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internship at the Université du Québec à Trois-Rivières (UQTR). The opportunity provided

by MITACS not only enriched my academic experience but also allowed me to collaborate

with esteemed researchers and access vital resources, which significantly contributed to the

advancement of my research.

Furthermore, I am grateful to the Universidad Nacional de Colombia for their unwavering

support throughout my academic journey. I would like to express my sincere appreciation

for the opportunities I had as a recipient of the Auxiliary Professor and Assistant Professor

scholarships. These scholarships not only provided financial assistance but also allowed me

to deepen my knowledge, engage in valuable teaching experiences, and contribute to the

academic community.

Finally, I would like to express my heartfelt appreciation to my friends and family for their

unwavering support, understanding, and encouragement throughout this journey. Their belief

in my abilities and their constant motivation have been a source of inspiration and strength.

To all those mentioned above and to those who have contributed in various ways but may not

be named explicitly, I extend my sincere gratitude. Without your support and contributions,

this research endeavor would not have been possible.





ix

Resumen

T́ıtulo en Español : Superando la brecha de la realidad: Algoritmos de aprendizaje por

imitación y por refuerzos para problemas de locomoción robótica b́ıpeda.

Esta tesis presenta una estrategia de entrenamiento de robots que utiliza técnicas de apren-

dizaje artificial para optimizar el rendimiento de los robots en tareas complejas. Motivado

por los impresionantes logros recientes en el aprendizaje automático, especialmente en juegos

y escenarios virtuales, el proyecto tiene como objetivo explorar el potencial de estas técnicas

para mejorar las capacidades de los robots más allá de la programación humana tradicional

a pesar de las limitaciones impuestas por la brecha de la realidad.

El caso de estudio seleccionado para esta investigación es la locomoción b́ıpeda, ya que per-

mite dilucidar los principales desaf́ıos y ventajas de utilizar métodos de aprendizaje artificial

para el aprendizaje de robots. La tesis identifica cuatro desaf́ıos principales en este contexto:

la variabilidad de los resultados obtenidos de los algoritmos de aprendizaje artificial, el alto

costo y riesgo asociado con la realización de experimentos en robots reales, la brecha entre

la simulación y el comportamiento del mundo real, y la necesidad de adaptar los patrones

de movimiento humanos a los sistemas robóticos.

La propuesta consiste en tres módulos principales para abordar estos desaf́ıos: Enfoques de

Control No Lineal, Aprendizaje por Imitación y Aprendizaje por Reforzamiento. El módulo

de Enfoques de Control No Lineal establece una base al modelar robots y emplear técnicas

de control bien establecidas. El módulo de Aprendizaje por Imitación utiliza la imitación

para generar poĺıticas iniciales basadas en datos de captura de movimiento de referencia o

resultados preliminares de poĺıticas para crear patrones de marcha similares a los humanos

y factibles. El módulo de Aprendizaje por Refuerzos complementa el proceso mejorando de

manera iterativa las poĺıticas paramétricas, principalmente a través de la simulación pero

con el rendimiento en el mundo real como objetivo final.

Esta tesis enfatiza la modularidad del enfoque, permitiendo la implementación de los módulos

individuales por separado o su combinación para determinar la estrategia más efectiva para

diferentes escenarios de entrenamiento de robots. Al utilizar una combinación de técnicas

de control establecidas, aprendizaje por imitación y aprendizaje por refuerzos, la estrategia

de entrenamiento propuesta busca desbloquear el potencial para que los robots alcancen

un rendimiento optimizado en tareas complejas, contribuyendo al avance de la inteligencia

artificial en la robótica no solo en sistemas virtuales sino en sistemas reales.

Palabras clave: Entrenamiento de robots, Locomoción humanoide ,Técnicas de apren-

dizaje artificial, Aprendizaje por refuerzos, Aprendizaje por imitación, Control no

lineal, Brecha entre simulación y realidad.
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Abstract

Title in English: Overcoming the Reality Gap: Imitation and Reinforcement

Learning Algorithms for Bipedal Robotic Locomotion Problems

The thesis introduces a comprehensive robot training framework that utilizes artificial lear-

ning techniques to optimize robot performance in complex tasks. Motivated by recent im-

pressive achievements in machine learning, particularly in games and virtual scenarios, the

project aims to explore the potential of these techniques for improving robot capabilities

beyond traditional human programming.

The case study selected for this investigation is bipedal locomotion, as it allows for elucida-

ting key challenges and advantages of using artificial learning methods for robot learning.

The thesis identifies four primary challenges in this context: the variability of results obtai-

ned from artificial learning algorithms, the high cost and risk associated with conducting

experiments on real robots, the reality gap between simulation and real-world behavior, and

the need to adapt human motion patterns to robotic systems.

The proposed approach consists of three main modules to address these challenges: Non-

linear Control Approaches, Imitation Learning, and Reinforcement Learning. The Non-linear

Control module establishes a foundation by modeling robots and employing well-established

control techniques. The Imitation Learning module utilizes imitation to generate initial po-

licies based on reference motion capture data or preliminary policy results to create feasible

human-like gait patterns. The Reinforcement Learning module complements the process by

iteratively improving parametric policies, primarily through simulation but ultimately with

real-world performance as the ultimate goal.

The thesis emphasizes the modularity of the approach, allowing for the implementation of

individual modules separately or their combination to determine the most effective strategy

for different robot training scenarios. By employing a combination of established control

techniques, imitation learning, and reinforcement learning, the framework seeks to unlock

the potential for robots to achieve optimized performances in complex tasks, contributing to

the advancement of artificial intelligence in robotics.

Keywords: Robot training, Bipedal locomotion, Humanoid locomotion, Artificial lear-

ning techniques, Reinforcement learning, Imitation learning, Non-linear control, Reality

gap, Sim to real



Contents

Acknowledgements VII

Resume IX

Abstract X

Figures List XIV

Tables List 1

1. Introduction 2

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2. Learning by Demonstration or Imitation . . . . . . . . . . . . . . . . 4

1.2.3. The Reality Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Problem Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1. Case Study - Bipedal Locomotion . . . . . . . . . . . . . . . . . . . . 8

1.3.2. Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3. Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4. Complementary Questions . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1. General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2. Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1. Comprehensively Tested Approaches . . . . . . . . . . . . . . . . . . 13

2. Robots Modeling and Control Models 14

2.1. General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. State Description and Sensors . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2. Robot Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3. Kinematic Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4. Kinetic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.5. Walking Phases and Impact Models . . . . . . . . . . . . . . . . . . . 21

2.1.6. Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xii Contents

2.2. Control Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1. Low-level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2. Parametrizing Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3. Darwin Mini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1. Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2. Kinetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3. Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4. Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.5. Internal PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4. Robotis Engineer Kit (MAX-E2) . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1. Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2. Kinetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3. Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.4. Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.5. Internal PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3. Imitation Learning 54

3.1. What is Imitation Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2. Expert Demonstrations: The Motion Capture Database . . . . . . . . . . . . 57

3.2.1. Motion Capture Process . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2. Data Types and Formats . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3. Features Mapping - The Correspondence Problem . . . . . . . . . . . . . . . 63

3.3.1. Dimensional Disparities . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2. DoF and Joints Misalignment . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3. Inertia and Mass Distribution Differences . . . . . . . . . . . . . . . . 64

3.3.4. Normalized Features Imitation . . . . . . . . . . . . . . . . . . . . . . 65

3.4. Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1. Geometric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2. Optimization-based Methods . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.3. GANs-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5. Proposed approach: Dynamic ZMP-Based Retargeting . . . . . . . . . . . . 69

3.5.1. Original Koenemann’s Approach . . . . . . . . . . . . . . . . . . . . 69

3.5.2. Support Modes Identification . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3. Key Frames Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.4. Dynamic Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4. Reinforcement Learning 79

4.1. What is Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . 81

4.2. Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents xiii

4.3. Policy Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1. Value-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2. Policy-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3. Model-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4. Hybrid Methods (Actor-Critic Methods) . . . . . . . . . . . . . . . . 88
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1. Introduction

1.1. Motivation

In recent years machine learning techniques have gotten awe-inspiring results as the victory

of the artificial intelligence AlphaGO over Lee Sedol, the world champion of the board game

Go [Google, 2015]; the more recent wins over human professionals in the real-time strategy

games Dota 2 and StarCraft in the hands of OpenAI five [OpenAI, 2018] and AlphaStar

[Vinyals et al., 2019] respectively; the success in dealing with the problem of protein folding

addressed with by Deepmind with Alphafold [Jumper et al., 2021]; and the rise of the large

language models as ChatGPT by OpenAI [Thorp, 2023]. These achievements, among many

others, awaken the interest in the study of artificial intelligence techniques for the resolution

of complex problems and entail the possibility of obtaining super-human performances in

many areas.

With this motivation in mind, the possibility of developing machine learning strategies for

robots using different approaches to achieve optimized performances that could surpass those

obtained by traditional human programming is being considered. In particular, the academic

community is studying these artificial learning techniques (especially reinforcement learning

techniques) to achieve robust and efficient controllers for different class problems to obtain

similar results to those in video game environments. However, this is not an easy task as

there are many challenges to consider when trying to implement these techniques in robotic

agents in reality. Among these challenges, some of the most important ones that have been

identified and on which the academic community is working are the considerable variabi-

lity of the results after multiple trials of the techniques on the same problem as presented

in [Recht, 2018], the difference between the behaviors shown by the robots in simulation

compared to the behaviors those that occur in reality (often referred to as reality gap or

sim to real) as presented in [Tan et al., 2018] and the cost (in time and energy) represented

by testing directly on the robot of interest compared to the cost required by simulations as

mentioned in [Koos et al., 2013]. It should be noted that learning processes for robots do not

necessarily have to start from scratch, but it is possible to incorporate preliminary knowledge

to perform the training processes more efficiently. For example, reference movement patterns

can be used as developed in [Merel et al., 2017], it is possible to imitate animal behaviors

as worked in [Ijspeert, 2008], or it is also possible to take as a starting point the parame-

ters corresponding to previously determined sub-optimal behaviors that can be improved as

performed in [Rosolia and Borrelli, 2016], among some other approaches.
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This project aims to propose a modular training scheme based on artificial learning techni-

ques that allow the integration of several of the approaches of the area to robotic locomotion

tasks. Specifically, the analysis of bipedal locomotion tasks is proposed as a case study for

the development of the project because in this kind of task, aspects of interest regarding

artificial learning applied to complex robotic systems can be elucidated, and there is a lot of

reference material both for the comparison with traditional methods such as those presented

in [Ding et al., 2019] and also preliminary information sources such as motion capture data

as in [Merel et al., 2017].

1.2. Background and Related Work

1.2.1. Reinforcement Learning

The study of artificial learning is a booming field, and one of its most studied lines of work

currently corresponds to reinforcement learning. In this line, the aim is for an agent to be

able to generate a mapping between the space of its observations and the space of its actions

in a given environment in such a way as to maximize the reward obtained from the inter-

action, as mentioned in [Sutton and Barto, 2008]. This reward is a function that measures

the quality of the observed behavior (determined by the programmer) that allows the agent

to associate which action-state pairs lead to the best performances in a manner analogous

to the behavioral reinforcement applied in animals (good behaviors are rewarded while bad

behaviors are penalized). Using these ideas, it is possible to achieve complex behaviors th-

rough repeated interaction of agents with their environment. For example, it is possible to

stabilize an inverted pendulum using simple reinforcement learning models. Likewise, using

more sophisticated tools, such as convolutional neural networks, allows solving more complex

problems, such as playing video games from image pixels or solving locomotion problems in

simulation environments, as presented in [Duan et al., 2016]. It is worth noting that there is

a wide variety of methods to perform reinforcement learning since, as in any optimization

problem, intelligent exploration of the search space is required, and this exploration can

be performed in many ways. It is also worth noting that although these algorithms were

initially proposed for discrete models (modeled as Markov decision processes), their use has

been widely extended to continuous problems.

In [Recht, 2018], an overview of reinforcement learning is presented. A parallel is made bet-

ween the approach proposed by the areas more related to computer science and the approach

presented by the areas more pertaining to automatic control, calling for the integration of

the research community around these topics to work towards what is termed actionable inte-

lligence. Along the same line of work, in [Mania et al., 2018], it is shown how a reinforcement

learning scheme allows for solving complex problems efficiently while presenting some of the

significant challenges of using these techniques, such as the variability of the results and the

need to evaluate the performance of training algorithms robustly and comparably.
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On the other hand, some works seek to change how the reward function is proposed to impro-

ve the performance of reinforcement learning algorithms by giving additional bonuses that

encourage the exploration of the environment more appropriately according to the problem.

For example, in works such as [Burda et al., 2018], the use of curiosity as a bonus factor

for the reward function is implemented, achieving diversification of the executed behaviors

by looking for states that “surprise” the agent by presenting observations that have not

been seen before or that differ with the expectation of the same predictive models. Simi-

larly, in [Lee et al., 2019], the use of entropy factors as a bonus to the reward function is

generalized so that as a parameter q (called the entropic index) is adjusted, the algorithm’s

behavior is tuned to increase exploration or exploitation in the search space. As another

alternative, the requirement for an a priori definition of the reward function is criticized in

[Singh et al., 2019], and the use of a robot framework is proposed that allows the determina-

tion of the reward function from the demonstration of desired behaviors in front of a vision

system.

OpenAI and the Gym library

OpenAI is one of the largest companies dedicated to research in artificial intelligence and ro-

botics and has developed several projects in these areas. One of the most notable projects is

the development of the Gym library, which contains a wide variety of tools and test problems

frequently used in the validation and comparison of artificial learning algorithms as presen-

ted in [Duan et al., 2016]. A large part of the community has adopted these problems as a

standard for testing the performance of their algorithms. In particular, locomotion problems

implemented with the MuJoCo simulator introduced in [Todorov, 2019] have been used in

works such as [Lee et al., 2019], [Mania et al., 2018], [Recht, 2018], [Schulman et al., 2015],

[Merel et al., 2017], [Lillicrap et al., 2015], [Erez et al., 2015], and [Uchibe, 2018] among many

others to validate the effectiveness of their methods.

1.2.2. Learning by Demonstration or Imitation

There are many studies on robot learning, and many tools have been developed for using

robots. For example, in [Chernova and Thomaz, 2014], a compendium of the basic concepts

of learning by demonstration for robots with human teachers is presented, showing some

methods of interaction between “teacher” and “learner”, a classification of the types of

tasks developable by robots according to the complexity of the tasks (and the complexity

of their learning) and methods to refine the learned behaviors are also presented. The usual

work cycle required to improve the performance of tasks learned by demonstration using

techniques such as batch learning or teacher correction, among others, is also presented.

Along the same line of work, a demonstration training algorithm is presented in

[Chernova and Veloso, 2010]. A single ”teacher” presents how to perform a given task to

multiple robots that learn from it simultaneously. This process is based on the interaction
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between students and teachers in a classroom, whereby once the teacher performs the de-

monstration, the students try to imitate it. If they require more information, they request

additional information from the teacher and iteratively refine their procedures. In this pa-

per, they present and validate a learning scheme under which two humanoid robots learn to

perform a ball organization task cooperatively from the teaching of a human teacher.

A recent alternative to learning by demonstration is presented in [Duan et al., 2017], which

introduces a learning technique applied to robots and based on the artificial vision that seeks

to extend the information learned in the demonstration of a single task (block stacking) to

multiple other instances of the same task under different conditions. In this case, some

instances of the task performed by a human in a virtual reality environment are taken as a

basis. Subsequently, the robot predicts the next movement from the experience obtained for

each new task. This way, the task can be completed for multiple initial conditions even if

the robot has not explicitly seen it.

As another alternative, there are works such as the one presented in [Koenemann et al., 2014]

in which a humanoid robot is sought to be able to mimic human movements obtained from

motion capture while preserving the robot’s balance. To do so, they take the position of the

robot’s end-effectors as a reference but prioritize preserving the robot’s center of mass within

its lift polygon either on both feet or only on one of them. This prioritization is achieved

by generating the robot poses based on those obtained by the motion capture system but

modifying them so that the result is a statically stable pose at each instant.

Another work to highlight learning by imitation is the one presented in [Merel et al., 2017]

in which motion capture data is taken as a reference to imitate to achieve efficient, robust,

and more natural gait patterns than those obtained without any reference. In this work, it

is mentioned that direct imitation is usually not feasible since the geometric characteristics

of the individuals do not necessarily match those of the agent that is imitating it, so the

imitation must be done more elaborately. To perform the imitation, they propose the use of

generative adversarial neural networks (GANs) to generate the action signals on the agent

from the information of the agent’s state, which is compared with those provided by the

data so that with the passage of iterations, the generative network produces results very

close to the data but operating on the agent of interest. Within the same work, they propose

modularizing the learned behaviors and their use as tools to develop more complex behaviors,

such as climbing stairs or navigating environments with obstacles.

1.2.3. The Reality Gap

Due to the iterative nature of learning methods, it is widespread that they tend to be de-

veloped much more frequently in simulated environments than in real environments since

simulations can be performed much faster and at a significantly lower cost in most cases.

However, simulators have certain differences from reality either due to errors in the charac-

terization of the system, due to unmodeled dynamics, or errors inherent to the model (such
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as discretization). Notably, the calculation of contact forces between rigid and deformable

bodies is a problem that is not entirely solved and is an important source of errors in the

simulation of robotic systems. Because of this, the results obtained by optimization processes

in this kind of environment do not necessarily transfer directly to real robots, to the point

that results with very high performance in simulation may become completely unfeasible in

reality or may require subsequent stages of fine-tuning of the model to be appropriate.

Randomization of the task domain is often presented as an alternative to overcome the

reality gap. Notably, the work presented in [Tobin et al., 2017] seeks to enable manipulator

robots to move objects from a vision system in a robust manner with multiple distractors

from simulation training in which the textures with which different objects in the scene are

rendered as well as the position and geometric features of various elements are randomly

generated between experiments so that robust policies are learned. Reality is taken as ” just

another scenario”, which was shown not to require additional tuning to function properly as

in other approaches.

In [Tan et al., 2018], the use of robust control models in conjunction with the refinement of

the modeling to a great detail is presented as an alternative so that the simulator represents

in a sufficiently reliable way the real robot and, in this way, the behaviors obtained in the

simulation are compatible with the real robot. As a case study, they present the modeling of

a quadruped robot intended to learn efficient walking patterns during training, highlighting

that the patterns learned only in the basic simulation are not transferred appropriately. To

mitigate the differences between reality and the simulator, they model in detail the actuators

of the robot and the latency between the control signals on the system. In this way, they

achieve efficient behaviors both in reality and in the simulation, closing the gap for this

problem.

On the other hand, in [Koos et al., 2013], there is a brief review of what the reality gap is,

explaining some of the methods that are commonly used to deal with it (such as introducing

perturbations to the simulation or tuning the policy resulting from the simulations to reality

a posteriori, Among others) and an approach called the Transferability Approach is proposed.

This approach poses a multi-objective optimization problem in which the aim is to maximize

the performance function and a transferability function at the same time. This transferability

function seeks to capture which behaviors correspond highly between reality and simulation.

It is obtained by performing a reduced number of experiments in reality together with the

experiments in simulation so that those that show a performance close to the simulation get

high values of transferability and vice versa. In this way, the final behaviors obtained at the

end of the process are feasible both in simulation and in reality, taking advantage of the

versatility of the simulators to perform a large number of tests with few experiments on the

real robot.

Similarly, in [Rodriguez et al., 2018], the efficiency of the number of experiments required by

other methods is criticized, and the use of Bayesian optimization methods with experiments

both in simulators and in real robots for bipedal locomotion problems is proposed as an
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alternative. It should be noted that in this case, the learning is not done from zero, but it is

based on a predetermined open-loop running pattern which is complemented by a feedback

loop that is responsible for strengthening the performance of the system by modifying the

action on the different actuators according to the state of the robot.

1.3. Problem Identification

When thinking about implementing robots to perform complex tasks, it is desired that their

programming is as simple as possible for the person teaching the task. Also, it is sought that

the robots are efficient in developing it in terms of speed of execution and associated energy

consumption. However, traditionally the programming of robots for the execution of tasks

has been a complex process that requires specific knowledge and skills for its realization since

the programming and kinematic and kinetic analysis of a robot are not trivial tasks.

Artificial learning techniques (such as imitation learning or reinforcement learning) have

been proposed to allow robots to execute tasks properly without explicit programming as

an alternative to achieve this ideal of simple and practical programming. This alternative

presents many opportunities for the development of the area since virtual agents trained

using artificial learning algorithms have demonstrated remarkable performances, such as the

victory of virtual entities in board games and video games by artificial intelligence against

human professionals. However, there are also many challenges to consider to realize this

application. Some of the most relevant are:

The high variability shown by the results obtained by artificial learning methods,

not only for robotics tasks but for many other classes of problems as developed in

[Recht, 2018]. In that work, it is presented that the high variability leads to the results

obtained by these methods being very susceptible to change from one run of the algo-

rithm to another to the point where different results are reported by varying the seeds

of the random number generators employed as well as by varying the corresponding

hyperparameters.

The high cost of time and resources involved in performing many experiments on

robots which are necessary due to the nature of these algorithms as mentioned in

[Rodriguez et al., 2018]. Conducting experiments on the actual robots involves time,

energy, wear and tear on the robot, and some risk of damage from falls or unsafe

behaviors. In addition, one also has that contrary to virtual environments, resetting

the experiments is usually done manually and requires time.

The difference between the behaviors observed in real robots and those observed in

simulation, i.e., the reality gap. This gap hinders the direct application of these tech-

niques in purely simulation environments since behaviors that present a very high
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performance are not necessarily transferable to real robots either because they are ex-

ploiting some phenomenon that only occurs in the simulator or because the model is

not sufficiently detailed to correspond to reality as presented in [Koos et al., 2013].

The fact that human motion patterns are not necessarily compatible with robots as

presented in [Koenemann et al., 2014] or even more, the fact that even when compati-

bility is given (intrinsically or by making appropriate adjustments), these patterns are

not necessarily the most suitable to perform the task with optimized performance since

when seeking to teach a new task to a robot, the person in charge of the demonstration

will not necessarily be an expert in the execution of this with what the results will not

necessarily be of high quality.

Thus, the problem to be addressed is the development of a robot training framework based

on artificial intelligence that allows robots to perform complex tasks in an optimized way in

terms of execution speed and energy consumption associated with them, solving each of the

above challenges. This framework is intended to apply to different tasks that can be modeled

under a reinforcement learning scheme, i.e., an agent that interacts with its environment and

obtains certain rewards (or punishments) from such interaction. In contrast, a person can

demonstrate the task for its execution, even if it is not optimal.

1.3.1. Case Study - Bipedal Locomotion

It is important to clarify that countless tasks fall under this categorization (tasks that can

be approached with artificial intelligence techniques). However, this thesis will focus only

on bipedal locomotion tasks as a case study. This case is chosen as it allows us to properly

illustrate the advantages mentioned earlier and the challenges that emerge from using these

methods for robot learning.

There is wide variability in the results demonstrated by different artificial learning

algorithms as presented in [Mania et al., 2018] on humanoid locomotion tasks in the

MuJoCo Locomotion benchmark presented in [Duan et al., 2016]. This variability is

evidenced by the wide variety of different gait patterns that can emerge from random

conditions, among which there are patterns similar to those employed in reality by

people. Still, also strange behaviors appear, such as lateral or asymmetric gaits where

one leg moves much more than the other.

The cost of performing the experiments directly on the robots of interest is evident

as the locomotion tasks involve wear and tear on the robot parts, generally require

manual reconfiguration of the environment and have some risk of damage due to falls.

Simulation models for walking robots are usually not close enough to reality. Even

with quadruped models, it is impossible to directly migrate motion patterns learned in
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simulation to reality as presented in [Tan et al., 2018]. Therefore, biped models that

are even more delicate to work with (because they usually lack static stability during

some intervals within their gait) are even more exposed to this phenomenon.

Although humanoid bipedal robots exist, in general, the specific morphology, the num-

ber of degrees of freedom, and weight distribution of these robots are not necessarily

identical to that of humans, so the patterns presented by humans will generally not be

directly transferable patterns for robots and even when they are, they will be subject

to improvement.

Additionally, bipedal robotic locomotion is a problem for which a large amount of informa-

tion is available for development and comparison since it is a problem widely studied both

by classical methods (predetermined closed solutions) as presented in [Ma et al., 2018] or

in [Kobayashi et al., 2018] and by learning-based methods as in [Merel et al., 2017]. Simi-

larly, it is worth noting that there are motion capture databases for various human move-

ments (such as walking, jogging, and running, among many others), such as those found

in [Carnegie Mellon University Graphics Lab, 2004]. Additionally, generating new data with

relative ease is possible, which is considered sufficient availability of material for studying

and developing new techniques.

1.3.2. Formal Problem Definition

The problem is presented as a reinforcement learning problem from the control perspecti-

ve following the notation and ideas presented in [Recht, 2018]. We have a time-invariant

dynamical system of the form:

xt+1 = f(xt, ut, et)

where f is a function that maps from the state xt, the input ut and the current random

perturbations et of the system to the next state of the same xt+1 at time t. We also consider

a function Rt(xt, ut), which, for each time instant, assigns a reward to the pairs of (xt, ut),

which we seek to maximize. Thus, the problem in general terms is stated as follows:

maximize Eet

[
N∑
t=0

R(xt, ut)

]
,

subject a xt+1 = f(xt, ut, et)

,

(given x0),

.

We seek to maximize the cumulative reward function obtained by the dynamic system over

time by manipulating the control signal ut. To determine ut, we define a function called
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“policy”πt(xt), which maps the information of the system state (and possibly the pairs

(x0, u0, ..., xt, ut) visited so far) to the available set of actions.

