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Abstract

New approaches have emerged in the field of uncertainty measurement, offering ways to

estimate models and their corresponding confidence levels for point predictions. Our first

purpose is to compare the predictive capabilities of some models built for forecasting daily

electricity demand in Colombia. Initially, we employ generalized linear models, followed by

Machine Learning models such as ensemble learning models, support vector machines (SVM),

and finally deep learning models. The goal is to determine which model demonstrates su-

perior predictive accuracy in forecasting daily electricity demand in Colombia. In order to

evaluate their performance, we mainly use Mean Absolute Percentage Error (MAPE) as a

comprehensive measure, which allows us to evaluate their effectiveness in capturing the ac-

tual demand values. And also take into account the mean absolute error (MAE) and the

root mean squared error (RMSE).

Next, we turn our attention on the creation of prediction intervals to handle the uncertainty

in our forecasts. We use techniques like Bootstrapping to figure out these intervals. We also

incorporate conformal prediction to improve the reliability of our intervals. Our prediction

intervals are evaluated primarily based on their coverage percentage. This will allow us to

see how frequently our prediction intervals correspond to the actual demand from this data.

Through this combination of methods, our goal is to establish a robust and user-friendly

framework for forecasting daily electricity demand in Colombia.

The results of this development suggest that (1) for the daily energy demand of Colombia,

with the variables obtained at a daily frequency, a simple model such as a regularized model

works better than an advanced and much more complex model such as a deep learning mo-

del. (2) Regarding feature selection concerns, the most important variables are the energy

demand lags and demand structure variables for the Lasso model, which works as a feature

selection method, due to its regularization nature. This confirms that the inclusion of lags

or having an autocorrelated structure is important in this type of problem. Finally, for the

forecast intervals, in which we used two methods, the first and most common was the boots-

trap method and the second, whose development is more recent, is the conformal Prediction.

The construction of our prediction intervals allowed us to give a 99% confidence level to the

point prediction and not just rely on the comparison between the actual and predicted values.

keywords: electricity demand, forecasting, prediction intervals, uncertainty quantification,

Bootstrapping, conformal prediction, coverage percentage, time series modeling.



Pronóstico probabiĺıstico de la
demanda de electricidad en Colombia

Resumen

Han surgido nuevos enfoques en el campo de la medición de la incertidumbre, que ofrecen

formas de estimar modelos y sus correspondientes niveles de confianza para predicciones pun-

tuales. Nuestro primer propósito es comparar las capacidades predictivas de algunos modelos

construidos para pronosticar la demanda diaria de electricidad en Colombia. Inicialmente,

empleamos modelos lineales generalizados, seguidos de modelos de Machine Learning tales

como modelos de aprendizaje ensemble, máquinas de vectores soporte (SVM), y finalmente

modelos de aprendizaje profundo. El objetivo es determinar qué modelo demuestra una pre-

cisión predictiva superior en el pronóstico de la demanda diaria de electricidad en Colombia.

Para evaluar su desempeño se utiliza principalmente el Error Porcentual Absoluto Medio

(MAPE) como medida integral, que permite evaluar su efectividad para capturar los valores

reales de demanda. También tenemos en cuenta el error medio absoluto (MAE) y el error

cuadrático medio (RMSE).

A continuación, centramos nuestra atención en la creación de intervalos de predicción para

manejar la incertidumbre de nuestras previsiones. Utilizamos técnicas como Bootstrapping

para calcular estos intervalos. También incorporamos la predicción conforme para mejorar la

fiabilidad de nuestros intervalos. Nuestros intervalos de predicción se evalúan principalmente

en función de su porcentaje de cobertura. Esto nos permitirá ver con qué frecuencia nues-

tros intervalos de predicción se corresponden con la demanda real a partir de estos datos.

Mediante esta combinación de métodos, nuestro objetivo es establecer un marco robusto y

fácil de usar para la predicción de la demanda diaria de electricidad en Colombia

Los resultados de este desarrollo sugieren que (1) para la demanda diaria de enerǵıa de

Colombia, con las variables obtenidas a una frecuencia diaria, un modelo simple como un

modelo regularizado funciona mejor que un modelo avanzado y mucho más complejo como
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un modelo de aprendizaje profundo. (2) En cuanto a las preocupaciones de selección de

caracteŕısticas, las variables más importantes son los rezagos de demanda de enerǵıa y las

variables de estructura de demanda para el modelo Lasso, que funciona como método de

selección de caracteŕısticas, debido a su naturaleza de regularización. Esto confirma que la

inclusión de retardos o tener una estructura autocorrelacionada es importante en este tipo

de problemas. Por último, para los intervalos de predicción, en los que utilizamos dos méto-

dos, el primero y más común fue el método bootstrap y el segundo, cuyo desarrollo es más

reciente, es la Predicción conforme. La construcción de nuestros intervalos de predicción nos

permitió dar un nivel de confianza del 99% a la predicción puntual y no basarnos únicamente

en la comparación entre los valores reales y los predichos.

Palabras clave: demanda de electricidad, previsión, intervalos de predicción, cuantificación

de la incertidumbre, Bootstrapping, predicción conforme, porcentaje de cobertura, modeli-

zación de series temporales.
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1. Introduction

In order to understand and predict energy demand, numerous efforts have been made to

develop effective models that can capture the complexity of some factors like climate, social

dynamics, and economic influences. It is essential to consider how frequently we create these

models since it impacts how we manage and select the data (Nowotarski and Weron, 2018).

Researchers have proposed different types of models, from traditional to advanced methods,

all aimed at capturing complex relationships or patterns. The goal is to better understand

how different variables interact within the context of energy demand and how different mo-

dels could have a better predictive performance.

To forecast electricity demand, a variety of models are employed, and these can be classified

according to two groups. Firstly, under the category of Statistical Models or traditional mo-

dels, we find time series models such as autoregressive integrated moving average (ARIMA),

seasonal autoregressive integrated moving average (SARIMA), unobservable Components

models, additive component models, multivariate regression models designed for both short-

and long-term forecasting and holt winters multiplicative (or Additive) models. Lastly, in

the context of Deep Learning (DL) models, this includes neural networks, which exhibit the

capacity to capture various facets of the data, revealing intricate relationships (Marino et al.,

2021).

Among the several methods developed to model or closely estimate energy demand, a new

area of research has emerged in the domain of probabilistic predictions. Probabilistic fo-

recasting, unlike single-point forecasting, involves many methods that allow for predicting

the likely range of outcomes instead of a single specific value in the future. This forecasting

technique offers more comprehensive information by showing a spectrum of potential values

within which the actual value could occur, enabling the calculation of prediction intervals.

Notably, one of the seminal works in probabilistic prediction pertains to the estimation of

electricity prices, as exemplified by Zhao et al. (2008). This study used the support vec-

tor machines (SVM) methodology, allowing the computation of Prediction Intervals (PIs)

to capture forecast uncertainty. Similarly, Huurman et al. (2012) introduced the concept of

generalized autoregressive conditional heteroskedasticity (GARCH) time-varying volatility

models, providing a framework to quantify uncertainty through density forecasts. These mo-

dels contribute to a comprehensive understanding of the intricate dynamics in electricity

price prediction.
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This project makes the following contributions: firstly, it provides a comprehensive exami-

nation of energy demand in a daily frequency in Colombia. This inclusive approach offers

detailed insights into daily patterns and nationwide trends, fostering a more holistic un-

derstanding of demand dynamics. Secondly, the project distinguishes itself by identifying

the influencing factors affecting demand behavior, covering both accessible and modifiable

elements. This identification is pivotal for enhancing forecast accuracy and decision-making

processes. Additionally, the project conducts a thorough review and practical application of

methods for constructing probabilistic forecasts, offering valuable insights into the associa-

ted uncertainties of energy demand. This contribution improves our understanding of energy

demand forecasting, establishing a solid foundation for future research and strategic decision

making.

In the subsequent chapters, the project develops systematically, starting with the theoretical

framework. The initial section explores the background of energy demand forecasting and

conducts a comprehensive review of probabilistic forecasting. Following this, the third chap-

ter provides a detailed description of the dataset, presenting relevant variables and offering

a thorough descriptive analysis. Subsequently, the fourth chapter introduces the trained mo-

dels, categorized into statistical models including generalized linear models, also categorized

into machine learning models as ensemble methods, support vector machines, and deep lear-

ning models. And then we present the model selection process, incorporating backtesting

and presenting model results.

The fifth chapter delves into the critical aspect of prediction intervals. This section inves-

tigates the construction of prediction intervals through bootstrap and conformal prediction

methods. An evaluation of these prediction intervals is performed, focusing on the presented

results. In the final chapter, concluding remarks summarize key findings, providing insights

derived from the conducted analyses.



2. Theoretical framework

2.1. Energy demand forecast background

In their article, Fabbiani et al. (2021) conducted a comparison of diverse approaches for pre-

dicting gas demand, subsequently categorizing them into three main classifications. In the

category of linear models, they employed techniques such as ridge regression, lasso, support

vector regression (SVR), and elastic net. For non-linear modeling, random forest and neural

networks were employed, whereas nearest neighbor and gaussian processes were applied to

non-parametric models. Expanding on those separate models, the researchers created four

combined predictors: The study considers simple average, weighted average, average of sub-

sets and SVR aggregation. Grouping predictors has been more accurate than predicting with

individual predictors. This suggests major improvement can be attained by careful grouping

of predictors for forecasting of the gas useage.

In their study, Li et al. (2020) introduced a detailed multistage approach covering seve-

ral forecasting time periods and yearly cycle configurations. They used sample entropy to

measure data complexity, thus improving their comprehension of the inherent attributes of

electricity demand. Secondly, the authors incorporated variational mode decomposition as

an instrument for reducing noise, allowing them to study high variance and the inclusion

of relevant variables. In this study, different methodologies are included such as SVR, mul-

tivariate adaptive regression splines (MARS), ARIMA, autoregressive-based time-varying

models, variational mode decomposition, fast fourier transform, and intelligent optimization

algorithms.

The investigation by Jiménez et al. (2019) involved a comprehensive statistical analysis of

time series data concerning national electricity demand and consumption in the caribbean

region. They used multivariate statistical techniques in their research, focusing on factor

analysis. This analytical approach was employed to reduce the dimensionality of the dataset

by identifying and associating variables exhibiting high levels of correlation. As a result of

this analysis, the researchers established a neural network model. The research employed

a variety of methodological sources. These methodologies included principal components

analysis, exponential smoothing, artificial neural networks (ANN), support vector machines

(SVM), fuzzy logic, adaptive neuro fuzzy inference system, hybrid models, autoregressive

moving average models, and grey Markov.
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The deep learning-based framework, as presented by Bedi and Toshniwal (2019), signifi-

cantly improves electricity demand forecasting by effectively exploring long-term historical

dependencies. This approach employs cluster analysis to segment consumption data based

on seasonal patterns and characterizes load trends to gain deeper insights into influencing

factors. The use of a multi-input multi-output long short-term memory (LSTM) network

model enhances the precision of predictions. This framework demonstrated its superiority

over several state-of-the-art prediction models, including ANN, recurrent neural networks

(RNN), and SVR models when it was applied to electricity consumption data from Union

Territory Chandigarh, India.

In Al-Musaylh et al. (2018) was presented a study focusing on short-term electricity demand

forecasting. The study’s main objective is to establish accurate and reliable models for elec-

tricity demand forecasting, with a specific emphasis on the utility of statistical models. These

models, including ARIMA and multivariate adaptive regression splines (MARS), which offer

valuable insights for renewable and conventional energy engineers, electricity providers, end-

users, and government entities. And also include the SVR model, the study employs data

from Queensland, Australia, sourced from the Australian Energy Market Operator (AEMO)

database, and predictor variables that include lagged combinations of electricity demand

data.

