
Privacy-preserving edit distance
computation using secret-sharing

protocols

Universidad Nacional de Colombia

Faculty of Sciences

Medell��n, Colombia

2023

Privacy-preserving edit distance
computation using secret-sharing

protocols

Hernán Daŕıo Vanegas Madrigal

Thesis presented as a requirement to obtain the title of:

MSc. in Applied Mathematics

Supervisor:

PhD. Daniel Cabarcas Jaramillo

Line of research:

Cryptography

Universidad Nacional de Colombia

Faculty of Sciences

Medell��n, Colombia

2023

Cómputo de la distancia de edición
preservando la privacidad mediante el
uso de protocolos basados en secreto

compartido

Hernán Daŕıo Vanegas Madrigal

Tesis presentada como requisito para obtener el t��tulo de:

Maestŕıa en Ciencias - Matemática Aplicada

Director:

PhD. Daniel Cabarcas Jaramillo

L��nea de Investigaci�on:

Criptograf��a

Universidad Nacional de Colombia

Facultad de Ciencias

Medell��n, Colombia

2023

We can only see a short distance ahead, but we

can see plenty there that needs to be done.

{ Alan Turing.

Acknowledgements

First of all, I want to say thank you to my supervisor Prof. Daniel Cabarcas Jaramillo. He

is a truly good professor and supervisor. His continuous support was the key to �nishing

this work successfully. Due to his patience and his good attitude from the �rst ideas

to the last moments, this experience has been amazing, very rewarding, and completely

enjoyable. I owe a lot of things to Prof. Cabarcas: my interest in cryptography, the

improvement in my writing style, my research skills, and the way to see problems. All

the moments I needed his help, he was there, ready to answer my questions, emails, and

messages. The most amazing thing is that he is both academically excellent and more

important, an amazing person with great values and exceptional academic ethic. I only

hope to give back all of the support, teachings, and friendship in the future. Also, I want

to say thank you to Prof. Diego Aranha from Aarhus University, Denmark, for all of his

support and comments on this work. Despite we did not have signi�cant contact before,

he accepted to help us with this work and give us comments in his free time. Also, I want

to say thank you to Daniel Escudero, because I consider him a very valuable person in

my academic development. He was the one that introduced me to the marvelous world

of MPC since my undergraduate degree. Also, he supported me by giving me material,

books, and papers to read. The knowledge I have at this moment, and maybe the path

I will follow in the future is thanks to him. Another important person for this project

was Marcel Keller, the maintainer of the MP-SPDZ framework. He is also a key part of

this work because all the times I had a silly question about MP-SPDZ, I posted it in the

issues of the repository, and he always gives a correct, clear, and useful response back.

Also, if I required some non-existent functionality or report a bug, he was always willing

to answer back, solve the problem and improve the framework. Without his e�orts to keep

improving the library, this work would be way more di�cult.

I want to say thank you to Ver�onica Valencia Hern�andez. She is an important person

to me and she was very important during the development of this work. She always

is there to give me advice to improve my work, to give me strength when something

went wrong, and for being my resting space in my life. Thank you to her for her love

and her company. Thank you to my family for their continuous support during all my

studies. They were always there to help me in all the moments. Also, I want to say thank

you to my friends from the School of Mathematics: Andr�es Felipe Uribe, Juan Pablo

Cardona, Santiago Echavarr��a, Valentina Guar��n, Estiven Carvajal, and Maria Antonia

viii

Rinc�on. Their friendship was always very valuable and the time I spent with them was

the best experience that a person can get in life. I will be there for them as they are for

me. I want to say thank you to Liliana Parra from the administrative sta� in the School

of Mathematics. She always is there to solve all kind of problems to all the students with

commitment and dedicated e�ort.

Also, I say thank you to David Basin and Mart��n Ocha Ronderos for giving me the op-

portunity to go to ETH Z�urich, Switzerland, to do an internship and work with them. It

was one of the most amazing experiences in my life. Thank you for trusting in me and

giving me the opportunity to know a lot of new places, new academic environments, and

new researchers. I also want to say thank you to Jos�e David Mosquera for his friendship

and help during this trip. He helped me a lot with advice about Z�urich and we enjoyed

together good moments in this amazing country. Also, I want to say thanks to Saskia Wolf

and Vivien Klomp from the administrative sta� of the Information Security Group for all

of the help with the formalities of this internship. They were always willing to help me to

have a good experience during my stay at ETH Z�urich and their good energy made this

time very enjoyable. Finally, thank you to the folks of the Information Security Group, to

my o�ce mate and friend Andrin Bertschi, the St�aheli family, Andras Wagner, and Noemi

Conod. They were always an amazing group of people that helped me and made me feel

welcome in Z�urich and at ETH Z�urich. Thank you for giving me one of the most amazing

times of my life, and thank you for always treating me well and making me happy.

ix

Abstract

The edit distance between two strings in an alphabet is the minimum number of in-

sertions, deletions, and replacements that need to be done to transform one of the strings

into the other. This metric is widely used in genomic applications to determine the sim-

ilarity of two DNA chains which has its uses in medical and biological studies. Despite

the bene�ts of computing the edit distance between DNA chains, there are privacy risks

like re-identi�cation, where an adversary having a DNA chain can extract private informa-

tion about its owner. To attend to such privacy concerns, we propose a two-party MPC

protocol using mixed-circuit computations through secret-sharing schemes like Tinier and

SPDZ2k to compute the edit distance while preserving the privacy of the DNA chains

used as inputs. Also, we use daBits to perform domain conversion and edaBits to perform

arithmetic comparisons. Our work focuses on protocols whose underlying computational

domains are rings of the form Z2k . We implement our proposal in the MP-SPDZ frame-

work, and through experimental evaluation simulating a local area network, we show that

our proposal reaches a reduction in the execution time of approximately a 64% for active

security and 78% for passive security with respect to a traditional implementation of the

Wagner-Fischer algorithm. In the experiments, we show that our protocol has a reduction

in the data sent of approximately 57-99% compared to a garbled circuit implementation

and a reduction of the execution time of approximately 40% with respect to approaches

using homomorphic encryption found in previous works.

Keywords: secure multi-party computation, edit distance, secret-sharing.

x

T́ıtulo en español

C�omputo de la distancia de edici�on preservando la privacidad mediante el uso de protocolos

basados en secreto compartido.

Resumen

La distancia de edici�on entre dos cadenas en un alfabeto es el m��nimo n�umero de inser-

ciones, borrados y reemplazamientos que se necesitan para transformar una de las cadenas

en la otra. Esta m�etrica es ampliamente utilizada en aplicaciones de la gen�omica para

determinar la similitud de dos cadenas de ADN, lo cual tiene sus usos en estudios m�edicos

y biol�ogicos. A pesar de los bene�cios de computar la distancia de edici�on entre dos cade-

nas de ADN, existen riesgos a la privacidad como la reidenti�caci�on, donde un adversario

que posee una cadena de ADN puede extraer informaci�on privada de su propietario. Para

atender estos riesgos a la privacidad, hemos propuesto un protocolo para dos participantes

usando circuitos mixtos mediante esquemas de secreto compartido como Tinier y SPDZ2k

para computar la distancia de edici�on preservando la privacidad de las cadenas usadas

en el c�omputo. Adem�as, usamos daBits para realizar conversiones entre dominios, y eda-

Bits para computar comparaciones aritm�eticas. Nuestro trabajo se enfoca en protocolos

cuyo dominio computacional subyacente son anillos de la forma Z2k . En este trabajo im-

plementamos nuestra propuesta en el framework MP-SDPZ, y mediante una evaluaci�on

experimental simulando una red de �area local, hemos encontrado que nuestra propuesta

alcanza una reducci�on en el tiempo de ejecuci�on de aproximadamente un 64% en el caso

de seguridad activa, y un 78% en el caso de seguridad pasiva con respecto a una im-

plementaci�on tradicional del algoritmo Wagner-Fischer. En los experimentos mostramos

que nuestro protocolo tiene una reducci�on de datos enviados a la red entre un 57-99%

aproximadamente en comparaci�on a una implementaci�on usando garbled circuits, y una

reducci�on de 40% aproximadamente con respecto a implementaciones que usan encripci�on

homom�or�ca encontradas en trabajos anteriores.

Palabras clave: computación segura de múltiples participantes, distancia de edición,

secreto compartido.

List of Figures

2-1 Example of a trace taken from [WF74]. 10

2-2 Example of an ideal and real world for 4 parties. 17

2-3 Scheme of protocol and functionality dependency for the Foffline functional-

ity. This scheme is adapted from [Lin+19]. 31

3-1 Positions that belong to the (� + 1)-box for the position D(i; j). 67

3-2 A complete matrix D divided in (� + 1)-blocks. 68

4-1 (� + 1)-box with � = 2. 74

4-2 Graph with the dependencies for D(i; j). 75

4-3 Continuation of the expansion in the dependency graph. This graph can

also be considered to be the dependency graph for � = 2. 76

4-4 Graph used to compute the complexity of our approach. 82

5-1 E�ect of the box size for the experiment without network limits considering

both the preprocessing and online phases. 88

5-2 E�ect of the box size for the experiment without network limits and con-

sidering just the online phase. 90

5-3 E�ect of the box size for the experiment using LAN and considering both

the pre-processing and online phase. 91

5-4 E�ect of the box size for the experiment using LAN and considering just

the online phase. 92

List of Tables

5-1 Data sent and execution time for the preamble optimization. 86

5-2 E�ect of changing � considering both the pre-processing and the online

phase using a network with no limitations. 88

5-3 E�ect of changing � considering just the online phase using a network with

no limitations. 89

5-4 E�ect of changing � considering both the pre-processing and online phase

using a LAN. 91

5-5 E�ect of the box size for the experiment using LAN and considering just

the online phase. 92

5-6 Comparison between GC and secret-sharing schemes. 94

5-7 Comparison between protocols using �elds with protocols using rings. . . . 97

Contents

Acknowledgements vii

Abstract ix

Abstract x

List of figures xi

List of tables xiii

1 Introduction 2

1.1 Related work . 4

1.2 Contributions . 6

1.3 Organization of the document . 7

2 Preliminaries 8

2.1 The edit distance problem . 9

2.2 Secure multi-party computation . 16

2.2.1 Types of adversaries . 17

2.2.2 Privacy guarantees . 18

2.2.3 Output guarantees . 19

2.2.4 Complexity measures . 20

2.3 Garbled circuits . 21

2.3.1 Yao's garbled circuits . 21

2.3.2 BMR . 24

2.4 Secret-sharing schemes . 32

2.4.1 SPDZ2k . 34

2.4.2 Tinier . 41

2.5 daBits and edaBits . 47

2.5.1 daBits . 48

2.5.2 edaBits . 51

3 A solution to the edit distance problem using secret-sharing 62

Contents 1

3.1 Preamble computation . 62

3.1.1 Complexity analysis . 64

3.2 Arithmetic section . 65

3.2.1 Complexity analysis . 69

3.3 A protocol to compute the edit distance . 70

4 Automated generation of formulas to compute the edit distance 73

4.1 The dependency graph . 75

4.2 An algorithm for the optimal formula generation 76

4.3 An upper bound for the number of formulas 81

5 Experiments 84

5.1 Performance of the binary computation in the preamble 85

5.2 The e�ect of changing � . 87

5.3 Comparison between garbled circuits and secret-sharing 93

5.4 Comparison between protocols in Zp and Z2k 95

5.5 Comparing our solution with protocols based on homomorphic encryption . 97

6 Conclusions 99

1 Introduction

Given an alphabet of symbols �, the edit distance between two strings in �� is the mini-

mum cost of a sequence of editing operations (insertions, deletions, and changes) to trans-

form one string into the other [Ukk85]. Intuitively, the smaller the edit distance between

two strings, the more similar they are. Algorithms to compute the edit distance have

been studied for many years and the most recognized solutions are based on dynamic

programming, such as the Wagner-Fischer algorithm [WF74]. Such algorithms are use-

ful tools in �elds like genomics, where the similarity between two genomic sequences is

used in activities like disease diagnosis and treatment [Zhe+19]. Nowadays, the scien-

ti�c community uses more complex algorithms to measure string similarity such as the

Smith-Waterman algorithm [SW81] used in BLAST1, a software widely used for querying

databases of proteins and DNA sequences [BWY21]. Although the current approaches to

solving the problem of string similarity are more sophisticated, the original proposal of the

edit distance problem and its solutions laid the foundation for such modern approaches.

Despite the bene�ts of computing similarities between genomic data, there are risks

that come from revealing such kind of information. One of the main risks is called re-

identi�cation, where a subject can be identi�ed from its genomic data. As an example,

consider a person who shares his genomic data for some medical study, and such data is

leaked to the public. From such data, someone can spot genomic information that can

express the probability of su�ering from a certain disease. This knowledge along with

a process of re-identi�cation may allow some organizations to know the identity of the

owner of the genomic data. Then, organizations may make unfair decisions considering

the spotted information. For example, they may reject the owner of the genomic informa-

tion in an employment or health insurance process [Oes+21]. There are other concerns like

ancestry identi�cation where an individual can identify his ancestors having their genomic

information. Also, there are the so-called attribute disclosure attacks via DNA, where

an attacker can spot a sensitive attribute about some person having a DNA sample and

access to a database of samples related to such sensitive attribute [EN14].

In the context of our work, the previous concerns motivate the use of computational

techniques to compute algorithms on genomic data that preserves the privacy of the data

1https://blast.ncbi.nlm.nih.gov/Blast.cgi

https://blast.ncbi.nlm.nih.gov/Blast.cgi

3

owners. Speci�cally, we will deal with the problem of how to compute the edit distance of

two chains using the Wagner-Fischer algorithm without revealing the chains used as inputs.

The scenario can be described as follows: suppose that Alice and Bob are connected

via a secure communication channel; each one has a DNA chain represented as a list

of nucleotides and they want to use the Wagner-Fischer algorithm to compute the edit

distance of both strings, but Alice does not want to reveal his string to Bob and vice versa.

In this work, we will come up with a technique to accomplish this task.

The Wagner-Fischer algorithm is a dynamic programming solution to �nd the edit distance

between two chains A = (a1; : : : ; an) and B = (b1; : : : ; bn). The core of the algorithm is to

compute a matrix D in which the following recursive equation holds:

D(i; j) = min

8>><
>>:
D(i� 1; j) + 1;

D(i; j � 1) + 1;

D(i� 1; j � 1) + t(i; j)

;

where

t(i; j)
def
=

8<
:1 if ai 6= bi

0 otherwise
;

1 � i � n and 1 � j � m. In this algorithm, two operations have high relevance

when considering a secure solution. First, the minimum computation requires the secure

comparison between integer numbers which needs the extraction of the most signi�cant

bit of the integer representation. Second, the computation of t requires the secure equality

test between a pair of symbols in the chains.

As we will see in Section 1.1, the problem mentioned above can be solved using a variety of

cryptographic techniques. Particularly, we will focus on a technique called secure multi-

party computation (MPC). In an MPC protocol, a set of parties, each one holding part

of the input of a function, want to compute such function correctly while preserving the

privacy of the inputs. In such a protocol, the parties exchange messages and perform local

computations. In the end, the parties may obtain the correct result, and the messages

exchanged between them do not reveal any information about the inputs they provide.

In our case, the parties are Alice and Bob, and the inputs are the chains that they are

holding; also, the function will be the edit-distance function which is computed using the

Wagner-Fischer algorithm.

Several previous works use Yao's garbled circuits which is a particular MPC protocol that

has good performance for computing bit-wise operations securely. In our work, we will

focus on another type of MPC protocol called secret-sharing schemes which are e�cient

for computing arithmetic operations securely.

4 1 Introduction

In this work, we will answer two research questions:

1. Can we design an e�cient protocol to compute edit distance using secret-sharing

schemes e�ciently enough to compete with the current state-of-the-art solutions?

2. Are protocols in Z2k the right choice to compute the edit distance securely?

1.1 Related work

Nowadays, there is an active �eld of research dealing with the computation of edit distance

securely. The most widely used techniques to compute the edit distance are homomorphic

encryption (HE) and garbled circuits (GC). To our knowledge, the speci�c study of secret-

sharing schemes is not commonly used. However, we found some works in that direction.

We will revisit some results related to the secure computation of edit distance.

In the case of homomorphic encryption schemes (HE), the work of [Zhe+19] proposes an

architecture where a data owner holding a database of DNA sequences and an authorized

user want to compute the edit distance between two DNA sequences. The user owns a

sequence Q and wants to compute the edit distance between Q and a sequence S (unknown

to the user) from the database of the data owner. So, the user sends his sequence Q to

the cloud server and the data owner sends an encryption of the particular sequence S

which is requested by the user. The cloud is considered powerful in both computational

capabilities and storage, so it will be in charge of computing the edit distance between Q

and the encryption of S using a modi�ed version of the Paillier cryptosystem [BCP03].

On the other hand, works like [DZ16; RS10; Oha20] show how to compute the edit distance

using dynamic programming algorithms, as we do in the present work. In particular, the

work of [RS10] addresses the problem of computing a minimum between three elements

using homomorphic encryption and uses this minimum computation repeatedly to �nd

the edit distance. Finally, the work of [CKL15] is of high relevance in the present work.

We build our work upon the ideas of Cheon et al. and extend their work further. In such

work, Cheon et al. propose a technique to reduce the depth of the circuits to compute

them securely using HE by expressing the edit distance in terms of the computation of the

minimum of a list of numbers. This way of expressing the edit distance solution is actively

used in this work. However, the work of Cheon et al. does not prove the correctness and

optimality of their method to generate such a list of numbers, and they focus on strings

with the same length. In this work, we extend their strategy to solve both problems. We

use their idea to express the edit distance in terms of the minimum of a list of numbers

but focusing also on �nding the edit distance between DNA chains that do not necessarily

1.1 Related work 5

have the same length. Also, we present theorems that prove that our generalized technique

to generate the mentioned list of numbers is both correct and optimal.

Another technique that is actively used to compute the edit distance securely is garbled

circuits. The survey of [DZ16] shows a wide application of Yao's GC to implement standard

dynamic programming approaches to compute the edit distance. One of the earliest works

in this �eld appears in [JKS08] which uses one circuit for each basic operation in the algo-

rithm: add by one, computing the minimum, and equality test. In [DZ16; Zha+19], they

show further improvements to the approach of Jha et al. in both theoretical and practical

aspects like improving the amount of secured data, the memory usage, the communication

complexity, and the use of specialized hardware to compute the garbling and de-garbling

processes in parallel. An important work appears in [ZH22], which uses GC to compute

the edit distance in both active and passive threat models. The work of Zhu & Huang

claims to outperform the best existing GC-based protocols. As in our work, they consider

the secure computation of the edit distance using the Wagner-Fischer algorithm and take

advantage of the structure of the minimization problem to �nd bounds that allow them to

improve the performance of the protocol. Unfortunately, they do not report experimental

measures of performance in the actively secure setting. As an additional note, some works

like [AAM17] consider not the precise computation of edit distance but its approximation;

they take advantage of this fact to improve the performance of the computations.

Compared to HE and GC, the secret-sharing techniques have less work devoted to comput-

ing the edit distance securely. The work of Rane & Sun [RS10] uses additive secret-sharing

alongside homomorphic encryption, but they do not rely on secret-sharing schemes to per-

form the operation but on homomorphic encryption schemes. The work that is closest to

our techniques appears in [ST19]. They use the ideas from [Ash+18] to compute an approx-

imation of the edit distance using the ABY framework [DSZ15]. Such framework allows

designing protocols using mixed circuit computation against passive adversaries, which

means that by using ABY they can compute some sections of their protocol in binary

domains or arithmetic domains, and move the secrets from one domain to another. There

are signi�cant di�erences between the work of Schneider et al. and our work. First, they

limited their work to be secure against passive adversaries, contrary to our work where we

explore both passive and active adversaries. Second, they use the techniques from Asharov

et al. to improve the e�ciency of the computation by approximating the edit distance;

instead, we focus on the computation of the exact edit distance. This approximation of

the edit distance includes the computation of a lookup table that is calculated by aligning

the sequences to a publicly known reference genome. Given the optimizations proposed

by Asharov et al., Schneider et al. report in their experiments that for a database with

1,000 sequences with a length of 3,470, they can extract the 5 most similar sequences to a

query DNA chain in 1.89 seconds using a LAN.

6 1 Introduction

1.2 Contributions

We apply recently developed secret-sharing schemes such as SPDZ2k and Tinier, as well

as protocols such as daBits and edaBits to compute the edit distance securely. To the

best of our knowledge, we are the �rst to propose a solution to the secure edit distance

computation using the techniques mentioned above. For the computation of the edit

distance, we divide the Wagner-Fischer algorithm into two sections: the preamble which

is in charge of computing t, and the arithmetic section where the matrix D is computed.

Given that division, we optimize each section separately.

For the computation of the matrix t, we encode the nucleotides using a binary representa-

tion, and through bit-wise operations, we propose a protocol to compute the equality test

between a pair of nucleotides using Tinier. Once we compute t, we obtain binary shares

of each possible value of the function, and using daBits, we transform such binary shares

into arithmetic shares to be used in the arithmetic section.

For the arithmetic part, we take the ideas presented in [CKL15] and generalize them

in two directions. First, as in Cheon et al., we expand the recursion equations from the

Wagner-Fischer algorithm to compute the matrix D not as the minimum of three numbers,

but as the minimum of a longer list of numbers. This allows us to divide the matrix D

into sub-boxes and computing them reduces the number of rounds to compute the matrix.

However, this strategy also increases the number of multiplications and comparisons in the

protocol raising a trade-o� in the execution time and the data sent during the protocol

execution. This trade-o� is studied both theoretically and empirically. Also, Cheon et

al. consider a sub-box that matches the size of the matrix D and focuses only on DNA

chains that have the same length. Instead, we generalize their work considering a sub-box

of arbitrary size which works for DNA chains with di�erent lengths.

As a part of this generalization using sub-boxes of arbitrary length, we propose an algo-

rithm to automatically generate the equations to compute each sub-box. This algorithm

arises from representing the recursive equations of the Wagner-Fischer algorithm as a

graph. Then, with such representation, we prove both the correctness and the optimal-

ity of the equation generation. We need to point out that Cheon et al. use a di�erent

graphical method to compute their own equations but they do not prove its correctness

and optimality.

We also perform experimental evaluations of our method using the MP-SPDZ framework.

Through the experiments, we show that our algorithm has a signi�cant reduction in the

execution time using a LAN with respect to a naive implementation of the Wagner-Fischer

algorithm. Also, we successfully explain the trade-o� in the performance of the protocol

1.3 Organization of the document 7

as the size of the size of the sub-box increases. Additionally, we �nd that our protocol

is competitive with the techniques currently used to solve the edit distance problem like

Yao's garbled circuits, and outperforms HE and even techniques like BMR, which is an

actively secure protocol based on garbled circuits. Moreover, we empirically prove that

protocols in Z2k are the best suited for our implementation and we give arguments that

support this statement. All the source code with the implementations for this work can

be found on https://github.com/hdvanegasm/sec-edit-distance.

1.3 Organization of the document

This document is organized as follows. In Chapter 2, we present all the concepts needed

to understand the proposed solution. First, we will present a formal de�nition of the

edit distance problem and the Wagner-Fischer algorithm. Second, we show what is secure

multiparty computations and the main terminology to classify the protocols according to

their security and correctness of the output; also, we show some metrics that will allow

us to compare protocols to select the one that is best suited to our requirements. Finally,

we present the protocols that we use to compute the edit distance algorithm securely. In

Chapter 3, we show a solution to the edit distance computation based on secret-sharing

schemes with its respective complexity analysis. In Chapter 4, we show an algorithm based

on graph theory techniques to obtain the minimal number of terms to be parameters of the

minimum function to compute the edit distance algorithm correctly. Finally, in Chapter 5,

we present some experiments to evaluate the performance of our solution and to compare

it with the cryptographic techniques used in the current state-of-the-art.

https://github.com/hdvanegasm/sec-edit-distance

2 Preliminaries

In this chapter, we will introduce all the concepts needed to understand both the problem

we are dealing with and the solution that we will propose in the later chapters. The

preliminaries are divided into two main parts. In the �rst part, we present the edit distance

problem. The presentation is done in a general way, although we will direct our attention

to a particular case of the general version of the problem. The second part will cover

all the cryptographic techniques that we will use to compute the edit distance securely,

namely, the techniques based on secure multi-party computation. The presentation of the

cryptography topics is divided into three sections. In the �rst section, we cover a technique

called garbled circuits (GC). Although this technique is not the main focus of our study,

in the bibliography review we found that GC is a widely used technique in the secure

computation of edit distance. So, our purpose is to present the basic concepts here to

later show an experimental comparison between our solution and the solution using GC.

In the second section, we will present the techniques based on secret-sharing that we will

use to solve our problem at hand. Finally, in the third section, we will show a couple

of techniques called daBits and edaBits, which will help us to optimize the proposed

solution.

In some speci�c points of this chapter, we �ll some details or give a deeper intuition

about some of the explained concepts that, in our opinion, are not very clear from the

original papers or bibliographic sources. We hope that this will help the reader to easily

understand the ideas behind such techniques. In other points, we prefer to refer the reader

to the original source to avoid having an extensive presentation of the topics.

Notation. In what follows in the rest of this work, we will adopt the following conventions.

We de�ne the set Jn � N to be the set f1; 2; : : : ; ng, for some n 2 N. Also, let a; b 2 Z; we
denote by c = a mod b to say that c is the residue resulting from the division of a over b,

and we denote c � a mod b to say that c is congruent with a modulo b. We denote Zb to

be the ring of integers modulo b.

2.1 The edit distance problem 9

2.1 The edit distance problem

As we mentioned before, the edit distance problem is the main point of attention in this

work. Let us formulate the problem precisely according to the de�nition presented in

[Ukk85]. Let � be an alphabet of symbols and let A
def
= (a1; a2; : : : ; am) be a string over

the alphabet �. We de�ne the possible editing operations on A as follows:

1. We can delete any position of the string A, namely the i-th position, to obtain the

string (a1; : : : ; ai�1; ai+1; : : : ; am).

2. We can insert a symbol b 2 � in between the positions i-th and i+1-th of the string

A to obtain the string (a1; : : : ; ai; b; ai+1; : : : ; am).

3. We can change the symbol in the position i-th of the string A to a new symbol b 2 �

to obtain the string (a1; : : : ; ai�1; b; ai+1; : : : ; am).

We denote the empty string as �. An edit operation can be represented as a pair (a; b) 2

(�� � ��) n f(�;�)g where each component of the tuple is a string of length at most 1,

and is denoted as a ! b. We say that a string B is obtained from the application of the

operation a ! b over the string A, if A = �a� and B = �b� , for some �; � 2 ��. We

can assign a non-negative real number as a cost for each one of the operations which is

determined by a cost function : (�� � ��) n f(�;�)g ! R+ [f0g. If S = (s1; : : : ; sr) is

a sequence of edit operations over a string A, we denote by (S)
def
=
Pr

i=1 (si) the overall

cost of applying such sequence of changes. We will assume two properties over :

1. (a! a) = 0.

2. If a ! b and b ! c are editing operations, it holds that (a! c) � (a! b) +

 (b! c).

These two properties allow us to argue that the cost of one change has the minimum cost;

for example, a change a! a could be done as a! b, then b! c, and �nally c! a. With

these properties, we are saying that the cost of redundant steps in an editing operation

are ignored. Although we will present a general treatment of the edit distance problem in

this section, our work will be limited to the case where each editing operation has a cost

of 1 if there is an e�ective change on the string; this means that, in our case, deleting or

inserting a symbol will have a cost of 1, and the change of a symbol will account as 1 if

the change is a! b, where a 6= b, and both a and b are di�erent from the empty string.

Notice that by applying these operations one by one, we can transform any string A 2 ��

into any other string B 2 ��. Naively, we can delete all the elements of the string A and

10 2 Preliminaries

then, we can add the symbols corresponding to the string B. Formally, given A;B 2 ��,

the edit distance problem consists in �nding the sequence of editing operations to be

applied on A to convert it into the string B so that the sum of the costs of each operation

in the sequence is minimized. In this work, we are not interested in outputting the sequence

of operations but only in the overall minimum cost. Such minimum cost is called the edit

distance of A and B.

