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ABSTRACT

Semantic segmentation is pivotal in various industries, showcasing its significant

impact across numerous applications. Semantic segmentation offers invaluable

insights that drive advancements in fields such as autonomous driving,

surveillance, robotics, and augmented reality by enabling precise identification

and labeling of objects within an image. Accurate segmentation of objects allows

autonomous vehicles to navigate complex environments, surveillance systems to

detect and track specific objects, robots to manipulate objects efficiently, and

augmented reality applications to seamlessly blend virtual objects with the real

world. However, in the medical industry, the importance of semantic

segmentation has become truly profound. Medical imaging techniques, such as

computerized tomography scans and magnetic resonance imaging, generate vast

amounts of data that require meticulous annotation for analysis. Manual

annotation is a time-consuming and resource-intensive process, leading to

diagnosis and treatment planning delays. Semantic segmentation techniques have

the potential to automate this process, facilitating faster and more accurate

analysis of medical images, thereby enhancing patient care and reducing the

burden on healthcare professionals. Moreover, in medical applications, the need

for interpretability is critical. Understanding and interpreting the segmentation

results is vital for clinicians to make informed decisions. Interpretable semantic

segmentation techniques provide transparency and insights into the segmentation
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process, ensuring that medical professionals can trust and validate the results for

accurate diagnosis and treatment.

Medical image analysis faces several challenges, with one of the primary obstacles

being the limited availability of datasets specifically tailored for training

segmentation models. These models require large and diverse datasets to learn the

intricate patterns and features of medical images accurately. However, due to the

sensitive nature of medical data and the need for expert annotations, obtaining

such datasets can be challenging. Another significant challenge arises from the

high variability in the region of interest (ROI) within medical imaging. The ROI can

differ significantly from one patient to another due to variations in anatomy,

pathology, and imaging parameters. This variability leads to differences in shape,

size, and texture, making it difficult for segmentation models to delineate and

analyze the regions of interest accurately. Consequently, ensuring consistent and

reliable segmentation results across diverse medical images remains a critical

challenge. Furthermore, there is a pressing need for systematic and quantitative

evaluations of interpretability in deep learning-based segmentation models.

Without such evaluations, trusting and relying on these models for clinical

decision-making becomes challenging. Medical practitioners must

comprehensively understand how and why these models arrive at their

conclusions to incorporate them into their practice confidently. The absence of

standardized evaluation methods impedes progress in building interpretable and

trustworthy medical image analysis systems.

This work addresses challenges in medical image segmentation. Our contributions

include optimizing Random Fourier Features for spatial data through gradient

descent named CRFFg, enhancing shallow encoder-decoder models for semantic

segmentation, and proposing quantitative measures for interpretability. CRFFg

takes advantage of the generalization properties of kernel methods and enhances

data efficiency for spatial data derived from convolutions, mitigating low sample

size and overfitting. To address shape, size, and texture variability in semantic

segmentation across patients and imaging protocols, we incorporate a CRFFg layer
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into the skip connection of the encoder-decoder models. This improves the

representation of low-level features from the encoder and their fusion in the

decoder, specifically targeting the challenges of ROI variability. Interpretability is

crucial in medical semantic segmentation, but deep learning models present

challenges. To enhance interpretability, we propose quantitative measures:

CAM-based Cumulative Relevance assesses the location of relevance in specific

regions of interest, Mask-based Cumulative Relevance evaluates sensibility across

multiple regions of interest, and CAM-Dice measures the homogeneity of

relevance in interest regions. These measures provide objective and

comprehensive evaluations, surpassing visual inspection and qualitative analysis.

The proposed work has been tested in a medical image application where the

mentioned problems occur, specifically in the segmentation of feet for monitoring

the effectiveness of analgesia in the obstetric environment. This is achieved by

monitoring changes in temperature at the soles of the feet. The proposed

methodology demonstrates comparable performance with standard methods while

also enhancing interpretability. It is important to note that this project is being

developed in conjunction with SES Hospital Universitario de Caldas, under the

name ”Sistema prototipo de visión por computador utilizando aprendizaje

profundo como soporte al monitoreo de zonas urbanas desde unidades aéreas no

tripuladas” (Hermes Code 55261). The project is funded by Universidad Nacional

de Colombia.

In our future research, we have identified several promising avenues that can

advance our work. By analyzing the spectral representation of the CRFFg layer, we

aim to uncover hidden patterns and gain a deeper understanding of the subject.

Additionally, incorporating Bayesian approximation techniques will enable us to

enhance our decision-making and optimization strategies. We also plan to employ

regularization techniques based on the proposed measures, which will effectively

address overfitting issues and improve the model’s performance by focusing on

the desired behavior of the discriminative regions. By pursuing these paths, we

aim to enhance our approach’s overall effectiveness and reliability significantly,

thereby pushing the boundaries of knowledge in this field.
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RESUMEN

La segmentación semántica es fundamental en varias industrias y muestra su

impacto significativo en numerosas aplicaciones. La segmentación semántica

ofrece información valiosa que impulsa los avances en campos como la conducción

autónoma, la vigilancia, la robótica y la realidad aumentada al permitir la

identificación y el etiquetado precisos de los objetos dentro de una imagen. La

segmentación precisa de objetos permite que los vehículos autónomos naveguen

en entornos complejos, los sistemas de vigilancia detecten y rastreen objetos

específicos, los robots manipulen objetos de manera eficiente y las aplicaciones de

realidad aumentada combinen a la perfección objetos virtuales con el mundo real.

Sin embargo, en la industria médica, la importancia de la segmentación semántica

se ha vuelto verdaderamente profunda. Las técnicas de imágenes médicas, como

las tomografías computarizadas y las resonancias magnéticas, generan grandes

cantidades de datos que requieren una anotación meticulosa para su análisis. La

anotación manual es un proceso que requiere mucho tiempo y recursos, lo que

genera retrasos en el diagnóstico y la planificación del tratamiento. Las técnicas de

segmentación semántica tienen el potencial de automatizar este proceso,

facilitando un análisis más rápido y preciso de imágenes médicas, mejorando así la

atención al paciente y reduciendo la carga de los profesionales de la salud.

Además, en aplicaciones médicas, la necesidad de interpretabilidad es crítica.

Comprender e interpretar los resultados de la segmentación es vital para que los

médicos tomen decisiones informadas. Las técnicas de segmentación semántica
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interpretables brindan transparencia e información sobre el proceso de

segmentación, lo que garantiza que los profesionales médicos puedan confiar y

validar los resultados para un diagnóstico y tratamiento precisos.

El análisis de imágenes médicas enfrenta varios desafíos, y uno de los principales

obstáculos es la disponibilidad limitada de conjuntos de datos específicamente

diseñados para entrenar modelos de segmentación. Estos modelos requieren

conjuntos de datos grandes y diversos para aprender con precisión los patrones y

características intrincados de las imágenes médicas. Sin embargo, debido a la

naturaleza confidencial de los datos médicos y la necesidad de anotaciones de

expertos, la obtención de dichos conjuntos de datos puede ser un desafío. Otro

desafío significativo surge de la alta variabilidad en la región de interés (ROI)

dentro de las imágenes médicas. El ROI puede diferir significativamente de un

paciente a otro debido a variaciones en la anatomía, la patología y los parámetros

de imagen. Esta variabilidad conduce a diferencias en forma, tamaño y textura, lo

que dificulta que los modelos de segmentación delineen y analicen las regiones de

interés con precisión. En consecuencia, garantizar resultados de segmentación

consistentes y confiables en diversas imágenes médicas sigue siendo un desafío

crítico. Además, existe una necesidad apremiante de evaluaciones sistemáticas y

cuantitativas de la interpretabilidad en modelos de segmentación basados en

aprendizaje profundo. Sin tales evaluaciones, confiar en estos modelos para la

toma de decisiones clínicas se convierte en un desafío. Los médicos deben

comprender de manera integral cómo y por qué estos modelos llegan a sus

conclusiones para incorporarlos a su práctica con confianza. La ausencia de

métodos de evaluación estandarizados impide el progreso en la construcción de

sistemas de análisis de imágenes médicas interpretables y confiables.

Este trabajo aborda los desafíos en la segmentación de imágenes médicas.

Nuestras contribuciones incluyen la optimización de las características aleatorias

de Fourier para datos espaciales a través del descenso de gradiente denominado

CRFFg, la mejora de los modelos de codificador-decodificador poco profundos para

la segmentación semántica y la propuesta de medidas cuantitativas para la
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interpretabilidad. CRFFg toma ventajas de las propiedades de generalización de los

métodos kernel y mejora la eficiencia de datos para datos espaciales derivados de

convoluciones, mitigando el tamaño de muestra bajo y el sobreajuste. Para

abordar la variabilidad de forma, tamaño y textura en la segmentación semántica

entre pacientes y protocolos de imágenes, incorporamos una capa CRFFg en la

conexión de salto de los modelos codificador-decodificador. Esto mejora la

representación de características de bajo nivel del codificador y su fusión en el

decodificador, apuntando específicamente a los desafíos de la variabilidad del ROI.

La interpretabilidad es crucial en la segmentación semántica médica, pero los

modelos de aprendizaje profundo presentan desafíos. Para mejorar la

interpretabilidad, proponemos medidas cuantitativas: la relevancia acumulada

basada en CAM evalúa la ubicación de relevancia en regiones específicas de

interés, la relevancia acumulada basada en máscara evalúa la sensibilidad en

múltiples regiones de interés y CAM-Dice mide la homogeneidad de relevancia en

regiones de interés. Estas medidas proporcionan evaluaciones objetivas y

completas, superando la inspección visual y el análisis cualitativo.

El trabajo propuesto ha sido probado en una aplicación de imagen médica donde

se presentan los problemas mencionados, específicamente en la segmentación de

pies para monitorear la efectividad de la analgesia en el medio obstétrico. Esto se

logra monitoreando los cambios de temperatura en las plantas de los pies. La

metodología propuesta demuestra un rendimiento comparable con los métodos

estándar al tiempo que mejora la interpretabilidad. Es importante señalar que este

proyecto se está desarrollando en conjunto con SES Hospital Universitario de

Caldas, bajo el nombre de ”Sistema prototipo de visión por computador utilizando

aprendizaje profundo como soporte al monitoreo de zonas urbanas desde

unidades aéreas no tripuladas” (Código Hermes 55261 ). El proyecto es financiado

por la Universidad Nacional de Colombia

En nuestra investigación futura, hemos identificado varias vías prometedoras que

pueden avanzar en nuestro trabajo. Al analizar la representación espectral de la

capa CRFFg, nuestro objetivo es descubrir patrones ocultos y obtener una
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comprensión más profunda del tema. Además, la incorporación de técnicas de

aproximación bayesiana nos permitirá mejorar nuestras estrategias de toma de

decisiones y optimización. También planeamos emplear técnicas de regularización

basadas en las medidas propuestas, que abordarán de manera efectiva los

problemas de sobreajuste y mejorarán el rendimiento del modelo al enfocarse en el

comportamiento deseado de las regiones discriminatorias. Al seguir estos caminos,

nuestro objetivo es mejorar significativamente la eficacia y confiabilidad general de

nuestro enfoque, ampliando así los límites del conocimiento en este campo.

Palabras clave: Segmentación Térmica Infrarroja, Analgesia Neuroaxial Regional,

Aprendizaje Profundo, Características Aleatorias de Fourier, Mapas de Activación

de Clase
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Semantic segmentation (SS) is a computer vision technique that involves dividing

an image into distinct and meaningful parts or regions, each corresponding to a

specific object or class [Mo et al., 2022]. Thanks to advancements in machine

learning, specifically Deep Learning (DL), it has become feasible to apply SS to a

broad range of applications, including healthcare, automotive, agriculture, satellite

imagery, retail, security industries, among others. For example, in healthcare, SS

has been used to identify and segment various organs, tumors, or lesions in

medical images, which can help with diagnosis and treatment planning [Qureshi

et al., 2023, Khan et al., 2021, Soomro et al., 2023]. In autonomous vehicles, SS is

essential as it enables the detection and identification of objects on the road, such

as pedestrians and traffic signs, which is crucial for safe and efficient driving [Cakir

et al., 2022, Tsai et al., 2023, Rizzoli et al., 2022, Burel et al., 2022]. In agriculture,

it is helpful for crop monitoring, disease detection, and yield estimation [Anand
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et al., 2021, Zou et al., 2021, Singh et al., 2021]. In satellite imagery, it is used for

land cover mapping, urban planning, and environmental monitoring [Lilay and

Taye, 2023, Wieland et al., 2023]. Therefore, SS is a critical component in the

development of artificial intelligence and DL systems, which have wide-ranging

applications in various industries [Minaee et al., 2022, Quazi and Musa, 2021].

Medical Image Analysis (MIA) heavily relies on SS, which is a critical task for

accurately segmenting and labeling different structures and regions of interest

within a medical image [Maier-Hein et al., 2018, Li et al., 2021a, Antonelli et al.,

2022]. Figure 1-1 illustrates the distribution of tasks in medical image analysis,

with segmentation being the predominant task in MIA. For instance, early

detection of Alzheimer’s, schizophrenia, and Parkinson’s disease requires precise

identification of physical changes in the hippocampus, which is often segmented

on Magnetic Resonance Images [Ataloglou et al., 2019, Liu et al., 2020, Wu and

Tang, 2021, Carmo et al., 2021]. A breast cancer diagnosis is another well-known

application. Identifying physical changes in breast tissue, like tumors, in X-rays,

magnetic imaging, or ultrasound images is crucial to diagnosis on time [Altameem

et al., 2022, Fazilov et al., 2022, Jahwar and Abdulazeez, 2022]. Moreover, to

diagnose chest-related diseases, such as pneumonia, tuberculosis, and COVID-19,

Computed Radiography is the most commonly used medical imaging together with

SS techniques [Yıldırım et al., 2023, Alebiosu et al., 2023]. Besides, in maternal

health, particularly pain control before labor, monitoring anesthesia through

thermographic images is an objective measure of such effectiveness [Bouvet et al.,

2020]. Accordingly, SS has become an indispensable tool in modern medical

research and practice by enabling more precise and efficient analysis of medical

images [Aljabri and AlGhamdi, 2022].

In this sense, maternal health can be highly benefited from MIA. Maternal health,

the health of women during pregnancy, childbirth, and the postnatal period, is an

important issue, which is one of the key priorities of World Health Organization

(WHO), grounded in a human rights approach and linked to efforts on universal

health coverage [World Health Organization, 2023]. For example, in Colombia, a
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Figure 1-1. Main tasks in MIA [Li et al., 2021a]

significant number of pregnant women die each year, on average during one day,

40 pregnant women are close to death, most of the time due to preventable causes

that are related to hypertension associated with pregnancy, hemorrhage, or

infection [Ministerio de Salud y Protección Social de Colombia, 2023]. Moreover,

pain management during childbirth is key to ensuring a comfortable and safe

delivery for both the mother and baby [Joensuu et al., 2022, Smith et al., 2018].

Childbirth is one of the most painful events [Melesse et al., 2022], and can cause

complications that can be dangerous for the mother’s and child’s safety and

wellness [Chughtai et al., 2018, Koyucu and Karaca, 2022]. If the pain is not

effectively managed, it can cause stress and anxiety, leading to longer and more

difficult labor and increasing the risk of complications such as preterm delivery,

cesarean delivery, and postpartum depression [Parise et al., 2021, Cavazos-Rehg

et al., 2015]. Therefore, women should be offered appropriate pain management

techniques, such as breathing exercises, relaxation techniques, and medication,

during labor to help them cope with the pain and have a positive childbirth

experience.

Meanwhile, using regional neuraxial analgesia for pain relief during labor is widely

recognized as a safe method [Brown et al., 1980, Omer Ibrahim Abdalla et al.,

2022]. Compared to other forms of pain relief, regional neuraxial analgesia is

considered safe and effective for most women and is associated with lower rates
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of complications [McCombe and Bogod, 2021]. This technique involves

administering medication into the epidural or subarachnoid space in the lower

back [Conhaim and Girnius, 2023], which blocks pain signals from the uterus and

cervix to the brain. Nonetheless, accurately and quickly assessing its effectiveness

is crucial for optimizing healthcare resources and promoting patient well-being

[Lee et al., 2022, Gottlieb et al., 2022]. The effectiveness of anesthesia or analgesic

block is evaluated using three main modalities: psychophysical,

electrophysiological, and imaging techniques. Psychophysical testing evaluates

thermosensitive sensory effects through superficial touch, cutaneous pinprick

tests, and cold tests [Hoyle and Yentis, 2015]. Although it is the most commonly

used modality, its effectiveness depends on subjective patient reports, leading to

increased false positive and negative rates [Bruins et al., 2018b].

Electrophysiological testing measures nerve fiber reactions to painful stimuli using

electromyography, excitatory or inhibitory reflexes, evoked potentials,

electroencephalography, and magnetoencephalography [Chae et al., 2022].

Imaging techniques objectively measure relevant bodily function patterns (such as

blood flow, oxygen use, and sugar metabolism) using positron emission

tomography, single-photon emission computed tomography, and functional

magnetic resonance imaging [Curatolo et al., 2005]. Nevertheless, imaging

techniques can be costly, limiting their use, and are generally prohibited in

obstetric patients [Whittingham, 2013].