The study conducted by Son et al. (2020) emphasizes the importance of precise electric

power load forecasting, essential for ensuring the stability of power supply and optimizing

operations for power generation and distribution companies. The research introduces Deep

Learning (DL) techniques, specifically deep neural network (DNN) and LSTM, exploring

their potential applications in load forecasting. By comparing the performance of DNN and

LSTM models in load forecasting, the study evaluates the quality of the predictions using

some metrics, including mean absolute error (MAE), root mean squared error (RMSE),

coefficient of variation RMSE (CVRMSE), mean absolute percentage error (MAPE), deter-

mination coefficient, and computation time. Furthermore, the research explores an analysis

of power consumption patterns among different companies and their impact on load forecas-

ting. In conclusion, the study proposes a multivariate model for load forecasting, using the

capabilities of DNN and LSTM.

The main objective of the study by Ullah et al. (2022) is to enhance the accuracy of short-

term power load forecasting through the application of DL techniques. The authors introduce

a novel method that combines deep convolutional LSTM and stacked gated recurrent unit

(GRU) models, enabling the capture of temporal dependencies and patterns within energy

load data. Notably, this proposed approach demonstrates superior performance compared to

existing methods, as indicated by some prediction error metrics such as MAE, mean squared
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error (MSE), and the determination coefficient.

2.2. Probabilistic forecasting’s review

Probabilistic forecasting, in contrast to point forecasting, encompasses a set of techniques

that facilitate predicting the expected distribution of outcomes rather than a single future

value. This forecasting approach offers more comprehensive information by outlining the

range of probable values within which the true value may lie, enabling the estimation of

prediction intervals (Amat Rodrigo and Escobar Ortiz, 2023).

The article by Nowotarski and Weron (2018) emphasizes the significance of probabilistic

forecasting within the energy industry. It provides valuable insights into the effective usage

of probabilistic forecasting, offering guidelines and recommendations. The study also offers

an up-to-date overview of recent advancements in electricity price forecasting. Many models

are explored, including autoregressive (AR), ARIMA, generalized autoregressive conditional

heteroskedasticity (GARCH), SVR, ANN, and LSTM models. These models are examined

in the context of critical variables such as historical electricity prices, weather data, demand

data, generation capacity data, fuel prices, economic indicators, regulatory policies, and mar-

ket structure and competition.

In their research, Nowotarski and Weron (2018) expressed the actual dependent variable

at time t as yt = ŷt + εt where ŷt is the point forecast at time t and εt is the associated

error term. This framework moved beyond conventional point forecasting by extending its

scope to construct PIs. The objective of these PIs, set at a (1− α) confidence level, was to

define upper and lower bounds for yt. These bounds were established based on the α
2
and

(1 − α
2
)-th quantiles of the cumulative distribution function (CDF) of εt. The resulting PIs

were denoted as
[
L̂t, Ût

]
, where L̂t and Ût are the lower and upper bounds, respectively.

The concept of probabilistic forecasting, as articulated by Gneiting and Katzfuss (2014), cen-

ters on the establishment of probability distributions to describe future quantities. Moreover,

the research of Weron and Misiorek (2008) and Maciejowska et al. (2016) emphasize the sig-

nificance of point forecasts and the concurrent error distribution. The research conducted by

Jensen et al. (2024) presented a comprehensive framework for constructing distribution-free

valid PIs. This methodology is particularly adapted to address the challenges posed by non-

stationary and heteroscedastic time series data. A noteworthy aspect of this approach is its

applicability across some forecasting models, including DL structures trained on extensive

data squences.
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Guo et al. (2018) present in their study a comprehensive approach to short-term electricity

load forecasting and probability density forecasting. Their main objectives include identif-

ying key factors that influence accurate forecasting, assessing the DL model’s performance

using some metrics, and comparing the proposed method with established forecasting tech-

niques. The models developed in their research encompass a deep feedforward network and

a probability density forecasting method based on deep learning, quantile regression, and

kernel density estimation. Additionally, their study incorporates random forest and gradient

boosting ML models. The considered variables span a range of factors, including date-related

elements such as monthly, daily, and seasonal data, air-quality-related factors (e.g., PM2.5,

SO2, CO), weather-related components (including rainfall levels and daily temperatures),

and economic factors such as the consumer price index (CPI).

In the effort to mitigate the small-sample bias inherent in least-squares estimation, Cle-

ments and Kim (2007) considered in their study three distinct methods. Firstly, introduced

a bootstrap bias-corrected ordinary least squares (OLS) estimator. Additionally, the resear-

chers explored the application of the Roy–Fuller estimator and the Andrews–Chen estimator

as alternatives to the conventional OLS method. Their findings underscore the efficacy of

bootstrap PIs based on the Roy–Fuller estimator, which consistently outperformed the other

techniques.

Masarotto (1990) embarked on the calculation of bootstrap PIs for stationary autoregression

models, with a specific focus on the concept of memory. This concept concerns whether there

exists a subtle effect that maintains a lasting influence on the future predictions of a time

series over an extended temporal horizon. In scenarios involving time series models driven

by non-parametric noise, the determination of the lower and upper bounds for distribution-

based PIs involves the computation of quantiles derived from the kernel estimator of the

Probability Density Function (PDF) of εt. This approach aligns with the methodologies

established by Weron and Misiorek (2008), Nowotarski and Weron (2013), Misiorek et al.

(2006), and Panagiotelis and Smith (2008).

Khosravi et al. (2013) adopted a two-step process: firstly, employing a Neural Network (NN)

for point forecasting with k-fold cross-validation, and secondly, implementing the bootstrap

method to construct 90% PIs. Efron and Tibshirani (1993) highlighted several advantages

of the bootstrap method when compared to classical techniques for calculating PIs in the

context of stationary processes. Classical methods often hinge on the assumption of a nor-

mal or known error distribution, which may not hold true in practical scenarios. Bootstrap

PIs, on the other hand, circumvent this limitation by generating pseudo-data sets through

repeated resampling of residuals, using the estimated model.

It is important to mention that the accuracy of bootstrap Prediction Intervals (PIs) can be
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negatively influenced by the small-sample bias linked with OLS estimation. This is especially

notable when working with limited data and highly persistent or long-memory processes, as

noted by Clements and Kim (2007). To address this concern, Kilian (1998) introduced the

concept of “Bootstrap-after-bootstrap”, emphasizing a bias correction approach. One of the

key advantages of bootstrap PIs over distribution-based PIs is their ability to account for his-

torical forecast errors and parameter uncertainty simultaneously. Bootstrap intervals do not

rely on assumptions about the distribution of the time series and encompass the variability

stemming from parameter estimation, as emphasized by Pascual et al. (2005). This feature

enhances the robustness and versatility of bootstrap PIs in practical forecasting applications.

In their study, Gao et al. (2022) addressed the dual objectives of point forecasting and uncer-

tainty analysis within the domain of electricity demand prediction. Their approach incorpo-

rated several key elements, starting with the use of Pearson’s correlation coefficient which is

used in the study to perform feature dimensionality reduction. Through Pearson’s coefficient,

input characteristics that significantly affect electricity demand, such as socioeconomic and

meteorological factors, are filtered and reduced in order to improve forecasting efficiency. The

researchers introduced the variational mode decomposition (IVMD), an approach optimized

by the sparrow search algorithm (SSA), to decompose electricity demand series into distinct

subsequences. This segmentation of data facilitated a more granular analysis and forecasting

of demand dynamics. Furthermore, a hybrid forecasting model, denoted as IELM-Adaboost,

was devised by synergistically combining the sparrow search algorithm (SSA), ELM, and the

adaptive boosting algorithm (Adaboost).

In their study, Ning et al. (2022) introduced a probabilistic forecasting approach based on

the boosting stochastic configuration network (B-SCN). Their methodology encompassed a

comprehensive correlation analysis involving multidimensional input parameters. To enhance

model stability and construction, they introduced an adaptive B-SCN network architecture.

The creation of confidence intervals was facilitated through the application of the gaussian

process. Their research yielded notable outcomes, indicating that the proposed boosting-

SCN prediction model outperforms both the SCN model and other conventional forecasting

models in terms of forecasting accuracy. In addition, their findings highlight the effectiveness

of probabilistic forecasting in capturing uncertainties in electrical data.



3. Data description

3.1. Variables

In this project, the variables were categorized according to two perspectives. The first cate-

gory focused on factors such as demand behavior and temporal patterns. Simultaneously, the

second category honed in on weather data, encompassing meteorological parameters. This

classification set the stage for a comprehensive analysis, facilitating a deeper understanding

of the intricate dynamics influencing energy demand. The electricity demand and calendar

data were sourced from XM, which is the company specialized in the management of real-

time systems, wholesale energy market administration and the development of energy and

information solutions and services in Colombia1. This data is collected on a daily basis, the

variables were derived, including demand trends, variations in the series, and a COVID-19

variable indicating the period when the presence of COVID-19 had a significant impact.

Additionally, weather variables were obtained from IDEAM, the Institute of Hydrology, Me-

teorology, and Environmental Studies, a government entity in Colombia under the Ministry

of Environment and Sustainable Development2. The date range comprising the entire data-

set is from december 1, 2017 through september 30, 2023.

3.2. Descriptive analysis

In Figure 3-1, the time series of national electricity demand, also known as the Sistema

Interconectado Nacional (SIN), is presented. Two significant aspects of the series behavior

can be inferred. Firstly, there is a noticeable level change in the trend of the series after the

onset of the COVID-19 pandemic. Additionally, a pronounced decrease in demand during

the COVID-19 period is evident. The series also exhibits a discernible seasonal pattern

characterized by a weekly seasonal pattern. More details of the structure of the electricity

demand series will be given below.

1See: https://www.xm.com.co/consumo/informes-demanda/indicadores-de-pronosticos-oficiales-de-demanda
2See: http://www.ideam.gov.co/
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Figure 3-1.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh.

When visually analysing the energy demand series, it can be observed that there is a point

in time where the variability of the data changes significantly. In this period there was low

volatility or low variance. This change may indicate the presence of a level change in the

series, which could imply that the variance is not constant over time. This translates into

the need to use some transformation to stabilize variance in a parametric model.

The Figures 3-2, 3-3 illustrate the seasonality pattern of energy demand. The analysis

suggests that the months characterized by higher demand are january, august and september,

while wednesdays, fridays and thursdays exhibit the highest daily demand. It is noteworthy

that sunday registers the lowest demand, potentially attributed to its non-working or non-

industrial nature. This observation underscores the importance of considering both temporal

and weekly patterns in demand, shedding light on potential influences such as workdays and

industrial activities.

Figure 3-2.: Boxplot figure of electricity demand from december 1, 2017 through september

30, 2023 SIN kWh, on a monthly basis.
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Figure 3-3.: Boxplot figure of electricity demand from december 1, 2017 through september

30, 2023 SIN kWh, for weekdays.

Figure 3-4 presents the autocorrelation function (ACF), a key tool in the statistical analysis

of time series. The peaks highlighted in the ACF point to remarkable correlations at regular

intervals, revealing weekly seasonal pattern in demand. This observation suggests the exis-

tence of periodicity, specifically, a possible weekly repetition in the data. The slow decline in

ACF provides further evidence of a significant seasonal trend or pattern in the time series

studied. Which implies that the strength of time dependencies does not go fast to zero, which

is characteristic of non-stationary processes.

Figure 3-4.: Autocorrelation function (ACF) of electricity demand SIN kWh.