To solve this problem, Wagner and Fischer propose an algorithm based on dynamic pro-

gramming [WF74], and that is the approach we will consider in this work. Let us es-

tablish some notation. For the rest of the discussion, let us �x an alphabet � and let

A
def
= (a1; a2; : : : ; am) and B

def
= (b1; b2; : : : ; bn) be two strings in � of lengths m and n

respectively. For i 2 Jm, denote the sub-string A(i) def
= (a1; a2; : : : ; ai). An analogous de�-

nition holds for the string B. We denote the edit distance between A(i) and B(j) as D(i; j).

With the notation established, the goal is to �nd D(m;n). To accomplish this task, we

will show the original approach proposed by Wagner and Fischer in [WF74], and then we

make some adaptions to our speci�c case.

Although the goal is to obtain an edit sequence with minimum cost, Wagner and Fischer

state the problem in a more graphical way using a tool called traces. Before the formal

presentation of traces, we will give an intuitive idea of what a trace is. A trace is a graphical

way to represent how an edit sequence S transforms a string A into B but without showing

the order in which the modi�cations happen and avoiding the redundancies in S. Let us

consider Figure 2-1 as an example of a trace taken from [WF74] directly. In this example,

each line from the element ai of A to the element bj of B means that bj was derived from ai
either directly if ai = bj, or indirectly if bj was obtained from ai by applying one or more

edit operations on ai. Also, some of the elements of the string A are not connected to any

line; these positions are the deleted ones in the process of transforming A into B using the

sequence S. Similarly, there are elements in B that are not connected to any line; these

positions represent characters in B that are added to A in the conversion process following

the sequence S.

Figure 2-1: Example of a trace taken from [WF74].

Definition 2.1.1 (Trace). A trace from A to B is triple (T;A;B), where T is a set of

ordered pairs of integers (i; j) that satis�es the following properties:

2.1 The edit distance problem 11

1. 1 � i � jAj and 1 � j � jBj.

2. For any two distinct pairs (i1; j1) and (i2; j2), it holds that:

a) i1 6= i2 and j1 6= j2.

b) i1 < i2 if and only if j1 < j2.

When there is no confusion about the strings of a trace (T;A;B), we denote it as T .

If (a; b) 2 T , we say that both a and b are touched by T .

Following the intuitive idea presented before, a pair (i; j) 2 T corresponds to a line that

goes from ai into bj as in Figure 2-1. The properties above enforce some graphical prop-

erties on the traces. On the one hand, Condition 1 in De�nition 2.1.1 ensures that the

lines in a trace connect two elements inside the strings. On the other hand, Condition 2a

ensures that a position of a string is connected to one line, and Condition 2b ensures that

no two lines cross.

For a trace (T;A;B) from A to B, we can de�ne the cost of the trace as follows: let I and

J be the sets of positions that are not touched by T in A and B respectively; the cost for

the trace T is

Cost(T) =
X

(i;j)2T

 (ai ! bj) +
X
i2I

 (ai ! �) +
X
j2J

 (� ! bj)

Looking at traces as relations, we can de�ne a notion of the composition of traces as the

composition of relations. If T1 is a trace from A to B and T2 is a trace from B to C, we

can de�ne the trace T
def
= T1 � T2 to be the trace from A to C where

T
def
= f(a; c) j (a; b) 2 T1 ^ (b; c) 2 T2g :

With this notion of composition we have the following lemma taken from [WF74].

Lemma 2.1.2 (Composition of traces). If (T1; A;B) and (T2; B;C) are traces, then

Cost(T1 � T2) � Cost(T1) + Cost(T2).

Considering Lemma 2.1.2, we can make a connection between the cost of a trace and

the cost of a sequence of edit operations. Such relation derives from the following two

properties which can be proven:

1. For every trace (T;A;B), there exists a sequence of editing operations S that trans-

forms A into B such that Cost(T) = (S).

12 2 Preliminaries

2. For every sequence S of editing operations that converts the string A into the string

B, there exists a trace (T;A;B) such that Cost(T) � (S).

These two properties allow us to state the following property that helps us to solve the

edit distance problem using traces.

Theorem 2.1.3. Let A and B be strings in the alphabet �. Let Smin be a sequence of

editing operations that convert A into B with minimum cost, and let (Tmin; A;B) be

a trace with minimum trace cost. Then Cost(Tmin) = (Smin).

Proof. Applying Property 1 for Tmin, there exists a sequence S of editing operations that

transform A into B, such that Cost(Tmin) = (S). Similarly, applying Property 2 for Smin,

there exists a trace (T;A;B) such that Cost(T) � (Smin). Joining the results, it holds

that

Cost(Tmin) = (S) � (Smin) � Cost(T) � Cost(Tmin);

which shows that Cost(Tmin) = (Smin).

Before proposing a method to compute the edit distance, we need to observe how the cost

of the traces interacts with the concatenation of strings. Let A
def
= A1A2 be a string de�ned

as the concatenation of string A1 and A2, and let B
def
= B1B2 be the concatenation of the

strings B1 and B2. Let (T;A;B) a trace that does not connect elements of Ai and Bj

for i 6= j and i; j 2 f1; 2g. Then, we can decompose the trace (T;A;B) into two traces

(T1; A1; B1) and (T2; A2; B2) such that

Cost(T) = Cost(T1) + Cost(T2):

Moreover, if T is a trace with minimum cost, then (T1; A1; B1) and (T2; A2; B2) will also

be traces with minimal cost in their respective strings. This will be useful for developing

a strategy to solve the edit distance problem using dynamic programming techniques.

Now, we are ready to present the main theorem to solve the edit distance problem using

dynamic programming.

Theorem 2.1.4. Let A
def
= (a1; a2; : : : ; am) and B

def
= (b1; b2; : : : ; bn) be strings in the

alphabet �. Then

D(i; j) = min

8>><
>>:
D(i� 1; j � 1) + (ai ! bj)

D(i; j � 1) + (� ! bj)

D(i� 1; j) + (ai ! �)

;

for all 1 � i � jAj and 1 � j � jBj.

2.1 The edit distance problem 13

Proof. Let T be a trace from A(i) to B(j) with minimum cost. If ai and bj are touched by

lines in T simultaneously, then they are touched by the same line, otherwise, the lines will

cross and because of Condition 2b in the de�nition of trace, this is not possible. Therefore,

there are three cases:

1. Suppose that there is a line in T that connects ai and bj. So, because of our previous

discussion, we can split the strings A = A(i�1)ai and B = B(j�1)bj. Then, we can

decompose T into two minimal traces T1 from A(i�1) to B(j�1), and T2 from the string

ai to bj. Also, it holds that Cost(T) = Cost(T1) + Cost(T2). Knowing that T1 and T2
are traces with minimum cost, we have that Cost(T1) = D(i�1; j�1), and Cost(T2) =

(ai ! bj). Therefore, we conclude that Cost(T) = D(i� 1; j � 1) + (ai ! bj).

2. Suppose that ai is untouched by any line in T . Therefore we can split the string A

so that A = A(i�1)ai. This split allows us to decompose T into two minimal traces T1
from A(i�1) to B, and T2 from the string ai to the empty string �. Again, Cost(T) =

Cost(T1) + Cost(T2), where Cost(T1) = D(i� 1; j) and Cost(T2) = (ai ! �). Then,

Cost(T) = D(i� 1; j) + (ai ! �).

3. Suppose that bj is untouched by any line in T . We can proceed as in the previous case

making the split B = B(j�1)bj. Following similar steps we conclude that Cost(T) =

D(i; j � 1) + (� ! bj).

Due to Theorem 2.1.3, we have that Cost(T) = D(i; j). Also, one of the three cases must

hold, and D(i; j) is the minimum cost, so D(i; j) must be equal to the minimum of the

three possible situations. In conclusion,

D(i; j) = min

8>><
>>:
D(i� 1; j � 1) + (ai ! bj);

D(i; j � 1) + (� ! bj);

D(i� 1; j) + (ai ! �)

:

We have left a remaining piece to complete a dynamic programming solution. In the

strategy of dynamic programming, it is common to have base cases that are the starting

point of the computation. The following theorem establishes the base cases for the edit

distance problem.

Theorem 2.1.5. Let A
def
= (a1; a2; : : : ; am) and B

def
= (b1; b2; : : : ; bn) be strings in the

alphabet �. Then, D(0; 0) = 0. Also,

D(i; 0) =
iX

k=0

 (ak ! �) ; and D(0; j) =
jX

k=0

 (� ! bk) :

14 2 Preliminaries

Proof. Notice that when i = 0 or j = 0, there is only one possible trace which is T = ;

which trivially has the least cost. So, the equations derive immediately from the de�nition

of the cost of a trace presented in Equation 2.1.

As we mentioned before, we are interested in a particular case where the cost of an oper-

ation is 1 if there is an e�ective change in the string. For this reason, we restate Theo-

rems 2.1.4 and 2.1.5 for our particular case in the following two theorems.

Theorem 2.1.6. Let A
def
= (a1; a2; : : : ; am) and B

def
= (b1; b2; : : : ; bn) be strings in the

alphabet �. Then

D(i; j) = min

8>><
>>:
D(i� 1; j � 1) + t(i; j);

D(i; j � 1) + 1;

D(i� i; j) + 1

;

where

t(i; j) =

8<
:1; if ai 6= bj

0; otherwise
:

Theorem 2.1.7. Let A
def
= (a1; a2; : : : ; am) and B

def
= (b1; b2; : : : ; bn) be strings in the

alphabet �. Then, D(0; 0) = 0. Also, D(i; 0) = i, and D(0; j) = j.

With both theorems, we can design an algorithm to �nd the edit distance between two

strings by applying the results from the theorems in a direct way. The corresponding

algorithm is presented in Algorithm 1.

In the presentation of the algorithm, we separate the computation of the matrix t from the

main iteration. This allows us to parallelize the comparison of the nucleotides easier than

computing them into the main loop. Such parallelization reduces the number of rounds

which improves the performance of the overall algorithm. Moreover, these comparisons

can not be done in parallel inside the main loop due to practical limitations in the MP-

SPDZ framework. More speci�cally, the dependencies between the data of the matrix D

do not allow the optimization algorithms of MP-SPDZ to parallelize the main loops in a

consistent way, which produces errors in the �nal result. In the rest of this work, we will

call the preamble to the section of the algorithm between Lines 1 and 10. Also, we will

call the arithmetic section to the section of the algorithm between Lines 11 and 22.

2.1 The edit distance problem 15

Algorithm 1 Edit distance algorithm

Input: two chains P = [p1; � � � ; pn] and Q = [q1; � � � ; qm].

Output: an integer value with the edit distance between the chains P and Q.

1: Let t be a matrix with dimensions n�m.

2: for i = 1 to n do

3: for j = 1 to m do

4: if pi 6= qj then

5: t(i; j) = 1

6: else

7: t(i; j) = 0

8: end if

9: end for

10: end for

11: Let D be a matrix with dimensions (n+ 1)� (m+ 1) initialized with zeros.

12: for i = 0 to n do

13: D(i; 0) = i

14: end for

15: for j = 0 to m do

16: D(0; j) = j

17: end for

18: for i = 1 to n do

19: for j = 1 to m do

20:

D(i; j) = min

8>><
>>:
D(i� 1; j) + 1

D(i; j � 1) + 1

D(i� 1; j � 1) + t(i; j)

21: end for

22: end for

23: return D(n;m)

16 2 Preliminaries

2.2 Secure multi-party computation

In the framework of secure multi-party computation (MPC), there is a set of parties or

players P1; P2; : : : ; Pn, such that the party Pj holds a value xj and they agree to compute

a function f that takes n inputs. The goal is to compute the value y = f(x1; : : : ; xn)

satisfying the following two conditions:

• Correctness: the correct value y is obtained by all the parties.

• Privacy: the only information learned by the parties is y.

This means that we want the party Pj to learn only his input xj and the correct output of

the function y. The computation of f under such conditions is referred to as computing

f securely [CDN15, Section 1.3].

The goal is reached by means of an MPC protocol, which is a set of rules that the parties

follow. Such rules involve both local computation and the exchange of information. This

set of instructions depends on the inputs from the parties and they may involve some

random sampling. This means that an MPC protocol is de�ned as a set of probabilistic

instructions [Esc21, Section 1.1].

In cryptography, it is very common to express the desired properties of a cryptographic

construction by using an ideal scenario in which all of the properties hold almost in a

trivial and direct way. In the case of an MPC protocol, our ideal world consists of all the

parties sending and receiving messages only from a trusted-third party (TTP). The parties

provide the input values to the TTP and the TTP returns to each party the correct value of

y = f(x1; x2; : : : ; xn). It is important to make clear that the TTP does not have any other

behavior but just receives inputs and returns the correct value of the computation. Given

that the parties only have communication with the TTP and the TTP does not reveal

any information but the output, this ideal world ful�lls all the requirements of privacy

and correctness mentioned above. While in the ideal world everything works just �ne,

in the real world, the scenario is precisely the MPC protocol where all the parties have

communication between them and there is no TTP involved at all. In Figure 2-2, we show

an example of the ideal and real-world considering four parties. To prove that an MPC

protocol in the real world is secure, we use the ideal world at our disposal. Intuitively, we

need to show that the real and ideal world are \indistinguishable".

Given that the de�nition of security given above is rather intuitive, we need to formal-

ize these concepts using mathematical means. This will allow us to prove formally when

an MPC protocol is secure or not. To formalize the notion of security, it is often used

the concept of adversary. An adversary is an algorithm that controls a set of parties

2.2 Secure multi-party computation 17

Figure 2-2: Example of an ideal and real world for 4 parties.

C � fP1; P2; : : : ; Png, such that jCj � t, for some t < n. The parties in the set C are

called the corrupted parties. The adversary can access the messages that the corrupted

parties send and receive, and in some cases, it can control the behavior of the corrupted

parties during the protocol execution. The goal of the adversary is to gather additional

information beyond the function output or a�ect the correctness of the function output.

Therefore, a protocol will be secure if for every adversary corrupting a set of parties C, it

can not learn anything but the output of the function from the protocol execution and it

can not deprive the honest parties of learning the correct output of the function. Taking

into account the ideal and real world, the protocol is secure if the protocol execution is

indistinguishable from the ideal world even in presence of an arbitrary adversary con-

trolling a set of corrupted parties. The capabilities of the adversary to gather additional

information or to prevent the honest parties to learn the correct output depend on the

computational capabilities of the adversary, the subset of corrupted parties it can control,

and the possibility of the adversary behaving outside of the instructions of the protocol.

2.2.1 Types of adversaries

There are two main types of adversaries. On the one hand, we have adversaries that want

to learn more information beyond the output of the function but they do not deviate from

the protocol instructions. These kinds of adversaries are called passive or semi-honest

adversaries. On the other hand, some adversaries want to learn more than the output

of the function but they can deviate from the protocol instructions. For example, they

can send messages to other parties they want at any moment without any restriction.

These kinds of adversaries are called malicious or active adversaries. An MPC protocol

18 2 Preliminaries

that is private and correct in presence of active adversaries is called a robust protocol

[CDN15, Section 4.1]. The protocols that are secure against passive adversaries are more

e�cient than the protocols that are secure against active adversaries, because the latter

need additional mechanisms to ensure privacy and correctness when a corrupted party

performs an unexpected action.

Another classi�cation of the adversaries depends on the subset of corrupted parties it can

control. It is commonly used to classify adversaries according to the number of corrupted

parties t under its control. The main classi�cations are t < n which is called dishonest

majority, t < n=2 which is called honest majority, and there is a third type that is very

useful which is t < n=3. The number of honest and corrupt parties is important because

the protocol designers can devise strategies to reach privacy and correctness e�ciently.

For example, there are protocols that have a mechanism to identify honest parties, and

once such identi�cation is made, the protocol can delegate to such parties some critical

computations that need honest and not curious behavior [DEK21].

2.2.2 Privacy guarantees

We mentioned before that a protocol is secure if its execution looks \close" to the ideal

world where the TTP takes place in the interaction. Let us make more precise what \close"

means. There are three main types of security that reect how close is a protocol to the

ideal world. It is important to remember that an MPC protocol is a set of probabilistic

instructions, so the messages and local computations are in fact random variables that

have a statistical distribution. The following classi�cation is shown as it is explained in

[Esc21, Section 1.1.2].

The �rst type is perfect security. In this case, the ideal world and the MPC protocol

execution have the exact same distribution. And from a point of view of the adversary,

it can not learn anything from the protocol execution beyond the output of the function

regardless of its computational power. The drawback of perfect security is that it is not

always achievable. For that reason, we need other de�nitions of security that are not so

strong but they are still useful in practice.

The second type is statistical security. This type of security means that the similarity

between the real and ideal world is controlled by a certain parameter in the MPC protocol

that makes both worlds as close as desired. Both worlds do not have the same distribution

but both distributions can be as close as we want by increasing or diminishing the security

parameter. From an adversarial point of view, the protocol is secure, but there is a

small probability that the adversary can break the security completely regardless of his

2.2 Secure multi-party computation 19

computational capabilities. This probability of leakage is controlled by the parameter and

it can be as small as we want.

Finally, the third type of security is computational security. Here, the security is re-

stricted only to e�cient adversaries, which means that the adversary is an algorithm that

runs in polynomial time. Both the ideal and the real world will be indistinguishable as

long as the adversary has a computational power bounded by some polynomial.

The �rst two types of security are called information-theoretic security. And it com-

monly happens that the information-theoretic secure protocols are more e�cient than the

protocols which are computationally secure. This happens because for the latter it is

common to use cryptographic primitives that rely on computationally hard problems as

subroutines for these protocols. However, information-theoretic protocols are impossible

to reach in some situations. For those cases, we are obliged to use computationally secure

protocols. But in the practice, such protocols are enough for real-world applications.

2.2.3 Output guarantees

Remember that an important part of the security of a protocol is to be correct, that is, at

the end of the execution of the protocol the parties should obtain the correct evaluation

of the function f . Related to this, there is a classi�cation of the protocols according to

their capabilities to ensure the correctness property.

First, there is the guaranteed output delivery (GOD) which means that the protocol

always returns the correct value of the function evaluation to the honest parties, no matter

what actions are performed by the adversary.

The second type is the fairness. Here, the corrupt parties can cause the honest parties

not to obtain the output of the computation, which is referred to as causing the parties

to abort. However, if this abort occurs, the protocol guarantees that the corrupt parties

also do not learn the output of the functionality.

The third and weaker guarantee is called security with abort. In this output guarantee,

the adversaries can cause the honest parties not to obtain the output of the computation,

but the corrupt parties may still learn the output.

It is important to highlight, as it is mentioned by [Esc21, Section 1.1.3], that if a protocol

is secure against passive adversaries, it will have guaranteed output delivery, because all

the parties do not deviate from the protocol instructions. Also, it can happen that in some

situations, the guaranteed output delivery can not be reached, but there are some cases

20 2 Preliminaries

where fairness is still useful in practice.

2.2.4 Complexity measures

In this work, as in the theory and practice of MPC, it is common to compare protocols

to determine which one is more suitable than the other for a given task. To make this

comparison, three metrics can be used to compare protocols. It is important to mention

that all the metrics are orthogonal, and determining which protocol is better than the

other is not always an easy task. This choice will occasionally depend on the context

where the protocol itself is executed. Aspects like the computational power of the parties

and the aspects of the network used to execute the protocol will help to determine what

protocol is the best choice.

On the one hand, we have a metric that corresponds to the amount of local computation

that the parties need to use to execute the protocol. This metric can be measured similarly

to the running time measured in the stand-alone algorithms commonly used in computer

science areas.

It is important to remember that the MPC protocols are distributed tasks. In practice,

these protocols are executed using multiple machines that are connected to a network

running a computer process that receives, sends, and locally processes information. For

this reason, the amount of bits sent through the network is an important metric, and it is

related to the bandwidth. The fewer bits a protocol sends to the network, the better.

Finally, another metric that needs to be taken into account is the number of rounds used

in a protocol. Let us de�ne properly what we mean by a round. Assume that during the

protocol execution, the communication between the parties is done by one-to-one channels.

This means that each party is connected to every other party by a secure channel to send

and receive messages. An invocation is a secure computation that is achieved by a single

interaction between parties; during such interaction, each party sends a message to all of

the other parties [IUS09, Section 2.3.1]. Suppose that the protocol execution is organized

in an optimized way where all the invocations that can be done in parallel are computed

in one chunk. This organization divides the protocol execution into blocks of computation

that start when a group of invocations is computed in parallel and �nish when some

information is needed and the parallel computation can not continue. Such a number of

blocks is what we call the number of rounds. It is important to notice that the number

of rounds does not account for the amount of data transmitted. Instead, the number of

rounds is related to the amount of computation that can be parallelized which is closely

related to the amount of time of the protocol execution. This means that the higher the

2.3 Garbled circuits 21

number of rounds, the more time is needed for the protocol to �nish. Also notice that

if we can parallelize a group of invocations, the information coming from such a group

can be sent through the network in one package instead of multiple packages, one for

each invocation. This means that a protocol with a high number of rounds will have a

higher execution time because the latency will take e�ect once each round �nishes and the

information needed for the next round is sent through the network.

Given these three metrics, it is important to say that none of them is a de�nitive metric

to choose a protocol. For example, if we have a network comprised of multiple powerful

computers, a high bandwidth, and a high latency, we can prefer a protocol with a low

number of rounds but with a possibly high number of bits sent through the network. On

the contrary, if we have an infrastructure comprised of computers with low processing

power but with good network characteristics, we may select a protocol that has a low

computational complexity but a high number of rounds and that sends a high number of

bits. Everything will depend on the tools and infrastructure we are using to execute the

protocol.

2.3 Garbled circuits

One of the goals of this work is to compare our solution with the current solutions for

the secure computation of edit distance. As we saw in Section 1.1, the garbled circuits

(GC) are one of the most widely used techniques to compute the edit distance securely. In

this section, we will cover some basic theory of garbled circuits and their more signi�cant

constructions.

2.3.1 Yao’s garbled circuits

The Yao's GC is a cryptographic technique originally proposed by Andrew Yao [Yao82;

Yao86] and then formalized by Goldreich, Micali, and Wigderson [GMW87]. In fact, this

cryptographic technique was one of the starting points in the area of MPC and led to the

development of more protocols for such end. In this section, we will expose the basics

of Yao's GC at a high-level. The ideas revisited in this section are taken from [EKR18,

Section 3.1]. However, a more formal treatment of this technique can be found in resources

like [BHR12].

The original proposal of Yao's GC was designed for two parties. In such case, two parties

P1 and P2 want to compute a function f that receives two arguments. In this scenario, the

22 2 Preliminaries

party P1 holds x and the party P2 holds the value y, and they want to compute f(x; y)

securely.

The strategy to solve the problem is to consider the function f as a lookup table. Suppose

that X is the domain of the inputs coming from party P1. Similarly, let Y be the domain

of the inputs coming from party P2. Assuming that X and Y are �nite sets, we can see the

function f as a lookup table T with jXj � jY j rows using a proper enumeration of the input

pairs (x; y) 2 X � Y . The row enumerated by (x; y) of the table, which will be written as

Tx;y, will contain the value of f(x; y).

This representation of the function f allows us to privately evaluate f as follows. Let �

be a security parameter and let (Gen;Enc;Dec) be a symmetric-key cryptographic scheme.

P1 will encrypt the table T by assigning to each input pair (x; y) 2 X �Y a pair of strong

keys kx = Gen(1�) and ky = Gen(1�). Then, P1 encrypts each position of the table T

by computing Enckx;ky(Tx;y) and obtaining the table [Enckx;ky(Tx;y)](x;y)2X�Y . Finally, P1

makes a random permutation of the rows of the encrypted table and sends it to P2.

When P2 receives the encrypted table, it needs to decrypt the position that corresponds to

the input to the secure computation (x; y). This means that P2 needs to know somehow

the values of kx and ky to be able to decrypt the output Tx;y. Given that P1 knows x and he

computed kx, then P1 can send kx to P2. Notice that if kx is generated in a random secure

way, it will not reveal anything about x. From a point of view of a passive adversary, kx
is a random string. It remains for P2 to learn ky. This can be done using a 1-out-of-jY j

oblivious transfer (OT) protocol as a subroutine. In this oblivious transfer protocol, the

party P2 gives y as input to the protocol, and P1 gives the set fkrgr2Y as input. At the

end of the execution of the OT protocol, P2 will learn only the value of ky and P1 will

learn nothing. There are multiple ways to realize this OT protocol, but we will not include

them here given that it is not the main subject of this section. In the MPC terminology,

P1 is also called the garbler, and P2 is called the evaluator.

Point-and-permute. In the previous description, we mentioned that P1 returns the

encrypted table with its rows randomly permuted. But, how will P2 know which position

he needs to decrypt? This problem is solved using a technique called point-and-permute

proposed in [BMR90]. In this technique, P1 will encode a pointer to the position to decrypt

in the last bits of the keys kx and ky. The encoding is such that it avoids collisions between

positions and it needs to maintain the level of security of the keys. So, P1 will encode the

pointer in dlog2 jXje bits and append them to kx and also using dlog2 jY je bits and append

them to ky. Appending the bits at the end of the keys will ensure that the length of the

keys (and so, the security level of the encryption) is not a�ected.

Notice that the previous approach depends heavily on the sizes of X and Y . So, when the

2.3 Garbled circuits 23

domains of the inputs are very large, the construction of the table T is computationally

impractical. To address this problem, we can represent f as a Boolean circuit C and

evaluate each gate as a lookup table of 4 entries. The strategy will be to encrypt each

position of the tables as mentioned before, but we need to keep the output value of each

gate secure to avoid revealing the intermediate steps in the evaluation of the circuit. To

keep the intermediate values hidden, we also make the output of each gate also a key.

Let C be the Boolean circuit associated with the function f . For each wire wi of the circuit,

we will have two keys k0i and k1i . These keys represent the two possible values of the wire

but notice that they do not reveal the plaintext value associated with the wire. These

keys are called the wire labels and the plaintext wire values are called the wire values.

When we are in the middle of the evaluation of the circuit C, each wire will have a speci�c

wire value that depends on the inputs to the circuit and also a speci�c wire label. These

speci�c values and labels are called active values and active labels respectively. The goal

is to transmit just the active label, and neither the active value nor the inactive label to

keep the computation private.

Let G be a gate in C with input wires wi and wj, and an output wire wt. For P1 to

construct the garbled table for G, he computes

TG
def
=

0
BBBBBB@

Enck0
i
;k0
j

�
k
G(0;0)
t

�
Enck0

i
;k1
j

�
k
G(0;1)
t

�
Enck1

i
;k0
j

�
k
G(1;0)
t

�
Enck1

i
;k1
j

�
k
G(1;1)
t

�

1
CCCCCCA
:

This means that, for each gate, P1 encrypts the labels corresponding to the output com-

puted by the gate using the respective labels of the input wires as keys. Once P1 computes

the tables for each gate, he permutes the entries of the tables and sends them to P2. These

tables are commonly known as garbled tables or garbled gates. Also, similarly to the dis-

cussion at the beginning of the section, P1 sends to P2 only the active labels corresponding

to the input wires. Once again, P1 knows the labels associated with his own input wires.

The labels corresponding to the input wires whose values are in possession of P2 are sent

using a 1-out-of-2 OT protocol.

When P2 receives the garbled tables and the active input labels, he can proceed to decrypt

sequentially the positions according to the active labels. In the middle of the process,

P2 will decrypt the intermediate keys which are the active labels and he will use these

intermediate labels as inputs of the subsequent garbled tables until he reaches the end. In

the end, P2 will end up with the active label of the output wire. This �nal output label

can be sent to P1 again to obtain the active value because P1 was the party that computed

the keys, so it knows the value associated with the active label of the output. This �nal

24 2 Preliminaries

step can be avoided just by letting P1 send a decoding table that maps only the output

wires to their corresponding plaintext values.

It is important to mention that this construction of Yao's GC is secure only against semi-

honest adversaries. This technique can be extended to an arbitrary number of parties, and

also to be secure against active adversaries as we will see in the next section.

2.3.2 BMR

Although Yao's GC solves the problem of secure function evaluation in the context of

semi-honest adversaries for two parties, the technique alone is not enough if we want to

reach security against malicious adversaries and an arbitrary number of corrupted parties.

