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Resumen

En este trabajo estudiamos algunas propiedades algebraicas de las estructuras de rack y quandle
asi como la teoria de representaciones de estos objetos. Concretamente, demostramos que existe
una correspondencia entre las representaciones fuertes e irreducibles de un rack finito y conexo
con las representaciones irreducibles de su grupo finito envolvente, lo cual implica que podemos
estudiar las representaciones fuertes de un rack finito y conexo a través de la teoria de representa-
ciones de grupos finitos.

Por ultimo, estudiamos la estructura de digrupo generalizado y su relaciéon con la estructura de rack.

Palabras clave: Racks, Quandles, Representaciones, g-digrupos, Grupo asociado.



Abstract

In this research we study some algebraic properties of the rack and quandle structure as well as
the representation theory of these objects. We establish a correspondence between the irreducible
strong representations of a finite, connected rack with the irreducible representation of its finite
enveloping group, which implies that the study of strong representations of a finite, connected rack
can be approached through the representation theory of finite groups.

Finally, we study the g-digroup structure and its connection to the rack structure.

Key words: Racks, Quandles, Representations, g-digroups, Enveloping group.
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Introduction

The algebraic structures have played a fundamental role in the solution of some problems in
different branches of mathematics. Since the 19th century, mathematicians have been studying
those algebraic structures that have emerged a long of mathematical research. Some of these
structures are relatively new, such as the racks and quandles, which are the focus of this work.

Racks and quandles theory has its origins in the middle of the twenty century, when Mituhisa
Takasaki, in [17], introduced a new structure that he called ke: motivated by the abstract notion
of symmetry in the context of finite geometries. In 1959 John Conway and Gavin Wraith studied
the object given by a group GG with the binary operation of conjugation. They called it a wrack.
In the early 1980s, Joyce [3] and Mateev [I1] introduced, independently, the same structure in
their study of knot theory. Joyce named it quandle. A quandle is a set X with a binary operation

XXX — X
(z,y) — 2 >y,

such that it satisfies the following axioms:

(Q1) For all z € X, we have z > = = z.

(Q2) For all x € X, the left multiplication map L, : X — X defined by L,(y) := x > y is a
bijective function.

(Q3) Forall z,y,z € X, wehave x> (y > 2) = (z > y) > (z > 2).

Joyce assigned to each knot K a knot quandle Q(K). He proved that if the knot quandles Q(K)
and Q(K') of two knots K and K’ are isomorphic, then the knots are equivalent, that is, the knot
quandle is a complete invariant and it can be used in the knot classification problem. In fact, the
three axioms in the quandle definition correspond whit the three Reidemeister movements, see the
Figure 1.



Figure 1: Quandle axioms and Reidemeister movements

In 1993, Fenn and Rourke introduced in [5] the concept of rack, as a generalization of quandle. A
rack is a set X with a binary operation > that satisfies the axioms (Q2) and (@3). The rack and
quandle structures emerged naturally in various mathematical contexts and they become objects
of especial interest in algebra and low dimension topology, for example, they have important ap-
plications in knot theory [8], in the study of Yang-Baxter equation [10] and in the study of another
algebraic structures such as rings [2], Hopf algebras [1] and Lie groups [9].

Due to the diverse range of applications that both racks and quandles have, it is important to
study these objects in a purely way as algebraic entities on their own right, rather than solely
based on their connections with other branches of mathematics. Several researchers have adopted
this approach, and even some recent investigations have begun with the study of the rack repre-
sentation theory [1]. Representation theory dates back to the late 19th century, when finite groups
were first represented in this way. Since then, it has become a fundamental tool with applications
in many areas of mathematics, both pure and applied.

In this work, we study rack and quandle structures from a purely algebraic perspective, with a
special focus on rack representation theory. Elhamdadi and Moutuou, introduced rack representa-
tion theory in [1] and established general properties. Here, we study their results and present new
findings. Specifically, we show a relation between strong irreducible representations of racks and
irreducible representations of finite groups. We prove that (see chapter 2),

Given a finite connected rack X then, every strong irreducible representation p : X — Conj(GL(V))
of X induces an irreducible representation p : Gx — GL(V) of its finite enveloping group
Gy, defined by Poatgn) = Pa for all x € X. PFurthermore, if p : X — Conj(GL(V)) and
¢: X — Conj(GL(V'")) are two irreducible strong representations of X such that p is equivalent
to ¢, then the induced representations p and ¢ of the group Gx are also equivalent.

The previous result allows us to study strong representations of a finite connected rack through
a representation of a finite group, which is a more familiar and extensively studied subject. Fur-
thermore, we also prove that,



Given a finite connected rack X then, every irreducible representation of its finite enveloping group
p: Gx — GL(V) induces an irreducible representation p : X — Conj(GL(V)) of the rack X,
defined by py := pg,(gz ) for all x € X. Furthermore, if p: Gx — GL(V) and ¢ : Gx — GL(V")
are two irreducible representations of Gx such that p is equivalent to ¢, then the induced represen-
tations p and ¢ of the rack X are also equivalent.

Observe that, in the previous result, the induced rack representation is not necessarily strong,
we prove that if the finite enveloping group has trivial center, then it is strong. Therefore, under
these conditions we have a bijective correspondence between strong irreducible rack representa-
tions and irreducible group representations.

We also study the relation between racks and an object that generalize the group structure, it is
called g-digroup and it was defined by Salazar et al in [15]. Since quandles and groups are closely
related, then one can think that this relation can be extended to g-digroups. In fact, we can get
a rack from a g-digroup and we can associate a g-digroup to a rack. We study this relation in the
last chapter.

This document is organized as follows. In Chapter 1, we review some basic concepts about rack
and quandle structure and we study the relation between quandle structure and group structure.
We define a new quandle that we have called permutation quandle, denoted by P, and prove that
its finite enveloping group Gp, , is exactly the symmetric group S,. Further, we study a new type
of racks called finitely stable racks, which is a concept introduced in [1]. Finally, analogous to
group theory, we study the notion of the rack ring. In Chapter 2 we study rack actions and rack
representation theory, with a focus in strong representations. In Chapter 3 we review some general
and basic properties about g-digroups and study the relation between rack structure and g-digroup
structure.



Chapter 1

Racks and Quandles

In this chapter we give a short review of some general concepts about rack and quandle structures.
We begin with the definition of quandle and we give some important examples, all of them intro-
duced by Joyce in [7]. In section 1.2 we study a relation between racks and groups. In section 1.3
we define a new quandle, that we called permutation quandle and we establish some properties of
it, specifically, we give a complete description of its finite enveloping group. In sections 1.4 and
1.5, we study finitely stable racks, a new concept introduced by Elhamdadi and Moutou in [4].
Finally, in section 1.7, analogous to the case of groups, we study the notion of rack ring.

1.1 Preliminaries

We start this section with the following definition.

Definition 1.1. A quandle is a set X with a binary operation

>: X X X — X
(x,y) — x >y,

such that it satisfies the following axioms:

(Q1) For all z € X, we have z > = = z.

(Q2) For all x € X, the left multiplication map L, : X — X defined by L,(y) ==z > y is a
bijective function.

(Q3) Forall z,y,z € X, we have x > (y > 2) = (x > y) > (z > 2).

If (X, ) satisfies axioms (Q2) and (Q3), but does not satisfy axiom (Q1), then X is called a rack.

Note that, according to the previous definition, every quandle is a rack. Therefore, we can consider
the rack structure as a generalization of the quandle structure.

Notation 1.1. For every element z,y of a rack X, we write x >~! y for the inverse function
L' (y).
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If (X, ) satisfies that L, o L, = id, for all z € X, that means, the function L, is its own inverse,
then we call X an tnvolutive quandle or an involutive rack, depending on whether it satisfies
the axiom (Q1) or not. Mituhisa Takasaki [17] used the term kei to refer to the structure of an
involutive quandle. Observe that, if X is a involutive quandle then we have

r> (z>y)=y; foralxyeX.
Rack and quandle structure emerge in various context, let us take a look at some examples:

Example 1.1. Let X be a set with the operation x >y =1y for all x,y € X, then X is a quandle.
This quandle is called trivial quandle.

Proof. Let us check that the quandle axioms are satisfied
(Ql) s> z=aforalzeX.

(Q2) Let z,y,z € X such that L,(y) = L.(z). Then z > y = 2 > z. Thus, from the definition of
>, y = z. Thereby L, is injective. Now, for all z € X we have L,(z) =x > z =z . Then L,
is bijective for all x € X.

(Q3) Let z,y,2 € X then z > (y > z) = > 2z = z. On the other hand we have
(x> y) > (x> 2) =y >z =z Therefore, axiom (3) holds.

Example 1.2. Let G be a group. We define the binary operation
>:GxG— G
(g, h) — g > h:=ghg™".

The set G with the operation > is a quandle, which is known as the conjugacy quandle. We
denote this quandle by Conj(G).

Proof. Let us check that the quandle axioms are satisfied.
(Q1) Note that z > z = zzz™ =z for all z € G.

(Q2) Let z,y,z € G such that L,(y) = L,(z). Then z > y = x > 2. Therefore, zyz™' = z227!,
and so y = x. Hence L, is injective. Besides, for all z € G, we have L,(z 7 'z22) = z >

(x712x) = zo~'zxz~! = 2. Then L, is surjective for all z € G.

(Q3) Let x,y,2 € Gthen x> (y > 2) = z > (yzy~ ') = zyzy~'x~1. On the other hand we have

(z>y)> (x> 2) = (zyz) > (zzz7t) = (zyz™ ) (wze ) (xyz™) 7! = zyzy o™t

Therefore axiom (Q3) holds.

Example 1.3. Let G be a group. We define the binary operation

>:GxGE— G
(g,h) —> g > h:= gh™'g.

The set G with the operation > is a quandle. We denote this quandle by Core(G).

11



Proof. Let us check that the quandle axioms are satisfied.
(Q1) Note that z > z = zx~'z =z for all z € G.

(Q2) Let x,y,z € G such that L,(y) = L,(z). Then z > y = z > 2. Therefore, ry~ 'z = rz7'z,
and so y = z. Hence L, is injective. Now, for all 2 € G we have L,(zz7'2) =z > (zz7'2) =

rx 'za~'x = 2. Then L, is surjective for all z € G.

(Q3) Let z,y,2 € G then z > (y > 2) = z > (yz~'y) = vy 'zy~'z. On the other hand, we have

-1
(x>y)> (x> 2) = (zy ') > (rz7 ) = (ey o) (zz7 ) Hay o) = 2y~ Lzy .
Therefore axiom (Q3) holds.

The following example introduces what is called the Takasaki quandle.

Example 1.4. Let G be an abelian group. We define the binary operation

>:GxGE— G
(x,y) —> x>y :=2x —y.

The set G with the operation > is an involutive quandle. This quandle is known as Takasaki
quandle.

Proof. Remark that the Takasaki quandle is the same Core(G) since, x > y = 2x—y = x+(—y)+=.
Thus, from the previous example, we have that it is a quandle. The involution property is easy to
check. Let z,y € G then

x> (xp>y)=az> 2r—y) =2r— 2z —y)=yv.

The following example introduces what is called the Alexander quandle.

Example 1.5. Let I' be a group and v a non-trivial element in T. Let A be a left Z|y*] -module.
Define the operation >,: A x A — A by

Ty y=7-(y—x)+x.
Then (A,1>,) is a quandle, known as the Alezander quandle.
Proof. Let us verify that the quandle axioms are satisfied. In fact,
(Q1) Note that z >y x =7 (v —x)+z ==z forall z € A

(Q2) For the second axiom we have to prove that L, is invertible, for all x € A. We claim that
L' (y) ="' (y—x)+uz, for all y € A, is the desired inverse of L,. In fact, we have,

(Ly o L;Y)(y) = Lo(L; ' (9))
=L,y (y—2)+u)
=y- [yl (y—2)+r—a]+x
=M -y-2)tr=y-—atar=y

12



and,

(Ly" o La)(y) = L (La(y))
vyt —al e

=y y—2)+tz=y—z+z=y.

Then L, is bijective.

(Q3) Let x,y,z € A, then

r>(y>z)=z> (v (2-y)+y)
=7y G-y t+y—al+a
=Y (z-y)+yy -yt
=Yz 491 =y + (1 -7z

On the other hand, we have

(zry)>(>z)=0-(y—2)+2)> (v (2 —2) + 1)
=y G—2)+2)—(v-(y—2)+2)]+ (v (y —2) +2)
=v(vz =) +yw—yr+w
=Yz + 71—y + (1 =)z,

Therefore axiom (()3) holds.

Definition 1.2. Let (X, >) and (Y, *) be racks.

(I) A map ¢: X — Y is called a rack homomorphism if it satisfies
d(x > h) = ¢(x) x p(h), for all z,h € X.

If ¢ is bijective then it is called an isomorphism. If X =Y and ¢ is bijective then it is called
an automorphism.

(II) We write Homyqcx(X,Y") for the set of rack homomorphisms from X to Y:

Homyoer(X,Y) :={¢: X — Y | ¢ is a function and ¢(z > h) = ¢(z) * ¢(h), for all
z,he X}

(III) We write Sym(X) or Sx for the group of all permutations of the rack X and Aut(X) for the
subgroup of Sym(X), of all automorphisms of the rack X. Thus,

Sym(X):={o: X — X | o is bijective},and
Aut(X) :={¢ € Sym(X) | ¢(z > y)=¢(z) > d(y) forall z,y € X}

13



(1V) A subset @ of a rack (X,>) is called subrack if @ is closed under the operation >. That is,
for every ¢, p € (), we have that g > p € Q.

Example 1.6. Let X be a rack. For all x € X, the map L, : X — X defined by L,(y) :=x >y
is an automorphism of X. Indeed, from aziom (Q3) we have

Ly z)=z> (y>z)=(z>y)> (x> 2) = L,(y) > L.(2), Vz,y e X.

Example 1.7. Let (X,>) and (Y, *) be racks and ¢ : X — Y a rack homomorphism. Then the
image of ¢, Im(¢) is a subrack of Y. In fact, let yy,y2 € Im(¢p) then, there exists x1,xo € X such
that yy = ¢(x1) and yo = ¢(x2). Since ¢ is a rack homomorphism,

Y1 * Yo = O(x1) * P(22) = d(a1 > 9).

Therefore, yy * yo € Im(¢). The result follows for all yy,y2 € Im(p), thus, Im(¢) is a subrack of
Y.

Lemma 1.1. Let G be a group. Consider the quandle Conj(G), then every conjugacy class of G
is a subquandle of Conj(G).

Proof. Let g € G and let Cy = {hgh™! | h € G} be the conjugacy class represented by g. Let
q,p € Cy, we have to prove that ¢ > p € C,. First, suppose that ¢ =p, then ¢ >p=p > p =
ppp~' =p € C,.

