3, There we can see that the

polynomial mapping does not contribute to the smoothness of the functional, but presents

even more pronounced irregularities. On the other hand, the non-compact support logistic

and arctan functions increase the smoothness and diminish the number of local minima and

saddle points. Lower values of compliance in the arctan projection are due to the fact that

partial-size elements are a better solution to this problem even with RAMP interpolation.

We can see that for the GPTO method, the valleys of attraction are well defined, even though

traversing them with the original arccos-based mapping can take a large number of steps

before convergence. We have not considered other issues that could arise—for example, a

poorly-conditioned Hessian or additional effects due to the superposition of the primitives.

Nevertheless, if we consider that the form of the functional of more general problems with

more dimensions resembles what we have presented here, there is great potential in methods

designed to find different local minima in further steps.

5.2 Using the global optimum of the non-penalized

problem

The minimum value obtained using linear interpolation in heat problems provides valuable

information when searching for binary solutions. In the limit case, where the minimum

length scale approaches zero, the two solutions become equivalent, [Yan et al., 2018]. We

can interpret this last statement the other way around: if we look for 0-1 designs with a

certain minimum scale and we observe such designs with a coarser lens, the coarse versions

of the non-penalized and the penalized numerical solutions are similar. Consider for example

the solutions for the area-to-point problem without penalization and with penalization with

different strategies of continuation presented in Chapter 4, but now projecting the solutions to

a Q0 space in a 10× 10 mesh, see Figure 5-5. Recalling the discussion about continuation,

we know that the slower the continuation, the better the final designs we might get, see

Subsection 4.4.1. Here we can see that the slow continuation solution is the most similar

solution to the non-penalized solution in the coarser mesh. We referred to this in Chapter

4, where we discussed how locally both designs have similar amounts of material. To give a

better measure of how close the two designs are, we consider the following experiment: we

select several coarser meshes than the 300× 300 solutions and compute the following score

∥ρ(1) − ρ(2)∥2
N

. (5-1)

Here N is the number of elements in the coarse representation and ρ(1), ρ(2) the projected
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density vectors we want to compare. We compare then every solution to the penalized prob-

lem to the non-penalized solution in Table 5-1.

(a) No penalization. (b) No continuation. (c) Continuation. (d) Slow continuation.

Figure 5-5: L2-projection of the solutions to the area-to-point problem in a coarser rep-

resentation of 10 × 10 squared elements in Q0. Notice the similitude between

projected designs for the non-penalized and the slow continuation solutions and

Table 5-1 for numerical values.

Mesh size No continuation Continuation Slow Continuation

60× 60 0.3016 0.2748 0.2675

30× 30 0.2569 0.2228 0.1730

20× 20 0.2218 0.1890 0.1115

15× 15 0.1939 0.1696 0.0983

12× 12 0.1667 0.1263 0.0811

10× 10 0.1622 0.1047 0.0673

Table 5-1: Comparison scores for the area-to-point projected solutions with different con-

tinuation strategies in other mesh sizes. For all the coarser meshes the projected

slow continuation design has a higher similitude to the non-penalized solution.

This observation leads us to test if it is possible to improve the heat problem material

distributions in an efficient way. The strategy adopted in [Yan et al., 2018] to improve

solutions or the slow continuation tested in this document becomes too expensive for a

general problem. The ideal modification of the method would require less iterations with

little overhead. Local constraints of material were tested in [Yan et al., 2018] to try to improve

the designs, but this did not produce satisfactory results in the optimization. We also tested

simple constraints in the solution trying to improve the performance of the resulting design.
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Figure 5-6: Final scaled compliance values of optimization with regularization and no con-

tinuation. Parameters equal to Table 4-1. With a simple strategy we can

see some improvement in a range of regularization values around cr/c0 = 106.

Other variability can be attributed to the randomness of final solutions men-

tioned in Chapter 4.