A cost-effective alternative approach involves utilizing thermographic skin images

to measure body temperature and predict the distribution and efficacy of epidural

anesthesia [Bruins et al., 2018a]. This is achieved by identifying areas of cold

sensation [Bruins et al., 2018b]. These areas are related to the dermatomes, an

area of skin that is innervated by a single spinal nerve, which acts as a biomarker

for the level of pain sensation [Koszewicz et al., 2021]. The use of thermal imaging

provides an objective and non-invasive solution to assess the warm modifications

resulting from blood flow redistribution after catheter placement [Haren et al.,

2013]. However, to accurately assess the effectiveness of epidural analgesia,

temperature measurements must be taken from the patient’s foot soles. Taking
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these measurements at different times after catheter placement is crucial to

accurately characterize the early thermal changes [Stevens et al.,

2006, Werdehausen et al., 2007]. Another significant challenge is the limited data

availability together with the high variability of Region of Interest (ROI),

particularly in this obstetric environment. This is compounded by the fact that

acquiring image data can be even more difficult due to the restricted situation of

the mother and the discomfort associated with the process [Willemink et al.,

2020, Melesse et al., 2022]. Therefore, developing tools for objective evaluation of

the effectiveness of epidural anesthesia under data scarcity plays a critical role in

maternal health [Whitburn and Jones, 2020].

In a local context, The Signal Processing and Recognition Group (SPRG) at

Universidad Nacional de Colombia has been focused on analyzing biomedical data,

aiming to develop machine-learning methodologies to improve Computer-Aided

Diagnosis (CAD) systems. For example, their research includes results in

diagnosing conditions such as dementia and brain tumors, with the segmentation

of the latter achieved through MRI analysis [Bron et al., 2015, Jimenez et al., 2018].

Additionally, SPRG has been utilizing ultrasound images to accurately segment

nerve structures, thereby supporting regional anesthesia [Jimenez-Castaño et al.,

2021]. Moreover, SPRG has shown an interest in working with computer vision

systems for CADs in a variety of investigation and innovations projects (supported

by Minciencias, Dirección Nacional de Investigaciones de Manizales, and

Vicerrectoría de Investigaciones de la Universidad Nacional de Colombia):

• Desarrollo de un sistema automático de análisis de volumetría cerebral como

apoyo en la evaluación clínica de recién nacidos con asfixia perinatal (2019-

actual). Financiado por Minciencias.

• Desarrollo de una herramienta de seguimiento de aguja y localización de

nervios en ecografía para la práctica de anestesia regional: aplicación al

tratamiento de dolor agudo traumático y prevención del dolor neuropático

crónico (2019-actual). Financiado por Minciencias
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• Caracterización morfológica de estructuras cerebrales por técnicas de imagen

para el tratamiento mediante implantación quirúrgica de neuroestimuladores

en la enfermedad de Parkinson (2019-actual). Financiado por Minciencias

• Desarrollo de un sistema de apoyo al diagnóstico no invasivo de pacientes

con Epilepsia fármaco-resistente asociada a displasias corticales cerebrales:

método costo-efectivo basado en procesamiento de imágenes de resonancia

magnética (2017-2019). Financiado por Minciencias.

In particular, SPRG has recently expanded its research efforts by collaborating with

SES Hospital Universitario de Caldas to develop a novel tool under the project

”Herramienta de apoyo a la predicción de los efectos de anestésicos locales vía

neuroaxial epidural a partir de termografía por infrarrojo” (Code 111984468021),

which is funded by MINCIENCIAS. This tool uses infrared thermal images to

predict the effects of regional neuraxial analgesia on obstetrics patients. The

potential impact of this research is substantial, as it could lead to improved patient

outcomes and enhance the delivery of medical care in this particular field.

Consequently, developing new SS techniques based on DL with preserved

interpretability under scenarios of data scarcity and high variability in the ROI is

necessary. Furthermore, effectively developing and implementing these

techniques has the potential to yield subsequent tools that can enhance maternal

health at SES Hospital de Caldas. For instance, in the context of monitoring

anesthesia effectiveness, a shift from subjective assessment to objective

evaluation can be achieved by characterizing changes in temperature within a

region of interest in the human body. This change not only enhances the quality of

service but also ensures more accurate assessments.

1.2 Problem Statement

MIA plays a critical role in diagnosing and treating diseases, as it enables healthcare

professionals to obtain valuable insights into the condition of patients [Rashed and
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Popescu, 2022, Ghosh et al., 2022]. Yet, the manual analysis can be challenging

and time-consuming, often requiring the expertise of highly specialized personnel

[Jonaitytė and Petkevičius, 2021, Yang and Yu, 2021]. Furthermore, the complex

structures and features present in medical images make it difficult to achieve high

levels of accuracy and consistency in the analysis [Scalco and Rizzo, 2017]. This

can lead to errors and inconsistencies in diagnosis and treatment, which can have

serious consequences for patients [Dong et al., 2023]. In addition, the time required

to perform manual image analysis can be a significant bottleneck in the healthcare

system, causing delays in diagnosis and treatment and potentially increasing the

overall cost of care [Roy et al., 2022]. This is particularly true in cases where multiple

images or the time is limited to analyze, as this can quickly become overwhelming

for medical professionals [Kumar, 2021].

CAD systems have become increasingly important in medical diagnosis, given the

need for reproducibility and scalability [Tsuneki, 2022]. These systems have

emerged as vital tools in diagnostic scenarios where medical images are the

primary source of information [Loizidou et al., 2022]. Two main approaches for

analyzing medical images are classic and DL machine learning techniques. Classic

approaches rely on manually designed features to capture certain aspects of

images, but they may not adequately capture the intricate and diverse features of

medical images or perform well on new data [Rashed and Popescu, 2022]. In

contrast, DL approaches use neural networks to automatically learn features,

enabling them to capture the full complexity of images and often leading to

superior performance [Zhang and Dong, 2019]. Nonetheless, DL approaches

require large amounts of data for effective training and may suffer limitations such

as overfitting, especially in scenarios of data scarcity, and low trust due to the

black-box nature [Sarker, 2021]. Additionally, the black-box nature of DL models

restricts their use in MIA [Markus et al., 2021, Amann et al., 2020]. Therefore,

developing image-based DL approaches for MIA requires addressing the challenges

of limited samples and complex and high variability in structures of ROI while

being suitable for interpretability.
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1.2.1 Small Sample Size and Overfitting

Medical image segmentation is a complex task that faces several challenges. One

of the primary challenges is the limited availability of datasets, especially in the

case of obstetric environments, where image data acquisition is even more

difficult due to the restricted situation of the mother and the discomfort of the

process [Melesse et al., 2022, Willemink et al., 2020]. For instance, acquiring

images of the foot soles requires the mother to maintain a relatively stable

position, and the foot soles must be visible to the camera [Stevens et al.,

2006, Werdehausen et al., 2007]. Additionally, the specialized equipment required

for obtaining such images and the reluctance of mothers to participate in research

studies make it difficult to acquire annotated data, which is crucial for developing

effective segmentation techniques. These factors contribute to the challenge of

training accurate and reliable segmentation models, which are essential in clinical

diagnosis and treatments [Jonaitytė and Petkevičius, 2021, Yang and Yu, 2021].

Moreover, applying DL models such as Convolutional Neural Networks (CNN)s

and transformer-based models for medical image segmentation in scenarios with

limited data poses a significant challenge. While these models are powerful and

widely utilized in computer vision tasks, their effectiveness heavily relies on

extensively annotated datasets for training [Sarker, 2021, Li et al., 2021a].

Overfitting becomes a concern in scarcity scenarios where acquiring annotated

data is difficult. The need for more diverse training samples and the tendency to

overparameterize the models can result in excessively specialized models that

struggle to generalize effectively to new data [Jain et al., 2020, Yang and Yu, 2021].

Therefore, overfitting undermines the reliability and accuracy of segmentation

results, potentially compromising clinical diagnoses and treatments [Galati et al.,

2022]. Therefore, it is crucial to address the issue of overfitting when dealing with

limited data availability [Santos and Papa, 2022]. Doing so is essential for

developing robust and effective segmentation techniques in obstetric

environments and other scenarios characterized by data scarcity.
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1.2.2 High Variability in the ROI in Medical Imaging

In medical image segmentation, the ROI is a critical component in identifying and

analyzing the image’s specific area of clinical interest [Qureshi et al., 2023]. Yet,

one of the challenges of medical image analysis is the high variability of the ROI

across different patients, imaging modalities, and acquisition protocols. This

variability arises due to differences in anatomy, pathology, and imaging

parameters, which can lead to significant variations in the ROI’s shape, size, and

texture [Li et al., 2021a]. This poses significant challenges for medical image

segmentation, as even small inaccuracies in segmentation can significantly impact

the accuracy of subsequent analysis and diagnosis [Williams et al., 2022].

Addressing these challenges requires the use of advanced segmentation algorithms

and techniques, as well as careful consideration of the specific characteristics of

the imaging data being analyzed.

In the context of obstetric environments, SS of feet in infrared thermal images

poses significant challenges due to several factors. Firstly, thermal images

inherently possess characteristics such as low contrast, blurred edges, and uneven

intensity distribution, making it challenging to identify and differentiate between

different objects within the image accurately [Zhang et al., 2022, Kütük and Algan,

2022]. Moreover, these characteristics can be further complicated by external

factors such as varying ambient temperature, which can cause changes in the

thermal patterns of the feet [Maldonado et al., 2020]. Secondly, the high

variability of foot positions can lead to images with different orientations, sizes,

and shapes. This variability is often present even within the same subject,

resulting in a wide range of foot positions, including cases where the feet may

overlap or be partially obscured [Arteaga-Marrero et al., 2021]. As a result,

accurately distinguishing between the different feet can be quite challenging.

Furthermore, the presence of other objects in the image, such as medical

equipment, can further complicate the task of foot segmentation, making it

difficult to differentiate between the feet and other objects [Bougrine et al., 2022].
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1.2.3 Lack of Systematic and Quantitative Evaluations
of Interpretability in SS Models

Medical analysis is an important field where SS models are widely used for

decision-making. Interpretability of these models is crucial for medical

practitioners as it enables them to understand and trust the reasoning behind a

model’s decision, thereby aiding in the diagnosis and treatment of patients [Teng

et al., 2022, Xu et al., 2023, Kolyshkina and Simoff, 2021, Bennetot et al., 2022].

Nevertheless, due to the complex and black-box nature of SS models based on DL,

their explainability is challenging [Linardatos et al., 2020]. Interpreting DL models

is challenging for several reasons. First, DL models can have millions of

parameters, making it difficult to understand how they make predictions [Singh

et al., 2020]. Second, these models are often non-linear, which means that small

changes in the input can result in significant changes in the output, making it hard

to understand how the model makes decisions [Kulathunga et al., 2020]. Third, DL

models are often trained on large amounts of data, which means the model may

capture complex patterns that humans do not interpret easily [Linardatos et al.,

2020].

Several interpretability methods have been developed for DL models. One set of

methods, called Back-propagation interpretability methods, aims to uncover the

contribution of each input feature to the final output of the model by calculating

gradients concerning the input [Teng et al., 2022]. CAM-based relevance analysis

methods use class activation maps to visualize regions of an image that contribute

the most to a particular class prediction [Singh et al., 2020]. Perturbation-based

methods involve perturbing the input data and observing the resulting changes in

the output to identify the most influential features [Linardatos et al., 2020]. Lastly,

Surrogate interpretability methods involve training an interpretable model, such

as a decision tree, to mimic the behavior of the black-box model, providing a more

understandable explanation for its decisions [Teng et al., 2022]. Each method has

its strengths and weaknesses and can provide different insights into the inner
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workings of machine learning models. Nonetheless, most current methods for

explainability on SS models rely mainly on visual inspection or qualitative analysis

to evaluate the model’s performance [Wang et al., 2022a, Salahuddin et al., 2022].

While this may be sufficient for evaluating one image at a time, it is not feasible to

understand the model’s performance or detect any biases that may be present

[Zhang et al., 2021b]. Moreover, techniques based on Class Activations Maps rely

on choosing a specific layer to compute the relevance, and these methods are often

limited to classification models [Zhou et al., 2015a, Selvaraju et al.,

2016, Chattopadhyay et al., 2017, Wang et al., 2019, Jiang et al., 2021]. As a result,

objective measuress are lacking to systematically evaluate the class-relevance

interpretability of the layers of SS models.

Therefore, due to the limited ability of models to generalize to new data,

particularly in the context of medical image segmentation, where datasets are

small and limited in availability, developing methods to improve the

representation for generalization is crucial. The solution must be incorporated in

shallow networks to reduce or preserve the same computational cost, and

interpretability must be preserved at least in the same way as standard

convolution. For these reasons, the following research question arises: How can

we develop a method for generating local and equivariant representations that

can improve the generalization of deep-learning models while maintaining

interpretability in Semantic Segmentation tasks for medical images?

1.3 State of the Art

1.3.1 Enhancing Generalization Capabilities under
Scenarios of Image-related data scarcity.

Nowadays, automatic segmentation techniques can be broadly classified into two

categories: those based on convolution and those based on transformers.
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Convolution-based segmentation models use convolutional neural networks to

learn local patterns in the input data, making them ideal for processing spatially

structured data such as images. Contrary to transformers with minimal inductive

biases, CNN have an inductive bias of local and equivariant characterization,

allowing them to learn more efficiently from scenarios of low data [Bronstein

et al., 2021]. For this reason, Convolution-based models have been widely adopted

in MIA applications and have shown strong performance in image segmentation

tasks. For example, Fully Convolutional Networks (FCN) [Long et al., 2014] is a

popular approach that uses Convolutional layers for pixel-wise classification, but

produces coarse ROI and poor boundary definitions for medical images [Bi et al.,

2017]. Likewise, U-Net [Ronneberger et al., 2015] consists of encoders and

decoders that handle objects of varying scales but have difficulty dealing with

opaque or unclear goal masks [Kumar et al., 2018]. ResUNet combines the residual

connections and U-Net architecture. Their advantages include efficient memory

usage and improved segmentation accuracy, but their disadvantages include longer

training time and higher computational costs [Anas et al., 2017a]. U-Net++ [Zhou

et al., 2018a] extends U-Net with nested skip connections for highly accurate

segmentation but with increased complexity and overfitting risk. Besides,

SegNet [Badrinarayanan et al., 2016] is an encoder-decoder architecture that

handles objects of different scales but cannot handle fine details. Mask R-CNN [He

et al., 2018] extends Faster R-CNN [Ren et al., 2016] for instance segmentation

with high accuracy but requires a large amount of training data and has high

computational complexity. On the other hand, PSPNet uses a pyramid pooling

module for multi-scale contextual information and increased accuracy but with

high computational complexity and a tendency to produce fragmented

segmentation maps for small objects [Zhao et al., 2017]. Nevertheless, they still

struggle to generalize when it comes to handling high variability simultaneously

with a scarcity of data.

On the other hand, Transformer-based segmentation models leverage the

self-attention mechanism to capture global dependencies among input features,

making them well-suited for tasks requiring long-range modeling [Azad et al.,
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2023]. They can also handle variable-sized inputs and have shown state-of-the-art

performance on a range of natural language processing and computer vision tasks

[Khan et al., 2022]. For instance, since the proposal of Visual Transformers

(VIT) [Dosovitskiy et al., 2020], several recent works have leveraged VIT

capabilities to enhance global image representation. For example, in [Chen et al.,

2021], a U-Net architecture fused with a VIT-based transformer significantly

improves model performance. Nevertheless, this approach requires a pre-trained

model and many iterations. Similarly, in [Cao et al., 2021], a pure U-Net-like

transformer is proposed to capture long-range dependencies. Another recent

work [Zhang et al., 2021a] suggests parallel branches, one based on transformers

to capture long-range dependencies and the other on CNN to conserve high

resolution. The authors of [Li et al., 2021b] propose a squeeze-and-expansion

transformer that combines local and global information to handle diverse

representations effectively. This method has unlimited practical receptive fields,

even at high feature resolutions. Yet, it relies on a large dataset and has higher

computational costs than conventional methods. To address the data-hungry

nature of transformer-based models, the work in [Luo et al., 2022] proposes a

semi-supervised cross-teaching approach between CNN and Transformers. The

most recent work in this field, Meta Segment Anything [Kirillov et al., 2023], relies

on an extensive natural database (around 1B images) for general segmentation.

Yet, medical and natural images have noticeable differences, including color and

blurriness. It is also pertinent to note that accepting ambiguity can incorporate

regions that may not be part of the regions of interest. Nonetheless, as has been

mentioned, models based on transformer architecture rely on a large amount of

data, making these models infeasible in scenarios of limited data availability.

Further than choosing a specific architecture to improve the generalization

capability and reduce the overfitting risk, transfer learning, and regularization

techniques have been proposed. Transfer learning in medical image segmentation

leverages pre-trained models to reduce data and computational resources needed

for training and improve generalization performance. Nonetheless, using an

unsuitable or non-representative pre-trained model can lead to sub-optimal
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performance and introduce bias, requiring careful evaluation before use [Alzubaidi

et al., 2020, Guan and Liu, 2022]. On the other hand, L1 or L2 regularization adds a

penalty term to the loss function to prevent overfitting. However, it may limit the

model’s ability to capture complex dependencies, leading to poor performance

[Goodfellow et al., 2016]. Dropout regularization randomly drops nodes during

training to prevent over-reliance on features but can introduce noise and

inefficiency [Chen et al., 2020b]. Data augmentation can improve model

performance and generalization by increasing the diversity and quantity of

training data. Nevertheless, generating unrealistic or irrelevant data can lead to

incorrect segmentation results. Domain-specific augmentation techniques are

needed to preserve medical images’ anatomical and pathological characteristics

[Shorten and Khoshgoftaar, 2019, Lv et al., 2020]. Therefore, even though these

techniques can help, enhancing generalization capabilities in low-data scenarios is

still necessary. Furthermore, reducing the complexity reduces the capability of the

models to learn complex-common dependencies.

