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Abstract

Regression and Multimodal Learning to Aid Diagnosis in Ophthalmology and

Histopathology

The main contribution of this thesis is the development of probabilistic machine learning

models to support disease diagnosis from medical data sources. We show how a probabilistic

approach offers great versatility in exploiting all available information about the target task.

Based on the mathematical formalism of quantum mechanics, we develop and apply machine

learning models that allow us to handle the flow of information using density matrices in

different ways. We develop mechanisms that can naturally encode not only categorical but

also ordinal information, and can also merge different data modalities. Furthermore, we

show that the proposed models are naturally interpretable, which allows and facilitates their

use in sensitive domains such as health applications. In particular, our models are tested in

the diagnosis of several eye diseases and prostate cancer. First, we show the effectiveness

and benefit of using regression models in the diagnosis of eye diseases of genetic origin. We

then demonstrate the importance of including disease grading information and performing

discrete regression to improve the performance of the binary diagnosis of diabetic retinopa-

thy and prostate cancer. We show that a probabilistic interpretation of the results provides

information on the uncertainty of the models, which can also be used in training processes.

Finally, the proposed framework allows us to encode information using kernel functions,

which in turn allows us to naturally introduce flexible information fusion mechanisms and

thus to address multimodal tasks. Overall, we show that incorporating ordinal and multi-

modal information using probabilistic kernel-based frameworks allows learning better data

representations, which improves the performance of the models and provides them with a

higher level of interpretability.

Keywords:

Deep Learning, Histopathology, Kernel Methods, Medical Image Analysis, Multimodal Learn-

ing, Ophthalmology, Ordinal Regression, Probabilistic Models, Quantum Machine Learning.
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Resumen

Regresión y aprendizaje multimodal como ayuda al diagnóstico en oftalmoloǵıa

e histopatoloǵıa

La principal contribución de esta tesis es el desarrollo de modelos probabiĺısticos de apren-

dizaje de máquina para apoyar el diagnóstico de enfermedades a partir de información

médica. Mostramos cómo un enfoque probabiĺıstico ofrece una gran versatilidad al mo-

mento de aprovechar toda la información disponible sobre la tarea objetivo. Basándonos

en el formalismo matemático de la mecánica cuántica, desarrollamos y aplicamos modelos

de aprendizaje que nos permiten manejar el flujo de información utilizando matrices de

densidad de diferentes maneras. Desarrollamos mecanismos que pueden codificar de forma

natural no sólo información categórica, sino también ordinal, y que también pueden fusionar

distintas modalidades de información. Además, demostramos que los modelos propuestos

son naturalmente interpretables, lo que permite y facilita su aplicación en dominios sensibles

como las aplicaciones médicas. Precisamente, en este trabajo probamos nuestros modelos en

tareas espećıficas de diagnóstico de enfermedades oculares y cáncer de próstata. En primer

lugar, mostramos la eficacia y el beneficio de usar modelos de regresión en el diagnóstico

de enfermedades oculares de origen genético. A continuación, demostramos la importancia

de incluir información sobre el estadio de las enfermedades y realizar una regresión discreta

para mejorar el rendimiento del diagnóstico binario de la retinopat́ıa diabética y el cáncer

de próstata. Demostramos que la interpretación probabiĺıstica de los resultados propor-

ciona información sobre la incertidumbre de los modelos, que puede utilizarse también en

los procesos de entrenamiento. Por último, los modelos propuestos nos permiten codificar

la información mediante funciones kernel, que a su vez nos permiten introducir de forma

natural mecanismos de fusión de información, flexibles y versátiles, y con estos abordar tar-

eas multimodales. En conjunto, demostramos que la incorporación de información ordinal y

multimodal mediante modelos probabiĺısticos basados en funciones de kernel permite apren-

der mejores representaciones de los datos, lo que mejora el rendimiento de los modelos y les

proporciona un mayor nivel de interpretabilidad.

Palabras clave:

Aprendizaje Profundo, Análisis de Imágenes Médicas, Aprendizaje de Máquina Cuántico,

Aprendizaje Multimodal, Histopatoloǵıa, Métodos de Kernel, Modelos Probabiĺısticos, Of-

talmoloǵıa, Regresión Ordinal.
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Esta tesis de doctorado se sustentó el 7 de diciembre de 2023 a las 9:00 a.m., y fue

evaluada por los siguientes jurados:

Lola Xiomara Bautista Rozo, Ph.D.

Profesor Asistente
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Universidad de Ginebra, Suiza



Content

Acknowledgements iv

Abstract v

Resumen vi

1. Introduction 2

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Main goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5. Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6.1. Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Background and Related Work 10

2.1. Medical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1. Ophthalmological Diseases . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2. Prostate Cancer (PCa) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Related Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Performance Evaluation of Machine Learning Models . . . . . . . . . . . . . 15

2.4. Machine Learning for Medical Applications . . . . . . . . . . . . . . . . . . . 17

2.4.1. Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2. Ordinal Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3. Ordinal Regression for Medical Data Analysis . . . . . . . . . . . . . 19

2.4.4. Multimodal Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.5. Multimodal Learning for Medical Data Analysis . . . . . . . . . . . . 22

2.5. Quantum Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



Content ix

I. Deep Learning-based Models 27

3. Deep Regression for Cone Density Estimation and Genetic Ophthalmic Dis-

eases Diagnosis 28

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1. CoDE: Cone Density Estimation . . . . . . . . . . . . . . . . . . . . 31

3.2.2. CoDED: CoDE Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3. Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1. Cone Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2. Stargardt Disease and Retinitis Pigmentosa Diagnosis . . . . . . . . . 37

3.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Deep Probabilistic Regression for Diabetic Retinopathy Grading 42

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2. Method: Deep Learning Gaussian Process For Diabetic Retinopathy Diagno-

sis (DLGP-DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1. Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2. Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3. EyePACS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4. Messidor-2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II. Quantum Measurement-based Models 51

5. Quantum Measurements 52

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2. Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3. Quantum Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1. Quantum Measurement Classification (QMC) . . . . . . . . . . . . . 56

5.3.2. Density Matrix Decomposition . . . . . . . . . . . . . . . . . . . . . . 56

5.4. Quantum Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1. Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2. Random Fourier Features . . . . . . . . . . . . . . . . . . . . . . . . 58



x Content

5.5. Quantum Measurement Ordinal Regressor (QMOR) . . . . . . . . . . . . . . 59

5.6. Kernel Quantum Measurement Unit (KQMU) . . . . . . . . . . . . . . . . . 60

5.6.1. Multimodal Kernel Fusion . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. Deep QuantumMeasurement Regression for Diabetic Retinopathy and Prostate

Cancer Grading 63

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2. Method: Deep Quantum Ordinal Regressor (DQOR) . . . . . . . . . . . . . 65

6.2.1. Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2. Patch-based Analysis Summarization . . . . . . . . . . . . . . . . . . 66

6.3. Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1. QMR Hyperparameter Optimization . . . . . . . . . . . . . . . . . . 67

6.3.2. Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.3. Diabetic Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4. Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1. Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.2. Diabetic Retinopathy . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4.3. Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7. Multimodal Deep Kernel Quantum Measurement for Prostate Cancer Grading

and Glaucoma Diagnosis 82

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2. Method: Deep Multimodal Kernel Quantum Measurement Unit (MM-KQMU) 84

7.2.1. Kernel Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.2. Missing Modality Flexibility . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.3. WSI Mixed State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3. Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.1. Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.2. Glaucoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4. Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 94

7.4.1. Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.2. Glaucoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8. Conclusions and Future Work 101

Bibliography 104



List of Figures

2-1. Eye fundus image example from the PAPILA dataset [78]. This is an RGB

photograph of the inner posterior part of the eye, showing an overview of the

retinal tissue. Dark blue and green circles indicate the optic disc (OD) and

optic cup (OC) zones, respectively. In diabetic retinopathy, lesions can occur

throughout the retina, particularly in the vascular system. Glaucoma, on the

other hand, usually only concerns the optic nerve head (in the zone of the

optic disc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-2. Sample of a split detector AOSLO image. This image shows the detailed struc-

ture of the retina. The distinctive patterns of light and dark areas correspond

to individual photoreceptor cells. . . . . . . . . . . . . . . . . . . . . . . . . 13

2-3. An example of a Whole Slide Image from the TCGA-PRAD dataset [67], illus-

trating the detailed histopathological features associated with prostate cancer

at a cellular level. This image aids researchers in studying the morphological

variations across different stages of prostate cancer. . . . . . . . . . . . . . . 14

2-4. Five possible grades for DR diagnosis [135]. Healthy cases correspond to grade

0. Grades 0 and 1 correspond to non-referable DR cases, while grades 2, 3

and 4 correspond to referable DR. Samples extracted from EyePACS dataset

[40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-1. CoDE model architecture for cone density estimation on split detector AOSLO

images. The original image is input into a modified Xception-based U-Net

[166, 29] to generate a density map of the cones in the original image. The

integral over this density map is linearly corrected to provide an accurate

estimation of the number of cones in the image. . . . . . . . . . . . . . . . . 32

3-2. On the left: original split detector AOSLO sample. On the right: ground truth

density map. For the training process of the CoDE model, the ground truth

density map is generated by means of the known coordinates of the center

of the cones. A Gaussian filter is applied over each point, which generates

a density map whose integral matches the number of cones in the original

AOSLO image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



xii List of Figures

3-3. CoDED model architecture for disease diagnosis on AOSLO images. The

density map predicted by CoDE is the input of a deep CNN model. The

convolutional block of the CNN works as feature extractor and the final clas-

sification is performed by a three-layer fully-connected perceptron. . . . . . . 34

3-4. On the left: original split detector AOSLO image sample (from the Dubis test

partition). Center: ground truth density map indicating the location of each

cone according to the manual annotation. On the right: predicted density

map given by CoDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-5. Bland-Altman plots comparing the performance of cone density estimation at

Cunefare test set. This is for a model trained with Cunefare train partition

set only. The figure on the left shows the results for the baseline AFLD [35].

The figure on the right shows the results for the proposed CoDE. Note that

although CoDE measurements presents a slightly higher standard deviation

compared with AFLD, the mean difference of CoDE is much closer to zero. 38

3-6. Bland-Altman plot on Cunefare test set for the proposed CoDE method

trained with a joint Cunefare and Dubis train partition set. Standard de-

viation is lower and the mean difference closer to zero, when compared with

AFLD results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-7. Bland-Altman plot on Dubis test set for the proposed CoDE method trained

with a joint Cunefare and Dubis train partition set. . . . . . . . . . . . . . . 39

3-8. Confusion matrix for the best model of CoDED-Inception-V3 on the Dubis

test set. Control refers to healthy samples, STGD stands for Stargardt disease

and RP for retinitis pigmentosa. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-1. Proposed DLGP-DR model. Fine-tuned Inception-V3 is used as feature ex-

tractor. The extracted features are then used to train a Gaussian process. . . 45

4-2. Standard deviation for samples predicted as negative (non-referable) instances

by DLGP-DR. FN: false negatives, TN: true negatives. . . . . . . . . . . . . 48

4-3. Standard deviation for samples predicted as positive (referable) instances by

DLGP-DR. FP: false positives, TP: true positives. . . . . . . . . . . . . . . . 48

5-1. QMC model. The inference process for a new sample x∗ consists of first

transforming it with a quantum feature map (QMF) ψX and then performing

the measurement and partial trace to obtain ρY . . . . . . . . . . . . . . . . . 56

5-2. QMR model for regression. A new sample x∗ is first passed through a Random

Fourier Features (RFF) layer and then through the quantum measurement. . 60

5-3. KQMU schema. This layer relies on kernel functions kX , kY that implicitly de-

fine quantum maps and is a processing unit based on quantum measurements

for density matrices between different feature spaces. . . . . . . . . . . . . . 61



List of Figures xiii

6-1. Overview of the proposed DQOR method for medical image analysis. A deep

CNN is used as feature extractor for the input image. Those features are

the input for the QMR regressor model, which yields a posterior probability

distribution over the possible grades of the disease. . . . . . . . . . . . . . . 66

6-2. Density plot of the ratio between the relative change of MAE and relative

change of each hyperparameter. Although the mode of all distributions is

close to zero, it can be noted that the variances of the learning rate and σ

distributions are higher in comparison with the other three hyperparameters.

This implies that the sensitivity of the model, measured against the variance

of the MAE in a validation set, is higher in these two parameters. . . . . . . 68

6-3. Overview of the proposed DQOR method for prostate tissue grading. The

Xception network was used as a feature extractor of the images patches. Those

features were the input for the QMR regressor model which yielded a poste-

rior probability distribution by patch over the Gleason scores. Finally, those

distributions were summarized into a single discrete probability distribution

of the WSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6-4. Overview of the DQOR for diabetic retinopathy grading. An Inception-V3

network was used as feature extractor for the eye fundus image. These fea-

tures were the input for the QMR regressor model, which yielded a posterior

probability distribution over the DR grades. . . . . . . . . . . . . . . . . . . 71

6-5. Confusion matrices of the WSI grade predictions for DLC-PCa (left) and for

DQOR (right) in the TCGA test partition. WSI prediction is obtained using

the probability vote. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6-6. ROC curves plot for EyePACS test set. . . . . . . . . . . . . . . . . . . . . . 77

6-7. ROC curves plot for Messidor 2. . . . . . . . . . . . . . . . . . . . . . . . . . 78

6-8. Confusion matrices of the predictions of DLC-DR (left) and DQOR (right) in

the EyePACS-b test partition. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6-9. Box plot of the predicted variance on TCGA test samples at WSI-level,

grouped by classification status on the low risk vs. high risk GS diagnosis

task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6-10.Box plot of the predicted variance on EyePACS test samples (left) and Messidor-

2 (right), grouped by their classification status on the referable / non-referable

diagnosis task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7-1. Overview of the proposed MM-KQMU method for multimodal medical data

analysis. Feature extraction and encoding can be performed independently

for each modality. MM-KQMU performs a tensor kernel fusion and outputs

a density matrix ρy suitable for classification or regression tasks. . . . . . . . 85



xiv List of Figures

7-2. MM-KQMU Missing Modality Flexibility. If needed, MM-KQMU can handle

an absent modality for inference. Then, the model shown in a) can be trained

with all available modalities, but only the model shown in b) is used for inference. 87

7-3. Overview of the proposed MM-KQMU for PCa grading. The model shown in

a) is trained using the two available modalities. The loss LMM measures the

multimodal performance. For inference we use the model shown in b), which

only receives images. The loss LV measures the visual performance. During

training, a combination of LV and LMM is optimized. . . . . . . . . . . . . . 88

7-4. Overview of the proposed MM-KQMU for glaucoma diagnosis. The eye fun-

dus images are cropped according to the Region of Interest (ROI) containing

the disc and optic cup. A fine-tuned DenseNet121 is then used as a feature

extractor. Scaled clinical data is fed directly into the corresponding encoder.

A Gaussian kernel is used for the visual part and a cosine similarity kernel for

the clinical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7-5. Decision region of the MM-KQMU together with the training samples. The

yellow dots correspond to the relevant prototypes trained by the model. Di-

mensionality reduction was performed using PCA. . . . . . . . . . . . . . . . 98

7-6. Most similar specimen from PAPILA train partition for the healthy class pro-

totype (yellow dot). The similarity is given by the multimodal kernel learned

by the MM-KMQU. In this case, the kernel value between the prototype and

the shown sample is 0.9957. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7-7. Most similar specimen from PAPILA train partition for the glaucomatous

class prototype (yellow dot). The similarity is given by the multimodal ker-

nel learned by the MM-KMQU. In this case, the kernel value between the

prototype and the shown sample is 0.9908. . . . . . . . . . . . . . . . . . . . 99



List of Tables

2-1. A summary of some of the available public datasets on ophthalmology and

histopathology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-2. A summary of recent publications on multimodal approaches to ophthalmo-

logical and histopathology data analysis. DR stands for Diabetic Retinopathy,

AMD for Age related Macular Edema, OCT for Optical Coherence Tomog-

raphy, OCTA for Optical Coherence Tomography Angiography and PCa for

prostate cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-1. Cunefare dataset partition for train and test [35]. This dataset is available

in a Github repository [34], and has 264 split detector AOSLO images and is

used in this work for the cone density estimation task. . . . . . . . . . . . . 35

3-2. Dubis dataset partition for train and test. This dataset has 264 split detec-

tor AOSLO images, labeled for three classes: normal, Stargardt disease and

retinitis pigmentosa. This dataset was used in this work for the cone density

estimation and for the disease diagnosis task. . . . . . . . . . . . . . . . . . . 35

3-3. Classification performance onDubis test set of the combined CoDE+DeepCNN

models explored for the Stargardt disease and retinitis pigmentosa diagnosis.

The mean and standard deviation over 20 trials are reported. Multi-class pre-

cision, recall, and F1 score are computed in a manner that involves a weighted

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4-1. Details of Messidor-2 dataset used for testing. Class 0 correspond to non-

referable cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-2. Details of the subset and final partition of the EyePACS dataset used for

training and testing. This is the same partition used in [157]. Grades 0 and

1 correspond to non-referable patients, while grades 2, 3, and 4 correspond to

referable cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-3. Comparison performance of DLGP-DR for binary classification in EyePACS

test partition used in [157]. As it is not the standard EyePACS test set,

comparison is not feasible with other similar studies. . . . . . . . . . . . . . 49

4-4. Comparison performance of DLGP-DR for binary classification in Messidor-

2. Referenced results from [157] were directly extracted from the respective

documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xvi List of Tables

6-1. Details of the subset and final partition of the TCGA dataset used for training

and testing. This is the same partition used in [81]. . . . . . . . . . . . . . . 69

6-2. Details of the subset and final partition of the EyePACS dataset used for

training and testing. This partition is the same used in [144] and in [157]. . . 72

6-3. Details of the subset and final partition of the EyePACS-b partition used for

a fair ordinal regression evaluation with samples in all the grades, in contrast

to the partition used in [144] and in [157]. . . . . . . . . . . . . . . . . . . . 72

6-4. Details of Messidor-2 dataset used for testing. Messidor-2 is used to compare

the performance of the model in a purely binary task (referable/non-referable). 72

6-5. Patch-level multiclass results of the dense layers classifier model DCL-PCa,

Gaussian process GP, DGP, and density matrix-based models DMKDC, DQOR. 74

6-6. WSI-level results. For each model, two summarization procedures were ap-

plied, majority vote (MV) and probability vote (PV). . . . . . . . . . . . . . 75

6-7. Results at WSI-level of low risk vs high risk. . . . . . . . . . . . . . . . . . 75

6-8. Comparison on EyePACS test partition results. Sensitivity, specificity and

AUC for binary classification and MAE for grading. . . . . . . . . . . . . . . 76

6-9. Comparison on Messidor-2 results. Sensitivity, specificity and AUC for binary

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6-10.Comparison on EyePACS-b test partition results. Sensitivity, specificity and

AUC for binary classification and MAE for grading. . . . . . . . . . . . . . . 77

7-1. Details of the subset and final partition of the TCGA dataset used for training

and testing [81]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7-2. Training and test distribution proposed for PAPILA dataset. Each sample in

this table corresponds to a single eye. In this configuration, data from the

same patient belongs to the same partition. Note that there are fewer samples

for multimodal data. This is due to missing clinical data. . . . . . . . . . . . 92

7-3. WSI-level PCa grading results. For each model, two summarization proce-

dures may be applied, majority vote (MV) and probability vote (PV). KQMU

models do not require summarization procedure. V-KQMU stands for the

model trained only with images and MM-KQMU stands for the model trained

with multimodal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7-4. Results at WSI-level of low risk vs high risk PCa classification. V-KQMU

stands for the model trained only with images and MM-KQMU stands for the

model trained with multimodal data. . . . . . . . . . . . . . . . . . . . . . . 95

7-5. Results on the PAPILA dataset using only clinical data for training and test.

In the case of SVM and KQMU, the kernel we used is given in parentheses. *

indicates that the kernel is the same used by the KQMU model. . . . . . . . 96



List of Tables 1

7-6. Results on the PAPILA dataset using only images for training and test. In

the case of SVM and KQMU, the kernel we used is given in parentheses. *

indicates that the kernel is the same used by the KQMU model. . . . . . . . 96

7-7. Results on the PAPILA dataset using multimodal data for training and test.

MM-KQMU stands for Multi-Modal KQMU. In the case of SVM and MM-

KQMU, the kernel we used is given in parentheses. * indicates that the kernel

is the same used by the KQMU model. . . . . . . . . . . . . . . . . . . . . . 97



1. Introduction

1.1. Motivation

To diagnose certain eye diseases, it is necessary to carry out medical examinations and di-

agnostic imaging such as fundus photography or tomography. Common eye diseases include

diabetic retinopathy (DR), diabetic macular edema (DME), glaucoma and age-related mac-

ular degeneration (AMD). However, the acquisition and manual reading of these images and

examinations require very expensive equipment and high levels of professional training [112].

The situation is similar for prostate cancer (PCa). PCa is currently the second most common

cancer among men in America [134]. Early detection allows for more treatment options and

a higher chance of success, but while there are several methods of initial screening, a defini-

tive diagnosis of PCa can only be made with a prostate biopsy, and this diagnosis usually

occurs at an advanced stage of the disease [62].

The need for specialised personnel and equipment, coupled with the lack of healthcare in

developing countries, results in a large number of undiagnosed patients. According to the

World Health Organization, more than 2 billion people are visually impaired or blind, of

whom at least 1 billion have visual impairment that could have been prevented or is still

untreated [164]. Regarding cancer, in the United States alone it is estimated that around

30% of PCa patients are not diagnosed and treated in time [42]. To make matters worse,

these figures are expected to worsen due to factors such as the ageing population and current

lifestyles [62].

Deep learning models such as deep convolutional neural networks (CNNs) have been shown

to be effective in analysing images and visual content of all kinds: from X-rays to diagnose

osteoporosis [84] to MRIs to diagnose brain diseases [175]. In the case of eye diseases,

many automatic analysis mechanisms have been developed to detect retinal lesions, diabetic

retinopathy, glaucoma, etc, using fundus images, angiography and tomography [151]. In the

case of histopathology image analysis, there are also many automatic diagnostic models that

even follow standard medical-inspired pre-processing steps, such as performing an analysis

based on small patches extracted from the whole slide image [67].

However, although physicians have established different stages on a progressive scale for

many diseases, and although this information is usually available, binary categorical labels

are generally preferred for training these models [93]. But the progress of a disease is not as

simple. The degeneration associated to any disease is not a discrete jump between healthy

and ill, but a progressive continuum [93]. Therefore, the stages or grades given by physicians
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are an attempt to discretize continuous behavior. Although not completely accurate, this

information is useful in the generation of automated systems if a model with appropriate

descriptive power is used.

As mentioned above, CNNs represent the state of the art for automated medical image

analysis. However, treating the task of classifying medical datas as a simple categorical

problem with conventional neural networks has two major drawbacks: first, the ordinal

information of the grades is not taken into account in the training process, and second,

the predictions of the models, usually subject to a softmax activation function, cannot be

interpreted as probability distributions [154]. This brings us to another very important issue:

the interpretability of the models. It is already well known that a trained model ends up

being a black box, producing results without much explanation. This is an obstacle to real

implementations of models that are intended to support diagnosis of any disease [141].

In addition, much of the work on automated support for the diagnosis of ophthalmological

diseases and prostate cancer has focused on image data, but other types of modalities, such

as text or clinical data, are a potential source of information. One way to exploit all these

possible sources of information, and also to achieve interpretability, is through probabilistic

models capable of capturing and combining the patterns and tinformation structures present

in ordinal labels and multimodal sources. Precisely, this research focuses on the development

of algorithms capable of processing ordinal and multimodal information using probabilistic

schemes. The main research question motivating this research is: What is the effect of

including ordinal information and other data modalities in the development of probabilistic

algorithms to support the diagnosis of ocular diseases and histopathology?

1.2. Problem Statement

Many diseases are perfectly treatable when detected on time. Among these diseases, diabetic

retinopathy or glaucoma, are one of the leading causes of blindness worldwide. For its part,

prostate cancer is the second most common cancer in men worldwide [134]. However, in

developing countries, the lack of trained personnel, and the low coverage of health systems,

mean that approximately 40% of affected patients do not have access to specialized medical

equipment that can give a timely diagnosis [170] [162] [100]. Diagnostic methods for the

detection of eye diseases includes color photographs of the posterior pole of the eye, optical

coherence tomography and some others. For prostate cancer, while there are several methods

of initial screening, a concrete diagnosis can only be made with a prostate biopsy. In any

case, the diagnosis requires interpretation by a specialist, being susceptible to inter-observer

variability and not always available in health systems [103] [142].

Computerized assistance methods have been developed to make the diagnostic process faster

and more affordable. These methods should be able to jointly analyze all of the available

information for a patient when supporting the process of diagnosis of a disease. Several

studies applied to the diagnosis and treatment of other diseases, such as Alzheimer’s and
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cancer [175] [76], have shown that the development of ordinal regression and multimodal

methods, capable of jointly analyzing multiple types of information, leads to better results

in terms of precision and even interpretability [5].