To solve these limitations, Beaver, Micali, and Rogaway proposed a technique known as

BMR [BMR90]. The original proposal of BMR solves the problem of extending Yao's GC

protocol to more than two parties. However, the BMR protocol is secure against malicious

adversaries only when a minority of the parties are corrupted. To solve this problem,

Lindell et al. propose a modi�cation of the original BMR protocol to allow a dishonest

majority setting and a malicious adversary in a constant number of rounds [Lin+19]. In

this chapter, we will revisit both the original proposal of BMR and the improvement of

Lindell et al. for the malicious adversaries in the dishonest majority setting.

The idea behind the BMR protocol is to use another auxiliary protocol to compute the

garbling gates. The BMR protocol is divided into two sections: an o�ine phase where the

garbling gates are constructed, and an online phase where the garbled gates are exchanged

and the parties evaluate the garbled circuit locally. For the rest of this section, let � be

a security parameter, and let n be the number of parties. Also, suppose that the parties

agree to compute a function f .

The original BMR protocol [BMR90]

The original version of BMR considers two types of seeds for each wire in the circuit of

f . On the one hand, each party Pj assigns to each wire w two seeds: sjw;0, s
j
w;1, one for

each possible value in the wire. The former is often called 0-seed and the latter is called

1-seed. On the other hand, in the garbling process, the parties produce two superseeds

de�ned as the concatenation of the 0-seeds and 1-seeds as follows:

Sw;0
def
= s1w;0ks

2
w;0k � � � ks

n
w;0 and Sw;1

def
= s1w;1ks

2
w;1k � � � ks

n
w;1: (2-1)

Also, let us de�ne L
def
= n � �.

2.3 Garbled circuits 25

Remember that f can be written as a circuit Cf composed of wires and gates. Let g be a

gate in Cf computing a function fg : f0; 1g � f0; 1g ! f0; 1g. Following the same idea of

Yao's GC, the garbled gate of g is computed such that the superseed associated with the

output of g is encrypted using the superseeds associated with the inputs of g according

to the truth table of g. As an example, if we want to use the superseed Sw;0 to encrypt a

value M of length L, we compute

M �

nM
i=1

G
�
siw;0

�!
;

where, G is a pseudo-random generator that takes a seed of length � and outputs a string

of length L. Notice that to decrypt a value using a superseed, all the associated seeds need

to be known to compute the decryption of such value.

Notice that using just seeds to hide the plain value of a wire is not enough. For example,

an adversary may know that the �rst key is associated with the 0 value, and the second

one is associated with the 1 value. To overcome this problem, the protocol uses a random

independent masking bit �w associated with each wire w. Let �w be the plain value going

through the wire w. To ensure that all the real values are kept hidden, the masking bits

�w are unknown to all the parties during the execution of the protocol. The masked values

that are known to the parties, denoted by �w, are called external values and they are

de�ned to be

�w
def
= �w � �w:

When the parties are evaluating the circuits, the only values they see are the external

values, which do not reveal any information about the real values �w, unless they know

the masking bit �w. The case of the input wires is a special one because the parties know

the real value of their own input. So, the masking values �w are given to the party that

owns the input of w, so that the party can compute the external value locally and send it

to the other parties.

Now, let us de�ne what a garbled circuit is in this case. A BMR garbled circuit consists

of a set of garbled gates. Each garbled gate is constructed using an ideal functionality

using some inputs that we will de�ne shortly. Suppose that g is a gate with inputs wires

a and b, and an output wire c. Each party Pi inputs to the functionality the seeds sia;0,

sia;1, s
i
b;0, s

i
b;1, s

i
c;0 and sic;1. With these values, the functionality assembles the superseeds

Sa;0, Sa;1, Sb;0, Sb;1, Sc;0, and Sc;1 as de�ned in Equation (2-1). Additionally, each party

inputs the output of a pseudo-random generator G applied to each of his seeds. Finally,

the construction of the gates assumes that the masking bits �w are shared among all the

parties, for w 2 fa; bg. This means that, for each w 2 fa; bg, the party Pi holds a value �
i
w

such that �w =
Ln

i=1 �
i
w. So, to construct the garbled gate, the functionality also receives

the masking bits �ia, �
i
a and �ia from each party Pi.

26 2 Preliminaries

The output of the functionality is a garbled gate which is a table of four ciphertexts. Each

ciphertext is the encryption of either Sc;0 or Sc;1. The output of the functionality has the

property that given superseeds for wires a and b, it is possible to decrypt one cyphertext

and reveal the superseed of c based on the values of the input wires and the evaluation of

such values in the gate g.

Functionality 2.1 is in charge of garbling a gate. This functionality was taken from [Lin+19]

and is part of the o�ine phase of the BMR protocol. To realize this functionality, we need

the help of another MPC protocol as we will see later for the case of the work of Lindell

et al. in Section 2.3.2. In the speci�cation of Functionality 2.1, we denote the negation of

a bit by b
def
= b� 1, for b 2 f0; 1g.

To complete the speci�cation of all the parts of the BMR protocol, we explain how to

perform the online phase. The online phase consists in taking the garbled gates and

evaluating the garbled circuit to obtain the output. In this phase, the parties need to

obtain a superseed for the input gates, and then they can evaluate the circuit locally.

In the end, the parties obtain the superseed associated with the external value of the

output wire of the entire circuit. It is important to remark that once the parties obtain

the superseeds for the input, the evaluation of the garbled circuit can be done with no

interaction between the parties at all. In Protocol 2.1, there is a speci�cation of the online-

phase-BMR protocol. It is important to explain that, in Step 2 of the protocol, the parties

have all the information needed to compute the mask required to decrypt the value of Sc;�c
from the garbled gate. Intuitively, recall that under honest behavior, the mask used to

obtain the ciphertext of the garbled gate is computed as the XOR of strings of the form

G(siw;0) or G(s
i
w;1), for w 2 fa; bg. But, all the parties know the values of sia;�a and sib;�b,

because they have the superseeds Sa;�a and Sb;�b at their disposal. Therefore, they can

compute the mask to decrypt Sc;�c as required.

Notice that the BMR protocol is correct. Let us explain this fact using one of the four

combinations of values for �a and �b. To prove the correctness, we need to verify that,

for all possible values of �a and �b, the resulting value from Step 2 in Protocol 2.1 is

Sc;�c . Suppose that (�a;�b) = (0; 1). According to Protocol 2.1, the parties need to use

the cyphertext Bg for the decryption. Once they decrypt such value, they obtain Sc;B, as

described in Functionality 2.1. Notice that �a = �a � �a = 0, then �a = �a. Similarly,

�a = �b � �b = 1, which means that �b = �b. By the de�nition of fg, we have that

fg(�a; �b) = �c, then it holds that fg(�a; �b) = fg(�a; �b). There are two cases:

• If fg(�a; �b) = �c, this means that Sc;B = Sc;0. Given that �c
def
= fg(�a; �b) =

fg(�a; �b) = �c, then �c
def
= �c � �c = 0. Therefore, the decrypted value Sc;B is

equal to Sc;�c .

2.3 Garbled circuits 27

Functionality 2.1: garble-gate-BMR

Let � be a security parameter and G : f0; 1g� ! f0; 1g2�n a pseudo-random genera-

tor. Denote G1 the �rst L
def
= n � � bits of the output of the function G. Similarly,

denote G2 the last L bits of the output of G. Let g be a gate computing the function

fg : f0; 1g � f0; 1g ! f0; 1g with input wires a and b, and output wire c.

Inputs: for each input gate, the input of the functionality are the following:

• Seeds: each party Pi inputs uniform seeds siw;b 2 f0; 1g
�, for b 2 f0; 1g and

w 2 fa; b; cg.

• Stretched seed: each party Pi inputs L-bit strings ~
i
w;b and iw;b, for b 2 f0; 1g

and w 2 fa; b; cg. Notice that if Pi is honest, ~
i
w;b = G1

�
siw;b

�
and iw;b =

G2

�
siw;b

�
.

• Masking bit: each party Pi inputs a uniform �iw 2 f0; 1g, for w 2 fa; b; cg:

Output: The functionality computes �w =
Ln

i=1 �
i
w. Then, it sets the following

values:

Sc;A = (fg (�a; �b) = �c ? Sc;0 : Sc;1) ;

Sc;B =
�
fg
�
�a; �b

�
= �c ? Sc;0 : Sc;1

�
;

Sc;C =
�
fg
�
�a; �b

�
= �c ? Sc;0 : Sc;1

�
;

Sc;D =
�
fg
�
�a; �b

�
= �c ? Sc;0 : Sc;1

�
:

The functionality outputs the following four ciphertexts that correspond to the gar-

bled gate:

Ag =

nM
i=1

~ia;0

!
�

nM
i=1

~ib;0

!
� Sc;A;

Bg =

nM
i=1

ia;0

!
�

nM
i=1

~ib;1

!
� Sc;B;

Cg =

nM
i=1

~ia;1

!
�

nM
i=1

ib;0

!
� Sc;C ;

Dg =

nM
i=1

ia;1

!
�

nM
i=1

ib;1

!
� Sc;D:

28 2 Preliminaries

Protocol 2.1: online-phase-BMR

Step 1. Send external values:

1. Every party Pi broadcasts the external values related to his own input wires.

Recall that each party know its own real input value �w and also �w. So, each

party can compute the external value �w related to its own input wires. At

the end of the step, each party knows all the external values �w, where w is

an input wire of the circuit.

2. Every party Pi broadcasts the �w-seed for each circuit-input wire. At the end

of the step, each party will know the �w-superseeds for each input wire of the

circuit.

Step 2. Evaluate the circuit: the parties evaluate the circuit in a topological order.

Let g be a gate with input wires a and b, and with output wire c. Given the values

of Sa;�a and Sb;�b the parties can obtain �a and �b. Each party Pi can do that by

looking at its fragment seed siw;�w inside Sw;�w , for w 2 fa; bg. Once �a and �b are

known, the parties use the following value to decrypt the value of Sc;�c:

• If (�a;�b) = (0; 0), the parties use the ciphertext Ag.

• If (�a;�b) = (0; 1), the parties use the ciphertext Bg.

• If (�a;�b) = (1; 0), the parties use the ciphertext Cg.

• If (�a;�b) = (1; 1), the parties use the ciphertext Dg.

2.3 Garbled circuits 29

• If fg(�a; �b) 6= �c, it holds that Sc;B = Sc;1. Notice that �c
def
= fg(�a; �b) = fg(�a; �b) 6=

�c, which means that �c = �c. Computing �c, it holds that �c
def
= �c � �c = 1.

Therefore, the value of Sc;B is equals to Sc;�c again.

The remaining three cases for the other possible values for (�a;�b) have a very similar

proof.

In this thesis, we decided not to show the original protocol that realizes the ideal func-

tionality to construct the garbled gates. Remember that the original proposal of BMR

is secure against active adversaries in the honest majority setting. Instead, in the next

section, we will show how to accomplish this task by using the approach of Lindell et al.

that brings security against an active adversary in the dishonest majority setting.

The general BMR protocol [Lin+19]

As we mentioned before, the �nal job to do is to construct a protocol that realizes Func-

tionality 2.1. In this thesis, we will show a general construction proposed in [Lin+19].

Before Lindell's work, the proposals to realize the entire BMR protocol were either secure

against semi-honest adversaries or secure against malicious adversaries but in the honest

majority setting. No proposal cover both the security against malicious adversaries in

the dishonest majority case. However, Lindel et al. propose a protocol that is secure in

such a desirable threat model. Moreover, such a proposal is su�ciently e�cient to be

implemented in practice (or what they call concretely e�cient).

The baseline of the protocol relies on the original version of BMR presented in the previous

section along with some changes. First of all, instead of using the XOR of bit strings, the

protocol uses arithmetic additions in a �nite �eld. Then, all the computations are not over

binary circuits but arithmetic circuits. The second main modi�cation is the replacement

of the seeds siw;b for randomly generated keys kiw;b. Remember that the seeds were bit

strings that serve as input of a pseudo-random generator. Instead, the keys are �nite

�eld elements that will be inputs of a pseudo-random function. The other modi�cation is

that, compared to the original version, this proposal does not need to encode the external

values of the wires using superseeds. This is because the parties can spot the external value

encoded in the superseed just by looking at their own fragment seed inside. The fourth

modi�cation is that the protocol does not check that the random input to the garbling

functionality is the output of a pseudo-random function. Remember that at this moment

we are dealing with malicious adversaries, so in the inputs of the Functionality 2.1, a

corrupted party can provide a string that is not an output of a pseudo-random generator.

In other references, this is solved by executing expensive zero-knowledge proofs that make

30 2 Preliminaries

the protocol impractical. Instead, Lindell et al. prove that this kind of adversarial behavior

just makes the protocol abort, but does not reveal sensitive information. This situation

is �ne in this context because the best that can be done in the dishonest majority case

with an active adversary is to have security with abort [Esc21, Section 1.3.4]. Moreover,

this new approach allows the protocol to treat the pseudo-random function as a black

box instead of considering the circuit of such a function to perform a zero-knowledge

proof. This reduction allows a simpli�cation of the protocol and an improvement in its

performance. The last change is that the garbled values are encrypted as vectors, namely,

vectors of length n. Having vectors allows the protocol to encode n values in f0; 1g� in a

�eld instead of encoding values in f0; 1gL in a larger �eld.

For the protocol, each party Pi chooses a pair of keys k
i
w;0 and k

i
w;0, for each wire w. Such

keys are elements of a �nite �eld Fp, with p prime such that 2� < p < 2�+1. In particular,

p will be the smallest prime greater than 2�. The pseudo-random function is denoted as

F , and the evaluation of an element x in the function using the key k is denoted as Fk(x).

The output of the pseudo-random function, as well as the keys, are interpreted as elements

of Fp. In practical implementations, we can use a block cipher in the CBC-MAC mode to

instantiate F [Lin+19].

The big picture of the improved BMR protocol is shown in Figure 2-3. The main goal is to

design a protocol �SFE, where SFE stands for \Secure Function Evaluation". This protocol

will realize a functionality FSFE that allows to securely evaluate a function f represented

as a circuit Cf under a malicious adversary in the dishonest majority case. The protocol

�SFE will be constructed in the Foffline-hybrid model, where Foffline is the functionality in

charge of garbling the gates of the circuit. This means that the protocol �SFE will use a

sub-protocol �offline that realizes the functionality Foffline. But the protocol �offline will be

constructed also in the FMPC-hybrid model. The FMPC will provide the commands Add

and Multiply to perform additions and multiplications securely. These two commands are

used in �offline between elements of Fp to construct the garbled gates. Speci�cally, Lindell

et al. show both a general method to construct �offline using the functionality FMPC, and

also, they show how to realize the o�ine phase using the SPDZ protocol [Dam+12].

As well as in the original version of BMR, �SFE is divided into two phases: the online phase

and the o�ine phase. The o�ine phase is divided into two sub-phases: preprocessing-I and

preprocessing-II. Here we present a brief summary of both sub-phases. For more details

about preprocessing-I and preprocessing-II, we refer to the reader to [Lin+19, Functionality

4].

The command preprocessing-I is in charge of generating and sending the random values

needed to generate the garbled gates. Such values include the keys and the masking

values. Speci�cally, the masking values �w 2 f0; 1g are chosen at random and stored for

2.3 Garbled circuits 31

Figure 2-3: Scheme of protocol and functionality dependency for the Foffline functionality.

This scheme is adapted from [Lin+19].

each wire w. In particular, the command Multiply provided by FMPC is used to generate

the masking bits (see [Lin+19, Apendix A]). Also, for each party Pi, the functionality

chooses the keys kiw;0 and kiw;1, and sends them to the corresponding party.

The command preprocessing-II is in charge of constructing the garbled gates. First of

all, preprocessing-II opens the values of �w, for each input wire w, to the corresponding

party owning the input wire. Also, the command opens �w for the output wires to all the

parties. These two operations do not harm the privacy because the parties know their own

inputs and they are intended to learn the output of the function f . After that, each party

uses the keys and the pseudo-random function to provide random values to the command

preprocessing-II. For the party Pi, these random values are computed as Fki
w;b
(0kjkg), for

b 2 f0; 1g and i; j 2 Jn. Finally, the garbled gate are four vectors Ag = (A1
g; : : : ; A

n
g),

Bg = (B1
g ; : : : ; B

n
g), Cg = (C1

g ; : : : ; C
n
g) and Dg = (D1

g; : : : ; D
n
g), where each position of

each vector is the sum of values of the form Fki
w;b
(0kjkg) along with a key kjc;Q, where

Q 2 f0; 1g is a bit that depends on the function fg that computes the gate g. To compute

such additions, it is needed the command Add provided by the functionality FMPC.

The protocol �SFE executes the o�ine phase by executing the commands in Foffline. These

commands generate all the random values needed to construct the garbled gates and

evaluate them in the online phase. In the online phase, the parties compute the external

values of the input wires as in the original protocol. In this improved version of the

protocol, we do not have any superseed to encode the external values, instead, we have

keys. These keys with the form kiw;�w encode the external values �w. In this phase, the

parties receive the garbled gates with the form Ag, Bg, Cg, Dg, for every gate g. Again,

32 2 Preliminaries

similarly to the original protocol, the party Pi passes through each gate g of the circuit

in topological order to obtain the keys kic;�c where c is the output wire of g. The party

will choose to use one of the values from Ag, Bg, Cg and Dg, according to the values

of �a and �b, where a and b are the input wires of g. To obtain the values of kic;�c, the

party undoes the operations performed in the command preprocessing-II used to mask the

value of kic;�c . Remember that for undoing the operations, the protocol does not perform

XOR as in the original version, but additions and subtractions. Di�erent from the original

protocol, the parties need to check if the keys that they are obtaining from the wire c

match with the set of keys fkic;0; k
i
c;1g they have. If not, the parties abort. In the end, all

the parties will obtain �w, where w is an output wire of the entire circuit, and they can

unmask �w = �w � �w given that �w is obtained in the pre-processing step.

This improved BMR protocol has a constant number of rows. Precisely, the protocol has

12 communication rounds, where 3 of them are in the online phase. This means that this

protocol is suitable for network architectures of high latency. However, even when this

protocol has a low number of rounds, the data sent in this type of protocol tends to be

large and does not scale very well with the size of the circuit because one party constructs

a garbled table for each gate in the circuit and sends it to the second party. This lack

of scalability with respect to the data sent harms the performance when using a network

architecture with low bandwidth. It is important to mention that the work of Lindell et

al. is the baseline in later works like the one of Keller and Yanai [KY18]. Moreover, such

later work is the one that is implemented in the framework MP-SPDZ [Kel20], which is

extensively used in the experiment section of this work.

2.4 Secret-sharing schemes

In the previous section, we revisited some techniques based on garbled circuits. However,

in the area of MPC, there is a wide variety of techniques that use di�erent tools to compute

a function securely, and each of them has its pros and cons. In this section, we will explain

another technique called secret-sharing. This type of technique is of high relevance in our

work because we intend to compare the performance of both the secret-sharing schemes

and garbled circuits to compute the edit distance.

Throughout this introductory part, we �x a �nite �eld F, which will be the domain of

computation of the secret-sharing schemes. If another algebraic structure is intended

to be used, we will state that explicitly. Also suppose that n is the number of parties

participating in the protocol, such that they agree to compute a function f : Fn ! F.

The main idea behind the secret-sharing schemes is that an element s 2 F will be frag-

2.4 Secret-sharing schemes 33

mented into n random parts called shares, such that each part will be held by each party.

These parts are computed in such a way that some subsets of parties are not allowed to

learn anything about s, while other subsets are able to learn s completely. In this work,

we will deal with threshold secret-sharing schemes, which are schemes that do not leak

information about s as long as less or equal to t shares are known. At the moment that t+1

shares are available, they allow revealing s completely. More speci�cally, a secret-sharing

scheme provides tools to compute a tuple (s1; s2; : : : ; sn) 2 Fn, such that:

• For any set A � Jn, such that jAj � t, the set fsigi2A does not leak any information

about s.

• For any set B � Jn, such that jBj � t + 1, the set fsigi2B can be used to fully

reconstruct the value s.

When an element s is divided into parts as speci�ed above, we say that s is secret-shared.

If s is secret-shared using shares (s1; s2; : : : ; sn), we denote this as

JsK def
= (s1; s2; : : : ; sn):

The common strategy to compute the output of an agreed function f using secret-sharing

schemes works as follows:

1. The function f is represented as an arithmetic circuit Cf .

2. Each party Pi takes its own input x and compute the shares JxK def
= (x1; : : : ; xn). For

each party Pj, Pi sends xj to Pj.

3. The parties execute a protocol to evaluate the arithmetic gates in such a way that the

parties obtain the output of each gate also in a secret-shared format. This will prevent

the parties to learn something about the intermediate steps of the computation.

4. At the end, each party obtains a share of the output of the circuit Cf . Therefore,

they can join their shares to reconstruct the output of the function.

A particular case of this type of scheme is the linear secret-sharing schemes. Formally, let

x; y 2 F. Suppose that JxK = (x1; : : : ; xn) and JyK = (y1; : : : ; yn). In a linear secret-sharing

scheme, it holds that Jx� yK = (x1 � y1; x2 � y2; : : : ; xn � yn) [Esc21]. Considering the

common strategy for secret-sharing protocols presented above, this fact means that in a

linear secret-sharing scheme there is no need for communication for computing additive

gates because each party can compute it locally. Speci�cally, the party Pi holds xi and yi,

so he can compute xi � yi, which is a valid share for x� y. An immediate consequence of

this fact is that, for a publicly known value c 2 F, it holds that Jc � xK = (c � x1; : : : ; c � xn),

34 2 Preliminaries

which means that this operation does not need communication too.

Notation. Let x 2 F, and suppose that JxK = (x1; : : : ; xn). When a party Pi has a share

of x, we abuse the notation saying that the party holds JxK to state that Pi has xi. It

needs to be clear that the party does not hold the complete array of shares, because it

will break privacy. This is especially useful when we require to say that if the party has

shares of x and y, he can obtain a valid share of x+ y by saying that the party can obtain

a share Jx+ yK by doing JxK + JyK. Formally, this means that the party will have a valid

share of x + y by adding xi + yi. The ambiguity with the notation should be clear from

the context, otherwise, we will state its meaning explicitly.

The linear secret-shared schemes allow to cheaply compute addition gates, however, to

compute a multiplication gate, it is needed more resources. That is, if we have shares JxK
and JyK, it requires some work to obtain a share Jx � yK. In fact, it can be proven that

to compute the share of a product, the use of some sort of communication between the

parties is unavoidable. So, to design a linear secret sharing scheme, it is needed to specify

how the shares are constructed and shared between parties, how to reconstruct values from

the shares, and more importantly, how to compute the share of a multiplication gate.

2.4.1 SPDZ2k

In this section, we will revisit a technique based on secret-sharing called SPDZ2k . This

technique was proposed in [Cra+18] being the �rst scheme whose domain of computation

are rings of the form ZM for an integer M . In particular, they put special attention to the

case M = 2k, and they claim that the generalization to an arbitrary M is done easily from

the particular case. This work has relevance because it is the �rst proposal that achieves

security against active adversaries in the dishonest majority case using rings instead of

�nite �elds. This change in the algebraic structure comes with some challenges because

the security of schemes based on �nite �elds like SPDZ [Dam+12] relies on the fact that

every non-zero element has an inverse. On the contrary, this property does not hold for

rings of the form Z2k . So, the work of Cramer et al. proposes new techniques to achieve

security despite this theoretical loss.

The main motivation behind the use of rings for MPC protocols is that the arithmetic

modulo 2k is closer to what happens in a standard CPU. This allows the protocol designers

to take advantage of the CPU architectures to improve the performance of procedures like

comparisons and bit-wise operations. In our particular case, in the arithmetic section

of the edit distance algorithm, we require to perform a high number of comparisons to

compute the minimum of a list of numbers. To compute comparisons, we need to compute

2.4 Secret-sharing schemes 35

the most signi�cant bit and to perform truncations of secret shared values. For those tasks,

it is necessary to compute basic operations that can be performed easier in Z2k than in Zp

with p prime. For example, the reduction of a number modulo 2k is easier in Z2k because

we can take the least k � 1 least signi�cant bits. The reduction modulo p, for p prime,

requires a bit more e�ort. Therefore, the presence of a high number of comparisons of

arithmetic shares is the main motivation behind our choice of SPDZ2k as the main point

of study in this thesis to compute the edit distance securely.

Notation. In this section, we will use the same notation as in [Cra+18]. We denote by

ZM the integers modulo M , where we take the representatives in the set f0; 1; : : : ;M � 1g

as usual. Also, the congruence x � y mod 2k will be denoted as x �k y.

The baseline of the SPDZ2k scheme is the unconditional secure message authentication

codes (MACs). In summary, these are secure message authentication codes that prevent

a message to be forged even in presence of computationally powerful adversaries. To get

a better idea about information-theoretic MACs, we refer to the reader to [KL14, Section

4.6], where Katz and Lindell bring a formal de�nition of this type of security and some

basic constructions. In particular, the SPDZ2k protocol takes the idea of unconditional

MACs from the SPDZ protocol [Dam+12], where the security is de�ned according to the

following game: let x be a value, � be a random MAC key, and m
def
= � �x the MAC tag in

some �nite �eld F. The adversary receives just the value x and it is asked to �nd errors

em, ex, e� to compute m0 def
= m + em, �

0 def
= � + e� and x0

def
= x + ex. The adversary wins

if x 6= x0 and m0 = �0 � x0. In the case of �nite �elds, the probability that the adversary

wins is 1=jFj, and the security of SPDZ relies on this fact. However, in the SPDZ2k ,

where the underlying algebraic structure is Z2k , the adversary can �nd an attack to win

with probability 1=2. To show this fact with details, suppose that the adversary chooses

x0
def
= x+ 2k�1. Given that the adversary wants m0 = �0 � x0, we have that

m0 = �0 � x0

= (�+ e�) (x+ ex)

= �x+ �2k�1 + e�x+ e�2
k�1

= m+ �2k�1 + e�x+ e�2
k�1:

So, if the adversary chooses em
def
= e�x + e�2

k�1 (which are known values), then it holds

that its probability of winning

Pr [m0 = �0 � x0] =
1

2
;

which can be obtained by considering cases for � odd and � even. This attack comes from

the fact that in a ring of the form Z2k , the even elements do not have an inverse.

36 2 Preliminaries

In SPDZ2k , for an element x 2 Z2k , the problem is solved by considering a MAC key � at

random from Z2s, where s is a security parameter, and the MAC tag is computed as � � x

in the ring Z2k+s. The work of Cramer et al. consists in de�ning a secret-shared MAC

scheme properly and using it to build an authenticated secret-sharing scheme over Z2k .

The information-theoretic MAC scheme proposed by Cramer et.al. has two parameters.

The parameter k is the one that determines the size of the ring where the computation

occurs. This means that each party will provide elements in Z2k as secret inputs to the

MPC protocol to compute certain function f . The second parameter is s, which is a

security parameter.

The MAC scheme has a single global key � which is divided into n shares (�i)ni=1 such

that

� =
nX
i=1

�i mod 2k+s:

Each share �i belongs to Z2s , and the party Pi holds the share �
i. On the other hand, for

an authenticated value x 2 Z2k , each party holds a share xi 2 Z2k+s, such that

x0
def
=

nX
i=1

xi mod 2k+s;

and x �k x
0. Also, each party has an additive share mi 2 Z2k+s of the MAC tag m

def
= � �x0

mod 2k+s. Joining all the elements, the share of x can be de�ned as

JxK def
=
�
xi;mi; �i

�n
i=1
2 (Z2k+s � Z2k+s � Z2s)

n ;

such that

nX
i=1

mi �k+s

nX
i=1

xi
!
�

nX
i=1

�i
!
:

An important property is that this form of secret-shared MAC is linear. This means that

if the parties have shares JxK and JyK, they can compute Jx+ yK without interaction. The
same holds for Jc � xK and Jx+ cK, for any public value c 2 Z2k .