In order to improve the ability of neural networks to generalize, researchers have

investigated the incorporation of kernel methods into these networks. This is

because kernel methods can generalize complex non-linear dependencies [Liu

et al., 2021]. Rahimi and Recht introduced one noteworthy approach in their

seminal work [Rahimi and Recht, 2009], which approximates the mapping of

kernel methods using Bochner’s theorem. This technique reduces the

computational costs of gram matrix calculation and data storage. Several studies

have since leveraged this approach to improve the efficiency and effectiveness of

neural networks in various scenarios. For instance, the authors in [Morrow et al.,

2017] employed a 1D-convolutional form of Random Fourier Features (RFF) to

predict transcription factor binding sites from DNA sequence, achieving better

inference time and performance. In [Xie et al., 2019] proposed a layer-wise

composition of RFF to mimic kernel composition in situations of data scarcity.

They also updated the RFF parameters through gradient descent. In [Tancik et al.,

2020] employed RFF to mitigate the spectral bias of Multi-Layer Perceptrons

(MLPs) and enable the capture of low frequencies. In another study
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[Jimenez-Castaño et al., 2021] utilized RFF at the bottleneck of U-Net, FCN, and

ResUNet architectures to improve their generalization capabilities for segmenting

nerves in ultrasound images. Additionally, in [Peng et al., 2021] proposed Random

Fourier Attention (RFA) to approximate attention mechanics using RFF and reduce

the computational cost of transformers. Nevertheless, it should be noted that

those RFF approaches do not support computation on high-dimensional data such

as images without increasing model complexity.

To extend the capabilities of kernel methods to two-dimensional data, most works

incorporate the properties of convolution to RFFs. The authors in [Mairal et al.,

2014] proposed a Convolutional Kernel Network. Even though this approach does

not use RFFs, they proposed an unsupervised approach to approximate the

Gaussian kernel mapping through the linear expansion of the kernel, then the

selection of random patches in each layer of the network and minimizing the sum

of square errors to approximate a Gaussian kernel, which can produce instabilities

during the training. In [Mohammadnia-Qaraei et al., 2018] propose a similar

approach to [Mairal et al., 2014], Cosine-CKN, but instead of the linear expansions

of the Gaussian kernel to approximate the mapping, they use the RFF with and

without an unsupervised regime using the same approach of minimizing the sum

of squared errors. [Wang et al., 2021], the authors proposed the use of RFF

incorporating the optimization of the parameters through Bayes optimization. In

[Wang et al., 2022b] follows the same path as the previous work but incorporates

modification of the architecture o improve the performance transferring features

and the network’s quantization to reduce complexity. Yet, using RFF in semantic

segmentation models needs to be tested. Finally, Figure 1-2 displays the most

relevant approach presented to deal with a small sample size and overfitting.
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Overfitting
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decreases the capability of

the models to learn common
dependencies

L1 and L2 regularization [Goodfellow et al., 2016]
Batch normalization [Goodfellow et al., 2016]
Dropout [Chen et al., 2020b]
Early stopping [Goodfellow et al., 2016]
Transfer learning  [Alzubaidi et al., 2020]
Data Augmentation [Shorten and Khoshgoftaar, 2019]

Regularization techniques

Cosine-CKN [Mohammadnia-Qaraei et al., 2018]
ConvRFF with Bayes [Wang et al., 2021]
ConvRFF Bayes and bypass [Wang et al., 2021]
RFF U-Net-like [Jimenez-Castaño et al., 2021]

Architecture enhancement 

Lack of semantic segmentation
models 

Figure 1-2. Summary of state-of-the-art techniques to deal with the small sample size and
overfitting issues in Semantic segmentation (SS) based on Deep Learning (DL) approaches.

1.3.2 Enhancing the Characterization of Highly Variable
Object Patterns in Convolutional Neural Networks
for Image Analysis

In order to address the challenges posed by the variability of ROI, several

approaches have been proposed in the literature. One approach is to incorporate

invariant properties into the neural networks used for image segmentation. In

[Ghosh and Gupta, 2019], researchers constructed a locally scale-invariant CNN.

They achieved this by incorporating invariant-to-scale characterization using scale

steerable filters based on log-radial harmonics, which combine Gaussian functions

and complex-valued functions with unit norms. In each convolution layer, the

filters are a linear combination of basis filters, and the network learns only the

complex coefficients of these filters. Nonetheless, selecting the correct

hyperparameters and handling variations in scale can be challenging. Other

approaches for achieving invariance include rotation-invariant techniques such as

increasing data rotation and feature extraction based on rotation-invariant

convolution [Hong et al., 2022]. Another method involves adopting cylindrical

sliding windows in a convolutional layer to map the image into a polar coordinate
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system for achieving rotational invariance [Kim et al., 2020]. Additionally, Capsule

Networks have shown promise as they offer advantages over traditional CNNs in

handling object spatial relationships having viewpoint invariance

[De Sousa Ribeiro et al., 2020]. Nonetheless, they also have some limitations, such

as higher computational cost and limited empirical evidence to support their

superiority over CNNs in all image recognition tasks [LaLonde et al., 2021, Pan

et al., 2022].

One approach for achieving invariance is to train models to be invariant to the

texture components of the image, as proposed in [Kim and Byun, 2020]. Yet, this

method has limitations since it is based on synthetic data and requires a large

amount of data, which may be infeasible in medical images. [Wang and Li, 2023], a

different approach to improving feature invariance is presented, which involves

learning a disentangled representation using generative adversarial networks

(GANs) and modifying the loss function. This technique is promising since it does

not require large amounts of data and has shown improved feature invariance in

preliminary experiments. Data augmentation through rotation has also improved

pattern classification for wafer maps [Kang, 2020]. This method is simple to

implement and has shown to be effective in enhancing the performance of image

recognition models. Additionally, since machine learning techniques used in

computer-aided medical image analysis often suffer from the domain shift

problem, which arises due to different distributions between source/reference

data and target data, approaches like those proposed in [Dushatskiy et al., 2022]

use multiple networks to tackle variability in scans and cross-subjects. Therefore,

improving or developing techniques for the high variability of ROI in semantic

segmentation is still important.

U-shape networks are popular architectures used in image segmentation tasks.

They consist of an encoder and a decoder connected by skip connections. The skip

connections, which combine deep, semantic, coarse-grained feature maps from the

decoder sub-network with shallow, low-level, fine-grained feature maps from the

encoder sub-network, have proven effective in recovering fine-grained details of
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the target objects even on a complex background [Long et al., 2014, Ronneberger

et al., 2015]. Nevertheless, a semantic segmentation gap occurs in those networks

due to the difference between the features extracted from the encoder that pass

through the skip connections to the decoder [Zhou et al., 2020, Wang et al., 2021].

This difference in feature representation can affect the network’s ability to capture

variable regions of interest, resulting in poor segmentation performance.

In [Zhou et al., 2020] proposed UNet++, a complex network that connects encoder

and decoder networks using nested, dense skip connections to reduce the semantic

gap. A dense convolution block is used to enhance the semantic information in the

encoder and optimize the learning task. Nevertheless, UNet++ requires additional

learnable parameters, and some components may be redundant for specific tasks

[Chen et al., 2020a]. In [Mubashar et al., 2022] follow the same idea of U-Net++, but

adding recurrent residual blocks over vanilla convolutional blocks to provide a large

field of view for layers to extract features enriched with lower-level information.

Even though it carries the same limitations of U-Net++ of complexity. In [Huang

et al., 2020] propose UNet 3+, which takes advantage of full-scale skip connections

and deep supervision. The full-scale skip connections incorporate low-level details

with high-level semantics from feature maps in different scales.

At the same time, deep supervision learns hierarchical representations from the

full-scale aggregated feature maps. Even though the fusion of features from

different levels arises in a mismatch of semantics between features. In the paper

[Wang et al., 2021], the authors propose a new method called the Parallel

Inception Network (PaI-Net) to enhance segmentation ability. This method

integrates an attention parallel module and an output fusion module with the

U-Net architecture, which improves the segmentation accuracy. PaI-Net enriches

the multi-scale semantic information of the encoder-decoder structure by reducing

the information gap between the encoder and decoder. Yet, there is an increase in

complexity can lead to a data-hungry model. In [Zunair and Hamza, 2021], a

Depthwise Convolutional Network called Sharp U-Net is proposed for biomedical

image segmentation. It uses a simple end-to-end encoder-decoder fully
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convolutional network architecture for binary and multi-class segmentation.

Instead of a plain skip connection, a sharpening filter layer is applied to the

encoder feature map to merge it with the decoder features, producing a sharpened

intermediate feature map of the same size. This improves feature fusion and

reduces artifacts during early training stages. Nonetheless, the use of a sharpening

filter is sensitive to noise. [Ibtehaz and Rahman, 2020a] proposed the

MultiResUNet for Multimodal Biomedical Image Segmentation. This novel

approach enhances the UNet architecture by incorporating a chain of

convolutional layers with residual connections instead of merely concatenating

feature maps between the encoder and decoder paths. By using residual

connections, the model is able better to bridge the semantic gap between encoder

and decoder features, resulting in more robust segmentation of images from

different modalities and scales. Yet, the density connection on the skip connection

paths does increase the model’s complexity. In the paper [Jafari et al., 2020], the

authors introduce DRU-net, an approach for medical image segmentation.

DRU-net enhances the network’s performance by including extra skip connections

in the encoder section, similar to those found in densely connected networks.

Additionally, residual connections are incorporated into the decoder section.

Nevertheless, it’s worth noting that this method focuses on improving the

encoder-decoder architecture and does not directly address the skip connections

between the encoder and decoder. Figure 1-3 depicts the summary of approaches

to enhance the characterization of highly variable ROI.

1.3.3 Quantitative Interpretability of SS Models

Interpretability methods can be divided into two groups: ante-hoc and post-hoc.

Ante-hoc interpretability is typically associated with directly interpretable

white-box models specifically designed for interpretability [Holzinger et al., 2019].

Attention mechanisms are a popular method that mimics the human visual system

to focus on regions of interest and suppress irrelevant regions. This ability allows
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Multiple Networks [Dushatskiy et al., 2022]
Texture invariant [Kim and Byun, 2020, Wang and Li, 2023]
Rotation invariant  [Kang, 2020]
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Figure 1-3. Summary of state-of-the-art techniques for enhancing the Characterization of
highly variable object patterns in convolutional neural networks for image analysis.

these methods to be interpretable to some extent [Mohankumar et al., 2020]. Due

to their simplicity, a decision tree, a linear regression, and logistic regression are

also easily interpretable models [Holzinger et al., 2019]. Nevertheless, ante-hoc

approach often prioritizes simple models, which may not be sufficient to handle

the complexity of certain data types, especially in the case of images [Speith,

2022]. As a result, it may be necessary to explore other methods of interpretability

that can accommodate the intricacies of more complex data.

On the other hand, post-hoc focused on techniques to explain a previously trained

model or its prediction [Speith, 2022]. In this categories we have,

perturbation-based, back-propagation and class activation. Perturbation-based

interpretability methods are a type of machine learning interpretability method

aimed at explaining how a model makes decisions by observing the effect on the

output when the input data is perturbed [Teng et al., 2022, Linardatos et al., 2020].

By identifying the changes in output resulting from perturbations to the input, we

can identify which input elements are most important for making accurate
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inferences. For instance, if the removal of an element causes a significant change

in the output, we can conclude that it is an important element for accurate

inference [Ivanovs et al., 2021]. One popular method is LIME, or Local

Interpretable Model-Agnostic Explanations [Ribeiro et al., 2016], which

approximates a model’s behavior near a data point to generate an interpretable

explanation that is model-agnostic. Yet, its approximations may not always be

accurate, and it can be computationally expensive [Doumard et al., 2022]. Another

example is SHAP, SHapley Additive exPlanations [Lundberg and Lee, 2017], which

attributes a value to each feature in the input data to represent its contribution to

the model’s prediction based on the Shapley value. Nonetheless, it can also be

computationally expensive, particularly for large datasets and complex models

[Doumard et al., 2022]. Occlusion is another perturbation-based interpretability

method that measures important features by occluding parts of the input, typically

by covering different parts of the input with a gray square to measures the change

in outcome. If the output of the model changes dramatically, it means that this

part has a significant impact on the prediction [Samek et al., 2021]. Nonetheless,

one of the main issues is that perturbation itself may introduce artifacts since

perturbed images may be out-of-distribution [Brocki and Chung, 2022].

Back-propagation interpretability methods are popular techniques used to

understand the workings of neural networks. These methods involve

back-propagating signals from the output or a specific layer of interest to the input

layer of the model [Teng et al., 2022]. Activation maximization, for example,

involves optimizing an input image to maximize the activation of a particular

neuron or layer in the network. This can help identify which features the network

is focusing on and can be useful for debugging or fine-tuning a model.

Nevertheless, visualizations generated using this method can be complex and

difficult to understand [Stergiou, 2021]. Another backpropagation method,

Layer-Wise Relevance Propagation (LRP), predicts classification results by

calculating pixel contributions. Starting from the output layer and moving in the

opposite direction, LRP redistributes the relevant score until it reaches the input

layer while following the global conservation property. Nonetheless, the heatmaps
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generated by LRP can be noisy and non-discriminative, making them similar in

different predictions [Jung et al., 2021].

The Class Activation Map (CAM) is a widely used visual technique that provides

interpretability for image classification tasks. This technique generates class

activation maps, which enable researchers to identify the most discriminative

regions in an image [Zhou et al., 2015a]. The idea behind CAMs is to create

highlighted regions for a specific class using a linear combination of feature maps

from a particular layer of a convolutional neural network. Then, the difference

between all the approaches of CAMs methods like Grad-CAM [Selvaraju et al.,

2016], Grad-CAM++ [Chattopadhyay et al., 2017], Score-CAM [Wang et al., 2019],

LayerCAM [Jiang et al., 2021], Shap-CAM[Zheng et al., 2022] etc. Additionally,

CAMs approaches are widely applicable to multiple kinds of architectures, simple

to implement and interpret, efficient, and produce intuitive visualizations [Teng

et al., 2022]. These benefits make CAMs a powerful and versatile tool for

researchers and practitioners looking to better understand the features of

CNN-based models.

As mentioned, all these different approaches to achieving interpretability have

mainly been developed for classification models. Furthermore, visual inspection is

often the primary method used to evaluate and capture the interpretability of

these models[Linardatos et al., 2020]. [Vinogradova et al., 2020] proposed a

technique to use those CAMs methods under SS models through an average of the

pixels of the interest class. As mentioned, to analyze these CAMs, a visual

inspection is performed, which does not allow one to observe the general behavior

of the model and scale to multiple images to get a conclusion. From the

quantitative performance of the CAMs, multiple measuress were developed to

compare CAM methods like average drop, average increase, and Win [Selvaraju

et al., 2016, Chattopadhyay et al., 2017, Wang et al., 2019, Jiang et al., 2021] . Yet,

these methods are difficult to interpret in SS models, where we are more

interested in spatial information in the input and output space.

[Ventura et al., 2023] introduced EBAnO, a perturbation-based explanation

framework for analyzing the decision-making process of deep convolutional neural
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networks (DCNNs) in image classification tasks. The proposed framework includes

indexes for quantifying the influence and precision of input features with respect

to a given prediction, enabling both quantitative and qualitative analysis.

Nonetheless, the authors noted that this technique cannot be applied to

segmentation models due to their requirements, which are unable to capture the

relative importance of classes within the region of interest due the coarse of the

relevance map. The paper [Dardouillet et al., 2022] introduces a method for

visually interpreting SS models using SHAP values. While this approach offers

promising insights, it comes with a high computational cost. Moreover, the

explanations generated using this method can be somewhat coarse due to the use

of superpixels. In the article [Schorr et al., 2021], the authors introduced a

comprehensive toolbox for semantic segmentation and classification models,

which includes multiple state-of-the-art interpretability methods such as

CAM-Based methods. They have also modified these methods to work with

semantic segmentation models. Yet, it is important to note that the

interpretability of the models still relies on visual inspection and has the

restriction of local explainability, which is related to the specific sample and the

layers analyzed. In their recent work [Sacha et al., 2023], the authors propose a

novel method for enhancing the interpretability of SS, which relies on prototypes.

To increase the variability of prototypes, they introduce a loss function. Still, the

method has some limitations. It may not be suitable for low database sizes as it

relies heavily on prototypes extracted from the datasets. Furthermore, the authors

assume that the structures of interest are modular, which is not always the case in

practice. The SAU-Net proposed in [Sun et al., 2020] aims to improve the

interpretability and robustness of models. To achieve this, the authors modified

the U-Net architecture by adding a parallel shape stream based on attention blocks

to improve the interpretability of the model’s inner workings. Additionally, both

spatial and channel attention mechanisms were used in the decoder to provide

insight into the model’s learning capabilities at each resolution of the U-Net. By

extracting the learned shape and spatial attention maps, the highly activated

regions of each decoder block can be interpreted. Nevertheless, it should be noted
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that this approach is specific to the SAU-Net model, and it is not applicable to

other models.

In summary, the interpretability methods used in semantic segmentation have

challenges and limitations. Perturbation-based techniques can introduce artifacts

from out-of-distribution images. Backpropagation-based methods rely on the

assumption that increased activation indicates a specific feature, making

interpretation difficult. Class activation methods offer local-layer explanations but

lack quantitative explanations. These shortcomings highlight the necessity for

additional research to improve interpretability in semantic segmentation and

provide more accurate and reliable explanations for model decisions. Figure 1-4

summarizes the main approach of qualitative and quantitative methods for

image-based interpretability.

In this research context, working with limited data, shallow encode-decoder

semantic segmentation models serve as a good alternative to address the

challenges of this scenario [Taghanaki et al., 2021]. Given its association with

kernel methods, the RFF technique emerges as a valuable option to enhance

generalization and mitigate overfitting [Rahimi and Recht, 2009]. However, there

is a pressing need to investigate the application of RFF approximation in

image-based deep learning for semantic segmentation models. Regarding

interpretability, CAMs have demonstrated promising results in identifying

significant image regions for specific classes. Nevertheless, extending CAM to

tackle the issue of relevance across layers and classes in SS remains an unexplored

challenge. These considerations form the basis of our objectives, which aim to

exploit shallow decoder-encoder models, explore RFF techniques for spatial data

in segmentation, and develop advanced interpretability methods for SS that

encompass relevance across layers and classes.
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Figure 1-4. Summary of state-of-the-art Quantitative Interpretability of SS models.