Now, suppose that ¢ # p. Since ¢,p € C, then there exists hy, hy € G such that p = high;' =
hi > g and q = hoghy ' = hy > g. We have,

q>p=qpq’
= (haghy ') (haghi ") (haghy ') ™!
= (haghs 'h1)g(hy thag™ hy ')
= (haghy "h1)g(haghy 'hy) ™"

Therefore, ¢ > p € C,. Thus, C, is a subquandle of Conj(G).

1.2 Related groups of a rack

There are three important groups associated to racks and quandles. These groups play an impor-
tant role in the understanding of those concepts themselves, because a group is a more familiar
and more studied structure. This relation allows us to translate some questions about quandles
into questions about groups and vice versa. Let us begin this section with the following definition.

Definition 1.3. Let X be a rack. Let F'(X) the free group on the set X and let N be the normal
subgroup generated by the words of the form (z > y)zy 'z~! where x,y € X. We define the
associated group, denoted by As(X), to be the quotient group F(X)/N.

As(X)=F(X)/{(x >y=ayz!, z,y€X)

14



This group is also called the enveloping group.

Observe that, we have two onto maps, the inclusion map ¢ : X — F(X) defined by «(z) := x for
all z € X and the canonical homomorphism 7 : F(X) — As(X) defined by n(z) := z for all
r € X. So we have a natural onto map, 1 : X — As(X) defined by n(z) := (7 oi)(x) = z. This
map is not necessarily injective, as we will see in the Example 1.11.

Notation 1.2. We will write g, to represent the imagine n(z) . That is, n(x) = g,.

Note that, from definition of the associated group As(X), it has the presentation
As(X) = (g , v € X | Gy = gxgygggla r,y € X).

Therefore, in As(X), we have the relation g,p, = 92949, ", for all z,y € X. Now, let z = z >~}
y € X, then z > z = y, therefore,

9y = Ja>z
::ngzggl-

hence ¢, = ¢, 9,9z

Theorem 1.1. Let (X,>>) and (Y, *) be racks and ¢ : X — Y be a rack homomorphism. Then
¢ induces a group homomorphism ¢ : As(X) — As(Y') such that ¢(g.) = gg(x) for all x € X.

Proof. Consider the map ny o ¢ : X — As(Y). From the universal property of free groups, there

exists a unique surjective group homomorphism fg : FI(X) — As(Y) such that f4(x) = gg() for

ill xr € X. Notice that, in As(Y") it holds that gg).g(:) = g¢(z)g¢(z)g;(1x), for all x,z € X. So, we
ave

fol(w > 2)az"la™) = fo(a > 2) folx) fo(2) 7 ()™
= g¢(m>z)g¢(x)9¢:(lz)g;é)

-1 -1
= 9¢(x)x6(2) 9() I (2) I ()

—1 —1 —1
= 9¢(2)96(2) D (2)98(x) I p(2) I ()

=1.

This implies that (z > 2)zz7'a™' C Kerfy, for all z,2 € X. Tt follows that fs define a group
homomorphism ¢ : As(X) — As(Y') such that ¢(g,) = fs(x) = gg(z) for all x € X. That is, ¢

makes the following diagram commute.
¢

X Y
Nt
As(X) 5 As(Y).

As is a functor from the category of racks into the category of groups and Conj is a functor from
the category of groups into the category of racks. Moreover, the functor As is the left adjoint to
the functor Conj (see [13] [8]). Namely, for any rack X and any group G we have

15



Homg, (As(X), G) = Homyaa(X, Conj(@G)).
This claim is proved in the following theorem.

Theorem 1.2. (Universal property)

Let G be a group, X be a rack and ¢ : X — Conj(G) be a rack homomorphism. Then ¢
induces a unique group homomorphism ¢ As(X) — G such that ¢(gx) = ¢(x) for allx € X.
Conversely, let 1 : As(X) — G a group homomorphism then 1 induces a rack homomorphism
U X — Conj(G) such that ¥(x) = 1(gy) for allz € X

Proof. Let ¢ : X — Conj(G) be a rack homomorphism. Remark that the quandle Conj(G) is
the set G with the conjugation operation g * h = ghg™'. Since G = Conj(G) as sets, then the
function ¢ : X — G makes sense. From the universal property of free groups, there exists an
unique group homomorphism f,; : F(X) — G such that f,(z) = ¢(z) for all z € X. Now, in G,
we have that ¢(z) * ¢(z) = ¢(x)p(2)p(x)!, for all z, 2 € X. So,

fol(z & 2)z2ra™) = fola > 2) fo(@)[fo(2)] [fs(@ )] '
= o(z > y)d(2)[6(2)] " [p(2)]

I
= [6() * ¢(2)|6(2)[¢(2)] " [p(2)] "
= 1.

This implies that (z > 2)xz"'z™t C Kerfy, for all z,z € X. Tt follows that f, defines an unique
group homomorphism ¢ : As(X) — G such that ¢(g,) = fs(x) = ¢(x) for all x € X. That is, ¢
makes the following diagram commute,

X—>A5

\b

Conversely, let ¢ : As(X) — G be a group homomorphism. Since in As(X) we have ga-.9.9, " 9,
1 then for every x,z € X,

(1) = (2929, ' 97 ")
- 1/}(gmbz)¢(gx)w(gz)_lw(gac)_l
1

P (Gasz) = V(92)0(9:)0(9:)

Consider the natural map 7 : X — As(X), then the map ) : X — Conj(G) defined by (z) =

(¥ o n)(x) = 1(gs) is a rack homomorphism. Indeed, 1h(x > 2) = 1)(garz) = ¥(g.)1(g:)1(g2)™F =
Y(x)(y)w(z)~t. Moreover, ¢ makes the following diagram commute,

X—>A5

\w

16



Proposition 1.1. The associated group As(X) of a rack X is an infinite set.

Proof. Let the map ® : X — Conj(Z) defined by ®(x) = 1 for all z € X. Denote by * the
operation that makes C'onj(Z) into a rack. Note that for every x,y € X we have

Oz >y)=1
—1+1-1
= ®(z) + O(y) — 0(x)
= o(x) * o(y)-

Therefore, the map @ is a rack homomorphism. By Theorem 1.2, it induces a group homomorphism
d: As(X ) — 7Z defined by gb(gx) — 1 for all z € X. Observe that & is surjective. In fact, let

neZand z € X, then ®(g7) = B(g,) + P(ga) + - - - + P(g2) = n®(g,) = n. Hence, it is surjective.
Therefore, there exists an injective function f : Z — As(X). Thus, As(X) is an infinite set.

Now, we introduce another group associated to a rack, called the inner automorphism group.

Definition 1.4. The inner automorphism group, denoted by Inn(X), is defined as the sub-
group of Aut(X), generated by the permutation functions L,. Concisely, the group is

Inn(X) = (L, | z € X).

Notation 1.3. From now on we write fg for the composition function fo g and id for the identity
function.

Proposition 1.2. Let X be a rack, the map L : X — Conj(Inn(X)) defined by L(x) := L,, is
a rack homomorphism. That means, Lyn, = L,L,L;* for all z,y € X.

Proof. Let z,y,z € X, by axiom (Q3) we have

= Lo(Ly(L, " (2)))-

Therefore, Ly, = LxLyLajl.

Corollary 1.1. Let X be a rack then we have Ly.-1, = L;'L,L,.
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Proof. Let x,y € X, suppose that z = 2 >~! y, thus # > 2 = y. It follows that

Ly = Lzl>z
— L.

Therefore, Lyp-1, = Ly L, L,.
[ |

If G is a group then the inner automorphism group of the conjugacy quandle Inn(Conj(G)), is
exactly the usual one that we have in group theory, as we show in the next example.

Example 1.8. Let G be a group. Consider the map L : G — Inn(Conj(G)), defined by
L(g)(z) := Ly(x) = gzg™* for all g,x € G. Let x,g,h € G then,

L(zg)(h) = Lag(h) = (zg)h(zg) " = 2(ghg™ ")z~ = 2[Ly(h)]x™" = La(Ly(h)) = (L(z)L(g))(h)-

Hence, L is a group homomorphism. Furthermore, it is surjective. Indeed, given f € Inn(Conj(G)),
it has the form f = Ly Lyt --- LS, where x; € G and ¢; € {1, —1} for all i € {1,...,n}. Besides,

xr1’

note that f = L L -+ LY = L(xga,' 7 - x1"). So it is surjective.

Let g be an element of the center Z(G) of G. For every x € G we have
Ly(z) = gxg™' = .

Thus, L(g) = id, it implies that Z(G) C KerL. Conversely, let g € Ker(L), then for allx € X, we
have Ly(x) = x. From the definition of Ly, grg~" = x, hence gr = xg. Therefore, g € Z(G). From

Y

the previous calculation, Z(G) = KerL. From the first isomorphism theorem, Inn(Conj(G)) =
G/Z(G).

A

We can think in a natural action of the inner automorphism group Inn(X) of a rack X, over the
underlying set X.

Lemma 1.2. Let X be a rack, then the function
o:Inn(X)x X — X
(any) — Ly ey = Lx(y) =z D>y,
is a left action of the group Inn(X) over the set X.

Proof. Let us see that the function is well defined. Let (L., y) = (L, y’) € Inn(X) x X, then we
have that L, = L, and y = ¢/, thus, L,(y) = L ('), therefore L, @ y = L, @ y/. So, it is well
defined.

For the identity map id € Inn(X) we have id e x = id(x) = « for all x € X. Further, given
x,y,z € X then

Ly o (Lyez)=Ly(Ly(2)) = (Laly)(2) = (LaLy) @ 2.
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So, it is a group action.
|

The orbits of this action are known as the connected components of X. The case when the
rack has just one orbit is very interesting.

Definition 1.5. A rack X is said to be connected (or indecomposable) if the action of Inn(X)
on X is transitive, that means, if it has only one orbit.

Let X be a connected rack and let z € X be an arbitrary element. Since X is connected then the
orbit of z, denoted &, is equal to X.

O, ={ye X | JpelInn(X): ¢x)=y}=X.
Thus, given y € X there exists ¢ € Inn(X) such that ¢(x) = y. Since ¢ € Inn(X) then it has the
form ¢ = LG Lgn—t -+ LgL, where x; € X and ¢; € {1, -1}, for all i € {1,...,n}. So, we have

y = o(x)
— Lo Lt - L9 (2)

Tn " Tp—1

=T, > (ill'nfl >t ( c > (£C1 > SC) e )
In other words, a rack X is connected if and only if for all =,y € X there exists xy, ..., x, € X such
that Lg» L~ -+ L3} (x) = y, where ¢; € {1, =1}, for all 7 € {1,..,n}.
In the following examples we describe the associated group and the inner automorphism group of

some quandles.

Example 1.9. Let us consider the cyclic group of order two Zq = {0,1}. Consider the Takasaki
quandle (Zy, ™) with the operation x >y = 2z —y. The table of this quandle is:

> 0|1
0|0]|1
1|01

From the table we have Ly = L = id. Then, the inner automorphism group is the trivial one.
That is, Inn(Zs) = {id}. Note that, the quandle is not connected, it has two connected components

0y = {0} and 0, = {1}.
Let us find the group As(Zs). Consider the function
¢: Ly — Conj(Z x Z)
0+— (1,0)
1+— (0,1).

Note that, $(0 > 1) = ¢(1) = ¢(1)+¢(0) — ¢(0). Similarly, we have ¢(1 > 0) = @(0)+ (1) — P(1).
It follows that ¢ is a rack homomorphism, then by Theorem 1.2, ¢ induces a group homomorphism
¢:As(Zy) — L X7
go — #(0)
g1 — ¢(1).
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Observe that, in As(Zy), we have gos1 = g1 = 909195 ", therefore gogi = g190. It Jollows that, every
w € As(Zsy) is of the form w = gigl, where i,j € Z. In particular, for w € Kero,

(0,0)

w)

90)" + (g1)

0)" + (1)’
i,0) + (0, 7).

Il
< S O o

(
(g691)
(90)’
(

—~

Therefore, i = j = 0 and so w = gigl = 1. It follows that ker(¢) = {1}, and thus As(Zy) = Z x Z.
A

Example 1.10. Let us denote the cyclic group of order three by Zs = {0,1,2}. Consider the
Takasaki quandle (Zs,t>), with the operation x >y = 2x — y. The table of such quandle is:

V| =S|IV
~lel oo
SYESN RN
SRS N

Note that, this quandle is connected. Let us find the group Inn(Zs), since Takasaki quandle is
involutive we have L} = L? = L% = id. From Proposition 1.2 we have Ly = Liny = LiLoL7' =
L1L2L1 and LU = L2|>1 = LQLlLQ. It fO”OﬂJS that L1L2L1 = L2L1L2, SO <L1L2)3 = Zd, and,

Ly = Ly(L1 Ly)?
= LlDO(LlLZ)2
= L LoLy Ly LyLy Ly
= LO>2L0L2L1L2
= LoLyLoLoLyLy Ly
= Lo(Ly Ly).

Further,

Ly = Los1 = LoL1 Lo
= Lo(LoL1L2) Lo
= (Lng)Lo.
Then, we can take the automorphism Ly and Ly Ly to be the generators of the group Inn(Zs). Note
that, L? = (Lo(L1L2))* = id. Hence, we have Lo(LiLy) = (LoL1)Lg. Since Ly = Lo(L1Ls) and
Ly = (L Ly) Ly, then Lo(LiLy) = (LaLy)Lo = [((L1L2)Lo)(Lo(L1Ls))|Lo = (LyLy)*Lo. Therefore,

every ¢ € Inn(Zs) is of the form ¢ = Li(LiLy)? where i € {0,1} and j € {0,1,2}. This implies
that the group Inn(Zs) has siz elements

[nn(Zg) = {Zd, Lo, Lo(LlLQ), LlLQ, <L1L2>2, Lo(Lng)Q}.
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Since Lo(LyLy) = (L1Ly)? Lo, then it is not an abelian group , so Inn(Zs) = Ss.
A

Example 1.11. Let X = {1,2,3} and 0 = (1 2 3) € S3. The set X is a rack with the binary
operation >: X x X — X, defined by i > j = o(j), for all i,j € X. Indeed, note that
L; = o for all i € X, since o is bijective then L; is bijective, for every ¢ € X. Furthermore,
i>(j>k)=1> o(k) =0%k). On the other hand, (i > j) > (i > k) = o(j) > o(k) = o*(k).
Therefore, (X,r>) is a rack. The table of this rack is

Lo| Lo| LWw|
~ |~ i~ o

Ll |~V
o do| do| N

Since L1 = Ly = L3 then, the inner automorphism group Inn(X) = (L) = Zs.
Note that, g1o1 = g2 = glglgl_l, thereby, we have go = g1. Similarly, gin0 = g3 = glgggl_l = q.
Then As(X) = (q1) = Z.

A

In general, for a rack X, it is not always easy to give a complete description of the group Inn(X).
In [3], they compute the inner automorphism group of some quandles.

Grana et al, in [0], introduce another group associated to finite connected racks. They named
it, the finite enveloping group, and as the name suggests, this group is finite. We follow the
construction given by them, but for the finiteness we give a slightly different proof.

