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Abstract

Title: Numerical computation of the acoustic radiation force exerted by a
standing wave on an object immersed in a fluid by using a Lattice Boltzmann

method for waves

The present work introduces a numerical procedure to compute the acoustic radiation
force produced by standing waves on a compressible object immersed in an inviscid fluid.
Instead of simulating the fluid mechanics equations directly, the proposal uses a Lattice
Boltzmann model for waves to compute the first-order perturbations of the pressure and
velocity fields, and it use them to compute the second-order acoustic radiation force on each
surface element of the object, and it employs an interpolation scheme with kernel to increase
the accuracy. The computed force can later be used to integrate the object’s motion by
using molecular dynamics. The method is implemented in the LB3D lattice Boltzmann sim-
ulation software and in a self-developed C++ code, and it is employed to integrate the total
force on a sphere and a disk, respectively. The results reproduce with good accuracy the
theoretical expressions by Gor’kov and Wei for the sphere and the disk, respectively, even
with a modest number of Lattice-Botzmann cells. In addition, the force computed in the 2D
case, when coupled to a molecular dynamics integration scheme, reproduces the motion of
the disk to the standing wave nodes, when the disk is denser than the surrounding medium.
The proposed procedure shows to be a promising tool for simulating phenomena where the
acoustic radiation force plays a relevant role, like acoustic tweezers and the acoustic manipu-
lation of microswimmers, with applications in medicine, biology, pharmaceutic industry and
hydraulic engineering.

Keywords: Computational Acoustics, Microfluidics, Acoustofluidics, Computational meth-
ods, Paralellization, acoustical tweezers, Acoustic radiation force, Gor’kov potential, Lattice-
Boltzmann method, discrete transport Boltzmann equation, conservation laws, wave equa-
tion.
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Resumen

T́ıtulo: Cómputo numérico de la fuerza de radiación acústica ejercida por una
onda estacionaria en un objeto inmerso en un fluido usando un método de

Lattice Boltzmann para ondas

El presente trabajo introduce un procedimiento numérico para calcular la fuerza de ra-
diación acústica producida por ondas estacionarias sobre un objeto comprimible sumergido
en un fluido no viscoso. En lugar de simular directamente las ecuaciones de la mecánica
de fluidos, la propuesta utiliza un modelo Lattice Boltzmann para ondas para calcular las
perturbaciones de primer orden de los campos de presión y velocidad, y las utiliza para
calcular la fuerza de radiación acústica de segundo orden sobre cada elemento de la su-
perficie del objeto, empleando un esquema de interpolación con kernel para aumentar la
precisión. La fuerza calculada se puede utilizar posteriormente para integrar el movimiento
del objeto mediante dinámica molecular. El método se implementa en el software de sim-
ulación Lattice Boltzmann LB3D y en un código C++ de desarrollo propio, y se emplea
para integrar la fuerza total sobre una esfera y un disco, respectivamente. Los resultados
reproducen con buena precisión las expresiones teóricas de Gor’kov y Wei para la esfera y
el disco, respectivamente, incluso con un número modesto de celdas de Lattice-Botzmann.
Adicionalmente, la fuerza calculada en el caso 2D, cuando se combina con un esquema de
integración de dinámica molecular, reproduce el movimiento del disco hacia los nodos de la
onda estacionaria, cuando el disco es más denso que el medio circundante. El procedimiento
propuesto se muestra como una herramienta prometedora para simular fenómenos donde
la fuerza de la radiación acústica juega un papel relevante, como las pinzas acústicas y la
manipulación acústica de micronadadores, con aplicaciones en medicina, bioloǵıa, industria
farmacéutica e ingenieŕıa hidráulica.

Palabras clave: Acústica computacional, Microflúıdica, Acustoflúıdica, métodos computa-
cionales, paralelización, pinzas acústicas, fuerza de radiación acústica, potencial de Gor’kov,
métodos de Lattice-Boltzmann, ecuación de transporte de Boltzmann discreta, leyes de con-
servación, ecuacuión de ondas.
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Chapter 1

Introduction

The study of the motion of microswimmers in aqueous media has won relevance in the re-
cent years, because of its applications in biotechnology, biodiversity, health research, marine
research and earth science, among others [1]. Microswimmers are microscopical bodies in
a fluid usually transported without contact through external acoustic, magnetic or electro-
static fields [2–4]. One way of controlling the motion of microswimmers is by using acoustical
tweezers, i.e. sets of ultrasound transducers and reflectors that are able to generate stand-
ing acoustic waves with pressure nodes focused on the object to be moved (Fig. 1.2a, [4]).
Acoustic tweezers can be built with a piezoelectric (PZT) transducer and a reflecting surface
(figure 1.1) or with an array of phase-modulated transducers [5]. Just like optical tweezers
use standing electromagnetic waves to manipulate microscopical objects like viruses, cells or
bacteria, acoustic tweezers can manipulate particles as soon as it size is much smaller than
the wavelength of the standing wave. Nevertheless, acoustic tweezers requires 5×105 times
less power than optical tweezers. Indeed, they can move objects from 100 nm to 10 mm
large with intensities from 10−2 to 10 W/cm2 for the input source, whereas optical tweezers
requires more than 106 W/cm2 [6].

The manipulation of small objects with standing waves began with the 2018 Nobel Prize
study on optical tweezers, developed by Ashkin in 1970, who showed the possibility of trap
and accelerate dielectric particles by using the stable potential well of a focused continuous

Fig. 1.1. Example of acoustic levitation using acoustical tweezers (from [1, pag. 204]).
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(a) (b)

Fig. 1.2. (a) Focal acoustic tweezer made of an array of transducers to develop surgeries;
(b) surgery for the extraction of a urinary stone of a pig.(from [7]).

laser [8]. Parallel to this research, in 1962 the Russian physicist Lev Petrovich Gor’kov,
based on previous works by Louis V. King on acoustical radiation forces [9, 10], studied the
force exerted by an acoustical field on a spherical particle immersed in an ideal (non-viscous,
isentropic and irrotational) fluid and deduced the so-called Gor’kov potential, which is the
basic principle of acoustical tweezers [11]. The two-dimensional case was first studied by J.
Wu and G. Du in 1990 [12], validating their results with experiments on a glass microneedle
confined in a chamber with piezo-electric (PZT) transducers. Another study of the two-
dimensional case was performed by Wei Wei et al. in 2004 [13], who used scattering theory
to solve the wave equation for a compressible cylinder of infinite height in a standing wave.
A complete and solid theoretical review can be found in the book Theoretical Microfluidics
[14] and the thematic series Acoustofluidics, both written by Henrik Bruus, where most of
the theoretical content of the acoustic radiation force can be found in chapters 1, 2 and 7 of
the series. [15–17]. Later experiments created lab chips with acoustical traps that move an
array of colloidal particles in the three orthogonal directions of space [4]. On a larger scale,
in 2020 transducer arrays were used to extract kidney stones from a pig in a non-invasive
surgery, as seen in figure 1.2. The surgery was accomplished without damages in the organ
tissues, demonstrating the potential of acoustical tweezers for medicine applications [7].

Acoustic tweezers has also been explored as a supporting ground for transporting swarms
of self-assembling micro-bots that, inspired by nature, could be used for surgery or drug de-
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(a) (b)

(c)

Fig. 1.3. General sketch of the rolling Microswimmers experiment (a). Graphical definition
of the angular and linear speed of the Microswimmers (b) and comparison of the motion
with and without standing waves (c).

livery [18]. One way to produce swarms or self-assembling micro-bots is to use external
rotating magnetic fields to align paramagnetic beads in a liquid and form chains or ribbons.
The same rotating field can drive the micro-bots to roll on the walls of the container [19, 20].
Nevertheless, rolling on the walls of a blood vessel could damage the tissue, and some alter-
native should be found to support the rolling motion. In a recent work, Zhang et. al. [21]
used the nodal planes of acoustic standing waves as virtual walls where the micro-bots can
roll on. The results show that acoustic standing waves are a promising alternative to guide
swarms of self-assembled micro-bots through blood vessels for future medical applications,
without damaging the vessels walls tissues. The theoretical studies of acoustic radiation phe-
nomena have been developed for irrotational, non-viscous and isentropic fluids by assuming
that the bodie’s motion is much slower than the acoustic oscillations. Within this frame, all
theoretical studies rely on the assumption that the relevant macroscopic fields, like pressure
and velocity, can be written as a perturbative expansion, where the first-order contributions
p1 for the pressure and u⃗1 for the velocity satisfy the wave equation. Although the acoustic
radiation force depends on second-order contributions, they can be written in terms of p1
and u⃗1. This fact opens the possibility of simulate the wave equation - instead of solving
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the Navier-Stokes equations - to compute p1 and u⃗1, and use those results to compute the
acoustic radiation force. Moreover, the assumption of slow motion for the immersed body
suits perfectly for the experiments with microswimmers, which move with typical speeds of
a few µm/s, whereas the ultrasound frequencies lay around MHz.

The analytical computation of the acoustic radiation force on particles immersed in a fluid
is only possible for simple geometries, and complex shapes of today’s microswimmers require
suited numerical simulation tools. One of this tools is the Lattice-Boltzmann model (LBM),
a numeric scheme that solves the Boltzmann transport equation for a set of distribution
functions on a discrete lattice of cubic cells, so that the macroscopic moments obtained
from those functions satisfy a bunch of conservation laws in the macroscopic limit, written
as partial differential equations. One of the main advantages of this model is that the
evolution of one cell is independent from the information of the neighboring cells, making
parallelization much easier to implement on processors and graphics cards than for other
numeric approaches like finite differences or finite volumes. The LBM have been widely used
to simulate fluids with excellent results [22, 23], even for multiphase and multicomponent
systems [24, 25]. A simple Lattice-Boltzmann model with a single relaxation time, known
as LBGK, is able to simulate viscous fluids with Reynolds numbers up to 103, and special
techniques like Multiple relaxation Time [26] and Entropic Lattice Boltzmman [27, 28] allows
to go with Reynolds numbers up to 106. Originally developed for fluids, LBM are also capable
to compute more general systems, like electromagnetic fields [29], wave functions in quantum
mechanics with a DFT [30] and general relativity [31].

In 2004 J.A. Cosgrove et al. [32] used a LBGK Lattice-Boltzmann for fluids to simulate
in two-dimensions the motion of a disk by standing acoustic waves. They calculated the force
exerted by the waves and were able to reproduce the theoretical predictions by Wu and Du.
However a LBGK for fluids computes the density and velocity fields of the fluid up to second
order precision and the perturbations p1 and u⃗1, to fist order precision; thus, simulating
acoustical tweezers with the desired precision will require very small cells, making it harder to
implement it for three-dimensional simulations. Although there exist very efficient LBM for
acoustics [33], even for curved cells [34], they have never been used to calculate the acoustic
radiation force. In addition, there are very efficient software packages for computational
fluid dynamics with Lattice-Boltzmann. One of them is LB3D, developed by the Dynamics
of Complex Fluids and Interfaces group of the Helmholtz Institute of Erlangen-Nürmberg for
Renewable Energy (HI-ERN), under the leadership of the professor Dr. Jens Harting [35].
This software includes a series of features apart from the Lattice-Boltzmann method, such as
external forcing, colloids, Ladd particles, an immersed boundary method, among others. Its
code is written in FORTRAN90 and parallelized using MPI, and it runs efficiently in clusters
with hundred of processors. LB3D is able to perform simulations of multicomponent and
multiphase fluids, as well as capillarity, but it does not include features to simulate acoustic
waves yet.

Inspired in the mentioned study about rolling microswimmers in standing waves and
based on the theory regarding acoustic radiation force, the present work develops a numerical
methodology with lattice-Boltzmann to compute the acoustic radiation force on a immersed
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body in a fluid with acoustic standing waves, and implement it in LB3D. Our proposal
uses a Lattice-Boltzmann method to simulate the wave equation and compute the first-order
perturbation fields p1 and u⃗1. Next, it uses those fields to compute the time-averaged acoustic
radiation forces. The proposal uses a kernel-based interpolation method [36] to compute the
perturbation fields close to the body with higher precision. The numerical algorithm is
implemented in LB3D for the sphere and in a C++ code for the disk. Both codes are tested
by setting a standing acoustic wave with a single node, integrating the total force on a sphere,
in 3D, and a dis, in 2D, and comparing the results with the theoretical solutions by Gor’kov
[11] and Wei [13]. The numerical results make an excellent agreement with the analytical
values in both cases, even by using a relatively small number of cells. Finally, that force can
be used to integrate via molecular dynamics the movement of the body and reproduce its
displacement to the node, which is predicted when the body’s density is larger than those of
the surrounding medium. The proposed methodology is, therefore, a promising tool for the
numerical simulation of microswimmers driven by standing acoustic waves.

The document is organized as follows: A short review on fluid mechanics and acoustics
fundamentals is given in 2. Thereafter, the theory behind the acoustic radiation force will be
fully explained in 3, such that the most important aspects on how the acoustic manipulation
works are detailed explained. The chapter 4 provides a well detailed summary of what the
Lattice-Boltzmann method is, how does it work and how to implement it. At this point all the
theoretical topics of this work have been covered, and the numerical implementation follows.
The numeric computation is fully explained and illustrated in chapter 5, giving details on
how LB3D was modified to simulate acoustics and how to measure the acoustic radiation
force, by using implemented tools and creating new ones. Chapter 6 reports the numerical
tests and benchmarks to ensure the proper functionality of the two implementations: One
standard code written in C++ for the two-dimensional case and the modification of the
LB3D software for the three dimensional one. The LB3D development team contributed to
this project with advice and support. Finally, the results reached with this methodology are
discussed in chapter 7, where it is shown that the proposed approach is able to perform a
simulation of the acoustic radiation force on an object immersed in standing waves, without
high amounts of computation power.
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Part I

Theoretical development
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Chapter 2

Concepts on fluid dynamics and
acoustics

2.1 Fluid dynamics concepts

To study the motion of fluids and elastic materials, it is necessary to describe this kind
of physical system as a continuous medium where macroscopic variable are attributed, such
as volume, density, pressure or other scalar or vector fields that may evolve in time and
space ([37] and [15]). The key reason behind the continuum hypothesis relies on the length
scale of the total system to study. On lab-on-a-chip applications, where characteristic length
scales are in the order of 100 µm similar to the magnetic microrotors experiment, there
are already more than 1023 molecules per each space element of this size, thus, the system
will be considered macroscopic. Although inter-molecular distances are around 0.3 nm for
fluids and 3 nm for gases, a minimum length for a continuous fluid mechanics description is
usually taken around 10 µm [14, sec. 1.1.2]. To be able to distinguish from one length scale
to another, the Knudsen number ϵ is introduced as

ϵ =
lmfp

L
, (2.1)

with lmfp the mean free path for the particles and L the characteristic system size. When
Knudsen number is much less than unity, the continuum hypothesis is a valid treatment for
fluids [38, sec. 1.1]. In that hypothesis any infinitesimal volume element is small compared
to system size but large compared to the particles’ mean free path, and it is not necessary to
follow the dynamics of individual fluid particles, but the time evolution of macroscopic fields.
Those fields will be defined at any fixed position r⃗ = (x, y, z) of coordinates r1 = x, r2 = y
and r3 = z in three-dimensional euclidean space, and Cartesian index notation is convenient
to describe them. So, any vector A⃗ can be written as Ai with i = {x1, x2, x3} ≡ {x, y, z}
and any matrix shall be written as M = Mij. In index notation, some useful symbols are:
the Kronecker Delta δij, as a way to denote an identity matrix, and the Levi-Civita symbol
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ϵijk, which is valued 1 for any even permutation of 123, -1 for any odd permutation of 123
and 0 for any other case.

Let us consider than an infinitesimal fluid volume element moves through space from r⃗(t)
at time t to r⃗(t+∆t) at time t+∆t. That movement can be described by the displacement

vector D⃗(r⃗, t) = r⃗(t+∆t)− r⃗(t) and the instantaneous velocity vector

u⃗(r⃗, t) =
∂D⃗

∂t
. (2.2)

This velocity, considered as a field is assigned to the spatial point r⃗, not to the fluid volume.
This way of describing the evolution of velocity or other fields is called an Eulerian picture
[15], which is the usual frame to describe the dynamic behavior of a fluid.

Other relevant macroscopic fields to describe the fluid are the density ρ(r⃗, t), as the total
mass of all particles in the fluid element divided by its volume ∆V ,

ρ(r⃗, t) =

∑
n∈∆V mn

∆V
; (2.3)

the momentum J⃗(r⃗, t) per unit volume, which is naturally defined as

J⃗(r⃗, t) = ρ(r⃗, t)u⃗(r⃗, t) , (2.4)

and fluid’s thermodynamics variables as the pressure P (r⃗, t) or the temperature T (r⃗, t).
Those macroscopic fields are evolved in time and space by partial differential equations,

and the two most relevant are: the mass conservation law and the momentum conservation
law (for a detailed derivation of those two laws, see [14, 37]). Although energy conservation
must also be included, it can be replaced by a thermodynamic state equation. The mass
conservation can be written as

∂ρ

∂t
+ ∇⃗ · J⃗ = 0 , (2.5)

and the momentum conservation law, known as the Navier-Stokes equation, as

ρ

[
∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

]
= −∇⃗P + η∇2u⃗+ (η + η′) ∇⃗

(
∇⃗ · u⃗

)
. (2.6)

This is just Newton’s Second Law for a fluid element. The term between square brackets
on the left is just the acceleration of that element, written as function of the velocity field
u⃗. The first term on the right is the force exerted by the pressure, and the next two terms
are the forces due to the first (η) and second (η′) viscosity coefficients for the fluid. Those
two terms can be neglected in the limit cases of this work, leading to a special form of the
momentum conservation law called the Euler’s equation,

ρ

[
∂u⃗

∂t
+
(
u⃗ · ∇⃗

)
u⃗

]
= −∇⃗P . (2.7)
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Euler’s equation can be rewritten in several equivalent ways. By replacing Eq. 2.4 into
Eq. 2.7 and using the identity

∇⃗ ·
(
u⃗⊗ J⃗

)
=
(
J⃗ · ∇⃗

)
u⃗+ u⃗

(
∇⃗ · J⃗

)
, (2.8)

which, in components, reads

∂k (uiJk) = Jk∂kui + ui∂kJk (2.9)

(with ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi), Eq. 2.7 transforms into

∂J⃗

∂t
= −∇⃗P + ∇⃗ ·

(
u⃗⊗ J⃗

)
. (2.10)

Since ∇⃗P = ∇⃗ · (1P ) (or ∂kP = ∂i (δikP ), in components), Euler’s equation takes the form
of a conservation law, indeed,

∂J⃗

∂t
= −∇⃗ · Π , (2.11)

with
Π = 1P + u⃗⊗ J⃗ , ( or Πik = δikP + ρUiUk , in components), (2.12)

known as the moment flux tensor.
The force exerted by a fluid to an immersed object is a momentum exchange between

the fluid and the object. If the force per unit volume acting on the object is f⃗ then the
momentum change would be

f⃗ =
∂J⃗

∂t
= −∇⃗ · Π , (2.13)

and the total force on the object is obtained by integrating that force over the entire volume
Vp of the object [37, sec. 6],

F⃗ =

∫
Vp

f⃗ dV = −
∫
Vp

∇⃗ · Π dV = −
∮
∂Vp

Π · n̂ dS , (2.14)

where we have used the divergence theorem, ∂Vp is the object’s surface and n̂ is a unitary
vector perpendicular to that surface. This expression will be the key to deduce the acoustic
radiation force, and for this reason its derivation has been fully explained (see [39, app. A]).

Another form of Euler’s Equation can be obtained by using the identity(
u⃗ · ∇⃗

)
u⃗ = Ω⃗× u⃗+

1

2
∇⃗u2 , (2.15)

with Ω⃗ = ∇⃗ × u⃗ the vorticity, to obtain

∂u⃗

∂t
+ Ω⃗× u⃗ = −∇⃗P

ρ
− 1

2
∇⃗u2 . (2.16)
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If, in addition the fluid can be approximated as incompressible ρ = cte, the whole right-hand
side can be set into a single gradient 1

∂u⃗

∂t
+ Ω⃗× u⃗ = −∇⃗

[
P

ρ
+

1

2
u2

]
. (2.17)

Finally, if the flux is irrotational (Ω⃗ = 0) there exist a velocity potential ϕ such that

∇ϕ = u⃗ . (2.18)

Thus,

∇⃗
[
∂ϕ

∂t
+

P

ρ
+

1

2
u2

]
= 0 , (2.19)

and the term between square brackets is uniform everywhere. That is another form of
Bernoulli’s principle [40, sec. 4.16], which will be very useful to calculate the radiation force.

2.2 Acoustic waves in an inviscid fluid

It is pretty well known that sound is essentially a perturbation of pressure in air or any
other material which propagates in the form of waves. As any other fluid, air is described by
the mass and momentum conservation equations introduced in the previous section (usually
called Navier-Stokes - NSE - equations). That set of equations is non-linear; so, how the
wave equation - which is linear - can be obtained from them? To answer this question it is
necessary to explain sound as small changes in density which produces small perturbations
in pressure that, at first order, are linearly related. This relationship is established by the
elastic response of the material and, in the case of gases, by the equation of state. As viscous
forces are neglected, the pressure is the only component contributing to the dynamics of the
fluid. The pressure is steady and constant where the fluid is static and no net motion is
carried on. If the steady values for pressure and density are p0 and ρ0, respectively, then
an acoustic wave is basically a perturbation of the pressure around this constant value.
The total pressure P an density ρ would be their steady values p0 and ρ0 plus the small
perturbations p1 and ρ1 due to the acoustic wave, respectively ([41, p. 136] and [37, p. 251]),
that is

ρ = ρ0 + ρ1 , P = p0 + p1 , (2.20)

The variation of p1 is strictly related to the deformation or strain of a small spatial element
of the fluid, while ρ1 to the aggregation or absence of matter, but to understand more
deeply into this association, it is necessary a volume element of the fluid as part of an elastic
material. Consider this elastic material being stretched in direction x by an external force.

1The same trick can be performed if the process is adiabatic. Indeed, because ∇⃗h = T ∇⃗S + v∇⃗P , with
h the enthalpy S the entropy and v = 1/ρ the specific volume, if ∇⃗S = 0, then ∇⃗P/ρ = ∇⃗h, and the whole
right side can be also gathered into a single gradient [37].
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Each point in the material with coordinate x moves to a point x+ξ(x), with ξ(x) the point’s
displacement. Another point with coordinate x+∆x moves to (x+∆x) + ξ(x+∆x). The
final distance between the two points is ξ(x + ∆x) − ξ(x) ≃ ∂ξ

∂x
∆x, whereas the original

one was ∆x. The strain ϵxx is defined as the fractional elongation of the material element
between those two points,

ϵxx =
∂ξ

∂x
. (2.21)

The same occurs in three dimensions. Under an external force field, each point of coor-
dinates (x, y, z) moves by a displacement vector D⃗ = (ξ, η, ζ). Thus, an element of initial
volume V = ∆x∆y∆z expands to a final volume V +∆V such that, at first order,

θ =
∆V

V
=

(
∆x+ ∂ξ

∂x
∆x
) (

∆y + ∂η
∂y
∆y
) (

∆z + ∂ζ
∂z
∆z
)
−∆x∆y∆z

∆x∆y∆z
=

∂ξ

∂x
+
∂η

∂y
+
∂ζ

∂z
= ∇·D⃗ .

