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ABSTRACT

Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have

gained significant attention as a practical approach for human-technology

interaction. Motor imagery (MI) paradigms, wherein users mentally simulate motor

tasks without physical movement, are widely employed in BCI development.

However, constructing EEG-based BCI systems faces challenges due to the low

Signal-to-Noise Ratio (SNR), non-stationarity, and nonlinearity of EEG signals, as

well as the inter- and intra-subject variability that hinders the extraction of

discriminant features. Additionally, poor motor skills among subjects lead to

difficulties in practicing MI tasks under low SNR scenarios.

To address these challenges, this thesis proposes two novel methodologies for

EEG-based MI classification. Firstly, a subject-dependent preprocessing approach,

termed Subject-dependent Artifact Removal (SD-AR), is presented. This approach

employs Surface Laplacian Filtering and Independent Component Analysis

algorithms to selectively remove signal artifacts based on the subjects’ MI

performance. The study also investigates power- and phase-based functional

connectivity measures to extract relevant and interpretable patterns and identify

subjects with suboptimal performance. The SD-AR methodology significantly

improves MI classification performance in subjects with poor motor skills by

effectively mitigating electrooculography and volume-conduction EEG artifacts.
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Secondly, a deep learning methodology, named kernel-based regularized EEGNet

(KREEGNet), is introduced for EEG-based MI classification. KREEGNet is built on the

foundation of centered kernel alignment and Gaussian functional connectivity,

addressing the challenge of intrasubject variability and lack of spatial

interpretability within end-to-end frameworks. The novel architecture of KREEGNet

includes an additional kernel-based layer for regularized Gaussian functional

connectivity estimation using CKA. Experimental results from binary and multiclass

MI classification databases demonstrate the superiority of KREEGNet over baseline

EEGNet and other state-of-the-art methods. The model’s interpretability is further

explored at individual and group levels, utilizing classification performance

measures and pruned functional connectivities.

In conclusion, the proposed methodologies in this thesis contribute to enhancing

the reliability, interpretability, and classification performance of EEG-based MI

paradigms in BCI systems. The SD-AR approach effectively tackles artifacts and

enhances the quality of EEG data, particularly for subjects with poor motor skills.

On the other hand, KREEGNet demonstrates remarkable performance

improvements and provides spatial interpretability, making it a promising

alternative for interpretable end-to-end EEG-BCI based on deep learning. These

advancements pave the way for more effective and practical BCI applications in

real-world scenarios.

Keywords: BCI, MI, EEG, ML, DL, multi-channel time series, relevance analysis



RESUMEN

Las interfaces cerebro-computadora (BCIs) basadas en señales de

electroencefalografía (EEG) han ganado una atención significativa en los últimos

años como un enfoque práctico para la interacción humano-computadora. Los

paradigmas de imaginación motora (MI), donde los usuarios simulan mentalmente

tareas motoras sin movimiento físico, son ampliamente empleados en el desarrollo

de BCI. Sin embargo, la construcción de sistemas BCI basados en señales de EEG

enfrentan importantes desafíos debido al bajo índice de Señal a Ruido (SNR), la no

estacionariedad y la no linealidad de las señales de EEG, así como la variabilidad

inter e intrasujeto que dificultan la extracción de características discriminantes.

Para abordar estos desafíos, esta tesis propone dos metodologías novedosas para la

clasificación de MI basada en EEG. En primer lugar, se presenta un enfoque de

preprocesamiento sujeto dependiente, denominado Eliminación de Artefactos

sujeto dependiente (SD-AR, por sus siglas en inglés). Este enfoque emplea el Filtrado

Laplaciano de Superficie y algoritmos de Análisis de Componentes Independientes

para eliminar selectivamente artefactos de las señales de EEG basados en el

rendimiento que cada uno de los sujetos obtiene durante la tarea de MI. Igualmente

se investiga el uso de medidas de conectividad funcional basadas en potencia y fase

para extraer patrones relevantes e interpretables e identificar sujetos con

rendimiento subóptimo. La metodología SD-AR mejora significativamente el

rendimiento de clasificación de MI en sujetos con habilidades motoras deficientes al



xii Resumen

mitigar efectivamente los artefactos de electrooculografía y conducción de volumen

en EEG.

En segundo lugar, se introduce una estrategia de regularización basada en kernels y

la red neuronal EEGNet (KREEGNet). KREEGNet se construye a base del método de

alineamiento de kernel centralizado y la conectividad funcional gaussiana,

abordando el desafío de la variabilidad intrasujeto y la falta de interpretabilidad

espacial en arquitecturas de aprendizaje profundo. Esta novedosa arquitectura

(KREEGNet) incrusta una capa adicional a la arquitectura EEGNet que se construye a

base del kernel gaussiano y se utiliza para estimar la conectividad funcional

gaussiana. Posteriormente, la salida de esta capa se utiliza como entrada al

regularizador basado en CKA . Los resultados experimentales en bases de datos

públicas demuestran la superioridad de KREEGNet sobre EEGNet y otros métodos

de vanguardia. Además, se lleva a cabo una interpretabilidad del modelo a nivel

individual y grupal, utilizando métricas de rendimiendo para tareas de clasificación

y conectividades funcionales relevantes.

En conclusión, las metodologías propuestas en esta tesis contribuyen a mejorar la

fiabilidad, interpretabilidad y rendimiento de los sistemas BCI basados en señales de

EEG para tareas de MI. El enfoque SD-AR aborda efectivamente la eliminación de

artefactos y mejora la calidad de las señales EEG, particularmente para sujetos con

habilidades motoras deficientes. Por otro lado, KREEGNet demuestra mejoras

notables en el rendimiento y proporciona interpretabilidad espacial, convirtiéndose

en una alternativa prometedora para hacer interpretables sistemas BCI basados en

modelos de aprendizaje profundo.

Palabras clave: BCI, MI, EEG, ML, DL, series de tiempo multicanal, análisis de

relevancia
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Brain-Computer Interface (BCI)s have emerged as a cutting-edge technology that

directly connects the human brain and external devices, bridging the ultimate frontier

between humans and computers [Venkatachalam et al., 2020, Abiri et al., 2019]. This

breakthrough technology has enabled people with neuromotor disorders, nervous

system injuries, or limb amputations to control machines using their brains, as no

peripheral nerves or muscles are involved in the process [Dai et al., 2020]. Motor

imagery (MI) is one of the essential branches of BCIs control paradigms, which allows

users to control robots or external machines merely by imagining movement without

the intervention of peripheral nerves [Wang et al., 2017, Gaur et al., 2021].

BCI technology has significant potential inmotor function rehabilitation [Steenbergen

et al., 2020, Khan et al., 2020], assistance [Kanna and Vasuki, 2021], and other areas,

sparking extensive discussions on MI-based BCIs [Miao et al., 2020]. Acquiring brain



2 Introduction

activity is a critical aspect of MI-based BCIs, and multi-channel time series signals

as Electroencephalography (EEG) are commonly preferred due to their high time

resolution, cost-effectiveness, and user-friendliness compared to other neuroimaging

methods [Padfield et al., 2019]. Moreover, the use of multi-channel time series

signals in MI tasks is essential as it captures the activation of multiple brain regions,

enabling a comprehensive understanding of complex neural activity [Kaur and Kaur,

2015]. These signals facilitate the exploration of Functional Connectivities (FC) and

coordinated patterns between brain regions during MI while reducing noise and

artifacts through redundancy and robust signal processing techniques [Ghosh et al.,

2015].

Raw EEG
Data Pre-Processing Feature

Extraction
Feature

Selection Classification

Figure 1-1. The diagram depicts the typical signal processing steps involved in an EEG-based
system for MI.

Traditional Machine learning (ML) approaches have been extensively used to

classify MI-EEG data. Figure 1-1 shows a typical BCI signal-processing pipeline with

four stages: (i) Preprocessing, (ii) Feature extraction, (iii) Feature selection, and (iv)

Classification. The first stage is critical for eliminating noise and artifacts in the EEG

signals, which can significantly affect the accuracy of subsequent processing stages.

A range of techniques, such as bandpass filters [Sahu et al., 2021], spatial filters like

Independent Component Analysis (ICA) [Wang et al., 2015a] and Surface Laplacian

(SL) [Kayser and Tenke, 2015], and time filters based on regression models [Sakkaff

and Nanayakkara, 2008] are employed to achieve this. The second stage involves

feature extraction using advanced methods such as autoregressive

models [Krusienski et al., 2006, Kevric and Subasi, 2017], Short-Time Fourier

Transform [Tabar and Halici, 2016], Wavelet Transform [Wang et al., 2014],

Common Spatial Patterns (CSP) [Yang et al., 2016, Zhang et al., 2017], and

FCs [Hamedi et al., 2016]. The extracted features in the time, frequency, and spatial

domain represent the user’s intended movement, which is crucial for accurate

classification. The third stage focuses on identifying the most informative features
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from the extracted features using techniques such as Principal Component Analysis

(PCA) [Yu et al., 2014], Filter Bank Selection [Kumar et al., 2017], and Evolutionary

Algorithms [Liu et al., 2017]. Finally, the fourth stage involves the application of ML

algorithms such as Support Vector Machines, Linear Discriminant Analysis (LDA),

and Naive Bayes Classifier [Baig et al., 2017, Oikonomou et al., 2017, Kumar et al.,

2017] to predict the MI movements from the extracted and selected features.

Nonetheless, the traditional ML approach has limitations, such as the need for

manual specification of signal processing [Bashashati et al., 2007], feature

extraction [McFarland et al., 2006], and classification methods [Lotte et al., 2007],

requiring significant subject-matter expertise and/or prior knowledge about the

expected EEG signal. Additionally, the specificity of the EEG signal’s preprocessing

steps for the EEG feature of interest could exclude potentially relevant EEG features

from the analysis.

End-to-end Deep Learning (DL) models such as DeepConvnet,

ShallowConvnet [Schirrmeister et al., 2017], EEGNet [Lawhern et al., 2018], and

TCNet-fusion [Musallam et al., 2021] have recently been proposed to overcome

these limitations by automatically preprocessing and extracting relevant features

from the EEG signals. These models have shown superior performance over

traditional ML models in various EEG signal classification tasks, capturing complex

patterns and relationships within the data.

In spite of this, the nested non-linear structure of these models makes them

uninterpretable, which makes it difficult to understand how they arrive at their

predictions [Samek et al., 2017]. This lack of interpretability is particularly

problematic in MI-based BCI, where decisions based on the model’s predictions can

have significant consequences [Hu et al., 2023]. For instance, in the case of an

MI-based BCI system controlling a prosthetic limb, it is crucial to understand how

the system makes its decisions to ensure the limb’s accurate and safe control.

Therefore, the lack of transparency in black box DL models can make identifying

potential sources of errors or biases challenging, leading to ineffective motor

rehabilitation interventions.
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Consequently, developing explainability techniques is necessary to provide a clear

understanding of how the models make predictions. Specifically, in MI-based BCI,

the explainability of the model is essential in identifying the brain regions and

neural processes involved in the MI tasks [Hashem et al., 2023]. This knowledge can

provide insights into the mechanisms underlying motor imagery and facilitate the

development of more effective motor rehabilitation interventions.

In a local context, the Signal Processing and Recognition Group (SPRG), associated

with the Universidad Nacional de Colombia and classified as A1 by Minciencias, has

researched biosignals analysis and developed computer-aided diagnosis by data

analytics and machine learning techniques. In particular, during the last years, the

SPRG has been working on the design of methodologies to improve the performance

and explainability of EEG-based BCIs [García-Murillo et al., 2023, Collazos-Huertas

et al., 2023] in a variety of research projects (supported by Minciencias, Dirección

Nacional de Investigaciones de Manizales (DIMA), and Vicerrectoría de

Investigaciones de la Universidad Nacional de Colombia)

• Procesamiento de señales de electroencefalografía en interfaz

cerebro-computador orientado a la detección de imaginación motora

utilizando modelos de aprendizaje profundo y medidas de conectividad.

• Prototipo de interfaz cerebro-computador multimodal para la detección de

patrones relevantes relacionados con trastornos de impulsividad.

• Prototipo de interfaz cerebro-computador de bajo costo para la detección de

patrones relevantes de actividad eléctrica cerebral relacionados con TDAH.

• Prototipo de interfaz cerebro-computador multimodal para la detección de

patrones relevantes relacionados con trastornos de impulsividad.

