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Resumen

En este trabajo estudiamos algunas propiedades algebraicas de las estructuras de rack y quandle
aśı como la teoŕıa de representaciones de estos objetos. Concretamente, demostramos que existe
una correspondencia entre las representaciones fuertes e irreducibles de un rack finito y conexo
con las representaciones irreducibles de su grupo finito envolvente, lo cual implica que podemos
estudiar las representaciones fuertes de un rack finito y conexo a través de la teoŕıa de representa-
ciones de grupos finitos.
Por último, estudiamos la estructura de digrupo generalizado y su relación con la estructura de rack.

Palabras clave: Racks, Quandles, Representaciones, g-digrupos, Grupo asociado.
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Abstract

In this research we study some algebraic properties of the rack and quandle structure as well as
the representation theory of these objects. We establish a correspondence between the irreducible
strong representations of a finite, connected rack with the irreducible representation of its finite
enveloping group, which implies that the study of strong representations of a finite, connected rack
can be approached through the representation theory of finite groups.
Finally, we study the g-digroup structure and its connection to the rack structure.

Key words: Racks, Quandles, Representations, g-digroups, Enveloping group.
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Introduction

The algebraic structures have played a fundamental role in the solution of some problems in
different branches of mathematics. Since the 19th century, mathematicians have been studying
those algebraic structures that have emerged a long of mathematical research. Some of these
structures are relatively new, such as the racks and quandles, which are the focus of this work.
Racks and quandles theory has its origins in the middle of the twenty century, when Mituhisa
Takasaki, in [17], introduced a new structure that he called kei motivated by the abstract notion
of symmetry in the context of finite geometries. In 1959 John Conway and Gavin Wraith studied
the object given by a group G with the binary operation of conjugation. They called it a wrack.
In the early 1980s, Joyce [8] and Mateev [11] introduced, independently, the same structure in
their study of knot theory. Joyce named it quandle. A quandle is a set X with a binary operation

▷: X ×X −→ X

(x, y) 7−→ x ▷ y,

such that it satisfies the following axioms:

(Q1) For all x ∈ X, we have x ▷ x = x.

(Q2) For all x ∈ X, the left multiplication map Lx : X −→ X defined by Lx(y) := x ▷ y is a
bijective function.

(Q3) For all x, y, z ∈ X, we have x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z).

Joyce assigned to each knot K a knot quandle Q(K). He proved that if the knot quandles Q(K)
and Q(K ′) of two knots K and K ′ are isomorphic, then the knots are equivalent, that is, the knot
quandle is a complete invariant and it can be used in the knot classification problem. In fact, the
three axioms in the quandle definition correspond whit the three Reidemeister movements, see the
Figure 1.
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Figure 1: Quandle axioms and Reidemeister movements

In 1993, Fenn and Rourke introduced in [5] the concept of rack, as a generalization of quandle. A
rack is a set X with a binary operation ▷ that satisfies the axioms (Q2) and (Q3). The rack and
quandle structures emerged naturally in various mathematical contexts and they become objects
of especial interest in algebra and low dimension topology, for example, they have important ap-
plications in knot theory [8], in the study of Yang-Baxter equation [10] and in the study of another
algebraic structures such as rings [2], Hopf algebras [1] and Lie groups [9].
Due to the diverse range of applications that both racks and quandles have, it is important to
study these objects in a purely way as algebraic entities on their own right, rather than solely
based on their connections with other branches of mathematics. Several researchers have adopted
this approach, and even some recent investigations have begun with the study of the rack repre-
sentation theory [4]. Representation theory dates back to the late 19th century, when finite groups
were first represented in this way. Since then, it has become a fundamental tool with applications
in many areas of mathematics, both pure and applied.
In this work, we study rack and quandle structures from a purely algebraic perspective, with a
special focus on rack representation theory. Elhamdadi and Moutuou, introduced rack representa-
tion theory in [4] and established general properties. Here, we study their results and present new
findings. Specifically, we show a relation between strong irreducible representations of racks and
irreducible representations of finite groups. We prove that (see chapter 2),

Given a finite connected rack X then, every strong irreducible representation ρ : X −→ Conj(GL(V ))
of X induces an irreducible representation ρ̄ : GX −→ GL(V ) of its finite enveloping group
GX , defined by ρ̄gx⟨gnx0 ⟩ := ρx for all x ∈ X. Furthermore, if ρ : X −→ Conj(GL(V )) and

ϕ : X −→ Conj(GL(V ′)) are two irreducible strong representations of X such that ρ is equivalent
to ϕ, then the induced representations ρ̄ and ϕ̄ of the group GX are also equivalent.

The previous result allows us to study strong representations of a finite connected rack through
a representation of a finite group, which is a more familiar and extensively studied subject. Fur-
thermore, we also prove that,
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Given a finite connected rack X then, every irreducible representation of its finite enveloping group
ρ̄ : GX −→ GL(V ) induces an irreducible representation ρ : X −→ Conj(GL(V )) of the rack X,
defined by ρx := ρ̄gx⟨gnx0 ⟩ for all x ∈ X. Furthermore, if ρ̄ : GX −→ GL(V ) and ϕ̄ : GX −→ GL(V ′)

are two irreducible representations of GX such that ρ̄ is equivalent to ϕ̄, then the induced represen-
tations ρ and ϕ of the rack X are also equivalent.

Observe that, in the previous result, the induced rack representation is not necessarily strong,
we prove that if the finite enveloping group has trivial center, then it is strong. Therefore, under
these conditions we have a bijective correspondence between strong irreducible rack representa-
tions and irreducible group representations.
We also study the relation between racks and an object that generalize the group structure, it is
called g-digroup and it was defined by Salazar et al in [15]. Since quandles and groups are closely
related, then one can think that this relation can be extended to g-digroups. In fact, we can get
a rack from a g-digroup and we can associate a g-digroup to a rack. We study this relation in the
last chapter.
This document is organized as follows. In Chapter 1, we review some basic concepts about rack
and quandle structure and we study the relation between quandle structure and group structure.
We define a new quandle that we have called permutation quandle, denoted by Pn, and prove that
its finite enveloping group GPn , is exactly the symmetric group Sn. Further, we study a new type
of racks called finitely stable racks, which is a concept introduced in [4]. Finally, analogous to
group theory, we study the notion of the rack ring. In Chapter 2 we study rack actions and rack
representation theory, with a focus in strong representations. In Chapter 3 we review some general
and basic properties about g-digroups and study the relation between rack structure and g-digroup
structure.
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Chapter 1

Racks and Quandles

In this chapter we give a short review of some general concepts about rack and quandle structures.
We begin with the definition of quandle and we give some important examples, all of them intro-
duced by Joyce in [7]. In section 1.2 we study a relation between racks and groups. In section 1.3
we define a new quandle, that we called permutation quandle and we establish some properties of
it, specifically, we give a complete description of its finite enveloping group. In sections 1.4 and
1.5, we study finitely stable racks, a new concept introduced by Elhamdadi and Moutou in [4].
Finally, in section 1.7, analogous to the case of groups, we study the notion of rack ring.

1.1 Preliminaries

We start this section with the following definition.

Definition 1.1. A quandle is a set X with a binary operation

▷: X ×X −→ X

(x, y) 7−→ x ▷ y,

such that it satisfies the following axioms:

(Q1) For all x ∈ X, we have x ▷ x = x.

(Q2) For all x ∈ X, the left multiplication map Lx : X −→ X defined by Lx(y) := x ▷ y is a
bijective function.

(Q3) For all x, y, z ∈ X, we have x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z).

If (X,▷) satisfies axioms (Q2) and (Q3), but does not satisfy axiom (Q1), then X is called a rack .

Note that, according to the previous definition, every quandle is a rack. Therefore, we can consider
the rack structure as a generalization of the quandle structure.

Notation 1.1. For every element x, y of a rack X, we write x ▷−1 y for the inverse function
L−1
x (y).
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If (X,▷) satisfies that Lx ◦ Lx = id, for all x ∈ X, that means, the function Lx is its own inverse,
then we call X an involutive quandle or an involutive rack , depending on whether it satisfies
the axiom (Q1) or not. Mituhisa Takasaki [17] used the term kei to refer to the structure of an
involutive quandle. Observe that, if X is a involutive quandle then we have

x ▷ (x ▷ y) = y; for all x, y ∈ X.

Rack and quandle structure emerge in various context, let us take a look at some examples:

Example 1.1. Let X be a set with the operation x ▷ y = y for all x, y ∈ X, then X is a quandle.
This quandle is called trivial quandle.

Proof. Let us check that the quandle axioms are satisfied

(Q1) x ▷ x = x for all x ∈ X.

(Q2) Let x, y, z ∈ X such that Lx(y) = Lx(z). Then x ▷ y = x ▷ z. Thus, from the definition of
▷, y = z. Thereby Lx is injective. Now, for all z ∈ X we have Lx(z) = x ▷ z = z . Then Lx
is bijective for all x ∈ X.

(Q3) Let x, y, z ∈ X then x ▷ (y ▷ z) = x ▷ z = z. On the other hand we have
(x ▷ y) ▷ (x ▷ z) = y ▷ z = z. Therefore, axiom (Q3) holds.

▲

Example 1.2. Let G be a group. We define the binary operation

▷ : G×G −→ G

(g, h) 7−→ g ▷ h := ghg−1.

The set G with the operation ▷ is a quandle, which is known as the conjugacy quandle. We
denote this quandle by Conj(G).

Proof. Let us check that the quandle axioms are satisfied.

(Q1) Note that x ▷ x = xxx−1 = x for all x ∈ G.

(Q2) Let x, y, z ∈ G such that Lx(y) = Lx(z). Then x ▷ y = x ▷ z. Therefore, xyx−1 = xzx−1,
and so y = x. Hence Lx is injective. Besides, for all z ∈ G, we have Lx(x

−1zx) = x ▷
(x−1zx) = xx−1zxx−1 = z. Then Lx is surjective for all x ∈ G.

(Q3) Let x, y, z ∈ G then x ▷ (y ▷ z) = x ▷ (yzy−1) = xyzy−1x−1. On the other hand we have
(x ▷ y) ▷ (x ▷ z) = (xyx−1) ▷ (xzx−1) = (xyx−1)(xzx−1)(xyx−1)−1 = xyzy−1x−1.

Therefore axiom (Q3) holds.

▲

Example 1.3. Let G be a group. We define the binary operation

▷ : G×G −→ G

(g, h) 7−→ g ▷ h := gh−1g.

The set G with the operation ▷ is a quandle. We denote this quandle by Core(G).
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Proof. Let us check that the quandle axioms are satisfied.

(Q1) Note that x ▷ x = xx−1x = x for all x ∈ G.

(Q2) Let x, y, z ∈ G such that Lx(y) = Lx(z). Then x ▷ y = x ▷ z. Therefore, xy−1x = xz−1x,
and so y = x. Hence Lx is injective. Now, for all z ∈ G we have Lx(xz

−1x) = x ▷ (xz−1x) =
xx−1zx−1x = z. Then Lx is surjective for all x ∈ G.

(Q3) Let x, y, z ∈ G then x ▷ (y ▷ z) = x ▷ (yz−1y) = xy−1zy−1x. On the other hand, we have
(x ▷ y) ▷ (x ▷ z) = (xy−1x) ▷ (xz−1x) = (xy−1x)(xz−1x)−1(xy−1x) = xy−1zy−1x.

Therefore axiom (Q3) holds.

▲

The following example introduces what is called the Takasaki quandle.

Example 1.4. Let G be an abelian group. We define the binary operation

▷ : G×G −→ G

(x, y) 7−→ x ▷ y := 2x− y.

The set G with the operation ▷ is an involutive quandle. This quandle is known as Takasaki
quandle.

Proof. Remark that the Takasaki quandle is the same Core(G) since, x ▷ y = 2x−y = x+(−y)+x.
Thus, from the previous example, we have that it is a quandle. The involution property is easy to
check. Let x, y ∈ G then

x ▷ (x ▷ y) = x ▷ (2x− y) = 2x− (2x− y) = y.

▲

The following example introduces what is called the Alexander quandle.

Example 1.5. Let Γ be a group and γ a non-trivial element in Γ. Let A be a left Z[γ±1] -module.
Define the operation ▷γ: A×A −→ A by

x ▷γ y = γ · (y − x) + x.

Then (A,▷γ) is a quandle, known as the Alexander quandle.

Proof. Let us verify that the quandle axioms are satisfied. In fact,

(Q1) Note that x ▷γ x = γ · (x− x) + x = x for all x ∈ A.

(Q2) For the second axiom we have to prove that Lx is invertible, for all x ∈ A. We claim that
L−1
x (y) = γ−1 · (y − x) + x, for all y ∈ A, is the desired inverse of Lx. In fact, we have,

(Lx ◦ L−1
x )(y) = Lx(L

−1
x (y))

= Lx(γ
−1 · (y − x) + x)

= γ · [γ−1 · (y − x) + x− x] + x

= (γγ−1) · (y − x) + x = y − x+ x = y.
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and,

(L−1
x ◦ Lx)(y) = L−1

x (Lx(y))

= Lx(γ · (y − x) + x)

= γ−1 · [γ · (y − x) + x− x] + x

= (γ−1γ) · (y − x) + x = y − x+ x = y.

Then Lx is bijective.

(Q3) Let x, y, z ∈ A, then

x ▷ (y ▷ z) = x ▷ (γ · (z − y) + y)

= γ · [γ · (z − y) + y − x] + x

= γ2(z − y) + γy − γx+ x

= γ2z + γ(1− γ)y + (1− γ)x.

On the other hand, we have

(x ▷ y) ▷ (x ▷ z) = (γ · (y − x) + x) ▷ (γ · (z − x) + x)

= γ[(γ · (z − x) + x)− (γ · (y − x) + x)] + (γ · (y − x) + x)

= γ(γz − γy) + γy − γx+ x

= γ2z + γ(1− γ)y + (1− γ)x.

Therefore axiom (Q3) holds.

▲

Definition 1.2. Let (X,▷) and (Y, ∗) be racks.

(I) A map ϕ : X −→ Y is called a rack homomorphism if it satisfies

ϕ(x ▷ h) = ϕ(x) ∗ ϕ(h), for all x, h ∈ X.

If ϕ is bijective then it is called an isomorphism. If X = Y and ϕ is bijective then it is called
an automorphism.

(II) We write Homrack(X, Y ) for the set of rack homomorphisms from X to Y:

Homrack(X, Y ) := {ϕ : X −→ Y | ϕ is a function and ϕ(x ▷ h) = ϕ(x) ∗ ϕ(h), for all
x, h ∈ X}

(III) We write Sym(X) or SX for the group of all permutations of the rack X and Aut(X) for the
subgroup of Sym(X), of all automorphisms of the rack X. Thus,

Sym(X) := {σ : X −→ X | σ is bijective}, and
Aut(X) := {ϕ ∈ Sym(X) | ϕ(x ▷ y) = ϕ(x) ▷ ϕ(y) for all x, y ∈ X}.

13



(IV) A subset Q of a rack (X,▷) is called subrack if Q is closed under the operation ▷. That is,
for every q, p ∈ Q, we have that q ▷ p ∈ Q.

Example 1.6. Let X be a rack. For all x ∈ X, the map Lx : X −→ X defined by Lx(y) := x ▷ y
is an automorphism of X. Indeed, from axiom (Q3) we have

Lx(y ▷ z) = x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z) = Lx(y) ▷ Lx(z), ∀z, y ∈ X.

Example 1.7. Let (X,▷) and (Y, ∗) be racks and ϕ : X −→ Y a rack homomorphism. Then the
image of ϕ, Im(ϕ) is a subrack of Y . In fact, let y1, y2 ∈ Im(ϕ) then, there exists x1, x2 ∈ X such
that y1 = ϕ(x1) and y2 = ϕ(x2). Since ϕ is a rack homomorphism,

y1 ∗ y2 = ϕ(x1) ∗ ϕ(x2) = ϕ(x1 ▷ x2).

Therefore, y1 ∗ y2 ∈ Im(ϕ). The result follows for all y1, y2 ∈ Im(ϕ), thus, Im(ϕ) is a subrack of
Y .

Lemma 1.1. Let G be a group. Consider the quandle Conj(G), then every conjugacy class of G
is a subquandle of Conj(G).

Proof. Let g ∈ G and let Cg = {hgh−1 | h ∈ G} be the conjugacy class represented by g. Let
q, p ∈ Cg, we have to prove that q ▷ p ∈ Cg. First, suppose that q = p, then q ▷ p = p ▷ p =
ppp−1 = p ∈ Cg.
Now, suppose that q ̸= p. Since q, p ∈ Cg then there exists h1, h2 ∈ G such that p = h1gh

−1
1 =

h1 ▷ g and q = h2gh
−1
2 = h2 ▷ g. We have,

q ▷ p = qpq−1

= (h2gh
−1
2 )(h1gh

−1
1 )(h2gh

−1
2 )−1

= (h2gh
−1
2 h1)g(h

−1
1 h2g

−1h−1
2 )

= (h2gh
−1
2 h1)g(h2gh

−1
2 h1)

−1.

Therefore, q ▷ p ∈ Cg. Thus, Cg is a subquandle of Conj(G).

■

1.2 Related groups of a rack

There are three important groups associated to racks and quandles. These groups play an impor-
tant role in the understanding of those concepts themselves, because a group is a more familiar
and more studied structure. This relation allows us to translate some questions about quandles
into questions about groups and vice versa. Let us begin this section with the following definition.

Definition 1.3. Let X be a rack. Let F (X) the free group on the set X and let N be the normal
subgroup generated by the words of the form (x ▷ y)xy−1x−1 where x, y ∈ X. We define the
associated group, denoted by As(X), to be the quotient group F (X)/N .

As(X) = F (X)/⟨x ▷ y = xyx−1, x, y ∈ X⟩
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This group is also called the enveloping group.

Observe that, we have two onto maps, the inclusion map ι : X ↪→ F (X) defined by ι(x) := x for
all x ∈ X and the canonical homomorphism π : F (X) −→ As(X) defined by π(x) := x̄ for all
x ∈ X. So we have a natural onto map, η : X −→ As(X) defined by η(x) := (π ◦ i)(x) = x̄. This
map is not necessarily injective, as we will see in the Example 1.11.

Notation 1.2. We will write gx to represent the imagine η(x) . That is, η(x) = gx.

Note that, from definition of the associated group As(X), it has the presentation

As(X) = ⟨gx , x ∈ X | gx▷y = gxgyg
−1
x , x, y ∈ X⟩.

Therefore, in As(X), we have the relation gx▷y = gxgyg
−1
x , for all x, y ∈ X. Now, let z = x ▷−1

y ∈ X, then x ▷ z = y, therefore,

gy = gx▷z

= gxgzg
−1
x .

hence gz = g−1
x gygx.

Theorem 1.1. Let (X,▷) and (Y, ∗) be racks and ϕ : X −→ Y be a rack homomorphism. Then
ϕ induces a group homomorphism ϕ̂ : As(X) −→ As(Y ) such that ϕ̂(gx) = gϕ(x) for all x ∈ X.

