

"EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)"

Mayda Catalina Arrieta Prieto

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá, Colombia 2023

"EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)"

Mayda Catalina Arrieta Prieto

Tesis de investigación presentada como requisito parcial para optar por el título de:

Magíster en Ciencias – Geología

Director:

Geólogo, Ph.D. Carlos Augusto Zuluaga Castrillón

Codirector:

Geólogo, Ph.D. Mauricio Ibáñez Mejía

Línea de investigación:

Geoquímica y petrología metamórfica.

Maestría en Ciencias – Geología Facultad de Ciencias Universidad Nacional de Colombia Sede Bogotá 2023 Este trabajo va dedicado enteramente a mi madre. Su valentía, amor incondicional y fortaleza siempre me impulsarán a honrar su memoria

•

Declaración de obra original

Yo declaro lo siguiente:

He leído el Acuerdo 035 de 2003 del Consejo Académico de la Universidad Nacional. «Reglamento sobre propiedad intelectual» y la Normatividad Nacional relacionada al respeto de los derechos de autor. Esta disertación representa mi trabajo original, excepto donde he reconocido las ideas, las palabras, o materiales de otros autores.

Cuando se han presentado ideas o palabras de otros autores en esta disertación, he realizado su respectivo reconocimiento aplicando correctamente los esquemas de citas y referencias bibliográficas en el estilo requerido.

He obtenido el permiso del autor o editor para incluir cualquier material con derechos de autor (por ejemplo, tablas, figuras, instrumentos de encuesta o grandes porciones de texto).

Por último, he sometido esta disertación a la herramienta de integridad académica, definida por la universidad.

Nombre: Mayda Catalina Arrieta Prieto

Fecha: diciembre de 2023

Agradecimientos

En primer lugar, le doy gracias al profesor Carlos Zuluaga por la confianza depositada en mí, sus enseñanzas, su paciencia y su guía, las cuales fueron una constante a lo largo de mis estudios de pregrado y maestría.

Al profesor Mauricio Ibáñez por el acompañamiento y asesoría a lo largo del desarrollo de este trabajo.

Al profesor Óscar Castellanos, por su apoyo, sus enseñanzas, por transmitir su pasión y siempre darme una palabra de aliento cuando lo necesité.

A mi hermano Mario por darme alientos, por impulsarme día a día e inspirarme a buscar ser cada día mejor, por apoyarme también en el desarrollo de todas mis metas y por su amor incondicional.

A mi padre Mario por su apoyo incondicional, por aterrizarme siempre que lo necesité.

A los amigos que me acompañaron a lo largo de este proceso y me acompañaron con su cariño y palabras de aliento. Me dejan recuerdos que atesoraré siempre.

A los miembros del laboratorio microfluid spectral del Departamento de Geociencias por su apoyo en la ejecución de análisis de espectrometría Raman.

A la Universidad Nacional de Colombia. Todo lo que soy como profesional es gracias a este lugar que me permitió crecer, aprender mucho y conocer gente maravillosa.

Agradecemos a Computational Infrastructure for Geodynamics (geodynamics.org), que está financiada por la National Science Foundation con el premio EAR-0949446 y EAR-1550901, por apoyar el desarrollo de ASPECT, herramienta usada para la construcción de modelos de densidad en este trabajo.

Resumen

EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)

Los complejos de alta Presión que se encuentran a lo largo de la superficie terrestre proporcionan evidencia de los procesos involucrados tanto en la cristalización de las rocas en el canal de subducción como en su exhumación. Dichos procesos son clave para comprender la dinámica y la evolución de las zonas de subducción (por ejemplo, a través de la reconstrucción de trayectorias P-T).

El complejo Raspas (suroeste de Ecuador) contiene rocas de alta Presión como eclogitas y esquistos anfibólicos con las asociaciones minerales estables correspondientes a glaucofana + granate + epidota + onfacita + mica blanca + rutilo ± cuarzo ± apatita ± pirita ± calcita. Este complejo se ha relacionado genéticamente con los procesos de acreción y subducción de los montes submarinos, que ocurrieron en América del Sur durante el Jurásico Superior - Cretácico Inferior, y la exhumación del complejo probablemente estuvo relacionada con la dinámica dentro de los canales de subducción.

Este trabajo muestra una combinación de nuevas observaciones petrográficas, datos de química de rocas completas y datos de química mineral utilizados para determinar las condiciones metamórficas máximas para las rocas de alta Presión del complejo y para reconstruir las trayectorias P-T.

El modelado termodinámico muestra que después del pico de metamorfismo en la facies eclogita (ca. 15.5-21 Kbar y 630 - 700°C) algunas de las rocas del Complejo registraron un evento retrógrado probablemente causado por su exhumación.

La interpretación del proceso retrógrado es consistente con los resultados de termometría de zircón en rutilo, barometría elástica de inclusiones cuarzo en granate, modelado PT con múltiples reacciones y la presencia de microestructuras retrógradas como anfíbol reemplazando piroxeno, cloritización de granate, cristalización de plagioclasa y reemplazo de rutilo por titanita.

Palabras clave: Complejo, canal de subducción, metamorfismo, metamorfismo retrógrado, eclogitas.

Abstract

METMORPHIC AND TECTONIC EVOLUTION OF RASPAS COMPLEX (SOUTHWESTERN ECUADOR)

High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones (e.g., through reconstruction of P-T trajectories).

The Raspas complex (southwestern Ecuador) contains high pressure rocks such as eclogites and amphibolic schists with the mineral assemblages glaucophane + garnet + epidote + omphacite + white mica + rutile \pm quartz \pm apatite \pm pyrite \pm calcite stabilized. This complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during Late Jurassic - Early Cretaceous, and the exhumation of the complex was probably related to dynamics within subduction channels.

This work shows a combination of new petrographic observations, whole-rock chemistry data, and mineral chemistry data used to determine peak metamorphic conditions for the high-pressure rocks of the complex and to reconstruct P-T trajectories.

Thermodynamic modelling shows that after peak metamorphism in eclogite facies (ca. 15.5-21 Kbar and 630 - 700°C) some of the rocks from the Complex recorded a retrograde event probably caused by its exhumation.

The interpretation of the retrograde process is consistent with results from zircon in rutile thermometry, quartz in garnet elastic barometry, PT modeling with multiple reactions and the presence of retrograde microstructures such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.

Keywords: Complex, subduction channel, metamorphism, retrograde metamorphism, eclogites.

TABLA DE CONTENIDO

INTRODUCCIÓN	15
1.1 Objetivo general:	16
1.2 Objetivos específicos:	16
2. Estudios previos	17
3. Localización y descripción del área de estudio	20
3.1 Geología General:	20
3.1.1 Unidad La Chilca	20
3.1.2 Unidad Río Panupalli	20
3.1.3 Unidad El Toro	21
3.2 Geología Estructural:	22
4. Metodología	
4.1 Petrografía	
4.2 Análisis de química mineral	
4.3 Química de roca total	25
4.4 Cálculos de presión y temperatura	25
4.4.1 Termobarometría y pseudosecciones:	25
4.4.2 Termometría de Zr en rutilo:	
4.4.2 Cálculos de Presión a partir de espectrometría Raman	27
4.5 Modelo de densidades	31
5. Resultados	
5.1 Observaciones petrográficas:	
5.1.1 Meta-Pelitas	
5.1.2 Eclogitas	
5.1.3 Esquistos anfibólicos	
5.1.4 Serpentinita	39
5.2 Química mineral	40
5.3 Química de roca total	
5.4 Cálculos de Presión y temperatura	
5.4.1 Termobarometría y pseudosecciones	
5.4.2 Termometría de Zr en rutilo	53
5.4.3 Cálculos de P a partir de espectrometría Raman.	54

5.5 Modelo de densidades	. 57
6. Discusión	. 59
6.1 Petrografía	. 59
6.2 Química Mineral: Análisis textural y composicional con microsonda electrónica	. 61
6.3 Química de roca total	. 62
6.4 Cálculos de Presión y temperatura	. 65
6.5 Modelo de densidades	. 69
7. Conclusiones	. 70
7.2 Recomendaciones	. 71
BIBLIOGRAFÍA	. 72
ANEXOS	. 79

LISTA DE TABLAS

Tabla 1 Resumen de datos geocronológicos del Complejo Raspas	19
Tabla 2 Estándares, tipo de señal, cristales y tiempo de medición de composiciones o	de
silicatos medidas con microsonda electrónica	25
Tabla 3 Estándares, tipo de señal, cristales, tiempo de medición y límites de detección o	de
las concentraciones de Zr en rutilo medidas con microsonda electrónica	26
Tabla 4 Temperaturas calculadas a partir de concentraciones de Zr medidas en cristales	de
rutilo de las muestras ECU-6 y ECU-21	53
Tabla 5 Datos ingresados y calculados con la herramienta stRAinMAN, según la	as
inclusiones analizadas	55
Tabla 6 Resultados para módulos de estrés de cada inclusión	56

LISTA DE FIGURAS

Fig. 1 Geología general y ubicación de la zona de estudio. Modificado de Feininger et al. Fig. 3 Representación esquemática del sistema conformado por un mineral elásticamente isotrópico y una inclusión elásticamente anisotrópica. Modificado de Gonzalez et al., (2021) Fig. 5 Microfotografías en nicoles paralelos y cruzados de la sección delgada ECU 9. Pseudomorfo de granate rodeado por matriz de micas y cuarzo (A y B). Cristales de Cloritoide dispuestos de manera discordante a la esquistosidad de la muestra (C y D).... 36 Fig. 6 Microfotografías muestras ECU 7 con texturas indicativas de metamorfismo retrógrado: cloritización de granate (A y B) y coronas de anfíbol alrededor de cristales de piroxeno (C y D) y muestra ECU 21 con patrones de inclusiones de anfíbol y cuarzo Fig. 7 Microfotografías esquistos anfibólicos en nicoles paralelos y cruzados. Muestras Fig. 8 Microfotografías en nicoles paralelos y cruzados de la muestra ECU 20 (Serpentinita), exhibiendo porfiroblastos de olivino y piroxeno embebidos en una matriz de serpentina y Fig. 9 Perfiles composicionales de cristales de granate para las muestras ECU1, ECU6, Fig. 10 Diagramas de clasificación de piroxenos alcalinos. Ac, acmita; Hd, hedenbergita; Jd, jadeita; CaTs, Ca-Tschermakita según Clark & Papike (1968) (Izq.) y según Morimoto Fig. 11 Clasificación composicional de cristales de anfíbol. Modificado de Leake et al., Fig. 12 Diagrama de clasificación para rocas extrusivas. Modificado de Pearce, (2008)... 44 Fig. 13 Arañograma con mormalización de composiciones de todas las rocas estudiadas según NMORB......45 Fig. 14 Diagrama tipo spider de normalización de patrones de tierras raras de las muestras según la composición del Manto Primitivo. Modificado de McDonough & Sun, (1995) 46 Fig. 15 Pseudosección calculada para la muestra ECU 1...... 46 Fig. 16 Pseudosección calculada para la muestra ECU6...... 48 Fig. 17 Pseudosección calculada para la muestra ECU10......50 Fig. 18 Pseudosección calculada para la muestra ECU21......52 Fig. 19 Espectros Raman para las inclusiones de cuarzo en granates de las muestras ECU-1, ECU-6 y ECU-21 (orden descendente)......54 Fig. 20 Curvas de entrampamiento calculadas para inclusiones de cuarzo en granates de las muestras ECU1, ECU6 Y ECU21......55 Fig. 21 Espectros Raman de inclusiones de cuarzo en granate para las muestras estudiadas en comparación con el espectro de un cristal de cuarzo libre medido bajo las mismas Fig. 22 Modelo de densidades para un ambiente de subducción con características reológicas similares a las de la subducción del margen nor-occidental de Sur América... 58

Fig. 24 Cristal de granate de la muestra ECU 10 con reemplazamiento en el borde cristales de clorita y plagioclasa	e por 61
Fig. 25 Imagen de electrones retrodispersados de reemplazamiento de rutilo por titani muestra ECU 1	ta en 62
Fig. 26 Fotografías de testigos pulidos de las muestras ECU 2 (A), ECU 7 (B), ECU 8 ECU 11(D).	(C) y 63
Fig. 27 Diagrama comparativo de resultados de termobarometría según la muestra autor.	ı y el 69

LISTA DE ABREVIACIONES (Tomado de Whitney & Evans, 2010)

TABLE 1	Updated list of abbre	eviations	Symbol	Mineral Name	IMA status*	Symbol	Mineral Name II	MA status*
Symbol	Mineral Name	IMA status*	Chu	clinohumite	G	Ged	gedrite	Rd
Acm	acmite	D	Cpt	clinoptilolite	A	Gh	gehlenite	G
Act	actinolite	Ă	Срх	clinopyroxene	GROUP	Gk	geikielite	G
Adl	adularia	ï	Czo	clinozoisite	G	Gbs	gibbsite	A
Aea	aegirine	A	Cln	clintonite	A	Gis	gismondine	A
Ak	åkermanite	G	Coe	coesite	A	Glt	glauconite	GROUP
Ab	albite	G	Coh	cohenite	G	Gln	glaucophane	Rd
Afs	alkali feldspar	GROUP	Crd	cordierite	G	Gme	gmelinite	A
Aln	allanite	A	Crr	corrensite	G	Gth	goethite	A
Alm	almandine	G	Crn	corundum	G	Gdd	grandidierite	G
Als	aluminosilicate		Cv	covellite	G	Gr	graphite	G
	(Al₂SiO₅ polymorphs)	GROUP	Crs	cristobalite	G	Gre	greenalite	G
Alu	alunite	Rd	Crt	crossite	D	Grs	grossular	A
Amk	amakinite	Rd	Crl	cryolite	G	Gru	grunerite	Rd
Ame	amesite	G	Cbn	cubanite	G	Gp	gypsum	G
Amp	amphibole	GROUP	Cum	cummingtonite	RO		L - D -	~
Anl	analcime (analcite)	A	Cpr	cuprite	G	HI	halite	G
Ant	anatase	A	Csp	cuspiaine	G	Hrm	harmotome	A
And	andalusite	G	Del	de de tra	and betrad	Hst	hastingsite	ка
Adr	andradite	G	Dpn	daprinite	not listed	HSM	nausmannite	G
Ang	anglesite	G	Dat	datolite	G	Hyn	hauyne	G
Anh	anhydrite	G	Dor	daubreelite	G	HZI	headlewoodite	G
Ank	ankerite	G	Die	deente d:d	č	Ha	hedenbergite	~
Ann	annite	A	Dia	diamond	G	Hem	hematite	A
An	anorthite	G	Dsp	diaspore	G	nc Uul	hercynite	
Ano	anorthoclase	1	DCK	dickite	G	Hui	heulandite	A
Ath	anthophyllite	Rd	Di	digenite	A .	Hbr	hibschite	Ro
Atg	antigorite	Rn	Det	diopside	â	Hab	höghomite	D
Ар	apatite	GROUP	Dol	dolomite	Ğ	Hol	hollandite	Ğ
Аро	apophyllite	GROUP	Dov	douinte	Ğ	Hlm	holmquistito	D-
Arg	aragonite	G	Dum	dumortiorito	Ğ	HILL	homblanda	GROUP
Art	arfvedsonite	A	Dum	dumordente	4	Hur	howipito	4
Arm	armalcolite	Rd	East	eastonite	Rd	Hu	humite	Ĝ
Ару	arsenopyrite	A	Ec	ecandrewsite	A	Hor	bydrogrossular	GROUP
Aug	augite	A	Eck	eckermannite	Δ.	Hyp	hypersthene	D
Awr	awaruite	G	Ed	edenite	2	i iyp	hyperscrene	0
Ax	axinite	GROUP	Elb	elhaite	Ĝ	10+	illite	GROUP
	1.10.10	-	FIL	ellenbergerite	A	llm	ilmenite	G
Bab	babingtonite	G	Eng	enargite	G	llv	ilvaite	Ğ
вау	baddeleyite	G	En	enstatite (ortho-)	A			-
Brt	barite (baryte)	A	Ep	epidote	GROUP	Jd	iadeite	A
Brs	Darroisite	Ka	Eri	erionite	A	Irs	jarosite	Rd
Bel	Deidellite	G	Esk	eskolaite	G	Jim	iimthompsonite	A
Bri	Deryi	GROUP	Ess	esseneite	A	Jhn	iohannsenite	A
DU	Diotite	GROOP	Eud	eudialite	A		,	
Phone	bixbyite bibmite (beebmite)	G				Krs	kaersutite	Rd
Dnm D-	bonmite (boenmite)		Fas	fassaite	D	Kls	kalsilite	G
BN D-L	Dornite	A	Fa	favalite	G	Kam	kamacite (α-FeNi)	D
DIK	brookite	ç	Fsp	feldspar	GROUP	Kin	kaolinite	A
Brc	brucite	G	Fac	ferro-actinolite	Rd	Ktp	katophorite	Rd
DSL	Dustamite	9	Fath	ferro-anthophyllite	Rd	Kfs	K-feldspar	informal
Cal	calcita	6	Fbrs	ferrobarroisite	Α	Khl	K-hollandite	н
Con	cancrinite	G	Fcar	ferrocarpholite	Α	Kir	kirschsteinite	G
Col	cannilloite	н	Fcel	ferroceladonite	Α	Krn	kornerupine	G
Ch	carbonate mineral	GROUP	Fec	ferro-eckermannite	Rd	Kos	kosmochlor	Α
Car	carpholite	G	Fed	ferro-edenite	Rd	Kut	kutnohorite (kutnahorite) G
Cst	cassiterite	Ğ	Fgd	ferrogedrite	Rd	Ку	kyanite	Α
Cel	celadonite	Ă	Fgl	ferroglaucophane	Rd	-		
Clt	celestine	Δ	Fkrs	ferrokaersutite	A	Lrn	larnite	G
Cle	celsian	Ĝ	Fny	ferronyboite	н	Lmt	laumontite	A
Cor	conussito	G	Fprg	ferropargasite	Rd	Lws	lawsonite	G
Chz	chabazite	4	Frct	ferrorichterite	Α	Lz	lazulite	A
Cct	chalcocite	Ĝ	Fs	ferrosilite	Rn	Lzr	lazurite	G
Con	chalconvrite	G	Fts	ferrotschermakite	Rd	Lpd	lepidolite	GROUP
Chm	chamosite	Ğ	Fwn	ferrowinchite	Rd	Lct	leucite	G
Chs	chesterite	Ā	Fi	fibrolite (fibrous		Lm	limonite	not listed
Chl	chlorite	GROUP		sillimanite)	informal	Liq	liquid	
Cld	chloritoid	G	FI	fluorite	G	Lz	lizardite	G
Chp	chondrodite	G	Fo	forsterite	G	Lo	löllingite (loellingite)	G
Chr	chromite	Ğ	Fos	foshagite	G			
Cd	chrysocolla	A	Frk	franklinite	G	Mgh	maghemite	G
Ctl	chrysotile	Rd	Ful	fullerite	N	Marf	magnesio-arfvedsonite	Rd
Cin	cinnabar	6				Mcar	magnesiocarpholite	Α
Cam	dinoamphibole	GROUP	Ghn	gahnite	G	Mfr	magnesioferrite	G
Clc	clinochlore	G	Glx	galaxite	G	Mhs	magnesiohastingsite	Rd
Cen	dinoenstatite	Ā	Gn	galena	G	Mhb	magnesiohornblende	Rd
Cfs	clinoferrosilite	A	Grt	garnet	GROUP	Mkt	magnesiokatophorite	Rd

Symbol	Mineral Name	IMA status*	Symbol	Mineral Name	IMA status*	Symbol	Mineral Name	IMA status*
Mrbk	magnesioriebeckite	Rd	Pgt	pigeonite	A			
Msdg	magnesiosadanagite	Rd	Pl	plagioclase	GROUP	Tae	taenite (γ-Fe, Ni)	G
Mst	magnesiostaurolite	Α	Prh	prehnite	G	Tlc	talc	G
Mtm	magnesiotaramite	Rn	Prm	prismatine	Rd	Trm	taramite	Rd
Mws	magnesiowustite	not listed	Psb	pseudobrookite	Rd	Tnt	tennantite	G
Mgs	magnesite	Α	Pmp	pumpellyite-(Al)	Α	Tnr	tenorite	Α
Mag	magnetite	G	Pv	pyrite	G	Tep	tephroite	G
Mai	majorite	Α	Pcl	pyrochlore	Α	Ttr	tetrahedrite	Α
MIc	malachite	G	Pro	pyrope	G	Thm	thomsonite	A
Mna	manganosite	G	Pph	pyrophanite	G	Thr	thorite	G
Mrc	marcasite	G	Prl	pyrophyllite	G	Tly	tillevite	G
Mra	margarite	A	Pxf	pyroxferroite	A	Ttn	titanite (sphene)	A
Mar	marialite	G	Pxm	pyroxmangite	G	Tpz	topaz	G
Mei	meionite	G	Po	pyrrhotite	G	Tur	tourmaline	GROUP
MI	melilite	GROUP				Tr	tremolite	Rd
Mw	merwinite	G	Qnd	gandilite	A	Trd	tridymite	G
Mes	mesolite	Α	Oz	quartz	Α	Tro	troilite	G
Mc	microcline	G	-			Ts	tschermakite	Rd
Mir	millerite	G	Rnk	rankinite	G			
Mns	minnesotaite	G	Rlg	realgar	G	Usp	ulvöspinel	G
Mog	moganite	Α	Rds	rhodochrosite	A	Um	uraninite	G
Mol	molybdenite	G	Rdn	rhodonite	Α	Uv	uvarovite	Α
Mnz	monazite	Α	Rct	richterite	A			
Mtc	monticellite	G	Rbk	riebeckite	Rd	Vtr	vaterite	Α
Mnt	montmorillonite	G	Rwd	ringwoodite	A	Vrm	vermiculite	G
Mor	mordenite	Α	Rdr	roedderite	Α	Ves	vesuvianite	Α
Mul	mullite	G	Rsm	rossmanite	A			
Ms	muscovite	Α	Rt	rutile	G	Wds	wadsleyite	A
						Wag	wagnerite	Rd
Ntr	natrolite	Α	Sdg	sadanagaite	Rd	Wrk	wairakite	A
Nph	nepheline	G	Sa	sanidine	G	Wav	wavellite	A
Nrb	norbergite	G	Sap	saponite	G	Wht	whitlockite	G
Nsn	nosean	G	Spr	sapphirine	G	Wlm	willmenite	G
Nyb	nyböite	Rd	Scp	scapolite	GROUP	Wnc	winchite	Rd
	2		Sch	scheelite	G	Wth	witherite	G
O	olivine	GROUP	Srl	schorl	G	Wo	wollastonite	A
Omp	omphacite	A	Scb	schreibersite	G	Wur	wurtzite	G
Opl	opal	G	Sep	sepiolite	G	Wus	wüstite	G
Opq	opaque mineral	informal	Ser	sericite	D			
Огр	orpiment	G	Srp	serpentine	GROUP	Xtm	xenotime	A
Oam	orthoamphibole	GROUP	Sd	siderite	G	Xon	xonotlite	G
Or	orthoclase	Α	Sil	sillimanite	G			
Oen	orthoenstatite	D	Sme	smectite	GROUP	Yug	yugawaralite	A
Орх	orthopyroxene	GROUP	Sdl	sodalite	G			
Osm	osumilite	G	Sps	spessartine	A	Zeo	zeolite	GROUP
			Sp	sphalerite	A	Znw	zinnwaldite	GROUP
Plg	palygorskite	G	Spn	sphene (titanite)	D	Zrn	zircon	G
Pg	paragonite	A	Spl	spinel	G	Zo	zoisite	G
Prg	pargasite	Rd	Spd	spodumene	A			
Pct	pectolite	G	Spu	spurrite	G	* Internat	tional Mineralogical A	ssociation (IMA)
Pn	pentlandite	G	St	staurolite	G	abbreviati	ions: A = Approved; D	 Discredited; G
Per	periclase	G	Stv	stevensite	Q	= Grandfa	thered (generally rega	rded as valid min-
Prv	perovskite	G	Stb	stilbite	A	eral name); GROUP = Name desi	gnates a group of
Ptl	petalite	G	Stp	stilpnomelane	A	mineral sp	pecies; H = hypothetica	al (e.g., synthetic);
PhA	phase A	not listed	Sti	stishovite	A	l = intern	nediate in a solid-sol	ution series; Q =
Ph	phengite	G	Str	strontianite	G	questiona	ble; Rd = Redefinition	approved by IMA
Php	phillipsite	Α	Sud	sudoite	Rd	Commissi	on on New Minerals, N	omenclature and
Phl	phlogopite	A	Syl	sylvite	G	Classificat	tion (CNMNC); Rn = R	enamed with ap-
Pmt	piemontite	A				proval of t	the CNMNC.	

INTRODUCCIÓN

El estudio de complejos de alta presión es de suma importancia para entender la dinámica de la evolución del canal de subducción incluyendo los procesos que ocurren durante la exhumación de las rocas atrapadas en el canal. El entendimiento de los procesos que ocurren a lo largo de la zona de subducción es clave para comprender la sismicidad y el volcanismo que ocurre en estos ambientes tectónicos.

Uno de los complejos cuyo estudio puede ayudar a dilucidar la evolución y los procesos de la zona de subducción del margen noroccidental de Sur América es el Complejo Raspas, ubicado en el suroccidente de Ecuador. Este complejo fue definido como una ocurrencia de rocas ultramáficas que sobresalen entre las litologías circundantes, debido a que no comparten génesis y se encuentran relacionadas por una geología estructural compleja. Las rocas del Complejo Raspas corresponden a litologías emplazadas en facies esquisto verde y anfibolita, con tendencia de ubicación Este-Oeste y que comprenden también rocas de alta presión en facies esquisto azul y eclogita. Estas rocas conforman un cuerpo con relaciones estructurales complejas con diversas fallas de rumbo en una franja de aproximadamente 25 km de largo y 6 km de ancho y con una edad interpretada de metamorfismo de K/Ar en fengita de 132 ± 5 Ma (Feininger, 1980).

Existe también un consenso en cuanto a la trayectoria de presión y temperatura alcanzadas por las rocas de este Complejo con una presión de entre 13 y 20 kbar y temperaturas entre 600 y 750°C (Arculus *et al.*, 1999; Riel *et al.*, 2013).