But in the area of eye diseases and histopathology there is still much to explore. This is

partly due to the lack of ordinal regression models and the lack of multimodal databases

[105]. Most of the learning models developed to support the diagnosis of eye diseases and

histopathology have focused on analyzing information from a single modality in a binary

(healthy/unhealthy) schema, leaving aside ordinal disease-grading and complementary in-

formation from medical records [5].

This project aims to design and evaluate the performance of regression, ordinal regression

and multimodal learning methods for supporting the diagnosis of eye diseases and prostate

cancer. Mechanisms for learning representations should be explored, that allows the capture

of information from different modalities and different grades of the same disease, in an

expressive and compact way, and furthermore that allows fusion mechanisms that exploit

the intrinsic correlation between them. A satisfactory solution to this general challenge

requires answering some particular research questions:

• How to effectively and efficiently learn ordinal representations for different data modal-

ities related with the diagnosis of eye diseases and histopathology?

• How to design ordinal and multimodal representations for data modalities related with

the diagnosis of eye diseases and prostate cancer?

• How regression-based and multimodal approaches affects the performance of automatic

models for the diagnosis of eye diseases and prostate cancer?

1.3. Objectives

1.4. Main goal

To design, implement and evaluate models based on deep learning to support the detection

and diagnosis of eye diseases and prostate cancer using ordinal information and multiple

information sources.

1.5. Specific objectives

• To design a strategy for learning representations for different data modalities or ordinal

data structures, associated with the diagnosis of ophthalmological and histopathologi-

cal diseases.
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• To design a strategy for summarization and fusion mechanisms for different data modal-

ities associated with the diagnosis of ophthalmological and histopathological diseases.

• To design methods for the automatic analysis of different data modalities to support

the diagnosis of ophthalmological and histopathological diseases.

• To systematically evaluate the performance of the proposed methods.

1.6. Contributions

The main contributions of this thesis are listed below. Overall, we have developed sev-

eral diagnostic support models capable of exploiting ordinal relationships and multiple data

modalities from the degenerative disease process itself, finally resulting in probabilistic mod-

els that allow for interpretability and versatility.

• Toledo-Cortes, S., Dubis, A. M., González, F.A., Müller, H. Deep Density Estima-

tion for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics

Scanning Light Ophthalmoscope Images. In: Translational Vision Science Technology

12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591

In this paper we show the importance of cellular pattern recognition in the diagnosis

of genetic eye diseases. Diseases such as retinitis pigmentosa affect the cellular pattern

of the retina and ultimately lead to partial or total loss of vision. Adaptive optics

scanning light ophthalmoscope images allow us to assess retinal damage at the cellular

level in living patients, identifying changes before macroscopic lesions become appar-

ent. Using techniques originally developed for segmentation tasks, we have developed a

regression model to estimate cell density in Adaptive Optics Scanning Light Ophthal-

moscope images. We show that incorporating density estimation in advance improves

the subsequent performance of disease classification models.

• Toledo-Cortés S., de la Pava M., Perdomo O., González F.A. Hybrid Deep Learning

Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification.

In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer

Science, vol 12069. Springer, Cham., 2020, S. 206–215

In this work we developed a hybrid model that integrates Gaussian processes with deep

learning models for image analysis. We address the problem of diagnosing diabetic

retinopathy by training the model as a regressor using the five grades of DR. We show

that this approach allows to improve the traditional binary approach and to perform an

uncertainty analysis of the model, where the confidence of the predictions is understood
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as the associated variance, given that each prediction of the probabilistic model is a

probability distribution.

• Toledo-Cortés S., Useche D.H., Müller H., González F.A. Grading diabetic retinopa-

thy and prostate cancer diagnostic images with deep quantum ordinal regression. In:

Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825

In this paper, we retained the probabilistic regression approach for diagnostic models

but developed quantum-inspired models for them. In addition to developing a family

of algorithms based on quantum measurements using density matrices and random fea-

tures, we showed that performing ordinal regression on the task of diagnosing prostate

cancer from histopathology images improved the summation process (necessary for

patch-based analysis), the binary diagnosis, and also provided the model with a first

level of interpretability by calculating the uncertainty of the predictions. We also ex-

tended the ideas to the diagnosis of diabetic retinopathy. The results were robust and

again gave better results in the final binary task.

• Toledo-Cortés S. González F.A. Multimodal Quantum Kernel Fusion for Glaucoma

Diagnosis. In preparation to be submitted.

Finally, the previous proposed models based on density matrix processing can be for-

mulated in terms of kernel functions to represent the data. This allows us to create

highly versatile fusion mechanisms with which we address multimodal problems applied

to prostate cancer and glaucoma diagnosis.

Software

• Toledo-Cortés S., Dubis, A. M., González, F.A., Müller, H. (2022). Implementation

of CODE and CODED for AOSLO image analysis.

https://github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting

• Toledo-Cortés S., de la Pava M., Perdomo O., González F.A. (2020). Implementation

of Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis.

https://github.com/stoledoc/DLGP-DR-Diagnosis

• Toledo-Cortés S., Useche D.H., Müller H., González F.A. (2021). Implementation

of Deep Quantum Ordinal Regressor for Prostate Cancer and Diabetic Retinopathy

Grading.

https://github.com/stoledoc/DQOR

Awards
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The proposal of this thesis was awarded by the Latin America Reseach Awards - Google

LARA 2019. The development of this work was partially funded by Google Research.

https://latam.googleblog.com/2019/11/celebramos-los-ganadores-de-la-septima-

edicion-de-LARA-programa-becas-investigacion-latinoamerica.html

1.6.1. Other Contributions

During the development of this work, other publications, software, oral presentations, posters,

and master’s thesis advising were made on topics related to the focus of the research, as well

as on other independent topics:

Papers

• Toledo-Cortés S., Castellanos-Martinez I.Y., Gonzalez F.A. (2019) Large Scale Learn-

ing Techniques for Least Squares Support Vector Machines. In: Vera-Rodriguez R.,

Fierrez J., Morales A. (eds) Progress in Pattern Recognition, Image Analysis, Com-

puter Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science, vol

11401. Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_1

• Perdomo-Charry, O., Pérez-Pérez, A., de-la-Pava-Rodŕıguez, M., Rı́os-Calixto, H.,

Arias-Vanegas, V., Lara-Ramı́rez, J., Toledo-Cortés S., Camargo-Mendoza, J., Rodŕıguez-

Alvira, F., González-Osorio, F. (2020). SOPHIA: System for Ophthalmic Image Acqui-

sition, Transmission, and Intelligent Analysis. Revista Facultad De Ingenieŕıa, 29(54),

e11769. https://doi.org/10.19053/01211129.v29.n54.2020.11769

• Perdomo O.J., Toledo-Cortés S., Orjuela A., González F.A. (2021) What You Need

to Know About Artificial Intelligence: Technical Introduction. In: Ichhpujani P.,

Thakur S. (eds) Artificial Intelligence and Ophthalmology. Current Practices in Oph-

thalmology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0634-2_2

• Toledo-Cortés S., Useche, D.H., Gonzalez, F.A. (2021). Prostate Tissue Grading

with Deep Quantum Measurement Ordinal Regression. arXiv:2103.03188

• Gonzalez, F.A., Gallego, A., Toledo-Cortés S., Vargas-Calderon, V. (2022). Learning

with Density Matrices and Random Features. Quantum Mach. Intell. 4, 23. https:

//doi.org/10.1007/s42484-022-00079-9

• Toledo-Cortés S., Lara, J.S., Zambrano, A., González F.A., Rosero Garćıa, J. Char-

acterization of Electricity Demand Based on Energy Consumption Data from Colombia

(2023). International Journal of Electrical and Computer Engineering (IJECE), 13(5),

4798-4809. https://doi.org/10.11591/ijece.v13i5.pp4798-4809

• Toledo-Cortés S., Zambrano, A., González F.A., Rosero Garćıa, J. Short-term Fore-

casting of Power Demand Kernel-based Methods for Short-term Forecasting of Power

Demand. Submitted to Journal of Electrical and Computer Engineering.
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• Toledo-Cortés S., Serna J. E., González F.A., Romero E. Cognitive Impairment

Inference in Parkinson Disease Patients from Spatio-Temporal Gait Assessment Using

Machine Learning. To be submitted at journal.

Coadvisor

• Amaya-Cruz, G. H., (2023). Análisis de calibración en modelos de aprendizaje de

máquina cuántico. Master’s Thesis, Universidad Nacional de Colombia.

Posters

• Toledo-Cortés S., Castellanos-Martinez I.Y., Gonzalez F.A. (2018) Large Scale Learn-

ing Techniques for Least Squares Support Vector Machines. The 23rd Iberoamerican

Congress on Pattern Recognition (CIARP), Madrid, Spain.

• Toledo-Cortés S., Castellanos-Martinez I.Y., Gonzalez F.A. (2019) Large Scale Learn-

ing Techniques for Least Squares Support Vector Machines. LatinX Workshop at the

33rd Neural Information Processing Systems (NeurIPS), Vancouver, Canada.

• Toledo-Cortés S., de la Pava M., Perdomo O., González F.A. (2020) Hybrid Deep

Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quan-

tification. 23rd International Conference of Medical Image Computing and Computer

Assisted Intervention (MICCAI). Virtual.

Presentations

• Toledo-Cortés S., Castellanos-Martinez I.Y., Gonzalez F.A. (2018) Evaluating Ker-

nel Approximation Thechniques for Large-Scale Learning. MAPI1, Universidad Na-

cional de Colombia, Bogotá, Colombia.

• Toledo-Cortés S., Castellanos-Martinez I.Y., Gonzalez F.A. (2018) Large Scale Learn-

ing Techniques for Least Squares Support Vector Machines. The 23rd Iberoamerican

Congress on Pattern Recognition (CIARP), Madrid, Spain.

• Toledo-Cortés S., de la Pava M., Perdomo O., González F.A. (2020) Hybrid Deep

Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quan-

tification. 23rd International Conference of Medical Image Computing and Computer

Assisted Intervention (MICCAI). Virtual.
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1.6.2. Thesis Organization

The remaining chapters of the thesis are organized as follows:

• Chapter 2: Background and Related Work . This chapter discusses previous

work related to regression and multimodal methods applied to the analysis of medical

data, specifically those related to eye disease and prostate cancer.

• Chapter 3: Deep Regression for Cone Density Estimation and Genetic

Ophthalmic Diseases Diagnosis . This chapter presents two new regression models

based on deep learning for automatic cell counting in AOSLO images and for the

detection of genetic eye diseases such as retinitis pigmentosa and Stargardt’s disease.

• Chapter 4: Deep Probabilistic Regression for Diabetic Retinopathy Grad-

ing . This chapter presents a new hybrid model that combines deep learning with

Gaussian processes to grade diabetic retinopathy from eye fundus images.

• Chapter 5: Quantum Measurements. This chapter presents the framework for

the upcoming methods. The core behind the learning models based on quantum mea-

surement is explained here.

• Chapter 6: Deep Quantum Measurement Regression for Diabetic Retinopa-

thy and Prostate Cancer Grading . In this chapter we present the Quantum Mea-

surement Regressor, a deep probabilistic model that allows for ordinal regression. Here

we show its implementation in the task of grading diabetic retinopathy and prostate

from medical images.

• Chapter 7: Multimodal Deep Kernel Quantum Measurement for Prostate

Cancer and Glaucoma Diagnosis.This chapter presents the Multimodal Kernel

Quantum Measurement Unit, a modular processing unit that uses kernel functions as

information encoders, allowing multimodal implementations. Here we show its effec-

tiveness for prostate cancer and glaucoma diagnosis.

• Chapter 8: Conclusions . The final chapter presents the main conclusions and

discussions of this dissertation, summarising the main contributions and highlighting

the main findings. Some future research directions are also presented and discussed.



2. Background and Related Work

This chapter introduces the fundamental background necessary for understanding and de-

veloping the following topics of the thesis. We begin with a general overview of the diseases

we will focus on and give an overview of the state of the art in regression and multimodal

machine learning models applied to diagnostic support.

2.1. Medical Background

2.1.1. Ophthalmological Diseases

Several medical tests are used to diagnose and monitor the progress of various diseases. An

examination of the ocular fundus allows visual examination of the retina (the light-sensitive

tissue at the back of the eye) and is one of the most common (although not definitive) tests

for the following conditions:

Diabetic Retinopathy (RD)

Diabetic retinopathy (DR) is a progressive, chronic eye disease that is one of the most com-

mon complications of diabetes. It affects the blood vessels in the retina, the light-sensitive

tissue at the back of the eye. In people with diabetes, prolonged exposure to high blood sugar

levels can damage the blood vessels, leading to various abnormalities in the retina. These

lesions include microaneurysms (MAs), haemorrhages and dark spot-like lesions known as

exudates. The early stages of DR can be asymptomatic, but as the disease progresses, symp-

toms such as blurred vision, floaters and even vision loss may occur. DR is usually diagnosed

by a comprehensive eye examination that includes visual acuity testing, dilated eye exams

and imaging techniques such as eye fundus imaging or optical coherence tomography (OCT)

[162].

Glaucoma

Glaucoma is an increase in the internal pressure of the eyeball, mostly caused by obstruction

of the drainage pathways of the eye’s internal fluids [113]. As the pressure increases, the

head of the optic nerve suffers a compression that causes progressive irreversible damage

(death of nerve cells), leading to total blindness. The detection of glaucoma begins with the
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measurement of intraocular pressure with a tonometer. Although this is not definitive, it

does give a clue as to when other tests should be carried out. In the fundus image, the area

associated with the optic nerve, known as the optic disc (OD), is analysed by looking for

patterns in the morphological parameters provided by the image.

Retinitis Pigmentosa (RP) and Stargardt Disease (SGD)

These are two forms of inherited degenerative eye disease that primarily affect the retina.

RP is characterised by a progressive deterioration of the photoreceptor cells [22], leading

to a gradual loss of peripheral vision and, in advanced stages, to total blindness. It often

presents with symptoms such as night blindness and reduced visual field. Stargardt’s disease,

the most common form of inherited juvenile macular degeneration, primarily affects the

macula, the central area of the retina responsible for sharp, straight ahead vision [150]. It

typically manifests itself in childhood or adolescence, resulting in loss of central vision but

preservation of peripheral vision. Although there is currently no cure for either condition

[32] [64], ongoing research is focusing on therapies such as gene therapy, stem cell treatment

and artificial retinal implants to mitigate their effects. They are diagnosed by a combination

of clinical examination, symptom history and specialised tests.

2.1.2. Prostate Cancer (PCa)

Prostate cancer (PCa) is one of the most common cancers in men in America and is also one

of the leading causes of cancer death among men of all races and Hispanic origin populations

[41]. The risk of prostate cancer increases with age, and it’s most common after age 50. In

many cases, prostate cancer is a slow-growing cancer. It occurs when abnormal cells start

to grow uncontrollably in the prostate, a small walnut-shaped gland that produces semen in

men. While some types of prostate cancer grow slowly and may require little or no treatment,

others can be aggressive and spread quickly [136].

Diagnosing prostate cancer usually starts with screening tests [45]. The two most commonly

used tests for prostate cancer are the prostate-specific antigen (PSA) blood test and the

digital rectal examination (DRE). Elevated levels of PSA can indicate the presence of cancer,

but it’s not definitive because other conditions, such as an enlarged or inflamed prostate, can

also raise PSA levels. The DRE involves the doctor manually examining the prostate for any

abnormalities. If these tests suggest the possibility of cancer, a biopsy will be done. A biopsy

involves taking a sample of tissue from the prostate and examining it under a microscope.

Based on the microscopic appearance of the tissue, the aggressiveness of prostate cancer is

then measured using the Gleason grading system [90]. It helps pathologists classify prostate

cancer cells into different grades, or patterns, to provide information about the tumour’s

behaviour and potential to spread.
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Figure 2-1.: Eye fundus image example from the PAPILA dataset [78]. This is an RGB

photograph of the inner posterior part of the eye, showing an overview of the

retinal tissue. Dark blue and green circles indicate the optic disc (OD) and

optic cup (OC) zones, respectively. In diabetic retinopathy, lesions can occur

throughout the retina, particularly in the vascular system. Glaucoma, on the

other hand, usually only concerns the optic nerve head (in the zone of the optic

disc).

2.2. Related Datasets

In the field of ophthalmic and histopathology research, the availability and effective use of

data sets plays a crucial role in the advancement of diagnostic methods. These datasets,

often consisting of retinal images, tomographies, whole slide images and associated medical

records, provide invaluable resources for training and validating machine learning models.

We will focus on three types of images: eye fundus images, adaptive optics scanning laser

ophthalmoscope images, and whole slide images.

Eye Fundus Images (EFI)

An eye fundus image (see Figure 2-1) is a photograph of the inner surface of the eye, including

the retina, optic disc, macula and posterior pole (the central part of the retina). This image

is taken using a special low-power microscope with an attached camera called a fundus

camera. The resulting image can provide a wealth of information about the health of the eye

and may show signs of various eye diseases such as glaucoma, macular degeneration, retinal

detachment or diabetic retinopathy. Fundus photography is a common part of comprehensive

eye examinations, particularly for patients with known eye disease or at risk of certain

systemic diseases that can affect the eye, such as diabetes or hypertension [91].
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Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) Images

An Adaptive Optics Scanning Laser Ophthalmoscope is an imaging tool that allows clinicians

and researchers to visualise the retina, the light-sensitive tissue at the back of the eye, at

a cellular level (see Figure 2-2). The adaptive optics component of the device corrects for

distortions in the image, often caused by the outer layers of the eye, resulting in a much

clearer and more detailed view of the retina than traditional imaging techniques. This

technology allows individual photoreceptor cells (the cells responsible for converting light

into electrical signals), blood vessels and other retinal cells to be seen in vivo, which can

help diagnose and monitor various eye diseases. It can also be used in research to study the

structure and function of the retina in great detail [18]. AOSLO is not yet widely used in

clinical practice, but it has significant potential to improve our understanding and treatment

of many eye diseases [36].

Figure 2-2.: Sample of a split detector AOSLO image. This image shows the detailed struc-

ture of the retina. The distinctive patterns of light and dark areas correspond

to individual photoreceptor cells.

Whole Slide Images (WSI)

Whole Slide Images (WSIs) (see Figure 2-3), also known as digital slides, are high-resolution

digital representations of entire histological glass slides used in medical image analysis for

histopathology [67]. WSIs are created by scanning whole glass slides with specialised slide

scanners, capturing the entire tissue section at high magnification. These digital images

preserve the spatial and morphological details of tissue samples, providing a comprehensive

view that can be examined and analysed by pathologists and researchers. WSIs have revolu-

tionised histopathology by enabling remote access, facilitating collaboration and supporting

quantitative analysis using machine learning algorithms. By digitising histological slides,

WSIs offer numerous benefits, including easier sharing and the potential for automated im-

age analysis to aid in the diagnosis, prognosis and research of various diseases [81].
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Figure 2-3.: An example of a Whole Slide Image from the TCGA-PRAD dataset [67], illus-

trating the detailed histopathological features associated with prostate cancer

at a cellular level. This image aids researchers in studying the morphological

variations across different stages of prostate cancer.

The global drive to improve and innovate diagnostic techniques has led to the creation of

numerous public and private datasets. These compilations contain ocular fundus images or

whole slide images of patients affected by a variety of diseases. A comprehensive summary

of these accessible public datasets is presented in table 6-4.

Table 2-1.: A summary of some of the available public datasets on ophthalmology and

histopathology.

Dataset Disease and description

DRIVE DR. 40 eye fundus images.

E-OPHTHA
DR. Segmentation for exudates and microaneurysms. 463 eye

fundus images

EYE PACS DR. 88702 eye fundus images.

APTOS DR. 13000 eye fundus images.

ONHSD DR and Glaucoma. 49 eye fundus images.

HRF
DR and Glaucoma. 90 eye fundus images, with segmentation of

clinical signs.

MESSIDOR DR and DME. 1200 eye fundus images.

iDRID
DR and DME. 516 eye fundus images. Labeled with the degree

of DR and DME.
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Dataset Disease and description

STARE
DR and AMD. 400 eye fundus images with masks of the blood

vessels in black and white.

ARIA DR and AMD. 143 eye fundus images.

DRIONS-DB
Glaucoma. 110 eye fundus images. Segmentation of the optic

nerve head.

ORIGA-650 Glaucoma. 650 eye fundus images.

INSPIRE-AVR Glaucoma. 40 eye fundus images.

RIM-ONE
Glaucoma. 783 eye fundus images. Segmentation of optic disc

and optic cup.

ACHIKO-K Glaucoma. 258 eye fundus images.

DRISHTI-GS
Glaucoma. 101 eye fundus images. Segmentation of optic disc

and optic cup.

RIGA Glaucoma. 760 retinal fundus images.

REFUGE
Glaucoma. 1200 eye fundus images. Segmentation of optic disc

and optic cup.

PAPILA
Glaucoma. 488 eye fundus images. Segmentation of optic disc

and optic cup, and structured clinical data.

CUNEFARE
Stargardt’s Disease. 260 AOSLO images. Coordinates of the

location of photoreceptor cells.

PANDA PCa. 21135 images. Segmentation according to Gleason Score.

TCGA-PRAD
PCa. More than 20000 samples with WSI and clinical data

records.

PESO PCa. 102 WSI samples with Gleason score.

TCIA-Ovarian
Ovarian Cancer. 288 WSI from 78 patients, and clinical infor-

mation regarding tratment with bevacizumab.

ERCPMPv1
Colorectal cancer. Histologic Images from 192 patients with col-

orectal polyps.

BreCaHAD Breast Cancer. 162 breast cancer histopathology images.

2.3. Performance Evaluation of Machine Learning Models

Evaluating the performance of machine learning models, especially regression and multi-

modal learning models in the field of ophthalmology and histopathology, is crucial to ensure

their diagnostic accuracy, reliability and clinical applicability. Several metrics and method-

ologies can be applied, including but not limited to the following:

• Accuracy: The most basic metric is accuracy, defined as the number of correct predic-

tions made by the model divided by the total number of predictions. Although easy
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to understand, accuracy can be misleading if classes are unbalanced. Mathematically,

it is defined as:

Accuracy =
Number of correct predictions

Total number of predictions

• Confusion Matrix: The confusion matrix can give us a more comprehensive view of the

model’s performance, detailing true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN). From this we can derive other useful metrics such as

sensitivity, specificity, positive predictive value (PPV), and negative predictive value

(NPV).

• Receiver operating characteristic (ROC) curve and area under the ROC curve (AUC-

ROC): The ROC curve is a plot of the true positive rate (TPR, or sensitivity) versus

the false positive rate (FPR, or 1-specificity) for the different possible cutpoints of a

diagnostic test. The AUC-ROC can provide a single measure of a model’s performance,

where 1.0 indicates perfect classification and 0.5 indicates a model that is no better

than chance.

Sensitivity (TPR) =
TP

TP + FN
, Specificity =

TN

TN + FP

• Precision (Positive Predictive Value): Precision is defined as the number of true pos-

itives divided by the sum of true positives and false positives. It is a measure of a

classifier’s exactness.

Precision =
TP

TP + FP

• Recall (Sensitivity or True Positive Rate): Recall is defined as the number of true

positives divided by the sum of true positives and false negatives. It quantifies a

classifier’s completeness.

Recall =
TP

TP + FN

• F1-Score: The F1-Score is the harmonic mean of Precision and Recall, and ranges from

0 to 1. It is a way of combining the precision and recall of the model, and it is defined

as:

F1-Score = 2× Precision× Recall

Precision + Recall
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• Mean Squared Error (MSE) and Mean Absolute Error (MAE): For regression and

ordinal regression models, MSE and MAE are commonly used metrics that provide

information on how far the model predictions are, on average, from the actual values.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, MAE =

1

n

n∑
i=1

|Yi − Ŷi|

where Yi represents the actual values, Ŷi represents the predicted values, and n is the

number of observations.

• Clinical Validation: Finally, model performance needs to be evaluated in a clinical

context. This often involves prospective validation with new patients and, ultimately,

randomized controlled trials to demonstrate that use of the model improves patient

When interpreting these metrics, it’s important to consider not only their absolute values,

but also how they compare with other models and with clinicians’ needs. For example, in a

disease where false negatives can have serious consequences, a model with higher sensitivity

may be preferred, even if it has lower overall accuracy.

2.4. Machine Learning for Medical Applications

Machine learning has been successfully applied to the analysis of a wide range of medical

data. Analysis of histopathological images, detection of heart disease, study of neuronal

pathologies, treatment of bone fractures, drug development, genome research, etc. [77]. The

recent increase in the understanding and automatic analysis of disease-related data is largely

due to the increase in information and systems that can extract appropriate symptomatic

patterns. Machine learning has served to facilitate what is generally manual work, reducing

time and facilitating access to medical resources.