(2.22)
The quantity θ is known as the dilation.

Let us divide the total pressure P as a steady value p0 plus a small perturbation p1

P = p0 + p1 . (2.23)

The variation p1 must be related to the deformation of a small spatial element of the fluid.
Under isotropic compression, the dilation (that would be negative) is proportional to the
increments in pressure (Hooke’s Law),

p1 = −Bθ = −B
(
∇ · D⃗

)
, (2.24)

with B the Bulk’s modulus [41, p. 136]. Notice that the left side of 2.24 is the small
perturbation of the total pressure P introduced in 2.23. This means that any small change
in pressure will cause a small proportional and relative change in volume, giving the following
definition for the Bulk’s modulus:

B = −V
∆P

∆V
→ −V

dP

dV
, (2.25)

that will be useful to describe sound propagation in gases, as it will be see later.
Let us come back to the forces on our volume element ∆x∆y∆z at (x, y, z). At first order,

the total force in the x direction is the one exerted by the pressure p1 = p1(x, y, z) on the
surface of area ∆y∆z at xminus the one exerted by the pressure p1(x+∆x, y, z) ≃ p1+

∂p1
∂x

∆x
on the opposite surface of area ∆y∆z at x+∆x,

Fx = p1(x, y, z)∆y∆z −
(
p1(x) +

∂p1
∂x

∆x

)
∆y∆z = −∂p1

∂x
∆x∆y∆z . (2.26)

The same occurs in the y and z directions; therefore, the vector force applied to the volume
element is

F⃗ = (Fx, Fy, Fz) = −
(
∂p1
∂x

,
∂p1
∂y

,
∂p1
∂z

)
∆x∆y∆z = −∇⃗p1∆V . (2.27)
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This force produces an acceleration ∂2D⃗/∂t2 on the volume element of mass ρ0∆V given by
Newton’s Second Law as

F⃗ = ρ0
∂2D⃗

∂t2
∆V , (2.28)

which may be rewritten using 2.27 as

−∇⃗p1 = ρ0
∂2D⃗

∂t2
. (2.29)

By taking the divergence on both sides and using 2.24 we get,

−∇2p1 = ρ0
∂2

∂t2

(
∇⃗ · D⃗

)
= −ρ0

B

∂2p1
∂t2

. (2.30)

That is the wave equation (2.31) with c =
√

B/ρ0 the speed of sound.
With this linear approximation it is possible to describe the behavior of the acoustic wave

propagation in an elastic medium with the wave equation

∇2p1 =
1

c2
∂2p1
∂t2

, with c =

√
B

ρ0
, (2.31)

where B is the bulk modulus defined in (2.25).

2.3 The speed of sound in air

Although the constant c is determined under mathematical consistency, the physical
meaning as a speed of sound waves must be detailed treated from the Thermodynamics of
an ideal gas. As a common example, we tend to hear sound from gases like air, thus, it will
be a good example to consider.

Air under room temperature and standard pressure conditions can be considered as an
ideal gas, governed by the equation of state

PV = NkBT , (2.32)

with pressure P , volume V temperature T and total number of particles N , and as thermo-
dynamic quantities and kB = 1.38× 10−23 J/K the Boltzmann’s constant.

We saw in that the speed of sound in an elastic material is given by c =
√

B/ρ, with B
the bulk modulus and ρ the density, and the bulk modulus by B = −V dP

dV
(Eq. 2.25). Thus,

the bulk modulus can be deduced by considering an expansion or contraction of the gas, but
what kind of thermodynamic process is behind this compression or expansion? A first idea
was given by Isaac Newton in 1686, who proposed that the expansion and contraction of
sound waves was isothermic, arguing negligible changes of temperature. With this in mind,
2.32 becomes

PV = constant , (2.33)
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and, therefore,

B = −V
dP

dV
= P = ρ0

kBT

mmol

. (2.34)

Thus, the isothermic speed of sound c0 becomes

c0 =

√
kBT

mmol

. (2.35)

The value of the sound speed on air using 2.35 at a room temperature of 300 K is
about 293 m/s, which is pretty far from the actual value, which is close to 343 m/s at
this same temperature. Something was wrong in the Newton’s deduction and no correction
was developed until 1816 by Laplace, who concluded that the mistake was to consider an
isothermic expansion. Instead, he argued that the expansion and contraction of sound waves
is so fast that there is no time for thermalization and heat transfer δQ = 0 , keeping entropy
constant rather than temperature, implying an adiabatic process. For this kind of process
the following relationship is valid:

PV γ = constant , (2.36)

being γ the adiabatic constant defined as the quotient between the heat capacities at constant
volume and constant pressure (γ = Cp/Cv). For a gas of diatomic molecules, like most of
the molecules in air, this value is γ = 1.4. With 2.36 on hand, we get

dPV γ + γ
PV γ

V
dV = 0 , −V

dP

dV
= γP

Bad = −γP . (2.37)

Thus, the adiabatic sound speed cad becomes

cad =

√
γkBT

mmol

. (2.38)

This last expression gives a value close to 347 m/s at a temperature of 300 K, which agrees
pretty well with the measured value. If we want to obtain a closer value, dissipation of sound
due to viscosity must be considered.

It is interesting to note that the equation of state for the ideal gas (Eq. 2.32 ) can be
rewritten in terms of the isotermical speed of sound ciso (Eq. 2.35). By multiplying and
dividing the right-hand side by the molecular weight mmol and dividing by V on both sides,
one obtains

P =

(
Nmmol

V

)(
KBT

mmol

)
= ρc20 , (2.39)

with c0 =
√

kBT
mmol

. This linear relationship is useful investigate how acoustical waves also

affect the density and other macroscopic quantities of the medium [41, p. 139-142].
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In general, there are compressible fluids where the pressure depends on the density only,
but without a strict linear dependence. This kind of fluids are considered barotropic [17, 37]
and the pressure in this case can be written as a Taylor expansion in the density around ρ0

P = p0 + (ρ− ρ0)

(
∂P

∂ρ

∣∣∣∣
p0

)
S

+
1

2
(ρ− ρ0)

2

(
∂2P

∂ρ2

∣∣∣∣
p0

)
S

+ . . . (2.40)

From 2.42 is easy to notice that

c20 =

(
∂P

∂ρ

∣∣∣∣
p0

)
S

, (2.41)

which is a most general expression to obtain c0, consistent with the result for an ideal gas.
Eq. 2.40 also gives a general expression to compute p1 as p1 = (ρ− ρ0)c

2
0, and the sub-index

notation of this quantity will be from now on related to the first order term of 2.40. The
small variations of pressure obey to a version of an ideal gas equation state which may be
written as follows:

p1 = c20ρ1 , (2.42)

with c0 =
√

kbT/m the isothermal speed of sound. Thus, up to first order, it is possible to
rewrite (2.20) as

ρ = ρ0 + ρ1 , (2.43a)

P = p0(ρ0) + c20ρ1 , (2.43b)

u⃗ = 0⃗ + u⃗1 , (2.43c)

Although we have already shown how the wave equation is derived from elastic theory,
it is also fruitful to see how the same equation can be deducted from the NSE equations.
NSE equations were introduced in section 2.1 as a general description for the dynamics of
any fluid. Here, as viscous effects are neglected, the equations to are the conservation of
mass ((2.5)) and the Euler’s equation ((2.7)). By replacing (2.43) and (2.43c) into those
equations, and keeping only first order terms, we obtain [17]

∂ρ1
∂t

+ ρ0∇ · u⃗1 = 0 , (2.44a)

ρ0
∂u⃗1

∂t
+∇p1 = 0 . (2.44b)

By taking the diveregence on both sides of 2.44b, we obtain

ρ0
∂

∂t
(∇ · u⃗1) +∇2p1 = 0 . (2.45)
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By replacing 2.44a, the wave equation is obtained,

ρ0
∂

∂t

(
− 1

ρ0

∂ρ1
∂t

)
+∇2p1 = 0

∂2ρ1
∂t2

= ∇2p1

1

c20

∂2p1
∂t2

= ∇2p1 (2.46)

where (2.42) was used. The reader would notice that the perturbations in density ρ1 also
fulfills the wave equation, because they grow proportional to the pressure (see (2.42)).

Summarizing, the wave equation for the acoustic waves in a non-viscous gas has been
obtained in two ways: by computing the propagation of linear deformations in an gas,
considered as an elastic and isotropic medium, and by linearizing up to fist order the NSE
equations for this case, that is the mass conservation and Euler equations. Both paths are
equivalent in the sense that both rely on small adiabatic compressions and expansions of
the medium, and only linear relations between the deformation and the stress ara assumed.
However, if one wants to calculate the hydrodynamic force produced by an acoustic wave
on an object immersed in the fluid, experimental observations such as acoustic radiation
force are not visible if we work with first order approximations. Indeed, those effects are
only measurable as quantities averaged in time, and any field with first-order dependence
on a harmonic oscillation will have a null average over time. In order to explain these
effects, it is necessary to develop an expansion for the fields at least to second order [16,
sec. III]. This will be fully explained in the next chapter. The acoustic radiation force have
a general expression dependent of the small perturbations of the macroscopic field which
satisfy the waves equation, as we have shown in this chapter, meaning that by solving the
waves equation for those fields the acoustic radiation force is calculated. The solution of the
waves equation will depend on the geometry of the immersed object as well as the incident
waves, thus, in the following chapter we will develop the case of an sphere between standing
waves, called the Gor’kov acoustic radiation force, as well as the analogous two-dimensional
case of an infinite cylinder immersed in a bi-dimensional fluid.
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Chapter 3

The acoustic radiation force theory

3.1 A first order expansion

As we discussed in section 2.1 (Eq. (2.14)), the total force on an immersed object can be
expressed as the integration of the moment flux tensor through a surface enclosing the parti-
cle. Any particle or small body immersed in a fluid with the presence of a standing acoustic
pressure fields will experience a time-averaged force once the acoustic field has reached a
steady state. This force is known as the acoustic radiation force and, it is responsible for
displacing the particle towards the node (or anti-node) in an acoustic tweezer when the par-
ticle size is much smaller than the wavelength. In section 2.2 it was shown how the wave
equation is obtained by expanding at first order the continuity and Euler equations; however,
if we try to determine the acoustic radiation force via 2.14 by neglecting the second term of
2.12, we would get

F⃗ (t) = −
∮
∂Vp

p1(r⃗, t)n̂dS , (3.1)

which depends only on the harmonic oscillating pressure p1 = cos(ωt) and, therefore, the
time-averaged value of this force, defined as

⟨F⃗ (t)⟩ = 1

T

∫ T

0

F⃗ (t)dt (3.2)

will be zero 1.
Since the linear contribution is not enough, it is necessary to develop a perturbative

expansion for the pressure up to second order, such that the computed force includes non-
linear terms that will eventually remain in the time-averaged force. This development will
be shown in this chapter, by combining an completing the deductions in [11, 17, 39]. First,
a non-viscous irrotational flow is considered and the second-order perturbative expansion

1Indeed, the time averages of ⟨cos(ωt− β)⟩ = ⟨sin(ωt− β)⟩ = 0. In contrast, time averages of quadratic
contributions like

〈
cos2(ωt− β)

〉
=
〈
sin2(ωt− β)

〉
= 1

2 are no null.
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is developed. Then, it will be shown that the second order contributions to the force are
expressed only in terms of the first order contributions to the pressure and velocity fields, i.e.
those which satisfy the wave equation. Therefore, it is not necessary to solve the non-linear
equations 2.5 and 2.7 to compute the force; only by solving the wave equation (analytically
or numerically) the first order contributions, the radiation force can be computed. Next, the
wave equation shall be solved, using the proper boundary conditions at the object’s surface,
and their results are used to compute the radiation acoustic force due to the pressure and
velocity field scattered by the particle in terms of the known incident fields.

3.2 The second order acoustic radiation force

Now it is time to develop a perturbative expansion up to second order as done in 2.43.
Then

ρ = ρ0 + ρ1 + ρ2 , (3.3a)

P = p0(ρ0) + p1 + p2 and (3.3b)

u⃗ = 0⃗ + u⃗1 + u⃗2 . (3.3c)

By replacing those expansions into the mass (Eq. (2.5)) and momentum (Eq. (2.6)) conser-
vation law, using Eq. (2.44) and taking the second-order terms only, we obtain

∂ρ2
∂t

+ ρ0∇ · u⃗2 +∇ · (ρ1u⃗1) = 0 , (3.4a)

ρ0
∂u⃗2

∂t
+ ρ1

∂u⃗1

∂t
+∇p2 + ρ0(u⃗1 · ∇)u⃗1 = 0 . (3.4b)

The last term of the left side of Eq. (3.4b) can be rewritten by using the next mathematical
property:

1

2
∇(u⃗1 · u⃗1) = (u⃗1 · ∇)u⃗1 + u⃗1 × (∇× u⃗1) , (3.5)

where the term u⃗1 × (∇× u⃗1) = 0, because the flux is irrotational.Then (3.4b) becomes

ρ0
∂u⃗2

∂t
+ ρ1

∂u⃗1

∂t
+∇p2 +

ρ0
2
∇(u2

1) = 0 . (3.6)

By using (2.42) and (2.44b) the second term of the left hand side may be written as

ρ0
∂u⃗2

∂t
− p1

ρ0c2
∇p1 +∇p2 +

ρ0
2
∇(u2

1) = 0 , (3.7)

and using the product derivative property for gradients we end up with

ρ0
∂u⃗2

∂t
+∇p2 =

1

2ρ0c20
∇(p21)−

ρ0
2
∇(u2

1) . (3.8)
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Because we are interested in writing the total velocity and pressure fields in terms of only
first-order terms, let us add equation (2.44b) as a null term such that, by using 3.3b and
(3.3c) we have

ρ0
∂u⃗2

∂t
+ ρ0

∂u⃗1

∂t
+∇p2 +∇p1 =

1

2ρ0c20
∇(p21)−

ρ0
2
∇(u2

1)

ρ0
∂u⃗

∂t
+∇(P − p0) = ∇

(
1

2ρ0c2
p21 −

ρ0
2
u2
1

)
. (3.9)

Now by using (2.18) we end up with a total non-static pressure written as follows:

∇(P − p0) = ∇
(

p21
2ρ0c20

− ρ0
2
u2
1 − ρ0

∂ϕ

∂t

)
, (3.10)

that can be plugged into (2.14) to obtain a second order force by also including the dyadic
product of the velocities in (2.12), since it is a second order term. So, the second order
radiation acoustic force becomes

⟨Fi⟩ = −
∮ 〈(

−ρ0
u2
1

2
+

p21
2ρ0c20

)
δij + ρ0vivj

〉
dSj . (3.11)

Since we are assuming that the fluid is non-rotational (Ω = ∇⃗× v⃗ = 0), the velocity field
is the gradient of a scalar velocity potential ϕ (Eq. (2.18)) and, the first order velocity and
pressure fields can be written in terms of such potential as

u⃗1 = ∇ϕ , (3.12)

p1 = −ρ0
∂ϕ

∂t
, (3.13)

and Eq. (3.11) becomes

⟨Fi⟩ = −
∮ 〈(

−ρ0
2
|∇ϕ|2 + ρ0

2c20

[
∂ϕ

∂t

]2)
δij + ρ0∂iϕ∂jϕ

〉
dSj , (3.14)

The potential ϕ also obeys a wave equation. By replacing (3.12) and (3.13) into Eq.
(2.44a), one obtains

1

c20

∂2ϕ

∂t2
= ∇2ϕ . (3.15)

That opens the possibility of computing the force just by solving the velocity scalar potential
- which satisfies only one wave equation - with the proper boundary conditions. In the next
section we will show, with all possible details, how to solve this equation for a compress-
ible disk by following the Gor’kov approach and completing the intermediate steps of his
celebrated paper [11].
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3.3 The Gor’kov acoustic radiation force on a sphere

Incident, scattered and interference terms

We want to compute the average force acting on a spherical object immersed in a liquid
by a standing acoustic wave. Let us assume that the object’s radius Rp is much smaller that
the wavelength λ,

Rp ≪ λ , (3.16)

With this approximation it is possible to solve (3.15) by dividing the potential field into an
incident field and a scattered field [11], that is

ϕ = ϕin + ϕsc , u⃗1 = u⃗in + u⃗sc , p1 = pin + psc . (3.17)

The incident field ϕin would be the solution for the ongoing waves as if there was no spherical
particle, while the scattered field ϕsc is the difference between the actual field and the incident
field.

With the velocity potential divided into an incident and a scattered field, the average
force Eq. (3.14) will have three contributions. The first one, due to ϕin only,

⟨Fi,in⟩ = −ρ0

∮ 〈(
−ρ0

2
|∇ϕin|2 +

ρ0
2c20

[
∂ϕin

∂t

]2)
δij + ρ0∂iϕin∂jϕin

〉
dSi , (3.18)

should be zero, because the incident field (which is the solution in absence of the object) does
not receive any physical effect from the particle. In the case of plane waves, the incident field

ϕin = ϕ0 cos
(
k⃗ · r⃗ − ωt

)
is spatially homogeneous, implying a symmetry over the surface,

and the closed integral will yield zero [39, p.79][17, p.] (see Appendix A for a detailed
verification of this prediction).

The other two contributions containing information about the scattered wave are

⟨Fi,sc⟩ = −ρ0

∮ 〈(
−ρ0

2
|∇ϕsc|2 +

ρ0
2c20

[
∂ϕsc

∂t

]2)
δij + ρ0∂iϕsc∂jϕsc

〉
dSi (3.19)

and

⟨Fi,in-sc⟩ = −ρ0

∮ 〈(
−ρ0∇ϕin · ∇ϕsc +

ρ0
c20

[
∂ϕin

∂t

] [
∂ϕsc

∂t

])
δij + ρ0∂iϕin∂jϕsc + ρ0∂iϕsc∂jϕin

〉
dSi .

(3.20)
The contribution ⟨Fi,sc⟩, is much smaller than the interference term ⟨Fi,in-sc⟩, because the
scattering cross-section of a spherical particle is proportional to (kRp)

4, which is negligible
due to (3.16), and because the scattered potential field solution is proportional to R3

p, as will
be shown later; thus, the interference term (3.20) is the most relevant, and that is the one
to be developed next [39, p.79].
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By using (3.12) and (3.13)

∇ϕin · ∇ϕsc = u⃗in · u⃗sc , (3.21a)

ρ0
c20

∂ϕin

∂t

∂ϕsc

∂t
=

c20
ρ0

ρinρsc and (3.21b)

∂iϕin∂jϕsc = ui
inu

j
sc , (3.21c)

the interference term becomes

⟨Fi,in-sc⟩ = −ρ0

∮ 〈(
−ρ0u⃗in · u⃗sc +

c20
ρ0

ρinρsc

)
δij + ρ0u

i
inu

j
sc + ρ0u

i
scu

j
in

〉
dSi . (3.22)

By using Gauss theorem, the surface integral transforms into a volume integral,

⟨Fi,in-sc⟩ = −ρ0

∫ 〈(
−ρ0(∂iu

m
in)u

m
sc − ρ0(∂iu

m
sc)u

m
in +

c20
ρ0

∂iρinρsc +
c20
ρ0

ρin∂iρsc

)
δij+

ρ0(∂iu
i
in)u

j
sc + ρ0u

i
in(∂iu

j
sc) + ρ0(∂iu

i
sc)u

j
in + ρ0u

i
sc(∂iu

j
in)

〉
dV (3.23)

the first two terms may be rewritten as

(∂iu
m
in)u

m
sc + (∂iu

m
sc)u

m
in = (∂i∂mϕin)u

m
sc + (∂i∂mϕsc)u

m
in

= (∂m∂iϕin)u
m
sc + (∂m∂iϕsc)u

m
in = (∂mu

i
in)u

m
sc + (∂mu

i
sc)u

m
in , (3.24)

and the interference term simplifies to

⟨Fi,in-sc⟩ = −ρ0

∫ 〈
c20
ρ0

∂jρinρsc +
c20
ρ0

ρin∂jρsc + ρ0(∂iu
i
in)u

j
sc + ρ0(∂iu

i
sc)u

j
in

〉
dV (3.25)

Now, by using (2.44) for the incident and scattered fields on all terms but the last one,
we obtain

⟨Fi,in-sc⟩ = −ρ0

∫ 〈
− ∂uj

in

∂t
ρsc −

∂uj
sc

∂t
ρin −

∂ρin
∂t

uj
sc + ρ0(∂iu

i
sc)u

j
in

〉
dV

−
∫ 〈

− ∂uj
in

∂t
ρsc −

∂

∂t
(uj

scρin) + ρ0(∂iu
i
sc)u

j
in

〉
dV (3.26)

Since

−∂uj
in

∂t
ρsc = − ∂

∂t
(uj

inρsc) + uj
in

∂ρsc
∂t

, (3.27)

the averaged force simplifies to

⟨Fi,in-sc⟩ = −ρ0

∫ 〈
− ∂

∂t
(uj

scρin + uj
inρsc) + uj

in

∂ρsc
∂t

+ ρ0(∂iu
i
sc)u

j
in

〉
dV . (3.28)
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Because the time-average of the time derivatives of any periodic function is identically zero,
the force simplifies further to

⟨Fi⟩ = −ρ0

∫ 〈
ui
in

(
∇2ϕsc −

1

c20

∂2ϕsc

∂t2

)〉
dV . (3.29)

Therefore, the time averaged force on the small sphere can be found if we compute the
scattered velocity potential ϕsc. That will be done in the next section.

The scattered field

Because the outgoing reflected waves due to the presence of the object must be decreasing
functions of the distance of the particle, the scattered field can be written as a multipolar
expansion, as follows [37, sec. 11]:

ϕsc = −a(tret)

r
+ (A⃗(tret) · ∇)

1

r
+ . . . (3.30)

where tret = t − r/c0 is the retarded time. The reader can notice that this is a retarded
solution of the Poisson equation with a small source. Indeed, it can be shown that (3.30) is
also a solution of the wave equation where the source is localized in a small region of space
around the origin (see [42, sec. 6.4] for details).

Since Rp ≪ λ, the action of the object on the medium closed to the film (where r ≈ Rp)
is almost instantaneous and,

tret = t− Rp

c0
= t− Rp

λ
T ≈ t , (3.31)

and the scattered potential ϕ can be expressed as the sum of a monopolar, ϕmp, and a dipolar,
ϕdip contributions,

ϕsc = ϕmp + ϕdip , (3.32)

with

ϕmp(r⃗, t) = −a(t)

r
, (3.33a)

ϕdip(r⃗, t) = A⃗(t) · ∇
(
1

r

)
= −A⃗(t) · r⃗

r3
. (3.33b)

Furthermore, the potential ϕsc will satisfy a Laplace equation

∇2ϕsc = ∇ · (∇ϕsc) = ∇ · u⃗1 = 0 . (3.34)

This reflects the fact that close to the object the outer fluid behaves nearly incompressible.
The scalar field a and vector field A⃗ will be computed in the following sections with all

the mathematical details.
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The scalar field a(t)

Let us assume that the sphere of volume Vp is elastic, shrinking or expanding isotropically
just by simply enlarging or decreasing its radius Rp in response to the incident pressure pin.
In that case, the volume change dVp is related to pin by

dpin = −Bp
dVp

Vp

, or
∂pin
∂t

= −B

Vp

dVp

dt
, (3.35)

with Bp = c2pρp the particle’s bulk modulus, cp the particle’s speed of sound and ρp the
particle’s density. Furthermore, because pin = ρinc

2
0, with c0 the speed of sound in the fluid,

dVp

dt
= −Vp

c20
ρpc2p

∂ρin
∂t

. (3.36)

Now, let us consider a mathematical spherical region Ω of radius RΩ concentric to the
sphere with λ ≫ RΩ > Rp. When the sphere expands, the mass flux leaving Ω through its
surface ∂Ω equals the rate at which the sphere pushes fluid out of it,∮

∂Ω

(ρ0u⃗1) · r̂dS =

∮
∂Ω

(ρ0∇⃗ϕsc) · r̂dS =
∂

∂t
[(ρ0 + ρin)Vp] , (3.37)

with r̂ the radial unitary vector.
By replacing the monopolar field (3.33a) and the volume time derivative (3.36) into

(3.37), one obtains (See Appendix B for details)

a(t) =
R3

p

3ρ0

∂ρin
∂t

f1 , with f1 = 1− κp

κ0

, (3.38)

where κ0 = 1/(ρ0c
2
0) and κp = 1/(ρpc

2
p) are the particle and fluid compressibility, respectively.