John *et al.* (2010) obtuvieron edades Lu/Hf en granate de 133.4 \pm 2.1 Ma similares a las de Feininger (1980) por lo que se deduce que el metamorfismo prógrado de este Complejo alcanzó su pico hace por lo menos 130 Ma. Feininger & Silberman (1982) atribuyen la edad obtenida por K/Ar en fengita como la datación del ascenso isostático de la harzburgita serpentinizada envolvente cuando cesó el movimiento a lo largo de una zona de subducción subyacente; la interpretación es soportada por el hecho de que esta edad es sincrónica con la edad de las lavas más jóvenes de un arco volcánico contemporáneo en el este de Ecuador. Las edades de enfriamiento Ar/Ar entre 123 y 129 Ma Bosch *et al.*, (2002) y Gabriele *et al.*, (2004) permiten inferir que el enfriamiento tardó entre 0 y 15 Ma. En este trabajo se propone realizar termometría de circon en rutilo y titanita (Tomkins *et al.*, 2007) y cálculos realizados a partir de mediciones de Raman de inclusiones de cuarzo en granate. Esto permitirá corroborar los valores PT calculados con el método de reacciones múltiples, compararlos con los previamente publicados por otros autores y, junto con diagramas de fase calculados para cada roca y observaciones texturales en la fase de petrografía, establecer la trayectoria metamórfica representativa del Complejo Raspas.

1. Objetivos

1.1 Objetivo general:

Establecer un modelo de evolución para el Complejo Raspas (Ecuador), a partir de la integración de modelamiento numérico y análisis químicos, con el fin de identificar procesos claves en su formación y exhumación.

1.2 Objetivos específicos:

- Construir diagramas de fase para rocas con diferentes grados de metamorfismo.

- Definir una trayectoria P- T para el complejo Raspas a partir del modelamiento de una roca representativa de determinados grupos litológicos, i.e. esquisto anfibólico y eclogita.

- Construcción de modelos de densidades.

- Establecer un modelo evolutivo para el Complejo Raspas

2. ESTUDIOS PREVIOS

Feininger, (1980) definió las rocas pertenecientes a la franja del Complejo Raspas como *"Esquistos pelíticos compuestos por cuarzo, fengita, paragonito, granate, cloritoide, rutilo, grafito, cianita y rutilo"* con la cianita y el rutilo no presentes en todas las rocas que se estudiaron. A partir de relaciones de fases, el coeficiente de partición de Mg/ (Mg + Fe_{total} + Mn) en pares minerales como granate-anfíbol y onfacita-anfíbol, junto con la ausencia de lawsonita, (Feininger, 1980) estimó que las condiciones para el metamorfismo prógrado fueron de T = 580° ± 20°C y P_{total} = 13 ± 3 kbar, que corresponden a unas profundidades de aproximadamente 43 ± 10 km. Este autor también establece que las rocas del Complejo Raspas ascendieron a través del canal de subducción gracias a serpentinización ocurrida en profundidad. En este trabajo se establece que el H₂O que propició la serpentinización provino de la misma deshidratación de las rocas pelíticas durante su descenso; esta hipótesis es soportada por la evidencia experimental de que la antigorita que caracteriza a las rocas de la porción de Harzburgita serpentinizada es estable a las condiciones de recristalización de este Complejo.

Duque, (1993) evaluó la consistencia de la aplicación de varios barómetros sobre las rocas del Complejo Raspas. El primer barómetro que utilizó corresponde a la reacción de intercambio de clinopiroxeno y granate y las estimaciones de temperatura concordantes se dieron mediante aproximaciones de mínimos cuadrados y también usó el barómetro de plagioclasa-clinopiroxeno-cuarzo usando un modelo de solución sólida molecular ideal. Estas estimaciones dieron como resultado presiones de 9 ± 0.5 kbar y temperaturas de 465 $\pm 30^{\circ}$ C, que indican que las rocas de este complejo corresponden a un bloque alóctono que se recristalizó bajo condiciones de una zona de subducción activa. Este autor también interpreta que bloques que alcanzaron la facies esquisto azul ascendieron al ser embebidos por la unidad parcialmente serpentinizada de "El Toro". Se presume entonces que el ascenso mencionado fue rápido debido a la preservación de la asociación mineral de alta presión.

Arculus *et al.*, (1999) interpretaron en su trabajo que las rocas de este complejo sufrieron condiciones de T<600°C y P entre 13 y 20 kbar, lo que concuerda con lo planteado por Feininger, (1980). Además, la geoquímica de elementos mayores y trazas les permitió

EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)

interpretar que estas litologías involucran una combinación estratificada de rocas con afinidad oceánica y mantélica. En su trabajo, la geoquímica isotópica y de tierras raras indican que el Rb, Sr, y Ba se perdieron en el proceso de metamorfismo y exhumación, mientras que el U, Th, Pb y los REEs permanecieron inmóviles debido a la preservación de fases hidratadas en las eclogitas. Esta interpretación se encuentra soportada por la presencia de fases hidratadas en las eclogitas (clinozoisita y anfíbol), pues, a mayores tasas de deshidratación (mayores presiones) se podrían haber liberado estos elementos.

Bosch *et al.*, (2002) observaron que en el Complejo Raspas: (i) las rocas ultramáficas presentan patrones relativamente planos en la normalización respecto a condrito, (ii) las rocas pelíticas que fueron sometidas a metamorfismo en facies eclogita presentan afinidades intermedias correspondientes a MORB y OIB con patrones de enriquecimiento en tierras raras livianas (LREE) y (iii) las anfibolitas presentan afinidades N-MORB con patrones enriquecidos en LREE. Difieren con la definición para este complejo como *"mélange"* ya que la asociación de metamorfismo de alta presión de rocas de afinidades máficas en conjunto con rocas continentales sugieren que el límite de la corteza oceánica arrastró parte de los sedimentos del prisma de acreción a la zona de subducción. Estos autores sugieren que la presencia de rocas de menor grado metamórfico en Ecuador y Colombia se dan debido a la naturaleza compuesta (polimetamórfica) para el evento de acreción del Jurásico Tardío – Cretácico Temprano.

Gabriele *et al.*, (2004) establecieron unas condiciones de presión y temperatura para las rocas del Complejo Raspas de 20 kbar en un rango de 550-600°C; para estos cálculos utilizaron el intercambio de Fe-Mg₋₁ entre granate-fengita y granate-clorita como termómetro. Los valores de presión fueron inferidos a partir de la estabilidad del paragonito utilizando la grilla petrogenética del sistema KFMnMASH. Además, reportan la presencia de pseudomorfos de cloritoide y cuarzo en granate relacionada a procesos descompresivos, bajo los cuales argumentan que una porción de este complejo sufrió metamorfismo retrógrado.

John *et al.*, (2010) midieron relaciones isotópicas Lu-Hf para esquistos azules, metapelitas y eclogitas del Complejo Raspas y obtuvieron una edad de 130 Ma, correspondiente al

EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)

crecimiento del granate de alta presión. La termobarometría en su trabajo (termómetro de intercambio entre Fe y Mg entre granate – clinopiroxeno y granate – fengita) indica que el pico metamórfico ocurrió a aproximadamente 18 kbar y 600°C para las eclogitas. Las firmas geoquímicas sugieren que los protolitos son basaltos de dorsal meso-oceánica (MORB) típicos para las eclogitas, mientras que los esquistos azules presentan características típicas de montes marinos y las peridotitas serpentinizadas tienen firma mantélica. Las variaciones de T y P para los diferentes tipos de roca estudiados en este trabajo muestran que sufrieron el mismo evento metamórfico asociado a una zona de subducción. La asociación de estas litologías de afinidades ligeramente diferentes apunta, según los autores, a que se trata de una secuencia ofiolítica exhumada.

En resumen, existe un consenso en la interpretación entre diversos autores para el metamorfismo del Complejo Raspas: alcanzó su pico a presiones \leq 20 kbar y temperaturas de 430-600°C hace aproximadamente 130 Ma y sufrió enfriamiento rápidamente en un rango de tiempo entre 0 y 15 Ma (**Tabla 1**). Estas características contribuyen a determinar que la zona de subducción es predominantemente cálida.

	Datos geocronológicos discriminados por método, autor, roca y mineral.								
Método	K/Ar	Ar/Ar	Ar/Ar	Ar/Ar	Ar/Ar	Lu/Hf			
Roca	Metapelita	Eclogita	Eclogita	Metapelita	Metapelita	Eclogita			
Mineral	Fengita	Fengita	Fengita	Fengita	Fengita	Granate			
Edad	132 ± 5 Ma	123.9 ± 1.4 Ma	127.1 ± 1.3 Ma	123.4 ± 1.3 Ma	129.3 ± 1.1 Ma	133.4 ± 2.1 Ma			
Autor	(Feininger & Silberman, 1982)	(Gabriele <i>et al.</i> , 2004)	(Bosch <i>et al.</i> , 2002)	(Gabriele <i>et</i> <i>al</i> ., 2004)	(Bosch <i>et al</i> ., 2002)	(John <i>et al</i> ., 2010)			

 Tabla 1 Resumen de datos geocronológicos del Complejo Raspas.

3. LOCALIZACIÓN Y DESCRIPCIÓN DEL ÁREA DE ESTUDIO

La zona de estudio se encuentra ubicada en la región suroeste de Ecuador; el Complejo Raspas hace parte de la provincia metamórfica "El Oro", que corresponde a una sección de antearco compuesta de rocas pelíticas y arenitas sin metamorfismo al sur y al norte corresponde a una serie migmatítica, yuxtapuesta por un plutón gabróico y una unidad en facies esquisto azul (Riel *et al.*, 2016) ubicada al Oeste de la Cordillera Real (**Fig. 1**).

3.1 Geología General:

Las rocas estudiadas en este trabajo fueron extraídas a lo largo de la Quebrada Raspas (**Fig. 2**) en donde afloran los grupos litológicos que caracterizan al Complejo Raspas, que son las unidades de La Chilca, Río Panupalli y El Toro. Estas unidades conforman una franja de aproximadamente 35 km de longitud.

3.1.1 Unidad La Chilca

Consta principalmente de eclogitas con asociación mineral característica Omp+Grt+Brs+Czo+Rt+Qz \pm Py \pm Ap y esquistos azules con asociación mineral Grt+Gln+Pg+Ms+Phg+Ep+Rt \pm Qz \pm Ap \pm Py. Se han reportado como minerales secundarios Chl \pm Ttn \pm Ab \pm Cal (Feininger & Silberman, 1982).

Esta unidad se interpreta como del Cretácico Temprano con base en datos geocronológicos reportados entre 127±1 Ma a 132±5 Ma de K-Ar en fengitas (Feininger & Silberman, 1982), Lu-Hf en granates (John *et al.*, 2010) y Ar-Ar en fengita y anfíbol (Bosch *et al.*, 2002).

3.1.2 Unidad Río Panupalli

Se encuentra conformando la parte periférica del Complejo Raspas y consta de esquistos de actinolita con textura entre masiva y foliada. La asociación mineral característica para estos esquistos es Act+Ab+Qz+Chl con la presencia de minerales secundarios Grt±Gln±Ttn±Cal±opacos. Para algunos autores, la presencia de estos minerales secundarios indica una facies de alta presión al igual que la de las rocas de la Unidad La Chilca (Aspden *et al.*, 1994).

3.1.3 Unidad El Toro

Compuesta por rocas ultramáficas (serpentinitas y harzburgitas) con una composición modal de olivino (70%), ortopiroxeno (12%), anfíbol (8%), antigorita (5%), clorita (3%) y magnetita (2%). En algunas zonas las harzburgitas se encuentran altamente serpentinizadas con porfiroblastos de olivino; también se logran encontrar antigorititas altamente serpentinizadas de grano muy fino que se asocian con esta unidad (Bosch *et al.*, 2002).

Fig. 1 Geología general y ubicación de la zona de estudio. Modificado de Feininger *et al.* (1980).

3.2 Geología Estructural:

El Complejo Raspas se encuentra limitado al norte por la falla "La Palma – El Guayabo" y al sur por la falla "Represa Tahuín". Estas estructuras tienen un rumbo predominantemente E-W y son de componente dextral.

La Falla "Represa-Tahuín" se interpreta como un límite tectónico al sur de la División Mélange Palenque, de edad Jurásica, con el Complejo Raspas. Esta falla se extiende desde el oeste de la represa Tahuín hasta el Este de Piedras. Debido a su posible reactivación en el Oligoceno esta estructura establece el contacto entre las rocas de la división Palenque y las rocas del Complejo Raspas (Instituto Nacional de Investigación Geológico Minero Metalúrgico, 2017).

La falla "La Palma–El Guayabo" separa las rocas de edad Cretácica del Complejo Raspas de las rocas del Triásico Tardío de la unidad Limón Playa; se extiende desde el suroeste de Arenillas hasta la quebrada Panupallí, donde toma el nombre de falla "Piñas–Portovelo" y cambia su dirección a NW –SE. Un cristal de hornblenda de una roca tomada de esta zona de falla arrojó una edad de 74.4 ± 1.1 Ma, mucho más joven a lo que se había encontrado en las litologías circundantes. No se tienen evidencias de que la roca haya sufrido recalentamiento o alteración posteriores al metamorfismo, por lo que se asocia esta edad con actividad propia de esta falla (Feininger & Silberman, 1982).

Fig. 2 Geología del Complejo Raspas y puntos de extracción de muestras.

4. METODOLOGÍA

4.1 Petrografía

Esta fase se desarrolló con un microscopio petrográfico de luz transmitida OLYMPUS BX50, con el fin de establecer las asociaciones minerales de cada grupo de rocas, proporciones minerales, y las formas, texturas y relaciones minerales.

A partir de la información recolectada se realizó una nueva clasificación de las litologías, estableciendo la asociación mineral característica de cada grupo, así como también las fases accesorias y texturas específicas útiles. Los grupos de roca, sus asociaciones minerales, texturas específicas y clasificación se encuentran especificados en el capítulo 5.

4.2 Análisis de química mineral

Los análisis de química mineral se condujeron en el laboratorio de microsonda electrónica de la Universidad Nacional de Colombia, sede Bogotá con una superprobe JEOL JXA-8230, que cuenta con tres espectrómetros para cuantificar composiciones mediante el uso de espectrometría de longitud de onda (WDS). En este tipo de análisis, los límites de detección son una función de la intensidad máxima y la intensidad de fondo; para los elementos principales, la exactitud y la precisión oscilan entre 1 y 2% y se encuentran estrechamente

EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)

relacionadas con la preparación y selección cuidadosa de la muestra y las condiciones instrumentales (Lifshin & Gauvin, 2001). Por otro lado, para los elementos traza, los límites de detección son del orden de 100 ppm (Reed, 2000).

Los análisis cuantitativos en silicatos (anfíboles, piroxenos, plagioclasas, olivinos, granates y epidotas) se tomaron con un voltaje de 15 kV, una corriente de 20 nA, un diámetro del haz de incidencia de entre 1 y 5 µm y tiempo de medida ("dwell time") para cada elemento correspondiente a 30 s en el pico y 15 s para el fondo.

La adquisición y reducción de los datos se llevó a cabo utilizando el método de corrección ZAF, que tiene en cuenta el número atómico de los elementos, la absorción y la fluorescencia; posteriormente se realiza el reporte de datos como óxidos (Ver **anexo 4**) La calibración previa a la medición de estos elementos se realizó utilizando estándares de concentraciones conocidas y variaron según la medición para cada grupo mineral (

Tabla 2). Las secciones delgadas pulidas que se sometieron a análisis de microsonda electrónica fueron recubiertas con grafito; este procedimiento se realizó con un equipo Cressington Carbon Coater 108C/Auto, bajo las condiciones 115 V/seg, 0.1 mPa hasta obtener un espesor de 20 nm en la capa de recubrimiento.

Mineral	Elemente	Fotóndor	Dava V	Crietal	Dwell Time		
Analizado	Elemento	Estandar	кауо л	Cristal	Pico	Fondo	
	Na	Albita	Ka	TAP	10 s	5 s	
	Mg	Piropo	Ka	TAP	20 s	10 s	
	AI	Piropo	Ka	TAP	20 s	10 s	
	Si	Piropo	Ka	TAP	20 s	10 s	
Orenete	Ca	Wollastonita	Ka	PETJ	20 s	10 s	
Granale	Ti	Rutilo	Ka	PETJ	30 s	15 s	
	Cr	Cromita	Ka	PETJ	30 s	15 s	
	K	Microclina	Ka	PETH	30 s	15 s	
	Fe	Fayalita	Ka	LIFH	20 s	10 s	
	Mn	Espesartina	Ka	LIFH	20 s	10 s	
Piroxeno Anfíbol Epideta	Na	Albita	Ka	TAP	10 s	5 s	
	Mg	Olivino	Ka	TAP	20 s	10 s	
	AI	Almandino	Ka	TAP	20 s	10 s	
Olivino	Si	Microclina	Ka	TAP	20 s	10 s	
	Са	Wollastonita	Ka	PETJ	20 s	10 s	

EVOLUCIÓN TECTÓNICA Y METAMÓRFICA DEL COMPLEJO RASPAS (SUR OESTE DE ECUADOR)

Ti Rutilo		Ka	PETJ	30 s	15 s
Cr Cromita	Cromita	Ka	LIFH	30 s	15 s
K	Microclina	Ka	PETH	30 s	15 s
Fe Fayalita	Fayalita	Ka	LIFH	30 s	15 s
Mn	Espesartina	Ka	LIFH	10 s	5 s

 Tabla 2
 Estándares, tipo de señal, cristales y tiempo de medición de composiciones de silicatos medidas con microsonda electrónica.

4.3 Química de roca total

Estos análisis se llevaron a cabo en los laboratorios de la empresa ALS Chemex. El primer paso consistió en preparar las muestras con un pulverizado de por lo menos el 85% de las muestras inferior a 75 micras. Posteriormente, se condujeron análisis para elementos mayores y trazas con fluorescencia de rayos X (XRF), espectroscopía de emisión atómica de plasma acoplado por inducción (ICP-AES) y espectrometría de masas con plasma acoplado (ICP-MS) seguido de fusión con borato de litio previo a la digestión con solución de ácido nítrico.

4.4 Cálculos de presión y temperatura

4.4.1 Termobarometría y pseudosecciones:

Los cálculos de diagramas de fase y termobarometría con el método de múltiples reacciones se realizaron en el sistema NCKFMASTHO (Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–O₂) para las muestras ECU1, ECU6, ECU 21 y ECU10 (las tres primeras corresponden a eclogitas y eclogitas con aparente metamorfismo retrógrado, mientras que la última corresponde a esquisto anfibólico) mediante el uso de la herramienta THERMOCALC (Powell *et al.*, 1998), en su versión número 345 en conjunto con la base de datos termodinámicos para las fases minerales de Holland & Powell, (2011).

Los modelos de actividad usados para estos cálculos fueron el de clinopiroxeno – onfacita y anfíbol (Green *et al.*, 2016), granate, muscovita y clorita (White *et al.*, 2014) y el de epidota (Holland & Powell, 2011). Fases minerales correspondientes a cuarzo, rutilo y titanita se asumieron como puras; el fluido se consideró como estar presente en exceso para todos los cálculos.

Los resultados obtenidos en la fase de análisis de química de roca total se procesaron y organizaron usando el software GCDKit (Janoušek *et al.*, 2006), con el fin de obtener diagramas apropiados de acuerdo con las rocas estudiadas.

4.4.2 Termometría de Zr en rutilo:

Los análisis correspondientes a esta sección se condujeron sobre las muestras ECU-1, ECU-6 y ECU-21, con microsonda electrónica JEOL JXA-8230 del Departamento de Geociencias de la Universidad Nacional de Colombia, sede Bogotá. Teniendo en cuenta los parámetros de la Tabla 3 para cuantificar en las concentraciones de Zr en cristales de rutilo. Previo a la medición de estos análisis, se realizaron puntos de control en los estándares de circón y rutilo, con el fin de validar si la receta construida replicaba, en promedio, la composición reportada por el fabricante. De igual manera se realizaron puntos de control de mediciones cuantitativas sobre el estándar de rutilo cada vez que se finalizaban las mediciones de los cristales de rutilo. Esto con el fin de probar la estabilidad de la corriente y corroborar la calidad de los análisis. Las condiciones de los análisis fueron las siguientes:

- Corriente = 150 nA.

- Voltaje de aceleración = 15 kV.

		_	Dwell Time	Dwell Time		Límite de
Elemento	Estándar	Rayo X	Cristal	Pico	Fondo	detección (ppm)
AI	Cianita	Ka	TAP	180 s	90 s	5
Si	Wollastonita	Ka	TAP	120 s	60 s	13
Cr	Cr	Ka	PETJ	180 s	90 s	9
Ti	Rutilo	Ka	PETJ	20 s	10 s	25
Са	Wollastonita	Ka	PETJ	120 s	60 s	7
V	V	Ka	LIF	240 s	120 s	14
Zr	Zircón	La	PETH	360 s	180 s	18
Fe	Hematita	Ka	LIFH	180 s	90 s	10
Nb	Nb	La	PETH	240 s	120 s	14

- Diámetro de sonda de 5 µm.

 Tabla 3 Estándares, tipo de señal, cristales, tiempo de medición y límites de detección de las concentraciones de Zr en rutilo medidas con microsonda electrónica.

En el desarrollo del trabajo base para el cálculo del termómetro de Tomkins *et al.*, (2007) realizaron experimentos con un cilindro de pistón a diferentes presiones en el sistema ZrO_2 -Ti O_2 -Si O_2 , en donde obtuvieron que la solubilidad de ZrO_2 en rutilo, en presencia de circón y cuarzo se invirtió con cada valor de presión que fijaron en el experimento. A partir de estos experimentos, determinaron la termodinámica de la reacción $ZrSiO_4 = SiO_2 + ZrO_2$ en rutilo y se establecieron reacciones de termómetro para los campos de estabilidad de cuarzo α , β y coesita.

A partir de las composiciones obtenidas (ver **anexo 5**) se realizó el recálculo para obtener los valores de concentración en partes por mil y así, poder usar la fórmula planteada por Tomkins *et al.*, 2007 para el campo de estabilidad del cuarzo- α , teniendo en cuenta las condiciones máximas de temperatura de las rocas analizadas:

$$T(^{\circ}C) = \frac{83.9 + 0.410P}{0.1428 - R \ln \varphi} - 273$$

Ecuación 1 Termómetro de Zr en rutilo. Tomado de Tomkins et al., (2007)

En la **Ecuación 1**, el valor de ϕ corresponde a la concentración de Zr en ppm, P es el valor de la presión en kbar y R es la constante de gases, correspondiente a 0.0083144 kJ K-1.

Utilizando la ecuación anteriormente descrita y utilizando como base las concentraciones obtenidas con análisis de microsonda electrónica, se calcularon las temperaturas asignando valores arbitrarios de presión de 5 a 25 kbar, con el fin de validar que en el rango de interés de presión que se estimó mediante otras técnicas (cálculos de T y P con thermocalc, diagramas de fase, etc.) para las muestras de este trabajo, correspondiente a 14 - 20 kbar, las temperaturas estimadas fueran consistentes con las de los diagramas de fase y cálculos con múltiples reacciones.

4.4.2 Cálculos de Presión a partir de espectrometría Raman.

La capacidad que tienen los cristales de granate para atrapar inclusiones de otros minerales durante su crecimiento resulta bastante útil para calcular valores de presión aproximados

que correspondan a la trayectoria prógrada de las rocas. La geobarometría elástica consiste en determinar las condiciones metamórficas a partir de la presión de exceso exhibidas en las inclusiones de los cristales de granate, bien sean de cuarzo, diamante o rutilo (Angel *et al.*, 2017).

Una primera aproximación para este tipo de cálculos es entonces la de calcular la presión remanente de la inclusión. Las inclusiones suelen desarrollar presiones remanentes porque poseen diferentes expansiones y compresibilidades, además del hecho de que la inclusión no responde de igual manera a los cambios de presión externos como el mineral, debido a que no se pueden expandir libremente.

Es necesario entonces, tener en cuenta las ecuaciones de estado no lineales que pueden describir el comportamiento no constante de las propiedades elásticas del par mineral, en respuesta a cambios en los valores de presión y temperatura que se dan desde su formación a lo largo de la trayectoria metamórfica y así, poder calcular el estrés residual de la inclusión, que es clave para calcularlas condiciones de entrampamiento.

Estas condiciones corresponden a los valores de presión y temperatura bajo las cuales, no existen gradientes de estrés entre la inclusión y el mineral. Todos los posibles valores P-T para un par inclusión y mineral específico se encuentran distribuidos a lo largo de una curva, denominada *"entrapment isomeke"*. La *isomeke* es entonces la curva P-T a lo largo de la que el estrés y el esfuerzo son uniformes en el sistema (bien sea isotrópico o anisotrópico) (Angel *et al.*, 2014).

Es necesario recalcar que no todos los sistemas inclusión-mineral se comportan de la misma manera; esto influye directamente en las consideraciones iniciales que deben tenerse en cuenta para calcular estrés residual de una inclusión. En el caso particular de cristales de granate con inclusiones de cuarzo estudiado en este trabajo, se tiene entonces un sistema conformado por un mineral elásticamente isotrópico y una inclusión elásticamente anisotrópica, representado en la **Fig. 3** (sigma representa el estrés y épsilon representa la tensión).

En esta figura, se representa el escenario que ocurre cuando una inclusión elásticamente anisotrópica está contenida dentro de un mineral isotrópico sometido a estrés hidrostático, el mineral entonces transmite tensión isotrópica (denotada por los vectores a con dirección a la inclusión) en la inclusión desde el punto de entrampamiento de la inclusión. Como la deformación del mineral es igual en todas las direcciones, la tensión y el estrés anisotrópico que se desarrollen en la inclusión serán equivalentes a todas las relaciones cristalográficas de orientación, en este caso, el valor de sigma de la inclusión tendrá un componente idéntico al del mineral y uno diferente, "c". La isotropía está definida por la magnitud de propagación de los esfuerzos a lo largo de un cristal, según sus relaciones cristalográficas de orientación (González *et al.*, 2021).

Fig. 3 Representación esquemática del sistema conformado por un mineral elásticamente isotrópico y una inclusión elásticamente anisotrópica. *Modificado de Gonzalez et al., (2021)*

En trabajos como el de Schmidt & Ziemann, (2000), se utilizan desplazamientos de los picos característicos de los espectros obtenidos con Raman para un mineral en específico, con el fin de estimar la presión residual de la inclusión, pues mientras el mineral que está siendo medido a condiciones ambientales está sometido a esos valores de presión (1 Bar) la inclusión aún mantiene un residuo del total de presión al que fue sometida. Este valor residual también modifica la posición de los picos del espectro de un mineral.

Los desplazamientos de los picos mencionados anteriormente se suelen calcular realizando la comparación de espectros de un mineral encapsulado y un estándar de la misma composición o un cristal del mismo mineral que se encuentre libre a lo largo de la muestra estudiada.

Para este estudio se realizaron mediciones en un microscopio de espectrometría Raman marca RENISHAW inVia[™] confocal Raman microscope, referencia Centrus 0281Q1. Los espectros se realizaron con aumento de 50X en inclusiones de cuarzo en granate, con un láser de potencia 520 nm, tipo de medición estática, tiempo de exposición de 1 segundo y

20 acumulaciones; con el fin de adquirir espectros entre los 111,27 y los 1366,3 cm ⁻¹ en las inclusiones de cuarzo en granates de las muestras ECU1, ECU6 y ECU21.