In the specific case of ophthalmological and histopathological diseases, significant progress

has come from the development of computer vision models, which have been successfully

applied to the task of identifying objects in natural images for more than a decade. Thanks

to model training techniques such as transfer learning and fine tuning, it has been possible

to harness the computational power of deep learning and successfully learn representations

to handle visual information from medical images [73].

2.4.1. Deep Learning

Deep learning is a branch of machine learning that includes a whole family of algorithms

that share a common feature: an architecture organised by hierarchical layers. The history

of deep learning begins in the 40s, with simple algorithms that were essentially variations
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of linear regression methods [130]. Then, in the early 60s, the perceptron appeared, giving

birth to the first artificial neural network (ANN). In 1965, the first deep learning architecture

appeared, using feed-forward propagation in a multi-layer structure.

In short, an ANN consists of a set of computational units (neurons) organised in layers

and interconnected in such a way that information moves through the layers from the input

to the output layer. The input data is transformed depending on the parameters of the

connections and the activation function of each neuron. The practical problem is to find the

parameters that better describe the data patterns, and to achieve this, a cost function should

be minimised. The cost function could measure the error rate or the precision and accuracy

of the predictions made by the network, and it should be carefully chosen depending on

the model and the task. In any case, the cost function depends on the parameters of the

network links. Since 1970, backpropagation was introduced as a method to minimise the

cost function. Backpropagation tracks the error in the opposite direction of the information

flow into the network and is now part of the state of the art in the training process of neural

networks [130].

2.4.2. Ordinal Regression

Regression analysis aims to establish a relationship between a dependent variable (or re-

sponse variable) and one or more independent variables (or features). The primary aim is

to understand how the dependent variable changes in relation to the independent variables.

There are numerous types of regression models, each of which has its place depending on

the nature of the data and the problem at hand. They have proven to be incredibly robust

and useful in many fields, including economics, psychology, biology, and medical imaging

and diagnostics.

However, while traditional regression models have proven incredibly useful, there are many

cases where the response variable is not on a continuous scale, but rather an ordinal one.

This brings us into the realm of ordinal regression. Ordinal regression, also called ordinal

classification, comes into play when the dependent variable is ordinal, i.e. when the possible

output values have a clear order or ranking, but the intervals between these values are

not necessarily known or constant. An general example in medical diagnostics might be

predicting the stage of a disease, which might be classified as none, mild, moderate or severe.

Categorical classification models are not suitable for this type of problem because they do

not take into account the inherent order in the response categories [8]. Ordinal regression

models, on the other hand, do take this order into account and therefore tend to provide

more accurate and meaningful predictions [8].

Ordinal regression tasks are not exclusive to the medical field. Therefore the development of

this approach has occurred alongside the rest of machine learning, as an intermediate field

between regression and classification. According to Gutierrez et al. [60], the taxonomy of

previously proposed methods for ordinal regression are: first, näıve approaches, which are
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standard machine learning models for nominal classification or metric regression, second,

ordinal binary decomposition approaches, which break down the problem into several binary

sub-problems [46], and third, in which our proposals are framed, threshold models, which

are based on a predictor that yields a real value, which is then approximated to an integer

value. Depending on the particular problem, different models might perform better than

others, so there is not an optimal ordinal regression approach [60].

2.4.3. Ordinal Regression for Medical Data Analysis

The use of regression models in tasks related to medical diagnosis should be naturally un-

derstood, as a disease is usually a process that follows stages according to some order. The

progression of a disease is also generally continuous rather than discrete, and the study

of several diseases has led to the establishment of a discrete scale for their progression,

which is then used in the diagnostic procedure to take certain actions to prevent the dis-

ease from reaching the next stage. For example, in ophthalmology, particularly in DR, the

international standard identifies 5 different stages from complete absence of the disease to

proliferative retinopathy [146]. For PCa, the Gleason system does the same: it determines

the severity of the cancer on a 5-stage scale. Curiously, however, most research into these

diseases approaches diagnosis as a binary problem [81]. The main reason for this is the

ultimate purpose of the diagnosis.

Again, for DR we have 5 stages: healthy, mild DR, moderate DR, severe DR, and proliferative

retinopathy (see Figure 2-4) [135]. In this order, the stages indicate the severity of the

disease. However, from this scale there is a binarization of the diagnosis: referable DR vs.

non-referable DR [158]. Referable means that the patient is fit to be seen by an specialised

ophthalmologist. A patient who is not referable is a patient who can be treated with standard

procedures without the need for a specialist to examine the case. Therefore the next step

in treatment is ultimately a binary decision, even if the diagnosis is not purely binary.

This is one of the reasons why machine learning models have traditionally approached these

problems as binary categorical classification. And they have been very successful [60]. Models

based on deep neural networks have shown excellent performance on many of the data sets

mentioned above. The question is, why bother with an ordinal scale at all? The answer

is: interpretability [144] [6] [146]. When the ordinal information in the data is taken into

account, representation learning suddenly has to take into account a more complex structure.

This opens the door to a world of possibilities where it makes sense to re-understand the

distribution of the data and how that distribution can explain the course of a disease. And

it opens the door to a richer interpretation of the results, which are no longer simply a 0 or

a 1, but a position on a broader scale. It begins to make sense to incorporate probabilistic

methods, and new performance metrics are introduced.

Therefore, while it is true that there have been some applications of ordinal regression

models in the medical field, there is not a clear and well-defined trend. Recently, ordinal
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Figure 2-4.: Five possible grades for DR diagnosis [135]. Healthy cases correspond to grade

0. Grades 0 and 1 correspond to non-referable DR cases, while grades 2, 3 and

4 correspond to referable DR. Samples extracted from EyePACS dataset [40].

regression by binary classifiers has been applied to facial age estimation [109] [138], and

diagnosis of Alzheimer’s disease [89], taking advantage of the inherent ordinal severity of

brain degeneration.

In addition, some challenges have been created from which useful datasets such as PANDA

have emerged [17], and in general attempts have been made to adapt typical models so that

their predictions span the spectrum of diagnostic possibilities [6], or to use this additional

ordinal information tacitly during training [143].

Regarding our application of interest, most of the works for PCa have been focused on

classifying Whole Slide Images (WSI) by low and high GS [81]. To train a model on WSIs, it

is required to divide each image into multiple patches and then to summarize the information

of the patches by different methods, hence obtaining a prediction of the WSI. In [67], the

authors classify patches between low, and high GS, using various CNNs, and summarizing the

patches at WSI level by a GS majority vote. Another approach by Tolkach et al. [149] uses

a NASNetLarge CNN, and summarizes the GS of the patches by counting the probabilities

per class. In Karimi et al. [69], they proposed training three CNNs for patches of different

sizes and summarizing the probabilities by logistic regression.

Recently, however, there has been a growing interest in GS grading. Proof of this is the

Prostate cANcer graDe Assessment (PANDA) Challenge [17], and the recently proposed

CNN architectures, which include a combination of an atrous spatial pyramid pooling and

a regular CNN [90], an Inception-v3 CNN with a support vector machine (SVM) [94], and

a DeepLabV3+ with a MobileNet as the backbone in [72]. In [106], the authors use an

InceptionV3 with a k-nearest-neighbor classifier to summarize the patch-level predictions in

a heatmap. In [65], the authors implemented in parallel a categorical and an ordinal classi-

fication for Gleason patterns, training similar models with different loss functions, from the

same data features. However, they used a softmax to return probabilities that, as mentioned

before, cannot be interpreted directly as a probability distribution [154]. Other techniques

for GS grading include Support Vector Machine Feature-Recursive Feature Elimination [126],
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and learning representations from bag-of-words features [159].

On the DR side, most works have been focused on a binary diagnosis based on deep neural

networks [111] [28]. Tian et al. [143] used a deep CNN as the backbone for a model trained

to optimize a combination of a metric loss and a focal loss function for soft labels, aiming to

use the ordinal information of the DR stages. Additionally, Teresa Araujo et al. [6] proposed

the DR|GRADUATE, a deep learning-based model whose last layer had the same number

of neurons as classes, and with a Gaussian filter applied to the output. The model was

trained with a loss function that controlled both the classification entropy and the standard

deviation of the distribution. This strategy allowed them to infer, in addition to the DR

grade, the uncertainty of the prediction.

Lastly, uncertainty quantification in ordinal regression has been analyzed in many studies

to obtain more interpretable models for cases where reliability is important to the end user

[133]. Studies have been carried out on the uncertainty of machine learning algorithms for

organ classification [102] and on the estimation of tissue parameters in the operating room [3].

Furthermore, estimating the uncertainty of a model’s prediction has been of great interest

because it reduces the consequences of the blind use of the model’s inference [71]. This is

particularly relevant in medical settings, where misdiagnoses can have serious consequences

for patients. Correspondingly, Leibig et al. [85] analyzed uncertainty information from deep

neural networks for DR detection. The authors tested dropout-based Bayesian uncertainty

estimation against alternative techniques, such as direct analysis of the softmax output

of the network. They claimed that Bayesian approaches perform better for uncertainty

estimation and showed that uncertainty-aware decisions can improve the overall grading

process. Another approach is presented in [92], where stochastic batch normalization is used

to calculate the uncertainty of the prediction of a model for DR level intervals estimation.

2.4.4. Multimodal Learning

Data may take a variety of forms and carry a variety of information about a single objective.

For example, in speech recognition, humans combine auditory and visual information to

distinguish between similar sounds of certain consonants [98]. In this case, visual information

is in the movements of facial muscles [137]. Or, in many cases, a graphic is much better at

describing the non-obvious information in a text. The aim of multimodal learning is to find

the best way of combining information from different sources so that they complement each

other and produce better results than if the sources were analyzed separately.

This multimodality problem leads to a representation problem. How do we learn the right

representation for each modality? Data from different modalities may have different statisti-

cal properties, so a simple concatenation of representation features is not necessarily a good

strategy [156]. You then have to look for latent spaces, and different strategies have been

developed to find these possible spaces. However, representation is not the only challenge

in multimodal learning. According to Baltrusaitis et al. [9], the challenges of multimodal
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machine learning include translation, alignment, fusion and co-learning.

Among these challenges, data fusion emerges as a core phase in the multimodal design

process. Fusion is essentially looking for the best way to combine information from different

sources in a way that complements and extracts information from individual sources. Various

classifications can be made. In terms of the stage at which fusion takes place, there are

three types of fusion: early, late and hybrid. In early fusion, a selection or combination of

representations from each modality is made before the problem is solved. Several examples

of this can be found in the literature [23], where fusion is performed at the feature level and

then fed as input to a neural network. In some cases, early fusion gave better results than

late fusion at the decision level. Late fusion combines the results of independent models to

draw conclusions. An example of this can be found in [119], where fusion is performed with

the high-level features of visual and audio modalities for (again) an emotion recognition task.

In any case, the fusion mechanism and the stages of fusion are part of the settings which

should be under examination in a model construction.

2.4.5. Multimodal Learning for Medical Data Analysis

In contrast to ordinal regression, multimodal applications are more common in the medical

domain [105]. Many studies have shown that combining different sources of information

generates models with greater predictive power and robustness [5]. Furthermore, multi-

modal analysis can be used to find clinical correlations between data [76]. Diagnosis of brain

pathologies emerges as one of the most popular applications with multimodal information

[99]. These multimodal approaches include combinations of many data sources: MRIs com-

bined with encephalograms [116], demographic data with cerebrospinal fluid examinations

[116], etc. Good results have also been reported for multimodal approaches in glioblas-

toma classification [76], skin lesions [169], and thyroid cytopathology [74], combining not

only visual data but also textual and categorical information such as clinical outcomes of

chemotherapy and radiotherapy or patient metadata.

And it has been used not only for diagnostic tasks, but also for segmentation and retrieval.

For some diseases, such as glaucoma, segmentation is one of the first steps in the analysis

process [113], as the geometric characterization of the optic disc (the area where the optic

nerve enters the retina of the eye) and the optic cup (the depression in the optic disc where

the optic nerve fibres meet to exit the eye to the brain) is one of the main indicators used

by specialists diagnose this disease [58] [59]. Again, brain-related problems are among the

most popular applications. Segmentation of brain tumours [152], delineation of brain tissue

[75] on MRI images, segmentation of brain gliomas from MRI images [33] and segmentation

of white, grey and cerebroespinal fluid [108] [68], are just a few examples where multimodal

approaches have shown that using more than one source of information leads to better results

than using the sources separately.

In the context of histopathology data analysis, kernel alignment [20] has been used in medical
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image collections, allowing the introduction of expert knowledge into the domain to improve

the semantic representation of images, thus improving the performance of algorithms in

image retrieval tasks. Non-negative matrix factorization (NMF) has also been used for sum-

marisation tasks [21]. The NMF strategy is based on latent topic analysis, where summary

elements are selected from the latent factors obtained in the matrix factorization process.

In [66], the first multimodal method is presented that combines Whole Side Images and

text from histopathology reports for retrieval tasks. The model is based on the extraction

of visual features using deep learning and very simple fusion techniques, and the dataset

they experimented with is a subset of The Cancer Genome Atlas (TCGA) [61] collection.

The same dataset was subsequently used for retrieval tasks [31] using matrix factorisation

techniques, and for the diagnostic task using a multimodal semantic alignment model using

kernel functions [81].Finally, more recently, there have also been multimodal efforts to find

correlations between genomic and histological data [26], with the notable fact that this uses

the tensor product as a mechanism for fusing representations.

Regarding the application of multimodal strategies in the diagnosis of eye-related diseases,

there are not too many published papers, beyond the fact that the results are promising.

The first work exploring this idea is presented in [114] where, from scanning laser ophtalmo-

scope images, anatomical features such as blood vessels and the optical disc are extracted

and then superimposed on the same image. The goal was to make an automatic mapping of

the retina. Following this came works that combined angiographic images and images taken

under natural light with a green filter, in order to diagnose DR [173]. Information fusion

from stereo and temporal images of the retina was also explored in [122].

More recently, most work has focused on the process of segmentation and classification of

glaucoma and AMD. Golabbakhsh et al. [51] proposed the registration of the retina vessels

combining information from eye-fundus images and OCT. Segmentation of retina vessels is

useful in the diagnosis of AMD and DR. This combination of fundus images and OCT has

also been explored in [101], [160] and [171], not only for the AMD diagnosis but for the

segmentation of the OC and OD, useful in glaucoma diagnosis. This segmentation task has

also been used directly in combination with eye fundus images in [25], using the Texture

of Projection features and Bag of Visual Words to capture shape and textual changes, as

well as color information from eye fundus images. Although their source of information is

only images, Chakravarty et al. [25] showed that the extraction of several features, obtained

separately from the same source, can be combined within the same model to provide com-

plementary information. They experimented with merging information at different stages of

the process and found the best results by intermediate fusion, it means, within the classifier.

A similar concept was developed in [127] where structural and non structural features are

extracted from the eye fundus images, and then correlated in a late fusion module. For

their part, Perdomo et al. [113] at the MindLab proposed the combination of deep neural

networks with morphological features in the detection and classification of glaucoma. Image
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analysis and extraction of morphological features is done separately and then mixed within

the network in a layer, then go through a fully connected layer and the output layer.

For their part, Ahmed El Tanboly et al. [43] combined information from OCT and OCTA

(Optic Coherence Tomography Angiography) to detect early signs of DR. Their method in-

clude an independent feature extraction process followed by a feature fusion (a merging).

The OCT provided information about 12 layers of the retinal tissue, and the OCTA provided

information about the vessels. The final diagnosis process is performed by a Support Vec-

tor Machine with a linear kernel, outperforming the results obtained separately with each

source. OCT and OCTA have also been combined in [153] for the diagnosis of dry-AMD.

Regarding the combination of images and text, the first work on this subject was developed

by Schlegl et al. [129], where they combine a CNN to analyse OCT images, with semantic

information extracted from medical reports. The fusion consist in a concatenation of pa-

rameters into a fully connected layer, and they report an improvement in the performance

of retinal tissue classification tasks.

Other works combine fundus images with angiograms, performing pattern matching to fuse

images and segment retinal blood vessels [97], and to make retinal image registration [83].

And then there is the combination of autoflorescense images, or images in Otsu binary modal-

ity [155] [14], to perform segmentation of reticular pseudodrussen and glaucoma diagnosis.

A summary of the related literature can be found in Table 6-2.

2.5. Quantum Machine Learning

At the intersection of quantum physics and machine learning, quantum machine learning

(QML) seeks to exploit the unique properties of quantum computers and the mathematical

foundations of quantum mechanics to develop and improve the functionality of machine

learning algorithms [53]. The surge in attention to this field is largely due to the potential of

quantum computers to manipulate massive amounts of data and perform computations at

speeds beyond the reach of classical computers. Quantum computers, based on the principles

of quantum mechanics, promise exponential acceleration for certain types of computation,

potentially solving the bottlenecks caused by the computational demands of large, complex

machine learning enterprises [15].

Progress in quantum machine learning has been rapid in recent years. Researchers have

developed quantum versions of widely used machine learning algorithms such as support

vector machines, decision trees, and neural networks [24]. Quantum computers, including

both gate-based and quantum annealers, have been built by a wide range of companies and

research groups, driving the development of QML. As a result, QML has been widely adopted

in applications such as pattern recognition, natural language processing, and optimization.
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The growing use of QML can be seen across a wide range of industries. In drug discovery,

for example, QML has the potential to speed up conventional processes, which tend to be

slow, costly, and inconsistent [15]. Quantum Generative Adversarial Networks (Q-GANs) are

being investigated for the generation of smaller molecules, with the potential to significantly

accelerate drug discovery and the development of innovative drugs [24]. In financial mar-

kets, QML has demonstrated the potential to perform tasks such as asset pricing, volatility

prediction, exotic option outcome prediction, fraud detection, stock selection, hedge fund se-

lection, algorithmic trading, market making, financial forecasting, accounting and auditing,

and risk assessment faster and more accurately than classical algorithms [140].

However, QML still faces challenges. Despite encouraging signs that machine learning mod-

els can be trained to higher accuracy with less data than classical techniques, there are still

limitations. Even the most powerful quantum computers in existence today lag behind to-

day’s most powerful servers. Nevertheless, quantum computing technology has considerable

potential for development and expansion [24].

Therefore, a closer line of research is related to the development of quantum-inspired mod-

els. These models aim to develop learning methods and techniques using the mathematical

formalism associated with quantum mechanics. There is no need to implement them on

quantum computers (although is possible), and they can be directly integrated into the

most popular machine learning frameworks as Tensorflow and Pytorch [53].

If you consider a set of data samples as an ensamble of quantum particles that lie in a

feature space, quantum mechanics has natural mechanisms to capture the quantum state of

the entire set of samples. In the end, this is nothing more than a probabilistic representation

of the data. Density matrices are the objects that allow us to do this. Understanding the

elements that make up the density matrix generated by the quantum representation of the

data set as learnable parameters of a representation learning model is what González et

al. proposed in [53]. This can be used to generate models for classification, regression,

clustering, density estimation, etc. Furthermore, this can be used to develop multimodal

methods, exploiting the underlying flexibility in handling representations through kernel

functions. The exploration of these models in the field of medical applications is a large part

of the development of this work.
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Table 2-2.: A summary of recent publications on multimodal approaches to ophthalmo-

logical and histopathology data analysis. DR stands for Diabetic Retinopathy,

AMD for Age related Macular Edema, OCT for Optical Coherence Tomography,

OCTA for Optical Coherence Tomography Angiography and PCa for prostate

cancer

Reference Data Remarks

[43] [153] OCT and OCTA

Diabetic Retinopathy diagnosis.

Fusion of probabilities from in-

dependent SVM models.

[113] [127] [128]

Eye-fundus image and morpho-

logical, textural, intensity fea-

tures.

Glaucoma diagnosis based on

image segmentation and mor-

phological features, and also

based on OC and OD segmenta-

tion combined with texture and

intensity features. Fusion is

acheved by layer concatenation.

[160] [171] Eye-fundus images and OCT

Segmentation of retina vessels,

OC and OD. Diagnosis of AMD.

Fusion is achieved by the con-

catenation of multimodal fea-

tures.

[83]
Eye fundus images, angiograms

and OCT

Retinal image registration for

multimodal alignment.

[168] WSI and clinical data

Breast cancer recurrence predic-

tion. A concatenation of fea-

tures is input into a multilayer

perceptron.

[26] WSI and genomics data

Diagnosis of several types of can-

cer using tensor fusion on low di-

mensional feature spaces.

[31] WSI and textual reports

Retrieval system based on mul-

timodal kernel semantic embed-

ding.

[81] WSI and textual reports

PCa Diagnosis based on a mul-

timodal latent semantic align-

ment.
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3. Deep Regression for Cone Density

Estimation and Genetic Ophthalmic

Diseases Diagnosis

This chapter presents two models based on deep learning for the automatic analysis of mi-

croscopic images of the retina, namely AOSLO. These images allow the specialist to observe

in detail the cellular mosaic of the retina, which is affected in different ways when differ-

ent diseases are present. A manual analysis of these images then involves identifying each

cell, and then proceeding to statistical analysis of the alterations present. A single image of

this type can account for more than 200 cells, making this manual marking process time-

consuming. The first is a regression model that makes use of a modified U-Net to estimate

the cell density in the images. The model is trained to automatically return information

about the location and count of the cells. From this information, the second model applies

a CNN to classify cases between healthy patients and patients with a degenerative disease.

The results show that indeed, explicit cell location and cell count information improves the

performance of the diagnostic models.

The work in this chapter as been published as:

Toledo-Cortes, S., Dubis, A. M., González, F.A., Müller, H. Deep Density Estimation

for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning

Light Ophthalmoscope Images. In: Translational Vision Science Technology 12 (2023), 11,

Nr. 11, S. 25–25. – ISSN 2164–2591 [147]

3.1. Introduction

The world of ophthalmology has been transformed by our ability to image the inner back

section of the eye. An inspection of the eye fundus allows specialists to find signs of degener-

ative diseases that may even go beyond the visual system such as, for instance, retinopathy

caused by diabetes mellitus. In general, the density and regularity in the pattern of retinal

photoreceptor cells are affected in different ways by various diseases [165]. However, even

with the best clinical cameras, by the time that the macro-indicative changes in a disease

are detected, the loss of hundreds of thousands of retinal cells cannot be quantified [107].
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New technology now exists to visualize individual cells in the living eye. Split detector

Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO) [124] is a non-invasive retinal

imaging technique that corrects for optical distortion and allows high-resolution images of

the photoreceptor layer to be acquired in living patients [38]. AOSLO has allowed one

to look at retinal tissue with microscopic detail (and make measurements), in a way that

was previously only possible in dead patients. This has allowed the quantitative study of

alterations at the cellular level caused by different diseases [19]. Indeed, it has been used to

describe the degeneration of the photoreceptor structure in the retina by various quantitative

measurements in several inherited retinal diseases such as Stargardt disease (STGD1) and

retinitis pigmentosa (RP) [38, 36, 104].

Retinitis pigmentosa refers to a group of eye diseases of genetic origin. It affects the photore-

ceptor cells of the retina (first the rods, then the cones [22]), first causing loss of peripheral

and night vision which is, in fact, the earliest associated symptom [107, 32]. However, the

RP diagnosis is hard as there is no specific test, and the actual diagnosis is reached after var-

ious exams such as OCT, angiography, electroretinography, and genetic testing. Therefore,

by the time that an accurate diagnosis is reached, the patients are in an advanced stage of

the disease [32]. Stargardt’s, on the other hand, is also a genetic disease that affects vision

in the macula and has the potential to lead to complete loss of central vision [150]. It does

not cause complete vision loss because patients retain peripheral vision. STGD1 is usually

diagnosed between the ages of 10 and 20 years, but, as with RP, the diagnosis process is not

straightforward and requires a series of different tests [115].

Furthermore, unfortunately, there is no cure for RP or STGD1 [32, 64]. However, several

genetic, cell, and drug therapies are being studied with promising results. The success of

these studies depends on the progress of the clinical development pipeline, especially the

early and fast detection and diagnosis of positive cases [32].

Is in this sense that AOSLO imaging arises then as a promising diagnosis tool [18]. However,

the manual analysis (which is the gold standard for this task) that allows the identification

and labelling of photoreceptors in the images is a time-consuming procedure [104], and this

prevents the implementation of this type of images in diagnostic and research processes

[36]. Therefore, the development of automatic methods to support specialists and speed up

the analysis of AOSLO images is of great importance. This chapter proposes and develops

models based on deep learning to:

• Estimate cone density in split detector AOSLO images, allowing quantitative analysis

at the cellular level.

• Support the diagnosis of retinitis pigmentosa and Stargardt disease from the analysis

of split detector AOSLO images.