The vectorial field A(t)

Now let us consider the dipole contribution for the potential. Consider a sphere that
moves with velocity v⃗ immersed to the fluid, and let us assume that the potential has the
form

ϕdip = A⃗ · ∇
(
1

r

)
= −A⃗ · r⃗

r3
, (3.39)

where the position vector is measured between an observation point and the center of the
sphere. The sphere is moving with a velocity v⃗ such that the vector r⃗ is

r⃗ = r⃗0 − tv⃗ , (3.40)

where r⃗0 is the sphere’s position measured in a static reference frame. A first boundary
condition is the fact that during the motion of the sphere there is no flow passing through
the body, that is the normal velocities matches

u⃗ · r̂ = v⃗ · r̂ , (3.41)
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Now the velocity u⃗ will be a fluid velocity around the sphere due to the disturbance of the
sphere, but it is measured in reference frame where there is no external flow. Then

u⃗ = ∇
(
−A⃗ · r̂

r2

)
= −(A⃗ · ∇)

r̂

r2
=

3(A⃗ · r̂)r̂ − A⃗

r3
. (3.42)

By replacing (3.42) into (3.41), we obtain (see Appendix C for details)

A⃗ =
R3

p

2
v⃗ . (3.43)

The vector A⃗ is related now to the dipolar moment of a Doublet and the fluid velocity written
at (3.42) would take the following form:

u⃗ =
R3

p

2

3(v⃗ · r̂)r̂ − v⃗

r3
=

R3
p

2

(
3(v⃗ · r⃗)r⃗

r5
− v⃗

r3

)
(3.44)

But the motion occurs due to the interaction between the fluid and the object immersed to it,
meaning that the momentum must be conserved between them and the considered boundary
condition is not enough. In order to take into account this interaction, we shall calculate the
drag force made by the fluid on the object; but this time, as mentioned earlier, the fluid
was assumed incompressible due to the length-scale separation between the wavelength and
the radius of the object (3.16) and with this the force made by the fluid is

F⃗
(drag)
i = −

∮ (
−ρ0

2
|∇ϕdip|2 −

∂ϕdip

∂t

) ∣∣∣∣
r=Rp

n̂dS , (3.45)

where the Bernoulli principle has been used [40]. (This expression is basically (3.14) but
taking away the squared pressure term du to incompressinility and the dyadic tensor term
because only the normal contribution contributes to the drag). Then, by using (3.39) and
(3.43) we get (see Appendix C for details)

F⃗ (drag) = −ρ0

∮ (
1

2

(
Rpr̂ ·

∂v⃗

∂t
+ 3(r̂ · v⃗)2 − v2

)
− 1

8

(
3(r̂ · v⃗)2 + v2

))
n̂dS

= −
∮

Rp

2
r̂ · ∂v⃗

∂t
n̂dS −

∮
v2

2

(
9

4

(r̂ · v⃗)2

v2
− 5

4

)
n̂dS . (3.46)

Then, by taking θ as the angle between the sphere’s velocity v⃗ and its position r⃗, we have
for the second integral, and

r̂ · v⃗ = v cos θ (3.47)

and, after some algebra (see Appendix C for details), we obtain

F⃗ (drag) = −
2πR3

pρ0

3

∂v

∂t
êz ≡ −Madd

∂v

∂t
êz , (3.48)
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where we define Madd =
2πR3

pρ0
3

as the added mass due to the motion of the fluid. With that
force, the equation of motion for the particle becomes

mp
∂v⃗

∂t
= f⃗ −Madd

∂v⃗

∂t
, (3.49)

By Newton’s Third Law −f⃗ is the force acting on the fluid and, therefore

(
4πR3

p

3
ρ0 +Madd)

∂u⃗

∂t
= f , (3.50)

where we have added a bouyancy term. Now combining (3.49) and (3.50) we get (see
Appendix C for details)

vi =
3ρ0

2ρp + ρ0
ui . (3.51)

This final relation ensures momentum conservation for (3.43), where equal velocities u⃗ and
v⃗ were assumed. In general, the actual velocity must be the one which is relative to the fluid
in order to still satisfy (3.41). Thus

A⃗ =
R3

p

2
(v⃗ − u⃗) , (3.52)

and with (3.51) the definitive expression for A⃗ is

A⃗(t) =
R3

p

2
f2 , with f2 =

(
2(ρp − ρ0)

2ρp + ρ0

)
u⃗ , (3.53)

where we introduce the density contrast factor f2.

The Gor’kov’s potential in 3D

With (3.38) and (3.53) it is now possible to write a particular solution for the scattered

velocity potential previously defined in terms of a(tret) and A⃗(tret) (Eq. (3.30)). It becomes

ϕsc(r, t) = −f1
R3

p

3ρ0r
˙ρin − f2

R3
p

2r2
∇ ·
(
u⃗in

r

)
. (3.54)

this potential actually satisfies a non-homogeneous wave equation. By applying the D’Alembert
operator, as it is done in (3.29), the following source is gathered

∇2ϕsc −
1

c20

∂2ϕsc

∂t2
= f1

Vp

ρ0

∂ρin
∂t

δ(r⃗) + f2
3Vp

2
∇ · (u⃗inδ(r⃗)) (3.55)
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After plugging in (3.55) into (3.29), we have

⟨Fi⟩ = −ρ0

∫ 〈
f1
Vp

ρ0

∂ρin
∂t

ui
inδ(r⃗) + f2

3Vp

2
ui
in∂k(u

k
inδ(r⃗))

〉
dV

= −f1Vp

∫ 〈
∂ρin
∂t

ui
inδ(r⃗)

〉
dV − f2

3ρ0Vp

2

∫ 〈
ui
in∂k(u

k
inδ(r⃗))

〉
dV

= −f1Vp

〈
∂ρin
∂t

ui
in

〉
− f2

3ρ0Vp

2

(∮ 〈
ui
inu

k
inδ(r⃗)

〉
dSk −

∫ 〈
(uk

in∂k)u
i
inδ(r⃗)

〉
dV

)
.

(3.56)

Because the Dirac’s delta of the second term of does not contain the surface, the whole
integrand is identically zero, leading to

⟨Fi⟩ = −f1Vp

〈
∂ρin
∂t

ui
in

〉
+ f2

3ρ0Vp

2

〈
(uk

in∂k)u
i
in

〉
. (3.57)

As a final step, we can exchange the time derivative in the first term, because the derivative of
the whole product is identically zero (just because the incident field oscillates harmonically);
thus 〈

∂ρin
∂t

ui
in

〉
= −

〈
ρin

∂ui
in

∂t

〉
=

〈
ρin

∂iρin
ρ0c20

〉
=

1

2ρ0c2o

〈
∂ip

2
in

〉
. (3.58)

where (2.44) was considered. By using (3.5) in the second term of (3.57) and by replacing
the previous result, the Gor’kov Force takes its definitive form,

⟨Fi⟩ = −∂iVp

(
f1

1

2ρ0c20
⟨p2in⟩+ f2

3ρ0
4

⟨u2
in⟩
)

= −∇U . (3.59)

The potential U is defined as

U = Vp

(
f1

1

2ρ0c20
⟨p2in⟩+ f2

3ρ0
4

⟨u2
in⟩
)

, (3.60)

or, bu using (3.38) and (3.53)), as

U = Vp

(
(κ0 − κp)

⟨p2in⟩
2

+

(
ρp − ρ0
2ρp + ρ0

)
3ρ0⟨u2

in⟩
2

)
. (3.61)

This is called the Gor’kov’s potential. This potential is commonly used for acoustic levitation
of small objects, even regardless of the shape of the object (or dimension) as soon as (3.16)
is satisfied.

In the particular case of incident stationary pressure waves, like

pin(x, t) = p0 sinωt cos kx , (3.62)
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if we take into account (2.44b) to compute the velocity and by assuming that the force is
done only along the x-axis, the velocity takes the form

vxin(x, t) = − p0
c0ρ0

cosωt sin kx . (3.63)

By plugging it into the Gor’kov potential and solving the time-average integration, this
potential for standing waves becomes

U =
Vpp

2
0

4ρ0c20

(
f1 cos

2 kx+
3

2
f2 sin

2 kx

)
(3.64)

such that the force can be gathered using (3.59), (3.38) and (3.53) the expression for the
force becomes

Fx = −
πR3

pp
2
0k

3ρ0c20
Φ(ρ̃, κ̃) sin 2kx (3.65)

where ρ̃ = ρp/ρ0 , κ̃ = κp/κ0 and Φ(ρ̃, κ̃) is defined as

Φ(ρ̃, κ̃) =
5ρ̃− 2

2ρ̃+ 1
− κ̃ . (3.66)

3.4 The radiation force on a disk

In the case of the sphere we showed one of many ways to solve the wave’s equation under
the premise that this is a scattering problem, which is a reason to split the fields into an
incident and a scattered contribution, such that the scattered solution is generated by the
particle as a point source due to (3.16), as a small disk may be seen as a point particle in the
three-dimensional space. For the two-dimensional case the process is analogous except that
the macroscopic quantities will acquire another units. The scattered potential field defined
in (3.17) is [37]

ϕsc = −a(tret) log r − (A⃗(tret) · ∇) log r + . . . (3.67)

where tret = t − r/c0 is the retarded time. Here we shall define the monopolar and dipolar
terms for the scattered potential as follows:

ϕmp(r⃗, t) = −a(t) log r (3.68a)

ϕdip(r⃗, t) = −A⃗(t) · ∇ (log r) = −A⃗(t) · r⃗

r2
. (3.68b)

Analogous to explained in section 3.3 it is possible to find that the acoustic radiation force
will only depend on the scattered contributions but instead considering an integration over
the area of the disk and a lower-dimension integration over the loop border of the disk

⟨Fi⟩ = −ρ0

∫ 〈
ui
in

(
∇2ϕsc −

1

c20

∂2ϕsc

∂t2

)〉
dA , (3.69)

Indeed, this wave equation is not homogeneous as the scattered field comes from the interac-
tion between the particle and the fluid. The scalar field a and vector field A⃗ are determined
in the following section.
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Deduction of the constants of the scattered field

The scalar field a(t)

Let us assume that the disk of area Ap is elastic, shrinking or expanding isotropically
just by simply enlarging or decreasing its radius Rp in response to the incident pressure pin.
In that case, the area change dAp is related to pin by

dpin = −B2D
p

dAp

Ap

, or
∂pin
∂t

= −
B2D

p

Ap

dAp

dt
, (3.70)

with Bp = c2pρp the bi-dimensional equivalent of the particle’s bulk modulus defined this time
as

B2D
p = −A

dP

dA
, (3.71)

cp the particle’s speed of sound and ρp the particle’s density. Furthermore, because pin =
ρinc

2
0, with c0 the speed of sound in the fluid,

dAp

dt
= −Ap

c20
ρpc2p

∂ρin
∂t

. (3.72)

Now, let us consider a mathematical spherical region Ω of radius RΩ concentric to the
disk with λ ≫ RΩ > Rp. When the disk expands, the mass flux leaving Ω through its
circumference ∂Ω equals the rate at which the disk pushes fluid out of it,∮

∂Ω

(ρ0u⃗1) · r̂dl =
∮
∂Ω

(ρ0∇⃗ϕsc) · r̂dl =
∂

∂t
[(ρ0 + ρin)Ap] , (3.73)

with r̂ the radial unitary vector.
By replacing the monopolar field (3.68a) and the volume time derivative (3.72) into

(3.73), one obtains (See Appendix D for details)

a(t) =
R2

p

2ρ0

∂ρin
∂t

f1 , with f1 = 1− κp

κ0

, (3.74)

where κ0 = 1/(ρ0c
2
0) and κp = 1/(ρpc

2
p) are the particle and fluid compressibility, respectively.

The vectorial field A(t)

Now let us consider the dipole contribution for the potential. Consider a disk that moves
with velocity v⃗ immersed to the fluid, and let us assume that the potential has the form

ϕdip = −A⃗ · ∇ (log r) = −A⃗ · r⃗

r2
. (3.75)



3.4. THE RADIATION FORCE ON A DISK 28

where the position vector is measured between an observation point and the center of the
disk. The disk is moving with a velocity v⃗ such that the vector r⃗ is

r⃗ = r⃗0 − tv⃗ , (3.76)

where r⃗0 is the disk’s position measured in a static reference frame. A first boundary condi-
tion is the fact that during the motion of the disk there is no flow passing through the body,
that is the normal velocities matches

u⃗ · r̂ = v⃗ · r̂ , (3.77)

Now the velocity u⃗ will be a fluid velocity around the disk due to the disturbance of the
disk, but it is measured in reference frame where there is no external flow. Then

u⃗ = ∇
(
−A⃗ · r̂

r

)
= −(A⃗ · ∇)

r̂

r
=

2(A⃗ · r̂)r̂ − A⃗

r2
, (3.78)

By replacing (3.78) into (3.77), we obtain (see Appendix ?? for details)

A⃗ = R2
pv⃗ . (3.79)

The vector A⃗ is related now to the dipolar moment of a Doublet and the fluid velocity written
at (3.78) would take the following form:

u⃗ = R2
p

2(v⃗ · r̂)r̂ − v⃗

r2
= R2

p

(
2(v⃗ · r⃗)r⃗

r4
− v⃗

r2

)
(3.80)

But the motion occurs due to the interaction between the fluid and the object immersed to it,
meaning that the momentum must be conserved between them and the considered boundary
condition is not enough. In order to take into account this interaction, we shall calculate the
drag force made by the fluid on the object; but this time, as mentioned earlier, the fluid
was assumed incompressible due to the length-scale separation between the wavelength and
the radius of the object (3.16) and with this the force made by the fluid is

F⃗
(drag)
i = −ρ0

∮ (
−1

2
|∇ϕdip|2 −

∂ϕdip

∂t

) ∣∣∣∣
r=Rp

n̂dl , (3.81)

where the Bernoulli principle has been used [40]. (This expression is basically (3.14) but
taking away the squared pressure term due to incompressinility and the dyadic tensor term
because only the normal contribution contributes to the drag). Then, by using (3.75) and
(3.79) we get (see Appendix ?? for details)

F⃗ (drag) = −ρ0

∮ (
−v2

2
+

(
r⃗ · ∂v⃗

∂t
− 2(r̂ · v⃗)2 + v2

))
n̂dl

= −
∮

Rpr̂ ·
∂v⃗

∂t
n̂dl −

∮
3v2

2
− 2(r̂ · v⃗)2n̂dl . (3.82)
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Then, by taking θ as the angle between the disk’s velocity v⃗ and its position r⃗, we have for
the second integral, and

r̂ · v⃗ = v cos θ (3.83)

and, after some algebra (see Appendix ?? for details), we obtain

F⃗ (drag) = −πR2
pρ0

∂v

∂t
êx ≡ −Madd

∂v

∂t
êx (3.84)

where we define Madd = πR2
pρ0 as the added mass due to the motion of the fluid. With that

force, the equation of motion for the particle becomes

mp
∂v

∂t
= f −Madd

∂v

∂t
, (3.85)

By Newton’s Third Law −f⃗ is the force acting on the fluid and, therefore

(πR2
pρ0 +Madd)

∂u⃗

∂t
= f . (3.86)

where we have added a bouyancy term. Now combining (3.85) and (3.86) we get (see
Appendix ?? for details)

vi =
2ρ0

ρp + ρ0
ui . (3.87)

This final relation ensures momentum conservation for (3.79), where equal velocities u⃗ and
v⃗ were assumed. In general, the actual velocity must be the one which is relative to the fluid
in order to still satisfy (3.77). Thus

A⃗ =
R3

p

2
(v⃗ − u⃗) , (3.88)

and with (3.87) the definitive expression for A⃗ is

A⃗(t) =
R2

p

2
f2 , with f2 = 2

(
ρ0 − ρp
ρ0 + ρp

)
, (3.89)

where we introduce the density contrast factor f2.

The Gor’kov potential in 2D

With (3.74) and (3.89) it is now possible to write a particular solution for the scattered

velocity potential, previously defined in terms of a(tret) and A⃗(tret), of the form

ϕsc(r, t) = −f1
R2

p

2ρ0
˙ρin log r − f2

R2
p

2
∇ · (u⃗in log r) , (3.90)
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which actually satisfies a non-homogeneous wave equation, because applying the D’Alembert
operator, as it is done in (3.69), the following source is gathered

∇2ϕsc −
1

c20

∂2ϕsc

∂t2
= f1

Ap

ρ0

∂ρin
∂t

δ(r⃗) + f2Ap∇ · (u⃗inδ(r⃗)) (3.91)

Considering the fact that the incident fields are harmonical as well as ϕin if we look the inci-
dent velocity as its gradient. After plugging in (3.91) into (3.69), and solving the integration,
we have

⟨Fi⟩ = −ρ0

∫ 〈
f1
Ap

ρ0

∂ρin
∂t

ui
inδ(r⃗) + f2Apu

i
in∂k(u

k
inδ(r⃗))

〉
dA

= −f1Ap

∫ 〈
∂ρin
∂t

ui
inδ(r⃗)

〉
dA− f2ρ0Ap

∫ 〈
ui
in∂k(u

k
inδ(r⃗))

〉
dA

= −f1Ap

〈
∂ρin
∂t

ui
in

〉
− f2ρ0Ap

(∮ 〈
ui
inu

k
inδ(r⃗)

〉
dSk −

∫ 〈
(uk

in∂k)u
i
inδ(r⃗)

〉
dV

)
. (3.92)

As the Dirac’s delta of the second term of does not contain the surface, the whole integrand
is identically zero, leading to

⟨Fi⟩ = −f1Ap

〈
∂ρin
∂t

ui
in

〉
+ f2ρ0Ap

〈
(uk

in∂k)u
i
in

〉
. (3.93)

As a final step we can exchange the time derivative in the first term because the derivative
of the whole product is identically zero, thus〈

∂ρin
∂t

ui
in

〉
= −

〈
ρin

∂ui
in

∂t

〉
=

〈
ρin

∂iρin
ρ0c20

〉
=

1

2ρ0c2o

〈
∂ip

2
in

〉
, (3.94)

after (2.44) was considered and using (3.5) in the second term of (3.93) the Gor’kov Force
in its definitive expression is

⟨Fi⟩ = −∂iAp

(
f1

1

2ρ0c20
⟨p2in⟩+ f2

ρ0
2
⟨u2

in⟩
)

= −∇U (3.95)

where a potential U is defined as

U = Ap

(
f1

1

2ρ0c20
⟨p2in⟩+ f2

ρ0
2
⟨u2

in⟩
)

, (3.96)

or after using (3.74) and (3.89)

U = Vp

(
(κ0 − κp)

⟨p2in⟩
2

+

(
ρp − ρ0
ρp + ρ0

)
ρ0⟨u2

in⟩
)

, (3.97)
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to be called the Gor’kov potential. This potential is commonly used for acoustic levitation
of small objects, even regardless of the shape of the object (or dimension) as soon as (3.16)
is satisfied. In the particular case of incident stationary waves in the pressure, like

pin(x, t) = p0 sinωt cos kx , (3.98)

taking into account (2.44b) to compute the velocity and assuming that the force is done only
along the x-axis, the velocity takes the form

vxin(x, t) = − p0
c0ρ0

cosωt sin kx , (3.99)

and plugging into the Gor’kov potential and solving the time-average integration, this po-
tential for standing waves becomes

U =
App

2
0

4ρ0c20

(
f1 cos

2 kx+ f2 sin
2 kx

)
(3.100)

such that the force can be gathered using (3.95), (3.74) and (3.89) the expression for the
force becomes

Fx = −
πR2

pp
2
0k

4ρ0c20
Φ(ρ̃, κ̃) sin 2kx (3.101)

where ρ̃ = ρ0/ρ , κ̃ = κ0/κ and Φ(ρ̃, κ̃) is defined as

Φ(ρ̃, κ̃) =
3− ρ̃

1 + ρ̃
− κ̃ . (3.102)

This last expression of the force (3.101) coincides with the equation 18 and 22 of the paper
of Wei et al. [13, page. 204] and thus validating this shorter deduction as an analogous case
of the Gor’kov derivation.
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Chapter 4

A Lattice-Boltzmann model for
acoustics

4.1 What is a Lattice-Boltzmann method?

A Lattice-Boltzmann Method (or LBM) is a numerical approach to solve a discrete version
of the transport Boltzmann equation. This numerical method is basically a cellular automata
which evolves a set of population distribution functions representing the probability to find
a particle at some position with a given velocity in an instant of time, such that from
these distribution functions one can obtain the temporal evolution of macroscopic moments
which behave under certain conservation laws, then the LBM solves the partial differential
equations (PDE) for the moments in the macroscopic limit, being an alternative to more
used numerical methods as finite differences or finite elements, which can solve these PDE’s
in the time domain.