The L2 explicit regularization

We also tested the idea of including in the functional the following regularization term

cr

∫
Ω

(ρ(k)− ρ∗np)
2 = cr

∥ρ(k) − ρ∗np∥22
N2

. (5-2)

Here ρ(k) is the design at step k, ρ∗np the global non-penalized optimum, N the number of

elements, and cr a constant to be chosen. Notice that if the regularization term penalizes the

distance to the non-penalized solution, then it favors designs with gray zones depending on

the strength of the penalty parameter cr. For this reason, it would make sense to have a cr
dependent on the iteration. It could be an abrupt change from cr to 0 after some iterations,

or it could be progressive (similar to the continuation method). We define the regularized

problem in the way presented in Problem 8.

Problem 8 Find an optimal distribution of material ρ ∈ Q0, such that the following func-

tional in terms of the vector of temperature (or displacement) u and the load vector f is

minimized,

min
ρ

uT (ρ)f + cr(k)
∥ρ− ρ∗np∥22

N2
,

subject to
1

Ne

Ne∑
i=1

ρi ≤ V ∗
f ,

0 < ρmin ≤ ρi ≤ 1 .

(5-3)

Here V ∗
f is a maximum fraction of material in the domain. The regularization constant has
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(a) No regularization (cr = 0). (b) Regularization cr = c0 · 106. (c) Regularization cr = 3.3c0 · 106.

Figure 5-7: Three examples of the optimization with regularization from Figure 5-6.

a dependence on the iteration k. Vectors u and f must satisfy the additional restriction

K(ρ)u =
N∑
e=1

Ep (He(ρ))K0,eu = f . (5-4)

The constant p is chosen in [1,∞) and Ep(ρ) as in (3-13) and He represents the filter map

resulting in the final density of element e.

We test the first approach in an experiment: we assume that an optimization with no pe-

nalization where we find the global optimum in 50 iterations has already been performed,

then we have information available about a design close to the global minimum. We start a

new optimization with penalization SIMP and p = 3, with the optimization parameters of

Table 4-1 using the non-penalized design as the initial condition, no continuation and the

regularization term (5-2). We use several values for the constant cr, multiplying internally

also by c0 as a means to attain a dimensionless parameter for regularization.

The scatter plot in Figure 5-6 shows the final scaled compliance value with 0-1 forced values,

as presented in Chapter 4. Around cr/c0 = 1e6, there is a set of values that suggest a positive

effect of the regularization term. Examples of the obtained designs are presented in Figure

5-10a. We see that there is a clear formation of well-organized members without detaching

branches, but some of them do not align with the sink, in contrast to the optimization

without the regularization term (notice that this a different experiment to 4-7b due to the

initial conditions). There are several questions we can address with this method. We start by

comparing the results of different strategies of regularization with and without continuation.

In Figure 5-8, we propose four different strategies used to modify the regularization constant

in the optimization, including progressive strategies. Strategy 3 coincides with the initial

experiment of regularization in Figure 5-6, but this time we also consider the case with

continuation in the right. Results of this experiment are presented in Figure 5-9.
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Figure 5-8: Different strategies to set the regularization constant cr according to the itera-

tion.

We observe that the regularization alone cannot outperform the continuation with any of

the regularization strategies and constants tested. Combining the regularization with con-

tinuation can improve the final compliance value but the regularization constant shifts to a

lower value (to the left in the scatter graph) than the optimal values for the no-continuation

regularization, suggesting a partial antagonistic effect between them. Both continuation and

regularization promote the formation of branch-less straight members in the domain and to-

gether they keep the local distribution of material close to ρ∗np. However, they also compete

and interfere with each other because the regularization members do not form with an ori-

entation toward the sink of the domain but apparently with the orientation of the mesh (we

ignore if there may be additional differences). With a small but significant influence of the

regularization term, the optimizer favors the orientation given by the continuation strategy

but avoids strong changes in material distribution thanks to the regularization term, and it

eliminates detaching branches from members.

We repeat the experiment but using the following regularization strategy, intended to deter-

mine if with a longer number of iterations the combined effect also works, say,

cr(x) = max (0, cr−max(1− I/1000)) . (5-5)

Here I is the iteration and cr−max is the starting value of the regularization constant. In

the final designs in Figure 5-10, we can see that the progressive change of the regularization

parameter helps the members of the design acquire a better disposition without branches.