Los tensores de Grüneisen describen qué efecto tienen los cambios de volumen de la red cristalina de un mineral, por ejemplo, en sus propiedades vibracionales (Grüneisen, 1926). Como primer paso se deben estimar los valores de las desviaciones de los picos de los espectros obtenidos Raman con el fin de calcular los coeficientes de tensión para la inclusión. Para realizar este procedimiento, se deben comparar los espectros del mismo mineral, tanto libre como confinado dentro de otro. Estos valores pueden ser introducidos en la herramienta stRAinMAN (Angel *et al.*, 2019), en donde, en conjunto con los tensores de Grüneisen (γ_m) calculados para cuarzo- α por Murri *et al.*, (2018) se pueden despejar los valores de los tensores ε , tomando como base la ecuación:

$$\frac{-\Delta\omega}{\omega} = \gamma_1^m \varepsilon_1 + \gamma_2^m \varepsilon_2 + \gamma_3^m \varepsilon_3 + \gamma_4^m \varepsilon_4 + \gamma_5^m \varepsilon_5 + \gamma_6^m \varepsilon_6$$

Ecuación 2 Determinación del cambio fraccional en el número de onda de una banda de fonones (m) en un cristal como resultado de una tensión ε. (Tomada de Angel *et al.*, (2019); Murri *et al.*, 2018)

Teniendo en cuenta la simetría trigonal del cuarzo la relación de los parámetros de Grüneisen equivale a $\gamma_1^m = \gamma_2^m \neq \gamma_3^m$ y $\gamma_4^m = \gamma_5^m = \gamma_6^m = 0$; por esto, la **Ecuación 2** se simplificaría, representando el escenario donde los únicos valores de ε relevantes serían ε_1 y ε_3 :

$$\frac{-\Delta\omega}{\omega} = 2\gamma_1^m \varepsilon_1 + \gamma_3^m \varepsilon_3$$

Ecuación 3 Determinación de cambio fraccional en el número de una banda de fonones (m) en un cristal de cuarzo. (Tomada de Angel *et al.*, 2019; Murri *et al.*, 2018)

Posteriormente, se requiere calcular los valores de estrés y presiones residuales; EntraPT (Mazzucchelli *et al.*, 2021) tiene la siguiente consideración inicial, con el fin de calcular el esfuerzo residual, determinado por la expresión:

$$\sigma_i = C_{ij} \varepsilon_j$$

Ecuación 4 Cálculo de estrés residual según el coeficiente de tensión elástica. (Tomada de Mazzucchelli *et al.*, 2021) En la **Ecuación 4**, el término C_{ij} corresponde a la representación matricial en notación de Voigt del tensor del módulo elástico de cuarto rango de la inclusión determinada en condiciones ambientales. Los valores de la matriz utilizados en el programa se extrajeron del trabajo de Angel *et al.*, (2022), teniendo en cuenta las composiciones de los granates de este estudio, se toma de este trabajo el valor de G₀ (módulo de corte) de 95.35 GPa correspondiente a almandino y de G₀ de 41.3 GPa para la inclusión de cuarzo.

A partir de los módulos de tensión calculados, EntraPT calcula la presión residual de la inclusión, siguiendo la ecuación:

$$P_{inc} = -(\sigma_1 + \sigma_2 + \sigma_3)/3$$

Ecuación 5 Cálculo de presión residual de la inclusión, a partir de los coeficientes de estrés.

Tomando como punto de partida la presión residual de la inclusión medida, EntraPT estima las desviaciones estándar para este valor y realiza aproximaciones, tomando como base las ecuaciones de estado del mineral y de la inclusión, con el fin de obtener una curva (denominada isomeke) en donde, de manera aproximada, se asume que los cambios volumétricos entre el mineral y la inclusión fueron iguales durante la trayectoria prógrada. La trayectoria prógrada no necesariamente corresponde con una curva isomeke, pero se utiliza esta aproximación con el fin de estimar un rango de P-T en el que pudo encapsularse la inclusión, con el fin de evaluar si es consistente con el campo de estabilidad determinado para la muestra.

4.5 Modelo de densidades

Los modelos de densidad permiten estudiar la evolución de ambientes tectónicos con el tiempo bajo parámetros específicos. En este caso se construyó un modelo de densidades utilizando el ambiente de programación ASPECT, en su versión 2.4.0 Kronbichler *et al.*, (2012). El ambiente característico de esta simulación corresponde a la zona de subducción del margen noroccidental de Suramérica, en donde interactúan en un límite convergente la placa oceánica y la placa continental.

Se tomó como base el código para ambientes de subducción de Quinquis, (2014), que resuelve las ecuaciones de conservación de masa (6), momentum (7) y energía (8),

asumiendo el comportamiento de las placas como el de un fluido incompresible:

$$\nabla \cdot \vec{\vartheta} = 0$$
(6)
$$-\nabla P + \nabla \cdot \vec{\sigma'} + \rho \vec{g} = 0$$

(7)

$$\rho C_P \frac{\partial T}{\partial t} = k \nabla^2 T - \rho C_P \vec{\vartheta} \cdot \nabla T + H$$

(8)

En donde $\vec{\vartheta}$ es el vector de velocidad, ρ la densidad, t el tiempo, P la presión, $\vec{\sigma'}$ el tensor de tensión desviador, \vec{g} la aceleración gravitacional, C_p el calor específico, T la temperatura, k la conductividad térmica y H la producción de calor radiactivo por unidad de volumen.

Además, en estos modelos asociados a zonas de subducción se asume la aproximación de Boussinesq que según Turcotte & Schubert, (2014) se describe por la ecuación:

$$\rho = \rho_0(1 - \alpha(T - T_0))$$

(9)

En donde ρ_0 es la densidad de referencia a $T = T_0$ y α es el coeficiente volumétrico de expansión térmica.

Los modelos tienen un ancho de 3000 km y profundidad de 670 km. Con el fin de desencadenar la subducción se asume la preexistencia de una zona de debilidad que separa la placa superior de la placa que está siendo subducida (en este caso la placa continental es la superior y la subducida es la oceánica).

Se asumen entonces densidades correspondientes a 2600 Kg/m³ para la placa continental, de 3250 Kg/cm³ para el manto litosférico (el manto justo debajo de la placa siendo subducida) y una densidad de la corteza oceánica de 3000 Kg/m³ y se evalúa la evolución de este ambiente tectónico en un lapso de 15 millones de años.

5. Resultados

De la Quebrada Raspas se realizó la extracción de 27 muestras que se clasificaron en grupos correspondientes a eclogitas, esquistos anfibólicos, metapelitas y una serpentinita. En la **Fig. 4** se encuentran representadas las fotografías de las muestras de mano más representativas de cada uno de estos grupos.

Fig. 4 Fotografías de testigos pulidos del Complejo Raspas.

(A, B, C corresponden a las muestras ECU22B, ECU22A y ECU21 que son eclogitas. D, E, F corresponden a las muestras ECU10, ECU13 y ECU15, catalogadas como esquistos anfibólicos. G y H corresponden a las metapelitas ECU9 y ECU8 e I corresponde a la serpentinita ECU20.

5.1 Observaciones petrográficas:

5.1.1 Meta-Pelitas

Las rocas pertenecientes a este grupo se caracterizan por presentar una textura esquistosa (lepidoblástica) dada por cristales alineados de mica blanca y cuarzo. Las rocas de este grupo también presentan localmente textura porfiroblástica; siendo esta última dada por pseudomorfos de granate que fueron completamente reemplazados por cristales de clorita (únicamente para el caso de la muestra ECU-8), cuarzo y materia carbonosa y su diámetro varía entre 0.3 y 1 cm.

La asociación mineral de las muestras que pertenecen a este grupo corresponde a Zo+WM+Qz±Pl±Cld±Chl±Py±Ttn en donde la clorita se aprecia como un producto de alteración de las micas y se encuentra presente tanto en la matriz de la roca como haciendo parte de los pseudomorfos de granate. La titanita, la pirita y el cloritoide no se encuentran como fases accesorias en todas las muestras de este grupo, pues únicamente en la muestra ECU-8 los pseudomorfos de granate presentan también pirita, mientras que la titanita sólo está presente en la muestra ECU-9.

Teniendo en cuenta la caracterización de fases primarias, caracterizadas por la aparición de Qz, Pl, WM (aquéllas que son parte de la asociación mineral estable de la roca) y las secundarias Py, Cld, Ttn, Chl (los productos de alteración o introducción) es posible establecer que las rocas de este subconjunto se encuentran en facies esquisto verde (Bucher & Grapes, 2011).

Las litologías de este grupo están caracterizadas por un desarrollo de foliación espaciada y en algunas muestras una fuerte diferenciación entre microlitones ricos en cuarzo y otros ricos en minerales tipo micas; esto marca la dirección de foliación distinguible, denominada como S_P. Los microlitones de cuarzo tienen una orientación preferencial muy levemente definida, pero con la característica de un desarrollo de mica aprovechando el contacto recto entre los diferentes cristales. Los pseudomorfos de granates no presentan inclusiones que permitan evidenciar un crecimiento pre-cinemático, además de tener una concordancia con la foliación lo cual se define como una primera evidencia de un crecimiento synmetamórfico.

En la muestra ECU 8 se logra distinguir una foliación (S_P) moderadamente espaciada, que a su vez se encuentra marcada por cristales de mica blanca y con aparentes desarrollos de microlitones de cuarzo pobremente orientados. Sin embargo, localmente se observa un dominio frágil dada la angularidad de los granos de cuarzo con una foliación externa marcada fuertemente dominada por Chl (**Figura A1 - 8**). El cuarzo ocasionalmente muestra crecimiento de micas en los bordes del cristal. Los cristales de pirita poseen un anillo de cuarzo lo cual genera la duda si son sombras de presión con una orientación perpendicular a S_{P} .

La muestra ECU 9 presenta foliación espaciada con clivaje de microlitones de cuarzo aparentemente orientados y con micas alineadas en bordes de los cristales concordantes con la foliación S_P. Pseudomorfos de granate fuertemente reemplazados por cuarzo, no logran preservar algún tipo de inclusiones, pero dada la ausencia de evidencia, se presume un crecimiento coetáneo con el desarrollo de la foliación. Cloritdoide se encuentra con crecimiento perpendicular a la foliación sin texturas indicativas de desequilibrio químico.

La muestra ECU 12 exhibe foliación pobremente marcada únicamente por ligera orientación preferencial de cristales de cuarzo (**Figura A1 - 12 A y B**). A su vez, los pseudomorfos de granate se encuentran relacionados a cristalización de clorita y no poseen inclusiones orientadas. Se deduce estabilidad de sílice dado el desarrollo de puntos triples entre cristales poligonales de cuarzo, los cuales, ya tienen una extinción pobremente ondulada. Zoisita syn-cinemática a la foliación fundamentalmente observada como agregados minerales

Fig. 5 Microfotografías en nicoles paralelos y cruzados de la sección delgada ECU 9. Pseudomorfo de granate rodeado por matriz de micas y cuarzo (A y B). Cristales de Cloritoide dispuestos de manera discordante a la esquistosidad de la muestra (C y D).

5.1.2 Eclogitas

Estas muestras exhiben una textura predominantemente neisosa de grano medio a grueso (1-5mm) dada por los anfíboles y piroxenos que rodean a los cristales de granate, que se presentan como porfiroblastos subhedrales y euhedrales cuyos diámetros se encuentran entre 0.6 y 6.5 mm. Estos cristales de granate exhiben inclusiones con patrones de concentración en sus núcleos y bordes por lo general muy limpios (en algunos casos) mientras que en algunas muestras los patrones de inclusiones son helicíticos. Los minerales que caracterizan a estas inclusiones corresponden a cristales de cuarzo, anfíbol, piroxeno, epidota y rutilo, distribuidos en los núcleos (cuarzo y rutilo) y en el manto (anfíbol, piroxeno y epidota). Los cristales de granate también presentan cloritización muy incipiente a lo largo de sus fracturas.

Las muestras de este grupo se caracterizan por presentar la asociación mineral de granate y clinopiroxeno (tipo onfacita). Sin embargo, un rasgo particular de estas muestras, que podría estar relacionado con la conservación de una facies de menor grado i.e. esquisto azul, es la presencia de cristales de anfíbol (con características ópticas de glaucofana, tales
como el pleocroísmo de tonos azulados) en proporciones considerables. La coexistencia de cristales de anfíbol de tipo glaucofana y piroxeno se atribuye, tentativamente, a una trayectoria retrógrada, a pesar de que sólo en las muestras ECU 1, 3 19 y 22E son identificables coronas de reacción de anfíbol con pleocroísmo azul-verdoso, posiblemente glaucofana, alrededor de cristales de clinopiroxeno que permitan realizar un diagnóstico correspondiente a un metamorfismo retrógrado **Fig. 6**. La asociación mineral de este grupo corresponde a Amp+Qz+Grt+Zo+Cpx±Ttn±Rt. En el anexo correspondiente a la **Tabla A2** - **1** se dividen las eclogitas en dos grupos, eclogitas y eclogitas retrogradadas, teniendo en cuenta que las últimas presentan anfíbol en mayores proporciones que el piroxeno.

Fig. 6 Microfotografías muestras ECU 7 con texturas indicativas de metamorfismo retrógrado: cloritización de granate (A y B) y coronas de anfíbol alrededor de cristales de piroxeno (C y D) y muestra ECU 21 con patrones de inclusiones de anfíbol y cuarzo concéntricos.

5.1.3 Esquistos anfibólicos

Las muestras de este grupo presentan textura esquistosa dada por los cristales de anfíbol cuyos diámetros varían entre 1 y 4 mm. En algunos casos se observan texturas porfiroblásticas como en la muestra ECU-13 que exhibe cristales de Zoisita de hasta 1 cm de diámetro y en la muestra ECU-10 con textura porfiroblástica muy local originada por la presencia de restos de cristales de granate que se encuentran muy fracturados y con bordes de cristales de clorita y anfíbol. Los cristales de granate de la muestra ECU – 10 se encuentran reemplazados a Chl y Pl, por lo que no se considera este mineral en la asociación mineral característica del grupo, definida como Amp+WM±Zo±Czo±Ttn±Chl.

Petrográfiamente se presume que están coexistiendo dos anfíboles diferentes en las muestras ECU-14 y ECU-15, que podrían corresponder a actinolita y tremolita; mientras que el anfíbol de las muestras ECU-10 y ECU-13 tiene propiedades ópticas que apuntan a pensar en composiciones más sódicas, e.g. glaucofana (Ver sección sección 5.2 Química mineral).

No se logran diferenciar estructuras sobre impuestas ni clivajes en las rocas de este grupo. Los porfiroblastos de granate presentes en algunas de las muestras de este grupo no exhiben ningún registro de alguna deformación previa. Por esto, es posible deducir que las rocas de este grupo no presentan algún tipo de estructura que evidencia una deformación diferente a la syn-metamórfica.

Fig. 7 Microfotografías esquistos anfibólicos en nicoles paralelos y cruzados. Muestras ECU 14 (A y B) y ECU 10 (C y D)

5.1.4 Serpentinita

Sólo una de las secciones delgadas descritas a lo largo de este trabajo se clasifica en este grupo, la muestra ECU-20. Su textura es esquistosa de grano fino (0.25 a 0.5 mm) dada por cristales de clorita y serpentina mientras que los cristales de olivino y piroxeno brindan una textura porfiroblástica localizada.

La matriz de esta muestra presenta minerales que exhiben tonos anaranjados en luz polarizada plana (PPL) que se catalogan ópticamente como un agregado mineral microcristalino de arcillas. Las serpentinas muestran una textura inter penetrativa. Esta textura por lo general corresponde a una matriz de antigorita y talco o lizardita. *Kovács et al.*, (2016) establecen en su trabajo que el primer mineral de serpentina en aparecer es usualmente la lizardita, como producto de alteración de ortopiroxeno y los bordes de olivino; usualmente la lizardita pasa por más serpentinización, convirtiéndose en antigorita y talco, los cuales desarrollan una segunda dirección de foliación que corta de manera casi perpendicular a la foliación se la serpentina primaria. En el estudio petrográfico de estas muestras sólo se reconoce una dirección de foliación, por lo que el criterio textural se usó

para establecer que la serpentina corresponde a lizardita. Sin embargo, es necesario usar técnicas analíticas a futuro para determinar mejor la serpentina.

Fig. 8 Microfotografías en nicoles paralelos y cruzados de la muestra ECU 20 (Serpentinita), exhibiendo porfiroblastos de olivino y piroxeno embebidos en una matriz de serpentina y clorita.

5.2 Química mineral

-Granates

Se presentan como cristales subhedrales a euhedrales con diámetros en promedio de 2 mm. En todas las muestras en las que se encuentran presentes exhiben inclusiones concéntricas de rutilo, piroxeno, cuarzo, anfíbol y epidota.

Composicionalmente varían entre Xalm = 0.5 - 0.6, Xgrs = 0.25 - 0.4, Xprp = 0.15 - 0.25 y Xspss = 0 - 0.02. Las imágenes de electrones retrodispersados tomadas con microsonda electrónica junto con los perfiles composicionales medidos en los cristales de granate de las muestras más representativas se muestran en la **Fig. 9**.

Fig. 9 Perfiles composicionales de cristales de granate para las muestras ECU1, ECU6, ECU10 y ECU 21 (en orden descendente).

-Piroxenos

Los puntos composicionales de piroxeno se tomaron en eclogitas representativas del complejo y en los relictos de cristales de piroxeno encontrados en la muestra de serpentinita.

Usando la metodología de clasificación de piroxeno en rocas máficas planteada por Essene & Fyfe, (1967) se tiene como resultado que las mediciones realizadas en cristales de piroxeno en eclogitas, se obtuvo como resultado que varían composicionalmente entre jadeita (35 - 42%), augita (45 - 54%) y acmita (10 - 13%).

Para la muestra correspondiente a serpentinita (ECU 20) se obtuvo que los cristales de clinopiroxeno son más cálcicos (presentan X_{Mg} entre 0.9 y 1.0), correspondiendo a diópsidos. Se puede apreciar que se encuentran ligeramente más enriquecidos en componente de Ca, de acuerdo con el diagrama de clasificación composicional de clinopiroxenos propuesto por Morimoto, (1989).

Fig. 10 Diagramas de clasificación de piroxenos alcalinos. Ac, acmita; Hd, hedenbergita; Jd, jadeita; CaTs, Ca-Tschermakita según Clark & Papike (1968) (Izq.) y según Morimoto (1989) (Der.)

-Anfíboles

Siguiendo la metodología de clasificación composicional de anfíboles de Leake *et al.*, 1997, los cristales de anfíbol medidos en las eclogitas presentan composiciones correspondientes a anfíboles de Na-Ca, con variaciones en el componente (Na + K)_A de más o menos 0.5, variando su composición entre Mg-Katoforita (miembro de glaucofana empobrecido en el contenido de sodio) y Barroisita. Algunas mediciones realizadas en la muestra ECU 10

muestran variaciones composicionales de los cristales de anfíbol a Mg-hornblenda; sin embargo, no son lo suficientemente marcadas como para determinar la presencia de este miembro extremo.

Fig. 11 Clasificación composicional de cristales de anfíbol. Modificado de Leake et al., (1997)

ECU 6		EC	CU 10	ECU 21	
(Nat K)	Clasificación		Clasificación		Clasificación
(Na+K) _(A)	Leake (1997)	(Na+K) _(A)	Leake (1997)	(Na+K) _(A)	Leake (1997)
0.669838167	Mg-Katophorite	0.22825086	Mg-Hbl	0.58666294	Mg-Katophorite
0.607504791	Mg-Katophorite	0.62796759	Mg-Katophorite	0.62796759	Mg-Katophorite
0.74543708	Mg-Katophorite	0.5856254	Mg-Katophorite	0.5856254	Mg-Katophorite
0.652160318	Mg-Katophorite	0.5339928	Mg-Katophorite	0.5339928	Mg-Katophorite
0.601353698	Mg-Katophorite	0.57953863	Mg-Katophorite	0.57953863	Mg-Katophorite
0.552759726	Mg-Katophorite	0.50572472	Mg-Katophorite	0.50572472	Mg-Katophorite
0.554305742	Mg-Katophorite	0.56334174	Mg-Katophorite	0.56334174	Mg-Katophorite
0.64107642	Mg-Katophorite	0.51812765	Mg-Katophorite	0.51812765	Mg-Katophorite
0.63405756	Mg-Katophorite	0.56742233	Mg-Katophorite	0.56742233	Mg-Katophorite
0.683097907	Mg-Katophorite	0.56667547	Mg-Katophorite	0.56667547	Mg-Katophorite
0.647567395	Mg-Katophorite	0.55232629	Mg-Katophorite	0.55232629	Mg-Katophorite
0.618168013	Mg-Katophorite	0.47553411	Barroisite	0.47553411	Barroisite
0.687754986	Mg-Katophorite	0.49188769	Barroisite	0.49188769	Barroisite
0.631047457	Mg-Katophorite	0.57679243	Mg-Katophorite	0.57679243	Mg-Katophorite
0.584631227	Mg-Katophorite	0.55366225	Mg-Katophorite	0.55366225	Mg-Katophorite
0.693694339	Mg-Katophorite	0.58655837	Mg-Katophorite	0.58655837	Mg-Katophorite
		0.60421003	Mg-Katophorite	0.60421003	Mg-Katophorite
		0.58559451	Mg-Katophorite	0.58559451	Mg-Katophorite
		0.50529374	Mg-Katophorite	0.50529374	Mg-Katophorite
		0.56339124	Mg-Katophorite	0.56339124	Mg-Katophorite
		0.51139097	Mg-Katophorite	0.51139097	Mg-Katophorite
		0.48136538	Barroisite	0.48136538	Barroisite

Tabla 4 Clasificación de anfíboles Na-Ca según Leake et al., (1997)

5.3 Química de roca total

En la **Fig. 12** se muestran las composiciones de Ti₂O/Yb vs. Nb/Yb donde se puede observar que las muestras correspondientes a eclogitas y esquistos anfibólicos provienen de protolitos con firma N-MORB.

Los comportamientos de todas las demás muestras se evidencian en la **Fig. 13**. Allí nuevamente se observan patrones de las muestras que son concordantes con el patrón NMORB con ligeras variaciones presentes dentro de rocas de un mismo grupo. Particularmente en los patrones de normalización a N-MORB teniendo en cuenta elementos de tierras raras, las muestras ECU-8, 11, 10 y 13, 14 y 20 exhiben tendencias más empobrecidas.

Fig. 13 Arañograma con mormalización de composiciones de todas las rocas estudiadas según NMORB. Modificado de Sun & McDonough, (1989).

Teniendo en cuenta los patrones de normalización según la composición del manto primitivo de la **Fig. 14**, las rocas correspondientes a eclogitas, esquistos anfibólicos en incluso la serpentinita, presentan un claro enriquecimiento en tierras raras livianas (LREE) y un patrón aplanado en tierras raras pesadas (HREE).

Fig. 14 Diagrama tipo spider de normalización de patrones de tierras raras de las muestras según la composición del Manto Primitivo. Modificado de McDonough & Sun, (1995)

5.4 Cálculos de Presión y temperatura

5.4.1 Termobarometría y pseudosecciones

ECU 1

Fig. 15 Pseudosección calculada para la muestra ECU 1

El campo de estabilidad definido para esta muestra, tomando como base las observaciones petrográficas posee la asociación mineral estable Camp + Cpx + Ep + Grt + Rt + Ms + Qz; que abarca temperaturas desde los 530 hasta 630 °C y presiones desde 14.5 hasta 21 Kbar. El rutilo se encuentra a manera de inclusión en los granates y también como cristales independientes en la matriz de la roca, las posibles diferencias que existan entre estos mismos cristales, en términos de condiciones de estabilidad, serán discutidas en las secciones subsecuentes. El clinopiroxeno corresponde petrográficamente a onfacita y en el modelado de la pseudosección las composiciones teóricas concuerdan, algo que debería verificarse con química mineral a futuro, pues esta muestra no alcanzó a ser analizada con microsonda elecrtrónica.

En cuanto a la evolución composicional de la roca, el granate tiene un comportamiento consistente con las demás pseudosecciones calculadas, en donde el granate es estable a altas presiones y temperaturas.

A lo largo de la terminación del *solvus* de anfíbol, se muestra una tendencia a seguir una línea que describe un comportamiento directamente proporcional entre la temperatura y la Presión, pues comienza a verse a 500°C y 12 Kbar y sigue ocurriendo hasta los 570°C y 17Kbar de Presión, aproximadamente. Se observa que la composición del anfíbol varía, pues a presiones bajas (8 – 10 Kbar) y temperaturas bajas (450 – 500 °C) el anfíbol tiene un componente predominantemente sódico; sin embargo, conforme aumenta ligeramente la temperatura, el anfíbol tiene una composición sódico-cálcica entre los valores de Presión que oscilan de 12 a 18 kbar y las temperaturas de 500 a 600 °C. A valores de temperatura mayores de 630°C y con la estabilización de piroxeno de tipo onfacita, el anfíbol que se estabiliza es el sódico cálcico, cuyo contenido de Ca aumenta proporcionalmente con la temperatura, mientras que el componente sódico aumenta con la Presión.

En la región de mayor Presión y menor Temperatura diferenciada por la línea verde de Cam(2) de la **Fig. 15** se estabilizan teóricamente dos anfíboles; uno sódico-cálcico y otra especie más sódica que, conforme aumenta la presión, la sódico-cálcica tiende a volverse ligeramente más cálcica, mientras que la sódica se enriquece en sodio; este fenómeno va relacionado con el enriquecimiento del piroxeno en sodio.

Los resultados para piroxeno muestran que el componente sódico disminuye conforme aumenta la temperatura para el intervalo de Presiones medias (12.5 - 13.5), volviéndose diópsido aproximadamente después de los 640° C; mientras que a mayores presiones (14 - 25 Kbar) y menores temperaturas ($450 - 570 ^{\circ}$ C) aumenta el componente sódico y se vuelve onfacita.

Ecu 6

Fig. 16 Pseudosección calculada para la muestra ECU6

A partir de observaciones petrográficas, el campo de estabilidad determinado para la muestra ECU6 corresponde a la asociación mineral estable Cpx + Cam + Ep + Grt + Rt \pm Ms \pm Qz, comprendido en temperaturas que van desde los 550 a los 665 °C y presiones desde los 15 a los 22.3 kbar (con desviaciones estándar de \pm 50°C para temperatura y \pm 1.7 kbar de Presión), lo que coincide también con los cálculos obtenidos con termobarometría convencional, ilustrados con las elipses azul y roja, correspondientes al valor hipotético del pico (elipse roja) y el del metamorfismo retrógrado (elipse azul).