The main advantages of LBM are two: one, that the solution of the transport Boltzmann
equation is made over a discrete space of positions and a discrete set of velocities by devel-
oping a quadrature, avoiding to integrate over a continuous velocity space, and two, the fact
that the temporal evolution for all distribution functions is independent of the neighbor cells,
making this method much easier to paralellize than others. This method solves a density
probability function for a system of microscopic particles from which macroscopic quantities
are gotten, thus, LBM is considered a mesoscopic method, because it simulates a hypothet-
ical fluid transporting ideal particles between discrete cells colliding themselves in order to
combine the information under a evolution rule for the cellular automata. These rules are
based on the kinetic theory of gases and will be explained in this chapter. Although LBM is
mostly used to solve the Navier Stokes equations fully explained in the second chapter, this
method can actually solve any partial differential equation, as soon as it may be written as a
conservation law. In this chapter we will explain the theory behind LBM, how does it work,
how does it reproduce partial differential equations as the Navier Stoke’s equation and then
a Lattice-Boltzmann model able to solve the wave’s equation will be explained as well.
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Given a system of particles described by a number density function f(x⃗, v⃗i, t) defined as
the probability to find a particle at the position x⃗ with a given velocity v⃗i at the instant of
time t, the transport Boltzmann equation, written in a discrete space and using a discrete
set of velocities {v⃗i}, has the following form:

fi(x⃗+ v⃗iδt, t+ δt) = fi(x⃗, t) + Ωi(x⃗, t) (4.1)

Where Ωi(x⃗, t) is the collision operator. For the entire work we will focus on LB models
where there exists a solution for the distribution function called the equilibrium function
f eq, defined as the distribution function of the system when this one is left evolving by itself
after a long period of time. In general, the collision operator is a double integral of the
total derivative of f where all interactions among particles must be considered [38], but this
integration can be avoided assuming that the actual distribution function f is similar to f eq

except for a small linear difference, such that f will try to relax to f eq in a time interval τ .
This small difference will be the Bhatnagar-Gross-Krook (BGK) collision operator and its
definition is the following:

Ωi(x⃗, t) = −δt
fi(x⃗, t)− f eq(x⃗, t)

τ
(4.2)

where τ is known as the relaxation time, then the equation (4.1) becomes

fi(x⃗+ v⃗iδt, t+ δt)− fi(x⃗, t) = −δt
fi − f eq

τ
(4.3)

where f eq is the equilibrium distribution function. When the system relaxes to equilibrium
the following macroscopic moments are obtained:

Πeq =
∑
i

f eq
i (4.4a)

Πeq
α =

∑
i

viαf
eq
i (4.4b)

Πeq
αβ =

∑
i

viαviβf
eq
i (4.4c)

Πeq
αβγ =

∑
i

viαviβviγf
eq
i (4.4d)

The definition of these moments will be covered later, but the main idea behind the equilib-
rium function is that this one must be chosen such that summing (4.4) over i, multiplying
by the corresponding order of v⃗i, the desired moments of the system are gotten. As the
space and time are discretized, the velocities set {v⃗i} are discretized as well in a defined set
in general defined as DdQq where d is the dimension of the lattice and q is the amount of
vectors existing per cell. Some examples are D3Q19 or D2Q9.
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If the reader wonders why velocity can be discretized in such way, the reader shall con-
sider reading [38, sec. 3.4], but here we will provide the following basic explanation: The
macroscopic moments first defined at (4.4) should be written as integrals over the entire
velocity space, however, if the equilibrium distribution function is written as a truncated
summation of Hermite polynomials, it is possible to make use of orthogonality properties of
these polynomials to reduce the integration to a summation over a finite set of velocities,
without compromising the macroscopic behavior of the system. This mathematical approach
is known as a Gauss quadrature and this is the secret behind the possibility of solving the
Boltzmann equation without trying to integrate over an infinite and continuous set of ve-
locities. But this benefit comes with the price of choosing the proper set of velocities and
also a proper set of factors {ωi} called weigths. Thus, for each velocities set there is a set
of weights associated for each velocity, so that now we define a set of velocities and weights
{v⃗i, ωi} that must satisfy the following conditions:∑

i

ωi = 1 , (4.5a)

∑
i

viαωi = 0 , (4.5b)∑
i

viαviβωi = c2sδαβ , (4.5c)∑
i

viαviβviγωi = 0 , (4.5d)∑
i

viαviβviγviµωi = c4s(δαβδγµ + δαγδβµ + δαµδβγ) , (4.5e)

where c2s is for now a constant that will take an important role later. With the mentioned
elements the Boltzmann transport equation is solved for every distribution function fi(x⃗, t) =
f(x⃗, v⃗i, t), but this evolution only considers a mesoscopic dynamic of a bunch of particles
without any physical meaning associated, only the moments are able to provide the physical
quantities associated to a system, but these macroscopic moments satisfy a set of PDE’s
considered conservation laws, like for example the conservation of mass written as∫

Ω(f)d3v = 0 , (4.6)

as soon as all particles share a same value of mass, because Ω(f) is the total variation of f
including interactions between particles, thus (4.6) implies that the total amount of particles
for all possible velocities must be kept constant, in other words, that the total variation of
the amount of particles for every velocity is zero. In the same manner one can also write
a conservation of momentum noticing that the momentum is the particle density times the
velocity a particle carries, thus ∫

v⃗Ω(f)d3v = 0 (4.7)
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is the equation of conservation for momentum. Another conservation law is the conservation
of the total energy, namely ∫

v2Ω(f)d3v = 0 (4.8)

among others [38, sec.1.3.4]. By plugging in (4.1) into the mentioned conservation laws
it is possible to get a general form of the PDE’s described but in terms of the particle
density function f , but in order to ensure that the behavior of the macroscopic moments
defined at (4.4) fulfills the PDE’s in the macroscopic limit, we need to develop a Chapman-
Enskog analysis which will be detailed explained in the Appendix F. The Chapman-Enskog
expansion is a multiscale expansion of the continious Boltzmann equation and a perturbative
expansion of f around the Knusden number ϵ = δx/x as the parameter to determine how
close we are to the macroscopic limit, as the discretization of the system is done by dividing
the space into small cells of size δx, such that if this quantity is much smaller than a
charasteristic length x then this limit has been reached. When this occurs, the partial
differential equations satisfied by the scalar and vector moments are

∂tΠ+ ∂αΠα = 0 , (4.9)

which can be seen as a continuity equation. Another PDE for higher order moments is

∂βΠαβ + ∂tΠα = −ϵ2
(
1− δt

2τ

)
∂
(1)
β Π

(1)
αβ , (4.10)

Noting that if τ = δt/2 the right side of equation (4.10) vanishes, giving a continuity-like
equation for the tensors Πα and Παβ as

∂βΠαβ + ∂tΠα = 0 . (4.11)

To see these equations as conservation laws (mass conservation or momentum conservation)
we shall define the macroscopic moments in terms of fields with physical meaning. For
example, as fi has been interpreted as the probability density function to find a particle at
certain position and velocity at any instant of time, it makes sense to define Π as a density
field, because it’s basically a discrete summation (or an integral in the continuous velocity
space) of fi which accounts for the probability at every possible velocity the particle can
take at the position x⃗ and time t. In the same way it is possible to relate the momentum
of this fluid of particles as the summation of velocities weighted by the probability density
function fi, just as it’s defined in (4.4b), so that the following physical quantities for the
zero and first order tensors shall be defined:

Π ≡ ρ =
∑
i

fi , (4.12a)

Πα ≡ ρuα =
∑
i

viαfi , (4.12b)
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and for higher order tensor as well

Παβ ≡ pδαβ + ρuαuβ =
∑
i

viαviβfi (4.13a)

Παβγ ≡ p(uαδβγ + uβδαγ + uγδαβ) =
∑
i

viαviβviγfi (4.13b)

considering the main macroscopic variables for a fluid such as the density ρ, the velocity
uα and the pressure p. Also, the tensor Παβ has been identified as the moment flux
tensor. For now these physical macroscopic fields have not been mentioned in the Lattice-
Boltzmann model, thus this definition will have nothing to do with the model itself, unless
the distribution function at equilibrium f eq

i manages to recover the macroscopic fields from
(4.4). This will be shown later on. Using eqn. (4.9) with (4.12a) and (4.12b) the continuity
equation is given as

∂α(ρuα) + ∂tρ = 0 . (4.14)

In the other hand, using eqn. (4.10) with (4.13a) a PDE similar to NSE equation is gotten
(see Appendix F for details):

∂β(ρuαuβ) + ∂t(ρuα) = −∂αp+ η∂β(∂βuα + ∂αuβ) (4.15)

with

η = ρc2s

(
τ − δt

2

)
(4.16)

will be the viscosity. Is possible to see that for τ = δt/2 we end up with the Euler equation,
however this case will lead to numerical instability as it’s a limit case before the distribution
functions become negative and the model instantly gets unstable (please see details in [38,
sec. 4.4.2]). Although we have associated the moments from fi to physical quantities to get
continuity and NSE equation in (4.12), as mentioned before, this association is not possible
if the equilibrium function f eq

i is not properly defined in terms of these physical quantities.
The equilibrium function must be written such that is possible to retrieve all the macroscopic
moments using (4.4). One way to find the proper f eq

i is by moment matching. This consist
of writing the equilibrium function as an ansatz written as

f eq
i = ωiρ(1 + a1viαuα + a2viαviβuαuβ − a3uαuβ) (4.17)

where ωi are the weights that complement the velocity set. Then the constants a1, a2 and
a3 are found such that using the conditions for viα and ωi described in (4.5) the macroscopic
variables are obtained. For the case of fluids we have

a1 =
1

c2s
; a2 =

1

2c4s
; a3 =

1

2c2s
(4.18)
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(a) D2Q9 lattice set. (b) D3Q19 lattice set.

Fig. 4.1. Examples of different Lattices.

where c2s constant appears once again due to (4.5), but finding the second order tensor, after
doing the math we find that this matches the momentum flux tensor∑

i

viαviβf
eq
i = c2sρδαβ + ρuiαuiβ = Παβ (4.19)

thus, the constant c2s appearing in (4.5) matches with the c2s of (2.42) and f eq
i is

f eq
i = ωiρ

(
1 +

viαuα

c2s
+

viαviβuαuβ

2c4s
− uαuβ

2c2s

)
(4.20)

The equilibrium function is important to recover the required forms of the moments involved
in the partial differential equations to solve, thus, its form is crucial in order to make this
method to work. In the following sections we will describe another Lattice-Boltzmann model
where the equilibrium function is different such that another kind of moments are obtained
and therefor satisfying another set of equations if we introduce some restrictions to the
algorithm.

4.2 How to implement a Lattice-Boltzmann method?

We have discussed how this cellular automata is able to reproduce in the macroscopic
behavior a series of partial differential equations for a series of tensorial moments, and also,
defining properly the equilibrium distribution function these equations become the ones that
describe the dynamics of the macroscopic properties of a fluid. Everything by only solving a
discrete version of the transport Boltzmann equation. In this short section we will discuss the
basic standard implementation of a LBM to solve the dynamics of a fluid in three dimensions
using the D3Q19 Lattice.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ωi

1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

vix 0 1 -1 0 0 0 0 1 -1 1 -1 0 0 1 -1 1 -1 0 0
viy 0 0 0 1 -1 0 0 1 -1 0 0 1 -1 -1 1 0 0 1 -1
viz 0 0 0 0 0 1 -1 0 0 1 -1 1 -1 0 0 -1 1 -1 1

Chart 4.1. Set of vector components and weights used in D3Q19.

A first basic element is the definition of the computational domain. The space is divided
into Lx×Ly ×Lz cubic cells of side length δx such that the figure 4.2b is a representation of
one single cell of the entire domain. Each cell will provide the same set of vector velocities
D3Q19 whose components with the respective index are shown in chart 4.1. For each cell
will also reside one distribution function for each of the 19 directions of index i, namely fi,
where the information will be contained. An initial configuration for fi must be established
before starting to evolve the cellular automata. For example, in order to set the density field
to an initial value ρ0(x⃗) for all cells, as well as an initial value for the velocity u⃗0(x⃗), that
is done by calculating the equilibrium distribution function in terms of these initial values
for the macroscopic fields for all cells using (4.20). Then at the time t = t0 the distribution
functions are set as

fi(x⃗, t0) = f eq
i (ρ0(x⃗), u⃗0(x⃗)) . (4.21)

As a next step, the Lattice information or distribution functions are combined at each cell
following an evolution rule based on the transport Boltzmann equation, such that the new
value of fi at the time t1 = t0 + δt is

fi(x⃗, t0 + δt) = fi(x⃗, t0)

(
1− δt

τ

)
+

δt

τ
f eq(ρ(x⃗, t0), u⃗(x⃗, t0)) . (4.22)

This step is called the Collision where the system dynamics is actually evolving to the next
time iteration, as the current time step after this step will be tn+1 = tn+δt. After calculating
the new values of fi for all cells, these must be transferred to the neighbor cells in order to
spread the information along the Lattice using the D3Q19 vector set. This step is known
as the Streaming or Advection step, where the value of all populations fi are computed as
follows:

fi(x⃗+ δtv⃗i, tn+1) = fi(x⃗, tn) , (4.23)

ensuring to be developed for all i = 1, . . . , 19. The reader may wonder what must be done at
the boundary or edge cells of the domain, in other words, which will be boundary condition
of the system as these edge cells have no neighbor to transfer its information with. There
are plenty of boundary conditions shown in detail in [38, sec. 5.3], like the periodic boundary
condition, where the cell to be following the ending one x⃗n will be the one at the opposite
edge x⃗0 = x⃗n − L⃗. That is

fi(x⃗n, tn+1) = fi(x⃗n − L⃗, tn) , (4.24)
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where L⃗ = (Lx, Ly, Lz) is a vector containing the number of cells per dimension. At the same
time, the cell behind the first edge cell x⃗0 will be the last cell of the Lattice at one direction
x⃗n, that is

fi(x⃗0, tn+1) = fi(x⃗0 + L⃗, tn) . (4.25)

Another kind of boundary conditions are the bounce-back conditions with different ways to
implement it. This boundary condition consist of reflecting the information back to the inner
region of the fluid, including a small attenuation factor Φ ∈ [0, 1]. One way to implement it
is by exchanging the velocity vectors at any edge cell

fi(x⃗n, tn+1) = Φfj(x⃗n, tn) and (4.26a)

fi(x⃗0, tn+1) = Φfj(x⃗0, tn) , (4.26b)

where j is an index of the velocities set which satisfies

v⃗j = −v⃗i . (4.27)

Notice that here we are evolving the state of the system at the next time iteration, then the
next step in order to evolve to the next time iteration would be to repeat first the Streaming
step written at (4.23) and then the collision step (4.22) for each time iteration, until the end
of the simulation. As the last updated value of fi in tn+1 depends on the current value of fi
at tn as shown in (4.22), there must be knowledge of the previous value fi(tn). This may be
done in two ways: One is storing the value of fi in a temporal variable to exchange it with
the new value, and the other one is allocating an entire copy of fi which will store the old
values of the system, one step behind, also exchanging between them during the Advection
step. As a last remark, in order to set a fixed value for the macroscopic fields ρΩ(x⃗Ω, t)
and u⃗Ω(x⃗Ω, t) over a region Ω of the domain containing a set of cells, like a way to impose a
Dirichlet boundary condition for the relevant physical quantities, one way to do it is by fixing
the populations fi for all cells x⃗Ω ∈ Ω as the equilibrium function evaluated with ρΩ(t) and
u⃗Ω(t). This technique works even for time-dependent fields so that sources are possible to
implement, as the change or presence of these fixed fields will produce a propagation over the
surroundings of Ω and eventually, the rest of the domain. This step is usually called Impose
fields over a region and it’s executed after the Collision step and just before the Advection
step. After the first iteration of the system the macroscopic fields must also be updated as
well, meaning that from now on these must be computed as in (4.12) with the new values of
fi previously treated. Finally, after each step one can print or dump any information of the
system as the macroscopic fields in an output file in order to analyze the desired results of
the simulation. In summary, the overall steps to perform in a Lattice-Boltzmann simulation
is described in the following list:

1. Set the initial macroscopic fields and compute the equilibrium function at each cell in
terms of these initial conditions.
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2. Compute the macroscopic moments in which the equilibrium distribution depends on,
as described in (4.12).

3. Evolve the system by performing a collision using (4.22) storing the new value of fi in
terms of the last one.

4. If there are fields to be imposed, the equilibrium function must be computed whit these
fields at the set of cells where the imposed field is desired to impose.

5. Perform the Streaming or Advection process as in (4.23), applying the chosen boundary
conditions, whether to be periodic, bounce-back, or something else.

6. Dump all the desired information to an output file in the disk.

7. Repeat from step 2 in order to execute the next time step, until all desired steps are
evolved.

This numeric prodcedure not only allows to perform a Lattice-Boltzmann simulation for
fluids, but also for another models with different fields and different conservation laws. In
the next section a Lattice-Boltzmann model to solve the waves equation is described, taking
into account that NSE equations can be linearised under small perturbation regime in order
to get instead the waves equation, as it is shown in chapter 2.

4.3 Lattice-Boltzmann for Acoustics

As shown in section 4.1, the Lattice-Boltzmann numerical approach will be able to solve
partial differential equations for a set of moments computed as summations over the pop-
ulations, as soon as the equilibrium distribution function (written in (4.20)) would be able

(a) (b)

Fig. 4.2. D3Q7 velocity set (a) and D2Q5 velocity set (b).
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to reproduce all the involved moments, which in the case of fluids it’s enough to reproduce
the first four orders of the moments such that the equations (4.14) and (4.15) are auto-
matically obtained. However, in the section 2.2 we learned that if we only consider small
variations on macroscopic fields up to first-order perturbations, then higher order terms are
neglected and the NSE equation combined with the continuity equation becomes a simple
waves equations, as a linearised version of NSE. The following model is based in the original
proposal of Chopard, P.O. Luthi and J. Wagen where the waves equation is used with a
specific lattice similar to D2Q5 and exclusively for two-dimensional models [33], however it
is possible to follow the same procedure to build a similar model with some small differences
in order to be able to use another kind of Lattices, like D3Q7, making it possible to simulate
three-dimensional systems. As a first remark, we can notice that the macroscopic equation in
terms of first and second order tensors (4.10) is simplified to (4.11). In the other hand, if we
manage to make the second-order tensor diagonal and isotropic and linear to the zero-order
tensor, meaning

Παβ = κΠδαβ , (4.28)

with κ a constant, the resulting equation is

κ∂βΠ+ ∂tΠα = 0 , (4.29)

then applying the operator ∂β both sides and using (4.9) the last equation becomes

κ∂2
βΠ+ ∂β∂tΠα = 0

κ∂2
βΠ+ ∂t(∂βΠα) = 0

κ∂2
βΠ− ∂2

tΠ = 0

κ∂2
βΠ = ∂2

tΠ (4.30)

Which would be a waves equation if we are able to ensure κ = c2 with c some parameter
representing a propagation speed. This means that in order to build a LB model which
solves the waves equation we need to set τ = 1/2 and write an equilibrium function able to
reproduce the following macroscopic moments:

ρ =
∑
i

fi ,

J⃗ =
∑
i

v⃗ifi ,

as well as the auxiliary field
p = c2ρ (4.31)

and the diagonal tensor

Παβ = pδαβ =
∑
i

viαviβf
eq
i . (4.32)
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Fig. 4.3. Cellular automata scheme for 2D waves propagation.

One equilibrium function able to recover the mentioned moments after using (4.5) is

f eq
i =

{
ρ(1 + c2

c2s
(ω0 − 1)) if i = 0

ωi

c2s
(c2ρ+ v⃗i · J⃗) if i ̸= 0

, (4.33)

where cs is the constant dependent of the Lattice set, chosen accordingly to the dimension
of the domain. The constant c is however an adjustable parameter which takes the role of
the speed of propagation of the simulated waves, as suggested in (4.31), which can be even a
function of space. This feature provides the possibility of modeling different kind of mediums
and materials with different shapes, in order to study the behavior of waves refraction along
those. However one must take care of not introducing numerical instability due to sudden
changes of this parameter through space, or take values that provokes instabilities like getting
negative distribution functions or breaking the Courant-Friedrichs-Lewy criteria. In order
to get a proper value for c, we can simply impose that

0 < c2 <
c2s

1− ω0

, (4.34)

with cs = 1/
√
2 for the D2Q5 Lattice set and cs = 1/

√
3 for the D3Q7 lattice set. Al-

though it has been showed how this model can be built upon the same principles of the LB
model for fluids, its origin relies on a proposal of B. Chopard and M. Droz consisting of
a cellular automata composed by particles tied with springs between each other forming a
two-dimensional square lattice (like a crystal in the classical point of view) [43, ch. 2] where
only vertical and horizontal bounds are present according to figure 4.3, for this reason this
model was intended to work properly in a D2Q5 Lattice set or a D3Q7 for three-dimensional
simulations. The method has been extended to curvilinear coordinates and has been em-
ployed to simulate the normal modes in trumpets and even in the human Cochlea by Velasco
et.al [34].
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Part II

Numerical methodology
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Chapter 5

The implementation of the
Lattice-Boltzmann method for
acoustics in LB3D

LB3D is a software developed by the Helmholtz Institute Erlangen-Nürmberg for Renew-
able Energy (HI-ERN) focused on performing fluid dynamics simulations in complex systems
using the Lattice-Boltzmann method paralellized via MPI. The program is written in FOR-
TRAN90 and it’s still under development. One of the main objectives of this project was to
implement the Lattice-Boltzmann method for the waves equations in this software in order
to develop more general simulations, like acoustics, in any LB3D project inside the HI-ERN.
As there were many presets to run specific systems and none of them was designed for waves,
modifying parts of the code and making small tests through re-compiling and executing was
necessary in order to test the new algorithm, as well as asking to the development team
about functionality and logic of the code was needed. The documentation available is not
enough to understand the use of it, so it was necessary to directly look at the code and write
small modifications, ensuring that the program was still running and analyzing the possible
results. The LB3D code has many core features in order to simulate physical systems related
to fluid dynamics. The implementation of each feature is written in modules.

The core features include a Lattice-Boltzmann implementation to solve fluid dynamics
and using a D3Q19 Lattice set, where more than one fluid may be simulated simultaneously
with the purpose of creating interphases between two fluids called components in the LB3D
context, but for the interest of this project only one component was considered. This is
one of the most used modules which consists of several layers of complexity, however many
more features have been included during the development as small extensions to enlarge
the capabilities of the software. These test include an implementation for the Peskin’s
Immersed Boundary Method [44] to simulate drops, Ladd particle suspensions [45] and a
molecular dynamics engine to implement motion of these objects, among many other features.
Modifying some of the features was necessary to get the expected results in the three-
dimensional case, however this point will be discussed in the next chapter.
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Fig. 5.1. Separation of multiple sub-domains for 4 processors.

5.1 A brief description of the LB3D software

This code have been in a constant process of development where many adaptations have
been done. At this moment, the development team is working on a new branch called
rewrite, where many implementation have been renewed in order to take more advantage on
the parallelization, as well as writing more legible lines. Although this branch is completed
for all the main features, the documentation is still incomplete, as this one explains the
previous branch called dev. This particular project was developed under the rewrite branch
in a separated branch calledWavesImplementationD3Q7. All features are stored in separated
modules defined at the folder liblb3d, and the script containing the main loop to run the
simulation is stored in a separated folder called lbe. There are low-level modules like core,
system in charge of implementing all the basic elements to build the feature modules, the
module parallel is in charge of the parallelization and the remaining modules are features
supported by the program, being the main ones lb for the Lattice-Boltzmann method,
offlattice-objects to simulate a mesh object by Immersed boundary method, related with
the module ibm and other modules that were not used for this project. Each module contains
a class script where the definition of all members, subroutines and functions are written and
a set script containing the actual implementation of the sub-routines and functions.

LB3D is written to be easily parallelized for multiple CPU threads, making it easy to run
on a Cluster with hundreds of processors allocated by the HI-ERN institute, as it usually
runs. How does LB3D handle a simultaneous execution with multiple processors? Basically
the program divides the domain box into equal boxes and assigns each piece to each processor
as shown in the figure 5.1 for the case of four processors. But something to keep in mind
is that these pieces or sub-domains must share information between each other because
they make part of a whole system. To solve this problem, the halo is introduced as a set
of cells at the boundary of the sub-domain (covering the box like a skin) whose role is to
exchange the information from the adjacent sub-domains. The important aspect of this is
that every subroutine that runs in the main class will consider only one of the sub-domains
of the general domain, meaning that the spatial array of cells belongs to a local coordinate
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system, meaning that if one needs to simulate a source at a region of the sub-domain, this
same region will be imposed at every sub-domain of the box, leading to get four repeated
sources and that’s not the desired result. This problem becomes important when one wants
to simulate a single source on a wall or creating a region with different properties. To solve
this problem, one can simply use the global position of the sub-domain, called start, to
convert the local coordinates to global coordinates. If we only need to simulate the source
on a specific sub-domain the conditional statements come in handy to do so.