The Figure 3-5 shows the energy demand on the days of the week. From this figure you

can see the behavior of the demand on these days and it is evident that the days with the

highest demand are the days of the work week and also just after a monday holiday. The day

type variable 3 has forty-one categories as: 1st may, 2nd january, 20th july, 24th december,

25th december, 31st december, 7th august, 8th december, sundays before a holiday monday,

sundays before a holiday, monday in january, sunday, sunday of december vacation, sunday

3See: A.1 for the nomenclature of the categories of the day type variable.
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of january vacation, easter sunday, easter thursday, thursday, thursday holidays in december,

thursday holidays in january, holiday mondays, holiday mondays in january, monday, mon-

day of december vacation, monday of january vacation, tuesdays after a holiday monday,

tuesdays , tuesdays of december vacation, tuesdays of january vacation, wednesday, wed-

nesday of december vacation, wednesday of january vacation, easter wednesday, saturdays

before a holiday monday, saturdays before a holiday monday in january, saturdays, satur-

days of december vacation, saturdays of january vacation, easter saturday, friday, friday of

december vacation, friday of january vacation and easter friday.

Figure 3-5.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh by Type of weekdays.

The Figure 3-6 shows the days on which dates are culturally celebrated in Colombia, such as:

8, 24 and 31 december, the first two days of the year, the first of may which is International

labour day, 20 july which is Colombia’s independence Day and 7 august which is the battle

of Boyacá. From the figure it is not possible to infer a common trend between these days,

but it could influence demand.

Figure 3-6.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh by Type of cultural days in Colombia.

The Figure 3-7 shows the days that are holidays during holy week, allowing to indicate this

period of the year. The Figure 3-8 reflects the behaviour of energy demand on holidays and

also on days close to a holiday. It can be seen that the days that are close to a holiday,

such as the tuesday before a monday holiday, the saturday before a monday holiday, the
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sunday before a holiday and the sunday before a monday holiday in january have a similar

behaviour, which could indicate that this variable could capture some fluctuation in demand.

Figure 3-7.: Electricity demand from December 1, 2017 through september 30, 2023 SIN

kWh by Type of holy week days.

Figure 3-8.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh by Type of holidays and also on days close to a holiday.

The Figure 3-9 is the last of the types of days which captures some additional days that are

considered as holidays in the year, such as a friday in december or a saturday in december,

among others. In Figure 3-10 shows the electricity demand indicating the period that was

taken into account to make the COVID-19 period explicit. This was specified from march

19, 2020, when quarantine was decreed until july 23, 2021 because it can be seen that until

july 23, 2021, the series recovers and returns to the point where the pandemic began.

Figure 3-9.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh by type of holidays.
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Figure 3-10.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh, indicating the COVID-19 period.

In Figure 3-11 shows the electricity demand indicated since the period in which the level

change in the series occurred, since the trend change or in other words, the slope change.

The above originates from the date when COVID-19 began.

Figure 3-11.: Electricity demand from december 1, 2017 through september 30, 2023 SIN

kWh, indicating the Period of level change.

With respect to the climatic variables, Figures 3-12 and 3-13 show the precipitation and

maximum daily humid temperature respectively, which according to the literature, influence

the demand for electricity. Due to missing values in the daily maximum temperature from

august 1st to 30 september 2023, and daily total precipitation from august 3rd onwards, a

procedure was created to impute these values with an average between a sixty-day window

of time. If there is a null value in a given row, the average of the non-null values in a range

of sixty values is calculated. If the index of the current row is greater than or equal to,

the average of the previous sixty values is calculated. If the index is less than sixty, the

average of all rows before the current row is calculated. Finally, in order to have a practical

approach oriented towards simplicity and efficiency in the imputation process, the null value

is replaced with the calculated mean as a starting point. Importantly, this decision does not

rule out the relevance of addressing seasonal effects or more advanced imputes in subsequent

analyses, which could enrich the understanding of climate variability and its impacts. This

procedure is shown in Figure 3-14.
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Figure 3-12.: Daily precipitation from december 1, 2017 through september 30, 2023.

Figure 3-13.: Maximum daily humid temperature, from december 1, 2017 through septem-

ber 30, 2023.

Figure 3-14.: Imputation procedure with the average of a time window for the climatic

variables.

3.3. Variable selection

The procedure for selecting the variables was as follows: A multiple linear model was fit-

ted to see a first sighting of the relationship between calendar variables such as day type,
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COVID-19 epoch, the variable indicating the level change that occurred after the COVID-19

and the weather variables. The Equation (3-1) shows the model considered to have a first

perception of the significance of the variables in the variation of energy demand.

yt = β0 +
7∑

j=1

βjyt−j +
4∑

j=2

β6+jyt−7j +
14∑
j=1

αjxtj +
2∑

j=0

δjDtj + εt, t = 1, . . . , T. (3-1)

where εt is a random error term, with E(εt) = 0, V ar(εt) = σ2. The first seven lags, and from

the seventh lag, lags multiplied by seven up to lag 28 were taken into account, as it is a series

with weekly seasonality. The climatic variables, air relative humidity at two meters minimum

daily (xt1), air relative humidity at two meters maximum daily (xt2), air relative humidity

at two meters mean daily (xt3), maximum daily wet temperature (xt4), minimum daily wet

temperature (xt5), mean daily dry temperature (xt6), minimum daily dry temperature (xt7),

maximum daily dry temperature (xt8), mean daily dew point temperature (xt9), mean daily

wind speed (xt10), daily persistence (xt11), maximum daily precipitation (xt12), total daily

precipitation (xt13) and total daily solar brightness (xt14). And finally, a categorical varia-

ble denoted as Dot is used, which represents the type of day and takes the value of 1 in

each corresponding category and 0 otherwise. Likewise, another indicator variable denoted

as D1t is used to represent the period of greatest pandemic confinement, shown in Figure

3-10, which takes the value of 1 in the specified period and 0 otherwise. And finally, there is

another dummy variable denoted as D2t representing the level change that has arisen since

the pandemic, shown in Figure 3-11, which takes the value of 1 from the pandemic which

was from march 19, 2020.

The independent variables considered to adjust the multiple linear regression were all tho-

se described above, but finally the variables selected for their significance were: The day

type variable have p-values close to zero, suggesting that they are statistically significant

in predicting the demand, with at least one significant category in the day type variable,

the variable is already significant in explaining model variability, the first seven lags and

the multi-seasonal lags up to lag twenty-eight. A dummy indicating the COVID-19 period,

another dummy indicating the level change. This reaffirms what is mentioned in Figures

3-10 and 3-11. The Table 3-1 shows the variables with their respective p-values that were

significant in this first approach with the multiple linear regression adjustment.
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Variable Coefficient P-value

Demand lag 1 0.5690 0.000

Demand lag 2 0.0162 0.000

Demand lag 3 0.0521 0.000

Demand lag 4 0.0379 0.002

Demand lag 5 0.0513 0.000

Demand lag 6 0.0305 0.012

Demand lag 7 0.0581 0.000

Demand lag 14 0.0195 0.022

Demand lag 21 0.0390 0.000

Demand lag 28 0.0233 0.002

Type day 2 January 30344.264 0.000

Type day 1 May 13167.588 0.000

Type day 24 December 14485.944 0.000

Type day 31 December 13661.201 0.000

Type day 20 July 18410.364 0.000

...

Covid -2077.4939 0.000

Level change 1229.0048 0.000

Air relative humidity at two meters minimum daily -11.1740 0.300

Air relative humidity at two meters maximum daily 0.6855 0.141

Air relative humidity at two meters mean daily 0.9632 0.284

Maximum daily wet temperature 2174.8138 0.014

Minimum daily wet temperature -2729.5002 0.000

Mean daily dry temperature -1086.2311 0.223

Minimum daily dry temperature 3486.4075 0.000

Maximum daily dry temperature -504.8986 0.322

Mean daily dew point temperature 243.2641 0.806

Mean daily wind speed -442.5085 0.026

Daily persistence -4.0424 0.567

Maximum daily precipitation -1003.4236 0.000

Total daily precipitation 96.7449 0.001

Total daily solar brightness 1022.4075 0.000

Table 3-1.: Coefficients adjusted for each variable with their respective p-values.

The reduced model is shown in Equation (3-2), where the variables chosen to define the

reduced model are: The maximum daily wet temperature renowned for simplicity (xt1), mi-

nimum daily wet temperature renowned for simplicity (xt2), minimum daily dry temperature

renowned for simplicity (xt3), mean daily wind speed renowned for simplicity (xt4), maximum
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daily precipitation renowned for simplicity (xt5), total daily precipitation renowned for sim-

plicity (xt6) and finally total daily solar brightness renowned for simplicity (xt7). Likewise,

all lags included in the initial model and all categorical variables included in the initial model.

yt = β0 +
7∑

j=1

βjyt−j +
4∑

j=2

β6+jyt−7j +
7∑

j=1

αjxtj +
2∑

j=0

δjDtj + εt, t = 1, . . . , T. (3-2)

In the Figure 3-15 shows the standardized residuals and the fitted values given in the mul-

tiple linear model performed and referenced in equation (3-2). It is inferred that most of the

residuals (95.21%) are concentrated around the baseline (i.e. the line where the residuals

are zero), indicating that the model may be making good predictions. However, the positive

and negative residuals are not as evenly distributed on both sides, suggesting that the model

may have a systematic bias in its predictions. Also, the distribution of the residuals might

indicate that the variance of the residuals changes with the fitted values. This might suggest

that the model is not correctly capturing the variability in the data.

Figure 3-15.: Standardized residuals vs fitted values for the multiple linear model construc-

ted.

Figure 3-16 compares the observed values with the values predicted by the model, it is

inferred that since the observed values are very close to the perfect prediction line, it could

be that the model is making accurate predictions. However, there is a considerable dispersion

of points around the line, and this may indicate that the model is having difficulty accurately

predicting the energy demand. Figure 3-17 shows a temporal pattern of constant mean

residuals over time, which may indicate that the model could capture some of the variability

in energy demand. Importantly, at the time when the pandemic began, the errors were larger,

which supports the use of the covid indicator variable.
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Figure 3-16.: Observed vs fitted values for the multiple linear model constructed.

Figure 3-17.: Temporal pattern of constant mean residuals over time for the multiple linear

model constructed.

Finally, Figure 3-18 graphs the correlogram of the residuals for time dependence, showing

that some bars are not within the confidence bands, which means that there is sufficient
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evidence to reject the null hypothesis that there is no autocorrelation in these lags. Therefore,

the model not seems to adequately capture the autocorrelation structure in the data.

Figure 3-18.: Correlogram of the residuals for time dependence in the multiple linear model

constructed.

In summary, in order to select the variables that have an effect on the variation of demand

and at the same time demonstrate their respective significance, a multiple linear model was

adjusted, where the Adjusted coefficient of determination (Adj. R-squared) was 0.976, which

means that approximately 97.6% of the variability in the dependent variable (Demand SIN)

can be explained by the independent variables included in the model. However, there are

indications that this model is no longer suitable for capturing demand variability and is

therefore not the best for forecasting. For this reason, it is convenient to use other models

that do not necessarily have a linear relationship between the dependent variable and their

covariates.



4. Trained models

According to Zhang et al. (2023), modeling sequential data involves using ordered lists of

feature vectors indexed by time steps, rather than individual feature vectors. When dealing

with data that naturally occurs in sequences, the assumption of independence for individual

inputs is replaced by acknowledging temporal dependencies within the sequences. Mathema-

tically, this transition is expressed through specific formulations, like yt ∈ Rd, representing

feature vectors at each time step t, and P (yt|yt−1, . . . ,y1) capturing the temporal depen-

dence. Moreover, the concept of unsupervised density modeling, particularly in sequence

modeling P (y1, . . . ,yT ), plays a crucial role in estimating the likelihood of observing a se-

quence within a collection.