The �rst step in the construction of the MAC scheme is to de�ne an ideal functionality

that generates and distributes shares of a global MAC key �, and also authenticates a

set of secret-shared values Jx1K; : : : ; JxtK. These tasks are de�ned in the functionality

FMAC presented in [Cra+18, Figure 5]. Once this functionality is de�ned, they propose a

procedure to open and check a secret-shared value JxK by doing the following steps (taken
from [Cra+18, Procedure SingleCheck]):

2.4 Secret-sharing schemes 37

1. Generate a random shared and authenticated value JrK using the functionality FMAC,

where r 2 Z2s .

2. Each party computes JyK def
=

q
x+ 2kr

y
locally.

3. Each party broadcasts its own share yi and reconstructs y =
Pn

i=1 y
i mod 2k+s.

4. Each party commits to the value zi = mi � y � �i mod 2k+s, where mi is the MAC

share on y.

5. All parties open their commitments and check that
Pn

i=1 z
i �k+s 0.

6. If the check passes, then the procedure outputs y mod 2k.

The key step in this procedure is Step 2. Speci�cally, this step aims to keep the privacy in

the case of x being obtained as a linear combination of other private inputs. For example,

suppose that the value x is obtained as x = w+z, where w and z are private values. Then,

opening x0 =
Pn

i=1 x
i and then checking the MAC tag on x0 is not secure because opening

x0 can leak if there was an overow performing the sum w + z by checking its s most

signi�cant bits. So Step 2 is designed to hide the s most signi�cant bits by generating a

random s-bit value r. If we observe the value of y carefully, its s most signi�cant bits will

be random, and the k least signi�cant bits will hold the value of x. This last fact can be

con�rmed in Step 6, because doing y mod 2k will extract the k least signi�cant bits of y,

namely, the value of x.

One of the most signi�cant results in the work of Cramer et al. is the proposal of a

procedure for opening a batch of secret-shared values and checking their MACs at once.

This procedure is known as batch MAC checking. The core of the solution to this problem

is to check a single random linear combination of the MACs of the values. This approach

has a lower communication complexity compared to opening and checking each element

of the batch one by one. The details of this approach can be found in [Cra+18, Section

3.2], speci�cally, in the procedure BatchCheck.

Once the authentication mechanism is established, we can use it to de�ne an MPC protocol

to compute functions securely. The SPDZ2k protocol belongs to a family of protocols that

has a structure called the preprocessing model. These types of protocols are divided into

two phases: a preprocessing phase (also called o�ine phase) and an online phase. In

the preprocessing phase, the protocol generates all of the material needed to perform the

computation. This material is completely independent of the user inputs, therefore, this

phase can be executed even before each party provides its own input to the computation of

the function. The material obtained from this phase corresponds commonly to multiplica-

tion triples needed to evaluate the communication gates, among other randomness used in

38 2 Preliminaries

the online phase. The online phase corresponds to the evaluation of the arithmetic circuit

itself. There, the parties bring their inputs to the protocol, and the circuit is evaluated

using the randomness generated in the preprocessing phase. In this separation, it com-

monly happens that the o�ine phase is more computationally expensive than the online

phase. So, this separation allows us to execute the protocol with lower latency compared

to making both phases together [Fre+15].

To compute the preprocessing phase, Cramer et al. propose a functionality FPrep that is

in charge of generating the raw material for the online phase. It has two main commands.

The Input command generates the randomness for the party Pi to provide its input. The

command distributes an authenticated share JrK, where r 2 Z2k+s is a random element,

and gives r to Pi. The Triple command is in charge of generating a multiplication triple

to evaluate the multiplication gates in the arithmetic circuit. A multiplication triple is a

triple of secret-shared numbers (JaK; JbK; JcK), such that a and b are random numbers in

Z2k , and c = a � b mod 2k.

On the other hand, the online phase is in charge of distributing shares of the inputs from

the parties, evaluating the gates of the arithmetic circuit, and outputting values that are

secret-shared. To accomplish these tasks, Cramer et al. propose the functionality FOnline.

This functionality is realized by the protocol �Online in the FPrep-hybrid model. In the

Protocol 2.2, we present the details of �Online as they are presented in [Cra+18]. In this

protocol, the most obscure step is the Multiplication command which we will explain next

intuitively. If we consider the values not secret-shared but in clear text, we have that

�
def
= x � a and �

def
= x � b, therefore, x = � + a and y = � + b. With these values, we can

compute

x � y = (�+ a) � (� + b)

= � � � + � � b+ � � a+ a � b

= c+ � � b+ � � a+ � � �:

So, if we take this value for x � y and include the secret-share notation, we have that

Jx � yK = Jc+ � � b+ � � a+ � � �K. But given that the secret-sharing scheme is linear, we

have that Jx � yK = JcK + � � JbK + � � JaK + � � �. Notice that the values of � and � were

opened, so they are public and can be treated as constants.

There are left to present two main building blocks of the protocol: how to authenticate an

additively secret-shared value using the MAC scheme presented at the beginning of this

section, and how to generate multiplication triples.

For the authentication protocol, Cramer et al. propose a protocol �Auth that realizes the

MAC functionality in the FvOLE-hybrid model. The functionality FvOLE is in charge of

performing a vector oblivious linear evaluation between two parties. In summary, This

2.4 Secret-sharing schemes 39

Protocol 2.2: �Online

The protocol has two parameters: k which is the word size in wich the operations

are performed, and s which is the security parameter.

Initialize. The parties call the functionality FPrep as follows:

1. On input (Init) to get the MAC key shares �j 2 Z2s .

2. For each party Pi that will provide inputs to the computation, and for each

input provided by Pi, it is called the functionality FPrep on input (Input; Pi) to

obtain random sharings JrK, where r 2 Z2k+s and Pi learns r.

3. For each multiplication gate in the arithmetic circuit, the command (Triple) is

called to get a multiplication triple (JaK; JbK; JcK).

Input. Suppose that Pi holds an input value to the functionality x 2 Z2k . To

distribute additive shares xi of x to each party, the parties execute the following

instructions:

1. Pi broadcasts �
def
= x � r mod 2k+s, where JrK is the next unused input mask

generated in the Initialize step.

2. The parties compute JxK def
= JrK+ �.

Add. To compute an addition gate whose inputs are two secret-shared values JxK
and JyK, the parties compute locally JzK def

= JxK+ JyK.

Multiply. To compute a multiplication gate with input values JxK and JyK, the
parties execute the following instructions:

1. The parties open JxK� JaK as � and JyK� JyK as �, using the Command Open

in the BatchCheck procedure, where (JaK; JbK; JcK) is the next unused multipli-

cation triple generated in the Initialize step.

2. The parties locally compute Jx � yK = JcK+ � � JbK+ � � JaK+ � � �.

Output. To output a secret-shared value JyK the parties execute the following steps:

1. Call the procedure BatchCheck to check the MACs that have been opened so

far to compute the multiplication gates.

2. If the previous step does not abort, the parties open and check the MAC of

JyK using the procedure SingleCheck.

40 2 Preliminaries

functionality has three parameters: t, l, and r. In this functionality, two parties PA and PB
are involved. The party PA will input a value � 2 Z2s . On the other hand, the party PB
will input a vector x, such that the �rst t entries are in Z2r and the (t+1)-th entry is in Z2l.

The functionality will generate a random vector b 2 Zt+1
2l , compute a

def
= b+� �x mod 2l,

returns a to PA, and return the random vector b to PB. To perform the authentication,

the protocol �Auth is used to authenticate a vector of values x
def
= (x1; : : : ; xt) over Z2l

where each party Pi has a share of each component denoted by xi. An instance FvOLE

is used between each pair of parties (Pi; Pj), with i 6= j, to obtain the linear evaluation

ai;j
def
= bj;i + �i � ~xj, such that:

• ai;j and bj;i are the outputs of the functionality FvOLE executed between parties Pi
and Pj.

• �i is the share of the MAC key �. This share is sampled by Pi at random from Z2s .

• ~xj
def
=
h
xj j xjt+1

i
2 Zt

2r � Z2l0 , where l
0 def
= maxfl; r + s; 2sg, and xjt+1 is sampled at

random from Z2l0 .

The outputs ai;j and bj;i are used to compute the share of the MAC tag, and the random

value xjt+1 is used to perform a consistency check of the generated MACs. For more details

about the protocol �Auth, we refer to the reader to [Cra+18, Section 5].

For the multiplication triples, Crammer, et al. propose the protocol �Triple that realizes the

functionality for multiplication triple generation in the (FROT;FRand;FMAC)-hybrid model.

The functionality FROT is in charge of computing a random oblivious transfer between

two parties. On the other hand, the functionality FRand generates and distributes random

numbers among the parties. Also, the functionality FMAC is in charge of generating shares

of the global MAC key and distributing the shares of the MAC tag. The protocol for

the generation of triples has four main stages. The �rst stage is called Multiply. Here

the protocol generates two secret shared-vectors JaK and JcK, and a share JbK, such that

c = b � a, where the product is done component-wise. In the second stage, they construct

shares JaK, JbK, JcK, JâK and JĉK such that

c �k a � b and ĉ �k â � b

In particular, the shares JaK, JcK, JâK, and JĉK are constructed as random linear combi-

nations of the components of the vectors a and c respectively. The third stage is called

Sacrifice, which is a technique that is commonly used to create multiplication triples under

active adversaries. This technique uses (and sacri�ces) the shares JâK and JĉK to check the
correctness of the triple (JaK; JbK; JcK). The fourth stage is the Output stage, in which it

is generated a share JrK, where r 2 Z2s is a random element, and �nally it returns the

triple (JaK; JbK;
q
c+ 2kr

y
). This last stage masks the s most signi�cant bits of c to avoid

2.4 Secret-sharing schemes 41

leakage of information. For a more detailed exposition of the protocol �Triples, we refer to

the reader to [Cra+18, Section 6].

2.4.2 Tinier

In our proposal for the edit distance protocol, we divide the algorithm into two parts: one

that is done in the binary domain, i.e. Z2, and another one that is done in an arithmetic

domain. In this section, we will expose the protocol Tinier, which is used to compute

the binary computations of the �rst part of our proposal. This protocol was proposed in

[Fre+15] as an improvement of the generation of multiplication triples in �elds of charac-

teristic two. In particular, Frederiksen et al. focus their attention on the preprocessing

stage of the protocols TinyOT [Nie+12], MiniMAC [DZ13] and SPDZ [Dam+12], showing

a way to generate multiplication triples using oblivious transfer extensions. In this section,

we will show how Tinier generates the multiplication triples for the particular case of Z2,

which are needed to evaluate the multiplication gates in the binary circuit of our proposal.

In this section, we suppose that the set of parties involved in the protocol is fP1; : : : ; Png.

Also, we set � to be a security parameter and F to be a �nite �eld. Similar to the case

of SPDZ2k , Tinier considers the additive secret-sharing approach. This means that, if we

want to secret-share a value x 2 F, we randomly generate shares x(1); : : : ; x(n) 2 F such

that x = x(1) + � � � + x(n), where the party Pi holds the value x(i). Also, they consider

the authentication of secret-shared elements using information-theoretic MACs. In the

particular case of Tinier, they use a �xed global key � 2 F2M , for M � �, which is

additively secret-shared among the parties. In the general case, the authenticated secret-

share of a value x 2 F, with F = F2u and ujM , is represented as follows:

JxK def
=
�
x(i);m(i)

x ;�(i)
�n
i=1

where, m(i)
x is the additive share of the MAC tag mx

def
= x ��. Each share of the MAC tag

m(i)
x is represented as an element in FM2 . Although the work of Frederiksen et al. considers

a general case of elements in the �eld F2u, for simplicity, we will focus on the case of u = 1,

which is the binary case.

The techniques presented in the Tinier work rely heavily on oblivious transfer (OT)

techniques. In an OT functionality, two parties PS and PR are involved. PS inputs two

messages v0 and v1 belonging to F�2 and PR input a bit b. At the end of the execution, PR
only learns the value vb.

A variant of the OT functionality is where the messages sent by party PS are correlated.

That means that PS sends messages v0 and v1 such that v0+v1 = � for some constant �.

42 2 Preliminaries

This functionality is called correlated OT. In the speci�c case of Tinier, it does not use

an actively secure protocol to compute correlated OT, but a passive protocol that allows

the adversary to input errors in the middle of the process which will introduce errors in

the output of the functionality. This version is called correlated OT with errors. This

functionality denoted F�;l
COTe is of high importance for the exposition of the next protocols,

so we show all the details in Functionality 2.2 taken from [Fre+15, Figure 2]. The security

of this functionality is proven in [Nie07].

Functionality 2.2: F�;l
COTe

The Initialize step is independent from its inputs and it is called once. After the

initialization, Extend can be called multiple times. The functionality has two param-

eters: l which is the number of correlated OTs to be performed and the bit length

�. In this functionality there are two parties involved: PS and PR, and there is an

ideal adversary A.

Initialize. Upon receiving � 2 F�2 from PS, the functionality stores �.

Extend. On input (PR; (x1; : : : ;xl)) from PR, where xi 2 F�2 , the functionality

performs the following steps:

1. It samples th 2 F�2 , for h = 1; 2; : : : ; l, which will be sent to PR. If PR is

corrupted, the functionality waits for A to input th.

2. It computes the values qh
def
= th+xh ��, for h = 1; 2; : : : ; l, and sends them to

PS. If PS is corrupted, the functionality waits for A to input qh, and then it

outputs to PR the values of th consistent with the adversary inputs.

Before going into the triple generation, Frederiksen et al. propose a protocol to authenti-

cate an additively shared value x 2 F2. They �rst propose an ideal functionality FJ�K which

speci�es how the authentication works. In summary, the functionality has an initialization

phase, where it samples and distributes shares for the MAC key �. Then, in the authen-

tication process, the functionality receives the additive shares as inputs, reconstructs the

secret values based on such shares, computes the MAC tags for each reconstructed value

using the key �, and �nally distributes shares of the MAC tag to each party. It is im-

portant to mention that the functionality allows the adversary to provide errors to the

MAC tag to represent the adversary's capabilities. The details of the functionality FJ�K are

presented in [Fre+15, Figure 5].

In [Fre+15, Figure 6], Frederiksen et al. propose a protocol �J�K that realizes the function-

ality FJ�K in the F�;l
COTe-hybrid model. In this protocol, each pair of parties (Pi; Pj) with

2.4 Secret-sharing schemes 43

i 6= j initialize an instance of FM;l
COTe where Pj inputs a random share of the MAC key

�(j) 2 F2M . In this initialization process, the consistency of the shares of the MAC key

is checked. This consistency check relies on a sub-protocol called �MACCheck presented in

[Fre+15, Figure 16]. The sub-protocol �MACCheck takes as inputs a list of public values ah
and a list of authenticated shares JbhK, for h = 1; : : : ; l, and it checks if ah = bh. In other

words, �MACCheck checks if a set of public values are consistent with a set of secret-shared

values when using a secret-shared MAC key �. To check if the shares of the MAC key are

consistent, the parties generate and authenticate a set of dummy values using the MAC

key �. The dummy values are opened, so the parties run �MACCheck giving as inputs the

dummy values in both versions public and secret-shared (the latter ones are authenticated

using the MAC key �). The �MACCheck will determine if the public dummy values match

the authenticated secret-shared dummy values. If both lists match, then we can conclude

that the MAC key � was initialized correctly except with probability 2��. It is important

to mention that �MACCheck is also used in the multiplication triples protocol to check if

the MAC generated to authenticate the triple is consistent. Now, to authenticate a set

of values x1; : : : ; xl 2 F2 that are already secret-shared among the parties, the party Pi
inputs its shares x

(i)
1 ; : : : ; x

(i)
l to the instance FM;l

COTe that was initialized with the party Pj
using the command Extend of the corresponding instance. The output provided by each

instance of the functionality FM;l
COTe is then combined to construct a share of the MAC tag

for each value.

For the triple generation, the Tinier work �rst proposes a functionality FTriples that is in

charge of generating and distributing shares of a multiplication triple. Instead of specifying

the details of the functionality, we will jump directly to the protocol �BitTriples that generates

and distributes multiplication triples in F2. In [Fre+15, Theorem 2], they state that the

protocol �BitTriples realizes the functionality FTriples in the
�
F�;l

COTe ; FJ�K

�
-hybrid model in the

presence of a static adversary corrupting up to n� 1 parties.

It is important to mention that the protocol �BitTriples is secure under the random oracle

model. In some situations, the assumptions made on the security of a hash function may be

not enough to prove the security of a cryptographic construction that uses such function.

Instead of giving up on the proof of security of the construction, it is common to use the

random oracle model, which is an idealization of a hash function. In the random oracle

model, we assume the existence of a public function H : f0; 1g� ! f0; 1gl treated as a

black box. This means that the parties make queries with input x to the black box (which

we refer to as query the oracle) and it answers with a value H(x). The parties do not

know how the function H works internally. Also, the parties do not know which values

are queried or when the oracle has been queried by other parties, which matches with

a real-world situation where the parties locally evaluate a hash function. There are two

properties of importance for a random oracle:

44 2 Preliminaries

1. If a string x has not been queried to H, the value of H(x) is uniform.

2. If x is queried to H, the same value is returned in the next queries of x to H.

Although the random oracle allows proving the security of certain constructions, it is not a

silver bullet to prove the real security of the construction because, in the real world, we are

instantiating the random oracle with a concrete hash function which is not a truly random

function. For more details on proofs using random oracles, and the security e�ects of

using random oracles in constructions when instantiated using a concrete real-world hash

function, we refer to the reader to [KL14, Section 5.5]. In [BR93], the reader will �nd the

original proposal of the random oracle model.

That said, we proceed to the detailed speci�cation of the protocol �BitTriples, as we shown

in Protocol 2.3 which is taken from [Fre+15, Figure 15].

There are some details we want to �ll in about Protocol 2.3 to make a clearer exposition.

First of all, let us show why this process generates a random triple. Intuitively, this can

be explained by summing up the values of z
(i)
h generated in Step 3 of the Triple generation.

If we do this, we obtain

nX
i=1

z
(i)
h

def
=

nX
i=1

0
@X
j 6=i

n
(i;j)
h + x

(i)
h � y

(i)
h +

X
j 6=i

v
(i;j)
0;h

1
A

=
nX
i=1

X
j 6=i

v
(j;i)
0;h +

nX
i=1

X
j 6=i

x
(i)
h � y

(j)
h +

nX
i=1

x
(i)
h � y

(i)
h +

nX
i=1

X
j 6=i

v
(i;j)
0;h

=
nX
i=1

X
j 6=i

x
(i)
h � y

(j)
h +

nX
i=1

x
(i)
h � y

(i)
h

=

nX
i=1

x
(i)
h

!
�

nX
i=1

y
(i)
h

!
:

So, it holds that zh =
Pn

i=1 z
(i)
h =

�Pn
i=1 x

(i)
h

�
�
�Pn

i=1 y
(i)
h

�
= xh � yh, which explains better

why the protocol outputs a multiplication triple. The second identity we want to expand

is the second equality in Step 2(b)ii of Triple generation because, in our experience, this

equality is not immediate to come up with. We want to show why n
(i;j)
h = v

(j;i)
0;h +x

(i)
h � y

(j)
h .

Notice that

n
(i;j)
h = w

(i;j)
h + xh � s

(j;i)
h

= w
(i;j)
h + x

(i)
h

�
v
(j;i)
0;h + v

(j;i)
1;h + y

(j)
h

�
= w

(i;j)
h + x

(i)
h � v

(j;i)
0;h + x

(i)
h � v

(j;i)
1;h + x

(i)
h � y

(j)
h :

So, it remains to show that w
(i;j)
h + x

(i)
h � v

(j;i)
0;h + x

(i)
h � v

(j;i)
1;h = v

(j;i)
0;h . To show that, remember

2.4 Secret-sharing schemes 45

Protocol 2.3: �BitTriples

The protcol will generate a set of random triples (JxhK; JyhK; JzhK), for h = 1; : : : ; l,

such that zh = xh � yh, and both xh and yh are generated at random. The protocol

has a parameter l which is the number of triples that will be generated. Also, the

protocol assumes the acess to a random oracle H : f0; 1g� ! f0; 1g.

Initialize.

1. Each party Pi samples a random MAC key �(i) 2 F2�, a second value ~�(i) 2 F2�

and sets �̂(i) def
=
�
~�(i) k�(i)

�
2 F22�.

2. Each pair of parties (Pi; Pj), for i 6= j, initializes a new instance of F2�;l
COTe

and executes the command F2�;l
COTe:Initialize, where Pj inputs �̂

(j). Also, they

initialize an instance of FJ�K, and execute the command FJ�K:Init, where Pj inputs

�(j).

3. The parties check the consistency of the generated MAC key �̂
def
= �̂(1) +

� � � + �̂(n) by executing the following steps: each party Pi generates dummy

random values x̂
(i)
1 ; : : : ; x̂(i)� 2 F2, and authenticate them using �J�K to ob-

tain Jx̂1K; : : : ; Jx̂nK; then, each party Pi broadcasts only the additive shares

x̂
(i)
1 ; : : : ; x̂(i)� , and they compute xh

def
=
Pn

i=1 x̂
(i)
h ; �nally the parties call �MACCheck

with inputs x1; : : : ; x�, and the shares Jx̂1K; : : : ; Jx̂nK; if �MACCheck fails, the pro-

tocol aborts.

COTe Extend. Each party Pi executes F
2�;l
COTe:Extend with Pj, for all j 6= i, in the

following way: Pi inputs x
(i) =

�
x
(i)
i ; : : : ; x

(i)
i

�
2 Fl2. From this execution, Pi receivesn

t̂
(i;j)
h

ol
h=1

, and Pj receives q̂
(j;i)
h = t̂

(i;j)
h + x

(i)
h � �̂

(j), for h = 1; : : : ; l.

Triple generation. Each party Pi divides the output of F2�;l
COTe in two halves as

follows: t̂
(i;j)
h =

�
~t
(i;j)
h k t

(i;j)
h

�
and q̂

(i;j)
h =

�
~q
(i;j)
h kq

(i;j)
h

�
. Each party Pi uses only the

�rst � components of its shares, namely ~q
(i;j)
h , ~�(i) and ~t

(i;j)
h to do the following:

1. Each party Pi generates l random values y
(i)
h 2 F2.

2. For each i = 1; : : : ; n do:

a) Using a random oracle H : f0; 1g� ! f0; 1g, the party Pi breaks the

correlation generated in the F2�;l
COTe output to generate independent multi-

plication triples. On the one hand, for all h = 1; : : : ; l, Pi locally computes

46 2 Preliminaries

w
(i;j)
h

def
= H

�
~t
(i;j)
h

�
. On the other hand, for all j 6= i, and for all h = 1; : : : ; l,

Pj computes v
(j;i)
0;h

def
= H

�
~q
(j;i)
h

�
and v

(j;i)
1;h

def
= H

�
~q
(j;i)
h + ~�(j)

�
.

b) The parties generates the correlations related to yh:

i. For all j 6= i, the party Pj construct a vector s
(j;i) def

=
�
s
(j;i)
1 ; : : : ; s

(j;i)
l

�
and send it to Pi, such that, for each h = 1; : : : ; l, s

(j;i)
h

def
= v

(j;i)
0;h +

v
(j;i)
1;h + y

(j)
h .

ii. For all j 6= i, the party Pi computes n
(i;j)
h

def
= w

(i;j)
h + x

(i)
h � s

(j;i)
h =

v
(j;i)
0;h + x

(i)
h � y

(j)
h .

3. Each party Pi computes

z
(i)
h

def
=
X
j 6=i

n
(i;j)
h + x

(i)
h � y

(i)
h +

X
j 6=i

v
(i;j)
0;h :

Authentication.

1. For all h = 1; : : : ; l, the party Pi authenticate xh by obtaining a share of the

MAC tag. This is done by summing up the last � components of the output

of F2�;l
COTe. More speci�cally, the share of the MAC tag is de�ned by

m
(i)
h

def
= x

(i)
h ��

(i) +
X
j 6=i

�
q
(i;j)
h � t

(i;j)
h

�
:

This allows to the parties to obtain a authenticated share JxhK.

2. The parties use an instance of FJ�K to authenticate the shares of yh and zh to

obtain authenticated shares JyhK and JzhK, for h = 1; : : : ; l.

Check triples. In this step, the parties perform a process of sacri�ce and combine

called �CheckTriples [Fre+15, Figure 23] to check the correctness and privacy of the

generated triples. This approach is a generalization of the bucket-based cut-and-

choose technique presented by Larria et al. in [LOS14].

2.5 daBits and edaBits 47

the following three equations:

w
(i;j)
h

def
= H

�
~t
(i;j)
h

�
v
(j;i)
0;h

def
= H

�
~q
(j;i)
h

�
;

v
(j;i)
1;h

def
= H

�
~q
(j;i)
h + ~�(j)

�
:

Also, from the protocol, we have that ~q
(j;i)
h

def
= ~t

(i;j)
h + x

(i)
h � ~�

(j). So, let us take cases over

x
(i)
h 2 F2:

• If x
(i)
h = 0, then ~q

(j;i)
h = ~t

(i;j)
h . Therefore, w

(i;j)
h

def
= H

�
~t
(i;j)
h

�
= H

�
~q
(j;i)
h

�
= v

(j;i)
0;h . And

�nally, it holds that w
(i;j)
h + x

(i)
h � v

(j;i)
0;h + x

(i)
h � v

(j;i)
1;h = v

(j;i)
0;h .

• If x
(i)
h = 1, then ~q

(j;i)
h = ~t

(i;j)
h + ~�(j). Given the operation are in F2, adding up ~�(j) in

both sides, we obtain that ~q
(j;i)
h + ~�(j) = ~t

(i;j)
h . This means that w

(i;j)
h

def
= H

�
~t
(i;j)
h

�
=

H
�
~q
(j;i)
h + ~�(j)

�
= v

(j;i)
1;h . Finally, w

(i;j)
h +x

(i)
h � v

(j;i)
0;h +x

(i)
h � v

(j;i)
1;h = v

(j;i)
1;h + v

(j;i)
0;h + v

(j;i)
1;h =

v
(j;i)
0;h .

Finally, we can see that the way Tinier de�nes the shares of a value is very similar to the

SPDZ2k protocol. Therefore, we omit the description of the online phase for Tinier given

that the authentication has the same spirit, both protocols rely on multiplication triples

and, in both cases, the secret-sharing scheme is linear.

2.5 daBits and edaBits

In the previous sections, we discussed the main MPC protocols to compute both parts of

the edit distance algorithm. On the one hand, we will use Tinier to compute functions

in the binary domain, and on the other hand we will use SPDZ2k to compute functions

in the arithmetic domain (speci�cally, in the ring Z2k). However, we have not discussed

two problems to fully compute the edit distance. First, we perform some computations

in the binary domain using shares in Z2, and then, somehow, we need the result of this

binary computation to perform an arithmetic computation in Z2k . To do this we can not

simply take the binary shares and use them in the SPDZ2k protocol because the algebraic

structure is not the same. Instead, we need to �nd an e�cient and secure mechanism that

transforms these binary shares into arithmetic shares in such a way that the underlying

value related to both secret-sharing methods is the same bit. The second problem is that

the arithmetic section of the edit distance protocol relies heavily on arithmetic comparisons

to compute the minimum of a list of numbers. This in particular is not an easy task in

MPC protocols because it has a high communication complexity. Moreover, when we

48 2 Preliminaries

use arithmetic domains, this task is even more di�cult because it relies on the binary

decomposition of the underlying secret value, which is expensive to obtain in such an

arithmetic context. The problem at hand is to �gure out what is the best way to perform

these comparisons e�ciently.

In this section, we will explain how to solve both problems stated above. In particular, we

will show how we can use daBits to solve the �rst problem known as domain conversion,

and edaBits to solve the second problem related to arithmetic comparisons.

Notation. In this section, we need to make a di�erence between values that are secret-

shared in Z2 from values secret-shared in ZM , for some M 2 Z. For the �rst one, we will
use the notation JxK2, and for the later, we will use the notation JxKM .