During the development, the team runs unit tests to ensure that any official modification
integrated by pull request does not affect the results of validated simulations. Thus, any
proposal to be made must be reviewed by the team before to be integrated into the rewrite
branch. But it is not enough by making some test simulations to work, this also requires
that this modification follows the same metrics of the overall features in order to avoid
compromising future modifications. Although the work done for this project is not forked
into the main branch yet, all the tests done with the cases of interest are successfully running
inside the branch WavesImplementationD3Q7, such as simulating a Gaussian pulse to test
initial conditions, a point source of waves and the generation of plane standing waves by
imposing fields and bounce-back boundary conditions included already in the module rocks,
creating interfaces with different speed of sound as a new field of the software, and modifying
the immersed boundary method to measure the acoustic radiation force over a sphere. The
general workflow involved first analyzing the lines of code written in the scripts of the modules
of interest, as lb, and run small tests to figure out how does the Lattice-Boltzmann model
works in this code. Fortunately the repository contains a numerous set of examples and
tests to get a starting point, learning how to compile and run them before jumping to edit
the scripts. Once this procedure is understood, the scripts started to be modified by trial
and error to reach an expected result during the simulation. As soon as any modification is
introduced the code must be recompiled using CMake into a separated build folder.

5.2 Input and output files

The very first step was to start familiarizing with the LB3D code, understanding its
mechanism in terms of what is necessary to run a simulation and how to read the output
information from this execution. In basic terms, the code requires an input file where all
parameters, conditions and configuration required to any specific simulation in order to run.
The list of possible parameters is huge, but basically all information regarding the size of
the domain, the initial conditions, boundary conditions, the amount of iterations, among
others, is written in the input file. This kind of file uses the namelists Fortran feature to
read the parameter which are assigned to global variables and local variables depending
on the module to be used. Then, the run command is called using mpirun, specifying the
executable located in the build folder and the amount of processors to use using the flag -n.

During the execution a log information will pop up from the shell, containing information
regarding how was the initial configuration set up, how’s the progress of the simulation and
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also if any errors appear. One of the settings specified by the input file takes into account
what physical quantity will be dumped in the output, from what time step and how often
will that be dumped. The output files are formatted into the Hierarchical Data Format
version 5 (HDF5), which is a file format able to contain large and complex amounts of data.
This format must be treated externally to print the desired information. One can either
create a Python script using the h5py package or use Paraview, which is a multi-functional
visualization tool to render and analyze data, supporting many file formats.

One example is a Poiseuille flow, which is a basic fluids simulation where a one-directional
channel of fluid with parallel walls at the sides has an external force like gravity (see [40,
sec. 9.4]). The input file is composed into the following sections: &system contains basic
information as the Lx, Ly and Lz dimensions in cells of the domain, as well as other parame-
ters like the name of the output files and seeds for random operations. &lattice boltzmann

section contains parameters how many fluids (components) are involved in the simulation.
&relax homogeneous is a section to be used when the single time relaxation is used in-
stead of the Multiple Time Relaxation approach (explained in [38, ch. 10]).&variable input

refers to all the specific conditions of the simulation, including the among of time steps
with the n iteration variable, which preset initial condition will be used from init cond

organized into labels or numbers corresponding to the defined cases (this aspect will be
covered later). n sci start is the time step where the output dumping will start. The
variables starting with sci are flags or booleans indicating wheter a physcal macroscopic
field will be dumped or not, as for example for density the variable is sci od, and for velocity
sci velocities reffering to the three components of the velocity field vector. &lbe input

has to do with troubleshooting and monitorying and many more sections may be added
such as &extforce constant to include external forcing and &rock boundaries to specify

Fig. 5.2. Example of input file and its resulting output.
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which rocks configuration from the presets is used in the simulation, for example the value
’SLIT Y’ mean that in the walls perpendicular to the y-axis there will be walls. The last
two sections will produce the required conditions for the Poiseuille flow, where many time
steps must be simulated in order to reach an steady state of the velocity. The input file for
this case and its result can be seen in the figure 5.2.

5.3 Setting an initial condition

LB3D has some presets to define initial conditions specified by the variable init cond of
the input file. These initial conditions are implemented in the script lbe init functions.F90

located in liblb3d/liblb3d/src/old and each function is tagged with a string variable
name. As explained ins section 4.2, to set an initial condition with specific macroscopic
fields one must calculate the distribution functions to be the ones at equilibrium with the
desired fields. The subroutine boltz bdist makes this replacement possible by storing the
i amount of values of every function fi, only to set a proper initial condition, but not to
evolve the system during the collision step. The figure 5.3 shows the logic representation
behind this subroutine, of course with the modified formulae based on the waves equilibrium
function (4.33). In order to test the behavior of this function the variable init cond name

must be set to ’INIT SPIKE’ which makes a uniform density except for a single cell lo-
cated at one corner of the domain. The value of this cell is hardcoded in the subroutine
lbe init spike, being its default 0.5 for i = 5, while the rest of the cells will have the same
value defined with the variable fr of the input file. A visualization of the resulting initial
condition can be seen in figure 5.4 where a single value is different from the rest, generating a
disturbance in the following steps. Another kind of initial condition is called ’INIT CONST’

where the density field is uniform with value fr, which will be useful to initialize system

Fig. 5.3. Diagram flow of the boltz dist subroutine.
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Fig. 5.4. Initial condition with a uniform density except for a single cell.

where sudden changes must be avoided. Although the spike condition does not seem to be
useful to simulate as physical system, it is a starting point to make simple test where the
LB3D code can be compared with another code by comparing the resulting output under
the same conditions. In the next chapter an example of this test will be reported but instead
with the implementation of a Gaussian pulse propagating through space.

5.4 Changing the equilibrium function and lattice

vectors set

One key difference between the standard Lattice-Botlzmann to simulate fluids and the
Chopard’s model to solve the wave equation is the equilibrium function, thus, as a first
attempt to alter the code of LB3D the objective was to modify this function in order to get
the desired behavior. But the LB3D code does not rely on a single subroutine to implement
the equilibrium function because each time step must be as optimal as possible, taking the
advantage of parallel computing. For this reason, the boltz bdist subroutine is only in
charge of initializing the system as discussed previously, but it does not affect the dynamic
behavior during the collision step. For this reason, the collision step is studied for this code
in order to figure out when and how does the equilibrium function is involved.

The main class of the Lattice-Boltzmann feature, called lbe lb class.F90 contains a
member of a sub-class called lbe bdist class.F90 with all the relevant members and el-
ements for the equilibrium distribution function. This class is provided with many kinds
of subroutines focused on calculating the equilibrium function with different forcing models
(such as Shan-Chen, Guo, Kupershtokh, among others) and the type of forcing is chosen
in the subroutine compute bdist. As Forcing is not part of the focus of this project, the
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Fig. 5.5. Diagram flow of the calls from the collision step to the distribution function
wrapper.

chosen alternative is compute shifted u none, calling another subroutine inside the bdist
class called compute bdist wrapper. This subroutine has the job of deciding wether the
collision model is a simple BGK operator, which is the case, or if MRT is being used, lead-
ing to the subroutine compute bdist8, where the actual implementation of the equilibrium
distribution function is written. This process is summarized in the figure 5.5 reaching to
the final function to directly decide to call the bdist8 subroutine. The code has more kind
of equilibrium functions implemented, but those were not considered in this project, as this
code aims to be as multi-functional as possible, covering special models and cases to simulate

Fig. 5.6. A scheme of how does the information is allocated in LB3D to handle multiple
processors.
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many physical systems.
The computation of the equilibrium function looks anti-intuitive at first, as the iteration

is not made explicitly in a single line, but instead it does the job for every direction, jumping
64 elements at each computation in order to afford computational cost. In the figure 5.6 we
can appreciate the structure of a flattened array storing the information of a sub-domain
belonging to one processor, separated into several chunks of 64 cells of length, and the total
length of the array includes a couple of cells per dimension which accounts for the boundary
cells of each sub-domain which are in charge of exchanging information between the adjacent
sub-domains. More information about these cells will be explained later. The algorithm to
calculate the equilibrium function iterates over each chunk of 64 cells, which is at the same
time jumping to the next chunk until the last complete chunk (whose number is stored
in the variable maxi). Then, the remaining cells are iterated afterwards. Each iteration
computes the equilibrium function from the null index - assigned to i = 19 for LB3D -
to the rest of them line by line, recycling auxiliary variables to calculate the dot product
between the vector field and the ith velocity. Following the same logic of the sequential
lines, the bdist8 was modified eliminating additional second-order terms of the equilibrium
function for fluids, written in eq. (4.20) and creating a special case for i = 19 as the null
vector, according to (4.33). As a final remark, the Chopard’s model was designed to work
with a velocities set where no diagonal vectors are included like D3Q19, meaning that it is
necessary to change the lattice set to a three-dimensional lattice with only vectors parallel
to the orthogonal Cartesian axes, like D3Q7 (see fig. 5.7). However, changing this lattice
will break most of the functionalities of LB3D, because every velocity vector and weight
is hard-coded and LB3D was written thinking of using D3Q19 as a unique lattice set, but

Fig. 5.7. A representative diagram of the simplification of the lattice to change the velocities
set that LB3D uses to D3Q7.
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fortunately the D3Q19 lattice set contains all the vectors comforming the D3Q7 lattice,
thus, the strategy to make this modification possible shall be not elegant but rather simple:
Impose at every time step of the simulation that all distribution functions from i = 7 to
i = 18 to be zero. This of course will lead to non-existing functions beyond i = 7, where
all the lattice vectors of D3Q19 which do not belong to D3Q7 are nonexistent, but the
computation of the physical quantities will add unnecessary zeros along the way, making
this fact the optimization downside. Despite introducing this inefficiency all the simulations
done were not compromised with huge amounts of computation and the development team
showed not opposition to this decision. The definition of these vectors as well as the weights
are in the script lbe globals.F90 inside the feature globals.

The implementation of the Lattice-Boltzmann model for waves in LB3D would be com-
pleted with the illustrated procedures, but these modifications must be validated with numer-
ical tests. In the next chapter we will report the description and results of all the numerical
tests made during the development process, also showing what additional implementation
needed to be done on order to simulate phenomena like a Gaussian pulse, a point source
of waves, standing waves and planar interfaces between two media with different speeds of
sound.
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Chapter 6

Benchmarks to validate the
implementation

In order to evaluate if the Lattice-Boltzmann model for waves, some numerical tests must
be done. The implementation of the Lattice-Boltzmann method for waves was developed in
two ways: One to simulate two-dimensional systems by developing a standard code in C++,
and another implementation was done in the software LB3D in order to perform simulations
in three dimensions. In this chapter we will focus on explaining all the benchmarks done
in both implementations relying on the fact that basic methodologies were explained in the
previous chapter. As a first test, a point source of waves is produced by imposing a time-
variable field in the middle of the domain. then, using the same principle of the first test,
standing waves were simulated by extending the source from a single point to one of the
bound walls of the domain and adding bounce-back boundary conditions in order to get a
steady and one-directional resonator. This test is actually part of the desired system to be
simulated and we must ensure that the conditions are matching the analytical solution of a
standing plane wave. In order to simulate the proper boundary conditions over the surface
of the sphere, this works propose the following: Produce an interphase between the fluid
medium and the sphere medium, where the speed of sound is different in both media such
that the continuity boundary conditions are properly satisfied as the LB method will try
to satisfy the conservation laws nearby the region where the change in the speed of sound
occurs. In order to verify if the desired boundary conditions are satisfied, a plane interphase
will be simulated as a benchmark. This will make possible to measure the reflected and
transmitted waves easier to make a comparison with the theoretical results.

The very first test done was to rewrite the equilibrium function from (4.20) to (4.33)
and change the set of velocities and weights from lattice D3Q19 to D3Q7, as the D3Q19
lattice contains all the D3Q7 vectors. During this implementation the very first benchmark
was to simulate a Gaussian pulse propagated in space by imposing an initial condition. The
idea was to compare the output of two codes, one for a well tested simple code written in
C++ and the other for LB3D, such that if the output information differentiates only due
numerical precision limit, then the LB3D implementation is validated.
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(a) Gaussian pulse at the instant t = 0.

(b) Gaussian pulse at the instant t = 60.

Fig. 6.1. A Gaussian pulse.

6.1 A gaussian pulse propagation as an initial

condition

In order to compare two outputs from two different programs which implements the same
simulation, the best option is to try a simple simulation: A small localized perturbation
which propagated through space. This test consist of setting an initial perturbed field by
only initializing the density to be uniform except at some region, then this difference will
propagate as a pulse isotropically, forming a single pulse with spherical wavefront. This test
has the issue of introducing a small numerical instability as the change of the density in
space is huge (a spike in the middle of null values) meaning that the algoritm will get harder
to relax to the actual equilibrium state. The objective here is to ensure that LB3D is able
to reproduce the same output of a generic implementation written in C++. This simple
simulation was done in a simulation box of 64 × 64 × 64 cells. Then, the following initial
density field at t = 0 is set:

ρ(x, y, z, 0) = ρ0 exp

(
(x−N/2)2 + (y −N/2)2 + (z −N/2)2

2σ2

)
, (6.1)
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where σ = 5 in automation units is a constant regarding the width of the pulse.
In order to perform this kind of simulation in LB3D, the subroutine lbe init spike was

modified in order to instead modify the value of the distribution functions of a single cell,
to set the density to have the form of a gaussian pulse, as the subroutine lets the access of
coordinates x, y and z of the domain and the distribution functions on it by an array, as seen
in figure 6.2. With this modified subroutine it was possible to perform this first numerical
test to validate the modifications with the C++ code. This required re-compiling the LB3D
code and run a test with a single processor as the domain size is small enough to be executed
with a single processor.

This test has a purpose of testing only the initial condition for the specific case of LB3D.
60 time steps were simulated in both programs. After numerous executions to check the
similarity of both implementations, figure 6.1 shows a similar output for both programs at
least qualitatively, also we can see that inside the wavefront there is numerical noise due to
the sudden change of imposing a non-zero value in a single value. These figures are basically
a 2D plot of a matrix where the density at each cell is dumped, then the difference of each
value for both outputs was made and every cell was giving an order of magnitude of 10−9,
which is considered a numerical rounding issue because both matrices were printed with
numbers of 8 decimal places, meaning that the test is considered a success and the basic
implementation of the equilibrium function and the lattice set D3Q7 in LB3D was done.

Fig. 6.2. Structure of the modified lbe init spike to set a density with the form of a
gaussian pulse.
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6.2 Imposing fields: The point source and standing

waves

Setting initial conditions will propagate pulses through space, but plane waves or res-
onators will require the implementation of localized sources, as any traveling wave is propa-
gated from a time changing vibration, as an oscillating pulse or a vibrating wall membrane.
In this section we will explain briefly how to simulate sources by imposing the value of
the distribution functions to the equilibrium functions with the desired fields over a certain
region.

As discussed in section 4.3, for a time varying scalar field ρΩ(t) or vector field J⃗Ω(t) at a
set of cells Ω, the distribution function evaluated at x⃗Ω ∈ Ω is fixed to

f(x⃗, t)

∣∣∣∣
Ω

= f eq
i (ρΩ(t), J⃗Ω(t)) (6.2)

after the collision step and before the advection step. Let’s take as a first example a point
source at the position x⃗′ inside the domain. Theoretically one has the following inhomoge-
neous waves equation:

∇2ρ− 1

c2
∂2ρ

∂t2
= δ(x⃗− x⃗′)ρ0 sin(ωt) , (6.3)

with ω a free parameter for angular frequency. The solution is found through Green functions
[42, sec. 6.4] and takes the form

ρ(x⃗, t) =
ρ0
4π

∫
δ(r⃗ − r⃗′) sin(k|r⃗ − r⃗′| − ωt)

k|r⃗ − r⃗′|
d3r′ =

ρ0 sin(ωt)

4πkr
. (6.4)

where r = |x⃗− x⃗′| is the distance from the source position to the measurement point x⃗. In
this particular case the spatial dependence of the source is given as a Dirac’s delta as shown
in (6.3), but as the domain is composed by discrete finite-sized cells, imposing the temporal
component at one cell x⃗′ is enough and will not provoke any numerical instabilities unlike the
Gaussian pulse, because the initial condition in this case is a zero density field in the entire
space due to the sine temporal dependence. If there was a cosine instead the initial condition
would be similar to the Gaussian pulse, which will lead to numerical undesired noise which
may be damped by replacing the Dirac’s delta by a Gaussian function. In this sense, for a
domain of N ×N ×N cells the source to be imposed at the position x⃗′ = (N/2, N/2, N/2)
take the following form:

ρ(x⃗′, t) = ρ0 sin(ωt) (6.5)

and the simulation started to evolve the enough amount of steps before the waves reach the
boundary of the domain.

Implementing the explained physical system in LB3D was a challenge because LB3D was
not designed for simulating sources of waves or fixing the value of a macroscopic field as a
physical Dirichlet boundary condition. This means that a new implementation had to be
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Fig. 6.3. The flow chart of the impose a point source subroutine.

added to fix the value of a field over a region of cells. In section 4.2 the process of fixing a
field during all the simulation steps was illustrated in a similar manner of imposing initial
conditions: The populations are re-calculated to be the equilibrium function in terms of the
fixed fields. This is usually done in a single step between the collision and advection steps.

To implement a new subroutine we need to first write the algorithm in the main class
associated to the desired module. In the case of imposing fields, this function must be written
in the main class of the Lattice-Boltzmann feature lbe lb class.F90. The algorithm is
summarized in the figure 6.3 where the arguments are the current time step t as an integer
and a three-dimensional array with the point position x⃗′ of the point source. Basically, this
subroutine simply compute the expression (6.5) with the given parameters and inserts this
value into a location of the domain array of cells, then the equilibrium function is computed
using the function boltz bdist waves which was modified to compute the right equilibrium
function, as this process is not part of the collision process. It is worth mentioning that
all the not imposed fields must be re calculated to be inserted to the equilibrium function,
otherwise we would be imposing those to be null values. Although the function is properly
written the code won’t be able to use it because its existence is not known by the main
program, for this reason the next step is to create a public statement with the declaration
of this new subroutine just besides the rest of procedures of the class. Now it is time to call
this subroutine between the collision and advection steps, and this is done basically pointing
to the module where this function is defined and writing the name of the subroutine with
the proper arguments, so that the only needed thing to do is re-compile. As in the first
test, both codes were compared between them and with the theoretical solution (6.4). As
expected, the figure 6.4 shows that both outputs were identical ignoring numerical rounding
and the simulated waves made a good agreement with the theoretical solution.
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Fig. 6.4. Test of a point source and its comparison with the theoretical solution

6.3 Generating standing waves

Another result reached was the production of standing waves by imposing reflective walls
at both sides of the simulation box domain and a source wall at one of the sides. The
reflective walls are implemented by using the bounce-back boundary conditions located at
two opposing faces perpendicular to x-axis. Thus, for a domian of L × N × N where L is
the length of the resonator measured in lattice cells and N the amount of cells in the y and
z directions, the planes x = 0 and x = L + 2 will perform the bounce-back evolution rule
(4.26), while the remaining planes will be periodic boundaries just as it’s expressed in (4.25)
and (4.24). In the case of interest it’s convenient to get a stationary state where a node is
placed in the middle of the box, that is at x = L/2, where the spherical object will be placed
later on. This is done by simply emitting a plane wave at x = 1 cell such that by symmetry
the same value must render after reaching a steady state, and setting the size of the channel
L = λ/2, where λ is the wavelength of the emitted waves. The field to be imposed has the
form

ρ(y, z, t)

∣∣∣∣
x=1

= ρ0 sin(kr − ωt) , (6.6)

where ω is related with the wavelength via the following relation dispersion:

ω = kc =
2πc

λ
. (6.7)

It is necessary to run a quantity if steps to wait for the wave to get the opposite side,
bounce and return to the side it came from. Once this happens, the next emitted wave
will interfere with the previous one such that steady waves with fixed nodes and anti-nodes
are produced. It is worth mentioning that bounce-back conditions over the opposite faces
of the wall is enough to simulate any kind of resonator as soon as the damping coefficient
Φ is less than 1 but close enough. For this test Φ = 0.99 or closer is enough to reach a
stable steady state. In the case of LB3D a new subroutine is implemented following the
same principle of the impose field subroutine explained in the previous section. This new
subroutine iterates manually over the cells along y and z fixed at a position x. The function
boltz bdist waves is used to replace the distribution functions with the equilibrium ones
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Fig. 6.5. A set of instructions summarizing the standing waves subroutine in LB3D.

with (6.6) and also with Jx = 0. The bounce-back boundary conditions are already imple-
mented using the rock boundaries. This is a feature that can be activated from the input file
with the &rock boundaries option, setting the width of the rock to one cell via rb%width =

1 and setting the option rb%add walls = ’SLIT X’ to create the reflecting walls. A set of
instructions of the subroutine can be seen in the figure 6.5, written at the same place where
the subroutine for the point source was written.

In figure 6.6a shows a time instant where the plane wave just reached the opposite wall.
Half period later the amplitude is inverted as in fig. 6.6b and after the complete period
the state reaches the maximum inverted amplitude as seen in 6.6c. Although one period is
enough to reach the steady state, it is recommended to run at least 10 periods to get an
stable standing wave.

(a) (b) (c)

Fig. 6.6. Waves before colliding with the opposite wall (a) waves after reflecting back to
the origin (b) Steady state reached (c).
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6.4 Planar interphase between two media

After being able to produce plane waves and sources, the interaction between the sphere
and the ongoing waves relies on two physical boundary conditions: The conservation of mass
exchange at the interphase and the conservation of momentum exchange. As the time scale
of the motion of the object and the wave’s oscillations are quite different, the continuity of
pressure and velocity at the interphase is enough to satisfy the first mentioned condition.
For this reason, a numerical test to ensure mass conservation when waves interact with
an interphase must be done. In order to simulate the boundary conditions for refraction
and reflection, another simulation was performed where an plane interphase was placed at
the middle of a one-dimensional box. The interphase separates two regions: One with a
propagation speed c1 and the other one of speed c2, both speeds measured in cells per time
steps. The theoretical interphase problem may be solved using the velocity potential for
simplicity, thus, the relation between pressure and velocity are (3.12) and (3.13). A normal
incident wave comes from the media of sound speed c1 with an incident wave of potential ϕ1,
once the wave crosses the interphase, a reflected wave with potential ϕ′

1 traveling at opposite
direction and a transmitted wave of potential ϕ2 traveling at the other side of the interphase
are produced. Those may be written as follows:

ϕ1 = A1 exp(iω(x/c1 − t)) , (6.8a)

ϕ′
1 = A′

1 exp(iω(x/c1 − t)) and (6.8b)

ϕ2 = A2 exp(iω(x/c2 − t)) , (6.8c)

where A1 is the known amplitude of the incident wave’s potential, while A′
1 and A2 are the

unknown amplitudes of the reflected and transmitted wave’s potentials respectively. The
boundary conditions for in the interphase relies that the pressure and the normal velocity
must be equal at the left and at the right due to conservation of mass [37, page. 259], thus,

p1 + p′1 = p2 , (6.9a)

u1x + u′
1x = u2x . (6.9b)

These equations provides the information about A′
1 and A2 by using (3.12) and (3.13) and

then plugging (6.8) into (6.9) to obtain the following equations:

ρ1(A1 + A′
1) = ρ2A2 , (6.10a)

1

c1
(A1 − A′

1) =
1

c2
A2 , (6.10b)

which leads to the following solutions:

A′
1 = A1

ρ2c2 − ρ1c1
ρ2c2 + ρ1c1

, (6.11a)
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(a) (b)

Fig. 6.7. Ongoing incident waves (a) Reflected and Transmitted waves (b).