A bajas temperaturas, entre 450 y 550 °C el granate comienza a ser estable a presiones altas (de 23 a 16 kbar), mientras que, a altas temperaturas, entre 550 y 700 °C, la Presión de estabilidad se mantiene estable alrededor de los 15 kbar. Es posible diferenciar dos tipos de anfíboles, cuyo *solvus* se encuentra dentro de los 530 – 630 °C y presiones entre 14 y 15 kbar; la aparición de otro tipo de piroxeno también es claramente diferenciable. Teniendo en cuenta la química mineral del piroxeno del campo estable, el otro piroxeno podría ser algún miembro más empobrecido en Na (Castellanos-Alarcón *et al.*, 2022).

El anfíbol exhibe un comportamiento en su estabilización coherente con el comportamiento del piroxeno. A bajas temperaturas (450 – 550°C) y presiones predominantemente altas (15 – 24 Kbar) el anfíbol se estabiliza en dos miembros, uno predominantemente sódico y otro sódico cálcico; además se observa un empobrecimiento en el componente sódico la temperatura del rango en el que son estables ambas especies. En el rango en el que son estables dos tipos de anfíbol diferentes, también se estabilizan dos especies de piroxeno, correspondientes a diópsido y onfacita. Al aumentar ligeramente la temperatura y dada la variación composicional que también presentan las especies de piroxeno, en donde únicamente se estabiliza la onfacita, es posible evidenciar una transición para el anfíbol, que pasa a estabilizar una única especie de composición sódico-cálcica, en donde el contenido de calcio es mayor que el del sodio (Camp). Este contenido de Ca aumenta conforme aumenta la temperatura.

Los resultados de termobarometría multiequilibrio se encuentran representados por las elipses de color rojo (representativa de la trayectoria prógrada) y la elipse de color azul claro (representativa de la trayectoria retrógrada). En primer lugar, las elipses no se encuentran lo suficientemente distribuidas a lo largo del campo P-T como para determinar la afectación de las composiciones minerales durante una trayectoria prógrada, además, ambas elipses se solapan en el campo de estabilidad determinado en la fase de petrografía. Las condiciones de temperatura y Presión calculadas para el pico de esta muestra corresponden a 680 ± 59 °C y 15.6 ± 1.7 kbar.

Fig. 17 Pseudosección calculada para la muestra ECU10

El campo de estabilidad determinado para esta muestra está representado por una asociación mineral estable que consta de: Cam + Ep + Qz + Cpx. Los cálculos teniendo en cuenta los datos de química mineral del manto (elipsoide azul) y borde (elipsoide rojo) de los cristales de granate, indican condiciones de Presión y temperatura diferentes a las observadas en las eclogitas, con un metamorfismo prógrado con las condiciones 630 – 660°C y 9.5 a 14 kbar (con desviaciones estándar de \pm 50°C para temperatura y \pm 1.7kbar para Presión), mientras que el evento metamórfico caracterizado por descompresión, engloba unas condiciones iguales a 660 – 760°C y 8.5 – 11.5 kbar (con desviaciones estándar de \pm 50°C para temperatura du ligero calentamiento también. Debido a estas condiciones, el granate no es estable y la mica blanca observada reemplazando sus bordes se asocia como un producto de reacción.

De manera similar a la muestra anterior, el granate es estabiliza a presiones medias (15 kbar) a altas temperaturas; a bajas temperaturas la Presión de estabilización es mucho mayor (superior a 20 kbar). Los granates de esta muestra son muy escasos y se encuentran muy alterados, por lo que, en principio, para la determinación del campo estable en el diagrama no deban ser tenidos como una fase estable sino una fase relíctica para la que se da que el metamorfismo prógrado evoluciona de presiones relativamente alta a intermedias. El *solvus* de anfíbol se da en una zona estrecha, limitada por valores de temperatura entre 400 – 530 °C y de Presión entre 12 y 23 kbar; sin embargo, el *solvus* no abarca toda esta área (Ver **Fig. 17**).

En este modelo, el anfíbol tiene una variación composicional más marcada, pues a altas presiones y bajas temperaturas (16 – 26 Kbar y 400 – 550°C) y, de manera similar a las eclogitas, el anfíbol es predominantemente sódico. Al aumentar ligeramente la temperatura en el límite inferior de Presión, comienza a enriquecerse en el componente cálcico, volviéndose más abundante que el sodio conforme la temperatura aumenta. En el rango de 620 – 700°C y entre los valores de Presión entre 8 y 13 Kbar, el anfíbol sódico-cálcico se enriquece ligeramente en el componente sódico por la estabilización de diópsido.

Ecu 21

Fig. 18 Pseudosección calculada para la muestra ECU21

El campo de estabilidad determinado para esta muestra consta de Cam + Cpx + Grt + Ep + Ms + Rt. La estabilidad del granate muestra una tendencia muy similar a la de las dos muestras anteriores; el clinopiroxeno, determinado químicamente como onfacita, comienza a ser estable a más altas presiones en temperaturas muy bajas y a medida que asciende la temperatura su Presión de estabilidad disminuye. A diferencia de las otras eclogitas modeladas, el clinopiroxeno no varía su composición de manera tan considerable; el piroxeno que se estabiliza en esta muestra corresponde a onfacita, y su contenido de Ca aumenta con la temperatura.

El anfíbol, por otro lado, sí tiene dos estabilizaciones considerables y concordantes con las demás muestras; a bajas temperaturas y a presiones a partir de los 16Kbar es de composición sódico-cálcica (con mayor proporción del sodio con respecto al calcio). Conforme disminuye la presión y aumenta la temperatura, el componente cálcico comienza a tornarse ligeramente más abundante. La línea de color verde en la **Fig. 18** marca el inicio de la coexistencia de dos anfíboles diferentes, el sódico cálcico y uno más sódico, en donde el comportamiento de los componentes es similar al de las otras eclogitas.

Los cálculos de termobarometría concuerdan con el campo de estabilidad establecido; no es posible diferenciar una tendencia asociada a un metamorfismo retrógrado y un metamorfismo prógrado y corresponde a valores de Presión y temperatura de 18 ± 1.4 kbar y 646 ± 53 °C.

5.4.2 Termometría de Zr en rutilo.

En la **Tabla 5** se muestran los valores de concentración de Zr medidos en cristales de rutilo (en la matriz de la roca y como inclusiones en granate) y las temperaturas estimadas usando el termómetro de Zr en rutilo (Tomkins *et al.*, 2007) para el rango de presiones correspondientes a los campos de estabilidad de las secciones ECU-6 y ECU-21.

Muestra	Zona de	Contenido de Zr	T (°C)
	medición	(ppm)	
Ecu 1	Inclusión en Grt	90 - 290	581 - 667
	Matriz	110 - 210	544 - 672
ECU 6	Inclusión en Grt	130 - 230	607 - 679
	Matriz	170 - 260	627 - 689
ECU 21	Inclusión en Grt	130 - 220	603 - 680
	Matriz	130 - 210	603 - 676

 Tabla 5 Temperaturas calculadas a partir de concentraciones de Zr medidas en cristales de rutilo de las muestras ECU-6 y ECU-21

No se observa una diferencia clara en las concentraciones (y las temperaturas derivadas) entre las mediciones realizadas en inclusiones de granate versus las mediciones realizadas en cristales pertenecientes a la matriz. El método no permite entonces realizar la interpretación de la evolución térmica durante el crecimiento del granate (i.e., trayectorias prógrada o retrógrada) pero permite refinar las interpretaciones obtenidas de termobarometría convencional multiequilibrio y con el campo de estabilidad de la asociación mineral estable. Estos resultados se discuten con más detalle en la siguiente sección.

5.4.3 Cálculos de P a partir de espectrometría Raman.

Fig. 19 Espectros Raman para las inclusiones de cuarzo en granates de las muestras ECU-1, ECU-6 y ECU-21 (orden descendente).

Se adquirieron los espectros mediante espectrometría Raman de las inclusiones de cuarzo en los granates de las muestras estudiadas siguiendo los parámetros de medición descritos en el apartado de metodología; usando estos mismos parámetros también se adquirió el espectro de un cristal de cuarzo libre, con el fin de comparar con base en este los desfases que mostrarían los espectros de las inclusiones. Tomando como referencia el trabajo de Thomas & Spear, (2018), en esta fase se da especial énfasis en las bandas de 128.1, 207.3, 464.8 y 769.7 cm⁻¹. Los desfases según el cristal de referencia se pueden observar en la **Fig. 21.**

Se realizaron entonces los respectivos cálculos para determinar los tensores de la inclusión medida a condiciones ambientales (0 GPa y 25 °C); los resultados y los valores ingresados de los desfases para los picos en los espectros, según las bandas específicas del cuarzo se muestran en la **Tabla 6**.

		Desfase - bandas m (cm ⁻¹)			Cálculos stRAinMAN					
		128.1	207.3	464.8	796.7	ε1	ε3	ε1(sd)	ε3(sd)	cov ε1 y ε3
	ECU 1 - Incl 7	0.294	1.2	0.391	-12.104	-0.025	0.03	0.03965	0.0231501	-0.00085696
	ECU 6 - Incl 1	0.234	-0.36	0.34	-	0.0024	-0.003	0.00227	0.0013927	-3.10E-06
	ECU 21 - Incl 1	-0.17	0.101	0.008	-2.697	-0.005	0.007	0.00789	0.0048496	3.76E-05

Tabla 6 Datos ingresados y calculados con la herramienta stRAinMAN, según las inclusiones analizadas.

Fig. 20 Curvas de entrampamiento calculadas para inclusiones de cuarzo en granates de las muestras ECU1, ECU6 Y ECU21.

Según la **Fig. 20**, las condiciones de entrampamiento, representativas de las trayectorias prógradas coinciden en los rangos de T y P con lo obtenido por termobarometría multiequilibrio y termometría de Zr en rutilo. Los resultados obtenidos en esta fase se encuentran resumidos en la tabla **Tabla 7**; la columna de Pinc corresponde a un valor de Presión residual que resulta en las inclusiones como efecto del entrampamiento al que fueron sometidas, aun cuando el sistema se encuentra y está siendo estudiado en condiciones atmosféricas (**Ecuación 5**). A partir de estos valores, se calculan las líneas *isomeke* que establecen una curva de valores P-T a las que estas inclusiones fueron capturadas.

	Cálculos EntraPT					
ID Inclusion	σ1	σ3	Pinc			
ECU 1 - Incl 7	-1.9815	2.583	0.46			
ECU 6 - Incl 1	-0.0025	0.0012	0.1234			
ECU 21 - Incl 1	-0.50277	-0.4436	0.4833			

Tabla 7 Resultados para módulos de estrés de cada inclusión.

Fig. 21 Espectros Raman de inclusiones de cuarzo en granate para las muestras estudiadas en comparación con el espectro de un cristal de cuarzo libre medido bajo las mismas condiciones.

5.5 Modelo de densidades

Fig. 22 Modelo de densidades para un ambiente de subducción con características reológicas similares a las de la subducción del margen nor-occidental de Sur América.

En la simulación de interacción de densidades entre la placa oceánica y la placa continental, siguiendo los parámetros descritos en el apartado de metodología, se tiene como resultado una geometría de zona de subducción de tipo chilena (Stern, 2002).

Este modelo en particular permite realizar una estimación de la velocidad promedio de subducción, que corresponde a 1.6 cm/ año, aproximadamente. La placa oceánica en este intervalo de tiempo logra alcanzar 240 km de profundidad. Es pertinente aclarar que, si bien las rocas de este estudio tuvieron condiciones similares a las de los modelos planteados en este apartado, por las condiciones obtenidas con cálculos de P y T se estima que las condiciones calculadas corresponden a unos 50 a 70 km de profundidad en el canal de subducción.

Fig. 23 Evolución de profundidad de placa subducida (oceánica) vs. tiempo.

6. DISCUSIÓN

6.1 Petrografía

En el apartado de petrografía se menciona la existencia de rocas que aparentemente podrían ser clasificadas como eclogitas, pero que en el sentido estricto no cumplen con las características petrográficas establecidas para las eclogitas, correspondientes a una abundancia de granate y clinopiroxeno (onfacita) superior al 75% (Bucher & Grapes, 2011), debido a la considerable abundancia de anfíbol de tipo Mg-katoforita y barroisita, lo que lleva a evaluar la posibilidad de que las litologías estudiadas hayan sido sometidas a un cambio de condiciones metamórficas, asociadas principalmente con descompresión con ligero calentamiento.

Las muestras ECU1, ECU13, ECU19 y ECU22E presentan texturas específicas identificadas como coronas de reacción de anfíbol reemplazando cristales de clinopiroxeno.

Sin embargo, en estas muestras no son claramente identificables otros rasgos tales como la cloritización de granate (como si se observa en la muestra ECU-10) o la recristalización de granate, que puedan ayudar a darle solidez a la teoría de la ocurrencia de un evento retrógrado como tal, aun cuando también se suele observar en las muestras de este estudio catalogadas como eclogitas retrogradadas es la presencia de clorita en las fracturas de los cristales de granate.

Este fenómeno quiere decir que durante el fracturamiento del granate -causado por un evento descompresivo corroborado con texturas que se discutirán en este apartado más adelante-, hubo opción de que la ChI cristalizara en ese espacio; además, en el caso de las eclogitas "retrogradadas", el encontrar clorita únicamente asociada a las fracturas permite deducir que este fenómeno sólo ocurrió en una parte descompresiva, pues hay una asociación entre fractura-mineral, pero no quiere decir que el evento descompresivo sea necesariamente retrógrado.

Los campos de estabilidad estimados en el apartado **5.4.1 Termobarometría y pseudosecciones** sí corresponden con las asociaciones minerales establecidas en la fase de petrografía. A su vez, las características ópticas que permitieron diferenciar el anfíbol sódico y el piroxeno fueron corroboradas con química mineral. En la muestra ECU 10, el campo de estabilidad modelado como retrógrado y representado por la elipse de color rojo coincide con las fases minerales que se logran distinguir en la muestra, este campo teóricamente reporta una asociación Dio-Ep-Hb-Qz-Pl; cabe aclarar que, a pesar de que se expresen los miembros extremos Dio-Hb en el modelo, la composición detallada para el campo sí corresponde con el piroxeno y el anfíbol medido con química mineral. Lo que sí es claro, es que en este campo no se contempla la estabilización teórica de clorita, que sí se evidenció petrográficamente y durante el desarrollo de los análisis de química mineral, por lo que es posible que la cristalización de clorita, y tal como se ve en la pseudosección planteada para esta muestra, se dé en un rango de temperatura muy bajo, lo que sería una transformación retrógrada pero no relacionada con una trayectoria metamórfica específica.

6.2 Química Mineral: Análisis textural y composicional con microsonda electrónica

Durante el estudio de las muestras con microsonda electrónica, se identificaron algunas texturas adicionales que complementan la ocurrencia de un evento de ligero calentamiento y descompresión.

Fig. 24 Cristal de granate de la muestra ECU 10 con reemplazamiento en el borde por cristales de clorita y plagioclasa

La **Fig. 24** corresponde a un cristal de granate de una de las muestras catalogadas como esquisto anfibólico. Cabe recalcar que estas muestras tienen un porcentaje de granate muy bajo; sin embargo, los cristales de granate se encuentran cloritizados en sus bordes, en su interior (los anfíboles también presentan cloritización en esta muestra en particular) y como se puede observar en la imagen de electrones retrodispersados, tienen bordes difusos y se encuentran fracturados y alterados.

A pesar de esto, los patrones de zonación de los cristales de granate de esta y otras muestras muestran enriquecimiento de piropo (Xprp) de núcleo a borde y empobrecimiento de espesartina (Xspss) de núcleo a borde (**Fig. 9**). Estos comportamientos de las proporciones de miembros extremos de núcleo a borde corresponderían con un patrón de

zonación normal o prógrado (Atherton & Edmunds, 1966). A su vez, los patrones de enriquecimiento y empobrecimiento observados en el desarrollo de este estudio, concuerdan con los reportados por John *et al.*, (2010).

Durante el estudio con microsonda electrónica también se evidenció una textura específica particular, correspondiente a coronas de titanita alrededor de cristales de rutilo (**Fig. 25**). Kapp *et al.*, (2009) establecen que el rutilo es estable a presiones más altas que la titanita; por otro lado, Linghao *et al.*, (2022) atribuyen estas coronas al acontecimiento de un evento de metamorfismo retrógrado, asociado principalmente a descompresión por la exhumación del canal de subducción.

Fig. 25 Imagen de electrones retrodispersados de reemplazamiento de rutilo por titanita en muestra ECU 1

Sin embargo, la química mineral que se pudo medir con microsonda electrónica en algunos cristales de anfíbol, piroxeno y epidota en granates, muestra que las fases que se encuentran como inclusiones tienen muy poca variación química con respecto a las fases que componen la matriz de las litologías (las que representan la asociación mineral estable).

6.3 Química de roca total

Las eclogitas y esquistos anfibólicos exhiben, en general, un comportamiento geoquímico concordante con basaltos normales (N-MORB); sin embargo, exhiben enriquecimiento en tierras raras ligeras (LREE) y mantienen un patrón plano en tierras raras más pesadas

(HREE). Esta variabilidad podría estar relacionada con procesos de alteración posteriores. Por ejemplo, en la **Fig. 26** se puede evidenciar de manera clara la introducción de cuarzo hidrotermal, rodeando a los cristales de granate y piroxeno principalmente en las muestras ECU8, ECU7, ECU2 y ECU11.

Estas introducciones a manera de venas de cuarzo lechoso se dan de forma concordante con la foliación de las muestras; en la Fig. 26B es posible diferenciar que en la zona donde se da esta introducción de cuarzo, los porfiroblastos de granate disminuyen significativamente en tamaño y el color de los cristales también cambia. La **Fig. 26C** exhibe, además de las venas concordantes de cuarzo, una intensa deformación que no se distingue en las demás muestras, lo que conlleva a evaluar también la existencia de esfuerzos que pudieron afectar a un conjunto de las rocas del Complejo.

Fig. 26 Fotografías de testigos pulidos de las muestras ECU 2 (A), ECU 7 (B), ECU 8 (C) y ECU 11(D).

(Castellanos-Alarcón, 2020) en su tesis doctoral establece que las rocas pertenecientes al Complejo Arquía (Cordillera Central de Colombia) exhiben características indicativas de un metasomatismo, que consisten en colonias de simplectitas, venas de cuarzo hidrotermal y reemplazamiento de cristales de granate por epidota-clinozoisita por efectos metasomáticos. Este fenómeno es atribuido a invasión de fluidos ricos en Ca, Si y Al que afectaron la estabilidad química de los minerales, otorgándole a las muestras un comportamiento de sistema isotópico abierto.

Además, no hay una notable diferencia de la firma geoquímica entre las muestras catalogadas como eclogitas, independientemente de la abundancia que presenten en minerales hidratados (glaucofana) que pueda reforzar la teoría de metamorfismo retrógrado, salvo la existencia de texturas específicas como las coronas de anfíbol alrededor de cristales de piroxeno y las coronas de titanita o esfena alrededor de los cristales de rutilo presentes en la matriz de las rocas.

Por otro lado, las zonas de subducción son sistemas de interacción de muchos materiales; es posible que, desde su génesis, el protolito de estas rocas (de afinidad MORB) haya sido expuesto a una alteración inicial por entrar en contacto con el agua de mar. Así, la corteza parcialmente alterada sufre arrastre por parte de la litósfera subducente y, en la región localizada entre la placa que subduce y el manto, conocida como canal de subducción, interactúa con fragmentos de la placa subducente que son incorporados en el descenso. A esta combinación de materiales se le suma la pérdida de volátiles que produce metasomatismo, generando así estructuras como las descritas anteriormente y, en mayores proporciones, serpentinización de peridotitas del manto.

En el caso de zonas de subducción frías, las rocas ígneas máficas (basaltos, diabasas y gabros, entre otros) y ultramáficas son las más susceptibles a sufrir serpentinización y alteración por interactuar con agua de mar durante su evolución en el ambiente oceánico previa a la subducción (metamorfismo de fondo oceánico) produciendo serpentinitas, esquistos verdes y anfibolitas. Estas rocas pueden llegar a aportar agua en condiciones de subducción, a más de 30 kbar de Presión; por otro lado, la corteza continental y los sedimentos terrígenos también tienen cantidades significativas de agua disponible debido a la presencia de minerales como fengita, anfíbol, cloritoide y lawsonita. Es por esto que cantidades significativas de fluido rico en agua se encuentren disponibles bajo condiciones HP y UHP, mientras que en zonas de subducción más cálidas los fluidos acuosos se liberan principalmente durante la deshidratación a condiciones de alta presión (HP). A temperaturas menores a 600 – 650°C los fluidos causan metasomatismo, mientras que a

temperaturas mayores comienza la fusión parcial (Klemd, 2013). Por esta razón, en los cálculos de Presión y temperatura no se tuvo en cuenta la inclusión de una fase fundida.

Es posible entonces establecer grupos de eclogitas o rocas máficas que tienen tendencias similares relacionadas con los tipos de protolito. El primer grupo corresponde a rocas que siguen una tendencia decreciente hacia las tierras raras pesadas (HREE), similar al patrón de un basalto alcalino tipo OIB y el segundo grupo de rocas que presentan patrones ligeramente más planos que los dos grupos anteriores que podrían a corresponder a basaltos E-MORB (Rollinson & Pease, 2021).

6.4 Cálculos de Presión y temperatura

Se usaron diferentes metodologías con el fin de corroborar los valores de temperatura y Presión a los que fueron sometidas estas rocas, sobre todo el valor de Presión, ya que la ausencia de fases minerales como fengita o cianita impiden construir reacciones que dependan de la Presión, usando termobarometría multiequilibrio.

A pesar de esta limitante, los cálculos son consistentes y permiten establecer que las eclogitas de este complejo fueron sometidas a aproximadamente 630 – 700°C y 15.5 - 21kbar, que corresponderían a las condiciones del pico metamórfico. En el método de termobarometría multiequilibrio, los valores calculados para todas las zonas de granate (manto y borde) en las eclogitas son los mismos.(En los anexos, la **Figura A6 - 1**, la **Figura A6 - 2** y la **Figura A6 - 3**, resumen de manera gráfica los resultados de los cálculos con diferentes metodologías). Es decir que, junto con los patrones de zonación normales o prógrados observados para los granates, no hay una variación entre los valores de Presión y temperatura del manto y borde de los granates que apunte en la dirección de la existencia de un metamorfismo retrógrado. Además, los cálculos de presiones de entrampamiento de las inclusiones, que corresponderían con las condiciones dadas de manera previa al pico de metamorfismo de las muestras, son consistentes con los cálculos hechos en manto y borde de los granates con los cálculos hechos en manto y borde de los granates con los cálculos hechos en manto y borde de los granates prógrados ateminaran de crecer.

En el caso de los cálculos de Presión con espectrometría Raman en inclusiones de cuarzo en granate, las condiciones obtenidas para la muestra ECU6 pudieron verse afectadas por

fracturamiento del mineral, como producto del evento descompresivo asociado a la exhumación del Complejo, lo que pudo afectar las presiones de entrampamiento de las inclusiones. Este evento descompresivo, determinable también en los reemplazamientos de rutilo por titanita (**Fig. 25**) evidencia que a lo largo de la pseudosección calculada para la muestra que presenta esta textura (ECU 1, **Fig. 15**) el rutilo se estabiliza a presiones mayores con respecto a la titanita. Es necesario elaborar más mediciones de espectrometría Raman de inclusiones de Cuarzo en granate con el fin de establecer las incertidumbres asociadas a este tipo de cálculos; además, no se alcanzaron a obtener resultados de química mineral de la muestra que permitieran corroborar el intervalo de confianza de Presión y temperatura de la muestra, por lo que es necesario realizarlo a futuro.

En los cálculos de termobarometría multiequilibrio no se observa una clara diferencia al tener en cuenta la composición de las inclusiones (que representaría el pico del metamorfismo prógrado) versus el tener en cuenta la composición de los anfíboles y piroxenos que están en contacto con el granate (que representaría la presencia de un metamorfismo retrógrado). Se presume entonces que el metamorfismo retrógrado estuvo caracterizado más por un evento descompresivo que por un evento de calentamiento, y que, a su vez, el evento descompresivo (del que se tiene como evidencia los reemplazamientos de rutilo por titanita) pudo darse dentro de un mismo campo de estabilidad; es decir, las condiciones no cambiaron para alterar la asociación mineral.

La facies eclogita se define por la estabilización clásica de la asociación Grt+Omp (Spear, 1995) que, a su vez, se caracteriza por encontrarse libre de plagioclasa. Las rocas de alta Presión estudiadas a lo largo de este trabajo sí presentan anfíbol sódico en las rocas catalogadas como eclogitas, pero las rocas correspondientes al grupo de esquisto azul no tienen piroxeno de tipo onfacita, diferenciado en las eclogitas.

Siendo así, las eclogitas alcanzaron las condiciones de equilibrio en un rango de Presión y temperatura bajo el cual fue posible que desarrollaran la asociación mineral característica: Grt+Omp+Qz±Ru±Amp; en estas rocas en las que no se diferencia ningún tipo de reacción de desequilibrio, las fases minerales descritas se encuentran en contactos netos y elongados.

Tomando como base el ambiente y las características tectónicas de las eclogitas de este trabajo, es posible determinar que se tratan de eclogitas tipo MT, o de temperatura media. Se estima que, en su trayectoria al pico, las eclogitas provienen de rocas en facies anfibolita (Carswell, 1990). A partir de estas litologías, el aumento de Presión produce la cristalización de granate y el componente anortítico de la plagioclasa se torna más inestable, promoviendo la reacción que relaciona la transición entre la facies granulita o anfibolita y la facies eclogita (Spear, 1995):

$$Opx + Pl = Grt + Cpx + Qz$$

(10)

La **ecuación (10**) representa una serie de transiciones, principalmente de deshidratación, que enmarcan la aparición de los componentes principales de las eclogitas a partir del desequilibrio de anortita perteneciente a un protolito máfico (Bucher & Grapes, 2011) de manera que se estabilizan fases como la CaTs (componente inicial del futuro piroxeno onfacítico), la clinozoisita y la cianita (no presente en estas rocas probablemente porque no se alcanzó su rango de estabilidad:

Las inclusiones identificadas en los cristales de granate, correspondientes a Anfíbol, Piroxeno, Clonozoisita y rutilo, son asociaciones de un evento metamórfico prógrado de facies anfibolita y epidota anfibolita. Los anfíboles presentan contenidos ligeramente más altos de Na, Ca y menos de Fe y Mg, correspondiendo principalmente al componente sódico de Mg-Katoforitas, y lo mismo ocurre con anfíboles observados en la matriz de las rocas. Las inclusiones -en concordancia con los cálculos obtenidos de Presión y temperatura con múltiples reacciones teniendo en cuenta diferentes zonas composicionales del granate- son entonces pre y sin eclogíticas.