Notation 1.4. Let X be a rack, z,y € X and k € N; we write
ePy=Ly) = (x> (> (x>y)---), multiplying k-times.
Lemma 1.3. Let X be a rack and n € N . Let xq,...,x,,y,2 € X such that
Lo Ly - L3 (2) = .

where ¢; = £1, for alli € {1,...,n}. Then, L L'~ --- L L. = L, L& L' -+ - LS

n

Proof. Since L¢ L' -+ LS (2) =y, then z, > (zp—y > (- > (21 > 2)--+)) = y. From

el T

Proposition 1.2, it follows that

Ly = Lappen (o151 (052 (@101 2)-))
= L3 (Lo iponmr (mezanerz)) Ly

== L;Z I:L;T:l:ll |:L1n72|>6n72(...>52 (1'1 >€1 Z) )]L_Enfl]L;Sn

Tn—1

_ €En T €n—1 €1 —€1 —€n—1717 —€n
L L LS L L L L

n

€n [n=1  Te — €n [n=1  Tel
Hence, LJLL 9 Lmle = LyLm’;L I Lml.

n n
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Lemma 1.4. Let X be a rack and n € N, then we have the following relations in the associated
group As(X),

(1) gggy = g:m>"ygg; Vl’, Y e X.

Proof. We use induction on n at the same time for the numerals (1) and (2). Let n = 1, since in
the associated group, we have the relation g,., = ¢.9,9; ", for all z,y € X, then ¢.g, = guryJa-
Therefore, the equalities (1) and (2) are satisfied for n = 1. Now,

(1) Suppose that go'y = gyenygr, we have to prove that ¢it'y = gypnt1,git!

definition of As(X), we have

. In fact, from the

n+l __ n+1
GrzertiyGy = Goo(apny) g
_ -1 _n+1
- g:cga:bnygq; gaj

= 9.(90949,™)95 9o t!

— g;z-klgy‘

Getting in this way what we want to prove.

(2) Suppose that g,g;' = gi., 9., we have to prove that g,gi*!' = g7f g,. From definition of
As(X) we have
Ioty® = GaryGiyYa
= Gooy(929095 ") 9a
= (929497 ) (929597 ') 9
= G295

Thus, we get the proof.
|

Proposition 1.3. Let X be a rack and x € X such that L, has finite order n, then in the associated
group As(X), we have that g € Z(As(X)), where Z(As(X)) is the center of the group As(X).

Proof. Suppose that L? = id. Note that, for every y € X we have x >" y = L”(y) = y. Therefore,
from Lemma 1.4 (1),

959y = GaryGy = 9yYs-
Hence, the element g7 commutes with all the generators of As(X), it follows that ¢} € Z(As(X)).
|

Theorem 1.3. Let X be a finite connected rack. Then for every x € X, the permutations L, €
Inn(x) have the same order. Furthermore, if n is the order of all the permutations L, then, in the
associated group As(X), we have the relation g = g, for all x,y € X.
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Proof. Since X is finite, then the symmetric group Sym(X) of X is finite. From the definition of
rack, L, € Sym(X), thus they have finite order.

Since X is connected, then for every x,y € X there exits ¢ € Inn(X) such that ¢(z) = y. From the
definition of Inn(X), the function ¢ is the form ¢ = Ly --- L¢, where x4, ..,2, € X and ¢; = £1.

Then, Ly --- L3} (z) = y. From Lemma 1.3 , it follows that Ly IjE’” Ve LS Ly = Ly Lo Lo LS
and so, L, = ¢~ 'L,¢. Thereby, all the permutatlons are eonjugate elements T hus they have the
same order.

Suppose that n is the order of all permutations L,. Then for x,y € X we have

9y = I L} (2)
= Guper (xp_ 1 >r=1(->2 (2 >1g)- )
— fr —€p
- gx;gwr 1>r=1 (- Df2(x1>€11)n)gxr7

€Er—1 —€r—1
- ngg;p: 1gx7« 2> r=2 (- >€2 (1 > x) - )g:p7 Tl ng

Let w := g5 -+ - g<! then we have g, = wg,w™'. From Lemma 1.4 (2),

IroyJz = Guly
= g:fc(WQmwil)n
= go(Wlotw™ ") (Wgrw ™) (WYatw
= gm(Wgz )( )n ?

1)n—2

WGw

= gw(wggw_l).

From Proposition 1.3, the elements g7, g; and gy, belongs to Z(As(X)), then gi\., g, = 9295,
On the other hand, g.(wgfw™") = g.g5, therefore, g = g7_,. Again, from Lemma 1.4 (2),

g =gry = 9a90 95 -
So, gz = g,,-
m

Let X be a finite and connected rack, let zy € X and n be the order of the function L,,. Observe
that, from the previous theorem and Proposition 1.3, the group (g2 ) C As(X) generated by gl ,
is a normal subgroup. Therefore, we can consider the quotient group As(X)/(gl ).

Definition 1.6. Let X be a finite and connected rack. The quotient group As(X)/(g ), denoted
by Gx, is called the finite enveloping group.

Theorem 1.4. Let X be finite and connected rack, then the group Gx is finite.
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Proof. Let X = {xo,...,vx—1} be a connected rack. Suppose that n € N is the order of L,, for all
i € {0,....,k —1}. From Theorem 1.3, for every i € {0,...,k — 1}, we have that g7 (g5.) = (95,),
thus, g1 (g3,) = 927 (g2, )-

We claim that every word w € Gx is of the form w = gi! g;* -~ g; (g7,) where m < k, u, €
{0,1,...,n =1}, ;, € X for all t € {1,...,m} and g,, # s, , for every r # 5. In fact, let w € Gx
thus, from the definition of Gx, w = 9ar 92, ---gggﬁm (95,), where e, € {0,1,...,n — 1}. Suppose
that there exists r < s such that g,, = g,, and for every t € {r +1,...,s — 1} it satisfies that
9z;, # Gx;,- Therefore, we have

w= (952 92, gyt (gmo))ga, 9t - g 95 (gno ) )(gat 95t, - g (93,))-

First, we prove that in the associated group As(X) we have

er er+l ... 4€s—1 .S — €r4+1 .. oSl es+er
gajjT,gaer+1 ga"jsflgx]'s gl’jrberxjr+1 gZBjTDeTCEj571
1 1 — €t — A€t
We use induction on ¢,. Let e, =1 then, by Lemma 1.4 (2), we have that g., 95" = g5’ oo, 9a,,

for every t € {r+1,...,s — 1}, it follows that,

Erdl ., gs—1 Cs — Cr+1 €r+2 ., 46
gmj”‘ ngT+1 ngs—l ngs ngT' ijr+l ng" ngr+2 ngs
_ Ert1 €r42 €s
- ngr |>l‘jT+1 ngr l>a:jr+2 g-%jT ngs
_ _Er41 . €s5—1 €s
- ngrberxjﬂ_l ngrberxjs_lgmrgsz
_ Ert1 €s—1 es+1
o ngrDeijTJrl gxirDEijs—lngs
So, the result follows for e, = 1. Now, suppose that
er—1 eri1 ... 4€s—1 S — 6+l PR | es+er—1
ngr ngr-!—l gzjs—lgzjs ngrber_lxjr+1 gm]’rber_lx]’s_lgw]’s )
Then, from Lemma 1.4 (2),
€r eril | 4€s—1 5 er—1 ery1 |, €s—1 S
Yuj, Jzj, Yuj,  Jajo = Jai [g%'r Yzj, . ngsflgifjs]
o €r41 L. Bl es+er—1
- 'ngr [ngr>6r*1$jr+l gﬁﬂerETflij,lgmjs ]
__Er+41 Cr42 . €s—1 es+er—1
- gmj?”bermjr+lngrng'r'>6T71I.7r+2 ga;erSTilij,lngs
_ _er4l €r42 L. Bl es+er—1
= Yz, BT, 9z, D>ErTj, Lo Gz;, gafjr Ber—te; gm]s
_ _Er41 €r42 €s—1 ester—1
= Jzjoera, Jujeerag, Yaj,era;, 9zje Ga;,
_ Cr41 Cr42 . €s—1 es+er
gajerEijr+1 gmerETJ,’]‘T+2 gl‘ereijsflngs .

And the result follows. Now, observe that g, pers;, # gu;,, for every ¢ € {r+1,...,s—1}. In effect,
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suppose that g, pers; = g, for somet € {r+1,...,s—1}. From the definition of As(X),

g:l?jr = gl'jTDETIDjt

- gijD(xjrbe"'flxjt)
_ —1
= Gaj, Jujoer—taj, 9,
_ —1
- gij gijD(IjTDeT_QIjt)ngT
—2

_ 2
- ngr ngTDeT_QIjt ngr

_er—1 —er+1
_gmjr gl‘jrbxjtngr

el 1y, —ertl
_gx; (gl‘jrngtga:jr)ng:
_ e —e
o gx;r ga:jt gmer'
__ €r —er __ er—er+1 __ _ : : ;
Therefore, we have g,; = 9o 925,92, = 9z " = Gay = Gay, s which contradicts the assumption

that for every t € {r+1,...,5 =1}, go; # gu;,- Thus, g, vers;, # 9o, foreveryt € {r+1,...,s—1}.
From the above, we can write the word w as

w = (go; 9o, - Gt Gu )95 9™t - 9 g (e ) (9T 952, - ga {9a)

Tj
r+1
— el ez .. er—1 < n> Er41 L. oGl es+er< n> €s+1 H€s+2 .. AEm < n>
(g$jlng2 ngrq Yz )(ngTDerxjr+l gm]’rbermﬂ'sqgl’js Gzo )(ngs+lgsz+2 gwjm Gzo )
— 461 €2 L. oEr—1 Crt+l BPSLEES | ester €st1 Es+2 .. ,Em n
ga“h ngz ‘gzjr71 Yz;, DTy g Gaj, er Tjs—1 gzjs g$js+1 ngs+2 ngm <gm0>

=9} G (9.

From where g,, # g, , for every r # s. If m > k. Then, we would have repeated occurrences and
we can apply the same process shown above to reduce the word. Therefore, every word w € Gx is
of the form w = g3 --- gy (gy,), where m <k, uy € {0,1,....,n — 1}, @, € X for all t € {1,...,m}
and g,, # s, for every r # s. It follows that Gy is finite.

Example 1.12. Let X = {1,2,3} be the rack of Example 1.11. The table of this rack is

> (1283
1|23 1
21231
31231

Note that this rack is connected. Indeed, we have that Ly(1) = 2, L3(1) = 3 and L3(1) = 1, thus
Oy = X. From the table we have that L} = id for alli € X. Since g = go = g3 (see Example

1.11) then gi1{g3) = g2(g3) = g3(g3). Therefore Gx = span{g{g})} = Zs.

1.3 The Permutation Quandle

In general, it is not easy to describe the finite enveloping group of a rack. Vendramin, in [18],
computed (with a GAP Package) the finite enveloping group of connected quandles of order less
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than 36. Based on his results, we have identified the finite enveloping group of a quandle that we
refer to as the permutation quandle.

It is well known that the set of all transpositions of the symmetric group S,,, forms a conjugacy
class of S,,. Thus, from Lemma 1.1, that set is a subquandle of the quandle Conj(S,).

Definition 1.7. Consider the conjugacy quandle Conj(S,) of the symmetric group S,, with n > 3.
We define the permutation quandle, denoted by PP, , as the set of all transpositions of S,, with
conjugation operation. That is, the permutation quandle P, is the set

Py = {(4) [ (1 J) € S},

with the operation (i j) > (k) = (i 7)(k r)(@ j)~" = (i j)(k r)(i j), where (i j) denotes the
transposition that interchanges 7 and j.

As we mentioned in the paragraph previous to Definition 1.7, IP, is closed under the conjugation
operation (i j) > (kr) = (i j)(k r)(¢ j). Thus, (P,,>) is a subquandle of Conj(S,,). The name of
the permutation quandle will be justified later on. For now, note that for every (i j), (k r) € Py,
we have

(0 3) > [0 5) > (k)] = (@ 7) > [(@ )k r)(i j)]
(@ )@ )k )@ )]G )
(k7).

So, it is an nvolutive quandle.

Example 1.13. Consider the permutation quandle Ps = {(i j) | (i j) € Ss}. That is, Py =
{(12),(13),(23)}. Let us do the table of this quandle.

>(23)=(12)(23)(12)=(1
> =(12)(13)(12) =
> = 12)(12)=(1
3) > (23)=(13)(23)(13) = (
> =(13)(13)(13)=
> = 12) =
23) =(23)(23)(23) = (
23) > =(23)(13)(23)=(
2 3) = (2 (

Then,

> (2 3|1 3)|a 2
23 231213
(1 3) | (12 (13 (23
(1 2)| (1 3) (2 3) (1 2)
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Lemma 1.5. The permutation quandle P, is connected.

Proof. Let (i j), (L t) € P,. Since (i j) = (5 i), for all (i j) € P,, then without loss of generality,
we have three cases

(D) If (@ ) = (L1) then L p[(1 )] = (1 7) &> (Lt) = (@ 5)(L 8)(7 5) = (i j)-
(II) Suppose that ¢ # 1 and j =t, then L [(l t)] = (1) > (1 t) = (@ D) t)(i 1) = (i t) = (i j).

(1) T # Land j # ¢ then Ly oL ()] = GO & [ 1) > (0] = (G £) > [ DA ) 1)] =
GHB ) =G O6EHG =i )).

Therefore the permutation quandle P, is connected.

The next proposition provides us a complete description of the finite enveloping group Gp, of
the permutation quandle P,,. Specifically, we prove that Gp, = S,, which justifies the name
“permutation quandle”.

Proposition 1.4. Let P,, be the permutation quandle then its finite enveloping group Gp, 1is iso-
morphic to the symmetric group S,.

Proof. Consider the function ¢ : P, — Conj(S,), defined by ¢|[(i 5)] := (i j) for all (i j) € P,,.
Since P, is a subquandle of Conj(S,,), then for every (i j), (k r) € P,, we have that (i j) > (k) €
P,,. That is, there exists (I t) € P,, C S, such that (i j) > (k) = (I t), then

Pl g) > (k)] = 9[(1 1))
— (1)
= (ij)> (k)
= [ J)] & Pk 7).

Which implies that ¢ is a quandle homomorphism. Now, from Theorem 1.2 there exists a group
homomorphism 1) : As(P,) — S,, such that w( 7)) = [(z j)]. Since the permutation quandle is
involutive and connected, then L?z j = id, for all (z j) € P,. Which implies that g(2l. = g(ri), for
all (i j), (k r) € P,,. Observe that,

zNg?n)) = 1/32(9(12)) =(12)* =1,

Therefore, (g 12)> C ker(zﬂ). Thus, ¢ induces a group homomorphism ¥ : Gp, — S,, such that

w(g(w)<g(12)>) @(g(ij)) = [(i j)] = (i j). Let us see that v is bijective. In fact, let o € S,, since
the set of all transpositions is a generating set of S,, then there exist (i1 1), .., (ix jr) € S, such
that o = (i1 j1)(i2 ja2) - - - (ix Jx). Therefore,

(_Z1 Ji)(iz j2) - - _(ik Jk) .
@Zj( i171) < 12)>)¢(9(i2j2)<9(212)>) w(g(lkjk)<g(2l2)>>
¢(g(11]1 Y(izg2) " 'g(ikjk)<g(212)>)‘
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Hence, v is surjective.