Proof. Consider the map ηY ◦ ϕ : X −→ As(Y ). From the universal property of free groups, there
exists a unique surjective group homomorphism fϕ : F (X) −→ As(Y ) such that fϕ(x) = gϕ(x) for
all x ∈ X. Notice that, in As(Y ) it holds that gϕ(x)∗ϕ(z) = gϕ(x)gϕ(z)g

−1
ϕ(x), for all x, z ∈ X. So, we

have

fϕ((x ▷ z)xz−1x−1) = fϕ(x ▷ z)fϕ(x)fϕ(z)
−1fϕ(x)

−1

= gϕ(x▷z)gϕ(x)g
−1
ϕ(z)g

−1
ϕ(x)

= gϕ(x)∗ϕ(z)gϕ(x)g
−1
ϕ(z)g

−1
ϕ(x)

= gϕ(x)gϕ(z)g
−1
ϕ(x)gϕ(x)g

−1
ϕ(z)g

−1
ϕ(x)

= 1.

This implies that (x ▷ z)xz−1x−1 ⊂ Kerfϕ, for all x, z ∈ X. It follows that fϕ define a group

homomorphism ϕ̂ : As(X) −→ As(Y ) such that ϕ̂(gx) = fϕ(x) = gϕ(x) for all x ∈ X. That is, ϕ̂
makes the following diagram commute.

X
ϕ //

ηX
��

Y

ηY
��

As(X)
ϕ̂

// As(Y ).

■

As is a functor from the category of racks into the category of groups and Conj is a functor from
the category of groups into the category of racks. Moreover, the functor As is the left adjoint to
the functor Conj (see [13] [8]). Namely, for any rack X and any group G we have
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Homgr(As(X), G) ∼= Homrack(X,Conj(G)).

This claim is proved in the following theorem.

Theorem 1.2. (Universal property)
Let G be a group, X be a rack and ϕ : X −→ Conj(G) be a rack homomorphism. Then ϕ
induces a unique group homomorphism ϕ̂ : As(X) −→ G such that ϕ̂(gx) = ϕ(x) for all x ∈ X.
Conversely, let ψ : As(X) −→ G a group homomorphism then ψ induces a rack homomorphism
ψ̂ : X −→ Conj(G) such that ψ̂(x) = ψ(gx) for all x ∈ X.

Proof. Let ϕ : X −→ Conj(G) be a rack homomorphism. Remark that the quandle Conj(G) is
the set G with the conjugation operation g ∗ h = ghg−1. Since G = Conj(G) as sets, then the
function ϕ : X −→ G makes sense. From the universal property of free groups, there exists an
unique group homomorphism fϕ : F (X) −→ G such that fϕ(x) = ϕ(x) for all x ∈ X. Now, in G,
we have that ϕ(x) ∗ ϕ(z) = ϕ(x)ϕ(z)ϕ(x)−1, for all x, z ∈ X. So,

fϕ((x ▷ z)xz−1x−1) = fϕ(x ▷ z)fϕ(x)[fϕ(z)]
−1[fϕ(x)]

−1

= ϕ(x ▷ y)ϕ(x)[ϕ(z)]−1[ϕ(x)]−1

= [ϕ(x) ∗ ϕ(z)]ϕ(x)[ϕ(z)]−1[ϕ(x)]−1

= 1.

This implies that (x ▷ z)xz−1x−1 ⊂ Kerfϕ, for all x, z ∈ X. It follows that fϕ defines an unique

group homomorphism ϕ̂ : As(X) −→ G such that ϕ̂(gx) = fϕ(x) = ϕ(x) for all x ∈ X. That is, ϕ̂
makes the following diagram commute,

X As(X)

G.

η

ϕ
ϕ̂

Conversely, let ψ : As(X) −→ G be a group homomorphism. Since inAs(X) we have gx▷zgxg
−1
y g−1

x =
1 then for every x, z ∈ X,

ψ(1) = ψ(gx▷zgxg
−1
y g−1

x )

= ψ(gx▷z)ψ(gx)ψ(gz)
−1ψ(gx)

−1

= 1

∴ ψ(gx▷z) = ψ(gx)ψ(gz)ψ(gx)
−1.

Consider the natural map η : X −→ As(X), then the map ψ̂ : X −→ Conj(G) defined by ψ̂(x) =
(ψ ◦ η)(x) = ψ(gx) is a rack homomorphism. Indeed, ψ̂(x ▷ z) = ψ(gx▷z) = ψ(gx)ψ(gz)ψ(gx)

−1 =
ψ̂(x)ψ̂(y)ψ̂(x)−1. Moreover, ψ̂ makes the following diagram commute,

X As(X)

G.

η

ψ̂
ψ
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■

Proposition 1.1. The associated group As(X) of a rack X is an infinite set.

Proof. Let the map Φ : X −→ Conj(Z) defined by Φ(x) = 1 for all x ∈ X. Denote by ∗ the
operation that makes Conj(Z) into a rack. Note that for every x, y ∈ X we have

Φ(x ▷ y) = 1

= 1 + 1− 1

= Φ(x) + Φ(y)− Φ(x)

= ϕ(x) ∗ ϕ(y).

Therefore, the map Φ is a rack homomorphism. By Theorem 1.2, it induces a group homomorphism
Φ̂ : As(X) −→ Z defined by ϕ̂(gx) = 1 for all x ∈ X. Observe that Φ̂ is surjective. In fact, let
n ∈ Z and x ∈ X, then Φ̂(gnx) = Φ̂(gx)+ Φ̂(gx)+ · · ·+Φ̂(gx) = nΦ̂(gx) = n. Hence, it is surjective.
Therefore, there exists an injective function f : Z −→ As(X). Thus, As(X) is an infinite set.

■

Now, we introduce another group associated to a rack, called the inner automorphism group.

Definition 1.4. The inner automorphism group, denoted by Inn(X), is defined as the sub-
group of Aut(X), generated by the permutation functions Lx. Concisely, the group is

Inn(X) := ⟨Lx | x ∈ X⟩.

Notation 1.3. From now on we write fg for the composition function f ◦g and id for the identity
function.

Proposition 1.2. Let X be a rack, the map L : X −→ Conj(Inn(X)) defined by L(x) := Lx, is
a rack homomorphism. That means, Lx▷y = LxLyL

−1
x for all x, y ∈ X.

Proof. Let x, y, z ∈ X, by axiom (Q3) we have

L(x ▷ y)(z) = Lx▷y(z)

= Lx▷y(Lx(L
−1
x (z))

= (x ▷ y) ▷ (x ▷ (x ▷−1 z))

= x ▷ (y ▷ (x ▷−1 z))

= Lx(Ly(L
−1
x (z))).

Therefore, Lx▷y = LxLyL
−1
x .

■

Corollary 1.1. Let X be a rack then we have Lx▷−1y = L−1
x LyLx.

17



Proof. Let x, y ∈ X, suppose that z = x ▷−1 y, thus x ▷ z = y. It follows that

Ly = Lx▷z

= LxLzL
−1
x

Therefore, Lx▷−1y = L−1
x LyLx.

■

If G is a group then the inner automorphism group of the conjugacy quandle Inn(Conj(G)), is
exactly the usual one that we have in group theory, as we show in the next example.

Example 1.8. Let G be a group. Consider the map L : G −→ Inn(Conj(G)), defined by
L(g)(x) := Lg(x) = gxg−1 for all g, x ∈ G. Let x, g, h ∈ G then,

L(xg)(h) = Lxg(h) = (xg)h(xg)−1 = x(ghg−1)x−1 = x[Lg(h)]x
−1 = Lx(Lg(h)) = (L(x)L(g))(h).

Hence, L is a group homomorphism. Furthermore, it is surjective. Indeed, given f ∈ Inn(Conj(G)),
it has the form f = LϵnxnL

ϵn−1
xn−1
· · ·Lϵ1x1, where xi ∈ G and ϵi ∈ {1,−1} for all i ∈ {1, ..., n}. Besides,

note that f = LϵnxnL
ϵn−1
xn−1
· · ·Lϵ1x1 = L(xϵnn x

ϵn−1

n−1 · · ·xϵ11 ). So it is surjective.
Let g be an element of the center Z(G) of G. For every x ∈ G we have

Lg(x) = gxg−1 = x.

Thus, L(g) = id, it implies that Z(G) ⊂ KerL. Conversely, let g ∈ Ker(L), then for all x ∈ X, we
have Lg(x) = x. From the definition of Lg, gxg

−1 = x, hence gx = xg. Therefore, g ∈ Z(G). From
the previous calculation, Z(G) = KerL. From the first isomorphism theorem, Inn(Conj(G)) ∼=
G/Z(G).

▲

We can think in a natural action of the inner automorphism group Inn(X) of a rack X, over the
underlying set X.

Lemma 1.2. Let X be a rack, then the function

• : Inn(X)×X −→ X

(Lx, y) 7−→ Lx • y := Lx(y) = x ▷ y,

is a left action of the group Inn(X) over the set X.

Proof. Let us see that the function is well defined. Let (Lx, y) = (Lx′ , y
′) ∈ Inn(X)×X, then we

have that Lx = Lx′ and y = y′, thus, Lx(y) = Lx′(y
′), therefore Lx • y = Lx′ • y′. So, it is well

defined.
For the identity map id ∈ Inn(X) we have id • x = id(x) = x for all x ∈ X. Further, given
x, y, z ∈ X then

Lx • (Ly • z) = Lx(Ly(z)) = (LxLy)(z) = (LxLy) • z.

18



So, it is a group action.

■

The orbits of this action are known as the connected components of X. The case when the
rack has just one orbit is very interesting.

Definition 1.5. A rack X is said to be connected (or indecomposable) if the action of Inn(X)
on X is transitive, that means, if it has only one orbit.

Let X be a connected rack and let x ∈ X be an arbitrary element. Since X is connected then the
orbit of x, denoted Ox, is equal to X.

Ox = {y ∈ X | ∃ϕ ∈ Inn(X) : ϕ(x) = y} = X.

Thus, given y ∈ X there exists ϕ ∈ Inn(X) such that ϕ(x) = y. Since ϕ ∈ Inn(X) then it has the
form ϕ = LϵnxnL

ϵn−1
xn−1
· · ·Lϵ1x1 , where xi ∈ X and ϵi ∈ {1,−1}, for all i ∈ {1, ..., n}. So, we have

y = ϕ(x)

= LϵnxnL
ϵn−1
xn−1
· · ·Lϵ1x1(x)

= xn ▷ϵn (xn−1 ▷
ϵn−1 (· · · ▷ϵ2 (x1 ▷

ϵ1 x) · · · ).

In other words, a rack X is connected if and only if for all x, y ∈ X there exists x1, ..., xn ∈ X such
that LϵnxnL

ϵn−1
xn−1
· · ·Lϵ1x1(x) = y, where ϵi ∈ {1,−1}, for all i ∈ {1, .., n}.

In the following examples we describe the associated group and the inner automorphism group of
some quandles.

Example 1.9. Let us consider the cyclic group of order two Z2 = {0, 1}. Consider the Takasaki
quandle (Z2,▷) with the operation x ▷ y = 2x− y. The table of this quandle is:

▷ 0 1
0 0 1
1 0 1

From the table we have L0 = L1 = id. Then, the inner automorphism group is the trivial one.
That is, Inn(Z2) = {id}. Note that, the quandle is not connected, it has two connected components
O0 = {0} and O1 = {1}.
Let us find the group As(Z2). Consider the function

ϕ : Z2 −→ Conj(Z× Z)
0 7−→ (1, 0)

1 7−→ (0, 1).

Note that, ϕ(0 ▷ 1) = ϕ(1) = ϕ(1)+ϕ(0)−ϕ(0). Similarly, we have ϕ(1 ▷ 0) = ϕ(0)+ϕ(1)−ϕ(1).
It follows that ϕ is a rack homomorphism, then by Theorem 1.2, ϕ induces a group homomorphism

ϕ̂ : As(Z2) −→ Z× Z
g0 7−→ ϕ(0)

g1 7−→ ϕ(1).
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Observe that, in As(Z2), we have g0▷1 = g1 = g0g1g
−1
0 , therefore g0g1 = g1g0. It follows that, every

w ∈ As(Z2) is of the form w = gi0g
j
1, where i, j ∈ Z. In particular, for w ∈ Kerϕ̂,

(0, 0) = ϕ̂(w)

= ϕ̂(gi0g
j
1)

= ϕ̂(g0)
i + ϕ̂(g1)

j

= ϕ(0)i + ϕ(1)j

= (i, 0) + (0, j).

Therefore, i = j = 0 and so w = gi0g
j
1 = 1. It follows that ker(ϕ̂) = {1}, and thus As(Z2) ∼= Z×Z.

▲

Example 1.10. Let us denote the cyclic group of order three by Z3 = {0, 1, 2}. Consider the
Takasaki quandle (Z3,▷), with the operation x ▷ y = 2x− y. The table of such quandle is:

▷ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Note that, this quandle is connected. Let us find the group Inn(Z3), since Takasaki quandle is
involutive we have L2

0 = L2
1 = L2

2 = id. From Proposition 1.2 we have L0 = L1▷2 = L1L2L
−1
1 =

L1L2L1 and L0 = L2▷1 = L2L1L2. It follows that L1L2L1 = L2L1L2, so (L1L2)
3 = id, and,

L1 = L2(L1L2)
2

= L1▷0(L1L2)
2

= L1L0L1L1L2L1L2

= L0▷2L0L2L1L2

= L0L2L0L0L2L1L2

= L0(L1L2).

Further,

L2 = L0▷1 = L0L1L0

= L0(L0L1L2)L0

= (L1L2)L0.

Then, we can take the automorphism L0 and L1L2 to be the generators of the group Inn(Z3). Note
that, L2

1 = (L0(L1L2))
2 = id. Hence, we have L0(L1L2) = (L2L1)L0. Since L1 = L0(L1L2) and

L2 = (L1L2)L0, then L0(L1L2) = (L2L1)L0 = [((L1L2)L0)(L0(L1L2))]L0 = (L1L2)
2L0. Therefore,

every ϕ ∈ Inn(Z3) is of the form ϕ = Li0(L1L2)
j where i ∈ {0, 1} and j ∈ {0, 1, 2}. This implies

that the group Inn(Z3) has six elements

Inn(Z3) = {id, L0, L0(L1L2), L1L2, (L1L2)
2, L0(L1L2)

2}.
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Since L0(L1L2) = (L1L2)
2L0, then it is not an abelian group , so Inn(Z3) ∼= S3.

▲

Example 1.11. Let X = {1, 2, 3} and σ = (1 2 3) ∈ S3. The set X is a rack with the binary
operation ▷: X × X −→ X, defined by i ▷ j = σ(j), for all i, j ∈ X. Indeed, note that
Li = σ for all i ∈ X, since σ is bijective then Li is bijective, for every i ∈ X. Furthermore,
i ▷ (j ▷ k) = i ▷ σ(k) = σ2(k). On the other hand, (i ▷ j) ▷ (i ▷ k) = σ(j) ▷ σ(k) = σ2(k).
Therefore, (X,▷) is a rack. The table of this rack is

▷ 1 2 3
1 2 3 1
2 2 3 1
3 2 3 1

Since L1 = L2 = L3 then, the inner automorphism group Inn(X) = ⟨L1⟩ ∼= Z3.
Note that, g1▷1 = g2 = g1g1g

−1
1 , thereby, we have g2 = g1. Similarly, g1▷2 = g3 = g1g2g

−1
1 = g1.

Then As(X) = ⟨g1⟩ ∼= Z.

▲

In general, for a rack X, it is not always easy to give a complete description of the group Inn(X).
In [3], they compute the inner automorphism group of some quandles.
Graña et al, in [6], introduce another group associated to finite connected racks. They named
it, the finite enveloping group, and as the name suggests, this group is finite. We follow the
construction given by them, but for the finiteness we give a slightly different proof.

Notation 1.4. Let X be a rack, x, y ∈ X and k ∈ N; we write

x ▷k y = Lkx(y) = x ▷ (x ▷ (· · · ▷ (x ▷ y)) · · · ) , x multiplying k-times.

Lemma 1.3. Let X be a rack and n ∈ N . Let x1, ..., xn, y, z ∈ X such that

LϵnxnL
ϵn−1

n−1 · · ·Lϵ1x1(z) = y.

where ϵi = ±1, for all i ∈ {1, ..., n}. Then, LϵnxnL
ϵn−1

n−1 · · ·Lϵ1x1Lz = LyL
ϵn
xnL

ϵn−1

n−1 · · ·Lϵ1x1.

Proof. Since LϵnxnL
ϵn−1

n−1 · · ·Lϵ1x1(z) = y, then xn ▷ϵn (xn−1 ▷ϵn−1 (· · · ▷ϵ2 (x1 ▷ϵ1 z) · · · )) = y. From
Proposition 1.2, it follows that

Ly = Lxn▷ϵn (xn−1▷
ϵn−1 (···▷ϵ2 (x1▷ϵ1z)··· ))

= Lϵnxn [Lxn−1▷
ϵn−1 (···▷ϵ2 (x1▷ϵ1z)··· )]L

−ϵn
xn

= Lϵnxn [L
ϵn−1
xn−1

[Lxn−2▷
ϵn−2 (···▷ϵ2 (x1▷ϵ1z)··· )]L

−ϵn−1
xn−1

]L−ϵn
xn

...

= LϵnxnL
ϵn−1

n−1 · · ·Lϵ1x1LzL
−ϵ1
x1
· · ·L−ϵn−1

n−1 L−ϵn
xn .

Hence, LϵnxnL
ϵn−1

n−1 · · ·Lϵ1x1Lz = LyL
ϵn
xnL

ϵn−1

n−1 · · ·Lϵ1x1 .
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■

Lemma 1.4. Let X be a rack and n ∈ N, then we have the following relations in the associated
group As(X),

(1) gnxgy = gx▷nyg
n
x , ∀x, y ∈ X.

(2) gxg
n
y = gnx▷ygx, ∀x, y ∈ X.

Proof. We use induction on n at the same time for the numerals (1) and (2). Let n = 1, since in
the associated group, we have the relation gx▷y = gxgyg

−1
x , for all x, y ∈ X, then gxgy = gx▷ygx.

Therefore, the equalities (1) and (2) are satisfied for n = 1. Now,

(1) Suppose that gnxy = gx▷nyg
n
x , we have to prove that gn+1

x y = gx▷n+1yg
n+1
x . In fact, from the

definition of As(X), we have

gx▷n+1yg
n+1
x = gx▷(x▷ny)g

n+1
x

= gxgx▷nyg
−1
x gn+1

x

= gx(g
n
xgyg

−n
x )g−1

x gn+1
x

= gn+1
x gy.

Getting in this way what we want to prove.

(2) Suppose that gxg
n
y = gnx▷ygx, we have to prove that gxg

n+1
y = gn+1

x▷y gx. From definition of
As(X) we have

gn+1
x▷yx = gx▷yg

n
x▷ygx

= gx▷y(gxg
n
y g

−1
x )gx

= (gxgyg
−1
x )(gxg

n
y g

−1
x )gx

= gxg
n+1
y .

Thus, we get the proof.

■

Proposition 1.3. Let X be a rack and x ∈ X such that Lx has finite order n, then in the associated
group As(X), we have that gnx ∈ Z(As(X)), where Z(As(X)) is the center of the group As(X).

Proof. Suppose that Lnx = id. Note that, for every y ∈ X we have x ▷n y = Lnx(y) = y. Therefore,
from Lemma 1.4 (1),

gnxgy = gx▷nyg
n
x = gyg

n
x .