2.5.1 daBits

According to the treatment presented in [Esc+20], a double-shared authenticated bit, also

known as daBit, is a random bit b 2 f0; 1g that is authenticated and secret-shared in both

Z2 and ZM , for some �xed M 2 Z. Using the notation established at the beginning of the

section, a daBit is a tuple (JbK2; JbKM), where b is a randomly chosen bit. Originally, the

idea of daBits was formulated in [RW19] to make conversions between Zp and F2k . Then,

the Zaphod protocol [Aly+19] shows an improvement over the daBit protocol of Rotaru

and Wood, and they show how to use this approach to obtain shares of an element in

Zp whose bit decomposition is in Z2. Also, in [Esc+20], Escudero et al. propose a new

approach to the daBit protocol for the particular case of conversions between ZM and Z2

following the ideas of Zaphod, which will be the approach that we will present in this

section. As we saw before, the change from the �eld of the form Zp to rings of the form

ZM requires modi�cations to the protocols to meet the security requirements.

As we mentioned before, the protocol of daBits proposed in [Esc+20] is based on the

protocol presented in Zaphod. Escudero et al. present two versions for the protocol. Both

versions rely on an ideal functionality called the arithmetic black box, which is denoted

by FABB. This functionality gives us the mechanisms to perform arithmetic computations

between secret-shared values. These operations are the distribution of shares both in

binary and arithmetic domains, linear combinations of shares, multiplications, random

number generation, and the opening of secret-shared values.

In the �rst version of the daBits protocol, assuming that t is the number of corrupted

parties, a group of t + 1 parties (without loss of generality, let us say that they are the

�rst t+ 1 of them) distributes a secret sharing of a random bit in both domains, namely

JbiK2 and JbiKM , for i = 1; : : : ; t + 1. Then the parties perform an XOR of all the shares.

2.5 daBits and edaBits 49

That is,

JbKM =
t+1M
i=1

JbiKM ;

and

JbK2 =
t+1M
i=1

JbiK2:

The XOR in Z2 can be done locally because a� b = a+ b mod 2. On the other hand, the

arithmetic share can be computed knowing that a � b = a + b � 2ab when a; b 2 f0; 1g.

The later identity shows that one daBit is generated using t multiplications.

The previous version is for the general case where the arithmetic is done in ZM . However,

the second version that we will discuss next is for the particular case where the arithmetic

domain is Z2k . In this case, if the parties have a bit that is secret-shared in the arithmetic

domain, the parties can take the least signi�cant bit of the corresponding shares, and

then distribute a binary secret-share of this least signi�cant bit. With such binary shares,

they can XOR them locally to obtain a share of the same bit that was secret-shared in

the arithmetic domain. The advantage here is that this process does not need multiplica-

tions, which reduces the communication complexity given that we do not need to generate

multiplication triples. To express this property more formally, let b a secret-shared value

between the parties and suppose that
n
b(i)
on
i=1

are the shares of b modulo 2k, which means

that b =
Pn

i=1 b
(i) mod 2k. Following the notation of the SPDZ2k protocol, we assume

that each share is in Z2k+s for some security parameter s. The key to the improvement

presented in the second version is the following equation:

nM
i=1

�
b(i) mod 2

�
=

nX
i=1

�
b(i) mod 2

�
mod 2

=

nX
i=1

b(i) mod 2k
!

mod 2

= b mod 2:

Let us expand on the details behind the second equality which is the less evident one.

Speci�cally, we will show that

nX
i=1

�
b(i) mod 2

�
mod 2 =

nX
i=1

b(i) mod 2k
!

mod 2:

First, from a well-known result of congruence theory, we have that

nX
i=1

�
b(i) mod 2

�
mod 2 =

nX
i=1

b(i) mod 2:

50 2 Preliminaries

So, we need to show that

nX
i=1

b(i) mod 2 =

nX
i=1

b(i) mod 2k
!

mod 2:

Let us de�ne

c
def
=

nX
i=1

b(i)
!

mod 2k:

This means that

2k
�����

c�

nX
i=1

b(i)
!
;

then

2

�����

c�

nX
i=1

b(i)
!
:

This allows us to conclude that

c �
nX
i=1

b(i) mod 2:

This means that both c and
Pn

i=1 b
(i) have the same parity. So,

c mod 2 =
nX
i=1

b(i) mod 2

=

"
nX
i=1

b(i) mod 2

#
mod 2:

Finally, replacing the value of c, we obtain the desired equality:"
nX
i=1

b(i) mod 2k
#

mod 2 =

"
nX
i=1

b(i) mod 2

#
mod 2:

Now that the key equation was presented, we show the protocol for the daBit generation in

Protocol 2.4. The protocol generates a list of m daBits whose arithmetic domain is in Z2k .

Notice that the protocol relies on the FABB functionality that represents the underlying

protocols to manage both the arithmetic and binary computations. So, the protocol is

general enough to work with Tinier and SPDZ2k as the ones in charge of the arithmetic

and binary computations. There are two important things to point out here. First, in

the Faulty daBit generation, the protocol creates m+ s supposed daBits. The �rst m ones

will be the output of the protocol, and the last s ones are used to check the correctness of

the generated daBits. The construction of these daBits may be faulty because, in Step 2,

2.5 daBits and edaBits 51

the adversary may input values that are not consistent. For this reason, there is another

section called Check, where the consistency of the bit pairs is checked. The check is similar

to the Zaphod approach in the sense that we construct a random linear combination of

the bits both in arithmetic and binary domains. Then, we open both linear combinations

and verify if both values are the same, otherwise, the parties abort. It is important to

see that due to the use of the protocol SPDZ2k , it is guaranteed that the bits that are

secret-shared in the arithmetic domain are the shares of bit values, so there is no need

to verify this fact. As an additional note, this avoided veri�cation is needed when the

arithmetic computations are performed in ZM and M is not a power of 2. Notice that

Equation 2.5.1 ensures the correctness in both the Faulty daBit generation and the Check

steps.

Domain conversion

As discussed at the beginning of this section, we need to transform binary secret-shared

values in Z2 into shares in Z2k , and to do this, we will use daBits. Protocol 2.5 shows how

to use a daBit generated in a preprocessing phase to perform a domain conversion. This

protocol is based on the protocol presented in [Dam+19, Figure 3] and adapted for the

use of daBits.

2.5.2 edaBits

An extended daBit, also called edaBit, is an MPC primitive proposed in [Esc+20], which

is a set of random bits (rm�1; : : : ; r0) shared in a binary domain, along with the value

r =
Pm�1

i=0 ri � 2
i shared in an arithmetic domain. This primitive is considered as an

extension of the daBits proposed in [RW19] in the sense that an edaBit can be constructed

by generating m daBits and computing a linear combination of them. However, Escudero

et al. state that using their approach, an edaBit can be generated much more e�ciently

than generating m daBits. As we will see later, this primitive allows us to compute

comparisons in the arithmetic domain more e�ciently given that the comparisons have

a high communication complexity in such domains alone. In our case, the edit distance

protocol relies heavily on these comparisons in the arithmetic section as a part of the

computation of the minimum of a list of numbers, so we think that the use of edaBits will

improve the performance of such computations. In this work, we will show a simpli�cation

of the protocol for edaBit generation to the particular case of Z2k which is the main focus

of this work.

Let us explain the case of passive security �rst. To generate edaBits, each party Pi gen-

52 2 Preliminaries

Protocol 2.4: �daBit

The protocol generates a set of m daBits (JbiK2; JbiK2k)
m

i=1, using a security parameter

s. The protocol has access to the functionality FABB.

Faulty daBit generation. For i = 1; � � � ;m+ s, do:

1. The parties generate a random bit JbiK2k as in the SPDZ2k protocol [Cra+18].

2. Let b
(j)
i the share of bi belonging to the party Pj. Then each party Pj inputs

b
(j)
i mod 2 to the functionality FABB as a binary share, in such a way that

every party has access to the share
r
b
(j)
i mod 2

z

2
.

3. The parties locally compute JbiK2 =
Ln

j=1

r
b
(j)
i mod 2

z

2
.

Check.

1. The parties execute the following steps s times:

a) Generate m fresh public random bits ri.

b) Compute the linear combination Jr̂K2
def
=
Lm+s

k=1 ri � JbiK2 and open it.

c) Compute JrK2k
def
=
Pm+s

i=1 ri � JbiK2k

d) Call r0
def
= Open

�q
r � 2k�1

y
2k

�
and compute

r0

2k�1
=
r � 2k�1 mod 2k

2k�1
= r mod 2

e) If r̂ and (r mod 2) do not match, the parties abort.

2. Discard (JbiK2k ; JbiK2)
m+s
i=m+1 and return (JbiK2k ; JbiK2)

m

i=1 as checked daBits.

Protocol 2.5: �B2A

The protocol takes as input a binary share JxK2, where x 2 f0; 1g, and outputs an

arithmetic share JxK2k .

1. The parties take a fresh daBit (JbK2; JbK2k).

2. The parties call c
def
= Open (JxK2 + JbK2)

3. Output JxK2k
def
= c+ JbK2k � 2 � c � JrK2k

2.5 daBits and edaBits 53

erates bits ri;0; : : : ; ri;m�1 and computes ri =
Pm�1

j=0 ri;j � 2
j. Then, the party Pi distributes

binary shares of the bits so that each party obtains Jri;0K2; : : : ; Jri;m�1K2. Also, the party
Pi distributes arithmetic shares of the value ri, so that each party obtains JriK2k . Given

that the party Pi knows the edaBit generated by itself, we need to combine all the edaBits

generated by all the parties in such a way that none of the parties know the underlying

secret bits. The �rst kind of edaBits generated by each party are called private edaBits.

When the private edaBits are combined, the resulting edaBit is called global edaBit. The

combination of the private edaBits to obtain the global edaBit is performed as follows:

1. Each party compute

Jr0K2k
def
=

nX
i=1

JriK2k :

2. The binary shares can be computed using a binary adder with n inputs, which means

that there is a procedure that takes
�
Jri;0K2; : : : ; Jri;m�1K2

�n
i=1

, and computes the bi-

nary addition to obtain the result in its bit representation
�
Jr0K2; : : : ;

q
rm+log2(n)�1

y
2

�
.

However, there are some subtle details to take into account in this process. Notice that

it is possible that the sum of the ri may overow mod 2k, but the binary adder will

compute the binary sum without performing the reduction mod 2k, so we need to make a

correction to meet both values. Another complication that may arise is that the obtained

edaBit should be an m-bit integer and the sum of the n private edaBits may have more

than m bits, so again, we need to correct the computation to obtain an edaBit that meets

the conditions. Fortunately, when we are dealing with arithmetic in Z2k (as in our case of

application) both concerns can be solved easily. For such a case, there is no need to make

a correction to the reduction modulo 2k, because if we take the bits rk�1; : : : ; r0, they are

already the bit representation of r0 mod 2k. However, it could happen that after cropping

the bits beyond the k-th position, there are more than m bits. The solution here is to

crop the excess bits again and then correct the arithmetic share of r0 by subtracting the

value induced by the excess bits to match with the value induced by the remaining m bits.

To make such subtraction, we need to use daBits and the protocol �B2A to transform the

excess bits to the binary domain to be able to compute the subtraction with r0. As an

additional note, for the case where the arithmetic is done in ZM and M is not a power

of two, it is needed to convert all the bits beyond the m-th one using daBits and then

perform the subtraction to accomplish that both the length of the edaBit is m and the

correction of the overow modulo M . This suggests that the generation of edaBits for the

case of Z2k is more e�cient because the bits beyond the k-th one are discarded, so we do

not need to generate daBits to convert them.

In Protocol 2.6, we show the protocol �edaBits to generate global edaBits with the simpli�-

54 2 Preliminaries

cations for the case of arithmetic modulo 2k. The protocol is taken from [Esc+20, Figure

3]. This protocol has access to an ideal functionality FedaBitsPriv to compute the private

edaBits for each party. Later, we will deal with a protocol to realize FedaBitsPriv. Also,

the protocol has access to the FABB functionality to perform arithmetic computation in

both Z2 and Z2k as well as domain conversion. Additionally, the protocol has a subroutine

called nBitADD which is a function on n inputs that executes the binary adder protocol.

Protocol 2.6: �edaBits

Let m � k the number of bits in the edaBits. The protocol has access to the ideal

functionality FedaBitsPriv to compute and distribute private edaBits, that is, edaBits

whose underlying secret values are known to one party. Also, the protocol has access

to the functionality FABB. At the end of the protocol, the parties obtain JrK2k and
(Jr0K2; Jr1K2; : : : ; Jrm�1K2), such that, ri 2 Z2 for all i 2 Jm�1, r =

Pm�1
i=0 ri � 2

i, and

the bits are uniform to the adversary.

1. The parties call the functionality FedaBitsPriv to get random shares JriK2k and�
Jri;0K2; Jri;1K2; : : : Jri;m�1K2

�
, for i 2 Jn. The party Pi additionally learns the

values of ri;0; : : : ; ri;m�1, as well as ri =
Pm�1

j=0 ri;j � 2
j.

2. The parties uses the functionality FABB to compute Jr0K2k
def
=
Pn

i=1 JriK2k .

3. The parties call nBitADD
��

Jri;0K2; : : : ; Jri;m�1K2
�n
i=1

�
to obtain m+log2(n) bits�

Jb0K2; : : : ;
q
bm+log2(n)�1

y
2

�
.

4. The parties use FABB to convert JbjK2 into JbjK2k , for m � j < k.

5. The parties use FABB to compute JrK2k
def
= Jr0K2k �

Pk�1
j=m JbjK2k � 2

j.

6. Output JrK2k and (Jr0K2; : : : ; JrmK2).

Now, the task we have left is to realize the functionality FedaBitPriv. In the presence of a

passive adversary, the functionality is straightforward to realize: the party Pi generates m

random bits, computes the arithmetic share induced by those bits, and inputs them into

the FABB functionality. However, in the case of an active adversary, the party creating

the private edaBits could be corrupted and it may input inconsistent values to the FABB

functionality. Namely, the party may generate random bits, but it may input an arith-

metic share whose bit representation does not match the generated bits. To prevent this

inconsistency, the parties engage in a cut-and-chosse procedure to check if the generated

private edaBit is correct. In the cut-and-choose procedure, a subset of edaBits is opened

and checked for consistency. The remaining edaBits are placed into buckets at random.

2.5 daBits and edaBits 55

Then, for each bucket, the �rst edaBit of the bucket is checked against the rest of the

edaBits in the same bucket by adding both edaBits in both the arithmetic and binary

domain, opening the sum in both worlds and checking if both the binary and the arith-

metic values coincide. If the checks pass, then the procedure returns the �rst edaBit of

each bucket as a checked edaBit. Escudero et al. show that if all the checks pass, the

returned edaBits will be correct with a high probability. For a formal proof of security of

the cut-and-choose procedure, we refer to the reader to [Esc+20, Section 4].

There are some considerations to revisit here. First, the cut-and-choose technique is widely

used as a checking method in the generation of multiplication triples. However, the use of

this technique for the edaBit generation is expensive given that we need to add the edaBits

in both worlds, but for the binary world, we need binary multiplication triples to evaluate

a circuit for binary addition. Unfortunately, the process of generating such multiplication

triples needs again to execute a cut-and-chose procedure to check the consistency of the

triples. To solve this issue, Escudero et al. relax the consistency in the binary triples in two

ways: (1) given that the multiplication triples are used in the addition process of edaBits

whose underlying secret values are known by Pi, they allow Pi to input the triples itself

into the functionality so that Pi also knows the underlying values of the multiplication

triples; and (2), even if Pi is corrupt, they allow Pi to input incorrect multiplication triples,

so the veri�cation step can be omitted; however, the triples generated by Pi need to be

authenticated (for example, using information theoretic MACs as we have seen in previous

sections) to prevent that the introduced errors may be changed afterward. These two

relaxations allow a faster triple generation compared to a traditional approach.

In Protocol 2.7, we show the speci�cation of �edaBitPriv that realizes the functionality

FedaBitsPriv for the speci�c case of Z2k . This speci�cation was taken from [Esc+20, Fig-

ure 4]. It is important to mention that the protocol uses the ideal functionality FABB

with two additional commands. The �rst command is Input triples where a party Pi can

input a triple of bits (a; b; c) 2 f0; 1g3 into the functionality. In the real world, this means

that the party Pi distributes binary shares of JaK2, JbK2, and JcK2 among the other parties.
The second command is Faulty Multiplication, which takes a binary triple (a; b; c) previ-

ously inputted to the functionality and two bits x and y inputted to the functionality and

outputs z = x � y � (c � x � y). In the real world, a protocol that realizes this command

will take a triple (JaK2; JbK2; JcK2) and two binary shares JxK2 and JyK2, and will output

Jx � y � (c� x � y)K2. These commands can be realized using share distribution protocols

and Beaver's multiplication techniques which are very well studied.

56 2 Preliminaries

Protocol 2.7: �edaBitsPriv

The protocol generatesN shared edaBits
n�

JrjK2k ;
�
Jrj;0K2; Jrj;1K2; : : : ; Jrj;m�1K2

��oN
j=1

of length m, such that the underlying secret values are known to the party Pi. The

protocol has access to the FABB functionality. The protocol takes inputs C and C 0

that are the number of edaBits and binary triples respectively that will be opened

for checking during the cut-and-choose procedure. Also, the protocol takes input B

which is the size of each bucket.

1. Pi samples rj;0; rj;1; : : : ; rj;m�1 2 Z2, for j = 1; : : : ; NB + C, and inputs them

into the FABB functionality in the binary domain.

2. Pi computes rj
def
=
Pm�1

i=0 rj;i � 2
i 2 Z2k and input it into the functionality FABB

in the arithmetic domain.

3. Pi samples (N(B � 1) + C 0)m random bit triples and input these to the FABB

functionality using the command Input triples.

4. The parties run the CutNChoose procedure to check the consistency of the

edaBits. If the check passes, the parties obtain N edaBits, otherwise, the

parties abort.

2.5 daBits and edaBits 57

Arithmetic comparison

We have seen that the algorithm to compute the edit distance requires the computation

of the minimum of a list of integers. As in the basic implementation of the edit distance

algorithm, the proposed protocol that we will show in the next chapters relies on the

computation of such a function. But going even deeper, the core of the computation of this

minimum function is the comparison between two integers. In the case of MPC, we need a

protocol to compute if an integer is less than another one. However, we need to take care of

some subtle considerations. In our problem, as in a wide variety of real-world problems, we

need to compare two integers, but as we have seen, the arithmetic computations in MPC

are performed over rings of the form Z2k . Therefore, we need to represent the datatypes

of the problem into Z2k . Speci�cally, consider � 2
h
�2l�1; 2l�1

�
� Z, where l � k. We can

represent � in Z2k by doing a
def
= � mod 2k. We will write that a

def
= Rep(�) to say that

a 2 Z2k is the representation of the signed integer �.

With the signed integer representation, let us state the comparison problem precisely: let

�; � 2
h
�2k�2; 2k�2

�
, a

def
= Rep(�) and b

def
= Rep(�); given JaK2k and JbK2k , we need to

compute

s
�

?
< �

{

2k
, where

�
�

?
< �

�
= 1 if � < �, and

�
�

?
< �

�
= 0 otherwise. In this

case, �� � 2
h
�2k�1; 2k�1

�
, so a� b = Rep(�� �). So, to check if � < �, we can check if

��� < 0, which reduces to calculate the most signi�cant bit (MSB) of ���. If the MSB

is 1, this means that � < �, otherwise, it means that � � �. Some approaches to extract

the most signi�cant bit can be found in [Dam+19]. However, Escudero et al. take another

path to reach this goal using edaBits. Following [Esc+20], to extract the most signi�cant

bit, we use the fact that

MSB(�) = �
�

�

2k�1

�
mod 2k:

So, to solve this problem, we need a method for truncation where the underlying MPC

computation domain is Z2k . Speci�cally, let us state the problem of truncation in a more

general and precise way: let � 2
h
�2l�1; 2l�1

�
be such that a

def
= Rep(�). A truncation

protocol will compute a share JyK2k taking JaK2k as an input such that y = Rep
�j

�
2m

k�
,

for some m < l. But in the case of Z2k , we need to again state the truncation in terms

of another procedure called logical right shift, that we will denote by LogShift. Let � be

de�ned as above, let a
def
= Rep(�). Given that � 2

h
�2l�1; 2l�1

�
, we can assume that its

representation a is an l-bit number, which means that a 2
h
0; 2l

�
. So, the representation

of a is as follows:

�
0; 0; : : : ; 0 ; al�1; : : : ; a0

�
:

58 2 Preliminaries

k � l bits

l bits

After calling LogShiftm(JaK2k), we obtain shares of

�
0; 0; 0; : : : ; 0 ; al�1; : : : ; am

�
:

k � l+m bits

l�m bits

Once we obtain a protocol for the logical shift, we can use it to compute the truncation

according to the following equation:

�
�

2m

�
� LogShiftm

�
a+ 2l�1

�
� 2l�m�1 mod 2k:

Therefore, in the end, we only need a protocol to compute the logical shift. In Protocol 2.8,

we can �nd a complete speci�cation of the protocol �LogShift to perform this task which is

taken from [Esc+20, Figure 9]. There, LT is a binary circuit that takes two parameters in

binary representation and outputs the bit 1 if the �rst parameter is less than the second

one, or output 0 otherwise. We will show intuitively how the protocol accomplishes the

task at hand. The �rst di�culty in the design of protocols over rings of the form Z2k is

that we can not always divide by a power of two mod 2k as we do in protocols based on

�elds. The strategy to avoid the use of inverses of powers of two is to perform operations

that shift the bits to the right or to the left of the elements involved in the computation.

This technique is very common in works that use Z2k as an underlying algebraic domain.

We will show how these shifts work for Step 1 and the analysis for the rest of the protocol

is similar.

To give an intuitive explanation of �LogShift, let us start by �xing the binary representation

of the quantities involved there. The goal in Step 1 is to compute a mod 2m. Remember

that a, the input of the protocol, is an l-bit number, so let the binary representation of a

be

a =
�
0; : : : ; 0; al�1; al�2; : : : am�1; : : : ; a0

�
:

a mod 2m

Here, notice that the last m bits of a are the binary representation of a mod 2m. Now,

let the representation of the edaBit r be

r = (0; : : : ; 0; : : : ; rm�1; : : : ; r0) :

2.5 daBits and edaBits 59

When we compute a+ r, we obtain a representation with the following structure:

a+ r =
�
?; : : : ; ?; ?; z ; cm�1; : : : ; c0

�
: (2-2)

(a+ r) mod 2m

k �m bits

In this sum, the bit positions denoted by stars (?) are values that we are not interested in.

Note that when we add the least m signi�cant bits of both a and r, we obtain m-bits plus

a possible carry bit that we denote as z. Now, in Step 1a, the parties compute 2k�m(a+r).

This operation makes a bit-wise left shift in the representation of a + r by k �m bits,

obtaining the representation

c = 2k�m(a+ r) mod 2k = (cm�1; : : : ; c0; 0; : : : ; 0) :

This is precisely the representation of c. There, we preserve the annotation of the set of

bits that are the binary expansion of the value of (a+r) mod 2m. Then, when we perform

the operation c=2k�m as in Step 1d, we are shifting the bits of c to the right by k�m bits

obtain the following representation:

c

2k�m
=
�
0; : : : ; 0; cm�1; : : : ; c0

�
:

(a+ r) mod 2m

The key is to notice that

c

2k�m
= (a+ r) mod 2m

as we can see in the annotated binary representations. But

c

2k�m
= (a+ r) mod 2m

= [(a mod 2m) + (r mod 2m)] mod 2m

= [(a mod 2m) + r] mod 2m:

The modular reduction in r can be ignored because r is a m-bit number. Here is where

the bit z in Equation (2-2) takes place. Notice that adding a mod 2m and r can cause an

overow bit denoted by z, but reducing this sum modulo 2k can delete this value. So, to

obtain an expression of a mod 2m, we need to correct this overow arithmetically. To do

60 2 Preliminaries

this, we compute if there is an overow by computing the LT procedure to obtain the bit

v as in Step 1b. By doing this, we obtain that

c

2k�m
= (a mod 2m) + r � 2m � v:

Therefore, we obtain the desired expression shown in Step 1d:

(a mod 2m) = 2m � v � r +
c

2k�m

As we mentioned before, the correctness of Step 2 can be explained in a similar way as

before.

2.5 daBits and edaBits 61

Protocol 2.8: �LogShift

The protocol takes as inputs a share JaK2k , where a 2 [0; 2l), and a integer m < l

wich is the number of bits to shift. The protocol has access to the FABB functionality.

Also, the protocol has access to a pair of edaBits:

• An edaBit of length m where the arithmetic part is JrK2k and his binary rep-

resentation is (Jrm�1K2; : : : ; Jr0K2).

• An edaBit of length l �m where the arithmetic part is Jr0K2k and his binary

representation is
�q
r0l�m�1

y
2
; : : : ; Jr00K2

�
.

The protocol return JyK2k , where y = LogShiftm(a). In the description of the protocol,

if we have a value a r-bit value x 2 Z2k , we denote its bit decomposition by (xi)
r�1
i=0 .

1. The parties compute shares of a mod 2m as follows:

a) The parties call c
def
= Open

�
2k�m � (JaK2k + JrK2k)

�
.

b) The parties compute JvK2
def
= LT

�
(ci)

k

i=k�m+1 ; (ri)
m�1
i=0

�
c) Using the functionality FABB, the parties convert JvK2 into an arithmetic

share JvK2k .

d) The parties compute

Ja mod 2mK2k = 2m � JvK2k � JrK2k +
c

2k�m
:

2. The parties compute the truncation:

a) The parties compute JbK2k
def
= JaK2k � Ja mod 2K2k .

b) The parties call d
def
= Open

�
2k�l � (JbK2k + 2m � Jr0K2k)

�
.

c) The parties compute JuK2
def
= LT

�
(di)

k�1
i=k�l+m ; (r0i)

l�m�1
i=0

�
.

d) Using the functionality FABB the parties convert JuK2 into JuK2k .

e) The parties compute

JyK2k = 2l�m � JuK2k � Jr0K2k +
d

2k�l+m
:

3 A solution to the edit distance

problem using secret-sharing

In this chapter, we will show an e�cient strategy to compute the edit distance between

two chains using multi-party computation protocols. In particular, we will use protocols

based on secret-sharing schemes. Although the strategy presented here works for any

secret-sharing scheme, we will focus on the design of a strategy that �ts better with

schemes whose computation domain is Z2k . To plot the strategy, we will work using the

Algorithm 1 as a reference, which is more convenient for our solution as we will see later.

To accomplish our goal, we will call the section between Line 1 and Line 10 in Algorithm 1

as the preamble. On the other hand, we will call the section between Line 11 and Line 22

as the arithmetic section.

Let us show an overview of the strategy. First, we will encode the input of the chains

with a binary encoding to compute the preamble e�ciently using protocols based on

binary computation domains. These protocols have a good performance for computing

comparisons which are the main operation performed in the preamble. Once the preamble

is computed, we use daBits/edaBits to transform the binary shares from the preamble into

arithmetic shares for its use in the arithmetic section. After the share transformation, we

optimize the arithmetic section by reducing the number of rounds needed to compute the

position (n+1;m+1) of the matrix D. To do this, we will take the advantage of a protocol

to compute the minimum of a list of numbers whose number of rounds is logarithmic in

the length of the list.

3.1 Preamble computation

As we saw in Chapter 2, the protocols that work on binary domains are very e�cient to

compute comparisons, because the XOR can be computed with low communication costs.

According to Algorithm 1, the main task in the preamble is to compute the matrix t, but

the computation of this matrix relies on the equality comparison of two nucleotides. So,

the �rst part of the strategy is to propose a method to compare nucleotides in an e�cient

3.1 Preamble computation 63

way using a binary domain.

To compare two nucleotides, we will encode the nucleotides of a DNA chain using a binary

encoding, namely, the nucleotide A will be encoded as 00, C as 01, G as 10, and T will be

encoded as 11. The particular encoding is not relevant here if it is used consistently in the

encoding of both chains. So, a nucleotide N will be represented as two binary numbers,

that is, N
def
= hb0; b1i, where b0; b1 2 Z2. In terms of secret-sharing, we denote the sharing

of the nucleotide N = hb0; b1i as JNK def
= hJb0K2; Jb1K2i. Extending the XOR operation for

binary numbers, we de�ne the XOR operation between two nucleotides N = hb0; b1i and

N 0 = hb00; b
0
1i to be N � N 0 def

= hb0 � b00; b1 � b01i. This XOR operation can be de�ned for

shares in a natural way, that is, JNK� JN 0K def
= hJb0K2 � Jb00K2; Jb1K2 � Jb01K2i.