Now, we use the presentation of the symmetric group S, = (04, ....,0,_1 | 02 = 1,(0:041)® =
1,(0i05)*=1,|j—1| > 1), where o, = (i i+ 1) for all i € {1,..,n — 1} to prove the injectivity.
Let (k r) € P, since (k r) = (r k) without loss of generality we suppose that k& < r. Therefore,
r—k>0.Ifr—k=1, then r = k+1 and we have that (k r) = (k k+1). If r—k > 1, note that,

(kr)y=(k k+1)(k+1 r)(k k+1)
=k k+1)>(k+1 r),

(k+1 r)=(k+1 k+2)(k+2 r)(k+1 k+2)
=k+1 k+2)>(k+2 1),

r=2r)y=@r—-2r—-0)0r—-1r)(r—2 r—1)
=(r=2r—-1)p>((r—-1r).

Therefore,
kry=((k kE+1)>[(k+1 k+2)>[-->[r—2r—-1)> -1 7r)] -]
From where, it follows that

9k r) = 9k k+1)>[(k+1 k+2)>[->[(r—2 r—1)>(r—1 r)]-]

= 9k k+1)G(k+1 k+2)>[->[(r—2 r—1)>(r—1 r)]---}g(_klkﬂ)

1 1
= 9k k+DI(k+1 k+2)J (k42 k3)>[->[(r=2 r=1)>(r=1 7)]-19 (k41 k+2)9(k k+1)

-1 1 -1
= 9k k+1D) (k41 k+2) " Gr=2 =191 )2 r—1) " Ikt1 k+2)9(k k1)

Therefore, the set of elements {g; i+1) € As(Py) | ¢ = 1,...,n—1} is a generating set of As(IP,) and
thus, the set {g(i i11)(971)) € G, | i =1,....,n — 1} is a generating set of Gp,. Now, note that for
every i =1,...,n—1, we have that (i i+1)> (i+1i4+2)=(ti+1)(i+1i+2)(ii+1) = (ii+2)
and (i +1i+2)>(ti+1)=G+1i+2)@i+1)(i+1i+2)=(ii+2). Therefore,

(g(i i+1)9(i+1 i+2))3 = 96 i+1)9G+1 i+2)90 i+1)96E+1 i4+2)9( i+1)G+1 i4-2)
= 96 i+1)>(i+1 i+2)9(i+1 i+2)>(i i+1)
= 93 i+2)9( i+2) = 9(21 i+2)"
It follows that (g(i i+1)ga+1 i+2) <g(212)>)3 = g(Qi i+2) <g(212)> = <g(212)> = lg, -
Let i,j € {1,...,n— 1} such that |j —¢| > 1. We want to prove that (g i+1)9(; j+1)<g(212)>)2 = 1g,, -
Since |j — ¢| > 1 we have two cases:

o Ifj—i>1thenj>1+ithen (i i+1)>(j j+1)=0G i+1)(j j+1)(@ i+1)=(j j+1),
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therefore

(g(i i+1)9(j j+1) < 12)>) (g(l i+1)9( 3+1)<9(212)>)(9(i i+1)9(j j+1)<9(212)>)
= (96 #1906 7+D96 i+1)9G j+1)<9(212)>
= 96 i+ +1IG J+1)<9(212)>
= 9G i+1)9G j+1)<9(12)>
= (9he)) = Las, -
o Ifj—i< —1,thenj<i—1then (i i+1)> (j j+1)=(0G i+1)(j j+1)(@ i+1)=(j j+1),
therefore

2

(g(i i+1)9( j+1)<9(212)>) = <9(212)> = 1Gu»n-

Then, the group Gp, satisfies all the relations of the presentation of S,. It follows that, there
exists a group epimorphism ¢ : S, — Gp,, which implies that |Gp, | < n!. Besides, we have that
the homomorphism v : Gp, — S, is surjective, then |S,| < |Gp,|. Because |Gp,| < n!, then
|Gp, | = n!. Thus, 1 must be bijective, i.e, the map

TZ . G]pn — Sn
9 j)<9(212)> — (i J),

is a group isomorphism.

1.4 Finitely stable racks

Elhamdadi and Moutuou in [1] defined a new class of racks, called finitely stable, in an attempt
to capture the notion of identity and center in the category of racks and quandles. We study this
racks and complete the details of some examples and proofs.

Notation 1.5. If uq,us, ..., u, are elements in a rack X, then for a x € X we will write
(ui)y > x = up > (o..(uz > (ug > (ug > x)))...).
Definition 1.8. A stabilizer v in a rack X is an element such that
ubx=uxforall z e X.

Note that, a stabilizer u in a rack X satisfies that L, (z) = x for all € X, then L, is the identity
function in the group Inn(X).

Example 1.14. Let G be a group and u a stabilizer in Conj(G), we have

g=ubyg

= ugu_l.

Hence, ug = gu. The result follows for all g € G. Thus u belongs to the center Z(G) of G . Then,
the stabilizers of Conj(G) are the elements of Z(G).
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The previous example shows us that the definition of stabilizer allows us to capture the notion of
the center of a rack. Elhamdadi and Moutuou in [1] take the property that a rack has a stabilizer
and they weaken it by the following definition:

Definition 1.9. Let X be a rack

1. A stabilizing family of order n for X is a finite set {uy,us, ..., u,} C X such that
(u)i, > =ux, Vo € X.

in other words, L., L, _,...L,, =1id.

2. The n-center X, denoted by S™(X), is the collection of all stabilizing families of order n for
X.

3. The collection

of all stabilizing families for X is called the center of X.

Lemma 1.6. Let X be a rack, {u;}?_, € S"(X) and o an element of the symmetric group S,. If
o€ ((234..n1)), then {u,u}i, € S™(X).

Proof. Let o € {(2 3 4... n 1)), then 0 = (2 3 4... n 1)k, where 1 < k < n. We proceed by
induction on k. Suppose that k = 1, then 0 = (23 4... n 1). Let n € N and {u;}" ; be a stabilizing
family of order n for X. From the definition of stabilizing family, L, L., ,...L,, = id. Since L,,
is invertible, it follows that Ly, Ly, _,...Lu, = L,'. Thus, we have

1

id =L, L,
= Ly, (Ly, ...Lyy Lyy)
= Luo'(n) Lua(nq)'“Lug(Q) Luo'(l)'

Therefore, {u i}, € S™(X). Suppose that the result holds for some k < n. Let 0 =
(234...n1)*1andlet 7 = (234...n1)". Notethat,oc = (234..n1)*(234...n1) =7(234...n1).
Thereby, o(n) = 7(1) and o(i) = 7(i+ 1), for every ¢ € {1,2,...,n—1}. Let {u;}!; be a stabilizing

family of order n for X. Since the result holds for k, then Lufm) LuT(nq)'"LuT(z)LuT(n = id. Ap-
plying the same process shown for the case kK = 1, we have Ly, L,y Ly - Lou, ) = 2d which
implies that Ly, Lu,, ) --Lu, g Lu,q, = td. So, the result follows for k£ + 1.

[ |

Definition 1.10. A rack X is said to be finitely stable if S(X) # (). Further, if S"(X) # () for
some n € N, then the rack is said to be n-stable.

The following examples illustrate the previous definitions.

Example 1.15. FEvery finite rack is finitely stable. In fact, let X be a finite rack of order n. Then,
the symmetric group of X, Sym(X), is finite with order n!. Let x € X, since L, € Sym(X) then
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L = id.
Hence, the family {x}", is a stabilizing family for X. So, S(X) # 0.

Example 1.16. Let R the set of real numbers with the Takasaki quandle structure
r>y=2xr—vy; r,y €R.

Let t € R and {x1,xs, ...,x,} an arbitrary subset of real numbers. Notice that

()i, >t=x,> (.> (z3> (22 > (21 > 1)))...)
=2, D> (.. D> (23> (2> (221 — 1)))...)
=z, > (.. > (x3 > (229 — 221 + 1))...)
=Ty > (... > (203 — 229 + 227 — 1)...)

=2 (=) an_ia] + (1)t

=1

Then, we can form a stabilizing family of order 2n by setting {x1, T1, o, Ta, T3, T3, ..., T, Tn }. Thus,
the Takasaki quandle (R,r>), admits infinite stabilizing families of even order.

Example 1.17. Let G be a non-trivial group with the Core(G) quandle structure
g> h:=gh7tg, g,h€Qq.

Let h € G and {q1, g2, ..., gn} an arbitrary subset of G. Then

(9i)izi > h=gn > (.. > (g3 > (92 > (g1 > R)))...)
=g &> (. > (g3 > (92 > (91h7'g1)))-)
= gn > (. > (g3 > (9291 'hgy ' 92))-..)
= gn D> (. > (9395 '1h 9195 ' g3)-.)

n—1 n
-1 i _1\n —1 n—j
=[Lo1- 2" L)
i=0 j=1
Then, we can form a stabilizing family of order 2n by setting {g1, g1, g2, 92, 3, 93 s Gy Gn } -
A

Example 1.18. Let V' a complex vector space equipped with the Alexander quandle structure given
by

r>y=iy+ (1l —i)z, Ve,yeV.
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Let uw € V be an arbitrary vector, then the family {u,u,u,u} is a stabilizing family or order 4 for
V. Indeed, let w € V then

(u > (u>w))))

(u > [(w + (1 = i)ul)))

([fw 4+ v —duli + (1 — i)u))
(—w + 2u))

—w +2u)i+ (1 —i)u)

=u D> (—iw+iu+ u)

= (—w+iu+u)i+ (1 —1)u

=w—ut+iut+u—1iu=w.

A

The next theorem characterizes the stabilizing families of the conjugacy quandle Conj(G) of a
group G.

Theorem 1.5. Let G be a group, then {u;}_, € S"(Conj(QG)) if and only if upty—1...u1 € Z(G).

Proof. Let {u;}?_, € S"(Conj(@G)) and g € G, then

(Ui)iy > g = un > (- > (uz > (uz &> (w1 > g)))
= p > (- > (uz > (up > (uagu; 1))
=up, > (- > (ug > (
= (up -+ ugur)g(uy tuy - uy )

(

— (un .. u2u1)g Uy =+ * u2u1)_1

1 -1
U2ULGUy Uy )

Since {u;}"; is a stabilizing family, (u,---ugui)g(u, - ugus)™' = g. Then, (u,...usuy)g =
g(Up...uguy). Since g is arbitrary, the result follows for all ¢ € G. Then wu,..usu; € Z(G).
Conversely, if u,...usu; € Z(G), then (uy...uguy)g = g(u,...usuy), for all g € G, which implies that
9= (- ugu)g(un -+ ugur) ™' = (W) > g.

In Example 1.17, we see that in the quandle Core(G) of a group G, we can form stabilizing families
of even order. The next theorem characterizes the groups whose Core(G) quandles have stabilizing
families of odd order.

Theorem 1.6. Let G be a group and k € N. The quandle Core(G) is (2k + 1)-stable if and only

if all the elements of the group G has order two. In other words, if G = @ Zs, for some set 1.
iel

Proof. Let uy, ..., ug,+1 a stabilizing family of order 2k + 1 of the quandle Core(G). From Example
1.17, for all g € G
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2k 2k+1

()21 > g = [T ubehi] - H uT,

=0

Then, for all g € G

2k+1

2k
(71)2‘ 2k+1 ]
9= [H Ugii1—i] - H uj -
i=0

( 1)2k+1-J

We define o := H?ko u%ﬂi ;and B = H%H . Then g = ag™'f3, Vg € G. In particular,
we have a8 = a(aB)~!f, then (af)~! = 1. Furthermore; gl=alg ) 'B=ayB, Vged.
Now, we define

d:G+— G
gr— g "

Note that, for all g, h € G we have

®(gh) = (gh)~" = a(gh)B = (agh)(aB) " (ahB) = g 'h~" = (g)(h).

Thus, ® is a group homomorphism, since all g € G has inverse and it is unique, it follows that & is
an automorphism of G. Note that, for all g, h € G, (gh)™' = g~ 'h~!. On the other hand, (gh)™! =
h=tg=!. Thereby, gh = hg. So, the group is abelian. Thus, for all ¢ € G, g = ag™ '8 = aBg~!,
which implies that, g = a3. Since (af)~! =1 then a8 = 1; therefore g> =1, for all g € G.
Conversely, if g2 = 1, for all g € G, then ¢ = ¢g~! and G is an abelian group. Let h € G an
arbitrary element, for all ¢ € G we have h > g = hg~'h = h%g = g¢. It implies that G has a
stabilizing family of order 1, that means, G is (2k + 1)-stable. Note that, under this conditions,
Core(G) is a trivial rack.

1.5 Stable Alexander quandles

Alexander quandles (see Example 1.5) have been studied by many authors due to their applications
in knot theory [3], algebra [1], and topology [12]. Elhamdadi et al. in [1] provided necessary and
sufficient conditions for Alexander quandles to be finitely stable. Furthermore, they also developed
a general algorithm for calculating a stabilizing family in these quandles.

Notation 1.6. Let G be a group. We write Aut,(G) for the set of all group automorphism of G.
Auto(G) ={v : G — G | v is bijective and ¥ (gh) = ¥ (g)¥(h) Vg,h € G}.

Definition 1.11. Let G be a group and ¢ € Aut,(G). The ¢-conjugate of G, denoted by Conjs(G),
is the set G with the operation
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g>h=g¢(h)d(g™"), g.h€G.
Lemma 1.7. Let G be a group and ¢ € Auto(G), then Conjy(G) is a quandle.

Proof. First, we have that for every g € G,

g>g=90(9)o(g™") = go(9)0 " (9) = 9.

Let g,hl,hg € G, such that Ly(hy) = Ly(hs), then g > hy = g > hy, thus, go(h)d(g™!) =
god(ha)p(g™'), thereby, ¢(hi) = ¢(hs). Since ¢ is an automorphism, then hy = hy, so L, is
injective.
Let z € G, then
Ly[6(9)p(=™")g] = g &> [¢(9)d(=7")g]
= 90[¢(9)¢(=gld(g™")
=golo~ (g )]l (2)]d(9)¢ ' (9)

= z.
Therefore, L, is surjective. Finally, let g, h,z € G then

> (h > 2) =g (he(z)o(h™"))
= golhd(2)dp(h™")]é(g™")
( -1

= go(h)o™(2)he(g)
= [go(R)p(g~[o(9)¢(2)d~*(9)][6° (9)ho(g™")]
= [go(h)¢(g Molgd(2)e¢(g Ho(lgp(h)d(g™ 1))
= [go(h)¢(g )] > [9¢(2)p(g7")]
=(g>h)> (9> 2).