Hence, the element gnx commutes with all the generators of As(X), it follows that gnx ∈ Z(As(X)).

■

Theorem 1.3. Let X be a finite connected rack. Then for every x ∈ X, the permutations Lx ∈
Inn(x) have the same order. Furthermore, if n is the order of all the permutations Lx then, in the
associated group As(X), we have the relation gnx = gny for all x, y ∈ X.
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Proof. Since X is finite, then the symmetric group Sym(X) of X is finite. From the definition of
rack, Lx ∈ Sym(X), thus they have finite order.
Since X is connected, then for every x, y ∈ X there exits ϕ ∈ Inn(X) such that ϕ(x) = y. From the
definition of Inn(X), the function ϕ is the form ϕ = Lϵrxr · · ·L

ϵ1
x1
, where x1, .., xr ∈ X and ϵi = ±1.

Then, Lϵrxr · · ·L
ϵ1
x1
(x) = y. From Lemma 1.3 , it follows that LϵrxrL

ϵr−1

r−1 · · ·Lϵ1x1Lx = LyL
ϵr
xrL

ϵr−1

r−1 · · ·Lϵ1x1 ,
and so, Lx = ϕ−1Lyϕ. Thereby, all the permutations are conjugate elements. Thus, they have the
same order.
Suppose that n is the order of all permutations Lx. Then for x, y ∈ X we have

gy = gLϵr
xr ···L

ϵ1
x1

(x)

= gxr▷ϵr (xr−1▷
ϵr−1 (···▷ϵ2 (x1▷ϵ1x)··· ))

= gϵrxrgxr−1▷
ϵr−1 (···▷ϵ2 (x1▷ϵ1x)··· )g

−ϵr
xr

= gϵrxrg
ϵr−1
xr−1

gxr−2▷
ϵr−2 (···▷ϵ2 (x1▷ϵ1x)··· )g

−ϵr−1
xr−1

g−ϵrxr

...

= (gϵrxr · · · g
ϵ1
x1
)gx(g

−ϵ1
x1
· · · g−ϵrxr ).

Let ω := gϵrxr · · · g
ϵ1
x1

then we have gy = ωgxω
−1. From Lemma 1.4 (2),

gnx▷ygx = gxg
n
y

= gx(ωgxω
−1)n

= gx(ωgxω
−1)(ωgxω

−1)(ωgxω
−1)n−2

= gx(ωg
2
xω

−1)(ωgxω
−1)n−2

...

= gx(ωg
n
xω

−1).

From Proposition 1.3, the elements gnx , g
n
y and gnx▷y belongs to Z(As(X)), then gnx▷ygx = gxg

n
x▷y.

On the other hand, gx(ωg
n
xω

−1) = gxg
n
x , therefore, g

n
x = gnx▷y. Again, from Lemma 1.4 (2),

gnx = gnx▷y = gxg
n
y g

−1
x .

So, gnx = gny .

■

Let X be a finite and connected rack, let x0 ∈ X and n be the order of the function Lx0 . Observe
that, from the previous theorem and Proposition 1.3, the group ⟨gnx0⟩ ⊂ As(X) generated by gnx0 ,
is a normal subgroup. Therefore, we can consider the quotient group As(X)/⟨gnx0⟩.

Definition 1.6. Let X be a finite and connected rack. The quotient group As(X)/⟨gnx0⟩, denoted
by GX , is called the finite enveloping group.

Theorem 1.4. Let X be finite and connected rack, then the group GX is finite.
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Proof. Let X = {x0, ..., xk−1} be a connected rack. Suppose that n ∈ N is the order of Lxi for all
i ∈ {0, ..., k − 1}. From Theorem 1.3, for every i ∈ {0, ..., k − 1}, we have that gnxi⟨g

n
x0
⟩ = ⟨gnx0⟩,

thus, g−1
xi
⟨gnx0⟩ = gn−1

xi
⟨gnx0⟩.

We claim that every word ω ∈ GX is of the form ω = gu1xi1g
u2
xi2
· · · gumxim ⟨g

n
x0
⟩ where m ≤ k, ut ∈

{0, 1, ..., n− 1}, xit ∈ X for all t ∈ {1, ...,m} and gxir ̸= gxis , for every r ̸= s. In fact, let ω ∈ GX

thus, from the definition of GX , ω = ge1xj1g
e2
xj2
· · · gem̂xjm̂ ⟨g

n
x0
⟩, where et ∈ {0, 1, ..., n − 1}. Suppose

that there exists r < s such that gxjr = gxjs and for every t ∈ {r + 1, ..., s − 1} it satisfies that
gxjt ̸= gxjs . Therefore, we have

ω = (ge1xj1g
e2
xj2
· · · ger−1

xjr−1
⟨gnx0⟩)(g

er
xjr
ger+1
xjr+1

· · · ges−1
xjs−1

gesxjs ⟨g
n
x0
⟩)(ges+1

xjs+1
ges+2
xjs+2

· · · gem̄xjm̄ ⟨g
n
x0
⟩).

First, we prove that in the associated group As(X) we have

gerxjr g
er+1
xjr+1

· · · ges−1
xjs−1

gsxjs = g
er+1

xjr▷
erxjr+1

· · · ges−1

xjr▷
erxjs−1

ges+erxjs
.

We use induction on er. Let er = 1 then, by Lemma 1.4 (2), we have that gxjr g
et
xjt

= getxjr▷xjtgxjr
for every t ∈ {r + 1, ..., s− 1}, it follows that,

gxjr g
er+1
xjr+1

· · · ges−1
xjs−1

gesxjs = g
er+1
xjr▷xjr+1

gxjr g
er+2
xjr+2

· · · gesxjs
= g

er+1
xjr▷xjr+1

g
er+2
xjr▷xjr+2

gxjr · · · g
es
xjs

...

= g
er+1

xjr▷
erxjr+1

· · · ges−1

xjr▷
erxjs−1

gxrg
es
xjs

= g
er+1

xjr▷
erxjr+1

· · · ges−1

xjr▷
erxjs−1

ges+1
xjs

.

So, the result follows for er = 1. Now, suppose that

ger−1
xjr

ger+1
xjr+1

· · · ges−1
xjs−1

gsxjs = g
er+1

xjr▷
er−1xjr+1

· · · ges−1

xjr▷
er−1xjs−1

ges+er−1
xjs

.

Then, from Lemma 1.4 (2),

gerxjr g
er+1
xjr+1

· · · ges−1
xjs−1

gsxjs = gxjr [g
er−1
xjr

ger+1
xjr+1

· · · ges−1
xjs−1

gsxjs ]

= gxjr [g
er+1

xjr▷
er−1xjr+1

· · · ges−1

xjr▷
er−1xjs−1

ges+er−1
xjs

]

= g
er+1

xjr▷
erxjr+1

gxjr g
er+2

xjr▷
er−1xjr+2

· · · ges−1

xjr▷
er−1xjs−1

ges+er−1
xjs

= g
er+1

xjr▷
erxjr+1

g
er+2

xjr▷
erxjr+2

gxjr · · · g
es−1

xjr▷
er−1xjs−1

ges+er−1
xjs

...

= g
er+1

xjr▷
erxjr+1

g
er+2

xjr▷
erxjr+2

· · · ges−1

xjr▷
erxjs−1

gxjr g
es+er−1
xjs

= g
er+1

xjr▷
erxjr+1

g
er+2

xjr▷
erxjr+2

· · · ges−1

xjr▷
erxjs−1

ges+erxjs
.

And the result follows. Now, observe that gxjr▷erxjt
̸= gxjr , for every t ∈ {r+1, ..., s−1}. In effect,
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suppose that gxjr▷erxjt
= gxjr for some t ∈ {r + 1, ..., s− 1}. From the definition of As(X),

gxjr = gxjr▷erxjt

= gxjr▷(xjr▷
er−1xjt )

= gxjr gxjr▷er−1xjt
g−1
xjr

= gxjr gxjr▷(xjr▷
er−2xjt )

g−1
xjr

= g2xjr gxjr▷er−2xjt
g−2
xjr

...

= ger−1
xjr

gxjr▷xjtg
−er+1
xjr

= ger−1
xjr

(gxjr gxjtg
−1
xjr

)g−er+1
xjr

= gerxjr gxjtg
−er
xjr

.

Therefore, we have gxjt = gerxjr gxjr g
−er
xjr

= ger−er+1
xjr

= gxjr = gxjs , which contradicts the assumption
that for every t ∈ {r+1, ..., s−1}, gxjt ̸= gxjs . Thus, gxjr▷erxjt

̸= gxjr for every t ∈ {r+1, ..., s−1}.
From the above, we can write the word ω as

ω = (ge1xj1g
e2
xj2
· · · ger−1

xjr−1
⟨gnx0⟩)(g

er
xjr
ger+1
xjr+1

· · · ges−1
xjs−1

gesxjs ⟨g
n
x0
⟩)(ges+1

xjs+1
ges+2
xjs+2

· · · gem̄xjm̄ ⟨g
n
x0
⟩)

= (ge1xj1g
e2
xj2
· · · ger−1

xjr−1
⟨gnx0⟩)(g

er+1

xjr▷
erxjr+1

· · · ges−1

xjr▷
erxjs−1

ges+erxjs
⟨gnx0⟩)(g

es+1
xjs+1

ges+2
xjs+2

· · · gem̄xjm̄ ⟨g
n
x0
⟩)

= ge1xj1g
e2
xj2
· · · ger−1

xjr−1
g
er+1

xjr▷
erxjr+1

· · · ges−1

xjr▷
erxjs−1

ges+erxjs
ges+1
xjs+1

ges+2
xjs+2

· · · gem̄xjm̄ ⟨g
n
x0
⟩

= gu1xi1 · · · g
um
xim
⟨gnx0⟩.

From where gxir ̸= gxis , for every r ̸= s. If m > k. Then, we would have repeated occurrences and
we can apply the same process shown above to reduce the word. Therefore, every word ω ∈ GX is
of the form ω = gu1xi1 · · · g

um
xim
⟨gnx0⟩, where m ≤ k, ut ∈ {0, 1, ..., n− 1}, xit ∈ X for all t ∈ {1, ...,m}

and gxir ̸= gxis for every r ̸= s. It follows that GX is finite.

■

Example 1.12. Let X = {1, 2, 3} be the rack of Example 1.11. The table of this rack is

▷ 1 2 3
1 2 3 1
2 2 3 1
3 2 3 1

Note that this rack is connected. Indeed, we have that L1(1) = 2, L2
1(1) = 3 and L3

1(1) = 1, thus
O1 = X. From the table we have that L3

i = id for all i ∈ X. Since g1 = g2 = g3 (see Example
1.11) then g1⟨g31⟩ = g2⟨g31⟩ = g3⟨g31⟩. Therefore GX = span{g1⟨g31⟩} ∼= Z3.

1.3 The Permutation Quandle

In general, it is not easy to describe the finite enveloping group of a rack. Vendramin, in [18],
computed (with a GAP Package) the finite enveloping group of connected quandles of order less
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than 36. Based on his results, we have identified the finite enveloping group of a quandle that we
refer to as the permutation quandle.
It is well known that the set of all transpositions of the symmetric group Sn, forms a conjugacy
class of Sn. Thus, from Lemma 1.1, that set is a subquandle of the quandle Conj(Sn).

Definition 1.7. Consider the conjugacy quandle Conj(Sn) of the symmetric group Sn with n ≥ 3.
We define the permutation quandle, denoted by Pn , as the set of all transpositions of Sn with
conjugation operation. That is, the permutation quandle Pn is the set

Pn := {(i j) | (i j) ∈ Sn},

with the operation (i j) ▷ (k r) = (i j)(k r)(i j)−1 = (i j)(k r)(i j), where (i j) denotes the
transposition that interchanges i and j.

As we mentioned in the paragraph previous to Definition 1.7, Pn is closed under the conjugation
operation (i j) ▷ (k r) = (i j)(k r)(i j). Thus, (Pn,▷) is a subquandle of Conj(Sn). The name of
the permutation quandle will be justified later on. For now, note that for every (i j), (k r) ∈ Pn,
we have

(i j) ▷ [(i j) ▷ (k r)] = (i j) ▷ [(i j)(k r)(i j)]

= (i j)[(i j)(k r)(i j)](i j)

= (k r).

So, it is an involutive quandle.

Example 1.13. Consider the permutation quandle P3 = {(i j) | (i j) ∈ S3}. That is, P3 =
{(1 2), (1 3), (2 3)}. Let us do the table of this quandle.

(1 2) ▷ (2 3) = (1 2)(2 3)(1 2) = (1 3)

(1 2) ▷ (1 3) = (1 2)(1 3)(1 2) = (2 3)

(1 2) ▷ (1 2) = (1 2)(1 2)(1 2) = (1 2)

(1 3) ▷ (2 3) = (1 3)(2 3)(1 3) = (1 2)

(1 3) ▷ (1 3) = (1 3)(1 3)(1 3) = (1 3)

(1 3) ▷ (1 2) = (1 3)(1 2)(1 3) = (2 3)

(2 3) ▷ (2 3) = (2 3)(2 3)(2 3) = (2 3)

(2 3) ▷ (1 3) = (2 3)(1 3)(2 3) = (1 2)

(2 3) ▷ (1 2) = (2 3)(1 2)(2 3) = (1 3)

Then,

▷ (2 3) (1 3) (1 2)
(2 3) (2 3) (1 2) (1 3)
(1 3) (1 2) (1 3) (2 3)
(1 2) (1 3) (2 3) (1 2)
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▲

Lemma 1.5. The permutation quandle Pn is connected.

Proof. Let (i j), (l t) ∈ Pn. Since (i j) = (j i), for all (i j) ∈ Pn, then without loss of generality,
we have three cases

(I) If (i j) = (l t) then L(i j)[(l t)] = (i j) ▷ (l t) = (i j)(l t)(i j) = (i j).

(II) Suppose that i ̸= l and j = t, then L(i l)[(l t)] = (i l) ▷ (l t) = (i l)(l t)(i l) = (i t) = (i j).

(III) If i ̸= l and j ̸= t then L(j t)L(i l)[(l t)] = (j t) ▷ [(i l) ▷ (l t)] = (j t) ▷ [(i l)(l t)(i l)] =
(j t) ▷ (i t) = (j t)(i t)(j t) = (i j).

Therefore the permutation quandle Pn is connected.

■

The next proposition provides us a complete description of the finite enveloping group GPn of
the permutation quandle Pn. Specifically, we prove that GPn

∼= Sn, which justifies the name
“permutation quandle”.

Proposition 1.4. Let Pn be the permutation quandle then its finite enveloping group GPn is iso-
morphic to the symmetric group Sn.

Proof. Consider the function ψ : Pn −→ Conj(Sn), defined by ψ[(i j)] := (i j) for all (i j) ∈ Pn.
Since Pn is a subquandle of Conj(Sn), then for every (i j), (k r) ∈ Pn we have that (i j) ▷ (k r) ∈
Pn. That is, there exists (l t) ∈ Pn ⊂ Sn, such that (i j) ▷ (k r) = (l t), then

ψ[(i j) ▷ (k r)] = ψ[(l t)]

= (l t)

= (i j) ▷ (k r)

= ψ[(i j)] ▷ ψ[(k r)].

Which implies that ψ is a quandle homomorphism. Now, from Theorem 1.2 there exists a group
homomorphism ψ̂ : As(Pn) −→ Sn such that ψ̂(g(ij)) = ψ[(i j)]. Since the permutation quandle is
involutive and connected, then L2

(i j) = id, for all (i j) ∈ Pn. Which implies that g2(ij) = g2(kr), for

all (i j), (k r) ∈ Pn. Observe that,

ψ̂(g2(12)) = ψ̂2(g(12)) = (1 2)2 = 1Sn .

Therefore, ⟨g2(12)⟩ ⊂ ker(ψ̂). Thus, ψ̂ induces a group homomorphism ψ̄ : GPn −→ Sn such that

ψ̄(g(ij)⟨g2(12)⟩) = ψ̂(g(ij)) = ψ[(i j)] = (i j). Let us see that ψ̄ is bijective. In fact, let σ ∈ Sn, since
the set of all transpositions is a generating set of Sn then there exist (i1 j1), .., (ik jk) ∈ Sn such
that σ = (i1 j1)(i2 j2) · · · (ik jk). Therefore,

σ = (i1 j1)(i2 j2) · · · (ik jk)
= ψ̄(g(i1j1)⟨g2(12)⟩)ψ̄(g(i2j2)⟨g2(12)⟩) · · · ψ̄(g(ikjk)⟨g

2
(12)⟩)

= ψ̄(g(i1j1)g(i2j2) · · · g(ikjk)⟨g
2
(12)⟩).
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Hence, ψ̄ is surjective.
Now, we use the presentation of the symmetric group Sn = ⟨σi, ..., σn−1 | σ2

i = 1, (σiσi+1)
3 =

1, (σiσj)
2 = 1, |j − 1| > 1 ⟩, where σi = (i i+ 1) for all i ∈ {1, .., n− 1} to prove the injectivity.

Let (k r) ∈ Pn, since (k r) = (r k) without loss of generality we suppose that k < r. Therefore,
r− k > 0. If r− k = 1, then r = k+1 and we have that (k r) = (k k+1). If r− k > 1, note that,

(k r) = (k k + 1)(k + 1 r)(k k + 1)

= (k k + 1) ▷ (k + 1 r),

(k + 1 r) = (k + 1 k + 2)(k + 2 r)(k + 1 k + 2)

= (k + 1 k + 2) ▷ (k + 2 r),

...

(r − 2 r) = (r − 2 r − 1)(r − 1 r)(r − 2 r − 1)

= (r − 2 r − 1) ▷ (r − 1 r).

Therefore,

(k r) = (k k + 1) ▷ [(k + 1 k + 2) ▷ [· · · ▷ [(r − 2 r − 1) ▷ (r − 1 r)] · · · ].

From where, it follows that

g(k r) = g(k k+1)▷[(k+1 k+2)▷[···▷[(r−2 r−1)▷(r−1 r)]··· ]

= g(k k+1)g(k+1 k+2)▷[···▷[(r−2 r−1)▷(r−1 r)]··· ]g
−1
(k k+1)

= g(k k+1)g(k+1 k+2)g(k+2 k+3)▷[···▷[(r−2 r−1)▷(r−1 r)]··· ]g
−1
(k+1 k+2)g

−1
(k k+1)

...

= g(k k+1)g(k+1 k+2) · · · g(r−2 r−1)g(r−1 r)g
−1
(r−2 r−1) · · · g

−1
(k+1 k+2)g

−1
(k k+1).

Therefore, the set of elements {g(i i+1) ∈ As(Pn) | i = 1, ..., n−1} is a generating set of As(Pn) and
thus, the set {g(i i+1)⟨g2(12)⟩ ∈ GPn | i = 1, ..., n− 1} is a generating set of GPn . Now, note that for

every i = 1, ..., n− 1, we have that (i i+1) ▷ (i+1 i+2) = (i i+1)(i+1 i+2)(i i+1) = (i i+2)
and (i+ 1 i+ 2) ▷ (i i+ 1) = (i+ 1 i+ 2)(i i+ 1)(i+ 1 i+ 2) = (i i+ 2). Therefore,

(g(i i+1)g(i+1 i+2))
3 = g(i i+1)g(i+1 i+2)g(i i+1)g(i+1 i+2)g(i i+1)g(i+1 i+2)

= g(i i+1)▷(i+1 i+2)g(i+1 i+2)▷(i i+1)

= g(i i+2)g(i i+2) = g2(i i+2).