To achieve these goals we introduce two new models: CoDE (Cone Density Estimation) and

CoDED (CoDE-Diagnosis). CoDE is a deep density estimation model that learns to generate
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cone density maps from the original split detector AOSLO images. CoDED is an extension

of CoDE intended to support the diagnosis of specific diseases. With these methods and the

proposed experimental setup, we show that:

1. High precision cone density estimation can be achieved with no need of patch-based

analysis and complex post-processing stages, as those reported in the state of the art.

2. Computer-assisted diagnosis of genetic retinal pathologies such as RP and STGD1 is

feasible using split detector AOSLO image analysis.

Usually, disease diagnosis performed from AOSLO images has been based on statistical char-

acterizations. Stargardt disease effects has been studied by means of cone spacing analysis

and statistical analysis [27], and something similar happens for retinitis pigmentosa [107].

Some machine learning applications have been developed for the identification of cones in

patients with choroideremia [104], and for patients with Stargardt disease [38]. Previous

studies have shown promising results classifying Stargardt disease patients and healthy pa-

tients using optical coherence tomography images [131], by training deep learning models

with relatively small datasets. However, while this study shows the feasibility of using a

deep learning model for these tasks, to our knowledge, to date, diagnosing Stargardt disease

and retinitis pigmentosa from AOSLO images has not yet been reported in the state of the

art using machine learning techniques.

On the other hand, the cone density estimation task has already been studied using machine

learning methods. Cunefare et al. [35] proposed a model for cone counting, which requires

an analysis based on 32× 32 pixel patches extracted from the original AOSLO image. This

means a high time-consuming pre-processing is needed as each AOSLO image has to be

partitioned to generate a set of patches which in turn need to be labeled according to the

presence or absence of a cone. The training process is then carried out at the patch level.

The goal with this process is to obtain a model capable of identifying the presence of a cone

at a patch level. Therefore, the inference process requires the image to be analyzed from

all possible 32 × 32 pixel patches centered on each pixel of the original image, generating

at the end a global heat map indicating the probability of the presence of a cone at pixel

level. This heat map must be processed to determine a final estimate of the location and the

number of cones in the image. While the model achieves promising results, the necessary pre-

processing and post-processing for both training and final cone counting estimation makes

the implementation a cumbersome procedure, difficult to operate in end-to-end architectures,

and therefore hard to update if new images are available. However, the dataset they use is

freely available [35] and is used as a baseline reference for the evaluation of our models.

Davidson et al. [38], proposed a multidimensional recurrent neural network to segment the

cones. For training, this approach requires the segmentation masks of the images. The

model combines convolutional layers with multidimensional long-short-term memory blocks,

to capture near- and far dependencies between pixels, and involve this information in the seg-

mentation task. Again, the implementation of such a model requires extra work to generate
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masks for segmentation which, as in the case of Cunefare et al. [35], is a major disadvantage

in terms of practicality.

Beyond cone counting in AOSLO images, the general task of counting objects in pictures

is recurrent in the state of the art [47, 87]. It is not only at the microscopic level that

it is necessary to count objects. It can also be necessary to count animals or people, and

many methods have been developed in the last decades to automatically perform this task

[63]. A recurrent idea is to use filters on the images to represent map densities [47]. In

this sense, an interesting approach that does not require as much pre-processing and mask

generation for the cell counting task is presented by Xie et al. [166]. They proposed a method

for counting objects in images based on the estimation of the density map. Knowing the

location (coordinates) of the objects to be counted, a density map can be generated, whose

integral matches the number of elements. Then, the model (a U-Net based architecture

[123]) is trained to generate the corresponding density map from the original image. This

technique is used to count bacteria in images of microscopic samples and is shown to be

robust and easy to implement, as it requires no pre-processing as patch extraction and no

post-processing of the results.

With this background in mind, we propose a method that builds on the idea presented by Xie

et al. [166], but enhances and adapts the segmentation model backbone, and adds a linear

correction at the top to fine-tune the estimation of the number of cones in the image. Unlike

Davidson et al. [38] and Cunefare et al.[35], there is no need for additional annotations

apart from the location of the cones, nor patch extraction, nor masks for segmentation. The

method is end-to-end trainable and can serve as a basis for other architectures.

This chapter is organized as follows: Section 3.2 presents the framework for CoDE and the

subsequent diagnosis model: CoDE-D. Section 3.3 presents the experimental results. Finally,

section 3.4 presents the conclusions of this work.

3.2. Methods

Cone counting is made based on the estimate of a density map created from the annotations

on each AOSLO image. This density map image can later be used as input to a deep

convolutional neural network (CNN) model to perform a diagnosis task. The details of each

procedure are explained below.

3.2.1. CoDE: Cone Density Estimation

The complete architecture of the proposed CoDE model used for the cone density estimation

task is shown in Figure 6-3. Inspired by the method presented by Xie et al. [166], the

model is trained to generate a density map from the original AOSLO image, using an U-

Net architecture with an Xception backbone. The integral of this density map is a first
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approximation of the cone count in the image, which is then fitted by means of linear

correction.

CoDE

Cone Density Estimation

Xception-based
U-Net

Input:
AOSLO image

256 x 256

Predicted
Density Map

Linear Correction

Integrating
the density functionPredicted

Density Map

Batch
Normalization

+
Convolutional

Layer

10483
cones/mm²

Output:
Cone Density
Estimation 

128 x 128

64 x 64

32 x 32

16 x 16

32 x 32

64 x 64

128 x 128

Downsampling

Upsampling

Figure 3-1.: CoDE model architecture for cone density estimation on split detector AOSLO

images. The original image is input into a modified Xception-based U-Net

[166, 29] to generate a density map of the cones in the original image. The

integral over this density map is linearly corrected to provide an accurate

estimation of the number of cones in the image.

Density Map Estimation

We use an Xception-based U-Net model [29] as the backbone for the density map phase.

This model consists of four blocks. The entry block comprises a 2D convolution layer with

32 filters, a batch-normalization, and a rectifier activation function. The subsequent blocks

consist of 2D separable convolution layers, each followed by batch-normalization and max-

pooling. At the lowest point of the U-Net, the feature map has a size of 16× 16× 256. Four

up-sampling blocks composed of transposed convolution layers and batch-normalization are

used to restore the corresponding density map. The kernel size in all the convolutional layers

is 3 × 3. To adapt the model to generate density maps, inspired by the implementation of
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the cell-counting U-Net presented by Xie et al. [166], a batch-normalization layer and a

single-filter convolutional layer are added on top of the model. As a result, the output of the

model is a single-channel image. This output is intended to be a density map of the cones

present in the original AOSLO image.

To create the ground truth of the density maps, we generated the corresponding density

map for each AOSLO image using the available information of the coordinates of all the

cones (see Figure 3-2). A Gaussian filter is applied to each point marked as the center of

a cone. The resulting product is a single-channel image whose integral matches the total

number of cones. We trained the model as a regressor using a Mean Squared Error (MSE)

loss function. All the implementation details are available in the Github repository [145].

Figure 3-2.: On the left: original split detector AOSLO sample. On the right: ground truth

density map. For the training process of the CoDE model, the ground truth

density map is generated by means of the known coordinates of the center

of the cones. A Gaussian filter is applied over each point, which generates

a density map whose integral matches the number of cones in the original

AOSLO image.

Linear Correction

The U-Net stage of the CoDE model is able to infer the cone density map and a proper

number on the count of the cones. The density map shows the approximate location of each

cone, and the count of the cones is the result of the sum all over the density map. While

this could be enough for the task, this estimate of the number of cones in the image can be

fine-tuned by a linear regression set on top of the model. This regression allows a correction

on the cone density estimation, especially for high-density samples.

3.2.2. CoDED: CoDE Diagnosis

We approached Stargardt disease and retinitis pigmentosa diagnosis as a multi-class classifi-

cation problem, having also a control (healthy) group. Taking advantage of the information

learned by CoDE about the cone density, the inferred density map is used as input into a

deep image classifier.
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CoDE

Input:
AOSLO image

256 x 256

Predicted
Density Map Feature Extaction Classification

Deep CNN

Global Avg
Pooling

Convolution Dense Layers

CoDED

Figure 3-3.: CoDED model architecture for disease diagnosis on AOSLO images. The den-

sity map predicted by CoDE is the input of a deep CNN model. The convolu-

tional block of the CNN works as feature extractor and the final classification

is performed by a three-layer fully-connected perceptron.

The convolutional block of the deep CNN model is used as the feature extractor. The learned

representation is provided by the last average pooling layer. These features then serve as

the input to the classification block, which consists of a multilayer perceptron whose output

is a layer with three neurons.

3.2.3. Experimental Set Up

The training process of the models follows the standard design of machine learning exper-

iments. Details on the data sets used and the hyperparameter settings for training and

evaluation metrics are presented below.

Datasets

We made experiments with two different AOSLO image datasets. The first, henceforth

referred to as Cunefare, is a publicly available baseline dataset presented by Cunefare et al.

[35] and uploaded to a Github repository [34]. This set consists of 264 split detector AOSLO

samples with annotations of the center coordinates of the cones. This set is partitioned into

184 images for training and 80 for testing, and is utilized in the experimental setup for the

cone density estimation task.

The second dataset, henceforth referred to asDubis, also consists of 264 split detector AOSLO

images. Of these, 60 samples correspond to control cases, 65 to patients with Stargardt

disease, and 139 to patients with retinitis pigmentosa. In addition to disease labeling, each

image also includes the location, as pixel coordinates, of the center of each cone present in

the image. This annotation was made by an expert in the field. For this dataset, 184 images

were used for training and validation, and 80 for testing. During the training of all models,

a validation rate of 20% is defined. This setup was used identically for both the diagnosis

task and the cone density estimation task.



3.2 Methods 35

Table 3-1.: Cunefare dataset partition for train and test [35]. This dataset is available in a

Github repository [34], and has 264 split detector AOSLO images and is used

in this work for the cone density estimation task.

Partition No. of samples

Train 184

Test 80

Table 3-2.: Dubis dataset partition for train and test. This dataset has 264 split detector

AOSLO images, labeled for three classes: normal, Stargardt disease and retinitis

pigmentosa. This dataset was used in this work for the cone density estimation

and for the disease diagnosis task.

Diagnosis Train Test

Normal 42 18

Stargardt disease 44 21

Retinitis pigmentosa 98 41

Total 184 80

The size of the images in both datasets is standardized to 256×256 pixels. Normalization of

all images is also performed for the cone density estimation task. All details of the datasets

are summarized in Table 3-1 and Table 3-2.

Cone Density Estimation

The proposed model for cone counting in AOSLO images is trained from scratch, optimizing

an MSE loss function using RMSprop. The learning rate was explored and ultimately set

at 10−3. Parameters for the per-pixel classification layer [29] were also explored, with the

number of filters set at 3 and the kernel size at 5. The final output convolutional layer for

density prediction comprises a single filter, linear activation, and orthogonal initialization,

as implemented by Xie et al. [166]. For data augmentation, vertical and horizontal flips,

random rotations, and random width and height shifts were set up as described by Voets et

al. [158].

The model presented by in [35] constitutes our baseline for cone density estimation. Results

are reproduced using the available code [34]. The method, called Adaptive Filtering and

Local Detection (AFLD), is based on a CNN trained over small patches that may or not

contain a single cone. Therefore, the inference process implies to classify all of the possible

patches, one for each pixel, so that each pixel is assigned a score related to how likely it is to

be a cone. With this, a heat map is predicted for the whole image, that need to be processed
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to locate the final predicted cone locations.

Stargardt Disease and Retinitis Pigmentosa Diagnosis

The approach to disease diagnosis is treated as a three-class classification task. For the

CoDE stage, we initialize the model parameters with those learned from the cone density

estimation task training. This implies that the classification model can leverage the combined

Cunefare and Dubis train set partitions, despite the Cunefare dataset not possessing any

disease labeling.

In the deep CNN stage, the convolutional block is taken, and the output of the average

pooling layer is set as input for a multilayer perceptron. This perceptron consists of two

dense layers with dropout regularization prior to the output layer. The first dense layer

matches the size of the average pooling of the backbone CNN, and the second layer comprises

1024 neurons. The output consists of a dense layer with three neurons. A transfer learning

procedure was undertaken for the convolutional block of the deep CNN model, utilizing the

weights learned from the training with ImageNet [125].

We explored four well-known deep CNN’s on top of CoDE for this task: Xception, ResNet,

Inception-V3 and MobileNet-V2. The reason for using these models is the good performance

they have previously shown in medical-related image analysis [82, 158]. In each case, the

training was carried out with the train partition of the Dubis dataset (see Table 3-2), opti-

mizing a categorical cross-entropy loss by means of RMSProp. Learning rate was explored

and set at 10−4. The data augmentation configuration was the same as that used for eye

fundus image analysis by Toledo et al. [144] and fully described by Krause et al. [79]. Single

CNN models (Xception, ResNet, Inception-V3 and MobileNet-V2), fine-tuned from Ima-

geNet with Dubis dataset in a similar experimental set up to the composed CoDED model,

constitute our baseline for this task.

3.3. Experimental Evaluation

All methods were implemented in Python using TensorFlow and Keras [30]. Code and results

are publicly available in a Github repository [145].

3.3.1. Cone Density Estimation

CoDE method is capable of accurately estimate the location of the cones thanks to the pre-

dicted density map given by the U-Net stage (see Figure 3-4). As explained in Section 3.2.1,

the integral on this predicted density map is a first approximation of the final count of the

number of cones, which is fine-tuned by means of a final linear correction. As each sample

image constitutes a square of 100µm on each side, the calculation of cone density is easy

and straightforward after counting.
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Figure 3-4.: On the left: original split detector AOSLO image sample (from the Dubis test

partition). Center: ground truth density map indicating the location of each

cone according to the manual annotation. On the right: predicted density map

given by CoDE.

Several experimental procedures were performed using the different train partitions of each

dataset (see Table 3-1 and Table 3-2) and a joint dataset. To compare directly with our

baseline, we report the performance of the models using Bland-Altman plots. A Bland-

Altman plot allows one to analyze the level of agreement of two methods for the measurement

of a quantity and, unlike the mean square error or mean absolute error, it gives an idea of

whether the model is over- or underestimating the expected outcome. By setting the manual

measurement of the cones as ground truth, the plot gives information on the difference

between the measurement given by the method and the ground truth, with reference to the

magnitude of these measurements. Training with Cunefare train partition only, allows us

to directly compare the performance of the proposed CoDE method. The results on the

Cunefare test set are shown in Figure 3-5. Compared with our baseline AFLD [35], CoDE

has a mean difference closer to zero, indicating a higher concordance level compared to the

gold standard.

By training the CoDE model with joint training partitions of both Cunefare and Dubis

datasets, and evaluating on the Cunefare test set, our method reports a mean difference in

density estimation of -159 cells per square millimeter, and a 95% confidence interval between

-1883.27 and 1564.4 cells per square millimeter. This outperforms any previous result reached

for this task (see Figure 3-6). For the same model evaluated on Dubis test set there is a

mean difference of 306.82 cells per square millimeter, with a 95% confidence interval between

-2561.73 and 3175.39 cells per square millimeter (see Figure 3-7).

3.3.2. Stargardt Disease and Retinitis Pigmentosa Diagnosis

Classification results of CoDED using Xception, ResNet, Inception-V3 and MobileNet-V2 on

Dubis test set for Stargardt disease, retinitis pigmentosa, and control subjects are reported in

Table 3-3. For each model, 20 independent trials were performed. The mean and standard

deviation of the classification metrics calculated in a weighted average manner are reported.

Confusion matrix on the test set for the best model, reached with the CoDED-Inception-V3,
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Figure 3-5.: Bland-Altman plots comparing the performance of cone density estimation at

Cunefare test set. This is for a model trained with Cunefare train partition

set only. The figure on the left shows the results for the baseline AFLD [35].

The figure on the right shows the results for the proposed CoDE. Note that

although CoDE measurements presents a slightly higher standard deviation

compared with AFLD, the mean difference of CoDE is much closer to zero.

Figure 3-6.: Bland-Altman plot on Cunefare test set for the proposed CoDE method trained

with a joint Cunefare and Dubis train partition set. Standard deviation is lower

and the mean difference closer to zero, when compared with AFLD results.
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Figure 3-7.: Bland-Altman plot on Dubis test set for the proposed CoDE method trained

with a joint Cunefare and Dubis train partition set.

is shown in Figure 3-8.

Figure 3-8.: Confusion matrix for the best model of CoDED-Inception-V3 on the Dubis

test set. Control refers to healthy samples, STGD stands for Stargardt disease

and RP for retinitis pigmentosa.

3.3.3. Discussion

From the results in Table 3-3, we can see that CoDED-Inception-V3 is the model with

the best performance. Generally, for all the deep CNN models that were tested, the mean

performance improved when the deep CNN was applied on top of the CoDE model. The

best overall model was found to be CoDED-Inception-V3, which achieved performance in

the Dubis test set of 84% for accuracy, 84% for weighted average F1-score, 84% for weighted

precision, and 84% for weighted recall (see Figure 3-8).

Overall, the most remarkable aspect of these results is the fact that it is indeed possible to

make a classification of a disease from a small sample of the cellular pattern (such as the
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Table 3-3.: Classification performance on Dubis test set of the combined CoDE+DeepCNN

models explored for the Stargardt disease and retinitis pigmentosa diagnosis.

The mean and standard deviation over 20 trials are reported. Multi-class pre-

cision, recall, and F1 score are computed in a manner that involves a weighted

average.

Model Accuracy Precision Recall F1 Score

Xception 0.681±0.04 0.706±0.03 0.681±0.04 0.652±0.06

ResNet 0.510±0.01 0.292±0.04 0.510±0.01 0.3615±0.02

Inception-V3 0.726±0.04 0.762±0.03 0.726±0.04 0.730±0.03

MobileNet-V2 0.706±0.04 0.729±0.04 0.706±0.04 0.708±0.03

CoDED-Xception 0.737±0.03 0.766±0.03 0.737±0.03 0.738±0.03

CoDED-ResNet 0.711±0.04 0.767±0.03 0.711±0.04 0.712±0.04

CoDED-Inception-V3 0.768±0.05 0.794±0.04 0.768±0.05 0.770±0.04

CoDED-MobileNet-V2 0.695±0.04 0.754±0.04 0.695±0.04 0.702±0.04

given by an AOSLO image). Deep learning models can learn to distinguish between different

lesion patterns to discriminate between one disease and another, and the performance of the

model is boosted when the cellular pattern is easily distinguishable as in the density maps

generated by CoDE.

3.4. Conclusions

In this chapter we presented CoDE, a method for automatic cone density estimation on split

detector AOSLO images. While machine learning techniques have previously been applied

to cone density estimation, this proposal demonstrates the possibility of implementing this

task with a model that does not necessitate exhaustive patch-based analysis or mask-based

segmentation. This simplification of the method’s implementation eliminates the need for

substantial pre-processing effort and the generation of additional annotations beyond the

cone coordinates. Moreover, this method is capable of generating estimates of cone locations,

and, with the assistance of a regressor, it can automatically count the cones present in an

image to provide an accurate density estimate. Evaluations on two different datasets lead to

the conclusion that this method demonstrates robustness and good generalization capacity,

making it directly competitive with state-of-the-art models. Additionally, the lack of a need

for post-processing, as required in previous approaches, enables end-to-end training and

produces a model that can be effortlessly updated if additional samples become available.

Based on CoDe, we also presented CoDED, a deep CNN-based approach for the automatic

classification of Stargardt disease and retinitis pigmentosa cases from split detector AOSLO

retinal images. The use of transfer learning techniques on different deep CNNs, coupled
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with the advantage of the pre-trained CoDE (which uses a larger dataset than the disease-

labeled intended for this task), made it possible to demonstrate the feasibility of classifying

Stargardt disease and retinitis pigmentosa in relation to control patients within a single

model. The single deep CNN models performed well, however, it was demonstrated that

the classification performance was enhanced when executed via the density maps inferred by

CoDE. Thus, it is implied that the CoDED model leverages the explicit cone pattern, which

is more distinguishable in the density maps than in the original AOSLO images.

Apart from the fact that the classification results are good and that CoDED-Inception-V3

was shown to have the best performance, the most important conclusion is that a small

sample of the cellular pattern of the macular region of the retina is sufficient for these com-

putational models to be considered as a reliable tool to assist medical staff in the diagnostic

process of these diseases. This can help to streamline the usual diagnostic process, which

requires numerous tests and the time and knowledge of specialised ophthalmological staff,

which in turn can lead to greater coverage of the population at lower cost. Therefore, these

results open the door to further research and development of methods to improve these di-

agnostic support tools. In the long term, the scientific and social benefits are potentially

great.

Overall, this methods show the feasibility of deep machine learning models to speed up the

analysis of split-detector AOSLO images, thus promoting and facilitating the development

and use of this type of image in the research and treatment of genetic retinal pathologies.



4. Deep Probabilistic Regression for

Diabetic Retinopathy Grading

This chapter begins to establish how to use ordinal regression to analyse eye fundus images.

As mentioned earlier, the diagnosis of diabetic retinopathy is associated with a 5-level gra-

dation, which can then be simplified into two categories for treatment purposes. Here we

propose to use a hybrid model based on deep learning and Gaussian processes. A Gaussian

process is a probabilistic regression model. This hybrid model allows, among other things,

to combine the representational power of deep learning with the ability to generalise from

small data sets of Gaussian process models, and also to quantify the uncertainty of the pre-

dictions. The results show that quantifying the uncertainty in the predictions improves the

interpretability of the method as a diagnostic support tool.

The work in this chapter as been published as:

Toledo-Cortés S., de la Pava M., Perdomo O., González F.A. Hybrid Deep Learning

Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In:

Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol

12069. Springer, Cham., 2020, S. 206–215 [144].

4.1. Introduction

Diabetic Retinopathy (DR) is a consequence of Diabetes Mellitus that manifests itself in the

alteration of vascular tissue. When an alteration in the correct blood supply occurs, lesions

such as microaneurysms, hemorrhages and exudates appear [162]. These lesions can be iden-

tified in eye fundus images, one of the fastest and least invasive methods for DR diagnosing.

Although early detection and monitoring are crucial to prevent progression and loss of vision

[161], in developing countries approximately 40% of patients are not diagnosed due to lack of

access to the medical equipment and specialist, which puts patients of productive age at risk

of visual impairment [162, 170]. Therefore, to facilitate access to rapid diagnosis and speed

up the work of professionals, many efforts have been made in the development of machine

learning models focused on the analysis of eye fundus images for automatic DR detection.

For medical image analysis, deep Convolutional Neural Networks represent the state of the

art. These methods work by means of filters that go through the image and exploit the
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natural structure of the data, being able to detect increasingly complex patterns. However,

the success of these deep learning models depends on the availability of very large volumes

of data, and this is not always the case for medical image datasets. For instance, one of the

largest public-available image dataset for DR detection is EyePACS [40], which has 35126

samples for training. For this reason, training a deep learning model for this problem from

scratch is not always feasible [70]. Instead, fine-tuning of pretrained models is preferred, as

it allows the models to refine a general knowledge for an specific tasks. However, the number

of specific sample images is not always enough to make a tuning that produces good final

performances [70].

Classical machine learning methods such as Gaussian Processes (GP), on the other hand,

were originally designed to work well with small data sets [44]. They have different ad-

vantages over deep neural network models, as lower number of parameters to train, convex

optimization, modularity in model design, the possibility to involve domain knowledge, and

in the case of Bayesian approaches, they allow the calculation of prediction uncertainty [163].

The latter would be useful in medical applications, as it gives to the final user an indication

of the quality of the prediction [86].

This work presents and evaluates a hybrid deep learning-Gaussian process model for the

diagnosis of DR, and prediction uncertainty quantification. Taking advantage of the rep-

resentational power of deep learning, features were extracted using an Inception-V3 model,

fine-tuned with EyePACS dataset. With these features we proceed to train a GP regression

for DR grading. Our framework shows that:

1. The performance of the proposed hybrid model trained as a regressor for the DR grade,

allows it to improve binary classification results when compared with the single deep

learning approach.

2. Gaussian processes can improve the performance of deep learning methods by leverag-

ing their ability to learn good image representations, when applied for small datasets

analysis.

3. The integration of GP endows the method with the ability to quantify the uncertainty

in the predictions. This improves the usability of the method as a diagnostic support

tool. Furthermore the experimental results show that the predictions uncertainty is

higher for false negatives and false positives than for true positives and true negatives

respectively. This is a high valued skill in computational medical applications.