For the project, the dynamic system of interest will correspond to the biped robot under

study, in which case f will correspond to the equations governing the robot’s motion (which

must be approximated in the modeling process), xt to the robot state information (inferred

from its sensors), ut to the control signal imposed on the robot (whether voltages, torques

or set point signals are applied) and et will be the external disturbances affecting the robot

as well as the effect of dynamics not considered in the modeling.

The reward function to be considered must be determined during the project’s development.

However, a priori, it is known that it should be increasing concerning the speed of movement

of the robot in the task vt and should be decreasing concerning the energy consumption ct
(or a function that is proportional to it) so that the optimization objectives are balanced,

R(xt, ut) ∝ vt

,

R(xt, ut) ∝ −ct

.

Finally, it is emphasized that the policies πt can take many different forms and that their

determination is the key to resolving the problem. However, the a priori search space is too

large to be studied in general terms since it is possible to use many types of structures for the

function. One can use anything from relatively simple structures, such as linear mappings

of the form ut = θxt as in [Mania et al., 2018], to more complex structures, such as deep

neural networks as in [Nguyen and La, 2019]. Thus, to reduce this search space, the policies

are defined as functions with a predetermined form given with θ parameters, which end up

being the variables with which the problem is solved. So, the optimization problem results

in the following:

maximize θ

[
Eet

[
N∑
t=0

R(xt, ut)

]]

subject to xt+1 = f(xt, ut, et)

subject to ut = π(θ, xt)

(given x0),

Thus, the development of the problem will consist of determining the policy’s predetermined

structure and optimizing its performance based on its parameters.
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1.3.3. Research Question

How can robotic systems be trained to perform bipedal locomotion tasks so that the obtained

performances are optimized in terms of energy consumption and execution speed, despite

the limitations imposed by the reality gap?

1.3.4. Complementary Questions

How can information from human motion patterns be efficiently transferred to bipedal

robots?

How do differences in morphology and initial pose between a robot and a person

influence the execution of a locomotion task?

How can energy efficiency be improved in the execution of a task learned by demons-

tration?

How can experiments conducted in simulation and with real robots be integrated to

achieve functional and efficient results?

1.4. Objectives

1.4.1. General Objective

To design a robot training strategy based on reinforcement learning that, through expe-

riments on both real robots and simulation, allows for the execution of bipedal robotic

locomotion tasks in an optimized manner in terms of energy consumption and execution

speed and whose results are feasible for implementation in real robots despite the reality

gap.

1.4.2. Specific Objectives

Develop an imitation learning algorithm that allows robots to perform bipedal loco-

motion tasks in a manner similar to human demonstrations and is stable not only in

simulation but also in real robots.

Design a reinforcement learning algorithm (based on the quality of the obtained wal-

king patterns) that employs experiments in simulation and with real robots, focusing

on bipedal robotic locomotion, to optimize the performance of parametric policies re-

garding energy consumption and movement speed.
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Determine and implement an efficient mechanism to integrate information from dif-

ferent sources, such as patterns learned by imitation, predetermined models, and/or

patterns learned by reinforcement.

Perform a comparative analysis of the proposed algorithms in both simulation and real

bipedal robots, emphasizing the effects of the reality gap and the observed variability

in the results.

1.5. Proposed Approach

This work proposes a robot training strategy that allows different robots to learn to walk

in optimized ways by implementing artificial intelligence techniques despite the limitations

imposed by the reality gap problem. The strategy was developed considering a modular

framework considering three main approaches:

Non-linear Control Approaches: Considering that bipedal robots have been able

to walk since several years ago, the first approach considered, presented in Chapter

2, entails the modeling of the robots and the control structures employing already

well-established techniques in the literature. This first approach allows for determining

preliminary workflows and criteria for tackling the whole-body humanoid locomotion

problem, which is used as the basis for the following approaches and a comparison

reference.

Imitation learning: Taking advantage of the before-mentioned similarity between

humans and robots, the second approach considered, presented in Chapter 3, entails the

use of imitation learning as an initialization tool for the process aiming to have initial

policies that although not optimal for the problem at hand, allow for the determination

of feasible human-like gait patterns. We took reference motion capture (MoCap) or

preliminary policy results to perform this imitation and adjusted the coefficients or

parametric policies to minimize a metric. The metric was a distance function that

relates the behavior of the different subjects (whether humans or robots) to a shared

space. However, mindlessly minimizing this metric, in general, is not enough since a

perfect imitation of another agent does not necessarily guarantee the viability of the

policy on the imitator. Therefore, we iteratively adjusted the results to obtain similar

and viable results in the target subjects.

Reinforcement learning: As we are interested in obtaining fast and efficient per-

formances, the third approach considered, presented in Chapter 4, entails the use of

reinforcement learning as a tool that allows the improvement of different parametric

policies, whether randomly initialized or based on other preliminary approaches. To do

so, we performed an iterative process where most of the experiments were performed

in simulation but always had performance in reality as the ultimate goal.



1.5 Proposed Approach 13

Once the individual approaches were developed, we obtained several modules that can be

implemented stand-alone or in combination with others. Chapter 5 presents some of the

different possible combinations of the modules presented aiming to determine the best overall

strategy. Finally, Chapter 6 offers the conclusions of the work and some insights for future

work.

1.5.1. Comprehensively Tested Approaches

As we introduce various modules, the multitude of potential combinations presents a cha-

llenge. Due to practical constraints with our available robots, namely the Darwin Mini (refer

to Section 2.3) and MAX-E2 (refer to Section 2.4), we focused our efforts on a subset of

feasible combinations during the project.

Our approach included a policy-based method (refer to Section 4.3.2) with a fixed policy.

This policy, informed by robotics theory, defines a search space where trajectories align

with known problem constraints (refer to Section 4.3.5). Subsequently, we fine-tuned the

parameters using three distinct methods:

1. Manual Tuning: We initially selected conservative parameters to establish a basic,

stable gait as a reference.

2. Reinforcement Learning Tuning from Aleatory Initial Conditions: Parameters

were optimized from randomly initialized values using a gradient-based method (refer

to Section 4.4.2).

3. Reinforcement Learning Tuning from Imitation Learning Initial Conditions:

Parameters obtained from motion capture data, mapped to the robot space using our

proposed Dynamic Retargeting Method (refer to Section 3.5), were further refined

using a gradient-based method (refer to Section 4.4.2).

For low-level control in simulations, we employed first-order kinematic control (refer to Sec-

tion 2.2.1) using hybrid models (refer to Section 2.1) to characterize and estimate the robots’

states. In physical experiments, due to hardware limitations, we utilized internal servomotor

controllers in position mode to set joint space targets that the robots followed. Additionally,

we considered the internal registries of the servomotors and the robots’ hybrid models. All

implementations on the robots considered transferability limitations and specific strategies

(refer to Section 4.5.4).
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Humanoid robots have made significant strides in locomotion capabilities over the past few

decades from the earliest works on bipedal gait synthesis as [Vukobratovic and Juricic, 1969],

there have been several approaches for obtaining stable bipedal robotic locomotion as the

use of Hybrid zero dynamics for underactuated robots as [Westervelt et al., 2003], the use of

the theory of passive walkers as [Collins et al., 2005], and the use of optimization-based tech-

niques as [Kuindersma et al., 2016]. As we explore the challenges of this type of locomotion,

it becomes evident that leveraging the existing modeling and control tools can significantly

benefit this thesis’s workflow. In this chapter, we delve into the crucial aspects of robot

modeling and control, recognizing the value of the previous analytical methods brought to

the development of effective locomotion strategies.

While learning models that bypass the need for explicit models or directly map sensor in-

puts to actuator outputs have gained attention, as in [Lillicrap et al., 2015], it is essential

to consider the advantages of employing established models and controllers. Utilizing the

knowledge and techniques already developed in the field can enhance our final strategies’

sample efficiency and overall performance. The integration of well-established modeling ap-

proaches enables us to tap into the wealth of prior knowledge, allowing for a more informed

and efficient exploration of bipedal locomotion strategies. For instance, considering formal

stability methodologies such as the ZMP point criterion or the Poincaré Return Map crite-

rion, it is possible to have formal guarantees on the robot’s stability that are omnipresent in

the control community but not so much in artificial learning studies.

An appropriate model serves as the foundation for our research, facilitating meaningful si-

mulations that contribute to bridging the gap between simulation and real-world implemen-

tation. Although it is usually unfeasible, a perfect simulator has no reality gap and allows

direct transferability. By accurately capturing the kinematics, dynamics, and interactions of

humanoid robots, we gain insights into the intricacies of locomotion. Through these simula-

tions, we can narrow the reality gap, refining our strategies and improving the likelihood of

successful implementation in the real world.

In this chapter, we embark on a comprehensive exploration of robot modeling and control.

We start by discussing the general model of humanoid robots, encompassing state description

and sensors, robot actuators, kinematic relationships, kinetic interactions, walking phases,

impact models, and stability criteria. Following this, we delve into the various control models

employed in humanoid robotics, focusing on low-level control and parametrizing trajectories.

Additionally, we provide specific models for two humanoid robots: the Darwin Mini and the
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Robotis Engineer Kit (MAX-E2). These models offer detailed insights into their kinematic

structure, kinetic parameters, actuation mechanisms, sensing capabilities, and internal PC

configurations.

The rest of the Chapter is organized as follows: Section 2.1 presents the different elements

of the model considered for the bipedal gait of robots in general, Section 2.2 presents the

low-level and trajectory planning strategies for achieving the desired behaviors on the robots,

Section 2.3 presents the particularities of the Robot Darwin Mini, and Section 2.4 presents

the particularities of the Robot MAX-E2.

2.1. General Model

Following the ideas presented in [Chevallereau et al., 2014], the bipedal robots are modeled

as multi-domain hybrid systems of the form:

Σ = (Γ,X ,U ,S,∆,FG), (2-1)

where Γ corresponds to the graph that relates the different phases of the gait, X corresponds

to the state variables of the system (as the joint angles and velocities), U corresponds to the

input vector of the system, S corresponds to the switching surface that maps the impact

conditions, ∆ corresponds to the reset map that determines the instantaneous change in the

state variables after the impacts and FG corresponds to the flow equations that determine

the evolution of the state variables when there are no impacts. Considering a gait with Np

phases, the resulting model corresponds to

Σ =



X = {Xi}Np

i=1 : Xi ⊂ Rni

U = {Ui}Np

i=1 : Ui ⊂ Rmi

FG = {(fi, gi)}Np

i=1 : ẋi = fi(xi) + gi(xi)ui

S = {S i+1
i }Np

i=1 : S i+1
i = {xi ∈ X⟩|H i+1

i (xi) = 0, Ḣ i+1
i (xi) < 0}

∆ = {∆i+1
i }Np

i=1 : x
+
i+1 = ∆i+1

i (x−
i )

(2-2)

where Xi corresponds to the state variables that describe the system in the i-th phase,

ni corresponds to the number of degrees of freedom of the system in the i-th phase, Ui

corresponds to the control variables of the system in the i-th phase, mi corresponds to the

number of actuated variables in the i-th phase, fi and gi correspond to the dynamic equations

of the system at the i-th phase, S i+1
i corresponds to the switching surface that takes the

system from the i-th phase to the next, H i+1
i is the guard function that parameterizes the

switching surface, and ∆i+1
i is the reset maps that sets the state of the system form x−

i (right

before the impact) to x+
i+1 (right after the impact). Note that the phases are considered

cyclical so that Np + 1 −→ 1.
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It is worth mentioning that the system’s state must be inferred from the robots’ sensors in

real environments since this information is not intrinsically available as in the simulation

environments.

To characterize each of the components of this model, it is required to consider the compo-

nents of the system and their dynamics considering:

The sensors and actuators models.

The kinematic relationships.

The kinetic interactions.

The walking phases and the impact models.

2.1.1. State Description and Sensors

The state of a bipedal robot X encapsulates different variables related to the robot’s pose and

its links. It may also contain information related to the forces that act on it or the internal

components of the robot as the battery or the actuators. It is worth mentioning that the pose

and velocities must be expressed related to a convenient reference frame. Depending on the

gait type considered, the state of the bipedal robot can be inferred using only information

related to their joint angles as in the case of non-slipping walking gaits where at least one

foot is in contact with the floor in each instant, or it may be required to consider additional

information as in the case of jogging gaits where the contact with the floor is intermittent.

To determine the state of the bipedal robotic system, it is required to have specific sensors

on it. These sensors are all the devices that provide information about the state of the ro-

bot and its environment, measuring directly or indirectly certain interest variables. These

sensors can be classified into two categories as presented in [Siegwart et al., 2011]. The pro-

prioceptive sensors provide information about the inner state of the robot (as the encoders of

each joint or the inertial sensors), and the exteroceptive sensors provide information about

the environment and the interactions of the robot with it (as gyroscopes, GPS sensors, or

cameras).

Sensor fusion combines data from multiple sensors to obtain a more accurate and complete

estimate of a system’s state. A single sensor cannot obtain the required accuracy and re-

liability in many real-world applications. For example, a mobile robot’s state estimation in

robotics could be based on multiple sensors, such as an inertial measurement unit (IMU)

for measuring acceleration and angular rates, encoders for measuring wheel velocities, and

cameras for measuring visual features.

Kalman Filters are a widely used method for sensor fusion. They are recursive algorithms

that estimate a system’s state given uncertain measurements over time. The Kalman Filter

works by combining predictions of the system’s state based on a mathematical model with

measurements of the system’s state from multiple sensors. These filters assume that a linear
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dynamic system can model the system’s state and that the measurements are subject to

Gaussian noise. The filter uses a probabilistic model to estimate the system’s state and the

uncertainty associated with that estimate and computes a weighted average of the predicted

state and the measurements, where the relative uncertainties of the predictions and the

measurements determine the weights. Although Kalman Filters are initially defined for linear

systems, they can be extended to handle nonlinear systems using an extended Kalman Filter

or a particle filter.

2.1.2. Robot Actuators

The control variables of the robot U can be considered from different perspectives. It is

possible to consider that the input signals of the system are the set points for the robot’s

joint angles, the torques applied on each joint, or the voltage applied to the actuator. From

a kinetic perspective, it is clear that the physical variables that act on the robot are the

torques or the forces of the actuators on each joint. However, the actuators usually have their

dynamics, and those forces or torques are not necessarily controlled directly. For instance,

the actuators employed on bipedal robots are usually electrically driven servomotors. These

servomotors usually have an internal control loop that takes as input the desired position

of the joint and employs a simple PID controller to determine the required voltage (and

consequently current) delivered to the motor to reach the target position.

2.1.3. Kinematic Relationships

Every robot can be modeled as a kinematic chain (or kinematic tree) where the position

and rotation of each interest frame f on the robot can be described as a 4 × 4 uniform

transformation matrix that depends on the articular values q from a base frame to the

interest one:

T f
0 (q) =

[
R3×3(q) P3×1(q)

01×3 1

]
, (2-3)

where T f
0 (q) is the transformation matrix that relates the frame f relative to the frame 0,

R(q) is the 3 × 3 rotation matrix, and P (q) is the 3 × 1 position vector of the frames of

interest.

These matrices can be obtained by multiplying the corresponding one to each subsequent

frame concerning the previous one up to the root:

T f
0 (q) =

f∏
i=1

T i
i−1. (2-4)

Note that even if the rotation matrix has nine elements, several restrictions allow it to be

represented in 3 or 4 parameters (as Euler angles or quaternions).
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Differential Kinematics

To obtain the linear and angular velocities of the interest, it is possible to forward propagate

the velocities of each link from the root frame to any interest one summing those speeds in

the appropriate reference frame:

ωi
0(q, q̇) = ωi−1

0 + ωi
i−1 = ωi−1

0 +Riq̇iẑi, (2-5)

vi0(q, q̇) = vi−1
0 + vii−1 = vi−1

0 + ωi
0 × rii−1, (2-6)

where ωi
0 is the angular velocity of the frame i relative to the origin (the world frame), ωi

i−1

is the angular velocity of the frame i relative to the previous frame i− 1, Ri is the rotation

matrix corresponding to the frame i, q̇i is the angular velocity of the joint i and ẑi is the

direction of the axis where the joint i acts, vi0 is the linear velocity of the frame i relative to

the origin, vii−1 is the linear velocity of the frame i relative to the previous frame i− 1, and

rii−1 is the position of the frame i relative to the previous i− 1.

Alternatively, it is possible to use the Jacobian matrix Jx of the interest variables x (also

called task space) concerning q:

ẋ =
d

dt
x = ∇qx

dq

dt
= Jx(q)q̇. (2-7)

Depending on the task, the interest variables may change. In the bipedal gait scenario,

tracking the position and rotation of the balancing foot, the position of the mass center, and

the rotation of the torso is often helpful. Note that the Jacobian matrix has a row for each

interest variable in x and a column for each joint value in q. Therefore, in general, the matrix

is not square but rectangular, and to determine the required q̇ for a given ẋ, it is required

to use a pseudo inversion method.

Let ẋd be a vector of m desired interest variables, q̇d a vector of n actuated joint values, and

J+
x (q) be the pseudo-inverse of the Jacobian matrix so:

q̇d = J+
x (q)ẋd. (2-8)

There are many different pseudo-inversion methods. Between them, we highlight the follo-

wing:

The Moore-Penrose Pseudo inverse J+
x (q) = (JT

x (q)Jx(q))
−1JT

x (q) guarantees the mi-

nimization of the inversion error but is very sensitive to numerical problems in the

proximity of singularities.

The damped Moore-Penrose pseudo inverse J+
x (q) = (JT

x (q)Jx(q)+λI)−1JT
x (q) employs

the damping factor λ to minimize the norm of the solution as well as the inversion error
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with better robustness than the non-damped case (larger λ implies smaller q̇d at the

cost of more significant inversion errors). Note that if λ = 0, the damped version is

equivalent to the original.

The Extended Jacobian methods J+
x =

[
Jx(q)

η(q)

]−1

add extra rows to the Jacobian

matrix until it is square and, therefore, directly invertible. The added rows must lie

in the null space of the original Jacobian (the directions into the articular space that,

when moved into them, do not affect the output in the task space). They can be

used to fulfill additional tasks, such as reducing the movement from a base pose. This

method has been extensively studied [Tevatia and Schaal, 2000]. Still, it can be very

demanding computationally since the calculus of the null space of a large Jacobian

must be made numerically at each step for matrices larger than 2× 2.

Second Order Differential Kinematics

The linear and angular accelerations of the interest frames may be required in some applica-

tions. This can be evaluated forward propagating the accelerations of each link concerning

the preceding in a similar way as performed with the velocities:

αi
0 = αi−1

0 + αi
i−1 = αi−1

0 +Riq̈iẑi + ωi
0 ×Riq̇iẑi, (2-9)

ai0(q, q̇) = ai−1
0 + aii−1 = ai−1

0 + αi
0 × rii−1 + ωi

0 × vii−1, (2-10)

where αi
0 is the angular acceleration of the frame i relative to the origin (the world frame),

αi
i−1 is the angular acceleration of the frame i relative to the previous frame i− 1, ai0 is the

linear acceleration of the frame i relative to the origin, and aii−1 is the linear acceleration of

the frame i relative to the previous frame i− 1.

Alternatively, it is also possible to obtain those accelerations, considering the time derivative

of the Jacobian matrix of the transformation. However, there is no standard form for the

Hessian H(q) for multi-variable vector-valued functions. In this work, we will consider the

definition as an m× n× n tensor:

ẍ = J̇(q)q̇ + J(q)q̈ =

(
∇qJ(q)

dq

dt

)
dq

dt
+ J(q)

d2q

dt2
= H(q)q̇2 + J(q)q̈. (2-11)

2.1.4. Kinetic Interactions

Once the full kinematic relationships of the robot are determined, it is necessary to determine

the required torques and forces that the servomotors and the reaction forces must exert to

validate the limits of the actuators and the hypothesis onto the reaction forces (tangential
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force of the ground reaction force within the friction cone and torques within the permissible

bounds). This process of obtaining the torques and reaction forces based on the angular

position, angular velocity, angular acceleration, and inertial properties of the robot is known

as the inverse dynamic problem and is usually formulated as follows:

M(q)q̈ + C(q, q̇) = τ + Fc, (2-12)

where M(q) corresponds to the inertia matrix of the robot, C(q, q̇) includes the centripetal,

Coriolis, and gravitational forces that act on the robot, τ corresponds to the generalized

torques input, and Fc corresponds to the contact forces with the ground.

On the other hand, the forward dynamic problem consists of obtaining the angular accele-

ration based on the angular position, angular velocity, inertial properties, applied torques,

and reaction forces and is usually formulated as follows:

q̈ = M(q)−1(τ + Fc − C(q, q̇)). (2-13)

Note that the inertia matrix is definite positive, so its inverse always exists.

There are several methods to obtain a robot’s kinetic relationships; the two most common

approaches are the Newton-Euler and Euler-Lagrange methods.

Euler-Lagrange Method

The Euler-Lagrange approach presented in [Mark W. Spong, 2020] considers an energy-

based approach that, following the least action principle, states that the change in the

system’s energy is influenced by the input forces acting on the system. In this approach, the

Lagrangian L of the system relates the kinetic energy of the system K and the potential

energy of the system U

L(q, q̇) = K(q, q̇)− U(q) (2-14)

and its application results in an inverse kinematic model of the form:

τ =
d

dt

∂

∂q̇
L(q, q̇)− ∂

∂q
L(q, q̇). (2-15)

This approach considers the robot as a whole and tends to be preferred when there are non-

rigid elements on the robot and when the robot structure is complex. However, when the

robot has several degrees of freedom, its use can become unfeasible as the required derivatives

(even with symbolic math toolboxes) may demand too many resources for their calculus.

Newton-Euler Method

The Newton-Euler approach presented in [Mark W. Spong, 2020] considers each link as an

individual entity, evaluates its linear and angular momentum

pi = miv
i
0, (2-16)
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Li = Iiω
i
0, (2-17)

where pi is the linear momentum of the link i, mi is the mass of the link i, Li is the angular

momentum of the link i, and Ii is the inertia tensor of the link i.

Based on the second Newton’s law:

dpi
dt

= mia
i
0 + Iiα

i
0 =

∑
j∈Ni

f j
i , (2-18)

dLi

dt
= Iiα

i
0 + ωi

0 × Iiω
i
0 =

∑
j∈Ni

τ ji , (2-19)

where f j
i is the force that the link j exerts on the link i, where τ ij is the torque that the link

j exerts on the link i, and Ni is the set of links connected to the link i.

This set of equations allows for determining the dynamic behavior of each link and, by

extension, the dynamic equations of the whole robot. To do so, it is often helpful to represent

the forces of each element in free-body diagrams as the ones presented in Appendix A.

Note that even if each link is considered an individual entity, the reaction forces couple the

dynamics of the set, and the velocities, accelerations, forces, and torques must be propagated

through the kinematic tree for the calculus.

Recursive Newton-Euler Method

Based on [Siciliano and Khatib, 2016], it is possible to obtain the inverse dynamics of the

robot following a recursive process that consists of several steps:

1. Determine the effective forces and torques that act onto each link
∑

j∈Ni
f j
i = mia

i
0

and
∑

j∈Ni
τ ji = I iCMαi

0 + ωi
0 × I iCMωi

0.

2. From the end of the kinematic chains towards the root, determine the contribution of

force and torque applied by the joint for the dynamic balance fi =
∑

j∈Ni
f j
i − f i+1

i

and τ i−1
i =

∑
j∈Ni

τ ji − τ i+1
i − rCM

i × f i+1
i − rCM

i+1 × fi+1 (each joint provides the wrench

for its acceleration and the following link).

3. Project the torque of the joint into the actuator axis to determine its effective contri-

bution (the mechanical structure makes the non-projected part) τi = τ i−1
i Riẑi.

2.1.5. Walking Phases and Impact Models

The switching surfaces Si+1
i and the corresponding reset map ∆i+1

i take the state previous

to the impact x−
i to the state after the impact x+

i+1 = ∆i+1
i (x−

i ). When the contact with the
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floor changes, the walking phase changes accordingly. Different possible transition models

depend on the robot model and the collision assumptions. These assumptions correspond

to the duration of the double support phase (instantaneous or non-instantaneous) and the

type of collision with the floor when stepping (soft or hard collision). Note that having

instantaneous double support with soft collisions is impossible.

Instantaneous double support with rigid collision

The gait is decomposed into two phases, a simple support phase where a foot stands rigidly

on the floor while the other swings forward, and an instantaneous double support phase

where both feet exchange their roles symmetrically. In this case, the collision with the floor

and the corresponding reaction forces are considered instantaneous and are reflected as a

change in the direction of the movement depending on the landing velocity respecting the

momentum conservation laws and the continuity of the position profiles x+
i+1 = ∆i+1

i (x−
i ).

This model is frequently used for underactuated walkers as in [Arcos-Legarda et al., 2019]

and provides a promising approach for robots with few links or 2D walkers. However, 3D

walkers with several links can be very challenging to tackle with this approach as their kinetic

model is expensive to calculate. Hence, their extended kinetic model is even more expensive.