With all of the operations de�ned, we can compare two nucleotides using the XOR oper-

ation, because

N �N 0 = 0 if and only if N = N 0: (3-1)

Notice that the XOR of two nucleotides is another binary tuple. So, the comparison of two

nucleotides can be reduced to the problem of determining when a binary tuple is equal to

zero. Let N = hb0; b1i be a nucleotide. We de�ne

S(N)
def
= b0 _ b1:

It is important to note that S(N) = b0 + b1 + b0b1, which involves just one product. With

this de�nition, it holds that

S(N) = 0 if and only if N = 0: (3-2)

By combining both Equation (3-1) and Equation (3-2), we can conclude that

N = N 0 if and only if S(N �N 0) = 0:

Given that the computation domain is Z2, if a; b 2 Z2, then a� b = a+ b (mod 2). So, if

N = hb0; b1i and N 0 = hb00; b
0
1i, then

r
N

?
= N 0

z

2
= 1� [(Jb0K2 + Jb00K2) _ (Jb1K2 + Jb01K2)] : (3-3)

Here, the notation N
?
= N 0 is a bit, which means that (N

?
= N 0) = 1 if N = N 0, and

(N
?
= N 0) = 0 if N 6= N 0. Therefore, we can obtain a boolean share of the assertion

N
?
= N 0 using only one product as follows:

r
N

?
= N 0

z

2
= 1� [(Jb0K2 + Jb00K2) + (Jb1K2 + Jb01K2) + (Jb0K2 + Jb00K2) (Jb1K2 + Jb01K2)] :

64 3 A solution to the edit distance problem using secret-sharing

Using the proposed approach, we can compute the matrix t in the preamble e�ciently. A

positive consequence of this method is that each position of the matrix t will contain a

binary share with the answer to the assertion presented in Equation (3-3). In that way,

each position of the matrix can be transformed from a binary share to an arithmetic share

to be used in the arithmetic section of the Algorithm 1.

3.1.1 Complexity analysis

Let us analyze the online complexity of the computation of the matrix t in the preamble.

Suppose that we have two DNA chains P and Q so that jP j = n and jQj = m. The

preamble requires us to compute n � m positions of the matrix t, and to compute each

position we need to compute one comparison. So, to compute the matrix, we need to

perform n �m comparisons in total.

Suppose that we are using a security model with a passive adversary with one corruption,

and we have all the multiplication triples needed. To compute a comparison, we need to

perform a multiplication, which needs two invocations to the Open protocol. Therefore,

we need to perform 2nm invocations of the Open protocol in total. Each invocation of

Open needs to send two bits, one for each party. Then, we are sending 4nm bits in total

to compute the matrix t.

It is relevant to say that the previous estimation does not hold for an active adversary.

In that case, the number of bits transmitted is higher due to the additional mechanisms

needed to ensure share authentication. Also, we are not considering the particularities of

the transmission through the network: on the one hand, the TCP/IP metadata can add

more bits to transmit the information; on the other hand, some real-world implementations

use packaging strategies to send a group of bits in one package instead of sending one by

one. These aspects can change the number of bits sent to the network to compute the

preamble but they are challenging to compute and also they are protocol dependent.

It is important to notice that the computation of every position of the matrix t does

not have any dependency on other positions, which means that we can compute all the

positions of the matrix in parallel. This implies that the computation of the matrix only

costs one round.

3.2 Arithmetic section 65

3.2 Arithmetic section

Once the computation of the matrix t is completed in the preamble, we transform all

the positions of the matrix t into arithmetic shares using daBits as shown in Section 2.5.

After that process, we obtain a new version of the matrix t whose shares can be used to

compute the arithmetic section. To compute such section, we start from the arithmetic

shares of t, that is, each party has a share Jt(i; j)K2k for each index (i; j). Also, following

the Algorithm 1, D(i; 0) = i, for all i 2 Jn, and D(0; j) = j, for all Jm. These are the

starting points of the secure protocol. Our goal is to compute a share of the bottom-right

corner of the matrix D, namely, JD(n;m)K2k .

If we take a look into the Algorithm 1 in the arithmetic section, we notice that at each

iteration of the loop, we need to compute the minimum between three positions of the

matrix D that were already computed in previous iterations. There are well known pro-

tocols to compute comparisons between two signed integers based on the computation

of the most signi�cant bit of the subtraction of both numbers [Dam+19]. This gives us

a direct solution for the arithmetic section and the private computation of the edit dis-

tance between the two chains. The inconvenience of taking such approach is the sequential

dependency between the positions of the matrix. This dependency prevents us from paral-

lelizing the process, which increases the number of rounds needed to compute the position

(n+1;m+1) of the matrix D. Our approach to overcome this limitation is to not compute

all of the position of the matrix, instead, we will compute some selected positions. Each of

such position will be computed as the minimum of some quantities that depend on more

than three positions that were already computed, which requires a logarithmic number of

rounds.

The approach used here is based on the ideas presented in [CKL15]. In such reference,

they use the strategy mentioned above to compute the edit distance using homomorphic

encryption schemes. This thesis will generalize this idea and apply it on secret-sharing

protocols. Let P and Q be two DNA chains with lengths n and m respectively. In that

case, the matrix D will have n+ 1 rows and m+ 1 columns. According to Algorithm 1,

D(i; j) = min

8>><
>>:
D(i� 1; j) + 1

D(i; j � 1) + 1

D(i� 1; j � 1) + t(i; j)

: (3-4)

But, if we continue the process one more time with the positions inside the minimum, we

obtain that

D(i� 1; j) = min

8>><
>>:
D(i� 2; j) + 1

D(i� 1; j � 1) + 1

D(i� 2; j � 1) + t(i� 1; j)

;

66 3 A solution to the edit distance problem using secret-sharing

D(i; j � 1) = min

8>><
>>:
D(i� 1; j � 1) + 1

D(i; j � 2) + 1

D(i� 1; j � 2) + t(i; j � 1)

;

and

D(i� 1; j � 1) = min

8>><
>>:
D(i� 2; j � 1) + 1

D(i� 1; j � 2) + 1

D(i� 2; j � 2) + t(i� 1; j � 1)

: (3-5)

When we take all of this equations and replace them in Equation (3-4), we have that

D(i; j) = min

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

D(i� 2; j) + 2

D(i� 2; j � 1) + t(i� 1; j) + 1

D(i� 2; j � 1) + 3

D(i� 1; j � 2) + 3

D(i� 2; j � 2) + t(i� 1; j � 1) + 2

D(i; j � 2) + 2

D(i� 1; j � 2) + t(i; j � 1) + 1

D(i� 2; j � 1) + t(i; j) + 1

D(i� 1; j � 2) + t(i; j) + 1

D(i� 2; j � 2) + t(i; j) + t(i� 1; j � 1)

= min

8>>>>>>>>>>>><
>>>>>>>>>>>>:

D(i� 2; j) + 2

D(i� 2; j � 1) + t(i� 1; j) + 1

D(i� 2; j � 1) + t(i; j) + 1

D(i� 2; j � 2) + t(i� 1; j � 1) + t(i; j)

D(i; j � 2) + 2

D(i� 1; j � 2) + t(i; j � 1) + 1

D(i� 1; j � 2) + t(i; j) + 1

:

(3-6)

There are two points worth to mention. First, notice that we compute the minimum

over 7 formulas knowing that each term in Equation (3-4) is expanded in at least other

3 formulas. This is because some formulas can be discarded given that all of them are

inside a minimum, so we can remove the formulas that are redundant in the sense that

their value are greater than some other formula in the group. We will deal with a method

to remove the redundant formulas in Chapter 4. The second point to mention is that in

Equation (3-6), the position D(i; j) does not depend on the position D(i�1; j�1), but the

expression to compute D(i; j � 1) and D(i� 1; j) do. To avoid computing D(i� 1; j � 1),

we can replace the expression for D(i�1; j�1) from Equation (3-5) into the equations for

D(i; j�1) and D(i�1; j), and take the last replacements to put them into Equation (3-4).

We can perform this process recursively to write D(i; j) in terms of formulas that include

the value of other positions of the matrix. Such positions lie on the border of a rectangle

3.2 Arithmetic section 67

inside the matrix whose bottom right corner is D(i; j). More speci�cally and following the

notation of [CKL15, Section 4.3], let � 2 N be with � > 0. We de�ne the (� + 1)-box for

D(i; j) as the set comprised of the union of the following sets1:

T
def
= fDi��;j�� ; Di��;j��+1; : : : ; Di��;jg ;

B
def
= fDi;j�� ; Di;j��+1; : : : ; Di;jg ;

L
def
= fDi��;j�� ; Di��+1;j�� ; : : : ; Di;j��g ;

R
def
= fDi��;j; Di��+1;j; : : : ; Di;jg :

With this de�nitions, it holds that not just D(i; j) but all the elements in B [R can be

written as the minimum of formulas that depend on positions in the set T [L. Figure 3-1

shows the positions that belong to the (� +1)-box. In the image, we highlight the sets T ,

R, B and L.

Figure 3-1: Positions that belong to the (� + 1)-box for the position D(i; j).

Continuing with the example for � = 2 and using the new notation for the borders of the

box, we can compute the positions D(i� 1; j) and D(i; j � 1) as we did for D(i; j) using

the following equations in terms of the positions in T [L:

D(i� 1; j) = min

8>>>><
>>>>:

D(i� 2; j) + 1

D(i� 2; j � 1) + t(i� 1; j)

D(i� 2; j � 2) + t(i� 1; j � 1) + 1

D(i� 1; j � 2) + 2

; (3-7)

1Note on notation: in some situations, we will avoid the parentheses notation and we replace it for subscript

notation for the matrices D and t. That is, D(i; j) will be written as Di;j and t(i; j) will be written as

ti;j .

68 3 A solution to the edit distance problem using secret-sharing

and

D(i; j � 1) = min

8>>>><
>>>>:

D(i; j � 2) + 1

D(i� 1; j � 2) + t(i; j � 1)

D(i� 2; j � 2) + t(i� 1; j � 1) + 1

D(i� 2; j � 1) + 2

: (3-8)

The ideas presented in [CKL15] use just one (� +1)-box, with � = n, to compute the edit

distance of two chains of the same length by calculating D(n; n). They show that such

position of the matrix D can be computed as the minimum of a list of 2n+1 � n numbers.

Our work goes beyond the results of [CKL15] in the sense that the positions in a (� + 1)-

box are a subset of the entire matrix D, so this matrix can be divided in (� + 1)-boxes.

Figure 3-2 shows an example of the complete matrix D divided into boxes. The light red

positions are the positions that are needed to compute the position D(n;m), and the dark

red positions are the most expensive position to compute inside each (�+1)-box. The �rst

advantage of the subdivision is that we are allowed to compute the edit distance between

two DNA chains that do not necessarily have the same length. The second advantage,

which we will discuss later, is that the size of the (� + 1)-box induces a trade-o� between

the number of rounds to compute the edit distance and the data sent during the protocol

execution.

Figure 3-2: A complete matrix D divided in (� + 1)-blocks.

To compute the positions required to calculate the edit distance using secret-sharing pro-

3.2 Arithmetic section 69

tocols, we use the protocol Minq proposed in [Dam+19; Tof07]. This protocol computes

the minimum of a list of q numbers in O(log2 q) � (cr + 2) rounds, where cr is the number

of rounds of a comparison, using q � 1 comparisons and 2q � 2 multiplications. As an

example, for � = 2, we can compute securely a share of the position D(i; j) by executing

the protocol Min7 as follows:

JD(i; j)K2k =Min7

8>>>>>>>>>>>><
>>>>>>>>>>>>:

JD(i� 2; j)K2k + 2

JD(i� 2; j � 1)K2k + Jt(i� 1; j)K2k + 1

JD(i� 2; j � 1)K2k + Jt(i; j)K2k + 1

JD(i� 2; j � 2)K2k + Jt(i� 1; j � 1)K2k + Jt(i; j)K2k
JD(i; j � 2)K2k + 2

JD(i� 1; j � 2)K2k + Jt(i; j � 1)K2k + 1

JD(i� 1; j � 2)K+ Jt(i; j)K2k + 1

:

The shares JD(i� 1; j)K2k and JD(i; j � 1)K2k can be written similarly following the Equa-

tions (3-7) and (3-8) shown before, and using the protocol Min4 in both cases.

Given the Minq functionality, we can design a protocol to compute the edit distance.

Our proposed method iterates over all the positions in the set B [R of the (� + 1)-

boxes, computing each position one by one. Such positions can be written in terms of the

positions in T [L of that box as discussed before. So, if we iterate the boxes in a left-to-

right and top-to-down way, we will have all the information needed to calculate securely

all the positions required. This is assuming that we have all the formulas pre-computed

for each position in B [R, which is completely feasible to do in an automated way as we

will see in Chapter 4. At the end of the protocol, each party will hold a share JD(n;m)K2k ,
which is the share of the edit distance. It can be revealed using the Open protocol for

each party to acquire the �nal result.

3.2.1 Complexity analysis

To measure the complexity of our solution, let us compute the complexity of the naive

solution with no grouping of formulas as a baseline. Then, we will compute the complexity

of our strategy.

For the naive approach, notice that we need to compute n�m positions of the matrix. Now,

to compute the minimum of three numbers, we can use the protocol presented in [Dam+19,

Figure 14, Instruction (2)] which requires a constant number of rounds, comparisons, and

multiplications. Then, we can compute the edit distance of two chains using O(nm)

comparisons, multiplications, and rounds.

Now, let us analyze our proposal. In Chapter 4, we will show a strategy such that the

70 3 A solution to the edit distance problem using secret-sharing

number of formulas in the minimum computation to calculate one position of a (�+1)-box

is bounded by O(� � 23�). Remember that the protocol to compute the Minq functionality

requires q � 1 comparisons and 2q � 2 multiplications using in O(log2 q) � (cr + 2) rounds

according to [Tof07, Section 13.1.1]. If we assume for simplicity that � divides both m and

n, we need to compute nm=� 2 boxes. Given that we need to compute 2� � 1 positions in

each (� + 1)-box, we are required to compute

nm

� 2
� (2� � 1)

positions from the matrix D in total. However, the interesting part of this solution is

that all the positions in B [R within one box can be computed in parallel because there

is no dependency between them. This makes the term 2� � 1 disappear from the round

count. Joining all of the results and computations, we conclude that for two DNA chains

of lengths n and m, we can compute the edit distance in

O
�
nm

� 2
� (3� + log2 �) � (cr + 2)

�

rounds,

O
�
nm

� 2
� (2� � 1) � (� � 23� � 1)

�

comparisons, and

O
�
nm

� 2
� (2� � 1) � (� � 23�+1 � 2)

�

multiplications.

Comparing both the baseline and the complexity of our strategy, we �nd that our method

has an improvement in the number of rounds. Moreover, the higher the � , the better

the improvement. However, the higher the � , the higher the number of multiplications

and comparisons, which increases directly the data sent in the protocol execution. This is

a trade-o� that should be considered according to the network capabilities in which the

protocol is executed. If the network has a high bandwidth, we can increase the � keeping

the data sent in reasonable quantities for the bandwidth, while the number of rounds is

reduced. This strategy could reduce the overall execution time of the protocol compared

to naive implementation. In Chapter 5, we will experimentally test this trade-o� and draw

some conclusions about it.

3.3 A protocol to compute the edit distance

A complete speci�cation of the protocol to compare two DNA chains can be found in

Algorithm 2. In such speci�cation, we are assuming that � divides both m and n for

3.3 A protocol to compute the edit distance 71

simplicity. If it does not happen, the strategy shown in Section 3.2 can be generalized

easily to compute the positions in the matrix D not for a (� + 1)-box but for a set of

positions that comprise a rectangle inside D following the exact same steps shown in that

section.

There are three sub-routines to highlight. The �rst routine is the protocol �CMP that

compares the binary secret-shares of two nucleotids in a DNA chain as it was completely

speci�ed in Section 3.1. The second routine is �B2A protocol, which takes a binary share

and convert it into a arithmetic share. This can be done using daBits as it was mentioned

in Section 2.5. And �nally, the GetFormulas which takes a position in B [R of a

(� +1)-box and returns the set of formulas needed as arguments to the minimum function

required compute such position in the matrix D. We need to clarify that this subroutine

is performed in the clear. Moreover, all of these formulas can be computed previous to the

beginning of the secure protocol execution because they do not need any secret information

about the DNA chains. In Chapter 4 we will show the design and analysis of an algorithm

for this sub-routine.

72 3 A solution to the edit distance problem using secret-sharing

Algorithm 2 Protocol for secure edit distance computation.

Input: two binary secret-shared chains JP K2 = [Jp1K2; � � � ; JpnK2] and JQK2 =

[Jq1K2; � � � ; JqmK2]. The size of the box � .
Output: an share of the edit distance distance between the chains P and Q

1: Let tB be a matrix with dimensions n�m.

2: for i = 1 to n do

3: for j = 1 to n do

4: JtB(i; j)K2 = �CMP(JpiK2; JqjK2)
5: end for

6: end for

7: Let t be a matrix with dimensions n�m.

8: for i = 1 to n do

9: for j = 1 to n do

10: Jt(i; j)K2k = �B2A (JtB(i; j)K2)
11: end for

12: end for

13: Let D be a secret-shared matrix with dimensions (n+ 1)� (m+ 1).

14: for i = 0 to n do

15: JD(i; 0)K2k = �Input(i)

16: end for

17: for j = 0 to m do

18: JD(0; j)K2k = �Input(j)

19: end for

20: for i = 1 to n=� do

21: for j = 1 to m=� do

22: Let Bi;j the (� + 1)-box indexed with (i; j).

23: Let B the bottom border of Bi;j.

24: Let R the right border of Bi;j.

25: for each position in B [R indexed with (l; r) do

26: Sl;r = GetFormulas(l; r)

27: JD(l; r)K2k =MinLength(Sl;r) fJF K2k j F 2 Sl;rg
28: end for

29: end for

30: end for

31: return JD(n;m)K2k

4 Automated generation of formulas to

compute the edit distance

In Chapter 3, we developed a method to compute the edit distance between two chains

using secret-sharing protocols. However, in that chapter, we assume that the formulas

inside the minimum function of each position of the (� +1)-box are given. In this chapter,

we will show an automatic method to generate the expressions to calculate all of the

positions in B [R of the (� + 1)-box in terms of the positions in the sets T [L. Our

goal is not to just extract the formulas that compute the edit distance correctly. That

can be done naively by applying Equation (3-4) recursively. Instead, we want to extract

the smallest set of formulas that allows the correct computation of the edit distance by

removing the redundant formulas inside the minimum.

Let us explain our goal using a concrete example. Suppose that we divide the matrix D

in (� +1)-boxes with � = 2. Let us choose an arbitrary box, and suppose that we want to

write the position D(i; j) in terms of positions in T [L. Figure 4-1 shows the box that

we are using. The goal is to write D(i; j), which is painted with red in the �gure, in terms

of the positions that are painted with blue. If we apply Equation (3-4) recursively as we

explained in Section 3.2 without removing any formula, we get that

D(i; j) = min

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

D(i� 2; j) + 2

D(i� 2; j � 1) + t(i� 1; j) + 1

D(i� 2; j � 1) + 3

D(i� 1; j � 2) + 3

D(i� 2; j � 2) + t(i� 1; j � 1) + 2

D(i; j � 2) + 2

D(i� 1; j � 2) + t(i; j � 1) + 1

D(i� 2; j � 1) + t(i; j) + 1

D(i� 1; j � 2) + t(i; j) + 1

D(i� 2; j � 2) + t(i; j) + t(i� 1; j � 1)

: (4-1)

Observe that each formula inside the minimum function is in terms of the positions in

T [L plus some values in the matrix t and a constant. Applying this identity to compute

the position D(i; j) ends up in a correct result. However, the problem with this set of

74 4 Automated generation of formulas to compute the edit distance

formulas is that it is far from optimal in the number of formulas. Take for example the

formulas

D(i� 2; j � 1) + t(i� 1; j) + 1 and D(i� 2; j � 1) + 3:

Both formulas are inside a minimum, but for any assignment ofD(i�2; j�1) and t(i�1; j),

it holds that

D(i� 2; j � 1) + t(i� 1; j) + 1 � D(i� 2; j � 1) + 3;

because t(i� 1; j) 2 f0; 1g. This allows us to remove the formula D(i� 2; j � 1) + 3 from

the set of formulas without a�ecting the overall result of the minimum function. The same

situation occurs with the pair of formulas

D(i� 2; j � 2) + t(i; j) + t(i� 1; j � 1) and D(i� 2; j � 2) + t(i� 1; j � 1) + 2;

where we can remove the formula D(i� 2; j � 2)+ t(i� 1; j � 1)+ 2 without changing the

overall result of the minimum.

Figure 4-1: (� + 1)-box with � = 2.

The same problem applies if we want to write D(i; j � 1) and D(i� 1; j) (and in general,

whatever position in B [R) in terms of the formulas that depends on the positions in

T [L.

The problem at hand can be expressed as follows: we need to �nd an algorithmic way

to �nd an expression to compute each position in B [R in terms of the positions in

T [L in such a way that the number of formulas inside the minimum function is minimal.

4.1 The dependency graph 75

The purpose behind the answer to this question is to remove the overhead on the secure

computation of the minimum. As we saw in Section 3.2, the computational complexity

of the Minq protocol increases with q. So, we need to keep the number of formulas at

a minimum to improve the performance of the calculation of the edit distance without

a�ecting the �nal result of the computation.

4.1 The dependency graph

To solve the problem at hand, we will express the problem as a problem over graphs. Let

us take a position D(i; j) in the matrix. By considering Equation (3-4), we can say that

D(i; j) depends on positions D(i; j � 1), D(i� 1; j) and D(i� 1; j � 1). This dependency

can be represented in a directed labeled graph with colored edges as in Figure 4-2. The

vertices of the graph are the positions D(i; j), D(i; j � 1), D(i� 1; j � 1) and D(i� 1; j).

The labels are disposed of as follows: if in the Equation (3-4) the position D(i; j) has a

formula D(i0; j 0) + a as an argument of the minimum function, then, the label of the edge

going from D(i0; j 0) to D(i; j) will be a. The color of the edge depends on its label: if the

label is 1, then the color will be black, otherwise, the color will be red.

Figure 4-2: Graph with the dependencies for D(i; j).

If we continue the process with the vertices D(i � 1; j � 1), D(i � 1; j) and D(i � 1; j)

following the same rules, we end up with a graph as in Figure 4-3. It is important to make

clear that the graph is not constructed with multi-edges. So, if an edge arises for a second

time in the middle of the construction of the graph, this second edge is ignored.

We can continue with this process until we reach all the vertices in the border of the (�+1)-

76 4 Automated generation of formulas to compute the edit distance

Figure 4-3: Continuation of the expansion in the dependency graph. This graph can also

be considered to be the dependency graph for � = 2.

box. This graph, denoted by G, will be called the dependency graph. This abstraction

was considered by Ukkonen in [Ukk85, Section 2]. However, we are adding the coloring of

the labels as a new element to reach our goal.

4.2 An algorithm for the optimal formula generation

Once the dependency graph G is constructed, we will design an algorithm to generate a

set of formulas inside the minimum for each element in B [R in terms of elements in

T [L.

Definition 4.2.1. Let V 2 B [R and W 2 T [L. Let P be a path from W to V . Let

us construct the formula fP
def
= W +a, where a is the sum of all the labels of the edges

in the path P . We call fP the formula induced by P .

Let us consider V 2 B [R. Let us take all the induced formulas fP , for all the paths

P from a point in T [L to the vertex V . Due to the construction of the dependency

graph G, if we put those formulas as arguments in the minimum function, this will be a

correct expression to compute the position V of the matrix in terms of elements in T [L.

Moreover, we can repeat this process for each V 2 B [R. Using a concrete notation, we

4.2 An algorithm for the optimal formula generation 77

can compute the position V 2 B [R in the matrix D as

V = minffP j P is a path fromW to V in G; 8W 2 T [Lg:

This method gives us a brute-force solution to the problem because we will end up with

a non-optimal expression similar to Equation (4-1). However, this approach reduces our

problem to the problem of excluding the paths between vertices that induce formulas that

do not have any relevance in the computation of the minimum.

Given all the discussion in Section 3.2 about the expansion of the positions in B [R as

the minimum of formulas that are in terms of the positions in T [L, we can state the

following proposition.

Proposition 4.2.2. Let D(i; j) 2 B [R be a position of the matrix D in a (� + 1)-

box. Following the Equation (3-4) recursively and without removing any redundant

formula in the process, D(i; j) can be written as

D(i; j) =
M

min
k=1
ffkg; (4-2)

for some M 2 N, where fk is a formula of the form fk = D(i0; j 0) +
P

(l;r) tl;r + bk, with

bk 2 Z, and D(i0; j 0) 2 T [L.

The next de�nition will be used to relate the concept of formulas induced by paths and

the set of formulas inside the minimum function to calculate a position in B[R belonging

to the matrix D.

Definition 4.2.3. Let D(i; j) 2 B [R and D(i0; j 0) 2 T [L be positions of the matrix

D in a (� +1)-box. According to Proposition 4.2.2, each formula fk in Equation (4-2)

such that

fk = D(i0; j 0) +
X
(l;r)

tl;r + bk

will be called an unrolled formula from D(i0; j 0) to D(i; j). Also, the set of all the

formulas with this structure will be called the set of unrolled formulas from D(i0; j 0)

to D(i; j).

Now, let us make use of the coloring of the labels in the following de�nition.

Definition 4.2.4. Let P and Q be two paths in the dependency graph G. We de�ne

rP;Q as the number of red edges in P that are not in Q. On the other hand, we de�ne

bP as the number of black edges in the path P .

78 4 Automated generation of formulas to compute the edit distance

Given this de�nitions, let us give the �rst step into the design of an algorithm to extract

an optimal set of paths.

Proposition 4.2.5. Let PU;W the set of paths that begin in the vertex U 2 T [L and

end in the vertex W 2 B [R in the dependency graph G. Let P 2 PU;W be any path.

We can remove the formula induced by P from the set of unrolled formulas from U

to W without changing the overall value of the minimum, if rQ;P + bQ � bP , for some

Q 2 PU;W n fPg.

Proof. Let P 2 PU;W be any path, and suppose that there exists some Q 2 PU;W n fPg

such that rQ;P + bQ � bP . Both paths induce a formula in the set of formulas, so let the

formula induced by P be

fP
def
= DU +

X
i

ti +
rP;QX
i=1

t
(P)
i + bP :

The terms denoted by ti are the red labels shared by both P and Q. Also, the terms

denoted by t
(P)
i are the red labels that are in P but not in Q. Similarly, let the formula

induced by Q be

fQ
def
= DU +

X
i

ti +
rQ;PX
i=1

t
(Q)
i + bQ:

As in the previous equation, the terms denoted by t
(Q)
i are the terms that are in Q but

not in P . In both formulas, DU is a number in the edit-distance optimization matrix

that depends on the endpoint U . Because U is �xed, it is not relevant to say what is the

position of DU in the matrix nor its speci�c value.

Using the inequality in the hypothesis, it holds that

fQ = DU +
X
i

ti +
rQ;PX
i=1

t
(Q)
i + bQ � DU +

X
i

ti + rQ;P + bQ

� DU +
X
i

ti +
rP;QX
i=1

t
(P)
i + rQ;P + bQ

� DU +
X
i

ti +
rP;QX
i=1

t
(P)
i + bP = fP :

This inequality shows that fQ � fP for any assignment of the t variables. Which means

that we can remove the formula induced by P without changing the overall value of the

minimum over the set of unrolled formulas.

4.2 An algorithm for the optimal formula generation 79

Using Proposition 4.2.5 we can formulate an algorithm which will gives us a subset of

the set of unrolled formulas for W 2 B [R without changing its overall value of the

minimum. This will allow us to get rid of formulas that are not important in the minimum

computation at the moment of executing the MPC protocol. The details of the algorithm

are presented in Algorithm 3.