Many approaches have been proposed for the DR binary detection, most of them based

in deep neural networks [111]. Some of them combine deep models with metric learning

techniques, as in [174], where an Inception-V3 is trained and embedded into siamese-like

blocks. The final DR binary or grade prediction is given by a fully-connected layer. In

[49], a customized deep convolutional neural network to extract features is presented. The
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features and multiple metadata related to the original fundus image are used to trained a

gradient boosting classifier to perform the DR prediction. In [88] an Inception-V3 model is

once again fine-tuned using a private set of eye fundus images, but not with binary labels,

but with five DR grade labels. The results are reported using a subset of the Messidor-2

dataset [2, 39]. This makes performance comparison impossible with many other results,

including those presented in this chapter. Better results were reported by Gulshan et al. in

[56], where an ensemble of ten Inception-V3 models, pretrained on ImageNet, are fine-tuned

on a non-public eye fundus image dataset. The final classification is calculated as the linear

average over the predictions of the ensemble. Results on Messidor-2 were reported, with

a remarkable 99% AUC score. In [157], Voets et al. attempted to reproduce the results

presented in [56], but it was not possible since the original study used non-public datasets

for training. However, Voets et al. published the source code and models, and details on

training procedure and hyperparameters are published in [157] and [79].

In relation to convolutional neural networks uncertainty estimation using GP, some work

has been done specially outside the DR automatic detection context, as in [167], where a

framework is developed to estimate uncertainty in any pretrained standard neural network,

by modelling the prediction residuals with a GP. This framework was applied to the IMDB

dataset, for age estimation based in face images. Also in [16], a GP on the top of a neural

networks is end-to-end trained, which makes the model much more robust to adversarial

examples. This model was used for classification in the MNIST and CIFAR-10 datasets. To

our knowledge, this is the first proposal that implements a GP to quantify the uncertainty

of a model predictions of DR diagnosis.

The rest of the chapter is organized as follows: section 4.2 introduces the theoretical frame-

work for the method. Section 4.3 presents the experimental set up and results. Finally, in

Section 4.4 the discussion of the results and conclusions are presented.

4.2. Method: Deep Learning Gaussian Process For

Diabetic Retinopathy Diagnosis (DLGP-DR)

The overall strategy of the proposed Deep Learning Gaussian Process For Diabetic Retinopa-

thy grade estimation (DLGP-DR) method comprises three phases, and is shown in Figure 4-

1. The first phase is a pre-processing stage, described in [157], which is applied to all eye

fundus image datasets used in this work. This pre-processing eliminates the very dark images

where the circular region of interest is not identified, eliminates the excess of black margin,

and resizes the images to 299×299 pixels. The second phase is a feature extraction. An

Inception-V3 model, trained with ImageNet and fine-tuned with EyePACS dataset is used

as feature extractor. Each sample is then represented by a 2048-dimensional vector. The

third and final task is the DR diagnosis, which is performed by a GP regressor.
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Figure 4-1.: Proposed DLGP-DR model. Fine-tuned Inception-V3 is used as feature ex-

tractor. The extracted features are then used to train a Gaussian process.

4.2.1. Feature Extraction

Many previous works have used deep learning models for the diagnostic of DR. Recently,

Voets et al. [157] attempted to replicate the results published in [56], by fine-tuning an

assembly of ten pretrained Inception-V3 networks. While Voets et al. were not able to

achieve the same results reported in [56], most of the implementation details, as well as the

specific partitioning for the training and test sets are publicly accessible, and were used in

this study in the fine tuning of an Inception-V3 model. Once trained, the feature extraction

is achieved by defining the global average pooling layer of the network as the output of

the model, and use it to predict all the images in the datasets. Thus, each image will be

represented by 2048 features which are used to train and evaluate the GP model.

4.2.2. Gaussian Processes

Gaussian processes are a Bayesian machine learning regression approach that are able to

produce, in addition to the predictions, a value of uncertainty about them [44]. The method

requires as input a covariance given by a kernel matrix. The kernel matrix would be the gram

matrix computed over the training set with a Radial Basis Function (RBF). This RBF kernel

depends on two parameters which will be learned during the training process. We performed

a Gaussian process regression, where the labels are the five grades of retinopathy present

in the EyePACS dataset. From the prior, the GP calculates the probability distribution of

all the functions that fit the data, adjusting the prior from the evidence, and optimizing

the kernel parameters. Predictions are obtained by marginalizing the final learned Gaussian

distribution, which in turn yields another normal distribution, whose mean is the value of the

prediction, and its standard deviation gives a measure of the uncertainty of the prediction.

Thus, an optimized metric (attached to a RBF similarity measure) is learned from the data,

used to estimate the DR grade.

This GP can be adapted to do binary classification. One simple way to do this is defining

a linear threshold in the prediction regression results. The standard way however, consist

in training a GP with binary labels and filtering the output of the regression by a sigmoid

function. This results in a Gaussian Process Classifier (GPC). In any case, the predictions
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Table 4-1.: Details of Messidor-2 dataset used for testing. Class 0 correspond to non-

referable cases.

Class Test Samples

0 1368

1 380

Table 4-2.: Details of the subset and final partition of the EyePACS dataset used for training

and testing. This is the same partition used in [157]. Grades 0 and 1 correspond

to non-referable patients, while grades 2, 3, and 4 correspond to referable cases.

Grade Train Samples Test Samples

0 37209 7407

1 3479 689

2 12873 0

3 2046 0

4 1220 694

of a GPC are not longer subject to a normal distribution, and the uncertainty can not be

measured. Therefore, the GPC will not take part in this study.

4.3. Experimental Evaluation

4.3.1. Datasets

Experiments were performed with two eye fundus image datasets: EyePACS and Messidor-2.

EyePACS comes with labels for five grades of DR: grade 0 means no DR, 1, 2, and 3 means

non-proliferative mild, moderate and severe DR, while grade 4 means proliferative DR. For

the binary classification task, according to the International Clinical Diabetic Retinopathy

Scale [4], grades 0 and 1 corresponds to non-referable DR, while grades 2, 3, and 4 cor-

respond to referable DR. In order to achieve comparable results with [157], we took the

same EyePACS partition used for training and testing (see Table 6-4). This partition was

constructed only to ensure that the proportion of healthy and sick examples in training and

testing was the same as that reported in [56]. EyePACS train set is used for training and

validation of the Inception-V3 model. Then, the feature extraction described in Section 3 is

applied. The extracted features are used for training the DLGP-DR model. The evaluation

is performed on the EyePACS test set and on the Messidor-2, which is a standard dataset

used to compare performance results in DR diagnosis task. Datasets details are described

in Table 6-4 and in Table 6-2.
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4.3.2. Experimental Setup

Fine-tuning was made to an Inception-V3 network, pretrained on ImageNet and available in

Keras [139]. The model was trained for binary DR classification task. The data augmentation

configuration for horizontal reflection, brightness, saturation, hue, and contrast changes,

is described in [79], and it is the same used in [157] and in [56]. The top layer of the

Inception-V3 model is removed and replaced by two dense layers of 2048 and 1 neurons.

BinaryCrossentropy was used as loss function and RMSprop as optimizer, with a learning

rate of 10−6 and a decay of 4×10−5. The performance of the model is validated by measuring

the AUC in a validation set consisting of 20% of the training set.

Once the model is trained, the average pooling layer from the Inception-V3 model is used as

output for feature extraction. The extracted features from the Inception-V3 are normalized

and used to train a GP regressor over the five DR grade labels, it means, to perform the DR

grading task. RBF kernel plus a white kernel were used as prior for the Gaussian process,

using the Scikit-Learn implementation in Python. RBF length scale parameter was initiated

at 1.0, with bounds at (10−2, 103). White noise level parameter was started at 10−5, with

bounds at (10−10, 10). The output of the DLGP-DR is a continuous number indicating the

DR grade.

Two baselines were defined to compare the DLGP-DR performance. Results reported by

Voets es al. [157] constitute the first baseline of this study. The second baseline is an

extension of the Inception-V3 model with two dense layers trained on the same feature test

as the Gaussian process, which is called as NN-model hereafter.

4.3.3. EyePACS results

DLGP-DR is evaluated in the EyePACS test partition. The results are binarized using a

threshold of 1.5 (which is coherent with referable DR detection), and compared with baselines

in Table 4-3. In addition, although uncertainty estimation is not used to define or modify

the prediction, DLGP-DR uncertainty is analysed for false positives (FP), false negatives

(FN), true positives (TP) and true negatives (TN). As mentioned before, referable diabetic

retinopathy is defined as the presence of moderate, severe and proliferative DR. So, the false

negatives are calculated as the patients that belong to grade 4 but are classified as grades

0 and 1. The false positives are calculated as the patients belonging to grades 0 and 1 but

classified in grade 4. The results are shown in Figure. 4-2 and Figure. 4-3.

4.3.4. Messidor-2 results

For Messidor-2 dataset, the predictions given by DLGP-DR are binarized using athe same

threshold of 1.5 used for EyePACS. Based on the results of the uncertainty measured in the

EyePACS test dataset, those samples predicted negative for which the standard deviation
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Figure 4-2.: Standard deviation for samples predicted as negative (non-referable) instances

by DLGP-DR. FN: false negatives, TN: true negatives.
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Figure 4-3.: Standard deviation for samples predicted as positive (referable) instances by

DLGP-DR. FP: false positives, TP: true positives.



4.3 Experimental Evaluation 49

Table 4-3.: Comparison performance of DLGP-DR for binary classification in EyePACS test

partition used in [157]. As it is not the standard EyePACS test set, comparison

is not feasible with other similar studies.

Description Sensitivity Specificity AUC

Voets 2019 [157] 0.906 0.847 0.951

NN-model 0.9207 0.85 0.9551

DLGP-DR 0.9323 0.9173 0.9769

Table 4-4.: Comparison performance of DLGP-DR for binary classification in Messidor-

2. Referenced results from [157] were directly extracted from the respective

documents.

Description Sensitivity Specificity AUC

Voets 2019 [157] 0.818 0.712 0.853

NN-model 0.7368 0.8581 0.8753

DLGP-DR 0.7237 0.8625 0.8787

was higher than 0.84, were changed to positive. The results are reported and compared with

the baselines in the Table 4-4.

4.3.5. Discussion

Results reported in Table 4-3 shows that DLGP-DR outperforms specificity and AUC score

of the NN-model and outperforms all the metrics reported by Voets et al. [157]. As ob-

served in Table 4-4, DLGP-DR outperforms both baselines for specificity and AUC scores.

Although Gulshan et al. have reported 0.99 for AUC score in Messidor-2 [56], as Voets et

al. comments in [157], the gap in the results may be due to the fact that the training in that

study was made with other publicly available images and with a different gradation made by

ophthalmologists. Further Overall, this shows that the global performance of the DLGP-DR

exceeds that of a neural network-based classifier. In addition, in Figure 4-2 and Figure 4-3

the box-plot shows that the standard deviation is higher for false positives and false nega-

tives. This means, that the DLGP-DR model has bigger uncertainties for wrong classified

patients than for well classified. which provides the user a tool to identify wrong predictions.

This behavior is especially visible for false negatives, which is the most dangerous mistake

in medical applications, because a ill patient can leave out without a needed treatment.
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4.4. Conclusions

In this chapter we took a deep learning model fine-tuned on the EyePACS dataset as feature

extractor. The final task of DR classification and grading was carried out by means of a

Gaussian process. For DR binary classification, the proposed DLGP-DR model reached

better results than the original deep learning model. We also showed that a fine DR grade

classification improve the binary classification performance of the original model.

Also, the DLGP-DR enables an uncertainty analysis. This analysis showed that the model

could allow the identification of both, false negatives and false positives. The former are

important due to the high cost of classifying a patient as healthy when it is not, and the

later because they increase the costs of health care. The comparison between the Gaussian

process and a neural network classifier for DR grades, showed once again that Gaussian

processes are better tools for the analysis of medical images, for which datasets are usually

far small to be analyzed entirely with deep learning techniques.

Overall, we demonstrate that the integration of deep learning and classical machine learning

techniques is highly feasible in applications with small datasets, taking advantage of the

representational power of deep learning and the theoretical robustness of classical methods.



Part II.

Quantum Measurement-based Models



5. Quantum Measurements

From this point on, the methods presented in this thesis are based on quantum-inspired

models. The quantum domain has increasingly intersected with the field of machine learn-

ing, giving rise to a new area of research that seeks to exploit the principles of quantum

mechanics to develop new methods for learning from data. In this chapter, we will explore

this convergence, focusing on the concept of quantum measurements and their applications

in machine learning.

Some parts of this chapter have been published as:

Gonzalez, F.A., Gallego, A., Toledo-Cortés S., Vargas-Calderon, V. Learning with density

matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23 [54].

5.1. Introduction

Quantum machine learning (QML) refers to a wide research area that combines the prin-

ciples of quantum mechanics and machine learning, resulting in several approaches [176].

The various related developments can be categorised according to the classical or quantum

nature of the data and the classical or quantum nature of the computing systems involved.

Much work has been done on analysing classical data on quantum computers, trying to show

the processing speed of these devices. The area that analyses classical data on classical de-

vices, borrowing mathematical structures from quantum theory to develop machine learning

methods, is the area that interests us.

The model presented in Classification with Quantum Measurements [54], namely Quantum

Measurement Classification (QMC) is precisely a quantum-inspired approach with classical

implementation, and offers a novel method for supervised machine learning based on the

mathematical formalism that underpins quantum mechanics. QMC uses projective quantum

measurement to construct a prediction function, where the relationship between input and

output variables is represented as the state of a bipartite quantum system. The state is

estimated from training samples by means of a density matrix, providing an innovative

framework for performing classification tasks.

A density matrix, also known as a density operator, is a matrix used in quantum mechanics

to describe the statistical state of a quantum system [53]. In other words, it provides a way

to describe the state of a quantum system that is in a statistical ensemble, a collection of
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quantum systems prepared in a specific way, which may not be perfectly known or perfectly

controlled. This concept is particularly useful when dealing with mixed states as opposed to

pure states in quantum mechanics.

A pure state is a state with complete knowledge, described by a vector in a Hilbert space. For

instance, the state of a quantum bit (or qubit, the fundamental unit of quantum information)

can be a state |0⟩ or |1⟩ or a superposition of both. However, in many cases, we don’t have

complete knowledge of a quantum state or we have a system that is in a statistical mixture

of states, also known as a mixed state. The density matrix is a mathematical tool that allows

us to handle these mixed states. While the formalism will be dealt with in the next sections,

we can proceed as follows: the density matrix ρ for a mixed state is defined as

ρ =
∑
i

pi|ψi⟩⟨ψi|, (5-1)

where |ψi⟩ represents the states of the system and pi are the probabilities for each state. The

diagonal elements of the density matrix give the probability of the outcome of a measurement,

and the off-diagonal elements give information about the coherence between different states.

One of the key features of a density matrix is that it allows us to represent both the quantum

and classical uncertainty of quantum systems and to express different statistical operations

such as measurement, system combination and expectations as linear algebra operations.

This makes it a powerful tool in quantum mechanics and quantum computing, because it

allows these models to be implemented in existing machine learning frameworks that can

take advantage of common computing resources, such as GPU’s.

Building a density matrix that aggregates the information from the data is then the basis of

QMC. This involves several issues. First, each sample in the database must be represented in

a quantum form. In practical terms, this means that the norm of the representation vector

is equal to 1. With this representation, the mixed state of the system is constructed as the

average of the individual states, and this in itself constitutes the training of the QMC model

[54]. This means that no parameter optimisation is required. The inference task is done

directly by projecting the operator defining the density matrix onto the space associated

with the labels, and this works very well for simple tasks.

However, using this approach as a building block within other machine learning models may

involve optimization processes. In Learning with Density Matrices and Random Features

[54], the QMC framework is extrapolated and the idea of using density matrices to describe

the statistical state of a quantum system is generalised, making the density matrix a train-

able object as well. An optimization is then performed by means of gradient descent. While

working with a matrix can lead to quadratic memory consumption, the Schmidt decompo-

sition [80] allows to optimise the calculation process by allowing the density matrix to be

implicitly manipulated by a number of fundamental components. This approach effectively

uses the powerful formalism of density matrices to represent both quantum and classical

uncertainties of quantum systems, and to express statistical operations such as measure-

ment, system combination and expectations as linear algebraic operations. This allows not
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only classification models, but also density estimation and regression models, highlighting

the versatility and power of density matrices in dealing with quantum systems, and their

potential application to machine learning tasks.

The methods proposed in [54] use Random Fourier Features (RFF) [117] as the quantum

map, given the aforementioned need to encode the data as a quantum state. While there

are several options for this quantum mapping, the RFF proved to be an efficient mapping

mechanism. However, this encoding can be implicit in the inference process, and ultimately

everything can be posed in terms of inner products of the representations, so kernel functions

can be applied. This then introduces Quantum Kernel Mixtures [52]. This mechanism

provides an effective representation of joint probability distributions of both continuous and

discrete random variables, and facilitates the construction of differentiable models for density

estimation, inference, and sampling. The method can be integrated into end-to-end deep

neural models and provides a differentiable, compositional and reversible inference procedure.

Taken together, these developments highlight the exciting potential of quantum measure-

ments in machine learning. This chapter covers the entire description of methods based on

quantum measurements, step by step. First, we give a definition of what density matrices

are, how they are constructed, and how they are used for inference processes. We will then

see how the Schmidt decomposition allows us to simplify the computations to ultimately

express the entire information flow in terms of kernel functions and how this allows us to

build a highly versatile, modular processing layer that can be integrated into any gradient

descent framework.

5.2. Density Matrix

The forecoming models assume that each sample in a data set corresponds to the state of

quantum systems in an ensamble. This implies several things. First, that each sample of

the data set must be represented by a vector ψ ∈ H such that ||ψ|| = 1 and H is a Hilbert

space. Using Dirac’s notation [50], we say that |ψ⟩ belongs to the space H and that ⟨ψ| is
the corresponding element in the dual space H∗. It follows that ⟨ϕ|ψ⟩ corresponds to the

inner product of the vectors ϕ and ψ, while |ϕ⟩⟨ψ| corresponds to the outer product. Now,

let’s define what a density matrix is.

Definition 1 (Density Matrix) A density matrix associated with a system is a positive

semi-definite Hermitian operator that has a trace value of one and operates on the Hilbert

space of the system.

Given the above, and given an ensamble of quantum systems represented by {|ψi⟩}ni=1, the

quantum state of that ensamble can be represented by a density matrix defined by

ρ =
n∑

i=1

pi|ψi⟩ ⟨ψi|, (5-2)
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in what is known as a mixed state. Here, pi is the probability associated to |ψi⟩, therefore
we must have

∑n
i=1 pi = 1. The matrix ρ is an object that describes everything that can be

physically measured about the set {|ψi⟩}ni=1.

Now, given a dataset {(xi, yi);xi ∈ X, yi ∈ Y }ni=1 and the corresponding quantum feature

maps

ψX : X → HX x→ |ψX (x)⟩, ψY : Y → HY y → |ψY(y)⟩, (5-3)

each sample (x, y) of the dataset must be represented as a composition of two parts: a

representation |ψX ⟩ ∈ HX and a representation |ψY⟩ ∈ HY . Then a bipartite system can

be constructed, where the representation space is HXY := HX ⊗ HY , and each sample of

the dataset is represented by means of |ψi⟩ := |ψi
X ⟩ ⊗ |ψi

Y⟩, which leads to the next density

matrix:

ρXY =
n∑

i=1

pi|ψi
X ⟩ ⊗ |ψi

Y⟩⟨ψi
X | ⊗ ⟨ψi

Y |. (5-4)

We will say that ρXY describes the quantum state of the system as defined by the data set.

5.3. Quantum Measurements

Given the Eq. 5-4, the question arises on how to use ρXY to make inference or, in other words,

how to make measurements on the system ρXY . A quantum measurement is the operation

that allow us to make inference over new data samples. For this we require first a measure-

ment operator to act over the system ρXY . To understand how we define the measurement

operator and how we manipulate it, let’s recall the Born rule.

Born rule The probability of |ϕ⟩ in a system represented by the state |ψ⟩ is given by

p(ϕ|ψ) = |⟨ϕ|ψ⟩|2.

Born rule can be extended to a mixed state ρ:

p(ϕ|ρ) = Tr(|ϕ⟩⟨ϕ|ρ) = ⟨ϕ|ρ|ϕ⟩. (5-5)

Then, we can apply this to the system ρXY . Let’s start by explaining what a measuring

operator is.

Definition 2 (Measurement Operator) A measurement operator is a matrix M ∈ Rn×n

such that M †M = I, where M † is the conjugate transpose of M .

Then, the probability of measuring M in the system ρXY is given by

p(M |ρXY) = Tr(MM †ρXY), (5-6)



56 5 Quantum Measurements

QFM Quantum
Measurement

Partial
Trace

Figure 5-1.: QMC model. The inference process for a new sample x∗ consists of first trans-

forming it with a quantum feature map (QMF) ψX and then performing the

measurement and partial trace to obtain ρY .

and the resulting status after the measurement is

ρ′XY =
M †ρXYM

Tr(M †ρXYM)
. (5-7)

The partial trace of ρ′XY with respect to the space HX corresponds to the reduced state of

ρ′ in HY :

ρY = TrX [ρ
′
XY ]. (5-8)

This procedure is known as the collapse of the wave function and is a projection of the system

defined by ρXY onto a direction of space HX defined by the operator M . More precisely,

given a new sample |ψ∗
X ⟩ ∈ HX on which one wants to calculate its counterpart in HY , the

correspondent measurement operator M is constructed as

M = |ψ∗
X ⟩⟨ψ∗

X | ⊗ IdHY , (5-9)

where IdHY is de identity operation in HY . That is, the operator M is constructed in such

a way that it contains information about the state of the sample in the space HX , and sum-

marises the uncertainty about the state in HY through IdHY .

5.3.1. Quantum Measurement Classification (QMC)

In short, given a dataset {(xi, yi);xi ∈ X, yi ∈ Y }ni=1 and the quantum feature maps ψX and

ψY , Quantum Measurement Classification or QMC (see Figure 5-1) is a model for categorical

classification that works by constructing ρXY as defined in Eq. 5-4. This simple computation

is the training. Then, according to Eq. 5-7 to Eq. 5-9, the inference process for a new sample

x∗ results in a density matrix ρY , such that ρYrr corresponds to p(Y = r|x∗, ρXY).

5.3.2. Density Matrix Decomposition

A density matrix ρ representing a mixed state is susceptible to efficient optimization. A

gradient-based optimization is allowed by the Schmidt decomposition of the density matrix.
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Proposition 1 (Schmidt Decomposition) Suppose HX and HY are Hilbert spaces of di-

mensions n and m respectively, with n ≥ m. Given any |ψ⟩ belonging to HXY , we can find

orthonormal sets {u1, . . . , um} from HX and {v1, . . . , vm} from HY such that we can repre-

sent |ψ⟩ as
∑m

i=1 αiui ⊗ vi, where each αi is a non-negative real number or zero, and these

αi’s are unique modulo permutations.

In particular for our purpose, this decomposition allows us to approximate ρXY by means of

a set of scalars βi and vectors |vi⟩:

ρXY ≈
m∑
i=1

βi|vi⟩ ⟨vi|, (5-10)

in which the number of components of the decomposition, m, becomes an hyper-parameter

of the model and {βi, |vi⟩}mi=1 are learnable parameters such that βi ∈ R and vi ∈ HXY .

Analogously, ρY can be expressed in a decomposed form as

ρY ≈
m∑
i=1

γi|v̂i⟩ ⟨v̂i|, (5-11)

where γi ∈ R and v̂i ∈ HY . The important thing about this is that it is possible to make

some sort of change of basis for the representation of the density matrices, and then it is

possible to optimize this basis, rather than optimizing the density matrix directly. According

to [52], the next proposition states the way to perform the quantum measurement when using

decomposed matrices:

Proposition 2 Given a dataset {(xi, yi);xi ∈ X, yi ∈ Y }ni=1, some quantum feature maps

ψX : X → HX and ψY : Y → HY , and given the density matrix

ρXY =
m∑
i=1

βi|ψX (xi)⟩ ⊗ |ψY(yi)⟩⟨ψX (xi)| ⊗ ⟨ψY(yi)|, (5-12)

and a new sample x∗ ∈ X, then p(y|x∗, ρXY) can be calculated as

p(y|x∗, ρXY) = ρY =
m∑
i=1

γi|ψY(yi)⟩⟨ψY(yi)|, (5-13)

where

γi =
βi⟨ψX (x

∗), ψX (xi)⟩2∑m
j=1 βj⟨ψX (x∗), ψX (xj)⟩2

. (5-14)

This opens the way for using quantum measurements in a modular way within deep learning-

based models.
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5.4. Quantum Maps

Given the need for quantum maps, there are a variety of options for features and labels. For

example, one-hot encoding is a natural representation for the labels. A softmax encoding

is also proposed in [53]. On the other hand, for the features, given that the feature space

induced by a kernel function is a Hilbert space, any quantum feature map should implicitly

define a kernel function. In this scenario, the Random Fourier Features (RFF) [118] emerges

as a way to approximate a quantum feature map from a kernel function.