A2 = A1
2ρ1c2

ρ2c2 + ρ1c1
. (6.11b)

Although the reflected and transmitted waves are fully determined with (6.11), we still need
to relate theses amplitudes with the actual parameters that the simulation is able to provide
in order to make a proper comparison with this analytical solution. First, it’s worth keeping
in mind that if the amplitude of the ongoing waves density is ρi then

A1 = −c21ρi
ωρ1

, (6.12)

which will be useful to compare with the density and momentum amplitude, however two
physical quantities which does not depend on the initial amplitude and are more relevant are
the reflection and transmission coefficients, named R and T respectively. These coefficients
are defined as the energy flux density ratio of the reflected wave in the case of reflection
coefficient or the transmitted wave for transmission coefficient relative to the energy flux
density of the incident wave. If the energy flux density has the form

E = cρu2 , (6.13)

the expressions for the reflection and transmission coefficients are:

R =
c1ρ1(u

′
1)

2

c1ρ1u2
1

=
|A′

1|2

|A1|2
=

(
ρ2c2 − ρ1c1
ρ2c2 + ρ1c1

)2

and (6.14a)

T =
c2ρ2u

2
2

c1ρ1u2
1

=
c1ρ2|A2|2

c2ρ1|A1|2
=

4c1ρ1c2ρ2
(ρ2c2 + ρ1c1)2

, (6.14b)
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Fig. 6.8. Relative discrepancy between the expected and measured values of R and T for
the difference between c1 and c2.

where it can be seen with no difficulty that R + T = 1. As the numerical method does not
contain information regarding the bulk steady density of the media, it is necessary to limit
this solution to the particular case where the bulk densities for both sides are the same.
Meaning that R and T take the form

R =

(
c2 − c1
c2 + c1

)2

(6.15a)

T =
4c1c2

(c2 + c1)2
, (6.15b)

which will be the expected coefficients to be measured in the simulation by computing this
quantities at the end of the simulation

Rmsr =
c1(u

′
1)

2

c1u2
1

, (6.16a)

Tmsr =
c2(u2)

2

c1u2
1

. (6.16b)

A snapshot of this can be seen in figure 4.2 where two moments in time show the ongoing
wave before entering the interphase and then after entering the interphase a reflected and
transmitted pulse was propagated. The speed of sound c is the parameter to be different
in two regions and to change it without introducing numerical instabilities the following
expression for this constant is used:

c(x) =
c2 − c1

2
tanh

(
x− Lx/2

w

)
+

c2 + c1
2

, (6.17)
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where Lx is the size of the one-dimensional domain in lattice cells and w is a number of
cells where the factor transitions from c1 to c2. For the test, L = 2000 cells was used. The
measured coefficients calculated with (6.16) were compared with (6.15) for different values
of c1 − c2, showing a difference inferior to 5% when c1 < c2 and below 1% when c2 < c1 only
for transmission coefficient, according to figure 6.8. It is curious to note that the behavior
of this discrepancy is not the same for the reflection coefficient

This simulation was totally necessary in order to be sure that the boundary conditions
are satisfied properly. This will produce a scattered field contributing to the acoustic force
in the time average. In the LB3D code there is a possibility to modify this constant from
the equilibrium distribution function to be a function in space. This implementation was
not easy to do and it did cost an entire month of development and assistance with the
development team. Finally the results were obtained in a satisfactory way. All the compu-
tational benchmarks explained here were chosen to build a setup with the required elements
to simulate the sphere immersed in standing waves and to measure its force. In the following
chapter, all details regarding how to measure the second order acoustic radiation force is
explained in order to reach an accurate result.
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Chapter 7

Calculating the acoustic radiation
force

The main objective of this present work is to simulate the interaction between an im-
mersed object (which may be an infinite cylinder in 2D and a sphere in 3D) and an acoustic
medium where waves are affected by the presence of the object and the object is affected by
waves. The action made to the waves due to the presence of the object will be handled by
creating a region with different sound speed representing the circular object, based on the
interphase tests done and explained in section 6.4. The action made to the object due to
waves will be implemented by creating a mesh covering the surface interphase of the circu-
lar object, so that an interpolation of the macroscopic fields is done at each vertex of the
mesh in order to calculate the acoustic radiation force as written in (3.11). The standing
waves benchmark explained in sec. 6.2 will be the starting point of this simulation where
the circular object is included in the mentioned ways. The implementation will be explained
for the two-dimensional and three-dimensional case, then the results and discussion will be
reported.

7.1 Fluid-object interaction

Although there must be a mass exchange and a momentum exchange to simulate the
interaction between the object and the fluid, the time scale of the motion of the body is so
large that the displacement of the object at every oscillation will not be larger than a single
lattice cell. This means that during an amount of time steps corresponding to T the object
will be static and no momentum exchange is needed at all. Of course this approach sacrifices
some accuracy but in change it will afford more computational cost as the forcing at each
cell (following the Immersed boundary method [44]) nearby the surface of the body is not
necessary. Thus, simulating the sphere as an interphase separating two regions of different
sound speeds will be enough to satisfy the required scattered field because the distribution
functions will try to reach a condition where the mass conservation equation is satisfied close
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(a) (b)

Fig. 7.1. Visualization of the pressure field scattered by the object (a) and visualizing only
the scattered contribution (b).

to the boundary, as it was proven in section 6.4, where reflected field are produced generating
a perturbation over the outer fluid. The reason behind this approach is not only in the seek
of simplicity, but also due to the absence of an adjustable bulk density parameter, known as
ρ0 in chapter 2, in the Lattice-Boltzmann scheme, as in the case of c. As a consequence, the
proposed methodology is for now limited to cases where the bulk density is overall a hidden
uniform parameter throughout the domain and the bulk density will be considered the same
for both the object and the fluid, in the terms of section 3.3 ρp = ρ0. The sound speed is
therefor a function of Cartesian coordinates mapping each cell and it’s built to produce a
smooth change from c0 to cp with the help of hyperbolic tangents. For the case of a circular
two-dimensional object of radius Rp whose center is located at the cell (x0, y0), the function

Fig. 7.2. Scattering field in the three-dimemnsional setup.
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Fig. 7.3. The function is calculated with the global coordinates and is stored with the local
coordinates.

of the sound speed is written as follows:

c(x, y) = c0 −
c0 − cp

2

(
1− tanh

(
(x− x0)

2 + (y − y0)
2 −R2

p

d

))
, (7.1)

and for the case of a three-dimensional sphere the function is

c(x, y, z) = c0 −
c0 − cp

2

(
1− tanh

(
(x− x0)

2 + (y − y0)
2 + (z − z0)

2 −R2
p

d

))
, (7.2)

where d is a ”square thickness” or parameter to adjust the amount of cells where the transi-
tion between cp and c0 occurs, measured in squared cells and its used value was of at least 4
for a thickness of two cells. This function is calculated in the equilibrium function in order
to produce the scattered field as explained in sec. 6.4.

For the three-dimensional case the LB3D code was modified to include the function (7.2)
into the same implementation of the equilibrium function. As explained in section 5.3 the
code divides the domain into multiple sub-domains for each processor and every subroutine
called at the main loop will be called simultaneously by all the sub-domains. As the object
does not distinguish between the present sub-domains, the easiest way to avoid a replication
of this object at the wrong position is calculating the function (7.2) at each processor in the
global coordinates of the general domain but making this calculation at each processor, so
that each processor will calculate the segment of the sphere that belongs to its corresponding
sub-domain. The figure 7.3 illustrates how is the coordinates transformation done. The speed
of sound is a changing parameter that will modify directly the equilibrium function, thus,
it is worth allocating the speed of sound as an separated field, which is done just as the
equilibrium distribution function is allocated: A one-dimensional array is separated into
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chunks of 64 cells, where at each line the computation of (7.2) is made and then used by
the bdist8 function. As a result, the possibility to dump this field from the execution of
LB3D is possible not only for visualization convenience, as shown in figure 7.2, but also for
debugging purposes.

7.2 Measuring the acoustic radiation force

The equation (3.11) is a surface integral of an expression in terms if the pressure and the
velocity of a fluid, but in the Lattice-Boltzmann model the macroscopic fields are the density
and a momentum which correspond to ρ = p1/c

2 and J⃗ = ρ0u⃗1 respectively, following the
notation of section 3.3. However, the macroscopic fields only exist at a discrete cubic lattice
cell of position R⃗LB = (xl, yl, zl), but the surface of the sphere is diffuse and it is unclear to
determine which cells conform the boundary of the object and which don’t, meaning that we
need to define what’s considered actually the boundary of the object by clothing the inner
region of sound speed cp with a mesh composed by a set of M points in continuous space

and coordinates R⃗k = (xk, yk, zk), for the kth point, and calculating the actual fields over
these points using an interpolation based on the work of Favier et. al in [46]. Interpolation

consist on evaluating the macroscopic field at the continuous point R⃗k making a summation
of the field at nearby cells weighted by a Kernel function. This kernel function δ(r) used to
perform the interpolation is introduced as the following piece-wise function:

δ(r) =


1
6

(
5− 3|r| −

√
1− 3(1− |r|)2

)
1
2
≤ |r| ≤ 3

2

1
3

(
1 +

√
1− 3r2

)
|r| ≤ 1

2

0 elsewhere

(7.3)

where r = |R⃗LB
l − R⃗k| is the distance between the continuous point k of the mesh and

the discrete lattice cell, of index l, inside a set defined as all the cells contained in a cubic
box of side 3δx, centered at R⃗k. The evaluation of the density ρI interpolated at R⃗k is then

ρI(R⃗k) =
∑
l

ρ(R⃗LB
l )δ(|R⃗LB

l − R⃗k|) , (7.4)

and the interpolated momentum J⃗I

J⃗I(R⃗k) =
∑
l

J⃗(R⃗k)δ(|R⃗LB
l − R⃗k|) . (7.5)

The set of M continuous points are the vertices of the mesh, which is also composed by
edges and faces. In the two-dimensional case the surface is actually a line path covering
the circumference of the region of speed cp. The placement of each point may be defined in
different ways, a simple example is the following: For a circle of radius Rp, the amount of
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points is M = 2πRp in order to distribute them uniformly, such that the components of R⃗k

are
xk = x0 + cos(kRp) , (7.6a)

yk = y0 + sin(kRp) , (7.6b)

with k = 0, . . . ,M − 1, forming a circumference when adjacent vertices are tied by an
edge. Edges between vertices are segments defined as R⃗k+1 mod M − R⃗k mod M , its relevant
element is a perpendicular unitary vector to the segment n̂k which can be computed in two
dimensions as follows:

n⃗k =
(R⃗k+1 mod M − R⃗k mod M)× k̂

|R⃗k+1 mod M − R⃗k mod M |
(7.7)

where k̂ = (0, 0, 1) is a unit vector pointing out of the page. The normal vector is useful to
calculate the surface integral properly and obtain a number with less numerical noise due
to the mesh, and naturally the accuracy will depend on M . All elements are now defined to
calculate the acoustic radiation force as defined in (3.11), as a summation over all normal
vectors

F⃗ (t) = −
M−1∑
k=0

(
−
|J⃗I|2(R⃗k/2)

2ρ0
+

ρ2I (R⃗k/2)c
2

2ρ0

)
n̂k∆s+

J⃗I(R⃗k/2) · n̂k

ρ0
J⃗I(R⃗k/2)∆s , (7.8)

evaluating the fields at the middle point R⃗k/2 of the form

R⃗k/2 =
R⃗k+1 mod M + R⃗k mod M

2
. (7.9)

(a) (b)

Fig. 7.4. Mesh representation in two-dimensional circular object (a) Neighbor cells set used
to calculate the interpolation(b).
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(a) (b)

Fig. 7.5. Diffuse interphase of object media covered by mesh (a) Vertices location of the
mesh (b).

This is a discrete and numerical version of (3.11) for a two-dimensional mesh, where the
length of each segment ∆s is the same regardless of the end vertices and ρ0 takes the unique
role of a scale factor, meaning that the real calculated expression is ρ0F⃗(t) because there
is not any chance to get information regarding the value of ρ0. In the three-dimensional
case the mesh is composed by polygon faces too defined by three vertices connected to
each other by segments, thus, the implementation may be hard to accomplish from scratch.
Fortunately, LB3D includes a set of modules where the Immersed Boundary method (IBM)
is implemented for three-dimensional closed membranes and the interpolation part of this
procedure has been used modifying the code to avoid the forcement done towards the fluid
(as this is a matter of IBM).

The implementation to create the spherical mesh and compute normal vectors, surface
integration, as well as interpolating momentum, was already done inside the LB3D code
without any modification, all that was needed to complete was the interpolation of the
density and a way to compute (7.8). The feature offlattice objects includes elements
like mesh implementation, Lagrangian markers as IBM components, interpolation kernels
and more. Each of this modules was written in a class script with the definition of its
members, subroutines and functions and a set script with the actual implementation. The
module lagrangian object performs the interpolation over the vertices of the mesh, and the
interpolation of the pressure was included as a required field in (7.8). The sub-module force
was a series of different implementation for many kind of forces that were not convered in this
project, but some functions were useful to read in order to create the function to compute
the acoustic radiation force. All the parameters needed were the three vertices comforming
the polygon and its normal vector. As indicated in figure 7.6a these variables are already
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(a) (b)

Fig. 7.6. Structure of subroutine to calculate the force at one mesh polygon (a) Structure
of a subroutine that adds all the contributions computed with the previous subroutine (b).

computed into the mesh module. Then, the integrand of (3.11) was calculated by extracting
the information of p and u at each vertex. To combine these three values, an average was
made. This is a rough approximation that would lead into problems, but at this point it was
the only available solution. In figure 7.6b a subroutine is explained where the summation of
all contributions is made for each polygon, based on other subroutines found from the same
code. After working with the HI-ERN development team, the implementation was tested to
perform the three-dimensional case and compare with (3.65).

7.3 General setup of the simulation

The domain of the simulation will be as similar as in the tests about standing waves of
wavelength λ and period T including the immersed spherical or circular object as seen in fig.
7.7. A rectangular box of L = λ/2 cells of width and N cells of length and height, depending
on the dimension. This means that there will be bounce-back boundary conditions at x = 0
and x = L and a wall source at x = 1 just as same as the standing waves test of section
6.2, and additionally the immersed object will be placed at any position x along the x-axis
so that, by default, its position will be exactly at the pressure node of the standing wave
x = λ/4. The boundary condition along the laterals will be periodic in order to produce
a single-directed incident plane wave during the entire simulation. In the first T steps the
plane wave will travel to reach the opposite reflective wall and then return, so no standing
wave is occurring yet until a static ode is produced at the middle of the domain. Despite
this time is in principle enough to reach a steady state, at least 10 oscillations (or 10T time
steps) will occur before measuring the acoustic radiation force as a way to ensure that the
steady state has been reached. After these oscillations, the system will be evolving only
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perturbed by the scattered field produced by the presence of the object and the acoustic
radiation force starts to be measured at every time step. This will provide a function F (t)
of the temporal behavior of this force, where a time average can be gathered processing the
output data or simultaneously adding all the force’s values of the last period and dividing
by T , however a more optimized way to measure this is by only adding the peak and valley
values of F (t) and taking the half at the exact moment where one oscillation is completed,
because the contribution of this force to the motion of the object will only be relevant from
period to period and not each time step.

7.4 Discussion of the results

From the measurements of the time average of the acoustic radiation force, computed
with (7.8), it is now possible to contrast the resulting expression with the Gor’kov for the
case of the sphere and the Wei solutions for the circular disk, both expressions previously
deducted in chapter 3. Because along the entire numerical methodology there is no distinc-
tion between the static density of the fluid and the static density of the object, being both
ρ0, the comparison with the theoretical expressions (3.65) and (3.101) is only valid for the
particular case where the static densities are the same, that is ρp = ρ0, meaning that the
mentioned equations become

⟨Fx⟩3D = −
πR3

pp
2
0k

3ρ0
Ψ(c0, cp) sin 2kx , ⟨Fx⟩2D = −

πR2
pp

2
0k

4ρ0
Ψ(c0, cp) sin 2kx (7.10)

where the following extra factor Ψ(c0, cp) is introduced as the contrast factor that the nu-
merical approach will be able to reproduce for now, defined as

Ψ(c0, cp) =
1

c20
− 1

c2p
, (7.11)

Fig. 7.7. The position of the object will only vary along the x-axis.
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Fig. 7.8. Different Force vs. time curves for different positions of the object along the
x-axis.

and it’s defined in seek of comparison as the only factor dependent on the sound speeds of
both materials. This factor also tells if the particle will move towards a node or towards
an anti-node depending on which speed is greater than the other, for example, if cp > c0
the particle will try to reach the node of the standing wave, as both expressions shares the
factor sin 2kx, the only factor which depends on the position of the particle and indicating
that the force must be null at x = λ/4 and its magnitude will be maximum at x = λ/8 and
x = 3λ/8. Reproducing this facts is crucial to evaluate the results of the simulation and its
agreement with the theory, where the position of the object along the x-axis is changed as
seen in figure 7.7 and the acoustic radiation force is measured giving a series of graphs as
seen in figure 7.8, while the rest of the relevant parameters are kept constant. Then, the
speed of sound of the fluid will change while the other one will be fixed (and viceversa) in
order to change Ψ linearly. The remaining variables of (7.10) to be changed are the pressure
amplitude p0 of the acoustic waves, the wave number k which will be changed by adjusting
the wavelength and the radius of the object Rp, ensuring that the condition Rp ≪ λ must
be satisfied.

Parameter Value
cp 0.25
c0 0.24
p0 1.00
λ 500
Rp 10

Chart 7.1. Default fixed values for the relevant quantities of the acoustic radiation force.
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(a) (b)

Fig. 7.9. Measurements of the acoustic radiation force (registered by the dots) and the
theoretical behavior sin 2kx as the dashed black curve for the three-dimensional case (a) and
the two-dimensional case (b).

A set of default values for the mentioned parameters were chosen so that the time average
of the measured acoustic radiation force gives a number close to the unity at the maximum
positional amplitude x = λ/8. These values can be appreciated in the table 7.1. In the figure
7.9 is shown how the force is dependent of position, such that in the pressure node this force
will be zero and the object will be confined in the node, thus, the effect of acoustic levitation
was simulated successfully. This results shows that it have been possible to reproduce a
simulation with the acoustic radiation force in a general way, where an acoustic field is able
to affect this object in the time average.

(a) (b)

Fig. 7.10. Measurements of the acoustic radiation force (registered by the dots) for values
of the radius, fitted with a powers law.
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(a) (b)

Fig. 7.11. Measurements of the acoustic radiation force (registered by the dots) for values
of the wave number fitted with a simple linear relationship.

The force is related to the size of the particle, being linear to either the volume in the case
of the sphere or the area in the case of the cylinder. Here we studied the radius as a common
parameter and related through a power law, expecting to see a cubic relation with the force
of the sphere and a quadratic relation with the force on the cylinder. The measurements
varying the radius are shown in the figure 7.10 and the power law is verified by fitting the
data with a linear relationship in the logarithmic scale, such that the slope will correspond
to the exponent of the power law. The expected values are 2 for the two-dimensional case
and 3 for the three-dimensional case, as clearly seen in (7.10), obtaining a discrepancy of
0.47% for the disk and 2.71% for the sphere. A higher result from the sphere is expected due
to the amount of measurements. Something to remark is that the approximation Rp ≪ λ

(a) (b)

Fig. 7.12. Measurements of the acoustic radiation force (registered by the dots) for values of
the pressure amplitude p0 of acoustic standing waves, fitted with a simple linear relationship.
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must be present to make a proper comparison with the theory, then all the measurements
were taken for radius that never overcome one tenth of the wavelength.

The acoustic radiation force must expected to be also dependent of the wavelength be-
cause the waves are the actors of the production of this force, as explained along the entire
theoretical part of this document. The simplest comparison is though made with the wave
number which is a single factor of ⟨Fx⟩, implying that one linear fit to the measurements of
this force for different values of k is more than enough. As seen in figure 7.11 the fit was
successful for both cases giving a Pearson correlation coefficient of R2 = 0.9987 for the disk
and R2 = 0.9923 for the sphere. Another clear dependent parameter is the amplitude of the
standing waves, which must be quadratic in both cases because ⟨Fx⟩ was calculated with
the squared values of the macroscopic quantities. As expected, in figure 7.12 the pressure
follows a power law with exponents 2, resenting discrepancies of 10−8% in both cases.

One important test is the relationship with the contrast factor defined in (7.11). It is
important to note that the whole factor is linear with the force for a position different from
the node. This implies that measuring the time average of the acoustic radiation force at
x = λ/8 will result in a linear relationship which crosses the origin, as the force would be
non-existent if cp = c0. For this test the speed of sound of the fluid was set to c0 = 0.25
and cp was adjusted to values that let the factor Ψ to scale linearly. According to the result
registered in the figure 7.13 the behavior is the expected at least for the two-dimensional
case, made by a well-known generic implementation in C++, appreciating in the figure 7.13a
how the linear fit is successful and the force gives zero for Ψ = 0. However it is not possible
to say the same for the three-dimensional case, as the behavior tends to get apart from the
linear trend and there is no match with the origin, but the force is minimum when Ψ = 0
and the behavior is proportional, meaning that the force will go to the node if Ψ > 0 and

(a) (b)

Fig. 7.13. Measurements of the acoustic radiation force (registered by the dots) versus the
contrast factor Ψ and a fitted line according to (7.10).
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to the anti-node in the opposite case. The reason behind this unexpected result has to do
with the implementation in the LB3D code, because this implementation is still not solid
enough and leave questions even to the developers of the team. One hypothesis behind this
issue relies on the interpolation over the pressure as imitation of the interpolation of the
momentum.

7.5 Including motion to the object

The main objective of the present work, which is calculating the acoustic radiation force
of a sphere and a disk, is already accomplished, and with this result, the possibility to
implement the motion on the object is possible. The motion was included in the C++ code
with the Omelyan integrator [47]. This integration method solves the Newton’s laws by
updating the position r⃗(t) and velocity v⃗(t) of the particle with the following procedure:

r⃗1 = r⃗(t) + ζhu⃗(t) ,

v⃗1 = v⃗(t) + (1− 2λ)
hF⃗ (r⃗1)

2m
,

r⃗2 = r⃗1 + ξhv⃗1 ,

v⃗2 = v⃗1 + λ
hF⃗ (r⃗2)

m
,

r⃗3 = r⃗2 + (1− 2(ξ + ζ))hv⃗2 ,

v⃗3 = v⃗2 + λ
hF⃗ (r⃗3)

m
,

r⃗4 = r⃗3 + ξhv⃗3 ,

v⃗(t+ h) = v⃗3 + (1− 2λ)
hF⃗ (r⃗4)

2m
,

r⃗(t+ h) = r⃗4 + ζhu⃗(t+ h) , (7.12)

where h is the size of the time step, which is independent from the time step of the Lattice-
Boltzmann solver. The auxiliary vectors r⃗1, r⃗2, r⃗3, r⃗4, v⃗1, v⃗2, v⃗3 and v⃗4 take the role of
storing temporal values during the integration, and the constants ζ, ξ and λ are set to the
following values:

ζ = 0.1786178958448091 ,

ξ = 0.2123418310626054 ,

λ = 0.06626458266981849 . (7.13)

The total force F⃗ (t) includes the acoustic radiation force ⟨F⃗x⟩ of (7.10) and a drag additional
force, being proportional and opposite to the object’s velocity. This force has the form

F⃗ drag = −6πηRpv⃗ , (7.14)
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thus, the total force of the particle is

F⃗ (t) = ⟨F⃗x⟩+ F⃗ drag . (7.15)

As we have already emphasized, as soon as the time scale of the motion of the sphere is
so large respect to the time scale of the acoustic oscillations in the fluid, during one period
of these oscillations the object will produce a displacement smaller than one single cell of
the lattice, meaning that the position of the disk will not be updated at each step time
of the Lattice-Boltzmann solver, but every oscillation of the acoustic waves, taking T time
steps. This avoids the necessity to implement an additional coupling method as Immersed
boundary method to ensure momentum conservation, as the system will try to relax to its
steady state when the position of the disk is updated, also, because of the differences in
the time scale we are measuring the time average of the acoustic radiation force which is
actually affecting the object every oscillation. In the figure 7.14 we can see some frames of
the recorded disk under the influence of the standing waves, where after some amounts of
time steps the disk is attracted to the node.