• Interfaz cerebro-computador basada en aprendizaje de máquina y teoría de

información como soporte a la detección de trastornos de déficit de atención e

hiperactividad.
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• Brain Music: Prototipo de interfaz interactiva para generación de piezas

musicales basado en respuestas eléctricas cerebrales y técnicas de

composición atonal.

Therefore, from both local and general perspectives, it is essential to continue

developing and improving accurately and explainable MI EEG-based BCIs to enable

individuals with neuromotor disorders or limb amputations to control external

devices accurately and enhance transparency.

1.2 Problem statement

The insufficient functioning of MI EEG-based BCIs can have severe consequences

for individuals relying on these devices. These BCIs enable users to control external

devices or prosthetics through their thoughts, but their suboptimal performance

leads to frustration, inaccuracy, and reduced functionality [Han et al., 2019]. To

enhance BCI effectiveness, it is necessary to prioritize transparency in BCIs. This can

result in improved operational efficiency and smoother integration of BCI technology

into daily life, ultimately improving the quality of life for individuals with motor

disabilities [Collazos-Huertas et al., 2021a].

The factors contributing to the limited effectiveness of BCIs during MI tasks are

complex and varied. Inter-subject variability is a significant factor that contributes

to poor performance [Saha and Baumert, 2020], but mood, attention, and fatigue

can also exert substantial influence. Additionally, the lack of interpretability in BCIs

poses a critical challenge, hindering the identification of distinguishable patterns

between high-performing and low-performing subjects. The difficulty in interpreting

MI EEG-based BCIs and understanding their decision-making processes complicates

the optimization of design and the enhancement of MI functionality [Salami et al.,

2022].

In conclusion, this master’s thesis addresses two significant challenges in the field of

MI EEG-based BCIs. The first challenge is ISV, where the performance of BCIs varies
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substantially among subjects due to various factors, including gender, age, lifestyle,

neurophysiological and psychological parameters, genetic differences, and cognitive

processes. This variability hinders the development of reliable and accurate BCIs.

Furthermore, the presence of noise in EEG signals exacerbates this variability,

making it difficult to accurately identify neural activity patterns. The second

challenge is the lack of explainability in ML-based algorithms used in MI EEG-based

BCIs. The complex nature of these algorithms raises concerns regarding the safety,

reliability, and trustworthiness of the system’s outputs. It also limits the

development of effective interventions and training programs while impeding

researchers’ understanding of sensorimotor processes.

1.2.1 Inter-subject variability (ISV)

EEG-based BCIs pose a significant challenge due to the variability in subjects’

performance during MI tasks. The quality of electrical activity patterns generated by

the subjects’ brains plays a crucial role in controlling external devices [Pérez-Velasco

et al., 2022]. However, these patterns exhibit substantial variation among subjects,

even under identical stimuli or conditions [Seghier and Price, 2018]. Various factors,

including gender, age, lifestyle, neurophysiological and psychological conditions,

genetic differences, and cognitive processes, contribute to this variability [Subirats

et al., 2018, Sannelli et al., 2019]. Such diversities in brain patterns result in

performance fluctuations, impeding the development of reliable and accurate

BCIs [Vidaurre and Blankertz, 2010].

Moreover, noise in EEG signals significantly contributes to this variability, obscuring

underlying neural activity and leading to false positives or negatives in interpreting

the signal [Caicedo-Acosta et al., 2021]. This noise can originate from various sources,

such as electromagnetic interferences, movement artifacts, and individual skull

thickness and conductivity differences [LK Jaya Shree, 2021, Roy et al., 2019, Shoka

et al., 2019]. These unwanted signals make it difficult to identify the neural activity

patterns that drive BCI performance accurately. Therefore, distinguishing the signal

from noise is crucial in developing reliable and accurate BCIs.
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1.2.2 Explainability in MI EEG-based BCIs

Besides, the lack of explainability of ML-based algorithms in biomedical applications

has become a critical issue in recent years. The complexity of these algorithms

makes it challenging to understand the decision-making processes and the reasoning

behind the system’s outputs [Teng et al., 2022]. This lack of transparency raises

concerns about the safety and reliability of the system, particularly in critical areas

such as clinical decision-making. Without a clear understanding of how the system

arrived at its decisions, clinicians may not trust the system’s outputs, leading to

underutilization or misinterpretation of the results, ultimately affecting patient

care [Meng et al., 2022].

Moreover, the insufficient comprehension of the decision-making mechanisms

employed by ML-based algorithms in MI EEG-based BCIs is impeding the

advancement of effective and dependable interventions and training programs for

individuals struggling with this technology [Müller et al., 2004]. This limitation is

impeding researchers from addressing the challenges of BCI systems and is

ultimately affecting the quality of life of individuals with motor disabilities [Liu

et al., 2022]. Besides, the lack of progress in developing better MI BCIs is hindering

researchers’ ability to comprehend the intricate sensorimotor processes of the brain,

which in turn is preventing the development of more accurate and effective BCI

systems [Collazos-Huertas et al., 2023]. Therefore, addressing the issue of

explainability is crucial to advancing BCI technology and improving the lives of

individuals who depend on it.

According to the aforementioned challenges, the following research question emerges:

How can an cutting-edge machine learning framework be developed to effectively

address the challenges of ISV and the lack of explainability in MI EEG-based BCIs.
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1.3 State-of-the-art

1.3.1 Approaches to address ISV

In recent years, ML-based approaches have gained increasing attention to tackle the

issue of ISV in MI EEG-based BCIs. Various methods have been proposed to enhance

the performance of BCIs during the preprocessing and feature extraction stages. The

preprocessing methods aim to mitigate the impact of low Signal-to-noise ratio (SNR)

caused by environmental and physiological artifacts such as electrical noise, eye and

muscle movements, heart activity, and respiration [Somers et al., 2018]. Additionally,

the preprocessing methods aim to tackle the low spatial resolution challenge caused

by the volume conduction effect [Kwon et al., 2019]. On the other hand, the feature

extraction methods aim to transform raw EEG signals into relevant brain patterns

independent of subject-specific differences [Ince et al., 2007]. This approach allows

identifying common patterns across individuals, improving the generalizability of

BCI systems.

Several methods have been proposed in the literature to address different noise

sources, including artifacts and volume conduction. Artifacts in EEG signals can be

removed using regression-based techniques, which model the artifacts as regressors

and use linear approaches to remove them from the signal [Kotte and Dabbakuti,

2020]. Band-pass and notch filters can also eliminate electrical and environmental

noise and frequency bands where neurophysiological information is

irrelevant [Singh et al., 2021]. Blind source separation methods, such as canonical

correlation analysis, PCA, and ICA, are commonly used to decompose the

contaminated EEG signal into statistically independent components and remove or

correct the artifact signals [Stergiadis et al., 2022]. Among these methods, ICA is

well-known for its success in eliminating various types of artifacts [Rashid et al.,

2020, Artoni et al., 2018, Lahane et al., 2019]. In addition, different spatial filters

have been proposed to overcome the problem of volume conduction, including the

Common Average Reference (CAR) and SL. The CAR spatial filter subtracts the
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average electrical activity measured across all sensors from each of the sensors to

reduce the recorded noise [Uribe et al., 2019]. Still, it does not address

sensor-specific noise and may introduce noise into an otherwise clean

sensor [Mridha et al., 2021]. An updated version of CAR, the SL, aims to remove the

common brain activity of neighboring sensors due to the volume conduction effect,

which improves local topographical features, facilitates sensor-level connectivity

analysis, and helps to enhance the SNR [Xu et al., 2018].

Despite the effectiveness of these methods, applying them to all subjects regardless

of the individual noise level and type can be detrimental to subjects with clean

EEG signals [Repov, 2010]. Indeed, the aforementioned approaches can induce

noise, reducing MI performance. For example, the use of an SL filter to address

the volume conduction problem for all individuals may inadvertently introduce

noise to the EEG signals of unaffected individuals. This occurs because the filter

removes the average electrical activity from nearby sensors, thereby altering the

original signal information [Tobón-Henao et al., 2022]. Therefore, personalized

preprocessing methods that consider individual differences in noise sources are

necessary to improve BCI performance.

Feature extraction methods can be broadly categorized into three domains: time,

time-frequency, and spatial. In the time domain, amplitude modulation [dos Santos

et al., 2020] and time-domain analysis of variance [Rajabioun, 2020] are widely used

to extract features related to the amplitude and timing of specific EEG components,

providing insights into the underlying neural processes involved in MI. These

features facilitate the effective classification of EEG signals into distinct MI classes

by maximizing the differentiation among MI patterns within each class. In the

time-frequency domain, wavelet transform [Taran and Bajaj, 2019] is a commonly

used method that analyzes changes in the frequency content of the EEG signal over

time. This method provides information about the temporal dynamics of neural

processes during MI, including Event-Related Desynchronization/Synchronization

(ERD/ERS) and intertrial coherence. These features improve the accuracy and

reliability of the BCI system by capturing the temporal evolution during the MI
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task [Sadiq et al., 2019]. In the spatial domain, CSP and FCs are two standard

methods used for feature extraction. CSP projects the EEG signals into a lower

dimensional space using a set of learned spatial filters that enhance the differences

between MI classes [Zhang et al., 2018]. On the other hand, FCs capture the

similarity between different EEG channels, providing information on which brain

regions interact when a subject performs the MI task [Hsu, 2014]. This technique

enables the identification of significant relationships between channels that can be

used to classify the MI task effectively.

However, choosing the appropriate feature extraction method for the MI task is

challenging, as it demands considerable subject-matter expertise and prior knowledge

about the anticipated EEG signal [Bashashati et al., 2007, Lotte et al., 2007]. Moreover,

the specificity of the EEG signals’ preprocessing steps for the EEG feature of interest

could exclude potentially relevant EEG features from the analysis [Van Erp et al.,

2012, Lance et al., 2012].

In recent years, end-to-end DL architectures have proven promising in addressing

the limitations of traditional methods for handling ISV. These architectures automate

preprocessing and feature extraction from EEG signals [Altaheri et al., 2021], covering

the entire process from raw input to final output. This enables automatic adaptation

to individual MI patterns, reducing dependence on manually crafted features and

preprocessing methods that may not generalize well across individuals. End-to-end

DL models such as EEGNet, ShallowConvNet, DeepConvNet, EEG-transformer [Song

et al., 2021], and Graph Convolution Neural Network (GCN) [Sun et al., 2022, Ma

et al., 2022] have great potential to tackle ISV-related challenges. EEGNet and

ShallowConvNet utilize convolutional layers to extract spatial and temporal patterns

from EEG data. However, EEGNet may struggle with capturing long-range temporal

dependencies [He et al., 2022], while ShallowConvNet may not be as effective as

deeper architectures in capturing complex patterns. On the other hand, DeepConvNet

excels at capturing spatial and temporal patterns but requires a large amount of

training data to avoid overfitting [Song et al., 2019]. Transformer-based models like

EEG-transformer are adept at processing variable-length EEG sequences by employing
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a self-attentionmechanism to capture dependencies between different segments [Sun

et al., 2021]. However, these models come with higher computational costs in both

training and inference stages, necessitating specialized computing engines like GPUs

and TPUs, particularly for larger models. Additionally, the larger models may require

substantial storage capacity. [Kong et al., 2021]. GCNs, on the other hand, capture

spatial relationships between electrodes by aggregating information fromneighboring

nodes in the graph. Nonetheless, they are sensitive to graph construction from EEG

signals [Berton et al., 2015].

Despite their strengths, these DL models can be prone to overfitting when they are

too complex or the training data is noisy or insufficient [Yang et al., 2021, Zhang

et al., 2019]. To address this challenge, various regularization techniques have been

proposed. Domain adaptation aims to reduce variability across different subjects by

learning a mapping between source and target domains [Phunruangsakao et al.,

2022]. Yet, it requires a substantial amount of labeled data from both

domains [Ganin et al., 2016]. Multi-task learning leverages information from related

tasks to improve the performance of individual tasks [Halme and Parkkonen, 2018].

Nevertheless, it assumes the availability of multiple related tasks, which may not be

practical in specific scenarios [Marquand et al., 2014]. Dropout and batch

normalization are also helpful techniques that can reduce ISV. The former randomly

drops out a fraction of neurons during training to enhance the model’s ability to

learn robust features [Roy et al., 2020]. The latter normalizes input features across

subjects to enhance network stability and convergence [Huang et al., 2019].