Note that if ¢ = id, then Conj,(G) = Conj(G).

Proposition 1.5. Let G be a group and ¢ € Aut,(G), then, Conjs(G) is finitely stable if and only
if there exists an integer n and z € G, such that for all g € G, ¢"(g) = 271 gp(2). Furthermore,

{uiiy € S"(Conjy(@)) if and only if ¢"(9) = [[T;=y 0" (u:) Mg[[TiZy &' (un—i)], for allg € G.

Proof. Let us suppose that Conj,(G) is finitely stable. Then there exits {u;}I, € S"(Conjs(G)).
Note that, for all g € G we have

(u)iey > g =up > (up—1 > (...(ug > (ug > g))...)
= Up D> (g > (oo (ug > (u10(g)p(urt)...)
=ty & (U1 B (o B (w26 (ur)9*(9)0" (uy ) (uy 1))

= (] -t [T )

Therefore, g = [/, gzﬁz(un o™ (DI ¢ (uisr) Y. If we define z := []'2) ¢ (un_s), then
6= ) =TI 0 (i), thus
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2" (9)p(z7") =g,

where the result follows: ¢"(g) = 2~ gé(2) = [[Ti2, ¢"*(w) gl T2y ¢ (un_s)]-
Conversely, if there exists z € G such that ¢" = 271g¢(z), then we get the family {u;}?, C G,
where u; = uy = ... = u,_1; = 1 and u,, = z. Note that, for all g € G,

(u)'y > g = tp &> (o > (ug > (ug > g))...)
=z> (.>(1>(1>g)..)
=2 ¢" " (9) = 2¢"(9)p(7")
= 2(27199(2))0(z7)

—g.

So, the subset {1,1,...,1, z} is a stabilizing family of order n.

The next result shows that when the group G is abelian, the stabilizing families of C'onj,(G) are
related to the torsion of ¢ in the automorphism group of G, Aut(G).

Proposition 1.6. Let G be a non-trivial abelian group and ¢ € Aut(G). Take the Conj,(G)
quandle with the structure

g h=g+¢(h)—d(g) =(h) + (id — ¢)(9), g.heC.
Then, the following statements are equivalents:
i) Conjs(G) is finitely stable.
ii) ¢ is a torsion element of Aut(G).

Proof. Let uy,ua, ..., u, a stabilizing family of Conjs;(G). Then we have that

(u)iey > g =up > (up_1 > (...(ug > (ug > g))...)
= Uy > (Up_1 > (...(uz > (P(g) + (id — @) (u1))...)
=t & (U1 > (- (¢%(g) + (id — 6)($(ur) +ua))...).

Therefore, g = ¢"(g) + (id — ¢) (>, ¢""(u;)) for all g € G.
Then {uy,us, ..., u, } is a stabilizing family if and only if ¢" =id and Y, ¢"(u;) = 0.

Lemma 1.8. Let I' be a group and v a non- trivial element in T'. Let A be a left Z[y*']- module.
Take the Alexander quandle (A, >,) with the operation

x>, y=7-(y—z)+z, Vr,y € A.

Then, the Alexander quandle (A,r>,) is the same conjs (A), where ¢, : A — A is the automor-
phism defined by ¢ (a) = - a, for alla € A.
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Proof. Since A is a left Z[y*!']-module, it is easy to prove that ¢, is an automorphism of A. Let
x,y € A, we have that

vty =7-(@+y) =v-v+7-y=d,(z)+ (1)

Then, ¢, is homomorphism. Now, let a,z € A such that ¢,(a) = ¢,(z), then vea = ”y z. It
follows that a = x, which implies that ¢, is injective. Further, if we take v '-a € .A dy(ya) =
v-(y'a) =(y77") - a = a. Thus, ¢, is bijective.

Consider the quandle Conjy (A), then for all z,y € A we have

rDy=c+¢,(y) — () =2x+7v-y—v-r=7-(y—2x)+r=x0>,y.
Therefore, Conjg (A) is the same as the Alexander quandle (A, >,).

Theorem 1.7. Let I be a group and v a non- trivial element in T'. Let A be a left Z[y*]-module
with the operation

x>V y=v-(y—x)+x, Vr,yc A
ForneN, let I, : A" — A be a function defined by
F (1, eyan) i=> 0 A"

Then (A, >7) has a stabilizing family of order n if and only if v is of order n. Furthermore, S™(M)
is the vector space of all solutions of the equation F.(z1,...,z,) = 0.

Proof. Define

¢y A— A

ar—y-a.

From Lemma 1.8, the Alexander quandle is the same quandle Conjg_ (A). From Proposition 1.6
the Alexander quandle is n—stable if and only if ¢7 = id, that means

o(a) =" -a=a, Ya € A.

y

It follows that v* = 1. Furthermore, uy, ..., u, € A is a stabilizing family if and only if

n

0=2 ¢ (u)

i=1

n
— § :/yn—z ‘U
=1

= F,(uq, ..., up).
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Corollary 1.2. Let V' a complex vector space. Let a € C such that o # 0 and o # 1. Consider
the Alezander quandle structure on the vector space V' defined by v >, w = a(w — v) + v, for all
v,w € V.Then, V' has a stabilizing family of order n if and only if

h

i) a is an n'™ root of unity.

2im

ii) There exists r € Z such that 0 <r <n and Y ,_ e = "y = 0.

Proof. Consider the multiplicative group C* and consider the vector space V' as a Z[C*]-module.
Let vq,...,v, € V; from Theorem 1.7, vy,...,v, is a stabilizing family of order n if and only if
a™ =1, then «a is an n' root of unity. Further, we have that Y a" Fuv, = Y7 a v, = 0.

Since a is an ™ root of unity then it is the form a = e’n for some integer 0 < r < n. Therefore,
2

2T
Do e g =0.

1.6 Quandle associated to a rack

We can go from quandles to racks with the identity map because every quandle is a rack and,
therefore, every morphism between quandles is also a morphism between racks. Now, we consider
the reciprocal, i.e, we endow any rack X of quandle structure through an automorphism of the
rack. In order to get that, we follow the construction given in [16].

Lemma 1.9. Let X be a rack. For every x € X there exists an unique element h € X such that
x=hp> h.

Proof. Let z € X, since the function L, : X — X defined by L,(y) = = > y is bijective then
there exists an unique h € X such that x = L,(h) = x > h. Note that

x> (h>h)=(x>h)>(x>h)=a> 2.

Therefore, L,(h > h) = L,(z). Since L, is injective, it follows that h > h = x.

Lemma 1.10. Let X be a rack. For every x,y € X, we have the relation
(z>x)>y=a>y.

Proof. Let z,y € X. Since the function L, is onto, there exists z € X such that L,(z) =z > z = y.
Note that,

(x>z)>y=(r>x)> (x> 2)
=x> (x> 2)
=x>y.
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Proposition 1.7. Let X be a rack. The function F: X — X, defined by F(x) = x > x, is an
automorphism of X.

Proof. Let us see that F' is an homomorphism of racks. Let x,y € X, we have
Fary =@ey>(@>y) =c>(y>y).

From Lemma 1.10, z > (y > y) = (x> ) > (y > y) = F(x) > F(y). Thus, for every z,y € X it
follows that F(z > y) = F(x) > F(y).

Now, from Lemma 1.9, for every = € X, there exists a unique h € X such that F'(h) = x, therefore
F' is a bijective function.

Definition 1.12. Let (X,>) be a rack, the automorphism F' defined by F'(z) = = > x is called
the canonical automorphism of X.

Note that, since F is an automorphism of X, then its inverse F~! is also an automorphism of X.
Now, from Lemma 1.10, for every z,y € X we have F(x) > y = z 1> y. Therefore,

£ (ny) H(F(z) > )
“H(F(r) > Fl(y)
=z > F(y).

Theorem 1.8. Let X be a rack. Define the operation
D X x X — X
(z,y) — 2 >ry:=F z>y) =2 F (y).
Then (X,>F) is a quandle.
Proof. Let us check that the quandle axioms are satisfied. In fact,
Ql) z>pax=FYzr>z)=FYF(z)) ==z, foral z € X.

(Q2) To prove the second axiom, we need to show that the function ¢, : X — X defined by
l.(y) := z > y, is bijective. We have l,(y) =x >py=x> F ' (y) = L.(F'(y)). Thus,
for every x € X, the function ¢, is the composition of two bijective functions, L, and F~!,
thereby, £, is bijective as well.

(Q3) Let x,y,z € X,

x D>p (y > Z) =xDp (y > F_l(Z))
=2 Fliy> F(2)
o (FU(y) > F ()

On the other hand,

(z>py)Dr(r>r2)=(>Fiy)>F > F1(2)
= (x> F7l(y) > (x> F2(2))
o (F ) > F()

Therefore, © >p (y >r 2) = (x >py) bp (v > 2).
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So, > defines a quandle structure on X.

Definition 1.13. Let X be a rack. The quandle associated to X, denoted by Qyx, is the set
X with the binary operation > p; where F'is the canonical automorphism of X and > is defined
by z >py:=F 1y > x).

Note that if X is already a quandle, then F' = i¢d and thus >=p> . This implies that, in this case,
the quandle associated to X is the same as X itself.

As we see, we can naturally obtain a quandle from any rack X. Additionally, any morphism
between racks induces a morphism between their associated quandles, as it is shown in the next
theorem.

Theorem 1.9. Let (X,>) and (Y,*) be racks, and ¢ : X — Y be a rack homomorphism. Then
¢ : Qx — Oy is also a quandle homomorphism.

Proof. Since Qx = X and Qy =Y as sets then, the map ¢ : Qx — Qy makes sense. Let Fy
and Fy the canonical automorphism of X and Y, respectively. Note that for all z € X we have

¢(Fx(x)) = ¢(z > ) = ¢(z) * d(x) = Fy (o(x)).
Therefore, ¢F, = Fy$. This implies that Fy.'¢ = ¢Fy"'. So, for every z,h € Qx we have
G(x >ry h) = o(F' (x> h) = Iy (¢(a > h)) = Fy(6(x) * ¢(h) = ¢(z) %k, d(h).
Hence, ¢ is a morphism between Qx and Qy.

Corollary 1.3. Let X be a rack and @) be a quandle and ¢ : X — @) be a rack homomorphism.
Then, ¢ : Qx — Q s a quandle homomorphism.

Proof. Since @) is a quandle then its associated quandle is simply @ itself. From Theorem 1.9,
¢ : Qx — @ is a quandle homomorphism.

Corollary 1.4. Let X be a rack, then the canonical automorphism F belongs to the center
Z(Aut(X)) of Aut(X).

Proof. Let ¢ € Aut(X), then from Theorem 1.9, ¢ is also an automorphism of the associated
quandle Qx, that means, ¢F~! = F~1¢. Therefore F¢ = ¢F, and the result follows.

Proposition 1.8. Let X be an involutive rack, then Qx is an involutive quandle.
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Proof. Since X is involutive, then L2 = id for all z € X. Thus, for every z € X, we have

v = [X(z)
=z > (x> x)
=(x>x)> (x> x)
= F(x) > F(x)
=F(z > x)
= F*(z).
Therefore, F'? = id. In other words we have ' = F~!. Now, in the quandle Qx we have ¢, =

L,F~' = L,F. Since F € Z(Aut(X)), then for every x € X, we have (2 = (L, F)? = L2F? = id.
Thus, Qx is involutive.

1.7 The rack ring

Some authors have studied the notion of rack ring, for example in [2], an analogous theory of group
rings was proposed for quandles and racks.

In this work, we give two different constructions for the rack ring and prove that those constructions
are isomorphic. In particular, we are interested in the rack ring CX, for a finite rack X.

Definition 1.14. Let R be a commutative ring with unity and let X be a rack. Define the set
RX :={f: X — R| f(z) =0 except for finite many x’s}.

Then, RX is a ring with addition and multiplication in the usual way , (fi1+ f2)(z) = fi(x)+ fo(x)
and (fife)(z) = fi(z)fa(x) for all fi, fo € RX and x € X. The set RX is called the rack ring.
If X is a quandle, then we calle it the quandle ring.

As in group rings, we can see the rack ring in terms of formal sums.

Proposition 1.9. Let R be a commutative ring with unity and X be a rack. Define the set of all
formal finite R-linear combinations of elements of X,

R[X] := {ZTIZE | 7, € R, Yo € X and r, =0 except for finite many x’s} .

reX
Then R[X] is a non-associative ring with addition in the usual way, > r.x+ >, S:x = Y (re+Sz)x

rzeX zeX zeX
and multiplication (Y ryx) - (Y, syy) = Y. Tasy(T > y).
zeX yeX z,yeX
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Proof. The set R[X] with the usual addition is an abelian group. Now observe that

(Z Q) - (Z r.z + Z $,2) = (Z ) - (Z(TZ +5,)2)

reX zeX zeX zeX zeX

= Z a(r, + s,)(z > 2)
z,z€X

= Z (qpr, + ags,)(x > 2)
r,z€X

= Z agr (x> z) + Z S, (x > 2)
z,ze€X r,ze€X

= (D aer) - (Q_re2) + (D ew) - (D s:2).
rzeX zeX rzeX zeX

In a similar way, we prove the distribution by left multiplication. Since the the operation on the
rack [> is not necessarily associative , then neither is the multiplication defined on R[X].

Let X be arack and R be a commutative ring with unity. The set RX is a R-module with the usual
scalar multiplication (rf)(z) = rf(x). Consider the set § := {6, | + € X}, where the function
0, : X —> R is defined by

1, siy=u=.

5u(y) ::{ 0, siy#ux

The set § is a base of RX seen as R-module. Indeed, for every f € RX and x € X, we have

f(z) = ;{f(l“)tsx(ﬂf)-
Since f(x) # 0 for a finite set of z’s, then

f=3 1) € (6).

rzeX

Furthermore, observe that ) _ 7,0, = 0, implies that for every z € X,

> rei(x) =1, = 0.
zeX
Therefore, ¢ is R- linearly independent.

Now, R[X] is also an R- module with scalar multiplication defined by r Y s,z = > (rs,)z. From
zeX zeX
definition, the set X form a basis for R[X| as an R-module.

Proposition 1.10. Let X be a rack and R be a commutative ring with unity. Then the R-modules
RX and R[X] are isomorphic.
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Proof. Let the map ¢ : RX — R[X] be defined by ¢( > f(z)d,) := > fox , where f, = f(z) for
rzeX rzeX
all x € X. Let r € Rand f,g € RX, then

S(r(Y_f(2)0:) + Y _g(@)d.) = 6> _r(f(x)) + g(x))d,

= oD _[(rf)(@) + g()]d.

zeX

= (rfe+g.)x

zeX

= TZfII + Zgzx

zeX reX

=r¢(Y_f(2)d:) + ¢()_g(w)s).

zeX zeX

Therefore, ¢ is a R-module homomorphism. Now, let > f(x;)d,, € Ker¢. Then,

zeX zeX

S f(x)=f.=0, Vr e X.