The final value of compliance also improves.

We offer a hypothesis to explain why the regularization might work in our problem setting:

for the studied designs, we have been using a filtered non-projected solution; that is, the
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Figure 5-9: Final scaled compliance values of optimization with different regularization

strategies. Strategies are compared with and without continuation. Param-

eters equal to Table 4-1.

designs have gray boundaries between full and void material zones. We know additionally

that a good design with only 0-1 cells could have the same distance to ρ∗np that a bad design

has, and then the same regularization value. With these two pieces of information, we argue

that the observed improvement must occur because of the similitude between ρ∗np and the

blurred boundaries in a penalized optimum ρ∗. This similitude is higher if the members of ρ∗

can describe a progression of material in their boundaries similar to the smooth progression

seen in ρ∗np. Members that do not orient in the same direction of the edges of the finite

elements have more pronounced transitions of material, see for example the projection of a

straight GPTO member in 3-10d. In conclusion, the regularization favors members with

a similar orientation to the edges of the elements in the mesh because they have smoother

descriptions of material resembling those of a non-penalized design.

Finally, we also repeat the experiments for the regularization strategies with the DQ1 rep-

resentation. As we saw in Chapter 4, with this representation the main large branches

characteristic of non-continuation designs appeared even with a very slow continuation —

that is, we obtained worse designs with this description than with the Q0. By applying

regularization, we can see a notorious improvement of the designs in a wide range, see Fig-

ure 5-11. Even the regularized designs without continuation are able to outperform the

continuation designs. This can be explained because the regularization forces the two thick

branches to disappear in favor of more distributed members. The useful region without con-

tinuation is rather small, in comparison with the region of good results with continuation.

We also observe that the shifting in improving lower maximum cr constant values is not

as pronounced as in the Q0 case. We can see in Figure 5-12 that the best continuation

regularized design accumulates more material in members than the best non-continuation

design.
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(a) No continuation.

cr−max = c0 · 106
c/c0 = 1.130.

(b) Continuation, step 2 · 10−3.

cr−max = c0 · 106
c/c0 = 1.123

(c) Continuation, step 2 · 10−3.

cr−max = c0 · 104
c/c0 = 1.109

Figure 5-10: Optimization with regularization using the parameter in (5-5). The slow

change in the regularization value helps the formation of branch-less mem-

bers, compare with 5-7b. The mixture of the slow continuation improves the

final value, but it is not better than the pure slow continuation strategy.

5.3 The tunneling method

Consider the following situation: we are in a local minimum ρ∗1 that we found with some

optimization parameters, and we would like to find another local minimum, probably better

than the one we found initially. We could use the fact that small variations in the optimiza-

tion parameters or the initial conditions can affect unpredictably the final outcome of the

optimization process, or we could find a way to look for other minima from taking as starting

point ρ∗1 but avoiding to fall in this minimum again. The tunneling method searches for new

local minima in an ordered fashion, transforming the objective function based on previous

iterations of the algorithm. We base the discussion in this section mainly on [Barrón-Romero

and Gómez, 1991] and [Zhang and Norato, 2018].

5.3.1 Main idea of the method

We now explain the method in terms of a general x. We base this explanation on the work

of [Barrón-Romero and Gómez, 1991]. Broadly speaking, the tunneling method is composed

of two phases:

• Minimization phase: In this phase any minimization algorithm is used to find a

point x∗i satisfying the optimality conditions or some convergence criterion.

• Tunneling phase: The original function value is exploded around the previous local

minimum using a pole or a singularity, this is called a tunneling function T (x, x∗i ). We
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Figure 5-11: Final scaled compliance values of optimization with regularization strategies

for DQ1. Parameters equal to Table 4-1.

look for a zero of this tunneling function starting from some point x01 and if we find

such zero, then we start a new minimization phase from it.