However, both techniques increase computational requirements, and their

performance is sensitive to hyperparameters [Srivastava et al., 2014, Ioffe and

Szegedy, 2015]. FC-based regularizers introduce a penalty term to obtain low-rank

or sparse connectivity matrices, reducing the impact of ISV by enforcing consistent

structure among subjects [Mridha et al., 2021]. Nonetheless, these regularizers

assume a smooth or sparse connectivity structure of the brain, which may not

always hold in practice [Cai et al., 2010]. Figure 1-2 summarizes the previous

discussion concerning the ISV issue.
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Figure 1-2. Summary of the main approaches used to tackle the ISV problem and their
disadvantages highlighted in blue.

1.3.2 Interpretation techniques for MI-related brain
processes

Understanding the neural mechanisms of MI is critical in optimizing the design of

EEG-based BCIs [Velasquez-Martinez et al., 2020b]. Various techniques have been

employed to achieve this, which can examine the brain processes in the

spatiotemporal-frequency domain [Collazos-Huertas et al., 2021b]. These

approaches have resulted in improved accuracy and reliability of BCI performance.

As such, studying the underlying neural mechanisms of MI is fundamental to

advancing BCI technology.

Researchers have employed various time-frequency methods to investigate the brain

processes involved in the MI task. These include ERD/ERS plots, Power Spectral

Density, and Spectrograms. ERD/ERS plots visually represent changes in EEG signal

power in specific frequency bands over time during the MI task [Wilson et al., 2019].

Power spectral density analysis helps identify the frequency bands most relevant

to MI and their respective changes in power over time [Cona et al., 2009]. Finally,

spectrograms can reveal the temporal dynamics of neural activity by showing how
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the power of EEG signals changes in different frequency bands over time during

the MI task [Tayeb et al., 2019]. Despite their usefulness, these methods have

certain limitations, such as difficulty localizing activity to specific brain regions,

risk of misinterpreting spurious correlations as meaningful, and addressing the

dimensionality and nonlinearity of EEG signals [Poldrack, 2011, Velasquez-Martinez

et al., 2018].

Spatial methods, on the other hand, aim to identify the brain regionswhere significant

brain activity is observed [Marks and Isaac, 1995]. Topographical maps are a well-

known technique in spatial methods that show the amplitude or power of EEG

signals at specific time points or frequency bands at each electrode [Achanccaray and

Hayashibe, 2020]. This approach helps to identify the scalp regions where neural

activity related to MI is most prominent. Nonetheless, this method poses limitations

regarding spatial resolution, depending on the number of channels and montage used

to capture the neural activity [Xu et al., 2020]. Additionally, only local brain activity

regions are displayed, and information about how these regions interact during the

MI task is omitted. In order to address this limitation, brain connectivities such as

correlation [Phang and Ko, 2020], spectral coherence [Li et al., 2022], and phase-

lag index [Yang et al., 2022] have been used to quantify the degree of relationship

among different brain regions in the frequency and phase domain. However, these

methods are also susceptible to various sources of noise and artifacts, such as volume

conduction, reference choice, and non-stationarity of the signals [Ruiz-Gómez et al.,

2019], which can affect their accuracy and interpretability.

In addition to time-frequency and spatial methods, approaches that directly match

brain process patterns and classification performance are used to analyze differences

between high and low-performing subjects [Collazos-Huertas et al., 2020]. A classical

approach is the CSP technique, which can estimate spatial filters that quantify the

degree of separability observed in the neural activity of each channel regarding the

MI classes [Naeem et al., 2006]. Nonetheless, CSP has certain limitations, such as the

assumption that EEG signals are stationary, sensitivity to noise, and overfitting when

many channels are presented [Mishuhina and Jiang, 2018]. Therefore, DL methods

have been proposed as an alternative.
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One method is Grad-CAM, which generates a heatmap by using the gradients of the

target class concerning the feature maps [Deng et al., 2021]. This heatmap highlights

elements of EEG signals that contribute the most to the target class. Another

approach is Layer-Wise Relevance Propagation (LRP), which propagates relevance

scores backward through the neural network layers to identify which input features

are most responsible for the output [Bang and Lee, 2022]. Finally, activation maps

can be visualized to gain insights into the network’s behavior and identify which

features are being learned at each layer [Li and Ruan, 2021]. Class activation-based

methods allow quantifying the relevance of each input feature, e.g., the EEG channel

and time sample, and propagating each class score of a given trial using

backpropagation and data upsampling. Therefore, this method preserves both the

relevance of the final score and the dimensions of the input feature [Sturm et al.,

2016].

However, the earlier methods often overlooked salient information about the most

important frequency bands and the connectivity between different parts of the

brain in the context of the MI classification task [García-Murillo et al., 2023].

Consequently, the development of a technique that emphasizes connections among

brain regions, specifically those contributing most to MI task discriminability, and

seamlessly integrates into any signal processing MI pipeline has the potential to

enrich the comprehension of performance variations among subjects in EEG-based

BCIs. Figure 1-3 provides a summarized overview of the preceding discussion on

interpretation techniques for understanding brain processes.

In the research context at hand, the utilization of ML and DL approaches shows

great promise in addressing the issue of ISV. To reduce the low SNR in EEG signals,

it is crucial to adopt personalized preprocessing methods that consider the

individual differences in noise sources and types. This approach involves

sequentially applying SL filtering and ICA methods, with an automatic switching

mechanism based on MI-BCI accuracy score. Additionally, by integrating

well-established BCI architectures like EEGNet with FC-based regularizers, the

problem of ISV can be effectively mitigated. Leveraging the spatial information
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Figure 1-3. Summary of interpretation techniques for investigating brain processes in the
MI task, and their drawbacks highlighted in blue.

provided by FC helps reduce the detrimental effects of overfitting, enabling the

network to focus solely on relevant information. Moreover, the use of FC class

discriminative methods becomes crucial to address the challenge of interpretability

in MI-EEG-based BCIs. These methods facilitate the assessment of differences in

brain patterns among subjects, particularly focusing on variations in key

connections and channels involved in the MI classification task. These

considerations form the foundation of our research objectives. Our primary aim is

to explore a subject-dependent preprocessing technique that accounts for subjects’

differences in noise level and type. Additionally, we aim to develop a regularized

version of EEGNet to reduce the overfitting effect. Lastly, we aim to investigate

FC-based methods for evaluating differences in brain patterns among subjects,

contributing to the overall interpretability of MI-EEG-based BCIs.
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1.4 Aims

1.4.1 General aim

To develop a machine learning framework that incorporates classical ML and DL

approaches to support multi-channel time series classification in MI-BCI systems,

handling inter-subject variability with preserved interpretability.

1.4.2 Specific aims

• To develop a subject-dependent preprocessing approach for multi-channel MI

discrimination that accounts for individual noise levels and type differences

among subjects such that the ISV effect is reduced.

• To build an end-to-end deep learning model that effectively deals with the ISV

effect.

• To develop an interpretability strategy that allows visualizing salient spatial

patterns to support multi-channel EEG-based MI systems.

1.5 Outline and contributions

Below, provide a brief introduction to the primary contributions of this master’s

thesis. They are summarized in Figure 1-4
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Figure 1-4. Schematic diagram illustrating the proposed solutions for the ISV and
explainability problems addressed in this thesis to support multi-channel time
series classification in BCI systems with preserved interpretability. Blue boxes
represent the solutions for the ISV problem, while the red boxes represent the
solutions for the explainability problem. Each branch is dedicated to an specific
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1.5.1 Subject-dependent artifact removal

A low SNR in EEG signals often affects the performance of MI classifiers, which can

obscure MI patterns and lead to decreased classification accuracy. Furthermore, it

is essential to note that each subject can exhibit different levels and types of noise,

resulting in a variable performance among individuals and contributing to the issue

of ISV.

To address this challenge, we propose a subject-dependent preprocessing approach

in Chapter 2 that reduces the low SNR phenomenon in poorly performing subjects

by selectively removing artifacts based on the accuracy obtained upon individual

subjects. Specifically, we utilize two preprocessing methods: ICA [Rashid et al., 2020]

and SL [Xu et al., 2018], to remove artifacts related to Electrooculography (EOG)

signals and the volume conduction effect, respectively. Furthermore, by selectively
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applying these preprocessing techniques, we aim to reduce the variability among

subjects’ performance, emphasizing boosting the performance of bad-performing

subjects. Additionally, we utilized various methods to investigate differences in

brain patterns among subjects, clustering them based on their MI classification

performance. This analysis provides insight into the variability among subjects and

informs further improvements to our preprocessing and classification methods.

1.5.2 Kernel-based Regularized EEGNet using Centered
Alignment and Gaussian Connectivity for Motor
Imagery Discrimination

DL models have shown promising results in performing MI tasks. However, various

factors, such as the amount and quality of EEG signals, which can differ across

subjects, can hinder the model’s performance. In addition, the limitations in the EEG

signals can cause models to overfit the training data, leading to poor generalization

in new samples and ultimately contributing to the ISV phenomenon.

To address this issue, we proposed a regularizer in Chapter 3 based on thewell-known

Centered Kernel Alignment (CKA) method [Wang et al., 2015b]. This regularizer

encodes the information of graph-structured data, which is computed as FCs using

the GFC approach [García-Murillo et al., 2021]. Additionally, we implemented a GFC

layer that computes the graphs in a data-driven way and can be directly coupled into

an end-to-end DL model. Specifically, we utilized the EEGNet [Lawhern et al., 2018]

network as the backbone for our implementation. This approach aims to reduce

the effect of overfitting, improves the performance of all subjects, and reduces the

variability among them, boosting the performance of low-performing subjects.
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1.5.3 FC and Kolmogorov-Smirnov Test-based method to
understand differences among MI task performers

Although DL models have demonstrated impressive classification performance in MI

tasks, their complexity can obscure the underlying decision-making processes and

the factors influencing the performance of both high- and low-performing subjects.

In Chapter 4, we propose a novel method based on FCs [Hamedi et al., 2016] and the

Kolmogorov-Smirnov [Berger and Zhou, 2014] test to explore differences in brain

processes among subjects with varying performance levels. Our method represents

each subject as an undirected weighted graph, highlighting the most discriminative

FC links. Analyzing these graphs helps identify the brain regions and connections

most relevant to the MI task and provides insights into the differences between

good- and poor-performing subjects.

1.6 EEG datasets

We used two established datasets in MI to evaluate our proposals: BCI Competition

IV dataset 2a (DBI) [Brunner et al., 2008] and Giga (DBII) [Cho et al., 2017]. We created

a classification pipeline for each proposal using traditional ML or DL techniques and

evaluated its effectiveness based on performance and visual interpretability. We

also extracted relevant features or interpreted models by FCs for each proposal.

1.6.1 DBI

The BCI Competition 2008 - Graz Dataset 2a is a publicly available collection that

can be accessed at http://www.bbci.de/competition/iv/index.html (accessed

on April 1st, 2023). The dataset contains EEG data fromM = 9 subjects that were

acquired in two sessions on different days, using a MI paradigm consisting of four

http://www.bbci.de/competition/iv/index.html
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MI tasks: imagining the movement of the left hand, the right hand, both feet, or the

tongue. Each session consisted of six runs, and each run included 48 trials, with 12

trials for each of the four possible tasks. Therefore, each session containedN = 288

trials, and the entire dataset contained 576 trials per subject in the two recording

sessions.

During each trial, a short acoustic warning and a cross on a black screen indicated

the beginning of the trial, which lasted for T = 7 seconds. At 2 seconds, a visual

cue appeared on the screen for 1.25 seconds, consisting of an arrow pointing left,

right, down, or up, corresponding to one of the four MI tasks. The cue instructed

the subject to perform the indicated MI task until the cross had disappeared from

the screen after 6 seconds. After each trial, a short break followed, and the screen

went black.

The EEG data were recorded using a 22-channel montage with Ag/AgCl electrodes

based on the 10/20 system (C = 22). In addition, three electrooculogram (ERD/ERS)

electrodes were used to record ocular artifacts. Both EEG and ERD/ERS signals were

sampled at a rate of 250 Hz and bandpass-filtered between 0.5 and 100 Hz. A Notch

filter at 50Hz was also applied. The datasets for each subject and session were stored

in the General Data Format (GDF) for biomedical signals using one file per subject

and session.