5.4.1. Kernel Functions

Kernel functions are maps that allow an implicit representation of information in high-

dimensional spaces. Kernel-based methods rely on the transformation of data from its

original space X to a new space H (called Reproducing Kernel Hilbert Space or RKHS)

where the task (either classification, regression, clustering, etc) can be done linearly. Lets

call ϕ the function that is responsible for the transformation, ϕ : X → H. Depending on

the specific kernel, H might be infinite-dimensional, so the computations can not be done

explicitly in H; they must be done implicitly. This is when the kernel takes importance. A

kernel function associated with ϕ and H is is a finitely positive semi-definite function such

that for any x1, x2 ∈ X

K(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩H. (5-15)

The kernel function is a shortcut to work in the feature space H without knowing explicitly

the data representation in it. This is what is called the Kernel Trick [44]. The kernel gives

information of the metric, and as the metric characterizes the space, just with the pairwise

interaction of the elements you can have a complete characterization of what happens in H.

In conclusion, kernel functions are attractive and useful tools for transforming data from its

original representation space to more convenient spaces. Any kernel function k such that

k(x, x) = 1 implicitly defines a quantum feature mapping. However, as this mapping ϕ is

implicit, we cannot use it directly in Eq. 5-14. This is where random Fourier features become

important.

5.4.2. Random Fourier Features

The Random Fourier Features (RFF) is a method to create a feature map of the data

ϕrff(x) : X ⊂ Rn → RD in which the dot product of the samples in the RD space approximates

a shift invariant kernel k. A shift invariant kernel is such that k(x1 − x2) = k(x2 − x1). The

method works by sampling i.i.d. w1, · · · , wD ∈ Rn from a probability distribution p(w) given
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by the Fourier transform of k(x1 − x2), and sampling i.i.d. b1, · · · , bD ∈ R from a uniform

distribution in [0, 2π].

In our context, the shift invariant kernel is the Radial Basis Function (RBF) or Gaussian

kernel given by

krbf(x1, x2) = e−
1

2σ2 ∥x1−x2∥2 , (5-16)

where σ and the number D of RFF components would become hyper-parameters of the final

models.

5.5. Quantum Measurement Ordinal Regressor (QMOR)

In the light of the above, Quantum Measurement Ordinal Regressor (QMOR) [54] is a

differentiable probabilistic ordinal regressor model that uses a trainable density matrix, ρXY ,

to represent the joint probability distribution of inputs and labels. A full diagram of the

model is shown in Figure 5-2. A QMR layer receives a RFF encoded input sample |ϕrff (x)⟩,
and then builds a prediction operator M = |ϕrff (x)⟩ ⟨ϕrff (x)| ⊗ IdHY . Inference is made

by performing a quantum measurement on the training density matrix ρXY (see Eq. 5-12).

Then ρY (see Eq. 5-13) encodes in ρYrr, with r ∈ {0, . . . , N − 1} (supposing we have N

different grades), the posterior probability over the labels. The expected value represents

the final prediction:

ŷ =
N−1∑
r=0

rρYrr. (5-17)

We use one-hot encoding for the labels, which are categorical for ordinal regression tasks.

The model is trained using stochastic gradient descent to minimize aMean Squared Error loss

function with a variance term whose relative importance is controlled by hyper-parameter

α:

L =
∑

(y − ŷ)2 + α
∑
r

ρYrr(ŷ − r)2. (5-18)

Then, the learnable parameters of the model are the following:

• {w1, · · · , wD} ⊂ Rn, the components of the random Fourier features. Those are ran-

domly initialized by sampling from the Fourier transform of the Gaussian kernel (Eq. 5-

16).

• {βi, |vi⟩}mi=1 where βi ∈ R and vi ∈ HXY . These are the weights and vectors of the

decomposed density matrix ρXY (see Eq. 5-10). The vectors can be initialized by

randomly chosen m samples from the training set and encoding them with ϕrff for the

part HX and with one-hot for the part HY . βi are initialized in 1
m

for all i.
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RFF QMR

Figure 5-2.: QMR model for regression. A new sample x∗ is first passed through a Random

Fourier Features (RFF) layer and then through the quantum measurement.

5.6. Kernel Quantum Measurement Unit (KQMU)

Given Eq. 5-14 and the kernel trick in Eq. 5-15, it follows that the inference process

described in Proposition 2 can be completely stated in terms of kernel functions, since the

entire computation depends only on inner products in the feature space HX . Then, we would

no longer need quantum feature maps, and we would use kernel functions directly. Given a

kernel kX , the Eq. 5-14 would look like this:

γi =
βikX (x

∗, xi)
2∑m

j=1 βjkX (x
∗, xj)2

. (5-19)

Furthermore, the inference process can be generalised to handle mixed input states. In other

words, as we have said, until now the proposed models receives a pure state representing a

new sample x∗. It turns out that quantum measurement can be extended to measure mixed

states over mixed states. The following proposition summarises the whole idea above and

generalises the process described in Proposition 2.

Proposition 3 Given a dataset {(xi, yi);xi ∈ X, yi ∈ Y }ni=1, some kernel functions kX and

kY and their corresponding feature maps ψkX , ψkY , and given the density matrix

ρXY =
m∑
i=1

βi|ψkX (xi)⟩ ⊗ |ψkY (yi)⟩⟨ψkX (xi)| ⊗ ⟨ψkY (yi)|, (5-20)

and a mixed state

ρX =
m′∑
i=1

αi|ψkX (x
′
i)⟩⟨ψkX (x

′
i)|, (5-21)

then p(y|ρX , ρXY) can be calculated as

p(y|ρX , ρXY) = ρY =
m∑
i=1

γi|ψkY (yi)⟩⟨ψkY (yi)|, (5-22)

where

γi =
m′∑
l=1

αlβikX (x
′
l, xi)

2∑m
j=1 βjkX (x

′
l, xj)

2
. (5-23)
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KQMU

Figure 5-3.: KQMU schema. This layer relies on kernel functions kX , kY that implicitly

define quantum maps and is a processing unit based on quantum measurements

for density matrices between different feature spaces.

Proposition 3 allows us to build a unit for processing density matrices between different

feature spaces. We will call this unit KQMU: Kernel Quantum Measurement Unit (see

Figure 5-3). The input and output of this layer are the matrices ρX , ρY which represent in

a probabilistic way the information about data lying in HX and HY respectively. Quantum

measurement allows us to go from space HX to the space HY , and it also allows us to pass

through intermediate representation spaces. This allows the unit not only to be coupled to

the output of a model, but also to be used as an intermediate processing layer, and again to

be used freely hand in hand with deep learning based models.

In addition, we most note that, regarding the learnable parameters of the layer, namely

{βi, |vi⟩}mi=1, these may be initialized by βi =
1
m

and randomly chosen m samples {xi, yi}mi=1

from the training data to define |vi⟩ = |ψkX (xi)⟩ ⊗ |ψkY (yi)⟩. This is just the same ini-

tialization used for QMOR. However, in QMOR the optimization occurs explicitly in an

approximation of the feature space HX . In KQMU, this optimization occurs implicitly in

HX but explicitly in X. Therefore after the training, we finished with an optimal set of

weights and vectors {β̂i, x̂i}mi=1. According to Eq. 5-23, the inference process for a new sam-

ple relies almost entirely on the similarity (given by the kernel) between the new sample

and the learned {x̂i}mi=1. This is, {x̂i}mi=1 is a set of representative optimal vectors of the

dataset (not necessarily present in the training set). We will therefore call these vectors the

prototypes of the model.

5.6.1. Multimodal Kernel Fusion

A multimodal extension of KQMU follows directly from the properties of the kernels. Ba-

sically, fusion is achieved by using a kernel that merges the representation of each modality

from their respective kernels. How this is done is explained below.

Without loss of generality, let’s suppose we have only two different modalities: V and T . Let

be kV and kT the kernel functions used for those data modalities respectively. Let x1v, x
2
v ∈ Xv

be two samples of the first modality and x1t , x
2
t ∈ Xt their respective counterparts of the

second modality. Then, by the properties of kernel functions [132], it is well known that the
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function kV⊕T defined as

kV⊕T (x
1
v ⊕ x1t , x

2
v ⊕ x2t ) = kV (x

1
v, x

2
v) + kT (x

1
t , x

2
t ), (5-24)

is a kernel function itself. This means the Cartesian product of the feature spaces induced

by kV and kT matches the feature space induced by kernel defined as the sum of kV and kT .

Analogously, the multiplication of kV and kT results in the kernel that induces the tensor

product of the feature spaces induced by kV and kT :

kV⊗T (x
1
v ⊗ x1t , x

2
v ⊗ x2t ) = kV (x

1
v, x

2
v)× kT (x

1
t , x

2
t ). (5-25)

Therefore we must highlight that by using kernel functions we can build and learn repre-

sentations in a joint multimodal feature space created from the Cartesian or tensor product

of each modality feature space. And, although still being a Cartesian or tensor product,

the main difference from any explicit fusion approach (like those from neural network based

models) is that with the kernel functions we never have to deal with the explicit representa-

tion of the feature space and therefore we do not have any computational restrictions related

to a high dimensional representation.

5.7. Conclusions

In this chapter we set the foundation for the quantum-based models to come. The method

presented in [53] for supervised machine learning based on the mathematical formalism

supporting quantum mechanics, reveals an interesting framework where the relationship

between input and output variables is embodied as the state of a bipartite quantum system.

The use of projective quantum measurement to construct a prediction function marks a

unique departure from traditional machine learning methods and opens up new directions

for research and application.

The use of quantum density matrices in probabilistic deep learning provides a simpler yet

effective mechanism for representing joint probability distributions of both continuous and

discrete random variables. This approach enables the construction of differentiable models

for density estimation, classification and regression, and facilitates their integration into

end-to-end deep neural network models.

In addition, being able to use kernel functions directly as quantum feature maps allows great

flexibility in the handling of the representations and, fundamentally, allows the adaptation

of these models in multimodal applications.



6. Deep Quantum Measurement

Regression for Diabetic Retinopathy

and Prostate Cancer Grading

This chapter approaches disease diagnosis as a purely ordinal regression problem. Unlike

the Gaussian process, which is a continuous regression model that fits a discrete regression,

the quantum measurement approach allows the problem to be posed directly as a discrete

regression, while retaining the ability to measure uncertainty given the probabilistic nature

of the predictions.

The work in this chapter as been published as:

Toledo-Cortés S., Useche D.H., Müller H., González F.A. Grading diabetic retinopathy

and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers

in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825 [148].

6.1. Introduction

The stages of a disease are not categorical. The degenerative process of a disease is not

a discrete jump from one class to another but a progressive continuum [93]. These stages

are therefore an attempt of the specialists to discretize a continuous behavior. While not

completely accurate, this information is useful in the generation of automatic systems if a

model with an appropriate descriptive capability is used. However, the information of the

relative distance between the different grades of a disease is disregarded when a categorical

classification model is used. The way to exploit this grading is therefore through a regression

model. In addition, if a probabilistic regression model is implemented, the predictions can

be interpreted as probability distributions over the range of the labels. Hence, one can infer

the stage of the disease in a non-categorical way, providing more statistical information, for

instance, the uncertainty of the predictions.

In the medical field, deep CNNs have been demonstrated to be effective at analyzing images

and visual content of all kinds, from X-rays to diagnose osteoporosis [84], to MRIs to diagnose

brain conditions [175]. Although many diseases present different stages on a progressive scale
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and in many cases this information is available, binary labels are usually favored [93]. How-

ever, two drawbacks arise from addressing the task of classifying grade-based medical images

as a categorical problem with conventional neural networks: first, the ordinal information

of the grades is not taken into account for the training process, and second, the predictions

of the models, usually subject to a softmax activation function, cannot be interpreted as

probability distributions [154].

In this chapter, we present the Deep Quantum Ordinal Regressor (DQOR), a deep probabilis-

tic model capable to combine a CNN with the Quantum Measurement Regression (QMR)

[55, 54]. DQOR is intended as a diagnostic support tool for the medical specialist which

allows to:

1. Predict posterior probability distributions over the grades range. Unlike other proba-

bilistic methods such as Gaussian processes, these are explicit discrete distributions.

2. In the case of patch-based image analysis, integrate patch posterior distributions into

a single whole-slide image distribution using a simple, yet powerful probability-based

strategy.

3. Quantify the uncertainty of the predictions. This enriches the model as a diagnostic

support tool, which in safety-critical applications, provides the method with a first-level

of interpretability.

4. Improve the posterior prognosis-oriented binary diagnosis, based on an ordinal grade-

label end-to-end training.

To show the effectiveness of our DQOR proposal, we test it on two grade-based diagnostic

tasks: prostate cancer (PCa) diagnosis, and diabetic retinopathy (DR) diagnosis.

Early PCa detection allows for greater treatment options and a higher chance of treatment

success, but while there are several methods of initial screening, a concrete diagnosis of PCa

can only be made with a prostate biopsy [45]. Tissue samples are currently recorded in

high-resolution images, called whole-slide images (WSIs). In these images, the pathologists

analyze the alterations in the stroma and glandular units and label the tissue regions with

Gleason patterns on a scale from 1 to 5. The sum of the two most dominant Gleason patterns

gives the final Gleason score. Hence, the Gleason score ranges from 2 to 10. However, in

practice, the specialists only consider the highest five grades, from 6 to 10, since biopsies with

a grade below 3 are not taken into account [90]. The higher the grade, the more advanced

cancer. Although the automatic classification of PCa with CNNs has been widely studied,

the usual approach has been as multi-class or binary classification of low risk (6-7 GS) vs

high risk (8-10 GS) tasks [81, 136].

Something similar happens with DR. Early DR diagnosis allows preventing most of the

severe consequences of the disease, including complete blindness [161]. As we mentioned in
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previous chapters, an early and effective diagnosis of DM consists of the inspection of the

retinal tissue by means of an eye fundus image. By counting the number of visible lesions, an

ophthalmologist specializing in the retina can give a diagnosis of the disease, on a five-level

severity scale from 0 to 4, being 0 a negative case of DR, and 4 a case of proliferative DR

[4]. Many approaches have treated the problem from a multi-class classification perspective,

or as a binary task, where a diagnosis of 0 or 1 corresponds to a case of non-referable DR

and a case of 2, 3, or 4 corresponds to a case of referable DR [135].

In the medical field, while it is true that there have been some applications of ordinal regres-

sion models, there is not a clear and well-defined trend. Recently, ordinal regression by binary

classifiers has been applied to facial age estimation [109] [138], and diagnosis of Alzheimer’s

disease [89], taking advantage of the inherent ordinal severity of brain degeneration.

In addition to the predictive value, for medical applications, it is desirable to obtain a prob-

ability distribution over the possible output stages. Furthermore, the distribution describing

the probability of belonging to a disease stage should be unimodal, so it is expected to

use unimodal distributions for ordinal classification tasks [13]. Various models have been

proposed where predictions are forced to follow Poisson or binomial distributions over the

possible outputs [12, 13], showing that, when needed, the ordinal approach improves the

results compared to the conventional cross-entropy approach.

Our method manages to capture the ordinal structure of the data, based on a strong theoret-

ical framework, and with a greater versatility of integration. DQOR allows the predictions

to be actual probability distributions over the range of degrees, without the need to force

them with the softmax or other activation functions. This in turn allows local predictions to

be integrated into global predictions, in the case of PCa, and also allows the variance to be

interpreted naturally as a measure of uncertainty. Finally, unlike classical probabilistic meth-

ods, DQOR can be trained with gradient descent, enabling its integration with conventional

deep learning architectures.

This chapter is organized as follows: Section 6.2 presents the theoretical framework of the

method, and Section 6.3 presents the experimental setup. To validate our approach, we

compare the performance of our model with state-of-the-art deep learning-based models,

and with various closely related classification and regression methods. In Section 6 we

present the conclusions of this work.

6.2. Method: Deep Quantum Ordinal Regressor (DQOR)

The overall architecture of the proposed Deep Quantum Ordinal Regressor (DQOR) is de-

scribed in Figure 6-1. We use a deep CNN as a feature extractor. The extracted features

are then used as inputs for the QMR method [54]. QMR uses density matrices for regres-

sion problems and works as a density estimator. It requires an additional feature mapping

from the inputs to get a quantum state-like representation. This is achieved using a ran-

dom Fourier features approach [118]. The regressor yields a discrete posterior probability
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Figure 6-1.: Overview of the proposed DQOR method for medical image analysis. A deep

CNN is used as feature extractor for the input image. Those features are

the input for the QMR regressor model, which yields a posterior probability

distribution over the possible grades of the disease.

distribution from which we get the final grade prediction and a measure of the uncertainty.

6.2.1. Feature Extraction

Medical and non-medical automatic image analysis relies on deep convolutional neural net-

works. The representational power of these models has shown remarkable results on com-

puter vision and therefore we use them for feature extraction [57]. Regardless of the CNN

architecture, these models conserve a basic structure: an input layer for the image, followed

by a series of convolutional blocks and a pooling layer that summarizes all the information

extracted from the convolutions. Usually, this layer is connected to a series of dense layers

that perform the final classification of the image. Instead, we use the output of the pooling

layer to feed the Quantum Measurement Regressor.

6.2.2. Patch-based Analysis Summarization

Patch-based image analysis is preferred or rather needed in some applications. This is the

case of prostatic cancer diagnoses with WSI. We require the additional step of summarizing

the predictions of the patches to reach a prediction of a whole slide image. The most

straightforward procedure is the majority vote (MV), as reported in most previous works

[81, 110]. In the majority vote, the image’s prediction is decided according to the grade

with the highest number of predictions among the patches of the image. However, as in

[149], DQOR admits a probability vote procedure (PV); since each patch can be associated

with a probability distribution, the normalized summation yields a distribution for the whole

image. More formally, thanks to the law of total probability, given an image I, composed
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by n patches, each patch denoted by pi, the posterior probability of the grade r is,

P (r|I) = P (r, I)

P (I)
=

∑n
i=1 P (r|pi, I)P (pi|I)P (I)

P (I)
=

1

n

n∑
i=1

P (r|pi). (6-1)

The final prediction may correspond to the grade with the highest probability or with the

expected value of the distribution.

6.3. Experimental Set Up

The specific details of the experimental procedures are described below. The implementation

was developed in Python, and the code is available at https://github.com/stoledoc/DQOR.

6.3.1. QMR Hyperparameter Optimization

As described in Chapter 5.4 and 5.5, the RFF and QMR layer of the DQOR requires five

hyperparameters to be set before training. In addition to the usual learning rate, we have

σ and D as hyperparameters of the RFF embedding, σ controls the spread of the objective

Gaussian kernel that we try to approximate and D corresponds to the number of random

Fourier features, which determines the dimension of the embedding space. Also, the training

density matrix ρXY (see Eq. 5-10) depends on the number of eigencomponents, and the loss

function (see Eq. 5-18) on the parameter α to control the variance of the predictions.

Due to the high number of possible hyperparameter combinations, we made a random search

to look for the optimal setup. However, there are some important aspects to take into account

to refine this process, which are presented below.

From a subset of the original dataset, we generated more than 3000 combinations of hyper-

parameters to train the model. In each case, we established an early stopping callback to

halt the training process after 10 epochs with no improvement in the validation loss. We

recorded the final MAE scores of the validation data set of all the resulting models. From

this information, we made a statistical analysis of the hyperparameter sensibility of the

model, by measuring the relative change of the MAE in comparison to the relative change of

each hyperparameter. We looked at the density distribution of these combinations of hyper-

parameters as a function of the relative change of the MAE (see Figure 6-2). We conclude

that the more sensitive parameters of the QMR are learning rate and σ.

For the random search of the whole datasets, we set a range from 10−8 to 10−2 for the

learning rate. Since σ measures the dispersion of the data, we took the mean of the pair-

wise distances between the data samples and the mid-point of the data for the range of

search. For the number of random features, D, we explored 27, 28, 29, 210 and 212, taking

into account that the output of the Xception and the Inception-V3 is a 2048-dimension

vector. For the number of eigenvectors, we explored five different fractions of the chosen D:
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Figure 6-2.: Density plot of the ratio between the relative change of MAE and relative

change of each hyperparameter. Although the mode of all distributions is

close to zero, it can be noted that the variances of the learning rate and σ

distributions are higher in comparison with the other three hyperparameters.

This implies that the sensitivity of the model, measured against the variance

of the MAE in a validation set, is higher in these two parameters.

D, D/2, D/4, D/8, D/16. Finally, for the α parameter, we set the searched range from 0

to 1.

6.3.2. Prostate Cancer

The setup of the DQOR applied to the PCa image analysis is described in Figure 6-3.

Dataset

We used images from the TCGA-PRAD dataset, which contains samples of prostate tissue

with GS from 6 to 10. This data set is publicly available via The Cancer Genome Atlas

(TCGA) [67]. To directly compare our results with the baseline [81], we used the same

subset and partition for train and test, the details of the partition are presented in Table 6-

1. The process to extract the patches from WSI is described in [67].

We used the images’ patches to train the model. To obtain predictions at the level of WSIs,

a process of summarization was carried out. Each patch was labeled with the same GS

of the WSI from which it belongs. Although it is not clear that a GS can be assigned

to a single patch, our methodology focused on showing the effectiveness of the regression

approach by comparing it with previous works which use the labels of patches in the same

manner, however, in theory, a GS can be set to each patch of a WSI.
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Figure 6-3.: Overview of the proposed DQOR method for prostate tissue grading. The

Xception network was used as a feature extractor of the images patches. Those

features were the input for the QMR regressor model which yielded a poste-

rior probability distribution by patch over the Gleason scores. Finally, those

distributions were summarized into a single discrete probability distribution of

the WSI.

Table 6-1.: Details of the subset and final partition of the TCGA dataset used for training

and testing. This is the same partition used in [81].

Risk Gleason Score Train Validation Test

Low 6 11 4 4

Low 7 53 17 17

High 8 23 8 8

High 9 50 17 16

High 10 4 2 1
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Feature Extraction

The model presented in [81] was used as a feature extractor. It is publicly available and

consists of an Xception network trained on ImageNet and fine-tuned on prostate tissue

image patches. This network was originally used for an automatic information fusion model

for the automatic binary (low-high) classification of WSIs. The augmentation procedure and

training details are described in [81]. From the output of the last average pooling layer of

the model, we got a 2048-dimensional vector representing each image patch.

Quantum Measurement Regression

For the QMR, hyper-parameter tuning of the model was performed by generating 25 different

random configurations choosing the best combination. Henceforth, we created an embedding

of 1024 RFF components with σ equals to 26. Also, the density matrix was trained with 32

eigenvalues. For the loss function (See eq. 5-18) the value of 0.4 was selected for α, and the

learning rate was set to 6× 10−5.

Baseline

We extended the feature extractor with a conventional feed-forward neural network as a

baseline in this work. Called DLC-PCa hereafter, it consists of 1024 neurons with ReLU

as the activation function and a dropout of 0.2, followed by 5 neurons with a soft-max ac-

tivation function for the output. The learning rate was set to 10−7, as in the baseline [81].

We also explored two closely related methods to QMR: the Density Matrix Kernel Density

Classification (DMKDC) [54] and the Gaussian process. DMKDC is a differentiable classifi-

cation method, which applies the RFF feature map to the input sample, and then computes

the expected value of the input with a density matrix of each class, returning a posterior

probability distribution, which can be optimized with a categorical cross-entropy loss func-

tion. A Gaussian process (GP) [120] is a powerful Bayesian approach to regression problems.

Through a kernel covariance matrix, the GP calculates and iteratively updates the proba-

bility distribution of all the functions that fit the data, optimizing in the process the kernel

parameters. In our case, we set the kernel as the Gaussian kernel. The prediction process

consists of marginalizing the learned Gaussian distribution from which the mean would be

the actual predicted value and its standard deviation an indicator of the uncertainty. We

also explored deep Gaussian processes (DGP) [37], which also use RFF to approximate the

covariance function. For those experiments, another hyper-parameter random search was

made, finally setting the number of RFF to 1024 and the learning rate to 2×10−7 in a single

layer schema.

6.3.3. Diabetic Retinopathy

The setup of the DQOR applied to eye fundus images’ analysis is presented in Figure 6-4.
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Figure 6-4.: Overview of the DQOR for diabetic retinopathy grading. An Inception-V3

network was used as feature extractor for the eye fundus image. These fea-

tures were the input for the QMR regressor model, which yielded a posterior

probability distribution over the DR grades.

Datasets

To directly compare the DQOR performance with the baselines of the state-of-the-art, we

worked with EyePACS [40] and Messidor-2 [2] datasets. EyePACS is one of the largest

publicly available datasets of eye fundus images. Each sample is labeled as one grade of the

five grade scale from 0 to 4, where 0 stands for a healthy case, 1 for mild non-proliferative DR,

2 for moderate non-proliferative DR, 3 for severe non-proliferative DR, and 4 for proliferative

DR. To compare our method with our baselines [157] [144], we kept the same partition for

training and testing, which are described in Table 6-2. This data configuration of EyePACS

has, however, a drawback: in the test data set there are no samples of DR grades 2 and 3.