Fig. 7.14. Frames of the motion of the disk approaching towards the node.
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Conclusions

This work introduces a numerical methodology to compute the acoustic radiation force
produced by standing waves on a compressible object immersed in an inviscid fluid. The
proposal combines a Lattice Boltzmann model (LBM) that simulates the wave equation
together with a kernel interpolation scheme to compute the first order perturbations p1 and
u⃗1 of the pressure and velocity fields just on each surface element dS⃗ on a discretized version
of the object’s boundary. Next, it replaces those first order fields into the general expression
for the acoustic radiation force on dS⃗, averaging on a oscillation period,

d⟨Fi⟩ = −
〈(

−ρ0
u2
1

2
+

p21
2ρ0c20

)
δij + ρ0vivj

〉
dSj . (7.16)

The total force on the immersed object is obtained by adding the forces on all discrete surface
elements on the boundary. This total force can be later used to integrate the immersed
object’s motion via a molecular dynamics scheme.

By simulating the wave equation to compute p1 and u⃗1 and replacing into (7.16) to
compute the forces, the method avoids to simulate the more complex Euler and mass con-
servation equations. Moreover, many numerical methods to simulate those fluid mechanics
equations compute with second-order accuracy the zero order density and velocity fields, and
with only first-order accuracy the perturbative fields p1 and u⃗1. In contrast, the LBM for
waves we used here computes p1 and u⃗1 with second-order accuracy; therefore, one can use
lattices with a relative small number of cells to compute with good accuracy the acoustic
radiation force in both 2D and 3D.

The proposed numerical methodology was tested by computing the acoustic radiation
force on a disk (in 2D) and on a sphere (in 3D). The 2D simulation was implemented with
a self-developed C++ code, and the 3D one, with the LB3D software (a very powerful
LBM code developed by J. Harting and collaborators in the HI-ERN, Erlangen, Germany).
Because LB3D was originally developed to simulate fluids, it was necessary to extend first
LB3D to simulate waves. To perform this task we needed to understand the code architecture
and to identify the subroutines to be added or modified to simulate waves. This task was
completed with the support of the LB3D developers during a four months research stay
at HI-ERN. The 3D simulations were also implemented and performed during that research
stay. The implementation was tested by running some benchmarks, like the free propagation
of a Gaussian pulse, the waves generated by a point source and the generation of standing
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waves inside a box. The last one was also used as starting point for the simulation of the
acoustic waves around the sphere.

The simulation results were compared with the theoretical expressions for the sphere and
the disks developed by Gor’kov [11] and Wei et. al [13]. Reproducing and understanding
those analytical results was a challenging task that took around six months, because many
of the original articles and reviews on the subject does not include detailed deductions. Fruit
of this work we include here detailed deductions of those results that are presented in the
main text and in the appendices that can be useful for the interested reader. The numerical
results matches with excellent accuracy the theoretical predictions by Gor’kov and Wei et.
al. in all simulated cases. Those cases include to vary parameters like the axial position of
the object, its size, the wavelength and the amplitude of the standing waves, and the speed
of sound of both the object and the fluid. Finally, the LBM simulation scheme in 2D and
the calculus of the acoustic radiation force was coupled to a PEFRL [47] molecular dynamics
algorithm to integrate the motion of a stiff disk towards the node of the standing acoustic
wave. This movement is the operating principle of the acoustic tweezers, and being able to
reproduce this phenomenon illustrates the possibilities of the proposed numerical scheme.

As it was mentioned in the introduction, one recent application of the acoustic radiation
force is to form a virtual wall for the rolling of self-assembled magnetic microswimmers. In
was shown that the displacement of that microswimmers is the consequence of an oscillation
in the distance between the mass and magnetic centers in the object, but the source of that
oscillation remains unknown. The numerical scheme developed in the present work may be
useful to explore and explain the phenomenon.

The Lattice Boltzmann model for waves we used in the present work has only one param-
eter for each media: the speed of sound, whereas the theory of acoustic radiation force has
two: the density and the bulk modulus. The simulations performed here assume that the
immersed object has the same density as the fluid, and that the bulk modulus are different.
From conversations with M. Mendoza at Zurich, it seems to be possible to develop a LBM
for waves with two parameters, and to use it to compute the acoustic radiation force with
the same procedure we developed. This may be an interest subject for future work.

The numerical methodology developed in this work is suitable to compute the acoustic
radiation force on any immersed object, as far as it moves much slower than the oscillations.
That difference of time scales is present in most today’s applications, including the use of
acoustic tweezers to manipulate objects [7] or to build virtual walls for the rolling motion
of self-assembled microswimmers [21]. The method could be used to compute the acoustic
radiation force on particles with complex shapes, and the interactions among immersed
objects via the acoustic field. Those future applications are beyond the theoretical solutions
by Gor’kov and Wei, and can further extend the use of acoustic waves in medicine and
engineering.

This work achieves for the first time the computation of the acoustic radiation force on
an object immersed in an inviscid fluid by solving the wave equation around the object with
a Lattice-Boltzmann method. The procedure obtain accurate results at moderate compu-
tational costs. The proposed procedure shows to be a promising tool for the study of the
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many phenomena where the acoustic radiation force plays a relevant role, with applications
in medicine and engineering.
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Appendix A

Appendix I: The second order
contribution of the incident wave to
the acoustic radiation force

Let us verify that for an incident plane wave.

ϕin = ϕ0 cos
(
k⃗ · r⃗ − ωt

)
, (A.1)

with ϕ0 a constant amplitude, the time-averaged second order contribution to the acoustic
force

⟨Fi⟩ = −
∮ 〈(

−ρ0
2
|∇ϕ|2 + ρ0

2c20

[
∂ϕ

∂t

]2)
δij + ρ0∂iϕ∂jϕ

〉
dSj , (A.2)

is zero.
Starting from (A.1),

∇ϕin = −k⃗ϕ0 sin
(
k⃗ · r⃗ − ωt

)
, (A.3a)

∂ϕin

∂t
= ωϕ0 sin

(
k⃗ · r⃗ − ωt

)
, (A.3b)

Now, by plugging them into ?? and writing dSi = n̂idS, we get

⟨Fi,in⟩ =−
∮ 〈(

−ρ0
2
| − i⃗kϕin|2 +

ρ0
2c20

(−iωϕin)
2

)
n̂j + ρ0(−ikiϕin)(−ikjϕin)n̂i

〉
dS

= −
∮ (

ρ0k
2

2
− ρ0ω

2

2c20

)
ϕ2
0⟨sin2(k⃗ · r⃗ − ωt)⟩n̂j − ρ0kikjn̂iϕ

2
0⟨cos2(k⃗ · r⃗ − ωt)⟩dS

(A.4)

Because k⃗ is uniform on the whole space, with k = ω/c0, and the time averages ⟨cos2(ωt− β)⟩ =
⟨sin2(ωt− β)⟩ = 1

2
, Eq. (A.4) becomes

−
∮ (

ρ0k
2

2
− ρ0k

2

2

)
ϕ2
0

2
n̂jdS − ρ0kikj

ϕ2
0

2

∮
n̂idS = 0 , (A.5)
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where we have used the fact that n̂ integrated on the spherical surface is zero.
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Appendix B

Appendix II: Detailed computation of
the scalar field a(t) for a sphere

Let us assume that the sphere is elastic, shrinking or expanding isotropically just by
simply enlarging or decreasing its radius Rp. Now, let us consider a mathematical spherical
region Ω of radius RΩ concentric to the sphere with λ ≫ RΩ > Rp. When the sphere
expands, the mass flux leaving Ω through its surface ∂ω is, at first order,

ṁ =

∮
∂Ω

(ρ0u⃗1) · r̂dS =

∮
∂Ω

(ρ0∇⃗ϕsc) · r̂dS , (B.1)

with r̂ the radial unitary vector. Since we are interested just in the case where the sphere
vibrates without displacing, only the monopolar contribution (3.33a) will be relevant for this
computation [37, p.282], [39, p.70] Thus,∮

∂Ω

(ρ0∇ϕmp) · r̂dS = −a(t)ρ0

∮
∂Ω

∇
(
1

r

)
· r̂dS = a(t)ρ0

∮
∂Ω

1

r2
r̂ · r̂dS (B.2)

=
a(t)ρ0
R2

Ω

∮
∂Ω

dS =
a(t)ρ0
R2

Ω

4πR2
Ω = 4πa(t)ρ0 , (B.3)

Because mass is conserved, the mass flux through the surface ∂Ω equals the rate the fluid
is displaced by the growing volume Vp of the particle,

ṁ =
∂

∂t
[(ρ0 + ρin)Vp] = (ρ0 + ρin)

dVp

dt
+

∂ρin
∂t

Vp . (B.4)

The particle’s volume Vp changes because it is compressed by the incident field pressure
pin. According to Hooke’s Law (Eq. (2.24)),

dpin = −Bp
dVp

Vp

, or
∂pin
∂t

= −B

Vp

dVp

dt
, (B.5)
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with Bp = c2pρp the particle’s bulk modulus, cp the particle’s speed of sound and ρp the
particle’s density. Furthermore, because pin = ρinc

2
0, with c0 the speed of sound in the fluid,

dVp

dt
= −Vp

c20
ρpc2p

∂ρin
∂t

, (B.6)

and the expression (B.4) becomes

ṁ = ρ0
∂Vp

∂t
+ ρin

∂Vp

∂t
+ Vp

∂ρin
∂t

= −Vp
ρ0c

2
0

ρpc2p

∂ρin
∂t

− Vp
c20
ρpc2p

ρin
∂ρin
∂t

+ Vp
∂ρin
∂t

= −Vp
ρ0c

2
0

ρpc2p

∂ρin
∂t

− Vp
c20
ρpc2p

1

2

∂(ρ2in)

∂t
+ Vp

∂ρin
∂t

= −Vp
c20
ρpc2p

∂

∂t

(
ρ0ρin +

1

2
ρ2in

)
+ Vp

∂ρin
∂t

. (B.7)

As mentioned before, the incident density is a perturbation of the total density of the fluid,
i.e. ρ0 ≫ ρin and the term 1

2
ρ2in is much smaller than ρ0ρin and can be vanished. Therefore,

ṁin = 4πa(t)ρ0 = Vp
∂ρin
∂t

(
1− ρ0c

2
0

ρpc2p

)
, (B.8)

and

a(t) =
R3

p

3ρ0

∂ρin
∂t

(
1− ρ0c

2
0

ρpc2p

)
, (B.9)

where we used Vp = 4
3
πR3

p. Notice that a(t) is proportional to the cube of the radius and
the non-dimensional contrast factor

f1 = 1− ρ0c
2
0

ρpc2p
= 1− κp

κ0

, (B.10)

which has been expressed in terms of the fluid’s compressibility κ0 = 1/(ρ0c
2
0) and the

particle’s compressibility κp = 1/(ρpc
2
p). When κ0 = κ1, f1 = 0 and the monopole term of

(3.30) does not contribute to the force.
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Appendix C

Appendix III: Detailed computation
of the vector field A(t) for a sphere

Consider a sphere that moves with velocity v⃗ immersed to the fluid, and let us assume
that the potential has the form

ϕdip = A⃗ · ∇
(
1

r

)
= −A⃗ · r⃗

r3
, (C.1)

where the position vector is measured between an observation point and the center of the
sphere. The sphere is moving with a velocity v⃗ such that the vector r⃗ is related with

r⃗ = r⃗0 − tv⃗ , (C.2)

where r⃗0 is a position measured in a static reference frame. A first boundary condition is
the fact that during the motion of the sphere there is no flow passing through the body, the
normal velocities matches

u⃗ · r̂ = v⃗ · r̂ , (C.3)

Now the velocity u⃗ will be a fluid velocity around the sphere due to the disturbance of the
sphere, but it is measured in a reference frame where there is no external flow. Then

u⃗ = ∇
(
−A⃗ · r̂

r2

)
= −(A⃗ · ∇)

r̂

r2
=

3(A⃗ · r̂)r̂ − A⃗

r3
, (C.4)
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which leads to

3(A⃗ · r̂)r̂ − A⃗

R3
p

· r̂ = v⃗ · r̂

2(A⃗ · r̂)
R3

p

= v⃗ · r̂

A⃗ · r̂ =
R3

p

2
(v⃗ · r̂)

A⃗ =
R3

p

2
v⃗ . (C.5)

The vector A⃗ is related now to the dipolar moment of a Doublet and the fluid velocity written
at (C.4) would take the following form:

u⃗ =
R3

p

2

3(v⃗ · r̂)r̂ − v⃗

r3
=

R3
p

2

(
3(v⃗ · r⃗)r⃗

r5
− v⃗

r3

)
(C.6)

But the motion occurs due to the interaction between the fluid and the object immersed to it,
meaning that the momentum must be conserved between them and the considered boundary
condition is not enough. In order to take into account this interaction, we shall calculate
the drag force made by the fluid on the object but this time, as mentioned earlier, the fluid
was assumed incompressible due to the length-scale separation between the wavelength and
the radius of the object (3.16) and with this the force made by the fluid is

F⃗
(drag)
i = −

∮ (
−ρ0

2
|∇ϕdip|2 −

∂ϕdip

∂t

) ∣∣∣∣
r=Rp

n̂dS , (C.7)

where the Bernoulli principle has been used [40]. (This expression is basically (A.2) but
taking away the squared pressure term du to incompressinility and the dyadic tensor term
because only the normal contribution contributes to the drag). Then, using (C.1) and (C.5)
we can get the time derivative as

∂ϕdip

∂t
= −∂v⃗

∂t
·
(
R3

p

2

r⃗

r3

)
− v⃗ ·

(
R3

p

2

∂

∂t

(
r⃗

r3

))
(C.8)

By using the chain rule it’s possible to rewrite for the second term of (C.13) as

vi
∂

∂t

(
R3

p

2

ri
r3

)
= vi

∂

∂rj

(
R3

p

2

ri
r3

)
∂rj
∂t

= ∇
(
R3

p

2

viri
r3

)
· ∂r⃗
∂t

= −∇ϕdip ·
∂r⃗

∂t
(C.9)

since v⃗ is not dependent of the space coordinates as mentioned earlier. The time derivative
of the vector position is related to the motion of the object because of the reference frame
described in (C.2), leading to

∂r⃗

∂t
= −v⃗ , (C.10)
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and (C.9) becomes

vi
∂

∂t

( ri
r3

)
= −∇ϕdip ·

∂r⃗

∂t
= ∇ϕdip · v⃗ (C.11)

and the time derivative of ϕdip is written according to (C.8) as

∂ϕdip

∂t
= −∂v⃗

∂t
·
(
R3

p

2

r⃗

r3

)
−∇ϕdip · v⃗ , (C.12)

and using (C.6) we get finally

∂ϕdip

∂t
= −

R3
p

2

(
∂v

∂t
·
(

r⃗

r3

)
− 3

(r⃗ · v⃗)2

r5
+

v2

r3

)
∂ϕdip

∂t
= −

R3
p

2r3

(
r⃗ · ∂v⃗

∂t
+ 3

(r⃗ · v⃗)2

r2
− v2

)
. (C.13)

The square of the gradient is, using (C.6) and (C.5),

|∇ϕ|2 =
(
R3

p

2

)2 ∣∣∣∣3(v⃗ · r⃗)r5
r⃗ − v⃗

r3

∣∣∣∣2 , (C.14)

which written as an expanded double dot product takes the following form

|∇ϕ|2 =
(
R3

p

2

)2(
3(v⃗ · r⃗)r⃗

r5
− v⃗

r3

)
·
(
3(v⃗ · r⃗)r⃗

r5
− v⃗

r3

)
|∇ϕ|2 =

(
R3

p

2

)2(
9(v⃗ · r⃗)2

r8
+

v2

r6
− 6(v⃗ · r⃗)2

r8

)
|∇ϕ|2 =

(
R3

p

2

)2(
3(v⃗ · r⃗)2

r8
+

v2

r6

)
|∇ϕ|2 =

(
R3

p

2r3

)2(
3
(r⃗ · v⃗)2

r2
+ v2

)
. (C.15)

Now plugging both expressions (C.13) and (C.15) into (C.7) we get

F⃗ (drag) = −ρ0

∮ (
1

2

(
Rpr̂ ·

∂v⃗

∂t
+ 3(r̂ · v⃗)2 − v2

)
− 1

8

(
3(r̂ · v⃗)2 + v2

))
n̂dS

= −
∮

Rp

2
r̂ · ∂v⃗

∂t
n̂dS −

∮
v2

2

(
9

4

(r̂ · v⃗)2

v2
− 5

4

)
n̂dS . (C.16)

Then using the fact that θ is the angle between the motion of the sphere v and r we have
for the second integral, and

r̂ · v⃗ = v cos θ (C.17)
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we can write

ρ0

∫ 2π

0

∫ π

0

v2

2

(
1− 9

4
sin2 θ

)
n̂(R2

p sin θdϕdθ) , (C.18)

as the surface is a sphere and r⃗ points at the center of the sphere then n̂ = r̂, then

ρ0

∫ 2π

0

∫ π

0

v2

2

(
1− 9

4
sin2 θ

)
(cosϕ sin θ, sinϕ sin θ, cos θ)(R2

p sin θdϕdθ)

=
ρ0v

2R2
p

2

∫ 2π

0

∫ π

0

[
cosϕ

(
sin2 θ − 9

4
sin4 θ

)
,

sinϕ

(
sin2 θ − 9

4
sin4 θ

)
,

cos θ

(
sin θ − 9

4
sin3 θ

)]
dϕdθ , (C.19)

the integration over ϕ vanishes the first two components, while the third one becomes

πρ0v
2R2

p

∫ π

0

cos θ sin θ − 9

4
cos θ sin3 θdθ

πρ0v
2R2

p

[
1

2
sin2 θ − 9

16
sin4 θ

]π
0

= 0 (C.20)

Now the first integral includes the acceleration of the sphere and it gives

∂v

∂t

R3
pρ0

2
(2π)

∫ π

0

(r̂ · êz) cos θêz sin θdθ =
∂v

∂t
πR3

pêzρ0

∫ π

0

cos2 θ sin θdθ (C.21)

taking into account that θ is an angle measured from the direction of v⃗ and r⃗, meaning that
this term will get the same direction of v⃗. While the integral may be solved in the following
way: ∫ π

0

cos2 θ sin θdθ = −1

3
cos3 θ

∣∣∣∣π
0

= −(−1)3 − (1)3

3
=

2

3
(C.22)

resulting in the following expression for (C.21):

πR3
pρ0

∫ π

0

cos2 θ sin θdθ =
2πR3

pρ0

3
. (C.23)

This means that the drag force exerted is

F⃗ (drag) = −
2πR3

pρ0

3

∂v

∂t
êz ≡ −Madd

∂v

∂t
êz (C.24)

defining the added mass Madd factor due to the motion of the fluid. Now if we want to set
a motion equation for the fluid, we can see the force exerted by the fluid as an external one
f⃗ such that the total force is

mp
∂v

∂t
= f −Madd

∂v

∂t
, (C.25)
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now f would be at the same time the opposing force that the piece of fluid around receives
to the ball. This implies an equation of motion for that surrounding fluid, as the buyonant
force plus the added mass force, but instead made to the fluid. That is

(
4πR3

p

3
ρ0 +Madd)

∂u⃗

∂t
= f . (C.26)

Now combining (C.25) and (C.26) we get(
ρpVp +

2πρ0R
3
p

3

)
vi =

(
ρ0Vp +

2πρ0R
3
p

3

)
ui(

4πρpR
3
p

3
+

2πρ0R
3
p

3

)
vi =

(
4πρ0R

3
p

3
+

2πρ0R
3
p

3

)
ui(

ρp +
ρ0
2

)
vi =

(
ρ0 +

ρ0
2

)
ui

vi =
3ρ0

2ρp + ρ0
ui . (C.27)

This final relation will ensure momentum conservation for (C.5), where equal velocities u⃗
and v⃗ were assumed. In general, the actual velocity must be the one which is relative to the
fluid in order to still satisfy (C.3). Thus

A⃗ =
R3

p

2
(v⃗ − u⃗) , (C.28)

and with (C.27) the definitive expression for A⃗ is

A⃗(t) =
R3

p

2

(
2(ρp − ρ0)

2ρp + ρ0

)
u⃗ , (C.29)

introducing the density contrast factor f2 defined as

f2 =
2(ρp − ρ0)

2ρp + ρ0
(C.30)

where we can see that for the particular case where both densities matches this factor is
zero, meaning that no dipolar contribution is added.
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Appendix D

Appendix VI: Detailed computation
of the scalar field a(t) for a disk

Assuming the disk to be a compressible one such that it shrinks or expands isotropically
by simply enlarging or decreasing its radius, a mathematical circular region Ω of radius RΩ

concentric to the disk with radius Rp which fulfills λ ≫ RΩ ≫ Rp is considered, such that
there is an excess of fluid around the disk, thus, its outgoing mass flux would be computed
as the following integral:

ṁ =
∂

∂t

∫
Ω

dAρ1 = −
∫
Ω

dA∇ · (ρ0u⃗1) = −
∮
∂Ω

dl(ρ0u⃗1) · n̂ , (D.1)

In which we have kept only terms up to first order, as according to (3.17) the macroscopic
first-order fields are deducted from both the incident and scattered fields and we are inter-
ested in those. This mass flux which comes from the outside of the boundary of radius RΩ

is

ṁout = −
∮
∂Ω

dl(ρ0∇ϕmp) · n̂ (D.2)

where n̂ is a vector normal to ∂Ω. As we are interested in the case where the disk only
vibrates maintaining its center of mass motionless [37, p.282], [39, p.70] only the monopolar
contribution (3.68a) will be relevant for this computation. Thus,∮

∂Ω

dl(ρ0∇ϕmp) · n̂ = −a(t)ρ0

∮
∂Ω

dl∇ (log r) · n̂ = −a(t)

∮
∂Ω

dl
r⃗

r2
· n̂ , (D.3)

then applying the gradient and evaluating in the circular surface where r = RΩ, with n̂ = r̂
due to be r⃗ a position measured from the center of the disk, the integral is reduced to

ṁout = a(t)ρ0

∫ 2π

0

r̂ · r̂
RΩ

RΩdϕ =
a(t)ρ0
RΩ

(2πRΩ) = 2πaρ0 . (D.4)