1.4 Aims

1.4.1 General Aim

Develop a deep-learning-based semantic image-segmentation methodology

incorporating a convolutional layer based on Random Fourier Features and

comprehensive interpretability measures to encode high variable and relevant

patterns related to the region of interest and improve generalization performance

under conditions of scarce data.

1.4.2 Specific Aims

• To design an extension of RFF for spatial data with optimization through

gradient descent for generalization under scarcity data through local and

equivariant characterization.
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• To develop a semantic segmentation approach based on type

encoder-decoder architectures that incorporate Random Fourier Features for

enhanced skip representation for improved capture of small and variable

objects in semantic segmentation tasks.

• To develop a post-hoc interpretability approach based on measures for

quantitative assessment of relevance maps taking into account the spatial

information of semantic segmentation tasks for global and layer-wise

relevance analysis.
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Figure 1-5. Thesis Contributions. In this study, we present a novel extension of RFF
specifically designed for analyzing spatial data in a data-driven manner. Additionally, we
leverage this extension to improve the representation of shallow encoder-decoder models
at the skip connections for semantic segmentation. Furthermore, we introduce a new
quantitative measure aimed at enhancing the interpretability of semantic segmentation
models.

1.5 Outline and Contributions

In this section, we provide a brief overview of the key contributions presented in

this thesis, summarized in Figure 1-5.

1.5.1 Random Fourier Features in Convolutional Form

Medical image segmentation is challenging due to the limited availability of

datasets, especially in obstetric environments. Image acquisition is difficult due to

the restricted situation of the mother and the discomfort involved. For example,

obtaining images of ROI requires a stable position and visibility to the camera.

Specialized equipment and the reluctance of mothers to participate in research

studies further hinder data acquisition for developing effective segmentation
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techniques. This challenges training accurate and reliable segmentation models

crucial for clinical diagnosis and treatments.

With that in mind, in Chapter 2, we present a novel approach to improve Random

Fourier Features for spatial data by optimizing them through gradient descent

named Convolutional RFF gradient (CRFFg). This extension enables us to harness

the advantageous generalization properties of kernel methods while also obtaining

local and equivariant characterization, thereby enhancing data efficiency for

spatial data derived from convolutions.

1.5.2 Enhanced Shallow Encoder-decoder Models for
Semantic Segmentation

Medical image segmentation relies on accurately identifying and analyzing the

region of interest (ROI). Still, it faces challenges due to variability in shape, size,

and texture across patients and imaging protocols. Segmenting feet in thermal

images in obstetric environments is particularly challenging due to low contrast,

blurred edges, uneven intensity distribution, varying ambient temperature, and

diverse foot positions. Additionally, the presence of other objects further

complicates the segmentation task. Various approaches have been proposed to

address ROI variability, including incorporating invariant properties into neural

networks, such as scale and rotation invariance. Capsule Networks and

disentangled representations show promise but have limitations. Data

augmentation through rotation and techniques addressing domain shift can also

improve segmentation. Overall, improving techniques for handling ROI variability

in semantic segmentation remains a study of interest.

In Chapter 3, we present a novel enhancement to decoder-encoder architectures

for semantic segmentation. Our approach focuses on improving the representation

at the skip connection by incorporating a CRFFg layer. This enhancement aims to

improve the capture of low-level features from the encoder and the fusion of these

features into the decoder.
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1.5.3 Quantitative measuress for Relevance Maps in
Semantic Segmentation

In the medical field, interpretability plays a crucial role in decision-making for SS

models. Yet, the complex and opaque nature of DL models in this domain presents

challenges for achieving interpretability. With millions of parameters, non-linear

behavior, and the ability to capture intricate patterns from extensive data, these

models are inherently difficult to understand. Several interpretability methods

have been developed, including Back-propagation, CAM-based,

Perturbation-based, and Surrogate methods. Each method offers unique strengths

and weaknesses, providing different insights into the models. Yet, current

methods often rely on visual inspection or qualitative analysis, which may not be

sufficient for evaluating overall model performance and detecting biases.

Additionally, Class Activation Maps-based methods have limitations and are

primarily applicable to classification models. Consequently, there is a lack of

objective measuress to systematically evaluate the interpretability of layers in SS

models.

Therefore, in Chapter 4, we propose novel measuress to enhance the

interpretability of semantic segmentation models. These measuress assess three

crucial aspects of the models. Firstly, we introduce CAM-based Cumulative

Relevance, which identifies the location of relevance in specific regions of interest.

Secondly, we introduce Mask-based Cumulative Relevance, which quantifies

sensibility across multiple regions of interest. Lastly, we propose CAM-Dice to

assess the homogeneity of relevance in interest regions. By incorporating these

measures, we aim to provide comprehensive and global quantifications for

interpretability in semantic segmentation models.

The implementation of CRFFg and the proposed measures are in a GitHub repository
1 2.

1https://github.com/aguirrejuan/ConvRFF
2https://github.com/aguirrejuan/Foot-segmentation-CRFFg

https://github.com/aguirrejuan/ConvRFF
https://github.com/aguirrejuan/Foot-segmentation-CRFFg
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1.6 Semantic segmentation (SS) Databases

In order to test the proposed work, we used the following databases.

1.6.1 Fashion Mnist

The dataset comprises 70,000 grayscale images of fashion products, each sized

28x28 pixels. These images are sourced from Zalando’s collection of article

images, encompassing 10 distinct categories. Each category is represented by

7,000 images, ensuring a balanced distribution. The training set is composed of

60,000 images, while the remaining 10,000 images form the test set [Xiao et al.,

2017a]. Figure 1-6 shows examples of images in this dataset.

1.6.2 Infrared Thermal Images - ThermalFeet

ThermalFeet: This thermography image database was collected during epidural

anesthesia administration in labor. Due to the complexities involved in labor, the

sample size is relatively small, and capturing images of both feet in the same

position was not always feasible. The clinicians at SES Hospital Universitario de

Caldas devised a timeline for data acquisition: the first thermal picture was taken

at catheter placement, followed by another picture taken one minute later, and

subsequently every five minutes, resulting in a total of six images per patient.

The initial set of images consisted of 196 samples from 22 women. These images

were captured using a FLIR A320 infrared camera with a resolution of 640x480

and a spectral range of 7.5 to 13 µm. The second set of images (128 in total) was

captured using a FLIR E95 thermal camera, which offered improved sensitivity and

flexibility and improved image quality. Both sets of images were annotated for

semantic segmentation by three researchers using the CVAT Computer Vision



1.6 SS Databases 31

Figure 1-6. Fashion Mnist dataset [Xiao et al., 2017a].
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Figure 1-7. Infrared Thermal database acquisition.

Annotation Tool3. From the combined first and second sets, a total of 166

high-quality images were selected [Mejia-Zuluaga et al., 2022].

The dataset is available at 4.

1.6.3 Natural Images - Oxford IIIt Pet

Oxford-IIIT Pet [Parkhi et al., 2012]: This dataset features 37 different pet

categories, each with approximately 200 images, resulting in 3,680 for training and

3,669 for testing. The images have significant scale, pose, and lighting variations,

and each is accompanied by a labeled breed annotation [Parkhi et al., 2012]. The

dataset is available at 5

3https://cvat.org/
4https://gcpds-image-segmentation.readthedocs.io/en/latest/notebooks/02-datasets.html
5https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet

https://cvat.org/
https://gcpds-image-segmentation.readthedocs.io/en/latest/notebooks/02-datasets.html
https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
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Figure 1-8. Infrared Thermal Example Images.
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Figure 1-9. Oxford Pet Example Images.
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1.7 Thesis Structure

The next parts of this thesis are organized as follows. In Chapter 2, we introduce

an extension of Random Fourier Features to handle spatial data, acquire locality

and equivariant to work high dimensional data, such as images, name CRFFg.

Chapter 3 implements the CRFFg on high-resolution tasks such as SS. Finally,

Chapter 4 introduces a new set of interpretability measures for Class Activation

Maps on SS models.





CHAPTER

TWO

RANDOM FOURIER FEATURES EXTENDED TO

CONVOLUTIONAL FORM

This chapter extends the Random Fourier Features (RFF) to work with spatial data.

We begin by describing the RFF method. Then, we extend the one-dimensional

operation to a two-dimensional operation through a convolution form. Finally, we

present the experiments’ results to validate our approach.

2.1 Theoretical Background RFF

Kernel methods are widely used in machine learning for no-linear dependence

problems. However, as the dataset’s size grows, kernel methods’ computational

complexity also increases, making applying them to large datasets impractical. RFF

were introduced to approximate kernel methods using random projections to

address this issue [Rahimi and Recht, 2009]. RFF can effectively scale kernel

machines and enable them to handle large datasets by mapping input data to a
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Figure 2-1. Hilbert space benefits representation. Unstructured space to richer structure
space.

high-dimensional space through random Fourier transforms. This technique has

gained popularity recently due to its ability to provide fast and accurate

approximations of kernel methods, making it a practical solution for many

real-world applications [Liu et al., 2021]. This section will discuss the theoretical

background of RFF in more detail and explore its benefits and limitations in scaling

kernel machines.

2.1.1 Kernel Machines

A learning problem with data and targets {(xn, yn)}Nn=1 , where xn ∈ X and yn ∈ Y,

can be approached with a simple linear model defined as Equation 2-1

y = f(x) = w⊤x (2-1)

However, this model is limited in that it can only accurately classify linearly

separable data. To overcome this limitation, we can use a mapping φ : X → H to

transform the vector x into a high-dimensional Hilbert space, where the data can

now be linearly separable as is shown in the Figure 2-2. Moreover, Hilbert spaces
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Figure 2-2. Mapping function to a high dimensional space where the data can be linearly
separable.

offer rich structure, efficient approximation of complex data, generalization, and

flexibility. These spaces are useful for various mathematical and computational

applications beyond the linear separation of data [Mairal and Vert, 2018].

Nonetheless, knowing such a map beforehand is often difficult, and the

computational cost in high-dimensional space can also be a limitation. Kernel

machines overcome these limitations by using the kernel trick, which can induce a

high dimensional mapping, and allows the computation of dot products in the

high-dimensional space in the input space, which is affordable [Kutateladze, 2022].

The definition of a kernel is presented in Equation 2-2.

Kernel Method

Given samples x,x′ from a set X a kernel function k(x, x′) maps each pair of

input points to a scalar value:

k(x, x′) = ⟨φ(x), φ(x′)⟩H where φ : X → H (2-2)

Where H denotes the Hilbert space, which can be infinite-dimensional vector
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space, and φ is the mapping function related with the kernel .

The kernel function satisfies the Mercer’s condition

n∑
i=1

n∑
j=1

k(xi, x′j)cicj ≥ 0 (2-3)

Kernel functions satisfy the Mercer’s condition described in Equation 2-3, which

requires it to be symmetric and positive definite. This condition ensures that the

kernel matrix, K ∈ Rn×n, obtained by applying the kernel function to all pairs of

input points, is positive semi-definite.

Then the function from Equation 2-1 can be written then as Equation 2-4 through

the property of reproducibility of the kernel [Mairal and Vert, 2018]. However, this

is difficult to scale to large datasets due to the need to calculate the Gram matrix

and store the data [Bengio and Lecun, 2017].

f(x) =
N∑

n=1

αnk(x, xn) = ⟨ω, φ(x)⟩H (2-4)

2.1.2 RFF to Scale Kernel Machines

To overcome the limitations of kernel machines in large scales data scenarios, RFF

defines a finite-dimensional explicit map that approximates shift-invariant kernels

[Rahimi and Recht, 2009]. As shown in Equation 2-5, we can have a z mapping from

input space to a finite dimension space.

k(x, x′) = k(x− x′) = ⟨φ(x), φ(x′)⟩H ≈ z(x)⊤z(x′) z : X → RR (2-5)
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Where R is finite.

Then we can rewrite the function f of Equation 2-4 as Equation 2-6:

f(x) =
N∑

n=1

αnk(xn, x)

=
N∑

n=1

αn⟨φ(xn), φ(x)⟩H

≈
N∑

n=1

αnz(xn)⊤z(x)

= β⊤z(x) (2-6)

Which is a simpler linear model in the resulting space of the mapping z. This

mapping z can be defined from the Bochner’s theorem [Rudin, 1976] that states:

Bochner’s theorem

A continuous function of the form k(x, x′) = k(x− x′) is a positive definite if

only if k(δ) is the Fourier transform of a non-negative measure.

k(x− x′) =
∫
Rp

p(ω) exp(jω⊤(x− x′))dω (2-7)

Where ω ∼ p(ω)

p(w) is a probability density function of w and which defines the type of kernel.

For example, the Gaussian kernel in the Equation 2-8, which is preferred because of

its universal approximating property and mathematical tractability [Álvarez-Meza

et al., 2014], can be obtained setting p(w) equal to a Gaussian distribution.

k(x, x′) = exp(
−||x− x′||22

2σ2
) (2-8)
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With the resulting Equation 2-7, we can go further, expressing these results in terms

of expected value as shown in Equation 2-9, which allows us to end up with the

sample mean in Equation 2-10, and finally, expand it as a dot product in Equation

2-11.

k(x− x′) = Eω

{
exp(iω⊤(x− x′))

}
(2-9)

≈ 1

R

R∑
r=1

exp(iω⊤
r (x− x′)) (2-10)

=


1√
R

exp(iω⊤
1 x)

1√
R

exp(iω⊤
2 x)

...
1√
R

exp(iω⊤
Rx)


⊤ 

1√
R

exp(−iω⊤
1 x

′)
1√
R

exp(−iω⊤
2 x

′)
...

1√
R

exp(−iω⊤
Rx

′)

 (2-11)

We know that the kernel is a real function, then the imaginary part is discarded

[Gundersen, 2019], as shown in Equation 2-12

exp(iω⊤(x− x′))= cos(ω⊤(x− x′))− i sin(ω⊤(x− x′))

= cos(ω⊤(x− x′)) (2-12)

Then our z mapping can be set as Equation 2-13 or Equation 2-14. For simplicity, in

this work, we use the mapping using the Equation 2-13.

zω(x) =
√
2 cos(ω⊤x+ b) (2-13)

zω(x) =

[
cos(ω⊤x)

sin(ω⊤x)

]
(2-14)
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where ω ∼ p(ω) and b ∼ Uniform(0, 2π).

We can briefly prove that this z mapping holds the result of Equation 2-12

Eω[zω(x)zω(x′)] = Eω[
√
2 cos(ω⊤x+ b)

√
2 cos(ω⊤x′ + b)]

= Eω[cos(ω⊤(x+ x′) + 2b)] + Eω[cos(ω⊤(x− x′))]

= Eω[cos(ω⊤(x− x′))].

Then, we can rewrite the Equation 2-10 as Equtation 2-15

z(x)⊤z(x′) =
1

R

R∑
r=1

zωr(x)zωr(x
′) (2-15)

=
1

R

R∑
r=1

2 cos(ω⊤
r x+ br) cos(ω⊤

r x
′ + br)

=
1

R

R∑
r=1

cos(ω⊤
r (x− x′)) ≈ Eω[cos(ω⊤(x− x′))] = k(x, x′)

This mapping can be implemented as a dense layer, Equation 2-16 with activation

function cos(·) and proper initialization as in Equation 2-13 and R units.

z(x) =


1√
R
zω1(x)

1√
R
zω2(x)

...
1√
R
zωR

(x)

 (2-16)

As mentioned before, the type of mapping depends on the distribution chosen for

w. Gaussian distribution for Gaussian Kernel is usually used for the properties

capturing no linear dependencies and its generalization capability. Furthermore,
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the parameter σ is usually trained through gradient descent, making the trick of

writing the mapping zω(x) adding the σ divide the ω as Equation 2-17.

zω(x) =
√
2 cos(

ω

σ

⊤
x+ b) (2-17)

While RFF is a useful approximation technique, it may not be suitable for

high-dimensional data such as images.

2.2 RFF Extended to Convolutional Form

The principal characteristics of convolutional operations are its properties of

translation equivariance and notions of locality. Translation equivariance refers to

the property that a convolutional layer produces the same output regardless of the

position of the input. In other words, if the input is translated, the output of the

layer is also translated in the same way. This property is important for image

recognition tasks since objects can appear at different positions in an image. By

being translation equivariant, convolutional layers can recognize objects

regardless of their position in the image [Bronstein et al., 2021]. Notions of locality

refer to the property that a convolutional layer only looks at a small part of the

input at a time, known as the receptive field. This is achieved through the use of

small filters that slide over the input to compute local features. This property is

important for two reasons. Firstly, it reduces the number of parameters in the

model, making it more efficient to train. Secondly, it allows the model to capture

local patterns in the input, which are often important for object recognition

[Goodfellow et al., 2016]. Those properties are depicted in Figure 2-3. Then, those

inductive bias of local and equivariant allow the CNN models to learn more

efficiently from scenarios of low data.
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Figure 2-3. Translation Equivariance and locally Properties of Convolutional Layers.

To add these property to RFF, we perform z mapping in localities of the grid input

space. Suppose we have the feature map Fl ∈ RHl×W̃l×Ql we constructed a

mapping such that z : RHl−1×W̃l−1×Dl−1 → RHl×W̃l×Ql as shown in Equation 2-18.