The general form of the tunneling function is

T (x, x∗i , λ) = (f(x)− f(x∗i )) g
(
∥x− x∗i ∥2, λ

)
. (5-6)

Here the function g (∥x− x∗i ∥2, λ) represents the pole or singularity, and λ adjusts the

strength of the function. The core of the method lies in the tunneling phase: by using

a pole or a singularity at the previous minimum (or minima) we guarantee that the search

for a zero of T (x, x∗i , λ) will lead us far from those previous minima. This whole process

depends on λ. The tunneling function T (x, x∗i , λ) becomes 0 if f(x) − f(x∗i ) = 0 and/or if

g (∥x− x∗i ∥2, λ) = 0. If we choose g(·) > 0, then the zeros of the tunneling function are

located at f(x) = f(x∗i ). The original version of the method uses a pole and is called the

classical tunneling method, see [Gómez and Levy, 1970]. Equation (5-9) becomes

T (x, x∗i , λ) =
f(x)− f(x∗i )

∥x− x∗i ∥
2λ

. (5-7)

The pole of the tunneling has a flattening effect on the function f , see Figure 5-13. From the

point of view of the tunneling method, the function is now decreasing away from the pole and

only reaches zero at a point with the value of the previous minimum. Parameter λ is adjusted

from a small value to a greater one, depending on if the method ends trapped in a worse

minimum. This method has some drawbacks, discussed in [Barrón-Romero and Gómez,

1991], and for this reason, a new variant of the method called the exponential tunneling

method was proposed. The new tunneling function was defined as follows.

T (x, x∗i ) = (f(x)− f(x∗i )) exp

(
λ

||x− x∗i ||
2

)
. (5-8)
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(a) Continuation, step 2 · 10−2.

No regularization.

c/c0 = 1.157

(b) No continuation.

cr−max = c0 · 1.30 · 107
c/c0 = 1.131

(c) Continuation, step 2 · 10−2.

cr−max = c0 · 3.84 · 106
c/c0 = 1.138

Figure 5-12: Final design examples of the best regularization results for the DQ1 repre-

sentation and no-regularization with continuation result for comparison. The

regularization strategy 4 improves significantly the distribution of material.

Compared to the classical tunneling method, this version has a stronger effect on the orig-

inal objective function. When we use the tunneling function to find a zero of T , starting a

new optimization phase from this zero we can find points at least as good as the previous

minimum. The name of the method comes from the fact that while we are just looking for

a zero in the tunneling function, in the original function we could be actually passing below

an interval of points greater than our minimum, see [Gómez and Levy, 1970].

The method has several modifications to help it converge to other local minima. For example,

in the case of a function that has several local minima at the same level, it is useful to keep

track of every local minima and accumulate the effect in the following way:

T (x, x∗i , λ) = (f(x)− f(x∗i )) g

(∏
j

∥x− x∗i ∥2, λ

)
. (5-9)

Here the index j is over every previously found local minimum of the same value.

In addition, it is important to distinguish between local minima in the interior of the feasible

region and local minima on the boundary. We explain each case next

• Interior local minima: A pole is added in the optimal point x∗i and a new random

direction is chosen to start the optimization. If the optimization is stalled, then the

parameter λ is increased. There is no modification to the definition given initially.

• Boundary local minima: In addition to the pole in the minimum, a pole in the
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Figure 5-13: Classical tunneling method example. A function f(x) = −0.02x2−0.5 cos(πx)

is multiplied by a pole g(x2) = 1/x2, to obtain the tunneling function

T (x, 0, 1). This tunneling function flattens the function in such a way that we

might be able to find a zero of the function T close to the minimum in x = 4.

Figure 5-14: Exponential tunneling method example. A function f(x) = −0.02x2 −
0.5 cos(πx) is multiplied by a singularity g(x2) = exp(1/x2), to obtain the

tunneling function T (x, 0, 1). This tunneling function flattens the function in

such a way that we might be able to find a zero of the function T close to the

minimum in x = 4.

medium point between the current point x and the optimum x∗i is added. Similarly,

we can increase the strength with a factor λc.