La muestra ECU 10, catalogada en el estudio de petrografía como un esquisto anfibólico, arroja menores presiones y mayores temperaturas que las demás, catalogadas como eclogitas. Además, los granates sí arrojan valores inferiores entre lo que son los cálculos teniendo en cuenta la composición del manto y los cálculos teniendo en cuenta las composiciones del borde, representadas por las elipses de incertidumbre azul y roja, respectivamente (Ver **Fig. 17**). Esto, junto con las texturas observadas con microsonda electrónica, podría apuntar a la existencia de un cambio en las condiciones de Presión del

67

metamorfismo que no abarcaron un cambio en la temperatura lo suficientemente notable para deducir la existencia de un metamorfismo retrógrado claramente evidenciable.

Teniendo en cuenta que las condiciones determinadas para los esquistos anfibólicos contrastan con las calculadas para las eclogitas, que corresponden a valores de Presión 9.5 – 14 Kbar y 630-660°C y, a su vez, se encuentran caracterizadas por la segunda asociación mineral Amp+PI+ChI+Czo±Grt, podría establecerse que estas condiciones podrían corresponder a una trayectoria metamórfica diferente que alcanzó el pico en la facies esquisto azul, caracterizada por la aparición del anfíbol sódico Mg-Katoforita o Glaucofana en conjunto con plagioclasa de tipo Albita (Spear, 1995) presente en estas muestras. Sin embargo, no se debe descartar que estos valores de temperatura y presión "anómalos" se encuentren dentro de un amplio rango de incertidumbre a los cálculos asociados al método de termobarometría multiequilibrio, y este valor se encuentre dentro de un intervalo de confianza junto con el valor reportado por John *et al.*, 2010.

La clorita presente en estas rocas sí apareció de manera retrógrada pero no se encuentra asociada a una trayectoria de metamorfismo retrógrado como tal, teniendo en cuenta que en los diagramas de fase calculados aparece a temperaturas muy bajas $(400 - 530 \,^{\circ}\text{C})$ que no fueron obtenidas con el modelamiento multiequilibrio. Este mineral aparece como una fase de alteración en los granates, se encuentra en paragénesis con la albita, el anfíbol y la epidota. Podría ser entonces, por el patrón textural de desequilibrio del granate que estas muestras representan una trayectoria diferente y que quizás no tuvieron la misma trayectoria que las eclogitas dentro del canal de subducción. El evento metamórfico de estas muestras estaría asociado a menores presiones y temperaturas ligeramente mayores. Las condiciones obtenidas para las eclogitas concuerdan con lo planteado por Gabriele *et al.*, (2004). Sin embargo, los esquistos azules tienen condiciones distintas a las obtenidas por John *et al.*, (2010), cuyo trabajo sí establece que las diferentes litologías sufrieron condiciones de metamorfismo similares.

Fig. 27 Diagrama comparativo de resultados de termobarometría según la muestra y el autor. Modificado de (John *et al.*, 2010)

Teniendo en cuenta estos resultados, se evalúa que el posible retrógrado no afectó en igual medida a todas las litologías o incluso, pudo consistir en dos eventos diferentes, en donde para las eclogitas el cambio fue prácticamente de descompresión (teniendo en cuenta las texturas específicas, correspondientes a los reemplazamientos de rutilo y los del piroxeno), mientras que para las litologías catalogadas como esquistos anfibólicos consistió en calentamiento y descompresión.

6.5 Modelo de densidades

Si bien en el proceso de subducción la placa oceánica puede descender significativamente, tanto la asociación mineral (caracterizada por ausencia de minerales como coesita o lawsonita) como los cálculos realizados y el tipo de subducción predominante en este ambiente en específico permiten evaluar que las litologías del Complejo Raspas alcanzaron profundidades de entre 40 y 60 km en donde alcanzaron metamorfismo en facies eclogita.

Bosch *et al.*, (2002) sugirieron que las rocas del Complejo Raspas corresponden a un fragmento de *plateau* oceánico que fue subducido. Sin embargo, en primer lugar, por su corteza con grosor considerable, (15-40 km) los *plateaus* oceánicos exhiben una alta

flotabilidad que hace que su capacidad para ser subducidos sea aún más reducida, por lo que es más factible que se acrecionen al margen continental (Ben Avraham *et al.*, 1981),(Cloos, 1993) . Además, la firma química analizada a lo largo de este trabajo indica una clara afinidad MORB.

Aunque no es claramente distinguible en la geoquímica de este trabajo, es bueno recalcar que en el trabajo de John *et al.*, (2010), se menciona que las características químicas de los esquistos azules son claramente diferenciables de las características de las eclogitas, ya que por presentar mayor alcalinidad, pueden también presentar contenidos más elevados de elementos trazas, con firmas similares a las que exhiben los montes marinos actuales. Esto podría ser sugestivo de que los protolitos que formaron las litologías correspondientes a esquistos azules fueron montes marinos que se formaron cerca o en un ambiente de dorsal oceánica.

7. CONCLUSIONES

- Las rocas denominadas eclogitas y esquistos anfibólicos presentan geoquímica indicativa de un protolito con afinidades N-MORB que fueron acrecionadas al margen continental como producto de un ambiente tectónico convergente. Asimismo, es posible determinar un aporte considerable de sedimentos de trinchera, cuya representación se da en el grupo de las metapelitas.
- Teniendo en cuenta los cálculos de presión y temperatura, así como los diagramas de fases, un evento de metamorfismo prógrado, que alcanzó condiciones de facies eclogita (630-700°C y 15.5 21kbar). De igual manera, existen texturas que indican la existencia de un metamorfismo retrógrado que, quizás, no afectó todo el conjunto de rocas ni fue lo suficientemente significante para invertir los patrones de zonación de los granates o generar un cambio en la composición química de los cristales de piroxeno y anfíbol de las inclusiones en granate versus los cristales encontrados en la matriz de la roca. Este metamorfismo estaría caracterizado por el cambio de condiciones de Presión (descompresión) con un ligero calentamiento que afectó al Complejo Raspas.

- Las condiciones de Presión y temperatura, junto con el modelo de densidades propuesto sugieren un régimen de subducción cálido, con un gradiente equivalente de entre 10 y 12°C/Km en donde alcanzaron profundidades 40 – 60 km y sufrieron deformación y metasomatismo, aunque no se diferencian en todas las muestras.
- El evento descompresivo afectó a las eclogitas del Complejo Raspas de tal manera que los cristales de rutilo lograron desestabilizarse y comenzar a ser reemplazados por titanita. Sin embargo, las condiciones de descompresión no estuvieron asociadas a condiciones de calentamiento lo suficientemente significativas para invertir los patrones de zonación en granate o generar texturas específicas de reemplazamiento, como lo son las coronas de reacción de onfacita a glaucofana, en todas las muestras; es posible que las texturas de corona observadas estén mostrando un reequilibrio a condiciones diferentes que no llegaron a enmarcar un evento retrógrado como tal.

7.2 Recomendaciones

- Modelamiento de P y T para serpentinitas con el fin de conocer las características que enmarcaron sus condiciones de metamorfismo y evaluar cómo se correlacionan con las características de las eclogitas y los esquistos anfibólicos.
- Geocronología de circones para determinar la edad de la máxima paleo temperatura a la que fueron sometidas las rocas del Complejo y evaluar, en caso de que existan, las diferencias.
- Geocronología de U/Pb en las titanitas que se encuentran reemplazando a los cristales de rutilo con el fin de evaluar la posible edad del evento descompresivo. Contrastar edades con las obtenidas a partir de la muestra ECU10 para determinar si el metamorfismo retrógrado se dio en un único evento.

- Trabajo de campo y cartografía con el fin de estudiar rasgos estructurales que permitan entender las relaciones entre los grupos de rocas del Complejo y evaluar los mecanismos de exhumación y acreción.
- Química mineral de más muestras con el fin de evaluar si las trayectorias P-T coinciden o si se ven afectadas por rasgos descritos, como es el caso de la muestra ECU1 y la textura de reemplazamiento de rutilo por titanita.

BIBLIOGRAFÍA

- Angel, R. J., Gilio, M., Mazzucchelli, M., & Alvaro, M. (2022). Garnet EoS: a critical review and synthesis. *Contributions to Mineralogy and Petrology*, 177(5), 1–22. https://doi.org/10.1007/s00410-022-01918-5
- Angel, R. J., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2017). EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. *American Mineralogist*, 102(9), 1957– 1960. https://doi.org/10.2138/am-2017-6190
- Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., & Nestola, F. (2014). Letter. Geobarometry from host-inclusion systems: The role of elastic relaxation. *American Mineralogist*, 99(10), 2146–2149. https://doi.org/10.2138/am-2014-5047
- Angel, R. J., Murri, M., Mihailova, B., & Alvaro, M. (2019). Stress, strain and Raman shifts.
 Zeitschrift Fur Kristallographie Crystalline Materials, 234(2), 129–140.
 https://doi.org/10.1515/zkri-2018-2112
- Arculus, R. J., Lapierre, H., & Jaillard, É. (1999). Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. *Geology*, *27*(6), 547–550. https://doi.org/10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2
- Aspden, J. A., Clarke, M., Jemielita, R., & Litherland, M. (1994). Geological and metal occurrence maps of the southern Cordillera Real and El Oro Metamorphic belts, Ecuador.
- Atherton, M. P., & Edmunds, W. M. (1966). An electron microprobe study of some zoned garnets from metamorphic rocks. *Earth and Planetary Science Letters*, *1*(4), 185–193. https://doi.org/10.1016/0012-821X(66)90066-5
- Bosch, D., Gabriele, P., Lapierre, H., Malfere, J. L., & Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints. *Tectonophysics*, 345(1–4), 83–102. https://doi.org/10.1016/S0040-1951(01)00207-4
- Castellanos-Alarcón, Ó. M. (2020). Caracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao Génova (Quindío), flanco oeste, Cordillera Central, Colombia. (*Tesis doctoral*). Universidad Nacional de Colombia, Bogotá.
- Castellanos-Alarcón, O. M., Cedeño Villarreal, K. M., Toro Hernández, R. A., Ríos-Reyes,
 C. A., Henao-Martínez, J. A., & Zuluaga-Castrillón, C. A. (2022). Crystal-Chemical and
 Structural Characterization of Omphacite in High-Pressure Eclogites From the Arquía
 Complex on Southwestern Pijao, Central Cordillera (Colombian Andes). *Frontiers in Earth Science*, *10*(January). https://doi.org/10.3389/feart.2022.694939
- CLARK, & PAPIKE JJ. (1968). Crystal-Chemical Characterization of Omphacites. *American Mineralogist*, *53*(5–6), 840–868.
- Cloos, M. (1993). Lithospheric bouyancy and collisional orogenesis subduction of continental margins, island arcs and oceanic plateaus (abstract). *Geological Society of America, 1993 Annual Meeting, Abstracts with Programms/Meeting Oct. 25 - 28/ 1993 Boston, MA, 25*(6), 70–71. https://doi.org/10.1130/0016-7606(1993)105<0715
- Duque, P. (1993). Duque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. In 2nd Internat. Symp. Andean Geodyn.-ISAG, Oxford 1993 (pp.359-362). ORSTOM Publ Paris.
- Essene, E. J., & Fyfe, W. S. (1967). Omphacite in Californian metamorphic rocks. *Contributions to Mineralogy and Petrology*, *15*(1), 1–23. https://doi.org/10.1007/BF01167213

Feininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from

the andes of ecuador. *Journal of Petrology*, *21*(1), 107–140. https://doi.org/10.1093/petrology/21.1.107

- Feininger, T., & Silberman, M. L. (1982). DEPARTMENT OF THE INTERIOR K-Ar GEOCHRONOLOGY OF BASEMENT ROCKS ON THE NORTHERN FLANK OF THE HUANCABAMBA DEFLECTION, ECUADOR This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and strati. U.S. Geological Survey, Open-File Report., 82, 206.
- Fisher, G. W. (1975). Petrogenesis of metamorphic rocks. In *Geochimica et Cosmochimica Acta* (Vol. 39, Issue 9). https://doi.org/10.1016/0016-7037(75)90141-6
- Gabriele, P., Ballèvre, M., Jaillard, E., & Hernandez, J. (2004). Garnet-chloritoid-kyanite metapelites from the Raspas Complex (SW Ecuador): a key eclogite-facies assemblage. *European Journal of Mineralogy*, 15(6), 977–989. https://doi.org/10.1127/0935-1221/2003/0015-0977
- Gonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz-in-Zircon. *Journal of Geophysical Research: Solid Earth*, 126(6). https://doi.org/10.1029/2021JB022080
- Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. *Journal of Metamorphic Geology*, *34*(9), 845–869. https://doi.org/10.1111/jmg.12211
- Grüneisen, E. (1926). Zustand des festen Körpers. *Thermische Eigenschaften Der Stoffe*, 1–59. https://doi.org/10.1007/978-3-642-99531-6_1
- Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. *Journal of Metamorphic Geology*, 29(3), 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
- Instituto Nacional de Investigación Geológico Minero Metalúrgico. (2017). *Hoja geológica* Santa Rosa de El Oro, escala 1:100000. Quito.

- Janoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). *Journal of Petrology*, *47*(6), 1255–1259. https://doi.org/10.1093/petrology/egl013
- John, T., Scherer, E. E., Schenk, V., Herms, P., Halama, R., & Garbe-Schönberg, D. (2010).
 Subducted seamounts in an eclogite-facies ophiolite sequence: The Andean Raspas
 Complex, SW Ecuador. *Contributions to Mineralogy and Petrology*, *159*(2), 265–284.
 https://doi.org/10.1007/s00410-009-0427-0
- Kapp, P., Manning, C. E., & Tropper, P. (2009). Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. *Journal of Metamorphic Geology*, *27*(7), 509–521. https://doi.org/10.1111/j.1525-1314.2009.00836.x
- Klemd, R. (2013). Metasomatism during high-pressure metamorphism: Eclogites and blueschist-facies rocks. In *Lecture Notes in Earth System Sciences* (Vol. 0, Issue 9783642283932). https://doi.org/10.1007/978-3-642-28394-9_10
- Kovács, G., Radovics, B. G., & Tóth, T. M. (2016). Petrologic comparison of the Gyód and Helesfa serpentinite bodies (Tisia Mega Unit, SW Hungary). *Journal of Geosciences* (*Czech Republic*), 61(3), 255–263. https://doi.org/10.3190/jgeosci.218
- Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. *Geophysical Journal International*, 191(1), 12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.x
- Leake, B. E., Woolley, A. R., Birch, W. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Petersburg, S., Linthout, R. K., & LAmD, J. (1994). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. *Mineralogical Magazine*, 61(December 1994), 295–321.
- Lifshin, E., & Gauvin, R. (2001). Minimizing Errors in Electron Microprobe Analysis. *Microscopy and Microanalysis*, 7(2), 168–177. https://doi.org/10.1007/s100050010084
- Linghao, Z., Lingsen, Z., Li-e, G. A. O., Mingyue, H. U., & Dongyang, S. U. N. (2005). *Rutile* to titanite transformation in eclogites and its geochemical consequences: An example

from the Sumdo eclogite, Tibet. https://doi.org/10.1111/1755-6724.14919

- Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). EntraPT: An online platform for elastic geothermobarometry. *American Mineralogist*, 106(5), 830–837. https://doi.org/10.2138/am-2021-7693CCBYNCND
- McDonough, W. F., & Sun, S. s. (1995). The composition of the Earth. *Chemical Geology*, *120*(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
- Morimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14(5), 198-221.
- Murri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova,
 B. D., Scambelluri, M., Angel, R. J., & Alvaro, M. (2018). Raman elastic geobarometry
 for anisotropic mineral inclusions. *American Mineralogist*, *103*(11), 1869–1872.
 https://doi.org/10.2138/am-2018-6625CCBY
- Nur, A., Jones, D., & Cox, A. (2016). Continental Accretion : From Oceanic Plateaus to Allochthonous Terranes Author (s): Z. Ben-Avraham, A. Nur, D. Jones and A. Cox Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1687004 JST. 213(4503), 47–54.
- Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. *Lithos*, 100(1–4), 14– 48. https://doi.org/10.1016/j.lithos.2007.06.016
- Powell, R., Holland, T., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. *Journal of Metamorphic Geology*, *16*(4), 577–588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
- Quinquis, M. T. (2014). A numerical study of subduction zone dynamics using linear viscous to thermo-mechanical model setups including (de) hydration processes.
- Reed, S. J. B. (2000). Quantitative trace analysis by wavelength-dispersive EPMA. *Mikrochimica Acta*, 132(2–4), 145–151. https://doi.org/10.1007/s006040050055
- Riel, N., Guillot, S., Jaillard, E., Martelat, J. E., Paquette, J. L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., Lanari, P., Janots, E., & Yuquilema, J. (2013). Metamorphic

and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone. *Lithos*, *156–159*, 41–68. https://doi.org/10.1016/j.lithos.2012.10.005

- Riel, Nicolas, Mercier, J., & Weinberg, R. (2016). Convection in a partially molten metasedimentary crust? Insights from the El Oro complex (Ecuador). *Geology*, 44(1), 31–34. https://doi.org/10.1130/G37208.1
- Rollinson, H., & Pease, V. (2021). *Using Geochemical Data*. Cambridge University Press. https://doi.org/10.1017/9781108777834
- Schmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. *American Mineralogist*, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216
- Stern, R. J. (2002). Subduction zones. *Reviews of Geophysics*, *40*(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108
- Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. *Geological Society Special Publication*, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Thomas, J. B., & Spear, F. S. (2018). Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. *Contributions to Mineralogy and Petrology*, *173*(5), 1–14. https://doi.org/10.1007/s00410-018-1469-y
- Tomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconiumin-rutile thermometer. *Journal of Metamorphic Geology*, *25*(6), 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
- Turcotte, D., & Schubert, G. (2014). *Geodynamics*. Cambridge University Press. https://doi.org/10.1017/CBO9780511843877
- White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic

systems. *Journal of Metamorphic Geology*, *32*(3), 261–286. https://doi.org/10.1111/jmg.12071

Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, *95*(1), 185–187. https://doi.org/10.2138/am.2010.3371

ANEXOS

Anexo 1 – Microfotografías de las secciones delgadas.

Figura A1 - 1 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 1. Reemplazamientos parciales de cristales de piroxeno a anfíbol.

Figura A1 - 2 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 2. Contacto con vena de cristales de cuarzo dispuesto a manera de bandas expuestas en la descripción macroscópica.

Figura A1 - 3 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 3

Figura A1 - 4 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 4

Figura A1 - 5 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 5. Patrones helicíticos de inclusiones de cuarzo y minerales del grupo de la epidota.

Figura A1 - 6 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 6

Figura A1 - 7 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 7. Reemplazamiento parcial de granate por clorita (A y B), coronas de reacción de anfíbol alrededor de cristales de piroxeno (C -F).

Figura A1 - 8 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 8

Figura A1 - 9 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 9. Pseudomorfo de granate reemplazado por materia carbonosa, pirita y cuarzo (A y B).

Figura A1 - 10 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 10

Figura A1 - 11 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 11

Figura A1 - 12 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 12

Figura A1 - 13 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 13

Figura A1 - 14 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 14

Figura A1 - 15 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 15

Figura A1 - 16 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 16

Figura A1 - 17 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 17

Figura A1 - 18 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 18

Figura A1 - 19 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 19

Figura A1 - 20 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 20

Figura A1 - 21 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 21

Figura A1 - 22 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 22ª

Figura A1 - 23 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 22B

Figura A1 - 24 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 22C

Figura A1 - 25 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 22D

Figura A1 - 26 Microfotografías de nicoles paralelos y cruzados de la muestra ECU 22E

Anexo 2 – Reporte de petrografía

Mucatra	Clasifianaián					Compo	sición mi	neral (%)				
Muestra	Clasification	Ep	WM	Qz	PI	Amp	Срх	Grt	OI	Srp	Acc	Alt
ECU 8		-	35	45	20	-	-	-	-	-	Py, Cld	Chl
ECU 9	Meta-Pelitas	5	30	57	5	-	-	-	-	-	Ttn, Cld	Chl
ECU 12		18	20	62	-	-	-	-	-	-	llm, Cb	Chl
ECU 2		10		20	-	5	25	40	-	-	Ttn, Rt	-
ECU 21	Eclogitas	4	-	6	-	18	34	38	-	-	Ttn, Rt	-
ECU 22B	LCIOGILAS	-	-	7	-	11	30	52	-	-	Ttn, Zrn, Cb	-
ECU 1		11	16	5	10	28	10	20	-	-	Ttn	Chl, Amp
ECU 3		-	-	-	-	35	10	55	-	-	Ttn, Zrn	Chl, Amp
ECU 4		16	-	-	-	53	8	23	-	-	Ttn, Qz	Chl
ECU 5		15	-	-	-	40	10	35	-	-	Ttn, Qz	Chl
ECU 6		4	-	-	-	36	15	45	-	-	Ttn, Qz	Chl
ECU 7		5	-	-	-	37	13	35	-	-	Ttn, Cb	Chl
ECU 16	Eclogitas	-	-	-	-	47	19	34	-	-	Ttn, Qz	
ECU 17	Retrogradadas	8	<1	-	-	36	10	45	-	-	Cb, Qz	Chl
ECU 19		19	-	-	-	42	15	24	-	-	Ttn, Qz, Rt	Chl, Amp
ECU 22A		15	-	-	-	35	10	40	-	-	Ttn, Qz	Chl
ECU 22D		-	-	-	-	50	19	31	-	-	Ttn, Qz, Rt	Chl
ECU 22E		-	35	-	-	13	10	42	-	-	Ttn, Cb, Pl	Amp

ECU 10		20	2	-	-	44	4	5	-	-	Ttn, Pl	Chl
ECU 11		23	-	-	-	57	-	20	-	-	Ttn. Zrn, Rt, Qz	Chl
ECU 13		35	5	-	-	60	-	-	-	-	Ttn	Chl
ECU 14		-	8	-	-	92	-	-	-	-	Ilm, Ttn	
ECU 15		10	8	-	-	82	-	-	-	-	Ttn	Chl
ECU 18		3	-	-	-	63	-	34	-	-	Ttn, Qz	
ECU 22C		-	-	-	-	64	-	36	-	-	Ttn	
ECU 20	Serpentinita	-	-	-	-	-	-	-	15	85	Px (relic)	Chl, Iddingsita

Tabla A2 - 1 Composiciones minerales por muestra y grupos litológicos determinados en la fase de petrografía.

Anexo 3 – Análisis de química de roca total

										-				-	
ID MUESTRA	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	LOI	Total
ECU-10	46,1	16,95	7,3	12,7	11,85	2,01	0,08	0,097	0,35	0,12	0,02	0,01	<0.01	2,65	100,24
ECU-19	48,3	14,65	11,45	11,6	7,33	2,46	0,06	0,036	1,59	0,18	0,12	0,01	<0.01	1,14	98,93
ECU-13	50,2	11,1	5,93	10,45	15,55	1,55	0,73	0,097	0,33	0,13	0,01	0,02	0,03	2,71	98,84
ECU-20	39,6	2,55	7,75	0,47	36,1	0,01	0,01	0,42	0,07	0,09	<0.01	<0.01	<0.01	11,6	98,67
ECU-12	61,3	16,95	6,14	7,34	2,15	2,41	0,55	0,013	0,77	0,08	0,14	0,04	0,02	2,38	100,28
ECU-22B	47,1	14,1	14,45	11,65	7,02	3,16	0,1	0,028	2,27	0,2	0,26	0,01	<0.01	0,28	100,63
ECU-17	48,5	14	11,6	13,9	6,34	3,74	0,03	0,028	1,41	0,19	0,02	0,03	<0.01	0,39	100,18
ECU-9	68,8	17,15	5	0,13	0,9	1,02	1,95	0,011	0,87	0,05	0,06	0,02	0,07	5	101,03
ECU-11	47,1	18,85	6,96	14,3	8,24	2,13	0,05	0,07	0,48	0,12	0,03	0,02	<0.01	2,15	100,5
ECU-18	50	15,75	7,03	14,3	8,65	2,9	0,04	0,064	0,68	0,08	0,04	0,02	<0.01	1,32	100,87
ECU-8	60,8	21,9	8,27	0,13	1,19	0,88	1,69	0,012	1,17	0,07	0,11	0,01	0,04	5,16	101,43
ECU-3	50,1	13,75	13,6	11	7,1	2,82	0,08	0,023	2,03	0,2	0,16	0,01	0,01	0,48	101,36
ECU-6	48,5	14,35	13,55	11,7	7,02	3,08	0,04	0,019	2,04	0,16	0,23	0,01	<0.01	0,45	101,15
ECU-14	54,6	3,85	4,85	11,5	21,3	0,65	0,16	0,254	0,03	0,13	<0.01	<0.01	0,01	2,86	100,19
ECU-5	50,6	13,5	12,85	10,65	6,98	2,94	0,07	0,027	2,03	0,19	0,18	0,01	<0.01	0,69	100,72
ECU-1	49,2	18,05	9,83	7,02	6,74	3,4	1,7	0,013	2,3	0,23	0,57	0,05	0,16	2,2	101,46

 Tabla A3 - 1 Resultados de geoquímica de roca total para elementos mayores según las muestras seleccionadas