It follows that (g(i i+1)g(i+1 i+2)⟨g2(12)⟩)3 = g2(i i+2)⟨g2(12)⟩ = ⟨g2(12)⟩ = 1GPn
.

Let i, j ∈ {1, ..., n− 1} such that |j− i| > 1. We want to prove that (g(i i+1)g(j j+1)⟨g2(12)⟩)2 = 1GPn
.

Since |j − i| > 1 we have two cases:

• If j− i > 1, then j > 1+ i then (i i+1) ▷ (j j+1) = (i i+1)(j j+1)(i i+1) = (j j+1),
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therefore

(g(i i+1)g(j j+1)⟨g2(12)⟩)2 = (g(i i+1)g(j j+1)⟨g2(12)⟩)(g(i i+1)g(j j+1)⟨g2(12)⟩)
= (g(i i+1)g(j j+1)g(i i+1))g(j j+1)⟨g2(12)⟩
= g(i i+1)▷(j j+1)g(j j+1)⟨g2(12)⟩
= g(j j+1)g(j j+1)⟨g2(12)⟩
= ⟨g2(12)⟩ = 1GPn

.

• If j−i < −1, then j < i−1 then (i i+1) ▷ (j j+1) = (i i+1)(j j+1)(i i+1) = (j j+1),
therefore

(g(i i+1)g(j j+1)⟨g2(12)⟩)2 = ⟨g2(12)⟩ = 1GPn
.

Then, the group GPn satisfies all the relations of the presentation of Sn. It follows that, there
exists a group epimorphism ϕ : Sn −→ GPn , which implies that |GPn| ≤ n!. Besides, we have that
the homomorphism ψ̄ : GPn −→ Sn is surjective, then |Sn| ≤ |GPn|. Because |GPn| ≤ n!, then
|GPn| = n!. Thus, ψ̄ must be bijective, i.e, the map

ψ̄ : GPn −→ Sn
g(i j)⟨g2(12)⟩ 7−→ (i j),

is a group isomorphism.

■

1.4 Finitely stable racks

Elhamdadi and Moutuou in [4] defined a new class of racks, called finitely stable, in an attempt
to capture the notion of identity and center in the category of racks and quandles. We study this
racks and complete the details of some examples and proofs.

Notation 1.5. If u1, u2, ..., un are elements in a rack X, then for a x ∈ X we will write

(ui)
n
i=1 ▷ x = un ▷ (...(u3 ▷ (u2 ▷ (u1 ▷ x)))...).

Definition 1.8. A stabilizer u in a rack X is an element such that

u ▷ x = x for all x ∈ X.

Note that, a stabilizer u in a rack X satisfies that Lu(x) = x for all x ∈ X, then Lu is the identity
function in the group Inn(X).

Example 1.14. Let G be a group and u a stabilizer in Conj(G), we have

g = u ▷ g

= ugu−1.

Hence, ug = gu. The result follows for all g ∈ G. Thus u belongs to the center Z(G) of G . Then,
the stabilizers of Conj(G) are the elements of Z(G).
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The previous example shows us that the definition of stabilizer allows us to capture the notion of
the center of a rack. Elhamdadi and Moutuou in [4] take the property that a rack has a stabilizer
and they weaken it by the following definition:

Definition 1.9. Let X be a rack

1. A stabilizing family of order n for X is a finite set {u1, u2, ..., un} ⊂ X such that

(ui)
n
i=1 ▷ x = x, ∀x ∈ X.

in other words, LunLun−1 ...Lu1 = id.

2. The n-center X, denoted by Sn(X), is the collection of all stabilizing families of order n for
X.

3. The collection

S(X) := ∪
n∈N

Sn(X),

of all stabilizing families for X is called the center of X.

Lemma 1.6. Let X be a rack, {ui}ni=1 ∈ Sn(X) and σ an element of the symmetric group Sn. If
σ ∈ ⟨(2 3 4 ... n 1)⟩, then {uσ(i)}ni=1 ∈ Sn(X).

Proof. Let σ ∈ ⟨(2 3 4... n 1)⟩, then σ = (2 3 4... n 1)k, where 1 ≤ k ≤ n. We proceed by
induction on k. Suppose that k = 1, then σ = (2 3 4... n 1). Let n ∈ N and {ui}ni=1 be a stabilizing
family of order n for X. From the definition of stabilizing family, LunLun−1 ...Lu1 = id. Since Lu1
is invertible, it follows that LunLun−1 ...Lu2 = L−1

u1
. Thus, we have

id = Lu1L
−1
u1

= Lu1(Lun ...Lu3Lu2)

= Luσ(n)
Luσ(n−1)

...Luσ(2)
Luσ(1)

.

Therefore, {uσ(i)}ni=1 ∈ Sn(X). Suppose that the result holds for some k < n. Let σ =
(2 3 4... n 1)k+1 and let τ = (2 3 4... n 1)k. Note that, σ = (2 3 4... n 1)k(2 3 4... n 1) = τ(2 3 4... n 1).
Thereby, σ(n) = τ(1) and σ(i) = τ(i+1), for every i ∈ {1, 2, ..., n−1}. Let {ui}ni=1 be a stabilizing
family of order n for X. Since the result holds for k, then Luτ(n)

Luτ(n−1)
...Luτ(2)Luτ(1) = id. Ap-

plying the same process shown for the case k = 1, we have Luτ(1)Luτ(n)
Luτ(n−1)

...Luτ(2) = id which
implies that Luσ(n)

Luσ(n−1)
...Luσ(2)

Luσ(1)
= id. So, the result follows for k + 1.

■

Definition 1.10. A rack X is said to be finitely stable if S(X) ̸= ∅. Further, if Sn(X) ̸= ∅ for
some n ∈ N, then the rack is said to be n-stable .

The following examples illustrate the previous definitions.

Example 1.15. Every finite rack is finitely stable. In fact, let X be a finite rack of order n. Then,
the symmetric group of X, Sym(X), is finite with order n!. Let x ∈ X, since Lx ∈ Sym(X) then
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Ln!x = id.

Hence, the family {x}n!i=1 is a stabilizing family for X. So, S(X) ̸= ∅.

▲

Example 1.16. Let R the set of real numbers with the Takasaki quandle structure

x ▷ y = 2x− y; x, y ∈ R.

Let t ∈ R and {x1, x2, ..., xn} an arbitrary subset of real numbers. Notice that

(xi)
n
i=1 ▷ t = xn ▷ (.. ▷ (x3 ▷ (x2 ▷ (x1 ▷ t)))...)

= xn ▷ (... ▷ (x3 ▷ (x2 ▷ (2x1 − t)))...)
= xn ▷ (... ▷ (x3 ▷ (2x2 − 2x1 + t))...)

= xn ▷ (... ▷ (2x3 − 2x2 + 2x1 − t)...)

= 2[
n∑
i=1

(−1)i+1xn−i+1] + (−1)nt.

Then, we can form a stabilizing family of order 2n by setting {x1, x1, x2, x2, x3, x3, ..., xn, xn}. Thus,
the Takasaki quandle (R,▷), admits infinite stabilizing families of even order.

▲

Example 1.17. Let G be a non-trivial group with the Core(G) quandle structure

g ▷ h := gh−1g, g, h ∈ G.

Let h ∈ G and {g1, g2, ..., gn} an arbitrary subset of G. Then

(gi)
n
i=1 ▷ h = gn ▷ (.. ▷ (g3 ▷ (g2 ▷ (g1 ▷ h)))...)

= gn ▷ (... ▷ (g3 ▷ (g2 ▷ (g1h
−1g1)))..)

= gn ▷ (... ▷ (g3 ▷ (g2g
−1
1 hg−1

1 g2))...)

= gn ▷ (... ▷ (g3g
−1
2 g1h

−1g1g
−1
2 g3)...)

= [
n−1∏
i=0

g
(−1)i

n−i ] · h(−1)n · [
n∏
j=1

g
(−1)n−j

j ].

Then, we can form a stabilizing family of order 2n by setting {g1, g1, g2, g2, g3, g3, ..., gn, gn}.

▲

Example 1.18. Let V a complex vector space equipped with the Alexander quandle structure given
by

x ▷ y = iy + (1− i)x, ∀x, y ∈ V .
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Let u ∈ V be an arbitrary vector, then the family {u, u, u, u} is a stabilizing family or order 4 for
V . Indeed, let w ∈ V then

(u)4i=1 ▷ w = u ▷ (u ▷ (u ▷ (u ▷ w))))

= u ▷ (u ▷ (u ▷ [(iw + (1− i)u])))
= u ▷ (u ▷ ([iw + u− iu]i+ (1− i)u))
= u ▷ (u ▷ (−w + 2u))

= u ▷ ((−w + 2u)i+ (1− i)u)
= u ▷ (−iw + iu+ u)

= (−iw + iu+ u)i+ (1− i)u
= w − u+ iu+ u− iu = w.

▲

The next theorem characterizes the stabilizing families of the conjugacy quandle Conj(G) of a
group G.

Theorem 1.5. Let G be a group, then {ui}ni=1 ∈ Sn(Conj(G)) if and only if unun−1...u1 ∈ Z(G).

Proof. Let {ui}ni=1 ∈ Sn(Conj(G)) and g ∈ G, then

(ui)
n
i=1 ▷ g = un ▷ (· · · ▷ (u3 ▷ (u2 ▷ (u1 ▷ g)))

= un ▷ (· · · ▷ (u3 ▷ (u2 ▷ (u1gu
−1
1 ))))

= un ▷ (· · · ▷ (u3 ▷ (u2u1gu
−1
1 u−1

2 )

= (un · · ·u2u1)g(u−1
1 u−1

2 · · ·u−1
n )

= (un · · ·u2u1)g(un · · ·u2u1)−1.

Since {ui}ni=1 is a stabilizing family, (un · · ·u2u1)g(un · · ·u2u1)−1 = g. Then, (un...u2u1)g =
g(un...u2u1). Since g is arbitrary, the result follows for all g ∈ G. Then un...u2u1 ∈ Z(G).
Conversely, if un...u2u1 ∈ Z(G), then (un...u2u1)g = g(un...u2u1), for all g ∈ G, which implies that
g = (un · · ·u2u1)g(un · · ·u2u1)−1 = (ui)

n
i=1 ▷ g.

■

In Example 1.17, we see that in the quandle Core(G) of a group G, we can form stabilizing families
of even order. The next theorem characterizes the groups whose Core(G) quandles have stabilizing
families of odd order.

Theorem 1.6. Let G be a group and k ∈ N. The quandle Core(G) is (2k + 1)-stable if and only
if all the elements of the group G has order two. In other words, if G ∼= ⊕

i∈I
Z2, for some set I.

Proof. Let u1, ..., u2k+1 a stabilizing family of order 2k+1 of the quandle Core(G). From Example
1.17, for all g ∈ G
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(ui)
2k+1
i=1 ▷ g = [

2k∏
i=0

u
(−1)i

2k+1−i] · g
−1 · [

2k+1∏
j=1

u
(−1)2k+1−j

j ].

Then, for all g ∈ G

g = [
2k∏
i=0

u
(−1)i

2k+1−i] · g
−1 · [

2k+1∏
j=1

u
(−1)2k+1−j

j ].

We define α :=
∏2k

i=0 u
(−1)i

2k+1−i and β :=
∏2k+1

j=1 u
(−1)2k+1−j

j . Then g = αg−1β, ∀g ∈ G. In particular,

we have αβ = α(αβ)−1β, then (αβ)−1 = 1. Furthermore; g−1 = α(g−1)−1β = αgβ, ∀g ∈ G.
Now, we define

Φ : G←− G

g 7−→ g−1.

Note that, for all g, h ∈ G we have

Φ(gh) = (gh)−1 = α(gh)β = (αgβ)(αβ)−1(αhβ) = g−1h−1 = Φ(g)Φ(h).

Thus, Φ is a group homomorphism, since all g ∈ G has inverse and it is unique, it follows that Φ is
an automorphism of G. Note that, for all g, h ∈ G, (gh)−1 = g−1h−1. On the other hand, (gh)−1 =
h−1g−1. Thereby, gh = hg. So, the group is abelian. Thus, for all g ∈ G, g = αg−1β = αβg−1,
which implies that, g2 = αβ. Since (αβ)−1 = 1 then αβ = 1; therefore g2 = 1 , for all g ∈ G.
Conversely, if g2 = 1 , for all g ∈ G, then g = g−1 and G is an abelian group. Let h ∈ G an
arbitrary element, for all g ∈ G we have h ▷ g = hg−1h = h2g = g. It implies that G has a
stabilizing family of order 1, that means, G is (2k + 1)-stable. Note that, under this conditions,
Core(G) is a trivial rack.

▲

1.5 Stable Alexander quandles

Alexander quandles (see Example 1.5) have been studied by many authors due to their applications
in knot theory [8], algebra [1], and topology [12]. Elhamdadi et al. in [4] provided necessary and
sufficient conditions for Alexander quandles to be finitely stable. Furthermore, they also developed
a general algorithm for calculating a stabilizing family in these quandles.

Notation 1.6. Let G be a group. We write Aut◦(G) for the set of all group automorphism of G.

Aut◦(G) = {ψ : G −→ G | ψ is bijective and ψ(gh) = ψ(g)ψ(h) ∀g, h ∈ G}.

Definition 1.11. LetG be a group and ϕ ∈ Aut◦(G). The ϕ-conjugate ofG, denoted by Conjϕ(G),
is the set G with the operation
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g ▷ h = gϕ(h)ϕ(g−1), g, h ∈ G.

Lemma 1.7. Let G be a group and ϕ ∈ Aut◦(G), then Conjϕ(G) is a quandle.

Proof. First, we have that for every g ∈ G,

g ▷ g = gϕ(g)ϕ(g−1) = gϕ(g)ϕ−1(g) = g.

Let g, h1, h2 ∈ G, such that Lg(h1) = Lg(h2), then g ▷ h1 = g ▷ h2, thus, gϕ(h1)ϕ(g
−1) =

gϕ(h2)ϕ(g
−1), thereby, ϕ(h1) = ϕ(h2). Since ϕ is an automorphism, then h1 = h2, so Lg is

injective.
Let z ∈ G, then

Lg[ϕ(g)ϕ(z
−1)g] = g ▷ [ϕ(g)ϕ(z−1)g]

= gϕ[ϕ(g)ϕ(z−1)g]ϕ(g−1)

= gϕ[ϕ−1(g−1)]ϕ[ϕ−1(z)]ϕ(g)ϕ−1(g)

= z.

Therefore, Lg is surjective. Finally, let g, h, z ∈ G then

g ▷ (h ▷ z) = g ▷ (hϕ(z)ϕ(h−1))

= gϕ[hϕ(z)ϕ(h−1)]ϕ(g−1)

= gϕ(h)ϕ2(z)hϕ(g−1)

= [gϕ(h)ϕ(g−1)][ϕ(g)ϕ(z)ϕ−2(g)][ϕ2(g)hϕ(g−1)]

= [gϕ(h)ϕ(g−1)]ϕ[gϕ(z)ϕ(g−1)]ϕ([gϕ(h)ϕ(g−1)]−1)

= [gϕ(h)ϕ(g−1)] ▷ [gϕ(z)ϕ(g−1)]

= (g ▷ h) ▷ (g ▷ z).

■

Note that if ϕ = id, then Conjϕ(G) = Conj(G).

Proposition 1.5. Let G be a group and ϕ ∈ Aut◦(G), then, Conjϕ(G) is finitely stable if and only
if there exists an integer n and z ∈ G, such that for all g ∈ G, ϕn(g) = z−1gϕ(z). Furthermore,
{ui}ni=1 ∈ Sn(Conjϕ(G)) if and only if ϕn(g) = [

∏n
i=1 ϕ

n−i(ui)
−1]g[

∏n−1
i=0 ϕ

i+1(un−i)], for all g ∈ G.

Proof. Let us suppose that Conjϕ(G) is finitely stable. Then there exits {ui}ni=1 ∈ Sn(Conjϕ(G)).
Note that, for all g ∈ G we have

(ui)
n
i=1 ▷ g = un ▷ (un−1 ▷ (...(u2 ▷ (u1 ▷ g))...)

= un ▷ (un−1 ▷ (...(u2 ▷ (u1ϕ(g)ϕ(u
−1
1 )...)

= un ▷ (un−1 ▷ (... ▷ (u2ϕ(u1)ϕ
2(g)ϕ2(u−1

1 )ϕ(u−1
2 ))...)

= [
n−1∏
i=0

ϕi(un−i)]ϕ
n(g)[

n−1∏
i=0

ϕn−i(ui+1)
−1].

Therefore, g = [
∏n−1

i=0 ϕ
i(un−i)]ϕ

n(g)[
∏n−1

i=0 ϕ
n−i(ui+1)

−1]. If we define z :=
∏n−1

i=0 ϕ
i(un−i), then

ϕ(z−1) =
∏n−1

i=0 ϕ
n−i(ui+1)

−1, thus
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zϕn(g)ϕ(z−1) = g,

where the result follows: ϕn(g) = z−1gϕ(z) = [
∏n

i=1 ϕ
n−i(ui)

−1]g[
∏n−1

i=0 ϕ
i+1(un−i)].

Conversely, if there exists z ∈ G such that ϕn = z−1gϕ(z), then we get the family {ui}ni=1 ⊂ G,
where u1 = u2 = ... = un−1 = 1 and un = z. Note that, for all g ∈ G,

(ui)
n
i=1 ▷ g = un ▷ (... ▷ (u2 ▷ (u1 ▷ g))...)

= z ▷ (... ▷ (1 ▷ (1 ▷ g))...)

= z ▷ ϕn−1(g) = zϕn(g)ϕ(z−1)

= z(z−1gϕ(z))ϕ(z−1)

= g.

So, the subset {1, 1, ..., 1, z} is a stabilizing family of order n.

■

The next result shows that when the group G is abelian, the stabilizing families of Conjϕ(G) are
related to the torsion of ϕ in the automorphism group of G, Aut(G).

Proposition 1.6. Let G be a non-trivial abelian group and ϕ ∈ Aut(G). Take the Conjϕ(G)
quandle with the structure

g ▷ h = g + ϕ(h)− ϕ(g) = ϕ(h) + (id− ϕ)(g), g, h ∈ G.

Then, the following statements are equivalents:

i) Conjϕ(G) is finitely stable.

ii) ϕ is a torsion element of Aut(G).

Proof. Let u1, u2, ..., un a stabilizing family of Conjϕ(G). Then we have that

(ui)
n
i=1 ▷ g = un ▷ (un−1 ▷ (...(u2 ▷ (u1 ▷ g))...)

= un ▷ (un−1 ▷ (...(u2 ▷ (ϕ(g) + (id− ϕ)(u1))...)
= un ▷ (un−1 ▷ (...(ϕ2(g) + (id− ϕ)(ϕ(u1) + u2))...).

Therefore, g = ϕn(g) + (id− ϕ)(
∑n

i=1 ϕ
n−i(ui)) for all g ∈ G.