As mentioned before, we are interested in the properties of the Gaussian kernel,

then follow a similar approach as the Equation 2-17 with σ ∈ R+ Scale. This maps

is exemplified in Figure 2-4

Fl = z(Fl−1) = cos(
Wl

σ
⊗ Fl−1 + bl) (2-18)

It is worth noting that the parameters {W, b, σ} of this layer are easily updated

during the training step through gradient descent under a back-propagation-based

optimization. We call this layer CRFFg and the implementation can be found in 1.

Then, We have extended the use of Random Fourier features to spatial data by

optimizing it through gradient descent. This approach allows us to acquire the

desirable properties of generalization from kernel methods and enables us to

obtain local and equivariant characterization for spatial data using convolutions.

1https://github.com/aguirrejuan/ConvRFF/blob/master/convRFF/layers/convRFF.py

https://github.com/aguirrejuan/ConvRFF/blob/master/convRFF/layers/convRFF.py
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1
1

Figure 2-4. RFF in Convolutional Form. The ẑ represents the one convolution operation in
a certain location. Properties inherited from the convolution are observed in the ẑ and the
properties of the kernel method in the representation of each pixel in the projected space
though the dot product ẑ(x)⊤ẑ(x′).

2.3 Experimental set-up

This section will detail the experimental configurations used to validate our CRFFg

model. We conducted two types of experiments to evaluate the effectiveness of

our model. First, we compared the dot product results of the mapped space with

the Random Fourier Features (RFF) method. Second, we evaluated our model’s

performance on a classification task.

2.3.1 Equivariant characterization of CRFFg

To showcase the equivariant characterization property of the CRFFg, we contrast

empirically both the input and output of the CRFFg across various scenarios

involving the translation of the input interest region. Referencing Figure 2-5, we

provide a visual representation of the synthetic images utilized in our study.
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Figure 2-5. Synthetic set of images to test the equivariant characterization property of
CRFFg.

2.3.2 Comparison between CRFFg and RFF in the
projected space

This study aims to compare two layers, namely CRFFg and RFF, using the

difference of the dot product of each mapping zRFF(·;R) and zCRFFg(·;R)
respectibly, where R denotes the output dimension. To carry out the experiment,

we used 100 randomly selected images from the Fashion-MNIST dataset as data

points. We varied the output dimension from 1 to 5000 for each layer and kept

the receptive field of the CRFFg equal to the input image x ∈ RH×W , while for the

RFF, the flattened result of the image was passed to it x′ ∈ RHW . Equation 2-19

shows the equation for comparing the resulted dot product of the projected space

of each mapping.

ϵn,l = |⟨zRFF(x′n;Rl), zRFF(x′n;Rl)⟩ − ⟨zCRFFg(xn;Rl), zCRFFg(xn;Rl)⟩| (2-19)



48 Random Fourier Features Extended to Convolutional Form

2.3.3 CRFFg in Classification Tasks

To demonstrate the effectiveness of CRFFg in scenarios of data scarcity in

classification tasks, we performed a classification task on Fashion-MNIST [Xiao

et al., 2017b], comparing models with and without it.

Image classification is the task of assigning a label to an input image. Let {In ∈
RH×W×D, yn ∈ {0, 1}C}Nn=1 be a set of N labeled images and their corresponding

class labels. Each image In has a height of H , a width of W , and D color channels.

In this case, the image classification problem is to predict the class label in one hot

encoding yn for each image.

A deep learning architecture for image classification often has a stack of

convolutional layers, followed by one or more fully connected layers, as defined in

Equation 2-20.

ŷ = (ψL ◦· · · ◦ ψ1)(I) ∈ [0, 1]C (2-20)

where ψl represents the computation of new represented feature map Fl from

previous Fl−1, being for convolution ψl : RHl−1×Wl−1×Dl−1 → RHl×Wl×Dl and for

dense layers ψl : RQl−1 → RQl

Fl = ψl(Fl−1) = ν(Λ(Wl, Fl−1) + bl) (2-21)

where Λ is the operator for convolution or dense layers, Wl and bl are the

parameters, ν is the activation function. Then, the performance of the networks

relies on the set of parameters Θ = {Wl, bl}Ll=1, ending in the optimization

problem shown in the Equation 2-23 through sample mean.
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Name Layer Type Output Shape Param #

Input InputLayer [(None, 28, 28, 1)] 0
CRFFg1 (Conv01*) ConvRFF (Conv2D) (None, 26, 26, 16) 161
MaxPool01 MaxPooling2D (None, 13, 13, 16) 0
CRFFg2 (Conv02*) ConvRFF (Conv2D) (None, 11, 11, 32) 4640
MaxPool02 MaxPooling2D (None, 5, 5, 32) 0
CRFFg3 (Conv03*) ConvRFF (Conv2D) (None, 3, 3, 64) 18486
Flatten Flatten (None, 576) 0
Dense(RFF+) Dense(RFF) (None, 32) 18464
Output Dense (None, 10) 330

Table 2-1. Architecture For Classification Experiment.

Θ∗ = arg min
Θ

E
{
L(yn, ŷn|Θ) : ∀ n ∈ {1, 2, . . . , N}

}
(2-22)

≈ arg min
Θ

1

N

N∑
n=1

L(yn, ŷn|Θ) (2-23)

where L : {0, 1}C × [0, 1]C → R is the loss function.

Deep Learning Architectures

Table 2-1 lists the deep learning architectures utilized in this study The first

architecture described in this chapter is based on CRFFg, followed by a second

architecture that utilizes a standard convolutional layer instead of CRFFg. Lastly,

the second architecture replaces the dense layer with an RFF layer. The models

maintain a consistent number of filters and kernel sizes throughout.

To optimize the parameters of the models, a cross-entropy loss function is used, as

shown in Equation 2-24

Θ∗ ≈ arg min
Θ

1

N

N∑
n=1

−y⊤n log(ŷn) (2-24)
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All experiments are carried out in Python 3.8, with the Tensorflow 2.4.1 API, on a

Google Colaboratory environment (Code Colab).

Training details and method comparison

To measure the performance of the models, the next metrics are used:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 · Precision · Recall
Precision + Recall

In these equations, TP represents the number of true positive predictions, TN

represents the number of true negative predictions, FP represents the number of

false positive predictions, and FN represents the number of false negative

predictions. These measures are commonly used in machine learning and data

analysis to evaluate the performance of classification models. As for the validation

strategy, we selected the hold-out cross-validation strategy with the following

partitions: 84% of the samples for training, 1% for validation, and 15% for testing.

Moreover, we vary the size of the training partition keeping the same test

partition. To ensure reliable results, we experimented 22 times per variation on

the train size, mitigating the variability and potential differences in the training

sets.

https://colab.research.google.com/drive/1hCXaWjRVHMeG2N3OFpXSAFKT4fS4EAvA?usp=sharing
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Figure 2-6. Translation equivariant characterization property of CRFFg. The input and
output are interleaved by the translation equivariant property of CRFFg

2.4 Results and discussion

2.4.1 Equivariant characterization of CRFFg

Figure 2-6 vividly illustrates the input-output relationship within the context of

the CRFFg. Evidently, the output features faithfully mirror the input translations

across all scenarios, highlighting a remarkable property of translation equivariance

inherent in the CRFFg. This entwining of input and output underscores the

CRFFg’s ability to maintain consistent characteristics amidst varying translations.

Furthermore, we can observe the locality property. Even when the circle’s

translation varies across different locations, the structural integrity of regions

distant from the circle remains unaffected.

2.4.2 Comparison between CRFFg and RFF in the
projected space

Figure 2-7 displays the comparison results using Equation 2-19 by calculating the

mean and standard deviation from the 100 data points. Ideally, both the mean and
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Figure 2-7. Comparison between the RFF and CRFFg on Fashion-MNIST dataset.

standard deviation should approach zero, indicating that both methods perform

similarly under these conditions. However, as the output dimension increases, the

inherent randomness also increases, leading to an observed increase in both the

mean and standard deviation. Despite this increase, the difference remains

relatively low compared to the output dimension. Therefore, both operations RFF

and CRFFg are comparable regarding the dot product on the mapped space.

In conclusion, the results from the comparison of RFF and CRFFg using Equation

2-19 suggest that both methods perform similarly under the given conditions.

Although the mean and standard deviation increase with the output dimension,

the difference between the two methods remains relatively low compared to the

output dimension. As a result, both RFF and CRFFg can be considered comparable

in terms of their performance.

2.4.3 CRFFg in Classification Tasks

The results of our classification experiment are summarized in Figure 2-8, where

we evaluate the performance of three models: CRFFg, CNN, and RFF. Our analysis

reveals that the differences in performance are most pronounced in small datasets

containing less than 400 samples. In this range, CRFFg outperforms both CNN and
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Figure 2-8. Comparison CRFFg, CNN and RFF in metrics performances vs size of data using
Fashion-MNIST dataset.

RFF, while RFF performs the worst. However, as the dataset size increases, the

performance of the three models becomes comparable. It’s worth noting that the

trainable parameters of CRFFg allow the model to perform similarly to standard

convolutional networks in larger datasets. Overall, our results demonstrate that

CRFFg can capture both kernel methods’ generalization capability under low sample

sizes and the local and equivariant characterization of CNNs.

Weights Distributions

Figure 2-9 illustrates the weight distributions of models at three convolutional

layers, corresponding to two specific sizes of the training set: 30 and 100,000

samples. Upon initial observation, it is evident that the weight behavior is

significantly influenced by the value of σ, as indicated by the orange color.

Furthermore, the introduction of σ helps to narrow the weight distributions,
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aligning them with those of the other models. Notably, as we progress from

shallower to deeper layers, the weight distributions exhibit a tendency to become

increasingly narrow. This can be attributed to the deeper layers needing to capture

more specialized features compared to the shallow layers. Lastly, a substantial

change in the weight distribution is noticeable when transitioning from models

with standard convolutional layers to the model with the CRFFg layer, particularly

when increasing the partition set from 30 to 10,000 samples.

2.5 Summary

In this chapter, we presented an extension of the RFF for spatial data, which

optimizes the technique through gradient descent to improve generalization when

data is scarce. Our proposed method, the CRFFg, provides a local and equivariant

characterization, enhancing its effectiveness for spatial data. Our experiments

demonstrate that the CRFFg performs comparably to both the RFF in the mapped

space and the standard convolution in image classification tasks, particularly

improving the performance in low-data scenarios. However, as previously

discussed, the utilization of CRFFg holds great potential in pixel-wise classification

tasks, primarily due to its ability to approximate the kernel in the projected space.

Therefore, in the upcoming chapter, we delve into the practical application of

CRFFg in pixel-wise classification, focusing specifically on semantic segmentation.
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Figure 2-9. Weights Distributions of models at three convolutional layers, correspond to
two specific sizes of the training set: 30 and 100,000 samples. The orange color denoted
the weights of CRFFg models divided by the scale σ.





CHAPTER

THREE

CONVOLUTIONAL RANDOM FOURIER FEATURES ON

SEMANTIC SEGMENTATION TASKS

In the previous chapter, we introduced the concept of Random Fourier Features in

convolution form, also known as CRFFg. In this chapter, we will explore its practical

application in the specific task of semantic segmentation. By leveraging the power

of CRFFg, we aim to enhance the representation of features captured at the skip

connection of encoder-decoder architectures, thereby improving the accuracy and

efficiency of semantic segmentation algorithms.

3.1 Semantic Segmentation Tasks

Semantic segmentation (SS) is defined as pixel-level classification, where each label

belongs to a specific semantic category [Mo et al., 2022]. Let {In ∈ RH×W×D, Mn ∈
{0, 1}H×W×C}Nn=1 be a set of N labeled images and their corresponding masks. Each

image In has a height of H , a width of W , and D color channels. The mask Mn
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encodes the membership of each pixel to a particular class c ∈ {0, 1, . . . , C}. In this

case, the semantic segmentation problem is limited to binary segmentation, such as

distinguishing between the background and the foreground.

A deep learning architecture for semantic segmentation often has a stack of

convolutional layers, as defined in Equation 3-1.

M̂ = (ψL ◦· · · ◦ ψ1)(I) ∈ [0, 1]H×W×C (3-1)

where ψl : RHl−1×Wl−1×Dl−1 → RHl×Wl×Dl does the computation of new

represented feature map Fl from previous Fl−1 as Equation 3-2.

Fl = ψl(Fl−1) = ν(Wl ⊗ Fl−1 + bl) (3-2)

where Wl ∈ RQl×Ql×Dl−1×Dl and bl ∈ RDl are the parameters, ν is the activation

function, and ⊗ stands for image-based convolution. Then, the performance of the

networks relies on the set of parameters Θ = {Wl, bl}Ll=1, ending in the

optimization problem shown in the Equation 3-4 through sample mean.

Θ∗ = arg min
Θ

E
{
L(Mn, M̂n|Θ) : ∀ n ∈ {1, 2, . . . , N}

}
(3-3)

≈ arg min
Θ

1

N

N∑
n=1

L(Mn, M̂n|Θ) (3-4)

where L : {0, 1}H×W×C × [0, 1]H×W×C → R is the loss function.
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Figure 3-1. Encoder-decoer architecture for SS.

3.2 Convolutional Neural Networks
Architectures for SS

To perform SS, a convolutional neural network must incorporate location and

semantic information [Mo et al., 2022]. This is why the architectures for SS are

typically divided into two main parts: the encoder and the decoder [Long et al.,

2014, Ronneberger et al., 2015, Huang et al., 2020, Zhou et al., 2020, Zunair and

Hamza, 2021, Jafari et al., 2020]. The encoder is responsible for extracting

high-level features from the input image by capturing global information through

layers with large receptive fields. However, this can result in the loss of location

information. On the other hand, the decoder aims to recover the lost location

information while retaining the semantic information. This is typically achieved

through the use of upsampling or transpose convolution, which gradually expands

the semantics to a higher resolution. In addition, skip connections between the

encoder and decoder parts are often used to recover lost location information. By

combining the encoder and decoder components, a convolutional neural network

is able to effectively capture both spatial and semantic information, enabling it to

segment complex images accurately. However, there is a mismatch between the

semantics of the encoder and the decoder [Ibtehaz and Rahman, 2020b, Zhou

et al., 2018b, Wang et al., 2021]. Therefore, we decided to locate our CRFFg layer
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Figure 3-2. Analogy on mapping of CRFFg in case of images in SS in ideal case.

at the skip connections of encoder-decoder architectures to improve the

representation of low-level features and the localization information.

3.3 Experimental Set-Up

This section will detail the experimental configurations used to validate our CRFFg

model in semantic segmentation tasks. We perform semantic segmentation on the

databases described in Section 1.6.

Deep Learning Architectures

In order to test the CRFFg layer, we use the following well-known shallow

architectures that hold the definitions of Section 3.1:
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Figure 3-3. The FCN Architecture.

• Fully convolutional network (FCN) [Long et al., 2014]: The FCN architecture

is based on the VGG (Very Deep Convolutional Network) [Simonyan and

Zisserman, 2014] model, which is well-known for its ability to recognize

large-scale images. By exclusively using convolutional layers, the FCN can

output a segmentation map with pixel-level accuracy while also reducing

computational costs.

• U-Net [Ronneberger et al., 2015]: The U-Net architecture comprises two

main parts, the encoder and the decoder. The encoder consists of a series of

convolutional layers that reduce the spatial dimensions of the input image.

The decoder is a series of upsampling layers that upsample the encoded

features back to the original input image size.

• ResUNet [Anas et al., 2017b]: The ResUNet architecture is an extension of

the U-Net architecture that uses residual connections to improve

performance. Residual connections allow for the gradient to flow directly

through the network, improving the training of deeper models.

These architectures, FCN, U-Net and ResUNet, are depicted in Figures 3-3, 3-5, and

3-4 respectively.

To compare the performance of the proposed CRFFg-layer strategy, we

implemented a standard convolutional layer with an equal number of filters and a
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Figure 3-5. ResUNet Architecture.
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ReLU activation function at the same position in the architecture. We assessed the

influence of the CRFFg layer dimension on segmentation performance by testing

two multiplication values (one and three). To examine the impact of CRFFg, we set

all model hyperparameters to the same values. We used the Adam optimizer with

default Keras parameter values and employed the dice-based loss function shown

in Eq. 3-5:

LDice(Mn, M̂n) = 2
1⊤(Mn ⊙ M̂n)1+ ϵ

1⊤Mn1+ 1⊤M̂n1+ ϵ
(3-5)

where Mn is the ground truth segmentation map for the n-th sample, M̂n is the

predicted segmentation map for the n-th sample, ⊙ denotes the element-wise

product, and ϵ is a small constant added to avoid umerical instability. All

experiments are carried out in Python 3.8, with the Tensorflow 2.4.1 API, on a

Google Colaboratory environment (code repository:

https://github.com/aguirrejuan/ConvRFF, accessed on 25 April 2023).

Training details and method comparisons

To evaluate the models’ performance, three dataset scenarios are considered.

ThermalFeet, ThermalFeet with data augmentation, and Oxford IIIt pet. The Data

augmentation procedure is presented in Table 3-1

https://github.com/aguirrejuan/ConvRFF
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Parameter Infrared Therma Images Oxford Pet
Shape 224,224,1 256,256,3

Partions
Train: 0.81
Val: 0.09
Test: 0.1

Train: 0.64
Val: 0.16
Test: 0.2

Repeat 7 1
Flip Left-Right True True
Flip Up-Down False True
Rotation Range (-15,15) (-10,10)
Translation 0.10 None
Zoom 0.15 None

Table 3-1. Dataset Parameters.

To evaluate and compare the performance of the models, we used the following

metrics:

Dice =
2|M ∩ M̂|
|M|+ |M̂|

=
2TP

2TP + FP + FN

Jaccard =
|M ∩ M̂|
|M ∪ M̂|

=
TP

FN + FP + TP

Sensitivity =
|M ∩ M̂|

|M ∩ M̂|+ |M ∩ ¬M̂|
=

TP

TP + FN

Specificity =
|¬M ∩ ¬M̂|

|¬M ∩ ¬M̂|+ |¬M ∩ M̂|
=

TN

TN + FP

Where TP (True Positives) measures the pixels correctly labeled as target

foreground, TN (True Negatives) the ones correctly labeled as background, FP

(False Positives) the background pixels labeled as foreground, and FN the

foreground pixels, which are labeled as background. The metrics are depicted in

Figure 3-6.