1.6.2 DBII

The Giga dataset is publicly available at http://gigadb.org/dataset/100295

(accessed on 1 April 2023), and it consists of EEG data from 52 healthy subjects, out

of which only M =50 are usable for evaluation. The data were acquired in one

session according to the BCI experimental paradigm of MI with two classes, left and

right hands. Each session consisted of five or six runs, each performing 100 or 120

trials per class. Each trial lasted for T =7 s and began with a black screen containing

a fixation cross for 2 s. Subsequently, a cue instruction appeared randomly on the

http://gigadb.org/dataset/100295
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screen within 3 s, prompting the subject to perform the indicated MI task. Finally, a

blank screen appeared, followed by a break of 4.1 to 4.8 s.

The EEG data were collected using a Biosemi ActiveTwo system with C =64 Ag/AgCl

electrodes placed according to the 10/10 international system. The subjects’ signals

were sampled at 512Hz and stored in (*.mat) format.

In addition to the MI recordings, real left-hand and right-hand movements were also

collected, along with six types of noise, including blinking eyes, eyeball movement

up/down, eyeball movement left/right, head movement, jaw clenching, and resting

state.

Figure 1-5 provides an overview of the DBI (four-class problem) and DBII (binary

problem) montage and paradigm used for MI classification.

1.7 Thesis structure

The thesis is structured as follows: Chapter 2 presents a subject-dependent

preprocessing schema to enhance the low SNR in EEG signals and reduce variability

among subjects’ performance. Chapter 3 focuses on developing a regularizer based

on the CKA method that operates over FC-structured data to reduce overfitting in

end-to-end DL models for performing MI tasks. In Chapter 4, we propose a novel

approach that utilizes FCs and the Kolmogorov-Smirnov test to explore differences

in brain processes among subjects with varying performance levels. Finally, Chapter

5 concludes the thesis by summarizing the main contributions, discussing possible

directions for future work, and providing a list of academic products associated with

this thesis.
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Figure 1-5. The EEG MI databases examined were DBI (BCI Competition four-class task)
and DBII (GigaScience binary task), displayed in the left and right columns,
respectively. The top row shows the EEG montages, while the bottom row
presents tested MI paradigm.



CHAPTER

TWO

SUBJECT-DEPENDENT ARTIFACT REMOVAL

This chapter presents an innovative approach for subject-dependent preprocessing to

mitigate the low SNR phenomenon observed in subjects who fail when performingMI

tasks. Our method selectively removes artifacts while performing feature extraction

using FC measures. The evaluation of our proposed SD-AR approach demonstrates

improvements in the performance of the MI classifier for subjects with poor motor

skills.

The approach focuses on addressing two common artifacts in EEG data, namely

Electrooculogram (EOG) artifacts and volume conduction effects, both of which can

distort the extraction of feature sets and severely degrade the classifier’s performance

in MI tasks. Existing techniques such as SL and ICA have been commonly employed

for artifact removal. However, their effectiveness is limited in cases of low SNR,

particularly in subjects with poor proficiency in MI tasks.

To tackle this challenge, we introduce a novel approach for Subject-Dependent

Artifact Removal (SD-AR), that adaptively applies either SL or ICA based on the
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classifier accuracy achieved by each individual. By leveraging subject-specific

information, our approach yields superior artifact removal results compared to the

traditional preprocessing techniques. Furthermore, the validation results obtained

from the datasets described in Section 1.6 indicate that our proposal consistently

outperforms existing preprocessing methods in all evaluated scenarios for artifact

removal.

Although both SL and ICA do not require subject-specific parameter tuning, their

effectiveness is enhanced as the dimensions of the EEG montage increases.

Additionally, subjects are analyzed in groups to gain insights into the variations in

brain patterns and analyze the contributions of different brain regions to the MI

task. This analysis enables us to understand the interplay among brain regions and

identify key regions with a crucial role in MI.

2.1 Methods

In this section, the main mathematical fundamentals of the well-known SL method

are given. Then, the ICA technique is described. Finally, we outline our SD-AR

approach. SD-AR allows building a discriminant preprocessing strategy based on SL

filtering and ICA to feed a FC-based feature extraction stage for further classification.

2.1.1 Surface Laplacian Filtering

LetX ∈RC×T be an EEG signal with C∈N, T ∈N being the number of channels and

time samples, respectively. The SL computes the second spatial derivative of the

underlying flow of electrical current produced by brain activity at the electrode c∈C
concerning the neighboring scalp potentials c′∈C, c 6= c′. In practice, the Laplacian
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filter of EGG data, denoted asXL ∈RC×T , is computed as [Carvalhaes and De Barros,

2015]:

XL = D
(
X>G−1

s −X>G−1
s 1G−1

s /1G−1
s 1

)>
where 1∈NC×C is an all-ones matrix, andGs =G+ εI is a smoothed version ofG,

I ∈RC×C is the identity matrix, ε∈R[0, 1] is a regularization parameter; andG and

D∈RC×C are weighting matrices with elements defined as:

g(c, c′) =
1

4π

∑
n∈ι

ζ(2n+ 1)Pn(cosdist(ec, ec′))

(n(n+ 1))ϑ
(2-1a)

d(c, c′) =
1

4π

∑
n∈ι

ζ(2n+ 1)Pn(cosdist(ec, ec′))

(n(n+ 1))ϑ−1
(2-1b)

In the equations above 2-1, Pn is a Legendre Polynomial of order n, ι∈N is the

highest polynomial order considered, ϑ∈R+ is a smoothness constant,

cosdist(ec, ec′)= 1 − ‖ec − ec′‖22/2 is the cosine distance between a pair of

electrode positions, and ec, ec′ ∈R3[−1, 1] are the electrode positions normalized to
a unit-radius sphere. The notation ‖·‖2 stands for `2-norm distance.

2.1.2 Independent Component Analysis

Brain and artifact sources are assumed to mix linearly inX =OS, whereO∈RC×Q

is the mixing matrix and S ∈RQ×T is the sources’ matrix, being Q≤C the number

of sources. Under the assumption that the components are statistically independent

and non-Gaussian distributed, the joint estimation of Ŝ={ŝq:q∈Q} and Ô={ôq:

q∈Q} can be performed through the negentropy-based optimizing framework as
follows [Kumar and Jayanthi, 2020]:

ôq = argmax
oq

L(sν)− L(o>
q X), ∀q ∈ Q

s.t.: ‖oq‖2 = 1

(2-2)
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where ôq ∈ RC is a column vector of unmixing weights computed for a row source,

sν∼N(0, 1) is a zero-mean, unit-variance Gaussian random variable

(sν ∈ RT ) and L(ν) =E {− log(p(ν)):∀ν} is the Shannon entropy. The notation
E {:∀ν} stands for expectation operator across a random variable ν.

Consequently, the maximization procedure described above is performed over every

q∈Q component. Here, Q is fixed to C, i.e., the number of EEG-montage channels.

Therefore, to recover the sources and separate them between brain or artifact signals

[Xu, 2021], the unmixing model yields:

Ŝ = Ô>X. (2-3)

2.1.3 Subject-Dependent Artifact Removal

In the presence of a reference electrooculography signal aq′ ∈RT , q′∈Q′
, we use a

pairwise similarity estimate to remove artifacts from the contaminated EEG data by

comparing an ICA source with every available reference. Thus, each ŝq component

is rejected or selected according to the following thresholding rule:

s̃q =

ŝq,

∣∣∣E{(ŝq−µŝq )(aq′−µaq′ )
}∣∣∣

σŝqσaq′
≤ %

0, Otherwise
(2-4)

where µŝq , µaq′
, σŝq , σaq′

∈ R are the values of the mean and standard deviation

computed for ŝq and aq′ , respectively; and % ∈ R+ is the threshold established to

remove (above) or select (under) the ICA components. The notation |·| stands for
absolute value. Hence, the cleaned signal is reconstructed from the unmixing model

in Equation (2-3). That is, X̂ = ÔS̃, where S̃ ∈ RQ×T is the selected ICA matrix that

removes the most closely ICA sources related to the reference artifacts.

In addition, applying both SL filtering and ICA approaches to EOG-artifact removal

and volume conduction effect relies on the principle of a similar influence over the
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whole set of individuals. Instead, for subject-dependent effectiveness, we select

either method of preprocessing based on the quality attained by each individual.

For this purpose, the SD-AR approach introduces the selector coefficient, noted as

ηm∈N[0, 1, 2, 3], that gets the value according to the following scenarios of maximal
accuracy performed by eachm∈M subject:

ηm =



0,X

1, X̂

2,XL

3, X̂L

(2-5)

where X̂L denotes the sequential application of both ICA and SL filtering

preprocessing procedures.

The classifier performance is computed using FC as the feature extraction method. In

particular, the following FC measurements extracted on a trial basis are considered:

- Power-based connectivity correlates between couples of electrodes over time

found on power fluctuations. Regarding this FC, the following pairwise

measures are evaluated [Shamsi et al., 2021, Stefano-Filho et al.,

2017, García-Murillo et al., 2021]:

Pearson’s Correlation =E {(x− µx)(x
′ − µx′)}/σxσx′ (2-6a)

Motifs = E {× i× i× i (x̄b = x̄′
b) : ∀b ∈ B} (2-6b)

GFC =E
{
exp(−‖x− x′‖22/2σ

2)
}

(2-6c)

where x,x′ ∈RT are the signals captured at a pair of electrodes, µx, µx′ ,

σx, σx′ ∈ R are the values of mean and standard deviation estimated for x,x′,

respectively; x̄, x̄′ are the motifs series calculated using the synchronization

method (each one lasting B≤T ), × i× i× i (x̄b= x̄′
b) is the vector of coincidences

between the motif series’ elements; and σ ∈R+ is the kernel bandwidth

needed for GFC.
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- FC based on Phase Coupling between two electrodes. The following measures

are evaluated [Billinger et al., 2013, Benzy et al., 2020]:

Spectral Coherence (COH) =
|E {Ξxx′}|√

E {Ξxx}E {Ξx′x′}
(2-7a)

Phase-Locking Value (PLV) = |E {Ξxx′/|Ξxx′|}| (2-7b)

where Ξxx′ ∈RT is the cross-spectral density between x and x′; while Ξxx,

Ξx′x′ ∈RT are the estimates of power spectral density computed for x and x′,

respectively.

In the above-considered FC measurements, the expectation operator averages across

the whole time set of each trial.

2.2 Experimental Set-Up

The proposed methodology of selective preprocessing is based on the well-known

methods of SL filtering and ICA. Namely, our SD-AR automatically switches each

one of the techniques mentioned above concerning the BCI accuracy score. In this

sense, SD-AR aims to improve each subject’s classification performance and the

interpretability of elicited brain activity responses along groups of subjects with

different skills and abilities for MI practice. As shown in Figure 2-1, the tested

preprocessing approach appraises the following stages:

(i) Subject-dependent preprocessing for artifact removal (SD-AR). According to

the highest individual classifier accuracy, removing artifacts over each subject

is conducted according to one of the following combinations of the ICA and

Laplacian filters in Equation (2-5): both filters, one only, or neither. In

applying both filters sequentially, the ICA procedure is first performed before

the Laplacian algorithm, as suggested in [Hsu, 2013]. For comparison, two

additional cases of preprocessing are also evaluated: (Ind-AR) using both

filters of artifact subtraction over every individual regardless of his achieved

classifier performance, and no removal filtering (Raw) of all acquired EEG data.
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(ii) Feature Extraction for testing the power-based and phase-based FC

measurements. As suggested in [Abhang et al., 2016], the set of EEG signals is

band-pass filtered within the following four frequency bandwidths (rhythms):

{µ∈[8− 12], βl ∈[12− 15], βm ∈[15− 20], and βh ∈[18− 40]}Hz. The features

are extracted within the time window of post cue onset. That is, 0.5− 3.5 s for

DBI and 0.5− 2.5 s for DBII (see Section 1.6). The feature extraction process is

built for each label by the vectorized version of the upper triangular matrix,

with size C ×(C−1)/2, computed over each trial for each FC measure under
evaluation. The obtained super vectors within the four considered rhythms

are further concatenated to create a single vector, with size 4C ×(C−1)/2,
which is further used as input to the classifier. Regarding the FC parameters,

the following values are specified: The kernel bandwidth in GFC, σ, is fixed

as the median averaged over the input distances [Valencia-Marin et al., 2021];

and the degree of motifs is set to 3 while the lag to 1, as suggested in [Rosário

et al., 2015].

(iii) Estimating classification performance using a LDA algorithm evaluated through

a 10-fold cross-validation strategy over the training set provided for DBI and

a simple ten-iteration 20–80% training-testing split for DBII. Of note, DBI

provides a predefined testing set, which is used to report the final performance.

Note that the preprocessing parameters are tuned at this stage according to

the achieved classification performance.