4.1. Machine Learning Models

In order to apply machine learning models to forecasting problems, we must transform the

time series into a matrix where values are associated with lags or prior time windows. Ac-

cording to Amat Rodrigo and Escobar Ortiz (2023), a lag associated with a time step is

defined as the value at a previous time step t. The matrix L is structured as a lag matrix

representing a time series with m lags. Suppose that we have a series with T periods or

observations. Each element yt−i in the matrix corresponds to the value of the time series

variable at time t with a lag of i periods. And each column represents a lagged observation

of the time series variable. The resulting matrix would be the following, whose dimension is

T −m+ 1 rows and m columns.

L =


ym ym−1 · · · y1
ym+1 ym · · · y2
...

...
. . .

...

yT yT−1 · · · yT−m+1

 . (4-1)

This transformation is crucial for enabling machine learning models to discern the dependen-

cies and patterns inherent between past and future values within a time serie. Using lags as

input features, these models can assimilate information from historical data to make predic-

tions about future values. The selection of the optimal number of lags as input features in the

matrix is a pivotal hyperparameter that requires meticulous tuning to achieve the optimal

.
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performance of the model. This procedure is the same as the traditional hyperparameter

search, which is based on generating combinations of lags with hyperparameters and finding

the model with the best result or the best combination, this procedure will be explained in

more detail in the section 4.2.

Let us illustrate the above with an example. Consider the construction of a lag matrix with

three lags. Suppose we have a time series where y1 = 5, y2 = 10, y3 = 15, y4 = 20, y5 = 25,

y6 = 30, y7 = 35. Then, m = 3 and T = 7. The resulting matrix would be the following.

L =


15 10 5

20 15 10

25 20 15

30 25 20

35 30 25

 . (4-2)

The idea of constructing a lag matrix is to include it in the covariate matrix, where xij is

the i-th value of the j-th variable for i = 1 . . . T and j = 1 . . . p. The number of lags to be

included in the matrix is determined in the hyperparameter search to be done in the training

process. But in the selection of variables it is suggested to iterate over the seasonal lags of

the periodicity of the series, in order to infer significance in the variation of the dependent

variable. Likewise, the covariates are included in the matrix, in this case, the variables to be

included in this matrix would be those set out in section 3.3 below. It is also important to

note that in this project only the lags of the dependent variable are taken into account. The

X matrix representing the covariate matrix is as follows.

X =


ym ym−1 · · · y1 x11 x12 · · ·x1p

ym+1 ym · · · y2 x21 x22 · · ·x2p

...
...

. . .
...

...
. . .

...

yT yT−1 · · · yT−m+1 xT1 xT2 · · · xTp

 . (4-3)

4.1.1. Linear Models

Let’s proceed from the conception of linear models to generalize the methods most commonly

used in these types of demand problems. Friedman et al. (2010) used the linear model

regression (4-4), which estimators are represented as β̂ols.

yt = β0 +

p∑
j=1

βjxtj + εt, t = 1, . . . , T. (4-4)

In equation (4-4), a time series regression model is presented to examine the relationship

between the response variable yt and a set of covariates xtj over different time periods t.

Here, t represents various time points considered. The term β0 is the model’s constant, βj

.

.

21
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are the coefficients associated with the covariates xtj, and εt is the error term capturing

any variability not explained by the model. This approach enables an understanding of how

covariates influence the target variable over time, providing valuable insights for trend and

pattern analysis in the time series. The objective then is to choose an estimator that fits the

data given the minimum sum of squared errors.

β̂ols = mı́n
β

 1

T

T∑
t=1

(
yt −

(
β0 +

p∑
j=1

βjxtj

))2
 . (4-5)

This linear model can be generalized in the first instance with a penalty to the coefficients,

i.e., restricting them in size. In ridge regression the penalty is l2 which is defined as l2 −
norm, ∥β∥22 =

∑p
j=1 β

2
j , in this procedure, there is a parameter called λ which controls the

amount of shrinkage, the higher the value of λ, the larger the quantity of shrinkage, the ridge

estimate is represented by the following equation (4-6).

β̂ridge
λ = mı́n

β


T∑
t=1

(
yt −

(
β0 +

p∑
j=1

βjxtj

))2

+ λ

p∑
j=1

β2
j

 . (4-6)

The other methodology is least absolute shrinkage and selection operator (lasso), proposed

by Friedman et al. (2010). It is similar to ridge regression, but with some differences. Lasso

uses an l1 penalty defined by
∑p

j=1 |βj| and this results in a sparse statistical model, it means

that there is a small number of predictors that have a significant role. And if the number

of variables is greater than the number of observations, then there will be infinite solutions

that overfit the data.

β̂lasso
λ = mı́n

β


T∑
t=1

(
yt −

(
β0 +

p∑
j=1

βjxtj

))2

+ λ

p∑
j=1

|βj|

 . (4-7)

The fourth methodology is elastic net proposed by Zou and Hastie (2005) adopt a penaliza-

tion that is a combination of the ridge and lasso penalties and its estimator is represented

as β̂en
λ,α. Following equations represent the parameters estimation with each methodology:

β̂en
λ,α = mı́n

β

 1

2T

T∑
t=1

(
yt −

(
β0 +

p∑
j=1

βjxtj

))2

+ λ

[
p∑

j=1

(1− α)
1

2
β2
j + α |βj|

] . (4-8)

They employ distinct penalties that result in particular shrinkage patterns. In ridge regres-

sion, the quadratic penalty shrinks the parameters toward the origin. In lasso, the penalty

on the sum of absolute values has the effect of reducing the least relevant parameters to

zero, thus imposing a certain level of dispersion. In the elastic net an intermediate effect

is achieved. Both λ and α play the role of hyperparameters: λ controls the strength of the

.

.

.

.
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parameter shrinkage, while α tunes the balance between penalties on the l1 and the l2 norm

of β. Another notion to emphasize is that three methods share the same standard quadratic

loss.

4.1.2. Ensemble Methods

An Ensemble Model is a Machine Learning strategy in which predictions from different mo-

dels join forces to improve accuracy and performance. Rather than relying on just one model,

Ensemble Methods combine several to deal with data complexity. There are two main ap-

proaches: Bagging, which trains several instances of the same model on different sets of data

and combines their predictions for a more reliable outcome, and Boosting, where models are

built one after the other, with each new model focusing on fixing mistakes from the previous

ones. Ensemble Models are widely used because they make our predictions better, especially

when dealing with new and unseen data (Mohammed and Kora, 2023).

According to Breiman (2001), Random Forests constitute an ensemble of predictor trees,

where each tree’s dependence relies on values from an independently and identically distri-

buted random vector. This vector is sampled independently for each tree within the forest.

In simpler terms, a Random Forest is a collection of decision trees that work together to

enhance model accuracy and stability. The ideas presented in the paper are also applicable

to regression problems. In fact, the paper mentions that the adaptive bagging algorithm in

regression was designed to reduce bias and operates effectively in both classification and

regression. Random forests have also been shown to give competitive results in regression

problems.

According to Friedman et al. (2000), Boosting is one of the most important recent deve-

lopments in classification methodology that works by sequentially applying a classification

algorithm to reweighted versions of the training data and then taking a weighted majority

vote of the sequence of classifiers thus produced. Boosting can be viewed as an approxi-

mation to additive modeling on the logistic scale using Bernoulli maximum likelihood as a

criterion. The idea is to fit a sequence of weak models to the data, where each model is

trained on a modified version of the data that emphasizes the examples that were misclas-

sified by the previous models. In the context of boosting, a weak model refers to a simple

and weak predictive model that is used as a building block in the construction of a more

complex and accurate model through the boosting technique. The final prediction is then

obtained by combining the predictions of all the weak models using a weighted majority vote.

In his paper Friedman (2001) describes how Boosting in regression works by putting together

simpler regression models to create a more powerful additive model. In each iteration, a weak

model is fitted to the residual of the previous model and added to the current model. This

23
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process repeats until a predetermined number of iterations is reached or a desired accuracy

is achieved. The goal is to enhance the accuracy of the final model by combining multiple

simpler models. The Boosting algorithm can be applied to various fitting criteria, such as

mean squared error, mean absolute deviation, and Huber loss. The Gradient Boosting Ma-

chine algorithm relies on gradient descent, a technique used to minimize a loss function.

The specific loss function that is minimized by the Gradient Boosting Machine algorithm

depends on the problem being solved.

Based on Breiman (2001) Random Forests and Gradient Boosting, two prominent ensemble

learning techniques, diverge in their approach to constructing decision trees. Random Fo-

rests assemble multiple independent decision trees, mitigating overfitting by averaging their

predictions. In contrast, Gradient Boosting incrementally builds a single decision tree in

each iteration, incorporating it into the evolving model. While Random Forests randomly

sample features at each tree node, Gradient Boosting employs all features in every iteration.

Moreover, Random Forests derive a final prediction by averaging the predictions of all trees,

while Gradient Boosting uses a weighted sum. Notably, Random Forests demonstrate a lower

susceptibility to overfitting due to the independent construction of trees and the subsequent

averaging of predictions. Conversely, Gradient Boosting may be prone to overfitting when

constructing too many trees or utilizing overly complex ones.

A new version of Boosting is explained in Nielsen (2016), XGBoost, it fits a new decision

tree to the training dataset. After fitting the tree, XGBoost adds it to the existing ensemble

of trees and adjusts the weights of the existing trees to better fit the training data. It uses a

boosting technique called “Newton boosting”, which involves a way of adjusting the weights

of existing trees during each boosting step. This approach allows to fine-tune tree weights

more precisely and efficiently compared to traditional gradient boosting methods. To pre-

vent overfitting, it applies L1 and L2 regularization techniques shown in subsection 4.1.1,

to penalize tree weights. It also gives the option to penalize individual trees, affecting both,

the structure of the trees and the weights of their branches to make the predictions more

reliable. Additionally, it introduces a randomization feature that can make the individual

trees less correlated, potentially reducing the variability of the model. Further mathematical

details of the XGBoost method can be found in appendix A.3.

4.1.3. Deep Learning Models

So far, we have offered a comprehensive exploration of machine learning, we will now discuss

deep learning, one of the specialized subsets within this field. The focus here is on NNs with

multiple layers. The conceptual line proposed so far has been to start building regularized

regression models, followed by ensemble models such as random forest and gradient boosting

24
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and finally more complex DL models. The aim is to find the model that best captures the

generality of electricity demand in Colombia. More details of the ensemble models and the

deep learning models built can be found in appendix A.4.

4.2. Model selection

Some methods are available to choose the model that effectively captures trend, seasonality,

regular patterns, and even potential uncertainties. Metrics for predictive performance such

as mean squared error, mean absolute error, and mean absolute percentage error are com-

monly employed for this purpose. However, it is imperative not only to assess how well the

model performs in fitting a specific dataset but also to evaluate its predictive capacity, en-

suring it can generalize learning and exhibit robust predictive performance on evaluation set.

For all models tested, the following procedure was carried out: The dataset is split into three

periods for training, validation, and testing. The training set spans from december 1, 2017, to

may 31, 2023, with a total of 2008 data points, which corresponds to 94.27% of the data set.

The validation set covers june 1, 2023, to september 23, 2023, containing 115 data points,

which corresponds to 5.40% of the data set. Finally, the testing set comprises the dates

from september 24, 2023, to september 30, 2023, with a total of seven data points, which

corresponds to 0.33% of the data set. This is because the size of the test set must be equal

to the seasonal periodicity and therefore periodicity in which the prediction or backtesting

process is being done.