Finally, the hyperparameters for training were all the same for all the experiments

conducted, and those are: Epochs equal to 200, and Adam Optimizer with a learning

rate equal to 1e-3
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Figure 3-6. Visual Representation of performance metrics.

3.4 Results and Discussion

This section presents the key findings from our experiments for each dataset

analyzed.

3.4.1 Visual Inspection Results

Figure 3-7 shows results obtained from the ThermalFeet database without data

augmentation, where each row represents a different architecture: FCN in the first

row, U-Net in the second row, and ResUNet in the third row. As expected, the

performance of the models under a small-size dataset is poor. The regions of faster

change in temperature, which characterize the dataset, are where the models

struggle more. At first glance, we observe the FCN architecture is the one that

struggles the most, having high false positives regions in regions that exhibit

low-high temperatures.

Figure 3-8 shows results obtained incorporating data augmentation. At an initial

glance, the positive impact of the data augmentation on the resulting segmentation
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of all the models is visible. Moreover, FCN architectures produce smoother

borders and fewer false positives than other architectures. This can be explained

due to the high receptive field that possesses the FCN architecture, allowing it to

capture complex and heterogeneous regions (the variability of the temperatures)

that compose the feet.

When comparing FCN models with a multiplication factor of 1 (M1), the model with

CRFFg (blue) generally outperforms the models without it (orange) in terms of pixel

membership prediction (sensitivity). However, This trend does not hold when the

multiplication factor is increased to 3 (M3), probably because the large model is a

propensity to overfit, making the prediction less confident in new data points.

On the other hand, U-Net models struggle with regions that exhibit fast

temperature changes. This can be explained by the same characteristic the FCN

model posses, but the U-Net model does not have a high receptive field that allows

it to characterize high heterogeneous feet. Among the U-Net models, U-Net CRFFg

Skips-M1 performs satisfactorily with low false positives and high false negatives,

while its direct competitor, U-Net Skips-M1, shows the opposite trend. Similarly,

using CRFFg in the other U-Net models reduces the number of false positives. The

reason behind the reduction of false positives by the CRFFg layer could be related

to overfitting.

Finally, the ResUNet architecture seems to have the same behavior as the U-Net

architecture but with smoother borders, which can be explained due to the

multiple stack layers at the ResBlock, which increase multiple steps of

representation, allowing to capture of useful representation. The ResUNet

Skips-M1 model works better on average than the other models; adding layers at

the skip connections appears to reduce performance, creating false positives and

false negatives. This can be explained by the small size of the dataset and the large

model. Specifically, using CRFFg with ResUNet does not result in significant

improvements.

Figure 3-9 shows results on the Oxford-IIIT Pet database. Once again, FCN

architectures produce smoother borders than the other models. Additionally,
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Figure 3-7. Visual inspection of the results on the ThermalFeet database without data
augmentation. The first row displays results for FCN, the second for U-Net, and the third
for ResUNet. A unique color differentiates each model within an architecture.

Mask FCN FCN CRFFg Skips-M1 FCN CRFFg Skips-M3 FCN Skips-M1 FCN Skips-M3

Mask U-Net U-Net CRFFg Skips-M1 U-Net CRFFg Skips-M3 U-Net Skips-M1 U-Net Skips-M3

Mask ResUNet ResUNet CRFFg Skips-M1 ResUNet CRFFg Skips-M3 ResUNet Skips-M1 ResUNet Skips-M3

Figure 3-8. Visual inspection of the results on the ThermalFeet database with data
augmentation for all the models.
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Mask FCN FCN CRFFg Skips-M1 FCN CRFFg Skips-M3 FCN Skips-M1 FCN Skips-M3

Mask U-Net U-Net CRFFg Skips-M1 U-Net CRFFg Skips-M3 U-Net Skips-M1 U-Net Skips-M3

Mask ResUNet ResUNet CRFFg Skips-M1 ResUNet CRFFg Skips-M3 ResUNet Skips-M1 ResUNet Skips-M3

Figure 3-9. Visual inspection of the results on Oxford-IIIT Pet database, for all the models.
The first row shows the results for the FCN architecture, the second row for U-Net, and the
third row for ResUNet. A unique color differentiates each model within an architecture.

adding layers to the skip connections improves overall performance by reducing

false negatives. Most models can avoid over-segmentation, although the region

with a similar color to the cat is also segmented in the case of the gray cat. Even

though adding layers to the skip connections tends to help, which could be

explained by the large dataset size.

3.4.2 Performance Metrics

Figures 3-10, 3-11, and 3-12 illustrate the learning curves of the compared

models, depicting the training loss versus epochs. A visual inspection reveals

notable differences between the curves with and without data augmentation.

When data augmentation is not applied, the algorithms initially exhibit higher

validation loss for the first 40 epochs, but subsequently demonstrate a downward

trend. The learning curves exhibit increased noise due to the limited dataset size,
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which poses challenges in capturing generalized features early in training. In the

validation partition, when data augmentation is not applied, certain models

display a pattern of initial loss increase followed by a subsequent decrease. This

phenomenon can be attributed to the impact of the momentum within the Adam

optimizer. Such behavior can lead the optimization process towards local minima.

In contrast, the data augmentation scenario consistently shows decreasing training

and validation losses with minor noise in the validation partition. The FCN CRFFg

S-M3 and, to a lesser extent, FCN CRFFg S-M1 demonstrate faster decreases in

validation loss, attributed to the generalization capabilities of the RFF from kernel

methods. In the ResUNet architectures, ResUNet S-M3 experiences an early

decline but reaches a non-minimum early, while no apparent differences are

observed within the U-Net architectures. It is worth noting that the models in the

data augmentation scenario exhibit similar behavior. While we do not display the

learning curves of certain models, specifically the one trained in Oxford IIIt Pet, in

this section, they can be found in Appendix A for those interested in visually

inspecting the training process.

Figure 3-13 displays the values of semantic segmentation performance for the

ThermalFeet dataset achieved by each compared DL architecture: FCN (colored in

purple), ResNet (orange), U-Net (green). For interpretation purposes, the results

are presented for the evaluation measures separately, but keeping with and

without data augmentation scenarios at the same plot. At first glance, the models

with data augmentation, more saturated color, perform better than the contrary

scenario, as expected. As seen, the specificity estimates are very close to the

maximal value and show the lowest variability. This result can be explained by the

relatively small feet sizes compared with the background, making their correct

detection and segmentation more difficult. On the contrary, sensitivity

assessments are of less value and have much more variability, accounting for the

diversity in the regions of interest (i.e., size, shape, and location). Due to the

changing behavior of thermal patterns and the limited datasets available, learners

have difficulty obtaining an accurate model.
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Figure 3-10. Learning curve of FCN models.
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Figure 3-11. Learning curve of ResUNet models.
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Figure 3-12. Learning curve of U-Net models.
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Regarding overlapping between estimated thermal masks, the Dice value is

acceptable but with higher variance values for FCN, implying that other tested

models segment complex shapes more accurately. As expected, the Jaccaed index

mean values resemble the Dice assessments, although with increased variance,

highlighting the mismatch between the ground truth and the predicted mask even

more.
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Figure 3-13. Performance metrics results on ThermalFeet. More saturated color denotes
data augmentation.

A comparison between the segmentation metric value achieved by the baseline DL

architecture (without any modifications) and the value estimated for every
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Figure 3-14. Comparison with baseline models on ThermalFeet.

evaluated DL semantic segmentation strategy is presented in Figure 3-14. Note

that specificity is removed because its estimates are obtained with minimal

variations.

As seen, the performance improvement depends on the learner model size (also

called algorithm complexity). Namely, the baseline architecture of FCN holds

1,197,375 parameters, baseline ResUnet – 643,549, and baseline Unet – 494,093.

Thus, the FCN model contains the largest tuning parameter set and achieves the

poorest performance, but it benefits the most from the evaluated architectures. As

data augmentation is also applied, this finding becomes more evident. It may be

pointed out that adding new data decreases model overfitting inherent to massive

model sizes. Likewise, the following ResUnet model takes advantage of the

enhanced architecture strategy and improves performance. It increases more by

generating new data points, however, to a lesser extent. Lastly, the learner with

the lowest parameter set gets almost no benefits or is negatively affected by the

strategies considered for architecture enhancement. Still, the strategies taken into

account combined with expanded training data sizes can be improved, though very

modestly.

We present the rank of ThermalFeet models in two scenarios: with and without

data augmentation. Figure 4-5 displays the rank without data augmentation. Upon

initial inspection, we observe that FCN models consistently rank last, aligning with
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previous experiments’ findings. Conversely, ResUNet models with the CRFFg layer

perform the best across most cases. U-Net models are comparable to ResUNet

models, but the highest-performing Ones did not include a CRFFg layer.

In the scenario with data augmentation, Figure 4-7 shows the rank. Here is not

evident which architecture performs better. However, we can see that the best

models tend to be the ones that have a layer at the skip connections, and the

influence of CRFFg is not clear.

In reference to the Oxford-IIIT Pet dataset, the metrics results are illustrated in

Figure 3-17. There is no significant variation in performance between the models.

This can be attributed to the large size of the dataset, which leads to the models

behaving similarly.



74 Convolutional Random Fourier Features on Semantic Segmentation Tasks

Rank

FCN
FCN CRFFg Skips-M1
FCN CRFFg Skips-M3

FCN Skips-M1
FCN Skips-M3

ResUNet
ResUNet CRFFg Skips-M1
ResUNet CRFFg Skips-M3

ResUNet Skips-M1
ResUNet Skips-M3

U-Net
U-Net CRFFg Skips-M1
U-Net CRFFg Skips-M3

U-Net Skips-M1
U-Net Skips-M3

M
od

el
Dice

Rank

M
od

el

Jaccard

0 2 4 6 8 10 12 14
Rank

FCN
FCN CRFFg Skips-M1
FCN CRFFg Skips-M3

FCN Skips-M1
FCN Skips-M3

ResUNet
ResUNet CRFFg Skips-M1
ResUNet CRFFg Skips-M3

ResUNet Skips-M1
ResUNet Skips-M3

U-Net
U-Net CRFFg Skips-M1
U-Net CRFFg Skips-M3

U-Net Skips-M1
U-Net Skips-M3

M
od

el

Sensitivity

0 2 4 6 8 10 12 14
Rank

M
od

el

Specificity

Figure 3-15. Performance Rank Over ThermalFeet without Data Augmentation.
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Figure 3-16. Performance Rank Over ThermalFeet with Data Augmentation.
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Figure 3-17. Performance Metrics Results on Oxford-IIIT Pet. The three types of
architecture used in this study (FCN, U-Net, ResUNet) are differentiated by color.

For further experimentation, we present Figures 3-18, 3-19, and 3-20, which

depict the performance metrics as we vary the size of the training dataset. Upon

initial examination, in general, there are no significant disparities between the

different models. This can be attributed to the high variability inherent in the

dataset, which prevents any single model from gaining a decisive advantage over

the others. However, when focusing on the FCN architecture, an interesting trend

emerges. It is apparent that models incorporating CRFFg face challenges when

provided with less than 50% of the training data. This phenomenon may be

attributed to the influence of the CRFFg activation function, particularly in the
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latter stages of the model. With a reduced amount of training data, the remaining

layers struggle to adapt to the sinusoidal activation pattern, leading to a decline in

overall performance. Moreover, future improvement can be training the scale

parameter σ and using a full encoder-decoder architecture with CRFFg.

3.5 Summary

Our research introduced the CRFFg layer to enhance the representation of

low-level semantic features in popular encoder-decoder architectures for semantic

segmentation. Our study involved evaluating the effectiveness of CRFFg on two

datasets: ThermalFeet (a smaller dataset) and Oxford Iiit Pet (a larger dataset). We

specifically focused on three well-known architectures - FCN, U-Net, and ResNet -

to test the impact of CRFFg on skip connections. Our findings indicated first that

data augmentation has a big impact on increasing the performance of the models.

Second, the CRFFg layer had a more pronounced effect on improving performance

in the ThermalFeet dataset without data augmentation. Finally, regarding the

Oxford Iiit Pet, we showed that our approach is competitive with the standard

approach.
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Figure 3-18. Performance metrics at different training dataset sizes of FCN models.
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Figure 3-19. Performance metrics at different training dataset sizes of ResUNet models.
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Figure 3-20. Performance metrics at different training dataset sizes of U-Net models.





CHAPTER

FOUR

INTERPRETABILITY OF DEEP LEARNING SEMANTIC

SEGMENTATION MODELS

This chapter presents comprehensive semantic segmentation interpretability

measures designed specifically for semantic segmentation models based on

Convolutional neural networks. The proposed measures offer a systematic

approach to understanding the decision-making process of these complex models.

4.1 Semantic Segmentation Interpretability

We first describe Class Activation Maps (CAMs), a method that allows the

interpretability of Convolutional Neural Networks. To further deepen our

understanding, we also introduce a measurements that provides additional insight

into the workings of CAMs in semantic segmentation models based on

convolutional networks.
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Figure 4-1. Class Activation Maps Representation.

4.1.1 Class Activation Maps Class Activation Maps
(CAMs)

CAMs [Zhou et al., 2015b] is an interpretability technique for highlighting the image

regions that contribute the most to the predicted output model given a input. The

intuition behind CAMs is to construct the highlight regions for a specific class c using

the linear combination of activations or feature maps from the specific layer l of the

convolutional neural network as depicted in Equation 4-1 and Figure 4-1

Scl = Λ(
∑
d∈Dl

βcd
l ⊙ Acd

l ) ∈ RH×W (4-1)

where Λ : RHl×Wl → RH×W is the up-sampling operator, Ack
l ∈ RHl×Wl represents

the activation map of the lth layer for the dth filter, βcd
l represents the weight matrix

associated with the dth filter that depends on yc ∈ R, the score returned by the

model at class c, and ⊙ represents the element-wise product operation. Then, the

task of CAMs methods is to find the βcd
l , and that is the difference between the
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different CAMs methods [Zhou et al., 2015a, Selvaraju et al., 2016, Chattopadhyay

et al., 2017, Wang et al., 2019, Jiang et al., 2021].

1. Grad-CAM [Selvaraju et al., 2016]

[βcd
l ]i,j =

1

HlWl

∑
n∈Hj ,m∈Wl

∂yc

∂Acd
nm

∀ i, j

2. Grad-CAM ++ [Chattopadhyay et al., 2017]

[βcd
l ]i,j =

∑
n∈Hj ,m∈Wl

αcd
nmReLU(

∂yc

∂Ad
nm

) ∀ i, j

αcd
nm =

∂2yc

(∂Ad
nm)2

2 ∂2yc

(∂Ad
nm)2

+
∑

a

∑
b A

d
ab

∂3yc

(∂Ad
nm)3

3. Score-CAM [Wang et al., 2019]

[βcd
l ]i,j =

exp(ξcd)∑
n exp(ξcn)

∀ i, j

ξcd = f c(I ◦ Ad)− f c(I)

Where f c is a function that returns yc score of the model in the class c, and I

is the input of the model. Additionally, Score-CAM applies a ReLU function

to the calculated class activation map (CAM) before using an upsampling

operator.

4. Layer-CAM [Jiang et al., 2021]

[βcd
l ]i,j = ReLU(

∂yc

∂Ad
ij

)

Layer-CAM also applies a ReLU function to the calculated class activation

map before using an upsampling operator.
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As presented, CAMs methods are constructed to work with classification models.

To work in Semantic segmentation models, we follow a similar approach as

[Vinogradova et al., 2020], using the Equation 4-2.

yc =
1⊤(M̂c ⊙Mc)1

1⊤Mc1
(4-2)

Particularly, we are concerned with spacial information, and for that reason, we

choose Layer-CAM [Jiang et al., 2021], which allows for preserving more spacial

information since it does not use pooling over the derivatives.

4.1.2 Interpretability Measures Proposal

While CAMs can identify the most discriminatory regions in an input medical image,

it was originally designed for classification models and does not utilize the location

information available in the mask segmentation. However, this information can be

valuable in understanding how CAMs operate in regions of interest and can provide

insights for medical image segmentation tasks.

For instance, in medical image segmentation, it is crucial to identify the relevant

structures of interest accurately. Therefore, measuring how the CAMs is

distributed within the ROI can help determine whether the areas of high

discriminative value are located inside or outside the structure of interest. This

can be useful in identifying false positives or false negatives and can guide

improvements in the segmentation model. This is demonstrated in Figure 4-2.

Additionally, knowing which class the models tend to have a high activation of

relevance can be crucial in medical image segmentation. This is because medical

image segmentation models often deal with multiple classes, such as different

types of tissue or organs. Understanding which classes the model is biased
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Figure 4-2. CAMs exemplification of behavior desirable to capture, distribution of the
relevance.

Figure 4-3. CAMs exemplification of behavior desirable to capture, more activation in one
class than the other.

towards can help identify potential limitations or biases in the model and guide

further improvements. Figure 4-3 shows one example.

Finally, evaluating the overall homogeneity of CAMs across the entire ROI can

provide an understanding of how consistently the model assigns relevance to

different regions within the ROI. This can be useful in assessing the robustness

and reliability of the segmentation model. For example, suppose the CAMs are

highly concentrated in certain regions and have very low activations in others. In

that case, it may suggest that the model is not generalizing well to variations in the

input data. This information can guide improvements to the model architecture or

training data. This situation is exemplified in Figure 4-4.