ICA SL
Feature 

Extraction
(FC)

Classification
(LDA)

Subject-dependent preprocessing for artifact removal 

Raw EEG 
Data

Accuracy

Figure 2-1. Diagram of the evaluated preprocessing approach to remove the effect of
electrooculography and volume conduction. The dashed box highlights the
proposed subject-dependent procedure for artifact removal (SD-AR ) tested in
subjects with poor MI skills.
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All experiments were carried out in Python 3.8, with the sklearn and MNE libraries,

on a Google Collaboratory environment (code repository: https://github.com/

mtobonh/SD-AR, accessed on 1 June 2023).

2.2.1 Computation of ICA Decomposition

Initially, a five-order high pass Butterworth filter of 1Hz is performed to remove

low-frequency drifts affecting the quality of the ICA filtering algorithm. In addition,

the unmixingmatrixO is also orthogonalized via the whitening procedure to improve

the accuracy of independent components, which are estimated by a fastICA algorithm

(see appendix A). Accordingly, the cost function in Equation (2-2) is approximated as

follows [Hyvärinen and Oja, 2000]:

L(sν)− L(o>
q X) ∝

(
E
{
− exp

(
−
(
o>
q X

)2
/2
)}
− E

{
− exp

(
−s2ν/2

)})2

(2-8)

The source selection is based on the similarity between every ICA source and the

electrooculogram available for DBI. Then, the similarity is measured on a trial basis

over the whole subject set through the Pearson Correlation value. Since DBII does

not provide the EOG data, the similarity with the ICA components is assessed using

the three frontal electrodes, as suggested in [Jafarifarmand et al., 2017]. Across the

subject set, the correlation values have a Gaussian probability density function, as

shown in the right column of Figure 2-2 for either database. Therefore, the rule for

source removal is fixed to the 3σ-level computed over the Z-scored values (see red

dashed lines). Note that this procedure is twice performed.

As an illustrative example of EOG-removal from the EEG signal, Figure 2-2 shows

the channels-noise ratio computed as the median of normalized unmixing matrix

weights of sources associated with artifacts. The median value is calculated over

the subjects’ noisy trials. As seen in both evaluated databases, the ocular artifacts

affect the frontal channels because of their proximity to the eyes. However, the

https://github.com/mtobonh/SD-AR 
https://github.com/mtobonh/SD-AR 
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Figure 2-2. Effect of ICA filtering for EOG removal on both evaluated databases: DBI (Top
row) and DBII (bottom row). Left column: the estimated electrode weights
(normalized values are shown) and topograms. Right column: 3σ-level threshold
of similarity used for EOG removal.

reconstructed topoplots show that DBI has a larger effect on brain area since the EEG

montage holds the third set of electrodes, as does DBII. Moreover, the small montage

may produce significant variations in the estimated weights of the electrodes of

frontal and centro-parietal areas.

2.2.2 Impact of Surface Laplacian Filtering

The influence of SL Filtering on connectivity measurements is assessed. To this

end, we adjust the parameters of the SL filter as suggested in [Cohen, 2014]: the

highest Legendre polynomial order o to 10, the smoothing constant ϑ to 4, and the

regularization parameter ε to 1× 10−5. Further, we conduct the testing methodology

developed in [Cohen, 2015] that explores whether the amount of FC estimates
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(b) DBII: Effect of SL on FC computation for DBII.

Figure 2-3. Effect of SL on the FC computation. 2-3a Top row shows the results for DBI. 2-3b
Bottom row shows the results for DBII. Spatial FC matrix and the corresponding
topoplot calculated without filtering (Left column); after SL filtering (Right
column).

decreases after applying the spatial filtering over a specific electrode. Consequently,

we check if the number of false links drops due to the field spread effect.

Specifically, the FC between the Cz channel, placed over the sensorimotor area, and

the remaining electrodes is examined. For illustration’s sake, Figure 2-3 presents

the FC matrix extracted using the pairwise Pearson correlation in Equation (2-6a),

although other metrics yield similar results. We show the corresponding topogram

estimated for the Cz channel along with the FC matrix. Both FC representations are

obtained for DBI (2-3a) and DBII (2-3b) by averaging across the trial and individual

sets. As can be seen, the left-side heatmap matrix extracted from the raw data

visualizesmanymore relationships between electrodes so that the resulting topoplots

exhibit neural responses spread throughout the scalp surface.

Consequently, the MI rehearsing is masked by a high field spread effect. On the

contrary, the SL filter impacts the FCs calculation positively, reducing considerably
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the number of links outside the sensorimotor area activated by MI, as shown in

the connectivity matrix. Furthermore, the estimated topoplot presents a focused

neural activity neighboring the Cz electrode with a reduced amount of spurious

connectivities caused by volume conduction. The EEG montage of DBII with a much

higher number of electrodes can better illustrate this situation.

2.3 Results and Discussion

By using the FC estimators above-described in Section 2.1.3, the proposed

methodology is evaluated in terms of the performance of each feature extraction

using the following metrics: Accuracy (ACC), Cohen’s Kappa coefficient (kappa), and

Area Under the Receiver Operating Characteristics Curve (AUC) [Géron, 2019].

In all performance metrics, we show their testing set values of the mean ± standard

deviation averaged across two different evaluating strategies: (i) Global assessment by

averaging over the whole set of individuals; (ii) Group-level assessment by averaging

over a concrete category of subjects. Namely, we are interested in evaluating the

effectiveness of the suggested preprocessingmethodology for enhancing the classifier

performance of the so-called inefficient individuals [Park et al., 2021].

2.3.1 Classifier Performance Achieved per Subject

Here, we estimate the performance in three training scenarios for classifying MI

tasks: (a) the classifier is fed by EEG data without preprocessing (left column—Raw),

(b) EEG data after both preprocessing procedures for ICA and SL Filtering (center

column—Ind-AR), (c) the suggested preprocessing approach that switches either

procedure selectively as explained before (right column—SD-AR).

Table 2-1 presents the results achieved by the testing set of DBI, for which the best

performance values of each estimator are marked in bold. Overall, both power-based
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and phase-based connectivity measurements achieve poor results in the four-class

classification task of DBI, with the GFC estimator being the best performer. As can

be seen, training solely with raw data underperforms the proposal regardless of the

FC metric employed. Despite this, Ind-AR is the best preprocessing scenario, even

though the suggested method gets close results. This weak impact of the proposal

may be explained by the fact that the DBI collection faces several troubles during

validation: First, the training and testing data distributions differ considerably. Figure

2-4 displays the number of trials strongly affected by artifacts, which have been

identified using the ICA-based procedure in the training and testing datasets. As can

be observed, there is a high disparity in four subjects (labeled as #2, # 5,# 1, and

#3). DBI is a relatively small data set, so four subjects would be more than 40% of

the data set. Secondly, the used EEG montage holds a relatively small number of

channels, posing a significant restriction for SL procedures, as discussed in [Rathee

et al., 2017]. Consequently, validation is adversely affected by all of these issues,

resulting in a low classifier performance.

(%
)N

oi
sy
Tr
ia
ls

2 5 9 7 8 4 1 3 6
10

20

30

40

50

60

70 Test
Train

Subjects

Figure 2-4. Percentage of noisy trials of each subject identified by the ICA-based artifact
removal strategy in the training and testing stage of DBI.

Table 2-2 displays the resulting performance obtained through a 10-fold
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Table 2-1. Performance of each FC measure in DBI for each of the training classifier scenarios.
The last row shows the performance values averaged over the whole subject set
and across the evaluated FC measures. The notation Pearson stands for Pearson’s
correlation. Bold stands for the best results.

FC Raw Ind-AR SD-AR

ACC
Kappa
AUC

ACC
Kappa
AUC

ACC
Kappa
AUC

PLV
44.9± 8.8
0.27± 0.12
0.72± 0.09

53.3± 11.9
0.38± 0.16
0.77± 0.10

51.1± 12.9
0.35± 0.17
0.76± 0.11

COH
53.6± 12.4
0.38± 0.17
0.78± 0.10

57.9± 11.3
0.44± 0.15
0.80± 0.09

55.8± 12.6
0.41± 0.17
0.79± 0.09

Pearson
54.6± 12.4
0.39± 0.17
0.79± 0.10

57.4± 11.8
0.43± 0.16
0.81± 0.09

57.2± 11.7
0.43± 0.16
0.81± 0.09

Motifs
48.6± 9.8
0.32± 0.13
0.75± 0.09

55.4± 12.0
0.41± 0.16
0.80± 0.10

53.8± 13.2
0.38± 0.18
0.79± 0.10

GFC
62.9± 11.6
0.51± 0.15
0.85± 0.09

64.4± 11.9
0.53± 0.16
0.85± 0.09

63.5± 11.4
0.51± 0.15
0.85± 0.09

Average
52.9± 12.6
0.37± 0.17
0.78± 0.10

57.7± 12.4
0.44± 0.16
0.81± 0.09

56.3± 13.1
0.42± 0.17
0.80± 0.19

cross-validation scheme, as commonly validated for DBII [Collazos-Huertas et al.,

2021b]. Unfortunately, as shown in the central column, both approaches (i.e.,

Ind-AR) result in the worse bi-class classification scenario and harm average over all

individuals rather than improving the performance, as expected. This effect is

contrary to the case for subject-dependent preprocessing, which improves classifier

performance for all FC metrics considered (see right column). A noteworthy fact is

that the mean values of performance achieved by the power-based FC estimators
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Table 2-2. Performance of each FCmeasure in DBII for each of the training classifier scenarios.
The last row shows the performance values averaged over the whole subject set
and across the evaluated FC measures. Bold stands for the best results.

FC Raw Ind-AR SD-AR

ACC
Kappa
AUC

ACC
Kappa
AUC

ACC
Kappa
AUC

PLV
62.1± 9.7
0.24± 0.19
0.62± 0.10

61.8± 12.8
0.23± 0.26
0.61± 0.13

66.7± 11.4
0.33± 0.23
0.67± 0.11

COH
64.0± 9.4
0.28± 0.19
0.64± 0.09

63.2± 11.3
0.26± 0.23
0.63± 0.11

67.6± 10.6
0.35± 0.21
0.67± 0.11

Pearson
65.0± 10.5
0.30± 0.21
0.65± 0.11

63.9± 12.0
0.27± 0.24
0.63± 0.12

68.4± 11.1
0.36± 0.22
0.68± 0.11

Motifs
64.5± 10.4
0.29± 0.21
0.64± 0.10

63.7± 12.5
0.27± 0.26
0.63± 0.13

68.3± 11.6
0.36± 0.23
0.68± 0.12

GFC
70.2± 11.9
0.40± 0.24
0.70± 0.12

70.6± 12.3
0.41± 0.25
0.70± 0.12

73.4± 11.6
0.47± 0.23
0.73± 0.12

Average
65.2± 10.8
0.30± 0.22
0.65± 0.11

64.6± 12.6
0.29± 0.25
0.64± 0.13

68.9± 11.5
0.37± 0.23
0.69± 0.12

outperform the corresponding phase-based metrics. As a result, GFC yields the best

mean estimates of all feature extraction methods, while PLV comes in last.
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2.3.2 Enhanced Performance of Individuals with Poor
Skills

Next, the impact of the proposed SD-AR preprocessing on the subjects who performed

theMI task theworst is assessed. Given the superior performance of the GFCmeasure

(refer to Table 2-2), the impact analysis specifically utilized this FC and was limited

to the DBII collection, involving more individuals to ensure statistically significant

results.

By analyzing each performance measure (ACC, kappa, and AUC) individually, we

cluster the distinctiveness in terms of the variability between subjects. Concretely,

clustering is carried out based on the classifier measures through the k-means

algorithm (see appendix B), fixing the number of partitions to three, as commonly

adjusted [Velasquez-Martinez et al., 2020a]. For evaluation purposes, the k-means

algorithm is fitted with the performance criteria estimated for the feature set

without processing (i.e., Raw scenario).

According to the considered training scenarios of MI classification, the classifier

performances (mean and variance values) are grouped into the following three

partitions of skills in practicing MI tasks (see Figure 2-5), as also recommended

in [Zhang et al., 2020]: (G I) Group of individuals achieving the most consistent

performance with very low variability of neural responses (colored in green). (G II)

Group with performance exceeding 70% [Cho et al., 2017], containing some response

fluctuations (yellow color). (G III) Group producing modest performance and a high

unevenness of responses (red color). Figure 2-5a displays the resulting accuracy

obtained by each training scenario. For the aim of assessing the gain in performance,

the individuals are sorted based on the accuracy estimated by the LDA algorithm for

the Raw training scenario. Moreover, Figure 2-5b shows the resulting partitions of

MI skills. As can be observed, the baseline scenario results in the smallest number

of best-performing subjects (11). At the same time, this training with raw data yields

the highest number of worse-performing individuals (21) that comprises more than
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(a) LDA-based Accuracy of MI tasks.
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(b) Resulting partitions of MI skills.