Algorithm 3 Optimal set of paths

Input: a dependency graph G. Two endpoints U 2 T [L and W 2 B [R, having an

appropriate placement of both endpoints in the graph.

Output: a reduced set of paths S such that the minimum over all the formulas induced

by paths in S is the same as the minimum over all the formulas induced by paths in PU;W .

1: Generate the set PU;W .

2: S ;.

3: for P 2 PU;W do

4: r True

5: for Q 2 PU;W n fPg do

6: if rQ;P + bQ � bP then

7: r False

8: break

9: end if

10: end for

11: if r = True then

12: Append P to S

13: end if

14: end for

15: return S

If we want to generate the expression to compute the position D(i0; j 0) 2 B[R in a (�+1)-

box, we need to run the algorithm letting the vertex D(i0; j 0) �xed, then run it for all of

the vertices in T [L, and �nally, reunite all of the resulting formulas as arguments of the

minimum function.

Another point to take into account is that when we change the starting point of the paths,

the induced formulas are not comparable. For example, let D(i0; j 0); D(i00; j 00) 2 T [L and

D(i; j) 2 B [R. When we extract the formulas to compute D(i; j), we can obtain a pair

of formulas as arguments of the minimum function with the following structure:

D(i0; j 0) +
X

ti;j + k

and

D(i00; j 00) +
X

t0i;j + w:

80 4 Automated generation of formulas to compute the edit distance

But notice that we have no clue for determining if the �rst or the second formula is

redundant, because it could happen that D(i0; j 0) 6= D(i00; j 00). This di�erence causes that

for some pairs of DNA chains as inputs, the �rst formula could be less or equal to the

second one, but for other pairs of inputs, the inverse could happen too. Remember that

the formulas are symbolic, which means that the generation of the formulas and the fact

that some of them are redundant have nothing to do with the particular values in the

matrix D and matrix t for a speci�c pair of DNA chains. The formulas generated by the

algorithm hold no matter what inputs are given to the edit distance protocol. For that

reason, we design an algorithm to generate formulas that leaves the starting and end point

of the paths �xed.

Before proving the optimality of our algorithm, we need to de�ne formally what we consider

an optimal set of paths (which translates directly to an optimal set of formulas). Intuitively,

a set of paths S is optimal if for each path in that set, there exists an assignment of the

red variables that makes the corresponding induced formula to be equal to the minimum

when it is computed over all the formulas in S. Let us de�ne this notion precisely.

Definition 4.2.6. (Optimality). Let U;W 2 V (G). A set S � PU;W is optimal if, for

all P 2 S, there exists an assignment of the red variables (ti;j) such that, for all

Q 2 S n fPg, it holds that fP < fQ.

Note. Symbolically, the De�nition 4.2.6 can be described as follows

(8P 2 S)(9(ti) 2 f0; 1g
�)(8Q 2 S n fPg)(fP < fQ)

So, a set S � PU;W is non-optimal if and only if

(9P 2 S)(8(ti) 2 f0; 1g
�)(9Q 2 S n fPg)(fP � fQ)

Proposition 4.2.7. (Optimality of Algorithm 3). Let U;W 2 V (G) be such that U 2

T [L and W 2 B[R. The Algorithm 3 returns an optimal set of paths S � PU;W (in

the sense of De�nition 4.2.6) such that the minimum over all the formulas induced

by paths in S is the same as the minimum over all the formulas in the set of unrolled

formulas from U to W .

Proof. From Proposition 4.2.5, we know that the algorithm returns a set of paths whose

induced formulas does not change the overall value resulting from the minimum function.

It remains to show that this set is optimal1.

1We will not consider here the case of jPU;W j = 1. In that case, Algorithm 3 returns the only path that

is in PU;W , whose case is trivial. Henceforth, we will consider only the case jPU;W j > 1. Also, the case

PU;W = ; is not considered here due to the de�nition of optimality.

4.3 An upper bound for the number of formulas 81

Let S � PU;W a set of paths returned by Algorithm 3. Let P 2 S an arbitrary path. Let

us de�ne an structure for fP as follows:

fP = DU +
X
i

t
(P)
i + bP ;

where t
(P)
i are the labels of the red edges in the path P . Let us consider an assignment of

the red variables (tk) 2 f0; 1g
� for the dependency graph G as follows: if the edge labeled

as tk is in the path P , assign tk = 0; if the edge is not in the path P , assign tk = 1. Given

this assignment, it holds that

fP = DU +
X
i

t
(P)
i + bP = DU + bP :

Now, let us take an arbitrary path Q 2 S n fPg. Let us assume that the general structure

for fQ is

fQ = DU +
X
i

ti +
rQ;PX
i=1

t
(Q)
i + bQ:

Here, ti are the labels of the red edges that are in both P and Q simultaneously. On the

other hand, t
(Q)
i are the labels of the red edges that are in Q but not in P . Given the

assignment for the red labels in the graph G �xed above, it holds that

fQ = DU +
X
i

ti +
rQ;PX
i=1

t
(Q)
i + bQ = DU + rQ;P + bQ:

Knowing that both P and Q are paths returned by the algorithm, this means that when

the paths P and Q were selected in the iterations, the path P was not removed. Therefore,

the condition rQ;P + bQ � bP did not hold. On the contrary, it holds that rQ;P + bQ > bP .

Then, joining all the results, we have that

fQ = DU + rQ;P + bQ > DU + bP = fP :

This shows that the algorithm is optimal in the sense of De�nition 4.2.6.

4.3 An upper bound for the number of formulas

To compute a bound for the number of formulas generated by our approach, let us consider

the graph presented in Figure 4-4. In such a graph, there are l rows of vertices and s

columns of vertices. This graph is very similar to the dependency graph in a (� + 1)-box,

82 4 Automated generation of formulas to compute the edit distance

Figure 4-4: Graph used to compute the complexity of our approach.

but this graph has additional edges in the vertices in the border (compare it with Figure 4-

3). Not without mention that this graph is not a \square" graph as in Figure 4-3, but a

\rectangular" one.

We want to compute an upper bound of the number of formulas that are arguments of the

minimum function to calculate the bottom-right corner of a (� + 1)-box. We will do this

by computing the number of all the paths from all the vertices in the top and left border

that ends up in the bottom-right corner in Figure 4-4 when l = s = � + 1. This number

will be a correct upper bound because the algorithm takes all the paths from a pair of

vertices and removes the redundant ones. Knowing that the bottom-right corner has the

highest number of formulas as arguments inside the minimum function, this upper bound

will be also bound for the other positions in the set B [R.

This problem reduces to take the graph Figure 4-4 and compute all the paths from the

vertex in the top-left corner to the vertex in the bottom-right corner. This can be counted

using the Delanoy number, which counts exactly this quantity [Wes20, De�nition 1.2.8].

The Delanoy number for a graph with l rows and s columns is

D(l; s) =
minfl;sgX
i=0

l

i

!
s

i

!
� 2i: (4-3)

Using Equation (4-3), we can conclude that the upper bound for the number of formulas

that are arguments inside the minimum function to calculate the position D(i; j) in a

4.3 An upper bound for the number of formulas 83

(� + 1)-box is given by

�X
k=1

[D(�; � � k) +D(� � k; �)] +D(�; �):

Let us break down this equation in pieces. The number D(�; � �k) is the number of paths

in a graph of � rows and � � k columns. That is the number of paths from a point in

T n fDi��;j��g to Di;j. Similarly, the number D(� � k; �) is the number of paths from a

point in L n fDi��;j��g to Di;j. And �nally, the number D(�; �) is the number of paths

from Di��;j�� to Di;j.

Notice that

�X
k=1

[D(�; � � k) +D(� � k; �)] +D(�; �) �
�X

k=1

2D(�; �) +D(�; �)

= 2�D(�; �) +D(�; �)

= (2� + 1)D(�; �)

= (2� + 1)
�X

k=0

�

k

!2

� 2k

� (2� + 1) � 2� �
�X

k=0

�

k

!2

� (2� + 1) � 2� �

�X

k=0

�

k

!!2

= (2� + 1) � 2� � (2�)2

= (2� + 1) � 23�

= O(� � 23�):

This result allows us to conclude that the number of formulas generated by Algorithm 3

that are arguments of the minimum function used to calculate one position of the set B[R

in a (� + 1)-box is O(� � 23�).

5 Experiments

In the previous chapters, we explained how to compute the edit distance between two DNA

chains and we presented a solution to compute the edit distance based on secret-sharing

protocols. The purpose of this chapter is to evaluate the performance of our solution in a

practical and experimental way.

To perform the evaluation of our solution, we design four experiments for measuring and

comparing di�erent characteristics of the proposed method:

1. We �rst compare the computation of the preamble in the binary domain with respect

to a traditional computation of edit distance where all the computation is done

naively in an arithmetic domain.

2. We evaluate how the increasing of � impacts the performance of our solution in terms

of communication and computational complexity.

3. We compare the performance of our proposed solution using secret-sharing protocols

with respect to Yao's GC protocols.

4. We evaluate if executing our solution using rings of the form Z2k has a better perfor-

mance compared to executing our protocol using �elds of the form Zp, for a prime

p.

These four experiments will give us an empirical idea of the feasibility of our solution and

its performance with respect to other techniques commonly used in the literature. As an

additional comparison, we make some comments about the performance of our solution

compared to computing the edit distance using homomorphic encryption schemes found

in previous works.

All the experiments in this section were executed using the MP-SPDZ framework [Kel20].

MP-SPDZ is an MPC framework to easily benchmark multiple protocols in various threat

models. In this framework, we can execute protocols of the current state-of-the-art in-

cluding all the protocols considered in this work. To execute a protocol in MP-SPDZ, the

user implements his desired function using the Python 3 programming language with some

5.1 Performance of the binary computation in the preamble 85

additional features from the MP-SPDZ context. The main strength of the framework is

that with only one implementation of the function in a high-level language, the user can

switch easily between protocols to compute the functionality securely. That means that

the user does not need to worry about the particularities of each protocol. He just writes

its function in the Python programming language, and the framework is in charge of com-

piling this high-level source code into the respective circuits to be evaluated securely using

the protocols he wants. When a protocol is executed in the framework, one can measure

the execution time and the data sent during the protocol execution. Our goal is to use

this framework and the metrics mentioned before to evaluate our solution to compute the

edit distance.

All the experiments presented in this section were executed in an AWS EC2 instance of

type c6a.4xlarge1. This instance has an AMD EPYC 7R13 Processor with 16 virtual

cores and 32 GB of RAM. To measure the impact of the network architecture, we consider

two types of network architectures using simulation. The �rst type does not consider any

network limitation, so the speed of communication is very similar to the speed of two

separate processes exchanging information in the same machine. The second type is the

local area network (LAN) architecture where we simulate a bandwidth of 1.6 gigabytes per

second and a latency of 0.3 milliseconds. Given that the executions of the experiments are

executed in the same machine, we simulate the LAN restrictions using the tc2 command

from the Linux operating system. This command allows us to simulate the restrictions

in the communication between processes by choosing the bandwidth and latency that we

need. This simulation, allows us to evaluate the impact of the number of rounds and

the data sent of each protocol execution. Finally, for all of our experiments, we consider

a bit-length of 64, which means that we are allowed to work with 64-bit integers. This

amount of bits is enough for the practical uses of our implementation in real-world tasks.

5.1 Performance of the binary computation in the

preamble

In Section 3.1, we presented an alternative to compute the matrix t using a binary domain

of computation. Then, using daBits, we perform a domain conversion to compute the

arithmetic section. The goal of this experiment is to evaluate the performance of the com-

putation of the preamble in a binary domain with respect to a traditional implementation

as presented in Algorithm 1 using an arithmetic domain. We need to make clear that we

are including the computation of the arithmetic part in the results and it is computed as it

1https://aws.amazon.com/ec2/instance-types/c6a/
2https://man7.org/linux/man-pages/man8/tc.8.html

https://aws.amazon.com/ec2/instance-types/c6a/
https://man7.org/linux/man-pages/man8/tc.8.html

86 5 Experiments

is presented in Algorithm 1 for both implementations. In that way, we focus on measuring

the improvement just in the computation of the preamble. Given that the preamble is

computed in Z2 in our proposal, the measures of this experiment also include the resources

spent in the domain conversion.

For this experiment, we consider two DNA chains of length 1,000. The protocols that

we are considering are SPDZ2k and its corresponding version with passive security called

Semi2k. The last protocol is similar to SPDZ2k but removing all the mechanisms to ensure

malicious security like authentication using MACs.

The results of the experiment are presented in Table 5-1. From the results, we can see

that our approach reduces the data sent during the protocol execution by approximately

11% for passive security, and a reduction of approximately 22.5% for the case of active

security. One of the reasons for this reduction is that when we execute the preamble in

an arithmetic domain, we need to use the full bit-length (in our case, 64 bits) to represent

only one nucleotide without considering the number of security bits used for the protocol

to guarantee privacy and authenticity. Instead, our binary approach just uses 2 bits to

represent a nucleotide. This reduction in the representation contributes to the reduction in

the transmitted information because the shares that go across the network have fewer bits.

Despite this reduction in the data sent, the execution time is not reduced signi�cantly.

We can see that the reduction in the execution time varies between 1-8% when we use a

LAN. However, this reduction in the execution time can be more signi�cant in network

architectures with lower bandwidth where the reduction in the data sent has a bigger

e�ect. In conclusion, although the reduction in the execution time is not signi�cant, the

computation of the preamble in a binary domain has bene�ts considering the data sent

alone, which makes it a good choice in networks with low bandwidth.

Network Security
Data sent [MB]

(Naive)

Data sent [MB]

(Binary)

Time [s]

(Naive)

Time [s]

(Binary)

No limit
Passive 10,509 9,349.2 627.7 480.7

Active 644,677 499,383 5,351.7 4,215.4

LAN
Passive 10,509 9,349.2 12,224.1 12,087.7

Active 644,677 499,383 21,785.5 19,919

Table 5-1: Data sent and execution time for the preamble optimization.

5.2 The e�ect of changing � 87

5.2 The effect of changing �

As we saw in Section 3.2, the size of the (� + 1)-box has repercussions in the number

of rounds, the number of multiplications, and the number of comparisons. The larger

the � , the lower the number of rounds, and the larger the number of multiplications and

comparisons. This experiment intends to evaluate such trade-o� in terms of the data sent

and the execution time of the protocol.

In this experiment, we are considering DNA chains of length 1,020. We evaluate the

performance of our solution using protocols that are secure against both passive and active

adversaries. For the passive setting, we use the Semi2k protocol and for the active setting,

we use the SPDZ2k protocol. We execute each protocol for � 2 f1; 2; 3; 4; 5g, and for each

value of � , we measure the data sent and the execution time. For each combination of

parameters, we have two types of measures. For the �rst type, we execute the experiment

as described above taking into account both the pre-processing and the online phase. For

the second type, we execute the experiment taking into account just the online phase.

This allows us to identify the trade-o� of our solution in more detail for each stage of the

protocol execution.

Table 5-2 shows the results of the experiment whose measures include both the pre-

processing and the online phase, and the network has no limitations. Also, in Figure 5-1,

we present a graphical representation of information in the table. In the case of passive

security, we can see that if we choose � = 2 or � = 3, there is an improvement in the

execution time with respect to � = 1. However, if we choose a value of � greater than

3, the execution time starts to increase. This is because, according to our theoretical

analysis, if we increase � , we obtain a lower number of rounds, however, the number of

multiplications and comparisons increase exponentially. But remember that to compute

multiplications and comparisons we need to generate multiplication triples and edaBits,

and both of them require communication and resources. Therefore, we can �nd a trade-o�

between the round reduction, and the correlated randomness needed in the protocol. So,

there is a moment where the round reduction is not enough to reduce the overall execution

time because the computational resources spent in the comparisons and multiplications

begin to have a bigger impact. In the case of active security, there is an increasing execution

time because the mechanisms to guarantee security against malicious adversaries put an

additional overhead to the communication and computation, and such mechanisms are

particularly widely applied in the pre-processing stage.

To give a more detailed idea of the computational resources spent in the protocol, Table 5-

3 shows the result of the experiment considering just the online phase and without any

network limitation. In Figure 5-2, we present its corresponding graphical representation

88 5 Experiments

Pre-processing and online - Without network limit

Security � Data sent [MB] Execution time[s]

Passive

1 9,727.3 930.8

2 10,129.9 523.0

3 13,669.8 489.1

4 21,222.9 602.7

5 35,486.9 775.1

Active

1 519,759 7,007.5

2 768,422 9,009.1

3 1:13� 106 12,175.7

4 1:79� 106 17,643.2

5 3:02� 106 26,769.6

Table 5-2: E�ect of changing � considering both the pre-processing and the online phase

using a network with no limitations.

1 2 3 4 5
0

200

400

600

800

1;000

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(a) Passive security.

1 2 3 4 5
0

1

2

�104

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(b) Active security.

Figure 5-1: E�ect of the box size for the experiment without network limits considering

both the preprocessing and online phases.

5.2 The e�ect of changing � 89

for the execution time as the value of � changes. Interpreting the results from this table,

we observe that for passive security, the execution time is decreasing. Also, we can see

that as long as the � increases, the change in the execution time becomes smaller. This

behavior is because the round reduction of our proposal has a noticeable e�ect in the online

phase, however, increasing � also increases the number of multiplications and comparisons

which consumes resources in the online phase. Notice that the minimal number of rounds

is reached when � = minfn;mg, where n and m are the lengths of the chains, obtaining

the biggest (�+1)-box. However, choosing this � also makes the protocol reach the largest

number of multiplications and comparisons, which increases the complexity of the overall

protocol. The case of active security shows a very di�erent result. In that case, we observe

that the execution time starts to increase for � > 3. Contrary to the passive security

case, to guarantee active security, the online phase has additional work given by the MAC

checking. According to the speci�cations of the SPDZ2k protocol, when the protocol

computes a multiplication, some values that are secret-shared are opened, but given that

the adversary is active, these values need to be checked for correctness using the MAC

batch checking. However, the computational complexity of this checking process increases

with the number of multiplications, because the match checking needs to compute a linear

combination with as many terms as values that need to be checked. According to our

estimations, the number of multiplications increases exponentially as � does. Considering

that the communication is very fast given that there is no limitation to the network

and that the batch checking has a low communication complexity, we conclude that the

increasing trend in the graph is explained by the computational complexity induced by

the online processing of the multiplications.

Online phase - Without network limit

Security � Data sent [MB] Execution time [s]

Passive

1 4,020.1 461.8

2 1,579.3 185.5

3 1,012.7 121.6

4 942.6 110.4

5 1,115.6 97.3

Active

1 795.9 768.9

2 967.6 408.4

3 1:37� 103 330.8

4 2:15� 103 375.1

5 3:61� 103 447.2

Table 5-3: E�ect of changing � considering just the online phase using a network with no

limitations.

Now, given that MPC protocols, and in particular the secret sharing schemes, are sensitive

90 5 Experiments

1 2 3 4 5
0

200

400

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(a) Passive security.

1 2 3 4 5
0

200

400

600

800

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(b) Active security.

Figure 5-2: E�ect of the box size for the experiment without network limits and consid-

ering just the online phase.

to the conditions imposed by the network, we perform the experiments simulating a LAN

network as it was discussed at the beginning of this chapter. Table 5-4 shows the results of

the experiments considering both the pre-processing and online phases using a LAN. The

corresponding graphical representation of the execution time as � increases is shown in

Figure 5-3. For the case of passive security, we notice that the execution time is decreasing

for the values of � considered in the experiments, contrary to the e�ect that we saw in

Figure 5-2 where there are no limitations to the network. This behavior allows us to

conclude that, for the passive case, the complexity associated with the number of rounds

is predominant, and the decreasing trend in the graph is explained by the decreasing of

the number of rounds as � increases. Notice that in this experiment, we are considering

also the pre-processing phase, where the communication and computational complexity

increases as � does. This increasing in the complexity is shown in the curve which is

attening as � increases.

On the other hand, for the case of active security, we observe the e�ect of the trade-o�

between the round reduction and the number of multiplications and comparisons is more

clear. For � = 2 the execution time shows an improvement because the saving in the

number of rounds compensates for the complexity induced by the multiplications and

comparisons. However, for � � 3, the exponential increase of the multiplications and

comparisons makes the execution time increase.

Finally, Table 5-5 presents the results of the experiment taking into account just the online

phase using a LAN. This case is interesting because as � increases in the considered values,

the execution time decreases for both passive and active security, contrary to the other

5.2 The e�ect of changing � 91

Pre-processing and online - LAN

Security � Data sent [MB] Execution time [s]

Passive

1 9,727.3 12,518.4

2 10,129.9 4,914.1

3 13,669.8 3,161.6

4 21,222.9 2,942.7

5 35,486.9 2,749.0

Active

1 519,759 26,257.6

2 768,422 18,210.2

3 1:13� 106 20,071.6

4 1:79� 106 27,654.4

5 3:02� 106 40,573.4

Table 5-4: E�ect of changing � considering both the pre-processing and online phase using

a LAN.

1 2 3 4 5
0

0:5

1

�104

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(a) Passive security.

1 2 3 4 5
0

1

2

3

4
�104

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(b) Active security.

Figure 5-3: E�ect of the box size for the experiment using LAN and considering both the

pre-processing and online phase.

92 5 Experiments

cases where at least one of the situations, active or passive, showed an eventual dominance

of the number of comparisons and multiplications in the execution time. This means that,

in this case for both active and passive security, the decreasing of rounds has a higher

impact on the execution time due to the presence of the latency.

Online phase - LAN

Security � Data sent [MB] Time [s]

Passive

1 4,020.1 12,346.2

2 1,579.3 4,608.9

3 1012.7 2,753.7

4 942.6 2,332.6

5 1,115.6 1,763.9

Active

1 795.9 14,967.3

2 967.6 5,692.0

3 1:37� 103 3,467.0

4 2:15� 103 3,015.8

5 3:61� 103 2,417.6

Table 5-5: E�ect of the box size for the experiment using LAN and considering just the

online phase.

1 2 3 4 5
0

0:5

1

�104

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(a) Passive security.

1 2 3 4 5
0

0:5

1

1:5
�104

�

E
x
ec
u
ti
on

ti
m
e
[s
]

(b) Active security.

Figure 5-4: E�ect of the box size for the experiment using LAN and considering just the

online phase.

Looking at the experiments globally, in an intuitive way, we can think of the execution

time as a function that is the sum of other two functions that overlaps: the execution

time induced by the number of rounds and the execution time induced by the number of

comparisons and multiplications. The predominance of one of both functions will depend

5.3 Comparison between garbled circuits and secret-sharing 93

on the computational context in which the protocol is executed, namely, the local com-

putational power, the network architecture, and its limitations, the value of � chosen, the

length of the chains, etc. However, according to our estimations, the number of rounds

decreases as an inverse linear function of � while the number of multiplications increases

exponentially as a function of � . This means that in any case and for a value of � large

enough, the execution time will begin to increase. It could be possible that for the �rst

values of � the execution time decreases, but after a certain point, the computational and

communication complexity induced by the multiplications will take more importance and

will predominate in the execution time making it increase. The moment at which this

increase begins will depend on the characteristics of the context as we explained before.

Although this trade-o� is present, the experiments reveal a positive impact of our approach

given that the majority of the experiment shows at least one value of � in which the ex-

ecution time is better than the one where � = 1 (which corresponds to the traditional

approach of the Wagner-Fischer algorithm). The key is to �nd the appropriate value of �

in which the saving in the number of rounds compensates for the complexity induced by

the comparisons and multiplications.

There is one case that does not show improvement which is shown in Table 5-2 for a

malicious adversary. Here, the execution time is always increasing which appears to be

a negative aspect of our proposed approach. However, the case of no limitations in the

network is not a realistic scenario in the practical use of MPC. In practical scenarios, there

will be a latency and a bandwidth involved and it tends to have constraints similar to the

LAN conditions proposed in this work.

5.3 Comparison between garbled circuits and

secret-sharing

As we mentioned in Section 1.1, one of the methods commonly used to evaluate the edit

distance securely in MPC is garbled circuits (GC). In this experiment, we will compare

the performance of our implementation using garbled circuits and using secret-sharing

schemes with domain in Z2k .

In this experiment, due to the memory and processing constraints of the AWS EC2 instance

that we were using, we are taking both DNA chains with a length of 210 nucleotides. As

in the previous experiments, we are also using a bit-length of 64 and we consider both a

network with no limitations and a LAN. Here we are using two types of implementations:

for garbled circuits, we are using � = 1, and for the secret-sharing schemes we are using

� = 3. This di�erence between the values of � is because the garbled circuits have a

94 5 Experiments

better performance when � = 1. In a preliminary exploration, we tried to execute the

experiments using values of � > 1, but the performance got worse as the value of �

increased. The reason for this is that, as � increases, the number of formulas inside the

minimum function increases exponentially, which means that the number of addition gates

increases too. Remember that for GC-based protocols, the integer additions are expensive

because they need to be expressed as binary circuits composed of several AND gates that

depends on the number of bits used in the integer representation. This produces that

the methods based on GCs need to garble a higher number of tables which increases the

number of computations and the amount of data that needs to be sent through the network.

Moreover, the more recent GC-based methods have a constant number of rounds, and in

such case, our method which is designed to reduce the number of rounds have no bene�t.

This means that using a � > 1 in our algorithm with a GC-based protocol on top only

adds more computational complexity to the computation and does not have any bene�t.

In Table 5-6, we present the results of the experiment. Notice that when the network

has no limitations, the protocols based on secret-sharing perform better than GC-based

protocols. In particular, notice that the secret-sharing schemes have approximately 57-99%

fewer data sent than the GC-based protocols. The reason for this is that the edit distance

solution has a high number of arithmetic operations, which means that the number of

gates that the GC-based methods need to garble and send through the network is high.

Although the di�erence in the data sent is signi�cant, it is a well-known fact that the

drawback of GC-based protocols is the amount of data sent, but modern implementations

have constant-round communication. On the contrary, the secret-sharing schemes have

a high amount of communication rounds, but the data sent and the amount of local

computations is lower compared to GC-based protocols.

Network Security Protocol Time [s] Data sent [MB]

No network limit

Passive
Yao's GC 9.9 1,370.3

Semi2k 8.4 581.0

Active
BMR-MASCOT 25,072.5 8:32� 106

SPDZ2k 3:56� 102 47,865.5

LAN

Passive
Yao's GC 10.4 1,370.3

Semi2k 146.9 581.0

Active
BMR-MASCOT 3:72� 104 8:32� 106

SPDZ2k 9:91� 102 47,865.5

Table 5-6: Comparison between GC and secret-sharing schemes.

If we look at the results using LAN, the results are di�erent from the previous ones for the

passive case. These results show that the execution time of Yao's GC protocol is lower than

the Semi2k protocol by an order of magnitude. This turnaround is due to the presence

5.4 Comparison between protocols in Zp and Z2k 95

of latency. Given that the number of rounds in Yao's GC is very low, the latency does

not have a major impact on the execution time. On the other hand, the Semi2k protocol

has a higher number of rounds, and therefore the latency has a major contribution to the

execution time.

Notice that both in the network with no limit and in LAN, the performance of BMR is two

orders of magnitude slower than the secret-sharing schemes. The reason for this is that

the Wagner-Fischer algorithm has a heavy arithmetic component, namely, the arithmetic

section. In such section, we require to perform mostly additions and comparisons between

64-bit integer numbers. The comparisons are tasks that can be done e�ciently in GC-based

protocols. But addition operations require the computation of AND gates. In the case of

BMR, the underlying MPC protocol to compute the o�ine phase is MASCOT [KOS16],

which uses MACs to ensure security against malicious adversaries. So, garbling an AND

gate needs to compute multiplications with the assistance of the MASCOT protocol which

requires the generation of multiplication triples and puts an additional overhead. This

overhead produced by the additions does not appear in secret-sharing schemes because

the additions do not need communication. More interestingly, additions do not heavily

hurt the performance of the garbling process in Yao's GC because it does not need any

communication between parties.

In conclusion, using our approach in a realistic context like a LAN in the presence of

an active adversary, it is recommended to use protocols based on secret-sharing which

perform signi�cantly better given the high amount of arithmetic operations that need to

be computed in the Wagner-Fischer algorithm.