Then {u1, u2, ..., un} is a stabilizing family if and only if ϕn = id and
∑n

i=1 ϕ
−i(ui) = 0.

■

Lemma 1.8. Let Γ be a group and γ a non- trivial element in Γ. Let A be a left Z[γ±1]- module.
Take the Alexander quandle (A,▷γ) with the operation

x ▷γ y = γ · (y − x) + x, ∀x, y ∈ A.

Then, the Alexander quandle (A,▷γ) is the same conjϕγ (A), where ϕγ : A −→ A is the automor-
phism defined by ϕγ(a) = γ · a, for all a ∈ A.

35



Proof. Since A is a left Z[γ±1]-module, it is easy to prove that ϕγ is an automorphism of A. Let
x, y ∈ A, we have that

ϕγ(x+ y) = γ · (x+ y) = γ · x+ γ · y = ϕγ(x) + ϕγ(y).

Then, ϕγ is homomorphism. Now, let a, x ∈ A such that ϕγ(a) = ϕγ(x), then γ · a = γ · x. It
follows that a = x, which implies that ϕγ is injective. Further, if we take γ

−1 · a ∈ A, ϕγ(γ−1 · a) =
γ · (γ−1 · a) = (γγ−1) · a = a. Thus, ϕγ is bijective.
Consider the quandle Conjϕγ (A), then for all x, y ∈ A we have

x ▷ y = x+ ϕγ(y)− ϕγ(x) = x+ γ · y − γ · x = γ · (y − x) + x = x ▷γ y.

Therefore, Conjϕγ (A) is the same as the Alexander quandle (A,▷γ).

■

Theorem 1.7. Let Γ be a group and γ a non- trivial element in Γ. Let A be a left Z[γ±1]-module
with the operation

x ▷γ y = γ · (y − x) + x, ∀x, y ∈ A.

For n ∈ N, let Fγ : An −→ A be a function defined by

Fγ(x1, ..., xn) :=
∑n

i=1 γ
n−i · xi.

Then (A,▷γ) has a stabilizing family of order n if and only if γ is of order n. Furthermore, Sn(M)
is the vector space of all solutions of the equation Fγ(x1, ..., xn) = 0.

Proof. Define

ϕγ : A −→ A
a 7−→ γ · a.

From Lemma 1.8, the Alexander quandle is the same quandle Conjϕγ (A). From Proposition 1.6
the Alexander quandle is n−stable if and only if ϕnγ = id, that means

ϕnγ(a) = γn · a = a, ∀a ∈ A.

It follows that γn = 1. Furthermore, u1, ..., un ∈ A is a stabilizing family if and only if

0 =
n∑
i=1

ϕn−iγ (ui)

=
n∑
i=1

γn−i · ui

= Fγ(u1, ..., un).

■
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Corollary 1.2. Let V a complex vector space. Let α ∈ C such that α ̸= 0 and α ̸= 1. Consider
the Alexander quandle structure on the vector space V defined by v ▷α w = α(w − v) + v, for all
v, w ∈ V .Then, V has a stabilizing family of order n if and only if

i) α is an nth root of unity.

ii) There exists r ∈ Z such that 0 < r < n and
∑n

k=1 e
− 2iπ

n
kruk = 0.

Proof. Consider the multiplicative group C∗ and consider the vector space V as a Z[C∗]-module.
Let v1, ..., vn ∈ V ; from Theorem 1.7, v1, ..., vn is a stabilizing family of order n if and only if
αn = 1, then α is an nth root of unity. Further, we have that

∑n
k=1 α

n−kvk =
∑n

k=1 α
−kvk = 0.

Since α is an nth root of unity then it is the form α = e
2πr
n for some integer 0 < r < n. Therefore,∑n

k=1 e
−2π
n
rkvk = 0.

■

1.6 Quandle associated to a rack

We can go from quandles to racks with the identity map because every quandle is a rack and,
therefore, every morphism between quandles is also a morphism between racks. Now, we consider
the reciprocal, i.e, we endow any rack X of quandle structure through an automorphism of the
rack. In order to get that, we follow the construction given in [16].

Lemma 1.9. Let X be a rack. For every x ∈ X there exists an unique element h ∈ X such that
x = h ▷ h.

Proof. Let x ∈ X, since the function Lx : X −→ X defined by Lx(y) = x ▷ y is bijective then
there exists an unique h ∈ X such that x = Lx(h) = x ▷ h. Note that

x ▷ (h ▷ h) = (x ▷ h) ▷ (x ▷ h) = x ▷ x.

Therefore, Lx(h ▷ h) = Lx(x). Since Lx is injective, it follows that h ▷ h = x.

■

Lemma 1.10. Let X be a rack. For every x, y ∈ X, we have the relation

(x ▷ x) ▷ y = x ▷ y.

Proof. Let x, y ∈ X. Since the function Lx is onto, there exists z ∈ X such that Lx(z) = x ▷ z = y.
Note that,

(x ▷ x) ▷ y = (x ▷ x) ▷ (x ▷ z)

= x ▷ (x ▷ z)

= x ▷ y.

■
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Proposition 1.7. Let X be a rack. The function F : X −→ X, defined by F (x) = x ▷ x, is an
automorphism of X.

Proof. Let us see that F is an homomorphism of racks. Let x, y ∈ X, we have

F (x ▷ y) = (x ▷ y) ▷ (x ▷ y) = x ▷ (y ▷ y).

From Lemma 1.10, x ▷ (y ▷ y) = (x ▷ x) ▷ (y ▷ y) = F (x) ▷ F (y). Thus, for every x, y ∈ X it
follows that F (x ▷ y) = F (x) ▷ F (y).
Now, from Lemma 1.9, for every x ∈ X, there exists a unique h ∈ X such that F (h) = x, therefore
F is a bijective function.

■

Definition 1.12. Let (X,▷) be a rack, the automorphism F defined by F (x) = x ▷ x is called
the canonical automorphism of X.

Note that, since F is an automorphism of X, then its inverse F−1 is also an automorphism of X.
Now, from Lemma 1.10, for every x, y ∈ X we have F (x) ▷ y = x ▷ y. Therefore,

F−1(x ▷ y) = F−1(F (x) ▷ y)

= F−1(F (x)) ▷ F−1(y)

= x ▷ F−1(y).

Theorem 1.8. Let X be a rack. Define the operation

▷F : X ×X −→ X

(x, y) 7−→ x ▷F y := F−1(x ▷ y) = x ▷ F−1(y).

Then (X,▷F ) is a quandle.

Proof. Let us check that the quandle axioms are satisfied. In fact,

(Q1) x ▷F x = F−1(x ▷ x) = F−1(F (x)) = x, for all x ∈ X.

(Q2) To prove the second axiom, we need to show that the function ℓx : X −→ X defined by
ℓx(y) := x ▷F y, is bijective. We have ℓx(y) = x ▷F y = x ▷ F−1(y) = Lx(F

−1(y)). Thus,
for every x ∈ X, the function ℓx is the composition of two bijective functions, Lx and F−1,
thereby, ℓx is bijective as well.

(Q3) Let x, y, z ∈ X,

x ▷F (y ▷F z) = x ▷F (y ▷ F−1(z))

= x ▷ F−1(y ▷ F−1(z)

= x ▷ (F−1(y) ▷ F−2(z)).

On the other hand,

(x ▷F y) ▷F (x ▷F z) = (x ▷ F−1(y)) ▷ F−1(x ▷ F−1(z))

= (x ▷ F−1(y)) ▷ (x ▷ F−2(z))

= x ▷ (F−1(y) ▷ F−2(z)).

Therefore, x ▷F (y ▷F z) = (x ▷F y) ▷F (x ▷F z).
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So, ▷F defines a quandle structure on X.

■

Definition 1.13. Let X be a rack. The quandle associated to X , denoted by QX , is the set
X with the binary operation ▷F ; where F is the canonical automorphism of X and ▷F is defined
by x ▷F y := F−1(y ▷ x).

Note that if X is already a quandle, then F = id and thus ▷=▷F . This implies that, in this case,
the quandle associated to X is the same as X itself.
As we see, we can naturally obtain a quandle from any rack X. Additionally, any morphism
between racks induces a morphism between their associated quandles, as it is shown in the next
theorem.

Theorem 1.9. Let (X,▷) and (Y, ∗) be racks, and ϕ : X −→ Y be a rack homomorphism. Then
ϕ : QX −→ QY is also a quandle homomorphism.

Proof. Since QX = X and QY = Y as sets then, the map ϕ : QX −→ QY makes sense. Let FX
and FY the canonical automorphism of X and Y , respectively. Note that for all x ∈ X we have

ϕ(FX(x)) = ϕ(x ▷ x) = ϕ(x) ∗ ϕ(x) = FY (ϕ(x)).

Therefore, ϕFx = FY ϕ. This implies that F−1
Y ϕ = ϕF−1

X . So, for every x, h ∈ QX we have

ϕ(x ▷FX
h) = ϕ(F−1

X (x ▷ h)) = F−1
Y (ϕ(x ▷ h)) = F−1

Y (ϕ(x) ∗ ϕ(h)) = ϕ(x) ∗FY
ϕ(h).

Hence, ϕ is a morphism between QX and QY .

■

Corollary 1.3. Let X be a rack and Q be a quandle and ϕ : X −→ Q be a rack homomorphism.
Then, ϕ : QX −→ Q is a quandle homomorphism.

Proof. Since Q is a quandle then its associated quandle is simply Q itself. From Theorem 1.9,
ϕ : QX −→ Q is a quandle homomorphism.

■

Corollary 1.4. Let X be a rack, then the canonical automorphism F belongs to the center
Z(Aut(X)) of Aut(X).

Proof. Let ϕ ∈ Aut(X), then from Theorem 1.9, ϕ is also an automorphism of the associated
quandle QX , that means, ϕF−1 = F−1ϕ. Therefore Fϕ = ϕF , and the result follows.

■

Proposition 1.8. Let X be an involutive rack, then QX is an involutive quandle.

39



Proof. Since X is involutive, then L2
x = id for all x ∈ X. Thus, for every x ∈ X, we have

x = L2
x(x)

= x ▷ (x ▷ x)

= (x ▷ x) ▷ (x ▷ x)

= F (x) ▷ F (x)

= F (x ▷ x)

= F 2(x).

Therefore, F 2 = id. In other words we have F = F−1. Now, in the quandle QX we have ℓx =
LxF

−1 = LxF . Since F ∈ Z(Aut(X)), then for every x ∈ X, we have ℓ2x = (LxF )
2 = L2

xF
2 = id.

Thus, QX is involutive.

■

1.7 The rack ring

Some authors have studied the notion of rack ring, for example in [2], an analogous theory of group
rings was proposed for quandles and racks.
In this work, we give two different constructions for the rack ring and prove that those constructions
are isomorphic. In particular, we are interested in the rack ring CX, for a finite rack X.

Definition 1.14. Let R be a commutative ring with unity and let X be a rack. Define the set

RX := {f : X −→ R | f(x) = 0 except for finite many x’s}.

Then, RX is a ring with addition and multiplication in the usual way , (f1+f2)(x) = f1(x)+f2(x)
and (f1f2)(x) = f1(x)f2(x) for all f1, f2 ∈ RX and x ∈ X. The set RX is called the rack ring.
If X is a quandle, then we calle it the quandle ring .

As in group rings, we can see the rack ring in terms of formal sums.

Proposition 1.9. Let R be a commutative ring with unity and X be a rack. Define the set of all
formal finite R-linear combinations of elements of X,

R[X] :=

{∑
x∈X

rxx | rx ∈ R, ∀x ∈ X and rx = 0 except for finite many x’s

}
.

Then R[X] is a non-associative ring with addition in the usual way,
∑
x∈X

rxx+
∑
x∈X

sxx =
∑
x∈X

(rx+sx)x

and multiplication (
∑
x∈X

rxx) · (
∑
y∈X

syy) :=
∑

x,y∈X
rxsy(x ▷ y).

40



Proof. The set R[X] with the usual addition is an abelian group. Now observe that

(
∑
x∈X

αxx) · (
∑
z∈X

rzz +
∑
z∈X

szz) = (
∑
x∈X

αxx) · (
∑
z∈X

(rz + sz)z)

=
∑
x,z∈X

αx(rz + sz)(x ▷ z)

=
∑
x,z∈X

(αxrz + αxsz)(x ▷ z)

=
∑
x,z∈X

αxrz(x ▷ z) +
∑
x,z∈X

αxsz(x ▷ z)

= (
∑
x∈X

αxx) · (
∑
z∈X

rzz) + (
∑
x∈X

αx) · (
∑
z∈X

szz).

In a similar way, we prove the distribution by left multiplication. Since the the operation on the
rack ▷ is not necessarily associative , then neither is the multiplication defined on R[X].

■

Let X be a rack and R be a commutative ring with unity. The set RX is a R-module with the usual
scalar multiplication (rf)(x) = rf(x). Consider the set δ := {δx | x ∈ X}, where the function
δx : X −→ R is defined by

δx(y) :=

{
0, si y ̸= x
1, si y = x.

The set δ is a base of RX seen as R-module. Indeed, for every f ∈ RX and x ∈ X, we have

f(x) =
∑
x∈X

f(x)δx(x).

Since f(x) ̸= 0 for a finite set of x’s, then

f =
∑
x∈X

f(x)δx ∈ ⟨δ⟩.

Furthermore, observe that
∑

x∈X rxδx = 0, implies that for every x ∈ X,∑
x∈X

rxδx(x) = rx = 0.

Therefore, δ is R- linearly independent.
Now, R[X] is also an R- module with scalar multiplication defined by r

∑
x∈X

sxx =
∑
x∈X

(rsx)x. From

definition, the set X form a basis for R[X] as an R-module.

Proposition 1.10. Let X be a rack and R be a commutative ring with unity. Then the R-modules
RX and R[X] are isomorphic.
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Proof. Let the map ϕ : RX −→ R[X] be defined by ϕ(
∑
x∈X

f(x)δx) :=
∑
x∈X

fxx , where fx = f(x) for

all x ∈ X. Let r ∈ R and f, g ∈ RX, then

ϕ(r(
∑
x∈X

f(x)δx) +
∑
x∈X

g(x)δx) = ϕ(
∑
x∈X

r(f(x)) + g(x))δx

= ϕ(
∑
x∈X

[(rf)(x) + g(x)]δx

=
∑
x∈X

(rfx + gx)x

= r
∑
x∈X

fxx+
∑
x∈X

gxx

= rϕ(
∑
x∈X

f(x)δx) + ϕ(
∑
x∈X

g(x)δx).

Therefore, ϕ is a R-module homomorphism. Now, let
∑
i

f(xi)δxi ∈ Kerϕ. Then,

ϕ(
∑
x∈X

f(x)δx) =
∑
x∈X

fxx = 0

∴ f(x) = fx = 0, ∀x ∈ X.

Thus, ϕ is an injective function.
Let

∑
x∈X

rxx ∈ R[X], define the function f : X −→ R by f(x) := rx. Since rx ̸= 0 for a fi-

nite many x′s, then f(x) ̸= 0 for a finite set of x′s, it follows that f ∈ RX. Observe that
ϕ(f) = ϕ(

∑
x∈X

f(x)δx) =
∑
x∈X

fxx =
∑
x∈X

rxx, which implies that ϕ is surjective. Therefore, ϕ is an

isomorphism.

■
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Chapter 2

Rack Actions and Rack Representations

Representation theory studies different algebraic structures by representing their elements as linear
transformations over a vector space. This perspective allows us to use several tools of linear algebra
and obtain significant results. Representation theory is closely related to the notion of action,
which is another important tool in mathematics. Thus, if we have the concept of a rack action,
then we get the concept of a rack representation. In this chapter we study rack actions and, also
rack representation theory. We follow the approach of Elhamdadi and Moutuou in [4], providing
additional details for some proofs and presenting new results.

2.1 Rack actions and approximate units

Let X be a rack, then there is a natural action of the group Inn(X) on X, given by Lx ·y = Lx(y) =
x ▷ y, for all x, y ∈ X. This group action can be seen as a “quandle action” of Conj(Inn(X))
on the set X, where Conj(Inn(X)) is the set Inn(X) with the conjugation operation Lx ◁ Ly =
LxLyL

−1
x . Note that

Lx · (Ly · z) = (LxLy) · z = (LxLyL
−1
x ) · (Lx · z) = (Lx ◁ Ly) · (Lx · z).

Further, suppose that the rack X is finitely stable. Let {x1, ..., xn} be a stabilizing family of
X, then we have Lxn · · ·Lx1 = id. From Lemma 1.6, for all σ ∈ ⟨(2 3 4 ... n 1)⟩, satisfies that
Lxσ(n)

· · ·Lxσ(1)
= id, thus Lxσ(n)

· · ·Lxσ(1)
= Lxn · · ·Lx1 . Therefore,

Lxn · (Lxn−1 · (·...(Lx1 · z))...) = (LxnLxn−1 · · ·Lx1) · z
= (Lxσ(n)

· · ·Lxσ(1)
) · z

= Lxσ(n)
· (Lxσ(n−1)

· (·...(Lxσ(1)
· z))...).

These observations motivate the following definition which was introduced in [4].

Definition 2.1. A left rack action of a rack X on a set M is a map

• : X ×M −→M

(x,m) 7−→ x ·m,

which satisfies the following conditions,
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(i) For all m ∈M and x, y ∈ X,

x · (y ·m) = (x ▷ y) · (x ·m).

(ii) Let {u1, u2, ..., un} ∈ S(X), then

(un · (un−1 · (...(u1 ·m)...) = (uσ(n) · (uσ(n−1) · (...(uσ(1) ·m)...),

for all m ∈M and all σ ∈ ⟨(2 3 ... n 1)⟩.

Notation 2.1. Let X be a rack acting over a set M . Let u1, u2, ..., un be elements in X and m
an element of M , we write: (ui)

n
i=1 ·m = un · (...(u3 · (u2 · (u1 ·m)))...).

The following example is a generalization of what we describe in the paragraph previous to the
Definition 2.1.

Example 2.1. Every action of a group G on a set M extens to an action of the quandle Conj(G)
on M. In fact, let G be a group acting on a set M. Then:
(i) Let g, h ∈ Conj(G) and m ∈M ,

g · (h ·m) = (gh) ·m
= (ghg−1g) ·m
= (ghg−1) · (g ·m)

= (g ▷ h) · (g ·m).

(ii) Let {ui}ni=1 ∈ Sn(Conj(G)), m ∈M and σ = (2 3 ... n 1),

(ui)
n
i=1 ·m = un · (...(u3 · (u2 · (u1 ·m)))...)

= (un...u2u1) ·m
= (u−1

1 u1un...u2u1) ·m.

Since {ui}ni=1 ∈ Sn(Conj(G)), from Lemma 1.6, {uσ(i)}ni=1 ∈ Sn(Conj(G)) then, from Theorem
1.5 u1un...u2 ∈ Z(G). It follows that

(u−1
1 u1un...u2u1) ·m = (u1un...u2) ·m = u1 · (un · (... · (u2 ·m))) = (uσ(i))

n
i=1 ·m.

Therefore, (ui)
n
i=1 ·m = (uσ(i))

n
i=1 ·m. From induction, the result follows for all σ ∈ ⟨(2 3 ... n 1)⟩.