Figure 2-5. Clustering variability of individuals that belong to G I (cells in green), G II (yellow),
and G III (red), depending on the preprocessing strategy.

40% of the subjects set. MI training under these conditions becomes very ineffective

and costly to implement [Dagdevir and Tokmakci, 2021]. Afterward, the Ind-AR

scenario delivers even fewer best-performing subjects (10) while reducing the

worse-performing set by upgrading six individuals. Nonetheless, some subjects are

severely downgraded, as it is the case for #42 and #40.

Lastly, the proposed SD-AR approach results in the largest best-performing set (14)

while providing the smallest number of individuals with poor skills (13). In other

words, SD-AR reduces the group of poor-performing individuals from 40% to 25%.
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Table 2-3. The resulting performance of each training classifier scenario obtained by GFC
for each considered group of skills in practicing the MI tasks. Bold stands for the
best results.

FC Raw Ind-AR SD-AR

ACC
kappa
AUC

ACC
kappa
AUC

ACC
kappa
AUC

G I
86.4± 5.50
0.73± 0.11
0.86± 0.06

85.9± 6.50
0.72± 0.13
0.86± 0.06

88.3± 5.50
0.76± 0.11
0.88± 0.05

G II
73.9± 4.10
0.47± 0.08
0.74± 0.04

72.8± 7.80
0.45± 0.16
0.72± 0.08

76.5± 5.90
0.52± 0.12
0.76± 0.06

G III
58.7± 5.10
0.17± 0.10
0.58± 0.05

60.6± 7.60
0.21± 0.15
0.61± 0.08

63.0± 6.40
0.26± 0.13
0.63± 0.07

Another aspect to highlight is that SD-AR does not downgrade individuals compared

with the other training scenarios.

Table 2-3 summarizes the classification measures computed per each group, showing

once more that SD-AR overperforms in all scenarios of preprocessing evaluated for

artifact removal. SD-AR has also performed better than the average achieved by

Ind-AR for all individuals.

2.3.3 Improved Interpretability of Elicited MI Responses

As part of the proposed SD-AR approach, we will consider the enhanced

interpretability of GFC extraction to decode the brain neural responses elicited by

MI paradigms. Here, we compute the topoplots based on the absolute value of

individual LDA coefficients estimated within all four bandwidths and normalized

between [0, 1]. In this context, the absolute value of LDA coefficients is a measure of
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the relevance of discriminating between MI tasks, i.e., the larger the coefficient, the

higher the contribution provided by the extracted FC set. Thus, to compute the

relevance of each individual, we first build a supervector by concatenating all ravel

versions of the LDA-based discriminant weights concerning the upper triangular

GFC feature matrix. Concatenation integrates all four rhythms and produces a

vector of size 4C ×(C−1)/2. Nevertheless, since unsplit versions of µ and β are

conventionally explained, the three subbands of the latter rhythm are merged into

one plot using the maximum operator. Then, the newly recomputed relevance

weight vector has a dimension of C ×(C−1).

Afterward, we compute the group-level GFC representation by joining the relevance-

weight vectors estimated for allMi individuals belonging to each i-th subset of MI

skills (i.e., G I, G II, and G III), yielding a matrix with dimensionMi×C(C−1), being
Mi the number of subjects in i-th subset. The group-level relevance GFC matrix

summarizes the joint contribution, from which the maximum value in each column

(that is, per individual) becomes the connectivity link having the most significant

contribution to discriminating between MI tasks.

Figure 2-6 displays the topoplots that reveal the estimated spatial relevance for µ and

β rhythms. As can be seen, the fast changes of β enable a higher discriminating ability

of neural responses than the µ band. Still, the assessed contribution of the elicited

neural responses depends on the evaluated scenario of classifier training. Thus, the

case of no removal filtering leads to brain β responses with background activity

spreading the sensory-motor and occipital regions. However, the number of relevant

GFC links decreases as the group performance of subjects also worsens. With both

artifact subtraction filters applied across the entire group of individuals, significantly

more β activity spreads across the scalp, overextending the sensory-motor cortex

and including the brain activity coming from occipital and temporal lobes. Both

regions are not supposed to contribute to the MI paradigm, and this activation

may explain the reduced classification performance of Ind-Ar among the evaluated

training scenarios. Regarding the proposed SD-AR approach, the discriminating

neural responses are the most localized within the premotor and motor cortex.
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Figure 2-6. Topoplots show the GFC’s spatial relevance for each considered group of skill
partition. The GFC links only exceeding relevance weight values of 0.9 are
depicted. The strength values over each electrode estimate the background
activity elicited by MI responses.

Therefore, the classifier is more accurate since more contributing GFC relationships

are evaluated.

Furthermore, to decrease training efforts and encourage user-centered MI responses,

the neurophysiological explanation of spatial patterns generated is enhanced by

SD-AR. In particular, the estimated topoplots show that in comparison with the

µ rhythm, β waveforms having a faster behavior benefit more from the artifact

removal of the electrooculography and volume conduction effect. Consequently, the

discriminating neural responses estimated by SD-AR are the most localized within

the premotor and motor cortex, as expected in MI paradigms. To illustrate this

finding, Figure 2-7 compares the corresponding plots of both rhythms estimated for

the subject labeled as # sbj45 that is included by the Raw training scenario in the

worst-performing group. After applying SD-AR, this subject achieves a high gain in

classification accuracy (more than 8%) so that he is newly incorporated into G II with

adequate performance. As can be observed, the brain neural activity of β is now

localized mainly in the sensorimotor area.
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Figure 2-7. Topographical maps of # sbj45 with poor skills, having a high gain in
classification accuracy provided by SD-AR.

2.3.4 Comparison of Results for Motor Imagery
Classification Methods

The suggested preprocessing approach entails FCmeasures for feature extraction that

encode most meaningful relationships of elicited brain neural responses between

electrodes to tackle better MI tasks performed by poor-performing subjects. Several

widely known power-based and phase-based methods of FC are tested, showing that

subject-dependent preprocessing improves the classifier’s performance, with GFC

being the most accurate. As a result, compared with several state-of-the-art methods

recently reported for classification of MI tasks, Table 2-4 shows that the proposed SD-

AR approach achieves a competitive classification accuracy for both EEG databases.

In addition, the SD-AR approach decreases the group of poor-performing individuals,

improving the use of MI paradigms. Still, the validation of DBII reveals that very few

subjects may not benefit from the suggested subject-dependent preprocessing for

artifact removal.
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Table 2-4. Comparing the SD-AR classification accuracy of MI tasks with existing state-of-
the-art methods reported for DBI (four classes) and DBII (bi-class). Bold stands
for the best results.

Method Accuracy [%]

DBI

STR [Rodrigues et al., 2019] 49.2± 15.6
MCSP+SRSG-FasArt [Jafarifarmand and Badamchizadeh, 2020] 62.7± 15.9

3DCNN [Wei and Lin, 2020] 64.9± 7.5
EEGNet [Lawhern et al., 2018, Jeong et al., 2021] 67.3± 15.7

SD-AR 63.5±11.4

DBII

FBCSP [Ang et al., 2008, Ko et al., 2021] 68.0± 15.0
EEGNet [Lawhern et al., 2018, Ko et al., 2021] 64.0± 7.0

RSTNN [Ko et al., 2018, Ko et al., 2021] 69.0± 12.0
Optical+ [Kumar et al., 2021] 69.6± 16.3

SD-AR 73.4±11.6

2.4 Summary and Discussion

In this chapter, an approach for SD-AR has been proposed to effectively address

the issue of low SNR in EEG signals. This issue leads to variations in subjects’

performance during the MI task. The approach focused on selectively removing

artifacts based on the individual classifier accuracy, tailoring the artifact removal

process to the specific needs of each subject. Two preprocessing methods, ICA and

SL, were employed. ICA was used to eliminate artifacts associated with EOG signals,

while SL addressed the volume conduction effect.

Unlike conventional techniques that primarily rely on commonly-used spatial

patterns to extract event-related desynchronization features, our approach explored

a range of FC measures across spatially-distributed regions. These measures enabled

us to extract MI features to evaluate the differences in subjects’ performance based

on the relevance of connectivity within specific brain regions for the MI task.

To evaluate the effectiveness of our SD-AR approach, experiments were conducted

using the datasets described in Section 1.6. The results demonstrated its remarkable
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capability to mitigate the impact of artifacts to reduce intertrial/inter-subject

amplitude variability. Consequently, the classifier’s performance was improved, and

the interpretability of the results was improved, particularly for subjects with poor

MI skills.



CHAPTER

THREE

KERNEL-BASED REGULARIZED EEGNET USING

CENTERED ALIGNMENT AND GAUSSIAN CONNECTIVITY

FOR MOTOR IMAGERY DISCRIMINATION

This chapter introduces a novel regularizer designed to tackle the issue of overfitting

in end-to-end DL models employed for MI tasks. Overfitting can significantly affect

model performance, particularly in subjectswith high levels of noise and brain pattern

variability, leading to degraded results. Our regularizer aims to mitigate overfitting

by guiding DL architectures to focus on intrinsic MI patterns while reducing the

influence of noise in EEG signals.

The proposed regularizer is built upon the well-established CKA method and

leverages information from EEG signals about FCs. FCs are computed using a

data-driven GFC layer seamlessly integrated into the end-to-end DL architecture.

The GFC layer functions as a filter, effectively removing spurious connectivities from

noise channels while preserving those associated with relevant MI activity. This

approach enhances the feature representation of EEG signals and significantly
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improves performance in the MI task, particularly for subjects who struggle with

their performance.

In evaluating the proposal, the EEGNet architecture was chosen as the baseline. The

MI performance of the raw EEGNet model was subsequently compared with the

Kernel-based Regularized EEGNe (KREEGNet) on the datasets outlined in Section

1.6. The results demonstrated a notable overall improvement in the MI

performance of our regularized approach. Moreover, our regularizer reduced

performance variability among subjects and yielded significant benefits for those

with poor initial performance.

In addition to evaluating performance, we conducted a comprehensive

hyperparameter analysis to investigate the relationship between hyperparameters,

performance, and noise levels. This analysis provided valuable insights into the

impact of hyperparameter settings on model performance, further validating the

effectiveness of our regularizer. Furthermore, we compared our KREEGNet model

against other renowned DL architectures regarding MI classification performance.

The results consistently demonstrated the superiority of our proposed method,

reinforcing its efficacy in addressing the challenge of overfitting in MI tasks.

3.1 Methods

3.1.1 Centered Kernel Alignment Fundamentals

LetX ⊂ X, Y ⊂ Y be a pair of random variables holding samples x ∈ X and y ∈ Y ,

respectively. The kernels κX : X × X → R and κY : Y × Y → R can be defined

to code nonlinear relationships among samples from positive definite functions,

yielding:

κX(x, x
′) = 〈φX(x), φX(x

′)〉HX
, (3-1)

κY (y, y
′) = 〈φY (y), φY (y

′)〉HY
, (3-2)
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whereφX : X→ HX andφY : Y→ HY , beingHX andHY the resulting Reproducing

Kernel Hilbert Spaces (RKHS). Hence, the statistical alignment between κX and κY ,

ρCKA(X,Y ) ∈ [0, 1], referred to as Centered Kernel Alignment (CKA), is calculated

by taking the normalized inner product between them and averaging it across all

pairs of realizations, as shown below [Cortes et al., 2012, Álvarez-Meza et al., 2017]:

ρCKA(X,Y ) =
E {XY } κ̃X(x, x

′)κ̃Y (y, y
′)√

E {X} κ̃X(x, x′)E {Y } κ̃Y (y, y′)
, (3-3)

where x, x′ ∈ X and y, y′ ∈ Y , E {·} is the expectation operator, and κ̃Z stands for

centered kernel aiming to provide translation invariance, as follows:

κ̃Z(z, z
′) = κZ(z, z

′)−E {z}κZ(z, z
′)−E {z′}κZ(z, z

′)+E {zz′}κZ(z, z
′), (3-4)

which is defined for a given Z ⊂ Z with samples z, z′ ∈ Z. In practical applications,

when provided with a set of input-output pairs {xn ∈ RP ,yn ∈ RR}Nn=1, we can

compute the kernel matrices KX ,KY ∈ RN×N as: KX [n, n
′] = κX(xn,xn′) and

KY [n, n
′] = κY (yn,yn′). Utilizing Eqs. (3-3) and (3-4), we can calculate the empirical

estimate for the CKA alignment ρ̂CKA(KX ,KY ) ∈ [0, 1]:

ρ̂CKA(KX ,KY ) =
〈K̃X , K̃Y 〉F√
‖K̃X‖F , ‖K̃Y ‖F

, (3-5)

where ‖ · ‖F and 〈·, ·〉F are the Frobenius norm and inner product, respectively.