Thus, ¢ is an injective function.
Let Y r,x € R[X], define the function f : X — R by f(z) := r,. Since r, # 0 for a fi-

rzeX
nite many z’s, then f(z) # 0 for a finite set of z’s, it follows that f € RX. Observe that

o(f) = o( >, f(x)dy) = > fax = > rpx, which implies that ¢ is surjective. Therefore, ¢ is an
zeX zeX zeX
isomorphism.
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Chapter 2

Rack Actions and Rack Representations

Representation theory studies different algebraic structures by representing their elements as linear
transformations over a vector space. This perspective allows us to use several tools of linear algebra
and obtain significant results. Representation theory is closely related to the notion of action,
which is another important tool in mathematics. Thus, if we have the concept of a rack action,
then we get the concept of a rack representation. In this chapter we study rack actions and, also
rack representation theory. We follow the approach of Elhamdadi and Moutuou in [], providing
additional details for some proofs and presenting new results.

2.1 Rack actions and approximate units

Let X be arack, then there is a natural action of the group Inn(X) on X, given by L,y = L,(y) =
xz >y, for all 2,y € X. This group action can be seen as a “quandle action” of Conj(Inn(X))
on the set X, where Conj(Inn(X)) is the set Inn(X) with the conjugation operation L, < L, =
L.L,L;"'. Note that

Ly (Ly-2) = (LyLy) - 2 = (L Ly L") - (Ly - 2) = (Lo < Ly) - (L - 2).

Further, suppose that the rack X is finitely stable. Let {z1,...,z,} be a stabilizing family of
X, then we have L, ---L,, = id. From Lemma 1.6, for all ¢ € ((2 3 4 ... n 1)), satisfies that
L L =1id, thus L -L%<l> = L,, -+ L,,. Therefore,

To(n) To(1) To(n)

Loy - (Lgy_y - (o(Lay - 2)) ) = (Lay Ly - Ly) - 2
an(n) e Lma(l)> .z

= (
= ch(n) : (Lzo'(nfl) ’ ((an(l) ’ Z)))
These observations motivate the following definition which was introduced in [4].

Definition 2.1. A left rack action of a rack X on a set M is a map

o: X XM-—M
(x,m) — z-m,

which satisfies the following conditions,
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(i) For allm € M and x,y € X,

z-(y-m)=(z>y)-(z-m)

(i) Let {uy,ug,...,u,} € S(X), then

(Un : (un_l . ((ul . m)) = (Ug(n) : (Ug(n,l) . (‘..(ug(l) m)),
for all m € M and all o € ((2 3 ... n 1)).

Notation 2.1. Let X be a rack acting over a set M. Let uy,us,...,u, be elements in X and m
an element of M, we write: (u;)! ;- m = wuy - (...(uz - (ug - (ug - m)))...).

The following example is a generalization of what we describe in the paragraph previous to the
Definition 2.1.

Example 2.1. Every action of a group G on a set M extens to an action of the quandle Conj(Q)
on M. In fact, let G be a group acting on a set M. Then:
(i) Let g,h € Conj(G) and m € M,

(i7) Let {u;}, € S"(Conj(G)), me M ando = (23 ...n 1),

(wi)iey - m =y - (-..(ug - (ug - (ug - m)))...)
= (Up...uguy) - m

= (u] Uy uguy) - M.

Since {u;}7_, € S"(Conj(G)), from Lemma 1.6, {usu)}i—y € S™(Conj(G)) then, from Theorem
1.5 wguy..us € Z(G). It follows that

(uy gty ugug ) - me = (Ugtp.ug) - m = uy - (Uy (e (g - m))) = (Up))ey - M.
Therefore, (u;)7—; - m = (Us@))iey - m. From induction, the result follows for all o € ((23 ... n 1)).
A

The converse of the previous example is not always true, that is, a rack action of Conj(G) does
not necessarily define a group action of G. A counterexample is given in the next example.

Example 2.2. Let X = Conj(G), where G is an abelian group. Consider the rack ring CX seen
as a complex vector space. Define the map

i X xCX — CX
(z,f)— - fi=f+0,

where,
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0:(y) ::{ 0, siy7w forall x,y € X.

1, sty==x

Note that, S*(X) # 0 for every k € N. Indeed, let x,y € X, then we have x >y =x+y —x =1.
Therefore, {x,x,...,x} is a stabilizing family of order k. Let us see that - is an action of the quandle
X over CX.

(i) Let f € CX and z,y € X then

- (y-f)=x-(f+0,)
=f+,+ 0,
= f 40, + 6,
=y (f+0a)
=y-(z-f)
=(z>y)-(z-f).
(ii) Let {uy,...,ux} € S¥(X), f€CX ando = (23 ... n 1) then

(i)icy * f = f + 0wy +0uy + 0 + 0,
= (Uo()izy - f-
by induction as in the proof of Lemma 1.6 the result follows for allo € (23 ... n 1)). Then, - is an
action of the quandle Conj(G) but it is not an action of the group G on CX. In fact, reasoning by
contradiction, let us suppose that - is a group action. Let x,y € G be non trivial elements, then we
have, x-(y- f) = f+06,+0,. On the other hand, (x+vy)- f = f+0s4y, thus, ifz-(y-f) = (x+y)- f,
then, 8, + 0y = Oyyy, but (6, + 0.)(x +y) = 0 and dy1y(x + y) = 1; therefore we can not get the
equality 0y + 0y = Oyty. It follows that - is not a group action.

A

Definition 2.2. A rack action of a rack X on a set M is faithful if for each m € M, the map
x € X —> x-m € M is injective.

Example 2.3. Let G be an abelian group. Consider the action of the Fxample 2.2 of the quandle
X = Conj(G) over the vector space CX given by x - f = f + 0,. Then, this action is faithful.
Indeed, let v,y € X and f € CX such thatx-f =y- f. Then, f +6, = f+0,, which implies that
T =1y.

A
Let X be a rack. Observe that we can define an action of X on its underlying set by -y :=x >y
for all z,y € X. Suppose that {t1,...,t,} is an stabilizing family of X, then for every z € X we
have

=1, > (... > (2 > (t; > x))..)
=tp- (- (Lo (t1-2))...)

(t), - x=x, VreX.

The following definition is motivated by the previous observation.
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Definition 2.3. Let X be a rack acting on a set M # ().
(I) An approxzimate unit is a subset {t;}!; C X such that
(ti)Py-m=m, Yme€ M.
(IT) A rack action is said to be strong if every stabilizing family of the rack is an approximate
unit.

Lemma 2.1. Let X be a rack acting on a set M and {z;}!_; C X, then we have the relation
Y- ((mi)zzl ) (y > xl)z:l (y m)
Proof. The proof is straightforward from the definition of a rack action. Let {z;}!; C X then

y- ((@)icy-m) =y (zn - (- (z1-m)...))

=y >an) [y (@1 ((21-m)..))]

=) [(y> o) [y (ﬂin 2+ (- (21 -m)))]]

=y > ) [y>wna) [ (y>z1)-(y-m.
Therefore, we can write - ((z;), -m) = (y > ;) - (y - m).

Notation 2.2. Let X be a rack acting on a set M. Let x € X, m € M and k € N. We write

z*m=x-(x-(..(x-m).)), =z acting k-times.

Theorem 2.1. Let X be a rack acting strongly on a set M. Let v € X such that {x}f_| is a
stabilizing family of order k. Then, every element (x;)i_, - m, where x appears k-times in the
sequence T, Ty, ..., T,; can be written as (y,) " - m.

Proof. Let x € X, such that {z}*_, is an stabilizing family of order k and
{xi iy = {21, o T, T, Ty t1y ooy Tyt Ty Ty tjptls oo Tyk g T Tk e $Z’;:1jp+n}’

be a sequence of r elements where x appears k times. Note that r = k +n + Zl;=1 Jp, then we
have

(zi)izy - m =

i)imjyin - (2 [(2a)fy - m])

(:);

= (2)i—js1 [z > @)Ly - (@ m))

= (2)i—jyiorr @ (@50 [ > @)y - (- m)])

= (@)igi o - [ > @) - [(2 B2 m) Ly - (22 m))])
(i) i_s~

R S (=t s ((C= R R R

= (z; i=j1+1 "

i (@ > )

IJ 1Jptl Zp:l Jpt1

k

Since the action is strong and {z}¥_, is an stabilizing family, then (z -* m) = m. Therefore,

- Sh i _ j
@i m = @)y lwe )Tl e (@ o ) wm)l

Note that, there is n + szl Jp =1 — k elements, therefore (z;)i_, -m = (yj);;'f - m.
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2.2 Rack representations

With the definition of a rack action we can define a rack representation.

Definition 2.4. A representation of a rack X is a vector space V equipped with an action of
the rack X, such that for all x € X the function
PV —V
VT,

is an automorphism of V. Equivalently, a representation of X consist of a vector space and a map

p: X — Conj(GL(V))
T Py,

which is a rack homomorphism, i.e., pyny = pepyp,* for all z,y € X.

Example 2.4. Let G be a group, then every representation of G defines a representation of the
quandle Conj(G). Indeed, let p : G — GL(V') a group representation, that means, p is a group
homomorphism. Let g, h € G, note that

Pgsh = Pghg—1 = PgPnp, -

Therefore, the map p : Conj(G) — Conj(GL(V)) is also a rack homomorphism.

As in representations of groups, we can define the regular representation of a rack X.

Lemma 2.2. Let X be a finite rack and CX the complex vector space, seen as the formal sums

CX=A{f=> faox| fo €C and f, =0 except for finite many x’s}.

zeX

Then, the map X : X — Conj(GL(CX)), defined by
/\t<f) = At(foI) = Zfac(t > JZ) = Znglu = f o Lt_la

rzeX reX ueX

1s a representation of X.

Proof. Lett € X and f € CX, note that \; '(f) = f(L;), indeed, we have A\;(\; *(f)) = M (f(Ly)) =
fLLY) = fand A\ P O(f)) = M(f(LY) = f(L;'Ly) = f. Now, let # € X, from Proposition
1.2, for every z € X we have,

Moo (f)(2) = (L (2))
= [((LiLo Ly 1) 7 (2))
= (fL L)L (2))
= M((fL)(L; ' (2)))
= M (f(Li(2)))
= M () (2)

Therefore, A\ = MA A, L
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Definition 2.5. Let X be a rack, the representation of Lemma 2.2 is called the regular repre-
sentation of X.

Example 2.5. Take the cyclic group of order three Zs3 = {0, 1,2}. Consider the Takasaki quandle
Q = (Zs,r>) with the operation x >y = 2z — y. The table of this quandle is:

>(0|1|2
0|0]| 2|1
12110
211,02

As discussed in Section 1.7, the set of functions {dy, 01,02} is a base for the quandle ring CQ. The
regular representation A : Q — Conj(GL(CQ)) is defined by the following equalities,

Therefore, with the base {dg, d1, 02}, we can describe the regular representation A :  — Conj(GL(3,C))
in matrix form as follow:

100 00 1 010
Xo=100 1], \x=1]010|,D=1[100
010 100 00 1

Observe that the regular representation of the quandle (Z3, >>) is not a representation of the group
Zs.

A

Example 2.6. Let the permutation quandle Ps (see Example 1.13). The table of this quandle is:

> (2 3|1 3| a 2
23 2302|013
(1 3)| (1 2) (1 3) (2 3)
12 (132312
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This quandle is isomorphic to the Takasaki quandle Zs, where the isomorphism is the function ¢ :
Zs — Py defined by ¢(0) := (2 3), ¢(1) := (1 3) and ¢(2) := (1 2). So, the regular representation
of this quandle is the same as Zg, that is A : Py — Conj(GL(3,C)) defined by

10
Aoz =10 0
0 1

i =)

0
; )\(13): 0
1

S = O

1
0 7)\(1 2) —
0

O = O

10
0 0
01

A

Example 2.7. Let us consider X = {1,2,3} with the operation i > j = o(j) for all i,j € X,
where 0 = (1 2 3) € S3. (X,>) is a rack (see Example 1.11) with the table

> 1|23
1|23 1
2|12|38|1
31231

Note that L? = id for all i € X, then L? = L;' for all i € X. The regular representation
A X — Conj(GL(CX)) is defined by

Since L; = Ly = L3 then \; = Ay = A\3. Then we have that

A

Definition 2.6. Let p : X — Conj(GL(V)) and ¢ : X — Conj(GL(W)) two representations
of a rack X. A linear map T : V — W is called X-linear if for all x € X the following diagram
commutes

| v
T T
W—>W

that means, ¢, T = Tp,, for all z € X. The representatlons ¢ and p are said to be equivalent if
T is an isomorphism. We use the notation ¢ ~ p for two equivalent representations.

Definition 2.7. Let p : X — Conj(GL(V)) a representation of a rack X and W C V a subspace
of V, such that p, (W) C W for all x € X, then W is called a subrepresentation.

A representation V' of X is said to be rreducible if the only subrepresentations are W = {0}
and W =V.

49



Lemma 2.3. Let p : X — Conj(GL(V)) and ¢ : X — Conj(GL(W)) be representations
of a rack X. Let T : V. — W be a linear map. If T is X-linear then ker(T) and Im(T) are
subrepresentations of V and W, respectively.

Proof. Let x € X and T : V — W be a X-linear map. Then Tp, = ¢,T for all z € X. Let
v € Ker(T), note that T'(p,(v)) = ¢.(T(v)) = ¢.(0) = o, then p,(v) € ker(T) for all x € X. Tt
follows that p,(Ker(T)) C ker(T) for all x € X.

Now, let w € Im(T) then there is a v € V such that w = Twv. Observe that ¢,(w) = ¢,(T(v)) =
T (p:(v)), since p,(v) € V then ¢,(w) € Im(T) for all z € X.It follows that ¢,(Im(T)) C Im(T)
for all z € X.

2.3 Strong representations

Elhamdadi and Moutuou in [4] introduced the strong representations. In this section, we study
that concept and we present new and interesting results about this type of rack representations.

Definition 2.8. A representation p: X — GL(V) of a rack X is said to be strong if the action
of the rack over V, is strong. That is, for every zq,...,z, € X such that L, ---L,,L,, = 1id, we
have that p,, -+ pe,pe, = td.

Example 2.8. Let X be a rack and V' a vector space, the trivial representation p : X — GL(V)
defined by p, :=1id for all x € X, is strong.

Example 2.9. Let G be an abelian group. Suppose that p : Conj(G) — Conj(GL(V)) is a
strong representation of the quandle Conj(G). Since G is abelian, then Z(G) = G, from Theorem
1.5 every element g of the group G is a stabilizer of Conj(G), since the representation is strong
then py = id for all g € G. Therefore, p is the trivial representation. That means, every strong
representation of Conj(G) where G is abelian, is the trivial representation.

Proposition 2.1. Let X be a rack. The regular representation A : X — Conj(GL(CX)) is
strong.