For those reasons, we proposed the following measures to quantify above

mentioned concerns. As previously mentioned, using CAM-based representations

enhances the explainability of deep learning models for segmentation tasks. To
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Figure 4-4. CAMs exemplification of behavior desirable to capture, homogeneity of the
relevance through all the ROI.

evaluate the interpretability of CAMs for a given model, we propose the following

semantic segmentation measures, where higher scores indicate better

interpretability:

– CAM-based Cumulative Relevance (ρc): It involves computing the

cumulative contribution from each CAM representation to detect class c

within the segmented region of interest. This can be expressed as follows:

ρr = El

{
En

{
1⊤(M̃ c

n ⊙ Sc
nl)1

1⊤Sc
nl1

: ∀n ∈ N

}
∀l ∈ L

}
, ρc ∈ [0, 1]

(4-3)

≈ 1

L

L∑
l=1

1

N

N∑
n=1

1⊤(M̃ c
n ⊙ Sc

nl)1

1⊤Sc
nl1

, ρc ∈ [0, 1] (4-4)

where Sc
nl holds the Layer-CAM for image n with respect to layer l (see Eq. 4-

1). Additionally, M̃ c
n∈{0, 1}H×W̃ collects a binary mask that identifies the

pixel locations associated with the class c

– Mask-based Cumulative Relevance (ϱc): It assesses the relevance averaged

across the class pixel set related to the target mask of interest. Then, each

class-based cumulative relevance is computed as follows:
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ϱ
′

cl = En

{
1⊤(M̃ c

n ⊙ Sc
nl)1

1⊤M̃ c
n1

: ∀n ∈ N

}
, ϱ

′

c ∈ R+ (4-5)

≈ 1

N

N∑
n=1

1⊤(M̃ c
n ⊙ Sc

nl)1

1⊤M̃ c
n1

, ϱ
′

c ∈ R+ (4-6)

The normalized Mask-based Cumulative Relevance can be computed as:

ϱc = El

{
ϱ′cl

max
r∈{0,1}

ϱ′rl
: ∀l ∈ L

}
, ϱc ∈ [0, 1] (4-7)

≈ 1

L

L∑
l=1

ϱ′cl
max

r∈{0,1}
ϱ′rl
, ϱc ∈ [0, 1] (4-8)

– CAM-Dice (D
′
): a version of the Dice measure that quantifies mask thickness

and how the extracted CAM is densely filled:

D
′

c = El

En

{
2
1⊤

(
M̃ c

n ⊙ Sc
nl

)
1

1⊤M̃ c
n1+ 1⊤Sc

nl1
: ∀n ∈ N

}
: ∀l ∈ L

 , D
′

c ∈ [0, 1],

(4-9)

≈ 1

L

L∑
l=1

1

N

N∑
n=1

2
1⊤

(
M̃ c

n ⊙ Sc
nl

)
1

1⊤M̃ c
n1+ 1⊤Sc

nl1
, D

′

c ∈ [0, 1] (4-10)

4.2 Experimental Set-Up

To demonstrate the practical application of the described metrics, we utilized the

FCN, U-Net, and ResUNet models previously trained in Chapter 3 on the
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Figure 4-5. Graphic
depiction of Measure ρc.

Figure 4-6. Graphic
depiction of Measure ϱ

′
c.

Figure 4-7. Graphic
depiction of Measure D′

c.

ThermalFeet partition and Oxford datasets. We focused solely on calculating the

CAMs for the output blocks illustrated in Figures 3-3, 3-4, and 3-5. Since the

metrics rely on a set of images, we used the training partition without any

modification or data augmentation.

4.3 Results and Discussion

We aim to evaluate the effectiveness of CAM-based representations in enhancing

interpretability of tested DL models. To achieve this goal, we analyze the

relationship between essential explanation elements, i.e., background and

foreground, and the metrics proposed for assessing the CAM-based relevance of

image segmentation masks in ThermalFeet and Oxford IIIt Pet datasets.

4.3.1 ThermalFeet

Figure 4-8 displays the scatter plots obtained by each segmentation learner. CAMs

extracted by the learner contribute more to the interpretability of regions of

interest if the measure value tends toward the top-right corner. Moreover, we

focus on the contribution of CAM representations to segmenting between

background and foreground, utilizing the patient’s feet as critical identification
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features. The findings from the modified CAM-Dice results can be split into two

groups (refer to the left plot in Figure 4-8). One group involves ResUnet and U-Net

architectures, and the other showcases better performance, featuring FCN

architectures. It is also important to mention that the data augmentation strategy

does not significantly boost interpretability as much as it enhances segmentation

performance measures. Looking at the CAM-based Cumulative Relevance (refer to

the middle plot in Figure 4-8), it is apparent that models with refined

representations at skip connections surpass the baseline models. Even though

there is no substantial difference between models with these enhancements, most

models are situated in the top-right corner. This position suggests that the primary

relevance is focused on the area of interest. Significantly, relevance seems to

accumulate more in the background than in the foreground, which is logical,

considering the relative sizes of both areas. In Figure 4-8, the Mask-based

Cumulative Relevance plot on the right side demonstrates that most models tend

to exhibit high-foreground-low-background relevance. This pattern leads to a bias

favoring the foreground class, as reflected in the more robust activation of CAMs

for the foreground class. However, it is interesting that models employing CRFFg

perform better in separating classes situated towards the top-right corner,

suggesting superior capabilities in differentiating foreground and background

classes, as we can see in the mean performance in each metric.

Figures 4-9, 4-10, and 4-11 display examples of CAMs extracted by the best models

per architecture under the metric ϱc for feet (colored in green) and background (red

color), respectively. As seen, the higher weight is located at the last part of the

decoder, where the higher values of semantic information are found. Besides, the

weights for the background class are also less than for the foreground class, showing

that the models emphasize the latter while preserving the relevance weights for the

former.

In particular, FCN CRFFg S-M3 is the best FCN architecture, as shown in Figure 4-

9, and extracts most of the weights in three layers (i.e., l3, l4, and l5), meaning

that other layers do not contribute to the class foreground. On the other hand, this
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Figure 4-8. Results of interpretability measures on ThermalFeet. The black markers
symbolize the mean of CRFFg model, the start symbol, and the mean of models without
CRFFg, the square symbol.

architecture leads to CAMs with lower values for background class (see examples

on the right). This behavior can be explained because the FCN architecture holds

an extensive receptive field. Hence, the FCN CRFFg S-M3 model enables capturing

more global information crucial for segmentation and concentrating weights in a

few layers.

In the case of ResUNet, ResUNet CRFFg S-M3 performs the most efficiently, as

shown in Figure 4-11. Since the receptive field decreases, the ResUNet

architecture distributes the contribution more evenly among the extracted CAM

representations. However, the more significant values remain in the l3, l4, and l5

layers. There is also activation of weights for the background class that can be

explained, firstly, since the CRFFg configuration helps capture complex non-linear

dependencies. Secondly, the local receptive field allows class separation.

Lastly, the CRFFg S-M3 model is the most effective for the U-Net architecture, with

a performance similar to the outperforming ResUNet architecture, as shown in

Figure 4-10. However, several differences in the Fusion CAMs extracted by U-Net

CRFFg S-M3 show high activation within the feet, suggesting that this model is not

only sensitive to the foreground class. Also, it captures more global features from

feet.
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Figure 4-10. ResUNet CRFFg S-M3 without data Augmentation.
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4.3.2 Oxford-IIIt Pet

In a similar manner, we present the results obtained from the Oxford-IIIT Pet

dataset. Figure 4-12 illustrates the metrics described in Section 4.1.2 and their

corresponding results. Upon initial observation, two distinct groups of models can

be discerned: the U-Net and ResUNet models exhibiting inferior performance, and

the FCN models demonstrating relatively better performance. This pattern mirrors

the findings from the ThermalFeet dataset, but is more pronounced in this

particular case.

The FCN architecture possesses a larger receptive field, enabling it to capture

intricate relationships within heterogeneous structures. Consequently, the CAMs

produced by the FCN models exhibit greater homogeneity (as depicted in the left

plot of Figure 4-12 for CAM-Dice), with relevance concentrated in the regions of

interest (as shown in the middle plot of Figure 4-12 for CAM-based Cumulative

Relevance). Moreover, in this dataset as well, the FCN architecture demonstrates

the ability to consider both the foreground and background regions (as indicated

in the right plot of Figure 4-12 for CAM-based Cumulative Relevance).

Additionally, we observe a similar trend to that observed in the ThermalFeet

dataset, where models exhibit a tendency towards the top-left corner, albeit to a

lesser extent (as seen in the right plot of Figure 4-12 for CAM-based Cumulative

Relevance). This deviation may be attributed to the larger size of the dataset and

the variations within the regions of interest, as it appears that models tend to

diminish the bias towards the foreground class.

Furthermore, it is noteworthy that in most cases, the baseline models demonstrate

poorer performance, while models with enhanced representation achieve superior

results. However, no apparent distinctions can be observed among these enhanced

models.

We present the superior models for each architecture in terms of Mask-based

Cumulative Relevance (MCR) as depicted in Figures 4-13, 4-15, and 4-14 for FCN,
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Figure 4-12. Results of interpretability measures on Oxford IIIt Pet. The black markers
symbolize the mean of CRFFg model, the start symbol, and the mean of models without
CRFFg, the square symbol.

ResUNet, and U-Net, respectively. These findings are consistent with the observed

patterns in the ThermalFeet dataset, where higher weights are concentrated near

the top of the encoder, while the background weight is relatively lower compared

to the foreground class. Notably, the best models, despite including layers in the

skip connection, do not incorporate a CRFFg layer.

Specifically, the most optimal model within the FCN architecture is the S-M1

(Figure 4-13). In contrast to the ThermalFeet scenario, the l3 layer has been

removed, and the l6 layer has emerged as one of the top three layers. This

architectural shift emphasizes the deeper layers in the encoder, increasing their

relevance. Furthermore, it is important to highlight that the l6 layer assigns similar

weights to both the background and foreground classes. This is evident from the

two examples of CAMs displayed in Figure 4-13, where both classes exhibit

comparable levels of relevance. Finally, it is worth noting that CAMs for each class

are homogenous and contained within the region of interest, as we can prove in

the CAMs examples and the metrics depicted in 4-12.

Regarding the ResUNet architecture, the most optimal model is ResUNet S-M3,

which is depicted in Figure 4-13. Interestingly, the weight distribution follows a
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similar pattern as observed in the ThermalFeet dataset. Most weights are

concentrated in layers l3, l4, and l5. It is worth noting, however, that the CAMs)

appear to be noisier compared to those shown in the ThermalFeet dataset.

Nevertheless, the noise is mainly confined within the region of interest, especially

for the foreground class, which tends to be situated at the boundary of regions

with high activation, as shown in the CAMs displayed in Figure 4-13.

Lastly, as the best model for U-Net architecture, we have the U-Net S-M1 model.

Here, we can observe that layer l5 disappears as one of the top three layers.

Instead, the l6 layer takes its position. Moreover, we can appreciate how the

CAMs in this scenario are better contained within the region of interest,

particularly for the foreground class. Finally, it is worth noting that in all those

models compared with the model from ThermalFeet, the CAMs tend to be within

the region of interest.

4.4 Summary

We have proposed new measures for interpretability in semantic segmentation

models with convolutional neural networks. These measures allow us to measure

three different aspects of models using CAMs first, where the relevance for specific

interest regions is located through CAM-based Cumulative Relevance. Second,

how the sensibility is dispersed through the multiple regions of interest,

Mask-based Cumulative Relevance, and finally, how homogenous is relevant in the

interest region using CAM-Dice. To prove these proposed measures’ consistency

and utility, we have analyzed the models trained in Section 3 under the three

scenarios of data ThermalFeet, ThermalFeet with data augmentation, and Oxford

IIIt Pet. The results show that these metrics allow a better understanding of

semantic segmentation models.
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FIVE

FINAL REMARKS

5.1 Conclusions

The thesis presented in this work addresses the challenges associated with

medical image segmentation, particularly in obstetric environments where data

acquisition is limited. Our first contribution is the optimization of Random Fourier

Features for spatial data through gradient descent, named CRFFg. This approach

incorporates the generalization properties of kernel methods and enhances data

efficiency for spatial data derived from convolutions to CRFFg. The

implementation of the proposed techniques is available in a GitHub repository,

providing a valuable resource for further research and development in this area.

Another key contribution of this thesis is enhancing shallow encoder-decoder

models for semantic segmentation. We have recognized the challenges posed by

shape, size, and texture variability across patients and imaging protocols. In the

context of segmenting feet in thermal images, we introduce a novel approach to



96 Final Remarks

improve the representation at the skip connection by incorporating a CRFFg layer.

This enhancement aims to capture low-level features more effectively from the

encoder and improve their fusion in the decoder, thereby addressing the

challenges of ROI variability in semantic segmentation.

Interpretability is a crucial aspect of semantic segmentation models in the medical

field, but the complex nature of deep learning models presents challenges in

achieving it. The thesis proposes novel quantitative measures to enhance

interpretability in semantic segmentation models. These measures assess different

aspects of the models, including the location of relevance in specific regions of

interest (CAM-based Cumulative Relevance), sensibility across multiple regions of

interest (Mask-based Cumulative Relevance), and the homogeneity of relevance in

interest regions (CAM-Dice). These measures provide objective and

comprehensive evaluations of interpretability, going beyond visual inspection and

qualitative analysis.

Overall, this thesis makes significant contributions to the field of medical image

segmentation and semantic segmentation. The optimization of Random Fourier

Features for spatial data and the enhancement of shallow encoder-decoder models

address the challenges specific to the domain, such as limited data availability and

ROI variability. Additionally, the proposed quantitative measures for

interpretability in semantic segmentation models fill a gap in the existing methods

by objectively evaluating model performance in terms of interpretability. The

availability of the implementation code in a GitHub repository further facilitates

the research community’s adoption and further development of these techniques.

5.2 Future Work

To advance our research and build upon our current findings, we have identified

several directions for future work. These avenues will enhance our understanding

of the topic at hand and contribute to our approach’s overall effectiveness and

reliability. The following are the next possible continuing paths we envision:
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– Analyzing the Spectral Representation of the CRFFg Layer: By examining the

spectral characteristics, we can gain valuable insights into the underlying

patterns and structures within the layer. This analysis can reveal hidden

information and further unravel the inner workings of the CRFFg layer,

leading to a deeper understanding of its behavior and potential

improvements [Zhang et al., 2020].

– Incorporating Bayesian Approximation: An exciting prospect for improving

the understanding of the CRFFg layer lies in incorporating Bayesian

approximation techniques. Bayesian methods allow for probabilistic

reasoning, enabling us to quantify uncertainties and make more informed

decisions. By applying Bayesian approximations to the CRFFg layer, we can

better understand its inherent uncertainty, model the relationships between

variables more accurately, and potentially uncover new strategies for

optimization or interpretation [Miller and Reich, 2022].

– Employing Regularization Techniques: Building upon the measures

proposed in Chapter 4, another fruitful path is the utilization of them for

regularization purposes. Regularization serves as a means to mitigate

overfitting, improve generalization, and control the complexity of the model.

By incorporating regularization methods, we can address potential issues

such as parameter redundancy, enhance our model’s robustness, and

achieve better performance on unseen data with a focused desirable

behavior of the discriminative regions [Chang et al., 2020, Lin et al., 2021].

– Furthermore, our analysis has revealed several potential enhancements in

our approach. Firstly, we could explore alternative mappings for Random

Fourier Features, such as combining trigonometric functions like cosines and

sines [sut, 2015], the training of the scale parameter sigma, and the use of a

full encode-decoder architecture with CRFFg layers. Secondly, addressing

the issue of class imbalance among pixels may warrant the adoption of

different loss functions [Yeung et al., 2022]. Lastly, considering the
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substitution of convolutions with transformers as a fundamental operation

could be advantageous to better capture large-range context [Azad et al.,

2023].

In conclusion, the identified avenues for future work are promising in advancing

our research. Analyzing the spectral representation of the CRFFg layer will unveil

hidden patterns and improve our understanding. Incorporating Bayesian

approximation techniques can enhance decision-making and optimization

strategies. Employing regularization techniques based on the proposed measures

will mitigate overfitting and enhance the model’s performance with a focused

desirable behavior of the discriminative regions. Pursuing these paths will

contribute to our approach’s overall effectiveness and reliability, pushing the

boundaries of knowledge in this field.

5.3 Academic Products

5.3.1 Academic Discussion

• Aguirre-Arango, J.C.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G. Feet

Segmentation for Regional Analgesia Monitoring Using Convolutional RFF

and Layer-Wise Weighted CAM Interpretability. Computation 2023, 11, 113.

https://doi.org/10.3390/computation11060113

• Mejia-Zuluaga, Rafael, Juan Carlos Aguirre-Arango, Diego Collazos-Huertas,

Jessica Daza-Castillo, Néstor Valencia-Marulanda, Mauricio

Calderón-Marulanda, Óscar Aguirre-Ospina, Andrés Alvarez-Meza, and

Germán Castellanos-Dominguez. ”Deep Learning Semantic Segmentation of

Feet Using Infrared Thermal Images.” In Advances in Artificial

Intelligence–IBERAMIA 2022: 17th Ibero-American Conference on AI,

Cartagena de Indias, Colombia, November 23–25, 2022, Proceedings, pp.

342-352. Cham: Springer International Publishing, 2023.
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• A.D. Tobar, J.C. Aguirre, D.A. Cardenas-Pena, A.M. Alvarez-Meza, and C.G.

Castellanos-Dominguez, ”Hippocampus Segmentation using Patch-based

Representation and ROC Label Enhancement,” Engineering Letters, vol. 31,

no. 2, pp504-510, 2023

5.3.2 Software and Repositories

• Image Segmentation: Baseline library for semantic segmentation

experiments.