5.4 Comparison between protocols in Zp and Z2k

At the beginning of this work, we presented a research question asking if the protocols

based on rings of the form Z2k are a good choice among the protocols based on secret-

sharing schemes. Our hypothesis is that protocols in Z2k are the best suited for computing

the edit distance given that the speci�cation of these protocols is more compatible with

the current CPU architectures as mentioned in [Dam+19]. Also, given that the Wagner-

Fischer algorithm requires a high number of comparisons, we expect these operations to

be performed faster than secret-sharing schemes based on �elds due to the same reasons

expressed above. The goal of this experiment is to empirically verify our hypothesis by

comparing secret sharing schemes based on �elds with protocols based on rings.

For this experiment, we are considering DNA chains of length 1,020 and we are using our

implementation with � = 3. For the case of rings, we are using SPDZ2k which has active

96 5 Experiments

security, and Semi2k as its corresponding passive secure version. For the case of �elds,

we are using the protocol MASCOT [KOS16] to guarantee active security and Semi as its

corresponding passive secure version. The idea behind Semi is similar to Semi2k so that

Semi is the protocol that results from MASCOT after removing all the mechanisms that

guarantee active security. The idea of this experiment is to compute the edit distance using

the same implementation for both passive and active security, using both with no network

limitations and simulating a LAN. It is important to mention that both implementations

use daBits and edaBits. Also, in this experiment, we will consider both the pre-processing

and the online phase for each execution of the protocols.

The results of this experiment are presented in Table 5-7. Notice that except for the case

of passive security with no network limitations, the protocols based on rings have a better

performance not only in the execution time but in the data sent. The reason behind these

results is that protocols in Z2k have an advantage using the bit representation. To show

this advantage, we will mention two concrete examples. The �rst example is the daBit

checking presented in [Esc+20, Figure 16]. In Step 1(c), for the case of protocols in Zp, it is

needed to get shares of random bits of the form JciKp which need to be generated in the pre-
processing phase. To check one daBit it is needed to generate s of such random bits, where

s is the security parameter of the protocol. On the contrary, this same step does not need

any random bit generation for the case of Z2k . This generation of random bit produces

an additional overhead in the pre-processing phase for protocols in Zp with respect to

protocols in Z2k . Another example where the protocols in Z2k have an advantage is in the

edaBit generation. According to the original proposal presented in [Esc+20, Figure 3] in

Step 4, when the ring is Z2k we do not need to convert the binary shares beyond the k-th

position into arithmetic shares to avoid the overow modulo 2k, instead we can discard

such bits. On the contrary, for the case of Zp, we need to subtract the excess in the case

of an overow and to do this, we need to convert the bits shares beyond the k-th position

from binary shares into arithmetic shares, which requires one daBit per bit conversion.

This later advantage of protocols in Z2k is of high importance because, as we have seen

before, the edaBits are needed to perform comparisons, and the number of comparisons

increases with � , which means that increasing the value of � will increase the number of

edaBits that need to be generated, which add an overhead on the protocols based in Zp

given the reasons mentioned above.

These experiments along with the theoretical interpretation show that, for the edit distance

computation, it is more e�cient to consider protocols in Z2k instead of protocols in Zp due

to the presence of a high number of comparisons. As we have seen, the protocols in Z2k

have an advantage given his design which reduces the number of computations needed to

perform such comparisons.

5.5 Comparing our solution with protocols based on homomorphic
encryption 97

Network Security Protocol Data sent [MB] Time [s]

No network limit

Passive
Semi2k 13,669.8 489.1

Semi 25,393.7 340.6

Active
SPDZ2k 1:13� 106 12,175.7

MASCOT 3:22� 106 26,382.9

LAN

Passive
Semi2k 13,669.8 3,161.6

Semi 25,393.7 3,786.0

Active
SPDZ2k 1:13� 106 20,071.6

MASCOT 3:22� 106 43,811.4

Table 5-7: Comparison between protocols using �elds with protocols using rings.

5.5 Comparing our solution with protocols based on

homomorphic encryption

As we have seen in Section 1.1, the edit distance problem has been computed securely using

homomorphic encryption (HE). The purpose of this section is to make a performance com-

parison using the results obtained from the previous experiments with the experimental

results found in [CKL15] and [Zhe+19].

The �rst work that we will take into account is the work of Cheon et al. presented in

[CKL15]. They consider experiments with DNA chains with length 8 and using a security

parameter of 80 bits. According to the results in Table 6 in that paper, their method

spends 27.54 seconds in the key generation and 16.45 seconds in the encryption process.

In their report, they state that it takes 27.5 seconds to obtain the edit distance using the

Halevi-Shoup library (HElib) [HS20] along with the techniques presented in [GHS12]. In

our case, considering both the pre-processing and the online phase, using � = 2 and a

LAN, we can obtain the edit distance of chains with length 8 in 0.47 seconds using Semi2k

protocol for passive security and in 16.27 seconds using the SPDZ2k protocol for active

security. Additionally, Cheon et al. compute some estimations of the performance for their

method for DNA chains with lengths up to 100. For the case of DNA chains of length 100

and a security parameter of 62 bits, they estimate that the edit distance can be computed

in 1 day and 5 hours. In our case, we saw that using a LAN and the protocol SPDZ2k , our

method can compute the edit distance in 16.51 minutes. These results show that our MPC

approach has a better performance than the reported results presented by Cheon et al. In

terms of security, a security parameter of 62 bits for HE is not adequate for the current

standards of cryptography. Meanwhile, the implementation of the protocol SPDZ2k uses

64 bits for statistical security, which is enough to reach a good level of security.

98 5 Experiments

The work of [Zhe+19] also computes the edit distance using HE, however, they allow one

of the parties to learn the chain of the other party. This fact allows one of the parties

to compute the edit distance between blocks of DNA chains in the clear. Instead, we

guarantee privacy for the DNA chains for both parties. Also, our approach does not reveal

any information about the DNA chains in the intermediate steps of the computation. This

di�erence between both approaches implies also a di�erence between the running times

where the approach of Zheng et al. is faster than ours. Zheng et al. report that the data

owner spends between 5-30 milliseconds approximately to encrypt the genomic data. Also,

they report that the cloud server, which is in charge of computing the homomorphic op-

erations, has a runtime for edit distance query between 80-95 milliseconds approximately.

our implementation using passive security and a LAN takes 11.92 seconds. This shows

that our approach is slower but this is completely expected due to the di�erences in the

security models.

6 Conclusions

In this work, we presented an approach to computing the edit distance securely via the

Wagner-Fischer algorithm using protocols based on secret-sharing schemes. The proposed

method divides the edit distance computation into two parts: the �rst part is computed

in a binary domain using the protocol Tinier, and the second part is computed in an

arithmetic domain using the protocol SPDZ2k . The conversion between the two domains

is done using daBits, and the comparisons required to compute the arithmetic part are

computed using edaBits.

For the �rst part of the computation, we presented an equality test of nucleotides based

on binary operations. The experiments reveal that this modi�cation reduces the data

sent in the protocol execution by 11% for passive security and 22.5% for active security

compared to a naive approach where the nucleotides are encoded as integers. Although

the improvement in the data sent is signi�cant, the improvement in the execution time

varies between 1-8% in a LAN.

For the arithmetic part, we break down the computation of the edit distance matrix

into the computation of the border of sub-boxes inside the matrix whose side length is

� + 1. Instead of computing each position of the border as a minimum of three numbers

as in the traditional iteration in the Wagner-Fischer algorithm, we compute them by

calculating the minimum of a longer list of numbers. We found that the number of rounds

is inversely proportional to � , but the number of multiplications and comparisons increases

exponentially with respect to � . This means that large values of � increase the overall

execution time of the protocol exponentially. However, for small values of � we can reach

a reduction in the execution time of approximately 78% for passive security and 64%

for active security for certain settings compared to a traditional implementation of the

Wagner-Fischer algorithm.

As a part of the optimization in the arithmetic section, we use graph theory techniques to

design an algorithm to build lists of integer numbers that are arguments of the minimum

functions to compute one sub-box. Also, we prove that our algorithm returns the correct

list of integers and that it returns the list with minimal length to compute the edit distance

correctly. Finally, we analyze the complexity of our algorithm using Delanoy numbers

100 6 Conclusions

concluding that our method generates lists of length O(� � 23�).

We compared our solution with other techniques like garbled circuits (GC) and homo-

morphic encryption (HE). The results show that using LAN, Yao's GC has an execution

time with an order of magnitude less than the passive protocol based on secret-sharing.

However, for the case of active security, the secret-sharing schemes have two orders of

magnitude less in both the execution time and the data sent compared to using the cor-

responding active secure protocol based on GC. For the case of HE, when we compare the

results of [CKL15] with our implementation using a LAN, they estimate that their method

computes the edit distance in 1 day and 5 hours for chains of length 100, while our method

using active security takes only 16.51 minutes.

We designed an experiment to compare our proposal using secret-sharing protocols whose

computation domain is Z2k with protocols whose underlying domain are �elds of the form

Zp, for p prime. The experiment reveals that for a LAN, our implementation performs the

best in protocols based on rings. When there are no network limitations, our implemen-

tation performs best only in active security.

This work shows that, for the case of edit distance, secret-sharing schemes have a com-

petitive performance to compute functionalities that require bit-wise operations compared

to Yao's GC, maintaining its good performance in arithmetic operations and the possi-

bility to perform mixed circuit computations e�ciently. Moreover, this work shows that

secret-sharing schemes are more e�cient than GC for computing the edit distance when

considering active adversaries. Considering the �ndings in this work, we can answer the

Research Questions 1 and 2 a�rmatively.

As a result of this work, we identify two research problems for future work. The �rst

one is to �nd an appropriate value of � to obtain the best overall execution time given

parameters of the environment in which the protocol is executed like bandwidth, latency,

chain lengths, and the local computational power. The second problem is to generalize the

graph theory techniques presented in Section 4.1 to other dynamic programming problems.

This could improve the performance of a secure implementation using MPC compared to

a naive implementation of the dynamic programming algorithm as it is used when the

inputs are in plaintext.

Finally, the main results of this work were published in the International Conference on

Cryptology and Information Security in Latin America, LATINCRYPT 2023 [VCA23].

In that work, we modi�ed the bit length in the experiments to 16 bits instead of 64

bits to reduce the amount of data sent in the protocol execution which also improves

the overall running time of the protocol. Speci�cally, for a LAN architecture, the best

choice of � has a reduction in the execution time of 81% for passive security and 54%

101

for active security compared to a baseline implementation using � = 1. Comparing the

secret-sharing-based solutions with garbled circuit solutions, the experiments show that

the former sends between 67% to 99% less data than the latter. Moreover, the comparison

between HE-based solutions and secret-sharing-based solutions shows that in the latter,

the edit distance can be computed in 96.69 seconds in LAN using the SPDZ2k protocol,

which increases the breach in the running time presented in Section 5.5 of this work.

Bibliography

[AAM17] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. \Secure approx-

imation of edit distance on genomic data". In: BMC Medical Genomics 10.2

(July 2017), p. 41. issn: 1755-8794. doi: 10.1186/s12920-017-0279-9. url:

https://doi.org/10.1186/s12920-017-0279-9.

[Aly+19] Abdelrahaman Aly et al. \Zaphod: E�ciently Combining LSSS and Garbled

Circuits in SCALE". In: Proceedings of the 7th ACM Workshop on En-

crypted Computing & Applied Homomorphic Cryptography. WAHC'19.

London, United Kingdom: Association for Computing Machinery, 2019, pp. 33{

44. isbn: 9781450368292. doi: 10.1145/3338469.3358943. url: https://doi.

org/10.1145/3338469.3358943.

[Ash+18] Gilad Asharov et al. \Privacy-Preserving Search of Similar Patients in Ge-

nomic Data". In: Proceedings on Privacy Enhancing Technologies 2018.4

(Aug. 2018), pp. 104{124. doi: 10.1515/popets-2018-0034. url: https:

//doi.org/10.1515/popets-2018-0034.

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. \A Simple Public-

Key Cryptosystem with a Double Trapdoor Decryption Mechanism and Its

Applications". In: Advances in Cryptology - ASIACRYPT 2003. Ed. by

Chi-Sung Laih. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 37{

54. isbn: 978-3-540-40061-5.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. \Foundations of Gar-

bled Circuits". In: Proceedings of the 2012 ACM Conference on Computer

and Communications Security. CCS '12. Raleigh, North Carolina, USA: As-

sociation for Computing Machinery, 2012, pp. 784{796. isbn: 9781450316514.

doi: 10.1145/2382196.2382279. url: https://doi.org/10.1145/2382196.

2382279.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. \The Round Complexity of Secure Pro-

tocols". In: Proceedings of the Twenty-Second Annual ACM Symposium

on Theory of Computing. STOC '90. Baltimore, Maryland, USA: Associ-

ation for Computing Machinery, 1990, pp. 503{513. isbn: 0897913612. doi:

10.1145/100216.100287. url: https://doi.org/10.1145/100216.100287.

https://doi.org/10.1186/s12920-017-0279-9
https://doi.org/10.1186/s12920-017-0279-9
https://doi.org/10.1145/3338469.3358943
https://doi.org/10.1145/3338469.3358943
https://doi.org/10.1145/3338469.3358943
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287

Bibliography 103

[BR93] Mihir Bellare and Phillip Rogaway. \Random Oracles Are Practical: A Paradigm

for Designing E�cient Protocols". In: Proceedings of the 1st ACM Con-

ference on Computer and Communications Security. CCS '93. Fairfax,

Virginia, USA: Association for Computing Machinery, 1993, pp. 62{73. isbn:

0897916298. doi: 10.1145/168588.168596. url: https://doi.org/10.1145/

168588.168596.

[BWY21] Bonnie Berger, Michael S. Waterman, and Yun William Yu. \Levenshtein

Distance, Sequence Comparison and Biological Database Search". In: IEEE

Transactions on Information Theory 67.6 (2021), pp. 3287{3294. doi: 10.

1109/TIT.2020.2996543.

[CDN15] Ronald Cramer, Ivan Bjerre Damg�ard, and Jesper Buus Nielsen. Secure Mul-

tiparty Computation and Secret Sharing. Cambridge University Press, 2015.

doi: 10.1017/CBO9781107337756.

[CKL15] Jung Hee Cheon, Miran Kim, and Kristin Lauter. \Homomorphic Compu-

tation of Edit Distance". In: Financial Cryptography and Data Security.

Ed. by Michael Brenner et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2015, pp. 194{212. isbn: 978-3-662-48051-9.

[Cra+18] Ronald Cramer et al. \SPDZ2k : E�cient MPC mod 2k for Dishonest Major-

ity". In: Advances in Cryptology { CRYPTO 2018. Ed. by Hovav Shacham

and Alexandra Boldyreva. Cham: Springer International Publishing, 2018,

pp. 769{798. isbn: 978-3-319-96881-0.

[Dam+12] Ivan Damg�ard et al. \Multiparty Computation from Somewhat Homomor-

phic Encryption". In: Advances in Cryptology { CRYPTO 2012. Ed. by

Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 643{662. isbn: 978-3-642-32009-5.

[Dam+19] Ivan Damg�ard et al. \New Primitives for Actively-Secure MPC over Rings

with Applications to Private Machine Learning". In: 2019 IEEE Symposium

on Security and Privacy (SP). 2019, pp. 1102{1120. doi: 10.1109/SP.2019.

00078.

[DEK21] Anders Dalskov, Daniel Escudero, and Marcel Keller. \Fantastic Four: Honest-

Majority Four-Party Secure ComputationWith Malicious Security." In:USENIX

Security Symposium. 2021, pp. 2183{2200.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. \ABY - A frame-

work for e�cient mixed-protocol secure two-party computation". In: Network

and Distributed System Security Symposium. 2015.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/TIT.2020.2996543
https://doi.org/10.1109/TIT.2020.2996543
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1109/SP.2019.00078

104 Bibliography

[DZ13] Ivan Damg�ard and Sarah Zakarias. \Constant-Overhead Secure Computation

of Boolean Circuits using Preprocessing". In: Theory of Cryptography. Ed.

by Amit Sahai. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 621{

641. isbn: 978-3-642-36594-2.

[DZ16] Tamara Dugan and Xukai Zou. \A Survey of Secure Multiparty Computation

Protocols for Privacy Preserving Genetic Tests". In: 2016 IEEE First In-

ternational Conference on Connected Health: Applications, Systems and

Engineering Technologies (CHASE). 2016, pp. 173{182. doi: 10 . 1109 /

CHASE.2016.71.

[EKR18] David Evans, Vladimir Kolesnikov, and Mike Rosulek. \A Pragmatic Intro-

duction to Secure Multi-Party Computation". In: Foundations and Trends

in Privacy and Security 2.2-3 (2018), pp. 70{246. issn: 2474-1558. doi:

10.1561/3300000019. url: http://dx.doi.org/10.1561/3300000019.

[EN14] Yaniv Erlich and Arvind Narayanan. \Routes for breaching and protecting

genetic privacy". In: Nature Reviews Genetics 15.6 (June 2014), pp. 409{

421. issn: 1471-0064. doi: 10.1038/nrg3723. url: https://doi.org/10.

1038/nrg3723.

[Esc+20] Daniel Escudero et al. \Improved Primitives for MPC over Mixed Arithmetic-

Binary Circuits". In: Advances in Cryptology { CRYPTO 2020. Ed. by

Daniele Micciancio and Thomas Ristenpart. Cham: Springer International

Publishing, 2020, pp. 823{852. isbn: 978-3-030-56880-1.

[Esc21] Daniel Escudero. \Multiparty Computation over Z=2kZ". University of Aarhus,
Nov. 2021.

[Fre+15] Tore Kasper Frederiksen et al. \A Uni�ed Approach to MPC with Preprocess-

ing Using OT". In: Advances in Cryptology { ASIACRYPT 2015. Ed. by

Tetsu Iwata and Jung Hee Cheon. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2015, pp. 711{735. isbn: 978-3-662-48797-6.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. \Homomorphic Evaluation of

the AES Circuit". In: Advances in Cryptology { CRYPTO 2012. Ed. by

Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 850{867. isbn: 978-3-642-32009-5.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. \How to Play ANY Mental Game".

In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing. STOC '87. New York, New York, USA: Association for Comput-

ing Machinery, 1987, pp. 218{229. isbn: 0897912217. doi: 10.1145/28395.

28420. url: https://doi.org/10.1145/28395.28420.

https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1109/CHASE.2016.71
https://doi.org/10.1561/3300000019
http://dx.doi.org/10.1561/3300000019
https://doi.org/10.1038/nrg3723
https://doi.org/10.1038/nrg3723
https://doi.org/10.1038/nrg3723
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

Bibliography 105

[HS20] Shai Halevi and Victor Shoup. Design and implementation of HElib: a ho-

momorphic encryption library. Cryptology ePrint Archive, Paper 2020/1481.

https://eprint.iacr.org/2020/1481. 2020. url: https://eprint.iacr.

org/2020/1481.

[IUS09] International University in Germany, Universiteit Technische Eindhoven, and

SAP AG. Secure Supply Chain Management. Tech. rep. 2009.

[JKS08] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. \Towards Practical Privacy

for Genomic Computation". In: 2008 IEEE Symposium on Security and

Privacy (sp 2008). 2008, pp. 216{230. doi: 10.1109/SP.2008.34.

[Kel20] Marcel Keller. \MP-SPDZ: A Versatile Framework for Multi-Party Computa-

tion". In: Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security. 2020. doi: 10.1145/3372297.3417872. url:

https://doi.org/10.1145/3372297.3417872.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,

Second Edition. 2nd. Chapman & Hall/CRC, 2014. isbn: 1466570261.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. \MASCOT: Faster Ma-

licious Arithmetic Secure Computation with Oblivious Transfer". In: Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-

munications Security. CCS '16. Vienna, Austria: Association for Computing

Machinery, 2016, pp. 830{842. isbn: 9781450341394. doi: 10.1145/2976749.

2978357. url: https://doi.org/10.1145/2976749.2978357.

[KY18] Marcel Keller and Avishay Yanai. \E�cient Maliciously Secure Multiparty

Computation for RAM". In: EUROCRYPT (3). Springer, 2018, pp. 91{124.

doi: 10.1007/978-3-319-78372-7_4.

[Lin+19] Yehuda Lindell et al. \E�cient Constant-Round Multi-party Computation

Combining BMR and SPDZ". In: Journal of Cryptology 32.3 (July 2019),

pp. 1026{1069. issn: 1432-1378. doi: 10.1007/s00145-019-09322-2. url:

https://doi.org/10.1007/s00145-019-09322-2.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. \Dishonest Majority

Multi-Party Computation for Binary Circuits". In: Advances in Cryptology {

CRYPTO 2014. Ed. by Juan A. Garay and Rosario Gennaro. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2014, pp. 495{512. isbn: 978-3-662-44381-1.

[Nie+12] Jesper Buus Nielsen et al. \A New Approach to Practical Active-Secure Two-

Party Computation". In: Advances in Cryptology { CRYPTO 2012. Ed. by

Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 681{700. isbn: 978-3-642-32009-5.

https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1109/SP.2008.34
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_4
https://doi.org/10.1007/s00145-019-09322-2
https://doi.org/10.1007/s00145-019-09322-2

106 Bibliography

[Nie07] Jesper Buus Nielsen. Extending Oblivious Transfers E�ciently - How to

get Robustness Almost for Free. Cryptology ePrint Archive, Paper 2007/215.

https://eprint.iacr.org/2007/215. 2007. url: https://eprint.iacr.

org/2007/215.

[Oes+21] Marie Oestreich et al. \Privacy considerations for sharing genomics data". en.

In: EXCLI Journal (2021), pp. 1243{1260. doi: 10.17179/EXCLI2021-4002.

[Oha20] Satsuya Ohata. \Recent Advances in Practical Secure Multi-Party Computa-

tion". In: IEICE Transactions on Fundamentals of Electronics, Commu-

nications and Computer Sciences E103A (10 Oct. 2020), pp. 1134{1141.

[RS10] Shantanu Rane and Wei Sun. \Privacy preserving string comparisons based

on Levenshtein distance". In: 2010 IEEE International Workshop on In-

formation Forensics and Security. 2010, pp. 1{6. doi: 10.1109/WIFS.2010.

5711449.

[RW19] Dragos Rotaru and Tim Wood. \MArBled Circuits: Mixing Arithmetic and

Boolean Circuits with Active Security". In: Progress in Cryptology { IN-

DOCRYPT 2019. Ed. by Feng Hao, Sushmita Ruj, and Sourav Sen Gupta.

Cham: Springer International Publishing, 2019, pp. 227{249. isbn: 978-3-030-

35423-7.

[ST19] Thomas Schneider and Oleksandr Tkachenko. \EPISODE: E�cient Privacy-

PreservIng Similar Sequence Queries on Outsourced Genomic DatabasEs". In:

Proceedings of the 2019 ACM Asia Conference on Computer and Com-

munications Security. Asia CCS '19. Auckland, New Zealand: Association

for Computing Machinery, 2019, pp. 315{327. isbn: 9781450367523. doi: 10.

1145/3321705.3329800. url: https://doi.org/10.1145/3321705.3329800.

[SW81] T.F. Smith and M.S. Waterman. \Identi�cation of common molecular subse-

quences". In: Journal of Molecular Biology 147.1 (1981), pp. 195{197. issn:

0022-2836. doi: https://doi.org/10.1016/0022-2836(81)90087-5. url:

https://www.sciencedirect.com/science/article/pii/0022283681900875.

[Tof07] Tomas Toft. \Primitives and Applications for Multi-party Computation". Uni-

versity of Aarhus, Mar. 2007, pp. 101{105.

[Ukk85] Esko Ukkonen. \Algorithms for approximate string matching". In: Informa-

tion and Control 64.1 (1985). International Conference on Foundations of

Computation Theory, pp. 100{118. issn: 0019-9958. doi: https://doi.org/

10.1016/S0019-9958(85)80046-2. url: https://www.sciencedirect.com/

science/article/pii/S0019995885800462.

https://eprint.iacr.org/2007/215
https://eprint.iacr.org/2007/215
https://eprint.iacr.org/2007/215
https://doi.org/10.17179/EXCLI2021-4002
https://doi.org/10.1109/WIFS.2010.5711449
https://doi.org/10.1109/WIFS.2010.5711449
https://doi.org/10.1145/3321705.3329800
https://doi.org/10.1145/3321705.3329800
https://doi.org/10.1145/3321705.3329800
https://doi.org/https://doi.org/10.1016/0022-2836(81)90087-5
https://www.sciencedirect.com/science/article/pii/0022283681900875
https://doi.org/https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/https://doi.org/10.1016/S0019-9958(85)80046-2
https://www.sciencedirect.com/science/article/pii/S0019995885800462
https://www.sciencedirect.com/science/article/pii/S0019995885800462

Bibliography 107

[VCA23] Hern�an Vanegas, Daniel Cabarcas, and Diego F. Aranha. \Privacy-Preserving

Edit Distance Computation Using Secret-Sharing Two-Party Computation".

In: Progress in Cryptology { LATINCRYPT 2023. Ed. by Abdelrahaman

Aly and Mehdi Tibouchi. Cham: Springer Nature Switzerland, 2023, pp. 67{

86. isbn: 978-3-031-44469-2.

[Wes20] Douglas B West. Combinatorial mathematics. Cambridge University Press,

2020.

[WF74] Robert A. Wagner and Michael J. Fischer. \The String-to-String Correction

Problem". In: J. ACM 21.1 (June 1974), pp. 168{173. issn: 0004-5411. doi:

10.1145/321796.321811. url: https://doi.org/10.1145/321796.321811.

[Yao82] Andrew C. Yao. \Protocols for secure computations". In: 23rd Annual Sym-

posium on Foundations of Computer Science (sfcs 1982). 1982, pp. 160{

164. doi: 10.1109/SFCS.1982.38.

[Yao86] Andrew Chi-Chih Yao. \How to generate and exchange secrets". In: 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986).

1986, pp. 162{167. doi: 10.1109/SFCS.1986.25.

[ZH22] Ruiyu Zhu and Yan Huang. \E�cient and Precise Secure Generalized Edit

Distance and Beyond". In: IEEE Transactions on Dependable and Secure

Computing 19.1 (2022), pp. 579{590. doi: 10.1109/TDSC.2020.2984219.

[Zha+19] Chuan Zhao et al. \Secure Multi-Party Computation: Theory, practice and

applications". In: Information Sciences 476 (2019), pp. 357{372. issn: 0020-

0255. doi: https://doi.org/10.1016/j.ins.2018.10.024. url: https:

//www.sciencedirect.com/science/article/pii/S0020025518308338.

[Zhe+19] Yandong Zheng et al. \E�cient and Privacy-Preserving Edit Distance Query

Over Encrypted Genomic Data". In: 2019 11th International Conference on

Wireless Communications and Signal Processing (WCSP). 2019, pp. 1{6.

doi: 10.1109/WCSP.2019.8927885.

https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/TDSC.2020.2984219
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.024
https://www.sciencedirect.com/science/article/pii/S0020025518308338
https://www.sciencedirect.com/science/article/pii/S0020025518308338
https://doi.org/10.1109/WCSP.2019.8927885

	Acknowledgements
	Abstract
	Abstract
	List of figures
	List of tables
	Introduction
	Related work
	Contributions
	Organization of the document

	Preliminaries
	The edit distance problem
	Secure multi-party computation
	Types of adversaries
	Privacy guarantees
	Output guarantees
	Complexity measures

	Garbled circuits
	Yao's garbled circuits
	BMR

	Secret-sharing schemes
	SPDZ2k
	Tinier

	daBits and edaBits
	daBits
	edaBits

	A solution to the edit distance problem using secret-sharing
	Preamble computation
	Complexity analysis

	Arithmetic section
	Complexity analysis

	A protocol to compute the edit distance

	Automated generation of formulas to compute the edit distance
	The dependency graph
	An algorithm for the optimal formula generation
	An upper bound for the number of formulas

	Experiments
	Performance of the binary computation in the preamble
	The effect of changing
	Comparison between garbled circuits and secret-sharing
	Comparison between protocols in Zp and Z2k
	Comparing our solution with protocols based on homomorphic encryption

	Conclusions