Right Leg Stance

Left Leg Stance

Simple
Support

Simple
Support

Figure 2-1.: Humanoid gait with instantaneous double support - Most of the time, the robot

is supported by a single foot and switches the support instantaneously with

rigid collisions

One possible way to evaluate the reset map x+
i = ∆i+1

i (x−
i ) presented in [Westervelt et al., 2003]

proposes the analysis of the conservation of momentum and the kinematic constraints that

the robot must fulfill to perform a successful step. Initially, it is required to extend the kinetic
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model adding additional degrees of freedom for the base of the robot (the support foot for

our purposes). During this process, we obtain the extended system model:

Me(qe)q̈e + Ce(qe, q̇e) = τe, (2-20)

whereMe corresponds to the extended inertia matrix of the robot, Ce includes the centripetal,

Coriolis, and gravitational forces that act on the robot, and τe corresponds to the extended

generalized forces input.

With this extended model, it is possible to formulate the momentum equation of the system

before and after the collision considering the angular velocities before the impact ˙q−e and

after it ˙q+e . Considering the moment conservation, the change in this momentum depends on

the impact force Fimpact that acts onto the balancing foot so that:

Me(q
+
e )

˙q+e −Me(q
−
e )

˙q−e = Fimpact. (2-21)

On the other hand, it is required that the balancing foot does not move after the impact

(no sliding and no rebound), which can be expressed as: v+SF = J−
BF (q

+
e )

˙q+e = 0 where

v+SF corresponds to the velocity of the former balancing foot (now supporting) and J−
BF

corresponds to the Jacobian corresponding to this velocity before the collision. Note that

q+e = q−e as the position is always continuous.

With these two equations, it is possible to formulate the system of equations:[
Me (q

−) −J−
BF (q

−)
′

J−
BF (q−) 02×2

] [ ˙q+e
Fimpact

]
=

[
De (q

−) ˙q−e
02×1

]
.

Whose solution allows us to determine the post-impact velocities in the reset map.

Finally, the last step for formulating the reset map implies the role swap between the former

balancing foot that becomes supporting and vice versa. For 2D walkers, the process only

requires the direct swapping of the corresponding variables, but for 3D walkers, it is necessary

to consider mirror symmetry concerning the sagittal plane.

Non-instantaneous double support with rigid collision

Again, the gait is decomposed into two phases. Although, in this case, the double support

phase is not considered instantaneous. In this case, the collision with the floor is similar to

the previous case (considering the momentum conservation and null velocity of the former

balancing foot). Still, the former support foot’s velocity must remain zero after the transition.

In this case, it is required to consider not only the transition map ∆i+1
i but also the additional

constraints over the kinematic model during the double support phase, considering that the

model loses multiple degrees of freedom as the position and rotation of both feet are fixed

in this phase.
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Simple
Support

Simple
Support

Double
Support

Double
Support

Double
Support

Right Leg Stance

Left Leg Stance

Figure 2-2.: Humanoid gait with non-instantaneous double support - The robot alternates

between simple and double support phases with rigid collisions

Considering the closed kinematic chain from the non-instantaneous double support phase is

challenging. An alternative is to consider the open chain kinematics considering the position

of the former balancing foot as a variable to control fixing its position to maintain its current

value. Regarding the kinetics for the closed kinematic chain, in [Siciliano and Khatib, 2016],

it is mentioned that it is usual to initially consider the open kinematic chain and then

enforce the kinematic constraints. However, these calculi tend to be hard to compute and/or

to depend on dynamical parameters that are often not well known, so how to perform them

efficiently remains an active open issue for fast robots.

Non-instantaneous double support with soft collision

In rigid collision cases, the reset map ∆i+1
i may be challenging to model and evaluate accu-

rately. As an alternative, in some cases, it is possible to reduce the velocity of the balancing

foot so that the effects of the collision get less effect onto the robot. In the limit case, if the

velocity of the balancing foot tends to zero at the moment of the contact (a soft collision).

Under this supposition Fimpact ≈ 0, the robot’s momentum is not affected, and the transition

map becomes much more straightforward as it is only required to consider the symmetri-

cal remapping of angular positions and velocities. Although this approach usually reduces

the overall velocity and efficiency of the gait, it also simplifies the analysis and reduces the

impacts the robot must endure during the gait.
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Right Leg Stance

Left Leg Stance

Simple
Support

Simple
Support

Double
Support

Double
Support

Double
Support

Figure 2-3.: Humanoid gait with non-instantaneous double support - The robot alternates

between simple and double support phases with soft collisions

Alternative models

More phases can be considered depending on the foot’s structure and the gait’s nature.

For instance, when we humans walk, the movement can be decomposed into 8 phases

[Loudon et al., 2008]:

Initial Contact

Loading Response

Midstance

Terminal Stance

Pre swing

Initial Swing

Mid Swing

Late Swing

On the other hand, it is possible to consider models without phases at all. Those models

consider the so-called floating base models that do not segment the gait in phases but consider

a unique model where the contacts appear as external forces that affect the overall dynamics.
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2.1.6. Stability Criteria

Stability is crucial in studying dynamical systems, and bipedal robotic locomotion is no

exception. In the context of bipedal robots, stability is defined as the ability of the robot

to maintain balance while moving. Several stability criteria are commonly used in bipedal

robotic locomotion, including the center of mass projection, the zero moment point (ZMP),

and the hybrid zero dynamics - Poincare’s return maps.

Center of Mass Projection

The center of mass projection stability criterion is based on the projection of the robot’s

center of mass onto the ground. If the center of mass is projected within the support polygon,

defined by the area where the robot’s feet are in contact with the ground, the robot is

considered stable.

(a) (b)

Support

Polygon
Support

Polygon

CoM CoM

Figure 2-4.: Center of Mass Projection Stability Criterion, as long as the CoM projection

lies within the support polygon, the robot is statically stable - (a) In the simple

support phase, the Support Polygon corresponds to the area of the sole. (b)

In the double support phase, the Support Polygon corresponds to the convex

hull of the area of both feet.

This criterion is widely used in bipedal robotic locomotion, as it is relatively simple to
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calculate and provides a good measure of the robot’s stability. However, this criterion only

applies to quasi-static gaits as the accelerations of the robot may cause the robot falls even

with the center of mass projection within the support polygon.

Zero Moment Point - ZMP

The ZMP stability criterion is another widely used measure of stability in bipedal robotic

locomotion. The ZMP is a point on the ground where the net moment applied to the robot

in the axes perpendicular to the ground is zero. It is calculated based on the robot’s center

of mass, the external forces acting on the robot, and the dynamics of the robot. The robot is

considered stable if the ZMP is inside the support polygon. In [Tedrake, 2022], the calculus

of the ZMP is reduced to:

xZMP − xCoM =
zCoM ẍCoM − Iθ̈

mz̈CoM +mg
, (2-22)

yZMP − yCoM =
zCoM ÿCoM − Iθ̈

mz̈CoM +mg
, (2-23)

where xZMP and yZMP are the X and Y components of the robot’s ZMP; xCoM , zCoM , and

yCoM are the X, Y, and Z components of the position of the robot’s center of mass; I is the

robot’s centroidal inertia tensor; ¨theta is the robot’s centroidal angular acceleration; m is

the mass of the robot; and g is the gravitational acceleration.

Additionally, it is usual that this expression gets further simplified by fixing the height of

the center of mass to a constant height h and minimizing the angular acceleration θ̈. With

these considerations, the final expression results in the affine equations

xZMP − xCoM =
h

mg
ẍCoM , (2-24)

yZMP − yCoM =
h

mg
ÿCoM . (2-25)
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(a) (b)

aCoM

CoM

Support

Polygon

Support

Polygon

CoM

aCoM

ZMP

ZMP

Figure 2-5.: Zero Moment Point Stability Criterion, as long as the CoM projection lies

within the support polygon, the robot is dynamically stable (even if the CoM

projection criterion is not fulfilled) - (a) In the simple support phase, the

Support Polygon corresponds to the area of the sole. (b) In the double support

phase, the Support Polygon corresponds to the convex hull of the area of both

feet.

This criterion applies to dynamic gaits and is restricted to robots that have feet with non-zero

areas. It is worth noting that the ZMP criterion converges to the CoM projection criterion

as the acceleration goes to zero.

Poincare’s Return Maps

Poincare’s return map criteria is a valuable tool for analyzing the stability of limit cycles

in dynamic systems. The primary concept involves parametrizing a Poincare section in the

system’s state space. This Poincare section is arbitrarily chosen considering that it should

be crossed by the system’s state x during its evolution in time. The system’s state at those

crosses at the discrete instants k is denoted by Pk. The relation between the points where

the crossing occurs, i.e., Pk+1 = T (Pk), is a discrete Poincare Return Map. If the system is

stable, the Poincare Return map will get the points closer at each new cross (whether they

have or not a constant period) confirming the stability of the system, or if the points get

farther at each new cross, then the system is considered to be unstable.



2.2 Control Models 29

P  1

P  2

P  3

P  4

(b)

P  1

P  2

P  3

P  4

(a)

Figure 2-6.: Poincare Return Maps - (a) unstable system: the intersections between the

system state in black and the Poincare Section in blue get further and further.

(b) stable system: the intersections between the system state in black and the

Poincare Section in blue get closer and closer.

In the case of bipedal robots, it is possible to consider any of the switching surfaces of the

model as the Poincare section. In particular, it is possible to consider the surface correspon-

ding to the strike of the balancing foot onto the ground so that the Poincare Return Map

corresponds to the evolution of the system’s state at the end of each step. By analyzing this

Poincare Return Map, we can verify the stability of the robot’s gait patterns. This analysis

can be made considering that the return map is a lineal mapping

T (Pk) = MPk (2-26)

where M is a matrix with constant coefficients. The value of M coefficients is estimated

through experiments (usually simulations), and if all the eigenvalues of M have a norm ≤ 1,

then the system will be considered stable.

2.2. Control Models

Several control methods can be applied to humanoid robots to ensure the tracking of desired

trajectories q → qd. To this purpose, we must analyze how the low-level control achieves

the tracking and how to properly determine soft references at a higher level. The choice of

the low-level control model depends on the required level of performance and the available

hardware. In this section, we discuss four different approaches: using the internal servomotor

controllers (setting qd references), using first-order kinematic control employing the Jacobian

matrix (setting q̇d references), using second-order kinematic control employing the Hessian
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matrix (setting q̈d references), and employing torque control through feedback linearization

(setting τ references). On the other hand, we considered two main options to determine

the soft references to be followed—first, using Bézier Polynomials for parametrizing soft

trajectories, and second, ZMP-based trajectories. When used correctly, both of them allow

us to determine soft trajectories to be followed.

2.2.1. Low-level control

Internal Servomotor Controllers

One approach to controlling humanoid robots is to rely on the internal servomotor controllers

(as the ones presented in sections 2.3.3 and 2.4.3) so that q → qd. These controllers are

typically embedded within the robot’s hardware, translating the desired position commands

into motor torques. Here are some advantages and disadvantages of using internal servomotor

controllers:

Advantages

Simplicity: The internal servomotor controllers are already integrated into the robot’s

hardware, making them readily available for control. They are designed specifically for

the robot’s actuators and often come with predefined control modes, making it easier

to implement and configure the control strategy.

Real-Time Responsiveness: The internal servomotor controllers operate directly

within the servomotors, allowing for high control frequencies and fast response times.

The control signals are generated and executed within the robot’s hardware, resulting

in minimal delays and low-latency control. This real-time responsiveness is crucial for

achieving precise and dynamic movements in locomotion tasks.

Disadvantages

Limited Flexibility: The internal servomotor controllers often have limited control

algorithms and customization flexibility. They may not support advanced control tech-

niques or allow fine-grained control parameter adjustments. This limitation can restrict

the ability to achieve highly specialized control behaviors.

Model Mismatch: The internal controllers are typically designed based on simplified

robot dynamics models. While these models capture the essential dynamics, they may

not capture all the intricacies and complexities of the robot’s behavior. This model

mismatch can lead to suboptimal performance, especially in challenging locomotion

tasks that require precise control.
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First Order Kinematic Control - Jacobian Pseudo-inverse

Kinematic control is another approach to controlling humanoid robots that do not rely on

position control or torque control but instead focuses on velocity control (q̇ → q̇d). It involves

generating and tracking desired joint velocities to achieve the desired robot motion. To do

so, this type of controller employs the de Jacobian matrix pseudo-inverse to determine the

required joint velocities for reducing the error in the task space ex:

ex = xd − x (2-27)

ėx = ẋd − ẋ (2-28)

ėx = ẋd − Jxq̇ (2-29)

Setting q̇ = q̇d = J+
x (ẋd +Kpex)

ėx = −Kpex. (2-30)

As long as the proportional gain Kp is greater than 0, the error dynamic converges exponen-

tially to 0, obtaining the desired tracking.

Here are some advantages and disadvantages of using kinematic control:

Advantages

Simplified Control: Kinematic control simplifies the control problem by directly

controlling joint velocities rather than dealing with complex dynamics or torque calcu-

lations. This can reduce computational complexity and enable faster control execution,

making it suitable for real-time control applications.

Hardware Compatibility: Since kinematic control operates at the velocity level, it

can be compatible with a wide range of robotic hardware and actuators. It is not as

dependent on specific servo motor controllers or hardware characteristics, making it

easier to implement on different robot platforms.

Reduced Sensitivity to Modeling Errors: Kinematic control relies primarily on

geometric relationships and kinematic equations, which are typically more robust to

modeling errors than dynamic models used in torque control or feedback linearization.

This reduced sensitivity to modeling errors can make kinematic control more robust

and less prone to performance degradation in the presence of uncertainties.

Disadvantages
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Limited Dynamic Capability: Kinematic control ignores the dynamic aspects of

the robot’s motion, focusing solely on joint velocities. This limitation can restrict the

robot’s ability to handle dynamic tasks requiring accurate force interactions or envi-

ronmental compliance.

Inability to Handle Underactuation: If the humanoid robot has underactuated

joints (joints with fewer actuators than degrees of freedom), kinematic control alone

may not achieve desired motions. Additional control strategies, such as operational

space control or task prioritization, may be necessary to compensate for the underac-

tuation and achieve the desired control objectives.

Lack of Force Control: Kinematic control does not directly address force control

or physical interaction with the environment. This can limit the robot’s ability to

perform tasks that require force-sensitive manipulation or contact tasks, where precise

force control is essential.

Second Order Kinematic Control - Hessian Matrix

Kinematic control based on the Hessian matrix considers the second-order derivatives of

the robot’s kinematic equations. This approach approximates the system’s dynamics more

closely than traditional kinematic control. However, it comes with the computational cost of

calculating the Hessian and Jacobian matrix pseudo-inverse:

ẍ =

(
∂2x

∂q2
dq

dt

)
dq

dt
+

∂x

∂q

d2q

dt
, (2-31)

where ∂2x
∂q2

corresponds to the Hessian matrix of the robot Hx. Note that there is no standard

form for the Hessian matrix, and in this work, we will consider it as an [m× n× n] matrix:

ẍ = Hxq̇
2 + Jxq̈. (2-32)

With these dynamics at hand, we can evaluate the error dynamics:

ex = xd − x (2-33)

ėx = ẋd − ẋ (2-34)

ëx = ẍd − ẍ (2-35)
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ëx = ẍd − ẍHxq̇
2 − Jxq̈ (2-36)

setting q̈ = q̈d = J+
x (ẍd − ẍHxq̇

2 −Kpex −Kdėx)

ëx = −Kpex −Kdėx. (2-37)

That corresponds to second-order dynamics, which with the proper tuning of the proportional

gainKp and the derivative gainKd, can lead to exponential convergence in the error dynamics

obtaining the desired tracking.

Here are some advantages and disadvantages of using kinematic control based on the Hessian

matrix:

Advantages

Improved Dynamic Accuracy: Using second-order derivatives, kinematic control

based on the Hessian matrix accurately represents the robot’s dynamic behavior. This

can improve tracking performance, especially in tasks requiring precise motion control

or complex dynamic interactions.

Enhanced Stability: The inclusion of higher-order derivatives can contribute to im-

proved stability properties of the control system. By considering the system’s dyna-

mics more comprehensively, kinematic control based on the Hessian matrix can offer

increased robustness and stability margins, leading to more reliable and safer robot

operation.

Disadvantages

High Computational Cost: Calculating the Hessian matrix involves complex mathe-

matical operations, which can be computationally expensive. The size of the matrix

grows with the number of degrees of freedom, resulting in a significant computational

burden, particularly for complex humanoid robots with many joints. This computatio-

nal cost can limit the real-time applicability of the control method, potentially leading

to delays or reduced control performance.

Increased Model Complexity: Kinematic control based on the Hessian matrix re-

quires an accurate model of the robot’s kinematics and dynamics. Developing and

maintaining such a model can be challenging, as it often involves complex mathema-

tical derivations and accurate estimation of system parameters. Any discrepancies or

uncertainties in the model can introduce errors in the control calculations and affect

overall system performance.
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Sensitivity to Modeling Errors: Kinematic control based on the Hessian matrix

highly depends on the model’s accuracy and the assumptions’ validity. Inaccuracies or

uncertainties in the model can lead to suboptimal or unstable control behavior. Robust

model identification and parameter estimation techniques are necessary to mitigate the

effects of modeling errors and ensure reliable control performance.

Feedback Linearization

Another approach to controlling humanoid robots is to employ non-linear control methods

to directly control the torque applied to the servomotor, such as feedback linearization.

Feedback linearization is a technique that transforms the non-linear dynamics of the robot

into a linear system, allowing for the application of linear control techniques. For robots, it

is possible to simplify the dynamics of the system to independent double integrators for each

degree of freedom as long as the kinetic model matrices M(q) and C(q, q̇) are accurately

known. Let v be the new input for the desired behavior setting the generalized torque input

as:

τ = C(q, q̇) +M(q)v (2-38)

then the feedback-linearized system takes the form:

q̈ = v (2-39)

This is valid as long as the constraints over the input and contact forces are fulfilled, allowing

the use of any appropriate linear control technique, such as PID controllers or sliding mode

controllers. Note also that this torque controller can be employed with any of the previous

strategies using it to enforce the desired joint positions, velocities, or accelerations:

For position control v = −Kpτ (qd − q)−Kdτ (q̇d − q̇), allows the tracking.

For velocity control v = −Kpτ (q̇d − q̇), allows the tracking.

For acceleration control v = q̈d, allows the tracking.

where Kpτ corresponds to an appropriately tuned proportional torque gain and Kdτ corres-

ponds to an appropriately tuned derivative gain.

Here are some advantages and disadvantages of using feedback linearization:

Advantages

Model-Based Control: Feedback linearization relies on an accurate model of the

robot’s dynamics. Using this model makes possible to design control laws that explicitly

consider the robot’s underlying physical properties. This model-based approach can

improve control performance, especially when dealing with complex locomotion tasks.
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Control Flexibility: Feedback linearization provides more flexibility in terms of con-

trol design. It allows for applying various control techniques and strategies, such as

optimal control, robust control, or adaptive control. This flexibility enables the deve-

lopment of control strategies that can handle different operating conditions and adapt

to varying task requirements.

Disadvantages

Complexity and Computational Demands: Feedback linearization requires an

accurate model of the robot’s dynamics, which can be complex and time-consuming

to develop. The process of modeling the robot’s dynamics and deriving the linea-

rizing transformation can be challenging, particularly for complex humanoid robots

with multiple degrees of freedom. Additionally, the control algorithms based on feed-

back linearization often involve computationally intensive calculations, which can pose

challenges in real-time control implementation.

External Dependency: Non-linear control methods, such as feedback linearization,

often rely on external computation and communication channels to implement con-

trol algorithms. The control commands and calculations are typically executed on an

external computer and then communicated to the robot’s actuators. This introduces

additional latency due to the need for data transmission and processing, which can

limit the real-time responsiveness of the control system. The external dependency on

the computer and communication channels can be a potential source of delays and

instability in control execution, particularly in scenarios that require high-speed and

precise movements.

Tuning and Robustness: Feedback linearization relies heavily on the model’s ac-

curacy for control design. Any discrepancies or uncertainties in the model can lead

to performance degradation or instability. Achieving robust and reliable control with

feedback linearization often requires careful model identification, parameter tuning,

and robust control techniques to handle uncertainties and disturbances.

Ultimately, the control model choice depends on the locomotion task’s specific needs and the

available resources. Internal servomotor controllers excel in tasks that require a high-speed

and low-latency response, while feedback linearization provides more sophisticated model-

based control with increased performance potential. On the other hand, Kinematic control

offers simplicity and hardware compatibility but may be limited in handling specific dynamic

and force-sensitive tasks.
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2.2.2. Parametrizing Trajectories

Bézier Polynomials

Bézier polynomials provide a flexible and intuitive approach for parametrizing smooth trajec-

tories that low-level controllers can follow. These polynomials are widely used in computer

graphics and animation due to their ability to generate aesthetically pleasing curves. In

controlling robots, Bézier polynomials offer a convenient representation for defining trajec-

tories that exhibit desired properties, such as smoothness and customizable shape. Works as

[Simba et al., 2016] show applications of this kind of trajectory.

Bézier Polynomial Definition and Derivatives

A Bézier polynomial of degree k is defined as:

B(s) =
k∑

i=0

(
k

i

)
(1− s)k−isiPi, (2-40)

where s is the parameter ranging from 0 to 1, and
(
k
i

)
is the binomial coefficient. The control

points Pi can be interpreted as the positions of the robot’s end-effector or key points along

the trajectory.

The derivatives of the Bézier polynomial relative to s can be computed as follows:

dB(s)

ds
= k

k−1∑
i=0

(
k − 1

i

)
(1− s)k−1−isi(Pi+1 − Pi) (2-41)

d2B(s)

ds2
= k(k − 1)

k−2∑
i=0

(
k − 2

i

)
(1− s)k−2−isi(Pi+2 − 2Pi+1 + Pi). (2-42)

These derivatives provide information about the velocity and acceleration of the trajectory,

which can be used to control the robot’s motion. However, we want to use the Bézier Poly-

nomials in arbitrary time intervals, therefore for each time interval of interest j, we define

sj(t) =
t−tj0
tjf−tj0

so that:

qd(t) = B(s(t)), (2-43)

˙qd(t) =
dB(s(t))

dt
=

dB(s(t))

ds

ds(t)

dt
, (2-44)

¨qd(t) =
d2B(s(t))

dt2
=

d2B(s(t))

ds2

(
ds(t)

dt

)2

, (2-45)
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where tj0 is the initial time of the interval j, tjf is the final time of the interval j, and t is the

time where the polynomial is evaluated.

Fixing Position, Velocity, and Acceleration at Extreme Points

One advantage of using Bézier polynomials is the ability to fix position, velocity, and ac-

celeration at specific extreme points of the trajectory. This feature allows precise control

of the robot’s motion characteristics at critical moments. We must connect multiple Bézier

polynomials in arbitrary consecutive intervals (that we will index with j) so that their first

and second derivatives are continuous.

Position: To fix the position at the start Bj(tj0) and end Bj(tjf ) points of any segment

j, the control points P j
0 and P j

k can be set to the desired positions. By doing so, the trajec-

tory will pass through these points, ensuring the desired positional accuracy. Moreover, if

we want that two consecutive Bézier polynomials Bj(t) and Bj+1(t) are continuous at the

transition time tjf = tj+1
0 , we have to guarantee that

Bj(tjf ) = Bj+1(tj+1
0 ), (2-46)

which is trivially obtained setting P j
k = P j+1

0 .

Velocity: Similarly, to specify the velocity at the start and end points, the derivatives

of the Bézier polynomial can be evaluated at transition time according to:

dBj(tj0)

dt
=

k

tjf − tj0
(P j

1 − P j
0 ), (2-47)

dBj(tjf )

dt
=

k

tjf − tj0
(P j

k − P j
k−1). (2-48)

Then, we require the final velocity at the end of the segment j to be equal to the initial

velocity at the start of the segment j+1, i.e., ˙Bj(tjf ) =
˙Bj+1(tj+1

0 ) which is obtained through:

k

tjf − tj0
(P j

k − P j
k−1) =

k

tj+1
f − tj+1

0

(P i+1
1 − P j+1

0 ). (2-49)

Note that we determined P j
k = P j+1

0 in the position setting so that we must determine the

P j
k−1 and P j+1

1 in this step so that the transition velocity corresponds to the desired value.

Acceleration: Finally, to specify the acceleration at the start and end points, the second

derivatives of the Bézier polynomial can be evaluated at transition time according to:

d2Bj(tj0)

dt2
=

k(k − 1)

(tjf − tj0)
2
(P j

0 − 2P j
1 + P j

2 ), (2-50)
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d2Bj(tjf )

dt2
=

k(k − 1)

(tjf − tj0)
2
(P j

k−2 − 2P j
k−1 + P j

k ). (2-51)

Then, we require the final acceleration at the end of the segment j to be equal to the initial

acceleration at the start of the segment j + 1, i.e., ¨Bj(tjf ) = ¨Bj+1(tj+1
0 ) which is obtained

through:

k(k − 1)

(tjf − tj0)
2
(P j

k−2 − 2P j
k−1 + P j

k ) =
k(k − 1)

(tj+1
f − tj+1

0 )2
(P j+1

0 − 2P j+1
1 + P j+2

2 ). (2-52)

Note that we determined the values for P j
k , P

j
k−1, P

j+1
0 , and P j+1

1 in the previous steps so

that we must determine P j
k−2 and P j+1

2 to achieve the desired transition acceleration.

Number of Segments, Minimum Order k and Additional Coefficients: Depending

on the number of control points that we required m, we will require m−1 segments described

by Bézier polynomials to connect them all with the imposed constraints. To set the position,

velocity, and acceleration at each segment’s beginning and end, we require a minimum order

of k = 6 for each one. In the case of k = 6, the solution for the coefficients P j is uniquely

defined, and no further changes can be made, but for k > 6, there will be free coefficients

that can be arbitrarily defined. Those extra coefficients can be used to modify the behavior

of the curve, altering its higher-order derivatives.