• CRFFg: Implementation of the CRFFg layer.

• FEET-GUI: a python application for characterizing epidural anesthesia

performance during birth through the segmentation of feet soles and series

analysis of temperatures. Figure 5-1 shows an overview of the system, and

5-2 shows a report that the medical personnel can obtain with this tool.

• Software registration Trade-Net: people detection and tracking software

accompanied by distance measurements between objects of interest on

video sequences in industrial environments (indoor scenarios). Its objective

is to monitor personnel in internal environments using the videos captured

by security cameras as inputs. This software uses deep learning models to

process video in real-time, which can come from surveillance cameras, or

already stored videos.

https://github.com/UN-GCPDS/python-gcpds.image_segmentation
https://github.com/aguirrejuan/ConvRFF
https://github.com/UN-GCPDS/FEET-GUI
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Thermographic Camera Computational System Interface

Figure 5-1. Illustration of FEET-GUI system.
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A.1.1 Without Data Augmentation
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Figure A-1. Learning curves of ThermalFeet without data augmentation FCN models
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Figure A-2. Learning curves of ThermalFeet without data augmentation U-Net models
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Figure A-3. Learning curves of ThermalFeet without data augmentation ResUnet models
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A.1.2 With Data Augmentation
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Figure A-4. Learning curves of ThermalFeet with data augmentation FCN models
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Figure A-5. Learning curves of ThermalFeet with data augmentation U-Net models
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Figure A-6. Learning curves of ThermalFeet with data augmentation ResUNet models
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A.2 Oxford IIIt Pet
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Figure A-7. Train Loss Oxford IIIt Pet FCN models
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Figure A-8. Train Jaccard Oxford IIIt Pet FCN models
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Figure A-9. Train Sensitivity Oxford IIIt Pet FCN models



A.2 Oxford IIIt Pet 111

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y

Train

FCN CRFFg Skips-M1
FCN CRFFg Skips-M3

FCN Skips-M1
FCN Skips-M3

FCN

Val

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y_
Fo

re
gr

ou
nd

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y_
Ba

ck
gr

ou
nd

0 25 50 75 100 125 150 175 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y_
Bo

rd
er

0 25 50 75 100 125 150 175 200
epoch

Figure A-10. Train Specificity Oxford IIIt Pet FCN models
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Figure A-11. Train Loss Oxford IIIt Pet U-Net models
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Figure A-12. Train Jaccard Oxford IIIt Pet U-Net models
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Figure A-13. Train Sensitivity Oxford IIIt Pet U-Net models
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Figure A-14. Train Specificity Oxford IIIt Pet U-Net models
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Figure A-15. Train Loss Oxford IIIt Pet U-Net models
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Figure A-16. Train Jaccard Oxford IIIt Pet ResUNet models
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Figure A-17. Train Sensitivity Oxford IIIt Pet ResUNet models
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Figure A-18. Train Specificity Oxford IIIt Pet ResUNet models
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Without Data Augmentation Rank With Data Augmentation rank
model metric

FCN

Dice 0.9527±0.0238 3.0 0.8646±0.0624 10.0
Jaccard 0.9106±0.0424 3.0 0.7668±0.0969 10.0
Sensitivity 0.9352±0.0482 4.0 0.8260±0.1098 6.0
Specificity 0.9857±0.0105 7.0 0.9697±0.0186 13.0

FCN CRFFg S-M1

Dice 0.9530±0.0257 2.0 0.8510±0.0623 12.0
Jaccard 0.9113±0.0456 2.0 0.7456±0.0913 12.0
Sensitivity 0.9424±0.0526 3.0 0.8016±0.0999 13.0
Specificity 0.9810±0.0158 12.0 0.9697±0.0233 14.0

FCN CRFFg S-M3

Dice 0.9480±0.0224 5.0 0.8346±0.0916 15.0
Jaccard 0.9021±0.0403 5.0 0.7262±0.1284 15.0
Sensitivity 0.9340±0.0423 6.0 0.7771±0.1325 15.0
Specificity 0.9804±0.0168 13.0 0.9714±0.0246 10.0

FCN S-M1

Dice 0.9469±0.0273 6.0 0.8421±0.0870 14.0
Jaccard 0.9003±0.0486 6.0 0.7367±0.1254 14.0
Sensitivity 0.9286±0.0518 7.0 0.7867±0.1422 14.0
Specificity 0.9843±0.0109 9.0 0.9714±0.0207 9.0

FCN S-M3

Dice 0.9519±0.0281 4.0 0.8470±0.0737 13.0
Jaccard 0.9096±0.0499 4.0 0.7414±0.1070 13.0
Sensitivity 0.9341±0.0543 5.0 0.8160±0.1152 9.0
Specificity 0.9865±0.0107 6.0 0.9604±0.0300 15.0

ResUNet

Dice 0.9348±0.0502 11.0 0.8569±0.0779 11.0
Jaccard 0.8816±0.0868 11.0 0.7575±0.1152 11.0
Sensitivity 0.9029±0.0825 12.0 0.8152±0.1316 11.0
Specificity 0.9896±0.0067 2.0 0.9712±0.0180 12.0

ResUNet CRFFg S-M1

Dice 0.9456±0.0317 7.0 0.8851±0.0449 4.0
Jaccard 0.8984±0.0560 7.0 0.7968±0.0709 4.0
Sensitivity 0.9472±0.0540 1.0 0.8283±0.0853 5.0
Specificity 0.9725±0.0230 14.0 0.9841±0.0123 3.0

ResUNet CRFFg S-M3

Dice 0.9111±0.0602 15.0 0.8969±0.0444 1.0
Jaccard 0.8420±0.0951 15.0 0.8160±0.0737 1.0
Sensitivity 0.9075±0.0607 11.0 0.8675±0.0803 1.0
Specificity 0.9663±0.0346 15.0 0.9712±0.0244 11.0

ResUNet S-M1

Dice 0.9558±0.0279 1.0 0.8865±0.0676 3.0
Jaccard 0.9167±0.0498 1.0 0.8026±0.1061 3.0
Sensitivity 0.9459±0.0482 2.0 0.8403±0.1123 2.0
Specificity 0.9831±0.0152 10.0 0.9750±0.0287 8.0

ResUNet S-M3

Dice 0.9237±0.0411 14.0 0.8677±0.0894 9.0
Jaccard 0.8610±0.0713 14.0 0.7763±0.1281 9.0
Sensitivity 0.8875±0.0756 14.0 0.8179±0.1333 8.0
Specificity 0.9846±0.0128 8.0 0.9755±0.0217 7.0

U-Net

Dice 0.9371±0.0312 10.0 0.8713±0.0756 8.0
Jaccard 0.8832±0.0551 10.0 0.7796±0.1145 8.0
Sensitivity 0.9120±0.0571 10.0 0.8107±0.1248 12.0
Specificity 0.9811±0.0199 11.0 0.9847±0.0130 2.0

U-Net CRFFg S-M1

Dice 0.9448±0.0297 8.0 0.8827±0.0617 5.0
Jaccard 0.8969±0.0528 8.0 0.7954±0.0965 5.0
Sensitivity 0.9160±0.0561 9.0 0.8383±0.1062 4.0
Specificity 0.9902±0.0057 1.0 0.9780±0.0124 5.0

U-Net CRFFg S-M3

Dice 0.9252±0.0404 13.0 0.8821±0.0645 6.0
Jaccard 0.8634±0.0694 13.0 0.7948±0.1004 6.0
Sensitivity 0.8831±0.0730 15.0 0.8231±0.1110 7.0
Specificity 0.9893±0.0066 3.0 0.9873±0.0088 1.0

U-Net S-M1

Dice 0.9400±0.0364 9.0 0.8898±0.0536 2.0
Jaccard 0.8890±0.0635 9.0 0.8056±0.0861 2.0
Sensitivity 0.9162±0.0619 8.0 0.8384±0.0904 3.0
Specificity 0.9866±0.0086 5.0 0.9777±0.0208 6.0

U-Net S-M3

Dice 0.9293±0.0419 12.0 0.8767±0.0772 7.0
Jaccard 0.8707±0.0728 12.0 0.7883±0.1152 7.0
Sensitivity 0.8934±0.0792 13.0 0.8152±0.1181 10.0
Specificity 0.9878±0.0098 4.0 0.9805±0.0189 4.0

Table B-1. Infrared Thermal Images results on test partition
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Foreground Background Border Average rank
model metric

FCN

Dice 0.8240±0.0832 0.9336±0.0587 0.6514±0.1175 0.8869±0.1134 3.5
Jaccard 0.7281±0.0982 0.8806±0.0923 0.4933±0.1185 0.8103±0.1369 3.75
Sensitivity 0.8432±0.0796 0.9263±0.0755 0.7060±0.1321 0.8974±0.1189 5.25
Specificity 0.9430±0.0364 0.9261±0.0963 0.9492±0.0228 0.9538±0.0533 6.5

FCN CRFFg S-M1

Dice 0.8166±0.0841 0.9297±0.0673 0.6393±0.1176 0.8807±0.1107 10.0
Jaccard 0.7184±0.1009 0.8749±0.1003 0.4801±0.1197 0.8002±0.1373 10.25
Sensitivity 0.8401±0.0803 0.9203±0.0801 0.7112±0.1292 0.8888±0.1166 7.0
Specificity 0.9421±0.0362 0.9300±0.0892 0.9432±0.0251 0.9532±0.0549 7.75

FCN CRFFg S-M3

Dice 0.8164±0.0795 0.9282±0.0625 0.6388±0.1131 0.8824±0.1033 11.0
Jaccard 0.7171±0.0957 0.8716±0.0966 0.4788±0.1154 0.8010±0.1275 11.5
Sensitivity 0.8398±0.0714 0.9180±0.0803 0.7091±0.1198 0.8922±0.1025 7.5
Specificity 0.9420±0.0323 0.9304±0.0758 0.9426±0.0284 0.9531±0.0501 8.25

FCN S-M1

Dice 0.8195±0.0830 0.9250±0.0686 0.6493±0.1148 0.8841±0.1116 9.5
Jaccard 0.7211±0.1002 0.8668±0.1009 0.4908±0.1189 0.8057±0.1375 9.5
Sensitivity 0.8410±0.0763 0.9030±0.0893 0.7046±0.1269 0.9156±0.1099 6.75
Specificity 0.9454±0.0350 0.9435±0.0858 0.9484±0.0248 0.9443±0.0632 7.25

FCN S-M3

Dice 0.8265±0.0766 0.9330±0.0581 0.6568±0.1110 0.8897±0.1009 1.5
Jaccard 0.7300±0.0922 0.8793±0.0908 0.4984±0.1144 0.8124±0.1247 2.0
Sensitivity 0.8458±0.0741 0.9233±0.0696 0.7035±0.1240 0.9107±0.1067 3.75
Specificity 0.9457±0.0344 0.9341±0.0894 0.9516±0.0231 0.9514±0.0476 5.5

ResUNet

Dice 0.8173±0.0875 0.9271±0.0629 0.6476±0.1235 0.8773±0.1190 11.25
Jaccard 0.7186±0.1028 0.8698±0.0964 0.4901±0.1249 0.7960±0.1416 11.75
Sensitivity 0.8320±0.0888 0.9320±0.0541 0.6779±0.1463 0.8860±0.1354 11.25
Specificity 0.9391±0.0418 0.9049±0.1201 0.9555±0.0197 0.9569±0.0393 8.0

ResUNet CRFFg S-M1

Dice 0.8215±0.0771 0.9276±0.0611 0.6500±0.1159 0.8868±0.0982 7.0
Jaccard 0.7232±0.0957 0.8703±0.0946 0.4919±0.1220 0.8075±0.1255 7.5
Sensitivity 0.8426±0.0760 0.9148±0.0740 0.7005±0.1380 0.9124±0.1000 6.75
Specificity 0.9446±0.0333 0.9349±0.0849 0.9507±0.0212 0.9481±0.0554 7.0

ResUNet CRFFg S-M3

Dice 0.8142±0.0880 0.9219±0.0722 0.6444±0.1224 0.8763±0.1134 14.5
Jaccard 0.7141±0.1053 0.8623±0.1074 0.4865±0.1241 0.7936±0.1392 14.5
Sensitivity 0.8369±0.0866 0.9167±0.0873 0.7087±0.1435 0.8853±0.1175 10.0
Specificity 0.9379±0.0401 0.9152±0.1022 0.9465±0.0232 0.9520±0.0594 12.5

ResUNet S-M1

Dice 0.8210±0.0828 0.9290±0.0629 0.6511±0.1205 0.8829±0.1105 6.75
Jaccard 0.7233±0.0993 0.8730±0.0967 0.4937±0.1245 0.8033±0.1342 6.5
Sensitivity 0.8392±0.0845 0.9269±0.0694 0.6990±0.1403 0.8917±0.1244 8.0
Specificity 0.9408±0.0391 0.9164±0.1084 0.9513±0.0218 0.9548±0.0475 9.0

ResUNet S-M3

Dice 0.8258±0.0855 0.9284±0.0702 0.6595±0.1219 0.8895±0.1072 2.5
Jaccard 0.7299±0.1022 0.8731±0.1041 0.5033±0.1258 0.8134±0.1313 2.0
Sensitivity 0.8437±0.0829 0.9196±0.0848 0.7078±0.1395 0.9037±0.1136 5.0
Specificity 0.9443±0.0376 0.9275±0.0993 0.9525±0.0216 0.9528±0.0605 5.25

U-Net

Dice 0.8207±0.0840 0.9271±0.0652 0.6542±0.1171 0.8806±0.1117 8.75
Jaccard 0.7224±0.1032 0.8701±0.0999 0.4968±0.1231 0.8003±0.1396 8.5
Sensitivity 0.8395±0.0805 0.9211±0.0758 0.6966±0.1362 0.9009±0.1085 8.25
Specificity 0.9423±0.0366 0.9230±0.0930 0.9525±0.0226 0.9515±0.0520 7.75

U-Net CRFFg S-M1

Dice 0.8158±0.0880 0.9255±0.0666 0.6449±0.1212 0.8770±0.1213 13.0
Jaccard 0.7169±0.1052 0.8677±0.1018 0.4869±0.1242 0.7962±0.1454 12.75
Sensitivity 0.8354±0.0851 0.9151±0.0858 0.6864±0.1422 0.9049±0.1188 10.5
Specificity 0.9398±0.0396 0.9238±0.1040 0.9522±0.0214 0.9434±0.0647 10.75

U-Net CRFFg S-M3

Dice 0.8217±0.0867 0.9280±0.0659 0.6538±0.1240 0.8833±0.1140 6.25
Jaccard 0.7247±0.1039 0.8717±0.0989 0.4974±0.1284 0.8051±0.1402 5.75
Sensitivity 0.8381±0.0843 0.9227±0.0711 0.6906±0.1431 0.9009±0.1215 8.25
Specificity 0.9427±0.0389 0.9210±0.1074 0.9544±0.0216 0.9527±0.0509 6.75

U-Net S-M1

Dice 0.8235±0.0846 0.9282±0.0648 0.6557±0.1207 0.8867±0.1115 4.5
Jaccard 0.7269±0.1020 0.8719±0.0974 0.4991±0.1266 0.8097±0.1362 4.0
Sensitivity 0.8355±0.0850 0.9226±0.0739 0.6824±0.1435 0.9016±0.1217 9.5
Specificity 0.9417±0.0400 0.9167±0.1094 0.9573±0.0197 0.9512±0.0570 8.5

U-Net S-M3

Dice 0.8190±0.0895 0.9234±0.0686 0.6519±0.1245 0.8817±0.1169 10.0
Jaccard 0.7209±0.1074 0.8643±0.1030 0.4953±0.1277 0.8032±0.1447 9.75
Sensitivity 0.8342±0.0862 0.9129±0.0850 0.6888±0.1411 0.9009±0.1190 12.25
Specificity 0.9417±0.0400 0.9214±0.1025 0.9541±0.0214 0.9497±0.0613 9.25

Table B-2. Oxford IIIt Pet results on test partition
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rank
model metric

FCN

Dice 8.67
Jaccard 9.00
Sensitivity 10.33
Specificity 5.00

FCN CRFFg S-M1

Dice 8.33
Jaccard 8.67
Sensitivity 7.33
Specificity 9.00

FCN CRFFg S-M3

Dice 10.33
Jaccard 11.00
Sensitivity 11.33
Specificity 8.33

FCN S-M1

Dice 8.67
Jaccard 9.00
Sensitivity 6.67
Specificity 12.33

FCN S-M3

Dice 5.00
Jaccard 5.00
Sensitivity 4.67
Specificity 12.67

ResUNet

Dice 9.67
Jaccard 9.33
Sensitivity 8.00
Specificity 10.67

ResUNet CRFFg S-M1

Dice 6.67
Jaccard 6.67
Sensitivity 7.00
Specificity 7.67

ResUNet CRFFg S-M3

Dice 9.67
Jaccard 9.00
Sensitivity 9.33
Specificity 7.33

ResUNet S-M1

Dice 5.67
Jaccard 6.33
Sensitivity 7.00
Specificity 4.67

ResUNet S-M3

Dice 8.67
Jaccard 8.00
Sensitivity 9.67
Specificity 9.00

U-Net

Dice 9.33
Jaccard 9.67
Sensitivity 9.67
Specificity 6.67

U-Net CRFFg S-M1

Dice 7.67
Jaccard 8.00
Sensitivity 7.33
Specificity 5.67

U-Net CRFFg S-M3

Dice 10.00
Jaccard 9.00
Sensitivity 9.67
Specificity 3.33

U-Net S-M1

Dice 4.33
Jaccard 4.33
Sensitivity 5.33
Specificity 9.33

U-Net S-M3

Dice 7.33
Jaccard 7.00
Sensitivity 6.67
Specificity 8.33

Table B-3. All models results on all test partition
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