▲

The converse of the previous example is not always true, that is, a rack action of Conj(G) does
not necessarily define a group action of G. A counterexample is given in the next example.

Example 2.2. Let X = Conj(G), where G is an abelian group. Consider the rack ring CX seen
as a complex vector space. Define the map

· : X × CX −→ CX
(x, f) 7−→ x · f := f + δx,

where,

44



δx(y) :=

{
0, si y ̸= x
1, si y = x

for all x, y ∈ X.

Note that, Sk(X) ̸= ∅ for every k ∈ N. Indeed, let x, y ∈ X, then we have x ▷ y = x+ y − x = y.
Therefore, {x, x, ..., x} is a stabilizing family of order k. Let us see that · is an action of the quandle
X over CX.
(i) Let f ∈ CX and x, y ∈ X then

x · (y · f) = x · (f + δy)

= f + δy + δx

= f + δx + δy

= y · (f + δx)

= y · (x · f)
= (x ▷ y) · (x · f).

(ii) Let {u1, ..., uk} ∈ Sk(X), f ∈ CX and σ = (2 3 ... n 1) then

(ui)
k
i=1 · f = f + δu1 + δu2 + · · ·+ δuk

= f + δu2 + · · ·+ δuk + δu1
= u1 · (uk · ...(u2 · f)...)
= (uσ(i))

k
i=1 · f.

by induction as in the proof of Lemma 1.6 the result follows for all σ ∈ ⟨(2 3 ... n 1)⟩. Then, · is an
action of the quandle Conj(G) but it is not an action of the group G on CX. In fact, reasoning by
contradiction, let us suppose that · is a group action. Let x, y ∈ G be non trivial elements, then we
have, x ·(y ·f) = f+δy+δx. On the other hand, (x+y) ·f = f+δx+y, thus, if x ·(y ·f) = (x+y) ·f ,
then, δy + δx = δx+y, but (δy + δx)(x + y) = 0 and δx+y(x + y) = 1; therefore we can not get the
equality δy + δx = δx+y. It follows that · is not a group action.

▲

Definition 2.2. A rack action of a rack X on a set M is faithful if for each m ∈ M , the map
x ∈ X 7−→ x ·m ∈M is injective.

Example 2.3. Let G be an abelian group. Consider the action of the Example 2.2 of the quandle
X = Conj(G) over the vector space CX given by x · f = f + δx. Then, this action is faithful.
Indeed, let x, y ∈ X and f ∈ CX such that x · f = y · f . Then, f + δx = f + δy, which implies that
x = y.

▲

Let X be a rack. Observe that we can define an action of X on its underlying set by x · y := x ▷ y
for all x, y ∈ X. Suppose that {t1, ..., tn} is an stabilizing family of X, then for every x ∈ X we
have

x = tn ▷ (... ▷ (t2 ▷ (t1 ▷ x))..)

= tn · (... · (t2 · (t1 · x))...)
∴ (ti)

n
i=1 · x = x , ∀x ∈ X.

The following definition is motivated by the previous observation.
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Definition 2.3. Let X be a rack acting on a set M ̸= ∅.

(I) An approximate unit is a subset {ti}ni=1 ⊂ X such that

(ti)
n
i=1 ·m = m, ∀m ∈M .

(II) A rack action is said to be strong if every stabilizing family of the rack is an approximate
unit.

Lemma 2.1. Let X be a rack acting on a set M and {xi}ni=1 ⊂ X, then we have the relation
y · ((xi)ni=1 ·m) = (y ▷ xi)

n
i=1 · (y ·m).

Proof. The proof is straightforward from the definition of a rack action. Let {xi}ni=1 ⊂ X then

y · ((xi)ni=1 ·m) = y · (xn · (...(x1 ·m)...))

= (y ▷ xn) · [y · (xn−1 · (...(x1 ·m)...))]

= (y ▷ xn) · [(y ▷ xn−1) · [y · (xn−2 · (...(x1 ·m)))]]

= (y ▷ xn) · [(y ▷ xn−1) · [... · (y ▷ x1) · (y ·m)]].

Therefore, we can write y · ((xi)ni=1 ·m) = (y ▷ xi)
n
i=1 · (y ·m).

■

Notation 2.2. Let X be a rack acting on a set M . Let x ∈ X, m ∈M and k ∈ N. We write

x ·k m = x · (x · (...(x ·m)..)) , x acting k-times.

Theorem 2.1. Let X be a rack acting strongly on a set M. Let x ∈ X such that {x}ki=1 is a
stabilizing family of order k. Then, every element (xi)

r
i=1 · m, where x appears k-times in the

sequence x1, x2, ..., xr; can be written as (yn)
r−k
n=1 ·m.

Proof. Let x ∈ X, such that {x}ki=1 is an stabilizing family of order k and

{xi}ri=1 = {x1, ..., xj1 , x, xj1+1, ..., xj1+j2 , x, xj1+j2+1, ..., x∑k
p=1 jp

, x, x∑k
p=1 jp+1, ..., x∑k

p=1 jp+n
},

be a sequence of r elements where x appears k times. Note that r = k + n +
∑k

p=1 jp, then we
have

(xi)
r
i=1 ·m = (xi)

r
i=j1+1 · (x · [(xi)

j1
i=1 ·m])

= (xi)
r
i=j1+1 · [(x ▷ xi)

j1
i=1 · (x ·m)]

= (xi)
r
i=j1+j2+1 · x · ((xi)

j1+j2
i=j1+1 · [(x ▷ xi)

j1
i=1 · (x ·m)])

= (xi)
r
i=j1+j2+1 · [(x ▷ xi)

j1+j2
i=j1+1 · [(x ▷2 xi)

j1
i=1 · (x ·2 m)])

= (xi)
r
i=

∑k
p=1 jp+1

· [(x ▷ xi)
∑k

p=1 jp

i=
∑k−1

p=1 jp+1
· [· · · [(x ▷k−1 xi)

j1+j2
i=j1+1 · [((x ▷k xi)

j1
i=1 · (x ·k m)].

Since the action is strong and {x}ki=1 is an stabilizing family, then (x ·k m) = m. Therefore,

(xi)
r
i=1 ·m = (xi)

r
i=

∑k
p=1 jp+1

· [(x ▷ xi)
∑k

p=1 jp

i=
∑k−1

p=1 jp+1
· [· · · [(x ▷k−1 xi)

j1+j2
i=j1+1 · [(xi)

j1
i=1 ·m)].

Note that, there is n+
∑k

p=1 jp = r − k elements, therefore (xi)
r
i=1 ·m = (yj)

r−k
j=1 ·m.

■
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2.2 Rack representations

With the definition of a rack action we can define a rack representation.

Definition 2.4. A representation of a rack X is a vector space V equipped with an action of
the rack X, such that for all x ∈ X the function

ρx : V −→ V

v 7−→ x · v,

is an automorphism of V. Equivalently, a representation of X consist of a vector space and a map

ρ : X −→ Conj(GL(V ))

x 7−→ ρx,

which is a rack homomorphism, i.e., ρx▷y = ρxρyρ
−1
x for all x, y ∈ X.

Example 2.4. Let G be a group, then every representation of G defines a representation of the
quandle Conj(G). Indeed, let ρ : G −→ GL(V ) a group representation, that means, ρ is a group
homomorphism. Let g, h ∈ G, note that

ρg▷h = ρghg−1 = ρgρhρ
−1
g .

Therefore, the map ρ : Conj(G) −→ Conj(GL(V )) is also a rack homomorphism.

▲

As in representations of groups, we can define the regular representation of a rack X.

Lemma 2.2. Let X be a finite rack and CX the complex vector space, seen as the formal sums

CX = {f =
∑
x∈X

fxx | fx ∈ C and fx = 0 except for finite many x’s}.

Then, the map λ : X −→ Conj(GL(CX)), defined by

λt(f) = λt(
∑
x∈X

fxx) :=
∑
x∈X

fx(t ▷ x) =
∑
u∈X

fL−1
t
u = f ◦ L−1

t ,

is a representation of X.

Proof. Let t ∈ X and f ∈ CX, note that λ−1
t (f) = f(Lt), indeed, we have λt(λ

−1
t (f)) = λt(f(Lt)) =

f(LtL
−1
t ) = f and λ−1

t (λt(f)) = λt(f(L
−1
t )) = f(L−1

t Lt) = f . Now, let x ∈ X, from Proposition
1.2, for every z ∈ X we have,

λt▷x(f)(z) = f(L−1
t▷x(z))

= f((LtLxL
−1
t )−1(z))

= (fLtL
−1
x )(L−1

t (z))

= λt((fLt)(L
−1
x (z)))

= λtλx(f(Lt(z)))

= λtλxλ
−1
t (f)(z).

Therefore, λt▷x = λtλxλ
−1
t .
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■

Definition 2.5. Let X be a rack, the representation of Lemma 2.2 is called the regular repre-
sentation of X.

Example 2.5. Take the cyclic group of order three Z3 = {0, 1, 2}. Consider the Takasaki quandle
Q = (Z3,▷) with the operation x ▷ y = 2x− y. The table of this quandle is:

▷ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

As discussed in Section 1.7, the set of functions {δ0, δ1, δ2} is a base for the quandle ring CQ. The
regular representation λ : Q −→ Conj(GL(CQ)) is defined by the following equalities,

λ0(δ0(x)) = δ0(L
−1
0 (x)) = δ0(L0(x)) = δ0(x),

λ0(δ1(x)) = δ1(L
−1
0 (x)) = δ1(L0(x)) = δ2(x),

λ0(δ2(x)) = δ2(L
−1
0 (x)) = δ2(L0(x)) = δ1(x),

λ1(δ0(x)) = δ0(L
−1
1 (x)) = δ0(L1(x)) = δ2(x),

λ1(δ1(x)) = δ1(L
−1
1 (x)) = δ1(L1(x)) = δ1(x),

λ1(δ2(x)) = δ2(L
−1
1 (x)) = δ2(L1(x)) = δ0(x),

λ2(δ0(x)) = δ0(L
−1
2 (x)) = δ0(L2(x)) = δ1(x),

λ2(δ1(x)) = δ1(L
−1
2 (x)) = δ1(L2(x)) = δ0(x),

λ2(δ2(x)) = δ2(L
−1
2 (x)) = δ2(L2(x)) = δ2(x).

Therefore, with the base {δ0, δ1, δ2}, we can describe the regular representation λ : Q −→ Conj(GL(3,C))
in matrix form as follow:

λ0 =

1 0 0
0 0 1
0 1 0

 , λ1 =
0 0 1
0 1 0
1 0 0

 , λ2 =
0 1 0
1 0 0
0 0 1

 .
Observe that the regular representation of the quandle (Z3,▷) is not a representation of the group
Z3.

▲

Example 2.6. Let the permutation quandle P3 (see Example 1.13). The table of this quandle is:

▷ (2 3) (1 3) (1 2)
(2 3) (2 3) (1 2) (1 3)
(1 3) (1 2) (1 3) (2 3)
(1 2) (1 3) (2 3) (1 2)
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This quandle is isomorphic to the Takasaki quandle Z3, where the isomorphism is the function ϕ :
Z3 −→ P3 defined by ϕ(0) := (2 3), ϕ(1) := (1 3) and ϕ(2) := (1 2). So, the regular representation
of this quandle is the same as Z3, that is λ : P3 −→ Conj(GL(3,C)) defined by

λ(2 3) =

1 0 0
0 0 1
0 1 0

 , λ(1 3) =

0 0 1
0 1 0
1 0 0

 , λ(1 2) =

0 1 0
1 0 0
0 0 1

 .
▲

Example 2.7. Let us consider X = {1, 2, 3} with the operation i ▷ j = σ(j) for all i, j ∈ X,
where σ = (1 2 3) ∈ S3. (X,▷) is a rack (see Example 1.11) with the table

▷ 1 2 3
1 2 3 1
2 2 3 1
3 2 3 1

Note that L3
i = id for all i ∈ X, then L2

i = L−1
i for all i ∈ X. The regular representation

λ : X −→ Conj(GL(CX)) is defined by

λ1(δ1(x)) = δ1(L
−1
1 (x)) = δ1(L

2
1(x)) = δ2(x),

λ1(δ2(x)) = δ2(L
−1
1 (x)) = δ2(L

2
1(x)) = δ3(x),

λ1(δ3(x)) = δ3(L
−1
1 (x)) = δ3(L

2
1(x)) = δ1(x).

Since L1 = L2 = L3 then λ1 = λ2 = λ3. Then we have that

λ1 = λ2 = λ3 =

0 0 1
1 0 0
0 1 0

 .
▲

Definition 2.6. Let ρ : X −→ Conj(GL(V )) and ϕ : X −→ Conj(GL(W )) two representations
of a rack X. A linear map T : V −→ W is called X-linear if for all x ∈ X the following diagram
commutes

V
ρx //

T
��

V

T
��

W
ϕx
//W,

that means, ϕxT = Tρx, for all x ∈ X. The representations ϕ and ρ are said to be equivalent if
T is an isomorphism. We use the notation ϕ ∼ ρ for two equivalent representations.

Definition 2.7. Let ρ : X −→ Conj(GL(V )) a representation of a rack X andW ⊂ V a subspace
of V , such that ρx(W ) ⊂ W for all x ∈ X, then W is called a subrepresentation .
A representation V of X is said to be irreducible if the only subrepresentations are W = {0}
and W = V .
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Lemma 2.3. Let ρ : X −→ Conj(GL(V )) and ϕ : X −→ Conj(GL(W )) be representations
of a rack X. Let T : V −→ W be a linear map. If T is X-linear then ker(T ) and Im(T ) are
subrepresentations of V and W, respectively.

Proof. Let x ∈ X and T : V −→ W be a X-linear map. Then Tρx = ϕxT for all x ∈ X. Let
v ∈ Ker(T ), note that T (ρx(v)) = ϕx(T (v)) = ϕx(o) = o, then ρx(v) ∈ ker(T ) for all x ∈ X. It
follows that ρx(Ker(T )) ⊂ ker(T ) for all x ∈ X.
Now, let w ∈ Im(T ) then there is a v ∈ V such that w = Tv. Observe that ϕx(w) = ϕx(T (v)) =
T (ρx(v)), since ρx(v) ∈ V then ϕx(w) ∈ Im(T ) for all x ∈ X.It follows that ϕx(Im(T )) ⊂ Im(T )
for all x ∈ X.

■

2.3 Strong representations

Elhamdadi and Moutuou in [4] introduced the strong representations. In this section, we study
that concept and we present new and interesting results about this type of rack representations.

Definition 2.8. A representation ρ : X −→ GL(V ) of a rack X is said to be strong if the action
of the rack over V , is strong. That is, for every x1, ..., xn ∈ X such that Lxn · · ·Lx2Lx1 = id, we
have that ρxn · · · ρx2ρx1 = id.

Example 2.8. Let X be a rack and V a vector space, the trivial representation ρ : X −→ GL(V )
defined by ρx := id for all x ∈ X, is strong.

Example 2.9. Let G be an abelian group. Suppose that ρ : Conj(G) −→ Conj(GL(V )) is a
strong representation of the quandle Conj(G). Since G is abelian, then Z(G) = G, from Theorem
1.5 every element g of the group G is a stabilizer of Conj(G), since the representation is strong
then ρg = id for all g ∈ G. Therefore, ρ is the trivial representation. That means, every strong
representation of Conj(G) where G is abelian, is the trivial representation.

Proposition 2.1. Let X be a rack. The regular representation λ : X −→ Conj(GL(CX)) is
strong.

Proof. Let {u1, ..., un} a stabilizing family of the rack X and let f ∈ CX. Note that

(ρun · · · ρu2ρu1)(f) = (ρun · · · ρu2)(ρu1(f))
= (ρun · · · ρu2)(fL−1

u1
)

= (ρun · · · ρu3)[ρu2(fL−1
u1
))]

= (ρun · · · ρu3)(fL−1
u1
L−1
u2
)

= fL−1
u1
L−1
u2
· · ·L−1

un

= f(Lun · · ·Lu2Lu1)−1.

Since {u1, ..., un} is a stabilizing family, then Lun · · ·Lu1 = id, therefore

(ρun · · · ρu2ρu1)(f) = f(Lun · · ·Lu2Lu1)−1

= f.
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■

Regarding the dimension of the irreducible strong representations of a rack X, we have a result
analogous to the irreducible representations of a finite group.

Theorem 2.2. Let X be a finite rack , then every irreducible strong representation of X is either,
trivial or finite dimensional.

Proof. Let X be a rack with n elements and (V, ρ) be a nontrivial irreducible strong representation
of X. Since X has order n, then the symmetric group of X, Sym(X) has order n!. Since all
the functions Lx belongs to Sym(X), then we have Ln!x = id for all x ∈ X. Given that the
representation is strong, it follows that ρn!x = id for every x ∈ X. Now, since the representation is
non trivial then V ̸= {0}. Fix a non-zero vector v ∈ V . We define the subspace

Ev := span{(xi)si=1 · v | s = 0, 1, ..., (n+ 1)! and x1, ..., xs ∈ X}.

We use the convention ∅ · v = v. Note that, Ev is a finite dimensional subspace. Furthermore, it
is a subrepresentation of V . Indeed, let y ∈ X then we have
If s = 0 then

y · ((xi)0i=1 · v) = y · (∅ · v) = y · v ∈ Ev.

If s = 1 then

y · ((xi)1i=1 · v) = y · (x1 · v) ∈ Ev.

In a similar way, we prove that y · ((xi)si=1 · v) ∈ Ev, for the cases s = 2, 3, ..., (n + 1)! − 1. Now,

suppose that s = (n + 1)!. Since X has n elements then, any sequence (xi)
(n+1)!
i=1 has at least one

element repeated at least n! times. From Theorem 2.1 the element (xi)
(n+1)!
i=1 · v can be written as

(zj)
(n+1)!−n!
j=1 · v, where z1, ..., z(n+1)!−n! ∈ X. It follows that

y · ((xi)(n+1)!
i=1 · v) = y · ((zj)(n+1)!−n!

j=1 · v) ∈ Ev.

Therefore, Ev is a subrepresentation of V . Since the representation is irreducible and V ̸= {0},
then V = Ev, where the result follows.

■

With the previous properties and definitions given in [4] we have found new results. Precisely, for
a finite and connected rack X there is an interesting relation between strong representations of the
rack and representations of the finite enveloping group GX . Specifically, every irreducible strong
representation of a finite connected rack X induces a irreducible representation of the group GX .
Conversely, every irreducible representation of the group GX induces an irreducible representation
(not necessarily strong) of the rack X. We prove these claims in the next discussion.

Notation 2.3. From now on, for a finite connected rack X we write n for the order of all permu-
tations Lx and x0 for a fixed element of X.
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Theorem 2.3. Let X be a finite connected rack and ρ : X −→ Conj(GL(V )) a strong representa-
tion of X. Then ρ induces a representation ρ̄ : GX −→ GL(V ) of the finite enveloping group GX

such that ρ̄gx⟨gnx0 ⟩ := ρx for all x ∈ X. Furthermore, if ρ is an irreducible rack representation then
ρ̄ is an irreducible group representation.