4.2.1. Backtesting

According to Amat Rodrigo and Escobar Ortiz (2023), backtesting involves retrospectively

assessing the performance of a predictive model by applying it to historical data. Essentially,

it represents a specialized form of cross-validation specifically applied to preceding time pe-

riods. The main objective of backtesting is to rigorously assess the precision and efficacy

of a model while identifying potential issues or areas for improvement. Model performance

can be evaluated on previously unseen data by analyzing historical data. This constitutes a

critical phase in the modeling process, playing a key role in ensuring the model’s reliability.

Based on Brownlee (2017), backtesting can be executed through diverse techniques, ranging

from straightforward train-test splits to more sophisticated approaches like rolling windows

or expanding windows.

In Amat Rodrigo and Escobar Ortiz (2023), the model is trained on each iteration, increa-

sing the training set while preserving the data temporal order. The model is trained before

making predictions each time, using all available data up to that point in the training pro-
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cess. This approach contrasts with conventional cross-validation, where data is randomly

partitioned into training and validation sets. And this sequential approach allows the model

to be tested on progressively larger amounts of historical data, facilitating a more accurate

assessment of its predictive capabilities.

Performing backtesting with refit includes the following steps: Start by training the model

with an initial training set. Once the model is trained, use it to predict the next seven steps

in the data, keeping these predictions for later evaluation. Expand the training set, retrain

the model with the updated data, and use it again to predict the next seven steps. Repeat

the last two procedures until the entire series has been tested. The above procedure is done in

a sequential and orderly manner seven by seven until all the training data is completed. This

refit is every seven days, due to the seasonal periodic is weekly. This approach ensures that

the model is evaluated on multiple sets of test data, leading to a more accurate evaluation

of its predictive capabilities, (Amat Rodrigo and Escobar Ortiz, 2023).

In Figure 4-1 illustrates the process described above, called “Backtesting with refit and

Figure 4-1.: Backtesting with refit and increasing training size (fixed origin).

increasing training size with a fixed origin”, where the training part goes from december 1,

2017 to may 31, 2023, where the validation data and the backtesting process begins. This

process ends in september 23, 2023 where finally starts the last seven days which is the test

set. The purpose of this strategy was to ensure a precise assessment of the model and build

confidence in its ability to predict new data accurately, comparing various retraining frequen-

cies and choose the one where the error metric consistently demonstrates an improvement.

With the help of backtesting, this pattern can be accurately simulated. This procedure can

be found in more detail in A.2.
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4.2 Model selection 13

4.2.2. Model results

This section will present the results of the models developed for the point forecasting of

electricity demand in Colombia. The variables finally used to test all models are: day type,

COVID pandemic period indicator variable, level change indicator variable, total daily pre-

cipitation, maximum daily wet temperature, mean daily wind speed and daily persistence.

This was also supported by testing some combinations of weather variables in the models

and evidencing the forecasting performance in models. And the first twenty eight lags of

electricity demand. All the development was done in Python and the code can be found in

the repository exposed in the Appendix A.6.

Regression Models

The type of models used to predict daily electricity demand was divided into three categories;

regression models starting with the Rigde model, the Lasso model and the ElasticNet model.

Followed by ensemble models such as Random Forest and XGBoost. And finally Support

Vector Machine models such as SVM and linear SVM. In this sub-section, the results of those

models will be presented. All models include the same set of variables selected and discussed

in section 3. It is also important to note that all models underwent the same pre-processing

which involved standardizing features by removing the mean and scaling variance and coding

the categorical variables.

The Figure 4-2 shows the predictions of all the models tested. In Figure 4-3 shows the fore-

cast for the last seven days for the best models in each of the three subcategories of Machine

Learning type models, among the regularized linear models are Ridge and Lasso with the

best result. Among the ensemble models, the model with the best predictive performance

was XGBoost. And finally for SVM, the best performing model was the Linear SVM Model.

Including the forecast made by XM 1, which is the regulatory entity for energy in Colombia.

Figure 4-2.: Point forecasts for the last seven days of the data set, for all models tested,

given by MAPE.

1See: https://www.xm.com.co/consumo/informes-demanda/indicadores-de-pronosticos-oficiales-de-demanda
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14 4 Trained models

Figure 4-3.: Point forecasts for the last seven days of the data set, whose predictive perfor-

mance was good, given by MAPE.

A first inference from the results is that the forecasts of the selected models are close to the

actual value. In the Table 4-1 shows the optimal parameters for the selected models without

including the XM forecast because they are the owners of the parametric information of the

models they built. These include the number of lags of the dependent variable, which is the

electricity demand. The regularization parameter in each case, whether it includes intercept,

maximum number of iterations, and the type of optimizer in the case of regularized models.

The ensemble model iterated on four hyperparameters: the number of lags included, the

maximum number of tree depths, which means, it is the maximum number of partitions for

each tree in the ensemble model. Increasing this value will make the model more complex

and more likely to overfit. And finally, the number of estimators, which is the number of

gradient boosted trees. Equivalent to number of boosting rounds. These parameters are those

for which each model generated the best predictive performance.

In Table 4-2 shows the predictive performance metrics in each model, such as mean squared

error, mean absolute error, and mean absolute percentage error. Due to the MAPE expresses

errors as a percentage of the actual value, the selection of the best model was based on this

metric, because it is easy to interpret. A lower MAPE indicates better model performance,

as it means the predictions deviate less in percentage terms from the actual values. It can be

seen that the models are organized from the one with the lowest MAPE to the model with

the highest MAPE. Both MAE and RMSE confirm that the Ridge and Lasso models are the

most accurate in this dataset, as they show the lowest values in both metrics. These metrics

indicate that these models have a better fit and predictive ability compared to the other

models evaluated. Details of the in-sample predictive performance metrics can be found in

Appendix A.5.
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4.2 Model selection 15

Model Optimal Parameters

Ridge Energy demand lags: [1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21]

λ: 0.037896169806447236

Fit Intercept: True

Solver : auto

Tol: 0.0001

Lasso Energy demand lags: [1 2 3 4 5 6 7 8 9 10 11

12 13 14 ]

λ: 1.5998587196060572e-05

Fit Intercept: True

Max iter: 1000

Selection : cyclic

Tol: 0.0001

XGBRegressor Energy demand lags: [ 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21]

Objective: reg:squarederror

Max depth: 5

N estimators: 30

Table 4-1.: Optimal Parameters for the Best Trained Models.

Model MAPE (%) MAE (KWh) RMSE (KWh)

Ridge 1.016 2355.948 2793.564

Lasso 1.017 2359.716 2798.997

ElasticNet 1.034 2416.559 2999.887

XGBRegressor 1.084 2499.921 3239.548

RandomForestRegressor 1.337 3079.088 3374.579

LinearSVR 1.212 2831.653 3295.441

SVR 1.273 2814.902 3743.540

MLPRegressor 2.379 5521.892 6082.823

Table 4-2.: Out-of-sample predictive performance metrics statistical and ML models.

Finally, the regression model chosen is Lasso, since it is one of the two models with the

best predictive performance and it was also chosen for its parsimony in the parameters and

variables, due to the type of regularisation it handles. The theoretical model is presented in

equation (4-9), where yt represents the energy demand in Colombia at time t, yt−j represents

the lags of the energy demand which includes the fourteen optimal lags (m = 14), xtj

represents each weather covariate j at time t, which are total daily precipitation, maximum
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16 4 Trained models

daily wet temperature, mean daily wind speed and daily persistence and finally the Covid

indicator variable, the level change and the day type are represented as Dtj. These covariates

were discussed in section 3, the covariate matrix has the structure shown in matrix 4-3, and

following is the matrix for the selected model:

yt = β0 +
14∑
j=1

βjyt−j +
4∑

j=1

αjxtj +
2∑

j=0

δjDtj + εt, t = 1, . . . , T. (4-9)

X* =


y14 y13 · · · y1 x11 x12 · · ·x1p

y15 y14 · · · y2 x21 x22 · · ·x2p

...
...

. . .
...

...
. . .

...

yT yT−1 · · · yT−15 xT1 xT2 · · ·xTp

 . (4-10)

The Figures 4-4, 4-5 and 4-6 gives an overview of how the different models compare in terms

of their ability to predict observed values. And also, provides information on the goodness

of fit of the models by looking at the distribution and patterns of forecast error over time.

In general it is evident that the spread of the points around the line (where the forecast

error is 0) for the prediction of some days is uniform suggesting that some models are close

to adequately capturing most of the variability in the data. It is important to note that

the regularized models, forecast errors are closer to zero than the other models. It can be

inferred that the regularized models are closer to the real points.

Figure 4-4.: Overview of how the different models compare in terms of their ability to

predict observed values.

.
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4.2 Model selection 17

Figure 4-5.: Forecast errors for all trained models.

Figure 4-6.: Forecast error for Lasso, Ridge, ElasticNet and Extreme Gradient Boosting

models.

Figure 4-7 provides information on the tendency of each model to over- or underestimate

predictions and helps to assess the relative quality of the models in terms of bias. It is calcu-

lated as the difference between the forecast and the average actual value in each model. From

which, it can be inferred that most models underestimate the values to be predicted. Ho-

wever, in terms of comparability, it is confirmed that the regularized regression models and

Extreme Gradient Boosting could underestimate to a lesser extent than the other models.

A figure that goes into more detail on the bias for each model can be found in Appendix A.5.
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18 4 Trained models

Figure 4-7.: Bias for all trained models.

Figure 4-8 allows us to visualise how the Lasso model predictions compare with the actual

values and how these differences vary across the observed values. There is a pattern of

concentration in the differences below the baseline, indicating that the prediction was lower

than the actual value at most points. It can therefore be inferred that for these values, the

Lasso model tends to underestimate the values.

Figure 4-8.: Lasso model predictions compare with the actual values.

Figure 4-9 shows the observed values with respect to the fitted values within the sample,

which shows that most of fitted values are dispersed around the line of perfect fit. This is an

indication that the model may be capturing most of the variability in energy demand.

32



4.2 Model selection 19

Figure 4-9.: Observed vs. fitted values for the Lasso model for validation data.

Figure 4-10 shows the pattern in the residuals as a function of time, in which, it is observed

that in general, the residuals are randomly distributed around zero.

Figure 4-10.: Residuals over time for the Lasso model (In-sample).
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20 4 Trained models

Deep Learning Models

Following the search for a model that could better generalize the behavior of the daily energy

demand, Machine Learning models were also built but focused on Deep Learning. These we-

re simple RNN, LSTM, Gated Recurrent Units (GRU) and finally Bidirectional LSTM was

estimated. But finally the model with the lowest MAPE is the one selected to expose and

explain. In this sub-section the general results of the DL models and the detailed results of

the chosen model will be presented.

In Figure 4-11 show the point forecast for all DL models trained, one inference that can be

drawn is that the forecasting of such models, which are more complex and rely on captu-

ring deeper patterns in the data, do not seem to be superior to the more classical ML models.

Figure 4-11.: Prediction of four additional deep learning models for the same test data set,

the last seven days of database, and Real demand and XM Forecast.

In Table 4-3 show the optimal parameters for the selected DL model, which is LSTM, with

a MAPE of 2.93%. The parameters include the type of model, which is a sequential model

with LSTM layers, dropout layers, and a final dense layer for regression tasks. The hyper-

parameters, such as the number of units in each LSTM layer, activation functions, dropout

rates, and the number of layers. And the model is compiled with the Adam optimizer.