Now we can compute the flow of mass going out of the circular surface of radius RΩ. This
mass flux is basically the rate of change of the incoming fluid density times the area of the
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particle, because the presence of the particle exerts an amount of fluid occupied now by the
object. Then,

ṁin =
∂

∂t
[(ρ0 + ρin)Ap] . (D.5)

The variation of the particle’s area Ap will be due to the compression of the incident field,
thus, the time derivative is strictly related with the two-dimensional equivalent of the Bulk’s
modulus

Then we can write the following thanks to the chain rule:

∂Ap

∂t
= −Ap

c20
ρpc2p

∂ρin
∂t

, (D.6)

and using this expression (D.5) becomes

ṁin = −Ap
ρ0c

2
0

ρpc2p

∂ρin
∂t

− Ap
c20
ρpc2p

ρin
∂ρin
∂t

+ Ap
∂ρin
∂t

= −Ap
c20
ρpc2p

∂

∂t

(
ρ0ρin +

1

2
ρ2in

)
+ Ap

∂ρin
∂t

. (D.7)

As mentioned before, the incident density is a perturbation of the total density of the fluid
and this implies that the bulk density ρ0 is much larger than the incident field ρin, thus the
term proportional to ρ2in shall be vanished as well, ending up with

ṁin = Ap
∂ρin
∂t

(
1− ρ0c

2
0

ρpc2p

)
. (D.8)

Such that a(t) may be gotten by only equaling (D.4) and (D.8) as the incoming mass must
be equal to the outgoing mass exchanged at the boundary ∂Ω (the mass is conserved). Thus

a(t) =
Ap

2πρ0

∂ρin
∂t

(
1− ρ0c

2
0

ρpc2p

)
, (D.9)

or in terms of the particle’s radius

a(t) =
R2

p

2ρ0

∂ρin
∂t

(
1− ρ0c

2
0

ρpc2p

)
, (D.10)

noting the proportionality with the square of the radius and a definition of the non-dimensional
contrast factor f1 as

f1 = 1− ρ0c
2
0

ρpc2p
= 1− κp

κ0

(D.11)

in terms of the compressibility of the fluid κ0 = 1/(ρ0c
2
0) and the compressibility of the

particle κp = 1/(ρpc
2
p), indicating according to (D.11) that if both compressibilities match

for both media, the particle and the fluid, the monopole term of (3.30) does not contribute
to the force.
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Appendix E

Appendix V: Detailed computation of
the vector field A(t) for a disk

Now let’s consider the dipole contribution for the potential. First, the solution to consider
for a disk moving with velocity v⃗ and immersed to the fluid has the form

ϕdip = −A⃗ · ∇ (log r) = −A⃗ · r⃗

r2
. (E.1)

A first boundary condition is the fact that during the motion of the disk there is no flow
passing through it, the normal velocities matches

u⃗ · r̂ = v⃗ · r̂ , (E.2)

Now the velocity u⃗ will be a fluid velocity around the disk due to the disturbance of the
disk, but it is measured in a reference frame where there is no external flow. Then

u⃗ = ∇
(
−A⃗ · r̂

r

)
= −(A⃗ · ∇)

r̂

r
=

2(A⃗ · r̂)r̂ − A⃗

r2
, (E.3)

which leads to

2(A⃗ · r̂)r̂ − A⃗

R2
p

· r̂ = v⃗ · r̂

(A⃗ · r̂)
R2

p

= v⃗ · r̂

A⃗ · r̂ = R2
p(v⃗ · r̂)

A⃗ = R2
pv⃗ . (E.4)

The vector A⃗ is related now to the dipolar moment of a Doublet and the fluid velocity written
at (E.3) would take the following form:

u⃗ = R2
p

2(v⃗ · r̂)r̂ − v⃗

r2
= R2

p

(
2(v⃗ · r⃗)r⃗

r4
− v⃗

r2

)
(E.5)
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But the motion occurs due to the interaction between the fluid and the object immersed to it,
meaning that the momentum must be conserved between them and the considered boundary
condition is not enough. In order to take into account this interaction, we shall calculate
the drag force made by the fluid on the object but this time, as mentioned earlier, the fluid
was assumed incompressible due to the length-scale separation between the wavelength and
the radius of the object (3.16) and with this the force made by the fluid is

F⃗
(drag)
i = −ρ0

∮ (
−1

2
|∇ϕdip|2 −

∂ϕdip

∂t

) ∣∣∣∣
r=Rp

n̂dl , (E.6)

where the Bernoulli principle has been used [40]. (This expression is basically (A.2) but
taking away the squared pressure term du to incompressinility and the dyadic tensor term
because only the normal contribution contributes to the drag). Then, using (E.1) and (E.4)
we can get the time derivative as

∂ϕdip

∂t
= −∂v⃗

∂t
·
(
R2

p

r⃗

r2

)
− v⃗ ·

(
R2

p

∂

∂t

(
r⃗

r2

))
(E.7)

By using the chain rule it’s possible to rewrite for the second term of (E.13) as

vi
∂

∂t

(
R2

p

ri
r2

)
= vi

∂

∂rj

(
R2

p

ri
r2

) ∂rj
∂t

= ∇
(
R2

p

viri
r2

)
· ∂r⃗
∂t

= −∇ϕdip ·
∂r⃗

∂t
(E.8)

since v⃗ is not dependent of the space coordinates as mentioned earlier. The time derivative
of the vector position is related to the motion of the object. The position vector must be
relative to the center of the disk, thus r⃗ actually becomes

r⃗ = r⃗0 − tv⃗ , (E.9)

where r⃗0 is a position measured in a static reference frame, thus, its time derivative yields
to zero and (E.9) becomes

∂r⃗

∂t
= −v⃗ , (E.10)

meaning that (E.8) becomes

vi
∂

∂t

( ri
r2

)
= −∇ϕdip ·

∂r⃗

∂t
= ∇ϕdip · v⃗ (E.11)

and the time derivative of ϕdip is written according to (E.7) as

∂ϕdip

∂t
= −∂v⃗

∂t
·
(
R2

p

r⃗

r2

)
−∇ϕdip · v⃗ , (E.12)

and using (E.5) we get finally

∂ϕdip

∂t
= −R2

p

(
∂v

∂t
·
(

r⃗

r2

)
− 2

(r⃗ · v⃗)2

r4
+

v2

r2

)
∂ϕdip

∂t
= −

R2
p

r2

(
r⃗ · ∂v⃗

∂t
− 2

(r⃗ · v⃗)2

r2
+ v2

)
. (E.13)
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The square of the gradient is, using (E.5) and (E.4),

|∇ϕ|2 = R4
p

∣∣∣∣2(v⃗ · r⃗)r4
r⃗ − v⃗

r2

∣∣∣∣2 , (E.14)

which written as an expanded double dot product takes the following form

|∇ϕ|2 = R4
p

(
4(v⃗ · r⃗)2

r6
+

v2

r4
− 4(v⃗ · r⃗)2

r6

)
|∇ϕ|2 = R4

p

v2

r4
. (E.15)

Now plugging both expressions (E.13) and (E.15) into we get

F⃗ (drag) = −ρ0

∮ (
−v2

2
+

(
r⃗ · ∂v⃗

∂t
− 2(r̂ · v⃗)2 + v2

))
n̂dl

= −
∮

Rpr̂ ·
∂v⃗

∂t
n̂dl −

∮
3v2

2
− 2(r̂ · v⃗)2n̂dl . (E.16)

Then using the fact that θ is the angle between the motion of the disk v and r we have for
the second integral, and

r̂ · v⃗ = v cosϕ (E.17)

we can write

ρ0

∫ 2π

0

v2

2

(
3− 4 cos2 ϕ

)
n̂(Rpdϕ) , (E.18)

as the surface is a disk and r⃗ points at the center of the disk then n̂ = r̂, then

ρ0

∫ 2π

0

v2

2

(
3− 4 cos2 ϕ

)
(cosϕ, sinϕ)(Rpdϕ)

=
ρ0v

2Rp

2

∫ 2π

0

[
3 cosϕ− 4 cos3 ϕ,

3 sinϕ− 4 cos2 ϕ sinϕ

]
dϕ = 0 , (E.19)

Now the first integral includes the acceleration of the disk and it gives

∂v

∂t
R2

pρ0

∫ 2π

0

(r̂ · êz) cosϕdϕêx =
∂v

∂t
R2

pêxρ0

∫ 2π

0

cos2 ϕdϕ (E.20)

taking into account that θ is an angle measured from the direction of v⃗ and r⃗, meaning that
this term will get the same direction of v⃗.The resulting expression for (E.20) is:

R2
pρ0

∫ 2π

0

cos2 ϕdϕ = πR2
pρ0 . (E.21)
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This means that the drag force exerted is

F⃗ (drag) = −πR2
pρ0

∂v

∂t
êx ≡ −Madd

∂v

∂t
êx (E.22)

defining the added mass Madd factor due to the motion of the fluid. Now if we want to set
a motion equation for the fluid, we can see the force exerted by the fluid as an external one
f⃗ such that the total force is

mp
∂v

∂t
= f −Madd

∂v

∂t
, (E.23)

now f would be at the same time the opposing force that the piece of fluid around receives
to the ball. This implies an equation of motion for that surrounding fluid, as the buyonant
force plus the added mass force, but instead made to the fluid. That is

(πR2
pρ0 +Madd)

∂u⃗

∂t
= f . (E.24)

Now combining (E.23) and (E.24) we get(
ρpAp + πρ0R

2
p

)
vi =

(
ρ0Ap + πρ0R

2
p

)
ui

(ρp + ρ0) vi = 2ρ0ui

vi =
2ρ0

ρp + ρ0
ui . (E.25)

This final relation will ensure momentum conservation for (E.4), where equal velocities u⃗
and v⃗ were assumed. In general, the actual velocity must be the one which is relative to the
fluid in order to still satisfy (E.2). Thus

A⃗ = R2
p(v⃗ − u⃗) , (E.26)

and with (E.25) the definitive expression for A⃗ is

A⃗(t) = R2
p

(
ρ0 − ρp
ρp + ρ0

)
u⃗ =

R2
p

2
f2u⃗ , (E.27)

introducing the density contrast factor f2 defined as

f2 = 2

(
ρ0 − ρp
ρp + ρ0

)
(E.28)

where we can see that for the particular case where both densities matches this factor is
zero, meaning that no dipolar contribution is added.
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Appendix F

Appendix IV: The Chapman-Enskog
analysis

This analysis consist of developing a multiscale Taylor expansion of (4.3) written in its
continuous version (

∂t + viα∂α

)
fi = −δt

τ
(fi − f eq) , (F.1)

where ∂t = ∂/∂t and ∂α = ∂/∂xα, and then developing a perturbative expansion of f around
the Knusden number, as this is a suitable parameter to determine if the macroscopic limit
has been reached (see sec. 2.1). First, the Taylor expansion is done up to second order for
the total temporal differential operator as follows:

δt

(
∂t + viα∂α

)
fi +

δt2

2!

(
∂t + viα∂α

)2

fi +O(δt3) = −δt

τ
(fi − f eq) , (F.2)

in this case the temporal derivative was expanded up to second order of δt and the chain rule
has been used, while the distribution function is written as an expansion in response of a
small perturbation proportional to the Knusden number ϵ = δx/x, with x the characteristic
size of the system and δx the size of a lattice cell. Although this is an expansion done
through space, the Chapman Enskog expansion must ensure that this expansion must be
done at multiple time-scales, for this reason it is also necessary to perform this expansion
for the differential operators in the following manner:

fi = f
(0)
i + ϵf

(1)
i + ϵ2f

(2)
i + . . . (F.3a)

∂t = ϵ∂
(1)
t + ϵ2∂

(2)
t + . . . (F.3b)

∂α = ϵ∂(1)
α + . . . (F.3c)

where the components of ∂t by themselves does not form a time derivative but the total
summation of those, while ∂

(n)
t are only terms for the n-th order of ϵ [38, Sec. 4.1.2]. As

the macroscopic moments must not be affected by the size of the lattice cells δx due to be
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macsrocopic, these moments must only contribute at order zero of ϵ instead of depend on
them. For this reason it is possible to write∑

i

f
(n)
i = 0 ,

∑
i

viαf
(n)
i = 0 if n > 0 . (F.4)

Then, replacing (F.3) in (F.2) and neglecting the terms of higher orders of ϵ we have

ϵ2
{
∂
(2)
t f

(0)
i +

(
∂
(1)
t + viα∂

(1)
α

)
f
(1)
i +

δt

2

(
∂
(1)
t + viα∂

(1)
α

)2
f
(0)
i

}
+ . . .

· · ·+ ϵ

(
∂
(1)
t + viα∂

(1)
α

)
f
(0)
i = −1

τ

(
f
(0)
i − f eq

i + ϵf
(1)
i + ϵ2f

(2)
i

)
. (F.5)

So that equaling terms of the same order of ϵ gives the following relations:

f
(0)
i = f eq

i , (F.6a)(
∂
(1)
t + viα∂

(1)
α

)
f
(0)
i = −1

τ
f
(1)
i and (F.6b)

∂
(2)
t f

(0)
i +

(
∂
(1)
t + viα∂

(1)
α

)
f
(1)
i +

δt

2

(
∂
(1)
t + viα∂

(1)
α

)2
f
(0)
i = −1

τ
f
(2)
i . (F.6c)

The third term of equation (F.6c) may be rewritten using (F.6b) in the following way:

δt

2

(
∂
(1)
t + viα∂

(1)
α

)2
f
(0)
i =

δt

2

(
∂
(1)
t + viα∂

(1)
α

)(
∂
(1)
t + viα∂

(1)
α

)
f
(0)
i

= − δt

2τ

(
∂
(1)
t + viα∂

(1)
α

)
f
(1)
i (F.7)

so that it is possible to rewrite (F.6) as

f
(0)
i = f eq

i , (F.8a)(
∂
(1)
t + viα∂

(1)
α

)
f
(0)
i = −1

τ
f
(1)
i and (F.8b)

∂
(2)
t f

(0)
i +

(
1− δt

2τ

)(
∂
(1)
t + viα∂

(1)
α

)
f
(1)
i = −1

τ
f
(2)
i . (F.8c)

Separating every order of ϵ is actually a way to obtain the macroscopic equations easier, as
there will be only one equation for each of the moments, which is built by multiplying by
the velocity vectors a number of times corresponding the tensor order of the moment. Let’s
deduct the conservation equation for the zero-order tensor Π by simply performing a sum-
mation over i in all relations of (F.8), but relation must be multiplied by the corresponding
order of ϵ in order to recover the complete differential operators, as mentioned before, (F.8)
is just a separation of (F.5) by every order of ϵ. Thus, one add over all i on (F.8), (F.8b) is
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multiplied by ϵ and (F.8c) multiplied by ϵ2, then both equations are added. For (F.8b) we
have

ϵ
∑
i

(
∂
(1)
t + viα∂

(1)
α

)
f eq
i = −ϵ

1

τ

∑
i

f
(1)
i (F.9)

and taking into account (F.4) and the fact that viα does not depend on xα as it’s an homo-
geneous set in space, the eq. (F.9) becomes

ϵ∂
(1)
t

∑
i

f eq
i + ϵ∂(1)

α

∑
i

viαf
eq
i = 0

ϵ∂
(1)
t Π+ ϵ∂(1)

α Πα = 0 . (F.10)

For (F.8c) also taking into account (F.4) we have

ϵ2
(
1− δt

2τ

)∑
i

(
∂
(1)
t + viα∂

(1)
α

)
f
(1)
i + ϵ2

∑
i

∂
(2)
t f eq

i = −ϵ
1

τ

∑
i

f
(2)
i

ϵ2
(
1− δt

2τ

)(
∂
(1)
t

∑
i

f
(1)
i + ∂(1)

α

∑
i

viαf
(1)
i

)
+ ϵ2∂

(2)
t

∑
i

f eq
i = 0

ϵ2∂
(2)
t Π = 0 (F.11)

Therefor adding (F.10) and (F.11) the following equation is obtained for the zero-order and
first-order moments taking into account (F.3):(

ϵ∂
(1)
t + ϵ2∂

(2)
t

)
Π+ ϵ∂(1)

α Πα = 0

∂tΠ+ ∂αΠα = 0 , (F.12)

which may be seen as a continuity equation just as (F.12), because the temporal derivative
of a scalar field Π is the divergence of a vectorial field Πα. Now, noticing how are moments
defined in (4.4) one can notice that the tensor order of each momentum is given by the
amount of times in which fi has been multiplied by components of the velocities viα, such
that in order to get more conservation laws for higher tensor order moments the same process
showed earlier must be done but multiplying (F.8) by v⃗i and adding over i. Doing this with
(F.8b) and (F.8c) we have:

ϵ∂
(1)
t

∑
i

viαf
eq
i + ϵ∂

(1)
β

∑
i

viαviβf
eq
i = 0

ϵ∂
(1)
t Πα + ϵ∂

(1)
β Παβ = 0 (F.13)

and

ϵ2
(
1− δt

2τ

)(
∂
(1)
t

∑
i

viαf
(1)
i + ∂

(1)
β

∑
i

viαviβf
(1)
i

)
+ ϵ2∂

(2)
t

∑
i

viαf
eq
i = 0 , (F.14)
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although the leftmost term of (F.14) is vanished due to (F.4), the second one is a second

order tensor in terms of the first order contribution f
(1)
i . This is an unknown moment defined

naturally from the last equation as

Π
(1)
αβ =

∑
i

viαviβf
(1)
i , (F.15)

such that the following PDE equation is obtained:

ϵ2
(
1− δt

2τ

)
∂
(1)
β

(
Π

(1)
αβ

)
+ ϵ2∂

(2)
t Πα = 0 , (F.16)

another way to relate this tensor with the macroscopic moments at equilibrium is found
by multiplying the equation (F.8b) by viαviβ and adding it over i. That would give us the
second tensor order conservation equation

∂
(1)
t Παβ + ∂(1)

γ Παβγ = −1

τ
Π

(1)
αβ (F.17)

then adding (F.13) and (F.16) the resulting PDE

∂βΠαβ + ∂tΠα = −ϵ2
(
1− δt

2τ

)
∂
(1)
β Π

(1)
αβ . (F.18)

Note that if τ = δt/2 the right side of equation (F.18) vanishes, giving a continuity-like
equation for the tensors Πα and Παβ as

∂βΠαβ + ∂tΠα = 0 . (F.19)

To see these equations as conservation laws (mass conservation or momentum conservation)
we shall define the macroscopic moments in terms of fields with physical meaning. For
example, as fi has been interpreted as the probability density function to find a particle at
certain position and velocity at any instant of time, it makes sense to define Π as a density
field, because it’s basically a discrete summation (or an integral in the continuous velocity
space) of fi which accounts for the probability at every possible velocity the particle can
take at the position x⃗ and time t. In the same way it is possible to relate the momentum
of this fluid of particles as the summation of velocities weighted by the probability density
function fi, just as it’s defined in (4.4b), so that the following physical quantities for the
zero and first order tensors shall be defined:

Π ≡ ρ =
∑
i

fi , (F.20a)

Πα ≡ ρuα =
∑
i

viαfi , (F.20b)
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and for higher order tensor as well

Παβ ≡ pδαβ + ρuαuβ =
∑
i

viαviβfi (F.21a)

Παβγ ≡ p(uαδβγ + uβδαγ + uγδαβ) =
∑
i

viαviβviγfi (F.21b)

considering the main macroscopic variables for a fluid such as the density ρ, the velocity
uα and the pressure p. Also, the tensor Παβ has been identified as the moment flux
tensor. For now these physical macroscopic fields have not been mentioned in the Lattice-
Boltzmann model, thus this definition will have nothing to do with the model itself, unless
the distribution function at equilibrium f eq

i manages to recover the macroscopic fields from
(4.4). This will be shown later on. Using eqn. (F.12) with (F.20a) and (F.20b) the continuity
equation is given as

∂α(ρuα) + ∂tρ = 0 . (F.22)

In the other hand, using eqn. (F.18) with (F.21a) a PDE similar to NSE equation is gotten:

∂αp+ ∂β(ρuαuβ) + ∂t(ρuα) = −
(
1− δt

2τ

)(
ϵ∂

(1)
β

)(
ϵΠ

(1)
αβ

)
, (F.23)

except for the tensor Π
(1)
αβ . This tensor will be determined by (F.17) using (F.21). Taking

into account that for any variable x that

∂x(abc) = a∂x(bc) + b∂x(ac)− ab∂xc (F.24)

and doing some algebra detailed in [38, Sec. A.2.2] it is proven that

Π
(1)
αβ = −τ

(
p(∂

(1)
β uα + ∂(1)

α uβ)− ∂(1)
γ (ρuαuβuγ)

)
(F.25)

And finally it is necessary to use an equation of state in order to relate the density and the
pressure. In this case the ideal gas law will be used in the sense of establishing a linear
relationship between ρ and p just as it was written in (2.32) with c2s, previously appearing in
(4.5c), the proportion ratio. As this pressure field is recovered from the second order tensor
Παβ, the equilibrium distribution function must contain this generic c2s constant. In the
other hand, note that the last term of equation (F.25) is cubic in the velocity and appears
as a consequence of defining Παβγ with quadratic terms of u, however it may be neglected
as soon as u2 ≪ c2s is fulfilled. However this term will naturally lead to affect the accuracy
of the model as it will not be able to simulate strongly compressible phenomena. Using the
expression obtained by (F.25) without the cubic term and replacing it into (F.18) is possible
to get

∂β(ρuαuβ) + ∂t(ρuα) = −∂αp+ η∂β(∂βuα + ∂αuβ) (F.26)
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with

η = ρc2s

(
τ − δt

2

)
(F.27)

will be the viscosity. Is possible to see that for τ = δt/2 we end up with the Euler equation,
however this case will lead to numerical instability as it’s a limit case before the distribution
functions become negative and the model instantly gets unstable (please see details in [38,
sec. 4.4.2]). Although we have associated the moments from fi to physical quantities to get
continuity and NSE equation in (F.20), as mentioned before, this association is not possible
if the equilibrium function f eq

i is not properly defined in terms of these physical quantities.
The equilibrium function must be written such that is possible to retrieve all the macroscopic
moments using (4.4). One way to find the proper f eq

i is by moment matching. This consist
of writing the equilibrium function as an ansatz written as

f eq
i = ωiρ(1 + a1viαuα + a2viαviβuαuβ − a3uαuβ) (F.28)

where ωi are the weights that complement the velocity set. Then the constants a1, a2 and
a3 are found such that using the conditions for viα and ωi described in (4.5) the macroscopic
variables are obtained. For the case of fluids we have

a1 =
1

c2s
; a2 =

1

2c4s
; a3 =

1

2c2s
(F.29)

where c2s constant appears once again due to (4.5), but finding the second order tensor, after
doing the math we find that this matches the momentum flux tensor∑

i

viαviβf
eq
i = c2sρδαβ + ρuiαuiβ = Παβ (F.30)

thus, the constant c2s appearing in (4.5) matches with the c2s of (2.42) and f eq
i is

f eq
i = ωiρ

(
1 +

viαuα

c2s
+

viαviβuαuβ

2c4s
− uαuβ

2c2s

)
(F.31)

The equilibrium function is important to recover the required forms of the moments involved
in the partial differential equations to solve, thus, its form is crucial in order to make this
method to work. In the following sections we will describe another Lattice-Boltzmann model
where the equilibrium function is different such that another kind of moments are obtained
and therefor satisfying another set of equations if we introduce some restrictions to the
algorithm.