This is justifiable in the binary context for which it was originally designed, but it is not a

fair evaluation for the ordinal classification case. Therefore, we set up a second partition for

EyePACS, called EyePACS-b, based on the former one, but moving some samples from the

train set to the test set. The details of the EyePACS-b partition are described in Table 6-3

Regarding Messidor 2, it is a standard dataset in the field for testing. It consists of 1748 eye

fundus images. While DR grades are not provided, we used them to show the effectiveness

of our proposal for a referable/non-referable diagnosis. Details of Messidor-2 are described

in Table 6-4.

Feature Extraction

We used the model presented in [144] as a feature extractor, which is also publicly available

and consists of an Inception-V3 network trained on ImageNet and fine-tuned on eye fundus

images with the EyePACS train partition. This network had already been used as a feature

extractor in a model for automatic DR grading. In such a model, the training was made

in two independent stages, one for the Inception-V3 and another for the Gaussian process.
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Table 6-2.: Details of the subset and final partition of the EyePACS dataset used for training

and testing. This partition is the same used in [144] and in [157].

Referable Grade Train Test

No 0 37209 7407

No 1 3479 689

Yes 2 12873 0

Yes 3 2046 0

Yes 4 1220 694

Table 6-3.: Details of the subset and final partition of the EyePACS-b partition used for a

fair ordinal regression evaluation with samples in all the grades, in contrast to

the partition used in [144] and in [157].

Referable Grade Train Test

No 0 37209 7407

No 1 3479 689

Yes 2 10298 2575

Yes 3 1637 409

Yes 4 1220 694

Table 6-4.: Details of Messidor-2 dataset used for testing. Messidor-2 is used to compare

the performance of the model in a purely binary task (referable/non-referable).

Referable Total

No 1368

Yes 380
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However, the Inception-V3 was trained for the binary referable / non-referable DR diagnosis.

The same training setup was used to train an Inception-V3 on EyePACS-b. From the output

of the last average pooling layer of the Inception-V3, we got a 2048-dimensional vector

representing each eye fundus image.

Quantum Measurement Regression

We performed a random search for the QMR hyper-parameters fixing the Inception-V3 stage

and generating 25 different random configurations. As result, we chose an embedding of 128

RFF components, 8 eigencomponents, and σ was set to 25. For the loss function (Eq. 5-18),

α was set at 0.6, optimized with a learning rate of 7× 10−5.

Baseline

Similar to the baseline used for the PCa grading case, an extension of the feature extractor

model with two dense layers was set up as a baseline for this task (called DLC-DR hereafter).

Correspondingly, we report the results from the deep Gaussian process [37] and the DMKDC

model [54]. We also present the results of the Gaussian process approach proposed in [144].

6.4. Experimental Results and Discussion

To measure the performance of an ordinal regression method requires taking into account the

severity of misclassified samples. Usual categorical classification metrics, such as accuracy or

F1-score, are not appropriate to estimate the actual performance of an ordinal classification.

For example, given a sample whose actual label is grade 3, it is more severe if a model

classifies the sample as grade 1 than grade 2. The separation between the predictions and

the actual labels of the models is especially relevant in the medical field. Therefore, it is

required a metric that quantifies the magnitude of the misclassification error. Between all

the possible metrics, Mean Absolute Error (MAE) is currently one widely used measure

in ordinal regression, both for evaluation and the loss function of the models [48]. MAE

is a metric that penalizes misclassifications according to their distance to the true labels.

Therefore, in addition to the categorical classification metrics, we also measured and reported

MAE on the test data sets.

Finally, since it is desirable to measure the performance of the models for the binary classi-

fication task, we binarized the regressor predictions and compared this strategy with state-

of-the-art models which were built for this specific purpose. Accuracy was used to measure

the performance in the PCa case, and sensitivity, specificity, and AUC for the DR case.
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Table 6-5.: Patch-level multiclass results of the dense layers classifier model DCL-PCa,

Gaussian process GP, DGP, and density matrix-based models DMKDC, DQOR.

Method Accuracy Macro F1 MAE

DLC-PCa [81] 0.593 0.359 0.698

GP [120] 0.399 0.255 0.777

DGP [37] 0.265 0.169 1.013

DMKDC [54] 0.584 0.377 0.717

DQOR 0.515 0.317 0.6807

6.4.1. Prostate Cancer

WSI scores were summarized utilizing MV and PV. The prediction methods at the WSI level

were also applied to the baseline models. In the dense layer classifiers, the summarization was

made from the softmax output, as in [149]. In the DMKDC, the summarization methods were

easily applied because the model outputs a probability distribution. For GP and DGP only

MV was calculated since we have no access to an explicit discrete posterior distribution. The

results at patch-level and at WSI-level are reported in Table 6-5 and Table 6-6 respectively.

In terms of multi-class accuracy at the patch level, the DLC-PCa model obtained the highest

results. This was expected since this model is trained to optimize the categorical cross-

entropy loss function. The difference with the regression approach is noticeable in the MAE,

for which DQOR reached the best performance.

At the WSI level, the best multi-class accuracy was also reached with the DLC-PCa model

and with the DMKDC with probability vote. Regarding the regression performance, the

DQOR obtained the lowest MAE at the WSI level.

In general, it should be highlighted that higher performances in the categorical classification

do not imply higher performances for ordinal classification. The difference between the

model with the highest accuracy and the model with the lowest MAE is shown in Figure 6-

5. The DQOR confusion matrix indeed presents a higher concentration of samples around

the diagonal, showing that the model takes advantage of the probability distributions and

the inherent ordering of the GS grades.

By considering the predicted GS of 6 or 7 as low GS, and the predicted GS of 8, 9, or 10 as

high GS, we binarized the results and computed the accuracy to make a direct comparison

with previous works using the same dataset. The results are reported in Table 6-7.

The results reported in [67] and [121] were obtained by training the binary labels of the WSIs

with CNNs. The model presented in [81] is a multimodal approach, which used text reports

as additional information to enrich the predictions of the WSIs, this model makes inferences

from visual information alone, and also used binary labels. We can see that DQOR reached

the highest binary accuracy and hence, it performed better on the gradation task. This

approach was beneficial for the posterior binarization of the model.
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Table 6-6.: WSI-level results. For each model, two summarization procedures were applied,

majority vote (MV) and probability vote (PV).

Method Accuracy Macro F1 MAE

DLC-PCa MV [81] 0.608 0.354 0.7173

GP MV [120] 0.391 0.233 0.739

DGP MV [37] 0.174 0.059 0.935

DMKDC MV [54] 0.608 0.354 0.717

DQOR MV 0.587 0.361 0.695

DLC-PCa PV [81] 0.608 0.354 0.717

DMKDC PV [54] 0.608 0.354 0.717

DQOR PV 0.587 0.356 0.652

Figure 6-5.: Confusion matrices of the WSI grade predictions for DLC-PCa (left) and for

DQOR (right) in the TCGA test partition. WSI prediction is obtained using

the probability vote.

Table 6-7.: Results at WSI-level of low risk vs high risk.

Method Accuracy

Google LeNet [67] 0.7352

Modified AlexNet[121] 0.769

M-LSA [81] 0.770

DQOR 0.782
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Table 6-8.: Comparison on EyePACS test partition results. Sensitivity, specificity and AUC

for binary classification and MAE for grading.

Description Sensitivity Specificity AUC MAE

DLC-DR [144] 0.7867 0.9643 0.9471 0.3166

Voets et al. (2019) [158] 0.906 0.847 0.951 –

GP [144] 0.9323 0.9173 0.9769 0.7750

DGP [37] 0.3703 0.6196 0.4947 1.3566

DMKDC [54] 0.6473 0.8787 0.9135 0.4051

DQOR 0.8660 0.9809 0.9805 0.2871

6.4.2. Diabetic Retinopathy

The results for DR grading on the EyePACS test set are reported in Table 6-8. As previously

mentioned, the methods tested in this work generated a prediction for a five-grade range, and

a binarization of the results was performed by defining a threshold on the predicted value.

Henceforth, we report the ROC-AUC score to directly compare it with the state of the art

(see Figure 6-6 and Figure 6-7). For Messidor-2 we only report the binary classification

performance in Table 6-9.

For the ordinal regression task, DQOR was the best performing model according to MAE.

Furthermore, for both partitioned datasets, it reported the highest AUC for the binary

referable / non-referable task.

Also, the results of DQOR using the EyePACS-b partition are reported in Table 6-10 and

the confusion matrix is shown in Figure 6-8, next to the confusion matrix for DLC-DR.

DQOR had the lowest MAE and the highest AUC. Note that DLC-DR was the model with

the highest sensitivity, and the second-highest AUC, just below DQOR. However, it was not

the model with the second-lowest MAE. The confusion matrices show again that the results

of the DQOR had a lower dispersion around the diagonal, which improved the results for

the subsequent binary task.

In general, it is noticeable that for both the ordinal and the binary classification tasks, our

proposed DQOR improves the performance of the previous models, which justifies once again

the importance of using the different stages of the disease for an automatic diagnosis.

6.4.3. Uncertainty Quantification

In addition to the performances of the method on the classification and regression tasks,

DQOR offers an uncertainty quantification based on the variance of the predicted distribu-

tion for each sample. For the PCa diagnosis, we analyzed the statistical behavior of the

predicted variance on the test data set at the WSI level, grouping the samples according

to whether or not they were correctly classified on the binary task. Figure 6-9 shows box-
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Table 6-9.: Comparison on Messidor-2 results. Sensitivity, specificity and AUC for binary

classification.

Description Sensitivity Specificity AUC

DLC-DR [144] 0.6105 0.9715 0.8624

Voets 2019 [158] 0.8181 0.712 0.853

GP [144] 0.7237 0.8625 0.8787

DGP [37] 0.4026 0.5782 0.4960

DMKDC [54] 0.5906 0.5316 0.5864

DQOR 0.7974 0.9291 0.9239

Figure 6-6.: ROC curves plot for EyePACS test set.

Table 6-10.: Comparison on EyePACS-b test partition results. Sensitivity, specificity and

AUC for binary classification and MAE for grading.

Description Sensitivity Specificity AUC MAE

DLC-DR [144] 0.9517 0.7308 0.9363 0.4702

GP [144] 0.9454 0.5903 0.8385 0.5939

DGP [37] 0.2504 0.7510 0.5018 1.4954

DMKDC [54] 0.9166 0.8121 0.8736 0.4164

DQOR 0.9152 0.8461 0.9438 0.3872
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Figure 6-7.: ROC curves plot for Messidor 2.

Figure 6-8.: Confusion matrices of the predictions of DLC-DR (left) and DQOR (right) in

the EyePACS-b test partition.
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Figure 6-9.: Box plot of the predicted variance on TCGA test samples at WSI-level, grouped

by classification status on the low risk vs. high risk GS diagnosis task.

plots of the predicted variance for each group. A similar procedure was performed for the

DR diagnosis (see Figure 6-10). As expected, DQOR predicts low uncertainties on well-

classified samples in comparison with miss-classified samples. For the case of DR diagnosis,

it is remarkable that for the EyePACS and Messidor-2 datasets the range of the variances

are directly comparable, and they have similar statistical behavior. The uncertainty quan-

tification provides the specialist with a more interpretable result, from which he may decide

whether to trust or not on the model’s prediction.
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Figure 6-10.: Box plot of the predicted variance on EyePACS test samples (left) and

Messidor-2 (right), grouped by their classification status on the referable /

non-referable diagnosis task.

6.5. Conclusions

In this work, we presented a novel method for grade-based medical image analysis. Intended

as a diagnostic support tool for the practitioner, the method combines the representational

power of deep learning with the Quantum Measurement Regression method [54], which uses

density matrices and random features to build a density estimator.

We tested our approach in two different tasks: the diagnosis of prostate cancer and diabetic

retinopathy. In both cases, the diagnosis was based on a gradation by progressive levels. The

training of the models was performed using the five available grades, and we reported the

results for both ordinal regression and binary classification tasks. The latter were obtained

by direct re-categorization over the regressor’s predictions.

Compared with similar regression and classification methods, the results show that the while

DQOR does not guarantee a better multi-class accuracy, it consistently allows obtaining

better results in terms of MAE, which can be advantageous in medical applications, given

the sensitivity to the magnitude of classification errors that a purely categorical metric does

not have. Furthermore, by directly binarizing the results, we showed that training the models

with the information of the grades improves the performance of the binary classification.

It should be highlighted that in these two medical applications the labels are presented

on a progressive scale. Namely, the method takes advantage of the ordinal relationship

of the labels, which is absent in the purely categorical tasks. In conventional multiclass

classification problems the method is not expected to show improvements, on the contrary

imposing an artificial order on the labels may negatively impact the performance.

Furthermore, unlike methods based solely on neural networks and other probabilistic models,

DQOR predicts for each sample a discrete probability distribution over the range of labels.
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This enables a robust integration of the results of patch-level images to a prediction on a

whole slide image and offers the uncertainty of the prediction. In test cases, we showed

that this uncertainty is significantly lower on well-classified samples in comparison to misdi-

agnosed samples and that the statistical behavior of this measurement is consistent across

different datasets. This implies that the method is able to provide the level of confidence

of its inference which can support the identification of misclassified samples. While this

may require further research and statistical analysis, it is a highly valued feature for medical

applications, where the goal is to prevent false positives and especially false negatives in a

diagnostic process.

Overall, we demonstrated that unlike deep learning architectures and standard classification

models, the combination of deep CNNs and Quantum Measurement Regression allows us to

take advantage of the ordinal information of the stages of a disease in a probabilistic manner.

This provides a better theoretical framework to deal with patch-based analysis, improves the

performance in the binary prognosis-oriented diagnosis, and provides tools to quantify the

uncertainty of the model for safety-critical applications.



7. Multimodal Deep Kernel Quantum

Measurement for Prostate Cancer

Grading and Glaucoma Diagnosis

In this chapter, two medical multimodal tasks are approached by means of a kernel-based

fusion using a quantum measurement scheme. As we mentioned early in this thesis, medical

data is inherently multimodal, since the diagnostic process for many diseases may involve

several tests and procedures. Our approach allows us to build robust probabilistic kernel-

based models that are able to integrate information from different sources, with the benefit

of being extremely flexible to different training and inference conditions.

The work in this chapter is in preparation to be published as:

Toledo-Cortés S., González F.A. (2023). Multimodal Quantum Kernel Fusion for Glau-

coma Diagnosis.

7.1. Introduction

Multimodal learning encompasses a whole family of machine learning algorithms that fuses

different sources of information from the same object finding joint representations for the

different modalities. Information fusion mechanisms are varied and depend on the target task

and the data itself. These models have shown success in several applications such as image

retrieval tasks, auto-labeling, image collection summarization, segmentation, classification,

prediction, etc [11].

At the beginning of this thesis we mentioned that there are some key factors when designing

a multimodal model. First, as in almost all machine learning applications, we have to deal

with the problem of data representation [9]. So far, all the models presented in the previous

chapters have used deep CNNs to solve this problem, since we have only been working with

images. Next, we have the fusion. Three types of fusion schemes are always described in the

literature [9]: early fusion, late fusion, and intermediate or hybrid fusion. This classification

clearly depends on the point in the algorithmic flow at which the fusion takes place. For

instance, the models presented in this chapter use intermediate fusion. However, in practice,
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there is an important aspect of multimodal development that is not always mentioned:

interactions between the different modalities can occur in many ways, and there are different

reasons why the data may not be complete for all modalities in the same sample.

We may have complementary data modalities when no single modality can be used on its

own for the final task. The best examples of this can be found in the medical field, in the

diagnostic process for many diseases. For instance Glaucoma, according to the Glaucoma

Research Foundation [1], requires a diagnosis process that includes multiple tests. These

may include a tonometry to measure the inner presure of the eye, a perimetry to measure

the field of vision, a pachymetry to measure the thickness of the cornea, etc. Determining

whether someone has glaucoma can often be challenging, and ongoing detailed assessment

of the optic nerve is critical to both diagnosis and treatment. Ophthalmologists consider a

variety of factors before deciding on the most appropriate treatment.

On the other hand, modalities may overlap if one modality contains more information than

the other. In practice, there are several reasons why data may not be complete for all modal-

ities in the same sample. There may be security or privacy constraints of many kinds, or, for

example, in applications involving sociodemographic data, there may not be completeness of

all possible data for each individual [95]. Medical applications are a special case. Sometimes

diagnostic images and their corresponding textual reports (written by a specialist) are avail-

able. Medical images are more abundant than medical reports because the latter require

far more specialised human resources [10]. The images and text can then be used to train

a model for a diagnostic support task. In practice, however, the report of a new image is

obviously not available. The main goal in these medical situations is to improve the perfor-

mance of a single-modal model through multimodal training. A really useful model should

only work with the images and make a diagnosis from them. That is, the model should

be able to be trained multimodally, but it should be able to make inferences with only one

modality. And the goal is clearly that multimodal training should lead to improvements in

single-modal test performance.

Having such flexibility in a multimodal model is not an elementary task. Dealing with the

absence of a modality implies looking for solutions beyond simply removing a slice of the

input from the model. The model must be able to be independent of a modality. Various

attempts have been made in the past to achieve this goal [96]. Frequently, this involves

complex reconstruction processes, or looking for joint representation spaces that can be

learned in a multi-modal fashion but which can be accessed through a single modality.

In this chapter, we propose a quantum-inspired deep kernel learning model which takes

advantage of the probabilistic mechanisms of quantum mechanics, the fusion capabilities

of kernel functions, and combines them with the representational power of deep learning

models. This approach allows us to:

• Fuse the representation of modalities into a joint high or infinite dimensional space, in

a way that would be impossible for a model based on deep learning alone.
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• Obtain interpretable results by means of the inspection of the prototypes learned by

the model.

• Tolerate the uncertainty of a modality, on the basis of the identity element, or neutral

element, of the operation that defines the fusion.

• Enhance a single-modal model by training it with multi-modal data.

• Incorporate the previous advantages into a end-to-end gradient descent learning schema.

This chapter is organised as follows: in the next section we will briefly review the related

work to put our contribution into perspective. Then, we will present our proposed method

and the experimental set up. After that, we present and discuss the experimental results

and finally we address the conclusions.

7.2. Method: Deep Multimodal Kernel Quantum

Measurement Unit (MM-KQMU)

The basic architecture of the proposed Deep Multimodal Kernel Measurement Unit (MM-

KQMU) is described in Figure 7-1. As in previous chapters, we use a deep CNN as a feature

extractor for the visual modality. For textual modalities, we will use TF-IDF for feature

extraction, and in the case of structured clinical data, only a short pre-processing is needed.

Each modality representation can be input into independent multiple layer encoders before

being fed into a KQMU. Recall from Chapter 5 that a KQMU is a processing unit that

receives a density matrix representing a pure or mixed state and operates in a feature space

defined by modality-specific kernels. This means that we need to define kernel functions for

each modality. Two kernel functions were explored for all upcoming experiments: the cosine

kernel, defined by

kcos(x, y) =
⟨x, y⟩

∥x∥ · ∥y∥
, (7-1)

and Gaussian kernel or Radial Basis Function (RBF):

krbf(x, y) = exp

(
− 1

2σ2
∥x− y∥2

)
. (7-2)

These kernels define a quantum feature mapping, since for both cases we have k(x, x) =

||x||2 = 1. Note that unlike the cosine kernel, the use of a Gaussian kernel implies the

optimization of an additional parameter σ. This value determines how far the influence of a

single training point extends. If necessary, σ is learned during training along with the rest

of the parameters of the model described in Section 5.6.
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Figure 7-1.: Overview of the proposed MM-KQMU method for multimodal medical data

analysis. Feature extraction and encoding can be performed independently

for each modality. MM-KQMU performs a tensor kernel fusion and outputs a

density matrix ρy suitable for classification or regression tasks.

7.2.1. Kernel Fusion

For multimodal fusion, MM-KQMU uses the tensor product between modalities. Although

the Cartesian product is also an option, several explorations with different datasets consis-

tently showed better performance when using the tensor product. This is understandable if

we consider the following aspects:

• Interactions: A tensor product creates a new representation in which every single

element of a vector of one modality interacts with every single element of the corre-

sponding vector of the other modality. In the case of multimodal data, this means

that a tensor product can capture interactions between different modalities (such as

the relationship between a specific clinical feature and a region in an image) that a

Cartesian product would miss.

• Dimensionality: Tensor products can result in higher dimensional tensors that can

represent more complex relationships. For example, a tensor product of vectors results

in a matrix that can represent a transformation from one vector space to another. This

could be used, for example, to represent a transformation from image data to clinical

data.

As we explained in Chapter 5, given two kernels kV and kT for visual and textual (or
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clinical) data, the tensor product kernel kV⊗T is simply computed by the multiplication of

the respective kernel functions:

kV⊗T = kV × kT . (7-3)

7.2.2. Missing Modality Flexibility

The implementation of KQMU in relation to PCa grading requires a missing modality flex-

ibility. This is because for each sample we have a WSI and its corresponding report. We

can use both sources of information to train the model, but it makes no sense to test with

multimodal data: we have to test only with images. This is because this is intended to be

a diagnostic support tool, so in practice the end user will not have a report and an image,

but only the WSI to be analysed.

This means that the model should be able to make inferences in the absence of a modality.

As an explicit Cartesian or tensor product of the feature spaces is usually managed as a

concatenation or tensor fusion layer within the model [95] [172], this leads to limitations in

terms of the length of the representations and the flexibility of the model when there is no

information for a modality. However, in our model, when a modality is missing, Eq. 7-3

provide a natural solution to the problem: to multiply by 1 in the part of the kernel of the

missing modality. In our case, for example when evaluating only with visual information,

the kernel for inference would be

kV⊗T = kV × 1. (7-4)

7.2.3. WSI Mixed State

Unlike QMR (see Chapter 6.2), KQMU allows the input to be a mixed state. This means,

given a WSI and its corresponding set of patches {xi}ni=1 in a feature space X, and given a

suitable kernel function kX , we can summarize the information of the patches directly from

the input defining the next mixed state:

ρWSI =
n∑

i=1

1

n
|ϕ(xi)⟩⟨ϕ(xi)|, (7-5)

where ϕ is the implicit feature mapping defined by kX . Therefore, we need no longer a

post-inference summarization process as majority vote or probability vote; KQMU inference

produces predictions at the WSI level.
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Figure 7-2.: MM-KQMU Missing Modality Flexibility. If needed, MM-KQMU can handle

an absent modality for inference. Then, the model shown in a) can be trained

with all available modalities, but only the model shown in b) is used for infer-

ence.
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Figure 7-3.: Overview of the proposed MM-KQMU for PCa grading. The model shown in

a) is trained using the two available modalities. The loss LMM measures the

multimodal performance. For inference we use the model shown in b), which

only receives images. The loss LV measures the visual performance. During

training, a combination of LV and LMM is optimized.

7.3. Experimental Set Up

7.3.1. Prostate Cancer

The setup of the MM-KQMU applied to the PCa data analysis is described in Figure 7-3.

Dataset

We used the TCGA PRAD dataset, keeping the same set up described in Chapter 6.3. Recall

that this set contains prostate tissue samples with Gleason scores from 6 to 10. The details

of the dataset partitions are shown in Table 7-1.

The processing of the images is the same as that described in Chapter 6, i.e. we will use

the same features obtained with a fine-tuned Xception. In this case, however, texts are used

during model training. These texts include the report made by the specialist and therefore

detailed information about the Gleason score at the WSI level.

To be consistent with our baseline, we use the same pre-processing as described in [81].

This pre-processing consist in the elimination of stop words when building the text vocabu-

lary. The term frequency inverse document frequency (TF-IDF) method was used because
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Table 7-1.: Details of the subset and final partition of the TCGA dataset used for training

and testing [81].

Risk Gleason Score Train Validation Test

Low 6 11 4 4

Low 7 53 17 17

High 8 23 8 8

High 9 50 17 16

High 10 4 2 1

of its advantageous features. In particular, TF-IDF provides numerical stability, which is

advantageous for our information fusion approach. Furthermore, it enhances the relevance

of unique terms while downplaying the effect of more common terms. This well-considered

balance contributes to a stronger and more meaningful representation of the textual data [81].

Multimodal KQMU

As we are interested in evaluating the model using images only, we use a multitask approach

to train the model. This approach can be visualised in the Figure 7-3. Essentially, the

model is trained with a loss function that includes inference from multimodal data and, at

the same time, inference with visual data only. This makes it possible to control performance

on the final specific task to be assessed: inference from images only. As text contains more

information, training the model with only a multimodal loss function runs the risk that the

model learns to rely only on textual information during training and loses the ability to

generalise with visual information.