This parameters indicates that the model is defined sequentially, layer by layer. There is one

LSTM layer with 96 long-term memory units. LSTM units are the basic units that make

up an LSTM layer. Each unit has an internal structure that allows long-term information

to be remembered. A dropout layer has been applied with a dropout rate of 96% after the

first LSTM layer. The dropout layer is used to regularise the model and avoid overfitting by

randomly switching off a percentage of units during training. It also has another LSTM layer

with 128 units, another two layers each with 32 units and finally there is another dropout

layer with a dropout rate of 32% after the third LSTM layer. In summary, this LSTM model

has an architecture with three stacked LSTM layers, each followed by a dropout layer for
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4.2 Model selection 21

regularisation. The units in the LSTM layers are 96, 128 and 32 respectively.

Model Optimal Parameters

LSTM Model: sequential

lstm : 96

dropout: 96

lstm 1 : 128

lstm 2 : 32

lstm 3 : 32

dropout : 32

Table 4-3.: Optimal parameters for the deep learning model with best MAPE.

And finally in the Table 4-4 shows the predictive performance metrics for each trained DL

model. The model with the lowest MAPE among the DL-type models is selected. However,

compared to the lasso model, which was chosen among the models built within the set of

regression models, the LSTM model fails to improve the predictive performance of lasso.

Model MAPE (%) MAE (KWh) RMSE (KWh)

RNN 3.02 6812.311 7634.647

LSTM 2.93 6658.487 7114.551

GRU 3.11 7203.061 7352.403

Bidirectional LSTM 3.08 7033.503 7300.022

Table 4-4.: Out-of-sample predictive performance metrics for different deep learning models.

The Figure 4-12 and 4-13 provide information on the goodness of fit of the models by

looking at the distribution and patterns of forecast error over time. From which, it can be

inferred that the deep learning models do not approach the real point as well as the pre-

viously analyzed models do. Finally, Figure 4-14 shows information on the tendency of each

model to overestimate or underestimate predictions and helps to assess the relative quality

of the models in terms of bias. In which, it can be inferred that there is a generalized unde-

restimation in all deep learning type models.
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22 4 Trained models

Figure 4-12.: Overview of how the DL models compare in terms of their ability to predict

observed values.

Figure 4-13.: Forecast-error for Deep Learning models.

Figure 4-14.: Bias for Deep Learning models.
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4.2 Model selection 23

In conclusion, in this project, the model finally selected is Lasso, given its predictive capacity

over the other models. Also because of the proportion of bias given in their forecasts compared

to the other models. And finally, because its in-sample fit shows acceptable behavior. We

considered detailing the fit of models whose predictive performance in terms of MAPE and

out-of-sample was less than 2%. For this reason, the prediction intervals that will be shown

in chapter ?? will be calculated from the values predicted by this model. Details of the

in-sample predictive performance metrics can be found in Appendix A.5.
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5. Prediction intervals

We can define the prediction intervals (PIs) as in Jensen et al. (2024). Let x ∈ X and y ∈ Y
be the input and label random variables respectively. f(x, y) the joint distribution of x and

y, and f(y|x) represents the conditional distribution of y given x. A PI was created using a

sample collections {(xt, yt), t = 1, 2, ..., T}, it is given by ζ̂(x) = [L(x), U(x)], where L and

U are functions. In other words, this approach uses these functions to define a range within

which the predictions for the output variable are expected to fall for a given input value.

The length of a PI is given by (U(xT+m) − L(xT+m)), where m represents the m forward

predictions. This interval is conditioned by a confidence level, and this level is the probability

that a new observation falls within the interval. This means that a more uncertain prediction

interval produces broader intervals. A PI is valid, if the coverage probability for a new test

point is guaranteed to be greater or equal to the designed confidence level.

5.1. Prediction intervals via bootstrap

According to Amat Rodrigo and Escobar Ortiz (2023), we can define bootstrapping method

as an approach which creates numerous predictions. Each iteration involves selecting a sample

from a group of previously observed prediction errors, resulting in a distinct set of predictions

for every bootstrapping process. In other words, the error in a one-step-ahead forecast is the

difference between the actual value and predicted value εt = yt − ŷt|t−1, known as forecast

error. By assuming that future errors will be similar to past errors, it is possible to simulate

different predictions by taking samples from the collection of errors previously seen in the

past and adding them to the predictions.

According to Amat Rodrigo and Escobar Ortiz (2023), the iterative implementation of this

procedure generates a set of predictions or bootstrapping iterations that are highly varied,

reflecting the range of potential outcomes derived from the variability predicted in the fo-

recasting process. Using the outcome of the bootstrapping process, prediction intervals can

be computed by calculating the α
2
and 1 − α

2
percentiles at each forecasting horizon. The

procedure described above is shown in figures 5-1 and 5-2.
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Figure 5-1.: Diagram bootstrapping prediction process. Figure is taken from Amat Rodrigo

and Escobar Ortiz (2023).

Where T represents the sample size, and the sub-index represents the position of the lag

value. T+1 represents the predicted value of the first value to be predicted, T+2 represents

the predicted value of the second value to be predicted, and so on, the forecast error is added,

and when finally the totality of values to be predicted is obtained, a bootstrap sample will

be obtained. This process is repeated to create as many bootstrap samples as desired. The

Figure 5-2 is the completed process, where each row represents the sample obtained from

the same point several times, each time sampling is generated is one row.

Figure 5-2.: Bootstrapping predictions resulting from bootstrapping process. Figure is ta-

ken from Amat Rodrigo and Escobar Ortiz (2023).

Figure 5-3. presents ten bootstrap samples generated for the calculation of the prediction

intervals for the test data. The process shown in 5-1 is repeated for the creation of each

bootstap sample shown in figures 5-2 and 5-3.
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12 5 Prediction intervals

Figure 5-3.: Lasso ten Bootstrapping predictions.

5.2. Conformal Prediction

According to Kath and Ziel (2021), Conformal Prediction (CP) predicts intervals based on

errors, makes weak assumptions about data characteristics, and can be used to create point

prediction models. In comparison to other models, it provides more accurate and reliable pre-

diction intervals than existing point prediction estimators. The article investigates the ability

of CP to adapt to different market conditions while maintaining electricity price uncertainty.

The general procedure is as follows: Given a set of training data, a point prediction model

is trained to predict the target variable. This model can be of any type, such as a linear

regression model or a neural network. A test instance is then presented to the model, and it

produces a point prediction. This point prediction is a single value that represents the model

which give the best estimate of the target variable for the given input. Non-conformity scores

are computed for the test instance. It measures how much the test instance deviates from

the training data. This is done by comparing the test instance to the training data and

computing a score that represents the degree of deviation. The non-conformity score can be

computed in different ways, depending on the type of data and the model being used. In the

equation (5-1) presents a way to calculate Non-conformity scores.

λt = |yt − ŷt| . (5-1)

These non-conformity scores are calculated for the test data, so they range from T+1 to

M, where T is the observation where the training data ends. The aim of CP is to find the

smallest value of lambda which satisfy the condition r(λ) ≥ 1 − α where r(λ) represents

the fraction of training instances whose nonconformance values are lower than λ. In order

for prediction intervals to be conformal, λ must be minimized, since it determines the lower

bounds of a prediction interval. This is represented by equation (5-2).

λα
M+1 = mı́n {λ ∈ {T + 1, . . . ,M} : r(λ) ≥ 1− α} ,

r(λ) =
# {t ∈ {T + 1, . . . ,M} : λt < λ}+ 1

#Ztest + 1
.

(5-2)

.
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5.2 Conformal Prediction 13

where Ztest is the test data set used to predict data not seen by training. The equation (5-3)

represents the prediction interval.

yα,M+1 = ŷM+1 ± λα
M+1. (5-3)

In this case, point T+1 is chosen to illustrate how the range prediction is performed when

considering a future point in the time sequence. Therefore, when calculating the forecast

interval for the forward point T+1, one is considering the information available up to point

T to make the forecast and estimate the uncertainty associated with the forward projection

in the time series. According to Stankeviciute et al. (2021), CP is a machine learning frame-

work that provides theoretical guarantees of frequentist coverage for uncertainty estimation.

In this framework, CP sets are constructed that contain the true label with a given probabi-

lity of coverage. The paper proposes a framework for time-series forecasting that is based on

RNNs and provides uncertainty estimates for any multi-horizon forecast predictor and any

dataset.

According to Xu and Xie (2023), CP is a method for constructing prediction intervals that

provides a guarantee of coverage without making assumptions about the underlying distribu-

tion of the data. It generates valid marginal coverage for the test point under the assumption

of exchangeability in data. Exchangeability refers to the assumption that the order of the da-

ta points does not matter, and that the distribution of the data is invariant to permutations

of the data points. In the context of CP, exchangeability is a key assumption that allows for

the construction of prediction intervals with guaranteed coverage. However, this assumption

is not always reasonable for time series data, which are often characterized by temporal

dependencies and non-stationarity. As a result, adapting CP methods beyond exchangeable

data has been gaining significant interest in recent years. The paper explores adapting CP

for time series beyond exchangeable data, considering methods that account for unknown

distribution shifts in test data. However, the assumption of data exchangeability in time

series limits the direct applicability of these methods.

The paper of Xu and Xie (2023) proposes a new method called EnbPI that extends the

existing literature on CP for time series by considering the case of dependent data and

providing a unified treatment of conditional and marginal coverage guarantees. It ensures

that the prediction intervals constructed using this method contain the true value of the

time series with a given probability, both at specific time points and across all time points.

A prediction range is generated by calculating a series of scores for every data point in

the time series. As a result of these scores, a set of potential intervals is generated, and the

shortest interval that satisfies the coverage probability is chosen as the final prediction range.

According to Xu and Xie (2023), the general procedure of EnbPI strategy for estimating pre-

diction intervals on single-output time series is follow: A time series dataset and an ensemble
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of prediction algorithms are the inputs. For each prediction algorithm in the ensemble, train

the prediction algorithm on a bootstrap sample of the time series dataset, use the trained

algorithm to make predictions for the entire time series, compute the prediction errors (the

difference between the predicted and actual values) for each time point in the time series.

And compute the conformal scores (a measure of how well the prediction errors conform to

a certain distribution) for each time point in the time series. In summary, they apply each

prediction algorithm in the ensemble to the bootstrap sample of the time series dataset and

compute the conformal scores for each time point in the time series. Since we have multiple

prediction algorithms in the ensemble, we obtain multiple sets of conformal scores for each

time point.

The following is to combine these multiple sets of conformal scores to obtain a single set of

conformal scores for each time point in the time series. This is typically done by taking the

average of the conformal scores across all the prediction algorithms in the ensemble. The idea

behind this step is to obtain a more robust estimate of the conformity of the prediction errors

to a certain distribution by combining the information from multiple prediction algorithms.

Use the conformal scores to construct a set of candidate prediction intervals for each time

point in the time series, and choose the shortest prediction interval among the candidate

intervals that satisfies a given coverage probability (Xu and Xie, 2023).

The EnbPI algorithm is designed to be computationally efficient and scalable to large data-

sets. This method takes into account the dynamics of time series data and provides prediction

intervals that adapt to the specific characteristics and noise present in the time series. The

EnbPI algorithm is based on the concept of conformity scores, which measure the conformity

of predictions with the training data, and uses block bootstrapping to generate prediction

intervals that capture the uncertainty in the time series data. This approach allows for more

accurate and reliable uncertainty estimates in time series analysis (Xu and Xie, 2023).