Proof. Since ρ : X −→ Conj(GL(V )) is a rack homomorphism then from Theorem 1.2, ρ induces
a group homomorphism ρ̂ : As(X) −→ GL(V ) such that ρ̂gx = ρx for all x ∈ X. Now, fix x0 ∈ X,
note that ρ̂gnx0 = ρ̂ngx0 = ρnx0 . Since n is the order of all permutations Lx, then L

n
x0

= id. Due to

the representation ρ is strong, we have ρ̂gnx0 = ρnx0 = id. Therefore, ⟨gnx0⟩ ⊂ ker(ρ̂). This implies

that there exists a group homomorphism ρ̄ : As(X)/⟨gnx0⟩ −→ GL(V ) such that ρ̄gx⟨gnx0 ⟩ = ρx for
all x ∈ X.
Now, suppose that ρ is irreducible and suppose that W is a subspace of V such that ρ̄h(W ) ⊂ W
for all h ∈ GX . In particular, we have that ρ̄gx⟨gnx0 ⟩(W ) = ρx(W ) ⊂ W for all x ∈ X. Since ρ is

irreducible then W = {0} or W = V . Therefore, ρ̄ is also irreducible.

■

Theorem 2.4. Let X be a finite connected rack. Let ρ : X −→ Conj(GL(V )) and ϕ : X −→
Conj(GL(V ′)) be strong representations of X such that ρ ∼ ϕ. Then, the group representations
ρ̄ : GX −→ GL(V ) and ϕ̄ : GX −→ GL(V ′) are also equivalents.

Proof. Since ρ ∼ ϕ then there exists an isomorphism T : V ′ −→ V such that ρxT = Tϕx for all
x ∈ X. Let h ∈ GX , from the proof of Theorem 1.4 the element h is the form h = ge1x1 · · · g

em
xm⟨g

n
x0
⟩

where m ≤ |GX |, xi ∈ X for all i ∈ {1, ...,m} and ei ∈ {0, 1, ..., n− 1}. Then,
ρ̄hT = ρ̄ge1x1 ···g

em
xm ⟨gnx0 ⟩

T

= ρ̄e1gx1 ⟨gnx0 ⟩
· · · ρ̄emgxm ⟨gnx0 ⟩

T

= ρe1x1 · · · ρ
em
xmT.

Note that, for every i ∈ {1, ...,m} we have that

ρeixiT = ρei−1
xi

ρxiT

= ρei−1
xi

Tϕxi
= ρei−2

xi
ρxiTϕxi

= ρei−2
xi

Tϕ2
xi

...

= Tϕeixi .

Therefore, ρe1x1 · · · ρ
em
xmT = ρe1x1 · · ·Tϕ

em
xm = Tϕe1x1 · · ·ϕ

em
xm . Hence,

ρ̄hT = ρe1x1 · · · ρ
em
xmT

= Tϕe1x1 · · ·ϕ
em
xm

= T ϕ̄e1gx1 ⟨gnx0 ⟩
· · · ϕ̄emgxm ⟨gnx0 ⟩

= T ϕ̄ge1x1 ⟨gnx0 ⟩
· · · ϕ̄gemxm ⟨gnx0 ⟩

= T ϕ̄ge1x1 ···g
em
xm ⟨gnx0 ⟩

= T ϕ̄h.
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Hence, the result follows.

■

The theorems above allow us to translate questions about strong representations of a finite con-
nected rack into questions about representations of a finite group. That means, we can apply
the theory of representations of finite groups, such that Schur’s lemma, orthogonal relations or
character theory. For example, we have the following corollaries.

Corollary 2.1. Let X be a finite connected rack, then the number of irreducible strong complex
representations of X (up to equivalence) is less than or equal to the conjugacy classes of the finite
enveloping group GX .

Proof. Suppose that the number of conjugacy classes of GX is k ∈ N . From representation
theory of finite groups we have that the number of irreducible complex representations (up to
equivalence) of the finite enveloping group GX is equal to the number of conjugacy classes of GX .
Now, reasoning by contradiction, suppose that the number of irreducible strong representations
of X is m > k. Let ρ1, ..., ρm be the distinct representatives of irreducible strong representations
(up to equivalence) of X. Then, from Theorem 2.3 every representative ρi induces a irreducible
representation ρ̄i of the group GX . Since ρi ̸∼ ρj for all i ̸= j ∈ {1, 2...,m}, then from Theorem 2.4
ρ̄i ̸∼ ρ̄j for all i ̸= j ∈ {1, 2...,m}. Therefore, GX would have m > k irreducible representations
(up to equivalence), which is a contradiction. Thus m ≤ k.

■

Corollary 2.2. Let X be a finite connected rack whose finite enveloping group GX is abelian. For
every irreducible strong representation ρ : X −→ Conj(GL(V )) of the rack X, we have that the
vector space V is one dimensional.

Proof. Let ρ : X −→ Conj(GL(V )) be an irreducible strong representation of X. From Theorem
2.3, ρ induces a irreducible representation ρ̄ : GX −→ GL(V ) such that ρ̄gx⟨gnx0 ⟩ = ρx for all x ∈ X.
Since GX is an abelian group and ρ̄ is irreducible, then V is one dimensional, that is, there exists
v ∈ V such that ⟨v⟩ = V .

■

If we have a representation of the finite enveloping group GX of a rack X then we can define a
representation of the rack X as it is given in the next Theorem.

Theorem 2.5. Let X be a finite connected rack. Let ρ̄ : GX −→ GL(V ) a representation of
the finite enveloping group of X. Consider the function ρ : X −→ Conj(GL(V )) defined by
ρx := ρ̄gx⟨gnx0 ⟩ for all x ∈ X. Then ρ is a representation of the rack X. Furthermore, if ρ̄ is
irreducible, ρ is too.

Proof. Let us see that ρ is well defined. Let x, y ∈ X such that x = y. Therefore, gx⟨gnx0⟩ = gy⟨gnx0⟩.
It follows that ρx = ρ̄gx⟨gnx0 ⟩ = ρ̄gy⟨gnx0 ⟩ = ρy, so ρ is well defined. From the definition of GX , we

have the relation gx▷y⟨gnx0⟩ = gxgyg
−1
x ⟨gnx0⟩, for all x, y ∈ X. Then,

ρx▷y = ρ̄gx▷y⟨gnx0 ⟩
= ρ̄gxgyg−1

x ⟨gnx0 ⟩
= ρ̄gx⟨gnx0 ⟩ρ̄gy⟨g

n
x0

⟩ρ̄
−1
gx⟨gnx0 ⟩

= ρxρyρ
−1
x .

53



Therefore, ρ is a representation of the rack X. Suppose that ρ̄ is irreducible. Let W a subspace
of V such that ρx(W ) ⊂ W for all x ∈ X. First, we claim that ρkx(W ) ⊂ W for all k ∈ N and all
x ∈ X. Indeed, suppose that for every x ∈ X we have ρtx(W ) ⊂ W for some t ∈ N. Note that
ρt+1
x (W ) = ρxρ

t
x(W ) = ρx[ρ

t
x(W )], since ρtx(W ) ⊂ W , then we have ρt+1

x (W ) = ρx[ρ
t
x(W )] ⊂ W , so

the result follows by induction.
Let h ∈ GX , from the proof of Theorem 1.4, the element h is the form h = ge1x1 · · · g

em
xm⟨g

n
x0
⟩ where

m ≤ |GX |, xi ∈ X for all i ∈ {1, ...,m} and ei ∈ {0, 1, ..., n− 1}. Then,
ρ̄h(W ) = ρ̄ge1x1 ···g

em
xm ⟨gnx0 ⟩

(W )

= ρ̄e1gx1 ⟨gnx0 ⟩
· · · ρ̄emgxm ⟨gnx0 ⟩

(W )

= ρe1x1 · · · ρ
em
xm(W ).

Since ρe1xi(W ) ⊂ W and ρe2xi(W ) ⊂ W then,

ρe1x1ρ
e2
x2
(W ) = ρe1x1 [ρ

e2
x2
(W )] ⊂ W.

Suppose that ρe1x1 · · · ρ
ei
xi
(W ) ⊂ W for some i ∈ {2, 3, ..,m − 1}. Since ρ

ei+1
xi+1(W ) ⊂ W it follows

that ρe1x1 · · · ρ
ei
xi
ρ
ei+1
xi+1(W ) = (ρe1x1 · · · ρ

ei
xi
)[ρ

ei+1
xi+1(W )] ⊂ W . Thus, from induction over i we have

ρe1x1 · · · ρ
em
xm(W ) ⊂ W . Therefore, ρ̄h(W ) ⊂ W for all h ∈ GX . Since ρ̄ is irreducible then W = {0}

or W = V . Hence ρ is an irreducible representation of X.

■

Theorem 2.6. Let X be a finite connected rack. Let ρ̄ : GX −→ GL(V ) and ϕ̄ : GX −→ GL(V ′)
be representations of the group GX such that ρ̄ ∼ ϕ̄. Then, the rack representations ρ : X −→
Conj(GL(V )) and ϕ : X −→ Conj(GL(V ′)) defined as in the previous theorem, are also equivalent.

Proof. Since ρ̄ ∼ ϕ̄ then there exist an isomorphism T : V ′ −→ V such that ρ̄hT = T ϕ̄h for all
h ∈ GX . In particular we have that, ρ̄gx⟨gnx0 ⟩T = T ϕ̄gx⟨gnx0 ⟩ for all x ∈ X. Thus, ρxT = ρ̄gx⟨gnx0 ⟩T =

T ϕ̄gx⟨gnx0 ⟩ = Tϕx for all x ∈ X.Therefore, ρ ∼ ϕ.

■

From Theorem 2.5, we can obtain a representation of a finite connected rack X from its finite
enveloping group GX . This representation may not necessarily be strong, but under certain con-
ditions we can ensure this property.

Theorem 2.7. Let X be a finite connected rack and ρ̄ : GX −→ GL(V ) be a representation of
the finite enveloping group GX . If GX has trivial center, that is, Z(GX) = {1} then the rack
representation ρ : X −→ Conj(GL(V )) defined by ρx := ρgx⟨gnx0 ⟩, is strong.

Proof. Let {x1, ..., xk} be a stabilizing family of the rack X. That means, xk ▷ (xn−1 ▷ (· · · (x1 ▷
x) · · · )) = x for all x ∈ X. Since in the associated group As(X) we have the relation gx▷y =
gxgyg

−1
x , for all x, y ∈ X, then for every x ∈ X we have

gx = gxk▷(xk−1▷(···(x1▷x)··· ))

= gxkgxk−1▷(···(x1▷x)··· )g
−1
xk

= gxkgxk−1
gxk−2▷(···(x1▷x)··· )g

−1
xk−1

g−1
xk

...

= (gxk · · · gx1)gx(g−1
x1
· · · g−1

xk
)

∴ (gxk · · · gx1)gx = gx(gxk · · · gx1).
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Thus, the word gxkgxk−1
· · · gx1 belongs to the center of the groupAs(X) and therefore gxkgxk−1

· · · gx1⟨gnx0⟩ ∈
Z(GX). Since Z(GX) = {1}, gxkgxk−1

· · · gx1⟨gnx0⟩ = 1.
Note that,

ρxk · · · ρx1 = ρ̄gxk ⟨xn0 ⟩ · · · ρ̄gx1 ⟨gnx0 ⟩ = ρ̄gxkgxk−1
···gx1 ⟨gnx0 ⟩

= ρ̄1 = id.

It follows that the representation ρ is strong.

■

Corollary 2.3. Let X be a finite connected rack. If Z(GX) = {1}, then the number of irreducible
strong complex representations of X (up to equivalence) is equal to the number of irreducible com-
plex representations of the group GX .

Proof. By previous theorems there exists a bijective correspondence between irreducible strong
representations of the rack X and the irreducible representations of the group GX .

■

The next examples illustrate the previous results.

Example 2.10. Let the permutation quandle P3. In Example 2.6 we found the regular represen-
tation of P3, which is λ : P3 −→ Conj(GL(3,C)) defined by

λ(2 3) =

1 0 0
0 0 1
0 1 0

 , λ(1 3) =

0 0 1
0 1 0
1 0 0

 , λ(1 2) =

0 1 0
1 0 0
0 0 1

 .
Remark that GP3

∼= S3 (see Proposition 1.4) where the isomorphism µ : GP3 −→ S3 is given by
µg(ij)⟨g2(12)⟩ = (i j) for all (i j) ∈ P3. From Proposition 2.1 the regular representation λ is strong.

Then it induces a representation λ̄ : S3 −→ GL(3,C) of the finite enveloping group GP3
∼= S3

defined by

λ̄(2 3) =

1 0 0
0 0 1
0 1 0

 , λ̄(1 3) =

0 0 1
0 1 0
1 0 0

 , λ̄(1 2) =

0 1 0
1 0 0
0 0 1

 .

Note that, the subspace W = span


11
1

 is invariant under the representation λ̄. Thus, this

representation is reducible and decomposable. By the representation theory of finite groups, we know
that every representation can be written as an unique (up to equivalence) direct sum of irreducible
representations. Specifically, we have that λ̄ ∼ ϕ̄⊕ ψ̄, where ϕ̄ : S3 −→ C∗ and ψ̄ : S3 −→ GL(2,C)
are irreducible representations defined by ϕ̄(g) = 1 for all g ∈ S3 and

ψ̄(1 2) :=

[
−1 −1
0 1

]
, ψ̄(1 3) :=

[
1 0
−1 −1

]
, ψ̄(2 3) :=

[
0 1
1 0

]
.
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From Theorem 2.5, the group representations ϕ̄ and ψ̄ induce rack representations ϕ : P3 −→
Conj(GL(C∗)) and ψ : P3 −→ Conj(GL(2,C)) defined by ϕx := 1 for all x ∈ P3 and

ψ(1 2) :=

[
−1 −1
0 1

]
, ψ(1 3) :=

[
1 0
−1 −1

]
, ψ(2 3) :=

[
0 1
1 0

]
.

From Theorem 2.6, we have that λ ∼ ϕ⊕ψ. Indeed, let T =

1 1 1
1 −2 1
1 −1 −2

 . It can be checked that

(ϕ⊕ ψ)xT = Tλx for all x ∈ P3.
Since the finite enveloping group GP3

∼= S3 has trivial center, then by Theorem 2.7 the representa-
tions ϕ and ψ are strong.
It is well known that the group S3 has three (up to equivalence) irreducible representations, then
from Corollary 2.3, the number of irreducible strong representations of P3 is equal to 3. Previously,
we found two irreducible strong representations of P3, from the knowledge of representations of fi-
nite groups we can find the last one. The other irreducible representation of S3 is τ̄ : S3 −→ GL(C∗)
defined by

τ̄σ :=


1 if σ is even

−1 if σ is odd

Thus, we have a rack representation τ : P3 −→ Conj(GL(C∗)) defined by

τ(2 3) := τ̄g(23)⟨g2(12)⟩ = τ̄(2 3) = −1,
τ(1 3) := τ̄g(13)⟨g2(12)⟩ = τ̄(1 3) = −1,
τ(1 2) := τ̄G(12)⟨g2(12)⟩

= τ̄(1 2) = −1.

Therefore, we have τ(i j) = −1 for all (i j) ∈ P3. From Theorem 2.7, the representation τ is strong.
Hence, the permutation quandle P3 has three (up to equivalence) irreducible strong representations.

▲

Example 2.11. Let X = {1, 2, 3} be the rack given in the Example 2.7. The operation of this rack
is defined as i ▷ j = σ(j), for all i, j ∈ X, where σ = (1 2 3) ∈ S3. The regular representation
λ : X −→ Conj(GL(CX)) is defined by

λ1 = λ2 = λ3 =

0 0 1
1 0 0
0 1 0

 .
Previously, we found the finite enveloping group of this rack, which is GX = sapn{g1⟨g31⟩} ∼= Z3.
Therefore, λ induces a group representation λ̄ : GX −→ GL(3,C) defined by:

λ̄g1⟨g31⟩ = λ̄g2⟨g31⟩ = λ̄g3⟨g31⟩ =

0 0 1
1 0 0
0 1 0

 .
The irreducible representations of GX

∼= Z3 are one dimensional and they are the cube roots of
unity, that is ρ̄(g1⟨g31⟩) = 1, ψ̄(g1⟨g31⟩) = w, ϕ̄(g1⟨g31⟩) = w2 where w = e2πi/3. The character table
of this group representation is
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⟨g31⟩ g1⟨g31⟩ g21⟨g31⟩
χρ̄ 1 1 1
χψ̄ 1 w w2

χϕ̄ 1 w2 w
χλ̄ 3 0 0

From we have that λ̄ ∼ ρ̄⊕ ψ̄ ⊕ ϕ̄. Now, the irreducible representations of GX induces irreducible
representations of the rack X defined by

ρi = 1 ∀i ∈ X,
ψi = w ∀i ∈ X,
ϕi = w2 ∀i ∈ X.

Therefore, we have that λ ∼ ρ ⊕ ψ ⊕ ϕ. The representation ρ is the trivial one, so it is strong.
We claim that the representations ψ and ϕ are also strong. Indeed, let {i1, ..., ik} be a stabilizing
family of the rack X. Note that for every j ∈ X we have that

j = ik ▷ (· · · ▷ (i2 ▷ (i1 ▷ j)) · · · )
= ik ▷ (· · · ▷ (i2 ▷ σ(j) · · · )
= ik ▷ (· · · (i3 ▷ σ2(j) · · · )
= σk(j)

Therefore, σk = id. Since the order of σ is 3, then k is of the form k = 3n for some n ∈ N. Note
that,

ψik · · ·ψi1 = wk = w3n = 1

ϕik · · ·ϕi1 = w2k = w6n = 1

Therefore, the representations are strong. Hence, the rack X has 3 (up to equivalence) irreducible
strong representations.

▲

Elhamdadi and Moutou, in [4], stated the theorem: “Theorem 9.11: Every strong irreducible
representation of a finite connected involutive rack is one–dimensional”. The reader can see that
the Example 2.10 is a counterexample to this theorem. Indeed, the permutation quandle P3 is finite,
connected and involutive, however it has one (up to equivalence) strong irreducible representation
of dimension two. Furthermore, since for every k ∈ N we have Sk ∼= GPk

; then for all k ∈ N,
the permutation quandle Pk, which is finite, involutive and connected, has at least one irreducible
strong representation with dimension larger than one. Therefore, we can form an infinite family
of strong representations that contradict such theorem.

57



Chapter 3

Connections Between Racks and
g-digroups

The coquecigrue problem was proposed by J. L. Loday following the idea of a possible extension
of Lie’s third theorem for Leibniz algebras, that is, the problem consists in finding an appropriate
structure that generalizes the concept of Lie group and whose algebra is the corresponding Leibniz
algebra. One approximation to the solution of this problem was proposed independently by M.
Kinyon, R. Felipe , and K. Liu , who defined the digroup structure which is generalization of the
group structure with two products.
In this context, in [15] O. Salazar-Dı́az, R. Velásquez and L. A. Wills-Toro proposed a structure
called generalized digroups or simply g-digroups, as a more general extension of the group structure.
Since g-digroups are a extension of groups, one might think that the relations that exist between
quandles and groups can be extended to g -digroups. Actually, there is a interesting relation
between the rack structure and the g-digroup structure. In this chapter we study this relation.

3.1 Generalized digroups

In this section we give a short review of some definitions and results about g-digroups, given in
[15].