Proof. Let {uy,...,u,} a stabilizing family of the rack X and let f € CX. Note that

(Pun *** PuzPur ) () = (Pur =~ Puz) (s (f))
= (pun -+ Pun) (F L)
= (Pu, ~pU3)[pU2(fLu1 )]
= (Pup ** Pus) (f Ly Ly )
= fL,'L,] 1 Luj
= f(Lu, -+ LuyLu,) ™"

Since {uy, ..., u,} is a stabilizing family, then L, --- L,, = id, therefore

(pun T pmpm)(f) = f(Lun T LUQL’I,Ll)_l
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Regarding the dimension of the irreducible strong representations of a rack X, we have a result
analogous to the irreducible representations of a finite group.

Theorem 2.2. Let X be a finite rack , then every irreducible strong representation of X is either,
trivial or finite dimensional.

Proof. Let X be a rack with n elements and (V, p) be a nontrivial irreducible strong representation
of X. Since X has order n, then the symmetric group of X, Sym(X) has order n!. Since all
the functions L, belongs to Sym(X), then we have L™ = id for all z € X. Given that the
representation is strong, it follows that p™ = id for every x € X. Now, since the representation is
non trivial then V' # {0}. Fix a non-zero vector v € V. We define the subspace

E, = span{(x;)i_y-v | s=0,1,...,(n+ 1) and x4, ...,xs € X}.

We use the convention () - v = v. Note that, F, is a finite dimensional subspace. Furthermore, it
is a subrepresentation of V. Indeed, let y € X then we have
If s =0 then

y- ((z)y-v)=y-0-v)=y-veE,
If s =1 then
Y- ((i)iey -v) =y - (1 -0) € B,

In a similar way, we prove that y - ((x;);_, - v) € E,, for the cases s = 2,3, ..., (n + 1)! — 1. Now,
suppose that s = (n + 1)!. Since X has n elements then, any sequence (xl)ﬁif“' has at least one
!

element repeated at least n! times. From Theorem 2.1 the element (xz)z(f{l) - v can be written as

n+1)!—n!
(z) 3"

=1 - v, where z1, ..., 2(ny1)1—nt € X. It follows that

n+1)! n+1)l—n!
v (@) 0) =y ()5 ) € B
Therefore, E, is a subrepresentation of V. Since the representation is irreducible and V' # {0},
then V' = F,, where the result follows.

With the previous properties and definitions given in [1] we have found new results. Precisely, for
a finite and connected rack X there is an interesting relation between strong representations of the
rack and representations of the finite enveloping group Gx. Specifically, every irreducible strong
representation of a finite connected rack X induces a irreducible representation of the group Gy.
Conversely, every irreducible representation of the group G'x induces an irreducible representation
(not necessarily strong) of the rack X. We prove these claims in the next discussion.

Notation 2.3. From now on, for a finite connected rack X we write n for the order of all permu-
tations L, and x( for a fixed element of X.
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Theorem 2.3. Let X be a finite connected rack and p : X — Conj(GL(V)) a strong representa-
tion of X. Then p induces a representation p : Gx — GL(V') of the finite enveloping group G x
such that Pgolgp,) = Po for all x € X. Furthermore, if p is an irreducible rack representation then
p 1s an irreducible group representation.

Proof. Since p : X — Conj(GL(V)) is a rack homomorphism then from Theorem 1.2, p induces
a group homomorphism p : As(X) — GL(V) such that p,, = p, for all z € X. Now, fix g € X,
note that ﬁga% = ﬁ;‘zo = py,- Since n is the order of all permutations L,, then L} = id. Due to
the representation p is strong, we have pg, = pf = id. Therefore, (g7 ) C ker(p). This implies
that there exists a group homomorphism p : As(X)/(gy ) — GL(V) such that p,,
all z € X.

Now, suppose that p is irreducible and suppose that W is a subspace of V' such that p,(W) C W
for all h € Gx. In particular, we have that pg, (g (W) = p(W) C W for all z € X. Since p is
irreducible then W = {0} or W = V. Therefore, p is also irreducible.

y = pg for

9%

Theorem 2.4. Let X be a finite connected rack. Let p : X — Conj(GL(V)) and ¢ : X —
Conj(GL(V")) be strong representations of X such that p ~ ¢. Then, the group representations
p:Gx — GL(V) and ¢ : Gx — GL(V") are also equivalents.

Proof. Since p ~ ¢ then there exists an isomorphism 7" : V' — V such that p, T = T'¢, for all
r € X. Let h € Gx, from the proof of Theorem 1.4 the element h is the form h = g5 --- g5m (g7 )
where m < |Gx]|, z; € X for alli € {1,...,m} and e; € {0,1,....,n — 1}. Then,

T = Dot gz tan) T

g

— ﬁel .. Atm T

= Poartang) " Paenany)

Note that, for every i € {1,...,m} we have that
Pl = pe ™ pu T
=05 T,
= 05 e T,

. ei—2 2
— €
— Tgc.

Therefore, pg! -« - pim T = pt - - T5m =Tegt - - p7m . Hence,
prT = pay - 05
=TS - - gim

Tm

_ g .. Zem

9zq <g;c10> Jom <g;7c10>
= Thgerign ) g an,)
= TPyt gemign )

= Tén.
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Hence, the result follows.
[

The theorems above allow us to translate questions about strong representations of a finite con-
nected rack into questions about representations of a finite group. That means, we can apply
the theory of representations of finite groups, such that Schur’s lemma, orthogonal relations or
character theory. For example, we have the following corollaries.

Corollary 2.1. Let X be a finite connected rack, then the number of irreducible strong complex
representations of X (up to equivalence) is less than or equal to the conjugacy classes of the finite
enveloping group Gx.

Proof. Suppose that the number of conjugacy classes of Gx is k € N . From representation
theory of finite groups we have that the number of irreducible complex representations (up to
equivalence) of the finite enveloping group Gy is equal to the number of conjugacy classes of Gx.
Now, reasoning by contradiction, suppose that the number of irreducible strong representations
of X is m > k. Let pq, ..., pm be the distinct representatives of irreducible strong representations
(up to equivalence) of X. Then, from Theorem 2.3 every representative p; induces a irreducible
representation p; of the group G'x. Since p; ¢ p; for all @ # j € {1,2...,m}, then from Theorem 2.4
pi % p; for all i # j € {1,2...,m}. Therefore, Gx would have m > k irreducible representations
(up to equivalence), which is a contradiction. Thus m < k.

Corollary 2.2. Let X be a finite connected rack whose finite enveloping group Gx is abelian. For
every irreducible strong representation p : X — Conj(GL(V)) of the rack X, we have that the
vector space V' is one dimensional.

Proof. Let p: X — Conj(GL(V')) be an irreducible strong representation of X. From Theorem
2.3, p induces a irreducible representation p : Gx — GL(V) such that p,, (gn,) = Pa for all z € X.
Since G'x is an abelian group and p is irreducible, then V' is one dimensional, that is, there exists
v € V such that (v) = V.

If we have a representation of the finite enveloping group Gx of a rack X then we can define a
representation of the rack X as it is given in the next Theorem.

Theorem 2.5. Let X be a finite connected rack. Let p : Gx — GL(V) a representation of
the finite enveloping group of X. Consider the function p : X — Conj(GL(V)) defined by
Po = Dg.(gp) for all x € X. Then p is a representation of the rack X. Furthermore, if p is
1rreducible, p is too.

Proof. Let us see that p is well defined. Let z,y € X such that 2 = y. Therefore, g, (g7, ) = 9,(95,)-
It follows that p, = Pgulgn) = Pgylgn,) = Py» SO P is well defined. From the definition of Gy, we
have the relation gs, (92 ) = 929,95 ' (92,), for all ,y € X. Then,

zo

_ ~ _ _ 1 ~1
Paey = Pgovyl9i,) = Pgagygs(gn) = Po2(98,)Poulaiy) Pyuign ) = PoPyPa
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Therefore, p is a representation of the rack X. Suppose that p is irreducible. Let W a subspace
of V such that p, (W) C W for all x € X. First, we claim that p*(W) C W for all k£ € N and all
r € X. Indeed, suppose that for every z € X we have pt (W) C W for some ¢ € N. Note that
Pt (W) = pupl(W) = pu[pl,(W)], since pg(W) C W, then we have pi (W) = py[p5,(W)] € W, s0
the result follows by induction.

Let h € Gx, from the proof of Theorem 1.4, the element A is the form h = gg! --- g5 (g7 ) where
m < |Gx|, z; € X foralli € {1,...,m} and e¢; € {0,1,...,n — 1}. Then,

PrW) = Dzt gemign s (W)
B )

= Poutan) " Pautan,)

)
Since pSt(W) € W and p2(W) C W then,

e Py (W) = pgl [p5, (W) € W

Suppose that pgl ---p% (W) C W for some i € {2,3,..,m — 1}. Since p57y (W) C W it follows
that pot - p%pett (W) = (p&h -+ p%)[peii (W)] € W. Thus, from induction over i we have
Pt - pgn (W) € W. Therefore, pp (W) C W for all h € Gx. Since p is irreducible then W = {0}
or W = V. Hence p is an irreducible representation of X.

Theorem 2.6. Let X be a finite connected rack. Let p: Gx — GL(V') and ¢: Gx — GL(V')
be representations of the group Gx such that p ~ ¢. Then, the rack representations p : X —
Conj(GL(V)) and ¢ : X — Conj(GL(V")) defined as in the previous theorem, are also equivalent.

Proof. Since p ~ ¢ then there exist an isomorphism 7" : V' — V such that p,T = Ty, for all
h € Gx. In particular we have that, Pgotgry T = Tog,(gn ) for all z € X. Thus, p,T" = Pyutgn) T =
T¢gz<g%> = T¢, for all x € X.Therefore, p ~ ¢.

From Theorem 2.5, we can obtain a representation of a finite connected rack X from its finite
enveloping group G x. This representation may not necessarily be strong, but under certain con-
ditions we can ensure this property.

Theorem 2.7. Let X be a finite connected rack and p : Gx — GL(V) be a representation of
the finite enveloping group Gx. If Gx has trivial center, that is, Z(Gx) = {1} then the rack
representation p : X — Conj(GL(V)) defined by p, = Pg.(gn,)» B8 strong.

Proof. Let {x1, ..., zx} be a stabilizing family of the rack X. That means, xj > (2, 1 > (--- (z1 >
z)---)) = x for all x € X. Since in the associated group As(X) we have the relation g,., =
92949, for all z,y € X, then for every x € X we have
9z = Grp>(zp—1>((z1>2)))
= gl‘kgwk,lb(---(xlbx)---)g;kl

1 1
= 9219z 192 o> (- (2152) ) Gzp 1 Gy,

= (Gup 921 ) 90 (95 - 92.)
(Yo Ge1 )92 = G2(Gay * Ga)-
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Thus, the word g,, g, _, - - - g2, belongs to the center of the group As(X) and therefore g, 9o, _, - - - 92, (91,) €

Z(Gx) Since Z(GX) = {1}7 9z,.9x)_1 " Gy <g;0> = 1.
Note that,

Pay " Par = Pga, (x3> T ﬁgzl(gg()) = ﬁgzkgzk,l'"gzl@g?& = p1 = id.

It follows that the representation p is strong.
|

Corollary 2.3. Let X be a finite connected rack. If Z(Gx) = {1}, then the number of irreducible
strong complez representations of X (up to equivalence) is equal to the number of irreducible com-
plex representations of the group Gx.

Proof. By previous theorems there exists a bijective correspondence between irreducible strong
representations of the rack X and the irreducible representations of the group Gx.

The next examples illustrate the previous results.

Example 2.10. Let the permutation quandle Ps. In Ezxample 2.6 we found the reqular represen-
tation of P3, which is A : Py — Conj(GL(3,C)) defined by

100 00 1 010
Aagy=10 0 1|, Aag=[0 1 0|, Age=|1 00
010 100 00 1

Remark that Gp, = S3 (see Proposition 1.4) where the isomorphism u : Gp, —> Ss is given by
Hgip(g?) = (¢ j) for all (i j) € P3. From Proposition 2.1 the regular representation A is strong.
Then it induces a representation \ : Sz — GL(3,C) of the finite enveloping group Gp, = Ss
defined by

B Lo o0f 00 1| 010
A(Q 3): O O 1 5 )\(1 3): 0 1 0 ,)\(1 2): 1 O 0
010 1 00 0 01
1 —
Note that, the subspace W = span 1 18 tnvariant under the representation \. Thus, this
1

representation is reducible and decomposable. By the representation theory of finite groups, we know
that every representation can be written as an unique (up to equivalence) direct sum of irreducible
representations. Specifically, we have that X ~ ¢ @), where ¢ : S3 — C* and ¢ : S3 — GL(2,C)
are irreducible representations defined by ¢(g) = 1 for all g € S3 and

_ -1 -1 - 1 0 - 01
¢(1 2) = |: 0 1 :| ; w(l 3) ‘= |:_1 _1:| ) ¢(2 3) - — |:1 O:| .
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From Theorem 2.5, the group representations ¢ and v induce rack representations ¢ : Py —
Conj(GL(C*)) and v : P3 — Conj(GL(2,C)) defined by ¢, := 1 for all x € P3 and

-1 -1 1 0 01
¢(12)3:[0 1]’¢(13):: [—1 —1}’¢(23):: [1 O]

1 1 1
From Theorem 2.6, we have that A\ ~ ¢ ® . Indeed, let T = |1 —2 1 | . It can be checked that
1 -1 =2

(p® ), T =T\, for all x € Ps.

Since the finite enveloping group Gp, = S3 has trivial center, then by Theorem 2.7 the representa-
tions ¢ and ) are strong.

It is well known that the group Ss has three (up to equivalence) irreducible representations, then
from Corollary 2.3, the number of irreducible strong representations of P3 is equal to 3. Previously,
we found two irreducible strong representations of P3, from the knowledge of representations of fi-
nite groups we can find the last one. The other irreducible representation of Sz is T : S3 — GL(C*)

defined by

1 if oiseven

Ty 1=
—1 of o isodd
Thus, we have a rack representation T : Py — Conj(GL(C*)) defined by
T(2 8) *= Tgua (e, = T2 3) = —1,
T(18) *= Tgua (e, = T 3) = —1,
T(12) = TG(12)<9(212)> =712 =-L
Therefore, we have 7(; jy = —1 for all (i j) € P3. From Theorem 2.7, the representation T is strong.