ID MUESTRA	Ва	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Но	La	Lu	Nb	Nd	Pr	Rb	Sm	Sn	Sr	Та	Tb	Th	Tm	U	v	w	Y	Yb	Zr
ECU-10	29.7	2.5	870	0.08	1.5	0.99	0.38	12.7	1.43	0.7	0.35	1.1	0.15	0.4	2.3	0.45	2.1	0.87	1	98.2	0.3	0.25	0.1	0.19	0.06	98	1	8.8	0.9	31
ECU-19	22.5	9.1	330	0.02	6.18	3.96	1.23	18	5.44	2.7	1.35	3.1	0.6	1.7	9.5	1.69	1.3	3.35	2	99.4	0.3	0.88	0.24	0.61	<0.05	338	1	35	3.71	101
ECU-13	258	2.3	830	0.53	0.7	0.5	0.27	12	0.74	0.6	0.18	1.6	0.1	2	1.5	0.39	28.5	0.43	2	137	0.3	0.12	0.2	0.12	0.11	180	<1	4.5	0.59	23
ECU-20	2.8	<0.1	3660	0.01	0.18	0.17	< 0.03	3	0.11	<0.2	0.05	0.2	0.03	<0.2	0.1	<0.03	0.8	0.09	1	1.1	0.2	0.03	<0.05	0.09	<0.05	<5	<1	1.1	0.17	5
ECU-12	148.5	92.3	120	0.4	7.39	4.11	1.83	22	8.66	6.3	1.46	47.9	0.62	10.7	41.9	11.35	23.4	8.84	3	377	1.4	1.21	16.5	0.67	3.29	170	1	40.6	3.84	240
ECU-22B	46.5	14.2	250	0.05	8.41	5.24	1.34	17.7	7.06	5.4	1.82	5.2	0.81	4.2	13.4	2.69	1.6	4.2	3	68.6	0.4	1.19	0.43	0.77	0.18	473	1	47.5	5.05	148
ECU-17	23.8	172	250	0.07	11.9	7.21	2.68	19.9	13.9	11.3	2.49	87	1.08	23	77.5	21.4	0.9	14.75	5	296	2.4	2.01	29.7	1.08	6.07	260	1	68.7	7.09	431
ECU-9	677	74.6	100	4.49	5.89	3.72	1.32	23	6.52	7.6	1.27	39.4	0.58	13.2	35.6	9.68	88.2	6.94	4	147	1.2	0.94	13.7	0.55	2.01	178	2	37	3.5	296
ECU-11	18.6	2.6	580	0.05	2.18	1.42	0.57	15.7	1.82	0.7	0.51	1	0.19	0.5	2.9	0.52	1.2	1.05	2	170	0.3	0.32	0.07	0.25	<0.05	145	<1	12.8	1.32	24
ECU-18	9.2	3.6	540	0.02	2.69	1.67	0.64	14.5	2.56	0.8	0.61	1.2	0.25	0.5	4	0.68	0.6	1.42	2	156	0.2	0.42	0.06	0.27	<0.05	223	<1	16.1	1.58	30
ECU-8	409	88.9	100	3.54	5.97	3.08	1.47	27.3	7.49	7.2	1.15	44.7	0.51	21.9	40.6	11	85.7	7.68	5	102.5	2.2	1	14.25	0.54	2.57	189	2	28.2	3.25	272
ECU-3	73.2	13.7	190	0.03	8.33	5.39	1.5	20	7.74	3.7	1.78	4.7	0.78	2.5	13.8	2.46	1.5	4.97	2	119	0.4	1.29	0.23	0.82	<0.05	412	<1	48.5	5.06	137
ECU-6	5.7	17.1	160	<0.01	10.15	6.34	1.93	23.4	10.05	4.5	2.16	5.6	0.94	2.9	16.9	3.24	0.5	6.09	4	123.5	0.4	1.55	0.24	0.92	<0.05	418	<1	59.9	6.05	173
ECU-14	60.2	0.2	2180	0.08	0.13	0.05	<0.03	4.1	0.1	<0.2	0.03	0.4	0.03	<0.2	0.3	0.06	5.3	0.1	2	14.1	0.2	0.02	<0.05	0.05	<0.05	<5	<1	0.8	0.1	4
ECU-5	39.8	13.4	220	0.01	8.7	5.51	1.48	19.2	7.3	4	1.85	4.5	0.81	2.3	13	2.51	2.4	4.55	3	116.5	0.4	1.18	0.18	0.79	< 0.05	401	<1	50.7	5.19	146
ECU-1	1560	72.2	100	2.14	5.36	3	1.98	19.5	6.43	5.3	1.06	37.2	0.46	50	33.8	8.76	30	6.3	3	422	3.4	0.9	3.93	0.45	1.07	175	3	29.6	2.9	253

Tabla A3 - 2 Resultados de geoquímica de roca total para elementos traza según las muestras seleccionadas

					EC	U 1					
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	0.029	4.846	22.722	39.469	9.411	0.057	-0.024	0.001	24.892	0.386	101.789
	0.025	4.145	22.494	38.956	9.977	0.075	-0.041	-0.002	24.984	0.455	101.068
	0.071	4.323	22.315	39.062	9.649	0.059	0	0	24.861	0.594	100.934
	0.043	3.674	22.451	38.898	10.109	0.075	0.003	-0.001	25.531	0.571	101.354
Crt1	0.051	3.742	22.427	38.917	9.534	0.077	-0.023	0.002	25.936	0.593	101.256
GILI	0.022	3.462	22.246	38.796	9.896	0.078	0.007	0.006	25.81	0.529	100.852
	0.017	4.152	22.501	38.816	9.811	0.23	-0.013	-0.007	24.712	0.603	100.822
	0.069	4.308	22.355	38.587	9.76	0.063	-0.014	0.011	24.544	0.831	100.514
	0.051	4.554	22.391	38.531	9.737	0.111	0.016	0.007	24.698	0.648	100.744
	0.003	4.458	22.25	38.508	9.085	0.032	-0.001	0.003	25.562	0.298	100.198
	0.044	5.395	22.856	38.593	8.586	0.018	-0.012	-0.008	24.547	0.871	100.89
	0.057	4.948	22.723	38.858	9.328	0.046	0.023	-0.008	24.379	0.434	100.788
	0.05	4.476	22.524	38.575	9.58	0.087	0.013	0.01	25.011	0.342	100.668
	0.053	4.912	22.587	38.61	9.074	0.099	-0.023	0.002	24.293	0.78	100.387
Grt2	0.022	5.029	22.75	38.931	9.171	0.082	-0.007	-0.011	24.596	0.394	100.957
Grt2	0.032	4.322	22.392	38.735	9.682	0.103	0.04	0.012	24.688	0.364	100.37
	0.032	4.669	22.39	38.709	9.581	0.03	0.007	0.01	24.539	0.437	100.404
	0.08	4.546	22.545	38.837	9.527	0.064	0.017	0.005	24.651	0.538	100.81
	0.042	4.699	22.45	38.656	9.274	0.045	0.006	-0.009	24.182	0.831	100.176
	0.035	4.82	22.839	39.034	9.6	0.082	0.001	0.01	24.14	0.674	101.235
	0.038	4.926	22.51	38.774	8.888	0.051	-0.014	0.003	25.19	0.224	100.59
	0.05	4.833	22.415	38.822	9.624	0.082	-0.012	-0.004	24.223	0.477	100.51
	0.058	4.668	22.414	38.683	9.547	0.048	0.031	-0.011	24.605	0.514	100.557
	0.06	4.019	22.476	38.72	9.518	0.077	-0.029	0.002	25.267	0.608	100.718
Grt4	0.032	4.188	22.535	38.686	9.67	0.066	0.005	-0.001	24.671	0.779	100.631
Grt4	0.115	4.185	22.061	38.272	9.977	0.086	-0.001	0.014	22.825	1.788	99.322
	0.026	4.371	22.485	38.642	10.714	0.087	-0.015	-0.007	23.313	0.849	100.465
	0.039	4.469	22.461	38.572	9.931	0.059	-0.017	0.003	24.96	0.657	101.134
	-0.008	3.705	22.137	38.276	10.118	0.077	-0.012	0.002	25.683	0.446	100.424
	0.012	3.59	22.341	38.468	10.584	0.088	0.01	-0.002	25.031	0.491	100.613

Anexo 4 – Análisis de química mineral – EPMA

Tabla A4 - 1 Resultados de análisis cuantitativos de química mineral de granate para la muestra ECU 1

					EC	U 6					
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	0.059	6.636	22.779	38.513	7.585	0.008	0.023	0.009	24.481	0.426	100.519
	0.037	5.49	22.649	38.289	9.316	0.052	0.002	-0.001	24.592	0.433	100.859
	0.001	4.371	22.435	38.502	11.498	0.058	0.002	0.008	23.421	0.344	100.64
	0.028	4.971	22.475	38.298	10.564	0.044	0.003	-0.009	23.694	0.495	100.563
	0.058	4.691	22.541	38.349	12.034	0.026	0.039	0.006	22.686	0.504	100.934
	0.043	4.862	22.383	38.401	11.016	0.023	-0.01	-0.012	23.339	0.502	100.547
	0.032	4.721	22.296	38.409	11.124	0.075	0.013	0.002	23.291	0.542	100.505
	0.019	4.193	22.109	38.405	11.209	0.073	0.036	0.004	23.816	0.803	100.667
	0.039	4.107	22.189	38.239	11.225	0.075	0	-0.004	23.522	0.752	100.144
	0.069	4.876	22.329	38.332	10.834	0.108	0.006	-0.003	23.293	0.55	100.394
	0.046	5.049	22.355	38.529	10.545	0.121	-0.005	0.001	23.762	0.51	100.913
	0.032	5.277	22.35	38.617	10.167	0.141	0.023	-0.009	23.813	0.522	100.933
	0.081	5.024	22.283	38.68	10.221	0.123	0.003	-0.001	23.911	0.522	100.847
	-0.009	0	0.002	95.506	0.014	0.005	-0.023	0.008	0.21	0.03	95.743
Grt1	0.053	5.053	22.009	38.044	10.198	0.139	-0.043	-0.009	23.885	0.525	99.854
GITT	0.032	5.425	22.161	38.478	9.326	0.05	0.03	0.007	24.072	0.525	100.106
	0.046	5.102	22.034	38.213	10.128	0.138	0.031	0.001	23.813	0.496	100.002
	0.029	5.766	22.469	38.325	8.616	0.027	-0.015	0.002	24.656	0.555	100.43
	0.059	5.011	22.231	37.884	9.515	0.061	-0.012	0.003	24.981	0.563	100.296
	0.053	5.083	22.192	38.675	10.91	0.093	-0.037	-0.003	23.044	0.52	100.53
	0.025	4.858	21.917	38.299	10.183	0.048	0.01	-0.003	24.016	0.536	99.889
	0.048	5.015	22.25	38.925	9.656	0.011	-0.018	0.002	24.932	0.579	101.4
	0.041	5.152	22.431	38.622	10.187	0.065	-0.023	-0.003	23.805	0.497	100.774
	0.059	4.978	22.47	38.653	10.915	0.033	0.054	0.002	23.359	0.498	101.021
	0.043	4.187	22.265	38.591	11.662	0.058	0.024	0.012	23.795	0.817	101.454
	-0.024	5.103	22.772	38.862	10.606	0.046	-0.032	0	23.452	0.473	101.258
	0.012	4.847	22.445	39.253	11.823	0.07	0.057	-0.001	22.199	0.433	101.138
	0.064	5.05	22.598	39.06	10.942	0.033	0.012	0.007	22.909	0.46	101.135
	0.008	5.491	22.347	38.525	9.114	0.079	0.024	0.005	24.701	0.156	100.45
	0.053	6.448	22.858	39.112	7.839	0.013	-0.022	-0.003	24.549	0.405	101.252
	0.039	5.294	22.609	38.966	8.284	-0.003	-0.003	0.006	25.75	0.524	101.466
	0.018	6.114	22.705	39.107	7.274	0.046	-0.014	-0.004	25.415	0.466	101.127
	0.056	4.603	22.395	38.798	11.846	0.048	-0.018	0.003	22.506	0.35	100.587
Grt2	0.036	4.665	22.216	38.546	10.764	0.048	-0.018	0.003	23.929	0.422	100.611
	0.053	2.617	21.93	38.361	11.482	0.055	0.001	0.002	26.295	0.349	101.145
	0.017	4.703	22.263	39.114	11.15	0.047	-0.019	-0.007	23.554	0.533	101.355
	0.043	4.705	21.928	39.194	9.951	0.052	0.01	0.006	24.791	0.807	101.487

				1				-		-	-
	0.05	5.027	21.978	38.749	10.314	0.152	-0.008	0.003	23.889	0.517	100.671
	0.058	5.211	22.569	39.753	9.781	0.075	-0.018	-0.002	24.543	0.567	102.537
	0.046	5.337	22.066	39.205	9.288	0.085	-0.01	0.006	24.26	0.787	101.07
	0.083	5.022	22.12	38.975	9.824	0.172	-0.021	0.007	23.935	0.934	101.051
	0.102	5.248	22.195	38.934	9.43	0.134	0.004	-0.002	24.133	0.546	100.724
	0.101	5.333	21.996	38.909	9.923	0.193	-0.031	0.001	23.64	0.787	100.852
	0.075	5.218	21.868	38.942	9.459	0.172	-0.001	-0.011	23.707	0.77	100.199
	0.06	5.368	21.9	39.204	9.322	0.175	-0.031	-0.005	24.383	0.627	101.003
	0.087	5.372	22.035	39.018	9.368	0.249	-0.022	-0.004	24.14	0.664	100.907
	-0.006	5.367	22.459	38.996	9.416	0.03	-0.012	-0.004	24.288	0.534	101.068
	0.036	5.169	22.354	39.167	9.709	0.03	0	-0.009	24.075	0.53	101.061
	0.004	6.185	22.546	38.912	7.158	0.016	0.023	0.004	25.492	0.554	100.894
	0.055	5.899	22.527	39.324	8.261	0.015	-0.012	0.001	24.847	0.497	101.414
	0.069	5.23	22.302	39.148	9.29	0.037	0.008	0.001	24.218	0.779	101.082
	0.045	5.219	22.162	38.957	9.631	0.129	-0.005	0.002	24.299	0.622	101.061
	0.056	6.133	22.707	39.384	7.587	0.066	-0.01	0.001	25.371	0.519	101.814
	0.022	4.905	22.571	38.946	10.04	0.047	-0.007	0.004	24.386	0.546	101.46
	0.052	4.069	22.119	39.36	10.463	0.055	0.004	0.005	24.83	0.773	101.73
	0.054	4.862	22.044	39.136	10.839	0.079	-0.016	0.016	23.923	0.471	101.408
	0.05	4.819	22.346	39.086	10.827	0.09	0.004	0	23.274	0.466	100.962
	0.053	4.963	22.353	39.087	10.788	0.081	-0.017	0.006	23.33	0.372	101.016
	0.025	5.822	22.874	39.262	7.8	0.02	0.007	-0.001	25.564	0.484	101.857
	0.007	6.656	22.739	39.329	7.396	-0.006	0.007	-0.012	24.888	0.35	101.354
	-0.016	6.661	23.129	39.38	7.456	-0.007	0.023	-0.002	25.149	0.358	102.131
	0.007	5.04	22.584	39.209	10.893	0.061	-0.036	0.004	23.547	0.433	101.742
	0.045	4.603	22.782	39.022	12.143	0.046	0.008	0.007	22.621	0.473	101.75
	0.024	2.302	22.039	38.444	11.21	0.02	-0.009	0.002	26.809	0.605	101.446
	0.06	5.147	22.399	39.613	10.141	0.063	-0.01	0.003	24.378	0.56	102.354
	-0.033	4.827	22.577	39.195	10.922	-0.001	-0.026	0.001	23.277	0.549	101.288
	0.017	5.056	22.131	39.182	9.865	0.088	0.01	0.005	24.084	1.014	101.452
Grt3	0.031	3.876	22.09	39.045	9.601	0.081	0.03	-0.008	25.538	1.5	101.784
	0.02	5.282	22.437	39.023	9.651	0.09	-0.012	-0.007	24.6	0.514	101.598
	0.022	4.259	22.244	39.071	10.553	0.056	-0.001	0.001	24.644	0.87	101.719
	-0.005	4.807	22.276	39.235	10.835	0.037	-0.022	0.001	23.979	0.528	101.671
	0.053	2.407	22.058	38.92	11.617	0.042	0.002	-0.001	26.321	0.636	102.055
	0.029	3.167	22.299	39.009	12.88	0.046	0.021	-0.002	24.224	0.44	102.113
	0.024	4.598	22.866	39.794	11.967	0.029	0.011	0.003	23.102	0.304	102.698
	-0.004	6.317	22.974	39.275	7.579	-0.002	-0.025	0	25.816	0.433	102.363

Tabla A4 - 2 Resultados de análisis cuantitativos de química mineral de granate para la muestra ECU 6

					EC	U 10					
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	0.042	8.981	23.077	39.105	7.439	0.023	0.089	-0.007	20.285	1.258	100.292
	0.032	9.432	23.055	39.299	7.814	0.037	0.078	-0.002	19.854	0.816	100.415
	0.051	9.136	23.16	39.106	7.837	0.047	0.086	0.003	19.86	1.015	100.301
	-0.027	8.27	23.028	39.178	8.187	0.075	0.091	0	20.885	0.638	100.325
	0.034	7.717	22.848	38.616	8.532	0.095	0.065	0.002	21.345	0.647	99.901
	0.014	8.029	22.905	38.746	8.403	0.037	0.123	0.002	20.698	0.696	99.653
	0.053	8.322	23.134	39.709	8.914	0.068	-0.009	0	19.578	1.095	100.864
	0.004	8.24	22.986	39.341	9.213	0.073	0.011	0.008	19.029	1.147	100.052
Crt 1	0.048	8.542	22.896	39.335	8.542	0.095	0.102	-0.002	19.648	1.185	100.391
Git i	0.024	8.275	22.741	39.479	8.661	0.09	0.105	-0.006	19.579	1.266	100.214
	0.03	8.002	22.956	39.499	9.306	0.114	0.048	-0.006	19.542	1.206	100.697
	0.015	8.145	22.987	38.95	8.793	0.069	-0.001	0.002	20.001	1.177	100.138
	0.054	7.923	23.126	39.041	9.419	0.104	0.117	0	19.587	1.158	100.529
	0.012	7.766	22.742	39.181	9.015	0.097	0.111	-0.005	20.427	1.264	100.61
	0.008	8.098	22.728	39.031	9.255	0.068	0.144	-0.004	19.544	1.188	100.06
	0.022	8.364	22.925	39.43	9.52	0.107	0.141	-0.006	19.141	1.101	100.745
	0.025	8.073	22.915	38.896	9.498	0.098	0.145	0.001	19.565	1	100.216
	0.032	8.427	22.675	38.671	8.876	0.082	0.126	0.012	19.654	1.15	99.705
	0.083	8.255	22.793	39.123	9.033	0.095	0.104	-0.007	19.904	0.947	100.33
	0.041	7.852	22.57	38.945	8.764	0.121	0.106	0.003	20.316	1.054	99.772
	0.056	7.71	22.692	39.023	8.942	0.08	0.115	0.003	20.242	1.117	99.98
	0.041	8.362	22.642	39.282	7.885	0.049	0.077	0.006	20.309	1.163	99.816
	0.04	8.453	22.731	39.112	8.354	0.065	0.084	0	19.876	1.229	99.944
	0.024	8.04	22.462	39.394	9.085	0.103	0.096	-0.014	19.593	1.229	100.012
	0.032	8.159	22.864	39.455	8.845	0.077	0.119	-0.005	19.441	1.309	100.296
	0.071	8.173	23.125	39.36	8.657	0.059	0.107	-0.002	19.837	1.584	100.971
Crt 2	0.083	7.814	22.848	39.12	8.809	0.075	0.123	0.005	19.602	1.598	100.077
Gitz	0.039	8.363	22.775	39.6	8.764	0.09	0.102	0.009	19.537	1.339	100.618
	-0.025	8.224	22.799	39.828	9.02	0.088	0.189	-0.002	19.384	1.354	100.859
	0.044	7.352	22.682	39.556	9.417	0.118	0.11	-0.003	19.959	1.689	100.924
-	0.039	7.86	22.592	39.613	9.531	0.1	0.114	0.009	18.866	1.311	100.035
	0.028	7.172	22.518	39.569	9.023	0.118	0.087	-0.004	19.997	1.559	100.067
	0.067	7.856	22.846	39.781	9.17	0.096	0.076	0.004	19.503	1.257	100.656
	0.025	7.398	22.913	39.789	9.509	0.075	0.05	0.004	19.907	1.209	100.879
	0.046	7.409	22.702	39.526	9.558	0.098	0.075	-0.007	19.788	1.228	100.423
	0.061	8.039	22.785	39.939	9.104	0.096	0.11	-0.004	19.339	1.112	100.581

					1						
	0.064	7.986	22.628	39.703	9.235	0.095	0.174	0.006	19.591	1.069	100.551
	0.03	8.206	22.901	39.67	8.486	0.082	0.113	0.002	19.818	1.138	100.446
	0.027	7.471	22.833	39.133	8.482	0.098	0.109	0.008	20.569	1.337	100.067
	0.075	7.957	22.955	39.632	8.614	0.092	0.14	0.002	19.749	1.332	100.548
	0.062	7.336	22.827	39.282	9.742	0.115	0.251	0.007	19.743	1.336	100.701
	0.071	7.595	22.739	39.614	9.086	0.101	0.14	0.001	19.767	1.402	100.516
	0.026	7.548	22.796	39.496	9.042	0.094	0.241	0.004	19.726	1.36	100.333
	0.04	7.43	22.781	39.808	9.523	0.09	0.152	0.011	19.8	1.408	101.043
	0.05	7.819	23.006	39.556	9.059	0.052	0.135	0.003	19.814	1.403	100.897
Grt 3	0.032	7.532	22.541	39.425	9.124	0.074	0.32	-0.006	19.268	1.505	99.815
	0.072	7.85	22.66	39.87	8.972	0.087	0.199	-0.001	19.358	1.524	100.591
	0.051	7.053	22.524	39.519	9.792	0.097	0.13	0.005	19.338	1.433	99.942
	0.033	7.742	22.965	39.466	9.126	0.071	0.03	-0.003	19.241	1.431	100.102
	0.025	8.107	22.478	39.896	8.562	-0.001	0.092	-0.014	19.363	1.384	99.892
	0.049	7.111	22.678	39.56	9.782	0.128	0.216	0.01	20.576	1.06	101.17
	0.058	8.077	22.697	39.769	8.901	0.093	0.209	-0.005	19.881	1.085	100.765
	0.012	8.268	23.005	39.666	8.811	0.089	0.102	-0.007	20.083	0.993	101.022
	0.052	8.019	22.859	39.573	8.494	0.097	0.127	0.011	20.83	0.747	100.809
	0.016	8.579	23.027	39.847	8.287	0.083	0.116	-0.002	19.868	1.037	100.858
	0.088	9.143	22.961	40.309	8.278	0.056	0.111	0.01	19.618	0.765	101.339
	0.025	8.293	23.093	40.02	8.915	0.048	0.102	-0.006	19.879	0.7	101.069
	0.026	8.052	22.632	39.865	9.12	0.076	0.163	0.003	19.795	0.97	100.702
	0.002	7.183	22.421	39.808	9.525	0.087	0.319	0.001	20.226	1.342	100.914
	0.018	8.058	22.558	39.826	9.591	0.109	0.297	-0.002	18.975	1.328	100.758
	0.047	8.225	22.781	40.076	9.168	0.112	0.223	0.01	19.328	1.217	101.187
	0.026	8.171	22.886	39.897	8.809	0.082	0.16	0.007	19.705	1.435	101.178
	0.072	8.005	22.667	39.709	9.047	0.075	0.196	0.018	19.675	1.457	100.921
	0.06	7.707	22.675	39.676	8.834	0.07	0.189	0.008	20.131	1.629	100.979
Crt 4	0.029	8.249	22.887	39.862	8.551	0.05	0.02	-0.012	19.731	1.481	100.848
GIL 4	0.024	8.115	22.881	39.719	8.518	0.032	0.096	0.006	19.969	1.408	100.768
	-0.02	7.216	22.888	39.464	8.316	0.062	0.036	0.002	21.52	1.61	101.094
-	0.03	7.573	22.856	39.4	8.592	0.061	0.149	-0.001	20.402	1.466	100.528
	0.032	7.466	22.842	39.53	8.881	0.103	0.075	0.01	20.852	1.448	101.239
	0.032	7.252	22.618	39.826	9.345	0.094	0.114	-0.004	20.551	1.235	101.063
	0.017	7.492	22.894	39.629	8.662	0.069	0.048	-0.005	20.475	1.235	100.516
	0.009	6.906	22.524	39.452	9.215	0.108	0.087	0.002	21.437	1.125	100.865
	0.029	6.903	22.85	39.179	8.597	0.094	0.05	0.003	22.196	0.922	100.823
	0.053	7.255	22.838	39.578	8.729	0.106	0.065	0.007	21.465	0.903	100.999
	0.002	6.943	22.769	39.501	8.531	0.072	0.097	0.006	22.399	0.773	101.093

 Tabla A4 - 3 Resultados de análisis cuantitativos de química mineral de granate para la muestra ECU 10

		-	-		-	ECU 2 ²	1					
Mineral	No.	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	1	0.04	5.455	22.583	38.605	9.474	0.08	-0.017	-0.002	23.909	0.283	100.41
	2	0.058	4.575	22.54	38.852	10.567	0.086	0.027	0.004	23.917	0.422	101.048
	3	0.042	4.838	22.516	39.072	11.664	0.084	0.139	0.008	21.73	0.881	100.974
	4	0.019	4.496	22.421	38.61	11.983	0.038	0.02	-0.002	21.801	1.268	100.654
	5	0.015	3.082	22.134	38.336	11.565	0.058	0.015	0.024	23.582	1.689	100.5
	6	0.06	3.252	22.207	38.033	11.175	0.086	0.012	-0.003	24.145	1.614	100.581
	7	0.055	4.412	22.23	38.302	10.455	0.051	0.006	0.006	22.512	2.522	100.551
	8	0.009	2.715	22.236	38.009	10.514	0.091	0.026	-0.008	23.339	3.881	100.812
	9	0.004	2.404	22.055	38.022	10.63	0.074	-0.019	-0.004	23.205	4.174	100.545
Grt1	10	0.045	4.871	22.476	38.657	10.629	0.07	0.009	0.019	22.448	1.762	100.986
GITT	11	0.056	5.351	22.371	38.783	9.711	0.044	0.002	0.003	23.429	1.139	100.889
	12	0.056	5.331	22.821	39.111	10.495	0.101	-0.02	-0.001	22.784	0.975	101.653
	13	0.05	3.151	22.138	38.44	10.889	0.054	0.033	-0.008	22.277	4.114	101.138
	14	0.103	3.73	22.209	38.531	10.702	0.105	-0.003	0.015	22.428	3.12	100.94
	15	0.031	5.19	22.892	39.048	11.42	0.052	0.007	0.007	22.009	0.645	101.301
	16	0.023	4.626	22.415	38.884	11.651	0.079	0.191	0	22.285	0.726	100.88
	17	0.06	4.872	22.647	39.295	12.003	0.054	0.018	0.009	21.758	0.797	101.513
	18	0.06	5.078	22.483	38.92	10.305	0.078	0.01	0.01	23.371	0.544	100.859
	19	0.058	4.293	22.154	38.89	10.001	0.085	0.013	0.006	25.437	0.202	101.139
	20	0.073	5.991	22.511	38.986	8.261	0.049	0.018	0.014	24.367	0.559	100.829
	21	0.093	6.023	22.586	39.072	8.445	0.019	0.035	0.004	24.486	0.343	101.106
	22	0.066	5.383	22.583	39.349	10.31	0.083	0	0.008	23.06	0.61	101.452
	23	0.024	4.359	22.464	38.878	11.981	0.091	-0.011	-0.002	22.796	0.763	101.343
	24	0.02	3.767	22.208	39.069	12.928	0.051	0.007	-0.001	21.409	1.558	101.016
	25	0.022	4.443	22.363	39.136	12.541	0.052	0.006	-0.002	21.809	1.126	101.496
	26	0.008	2.989	22.299	38.457	9.757	0.033	0.022	-0.003	25.077	2.71	101.349
Grt 2	27	0.051	5.255	22.828	38.875	9.501	0.022	-0.004	0.012	23.368	1.463	101.371
Git 2	28	0.034	3.374	22.201	38.299	10.194	0.107	0.012	0	23.802	2.953	100.976
	29	0.07	3.066	22.286	38.392	9.642	0.116	-0.047	-0.001	24.571	3.452	101.547
	30	0.076	3.608	22.187	38.6	9.883	0.088	0.004	0.006	23.464	3.26	101.176
	31	0.099	4.716	22.524	39.003	9.608	0.052	-0.016	0.004	23.27	2.582	101.842
	32	0.004	4.358	22.392	38.55	9.583	0.074	0	0.004	22.837	3.056	100.858
	33	0.062	5.244	22.348	38.656	10.053	0.115	0.063	-0.003	22.752	1.856	101.146
	34	0.083	5.463	22.493	38.712	9.691	0.108	-0.01	0.005	23.126	1.006	100.677