In conformal prediction method, α is one of the key parameters used to construct prediction

intervals, it is between 0 and 1, and represents the uncertainty of the confidence interval. A

lower α produces a larger or more conservative prediction interval. And a larger α implies a

narrower interval, or in other words, it generates a more regularized interval (Xu and Xie,

2023).

5.3. Evaluating prediction intervals

Gao et al. (2022) showed one way to evaluate prediction intervals, they used prediction

interval coverage probability (PICP) which is presented in the equation (5-4). The prediction

42
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interval with larger PICP value means that the prediction interval obtained is more reliable.

PICP =
1

T

T∑
t=1

εt,where εt =

{
0, yt ̸∈ [ℓα,t, uα,t]

1, yt ∈ [ℓα,t, uα,t]
, (5-4)

where εt denotes the boolean variable, yt represents the dependent variable and uα,t and ℓα,t
represent the upper and lower bound of corresponding interval. According to Nowotarski

and Weron (2018) and Kath and Ziel (2021) there are also other metrics such as the winkler

score which is also used to quantify the reliability and the width of the prediction interval.

Zhang et al. (2016) introduced a specific metric for evaluating prediction intervals, thereby

extending the estimation of quantiles, known as the Pinball Loss Function. This function

plays a crucial role in assessing the accuracy and precision of these prediction intervals, the-

reby enhancing the comprehensive understanding of quantiles within the domain of quantile

predictive modelling. In this development the PICP was used to assess the coverage or width.

Finally, the winkler score metric was not used because the Python development was not re-

liable. And pinball loss was also not used, since its focus is on assessing accuracy in quantile

regression.

5.4. Prediction intervals results

This section is dedicated to expose the results obtained from applying the methods to cal-

culate the forecast intervals, the order of this section is as follows: First we will expose the

prediction intervals using bootstrap for the chosen model in ML section 4, Lasso. Second we

will expose the prediction intervals using CP for the chosen model. The scope of this project

is to calculate the prediction intervals only for the chosen model, i.e. the model with the

highest point predictive capability. And the limitation to calculate prediction intervals in DL

models are limited because the development of the code used does not incorporate the open

source library written in Python that provides an interface to build and train neural network

models used in this project. The metrics obtained are global, the coverage is an average of

all the points that do fall within the interval.

The prediction intervals based on bootstrap residuals for validation data is presented in the

Figure 5-4, which was obtained with an effective coverage score of 84.34% which means

that approximately 84% of the predictions in the validation data are within the prediction

interval. There are some actual electricity demand points that do not fall within the range

and this is because the range does not contain 100% of the forecast values.
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Figure 5-4.: Predictions, Lasso bootstrap prediction intervals for validation data and Real

demand.

Figure 5-5 shows the evolution of the mean of the variable “amplitude”through different

time intervals for the validation data, the amplitude understood as the difference between

the intervals. The amplitude in the prediction interval was calculated for the validation

data, divided into 4 groups, in which statistics were calculated to show the difference in

each interquartile range, and confirming that the prediction intervals are increasing over

time. When comparing the groups, an increase in the median is observed as the temporal

distance between the point of origin of the forecast increases. In addition, an increase in the

maximum value of the amplitude is observed in each successive group. This reaffirms that

there is greater uncertainty in the predictions as the temporal distance increases, which is

consistent with the expectation that the prediction intervals grow over time to reflect the

greater uncertainty in the predictions at longer prediction horizons.

Figure 5-5.: Amplitude over time for validation data in Lasso bootstrap prediction intervals.

The predicted interval’s coverage on the test data reached 71.42%, it is shown in Figure

5-6. This indicates a sustained high coverage for the test data. One possible reason for this

difference in metrics may be the difference between the amount of validation and test data.

The mean of the variable “amplitude”through different time intervals for the test data is
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6703.599 and 7600.718. From which, it is inferred that the uncertainty of the predictions

increases as the predictions increase as in validation data.

Figure 5-6.: Predictions, Lasso bootstrap prediction intervals for test data, last seven days

of database and Real demand.

In Figure 5-7 shows the kernel density estimation for each step by using the bootstrapped

predictions. It represents the level of uncertainty in a forecasting model, because it’s possible

to determine the potential values that each point can assume. The details of this estimate

are shown in Figure 5-2 of the section 5.1. Finally, it should be noted that the actual values

are in fact in each density estimation at each point. Table 5-1 shows the actual electricity

demand values for the last seven days, with the respective values of the prediction interval,

which are being used for test data.

Figure 5-7.: Forecasting distribution per step in the test data.
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Lower bound Real demand Upper bound

201525.328 203949.278 208032.358

226146.446 233453.085 233724.306

229528.894 236506.302 236744.624

230085.730 238964.909 237464.804

230701.488 235940.357 238876.106

230874.255 235929.693 239095.187

220185.397 228839.628 228462.696

Table 5-1.: Real demand for the test data with the prediction intervals.

Figure 5-8 shows the prediction interval for validation data calculated with EnbPI proposed

by Xu and Xie (2023) for selected model, whose coverage is 84.3% and its effective mean

width obtained was 32211.192 which means that 84% of the validation data are within the

prediction interval.

The Figure 5-9 shows the prediction interval for test data calculated with EnbPI proposed

by Xu and Xie (2023) for selected model, Lasso whose coverage is 85.7% and its effective

mean width obtained by the prediction intervals was 32569.631 which means that 85% of the

test data are within the prediction interval and the coverage obtained by CP is higher than

that obtained via bootstrap, which was 71%. Based on the above, one possible deduction is

that by using CP, a higher interval coverage could be achieved, but at the expense of longer

intervals. Figures 5-8 and 5-9 also show a progressive increase in bias in the predictions as

the temporal distance increases, which leads to greater risk in both the point predictions

and the interval predictions. And finally, the Table 5-2 shows the interval values for the test

data. For the conformal prediction case, the amplitude is constant, so only the value of the

amplitude of the entire prediction interval was obtained.

Figure 5-8.: Predictions, Lasso Conformal Prediction Intervals for validation data of data-

base and Real demand.

46



5.4 Prediction intervals results 19

Figure 5-9.: Predictions, Lasso Conformal Prediction Intervals for test data, last seven days

of database and Real demand.

Lower bound Real demand Upper bound

178922.298 203949.278 211491.929

202871.824 233453.085 235441.456

205497.578 236506.302 238067.210

205782.182 238964.909 238351.814

206608.394 235940.357 239178.025

206887.708 235929.693 239457.340

197504.247 228839.628 230073.879

Table 5-2.: Real demand for the test data with the prediction intervals.

47



6. Concluding remarks

It is essential for power systems and energy providers to be able to accurately predict elec-

tricity demand. Over the past few years, big data and artificial intelligence have been increa-

singly integrated into several aspects of human life, especially deep learning. The develop-

ment of electricity demand forecasting methods based on conventional approaches has been

of great interest in the field. We proposed a framework to compare some statistical, ML and

DL models to predict daily electricity demand in Colombia. Also, we propose the calculation

of forecast intervals using the most common method for this purpose which is bootstrap and

another more recently developed method which is conformal prediction. We first identify

several factors that may affect electricity demand levels such as temporal patterns, calendar

details and climatic variables, calendar variables. Second, some popular ML and DL models

were used for electricity demand forecasting and feature selection. The models trained were:

Ridge, which gave a MAPE of 1.016%, followed by Lasso with a MAPE of 1.0176%, Elas-

ticNet, XGBoost, Radom Forest, Support Vector Machine, Simple RNN, LSTM, GRU and

finally Bidirectional LSTM. Starting from the model with the best predictive performance

given the MAPE to the worst performance.

Our results demostrates that (1) for the daily energy demand of Colombia, with the variables

obtained at the same frequency, a simple model works better than an advanced and much

more complex model. In short-term predictive performance, the model that outperformed

was a regularized linear model, Lasso, surpassing the capability of a more complex model

such as a deep learning model. Also because the proportion of bias in its forecasts is small

compared to the other models, and finally, because its in-sample fit performs acceptably.

(2) Regarding feature selection concerns, the most important variables are the energy de-

mand lags and demand structure variables for the Lasso model, which works as a feature

selection method, due to its regularization nature. This confirms that the inclusion of lags

or having an autocorrelated structure is important in this type of problem. It is also worth

mentioning that it may be the case where the lags of the covariates could also influence,

for future evolution of this idea, it would be plausible to inquire the correct way to inclu-

de these lags and what additional processes would be required. The final set of variables

used were: The type of day. Likewise, the first fourteen energy demand lags, the indicator

variable of the COVID-19 period, the indicator variable of the level change generated since

the beginning of the pandemic and finally four weather variables were taken into account:
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Total daily precipitation, Maximum daily wet temperature, Average daily wind speed and

Daily persistence. This was also supported by testing different combinations of variables and

obtaining the predictive ability measure.

Our other focus was the calculation of forecast intervals, these prediction intervals were

calculated for the chosen model, Lasso, in which we use two methods. The first and most

common was the bootstrap method and the second, whose development is more recent, is

Conformal Prediction. It is important to mention that one of the important conclusions is

that the topic of conformal prediction was introduced in its generality for the calculation

of prediction intervals and also focused on time series. On the one hand, in the prediction

intervals calculated with bootstrap for validation data, effective coverage score of 84.34%

which means that approximately 84% of the predictions in the validation data are within

the prediction interval. The predicted interval’s coverage on the test data reached 71.42%,

it can be seen that for the validation data there is a high coverage. Finally, a basic analysis

of the width of the prediction interval was performed.

In contrast to the prediction intervals calculated via Conformal prediction, which has a

coverage of 84% for validation data and 85% for test data, but a constant amplitude. It

is important to emphasize that the construction of prediction intervals allowed us to give a

99% confidence level to the predicted point and not just rely on the comparison between the

actual and predicted values. This means that there is a 99% probability that the predicted

values are contained in the calculated interval. The process of calculating the prediction

intervals was performed only for the chosen model, however, for a future evolution of this

idea, it would be plausible also to compare the capability of the mentioned methods with

different models.
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A. Appendix:

A.1. Nomenclature of the categories of the day type

variable

category Nomenclature
1st January 1–Janu
1st May 1–May
2nd January 2–Janu
20th July 20–July
24th December 24–Dec
25th December 25–Dec
31st December 31–Dec
7th August 7–Aug
8th December 8–Dec
Sundays before a Holiday Monday SunBHolMonday
Sundays before a Holiday Monday in January SunBHolMondayJanu
Sunday Sunday
Sunday of december vacation SunDecV
Sunday of january vacation SunJanuV
Easter sunday EasterSun
Easter thursday EasterThurs
Thursday Thursday
Thursday holidays in december ThuHolD
Thursday holidays in january ThuHolJanu
Holiday mondays HolMonday
Holiday mondays in january HolMondaJanu
Monday Monday
Monday of december vacation MondDecV
Monday of january vacation MondJanuV
Tuesdays after a holiday monday TueAHolMonday
Tuesdays Tuesdays
Tuesdays of december vacation TueDecV
Tuesdays of january vacation TuesJanuV
Wednesday Wednesday
Wednesday of december vacation WedDecV
Wednesday of january vacation WedJanuV
Easter wednesday EasterWed
Saturdays before a Holiday Monday SatBHolMonday
Saturdays before a Holiday Monday in January SatuBHolMondayJanu
Saturdays Saturdays
Saturdays of december vacation SatDecV
Saturdays of January vacation SatJanuV
Easter saturday EasterSat
Friday Friday
Friday of december vacation FridDecV
Friday of january vacation FridJanuV
Easter Friday EasterFrid

Table A-1.: Nomenclature of the categories of the day type variable
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A.2. Backtesting process in a flowchart

Figure A-1.: Backtesting with refit and increasing training size (fixed origin) process in a

flowchart.