Then, given a pair of WSI-Text and their respective representations ρWSI, ρText, these pass

through independent encoders. In both cases, the encoder has two dense layers of 1024 and

512 units. The fused representation (with the use of the kernel functions) is passed to the

KQMU layer. The output of the KQMU is a density matrix ρY such that

p(Y = r|ρWSI, ρText, ρXY) = ρYrr. (7-6)

Given the flexibility of the model to make inference using only one modality (see Eq. 7-4),

we can simultaneously calculate ρ′Y such that

p(Y = r|ρWSI, ρXY) = ρ′Yrr. (7-7)

Therefore, it is straightforward to simultaneously compute a visual regression loss function

LV and a multimodal regression loss function LMM . The total regression loss function will

be a weighted sum:

L = δLV + ϵLMM . (7-8)
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The parameters δ and ϵ allow to control the importance given by the model to unimodal and

multimodal performance and were set to 1/2. For both modalities we explored the kernels,

the number of components of the density matrix decomposition and the α parameter (see

Eq.5-18) of the regression loss functions. In both modalities, the best performing kernel was

the cosine kernel with the number of components set to 128 and α set to 0.02. In addition,

the components of the density matrix are randomly initialised with data from the training

set. This was found to have a significant effect on the performance of the model. Further-

more, the initialisation of each component of the density matrix is crucial for the correct

performance of the model. For this purpose, a random representative subset is selected to

initialise the components of both features and labels, in both modalities. Training was per-

formed with an Adam optimiser and a learning rate of 0.001.

Baseline

We compared the performance of our model with five related approaches: the extended

version of the feature extractor trained as a categorical classifier (DLC-PCa) [81], the Den-

sity Matrix Kernel Density Classification (DMKDC) [54] (also a categorical classifier) and

the Gaussian process (GP) [120], a regressor model. We also report results for deep Gaus-

sian processes (DGP) [37] and, finally, the results of the Deep Quantum Ordinal Regressor

(DQOR) [146] presented in Chapter 6.

For the low risk vs high risk binary classification task, we compare our models with the

methods reported in [67] and [121]. Those are CNN models trained with the binary labels

directly. We also report the results of model presented in [81], trained in a similar multimodal

schema as ours, and tested only with images.

7.3.2. Glaucoma

The setup of the MM-KQMU applied to the Glaucoma diagnosis is described in Figure 7-4.

Dataset

The Public Anonymous oPhtalmological Image and Label Analysis (PAPILA) dataset [78]

is a robust and structured compilation of ophthalmological clinical data that was collected

at the Department of Ophthalmology of the Hospital General Universitario Reina Sof́ıa,

HGURS, in Murcia, Spain, between 2018 and 2020. This dataset is comprised of records

from 244 patients.

Each record in the database contains the age and sex of the patient and fundus images of the

left and right eyes. These images were taken using a Topcon TRC-NW400 non-mydriatic

retinal camera with a resolution of 2576 × 1934 pixels. The dataset also contains expert

knowledge provided by the ophthalmologists. This includes the classification of the patient
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Figure 7-4.: Overview of the proposed MM-KQMU for glaucoma diagnosis. The eye fun-

dus images are cropped according to the Region of Interest (ROI) containing

the disc and optic cup. A fine-tuned DenseNet121 is then used as a feature

extractor. Scaled clinical data is fed directly into the corresponding encoder.

A Gaussian kernel is used for the visual part and a cosine similarity kernel for

the clinical data.

into three categories: glaucomatous, non-glaucomatous and suspect. Diagnostic labels were

assigned based on a comprehensive evaluation of the subject’s clinical data and fundus

imaging. In addition, segmentation of the optic disc (OD) and optic cup (OC) in the images

of both eyes was performed by two experienced ophthalmologists. Clinical data collected

from both eyes of all patients included:

• Refractive error, a vision problem that occurs when the shape of the eye does not bend

the light correctly, resulting in a blurred image.

• Intraocular pressure (IOP), with normal values for healthy patients ranging from 10

mmHg to 21 mmHg.

• Central corneal thickness, which is relevant in patients with glaucoma, since it perturbs

IOP measurements.

• Axial length, the distance between the anterior vertex and the posterior pole of the

eye.

• Mean defect (MD) of both eyes, an overall value of the total amount of visual field loss

compared to the normal sensitivity expected for the population group with the age of

the patient.
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• The condition of the crystalline lens, informing if the eye has the crystalline lens

(phakic) or if it has been surgically removed (pseudophakic).

A data sample can be labelled as 0, 1 or 2. 0 if it is a healthy sample, 1 for glaucoma and 2 for

suspect. This suspect categorization is based on the patient having a predisposing condition,

such as hypertension, but no morphological deterioration of the optic nerve. In [78], the

authors show that in the data set, the suspect category doesn’t serve as a transition class

from healthy to glaucoma, but seems to represent an indeterminate class between the two.

This complexity further complicates the task of delineating a clear classification boundary.

As a result, they choose to exclude the suspect samples from the dataset for training and

evaluation of different classification methods. This exclusion does not imply any inherent

problem with these samples, but is simply a methodological choice made for the sake of the

experimental setup.

We defined a new partition of the dataset. As explained above, the dataset contains fundus

images and clinical data (per eye) from 244 patients. That is, 488 image-data samples. The

original work in which the dataset is presented [78] provides an set up with five train-test

partitions in an 80-20 ratio. However, these partitions present a problem: there are always

some samples from the same patient in both sets: for example, the data from the right eye

in the train and the data from the left eye in the test. We have therefore defined a new ex-

perimental set up that corrects for this detail. The details of the new partition are described

in the Table 7-2.

Table 7-2.: Training and test distribution proposed for PAPILA dataset. Each sample in

this table corresponds to a single eye. In this configuration, data from the same

patient belongs to the same partition. Note that there are fewer samples for

multimodal data. This is due to missing clinical data.

Data Class Train Test

Eye Fundus Images

0 265 68

1 71 16

TOTAL 336 84

Images and Clinical Data

0 261 66

1 62 15

TOTAL 323 81

Multimodal KQMU

The architecture used for glaucoma diagnosis is described in the Figure 7-4. Unlike the

case of PCa, this task does not present an inference problem in the absence of one modality.

Therefore, we trained the KQMUmodel for classification by training only the multimodal loss
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function. However, to prevent the model from suddenly learning to rely in only one modality,

the multimodal training starts with prior unimodal trained encoders for each modality. This

is explained below.

For the images with a resolution of 2576 × 1934, and following the setup presented in [78],

we fine-tuned a DenseNet121. This deep CNN reports the best results when compared with

VGG, MobileNet, InceptionV3, ResNet50 and Xception. The images are cropped according

to the ROI defined by the manual annotation and reduced to a size of 224x224 (see Figure 7-

4). We use the same data enhancement settings as in chapters 3, 4 and 6, except for the

horizontal and vertical translations, as we do not want to damage the radial symmetry of

the ROI. On top of DenseNet121 we placed a dropout layer (with a factor of 0.2), followed

by a layer of 1024 neurons and an output layer of 2 neurons. We did a warm-up with a

learning rate of 10−4 for an Adam optimiser and used a batch size of 32. Fine tuning was

done with a learning rate of 10−5 during 200 epochs, also using an early stop which gave the

best performance on the validation set at epoch 125.

The KQMU visual input is the representation obtained with the DenseNet121, so that each

image is represented by a vector of dimension 1024. This input is passed through an encoder

consisting of a two-layer dense model. The kernel was explored between a cosine kernel and a

Gaussian kernel, with the Gaussian kernel giving the best results. The number of components

of the density matrix decomposition is explored and set to 64. First, the encoder and the

KQMU are trained together. Then, starting from the trained encoder, the γ parameter of

the kernel is initialised according to the range of the encoder outputs, and the components

of the density matrix are also initialised. The model is then fine-tuned. This procedure

proves to be more robust than simply training the encoder and KQMU simultaneously from

scratch. As this is a binary classification task, we use a binary cross entropy as the loss

function. The learning rate is explored and set to 0.001, and Adam is used as the optimiser.

Clinical data must be treated with caution. The measure of visual field loss is only taken

from patients with a positive diagnosis, so they are not included in the training of the models.

In addition, there are 11 patients with missing data for some eyes. After removing these

missing data, we have 323 samples for training and 81 for testing. These data are simply

standardised and used directly in the classification models. The best performing kernel was

the cosine kernel. The number of components of the density matrix decomposition is explored

and set to 64. The model uses a two-layer dense encoder, and the training procedure is the

same. The learning rate is explored and set to 0.01 and Adam is used as the optimiser.

Finally, for multimodal training, we start with the previously trained encoders of each modal-

ity. As we are dealing with a more complex system, the number of components of the density

matrix was raised to 256, and are initialized with random encoded samples. σ for visual ker-

nel is initialized from the visual-only training results. The learning rate was set to 0.001 and

Adam is used as optimizer.
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Baseline

For each modality separately, and of course for the multimodal application, we compared the

performance of our models with several related approaches. Regarding the clinical data, we

compared our model with a KNN, which is, within the classical machine learning methods,

the one that reported the best results. We also used an SVM, which according to hyper-

parameter exploration works better with a linear kernel. Furthermore we used an SVM on

the features encoded by KQMU with the kernel used in KQMU. Analogously for images,

our baseline is the DenseNet121 model used as feature extractor, and SVM models on the

features given by DenseNet121 with a linear kernel, and on the features encoded by KQMU

with the kernel learned by the same KQMU.

In the mutimodal application, we compare our model with a concatenation model, which

has two encoders with the same configuration as the KQMU, and simply concatenates the

outputs to pass a single vector to a final MLP. We also try a Gated Multimodal Unit (GMU)

model [7], which is indeed similar to the concatenation model but, instead of concatenating,

it performs a weighted sum of the representations, where the weighting is learned in time

with all the model parameters.

7.4. Experimental Results and Discussion

7.4.1. Prostate Cancer

Experimental results of KQMU for PCa grading at WSI level are shown in Table 7-3. We

report image-only grading results for KQMU trained with images only (V-KQMU) and for

KQMU trained with multimodal data (MM-KQMU). As in Chapter 6, we report classifica-

tion and regression metrics for the grading task. We also report the low/high risk binary

classification results in Table 7-4.

As expected for the grading task, Table 7-3 shows that MM-KQMU significantly improves

the regression metric compared to the state of the art, while sacrificing a little on the

classification metrics. This is exactly the trend we saw with QMOR in Chapter 6, and it

makes sense given that we are optimising an MSE-based loss function. Furthermore, it is

surprising to see that the MAE already improves quite a bit with V-KQMU. This means

that much of the performance improvement in MAE is due to the way the model input is

constructed, or rather the way the patch summation process is done. KQMU performs an

intrinsic summation process from the construction of the input as a mixed state of patches.

This way of combining the information into a single object and processing all the patches of

a WSI synchronously has a very positive effect on the final results.

Looking at the results in Table 7-4, it is remarkable to see that the improvement in MAE

for the PCa grading task translates into an improvement in accuracy for the binary PCa risk

classification task. Again, the performance of V-KQMU shows that part of this improvement
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Table 7-3.: WSI-level PCa grading results. For each model, two summarization procedures

may be applied, majority vote (MV) and probability vote (PV). KQMU models

do not require summarization procedure. V-KQMU stands for the model trained

only with images and MM-KQMU stands for the model trained with multimodal

data.

Method Accuracy Macro F1 MAE

DLC-PCa PV [81] 0.608 0.354 0.717

GP MV [120] 0.391 0.233 0.739

DGP MV [37] 0.174 0.059 0.935

DMKDC PV [54] 0.608 0.354 0.717

DQOR [146] 0.587 0.356 0.652

V-KQMU 0.565 0.340 0.587

MM-KQMU 0.522 0.326 0.565

Table 7-4.: Results at WSI-level of low risk vs high risk PCa classification. V-KQMU stands

for the model trained only with images and MM-KQMU stands for the model

trained with multimodal data.

Method Accuracy

Google LeNet [67] 0.7352

Modified AlexNet[121] 0.769

M-LSA [81] 0.770

DQOR [146] 0.782

V-KQMU 0.804

MM-KQMU 0.848

is due to the ρWSI construction. However, here the effect of the MAE improvement in

gradation is even more noticeable. That is, the improvement in MAE in grading means that

a greater number of predictions are closer to the true value on the Gleason score scale, and

this is sufficient to make the model robust to the binary task. Better accuracy in grading is

not necessarily better if it is not accompanied by better MAE; it is of little use to have more

samples correctly classified if the misclassified ones are far from the correct value.

7.4.2. Glaucoma

Results for glaucoma diagnosis on PAPILA dataset are reported in Tables 7-5 to 7-7. For

this task, we report binary classification metrics for single modality and multimodal models.
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Table 7-5.: Results on the PAPILA dataset using only clinical data for training and test.

In the case of SVM and KQMU, the kernel we used is given in parentheses. *

indicates that the kernel is the same used by the KQMU model.

Model Accuracy Precision Recall F1 Macro AUC

KNN 0.80 0.45 0.33 0.63 0.58

SVM (linear) 0.75 0.14 0.07 0.47 0.64

SVM (cos*) 0.75 0.37 0.47 0.63 0.58

KQMU (cos) 0.77 0.39 0.47 0.64 0.77

Table 7-6.: Results on the PAPILA dataset using only images for training and test. In the

case of SVM and KQMU, the kernel we used is given in parentheses. * indicates

that the kernel is the same used by the KQMU model.

Model Accuracy Precision Recall F1 Macro AUC

DenseNet121 0.85 0.62 0.53 0.74 0.83

SVM (linear) 0.84 0.56 0.67 0.75 0.77

SVM (rbf*) 0.88 0.67 0.67 0.80 0.86

KQMU (rbf) 0.89 0.75 0.60 0.80 0.91

There are several things to highlight from the results. First, it is clear from Table 7-7 that

our multimodal approach provides the best classification results. In each modality separately

(Tables 7-5 and 7-6), it is noticeable how the SVM improves significantly when using the

encoded data and the kernels learned by the KQMU. Thus, while SVM and KQMU are

closely related, the positive effect of probabilistic training and gradient descent on KQMU

is evident. However, the best results are achieved by our respective models. In other words,

KQMU dominates in all cases.

In multimodal applications, it is noteworthy that GMU does not perform better than con-

catenation. The poor performance of the multimodal SVM is also very interesting. For

this model, we take the same representation learned by MM-KQMU and as kernel we use

the product of the respective kernels of each modality. Surprisingly, in the unimodal case,

this approach was a boost for the SVM, which was always the second best performer after

KQMU. Thus, the same MM-KQMU fusion strategy used with the SVM simply achieves

an average performance between the performance of each modality separately. In contrast,

the MM-KQMU is able to improve the individual performances. That is, the success of

MM-KQMU lies not only in fusing the information with a product of the kernel functions,

but in adapting the whole model to the new combined metric.
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Table 7-7.: Results on the PAPILA dataset using multimodal data for training and test.

MM-KQMU stands for Multi-Modal KQMU. In the case of SVM and MM-

KQMU, the kernel we used is given in parentheses. * indicates that the kernel

is the same used by the KQMU model.

Model Accuracy Precision Recall F1 Macro AUC

Concatenation 0.82 0.52 0.80 0.76 0.90

GMU 0.78 0.44 0.73 0.70 0.90

SVM (cos*×rbf*) 0.84 0.55 0.73 0.76 0.83

MM-KQMU (cos×rbf) 0.89 0.69 0.73 0.82 0.92

Interpretability

Apart from the numerical results, KQMU offers another advantage regarding potential im-

plementation of these models. Recall from Section 5.6 that the inference process for a new

sample depends entirely on the similarity given by the kernel between the new sample and

the propotypes that the model learns and that make up the factorization of the training

matrix ρXY . In Eq. 5-23 it can be seen that the importance of each prototype is marked by

the coefficients βi. Thus, once the model is trained, we can check how many prototypes are

relevant to the model, and look directly at samples that are close (according to the kernel) to

those prototypes in the training set to get an idea of how the model compares when making

a decision.

To illustrate the above idea, Figure 7-5 shows the decision region of MM-KQMU and the

train samples using kernel PCA dimensionality reduction. This figure also shows the position

of the learned prototypes: only 2 out of 256 prototypes remained such that βi > 0. Not

surprisingly, there is one prototype per class. The kernel consisting of the product of the

cosine similarity and the Gaussian kernel corresponds to the similarity measure in this space,

and we can use it to see which samples in the training set are closest to these prototypes.

Figures 7-6 and 7-7 show the results of this exercise.

Thus, given a new sample consisting of a fundus image and clinical data, the MM-KQMU

model is able not only to make a prediction, but also to justify its decision based on a

comparison criterion with a specimen from the training data set. In practical terms, this

takes the model to the next level of interpretability, providing medical staff with even greater

decision-making tools.



98
7 Multimodal Deep Kernel Quantum Measurement for Prostate Cancer

Grading and Glaucoma Diagnosis

Figure 7-5.: Decision region of the MM-KQMU together with the training samples. The

yellow dots correspond to the relevant prototypes trained by the model. Di-

mensionality reduction was performed using PCA.

Figure 7-6.: Most similar specimen from PAPILA train partition for the healthy class pro-

totype (yellow dot). The similarity is given by the multimodal kernel learned

by the MM-KMQU. In this case, the kernel value between the prototype and

the shown sample is 0.9957.
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Figure 7-7.: Most similar specimen from PAPILA train partition for the glaucomatous class

prototype (yellow dot). The similarity is given by the multimodal kernel

learned by the MM-KMQU. In this case, the kernel value between the pro-

totype and the shown sample is 0.9908.

7.5. Conclusions

In this chapter, we introduced the MM-KQMU, a quantum kernel-inspired multimodal prob-

abilistic approach that combines the power and fusion flexibility of kernel functions with the

representation learning capabilities of deep learning models, all within a probabilistic frame-

work. Our proposal has several advantages. First, thanks to kernel functions, our model

allows us to learn a joint representation space for different data modalities via a tensor prod-

uct, without having to deal with the high dimensionality constraints that result from these

combinations. This allows us to take full advantage of the increased complexity of tensor

product spaces, which is explained by their ability to capture component-by-component in-

teractions within the representations of each modality. Second, kernel functions allow us

to naturally handle the uncertainty associated with missing information when a modality is

missing from the dataset. In this way, we achieve flexibility: the model execution pipeline is

not broken, nor does it have to resort to a reconstruction approach when a modality is miss-

ing. Finally, the probabilistic framework of our model also provides better interpretability

tools than the neural network based models that are usually the state of the art for this type

of application.

We tested our models on two tasks: prostate cancer grading and glaucoma diagnosis. For

prostate cancer, the multimodal data consists of whole slide images and medical reports of

those images, with detailed diagnostic information about Gleason patterns and other clinical

data. For glaucoma, we have both fundus images and structured clinical data. Although the

two tasks are multimodal, they have significant differences in terms of the complementarity

of the information and the way it is used in practice.
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For prostate cancer diagnosis, the model should be tested with visual information only, as

the reports will not be available in a real implementation. Our approach allows us to train

with multimodal data and test with a single modality. Thanks to the multitask training

scheme, we can simultaneously control multimodal and image-only performance. In this way,

the model learns to balance the representation of both modalities in favour of image-only

performance. The results show that MM-KQMU is able to improve single modal performance

through multimodal training. For glaucoma, the two data modalities are complementary,

as in medical practice neither images nor clinical data alone are conclusive, and therefore

it makes sense to train and evaluate the model multimodally. The results show that MM-

KQMU improves the performance of unimodal models and multimodal baseline models.

Furthermore, we show that this improvement is not only based on the mechanism of fusing

the representations of each modality, but also on the fact that the model can learn to adapt

to this joint representation of the data.

Finally, MM-KQMU provides some clear interpretability tools. Since the model is based on

density estimation mechanisms, it is possible to find prototypes for each class that explain

the model’s inference decisions. In this way, a prediction can be justified directly on the basis

of comparison criteria with samples from the same dataset. This leads to the development

of many other applications, such as retrieval models, and makes the model a real mechanism

to help medical staff make sensible decisions.

Overall, what we have achieved in this chapter is to show that using kernel functions in

the middle of a probabilistic framework using density matrices allows us to create flexible,

versatile and interpretable multimodal models that are able to combine the adaptive power

of deep learning and the representational power of kernel functions.



8. Conclusions and Future Work

In this thesis, we presented the development of machine learning models that support the

medical diagnosis of various ophthalmological diseases and prostate cancer. The common

denominator of the models here presented is their ability to take advantage of different data

structures and different sources of information simultaneously. Thus, we proposed different

models based on regression, ordinal regression and multimodal classification.

The challenges behind the design of such models are mainly related to the data representation

learning, the possible fusion of information and the subsequent processing of the same,

coupled with the ability to leverage all the structural information available in the data labels.

In terms of representation learning, images or visual modalities are the most challenging for

medical data. The other possible information modalities, such as medical reports or clinical

data, are relatively easy to represent because they follow well-defined structures with a

specific and not very diverse vocabulary. For text and structured data, term frequency-

based representation and good cleaning and standardization processing were sufficient in our

application cases. Images, on the other hand, were represented with features learned by deep

convolutional neural network models. Although we are on the verge of a possible disruption

due to transformer-based approaches, deep CNNs are still a computationally efficient tool

for the initial analysis of medical images. The fact is, as we have seen throughout this thesis,

that the representations learned by these models can have much better processing than that

offered by a traditional multilayer perceptron.

We call the first part of this thesis Deep Learning-based Models, precisely because the main

novelty of what we propose lies in the treatment of these deep learning-based representations.

We show that by using information beyond simple categorical labels, in particular by using

ordinal information, we can improve the performance of models for diagnostic tasks: Chapter

3 shows how cell count estimation helps in the subsequent diagnosis of genetic diseases, and

in Chapter 4 we show that a regression on the grades of diabetic retinopathy helps in the

binary categorical diagnosis of the severity of the same disease. This is the first major

conclusion of this work: The use of regression models that exploit the ordinal information of

the target variable helps to improve the subsequent categorical performance associated with

the diagnostic task in medical applications.

The last sections of the first part of the work are a teaser of what is to come. In Chapter

4, we use not only a regression model, but a probabilistic regression model: Gaussian pro-

cesses. There, we begin to see that using a probabilistic approach allows us to enrich the

interpretation of the model results. Now we not only have predictions, but we can measure
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the uncertainty of the model about those predictions, i.e. we can measure how confident the

model is about what it is predicting, and this is particularly important for these kinds of

sensitive medical applications. When we are told that we are sick, we naturally wonder how

confident the agent who made the decision is in that diagnosis. A probabilistic model can

tell us. The next natural question should be: on what basis did it make that decision? But

that question would be answered later.

The second part of the thesis is called Quantum Measurement-based Models because most of

the novelty now lies in the information processing mechanism itself. Quantum computing has

had an impact on many areas of knowledge, and machine learning has been extensively in-

volved. Quantum mechanics provides a rich theoretical framework and mathematical objects

to encode information and uncertainty, and also to make measurements on these objects. We

have developed probabilistic machine learning models in which the entire flow of information

can be handled by means of density matrices. This makes it possible to summarize, fuse and

interpret all the available information for one task in many different ways.

Chapter 6 is a natural extension of the ideas presented in Chapter 4, using the quantum-

inspired models presented in Chapter 5. We show again that ordinal information is of great

help to representation learning, and that the uncertainty of the predictions correlates well

with the effectiveness of the model. This brings us to the second major conclusion of the

thesis: the use of probabilistic methods in medical applications allows us to generate models

that are interpretable from the quantification of uncertainty.

The efficient implementation of models based on density matrices leads to factorized versions

that allow a more intuitive interpretation of the measurement mechanism. It also allows the

entire flow of information to be expressed in terms of the inner product of the representation

spaces, allowing the direct use of kernel functions. This opens up a world of possibilities.

Kernel functions bring with them a whole another robust theoretical underpinning, full of

tools and possibilities. One of these is the easy fusion of information. This has allowed us

to build versatile multimodal methods in Chapter 7, which show that integrating multiple

sources of information through the tensor product of representation spaces allows us to

achieve better performance. More importantly, we have obtained models that allow us to

answer the question: on what basis does the model make a decision? Our models learn

representative prototypes of the dataset that serve as a reference point for decision making.

So when a model makes a decision, we can look at the comparison criteria that the model

used to make that decision. This brings us to the third major conclusion of this thesis:

probabilistic models based on kernels and density matrices allow the generation of robust and

flexible fusion mechanisms and highly interpretable models.

There are many research directions that remain open in the development of this work. To

start with, in relation to AOSLO image analysis, there are techniques that need to be ex-

plored to better fit the cell localization given by the CoDE model. Also, we need to approach

the diagnosis of diabetic retinopathy using kernel functions instead of random Fourier fea-

tures. This means using KQMU instead of DQOR. And glaucoma diagnosis can also be
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approached in an ordinal way. Going a little deeper, it should be noted that KQMU offers

many application paths due to its symmetrical structure. The processing layer receives,

transforms and returns density matrices that allow us to easily invert the flow of informa-

tion in the graph of the model. This opens the door to the development of more complex

but more versatile models to explore interrelationships between information sources, their

intrinsic structure, and the labels that may be present. One can then think of exploring

translations between modalities, or making more consistent use of the probabilistic distribu-

tion of labels, and also exploring new kernel functions.
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