Besides, the centered kernel matrices in Eq. (3-5) are calculated as: K̃X = HKXH

and K̃Y = HKYH , withH = I − 1
N
1>1 (I and 1 are the identity matrix and the

all-one vector of proper size, respectively). As a result, the alignment described in

Eq. (3-5) serves as a data-driven estimator, enabling us to quantify the similarity

between the random variablesX and Y .
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3.1.2 GaussianFunctional Connectivity fromEEG records

Let us examine a collection of multi-channel EEG recordings referred to as {Xn ∈
RC×T}Nn=1, where C denotes the number of channels, T represents the samples

within EEG recordings, and N the number of trials.

Next, let us consider two EEG channels of a given trial xc,xc′ ∈ X , with c, c′ ∈
{1, 2, . . . , C}, a pairwise correlation between the EEG channels can be computed as:

ρ̂L(xc,xc′) =
1

T
〈xc,xc′〉2, (3-6)

where 〈·, ·〉2 stands for the inner product. The pairwise linear relationships in Eq. (3-6)
allow computing functional connections between EEG channels as an undirected

graph representation.

However, we can effectively capture nonlinear interactions among various channels

by operating a generalized stationary kernel that transforms the input space into an

RKHS. This approach enables us to obtain a more precise depiction of the

underlying neural activity. Moreover, employing a stationary kernel guarantees that

the proposed technique can effectively capture the temporal dynamics of EEG

signals.

Given these considerations, the Gaussian kernel is widely preferred in pattern

analysis and machine learning. It can approximate any function and offers

mathematically tractable properties [Géron, 2022]. Therefore, it is an excellent

choice for computing pairwise connections as a Gaussian-based Functional

Connectivity (GFC) measure from the kernel function κG : RT × RT → [0, 1],

as [García-Murillo et al., 2023]:

κG(xc − xc′ ; γ) = exp
(
−1

2
γ‖xc − xc′‖22

)
, (3-7)

where ‖·‖2 denotes the `2-norm operator and γ ∈ R+ represents a scale parameter.

The inclusion of a Gaussian function in Eq. (3-7) facilitates accurate and efficient

calculation of nonlinear interactions between xc and xc′ .
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3.1.3 KREEGNet: Kernel-based Regularized EEG
Network

Let us consider an input-output set consisting of multi-channel EEG records and

labels denoted as {Xn ∈ RC×T ,yn ∈ {0, 1}R}Nn=1. Here, yn gathers the target labels

for MI tasks encoded using the one-hot encoding (with R classes being considered).

Our Kernel-based Regularized EEG Network (KREEGNet), an enhanced version of the

well-known EEGNet [Lawhern et al., 2018], enables accurate prediction of the MI

label ŷ ∈ [0, 1]R for a given EEG trialX . This prediction is accomplished through two

primary blocks. Initially, the class membership prediction is performed as follows:

ŷ = (ϕQ ◦ ϕT ◦ ϕC ◦ ϕF̆ )(X), (3-8)

where notation ϕ(X̃) = ξϕ

(
Wϕ ⊗ X̃ + bϕ

)
stands for DL-based layer mapping, ◦

is the function composition operator, ⊗ is the tensor product, e.g., convolutional

or fully connected layer-based operations. Besides, X̃ is a given network’s feature

map of proper size,Wϕ, bϕ gather the weight matrix and bias vector of the layer,

and ξ(·) is a nonlinear activation function. Namely, each layer function in Eq. (3-8)
is described as:

– ϕF̆ : RC×T → RF̆ ,C,T is a convolutional layer holding F̆ filters, a batch

normalization, and a linear activation.

– ϕC : RF̆×C×T → RαF̆ ,C,
T
4 is a depthwise convolutional layer holding ELU

activation (α gathers the number of spatial filters), followed by an average

pooling and a dropout operation.

– ϕT : RαF̆ ,C,
T
4 → RF̆ ′ T

32 is a separable convolutional layer with ELU activation

(F̆ ′ is the number of pointwise filters), setting a batch normalization, an average

pooling, and a dropout.

– ϕR : RF̆ ′ T
32 → [0, 1]R is a fully connected classification layer fixing a flatten

operation and a softmax activation.
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In turn, a kernel-based regularizer is applied by properly computing the data-driven

GFC:

K† = (κ̃ ◦ ϕF̆ )(X), (3-9)

where ϕF̆ is defined as in Eq. (3-8), κ̃ : RF̆ ,C,T → [0, 1]F̆ ,C,C extracts the GFC among

EEG channels (see Eq. 3-7) along each of the F̆ filters, andK† ∈ [0, 1]F̆ ,C,C .

Furthermore, the parameter set θ, stacking the weight matrices and bias vectors in

Eq. (3-8), and the scale parameter γ of the GFC in Eqs. (3-7) and (3-9), is optimized

using a gradient descent-based framework with back-propagation [Zhang et al., 2021]:

θ∗ = arg min
θ

(1− λ)

N

N∑
n=1

CE(yn, ŷn(θ))−
λ

F̆

F̆∑
f=1

ρ̂CKA(K̆f (θ),Kδ), (3-10)

where λ ∈ [0, 1] is a trade-off hyperparameter and CE(·, ·) stands for the cross-
entropy loss defined as:

CE(yn, ŷn(θ)) = −
R∑

r=1

ynr log (ŷnr(θ)) , (3-11)

with ynr ∈ yn and ŷnr(θ) ∈ ŷn. Moreover, the kernel-matrix K̆f (θ) ∈ [0, 1]N×N is

computed as:

K̆f [n, n
′] =

〈
triu(K†

n(θ; f)), triu(K
†
n′(θ; f))

〉
2

(3-12)

where triu(K†(θ; f)) ∈ [0, 1]C
(C−1)

2 holds the upper triangular matrix of the GFC

stored inK† for filter f . Likewise, the target kernel matrixKδ ∈ {0, 1}N×N is built

as:

Kδ[n, n
′] = δ(|yn − yn′ |1), (3-13)

being δ(·) the delta function and | · |1 the 1-norm.
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Figure 3-1. KREEGNet pipeline for Motor Imagery classification from EEG records.

The optimization problem outlined in Eq. (3-10) enables the training of our KREEGNet

for MI discrimination. Figure 3-1 summarizes the KREEGNet pipeline. To ensure

numerical stability and simplicity, the GFC scale parameter is learned as a mapping

of 10γ . It is worth mentioning that a preprocessing stage is included to align the

various database conditions, such as sample frequency, band-pass filtering, and EEG

window size (refer to section 3.2.1 for more details).

3.2 Experimental Set-up

We provide a comprehensive overview of the pipeline used to develop and evaluate

the KREEGNet model for MI discrimination. It includes the training phase of the

model and the techniques employed to assess the effectiveness of the proposal.

3.2.1 KREEGNet Training Details and Assessment

The training of our KREEGNet consists of two stages: i) preprocessing of EEG

records, and ii) fine-tuning the network hyperparameters to enhance the

classification performance.
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To initiate EEG preprocessing, a custom database loader module, see https://

github.com/UN-GCPDS/python-gcpds.databases (accessed on 8 April 2023), was

utilized to load the recordings. Only EEG channels were considered, and the signals

were scaled to µV to ensure suitability for analysis. Any trials marked as bad in the

datasets were rejected. A fifth-order Butterworth bandpass filter was applied to all

channels within the [4, 40]Hz range, where MI activity was observed [García-Murillo

et al., 2023]. Additionally, each channel’s signal was clipped within the post-cue

onset time window, retaining only information from the MI task. For DBI, the time

window was 0.5 − 3.5s, while for DBII, it was 0.5 − 2.5s (see section 1.6). Then,

to ensure the network parameters remained consistent, the signal from each EEG

channel was downsampled in both databases from 256Hz in DBI and 512Hz in DBII

to 128Hz. Our preprocessing step is similar to the one described by the authors

in [Lawhern et al., 2018].

Next, to ensure a reliable model evaluation, the stratified shuffle split 5-fold 80− 20

scheme was applied within each subject’s data. This process involved shuffling the

data and selecting 80% for training while holding out the remaining 20% for testing.

This procedure was repeated five times. Model performance was evaluated using

accuracy, Cohen’s kappa, and the area under the ROC curve for both datasets [Géron,

2022]. In particular, the F1-scores for movements of the left and right hand (denoted

as F1L and F1R) were computed exclusively for DBII. An exhaustive search strategy

for hyperparameter tuning was implemented, and the mean accuracy score across

the folds was used to evaluate each hyperparameter’s performance. In order to train

our model, we formulated the loss function as a combination of the cross-entropy

(CE) and the CKA-based regularization, with each component accordingly weighted.

On the one hand, the CE component served as a guide for the model to perform the

classification task effectively. On the other hand, the CKA component played a role

in mitigating overfitting by considering the spatial information of the FCs computed

in the GFC layer. The contribution of each term in the cost function was defined as

(1 − λ) for the CE component and λ for the CKA component. The value of λ was

searched within the set {0, 0.2, 0.4, 0.6, 0.8}. We employed the Adam optimizer with

an initial learning rate of 1e− 3 to optimize the network parameters. Additionally, a

https://github.com/UN-GCPDS/python-gcpds.databases
https://github.com/UN-GCPDS/python-gcpds.databases
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callback mechanism was implemented to decrease the learning rate by 10 when the

loss function no longer exhibited improvement. The KREEGNet was trained for 500

epochs, utilizing all available samples in the training set.

The experiments conducted in this study were performed using Python version 3.8

in both Google Collaboratory and Kaggle environments. We employed TensorFlow

version 2.8.2 to build models, define losses, create custom layers, and implement

training strategies. To ensure reproducibility and facilitate further analysis and

experimentation, we systematically saved the model weights and performance

scores. For those interested in reproducing the training of our KREEGNet, we have

provided a Kaggle notebook accessible at the following link:

https://www.kaggle.com/mateotobonhenao/kreegnet-training (accessed on 8

April 2023). This resource contains all necessary details and code to replicate our

training procedure.

3.2.2 Method Comparison

To assess the efficacy of our KREEGNet, we conducted a comprehensive analysis of

its classification performance. Additionally, we categorized subjects into groups (for

DBII) based on their classification performance to gain insights into the impact of

our proposal against four classical end-to-end DL models that incorporate both

temporal and spatial information from EEG signals using stacked 1D convolutions.

The first model, the baseline EEGNet [Lawhern et al., 2018], utilizes separable

convolutions to reduce parameters while maintaining performance similar to

traditional convolutional layers. In addition, it includes a depthwise convolution

layer to capture spatial information and a fully connected layer with softmax

activation for classification. The second model, Shallowconvnet [Schirrmeister et al.,

2017], is a simpler architecture consisting of a single convolutional layer followed

by non-linear activation, batch normalization, and pooling layers. Despite its

simplicity, it effectively classifies EEG signals. The third model,

https://www.kaggle.com/mateotobonhenao/kreegnet-training
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Deepconvnet [Schirrmeister et al., 2017], is a deeper architecture comprising five

convolutional layers, followed by non-linear activation, batch normalization, and

pooling layers. Although it performs well in EEG signal classification, it is

computationally more expensive than Shallowconvnet and EEGNet. Finally, we

consider the TCFussionnet proposed in [Musallam et al., 2021]. This model consists

of three main components: a temporal component that learns various bandpass

frequencies, a depth-wise separable convolution that extracts spatial features for

each temporal filter, and a Temporal Convolutional Network (TCN) block that

captures temporal features. These features are combined to generate

comprehensive feature maps, which are then classified into different MI classes

using a dense layer with softmax activation. The Kaggle notebook available at

(https://www.kaggle.com/mateotobonhenao/dl-methods-comparison -

accessed on 8 April 2023) contains the code necessary to assess the MI classification

effectiveness of the aforementioned DL models. Besides, the following GitHub

repository holds the complete codes related to our experiments

(https://github.com/mtobonh/KREEGNet - accessed on 8 April 2023).