For a problem such as the problem of densities, where we search for local minima always

on the boundary of the domain, the second case applies. For the GPTO, given that gener-

ally, most of the points of the primitives are inside the domain, the first case should apply

more frequently, however, as we know that the volume fraction constraint is active, then

the boundary local minima is applied too. In any case, the tunneling method can be imple-

mented to decide depending on the position of the local minimum.

Recent works with similar approaches can be found in [Papadopoulos et al., 2021], where

authors explore multiple solutions of Navier-Stokes and elasticity TO problems with a de-

flated barrier method proposed in the same work. Also in [Tarek and Huang, 2022], where

the authors use a deflation operator to converge to different solutions from the same initial
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conditions, this operator has the form of a pole and is multiplied to the objective function.

Multiple solutions can be added or multiplied to always guarantee different solutions. The

methods present important similitude and the results in that work and [Zhang and Norato,

2018] are comparable.

5.3.2 The tunneling function of the compliance functional

Figure 5-15: Classical tunneling function of the functional in Figure 5-3. The pole is ap-

plied to the sub-optimal local minimum (17.2, 32). The functional flattens

with the pole but presents a lot of irregularities. The second valley marked

by the 0 contour will stop the zero-finding algorithm and start a new mini-

mization phase.

Consider the example of Section 5.1, where we restricted a GPTO heat problem with three

bars to three design variables and a volume restriction to visualize the functional in Figure

5-3. We can multiply the following pole to obtain a tunneling function

g
(
∥ρ∗1 − ρ∥2, 2

)
=

1

∥ρ∗1 − ρ∥4
(5-10)

We choose the minimum at (17.3, 32) to start the tunneling phase, being this minimum

considerably higher than the minimum in (3.0, 12). The resulting tunneling functions are

presented in Figure 5-15. There we can see that the tunneling function facilitates the

descend from the previous minimum. We can also note that there is a loss of precision in the

tunneling function (this could hinder the work of the zero-finding algorithm due to limited

numerical precision) and that not every local minimum has disappeared. The last problem

can be solved by increasing the strength of the pole, but this could cause also more loss of

numerical precision in the search.
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5.3.3 Elasticity problem

Figure 5-16: Tunneling method applied to the Michell bridge. The point ρ∗1 is found after

the first optimization, and a tunneling phase is applied. Depending on the

parameters of this phase, we can find other minima close or far from the initial

point.

(a) First steps of the tunneling. (b) Design found.

Figure 5-17: If the strength of the pole or singularity is too large, then the density cells

of the previous design are avoided and the search converges to a sub-optimal

design with empty zones in the members. This can make the tunneling search

fail and it must be restarted.

Figure 5-18: After the first tunneling phase the method gets trapped between two solutions.

We apply the tunneling method to the Michell bridge problem, see Figure 5-16. The point

ρ∗1 is the point we found after the first optimization phase, and the possible points ρ∗2 the

optima found after a tunneling and a second minimization phase, depending on the strength

of the pole we place and the perturbation we apply to start the tunneling phase. A small λ

keeps the method close to the design ρ∗1, in this case, a small detail in the left-central mem-

ber. The second and third possible designs represent cases where the pole generates a bigger

repulsion. For a symmetrical problem like this one, a random perturbation, as suggested

in [Barrón-Romero and Gómez, 1991], can deliver random members with unusual designs

due to the attracting effect that cells with higher densities present, as discussed in Chapter
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4. Notice also that asymmetrical designs with strong attraction valleys can be sub-optimal

and trap the tunneling phase in a region without zeros, forcing the tunneling to restart from

another point. A pathological case occurs when the repulsion is too strong, that is, the force

of the pole or singularity drives the optimization away to the optimization and the initial

phases of the optimization repel most of the elements of the previous optimization, see Fig-

ure5-17a. If eventually, the optimizer is able to find a path close to the local minima this

effect of the initial phases can be avoided. However, it can also happen that the optimizer

cannot find a path that eliminates this repulsion of the elements and the appearance remains

as shown in Figure 5-17b.