Definition 3.1. A set D is called a g-digroup (generalized digroup) if it has two binary
operations ⊢ and ⊣ over D, which are associative (each separately), and satisfy the conditions:

(D1) x ⊢ (y ⊣ z) = (x ⊢ y) ⊣ z

(D2) x ⊣ (y ⊣ z) = x ⊣ (y ⊢ z),
(x ⊢ y) ⊢ z = (x ⊣ y) ⊢ z

(D3) There exists (at least) an element e in D, such that for all x ∈ D, x ⊣ e = e ⊢ x = x.
The elements that satisfy this condition are called bar - units and the set of bar - units in
D, denoted by E is called the halo of D.

(D4) For a fixed bar-unit e, we have that for each x ∈ D there exist x−1
re and x−1

le
in D (the right

inverse of x and the left inverse of x, respectively) such that x ⊢ x−1
re = e and x−1

le
⊣ x = e.

The following propositions summarizes some basic properties of g-digroups.
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Proposition 3.1. Let D be a g-digroup and e a fixed bar unit then

(1) For all x ∈ D, x−1
le
⊢ e is a right inverse of x and e ⊣ x−1

re is a left inverse of x. Furthermore,
x−1
le
⊢ e = x−1

re and e ⊣ x−1
re = x−1

le

(2) For all x ∈ D, the elements x−1
le
⊢ x and x ⊣ x−1

re are bar-units.

Proof.

(1) Note that

x ⊢ (x−1
le
⊢ e) = x ⊢ [x−1

le
⊢ (x ⊢ x−1

re )]

= x ⊢ [(x−1
le
⊢ x) ⊢ x−1

re ]

= x ⊢ [(x−1
le
⊣ x) ⊢ x−1

re ]

= x ⊢ (e ⊢ x−1
re

= x ⊢ x−1
re

= e

Then x−1
le
⊢ e is a right inverse. Now, observe that x−1

le
⊢ e = x−1

le
⊢ (x ⊢ x−1

re ) = (x−1
le
⊢ x) ⊢

x−1
re = (x−1

le
⊣ x) ⊢ x−1

re = e ⊢ x−1
re = x−1

re . Similarly, we can prove that e ⊣ x−1
re = x−1

le
.

(2) We have

x ⊣ (x−1
le
⊢ x) = x ⊣ (x−1

le
⊣ x) = x ⊣ e = x and (x−1

le
⊢ x) ⊢ x = (x−1

le
⊣ x) ⊢ x = e ⊢ x = x

Thus, x−1
le
⊢ x is a bar- unit. Similarly we prove that x ⊣ x−1

re is also a bar-unit.

■

The previous proposition suggest that for a fixed e ∈ E the right inverse and the left inverse of
x ∈ D are unique. Indeed, suppose that there exists y ∈ X such that y ⊣ x = e then

y = y ⊣ (x ⊢ x−1
re )

= y ⊣ (x ⊢ (x−1
le
⊢ e))

= y ⊣ (x ⊣ (x−1
le
⊢ e))

= (y ⊣ x) ⊣ (x−1
le
⊢ e)

= e ⊣ (x−1
le
⊢ e)

=⊣ x−1
re

= x−1
le

Therefore, the left inverse of x is unique. Similarly, we prove that x−1
re is unique.

Proposition 3.2. Let D be a g-digroup and e a fixed bar unit. Then, for all x, y ∈ D,

(1) Given x ∈ D we have that (x−1
le
)−1
le

= e ⊣ x and (x−1
re )

−1
re = x ⊢ e.

(2) The inverse of the products are (x ⊢ y)−1
le

= (x ⊣ y)−1
le

= y−1
le
⊣ x−1

le
and (x ⊣ y)−1

re = (x ⊢
y)−1
re = y−1

re ⊢ x
−1
re
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Proof.

(1) Note that,

(e ⊣ x) ⊣ x−1
le

= e ⊣ (x ⊣ x−1
le
)

= e ⊣ [x ⊣ (x−1
le
⊣ e)]

= e ⊣ [x ⊣ (x−1
le
⊢ e)]

= e ⊣ (x ⊣ x−1
re )

= e ⊣ e = e

Thus, (x−1
le
)−1
le

= e ⊣ x. Similarly it can be proved that (x−1
re )

−1
re = x ⊢ e.

(2) We have

(x ⊣ y) ⊢ (y−1
re ⊢ x

−1
re ) = (x ⊢ y) ⊢ (y−1

re ⊢ x
−1
re )

= x ⊢ [(y ⊢ y−1
re ) ⊢ x

−1
re ]

= x ⊢ [e ⊢ x−1
re ]

= x ⊢ x−1
re

= e

Therefore, (x ⊣ y)−1
re = (x ⊢ y)−1

re = y−1
re ⊢ x−1

re . In a similar way we can prove that
(x ⊢ y)−1

le
= (x ⊣ y)−1

le
= y−1

le
⊣ x−1

le
.

■

Let e ∈ E be a bar-unit. We define the sets of left and right inverses, denoted by Ge
l and Ge

r,
respectively, as follows

Ge
l := {x−1

le
| x ∈ D} and Ge

r := {x−1
re | x ∈ D}

It is not hard to prove that (Ge
l ,⊣) and (Ge

r,⊢) are isomorphic groups with identity e [15].
Observe that given ξ, e ∈ E and x ∈ D we have that

(ξ ⊣ x−1
le
) ⊣ x = ξ ⊣ (x−1

le
⊣ x) = ξ ⊣ e = ξ

Since the left inverse is unique we have that x−1
lξ

= ξ ⊣ x−1
le
. Similarly, x−1

rξ
= x−1

re ⊢ ξ.
There is an interesting relation between g-digroups and pairs of the form (G,X) where G is a
group and X is a G−set.

Theorem 3.1. Let G be a group with unity e and X a G−set under the action (g, x) 7−→ g • x.
Then D := G×X is a g-digroup with operations

(a, α) ⊢ (b, β) = (ab, a • β)
(a, α) ⊣ (b, β)) = (ab, α)

Proof. Let’s see that the operations ⊢ and ⊣ satisfy the axioms of g-digroups

(D1) (a, α) ⊢ [(b, β) ⊣ (m,µ)] = (a, α) ⊢ (bm, β) = (abm, a • β), on the other hand [(a, α) ⊢
(b, β)] ⊣ (m,µ) = [(ab, a • β) ⊣ (m,µ) = (abm, a • β).
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(D2) (a, α) ⊣ [(b, β) ⊣ (m,µ)] = (a, α) ⊣ (bm, β) = (abm, α), on the other hand (a, α) ⊣ [(b, β) ⊢
(m,µ)] = (a, α) ⊣ (bm, b • µ) = (abm, α).
Further, note that [(a, α) ⊢ (b, β)] ⊢ (m,µ) = (ab, a • β) ⊢ (m,µ) = (abm, ab • µ), on the
other hand [(a, α) ⊣ (b, β)] ⊢ (m,µ) = (ab, α) ⊣ (m,µ) = (abm, ab • µ).

(D3) Let (e, α) ∈ G×X. Note that, for every (b, β) ∈ G×X we have, (b, β) ⊣ (e, α) = (be, β) =
(b, β) and (e, α) ⊢ (b, β) = (eb, e • β) = (b, β). Therefore, (e, α) is a bar-unit for all α ∈ X.
Note that, if (g, α) a bar unit of D then g = e.

(D4) Let ξ := (e, α) a bar unit of D, for any (b, β) ∈ G×X we have (b−1, α) ⊣ (b, β) = (b−1b, α) =
(e, α) and (b, α) ⊢ (b−1, b−1 • α) = (bb−1, b • (b−1 • α) = (e, α). Therefore, (b, β)−1

lξ
= (b−1, α)

and (b, β)−1
rξ

= (b−1, b−1 • α).

■

Definition 3.2. Let D and D′ are g-digroups, a map ϕ : D −→ D′ is a g-digroup homomor-
phism if for any x, y ∈ D we have

ϕ(x ⊢ y) = ϕ(x) ⊢ ϕ(y) and ϕ(x ⊣ y) = ϕ(x) ⊢ ϕ(y)

If ϕ is bijective then it is a g-digroup isomorphism.

3.2 Racks and g-digroups

Let D be a g-digroup, e, ξ a pair of bar-units and x, y ∈ D. Note that

y ⊣ x−1
lξ

= y ⊣ (ξ ⊣ x−1
le
) = (y ⊣ ξ) ⊣ x−1

le
= y ⊣ x−1

le

Thus, y ⊣ x−1
lξ

= y ⊣ x−1
le

for any e, ξ ∈ E. Furthermore, by Proposition 3.1 (1),

y ⊣ x−1
re = y ⊣ (x−1

le
⊢ e) = y ⊣ (x−1

le
⊣ e) = y ⊣ x−1

le

By the previous observation we just write y ⊣ x−1, where x−1 can be a right or left inverse for any
bar-unit. Similarly, we write x−1 ⊢ y where x−1 can be a right or left inverse for any bar-unit.

Theorem 3.2. Let D be a g-digroup. We define the operation x ▷ y := x ⊢ y ⊣ x−1 for every
x, y ∈ D. Then (D,▷) is a rack.

Proof.

(Q2) Let x, y, z ∈ D such that Lx(y) = Lx(z) then

Lx(y) = Lx(z)

x ▷ y = x ▷ z

x ⊢ y ⊣ x−1 = x ⊢ z ⊣ x−1

x−1 ⊢ (x ⊢ y ⊣ x−1) = x−1 ⊢ (x ⊢ z ⊣ x−1)

(x−1 ⊢ x) ⊢ (y ⊣ x−1) = (x−1 ⊢ x) ⊢ (z ⊣ x−1)
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from Proposition 3.1, x−1 ⊢ x and x ⊣ x−1 are a bar-units, then

(x−1 ⊢ x) ⊢ (y ⊣ x−1) = (x−1 ⊢ x) ⊢ (z ⊣ x−1)

y ⊣ x−1 = z ⊣ x−1

(y ⊣ x−1) ⊣ x = (z ⊣ x−1) ⊣ x
(y ⊣ x−1

lξ
) ⊣ x = (z ⊣ x−1

lξ
) ⊣ x

y ⊣ (x−1
lξ
⊣ x) = z ⊣ (x−1

lξ
⊣ x)

y ⊣ ξ = z ⊣ ξ
y = z

Therefore, the map Lx is injective. Now, note that

x ▷ (x−1 ⊢ y ⊣ x) = x ⊢ (x−1 ⊢ y ⊣ x) ⊣ x−1

= [x ⊢ (x−1 ⊢ (y ⊣ x))] ⊣ x−1

= [x ⊢ (x−1
rξ
⊢ (y ⊣ x))] ⊣ x−1

= [(x ⊢ x−1
rξ
) ⊢ (y ⊣ x)] ⊣ x−1

= [ξ ⊢ (y ⊣ x)] ⊣ x−1

= (y ⊣ x) ⊣ x−1

= y ⊣ (x ⊣ x−1)

= y

Therefore the map Lx is surjective. It follows that Lx is bijective for every x ∈ D.

(Q3) Let x, y, z ∈ D, note that

(x ▷ y) ▷ (x ▷ z) = (x ⊢ y ⊣ x−1) ▷ (x ⊢ z ⊣ x−1)

= (x ⊢ y ⊣ x−1) ⊢ (x ⊢ z ⊣ x−1) ⊣ (x ⊢ y ⊣ x−1)−1

= [x ⊢ (y ⊣ x−1) ⊢ (x ⊢ (z ⊣ x−1))] ⊣ (x ⊢ y ⊣ x−1)−1

= [x ⊢ ((y ⊣ x−1) ⊢ x) ⊢ (z ⊣ x−1)] ⊣ (x ⊢ y ⊣ x−1)−1

= [x ⊢ (y ⊣ (x−1 ⊢ x)) ⊢ (z ⊣ x−1)] ⊣ (x ⊢ y ⊣ x−1)−1

= [x ⊢ y ⊢ (z ⊣ x−1)] ⊣ (x ⊢ y ⊣ x−1)−1

= x ⊢ [y ⊢ (z ⊣ x−1) ⊣ (x ⊢ y ⊣ x−1)−1]

Now, by Proposition 3.2, we have that

(x ⊢ y ⊣ x−1)−1 = ((x ⊢ y) ⊣ x−1
lξ
)−1
lξ

= (x−1
lξ
)−1
lξ
⊣ (x ⊢ y)−1

lξ

= (ξ ⊣ x) ⊣ (x ⊢ y)−1
lξ

= (ξ ⊣ x) ⊣ (y−1
lξ
⊣ x−1

lξ
)

= [(ξ ⊣ x) ⊣ y−1] ⊣ x−1
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Therefore,

x ⊢ [y ⊢ (z ⊣ x−1) ⊣ (x ⊢ y ⊣ x−1)−1] = x ⊢ [y ⊢ (z ⊣ x−1) ⊣ ([(ξ ⊣ x) ⊣ y−1] ⊣ x−1)

= x ⊢ [y ⊢ [(z ⊣ ((x−1 ⊣ ξ) ⊣ x)] ⊣ y−1)] ⊣ x−1

= x ⊢ [y ⊢ [(z ⊣ (x−1 ⊣ x) ⊣ y−1)] ⊣ x−1

= x ⊢ [y ⊢ [(z ⊣ ξ) ⊣ y−1] ⊣ x−1

= x ⊢ [y ⊢ z ⊣ y−1] ⊣ x−1

= x ▷ [y ⊢ z ⊣ y−1]

= x ▷ (y ▷ z)

Thus, (x ▷ y) ▷ (x ▷ z) = x ▷ (y ▷ z).

■

Note that, the set D with operation x ▷ y = x ⊢ y ⊣ x−1 is not a quandle. Indeed, x ▷ x = x ⊢
x ⊣ x−1 = x ⊢ (x ⊣ x−1) = x ⊢ ξ ̸= x.
Now, if we have a rack X, we can associate a g-digroup to X. Before we see how this g-digroup
is defined, we need the next observation and proposition. Given a rack X, by Proposition 1.2 the
map L : X −→ Conj(Inn(X)) defined by L(x) := Lx is a rack homomorphism. Then by universal
property (Theorem 1.2) L induces a group homomorphism ϕL : As(x) −→ Inn(X) defined by
ϕL(gx) = Lx. We can use this homomorphism to define an action of the group As(X) on the set
X.

Proposition 3.3. Let X be a rack, then the function

• : As(X)×X −→ X

(ω, y) 7−→ ω • y := [ϕL(ω)](y)

is a left action of the group As(X) over the set X.

Proof. Let’s see that the map • is well defined. Let (ω, y) = (ω′, y′) ∈ As(X) ×X. Therefore we
have that ϕL(ω) = ϕL(ω

′) and y = y′, thus,

[ϕL(ω)](y) = [ϕL(ω
′)](y′)

ω • y = ω′ • y′

So, it is well defined. Now, for the identity 1As(X) ∈ As(X) we have 1As(X) • x = [ϕL(1As(X))](x) =
id(x) = x for all x ∈ X. Further, given ω, h ∈ As(X) and x ∈ X then

ω • (h • x) = [ϕL(ω)]([ϕL(h)](x)) = [ϕL(ωh)](x) = (ωh) • x

So, it is a group action.

■

Observe that, given a rack X, then it is a As(X)−set. Therefore, from Theorem 3.1 the set
As(X)×X is a g-digroup.
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Definition 3.3. LetX be a rack we define the associated g-digroup ofX, denoted by g-As(X),
as the set As(X)×X with operations,

(ω, x) ⊢ (h, y) = (ωh, ω • y) = (ωh, [ϕL(ω)](y))

(ω, x) ⊣ (h, y) = (ω, x)

For all ω, h ∈ As(X) and x, y ∈ X.

Observe that by previous definition gx • y = ϕL(gx)(y) = Lx(y) = x ▷ y, for all x, y ∈ X.

Theorem 3.3. Let X be a rack and ρ : X −→ Conj(GL(V )) be a representation of X. Then,
ρ induces a g−digroup homomorphism ϕρ : As(X) × X −→ As(Conj(Gl(V ))) × Conj(GL(V ))
defined by ϕρ[(gx, y)] := (ρ̂(gx), ρy) for all x, y ∈ X, where ρ̂ : As(X) −→ As(Conj(GL(V ))) is the
group homomorphism of Theorem 1.1. Specifically, ρ̂ makes commute the diagram

X Conj(GL(V ))

As(X) As(Conj(GL(V )))

ρ

ηX η

ρ̂

That means, ρ̂(gx) = gρx for any x ∈ X.

Proof. Let’s see that ϕρ is a g-digroup homomorphism. Let x, y, z, z′ ∈ X , Note that

ϕρ[(gx, z) ⊢ (gy, z
′)] = ϕρ[(gxgy, gx • z′)]

= (ρ̂(gxgy), ρx▷z′)

= (ρ̂(gx)ρ̂(gy), ρxρz′ρ
−1
x )

On the other hand

ϕρ[(gx, z)] ⊢ ϕρ[(gy, z′)] = (ρ̂(gx), ρz) ⊢ (ρ̂(gy), ρz′)

= (ρ̂(gx)ρ̂(gy), ρ̂(gx) • ρz′)
= (ρ̂(gx)ρ̂(gy), gρx • ρz′)
= (ρ̂(gx)ρ̂(gy), ρx ▷ ρz′)

= (ρ̂(gx)ρ̂(gy), ρxρz′ρ
−1
x )

Therefore, ϕρ[(gx, z) ⊢ (gy, z
′)] = ϕρ[(gx, z)] ⊢ ϕρ[(gy, z′)]. Also, we have that

ϕρ[(gx, z) ⊣ (gy, z
′)] = ϕρ[(gxgy, z)]

= (ρ̂(gx)ρ̂(gy), ρz)

on the other hand

ϕρ[(gx, z)] ⊣ ϕρ[(gy, z′)] = (ρ̂(gx), ρz) ⊣ (ρ̂(gy), ρz′)

= (ρ̂(gx)ρ̂(gy), ρz).

Thus, ϕρ is a g-digroup homomorphism.

■

Rodŕıguez Nieto et al, in [14] introduced some concepts in attempt to capture the notion of a
g-digroup representation. We think that is possible to capture such notion trough the relation
between racks and g-digroups, maybe Theorem 3.3 could be a first aproximation.
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[15] Olga Patricia Salazar, Raúl Velásquez, and L.A Wills. Generalized digroups. Communications
in Algebra, 44(7):2760–2785, 2016.

[16] Markus Szymik. Permutations, power operations, and the center of the category of racks.
Communications in Algebra, 46(1):230–240, 2018.

[17] Mituhisa Takasaki. Abstraction of symmetric transformations. Tohoku Mathematical Journal,
49:145–207, 1943.

[18] Leandro Vendramin. On the classification of quandles of low order. Journal of Knot Theory
and Its Ramifications, 21(09):1250088, 2012.

66


	Introduction
	Racks and Quandles
	Preliminaries
	Related groups of a rack
	The Permutation Quandle
	Finitely stable racks
	Stable Alexander quandles
	Quandle associated to a rack
	The rack ring

	Rack Actions and Rack Representations
	Rack actions and approximate units
	Rack representations
	Strong representations

	Connections Between Racks and g-digroups
	Generalized digroups
	Racks and g-digroups