A.3. Ensemble methods details

According to Chen and Guestrin (2016), the objective function is given by (A-1), for a given

data set with t examples and m features X = {x1, x2, · · · , xm} which are within the data
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set D = {(xt, yt)}, a tree ensemble model uses K additive functions to predict the output.

ŷt = ϕ(xt) =
K∑
k=1

fk(xt), fk ∈ F . (A-1)

Where F = {f(x) = wq(x), q : R
m → τ, w ∈ Rτ} is the space of regression trees. Here q

represents the structure of each tree that maps an example to the corresponding leaf index.

τ is the number of leaves in the tree. Each fk corresponds to an independent tree structure

q and leaf weights w. Unlike decision trees, each regression tree contains a continuous score

on each of the leaves, we use wi to represent score on i-th leaf. For a given example, we will

use the decision rules in the trees (given by q) to classify it into the leaves and calculate the

final prediction by summing up the score in the corresponding leaves (given by w). To learn

the set of functions used in the model, we minimize the following regularized objective.

L(ϕ) =
T∑
t=1

ι(yt, ŷt) +
K∑
k=1

Ω(fk),

where

Ω(fk) = γτ +
1

2
λ ∥wk∥2 .

(A-2)

Here ι is a differentiable convex loss function that measures the difference between the pre-

diction ŷt and the target yt. The term,
∑T

t=1 ι(yt, ŷt), represents sum of the loss function for

each data point t. The second term Ω penalizes the complexity of the model (i.e., the regres-

sion tree functions). Here, γ and λ are parameters controlling the regularization strength.

The term 1
2
λ
∑τ

j=1w
2
jk penalizes complex models by considering the weights (wjk) assigned

to each leaf node in the decision trees. The goal is to find values for these weights that mi-

nimize the loss function. The additional regularization term helps to smooth the final learn

weights to avoid over-fitting. Intuitively, the regularized objective will tend to select a model

employing simple and predictive functions. When the regularization parameter is set to zero,

the objective falls back to the traditional gradient tree boosting.

The sum of predictions from all decision trees fk in the model are trees which collectively

form the space F encompasses the space of all conceivable decision trees. And finally, the

model parameters involve the number of decision trees K, the maximum depth of each tree

τ or the number of leaves, and regularization parameters γ and λ. In summation, this re-

gularized learning objective creates the training of the XGBoost model by simultaneously

minimizing the loss function, ensuring accurate predictions, and incorporating regularization

to control model complexity.

52



A.4 Deep Learning models details 49

A.4. Deep Learning models details

In Zhang et al. (2023), a neural network representation is possible for linear regression where

each feature is represented by an input neuron, which are all directly connected to the output.

The inputs are denoted as x1, . . . , xd and the output is represented as o1. In Equation A-3,

the loss function for this case is shown.

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
.

(A-3)

The corresponding weights, which are different for each i, are represented by a vector w ∈ Rd

and the term b is referred to as a bias. Each weight determines the impact of its correspon-

ding feature on the prediction, while the bias contributes to the predictions values when all

features are zero. Essentially, the bias introduces flexibility and learning capacity to the net-

work, influencing activation points and facilitating complex modeling of data. The graphical

representation of linear regression as a neural network is illustrated in Figure A-2, which

shows the general connectivity pattern Zhang et al. (2023).

Mathematically, the prediction in a linear regression model ŷ can be expressed as ŷ =

w1x1 + · · · + wtxt + b. The equation represents the linear transformation of input features

with a bias. It is crucial to understand fundamental concepts for comprehending NN ope-

rations. These considerations arise from the limitations of linear models, particularly their

inherent linearity, which assumes monotonicity. Linear models can be improved by introdu-

cing hidden layers. A simple solution is to place multiple fully connected layers sequentially.

Conceptually, the first L − 1 layers capture a representation of the data, and the last layer

serves as our linear predictor Zhang et al. (2023).

Figure A-2.: Linear regression as a single layer NN architecture, figure taken from Zhang

et al. (2023).
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This assumption suggests that any increase in a feature should consistently result in either

an increase or a decrease in the model’s output. Now, the interesting part is that although

the relationship is monotonic, it does not mean that it is linear. Therefore, may require more

complex modeling techniques than simply fitting a straight line.

We will now introduce some technical concepts by referencing from Zhang et al. (2023); ht

refers to the hidden state at time t, is an internal representation, it is used to capture and

retain relevant information from previous inputs in the sequence. ht is commonly considered

a latent variable, a latent variable is a variable that is not directly observable but is inferred

from other observable variables, in NN, it can be expressed as ht = f(yt, ht−1).

Activation functions, they decide whether a neuron should activate based on the weighted

sum of inputs and an added bias. These functions are like buttons, converting input signals

into outputs and introducing non-linearity to the model. Some of the most common acti-

vation functions are: Sigmoid Activation, Hyperbolic Tangent Activation, Rectified Linear

Unit (ReLU), Exponential Linear Unit and Scaled Exponential Linear Unit.

In the paper developed by Ramachandran et al. (2017), the activation functions can be

explored in more detail, since they investigate the impact of activation functions in deep

networks and proposes a new activation function called Swish, which is proposed as a supe-

rior alternative to ReLU in deeper models. It sets out a list of activation functions against

which the proposed new function is compared. In addition, automatic search techniques are

used to discover multiple novel activation functions that are empirically evaluated to deter-

mine their effectiveness compared to ReLU in various application scenarios.

Simple Recurrent Neural Networks

Now, we will focus on Recurrent Neural Networks (RNNs), a type of deep learning model

designed for understanding sequential data. It uses recurrent connections, creating cycles in

the network to capture temporal dependencies in the input data, in other words, it dyna-

mically transfers information across adjacent time steps. At each step, the same parameters

are used. This has the advantage of maintaining a constant cost associated with describing

and setting those parameters, regardless of how many time steps are involved in the process.

The Figure A-3 reveals the behavior described above.
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Figure A-3.: On the left recurrent connections are depicted via cyclic edges. On the right,

we unfold the RNN over time steps. Taken from Zhang et al. (2023).

As explained by Zhang et al. (2023), suppose we have inputs denoted as Yt ∈ Rn×t at time

step t. In simpler terms, for a mini-batch of n sequence examples, then, n is the number

of instances considered simultaneously in a mini-bin during the training or processing of a

recurrent neural network (RNN). Each row of Yt corresponds to an example at time step

t in the sequence. Now, let’s represent the output of the hidden layer at time step t as

Ht ∈ Rn×h, which is presented in the equation (A-4). We retain the output of the hidden

layer, Ht−1, from the previous time step. The weight parameter Whh ∈ Rh×h is include, so

that the output at any given time step is based on both, the input and the output at that

time step.

Ht = ϕ(XtWxh +Ht−1Whh + bh). (A-4)

Here, ϕ is the activation function, Wxh represents the weight parameters for the input, Whh

represents the weight parameters for the hidden layer, and bh is the bias term for the hidden

layer. The connection between the outputs of the hidden layer (Ht) and the previous time

step (Ht−1) in consecutive time steps, serves as the memory or state of the NN at the current

time step, leading to the term “hidden state”for such hidden layer outputs.

At time step t, the output layer is calculated as Ot = HtWhq + bq. This output parameters

include the weights Whq ∈ Rh×q and the bias bq ∈ R1×q.

Long Short-Term Memory Neural Networks

A Long Short-Term Memory (LSTM) network captures long-term dependences in sequen-

tial data by overcoming the vanishing gradient problem. Continuing with the reference to

Zhang et al. (2023), gradient problems occur when gradients become too small or too large,

which make it difficult to capture long-term input and output dependencies. As a result, the

model’s performance and convergence can be adversely affected. From this intuition derives

the term “long short-term memory”.
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According to Zhang et al. (2023), this memory is achieved through activations passing bet-

ween nodes. LSTMs use a unique memory cell structure made up of simpler nodes arranged

in a specific pattern and enhanced with multiplicative nodes. The internal state of each me-

mory cell is controlled by various gates: the input gate affects the internal state, the forget

gate decides whether to reset the internal state, and the output gate determines the cell’s

output based on its internal state. The key distinction between traditional RNNs and LSTMs

is that LSTMs can manage the hidden state using gating mechanisms. In simply words, the

input gate controls how much of the input should be added to the memory cell’s current

state, the forget gate decides whether to keep or reset the current memory value, and the

output gate determines if the memory should influence the output at the current time step.

The Figure A-4 reveals the behavior described above.

Figure A-4.: Computing the input gate, the forget gate, and the output gate in an LSTM

model. Figure is taken from Zhang et al. (2023).

The input gate at time step t are defined as It ∈ Rn×h, the forget gate is Ft ∈ Rn×h, and

the output gate is Ot ∈ Rn×h. These gates are calculated as follows:

It = σ(YtWyi +Ht−1Ft = σ(YtWyf +Ht−1Whf + bf),

Ot = σ(YtWyo +Ht−1Who + bo),
(A-5)

where Wyi,Wyf,Wyo ∈ Rd×h are weight parameters, and bi,bf,bo ∈ R1×h are bias parame-

ters. The bias parameters allow the NN to learn offsets and adjust the output of the gates.

And σ is the activation function on all three gates. To define the actions of the gates, we in-

troduce the input node C̃t ∈ Rn×h. Its computation is analogous to the previously discussed

gates but involves a tanh function. At time step t, this is expressed as:

C̃t = tanh(YtWyc +Ht−1Whc + bc), (A-6)

where Wyc ∈ Rd×h and Whc ∈ Rh×h are weight parameters and bc ∈ R1×h is a bias

parameter. And tanh is the activation function for the input node. The input gate It controls
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how much new information (C̃t) influences the cell’s internal state, while the forget gate

Ft determines how much of the old internal state (Ct−1 ∈ Rn×h) is retained. The update

equation is:

Ct = Ft ⊙Ct−1 + It ⊙ C̃t. (A-7)

The symbol ⊙ represents the element-wise multiplication, it means that each element of

matrix Ft is multiplied by the corresponding element of matrix Ct−1, in the same way each

element of matrix It is multiplied by the corresponding element of matrix C̃t. If the forget

gate is always 1 and the input gate is always 0, the memory cell Ct−1 remains constant, un-

changed in each step. This helps overcome the vanishing gradient problem, making models

easier to train, especially with long sequences.

Finally, let’s define how to calculate the output of the memory cell, represented as the hidden

state Ht ∈ Rn×h seen by other layers. tanh function is used to compute the internal state

of the memory cell and then perform elementwise multiplication, this time with the output

gate.

Ht = Ot ⊙ tanh(Ct). (A-8)
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A.5. Analysis details for statistical and ML models

Figure A-5.: Temporal desviations for Ridge, Elasticnet and Lasso models.
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Figure A-6.: Temporal desviations for SRV and MLP models.

59



56 A Appendix:

Figure A-7.: Temporal desviations for Ensemble and XM models.
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Model MAPE (%) MAE (KWh) RMSE (KWh)

Ridge 1.588 3527.80 21429788.70

Lasso 1.587 3526.43 21372590.07

ElasticNet 1.596 3546.99 20740280.68

XGBRegressor 1.868 4150.78 29030830.76

RandomForestRegressor 1.830 4067.22 30470867.60

LinearSVR 5.965 13251.11 466346447.47

SVR 2.446 5434.41 47007724.90

MLPRegressor 2.052 4559.17 34883771.44

Table A-2.: In-sample predictive performance metrics.
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A.6. Code repository

The code for this project can be found in the following repository:

https://github.com/JenniferMC22/ProbabilisticForecastingElectricityDemandColombiaTESISUNAL/tree/main
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