Control Points for Bipedal robots Independent of the number of joints of the robot

and its structure, it would be required to control at least the position of its CoM, the po-

sition of its balancing foot, and the rotation of its balancing foot. Given the hybrid nature

of the bipedal gait, the phase transition instants arise as a natural choice for the control

points in the robot’s reference definition. For determining the robot references, we consider

four (possibly iterative) stages:

1. Determine footprints planning: For determining the step locations, it is required to

be aware of the geometric limitations of the robot (maximum step length and width)

and the areas where the feet can be located. One common scenario corresponds to flat

terrain with no obstacles where a fixed step geometry can be followed. In this case, it

would be required to determine four parameters, the step length, the step width, the

single support duration, and the double support duration. With these parameters, the

position of the footprints is set as presented in Figure 2-7.
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Figure 2-7.: Footprints planning
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Figure 2-8.: Feet Trajectories planning

2. Determine the trajectory of the feet: Setting initial conditions with the known initial

and final positions with velocity and acceleration set to 0 allows for the calculus of the

three initial and final coefficients of the Bézier polynomial for the feet position at each

phase, and it is required at least an additional coefficient to guarantee that the foot

rises over the ground (without it, the trajectory results flat which is infeasible).

3. Determine the trajectory of the CoM: Setting the initial conditions to be the final

conditions of the previous phase and the final to be desired at the end of the current,

the whole trajectory can be entirely determined without additional coefficients (only

the six required for the boundary conditions). Note that contrary to the feet, except

for the initial and final steps, the velocity and acceleration of the CoM are free. An

example trajectory is presented in Figure 2-9.
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Figure 2-9.: Bézier trajectory planning

4. Check the stability criteria of the resulting trajectory: Once the trajectory is deter-

mined, the chosen stability criterion must be verified. If the criterion is fulfilled, the

process is complete, but if it is not, the trajectory must be updated so that it does. For

instance, if the criterion corresponds to the ZMP criterion, the condition of xZMP ∈ SP

must be fulfilled at each instant. If not, the coefficients and/or time parameters must

be adjusted accordingly. Figure 2-10 shows the ZMP trajectory for a certain CoM

Bézier Trajectory.
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Figure 2-10.: Bézier trajectory stability checking

ZMP-Based Trajectories

Since the earliest works on bipedal robot gait, one of the most popular frameworks is related

to the consideration of the ZMP criterion as presented in [Vukobratovic and Borovac, 2004]

(see Section 2.1.6). In these frameworks, the references for the robot are set in three stages:

1. Determine footprints planning: This step is the same as for the Bézier case (see Figure

2-7).solving the differential equation corresponding to xCoM is possible

2. Determine a trajectory for the ZMP of the robot consistent with the steps planning:

As the ZMP criterion requires the ZMP to be always within the support polygon, the

footprints plan determines its feasible region at each instant. This information makes

tracing a continuous trajectory over that feasible region possible. It is common to use

linear segments that go from the center of one foot to the next, as presented in Figure

2-11 although more complex trajectories may also be considered.
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Figure 2-11.: ZMP Planned Trajectory

3. Evaluate the CoM and feet trajectories that are consistent with the steps planning

and the ZMP trajectory: Once the footprints and the ZMP trajectories have been

determined, the last step is to determine what are the corresponding trajectories for

the CoM of the robot and its feet. Whether we are using the complete ZMP equation or

the simplified one, solving the differential equation corresponding to xCoM is possible

based on the dynamics of xZMP determining the CoM trajectory. On the other hand,

the trajectory of the feet can be determined with Bézier polynomials or with any

other soft parametrization as long as the footprints planning is followed. Figure 2-12

presents two example resulting trajectories when the resulting motion is slow and fast.

Note that as the velocity goes to 0, the CoM trajectory becomes very similar to the

ZMP trajectory, and as the velocity grows, the trajectory gets smoother and closer to

a linear path.
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Figure 2-12.: CoM and feet trajectories obtained from the ZMP trajectory - (a) slow resul-

ting trajectory (b) fast resulting trajectory

Trajectory planning methods using Bézier polynomials and ZMP-based trajectories offer

distinct approaches for generating desired robot trajectories in humanoid robot locomotion.

Both methods ensure stability, although they differ in their approach. Bézier polynomials

provide a flexible and intuitive way to parametrize trajectories, allowing for smooth and cus-

tomizable motion profiles. While stability is checked a posteriori in the Bézier approach, it

offers more flexibility and the potential to achieve more efficient performances. On the other

hand, ZMP-based trajectories prioritize stability from the start by fixing the ZMP trajectory

and solving the differential equation to obtain the Center of Mass (CoM) and foot trajecto-

ries. This approach guarantees stability throughout the robot’s motion. The choice between

these trajectory planning techniques ultimately depends on the specific requirements, mo-

tion characteristics, and desired trade-offs between flexibility and guaranteed stability in the

humanoid robot locomotion task.

2.3. Darwin Mini

The Darwin Mini humanoid robot is a product of the company Robotis which counts with

multiple servomotors, sensors, an internal computer, and structural pieces that correspond

to a 16 DoF humanoid structure with the following joints:

2 Frontal plane ankle joints

2 Sagittal plane angle joints

2 Sagittal plane Knee joints

2 Sagittal plane hip joints
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Figure 2-13.: Humanoid Robot Robotis Darwin Mini

2 Frontal plane hip joints

2 Sagittal plane shoulder joints

2 Frontal plane shoulder joints

2 Frontal plane elbow joints

2.3.1. Kinematic Model

To describe the robot’s pose according to Section 2.1.3, we set reference frames at each of

the 16 joints and the end of the limbs as presented in Figure 2-14.
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Figure 2-14.: Neutral position frames of Darwin mini

The homogeneous transformation matrices that describe these reference frames are evaluated

sequentially from the support foot to each of the remaining limbs’ ends, assuming that the

support foot is static (zsf = ˙zsf = z̈sf = θsf = ωsf = αsf = 0) and does not rotate (which

is valid as long as there is no slipping and the ZMP criteria are fulfilled). There are three

kinematic chains to consider as follows:

Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, sagittal balancing hip, balancing

knee, sagittal balancing ankle, frontal balancing ankle, and balancing foot.

Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, support sagittal shoulder, support
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frontal shoulder, support elbow, and support hand.

Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, balancing sagittal shoulder, balan-

cing frontal shoulder, balancing elbow, and balancing hand.
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Figure 2-15.: Variation of the tracking error and solution magnitude when varying the

damping coefficient λ for the Darwin Mini Robot

As mentioned in Section 2.1.3, the inversion of the robot’s Jacobian matrix can be performed

with a damping factor λ (λ = 0 corresponds to the Moore Penrose Pseudo-inverse method

and λ > 0 corresponds to the damped pseudo-inverse method). To determine the appropriate

value for this constant, we evaluated the behavior of the inversion error and the norm of

the output q̇ in different positions for a unitary input |ẋd| = 1 as presented in Figure 2-

15. As expected, the inversion error is very low for small λ values. However, as λ → 10−6,

the magnitude of the output grows significantly and exhibits numerical instability. On the

other hand, for greater values of λ, the inversion error grows exponentially (linearly in the

logarithmic plot), imposing an upper bound on the damping coefficient. For instance, for a

determined inversion error magnitude to be lower than 10−5 observing onto the graphic, it

can be determined that λ must be lower than 0.1, i.e., |ẋd − J+ẋd| <= 10−5 → λ <= 10−1.
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Under this criteria, any damping factor that satisfies 10−6 < λ ≤ 10−1 is considered feasible,

and we employed a value of 10−4 for most of our experiments.

2.3.2. Kinetic Parameters

To accurately parametrize the kinetic model of the robot according to Section 2.1.4, we

considered the CAD models of each of the main components of the robot, the density of

the material of the links, and the specific weight of the available parts to build a detailed

model in Matlab’s Simscape Multibody that allows estimating their inertial properties using

the Inertia Sensor block. Appendix B presents the inertia matrices of each of Darwin’s links

relative to their corresponding CoMs.

2.3.3. Actuation

According to Darwin’s Manual [ROBOTIS, 2022c], it has 16 Dynamixel servomotors XL-

320. Each of them has a stall torque of 0.39 N.m (at the recommended operation voltage of

7.4V), has its internal micro-controller and can be operated in 2 different modes:

Wheel Mode: The servomotor tracks the MOVING SPEED registry.

Position Control Mode: The servomotor tracks the GOAL POSITION registry from 0

to 300 degrees.

The internal controller of the XL-320 servomotors presented in Figure 2-16 corresponds to

a standard PID controller whose constants can be tuned by the user modifying the corres-

pondent registers onto the servomotor’s microcontroller.

Figure 2-16.: Darwin Servomotors’ PID Control Diagram (adapted from

[ROBOTIS, 2022c])
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2.3.4. Sensing

Darwin only has proprioceptive sensors. Each one of the servomotors present in Darwin

[ROBOTIS, 2022d] has an internal 10-bit encoder (resolution about 0,29 deg for position

and about 0.11 rpm for velocity) to determine its current state according to the control

mode. Additionally, one of the registries of the servomotor has an estimate of the load over

the motor with a resolution of 11 bits (resolution of about 0.1%). Although the manual

states that this sensor may be inaccurate for estimating torque or weight.

2.3.5. Internal PC

MAXE counts with an internal OpenCM 9.04 board that has the following specifications:

Processor STM32F103CB 32 bits (ARM Cortex-M3 @72MHz)

Memory 148kbytes (128 Flash and 20 SRAM)

Wireless Connectivity Bluetooth 4.2, BLE, onboard antenna

Input power 5V DC

2.4. Robotis Engineer Kit (MAX-E2)

Figure 2-17.: Humanoid Assembly of the Robotis Engineer Kit
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The Robotis Engineer Kit counts with multiple servomotors, sensors, an internal microcon-

troller, and structural pieces that can be assembled in many shapes. Particularly, it can be

assembled as MAX-E2, a humanoid robot with 16 links and 17 joints:

2 Frontal plane ankle joints

2 Sagittal plane angle joints

2 Sagittal plane Knee joints

2 Sagittal plane hip joints

2 Frontal plane hip joints

1 Coronal plane waist joint

2 Sagittal plane shoulder joints

2 Frontal plane shoulder joints

2 Sagittal plane elbow joints

2.4.1. Kinematic Model

To describe the robot’s pose according to Section 2.1.3, we set a reference frame at each of

the 17 joints and limbs as presented in Figure 2-18.
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Figure 2-18.: Neutral position frames of MAXE

The homogeneous transformation matrices that describe these reference frames are evaluated

sequentially from the support foot to each of the remaining limbs’ ends, assuming that the

support foot is static (zsf = ˙zsf = z̈sf = θsf = ωsf = αsf = 0) and does not rotate (which

is valid as long as there is no slipping and the ZMP criteria are fulfilled). There are three

kinematic chains to consider as follows:

Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, sagittal balancing hip, balancing

knee, sagittal balancing ankle, frontal balancing ankle, and balancing foot.

Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, waist, support sagittal shoulder,

support frontal shoulder, support elbow, and support hand.
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Support foot, frontal support ankle, sagittal support ankle, support knee, sagittal sup-

port hip, frontal support hip, frontal balancing hip, waist, balancing sagittal shoulder,

balancing frontal shoulder, balancing elbow, and balancing hand.

Note that the feet switch roles depending on the walking phase, assuming a gait model

consisting of single and double support (instantaneous or not) interleaved phases. Also, it is

worth mentioning that models of jogging or running (that won’t be considered in this work)

may include flying phases where none of the feet is touching the ground, with the center of

mass of the robot presenting a ballistic motion. Regarding the damping coefficient λ, the

criteria considered are the same as the employed for Darwin, and based on our numerical

experiments, the bounds are very similar, as can be expected when observing the behavior

of the inversion error and the solution norm in Figure 2-19.
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Figure 2-19.: Variation of the tracking error and solution magnitude when varying the

damping coefficient λ for the Robot MAX-E2

2.4.2. Kinetic Model

Following the same process employed for Darwin’s inertial properties according to Section

2.1.4, we obtained the corresponding ones for MAX-E2. Appendix C presents the kinetic
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parameters of each one of the MAX-E2’s links.

2.4.3. Actuation

According to MAXE’s Manual [ROBOTIS, 2022a][ROBOTIS, 2022b], it counts with two

versions of the same Dynamixel servomotors. 6 dual servomotors 2XL430-W250T and five

single servomotors XL430-W250T. Each of them has a stall torque of 1.4 N.m (at the recom-

mended operation voltage of 11.1V), has its internal micro-controller and can be operated

in 4 different modes:

Velocity Control Mode: The servomotor tracks the GOAL VELOCITY registry. This

mode uses a standard PI controller with tunable gains.

Position Control Mode: The servomotor tracks the GOAL POSITION registry from 0

to 360 degrees. This mode employs a PID controller with feedforward considering the

references set by a trapezoidal profiler as presented in Figure 2-20.

Extended Position Control Mode (Multi-turn): The servomotor tracks the GOAL PO-

SITION registry from -256 to 256 revolutions.

PWM Control Mode (Voltage Control Mode): The registry GOAL PWM directly de-

termines the input voltage applied to the servomotor without internal control.

Figure 2-20.: MAX-E2 Servomotors’ PID + Feedforward Control Diagram (adapted from

[ROBOTIS, 2022a])

There is a small servomotor on the neck of MAXE, but its specifications are not available in

the product documentation.
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2.4.4. Sensing

Each servomotor in MAXE has an internal 12-bit encoder to determine its current position.

Depending on the control mode, the internal controller can have a registry of up to 4 bytes

to preserve the position information. Additionally, we equipped our MAXE with an Inertial

Measurement Unit (IMU) MPU9255 that registers:

Linear accelerations between ±2,±4,±8, and ± 16g on each axis with a resolution of

16 bits.

Angular velocity in between ±250,±500,±1000,±2000 deg /s on each axis with a re-

solution of 14 or 16 bits.

Angular position (based on a 3-axis magnetometer) with a resolution of 14 or 16 bits

depending on the configuration.

Barometric pressure between 300 and 1100 hPa with a resolution of about 0.0016 hPa.

Room temperature with a resolution of about 0.01 Celsius degrees.

And with 8 Interlink Electronics 0.2” circular force sensing resistors disposed of in the soles of

MAXE’s feet to estimate the contact forces and their distribution to determine contact and

to estimate the ZMP position onto the support Polygon. Each can register forces between 0.2

and 20 N with analog variations. This project won’t consider the barometric and temperature

information for control purposes.

2.4.5. Internal PC

MAXE counts with an internal Raspberry Pi Zero W board that has the following specifi-

cations:

Processor Broadcom BCM2710A1, quad-core 64-bit SoC (Arm

Cortex.A53 @1Ghz)

Memory 512MB LPDDR2

Wireless Connectivity 2.4GHz IEEE 802.1b/g/n wireless LAN, Bluetooth 4.2,

BLE, onboard antenna

Input power 5V DC 2.5A

Operation Temperature -20 C to +70 C



3. Imitation Learning

In recent years, there have been significant advancements in robotics, particularly in de-

veloping autonomous systems capable of performing complex tasks. Within this domain,

imitation learning (IL) has emerged as a critical research area, enabling robots to learn

from human demonstrations and imitate their behavior. In applying artificial learning to

humanoid gait, imitation learning plays a crucial role in providing an effective initialization

for the learning process, thereby enhancing sample efficiency and optimizing overall system

performance.

While humanoid robots are designed to resemble humans in form and structure, inherent

differences exist in their physical properties and dynamics. These disparities pose a challenge

when directly applying human data to humanoid robot locomotion. Despite this, human

demonstrations are a natural source of inspiration for humanoid locomotion. However, the

mapping between human behavior and robot actions is not straightforward. It requires careful

consideration of the divergences between humans and robots, necessitating the adaptation

of learned behavior to account for the unique characteristics and capabilities of the robot

platform. This calls for developing sophisticated techniques that bridge the gap between

human demonstrations and the execution of fluid and stable locomotion on humanoid robots.

This chapter aims to delve into the realm of imitation learning and its application in the

context of humanoid gait. It focuses on harnessing the power of imitation learning to distill

efficient policies for humanoid robots. By leveraging the expertise and experience in human

demonstrations, imitation learning is a powerful tool to guide the learning process and ac-

celerate convergence toward optimal solutions. By imitating the behavior of an expert, a

humanoid robot can acquire locomotion patterns and benefit from the acquired knowledge,

leading to a more efficient learning process.

The primary purpose of incorporating imitation learning into the thesis framework is to

provide an effective initialization for the reinforcement learning algorithm. The exploration-

exploitation trade-off in reinforcement learning is improved by starting from a policy that

closely resembles the expert’s behavior. This initialization is expected to significantly enhance

the sample efficiency of the overall optimization process, enabling the humanoid robot to

converge to optimal policies faster and with fewer samples.

This chapter will explore various imitation learning techniques, including direct imitation,

geometrical, optimization-based, and Generative Adversarial Networks (GANs) based ap-

proaches. Each technique has advantages and considerations, which will be thoroughly exa-

mined within the humanoid gait. Analyzing and comparing these techniques aims to identify
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the most suitable approach for initializing the reinforcement learning process and achieving

efficient and effective locomotion in humanoid robots.

3.1. What is Imitation Learning?

Let us consider a task space for the humanoid robot, denoted as xrobot ∈ Xrobot, which

represents the states of the robot during the locomotion task. Similarly, the states observed

in the human expert are denoted as xhuman ∈ Xhuman. Imitation learning aims to establish

a mapping or transformation between the human expert’s and the robot’s states, enabling

the robot to imitate the desired behavior.

Figure 3-1.: Example of Humanoid Robot imitating a human pose - Adapted from ARTE-

MIS Robot

Formally, imitation learning seeks to learn a policy π(θ) : X robot → Urobot that maps the

robot’s states to its corresponding actions in the robot’s action space Urobot. The policy

parameters θ are learned by leveraging a set of expert demonstrations, where each demons-

tration consists of a sequence of state-action pairs (xhuman, uhuman) or, more often, only the

state information xhuman. The states observed in the human demonstrations provide valuable

information about desired behavior and can guide the robot in achieving similar performance.
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The goal of imitation learning can be formulated in different ways, depending on the specific

objectives of the task. One approach is to minimize the difference between the robot’s states

(xrobot) and the human expert’s states (xhuman) in a common feature space:

minimize

Nf∑
k=0

D(ϕ(xrobot(k)), ϕ(xhuman(k)))

subject to xrobot follows Σ

u = πθ(xrobot)

, (3-1)

where ϕ(·) corresponds to a function that maps both the human’s space and the robot’s space

to a common domain, D(·, ·) corresponds to a distance function (as the Euclidean norm)

between the arguments, Nf corresponds to the number of frames present in the interest

demonstration, Σ corresponds to the model of the robot presented in Chapter 2 (Section

2.1), and πθ(·) corresponds to a tunable parametric policy.

This approach aims to align the robot’s behavior with the expert’s behavior, enabling the

robot to imitate the desired locomotion patterns exhibited by the expert.

Alternatively, imitation learning can focus on maximizing an external performance measure

or target, such as movement speed with low energy consumption. In this case, the objective

is to learn a policy that maximizes a reward function that captures the desired performance

criteria. The reward function can be modified based on the discrepancy between the robot’s

states (xrobot) and the human expert’s states (xhuman), as well as other task-specific objectives:

maximize

Nf∑
k=0

R(xrobot(k))−D(ϕ(xrobot(k)), ϕ(xhuman(k)))

subject to xrobot follows Σ

u = πθ(xrobot),

(3-2)

where R(·) corresponds to the reward function to be maximized.

This combination allows for a trade-off between mimicking the expert’s behavior and opti-

mizing the robot’s performance.

Key Components of Imitation Learning

Imitation learning encompasses several key components that contribute to its successful

implementation:

Expert Demonstrations: The availability of high-quality expert demonstrations is cru-

cial for imitation learning. These demonstrations provide the robot with examples of

the desired behavior and serve as a reference for learning the task.
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Feature Mapping: To establish a meaningful correspondence between the robot’s and

the human expert’s states, a feature mapping function

phi is often employed. This function transforms the states into a common feature space,

facilitating the comparison and alignment of behaviors.

Policy Learning: The core of imitation learning lies in learning a policy π that maps

the robot’s states to its actions. Various techniques, such as behavioral cloning, inverse

reinforcement learning,

3.2. Expert Demonstrations: The Motion Capture

Database

To obtain expert demonstrations for the imitation learning process, the repository of Motion

Capture data from the CMU Graphics Lab is utilized [Lab, 2003]. This database provides a

collection of free motions that can be downloaded and used for research. Among many others,

there are several instances of walking gaits. These expert demonstrations serve as a valuable

resource for imitation learning, provide real-world examples of desired behavior, and serve

as a reference for the robot’s learning process. By leveraging the captured motion data, the

robot can learn to imitate the movements and behaviors exhibited by human experts.

3.2.1. Motion Capture Process

The motion capture process at CMU involved using 12 Vicon infrared MX-40 cameras placed

around a rectangular area in the motion capture lab. These cameras record the motion at

a 120HZ and capture images of the subject wearing a black jumpsuit with markers taped

on. The markers, seen by the cameras in infrared, are triangulated to obtain 3D data of the

subject’s movements.
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Figure 3-2.: Diagram of the markers’ positions for motion capture - adapted from

[Lab, 2003]

3.2.2. Data Types and Formats

The CMU motion capture database offers two types of data: marker positions and skeleton

movement.

Marker Positions: The database provides files containing 3D marker positions in the

.c3d format. Each file represents a sequence of recorded marker positions over time,

enabling the reconstruction of the subject’s movements.

Skeleton Movement: The database also offers files in the form of a pair, consisting

of a .vsk/.v file or a .asf/.amc file. The .vsk/.v pair describes the skeleton and its

joints, including their connections, lengths, degrees of freedom, and transformations.

The .asf/.amc pair contains the actual movement data. The .v file format provides

information about bone rotations and translations in six values for each bone. The

.asf/.amc format, on the other hand, represents bone rotations in Euler angles.

We will focus on the Skeleton Movement format since the .asf/.amc format provides informa-

tion about the skeleton’s movements by describing its joints’ connections, degrees of freedom,

and transformations. This representation closely aligns with the structure and movements
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of the humanoid robot, allowing for a more direct mapping between the demonstrated hu-

man movements and the robot’s own task space. By leveraging the .asf/.amc format, we can

establish a clear correspondence between the joint movements observed in human demons-

trations (represented by the .amc files) and the joint movements of the humanoid robot.

This correspondence is essential for developing a practical imitation learning framework, as

it facilitates knowledge transfer from human experts to the robot.

Note: all the demonstrations that we considered present models with 62 degrees of freedom

(DoF) and corresponded to floating base models (all of the kinematic chains start from an

arbitrary point next to the waist of the subject) where the six first parameters correspond

to the floating base parameters and the remaining 56 to the subjects’ joints.

Data Preprocessing

Data smoothing: In our case, where the motion capture data contains noticeable noise

that can significantly impact the analysis of velocity and acceleration behaviors, applying

the Savitzky-Golay filter can help to mitigate the noise and provide a cleaner representation

of the underlying motion. The Savitzky-Golay filter is a smoothing technique that applies a

weighted least-squares polynomial regression to the data. Unlike other filters that typically

average or interpolate the data points, the Savitzky-Golay filter performs a local polynomial

regression on a sliding window of data points. The filter works by fitting a polynomial to a

subset of neighboring data points within the window and using this polynomial to estimate

the smoothed value for the central data point. This process is repeated for each data point

in the time series, resulting in a smooth trajectory. The Savitzky-Golay filter is particularly

well-suited for our task as it effectively reduces noise while preserving important features

and characteristics of the original data. It offers advantages over simple moving average or

median filters by better preserving sharp transitions and capturing subtle variations in the

motion.

Units scaling: As mentioned in the database documentation, the units on the .amc files

are converted to meters using the conversion factor (1,0/0,45) ∗ 2,54/100,0.
Forward direction correction: To ensure consistency and alignment between the human

motion data and the humanoid robot’s task space, we rotated the data to establish a con-

sistent reference frame. The rotation aligned the advanced direction of the captured human

motion with the X+ axis, ensuring a standardized orientation across all demonstrations. To

do so, we considered the data’s forward direction as the direction of the mean velocity of the

root frame in the interest demonstration:

x̂MoCap =

−−−−→
vRoot
MoCap

|
−−−−→
vRoot
MoCap|

, (3-3)

where x̂MoCap corresponds to the estimated forward direction of the data and
−−−−→
vRoot
MoCap corres-

ponds to the velocity of the root frame in the motion capture interest demonstration.
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Figure 3-3.: Forward direction alignment of the MoCap data Towards the X axis

We determined the required rotation axis r̂ using the cross product between the desired

advance direction and the estimated forward direction of the data:

r̂ =

1

0

0

× x̂MoCap

∣∣∣∣∣∣
1

0

0

× x̂MoCap

∣∣∣∣∣∣
. (3-4)

We obtained the required rotation angle γx using the dot product relation between the two

vectors:
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γx = acos

1

0

0

 · x̂MoCap

 . (3-5)

Then we employed the well-known Rodrigues’ Rotation Formula [Belongie, 2023] for eva-

luating the required rotation matrix to be applied to all of the position vectors within the

interest demonstration:

 cos(γx) + r̂x(1− cos(γx)) r̂xr̂y(1− cos(γx))− r̂zsin(γx) r̂xr̂z(1− cos(γx)) + r̂ysin(γx)

r̂yr̂x(1− cos(γx)) + r̂zsin(γx) cos(γx) + r̂y(1− cos(γx)) r̂yr̂z(1− cos(γx)) + r̂xsin(γx)

r̂z r̂x(1− cos(γx))− r̂ysin(γx) r̂z r̂y(1− cos(γx))− r̂xsin(γx) cos(γx) + r̂z(1− cos(γx))

 ,

(3-6)

where r̂x, r̂y, and r̂z are the x, y, and z components of the r̂ unitary direction vector.