	35	0.059	5.622	22.328	38.841	9.267	0.095	0.017	0.005	23.4	1.391	101.025
	36	0.055	5.393	22.352	38.997	9.704	0.109	-0.021	-0.008	22.131	2.015	100.727
	37	0.027	5.617	22.175	39.134	9.195	0.09	0.001	-0.013	23.283	1.183	100.692
	38	0.04	4.87	22.171	38.834	10.933	0.031	0.014	0.014	22.581	0.966	100.454
	39	0.081	5.588	22.413	38.867	9.348	0.081	-0.014	0.004	22.889	0.966	100.223
	40	0.054	5.587	22.335	38.925	9.628	0.078	0.016	-0.004	22.911	1.012	100.542
	41	0.037	3.874	22.154	38.472	9.601	0.094	0.002	0.003	22.545	3.77	100.552
	42	0.075	5.409	22.566	39.006	9.568	0.068	0.015	0.009	23.385	1.027	101.128
	43	0.02	5.469	22.483	38.471	9.682	0.093	0.006	0.003	22.966	1.131	100.324
	44	0.059	5.291	22.5	38.767	9.938	0.107	0.019	0.007	22.441	1.523	100.652
	45	0.041	5.109	22.5	38.463	10.523	0.102	-0.013	0.003	22.175	1.401	100.304
	46	0.027	4.982	22.702	38.885	11.06	0.026	0.019	0.001	22.615	0.895	101.212
	47	0.164	3.553	22.323	38.403	11.892	0.071	-0.014	0.04	23.443	0.616	100.491
	48	0.013	3.321	22.289	38.664	12.918	0.046	0.011	-0.002	22.361	1.537	101.158
	49	0.05	5.492	22.4	39.015	10.575	0.039	-0.006	-0.003	22.854	0.53	100.946
	50	0.01	6.78	22.765	39.091	8.062	0.008	-0.04	0.021	23.84	0.737	101.274
	51	0.025	6.447	22.495	38.428	7.591	0.011	0.026	0.009	24.586	0.463	100.081
	52	0.068	5.621	22.619	38.63	9.298	0.05	0.023	0.023	23.886	0.764	100.982
	53	-0.003	5.232	22.686	38.726	10.221	0.143	0.02	0.001	23.51	0.514	101.05
	54	0.076	5.179	22.539	38.963	11.116	0.052	0.031	-0.003	22.635	0.621	101.209
	55	0.043	4.694	22.456	38.695	11.336	0.025	0.003	0.006	22.695	0.647	100.6
	56	0.044	4.238	22.308	38.827	13.369	0.056	-0.005	0.01	20.731	1.151	100.729
	57	-0.012	4.491	22.172	38.495	12.247	0.064	-0.023	0.004	21.004	0.993	99.435
	58	-0.014	2.842	22.248	38.357	9.927	0.055	-0.007	0.003	24.616	3.034	101.061
	59	0.026	2.615	21.955	37.855	9.859	0.08	0.003	0.005	24.412	3.251	100.061
	60	0.032	4.051	22.341	38.211	9.962	0.019	0.03	0.017	23.597	2.452	100.712
	61	0.08	4.146	22.395	38.569	10.107	0.092	0.018	0.002	22.853	2.623	100.885
	62	0.043	5.479	22.514	38.609	9.268	0.018	-0.02	0.001	23.968	1.03	100.91
Grt 3	63	0.029	4.724	22.514	38.857	11.292	0.045	0.021	0.002	22.488	0.963	100.935
	64	0.038	4.299	22.559	38.895	12.997	0.051	-0.006	-0.005	20.764	1.291	100.883
	65	0.079	4.126	22.224	38.72	9.832	0.091	0.023	0.008	22.737	3.49	101.33
	66	0.036	4.484	22.418	38.324	9.741	0.112	0.023	-0.003	22.771	3.128	101.034
	67	-0.009	4.549	22.488	38.243	9.504	0.1	0.068	-0.006	23.065	2.767	100.769
	68	0.044	4.52	22.441	38.395	10.35	0.142	-0.003	0.008	22.372	2.652	100.921
	69	0.036	3.968	22.246	38.247	9.605	0.11	0.002	-0.002	22.944	3.559	100.715
	70	0.084	4.208	22.31	38.541	9.775	0.146	0.02	-0.009	23.297	3.231	101.603
	71	0.076	4.656	22.511	38.666	9.952	0.119	0.041	0.005	22.71	2.755	101.491
	72	0.024	3.533	22.214	38.603	10.091	0.084	0	-0.004	23.592	3.334	101.471
	73	-0.002	4.989	22.288	38.655	10.542	0.057	-0.002	-0.003	22.742	1.523	100.789
	74	0.024	3.481	22.055	38.428	10.537	0.057	0.032	-0.001	23.967	2.442	101.022
	75	-0.001	4.009	22.235	38.699	13.584	0.044	-0.016	-0.004	20.893	1.417	100.86

		14 1								501104	
80	0.019	5.571	22.565	38.778	9.5	0.082	0.015	0.002	24.018	0.35	100.9
79	0.011	4.881	22.166	38.711	11.638	0.072	0.044	-0.004	22.254	0.714	100.487
78	0.049	4.36	22.406	38.698	12.028	0.088	0.004	0.007	22.628	0.768	101.036
77	0.03	3.309	22.178	38.398	12.631	0.048	-0.003	0.004	22.782	1.352	100.729
76	0.013	4.001	22.227	38.525	12.778	0.06	-0.038	0.009	21.518	1.526	100.619

Tabla A4 - 4 Resultados de análisis cuantitativos de química mineral de granate para la muestra ECU 21

ECU 22C												
Mineral	No.	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	1	0.018	4.34	22.483	38.442	9.705	0.056	0.008	0.001	25.565	0.711	101.33
	2	0.032	4.24	22.126	38.849	10.431	0.018	0.075	0.001	24.474	0.672	100.92
	3	0.065	4.509	22.292	38.626	10.888	0.039	0.052	0.008	24.065	0.622	101.17
	4	0.009	4.466	22.078	38.551	10.006	0.018	0.054	0.006	24.629	0.648	100.47
	5	0.058	4.326	21.824	38.39	10.497	0.077	0.003	0.019	24.25	0.654	100.09
	6	0.117	4.498	22.09	38.162	9.673	0.028	0.005	0.03	25.001	0.673	100.28
	7	0.002	4.643	22.33	38.647	8.907	0.003	0.018	0.002	25.492	0.696	100.73
Grt 1	8	0.055	4.522	21.746	38.351	9.445	0.073	0.02	0.003	25.484	0.685	100.38
	9	0.1	4.721	21.913	38.337	9.247	0.085	0.045	0.001	25.243	0.662	100.35
	10	0.042	4.537	21.925	38.229	9.621	0.037	0.033	0.003	25.616	0.665	100.7
	11	0.059	4.597	21.808	38	9.529	0.069	0.044	0.01	25.409	0.658	100.18
	12	0.077	4.647	21.896	38.359	9.844	0.03	0	0.009	25.008	0.664	100.53
	13	0.031	4.484	22.025	38.351	10.064	0.042	0.048	0.005	24.805	0.61	100.47
	14	0.034	4.405	22.161	38.499	9.731	0.033	0.005	0.001	25.394	0.704	100.97
	15	0.019	4.332	22.086	38.2	9.655	0.037	0.059	0.004	25.056	0.714	100.15
	16	0.022	5.261	22.395	38.805	8.687	0.011	0.031	0.004	24.871	0.628	100.72
	17	0.01	5.386	22.806	38.655	8.692	0.004	0.022	0.014	24.699	0.635	100.92
	18	0.036	5.532	22.496	38.45	7.687	0.052	0.031	0.004	25.435	0.666	100.39
	19	0.031	5.377	22.499	38.481	7.91	0.018	0.003	0.002	25.393	0.678	100.38
	20	0.008	5.6	22.25	38.4	7.653	0.023	0.019	0.003	25.599	0.656	100.2
	21	0.038	5.304	22.593	38.151	8.574	0.003	0.012	0.002	25.136	0.693	100.48
	22	0.056	5.298	22.4	37.908	8.813	0.014	0.018	0.01	25.04	0.641	100.18
Grt 2	23	0.014	5.374	22.348	38.088	8.322	0.037	0.007	0	25.054	0.639	99.841
	24	0.034	5.318	22.661	38.094	8.528	0.021	0.024	0.011	25.04	0.65	100.36
	25	0.046	5.406	22.427	38.175	8.013	0.027	0.042	0.003	25.439	0.683	100.26
	26	0.048	5.332	22.215	38.584	8.206	0.033	0.007	0.001	25.265	0.676	100.37
	27	0.04	5.401	22.367	38.326	8.119	0.043	0.016	0.001	25.379	0.664	100.35
	28	0.023	5.378	22.235	38.148	8.128	0.048	0.014	0.02	25.233	0.639	99.866
	29	0.013	5.238	22.373	38.369	8.545	0.035	0.017	0.003	25.377	0.673	100.62
	30	0.034	5.544	22.396	38.088	7.867	0.031	0.013	0	25.68	0.66	100.29
	31	0.059	5.445	22.329	38.478	8.405	0.024	0.028	0.004	25.236	0.682	100.68
	32	0.031	5.538	22.343	38.489	8.165	0.029	0.013	0.006	25.266	0.677	100.53

	33	0.008	5.481	22.284	38.508	7.974	0.049	0.008	0.003	25.328	0.599	100.24
	34	0.005	5.467	22.317	38.26	7.803	0.037	0.004	0.001	25.897	0.641	100.41
	35	0.065	5.277	22.318	37.965	8.934	0.048	0.035	0.005	24.551	0.653	99.851
Grt 3	36	0.015	4.402	22.406	38.327	10.093	0.052	0.037	0.007	25.043	0.66	101.03
	37	0.01	4.436	22.451	38.192	10.427	0.051	0.018	0.002	24.238	0.614	100.4
	38	0.033	4.735	22.31	38.5	9.738	0.039	0.002	0.001	24.988	0.612	100.95
	39	0.02	4.545	22.457	38.509	10.787	0.067	0.025	0.004	23.88	0.605	100.89
	40	0.044	4.57	21.584	38.027	9.871	0.052	0.031	0.001	25.56	0.733	100.47
	41	0.035	4.51	21.779	38.332	9.628	0.054	0.024	0.001	26.078	0.659	101.1
	42	0.073	4.736	22.39	38.221	9.315	0.016	0.064	0.01	25.66	0.703	101.19
	43	0.055	4.765	21.602	38.408	9.72	0.042	0	0.003	25.356	0.675	100.63
	44	0.013	4.596	21.716	38.377	9.619	0.079	0.009	0.006	25.607	0.684	100.69
	45	0.057	4.715	22.24	38.216	9.422	0.002	0.036	0.003	24.991	0.663	100.35
	46	0.051	4.701	22.135	38.483	9.374	0.023	0.056	0.006	25.333	0.641	100.8
	47	0.029	4.651	22.219	37.956	10.344	0.023	0.028	0.001	23.937	0.617	99.805
	48	0	4.644	22.149	38.189	10.626	0.052	0.017	0.003	24.057	0.613	100.35
	49	0.024	4.44	22.24	38.096	11.018	0.023	0.005	0.008	23.735	0.636	100.23
	50	0.04	4.418	22.202	37.94	11.03	0.034	0.025	0.01	23.93	0.63	100.19
										_		

Tabla A4 - 5 Resultados de análisis cuantitativos de química mineral de granate para la muestra ECU 22C

ECU 6											
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	K2O	FeO	MnO	Cr2O3	Total
	7.104	8.803	10.287	55.797	13.72	0.118	0.026	5.528	0.043	0.017	101.443
	6.988	8.661	10.141	54.584	13.708	0.075	0.011	5.364	0.021	0.006	99.559
	7.097	8.715	10.177	54.462	13.877	0.08	0.005	5.263	0.036	0.013	99.725
	7.246	8.747	10.288	54.481	13.676	0.078	0.006	5.347	-0.004	0.04	99.905
	7.342	8.781	10.233	54.628	13.84	0.089	0.014	5.377	0.014	0.044	100.362
Рх	7.283	8.676	10.26	54.367	13.677	0.073	0.003	5.469	0.001	0.019	99.828
	6.943	8.369	9.678	52.972	13.875	0.097	-0.002	5.687	0.027	0.023	97.669
	6.818	8.662	9.966	53.348	13.724	0.117	0.023	5.491	0.008	-0.008	98.149
	7.254	8.791	10.151	54.645	13.736	0.061	0.031	5.34	-0.005	-0.004	100
	7.17	8.708	10.163	54.815	13.745	0.058	0	5.402	-0.015	0.01	100.056
	7.17	8.775	10.115	55.006	13.679	0.073	0.041	5.2	0.029	0.03	100.118
	7.108	8.775	10.408	54.215	13.609	0.079	-0.005	5.104	0.045	0.041	99.379
	7.19	8.587	10.044	53.569	13.574	0.099	0.024	5.44	0.034	0.008	98.569
	7.035	8.824	10.382	54.609	13.781	0.083	0	5.156	0.016	-0.013	99.873
	7.219	8.697	10.333	54.567	13.62	0.086	0.004	5.293	-0.022	0.01	99.807
	7.319	8.636	10.196	54.498	13.989	0.104	0.006	5.62	0.039	0.012	100.419
	7.388	8.718	10.256	54.124	13.717	0.06	-0.006	5.249	-0.056	0.014	99.464
	7.471	8.499	10.652	54.668	13.365	0.068	0.009	5.548	0.032	-0.004	100.308
	7.07	8.705	9.795	54.327	14.05	0.072	0.003	5.68	0.02	0.035	99.757
-----	--------	--------	--------	--------	--------	-------	--------	--------	--------	--------	--------
	7.403	8.426	10.297	54.215	13.273	0.084	0.021	5.643	0.049	0.013	99.424
	7.038	8.429	9.919	54.136	13.72	0.084	0.011	5.3	0.031	0.027	98.695
	7.368	8.733	10.412	54.376	13.502	0.082	-0.007	5.014	0.011	-0.008	99.483
	7.179	8.695	10.136	54.035	13.718	0.121	-0.007	5.665	0.011	0.005	99.558
	7.35	8.742	9.61	54.318	13.631	0.056	0	5.87	0.012	0.025	99.614
	7.069	8.752	10.037	53.61	13.581	0.099	0.006	5.467	0.032	0.006	98.659
	0.015	0.137	28.568	37.69	23.588	0.111	0.004	6.328	-0.02	0.038	96.459
	0.001	0.144	28.209	37.262	23.174	0.12	-0.005	6.567	-0.03	0.014	95.456
	0.004	0.164	28.25	37.759	23.339	0.103	-0.005	6.612	0.033	0.034	96.293
	0.027	0.152	27.976	37.555	23.245	0.098	-0.003	6.592	-0.003	0.041	95.68
	0.01	0.124	28.127	37.842	23.297	0.118	-0.006	6.844	0.097	0.01	96.463
	-0.004	0.143	27.852	37.493	23.316	0.111	0	6.557	0.041	0.005	95.514
	0.005	0.16	28.047	37.589	23.111	0.099	0.009	6.56	0	0.026	95.606
	0.019	0.124	27.953	37.372	23.231	0.124	0.001	6.592	-0.016	-0.022	95.378
	0.005	0.098	26.319	37.061	22.641	0.168	-0.004	8.311	0	0.003	94.602
	-0.006	0.088	26.316	36.717	23.235	0.064	0.003	8.02	0.01	0.016	94.463
	0	0.136	28.122	37.152	23.536	0.087	-0.002	5.959	0.037	0.005	95.032
	0.035	0.162	27.175	37.521	22.605	0.138	-0.006	7.743	0.023	-0.016	95.38
	-0.006	0.054	26.808	37.24	23.661	0.115	0.006	8.117	0.014	0.014	96.023
	0.006	0.031	27.17	37.25	23.64	0.073	-0.005	7.982	-0.001	-0.013	96.133
Ер	-0.009	0.047	26.658	37.249	23.496	0.068	-0.005	8.11	-0.001	0.021	95.634
	0.015	0.137	28.271	37.837	23.321	0.087	-0.003	6.676	0.022	0.025	96.388
	0.04	0.187	28.129	37.456	22.854	0.08	-0.001	6.563	-0.003	0.034	95.339
	0.037	0.133	28.276	37.732	23.35	0.098	0.01	6.557	0.058	0.047	96.298
	-0.012	0.125	27.999	37.43	23.256	0.098	0.008	6.47	0.011	0.047	95.432
	0.011	0.137	28.082	37.222	23.19	0.121	-0.008	6.656	-0.023	0.041	95.429
	0.04	0.174	27.746	37.146	22.845	0.13	0.043	6.46	0.07	0.025	94.679
	0.005	0.157	28.074	37.161	22.956	0.126	-0.003	6.731	0.034	0.041	95.282
	0.026	0.143	28.071	36.985	23.143	0.125	0.001	6.541	-0.03	0.016	95.021
	0	0.107	27.517	36.32	23.186	0.158	-0.015	7.507	-0.039	0.002	94.743
	-0.011	0.083	26.668	37.085	23.145	0.164	-0.012	8.255	0.033	0.031	95.441
	0.057	0.143	28.124	37.061	23.476	0.096	0.005	6.424	0.054	0.049	95.489
	-0.005	0.17	28.342	37.539	23.163	0.099	0.004	6.609	-0.049	0.028	95.9
	0.021	0.114	26.957	37.375	23.087	0.149	0.005	8.109	0.032	0.013	95.862
	0.034	0.19	27.849	36.945	22.798	0.069	-0.005	6.435	0.033	0.04	94.388
	4.818	13.122	13.342	46.018	8.397	0.389	0.248	10.06	0.05	0.008	96.452
_	4.838	12.914	13.735	46.15	8.269	0.378	0.251	10.743	0.021	0.016	97.315
Amp	4.643	13.327	13.212	46.823	8.154	0.367	0.298	9.88	0.004	0.022	96.73
	5.005	12.023	13.55	46.318	8.295	0.372	0.231	10.84	0.084	0.022	96.74
	4.642	13.104	13.366	46.163	8.429	0.323	0.24	10.242	0.073	-0.012	96.57

4.594	13.254	13.712	46.398	8.395	0.394	0.226	10.549	0.038	-0.006	97.554
3.983	11	11.463	46.562	8.742	0.331	0.161	14.123	0.124	0.02	96.509
3.949	13.459	10.066	48.749	9.153	0.17	0.079	10.338	0.046	0.002	96.011
4.797	13.007	13.414	46.95	8.204	0.453	0.297	10.626	-0.004	0.022	97.766
4.813	13.549	13.156	47.411	8.194	0.353	0.29	9.848	-0.007	0.017	97.624
4.953	13.629	13.302	47.466	8.307	0.378	0.291	9.562	0.029	0.016	97.933
4.75	13.39	13.334	46.528	8.354	0.352	0.211	10.057	0.021	-0.001	96.996
4.666	12.812	13.183	46.308	8.115	0.348	0.27	10.868	0.032	-0.009	96.593
4.84	12.923	13.506	46.373	8.331	0.397	0.268	10.412	0.051	0.017	97.118
4.792	13.742	12.939	47.415	8.165	0.348	0.306	9.544	0.016	0.002	97.269
4.608	13.935	12.326	47.63	8.111	0.286	0.288	9.367	-0.017	0.034	96.568
4.809	12.605	13.26	46.555	8.221	0.357	0.275	9.701	-0.002	0.015	95.796

Tabla A4 - 6 Resultados de análisis cuantitativos de química mineral de anfíbol, piroxeno y epidota para la
muestra ECU 6

	ECU 10 Iineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 Total												
Mineral	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	Na2O	K2O	Cr2O3	Total		
	39.474	0.024	32.216	2.803	0.064	0.023	24.208	0.009	0.002	0.246	99.065		
	39.818	0.016	32.897	1.568	0.022	0.058	24.167	0.046	0.008	0.104	98.704		
	39.859	0.04	32.818	1.485	0.068	0.046	24.378	0.037	0.004	0.112	98.847		
	39.701	0.057	33.16	1.502	0.014	0.074	24.37	0.01	0.008	0.056	98.952		
	39.232	0.014	32.391	2.111	0.083	0.022	24.322	0.039	0	0.159	98.373		
	39.56	0.036	32.214	2.815	0.084	0.016	24.012	0.045	0.001	0.1	98.883		
	39.464	0.002	32.596	2.189	0.079	0.028	24.366	0.021	0.006	0.118	98.865		
	39.631	0.042	32.246	2.858	0.029	0.025	24.349	0.029	0.007	0.08	99.296		
	39.596	0.002	32.649	2.46	0.01	0.028	24.527	0.009	0.008	0.142	99.409		
	39.584	0.04	32.698	2.48	0.131	0.024	24.295	0.044	0.001	0.08	99.377		
	39.238	0.031	33.377	1.071	0.047	0.068	24.222	0.017	0.003	0.05	98.124		
Fn	39.573	0.033	33.301	1.051	0.017	0.071	24.427	0.014	0.003	0.013	98.503		
ЦΡ	39.394	0.101	32.266	2.448	0.058	0.019	24.474	0.049	0.001	0.266	99.076		
	39.768	0.055	33.324	1.08	0.03	0.041	24.516	0.023	0.007	0.043	98.887		
	39.516	0.055	32.9	1.206	0.037	0.056	24.473	0.046	0.014	0.077	98.38		
	39.448	0.04	33.007	1.292	0.04	0.065	24.012	0.056	0.005	0.038	98.003		
	39.724	0.051	32.698	1.683	0.036	0.049	24.477	0.013	0	0.143	98.874		
	39.921	0.038	33.377	1.064	0.026	0.059	24.732	0.032	0.008	0.115	99.372		
	39.403	0.024	33.336	1.074	0.018	0.04	24.639	0.04	0.001	0.106	98.679		
	39.27	0.04	32.876	1.346	0.017	0.062	24.237	0.019	0.001	0.073	97.941		
	39.528	0.024	32.923	1.431	0.066	0.036	24.557	0	0.001	0.103	98.669		
	39.518	0.063	33.097	1.207	0.029	0.076	24.511	0.043	0	0.03	98.574		
	39.41	0.059	33.01	1.291	0.006	0.066	24.58	0.067	0	0.154	98.643		
	39.3	0.057	32.905	1.258	0.013	0.053	24.525	0.007	0.009	0.07	98.179		

	20.1	0.002	22 162	2 502	0.044	0.042	24 222	0 0 2 8	0.002	0 102	08 206
	30 003	0.002	32.103	2.592	0.044	0.043	24.223	0.020	0.002	0.103	90.290
	30 1/18	0.014	32 070	1.134	0.040	0.042	24.041	0.011	0.000	0.001	90.455
	38 377	0.033	27 576	7 395	0.007	0.070	23.873	0.005	0.013	0.033	97 566
	38.074	0.07	27.370	7 513	0.100	0.00	23.073	0.000	0.005	0.104	97 258
	39 198	0.071	32 574	1 627	0.052	0.010	20.741	0.027	0.008	0.140	98 265
	39.389	0.01	33.104	1.406	0.01	0.07	24.273	0.023	0.01	0.107	98.402
	39.429	0.058	32,799	1.344	0.006	0.07	24.281	0	0.002	0.066	98.055
	39.308	0.027	32.457	1.934	0.025	0.012	24.333	0.004	0.002	0.139	98,183
	38,945	0.043	32.299	2.136	0.043	0.016	24.53	0.04	0.002	0.071	98.045
	38.187	0.166	27.378	7.326	0.182	0.004	23.797	0.017	0.004	0.119	97.172
	38,445	0.105	28.182	6.852	0.177	0.032	23.881	0.016	0.01	0.106	97.754
	39.082	0.022	33.117	1.161	0.014	0.039	24.446	0.035	0	0.019	97.935
	39.066	0.057	32.376	1.951	0.015	0.028	24.284	0.024	0.003	0.133	97.889
	38.414	0.022	32.832	1.425	0.025	0.045	24.212	0.006	0.003	0.096	97.062
	38.694	0.075	33.204	1.342	0.048	0.063	24.373	0.032	0.011	0.033	97.875
	38.627	0.053	32.966	1.261	0.004	0.052	24.318	0.004	0.001	0.113	97.389
	39.342	0.047	33.11	1.33	0.008	0.048	24.451	0.016	0.001	0.098	98.433
	38.639	0.052	32.149	2.163	0.042	0.023	24.236	0	0.003	0.111	97.418
	37.785	0.211	27.394	6.733	0.147	0.025	23.947	0.009	0.002	0.124	96.373
	37.94	0.135	27.855	7.247	0.15	0.025	23.932	0.012	0.004	0.091	97.383
	37.765	0.098	27.281	7.786	0.219	0.017	23.874	0.001	0.006	0.13	97.163
	38.887	0.03	32.808	1.434	0.01	0.072	24.542	0.003	0.001	0.108	97.893
	38.847	0.055	32.69	1.196	0.059	0.035	24.268	0.007	0.007	0.141	97.291
	39.01	0.043	32.674	1.13	0.02	0.058	24.544	0.023	0.004	0.1	97.598
	38.567	0.079	32.889	1.1	0.004	0.046	24.441	0.027	0.006	0.128	97.287
	39.335	0.035	33.252	1.165	0.064	0.058	24.349	0.047	0.01	0.039	98.354
	39.372	0.04	33.177	1.117	0.038	0.045	24.506	0.021	0.001	0.143	98.458
	39.028	0.012	32.886	1.419	0.037	0.054	24.309	0.004	0.003	0.071	97.823
	39.331	0.054	32.538	2.048	0.094	0.02	24.342	0.027	0.014	0.096	98.564
	39.362	0.018	32.593	2.152	0.042	0.056	24.656	0.008	0	0.07	98.957
	51.63	0.173	8.322	7.288	0.144	17.206	10.895	2.098	0.093	0.139	97.988
	47.654	0.28	14.017	7.834	0.187	13.955	10.043	3.711	0.08	0.185	97.946
	48.326	0.272	13.69	6.739	0.091	15.898	9.84	3.303	0.064	0.088	98.311
	48.45	0.329	13.999	6.651	0.093	15.806	9.851	3.363	0.06	0.085	98.687
_	40.022	0.031	32.81	1.501	0.042	0.035	24.555	0.019	0.001	0.255	99.269
Amp	40.359	0.042	32.949	1.732	0.025	0.053	24.645	0.039	0.003	0.018	99.865
	48.058	0.383	13.836	6.087	0.061	15.014	10.019	3.406	0.078	0.122	97.064
	48.613	0.27	13.265	5.945	0.072	15.057	9.92	3.412	0.056	0.148	96.758
	53.318	0.11	6.291	7.863	0.178	17.69	11.066	1.822	0.068	0.088	98.494
	47.608	0.314	13.849	6.348	0.103	15.287	9.885	3.44	0.06	0.105	96.999
	47.772	0.347	13.676	6.387	0.064	15.939	9.87	3.644	0.078	0.051	97.828