Hence, the permutation quandle Py has three (up to equivalence) irreducible strong representations.
A

Example 2.11. Let X = {1,2,3} be the rack given in the Example 2.7. The operation of this rack
is defined as i > j = o(j), for alli,j € X, where 0 = (1 2 3) € S3. The regular representation
A X — Conj(GL(CX)) is defined by

0 01
AM=X=X3=1|1 0 0
010

Previously, we found the finite enveloping group of this rack, which is Gx = sapn{g (g} = Zs.
Therefore, A induces a group representation A : Gx — GL(3,C) defined by:

5\ 3>:5\

91(93

—_ o O

1
0
0
The irreducible representations of Gx = Zs are one dimensional and they are the cube roots of
unity, that is p(g1(g3)) =1, ¥(g1{g})) = w, ¢(g1{g3)) = w? where w = €>™/3. The character table

of this group representation is
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(91) | 91(91) | gi{97)
w1 1 1
xg | 1 w w?
Xé 1 w? w
w1 3 0 0

From we have that X\ ~ p® 1) @ ¢. Now, the irreducible representations of Gx induces irreducible
representations of the rack X defined by

wi:w ViGX,
b =w? Vie X,

Therefore, we have that A\ ~ p ® Y & ¢. The representation p is the trivial one, so it is strong.
We claim that the representations v and ¢ are also strong. Indeed, let {i,...,ix} be a stabilizing
family of the rack X. Note that for every j € X we have that

J=ip > (> (> (i1 > 7))
:ikD("'D<i2l>U(j)--~)
=ix > (- (i3> 0?(j) )
= o*(j)

Therefore, o* = id. Since the order of o is 3, then k is of the form k = 3n for some n € N. Note
that,

k
Vi iy = w =w’ =1

¢ik"'¢i1:w2k:w6n:1

Therefore, the representations are strong. Hence, the rack X has 3 (up to equivalence) irreducible
strong representations.

A

Elhamdadi and Moutou, in [1], stated the theorem: “Theorem 9.11: FEuvery strong irreducible
representation of a finite connected involutive rack is one—dimensional”. The reader can see that
the Example 2.10 is a counterexample to this theorem. Indeed, the permutation quandle P5 is finite,
connected and involutive, however it has one (up to equivalence) strong irreducible representation
of dimension two. Furthermore, since for every £ € N we have Sy = Gp,; then for all £ € N,
the permutation quandle P, which is finite, involutive and connected, has at least one irreducible
strong representation with dimension larger than one. Therefore, we can form an infinite family
of strong representations that contradict such theorem.
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Chapter 3

Connections Between Racks and
g-digroups

The coquecigrue problem was proposed by J. L. Loday following the idea of a possible extension
of Lie’s third theorem for Leibniz algebras, that is, the problem consists in finding an appropriate
structure that generalizes the concept of Lie group and whose algebra is the corresponding Leibniz
algebra. One approximation to the solution of this problem was proposed independently by M.
Kinyon, R. Felipe , and K. Liu , who defined the digroup structure which is generalization of the
group structure with two products.

In this context, in [15] O. Salazar-Diaz, R. Veldsquez and L. A. Wills-Toro proposed a structure
called generalized digroups or simply g-digroups, as a more general extension of the group structure.
Since g-digroups are a extension of groups, one might think that the relations that exist between
quandles and groups can be extended to g -digroups. Actually, there is a interesting relation
between the rack structure and the g-digroup structure. In this chapter we study this relation.

3.1 Generalized digroups

In this section we give a short review of some definitions and results about g-digroups, given in

[15].

Definition 3.1. A set D is called a g-digroup (generalized digroup) if it has two binary
operations - and - over D, which are associative (each separately), and satisfy the conditions:

(D1) 2 (yd2)=(zFy) 1z

(D2) x4 (ydz2)=azd(yt 2),
(xkFy)Fz=(xdy) Fz

(D3) There exists (at least) an element e in D, such that for all z € D, x He =eF x = x.
The elements that satisfy this condition are called bar - units and the set of bar - units in
D, denoted by F is called the halo of D.

(D4) For a fixed bar-unit e, we have that for each x € D there exist z,.' and z;_' in D (the right
inverse of & and the left inverse of z, respectively) such that z -z, = ¢ and xl_el Hx=e.

The following propositions summarizes some basic properties of g-digroups.
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Proposition 3.1. Let D be a g-digroup and e a fixed bar unit then

(1) Forallz € D, xl_el e is a right inverse of v and e 4 x, ' is a left inverse of x. Furthermore,
ml_el l—e:x;el ande%x;@l :xl_el

(2) For all x € D, the elements x;' & x and x <z} are bar-units.
Proof.
(1) Note that

:atl—[(:pl_ell—x)l—
=zb (ot H
=zk(

=zt a

Then z; ' - e is a right inverse. Now, observe that 2, ' Fe=a,' b (z bz, ') = (' Fa)

1 _ (o1 -1 1 _ 1 QG S |
vt = (v, dz)Fa ' =ek z. " =2, . Similarly, we can prove that e 4z ' =z, "

(2) We have
(@' te)=a-d(z do)=rde=zand (' Fa)ba= (2 1) Fr=cta=2z
Thus, xl’el 2 is a bar- unit. Similarly we prove that z 4z ! is also a bar-unit.
|

The previous proposition suggest that for a fixed e € E the right inverse and the left inverse of
x € D are unique. Indeed, suppose that there exists y € X such that y 4 x = e then

y=y(xkal)
:y—|(x|—(xl:1|—e))
:y—|(ac—|(a:l:1|—e))
:(y—|$)—|(xl:1|—e)
:e—|(xl_61|—e)

Therefore, the left inverse of x is unique. Similarly, we prove that z; ' is unique.
Proposition 3.2. Let D be a g-digroup and e a fized bar unit. Then, for all x,y € D,

(1) Given x € D we have that (z;)');' = ez and (z;}), ' =z Fe.

(2) The inverse of the products are (x y)l:1 = (x y)lzl = yfel —| J:l:l and (z 4 y), ' = (z -

vt =yt !
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Proof.
(1) Note that,

-1 _
o=xhke.

Thus, (z;');.' = e = «. Similarly it can be proved that (z,')
(2) We have
@Ay @ b)) =@ky k@, )

=z k[(yry) Fa]
=zt ek

=xhk :L';el
=e
Therefore, (z 4 y);' = (z F y);.! = y.' F 2;'. In a similar way we can prove that

1
(hy) =@y =y
m

Let e € E be a bar-unit. We define the sets of left and right inverses, denoted by G} and G¢,
respectively, as follows

7:={a;' | v € D} and G¢:={z' | x € D}

It is not hard to prove that (Gf,) and (G¢,F) are isomorphic groups with identity e [15].
Observe that given ,e € F and x € D we have that

EHa ) de=¢d( o) =EHe=¢

Since the left inverse is unique we have that 331;1 =¢ A" Similarly, Ty, L=z ¢
There is an interesting relation between g-digroups and pairs of the form (G, X) where G is a
group and X is a G—set.

Theorem 3.1. Let G be a group with unity e and X a G—set under the action (g,z) — g e x.
Then D := G x X is a g-digroup with operations

(a,a) = (b,B) = (ab,a e B)
(a,a) A (b, B)) = (ab, @)

Proof. Let’s see that the operations - and  satisfy the axioms of g-digroups

(D1) (a,a) F [(b,8) 4 (m,pn)] = (a,a) & (bm,B) = (abm,a e ), on the other hand [(a,a) F
(b, B)] = (m, p) = [(ab,a & ) 4 (m, u) = (abm, a e §).
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(D2) (a,a) 4[(b,5) - (m,u)] = (a,) 4 (bm, ) = (abm, «), on the other hand (a,«) = [(b, 5) F
(m,1)] = (a,a) 4 (bm,b e p) = (abm, a).
Further, note that [(a,«) & (b,8)] F (m,un) = (ab,a @ B) = (m,u) = (abm,ab e i), on the
other hand [(a,a) = (b, B)] F (m, p) = (ab, &) = (m, ) = (abm, ab e ).

(D3) Let (e,«) € G x X. Note that, for every (b, 8) € G x X we have, (b,3) - (e,a) = (be, 5) =
(b, B) and (e,a) = (b, B) = (eb,e @ ) = (b, ). Therefore, (e, ) is a bar-unit for all a € X.
Note that, if (g, @) a bar unit of D then g = e.

(9,
) a bar unit of D, for any (b, 3) € G x X we have (b™', ) 4 (b, 8) = (b D, ) =
1

(D4) Let £ := (e,a) a
(e,a) and (b, ) = (b7, b~ 1oa) (bb~',be (b~' @) = (e,a). Therefore, (b, B) =0 "a
and (b, B)Q =01 1lea).
|

Definition 3.2. Let D and D’ are g-digroups, a map ¢ : D — D' is a g-digroup homomor-
phism if for any x,y € D we have

p(zty) = ¢(x) F d(y) and ¢(x Hy) = é(z) - ¢(y)

If ¢ is bijective then it is a g-digroup isomorphism.

3.2 Racks and g-digroups

Let D be a g-digroup, e, ¢ a pair of bar-units and z,y € D. Note that
y—|xf§1:y—|(£—|xl:1):(y—|§)—|xl:1:y—|xl:1

Thus, y xl’sl =y da; ! for any e,¢ € E. Furthermore, by Proposition 3.1 (1),
y#x;lzy%(xlzll—e):y%(x:—|e):y—|a:l_e1

By the previous observation we just write y 4 2!, where 7! can be a right or left inverse for any
bar-unit. Similarly, we write 27! -y where 2! can be a right or left inverse for any bar-unit.

Theorem 3.2. Let D be a g-digroup. We define the operation x 1> y := x =y - 2=t for every
z,y € D. Then (D,r>) is a rack.

Proof.

(Q2) Let x,y,z € D such that L,(y) = L.(2) then

Lo (y) = La(2)

r>y=x>bz

-1 -1

rhydr =xkFz-dx
s (rkydr ) =27 (b 2zda7h)
(' Fa)F(yHde =@ Fa) - (2427
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from Proposition 3.1, 27! 2 and o + 27! are a bar-units, then

('Fa)F(yHdz =@ ko) (z427h
ydzt=z4271
(yAdo HHdr=(Ar")
(y—|$l_§1)—|x:(z—|£l_§1)—|x
y—|(a:l’€1—|a:):z—|(xl’£1—|x)
y1&=24¢

=2z
Therefore, the map L, is injective. Now, note that

> (@t hyHdr)=ak (@ FyHa) 27!
=k @' @ydz) A2t
=lok (o) FyHa)) 42

(zFar ) F(yAa)] 42

=gk (yda) 427

=(y-x)H4z!

y(z -zt

Yy

Therefore the map L, is surjective. It follows that L, is bijective for every x € D.

(Q3) Let x,y,z € D, note that

sy H)> (zkFz427h

rhydr YF@rFzda ) A@Fyda !

k@A Y@ Ed )] @y 42~

=rF(yHdz HFa)F Ao Y] A@Fy 42!
=A@ Fa)F(z 2 )]—|(m|—y—|x1)*1

=rkFyFGAz ) A@rFyd2a )

=z [yFGEAz YA @Fy Az

(x>y)> (z>2) =

Now, by Proposition 3.2, we have that

(zFy—a )= (:I;l—y)—ixlé)5
xlgl)lg A(zk y)

(
=
= Hx)HA(ar ?J)Q
(
[



Therefore,

rhyF Az Y A@rFyda )Y Y=oy Ao )4 (EH42) dy 42
=akyF[A (@4 )4y a7
=zk[yF[(z4 (@ H2) 4y ] 427!
=rkyF[z4) Ay ] Ha!

[

Thus, (z>y)> (x> 2) =2 > (y > 2).
[

Note that, the set D with operation x > y = x -y =4 2! is not a quandle. Indeed, x >z = = I
rdrt=xk(xdz)=ak &£

Now, if we have a rack X, we can associate a g-digroup to X. Before we see how this g-digroup
is defined, we need the next observation and proposition. Given a rack X, by Proposition 1.2 the
map L : X — Conj(Inn(X)) defined by L(z) := L, is a rack homomorphism. Then by universal
property (Theorem 1.2) L induces a group homomorphism ¢ : As(z) — Inn(X) defined by
¢1(9:) = L. We can use this homomorphism to define an action of the group As(X) on the set
X.

Proposition 3.3. Let X be a rack, then the function

o As(X)x X — X
(w,y) = wey = [pr(w)l(y)
is a left action of the group As(X) over the set X.

Proof. Let’s see that the map e is well defined. Let (w,y) = (v/,y") € As(X) x X. Therefore we
have that ¢ (w) = ¢ (w’') and y = ¢/, thus,

[61(w)](y) = [Pr(W)](Y)

w.y:w/.y/

So, it is well defined. Now, for the identity 145x) € As(X) we have 1a5x) @2 = [pr(1as(x))](z) =
id(z) = z for all z € X. Further, given w,h € As(X) and = € X then

we (hex)=I[p(w)]([¢L(h)](x)) = [pr(wh)](z) = (wh) e x
So, it is a group action.
[ |

Observe that, given a rack X, then it is a As(X)—set. Therefore, from Theorem 3.1 the set
As(X) x X is a g-digroup.
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Definition 3.3. Let X be a rack we define the associated g-digroup of X, denoted by g-As(X),
as the set As(X) x X with operations,

(w,z) = (h,y) = (wh,wey) = (wh, [pr(w)](y))
(w,z) 4 (h,y) = (w,2)
For all w,h € As(X) and z,y € X.
Observe that by previous definition g, @ y = ¢1(9.)(y) = L.(y) = x >y, for all z,y € X.

Theorem 3.3. Let X be a rack and p : X — Conj(GL(V)) be a representation of X. Then,
p induces a g—digroup homomorphism ¢, : As(X) x X — As(Conj(Gl(V))) x Conj(GL(V))
defined by ¢,[(92,9)] == (p(9z), py) for all x,y € X, where p: As(X) — As(Conj(GL(V))) is the
group homomorphism of Theorem 1.1. Specifically, p makes commute the diagram

X —L2—— Conj(GL(V))

lﬁx lﬂ
As(X) —2— As(Conj(GL(V)))

That means, p(gz) = g,, for any x € X.
Proof. Let’s see that ¢, is a g-digroup homomorphism. Let z,y, 2,2’ € X , Note that

Dol (92, 2) (94, )] = Bp[(929y, 92 © 2')]
= (0(92y); Par-=)
= (0(92)p(9y); pup=p7")
On the other hand

Gol(g2: 2 = Dpllgy: 2)] = (P(92), p2) = (A(gy), pr)

(£(92)p(9y), (gz) @ p=)

(P(92)P(9y): 9p. ® =)

(2(92)P(9y): P > 1)

(6(92)(94): Puprpz)

Therefore, ¢,[(ge, 2) F (94, 2)] = &pl(92, 2)] F @p[(gy, 2')]. Also, we have that
| =

¢p[(9xa z) (gyv ZI) ¢p[(9w9yv z)]
= (p(92)0(9y), P-)
on the other hand

Gpl(ges 2)] 7 Bpl(gy, 2] = (P(92), p=) 7 (p(gy), p=1)

Thus, ¢, is a g-digroup homomorphism.
|

Rodriguez Nieto et al, in [11] introduced some concepts in attempt to capture the notion of a
g-digroup representation. We think that is possible to capture such notion trough the relation
between racks and g-digroups, maybe Theorem 3.3 could be a first aproximation.
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