Head and Feet Orientation: With the previous rotation, the forward advance direction

corresponds to the X+ direction onto the world frame. However, we need to adjust the

rotation around the new X-axis to set the head towards the Z+ direction and the feet to

be supported at the same height. We determined the mean angle between the Y+ axis and

the vector connecting both feet. We applied a final rotation concerning the new X-axis to

guarantee the desired orientation.
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Figure 3-4.: Head and feet orientation alignment

By standardizing the orientation, we establish a consistent reference for the humanoid robot’s

perception of the environment. This alignment allows for a more straightforward interpre-

tation and mapping of the human motions to the robot’s coordinate system. We establish

a unified and standardized reference frame for the captured human motions by performing

these preprocessing steps. This alignment enables a seamless transfer of expertise from the

human demonstrators to the humanoid robot, as the motions are now represented in a con-

sistent and compatible format within the robot’s task space.
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3.3. Features Mapping - The Correspondence Problem

The Correspondence Problem in imitation learning addresses the challenge of mapping hu-

man demonstrations to the task space of humanoid robots [Nehaniv and Dautenhahn, 2002].

While humans and robots share similar characteristics and motions, their geometries are not

identical. The differences in dimensions, Degrees of Freedom (DoFs), inertia, and structural

variations pose significant obstacles in establishing a direct correspondence between human

and robot states.

3.3.1. Dimensional Disparities

Humans possess various physical characteristics, including varying body sizes, limb propor-

tions, and joint ranges. On the other hand, humanoid robots are designed with specific

dimensions and mechanical properties which may differ from those of humans. For instance,

the area of the feet of small-size robots tends to be larger (in proportion) than the area

of human feet. These differences can result in disparities in joint angles, limb lengths, and

overall body structure. In particular, both robots considered for this project are significantly

smaller than humans. An average American adult’s height is about 1.75 meters, while the

robot Darwin Mini’s height is about 0.27 meters, and the robot MAXE-2’s height is about

0.40 meters. Considering this, even simple parameters such as the step length of a human,

which is about 0.7 meters, are impossible to directly imitate by the robots evidencing the

requirement of normalizing the features to be imitated. Figure 3-5 compares human and

robot proportions.

3.3.2. DoF and Joints Misalignment

The Degrees of Freedom (DoFs) of human and robot joints may not align perfectly, leading to

challenges in accurately transferring human motion to the robot’s kinematic chain. Humans

have complex musculoskeletal systems with numerous DoFs in their joints. The human body

consists of more than 200 bones and approximately 230 individual joints, although not all are

independent. In contrast, humanoid robots are designed with a predetermined set of DoFs,

which is generally significantly smaller than that of humans.

For instance, in the context of this project, the Darwin robot possesses 16 individual joints,

while MAXE has 17. However, it’s important to note that even more anthropomorphic

robots do not necessarily correspond precisely to the number and type of joints found in

humans. Task requirements, mechanical constraints, and technological limitations often drive

a humanoid robot’s specific choice of DoFs.

Apart from the differences in DoF counts, the structure of joints can also vary between

humans and robots. While some joints may share the same number of DoFs, such as the

wrist with three DoFs, each joint’s location, and intrinsic mechanics can differ. For example,
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Figure 3-5.: Human vs. Robots’ height

the wrist joint in a human and a robot may possess three rotational DoFs, but the specific

arrangement and range of motion may differ.

3.3.3. Inertia and Mass Distribution Differences

Even when robots’ geometry closely resembles humans, differences in the mass distribution

can significantly affect the stability of movements and poses. Due to variations in body

composition and mechanical design, poses or movements that are stable for humans may

not be stable for robots, and vice versa. Therefore, when performing imitation learning, it is

crucial to consider the robot’s stability throughout the motion.

The mass distribution differences between humans and robots can result in variations in the
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dynamics of motion. These differences can lead to differences in joint torques, accelerations,

and overall stability. For example, a human may naturally maintain balance in a specific

pose due to mass distribution within their body. In contrast, a robot with a different mass

distribution may require additional control efforts to achieve the same stability.

When mapping human demonstrations onto a robot, it becomes essential to account for the

differences in mass distribution. This may involve adjustments in the control strategies or

motion planning to ensure the robot’s stability is preserved throughout the imitation process.

By considering the specific mass distribution characteristics of the robot, the imitation lear-

ning algorithm can generate motions similar to human demonstrations and are dynamically

feasible and stable for the robot. Similarly, by carefully considering the impact of inertia

and mass distribution differences, imitation learning algorithms can facilitate the transfer of

human expertise to humanoid robots while ensuring stability during task execution. These

considerations are vital in enabling robots to perform tasks with human-like characteristics

while maintaining their unique stability requirements.

3.3.4. Normalized Features Imitation

In imitation learning, using normalized features can facilitate the mapping of the human

demonstration space Xhuman and the humanoid robot’s task space Xrobot to a common imi-

tation space Ximitation. Normalization techniques aim to establish mappings that take the

data from the human demonstrators and from the robots to a shared space where they beco-

me comparable, accounting for variations in subjects’ heights and proportions (i.e., ϕhuman :

xhuman ∈ Xhuman → ximitation ∈ Ximitation and ϕrobot : xrobot ∈ Xrobot → ximitation ∈ Ximitation

as presented in figure 3-6). This subsection explores scaling functions and limb-based scaling

approaches to address these challenges.

One approach to handle scaling is to utilize a mapping function ϕsubject that considers the

subject’s height, whether a human or a robot. Applying this function allows interest points

to be scaled proportionally, ensuring consistency across different subjects. For example, if P

represents an interest point, the normalized position P̂ can be obtained as:

P̂ = ϕsubject(P, hsubject) =
P

hsubject

, (3-7)

where hsubject represents the height of the subject and ϕsubject is the scaling function.

However, scaling based solely on height may not be sufficient, as the proportions of the links

in the human body and the robot may differ. Fully extended limbs in humans may not align

with fully extended limbs in robots. An alternative is to apply scaling on a limb-by-limb basis

to address this. In this approach, a fully extended limb corresponds to a value of 1, while

a full contraction (which may be unfeasible in practice) corresponds to 0. This limb-based

scaling accounts for differences in limb proportions between humans and robots:
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P̂ = ϕ(P,Llimb) =
P

Llimb

, (3-8)

where Llimb represents the length of the fully extended limb.

Note that whichever mapping function is chosen implies the existence of the Imitation Ja-

cobian Jimitation for the robot:

ẋimitation(q) =
∂ximitation(q)

∂q

dq

dt
= Jimitation(q)q̇. (3-9)

This matrix enables kinematic control (as presented in Section 2.2.1) onto the robot, allowing
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the setting of the interest positions in the imitation space. However, this direct approach may

not be the best given the previously mentioned limitations on imitation.

In our specific case, considering the characteristics and requirements of our robots, an appro-

priate scaling approach is crucial for achieving accurate imitation. The limb-based scaling

method proposed in [Koenemann et al., 2014] is the most promising among the various ap-

proaches discussed. This approach considers the differences in proportions between humans

and robots, scaling the interest vectors based on the height ratio and considering the re-

lative differences from a reference pose. By adopting this approach, we aim to address the

challenges posed by the geometry and dimensions of our robots, enabling a more accurate

and effective transfer of human motion to the robot’s kinematic chain.

3.4. Policy Learning

Once the vector to be imitated has been determined (i.e., what to imitate), the next step

is determining the policy responsible for achieving that imitation (i.e., how to imitate).

Several approaches to performing imitation learning are broadly categorized into three main

branches: Geometric methods, Optimization-based methods, and GANs-based methods.

3.4.1. Geometric Methods

Geometric methods establish a closed mapping between the human and robot domains using

linear or non-linear transformations. These methods often rely on defining a set of correspon-

dences between critical points or features in the human and robot spaces. By mapping the

human motion to the robot’s kinematic chain, geometric methods aim to achieve accurate

imitation. However, they may face challenges in handling complex dynamics and capturing

fine-grained details of the motion. One of the most straightforward approaches of this cate-

gory implies the imposition of specific high-level step parameters such as step length, height,

width, and duration.
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common space)

3.4.2. Optimization-based Methods

Optimization-based methods approach imitation learning as a problem of maximizing a

reward function. These methods involve defining a parametric structure for the robot’s po-

licy and iteratively tuning the robot’s policy parameters to maximize the interest function as

Equation (3-2). By formulating the imitation problem as an optimization task, these methods

can account for various constraints and objectives. However, the optimization process can be

computationally demanding, and the choice of the reward function and optimization algo-

rithm plays a crucial role in achieving successful imitation. This approach can be integrated

with others to fine-tune previous results and/or consider the similitude metric to guide the

overall process.
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3.4.3. GANs-based Methods

GANs (Generative Adversarial Networks) have also emerged as a powerful approach to imi-

tation learning. GANs consist of two neural networks, a generator, and a discriminator, that

compete against each other in a minimax game. The generator network learns to generate

samples that mimic the training data distribution (human demonstrations), while the discri-

minator network learns to distinguish between the real and generated samples. GAN-based

methods offer the potential for generating highly realistic and diverse imitation behaviors by

leveraging the generative capabilities of neural networks. However, they often require much

training data and are more computationally demanding than other approaches.

3.5. Proposed approach: Dynamic ZMP-Based

Retargeting

We will take as base the work of [Koenemann et al., 2014]. In our work, we aim to extend

Koenemann’s approach by incorporating the Zero Moment Point (ZMP) criterion for dyna-

mic stability and employing a trajectory-based retargeting process. By incorporating these

modifications, we seek to achieve dynamically stable imitation while considering the specific

characteristics of our robots.

3.5.1. Original Koenemann’s Approach

In [Koenemann et al., 2014], they proposed a geometric method for imitation learning, which

initially focuses on imitating static poses based on scaled vectors based on a so-called T-pose,

utilizes the criterion of Center of Mass (CoM) projection to ensure stability during imitation,

and applies a Retargeting process to fix the resulting position.

Imitation Vectors from T-Pose

To have a common initial position compatible with both the robot xref
robot and the human

xref
human, they consider it as a T-pose where both legs and arms are fully extended. They

use a limb scaling method as in Equation (3-8), where the scale factor corresponds to the

relation between the robots and the corresponding human limb at this T-Pose. However,

they do not map the interest vectors directly but consider the difference between the T-Pose

and the interest position:

ximitation = ϕhuman(xhuman) =
xhuman − xref

human

LH
limb

, (3-10)

where LH
limb is the fully extended length of the interest limb of the human demonstrator.
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xrobot = ϕ−1
robot(ximitation) = ϕ−1

robot(ϕhuman(xhuman)) =

(
xhuman − xref

human

LH
limb

)
LR
limb + xref

robot,

(3-11)

where LR
limb is the fully extended length of the interest limb of the robot.

Figure 3-8.: T-Pose for Human and the two interest robots

Statically-stable Retargeting

The position of the end effectors obtained by directly tracking the interest vectors may not be

stable. Therefore, the robot’s state must be altered to guarantee stability. For this purpose,

the work of [Koenemann et al., 2014] proposes two scenarios with a finite states machine

that regulates the transition between them.

The first scenario is the case of a double support stance, where both feet are in contact with

the ground. In this case, a normalized CoM offset oCoM is defined:

oCoM =
(pCoM − pL,foot) · (pR,foot − pL,foot)

||pR,foot − pL,foot||2
, (3-12)

where oCoM is the normalized CoM offset, pCoM is the position of the subject’s CoM, pL,foot
is the position of the subject’s left foot, and pR,foot is the position of the subject’s right foot.
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Considering this offset, the outermost foot is retargeted to ensure that the normalized CoM

offset of the robot corresponds to one of the human demonstrators (Note that this offset

is attainable in an infinite number of points, but we are only interested in the point that

belongs to the line that connects both feet).
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Figure 3-10.: Retargeting of the farthest foot for imposing the desired offset - (a) left foot

retargeting, (b) right foot retargeting

The second scenario is the case of poses involving a simple support stance, where only one

foot supports the body while the other is in the air. In this case, the CoM position is set

to lie precisely at the center of the supporting foot (this would be equivalent to having a

normalized CoM offset of oCoM = 0 for the right foot and 0CoM = 1 for the left foot). This

adjustment ensures the robot maintains balance and stability during single support phases.

Concerning the transitions, when the robot is in double support, and the subsequent interest

pose corresponds to a simple support stance, a soft transition for the offset is determined

so that in a determined time, the offset changes from its current value either to 0 or 1

(depending on the corresponding simple support foot) and only then, the new balancing

foot is freed to track its desired state.
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Limitations

While the Koenemann approach provides a suitable pose imitation method, it has certain

limitations. One limitation lies in its stability criterion, which focuses solely on low acce-

leration situations and overlooks the dynamic aspects of the robot’s motion. As a result,

the approach may not adequately account for higher acceleration movements or scenarios

that require rapid changes in the robot’s pose. The transition from double support to simple

support stances also introduces a delay that can lead to a desynchronization between the

desired reference poses and the robot’s current state. This delay may cause undesired abrupt

changes in the robot’s motion, resulting in a lack of smoothness and coherence during the

imitation process. To address these limitations and improve upon the Koenemann approach,

we propose modifications and enhancements that consider both the dynamic nature of the

robot’s movements and the need for seamless transitions between different stances. These

refinements enhance the imitation process’s stability, fluidity, and synchronization, ensuring

a more accurate and natural replication of human motion.

3.5.2. Support Modes Identification

The dynamic nature of the robot’s gait and the specific challenges presented in different

stances influence the imitation process. Notably, the simple support phases, characterized

by a smaller support polygon, imply a narrower margin for stability. Conversely, the double

support phases necessitate maintaining a consistent position of the feet throughout the mo-

tion. To achieve robust imitation, it is crucial to estimate the gait phases within the data

accurately. For this purpose, we employ a method based on the detection of changes in the

speed of the feet. Specifically, when the speed of the feet drops below a certain threshold,

it indicates a transition into a support phase. We leverage this criterion to determine the

timing and duration of the simple and double support phases. Figure 3-11 shows an example

of this process.

In our estimation, we rely on two critical points located at the heel and the metatarsus. By

analyzing the contact of these critical points with the ground and their velocities, we can infer

whether the feet are in a supporting position. By precisely estimating the gait phases, we

ensure compatibility between the human data and the hybrid model utilized for the robots.

This compatibility allows for a more effective and reliable imitation process, enabling the

humanoid robots to replicate human motion with enhanced precision and fidelity.

3.5.3. Key Frames Imitation

Once the Support mode has been identified, we set the phase transition frames and the

frames when the balancing foot is at its highest as keyframes. Following the ideas presented

in the work of [Ma et al., 2021], we aim to establish the dynamic imitation fixing space-

time bounds around the reference behavior so that the robot’s behavior is very close to the
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Figure 3-11.: Example of step phases estimation according to the feet key points velocities

human’s at the critical points while still having certain freedom to adjust its movement at

the rest of the trajectory.
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Figure 3-12.: Imitation of Keyframes and spacetime bounds around them

To determine the robot’s position corresponding to the imitation vectors, we define the

robot’s imitation task space similarly as in Section 3.5.1. xrobot corresponds to the vectors

that map the position of the end of each limb relative to its beginning (hands relative to

shoulders and feet relative to hips).

xrobot =
[
xRhipT

Rfoot xLhipT

Lfoot xRshoulderT

Rhand xLshoulderT

Lhand

]T
, (3-13)

where xim
robot corresponds to the vector in the robot’s imitation task space, xRhip

Rfoot corresponds

to the position of the robot’s right foot relative to the right hip, xLhip
Lfoot corresponds to the

position of the robot’s left foot relative to the left hip, xRshoulder
Rhand corresponds to the position
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of the right-hand relative to the right shoulder, and xLshoulder
Lhand corresponds to the position of

the left hand relative to the left shoulder.

With this vector defined, now we require to determine the joint values corresponding to this

vector (inverse kinematics). For this purpose, we use the calculus of the imitation Jacobian

Jimitation mentioned in Section 3.3.4. With this Jacobian, we can iteratively take any arbitrary

initial position towards the interest one through

qk+1 = qk +KikJ
+
imitation(x

im
robot − xrobot(qk)), (3-14)

where Kik corresponds to an appropriately tunned positive constant, J+
imitation corresponds

to the pseudo-inverse of the imitation Jacobian, xrobot(qk) corresponds to the actual robot

position, and xim
robot corresponds to the desired position determined by the imitation data.

With the keyframes established, we adjust Bézier polynomials (see Section 2.2.2) to match

the position at these keyframes maintaining the duration between keyframes as in the data.

This initial approach in general does not lead to feasible trajectories, but it allows to generate

an initial estimate for the center of mass accelerations faced during the execution of the gait.

With this acceleration it is possible to establish a bound on the distance between the CoM

and the ZMP:

dbound = máx
t

|xCoM(t)− xZMP (t)|. (3-15)

Note that although it is mathematically possible to adjust velocities and accelerations, these

values present much noise, making the imitation process more challenging instead of impro-

ving it. Therefore, we preserved only the position information.

3.5.4. Dynamic Retargeting

The resulting imitated trajectories may be unfeasible for the robot’s geometry (as self-

collisions caused by the difference in feet areas) and/or may correspond to unfeasible beha-

viors (unstable in the sense of the ZMP stability criterion or hard-to-transfer ones). This

may result in failed imitations, as presented in Figure 3-13.
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Figure 3-13.: Failed imitation - (a) Falling for self-collision, (b) falling for unstable trajec-

tory

To correct this, we consider a retargeting process that aims to guarantee that:

The robot’s ZMP always lies within the support polygon
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There are no collisions of the robot against itself

The steps correspond to soft impacts (see 2-3)

The feet remain still and flat during the double support phases

For this purpose, we define new vectors onto a new task space for the robot Xretarget that

we will denominate as:

xretarget =
[
x0T

CoM xSfootT

Bfoot θ0
T

Bfoot θ0
T

W

]T
, (3-16)

where xretarget ∈ Xretarget corresponds to the new robot’s task space vector, x0
CoM corresponds

to the position of the Robot’s CoM relative to the world frame, xSfoot
Bfoot corresponds to the

position of the robot’s balancing foot relative to the support foot, θ0Bfoot corresponds to the

orientation of the robot’s balancing foot relative to the world frame, and θ0W corresponds to

the orientation of the torso relative to the world frame.

Note that as the support phases change, the assignation of support and balancing foot also

does. This corresponds to the hybrid nature of the models employed for the robot (see Section

2.1) and requires the proper transition maps.

With this new task space vector and its corresponding Jacobian, we can adjust the positions

of the keyframes to fulfill the requirements mentioned above.
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Figure 3-14.: Imitation Workflow - Features extraction, Features Imitation, and Dynamic

Retargeting

Depending on the value obtained for dbound (See Equation 3-15), there are two possible

scenarios:

dbound < fw: It is feasible to set a CoM position that maintains the ZMP within the

support polygon when followed. This position can be obtained setting the position

at the keyFrames within the support polygon respecting the bound (possibly with an

additional margin for robustness).



78 3 Imitation Learning

dbound > fw: It is unfeasible to set a CoM position that when followed, maintains the

ZMP within the support polygon. In this case, the overall tracking speed for the gait

must be slowed down until we revert back to the previous scenario.

Once the feasible region for the CoM’s and the overall tracking speed have been established

according to dbound, the correction in Xretarget is made in four steps:

1. The relative vertical position of the feet is set to 0 at the start and end of double support

phases avoiding floor perforation and improving the smoothness of the trajectory.

2. The relative horizontal position of the feet is set to the width of the foot plus a small

margin to avoid self-collisions.

3. The position of the CoM is adjusted at the keyframes so that the ZMP always lies

on the support polygon (as the accelerations are bounded, the distance between the

CoM and the ZMP is also bounded, therefore if the support polygon within that bound

contains the CoM projection, the ZMP will also be contained).

4. If the desired position is geometrically unreachable for the robot, the Z component of

the CoM is lowered, maintaining the remaining elements in their previously defined

value.

Once the correction is made in the retargeting space, we softly interpolate between the

recently obtained positions obtaining a consistent and stable trajectory. However, although

stable, this imitated trajectory does not always start from a double support position and

may end at any arbitrary position. To solve this issue, we added keyframes at the start and

end of the gait to guarantee the initial and final conditions of the gait to be at double support

stages with both feet at the same X coordinate. Note that the walking cycle consists on

double support phase (conventionally over the right foot),

simple support phase over left foot,

double support phase (conventionally over the left foot), and

simple support phase over the right foot.

Therefore, the retargeting process of each frame depends on the corresponding phase, and

the additional keyframes will correspond to a transition from a double support phase to the

initial phase of the data.
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Figure 4-1.: Reinforcement Learning Framework - Iteratively testing different policies to

maximize the expected Reward R (Stability, high velocity, and low torque

consumption)
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This chapter delves into the field of Reinforcement Learning, focusing specifically on its

application to the challenging task of humanoid locomotion. Reinforcement learning is a

powerful paradigm in artificial intelligence and robotics that enables agents to learn optimi-

zed behaviors through interaction with their environment. While reinforcement learning has

gained significant attention for its ability to tackle complex tasks and adapt to dynamic en-

vironments, we emphasize developing a tailored approach for humanoid locomotion. In this

chapter, we aim to provide a comprehensive exploration of reinforcement learning techniques

and methodologies specifically designed to address the requirements of humanoid locomotion.

Our approach utilizes a parametric structured policy incorporating well-established robotics

principles to control the robot’s movements effectively. Furthermore, we employ the Aug-

mented Random Search algorithm to optimize the policy’s parameters, ensuring the agent

learns efficient and adaptive locomotion strategies. Additionally, we draw inspiration from

[Tan et al., 2018] approach to transferability in reinforcement learning. We incorporate ideas

from robust control, refine our models, and actively avoid hard-to-transfer states to enhance

the transferability of learned policies. Considering these factors, we strive to develop robust

and versatile locomotion controllers that can be successfully deployed on physical humanoid

robots.

The chapter begins with an overview of reinforcement learning in Section 4.1, where we define

the core concepts and terminology necessary for a solid understanding of the topic. Section

4.2 focuses on designing and constructing reward functions, a crucial aspect of reinforcement

learning. We delve into the intricate process of defining appropriate reward functions that

incentivize desired agent behavior while considering trade-offs and balancing conflicting ob-

jectives. By carefully engineering reward functions, we can shape the learning process and

guide agents toward optimal behaviors. Moving forward, Section 4.3 explores different policy

structures, which determine the agent’s decision-making mechanism. We discuss two promi-

nent approaches: Q-learning and parametric structured policies. A detailed examination of

these policy structures gives us insights into their strengths, limitations, and suitability for

various tasks and domains. Section 4.4 shifts the focus to optimization algorithms employed

in reinforcement learning. We present a brief overview of optimization techniques for learning

policies that maximize cumulative rewards. Specifically, we delve into the Augmented Ran-

dom Search algorithm and its adaptive parameter update mechanism, which enables efficient

exploration and exploitation in the learning process. Lastly, in Section 4.5, we comment on

how to tackle a significant challenge in reinforcement learning, the reality gap. This section

explores the discrepancy between training in simulated environments and deploying learned

policies in the real world. We discuss the complexities, limitations, and potential solutions to

bridge this gap, enabling successful policy transfer and deployment of autonomous systems

in real-world scenarios.
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4.1. What is Reinforcement Learning (RL)

Reinforcement learning (RL) is a subfield of artificial intelligence that addresses the challen-

ge of learning how to make decisions in an environment to maximize cumulative rewards.

Unlike other machine learning approaches that rely on labeled data, reinforcement learning

is based on an interactive learning paradigm where an agent learns through trial and error

[Sutton and Barto, 2008]. In RL, an agent interacts with an environment sequentially. At

each time step, the agent observes the current state of the environment and selects an ac-

tion to perform. The environment then transitions to a new state, and the agent receives a

numerical reward signal reflecting the state-action pair’s desirability. The agent’s goal is to

learn a policy, a mapping from states to actions, that maximizes the expected cumulative

reward over time.

Agent

Real
Environment

Action U

Reward R

Observation x

Figure 4-2.: Reinforcement Learning Standard Diagram - The agent decides which actions

to take based on the information of the state of the system and the received

rewards

One key distinction of reinforcement learning is its focus on learning from experience rather

than relying on explicitly labeled data. The agent learns by repeatedly exploring the envi-

ronment, taking action, and observing the consequences. Through this iterative process, the

agent gradually improves its decision-making capabilities based on the received rewards and

the observed state-action transitions.

Reinforcement learning operates in both discrete and continuous domains. In this context,

we are specifically interested in the continuous domain, where the state and action spaces

are continuous and can have infinite possible values. Continuous RL presents additional

challenges compared to discrete RL due to the need for function approximation and the
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complexity of optimizing policies in high-dimensional spaces. RL algorithms often rely on

function approximators, such as neural networks, to estimate the value function or the policy

in the continuous domain. These function approximators allow agents to generalize knowledge

across similar states or actions and effectively handle vast, continuous state-action spaces.

While many RL algorithms are based on Markov Decision Processes (MDPs), in this thesis,

we are mainly focused on the continuous domain and less concerned with the formal MDP

framework. Instead, we emphasize the practical aspects of RL in continuous spaces, such as

algorithm design, policy representation, and optimization techniques.