47.901	0.318	13.409	6.614	0.03	16.027	9.726	3.532	0.064	0.084	97.705
48.074	0.366	13.95	6.742	0.095	15.792	9.895	3.654	0.066	0.084	98.718
47.604	0.339	13.917	7.126	0.123	15.088	9.861	3.914	0.07	0.074	98.116
48.484	0.291	12.95	6.753	0.102	16.042	9.797	3.293	0.065	0.2	97.977
46.135	0.292	15.856	8.808	0.16	12.696	9.436	4.368	0.081	0.935	98.767
45.702	0.287	15.417	9.628	0.165	12.304	9.425	4.281	0.079	1.01	98.298
45.659	0.339	15.925	7.868	0.096	13.361	9.628	4.116	0.096	0.731	97.819
49.005	0.289	12.871	6.614	0.081	16.305	9.846	3.255	0.09	0.117	98.473
48.675	0.336	13.079	6.369	0.067	16.177	9.836	3.432	0.07	0.118	98.159
48.722	0.312	13.239	6.612	0.079	16.301	9.892	3.336	0.075	0.084	98.652
48.158	0.318	13.539	6.445	0.092	15.837	9.938	3.287	0.063	0.112	97.789
47.997	0.318	13.439	6.381	0.104	16.316	9.763	3.313	0.084	0.131	97.846
48.082	0.294	13.293	6.294	0.103	16.054	9.933	3.164	0.066	0.117	97.4
48.359	0.315	13.229	6.62	0.093	16.152	9.951	3.388	0.075	0.12	98.302
47.857	0.338	13.464	6.555	0.118	15.98	9.947	3.487	0.066	0.127	97.939
47.754	0.301	13.675	6.727	0.098	15.518	9.947	3.643	0.068	0.099	97.83
49.038	0.162	11.365	7.789	0.121	15.797	10.365	3.136	0.063	0.172	98.008
47.53	0.339	13.939	6.85	0.054	15.505	9.916	3.484	0.055	0.098	97.77
47.766	0.271	13.155	6.971	0.077	15.703	10.056	3.248	0.063	0.108	97.418
47.947	0.343	13.952	6.689	0.1	15.767	9.928	3.459	0.077	0.144	98.406
48.343	0.317	13.303	6.348	0.033	16.144	9.907	3.28	0.072	0.172	97.919
47.947	0.322	13.623	6.329	0.052	16.233	9.943	3.118	0.062	0.095	97.724
46 886	0 185	13 54	10 881	0 192	12 045	9 553	3 955	0.07	0 159	97 466

Tabla A4 - 7 Resultados de análisis cuantitativos de química mineral de anfíbol y epidota para

la	muestra	ECU	10

	ECU 10 Mineral SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 Total													
Mineral	SiO2	TiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	K2O	Cr2O3	Total			
	27.868	0.039	20.854	15.544	0.234	23.33	0.021	0.028	0.019	0.097	88.034			
	27.599	0.024	21.958	16.212	0.345	22.5	0.073	0.032	0.045	0.068	88.856			
	27.315	0.051	21.044	16.665	0.313	22.362	0.042	0.016	0.044	0.137	87.989			
	27.396	0.046	21.91	16.004	0.242	22.664	0.034	0.094	0.064	0.109	88.563			
	27.1	0.038	20.986	15.994	0.247	22.524	0.04	0.015	0.041	0.167	87.152			
Chi	27.027	0.037	21.035	16.589	0.294	22.104	0.048	0.043	0.024	0.137	87.338			
Chl	26.743	0.018	21.219	16.931	0.28	22.058	0.076	0.005	0.015	0.139	87.484			
	27.211	0.031	21.216	14.654	0.164	22.527	0.114	0.091	0.054	0.126	86.188			
	27.769	0.06	20.543	16.525	0.335	22.512	0.057	0.038	0.011	0.027	87.877			
	26.823	0.003	21.152	16.644	0.319	21.743	0.048	0.036	0.023	0.2	86.991			
	27.248	0.048	21.612	16.425	0.283	22	0.059	0.045	0.066	0.132	87.918			
	27.213	0.015	21.032	16.525	0.315	21.852	0.109	0.053	0.049	0.182	87.345			
	69.547	0.001	20.182	0.193	0.009	0.013	0.079	12.772	0.015	0.004	102.789			
	68.436	0.014	19.884	0.072	0.013	0.01	0.089	12.466	0.015	0.019	100.998			
۲I	68.966	0.003	20.114	0.084	0.02	0.008	0.159	12.557	0.017	0.006	101.872			
-	68.318	0.014	20.007	0.102	0.005	0.012	0.303	12.463	0.031	0.032	101.171			

68.443	0.036	20.179	0.117	0.01	0.016	0.236	12.557	0.028	0.001	101.499
68.45	0.019	19.754	0.157	0.024	0.002	0.159	12.374	0.02	0.008	100.899
67.891	0.006	20.243	0.236	0.022	0.032	0.52	12.198	0.023	0.011	101.182
68.847	0.021	19.905	0.164	0.01	0.003	0.114	12.486	0.022	0.022	101.544
68.899	0.008	19.954	0.145	0.002	0.005	0.166	12.561	0.03	0.013	101.783
68.301	0.002	20.231	0.262	0.003	0.063	0.379	12.66	0.022	0.008	101.931
68.147	0.006	20.304	0.121	0.017	0.008	0.443	12.14	0.034	0.006	101.192
65.434	0.014	20.014	1.542	0.006	2.251	0.157	11.416	0.021	0.038	100.893
68.818	0.016	19.896	0.172	0.036	0.001	0.119	12.464	0.028	0.011	101.489
68.538	0.024	20.015	0.208	0.015	0.079	0.253	12.465	0.035	0.014	101.54
66.319	0.002	20.125	0.903	0.005	0.955	0.437	11.931	0.06	0.04	100.763
69.619	0.023	19.534	0.157	0.001	0.008	0.133	12.439	0.025	0.006	101.929

Tabla A4 - 8 Resultados de análisis cuantitativos de química mineral de clorita y plagioclasa para la muestraECU 10

					ECU 2	21					
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	Cr2O3	K2O	FeO	MnO	Total
	7.759	8.901	10.103	55.758	13.635	0.069	0.006	5.249	0.016	0.049	101.545
	7.482	8.953	10.674	55.263	13.664	0.094	0.002	4.51	0.01	0.052	100.7
	8.214	8.424	10.925	55.631	12.63	0.07	0.005	4.845	0.015	0.023	100.782
	6.744	9.29	9.755	55.016	14.324	0.068	0.001	4.746	0.001	0.03	99.973
	6.982	9.019	10.434	55.298	13.679	0.05	0.007	4.558	0.056	0.03	100.113
	6.839	9.358	9.611	55.106	14.495	0.062	0.002	4.662	0.019	0.065	100.219
	7.192	9.448	9.837	55.963	14.493	0.026	0.003	4.623	0.014	0.055	101.654
	7.395	8.718	10.66	55.491	13.622	0.056	0.002	4.325	0.016	0.034	100.315
	7.181	9.072	10.195	55.494	14.144	0.07	0.004	4.494	0.011	0.007	100.664
	7.289	8.795	10.697	55.856	13.754	0.034	0.004	4.531	0.002	0.036	100.99
Dv	7.22	8.874	10.523	55.565	14.049	0.088	0.007	4.547	0.05	0.017	100.926
ΓX	8.129	8.077	11.536	55.697	12.965	0.073	0.002	4.529	0.014	0.037	101.027
	7.51	8.922	10.147	54.806	13.45	0.053	0.022	5.17	0.024	0.007	100.097
	7.323	9.054	9.701	54.894	14.025	0.022	0.042	4.562	0.017	0.016	99.622
	7.485	8.777	10.849	54.744	13.656	0.058	0.01	4.587	0.018	0.01	100.194
	7.567	8.665	10.893	55.11	13.004	0.068	0.032	4.494	0.008	0.035	99.876
	7.371	8.804	10.84	55.261	13.19	0.067	0.003	4.604	0.021	0.073	100.234
	6.611	9.134	9.406	54.081	14.792	0.054	0.005	4.947	0.052	0.025	99.107
	7.223	9.25	10.055	55.331	14.216	0.034	0.004	4.813	0.008	0.023	100.957
	7.332	9.007	10.234	55.439	14.229	0.053	0.003	4.627	0.023	0.032	100.973
	7.572	8.693	10.809	55.772	13.381	0.093	0.011	4.547	0.007	0.029	100.9
	6.721	9.237	9.722	55.037	14.417	0.038	0.01	4.75	0.074	0.018	100.024
	0.001	0.18	28.736	38.163	23.251	0.12	0.004	5.896	0.033	0.035	96.419
Ep	0.007	0.064	27.37	37.808	23.636	0.128	0.003	7.64	0.077	0.087	96.806
	0.016	0.127	29.094	37.745	23.452	0.111	0.002	5.75	0.002	0.049	96.348

	0.319	0.173	28.634	37.706	23.343	0.085	0.059	5.882	0.008	0.037	96.246
	0.06	0.086	27.448	37.973	23.137	0.135	0.013	7.484	0.03	0.032	96.398
	0.006	0.044	28.174	37.976	23.821	0.077	0.006	6.847	0.002	0.028	96.977
	0.002	0.068	28.077	37.775	23.731	0.133	0.004	6.745	0.043	0.016	96.582
	0.043	0.172	28.329	36.966	23.111	0.081	0.008	5.828	0.015	0.048	94.601
	0.071	0.145	28.415	37.477	23.572	0.103	0.016	5.789	0.029	0.048	95.665
	0.023	0.106	28.83	38.002	23.576	0.095	0.002	5.9	0.027	0.046	96.557
	0.015	0.077	28.109	37.806	23.718	0.088	0.002	6.87	0.002	0.004	96.649
	0.017	0.081	27.955	38.203	23.482	0.102	0.001	6.682	0.149	0.213	96.851
	0.022	0.059	28.2	37.963	23.647	0.091	0.002	7.234	0.041	0.008	97.263
	0.012	0.021	27.907	37.87	23.663	0.144	0.003	7.109	0.014	0.017	96.754
	0.017	0.083	28	37.849	23.324	0.12	0.014	7.103	0.193	0.027	96.73
	0.051	0.092	28.26	37.832	23.707	0.141	0.008	6.821	0.168	0.011	97.091
	0.001	0.077	28.329	37.716	23.414	0.114	0.003	6.686	0.136	0.045	96.519
	0.004	0.056	28.13	37.757	23.534	0.087	0.004	7.128	0.118	0.047	96.865
	0.008	0.081	27.814	37.797	23.616	0.126	0.009	7.214	0.16	0.067	96.876
	0.012	0.131	27.99	37.85	23.359	0.128	0.005	7.101	0.102	0.038	96.692
	0.008	0.077	28.192	37.728	23.64	0.138	0.005	6.623	0.072	0.024	96.497
	4.514	13.467	13.527	47.537	8.375	0.312	0.335	9.18	0.083	0.013	97.343
	4.495	13.389	13.326	47.059	8.489	0.268	0.324	8.882	0.114	0.035	96.381
	4.39	13.528	13.15	46.976	8.37	0.264	0.33	8.974	0.046	0.031	96.059
	4.348	13.852	12.729	47.592	8.243	0.276	0.31	8.866	0.075	0.005	96.296
	4.449	13.878	13.268	46.8	8.294	0.294	0.347	9.156	0.045	0.036	96.567
	4.265	14.086	12.66	48.042	8.338	0.247	0.284	8.957	0.058	0.047	96.984
	4.397	13.624	13.403	47.427	8.406	0.256	0.32	9.066	0.014	0.012	96.925
	4.41	14.257	12.203	48.546	8.153	0.252	0.331	8.87	0.049	0.018	97.089
	4.298	13.896	12.775	47.586	8.518	0.261	0.337	8.796	0.019	0.024	96.51
	4.386	13.795	12.966	47.597	8.409	0.29	0.322	8.922	0.025	0.023	96.735
Amp	4.436	13.741	12.866	47.879	8.245	0.301	0.341	9.032	0.035	0.009	96.885
,p	4.37	14.464	12.319	49.041	8.061	0.24	0.323	8.621	0.034	0.041	97.514
	4.408	14.631	12.155	49.098	8.136	0.231	0.302	8.514	0.003	0.028	97.506
	4.271	13.158	12.855	47.554	8.515	0.31	0.315	8.993	0.012	0.04	96.023
	4.424	13.715	13.406	47.944	8.395	0.245	0.333	9.089	0.068	0.031	97.65
	4.513	13.397	13.693	47.572	8.383	0.255	0.321	9.145	0.078	0.044	97.401
	5.003	13.498	14.387	48.112	7.795	0.27	0.312	8.343	0.094	0.043	97.857
	4.662	13.855	13.875	48.029	8.251	0.222	0.322	8.414	0.026	0.023	97.679
	4.337	13.986	13.172	48.683	8.349	0.258	0.345	8.776	0.033	0.001	97.94
	4.355	13.519	13.404	47.361	8.41	0.279	0.339	8.912	0.049	0.015	96.643
	4.297	14.083	13.856	47.698	8.375	0.307	0.369	8.683	0.064	0.043	97.775
	4.299	13.808	14.047	47.748	8.208	0.306	0.344	8.801	0.066	0.023	97.65

Tabla A4 - 9 Resultados de análisis cuantitativos de química mineral de anfíbol, piroxeno y epidota para lamuestra ECU 21

					ECU	20					
Mineral	Na2O	MgO	AI2O3	SiO2	CaO	TiO2	K2O	FeO	MnO	Cr2O3	Total
	0.045	18.081	0.009	54.434	25.529	0.017	0.001	1.117	0.027	0.017	99.275
	0.135	17.848	0.074	54.218	25.181	0.018	0.001	1.197	0.064	0.046	98.78
	0.102	18.132	0.005	54.068	25.614	0	0.002	1.153	0.046	0.04	99.148
	0.225	17.95	0.027	54.003	25.156	0.002	0.015	1.295	0.008	0.077	98.754
	0.045	18.276	0.003	53.923	25.512	0.005	0.001	1.02	0.009	0.02	98.804
	0.153	18.348	0.009	54.27	25.608	0.007	0.003	1.096	0.021	0.034	99.535
	0.095	17.995	0.016	54.198	25.279	0.003	0.003	1.182	0.049	0.034	98.822
	0.211	17.967	0.049	54.164	25.375	0.019	0.006	1.322	0.073	0.108	99.256
	0.19	17.86	0.058	54.195	22.113	0.012	0.009	1.292	0.003	0.122	95.824
	0.153	17.705	0.006	54.466	22.346	0.005	0.004	1.611	0.026	0.067	96.371
	0.247	17.951	0.078	54.173	25.11	0.008	0.012	1.212	0.067	0.166	99.008
Dv	0.06	18.248	0.005	54.61	25.601	0.005	0.005	1.086	0.029	0.027	99.656
F A	0.052	18.154	0.008	53.659	25.252	0.008	0.001	0.96	0.054	0.01	98.158
	0.104	17.942	0.001	53.745	24.838	0.002	0.008	1.199	0.013	0.043	97.895
	0.098	17.916	0.019	54.072	25.44	0.014	0.003	1.32	0.046	0.038	98.9
	0.092	18.141	0.005	54.075	25.945	0.012	0.011	1.013	0.091	0.028	99.389
	0.056	18.22	0.059	53.979	25.66	0.008	0.003	0.918	0.023	0.001	98.925
	0.152	18.198	0.004	54.221	25.364	0	0.006	1.209	0.03	0.001	99.163
	0.109	18.016	0.013	53.642	25.555	0.007	0.004	1.038	0.024	0.018	98.386
	0.159	18.122	0.041	54.307	25.399	0.002	0.009	1.32	0.038	0.05	99.425
	0.139	18.215	0.02	54.418	25.546	0.002	0.011	1.278	0.038	0.095	99.736
	0.098	18.068	0.01	53.998	25.455	0.007	0.002	0.933	0.011	0.023	98.591
	0.035	18.07	0.003	53.845	25.548	0.017	0.01	1.013	0.026	0.008	98.535
	0.169	17.857	0.034	53.864	25.366	0.018	0.002	1.168	0.009	0.045	98.492
	0.005	47.528	0.007	38.97	0	0.001	0.001	12.741	0.308	0.021	99.572
	0.018	44.539	0.015	34.425	0.025	3.603	0.001	12.905	0.337	0.01	95.848
	0.001	44.952	0.003	34.517	0.012	3.783	0.001	12.776	0.32	0.02	96.377
	0.008	47.457	0.024	39.147	0	0.008	0.017	13.259	0.291	0.005	100.124
	0.01	47.546	0.029	39.281	0.018	0.006	0.004	13.351	0.302	0.025	100.486
OI	0.009	46.795	0.012	39.353	0.003	0.009	0.002	13.407	0.361	0.035	99.94
	0.004	46.997	0.001	39.523	0.004	0.078	0.007	13.141	0.399	0.002	100.128
	0.011	44.591	0.003	35.058	0.043	3.53	0	11.582	0.336	0.017	95.165
	0.028	46.765	0.003	38.895	0.025	0.014	0.003	13.388	0.362	0.008	99.447
	0.015	46.844	0.008	38.793	0.015	0.012	0	12.907	0.33	0.01	98.934
	0.01	47.385	0	39.639	0	0.013	0.007	12.935	0.307	0.004	100.3

0.009	47.559	0.004	39.174	0.01	0.004	0.002	13.007	0.331	0.007	100.075
0.009	47.028	0.007	39.436	0.007	0.02	0.009	11.951	0.307	0	98.688
0.017	46.953	0.005	39.036	0.011	0.013	0	11.819	0.356	0.009	98.185
0.008	44.355	0.008	34.871	0.004	3.831	0.005	12.417	0.355	0.013	95.851
0.012	44.812	0.028	34.666	0.021	3.72	0.008	12.657	0.309	0.021	96.174

 Tabla A4 - 10 Resultados de análisis cuantitativos de química mineral de piroxeno y olivino para la muestra

 ECU 20

Anexo 5 – Mediciones de concentraciones de Zr en cristales de rutilo.

	ECU 1 - Inclusión										
AI	Si	Cr	Са	V	Zr	Fe	Nb				
220	140	540	640	3060	180	2460	2270				
90	140	570	690	3100	140	3120	2250				
60	140	580	430	3030	190	2720	2370				
90	210	600	1300	3280	190	4410	2480				
80	200	630	1350	3290	180	4630	2540				
90	220	620	1260	3280	190	4330	2550				
90	140	500	1450	3260	130	4100	2940				
110	170	530	1530	3180	140	3220	2940				
70	200	820	1700	3320	200	3900	2600				
90	240	680	2100	3040	220	5130	2610				
110	180	700	1340	3220	170	7740	2680				
60	130	570	480	3260	90	2970	2420				
80	130	530	450	3270	110	2920	2440				
70	160	550	580	3060	160	3380	2430				
110	180	540	1710	3380	140	5910	2490				
90	150	550	560	3030	130	3370	2400				
70	150	500	900	3170	150	3530	2220				
60	160	520	1040	3160	140	3650	2270				
70	140	470	810	3280	130	3750	2420				
90	150	480	780	3290	180	3750	2390				
80	190	440	810	3190	150	5720	2350				
80	1920	660	780	3350	5350	3700	2480				
40	150	610	680	3290	110	3400	2470				

Tabla A5 - 1 Concentraciones en ppm de elementos en inclusión de rutilo en granate de la muestra ECU 1

ECU 1 - Matriz											
AI	Si	Cr	Ca	V	Zr	Fe	Nb				

1		1	1	1			1
30	170	530	590	3080	130	2580	2290
60	170	510	480	3170	160	2770	2620
60	140	500	290	3170	160	2690	2810
70	150	520	410	3200	140	2760	2780
50	170	550	250	3180	150	2110	2480
60	130	500	310	3040	170	2480	2600
60	160	500	170	3140	140	2160	2610
50	130	490	470	3000	160	2560	2410
60	130	510	570	2970	110	2800	2480
90	110	610	500	3030	210	2210	2810
90	90	670	500	3040	190	2410	2760
70	80	680	560	3010	170	2190	2850
80	120	530	1020	3180	180	2560	2700
80	160	540	1320	3280	170	2380	2730
80	140	620	1000	3300	200	2440	2790
80	150	590	2500	3330	210	1900	2700
70	170	530	1930	3250	140	1930	2600
60	160	510	2170	3090	120	1740	2450
80	160	550	3100	3040	190	2500	2660
80	740	510	3380	3230	150	3380	2630
70	220	630	5110	3210	180	1850	2670
80	30	180	10	2400	50	350	230

Tabla A5 - 2 Concentraciones en ppm de elementos en inclusión de rutilo presente en la matriz de la muestraECU 1

ECU 6 - Inclusión											
AI	Si	Cr	Ca	V	Zr	Fe	Nb				
30	140	500	450	4120	190	3480	370				
90	170	510	470	4200	220	3510	350				
20	130	480	920	3870	230	3200	360				
40	210	530	1250	3990	170	14630	380				
10	180	470	650	3910	220	3470	340				
10	300	490	700	3950	220	2730	380				
10	170	520	1050	4140	200	3890	340				
10	150	520	690	4120	200	3320	370				
30	150	510	820	3760	230	4200	380				
20	160	520	470	3980	180	3620	360				
30	150	490	610	4140	210	3700	350				
10	150	520	1180	3710	160	3320	370				
100	210	330	1750	3960	220	4010	340				

30	150	350	620	4060	130	3560	380
40	110	320	760	3900	200	4560	370
20	160	330	690	4070	180	4130	350
20	150	330	1000	4110	190	3730	330
40	180	370	1110	4160	200	4490	320
20	130	500	180	3960	210	2780	310
40	120	440	380	3800	200	2540	380
60	90	510	440	3890	230	3340	300
10	90	620	230	3690	210	2760	360

Tabla A5 - 3 Concentraciones en ppm de elementos en inclusión de rutilo en granate de la muestra ECU 1

ECU 6 - Matriz											
AI	Si	Cr	Са	V	Zr	Fe	Nb				
0	170	590	950	3820	200	2400	320				
10	260	730	640	3760	200	2040	370				
20	130	600	950	3790	220	2370	400				
20	190	690	650	3820	230	2480	360				
40	440	730	830	3850	170	2080	370				
10	160	520	1390	3700	230	3150	340				
10	130	550	910	3670	190	3240	370				
0	160	550	1740	3640	200	3060	370				
20	120	450	830	3690	230	2490	360				
30	100	430	860	3570	250	2320	320				
50	110	410	600	3750	210	2190	320				
40	90	370	640	3740	190	2180	320				
70	100	390	760	3710	200	2120	340				
10	160	450	800	3720	200	2850	370				
30	140	370	630	3840	190	1980	340				
40	130	390	620	3840	200	2010	340				
10	200	450	880	3700	240	1690	340				
20	180	480	970	3640	170	14190	400				
20	170	480	860	3690	180	1860	330				
30	120	400	1880	3920	260	2490	370				
30	90	400	1210	3900	200	2520	370				
40	110	440	970	3610	180	2290	320				
20	140	530	380	4070	180	2590	350				

Tabla A5 - 4 Concentraciones en ppm de elementos en inclusión de rutilo presente en la matriz de la muestra

ECU 6

ECU 21 - Inclusión										
AI	Si	Cr	Са	V	Zr	Fe	Nb			
40	160	510	1480	3740	150	5500	380			
40	120	570	1040	3960	210	4990	310			
50	160	630	1190	3900	200	4980	300			
50	140	550	1220	3760	200	4130	280			
30	120	950	1110	3750	220	4430	360			
20	220	980	1020	3640	170	5060	340			
30	70	690	560	3680	190	3820	300			
30	80	700	550	3610	160	3660	290			
50	260	440	1300	3450	160	4160	290			
60	240	440	1470	3430	200	4160	340			
40	180	490	2330	3490	160	4560	310			
30	230	440	1340	3620	190	4510	310			
70	230	440	1320	3470	200	4190	330			
20	170	590	1240	3760	180	5480	330			
50	190	440	2460	3380	180	4520	320			
60	180	490	2080	3470	140	4320	330			
40	160	570	1310	3580	220	4730	320			
20	140	750	450	3660	130	3650	330			
20	150	760	430	3570	160	4200	330			
50	140	730	750	3600	150	4700	310			
40	180	700	940	3790	190	4310	350			
40	140	700	960	3830	180	4360	320			
50	120	730	710	3500	160	4640	290			

 Tabla A5 - 5 Concentraciones en ppm de elementos en inclusión de rutilo presente en la matriz de la muestra

 ECU 21

ECU 21 - Matriz											
AI	Si	Cr	Ca	V	Zr	Fe	Nb				
0	120	750	580	3550	170	2820	330				
0	110	780	610	3510	160	2870	340				
40	160	720	960	3410	170	2630	310				
30	160	680	680	3590	190	2780	310				
20	130	630	430	3470	170	2690	330				
20	140	680	550	3570	170	2680	390				
30	140	610	1120	3450	190	3860	320				
20	120	650	670	3680	190	2860	320				
30	90	750	280	3690	180	3230	370				
30	90	750	300	3830	170	3240	350				

60	170	710	640	3640	180	2830	330
40	170	710	1300	3730	180	2370	380
30	120	700	530	3490	170	2620	310
20	120	680	430	3580	160	2520	360
40	140	680	330	3550	200	2550	360
30	90	730	300	3760	160	3260	320
40	150	820	740	3760	210	3660	320
10	130	740	630	3730	130	2700	370
30	140	780	840	3720	170	2790	340
30	160	750	960	3770	190	2990	310
40	100	730	270	3500	170	2790	360
40	130	760	830	3720	210	2790	280
10	230	780	90	3590	150	2540	310

 Tabla A5 - 6 Concentraciones en ppm de elementos en inclusión de rutilo presente en la matriz de la muestra

ECU 21

Figura A6 - 1 Pseudosección ECU 1 con resultados de barometría Raman y termometría de Zr en rutilo.

Figura A6 - 2 Pseudosección ECU 6 con resultados de barometría Raman, termobarometría multiequilibrio y termometría de Zr en rutilo.

Figura A6 - 3 Pseudosección ECU 21 con resultados de barometría Raman, termobarometría multiequilibrio y termometría de Zr en rutilo.