Adequate selection of the parameter λ is critical for the good performance of the method,

however, function evaluations are expensive. If the method starts with a small λ and in-

creases it when it fails to find a minimum, due to the great number of attraction valleys

the method can end up evaluating the function as many times as other methods, like a very

slow continuation. We can modify the method by choosing a different starting point for the

tunneling function; for example, instead of adding a perturbation, we can always select a

uniform starting point, this way all elements start with a similar preference and we avoid

random members. This modification can give good results in the following phase of the

optimization, but it can also suffer a new problem as shown in Figure 5-18. Here we can see

how the solutions iterate between a few solutions. Minima like ρ∗2 and ρ
∗
4 or ρ

∗
3 and ρ

∗
5 are not

exactly the same and we can obtain in a number of iterations each time a slightly smaller

value, as the algorithm runs longer looking for the solution. However, we do not obtain

diversity in the new solutions to the problem. We could then add a pole for each previous

solution and don’t take it away every time a solution is found even if they have consider-

ably different compliance. Adding several poles—one for any local minimum found—can be

initially a sound choice, as it will always guarantee to obtain a different design each time.

But it also widens the repulsion zone until eventually the algorithm no longer converges,

leaving us always with designs like 5-17a. Remarks in [Tarek and Huang, 2022] mention

similar convergence problems: if the algorithm is able to find a new optimal point, it will be

different from the previous one. However, as we saw in the tunneling method, convergence

is not guaranteed.
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In this study, we have explored topology optimization techniques, which, while established,

still offer numerous opportunities for improvement. Our investigation has studied how the

representation of the material distribution directly impacts final results, and how slight mod-

ifications to initial conditions can significantly alter the distribution of material, see Section

4.3. We have observed that methods introducing gradual changes to the objective function

can lead to improvements at the cost of increased computational time or altering the appear-

ance of final designs, see Section 4.4. Additionally, we have discovered that local minima

can pose a significant challenge. Despite this, there may be opportunities to overcome this

challenge provided by the shared characteristics between optimal 0-1 solutions and the global

minima of linear-interpolation solutions. However, further research is needed to understand

why alternative representation schemes often yield different (and worse) results than the

traditional Q0 representation, see Section 4.5.

One crucial aspect we focused on was the implementation of the geometry projection method

in the heat problem. While our exploration revealed promising results, it is evident that

further study and refinement are necessary to achieve optimal solutions for general-type

problems, see Section 4.4. The superposition of primitives emerged as a notable challenge,

and we hypothesize that this superposition may underlie certain phenomena observed during

the optimization process. Throughout our investigation, we also experimented with various

alternative projection functions. These functions significantly influenced the shape of the

functional and, in turn, the convergence of the optimizer towards a solution. The question

remains whether progressive changes in the function to map primitives could lead to further

enhancements in final designs. Understanding the interplay between different projection

functions and their effects on the optimization will be crucial for developing efficient and

effective approaches, see Section 5.1.

A finding in our study was the divergent performance of alternative representation schemes

compared to the traditional Q0 representation. Understanding the reasons behind this dis-

crepancy can be crucial for guiding future improvements in topology optimization method-

ologies, see Section 4.3. Identifying the strengths and weaknesses of different representation

schemes will aid researchers in developing more robust and effective approaches. Our study

has shed light on the potential of regularization methods to improve design outcomes, see

Section 5.2. However, the exact mechanisms through which this occurs require further
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elucidation. We recognize the need to clarify the underlying hypotheses that guided our reg-

ularization experiments. The use of the tunneling function in the classical density method

yielded various outcomes, indicating a great potential for methods with geometric represen-

tations, such as the GPTO, see Section 5.3.

In summary, our study has demonstrated that topology optimization remains a vibrant

field with ample room for advancement. Through the refinement of geometry projection,

investigation of alternative projection functions, and a deeper understanding of regularization

mechanisms, we can pave the way for more effective and efficient topology optimization

approaches. By addressing the challenges posed by the superposition of primitives and

exploring representation schemes, we may unlock the full potential of topology optimization

in solving complex engineering design problems. With continued research and collaborative

efforts, we are optimistic about the future prospects of this fascinating field.
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