When considering the essential elements of a reinforcement learning algorithm in the conti-

nuous domain, three key components stand out:

Reward function: The reward function is crucial in reinforcement learning as it

defines the goal and guides the learning process. It assigns a numerical value to each

state-action pair, indicating the desirability or utility of that particular combination.

Designing an appropriate reward function is crucial for shaping and driving the agent’s

behavior toward the desired objectives. A well-designed reward function should align

with the problem’s objectives and provide meaningful feedback to guide the learning

process effectively.

Policy structure: The policy structure determines how the agent selects actions based

on the observed states. It represents the agent’s decision-making strategy and defines

the mapping between states and actions. The policy structure can take various forms,

such as Q-Learning, which estimates the value of taking action in a given state, or

parametric structured policies that directly map states to actions using parameterized

functions. The choice of policy structure impacts the agent’s exploration and exploita-

tion trade-off and influences the learning efficiency and convergence properties.

Optimization algorithm: The optimization algorithm drives the learning process

by iteratively updating the policy based on observed rewards and state transitions.

It determines how the agent adapts behavior to maximize cumulative rewards over

time. Various optimization algorithms exist, such as the Augmented Random Search

(ARS-V1) algorithm, Proximal Policy Optimization (PPO), or Trust Region Policy

Optimization (TRPO). These algorithms leverage mathematical techniques to find the

optimal policy by iteratively adjusting the policy parameters in response to observed

rewards and environmental interactions.

4.2. Reward Function

The reward function is a critical component of the reinforcement learning algorithm as it

gives the agent feedback on its actions and guides its learning process. In this section, we

present the design of our reward function, which aims to promote the desired behaviors
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and penalize the undesired ones in the context of bipedal locomotion. Our proposed reward

function, denoted as R(θ), considers two primary factors: the movement velocity and the

torque consumption. The balance between these factors is crucial for achieving effective and

efficient walking patterns. The reward function can be defined as follows:

R(θ) = βvx(t)− (1− β)u(t)′Qu(t), (4-1)

Where vx(t) represents the robot’s velocity in the advanced direction, and u(t) denotes

the torque applied to the robot’s joints. The term β captures the relative importance of

torque consumption compared with the velocity. Q corresponds to a weighting matrix that

reflects the individual cost of using each servomotor. In our case, all the values of matrix Q

are identical since the motors of both interest robots have the exact specifications and are

considered equally relevant.

However, relying solely on these initial terms proved insufficient for valid walking patterns.

Initialized with random values for these parameters, many experiments resulted in early

falling or failing to move. To address this challenge, we incorporated conditional rewards

and penalizations into the reward function:

r(θ) = βvx(t)− (1− β)u(t)′Qu(t) + Cend(t), (4-2)

These conditional terms, denoted as Cend(t), are applied at the end of the experiment based

on the termination conditions and the time elapsed since its start. The purpose of these

terms is to further guide the agent towards desired behaviors and discourage undesired ones.

Specifically, if the robot falls, a penalization term is assigned an enormous negative value

that increases as the fall occurs earlier. Conversely, if the robot reaches the goal position

stably, a reward term is assigned a considerable positive value that increases as the goal is

achieved earlier. This incentivizes the agent to develop fast and stable gait patterns.

In our approach, we incorporated significant information in the policy structure to reduce

the need for extensive tuning of the reward function. By designing a policy structure that

captures essential aspects of the desired behavior, we can achieve a reward function that re-

quires fewer adjustments and fine-tuning compared to approaches that iteratively adjust the

reward function based on partial results, as observed in previous studies as [Xie et al., 2019].

4.3. Policy Structure

There are several well-established methods in the state of the art to determine the mapping

between the state of the environment x and the actions of the agent u = π(x). Between

them, we identify four main categories: Value-based methods, Policy Based methods, Model-

Based methods, and Hybrid methods. We chose a policy-based method that employs several

elements described in Section 2.2 instead of a more common agnostic approach.
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4.3.1. Value-Based Methods

Value-Based Methods in reinforcement learning focus on estimating the value function q(x, u),

which represents the expected cumulative reward for each state or state-action pair. These

methods aim to find an optimal value function or Q-function that guides decision-making.

This function assigns a Q-value to each pair state action corresponding to the expected

reward to be obtained following that action at the end of the experience. These methods

usually have two stages, an initial training stage where the value function is iteratively up-

dated, exploring the states-action space extensively, and a deployment stage where the value

function has converged, and the agent performs at each state the action with the highest

Q-value.

π(x) = argmax
u

q(x, u) (4-3)

CoM

Figure 4-3.: Q-Learning Paradigm - a q-value is iteratively assigned to each pair state

action so that after the training, the best action for each state corresponds to

the corresponding highest q-value. For instance, the target movement direction

of the CM of the robot (action space) at a specific state may correspond to

expected rewards (q-values)

Examples of Value-Based Methods include:

Q-Learning: An off-policy algorithm that learns the optimal Q-values by iteratively

updating the Q-function based on observed rewards and state transitions.

[Watkins and Dayan, 1992]
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Deep Q-Networks (DQN): A value-based method that utilizes deep neural networks

to approximate the Q-values, allowing for efficient handling of high-dimensional state

spaces. [Mnih et al., 2015]

Advantages:

Suitable for problems with large state spaces.

Can handle continuous state and action spaces.

Can converge to an optimal policy given sufficient exploration.

Disadvantages:

May suffer from convergence issues in high-dimensional and continuous action spaces.

Prone to overestimation or underestimation of Q-values.

Difficulties in handling exploration-exploitation trade-offs.

4.3.2. Policy-Based Methods

Policy-Based Methods directly learn a parameterized policy that maps states to actions.

Rather than estimating value functions, they aim to optimize the policy directly to maximize

the expected cumulative reward.

u = πθ(x) = π(x, θ) (4-4)
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Figure 4-4.: Reward vs θ example landscape - Policy-based methods explore the parameters

space Θ aiming to maximize the expected Reward R

Examples of Policy-Based Methods include:

REINFORCE: A policy gradient method that uses Monte Carlo sampling to estimate

the policy gradient and updates the policy parameters accordingly.

Proximal Policy Optimization (PPO): A policy optimization algorithm that iteratively

updates the policy using multiple epochs of stochastic gradient ascent, employing a

surrogate objective function with a clipping mechanism for stability. [Heess et al., 2017]

Advantages:

Direct Policy Optimization: Policy-based methods optimize policies directly, allowing

for more flexibility in learning complex and stochastic policies.

Continuous Action Spaces: These methods naturally handle continuous action spaces

without requiring additional modifications or discretization.

Convergence to Local Optima: Policy-based methods are less prone to getting stuck in

local optima than value-based methods.
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Disadvantages:

High Variance: Policy-based methods often suffer from high variance during learning,

leading to slow convergence and noisy updates.

Sample Efficiency: These methods require more samples to learn an optimal policy

than value-based methods.

Exploration Challenges: Policy optimization can struggle with exploration, especially

in large action spaces or when faced with sparse rewards.

4.3.3. Model-Based Methods

Model-Based Methods focus on learning a model of the environment dynamics, which in-

cludes the transition probabilities between states and the reward function. These methods

utilize the learned model to plan and decide actions to maximize future rewards.

Figure 4-5.: Model-Based Methods Framework - The agent uses model information to de-

cide the best actions in a defined forecast window

Examples of Model-Based Methods include:

Monte Carlo Tree Search (MCTS): A planning algorithm that uses a tree structure

to simulate and explore possible actions and outcomes, utilizing the learned model to

guide the search process. [Świechowski et al., 2022]
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Model Predictive Control (MPC): A control method that optimizes a sequence of ac-

tions over a finite horizon using the learned model, considering the future consequences

of actions. [Garćıa et al., 1989]

Advantages:

Planning and Optimization: Model-based methods can utilize the learned model to

plan and optimize actions, enabling efficient decision-making.

Sample Efficiency: These methods can achieve higher sample efficiency by utilizing the

learned model to simulate and explore possible outcomes.

Handling Complex Dynamics: Model-based methods are well-suited for environments

with complex dynamics, as they explicitly model the environment’s transition proba-

bilities.

Disadvantages:

Model Inaccuracy: The accuracy of the learned model can impact the performance of

model-based methods, especially in environments with stochastic or unknown dyna-

mics.

Computational Complexity: Planning and optimization in model-based methods can be

computationally intensive, limiting their applicability in real-time or resource-constrained

scenarios.

Model Bias: Errors or biases in the learned model can propagate and impact the quality

of the derived policies and value estimates.

4.3.4. Hybrid Methods (Actor-Critic Methods)

Hybrid Methods combine elements of both value-based and policy-based approaches. They

learn both a value function and a policy simultaneously, often using separate components

for estimation and improvement.

Examples of Hybrid Methods (including Actor-Critic Methods) include:

Advantage Actor-Critic (A2C): An algorithm that maintains an actor (policy) and a

critic (value function), where the actor updates the policy based on the advantage

function derived from the critic’s value estimates. [Mnih et al., 2016]

Deep Deterministic Policy Gradient (DDPG): A hybrid method that combines DQN

with policy gradients, using a deterministic policy to learn a value function and an

actor network to optimize the policy deterministically. [Lillicrap et al., 2019]
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Raise left foot

Actor Critic

Great decision

Figure 4-6.: Actor Critic Framework - Two independent entities (usually Neural Networks)

are iteratively trained to decide how to act based on the state of the system

(actor) and to evaluate the actions performed (critic).

Advantages:

Combined Strengths: Hybrid methods combine the benefits of both value-based and

policy-based approaches, leveraging value estimation for policy improvement.

Improved Stability: Actor-critic methods often exhibit improved stability during trai-

ning compared to pure policy gradient methods.

Continuous and Discrete Actions: These methods can handle continuous and discrete

action spaces, making them versatile for various problems.

Disadvantages:

Complexity: Hybrid methods can be more complex to implement and tune due to the

combination of value estimation and policy optimization components.

Hyperparameter Sensitivity: These methods often have more hyperparameters to tune,

increasing the difficulty of finding the right parameter settings.
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Exploration-Exploitation Tradeoff: Similar to value-based methods, hybrid methods

face challenges balancing exploration and exploitation during learning.

4.3.5. Approach Based on Bézier Trajectories

In our proposed approach, we adopt a policy-based method incorporating critical elements

discussed in Section 2.2. The approach, illustrated in Figure 4-7, draws inspiration from

the workflow for achieving dynamic gaits with the Atlas robot [Kuindersma et al., 2016] but

with notable modifications. Instead of a floating-base-model approach, we employ a hybrid

model approach to characterize and control the system dynamics. Additionally, we focus on

a more straightforward locomotion task designed explicitly for flat terrain.

Steps

Definition

Centroidal

Dynamics

Inverse

Kinematics
Controller Robot

Dynamic

Model

Sensors’

Values

PWM Referencesq references

state estimate

x referencesCoM Trajectory

Figure 4-7.: Predefined gait control structure

Building upon the concepts presented in Section 2.2.2, we parameterize a nominal trajectory

for the interest frames in the task space using Bézier polynomials, following the approach of

hybrid zero dynamics. The boundary conditions of the Bézier trajectories are set to match the

actual after-collision requirements, as seen in the work of [Arcos-Legarda et al., 2019], and we

fix the pre-collision targets to soft collisions as mentioned in Section 2.1.5. Subsequently, we

map these trajectories to the joint space using a damped pseudo-inverse inverse-kinematics

approach, as mentioned in Section 2.2.1 [Wampler, 1986]. At the low-level tracking, we em-

ploy servomotor controllers. Finally, we leverage the encoder information and the forward

kinematic equations of the robots to estimate the system’s state and close the loop.

Based on Bézier trajectories, this approach combines elements from control models discussed

earlier to achieve locomotion control. By utilizing Bézier polynomials and the hybrid-model

approach, we can parameterize trajectories in the task space and map them to joint space for

control execution. Integrating low-level servomotor controllers and state estimation further

enhances the effectiveness of our approach.

To fully characterize the gait of the robots, we consider several decision variables that deter-

mine the step parameters, Bézier coefficients, and duration for each walking phase. Instead of

directly treating the Bézier coefficients as decision variables, we leverage the known differen-

tiability of the Bézier curves. This allows us to impose desired boundary conditions on the mo-

del’s explored solutions, ensuring their feasibility and efficiency [Chevallereau et al., 2014].

The following decision variables are used to parameterize the Bézier curves in our model:

Duration of single and double support phases (tSS and tDS, 2 variables).
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Length, width, and reference height for the steps (pSSBF , three variables).

CoM position target (relative to the support foot) at the end of the single and double

support phases (pSSCoM and pDS
CoM , six variables).

CoM velocity target at the end of the single and double support phases (vSSCoM and

vDS
CoM , six variables).

CoM acceleration target at the end of the single and double support phases (aSSCoM and

aDS
CoM , six variables).
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Figure 4-8.: Our Proposed Framework - Optimize the robot’s performance by updating the

Bézier Coefficients and phases duration that determine the gait imposed by

kinematic control.

By incorporating these decision variables represented in Figure 4-8, denoted as θ ∈ Θ, we

establish a 23-dimensional constrained search space. It is important to note that to mitigate

the impact forces when the foot lands at the end of each single support phase, we set the

initial and final velocities and accelerations of the balancing foot to zero. This adjustment is
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made to promote smoother foot transitions and enhance the overall stability of the robot’s

gait.

Advantages:

Precise Dynamic Model: With the focus on minimizing the velocity of the feet at the

collision instant and achieving soft collisions, the proposed method takes into account

the specific dynamics of the system. By incorporating accurate modeling of the dy-

namics, the approach can better capture and represent the robot’s behavior during

locomotion, leading to more precise control and improved overall performance.

Trajectory Parameterization and Mapping: Using Bézier polynomials to parameteri-

ze trajectories in the task space offers flexibility and control over the desired motion

patterns. The method enables the generation of smooth and well-defined joint trajec-

tories by mapping these trajectories to the joint space using a damped pseudo-inverse

inverse-kinematics approach. This allows precise control of the robot’s movements and

enhances the ability to achieve desired locomotion behaviors.

Disadvantages:

Complexity of Implementation: Implementing the proposed method based on Bézier

trajectories can involve more than simpler techniques. Utilizing hybrid-model approa-

ches and incorporating specific boundary conditions to match after-collision requi-

rements may require additional effort in system modeling and control design. This

complexity could lead to challenges in implementation, especially when adapting the

method to different robot platforms or task scenarios.

Limited Generalization: The approach’s focus on precise modeling and control for mi-

nimizing foot velocity at collisions may limit its generalizability to other locomotion

tasks or environments. The specific strategies employed may be highly tuned to the

dynamics and requirements of the considered task on flat terrain, potentially leading

to reduced performance in different scenarios. The method may require substantial

modifications or adjustments to adapt to varying locomotion challenges, which could

limit its versatility.

4.4. Optimization algorithm

Optimizing the parameters of reinforcement learning algorithms plays a critical role in achie-

ving optimal performance for complex tasks. However, this process is not trivial due to several

challenges, including the presence of local minima and the stochasticity of the system. The

parameter tuning process in reinforcement learning is intricate due to multiple local minima

and the influence of stochasticity. The non-convex nature of the parameter space presents
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difficulties in finding the global optimum. At the same time, the stochasticity of the sys-

tem can result in noisy gradients, affecting the reliability of the optimization process. These

challenges demand specialized techniques for efficient and effective parameter tuning.

4.4.1. Gradient-Based Methods

Gradient-based methods utilize the gradients of the objective function (or estimations of

them) to optimize the parameters of the policy. Algorithms like stochastic gradient descent

(SGD) [Robbins and Monro, 1951], Adaptive Moment Estimation (Adam)

[Kingma and Ba, 2015], Root Mean Square Propagation (RMSprop) [Zou et al., 2019], or

Augmented Random Search (ARS) [Mania et al., 2018] update the parameters by descending

along the steepest gradient direction. Gradient-based methods are advantageous when the

objective function is differentiable, as they can effectively exploit gradient information for

precise optimization control. They are computationally efficient, enabling faster convergence

and better utilization of computational resources.

4.4.2. Augmented Random Search

In our approach, we employed the Augmented Random Search algorithm V1 (ARS-V1) to

optimize the performance of the robot’s walking patterns [Mania et al., 2018]. ARS-V1 takes

random directions in the search space, evaluates their impact on the fitness function, and up-

dates the policy parameters based on a weighted sum of the top-performing directions. This

algorithm adjusts parameter changes according to the standard deviation of the observed

rewards, allowing for longer steps in low-variation regions and shorter steps in high-variation

regions. The update rule used is as follows:

θk+1 = θk +
α

bσR

b∑
d=1

[f(θk + δd)− f(θk − δd)]δd, (4-5)

Here, θk represents the parameter vector at the k-th iteration, α is the base learning rate,

σR denotes the standard deviation of observed rewards in the current iteration, f refers to

the fitness function, and δd represents the random unitary vector of the interest direction.

Additionally, our approach addresses the constraints imposed on the solutions by incorpora-

ting restriction barrier penalization functions [Luenberger and Ye, 2021]. While the search

space is continuous, certain restrictions must be fulfilled, such as step length and height

greater than 0, step width exceeding foot width, and joint limits. More complex constraints

involve the zero moment point (ZMP) remaining within each joint’s support polygon and tor-

que limits. Barrier functions are employed to heavily penalize violations of these restrictions

in a quadratic manner, allowing the optimization process to discern the degree of violation

for each restriction. The fitness function is defined as follows:
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Table 4-1.: Comparison of Optimization Methods

Method Approach Strengths Weaknesses Applicability

SGD Updates parame-

ters by descending

along the steepest

gradient direction

with a fixed lear-

ning rate based on

the batch or mini-

batch samples

Simple and easy

to implement;

Computationally

efficient for large

datasets

Requires careful

tuning of the lear-

ning rate; Prone

to getting stuck in

local minima

Large-scale opti-

mization problems

in machine lear-

ning and deep

learning

Adam Adapts the lear-

ning rate based on

estimates of first-

order and second-

order moments of

gradients

Efficiently handles

sparse gradients

and noisy or

non-stationary

objective fun-

ctions; Converges

faster compared

to traditional

gradient descent

methods

Requires careful

tuning of hy-

perparameters;

May converge to

suboptimal solu-

tions in certain

cases

Training deep

neural networks

and various opti-

mization tasks

RMSprop Adjusts the lear-

ning rate based on

a moving avera-

ge of squared gra-

dients

Adapts the lear-

ning rate dynami-

cally based on gra-

dient magnitudes;

Effective in hand-

ling sparse gra-

dients and non-

stationary objecti-

ves

Sensitive to the

choice of hyper-

parameters; May

converge prematu-

rely to suboptimal

solutions in some

cases

Optimization

tasks involving

deep neural net-

works, natural

language proces-

sing, and machine

learning

ARS Approximates the

gradient by explo-

ring random direc-

tions in the para-

meter space

Suitable for

optimizing non-

differentiable or

complex objec-

tive functions;

Does not require

explicit gradient

calculations

May require a

large number of

samples to obtain

accurate gradient

approximations;

Sensitive to noise

in reward estima-

tes

Reinforcement

learning and opti-

mization problems

with expensive or

non-differentiable

objective fun-

ctions
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f(θ) = r(θ)−
Nr∑
j=1

MPj(x), (4-6)

In this equation,Nr represents the number of restrictions,M ≫ r(θ) ensures a large constant,

and Pj(x) corresponds to the j-th restriction of the model.

The prototype for the barrier functions Pj(x) is illustrated in Figure 4-9, where the function

heavily penalizes violations of the restrictions but has no effect if the restrictions are fulfilled.
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Figure 4-9.: Prototype for the barrier functions Pj(x) - If the restriction is fulfilled, it does

not affect the function, but it heavily penalizes the reward function otherwise.

4.5. The Reality Gap - Transferability

Reinforcement learning methods often rely on simulated environments for training due to

the ease and efficiency of conducting experiments in virtual settings. However, there exists

a significant challenge known as the Reality Gap, which refers to the differences between

simulated environments and the real world (See Section 1.2.3) [Salvato et al., 2021]. These

disparities can arise from inaccuracies in system characterization, unmodeled dynamics, or

errors inherent in the simulation model, such as discretization. Notably, the calculation of

impact forces between the robot and the environment, characterizing friction, and other

non-linear behaviors remain challenging problems, leading to errors in the simulation of
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robotic systems. Consequently, optimization results obtained in simulation may not directly

transfer to real-world robots. Highly performing policies in simulation can become unfeasible

or require subsequent fine-tuning to be effective in reality.

(b)(a)

Figure 4-10.: Reality Gap Problem - The simulated behaviors may fail when transferred to

real environments (a) and usually require additional considerations to obtain

an appropriate transferability (b).

Researchers have explored various strategies to mitigate the Reality Gap, each offering dis-

tinct approaches to address the challenges. This section discusses three common strategies:

Domain Randomization, Gap Closing, and Mixing Virtual and Real Experiments. Additio-

nally, we present our proposed approach for bridging the Reality Gap.
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4.5.1. Domain Randomization

Figure 4-11.: Domain Randomization Approach - By training policies capable of dealing

with a large set of conditions, the policy is expected to become capable of

dealing with real conditions.

Domain randomization is an effective strategy to enhance the transferability of policies from

simulation to reality. It involves introducing variations and randomization into the simula-

ted environment during training. By randomizing factors such as object appearances, tex-
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tures, lighting conditions, or physical properties, the policy learns to generalize across a

wide range of conditions. This robustness to variations improves the likelihood of the po-

licy performing well in real-world scenarios with different characteristics compared to the

simulation (if the agent is capable of properly behaving in many different environments,

the reality would be ¨just another environment¨ between its expertise). Domain randomiza-

tion has been successfully applied in various robotic domains, including manipulation tasks

[Tobin et al., 2017], locomotion control [Chebotar et al., 2018], and humanoid robotics for

soccer [Liu et al., 2022].

4.5.2. Gap Closing

Gap closing focuses on reducing the disparities between the simulated environment and

the real-world system to improve transferability. This approach involves refining the simu-

lation model by incorporating accurate representations of the robot’s dynamics, sensors,

and actuators. Additionally, accounting for environmental factors such as friction, noise, or

disturbances can further align the simulation with reality. By narrowing the gap through

more precise modeling and simulation, the learned policies become more applicable to real-

world scenarios. However, the challenge lies in accurately capturing all relevant dynamics

and factors, which may require iterative refinement and calibration. Gap closing has been

successfully applied in various robotic tasks such as quadruped locomotion [Tan et al., 2018],

Autonomous driving for racing [Niu et al., 2022], and Manufacturing systems digital cloning

[Müller et al., 2022].

4.5.3. Mixing Virtual and Real Experiments

Another strategy is to combine virtual and real experiments during the training process.

This approach involves conducting a limited number of real-world experiments alongside

simulation experiments. By comparing the performance and behavior of policies in both en-

vironments, researchers can assess the transferability and adjust the policies accordingly. The

goal is to identify behaviors that closely align with the simulation while demonstrating effec-

tiveness in the real world. This approach allows leveraging simulators’ versatility and compu-

tational efficiency while incorporating real-world data to enhance policy adaptation. Mixing

Virtual and Real Experiments has been successfully applied in various robotic tasks such as

quadruped locomotion as [Koos et al., 2013], and biped walking as [Rodriguez et al., 2018]

and [Xie et al., 2020].
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RealityControl

Simulation

Figure 4-12.: Transferability Approach - By iteratively training policies both in simulation

and in reality, the final policies are expected to work properly in both envi-

ronments.

4.5.4. Proposed Approach

In our research, we propose a novel approach to address the Reality Gap in the context

of reinforcement learning. Our approach focuses on three main elements: refined modeling,

communication channel characterization, and hard-to-transfer dynamics avoidance.

Refined Modeling: To bridge the Reality Gap, we enhance the accuracy of our

simulation model through refined modeling techniques. We obtain the masses and

inertia tensors of the robot using the Simscape Multibody tool in MATLAB’s Simulink,

based on the CAD files of its different parts and component data sheets. While most

of the robot’s rigid parts are considered in the model, we acknowledge that wires and

connectors are not included. By incorporating these detailed representations, we aim

to improve the fidelity of our simulation and reduce disparities between the simulated

and real-world systems.

Characterization of the Communication Channel: Another crucial aspect in
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addressing the Reality Gap is accurately characterizing the communication channel

between the robot and its control system. We identify the entire control loop’s average

time delay, incorporating this delay into both the simulations and the physical control

protocol. By ensuring the precise representation and compensation of communication

delays, we aim to minimize the discrepancies between simulation and reality, enabling

a more effective transfer of learned policies.

Avoidance of Hard-to-Transfer Dynamics: To further reduce the Reality Gap,

we focus on avoiding complex and challenging dynamics that are difficult to transfer

from simulation to the real world. Specifically, we employ trajectories with soft steps

and proper support, avoiding flight phases and supporting foot tilting during bipedal

walking (as described in Section 4.3.5). By narrowing the scope of our policies to the

specific characteristics of bipedal walking and simplifying the models, we minimize

errors and discrepancies, resulting in a smaller Reality Gap. This targeted approach

allows for more accurate and reliable simulations, enhancing the transferability of lear-

ned policies to real-world robotic systems.

By incorporating these considerations - refined modeling, characterization of communication

delays, and avoidance of hard-to-transfer dynamics - our approach enables the use of more

accurate and reliable simulation models. This significantly reduces the disparity between the

simulation and real-world environments, effectively transferring policies learned in simulation

to real-world robotic systems. Our comprehensive approach aims to bridge the Reality Gap

and facilitate the development of robust and transferable reinforcement learning policies for

practical robotic applications.



5. Results and Modules Integration

The previous chapters have laid the foundation by introducing the theoretical background,

control models, imitation learning, and reinforcement learning approaches. In this chapter,

we focus on the practical aspect of our research, presenting the outcomes of extensive ex-

perimentation and integration of different modules. The main objective of this chapter is to

evaluate the effectiveness and applicability of the proposed methods in achieving locomotion

tasks. To accomplish this, we employ a combination of virtual and physical experimental

setups to assess the performance and transferability of the developed techniques thoroughly.

Figure 5-1.: Experimental Mosaic Example - custom simulator (top left), CoM and ZMP

behavior (top right), Simulink Simulation (bottom left), and real test (bottom

right)
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We start by providing an overview of the experimental setups used in the evaluation pro-

cess in section 5.1. This includes both the virtual experimental setup (Section 5.1.1), where

simulations were conducted, and the physical experimental setup (Section 5.1.3), involving

real-world experiments on the robotic platforms. These setups are designed to capture the

key aspects and challenges associated with locomotion tasks, enabling a comprehensive eva-

luation of the proposed methods. The chapter then presents the results obtained from virtual

and real environments in Section 5.2. We explore various trajectory generation methods, in-

cluding handcrafted Bézier trajectories (Section 5.2.1), imitation-based trajectories (Section

5.2.3), and reinforcement learning-based trajectories (Section 5.2.2). Each subsection discus-

ses the trajectory generation approach’s performance, stability, and efficiency, shedding light

on their capabilities and limitations in achieving the desired locomotion tasks within the

simulated environment. Furthermore, we integrate reinforcement learning-based trajectories

with the lessons learned from imitation learning (Section 5.2.4). By leveraging the expertise

acquired through imitation learning as a starting point, we investigate the improvements

achieved in the reinforcement learning process. These insights provide valuable guidance for

effectively initializing reinforcement learning-based trajectories and enhancing performance.

Through this exhaustive evaluation and integration of modules, we aim to provide a com-

prehensive understanding of the capabilities, limitations, and potential enhancements of the

developed techniques. The outcomes presented in this chapter contribute to the overall ob-

jectives of this thesis, advancing the field of locomotion control and reinforcement learning

in robotics.

5.1. Experimental Setups

To achieve optimized walking capabilities on real robots, this work combines the use of virtual

experiments and physical experiments. The primary objective is to develop and validate

effective locomotion strategies through a systematic approach. To accomplish this, we focus

on a specific gait, which involves the robot starting from an arbitrary position with null

velocities and accelerations, walking in a straight line towards a predefined goal, following

a trajectory imposed by a parametric policy, and eventually coming to a stop at the target

destination.

The experimental evaluations are conducted in both virtual and real environments to assess

the performance and transferability of the developed methods. The virtual experiments begin

in our custom simulator, which provides a flexible and efficient platform for most of the

research process. This simulator allows for the training and evaluation of various methods,

facilitating rapid iterations and exploring different parameter settings. To validate the virtual

results and ensure their accuracy, a more robust simulator in Matlab’s Simscape Multibody

is utilized, which provides a high-fidelity representation of the robot’s dynamics.

It is important to note that the training of all methods is performed in the simulated en-

vironment. This allows for extensive exploration and optimization of policies without the
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constraints and risks associated with physical experiments. The simulated training serves as

a crucial foundation for developing effective locomotion strategies.

The structure of this section begins with an overview of the virtual experimental setups,

where we present the configurations and simulation parameters used in the custom simulator.

We then discuss the considerations for transferring the learned policies from the virtual

environment to the real robot, including specific parameter identification and adjustment

procedures. Finally, we detail the physical experimental setups, describing the hardware

specifications, sensors, and actuators utilized for the real-world validation of the developed

methods.

5.1.1. Virtual Setup

The virtual experiments were conducted using a desktop computer and involved two vir-

tual robots, Darwin Mini and MAX-E2. We employed a custom simplified simulator that

specifically captures the gait dynamics within the proposed model’s scope.

Our simulator consists of four main components:

Continuous Kinematic Model: The individual phases of the gait were evaluated

using Euler integration with fixed steps. The support foot was considered a fixed root

for the kinematic tree, enabling the calculation of precise kinematic relationships during

each phase.

Torque Estimation: To simulate the motion of the nominal robot, the corresponding

torques were estimated based on the dynamic model. We utilized the Recursive Newton-

Euler Algorithm [Siciliano and Khatib, 2016] to calculate the required torques for the

simulated motion.

Discrete Transition Functions: The simulator incorporates discrete transition fun-

ctions that map the values of the robot’s state variables at the end of each phase to the

initial conditions of the next phase. This ensures a smooth and consistent transition

between different phases of the gait.

Supervisor Functions: Supervisor functions play a critical role in the simulator by

determining when the phases should change, validating the model assumptions, and

evaluating the reward function. If any of the model assumptions are violated, the

experiment is terminated prematurely, with a penalty proportional to the remaining

time of the current experiment.

Figure 5-2 showcases a sample frame of the walking process for both robots in the custom

simulator. Additionally, demonstration videos of example gaits can be viewed at https:

//youtu.be/O5SXMa4Wgoo and https://youtube.com/shorts/8LxjQaXd5zM.

https://youtu.be/O5SXMa4Wgoo
https://youtu.be/O5SXMa4Wgoo
https://youtube.com/shorts/8LxjQaXd5zM
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Figure 5-2.: Custom Simulator sample frames (Axis in milimeters) - (Left) Darwin Mini

(Right) MAX-E2 - The red dots correspond to the position of the relevant

frames of the robot, the small yellow dots correspond to the centers of mass of

each link, and the larger yellow dot corresponds to the position of the entire

robot CoM, the green dot corresponds to the projection of the CoM of the

robot onto the ground, and the cyan dot corresponds to the ZMP.

Figure 5-3.: Simscape Multibody Simulation sample frames - (a) Darwin Mini (b) MAX-E2

It is worth mentioning that the virtual experiments were initially performed using our cus-

tom simulator on a personal desktop computer. However, as mentioned in Section 2.3.2,

we developed a detailed model of both robots in the MATLAB Simulink Simscape Multi-

body environment taking as references the CAD files of the links and servomotors available
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online at [ROBOTIS, 2022a] and [ROBOTIS, 2022b]. Initial validation was carried out to

ensure the accuracy and reliability of the virtual results before performing any test on the

real robots. This alternative environment provides a more comprehensive and high-fidelity

simulation environment, allowing us to assess the performance of the developed methods

under more realistic dynamics and conditions at the cost of higher simulation times. Videos

of those simulations can be found at https://youtu.be/RvYAAQU-qEM for Darwin Mini and

https://youtu.be/Faa3ncJLz_M for MAX-E2.

5.1.2. Transferability Considerations

To ensure the transferability of our results, as discussed in Section 4.5.4, we implemented

several strategies, including model refinement, characterization of communication delays,

avoidance of hard-to-transfer behaviors, and using simple and robust controllers.

Regarding characterizing the communication channel, we conducted preliminary tests with

both robots to determine the average delay time in the control loop. For Darwin Mini,

the average delay time was approximately 2/33 seconds, while for MAX-E2, the average

delay time was approximately 1/18 seconds. These delay times were considered in both the

simulations and the physical control protocol to compensate for the delays in the references.

Regarding the sampling frequency, we identified a sampling frequency for reading and writing

all the relevant registers of approximately 33 Hz seconds for Darwin Mini and approximately

180 Hz for MAX-E2. It is important to note that although the movement references for

high-level control may have delays and comparatively slow sampling frequencies, the low-

level controller directly influences the servomotors, providing a nearly instantaneous response

time.

Furthermore, it is crucial to highlight that the communication parameters we obtained are

specific to our setup and depend on various factors, such as the effective baud rate of the

servomotor network, the specifications and configuration of the PC’s USB port, and the

processing time required to define a new action (reference) based on the current state.

By considering these factors and incorporating them into our experiments, we can use sim-

plified models with minimal errors, resulting in a small gap that needs to be overcome

between the simulated and real-world environments. This approach ensures that our results

are transferable and applicable to real robotic systems.

5.1.3. Physical Setup

This section presents the experimental setups for the physical experiments conducted on

two robots, Darwin Mini and MAX-E2. The detailed models of these robots are explained in

Sections 2.3 and 2.4, respectively. Here, we will focus on the specific details of the experimen-

tal setup, including the network configurations, general characteristics of the environments,

and considerations regarding friction and cables that were not explicitly considered in the

https://youtu.be/RvYAAQU-qEM
https://youtu.be/Faa3ncJLz_M
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models.

Darwin-Mini

Figure 5-4.: Experiments setup for the physical experiments. The walking surface corres-

ponds to a glass table, and the data wire (connected to Darwin’s arm) is held

next to the robot to avoid interfering with the gait.

For the processing of Darwin Mini, the robot is equipped with an internal OpenCM 9.04

microcontroller that acts as an intermediary between the main PC and the servomotor net-

work. The kinematic control loop, state estimation, and trajectory planning are performed

on a desktop computer running MATLAB, as the computational capabilities of the micro-

controller are insufficient for the required computations. The communication between the

desktop computer and Darwin Mini is established through a wired connection using the

USB2Dynamixel communication device and the Dynamixel SDK for MATLAB. It is impor-

tant to note that Darwin Mini is powered by onboard batteries, requiring only a data wire

connected to its left arm free connector. (Note that the experiments performed required the

battery charge to be high as otherwise, the control performance heavily deteriorates).
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PC

[Matlab SDK]

Servomotors

Network
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Connections

USB2Dynamixel

Figure 5-5.: Connections diagram for Darwin-Mini

With this configuration, we achieved an effective sample frequency of approximately 62 Hz

for the entire control loop. The average delay in the control loop was measured as about

four samples, corresponding to approximately 62.5 milliseconds. This delay accounts for the

processing time required for the desktop computer to communicate with Darwin Mini and

provide the necessary control signals. The communication diagram illustrating the required

connections between the components is depicted in Figure 5-5.

MAX-E2

For the processing of MAX-E2, the robot is equipped with an internal CM550 onboard com-

puter and a Raspberry Pi Zero W. However, due to the limitations of the factory software, we

opted to perform the kinematic control loop, state estimation, and trajectory planning pro-

cessing on a desktop computer running MATLAB. The communication between the desktop

computer and MAX-E2 was established through a wired connection using the U2D2 commu-

nication device and the Dynamixel SDK for MATLAB. It is important to note that MAX-E2

can be operated with batteries. Still, we utilized a wired power source for a more reliable

and practical power supply, which required an additional wire in addition to the data wire.

With this configuration, we achieved an effective sample frequency of approximately 180 Hz

for the entire control loop. The average delay in the control loop was measured as ten samples,

corresponding to approximately 1/18 second. This delay accounts for the processing time

required for the desktop computer to communicate with MAX-E2 and provide the necessary

control signals. The communication diagram illustrating the required connections between

the components is depicted in Figure 5-7.
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Figure 5-6.: Experiments setup for the physical experiments. The walking surface corres-

ponds to a wood office desktop, and the power wire is held over the robot,

avoiding interfering with the gait.
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Figure 5-7.: Connections diagramMAXE

5.2. Results

To evaluate the performance of our proposed workflow, we conducted a series of experiments

in both simulation and reality. These experiments aimed to verify the effectiveness of each

module and the integration of all the modules together. We tested different approaches:

Manually tunned Bézier trajectories (Section 5.2.1).

Bézier trajectories obtained through imitation learning (Section 5.2.2).

Bézier trajectories obtained through reinforcement learning from random initial con-

ditions (Section 5.2.3).

Bézier trajectories obtained through reinforcement learning from imitation learning

initial conditions (Section 5.2.4).

Throughout these experiments, we observed a remarkable similarity between the results ob-

tained in the simulation and the real-world environment. This section presents the detailed

results and analyses of each experimental setup, highlighting the performance and effective-

ness of our proposed workflow.

5.2.1. Manually Tunned Results

To establish a starting reference point for comparison, we initially implemented manually

tuned Bézier trajectories. These trajectories were designed to generate stable and conserva-

tive gaits, allowing us to assess the performance of more advanced approaches. In both cases,

the reference trajectory starts from an arbitrary position (that does not present singularities

close to it) and has the following base parameters:

The step width corresponds approximately to the original foot separation of the robot

at a neutral position.
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The step length corresponds to approximately the foot length.

The step height guide point corresponds to the height of the robot’s ankle (given the

polynomial nature, the actual height is way lower).

The step duration corresponds to approximately 1 second, with 0.5 seconds for the

simple support phase and 0.5 for the double support phase.

The transition velocities and accelerations are set to 0.

The corresponding parameters are summarized in Table 5-1

Parameters Darwin Mini MAX-E2

Simple Support Time [s] 0.5 0.75

Double Support Time [s] 0.5 0.75

Step Size (X, Y, Z) [mm] (40, 40, 20) (45, 60, 40)

Double Support Target CM [mm] (0, 0, 100) (0, 0, 180)

Simple Support Target CM [mm] (0, 0, 100) (0, 0, 180)

Double Support Target VCM [mm/s] (0, 0, 0) (0, 0, 0)

Simple Support Target VCM [mm/s] (0, 0, 0) (0, 0, 0)

Double Support Target ACM [mm/s2] (0, 0, 0) (0, 0, 0)

Simple Support Target ACM [mm/s2] (0, 0, 0) (0, 0, 0)

Table 5-1.: Parameters manually tuned for both robots

Figure 5-8 depicts the Zero Moment Point (ZMP) behavior relative to the support polygon

for both robots. The resulting trajectory requires nine steps for both robots. Additionally,

it is worth mentioning that the joint limits of Darwin restrict the step length as the sagittal

hip servomotors cannot move freely behind the robot. Regarding the ZMP behavior, most of

the time, it closely follows the CoM trajectory. Still, it deviates some millimeters when the

robot accelerates without approaching the support polygon, evidencing the robust stability

of the conservative gait.

Videos showcasing the manually tuned gait can be observed at https://youtu.be/OcvwPjfmo2s

for Darwin-Mini and at https://youtu.be/9lQ0y1bWauU for MAXE-2. The videos show the

gait from 4 different perspectives: Our custom simulation, the Simulink Simscape Multibody

simulation, the CoM/ZMP trajectory, and the test with the real robots.

https://youtu.be/OcvwPjfmo2s
https://youtu.be/9lQ0y1bWauU
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Figure 5-8.: ZMP behavior with manually tunned Bézier trajectories - (a) Darwin Mini

(b) MAX-E2 - The yellow line corresponds to the CoM trajectory, the cyan

line shows the ZMP trajectory (mostly overlapped with the CoM), the blue

rectangle corresponds to the position of the right foot, and the red rectangle

corresponds to the position of the left foot.

Figure 5-9 depicts the behavior of the robot in the joint space in reality compared to the

desired behavior expected from the simulated environments. As expected, the behavior ob-

served in the simulation in reality closely tracks the behavior expected from the simulation.

Nonetheless, it is worth mentioning that in Darwin-Mini, some links’ flexibility and the ser-
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vomotors’ backslash evidence qualitatively more significant errors than expected in some

positions. Additionally, as the sampling frequency of Darwin Mini is slower, it is possible to

note some edges corresponding to abrupt changes in its trajectories, even for the reference

gait.
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Figure 5-9.: Virtual and real joint behavior of the robots with manually tunned Bézier

trajectories - (a) Darwin Mini (b) MAX-E2 - The color lines correspond to

the real values of the joint trajectories, and the red dotted lines correspond to

their corresponding references.
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These manually tuned Bézier trajectories serve as a starting point for comparison with the

results obtained through more advanced approaches, allowing us to assess the effectiveness

and improvements achieved by the subsequent modules of our proposed workflow.

5.2.2. Imitation Learning Results

To illustrate the usability of our proposed approach for using the Motion Capture data

for generating viable gaits for the robots. We considered a specific human recording as a

reference. A video of the reference gait can be found at https://youtu.be/EQn921aqoDc,

and a sample frame of this video is presented in Figure 5-10. This specific gait was arbitrarily

chosen as it presented walking in a straight line, similar to our interest case.

Figure 5-10.: Example frame of the reference MoCap gaits (Axis in meters).

The first step is to estimate the support modes from the data based on the velocity of the

heel and metatarsus frames. Figure 5-11 shows the data and the support estimation for the

interest gait.

With the estimation of the step phases, we identified 17 keyframes (12 phase changes and 5

balancing feet highest position frames). At these frames, we identified the position, velocity,

and acceleration of the imitation vectors in the space of the human. However, we considered

only the time and position information as the velocities and acceleration of the data presen-

https://youtu.be/EQn921aqoDc
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Figure 5-11.: Step phases estimation according to the heel and metatarsus frames velocities

ted very noisy behaviors that were not consistent when testing different filters for the data

or slightly different choices for the keyframes. We mapped the positions from the human

space towards the two robots’ imitation spaces using equation 3-11 with their corresponding

parameters. As a preliminary step, we performed a Bézier interpolation between the keyfra-

mes to observe the resulting behavior in a simulation with relaxed constraints allowing for

feet superposition and escape of the ZMP from the support polygon. Figure 5-12 presents

the two robots’ footprints and CoM behavior during these simulations.
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(a)

(b)

Figure 5-12.: Footprints and CoM behavior (before retargeting) - (a) Darwin-Mini (b)

MAX-E2

For Darwin, the only apparent problem is the position of the CoM that lies towards the left

causing the robot to fall when starting the simple support phases over the right foot. For

MAX-E2, there are two evident problems. First, there is an overlap in the position of the

feet, which would cause the robot to collide with itself and probably fall. And second, the

trajectory of the Center of Mass (CoM) consistently falls over the left foot, which implies that

when the robot gets into simple support phases over the right foot, it will fall. Additionally,

for both robots, the Zero Moment Point (ZMP) behavior, though not depicted in the Figure

due to its chaotic nature, frequently moves outside the support polygon, further highlighting

the instability of the resulting gaits. We applied the proposed retargeting process to all

keyframes to address the issues of the feet’ superposition and the floor’s perforation. This

resulted in a new set of geometrically consistent keyframes, using an initial estimation of

dbound = 20[mm] for Darwin-Mini and dbound = 15[mm] for MAX-E2 (We used a larger

bound for Darwin-Mini because its low-level control performance is not as good as MAX-

E2’s control). The footprints and CoM behavior for the two robots during these simulations

are shown in Figure 5-13.
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(a)

(b)

Figure 5-13.: Footprints and CoM behavior (after retargeting) - (a) Darwin-Mini (b) MAX-

E2

In this case, the resulting gaits are geometrically consistent. However, the accelerations

observed evidence that it is impossible to fix appropriate points within the support polygon

for the CoMs as the maximum distances from the ZMP to the CoMs are way more extensive

than the feet of both robots. We iteratively tested different slowdown factors until we found a

value corresponding to a stable gait. The slowdown factor corresponded to 1/4 of the original

velocity for Darwin-mini and 1/5 for MAX-E2. With these slowdown processes, we obtained

feasible gaits that can be applied to the robots. The footprints, CoM, and ZMP behavior for

the two robots during these gaits are shown in Figure 5-14.

Videos showcasing the resulting gaits obtained through our proposed approach are avai-

lable at https://www.youtube.com/watch?v=5dr2heR-RZA for Darwin-Mini and https:

//www.youtube.com/watch?v=oNSWzcZsL_w for MAX-E2. The videos show the gait from 4

different perspectives: Our custom simulation, the Simulink Simscape Multibody simulation,

the CoM/ZMP trajectory, and the test with the real robots.

https://www.youtube.com/watch?v=5dr2heR-RZA
https://www.youtube.com/watch?v=oNSWzcZsL_w
https://www.youtube.com/watch?v=oNSWzcZsL_w
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(a)

(b)

Figure 5-14.: Footprints, CoM and ZMP behavior (after retargeting and slowdown) - (a)

Darwin-Mini (b) MAX-E2

Although it was required to slow down the gait to make it feasible for the robot by just using

our IL approach, we summarize the corresponding Bézier gait parameters in Table 5-2 for

using them as initialization parameters in Section 5.2.4.

Parameters Darwin Mini MAX-E2

tSS [s] 0.57 0.57

tDS [s] 0.22 0.22

pSSBF [mm] (60.15, 35.58, 12.61) (96.20, 97.12, 20.18)

pDS
CoM [mm] (-21.7, 3.7, 102.69) (-36, 17, 173.45)

pSSCoM [mm] (21.7, 3.7, 105.52) (36, 17, 177.97)

Table 5-2.: Gait parameters obtained from Imitation Learning (without slow down)
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5.2.3. Reinforcement Learning (from random initial conditions)

Results

To evaluate the performance of our proposed approach based on Bézier trajectories (see

Section 4.3.5), we conducted extensive experiments using reinforcement learning. The ex-

periments consisted of 80 repetitions with the Darwin Mini robot and 80 repetitions of the

algorithm with the MAX-E2 robot. In each repetition, the algorithm started from random

initial conditions, initialized in a random neighborhood around the manually tunned gait

(See Section 5.2.1). The algorithm hyperparameters were set as follows:

Darwin Mini: imax = 500, ν = 0,05, α = 0,25, Nd = 9, b = 6, and M = 120.

MAX-E2: imax = 750, ν = 0,05, α = 0,5, Nd = 9, b = 6, and M = 180.

These hyperparameters were selected based on preliminary experiments, and although the

algorithm is adaptive, hyperparameter optimization can improve the overall behavior. No-

netheless, further hyperparameter optimization was not formally applied beyond minor pre-

liminary tests.

Figure 5-15 shows the progression of the reward function throughout the iterations of the

algorithm for both robots. Notably, despite the initial variability in the rewards, a significant

portion of the repetitions successfully converged toward the vicinity of the best solution

found. However, some repetitions encountered challenges and got stuck in lower-performing

local optima, underscoring the difficulty of optimizing the gait parameters effectively.

The experiments showed that the algorithm successfully discovered stable and efficient wal-

king patterns for the Darwin Mini and MAX-E2 robots. The resulting Bézier trajectories

generated by the reinforcement learning process exhibited smooth motion, and the ZMP

remained consistently within the support polygon, ensuring the robots’ stability during wal-

king.
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Figure 5-15.: Learning curves evolution - (a) Darwin-Mini (b) MAX-E2 - Concatenation of

the boxplot diagrams for the reward at each iteration.

Videos showcasing the Reinforcement Learning optimized gait can be observed at https:

//youtu.be/_bS11whLJG8 for Darwin-Mini and at https://youtu.be/iORdiBx8xIg for

MAXE-2. The videos show the gait from 4 different perspectives: Our custom simulation,

the Simulink Simscape Multibody simulation, the CoM/ZMP trajectory, and the test with

the real robots.

https://youtu.be/_bS11whLJG8
https://youtu.be/_bS11whLJG8
https://youtu.be/iORdiBx8xIg
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Parameters Darwin Mini MAX-E2

tSS [s] 0.47 0.57

tDS [s] 0.32 0.24

pSSBF [mm] (53.81, 60.71, 4.61) (82.89, 71.64, 84.82)

pDS
CoM [mm] (-18.66, 8.74, 100.53) (-29.87, 27.15, 178.62)

pSSCoM [mm] (21.53, 5.25, 99.03) (24.27, 20.10, 171.94)

vDS
CoM [mm/s] (6.00, -16.39, -3.49) (3.55, -47.53, 29.67)

vSSCoM [mm/s] (-7.29, -3.08, -8.24) (28.17, 40.23, -1.14)

aDS
CoM [mm/s2] (-4.29, 7.41, 14.53) (-121.37, 93.80, 312.68)

aSSCoM [mm/s2] (7.30, 0.38, -15.17) (138.69, -47.03, 247.20)

Table 5-3.: Best parameters found by the RL optimization (from random initial conditions)

for both robots

The best set of parameters found are summarized in Table 5.2.3. With these parameters, the

robots achieve a maximum linear velocity of about 18 cm/s for Darwin Mini and about 20

cm/s for MAX-E2. From a qualitative perspective, the best policies obtained present some

similar characteristics for both robots and between different repetitions:

Steps were as narrow as allowed.

CM trajectories with the tendency to be close to the internal edge of the feet with a

certain margin.

Double support phases are shorter than simple support phases.

On the other hand, there are also some differences between the behaviors observed in Darwin-

Mini and MAX-E2:

In Darwin-Mini’s trajectories, the balancing foot tends to be raised as minimum as

possible, while MAX-E2 Trajectories show a higher step height.

The main limitation for MAX-E2 to speed up is its stability. Under the current policy

structure, the ZMP goes very close to the safety boundary (See Figure 5-17). At the

same time, Darwin-Mini still has a more significant margin of safety and is limited

mainly for its joint limits, especially the hip sagittal joints that cannot take negative

values.

When performing tests on the real robots, the structure of Darwin presented more sig-

nificant deformations that appeared ¨invisible¨ to its sensors, causing more instability

than expected from the models.
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While MAX-E2 was capable of consistently showing its maximum velocity from si-

mulation to reality thanks partially to its feedforward controller, Darwin’s controller

struggled to follow the references at high speeds limiting the maximum speed consis-

tently achievable (See Figure 5-18).
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Figure 5-16.: ZMP behavior with Reinforcement Learning tunned Bézier trajectories - (a)

Darwin Mini (b) MAX-E2 - The yellow line corresponds to the CoM trajec-

tory, the cyan line shows the ZMP trajectory (mostly overlapped with the

CoM), the blue rectangle corresponds to the position of the right foot, and

the red rectangle corresponds to the position of the left foot.
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Figure 5-17.: Distance from the ZMP to the support polygon limit during gaits - (a)

Darwin-Mini (b) MAX-E2 - the red dotted line corresponds to a safety boun-

dary
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Figure 5-18.: Virtual and real joint behavior of the robots with Reinforcement Learning

tunned Bézier trajectories - (a) Darwin Mini (b) MAX-E2 - The color lines

correspond to the real values of the joint trajectories and the red dotted lines

correspond to their corresponding references.
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Figure 5-19.: Evolution of the mean cumulative RMS torque and experiment final time for

Darwin Mini - At the start, the experiments finish as failure early. But, as

the iterations pass, the success rate grows up to approximately 91% and the

final time and the cumulative torque get progressively reduced.
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Figure 5-20.: Torque evolution through sampled iterations (i = {1, 50, 500}) for Darwin

Mini - When starting near to the Handcrafted gait at the initial iterations,

the cumulative RMS torque is comparatively large. As the iterations pass, the

successful experiments get sharper and the load is distributed more evenly

between different joints resulting in shorter successful gaits.
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Figure 5-21.: Evolution of the mean cumulative RMS torque and experiment final time for

MAX-E2 - At the start, the experiments finish as failure early. But, as the

iterations pass, the success rate grows up to aproximately 98% and the final

time and the cumulative torque get progressively reduced.
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Figure 5-22.: Torque evolution through sampled iterations (i = {25, 50, 750}) for MAX-E2

- When starting near to the Handcrafted gait at the initial iterations, the

cumulative RMS torque is comparatively large. As the iterations pass, the

successful experiments get similar torques close to the performance obtained

with RL from random conditions and present light improvements in velocity

(faster finish times)



128 5 Results and Modules Integration

5.2.4. Reinforcement Learning (from Imitation Learning conditions)

Results

To further enhance the performance of our proposed approach, we explored the combination

of Reinforcement Learning (RL) and Imitation Learning (IL). The goal was to leverage the

strengths of both techniques to achieve more efficient convergence and better results for

humanoid gait optimization. In the previous Section, the algorithm started from random

initial conditions. However, this time, we initialized the RL process using the parameters

obtained from the Imitation Learning phase (See Table 5-2). These parameters served as a

promising starting point, as they represented qualitatively similar walking patterns learned

from human demonstrations, although they were not feasible by themselves.

Like the previous section, we conducted extensive experiments with almost the same hyper-

parameters except for the iterations per repetition set to imax = 100. For each robot (Darwin

Mini and MAX-E2), we executed 80 repetitions using the combined Reinforcement Learning

and Imitation Learning approaches. Figure 5-23 shows the progression of the reward fun-

ction throughout the iterations of the algorithm for both robots. By initializing the RL

process with parameters from IL, Darwin Mini presented a slight reduction in the number of

iterations required to converge to stable and efficient walking gaits, while MAX-E2 showed

a more significant improvement. While starting from random initial conditions (around the

handcrafted gait) took several hundreds of iterations for convergence, starting from the IL

parameters required only about hundred for Darwin-Mini and a few tens for MAX-E2. This

substantial improvement in convergence speed highlights the complementary nature of RL

and IL, where the imitation-guided initialization jumpstarts the RL optimization process.

In addition to the enhanced convergence speed and improved stability, the combination of

Reinforcement Learning (RL) and Imitation Learning (IL) also exhibited a notable reduction

in the variability of the results. In the pure RL experiments with randomly initialized gaits,

we observed occasional failures where the optimization process struggled to reach the vicinity

of the best solutions or sometimes failed to find feasible gaits altogether. This inherent

variability in the outcomes highlighted the sensitivity of the RL approach to the initial

conditions and the challenges associated with finding suitable solutions in a high-dimensional

parameter space.
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Figure 5-23.: Learning curves evolution - (a) Darwin-Mini (b) MAX-E2 - Concatenation of

the boxplot diagrams for the reward at each iteration .

In contrast, the Imitation Learning phase provided a substantial advantage regarding re-

sult consistency. The RL process, initialized with parameters obtained from the IL phase,

consistently reached excellent solutions, residing in the neighborhood of the best solutions

with remarkably lower variability. Darwin-Mini presents a higher variability in its results

than MAX-E2 in both scenarios (starting from random and from IL conditions) partially
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because the joint limits interfere with the process more strongly than the stability constraints

resulting in MAX-E2 being more adaptable to the different gaits. The imitation-guided initia-

lization helped the RL algorithm overcome the pitfalls of random initialization and leverage

the knowledge learned from human demonstrations. As a result, the combined approach de-

monstrated a more reliable and predictable performance, significantly reducing the risk of

obtaining suboptimal or unstable gaits.

Videos showcasing the optimized gaits obtained can be observed at https://www.youtube.

com/watch?v=5dr2heR-RZA for Darwin-Mini and at https://www.youtube.com/watch?v=

2wStOQBUX9w for MAXE-2. The videos show the gait from 4 different perspectives: Our

custom simulation, the Simulink Simscape Multibody simulation, the CoM/ZMP trajectory,

and the test with the real robots. These gaits are very similar to the ones obtained with only

RL, with the following main differences:

The step height for MAX-E2 resulted in lower values when initializing from IL.

The step width for Darwin Mini resulted in wider values when initializing from IL.

These differences may arise for reaching different local optima into the search space. However,

the overall performances of both approaches were very similar. Note that the improvement

for MAX-E2 was significantly better than for Darwin-Mini. On the other hand, it is worth

to mention that initializing from IL improved the consistency of the result as the random

initialization lead to approximately 9% of failures for Darwin Mini and approximately 2%

of failures for MAX-E2 compared to the flawless success observed with IL initialization.

https://www.youtube.com/watch?v=5dr2heR-RZA
https://www.youtube.com/watch?v=5dr2heR-RZA
https://www.youtube.com/watch?v=2wStOQBUX9w
https://www.youtube.com/watch?v=2wStOQBUX9w
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Figure 5-24.: Evolution of the torque and experiment final time through sampled iterations

for Darwin Mini - At the start, the experiments finish as failure early. But,

as the iterations pass, the success rate grows up to 100%, the final time

maintains stable, and the cumulative torque gets slightly reduced.
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Figure 5-25.: Sample of torque evolution through sampled iterations for Darwin Mini - At

the start, the cumulative RMS torque is low because the direct imitation

policy is not feasible and results in early falls. As the iterations pass, the

successful experiments get similar torques close to the performance obtained

with RL from random conditions and present light improvements in velocity

(faster finish times)
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Figure 5-26.: Evolution of the torque and experiment final time through sampled iterations

for MAX-E2 - At the start, the experiments finish as failure early. But, as the

iterations pass, the success rate grows up to 100%, the final time maintains

stable, and the cumulative torque gets slightly reduced.
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Figure 5-27.: Sample of torque evolution through sampled iterations for MAX-E2 - At the

start, the cumulative RMS torque is low because the direct imitation policy

is not feasible and results in early falls. As the iterations pass, the successful

experiments get similar torques close to the performance obtained with RL

from random conditions and present light improvements in velocity (faster

finish times)



6. Conclusions, Future Work and

Recommendations

This thesis addressed the challenge of using artificial intelligence techniques to train robotic

systems for bipedal locomotion tasks. We aimed to achieve optimized performances in terms

of energy consumption and execution speed despite the limitations imposed by the reality

gap. We proposed a modular training scheme integrating Bézier based trajectories, reinforce-

ment learning, and imitation learning techniques to achieve this. The framework allowed us

to integrate various approaches to improve the performance of bipedal robots in locomotion

tasks.

Chapter 1 motivated the study, highlighting the remarkable achievements of artificial in-

telligence in various domains, including board games and video games. The chapter also

identified the challenges associated with implementing artificial learning techniques for ro-

bots, emphasizing the significance of addressing the reality gap, result variability, and the

high costs involved in robot experiments. Chapter 2 presented an overview of the funda-

mental concepts required for modeling and analyzing humanoid robots. Non-linear control

techniques applicable to this type of robot were discussed, along with specific details of

the robots used in our project. Chapter 3 focused on the concept of imitation learning. We

explored the use of human teachers to demonstrate tasks to robots and emphasized the

importance of refining learned behaviors. Challenges in imitation were discussed, particu-

larly the differences between robots (especially smaller ones) and humans. We developed

a geometric approach using Motion Capture data for learning trajectories, which provided

stable walking patterns and served as an informed initial guess for optimization processes. In

Chapter 4, the concept of reinforcement learning was presented. We provided an overview of

the most relevant methods for humanoid robot tasks and introduced our Bézier trajectories

tuning policy-based approach. The use of reward functions and exploration improvement

methods were discussed. Additionally, the reality gap problem was addressed, and strate-

gies to mitigate this gap, such as randomization and robust control models, were explored.

Chapter 5 presented the results of the individual proposed modules and their viable com-

binations: manually tuned Bézier trajectories, trajectories obtained through our proposed

imitation learning method, and trajectories optimized through reinforcement learning from

random and imitation-based initial conditions. The efficacy of our proposed methods was

demonstrated, and the best approach for the humanoid locomotion task was determined

considering the limitations imposed by the reality gap.
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6.1. Final Training Strategy

As shown in Section 5.2.4, the best strategy explored for optimizing the performance of the

humanoid robots in bipedal gait problems employed all of the tools developed. The Bézier

trajectories and non-linear control strategies served as the base model for the policy, the

initialization of the optimization process from imitation learning-based initial conditions

sped up the convergence in most situations. It reduced the variability of the results, and

the optimization through reinforcement learning improved the performance of the proposed

policies until the achievement of stable, efficient, and transferable gaits in the simulation and

in reality.

6.1.1. The Imitation Process

Efficiently transferring information from human gait patterns to humanoid robots using

Reinforcement Learning necessitates a thoughtful approach to account for the differences

between the specific robot and the subject of imitation. Directly comparing the two entities

is generally not feasible due to these inherent disparities. We employed a process to map the

relevant information to a shared space that the robot can comprehend and follow to address

this challenge.

However, the journey does not end with mapping the data to a shared space. Noise in the

data and variations in the dynamics of the robot and humans can lead to discrepancies

between the mapped trajectories and the robot’s capabilities. Simply attempting to track

the data, even in the shared space ideally, may result in failed behaviors characterized by

collisions or instabilities.

To tackle this issue, we utilized a geometric retargeting process, as presented in Section 3.5,

to adjust the resulting trajectories and ensure their feasibility in the robot’s motion. This

retargeting process enabled the robots to achieve stable walking patterns both in simulation

and in reality, mirroring the behavior of the humans during the imitation learning process.

By integrating Reinforcement Learning with the geometric retargeting process, we success-

fully facilitated the efficient transfer of human gait patterns to humanoid robots. The combi-

nation of these techniques contributed to enhanced robot locomotion capabilities, showcasing

a significant step forward in closing the reality gap and achieving more robust and human-

like behaviors in robotic systems. However, further research and refinement in this area hold

the potential for even more remarkable advancements in robotics and artificial intelligence.

6.1.2. The Reinforcement Learning Optimization

The second specific objective of this study aimed to design a reinforcement learning al-

gorithm that could iteratively enhance the performance of the bipedal locomotion gait in

terms of energy consumption and moving velocity. To address this objective, we employed

a policy-based approach to reinforcement learning. This allowed us to optimize and refine
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the gait patterns generated by randomly initialized policies and policies initialized through

imitation learning. Through the reinforcement learning process, we achieved significant im-

provements in gait efficiency. Initially, we considered that optimizing for both velocity and

torque consumption might lead to contradicting objectives, as faster movements would typi-

cally result in higher instantaneous energy consumption. However, the optimization process

revealed an exciting finding. While slow movements exhibited lower instantaneous energy

consumption, they led to more significant overall energy consumption over time. On the

other hand, the policies that achieved higher moving velocities corresponded with the most

efficient ones, as they allowed the robot to complete tasks more swiftly, thereby reducing

the overall energy expenditure. The iterative nature of the reinforcement learning process

enabled us to continuously explore the search space of policies, refining them over time to

strike an optimal balance between moving velocity and energy consumption. By leveraging

this approach, we improved gait efficiency, resulting in more efficient locomotion patterns

for the bipedal robots.

It is worth noting that the policy structure and additional considerations effectively narrowed

the reality gap so that experiments conducted in simulation and with real robots presented

very close behaviors. This process was crucial in mitigating the reality gap problem, allowing

us to develop policies that performed well in simulation and transferred effectively to real-

world environments. This ability to adapt and optimize policies for real robots ensures the

practical applicability of our approach, making it a valuable tool for training robots to

perform complex locomotion tasks efficiently. In conclusion, based on policy optimization,

our reinforcement learning algorithm proved to be highly effective in iteratively enhancing

bipedal gait performance concerning energy consumption and moving velocity. By finding

policies that strike an optimal balance between these objectives, we demonstrated improved

efficiency in robot locomotion, making significant strides toward practically implementing

artificial learning techniques in robotic systems.

6.1.3. The Policies Integration

Our proposed method offered a flexible and efficient integration of manual tuning, imitation

learning, and reinforcement learning approaches to obtain optimized gaits for humanoid lo-

comotion tasks. This integration was made possible through the parametrization considered,

which was transversal to all the approaches. By employing this parametric framework, we

could apply the different techniques independently or sequentially, taking advantage of the

best characteristics of each method. The parameterization allowed us to easily incorporate

manually tuned Bézier trajectories, trajectories obtained through imitation learning from

human demonstrations, and trajectories optimized through reinforcement learning with ran-

dom initial conditions or based on imitation learning results. Each approach contributed

unique insights and advantages to the gait optimization process. The manual tuning ap-

proach provided a foundational understanding of the robot’s dynamics and control, enabling
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us to establish preliminary walking patterns. Imitation learning allowed us to refine these

patterns, achieving stable and human-like gaits. Additionally, reinforcement learning further

improved the gaits, optimizing them for energy consumption and movement speed, resul-

ting in more efficient locomotion. This integrated approach offered a holistic strategy for

achieving high-performance gaits that balanced stability and efficiency. The ability to apply

these techniques independently or in combination provides a powerful toolkit for addressing

various challenges and fine-tuning the walking behaviors of humanoid robots.

In conclusion, our parametric integration framework allowed us to leverage the strengths

of manual tuning, imitation learning, and reinforcement learning to obtain optimized gaits,

thereby advancing the development of robust and efficient bipedal locomotion for humanoid

robots.

6.1.4. Comparison Between Approaches

Integrating the modules, including Non-Linear Control and Bézier Trajectories, Imitation

Learning, and Reinforcement Learning, played a crucial role in achieving robust and opti-

mized performances for bipedal locomotion tasks. Each approach demonstrated transferable

policies that could enhance the robot’s locomotion abilities. The Reinforcement Learning

approach stood out as the most promising in achieving high-performance locomotion among

the integrated modules. The Reinforcement Learning approach, with its iterative optimiza-

tion process, allowed the robot to adapt and refine its behavior through interactions with

the environment. The results from Reinforcement Learning showed a considerable improve-

ment in energy efficiency and execution speed, surpassing the performances achieved through

Non-Linear Control, Bézier Trajectories, or Imitation by themselves.

As expected, initializing the Reinforcement Learning approach from imitation learning con-

ditions proved highly effective. Using the imitation learning results as a starting point, the

Reinforcement Learning algorithm demonstrated comparable performances with lower va-

riability and faster convergence than random initial conditions. This initialization technique

played a vital role in reducing the exploration effort required during Reinforcement Lear-

ning training, resulting in a higher sample efficiency. In summary, integrating the individual

modules allowed for the development an efficient and adaptive robot training strategy for bi-

pedal locomotion tasks. The Reinforcement Learning approach, particularly when initialized

from imitation learning conditions, showed the most promising modular results, achieving

superior performances with reduced variability and faster convergence.

6.2. Future Work

This research’s successful results and insights open up several avenues for future exploration

and improvement in humanoid robotics and artificial intelligence. The following are some

promising directions for further investigations:
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Extension to More Complex Locomotion Patterns: The current work focused on

achieving stable and efficient walking gaits. Future research could extend the proposed

methods to tackle more complex locomotion patterns, such as jogging or running.

This extension would require developing policies that can handle higher speeds and

more dynamic movements, potentially involving new stability and energy efficiency

challenges.

Utilization of Higher-Class Robots: Expanding the research to higher-class robots

with better mechanical properties and actuators could lead to using faster and more

efficient control algorithms. These robots would offer increased capabilities for execu-

ting complex and dynamic movements, enabling the development of more sophisticated

locomotion behaviors.

Experiments During the Optimization Process: Inspired by [Koos et al., 2013],

future work could explore the possibility of incorporating experiments at the end of the

optimization process for validation and during the optimization itself. This approach

would enable adaptive learning and faster convergence by using real-world data to

guide the optimization process.

Flexible Bézier Trajectories for Reinforcement Learning: Instead of treating

Bézier trajectories as rigid impositions, an alternative approach could involve using

them as a guiding framework for Reinforcement Learning approaches. The parameters

of Bézier curves could become part of the policy’s action space, allowing the robot

to learn and adapt its walking patterns within the constraints defined by the Bézier

trajectories.

Robustness Techniques: Investigating techniques to improve the robustness of lear-

ned policies is crucial for practical deployment. Research could focus on perturbation

rejection strategies, domain randomization methods, or other approaches to enhance

the stability and adaptability of the policies to varying environments.

Model Predictive Control (MPC): Integrating Model Predictive Control with the

existing framework could further improve the performance of the gaits. MPC allows

the robot to anticipate and adjust its actions based on predictions of future states,

leading to more dynamic and responsive locomotion behaviors.

Multilevel Simulators: Developing multilevel simulators could significantly accele-

rate the optimization process. A simple and less precise simulator would be used for

most tests in this approach. In contrast, a middle-level simulator (or a set of them)

would be employed for fewer simulations of promising policies. Finally, the best policies

from the earlier stages would be tested in a more realistic simulator (or even in a real

robot), providing a multi-fidelity optimization framework.
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Adaptation to Varying Terrains: Extending the proposed methods to enable hu-

manoid robots to adapt to varying terrains is a critical aspect of real-world applications.

Research could explore methods to make the policies more terrain-aware and capable

of adjusting their walking patterns based on the ground conditions.

These future research directions hold the potential to enhance the capabilities of humanoid

robots and contribute to the broader field of artificial intelligence and robotics. Exploring

these avenues will pave the way for more sophisticated and efficient locomotion behaviors,

enabling humanoid robots to perform complex tasks in real-world environments with greater

adaptability and robustness.

6.3. Recommendations

The research presented in this thesis has made strides in improving humanoid robot loco-

motion by integrating artificial intelligence techniques. Based on the findings and insights

obtained from this study, several key recommendations are proposed for future research and

development in the field of humanoid robotics and artificial learning:

Validation and Real-World Testing: It is recommended to conduct extensive real-

world testing with physical humanoid robots to validate the proposed methods. Real-

world experiments will provide crucial insights into the practical applicability and

adaptability of the developed techniques across different environments and scenarios.

Exploration of Additional Locomotion Patterns: Building upon the successful

optimization of walking gaits, future research should investigate more complex locomo-

tion patterns, such as jogging, running, turning, or jumping. Extending the research to

encompass a broader range of movements will open up new possibilities for humanoid

robots in various applications.

Comparison with State-of-the-Art Approaches: To benchmark the proposed

methods’ effectiveness, researchers should thoroughly compare them with state-of-the-

art approaches in humanoid locomotion. This analysis will help understand the advan-

tages and limitations of the developed techniques compared to existing methodologies.

Parameter and Policy Structure Optimization: Further exploration of parame-

terization and policy structures is recommended to fine-tune the performance of the

proposed methods. Optimizing these aspects could lead to improved results and more

efficient policies for humanoid locomotion.

Generalization to Different Robot Platforms: It is essential to investigate the

generalization capability of the developed methods to different robot platforms and

morphologies. Ensuring the policies can adapt to diverse humanoid robots will enhance

their applicability in real-world scenarios.
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Real-Time Implementation: Explore methods to implement the proposed policies

in real-time on physical robots. Considering robot hardware’s computational and pro-

cessing constraints will be critical to achieving real-time feasibility.

Collaboration and Data Sharing: Encourage collaboration and data sharing within

the research community. Openly sharing datasets, simulation environments, and policy

implementations can accelerate progress and facilitate reproducibility in the field.

Human-Robot Interaction Enhancement: Investigate methods to improve human-

robot interaction during learning. Developing techniques for human trainers to teach

efficiently and correct robot behaviors during imitation learning can lead to more ef-

fective learning.

Integration of Perception: Explore integrating perception and sensor data into

learning. Leveraging sensory information from cameras, depth sensors, or other onboard

sensors could enhance the robot’s awareness and adaptability in dynamic environments.

Transfer Learning and Multi-Task Learning: Investigate the potential of transfer

and multi-task learning in humanoid locomotion. Leveraging knowledge gained from

one task to improve performance in another could lead to more efficient and versatile

locomotion behaviors.

Deployment in Real-World Scenarios: Consider real-world applications and use

cases for humanoid robots with optimized locomotion policies. This could include sce-

narios such as search and rescue operations, human-assisted tasks, or assisting people

with mobility impairments.

By addressing these recommendations, the research community can advance the develop-

ment of robust and efficient humanoid locomotion, ultimately contributing to the practical

implementation of artificial learning techniques in real-world robotic systems.



A. Appendix A: Example Free Body

Diagrams

Figures A-1 to A-6 depict example free body diagrams that have been utilized to evaluate

the forces and reactions acting on humanoid robots, which are the focus of this thesis. These

diagrams are essential tools for understanding and analyzing the mechanical interactions and

dynamics involved in the robot’s movements and interactions with its environment. Through

these diagrams, we can gain insights into the distribution of forces, torques, and reaction

forces at various points of interest on the robot’s body, allowing us to study the stability,

balance, and overall performance of the robot during different phases of its motion.
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B. Appendix B: Darwin-Mini Kinetic

Parameters Tables

Tables B-1 to B-11 present the inertia matrices of each one of Darwin’s links concerning its

CoM.

Link Mass [g]

Foot 37.6

Ankle 19.67

Calf 9.432

Thigh 19.94

Hip 23.27

Torso 241.17

Shoulder 0.446

Elbow 23.27

Forearm 26.59

Table B-1.: Darwin Mini - Link masses in grams [g]

12470.0 362.9 6653.0

362.9 27700.0 -454.6

6653.0 -454.6 26690.0

Table B-2.: Inertia matrix of the Darwin Mini Foot [gmm2]

2757 -1.631 -118.8

-1.631 2810 10.83

-118.8 10.83 2157

Table B-3.: Inertia matrix of the Darwin Mini Ankle [gmm2]
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4958 0 473.4

0 3647 0

473.4 0 3117

Table B-4.: Inertia matrix of the Darwin Mini Calf [gmm2]

9750 -166.862 -166.862

-166.862 6281 -740.398

-166.862 -740.398 5127

Table B-5.: Inertia matrix of the Darwin Mini Thigh [gmm2]

6477 0 -1.52

0 5428 16.19

-1.52 16.19 2997

Table B-6.: Inertia matrix of the Darwin Mini Hip [gmm2]

285500 66.01 -45520

66.01 255600 69.22

-45520 69.22 195300

Table B-7.: Inertia matrix of the Darwin Mini Torso [gmm2]

0.4989 0 0

1 1.158 -0.1329

0 -0.1329 1.161

Table B-8.: Inertia matrix of the Darwin Mini Shoulder [gmm2]

9750 -166.862 -166.862

-166.862 6281 -740.398

-166.862 -740.398 5127

Table B-9.: Inertia matrix of the Darwin Mini Elbow [gmm2]
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15420 195.9 377.6

195.9 15800 -1307

377.6 -1307 2796

Table B-10.: Inertia matrix of the Darwin Mini Forearm [gmm2]



C. Appendix C: MAX-E2 Kinetic

Parameters Tables

Tables C-1 to C-10 present the inertia matrices of each one of the MAXE’s links concerning

their corresponding CoMs.

9319 -146.034 -562.945

-146.034 22038 -471.863

-562.945 -471.863 28341

Table C-1.: Inertia matrix of MAXE’s Foot [gmm2]

27900 -631.782 -282.779

-631.782 27900 -282.9823

-282.779 -282.9823 20073

Table C-2.: Inertia matrix of MAXE’s Ankle [gmm2]

11857 -7.195 -323.024

-7.195 6281 -677.988

-323.024 -677.988 11857

Table C-3.: Inertia matrix of MAXE’s Calf [gmm2]

9750 -166.862 -166.862

-166.862 6281 -740.398

-166.862 -740.398 5127

Table C-4.: Inertia matrix of MAXE’s Thigh [gmm2]
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27900 -631.782 -282.779

-631.782 27900 -282.9823

-282.779 -282.9823 20073

Table C-5.: Inertia matrix of MAXE’s Hip [gmm2]

203036 -44.242 25204

-44.242 223988 -4.169

25204 -4.169 320987

Table C-6.: Inertia matrix of MAXE’s Waist [gmm2]

126984 9200 19871

9200 143417 -5694

19871 -5694 188171

Table C-7.: Inertia matrix of MAXE’s Chest [gmm2]

27900 -631.782 -282.779

-631.782 27900 -282.9823

-282.779 -282.9823 20073

Table C-8.: Inertia matrix of MAXE’s Shoulder [gmm2]

26636 25.786 1192

25.786 26272 -508.958

1192 -508.958 11592

Table C-9.: Inertia matrix of MAXE’s Elbow [gmm2]

13426 418.394 7251

418.394 20157 -662.211

7251 -662.211 12793

Table C-10.: Inertia matrix of MAXE’s Forearm [gmm2]
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