3.3 Results and Discussion

3.3.1 Baseline EEGNet vs. KREEGNet: Subject andGroup-
Level Results

A comparative analysis is conducted between KREEGNet and the widely recognized

benchmark, EEGNet, for both DBI and DBII datasets in the context of binary MI

classification tasks. The analysis specifically focuses on distinguishing between left

and right-hand imagery movements. A subject-specific examination is executed

across both databases, while the group-level analysis is limited solely to DBII due

to DBI’s composition of a mere nine subjects. A scoring matrix is constructed for

robust validation, where the rows correspond to the dataset’s subject count (50 for

https://www.kaggle.com/mateotobonhenao/dl-methods-comparison
https://github.com/mtobonh/KREEGNet
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DBII), and six columns represent accuracy, Cohen’s kappa, the area under the ROC

curve scores, and their corresponding standard deviations. To maintain the principle

of ‘the higher, the better‘ and restrict all column values within the [0, 1] range in the

scoring matrix, the substitution of the standard deviation with its complement and

normalize Cohen’s kappa by adding one and dividing by two. Following that, we

utilize this scoring matrix and the k-means clustering algorithm [Géron, 2022], setting

k to three, to train a model that categorizes subject results based on the benchmark

model EEGNet into three groups: top performers (GI), average performers (GII), and

low performers (GIII). Subsequently, our KREEGNet’s subject analysis results are

clustered using the trained k-means and the score matrix. The ultimate goal is to

examine and discern how subject classification shifts between the EEGNet and the

KREEGNet-based groups [García-Murillo et al., 2023].

Figure 3-2a and 3-2b present a comparative accuracy analysis of subject-specific

and group-level analysis. The dotted orange line in the figures corresponds to the

EEGNet; in contrast, the dotted blue line illustrates the proposed KREEGNet. The

blue and red bars in the figures indicate the impact of employing the KREEGNet

on individual subject accuracy. Specifically, the blue bars denote improvements in

accuracy, while the red bars indicate decreases. These visual cues provide valuable

insights into the performance enhancements achieved by our approach across specific

subjects. Moreover, in the context of DBII, the figure’s background incorporates

bars with low opacity in opal green, lemon yellow, and salmon pink. These color-

coded backgrounds denote the grouping of subjects into top-performing, average-

performing, and low-performing subjects.

Our KREEGNet model’s performance regarding DBI reveals a subject-dependent

average accuracy of 78.0%, surpassing the baseline EEGNet by 1.6%. Notably, out of all

the subjects, only Subject seven (S7) experienced a marginal decrease in performance,

with a decline of less than 1%. Conversely, the remaining subjects demonstrated

improvements in accuracy. Particularly impressive was Subject four (S4), exhibiting

a remarkable performance increase of 4.7%, showcasing the effectiveness of our

KREEGNet model in enhancing subject-specific analysis by coding relevant functional

connections among channels within an end-to-end regularized network.
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(a) Average Accuracy: EEGNet 76.4%, KREEGNet A 78.0%.
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(b) Average Accuracy: EEGNet 74.4%, KREEGNet A 77.9%.

Figure 3-2. EEGNet vs. KREEGNet comparison results. The Figure 3-2a demonstrates the
subject-specific analysis for DBI, while the Figure 3-2b exhibits the group-level
evaluation for DBII (KREEGNet gain: GI 1.0%, GII 2.9%, and GIII 5.7%). The
reported mean accuracy corresponds to a binary MI classification of left versus
right-hand movement. Subjects have been organized following their EEGNet
performance. The blue bars show improvements in the performance achieved
by our proposed KREEGNet, whereas the red bars highlight cases of reduced
performance. The backdrop for the DBII results visually represents the group
membership, with top performers in GI, average performers in GII, and low
performers in GIII.
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For DBII, the EEGNet and KREEGNet models achieved subject-dependent average

accuracies of 74.4% and 77.9%, respectively, indicating an incremental improvement

of 3.5% for our proposal. The standard deviations for EEGNet and KREEGNet were

14.9% and 13.2%, respectively, suggesting that our approach resulted in less variability

among subjects’ performance. Interestingly, the accuracy of KREEGNet varied across

the subjects, with three scenarios emerging from the results. Firstly, eight subjects

showed a decrease in accuracy, with only three experiencing a reduction of 2% or

more. Secondly, two subjects did not show any change in accuracy. Lastly, the

remaining subjects demonstrated an increase in accuracy, with nineteen of them

experiencing an increase of more than 5%.

Now, the impact of our method on the performance of different subject groups in

DBII was substantial. In the case of Group GIII, the KREEGNet outperformed the

baseline in all but two instances, with a remarkable increase of over 5% observed

in fourteen cases. As for Group GII, four subjects experienced a minor decrease of

less than 2%, while one remained unchanged. On the other hand, twelve subjects

showed a performance improvement, with half achieving an increase of over 3%.

Of particular note is Subject 15, which exhibited an impressive performance boost

of 16%, highlighting the strong influence of our CKA-based regularizer on specific

individuals. In Group G III, only two subjects witnessed a decrease in accuracy, while

nine subjects demonstrated improved performance, including two with increases

exceeding 3%. So then, our strategy yielded significant performance enhancements

for most subjects across all groups, with a notable benefit observed in the poorly

performing subject group.

Similarly, Figure 3-3 presents the categorization of the subject group and the

influence of the KREEGNet. The initial row displays the arrangement of subjects as

per the results of EEGNet, while the final row illustrates the shift or constancy of

each subject’s group derived from the KREEGNet outcomes. For example, in GIII,

our approach promoted four subjects to GII. Likewise, two individuals were

elevated from GII to GI. Importantly, no individual experienced an in-group

demotion status, underlining the equal or superior performance of KREEGNet

compared to the standard EEGNet.
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Figure 3-3. KREEGNet subject group enhancement (Baseline: EEGNet). Note that green,
yellow, and red represent top, average, and low performance regarding the
average accuracy along subjects. First row: The arrangement of subjects according
to EEGNet classification. Second row: Alterations in subject group affiliations
based on the results of KREEGNet.

3.3.2 Hyperparameter Analysis

Subsequently, we scrutinized the complex behavior of the hyperparameters λ and γ

across different subject groups in DBII. λ symbolizes the importance given to the CKA-

based regularizer in the cost function of KREEGNet, contributing to enhancing the

network’s classification capabilities. Conversely, γ sets the bandwidth scale for the

Gaussian kernel employed in the GFC layer that calculates the FCs. By investigating

the dynamics of these hyperparameters, we seek to understand their influence on

performance and the GFC layer’s FC estimation. Figure 3-4a presents a boxplot

depicting the statistical distribution of the λ hyperparameter among the subject

groups, with the background boxes denoting group membership. Firstly, most tend

to posse lower λ values in GI, specifically below 0.6. This is attributed to the fact

that subjects within this group display more evident MI patterns, readily captured by

the standard EEGNet model. Secondly, GII exhibits a more evenly distributed set of

values, with half of the subjects presenting λ values exceeding 0.3. This could imply

that some subjects at this stage demonstrate noisy MI patterns that heighten the
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risk of overfitting the training data, thereby reducing the classification performance.

Lastly, for GIII, λ values are predominantly higher. Specially, half of the subjects

in this group have λ values above 0.5, with the majority of the remainder having

values ranging between 0.4 and 0.5. The latter suggests that most of the subjects’

data in this group present noisy patterns. Nevertheless, the CKA-based regularizer,

working on the FCs computed by the GFC layer, aids in eliminating this unwanted

effect, leading to improved classification performance.

In the same way, Figure 3-4b displays the boxplot of the γ hyperparameter among

different subject groups. This bandwidth filters the relationships between channels,

suggesting that channels with higher noise levels have lower bandwidth values to

circumvent unwarranted connections. The findings imply that subjects in GIII

require more filtering through the γ parameter, hinting that these individuals

typically have higher noise in their MI patterns. Our CKA-based regularizer and the

GFC layer contribute to the reduction of these noises, thereby enhancing

classification performance. Notably, our results demonstrate an inverse linear

relationship between the fixed λ and γ values. Specifically, subjects with good

performance, i.e., those in G I and some in G II, exhibit lower values of λ and higher

values of γ, indicating a low contribution of the CKA-based regularizer and that the

bandwidth of the GFC layer is more flexible in filtering out the relationship between

channels. This suggests that the MI patterns for these subjects are cleaner and less

affected by noise. Conversely, subjects with poor performance, i.e., those in G III,

exhibit higher values of λ and lower values of γ, indicating that the CKA-based

regularizer contributes more to the cost function to reduce the effect of overfitting

due to the presence of noise. Additionally, γ shrinks the value of the bandwidth in

the GFC layer to be more rigid in filtering out the relationship between channels,

thereby avoiding spurious connectivities. These findings highlight our KREEGNet’s

importance in optimizing the performance and interpretability of EEG-based MI

tasks.
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Figure 3-4. Analysis of KREEGNet hyperparameters at the group level for DBII. Boxplot
diagrams are provided for the tuned λ and γ values in relation to the top (GI),
average (GII), and low (GIII) performing subjects.

3.3.3 Method Comparison Results: Binary and
Multi-Class MI Classification

The classification performance of the DL models discussed in Section 3.2.2 for DBI

and DBII are presented in Tables 3-1 and 3-2, respectively. The results indicate that

the DeepConvenet model performs the worst for both databases, while our

proposed KREEGNet achieves the highest MI classification results. Notably, the

Shallowconvnet, EEGNet, and TCFusionnet networks conduct similarly in both

databases. Our KREEGNet attains outstanding results in all classification measures

for DBII, demonstrating its superior performance. Although our model also achieves

the best results for DBI, the difference in performance compared to other models is
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Table 3-1. Multi-class MI classification results for DBI. Average Accuracy, Kappa, and AUC
are displayed ± the standard deviation.

Approach Accuracy Kappa AUC
Deepconvnet [Schirrmeister
et al., 2017]

55.5± 24.3 40.6± 32.4 78.1± 20.4

Shallowconvnet [Schirrmeister
et al., 2017]

74.9± 13.3 66.7± 17.7 91.6± 7.2

EEGNet [Lawhern et al., 2018] 76.4± 14.6 68.6± 19.5 92.5± 0.71
TCFussionnet [Musallam et al.,
2021]

77.3± 13.4 69.7± 17.9 92.6± 0.68

KREEGNet (ours) 78.0± 14.1 70.7± 18.8 92.6± 0.7

Table 3-2. Binary MI classification results for DBII. Average Accuracy, Kappa, F1L, F1R and
AUC are displayed ± the standard deviation.

Approach Accuracy Kappa F1L F1R AUC
Deepconvnet
[Schirrmeister et al.,
2017]

61.9 ±
12.4

23.6 ±
24.9

59.5 ±
13.8

63.0 ±
13.0

66.0 ±
16.0

Shallowconvnet
[Schirrmeister et al.,
2017]

72.5 ±
14.1

44.6 ±
28.3

71.8 ±
14.7

72.4 ±
14.4

77.9 ±
15.3

TCFussionnet [Musallam
et al., 2021]

73.9 ±
14.8

48.0 ±
30.0

73.8 ±
15.3

74.0 ±
14.7

80.0 ±
16.3

EEGNet [Lawhern et al.,
2018]

74.4 ±
14.9

48.6 ±
29.8

73.3 ±
15.8

74.4 ±
15.5

79.6 ±
16.4

KREEGNet (ours) 77.9 ±
13.2

55.7 ±
26.5

77.1 ±
13.8

77.6 ±
14.0

82.5 ±
14.5

less significant. This can be attributed to the fact that DBI has fewer channels, with

most of them concentrated in the central brain area, which limits the effect of the

estimated FC by the GFC layer and the CKA-based regularizer. Then, only

interactions between channels located in the same brain region are considered,

reducing the diversity of information.
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3.4 Summary and Discussion

This chapter introduced a novel regularizer to mitigate overfitting in end-to-end DL

models for MI tasks. Our regularizer effectively filtered out noise-related artifacts

by leveraging the CKA method and incorporating a data-driven GFC layer while

preserving relevantMI activity in EEG signals. The experimental results confirmed the

significant improvements achieved by our regularized approach, enhancing overall

MI performance and reducing performance variability among subjects, particularly

for those with initially poor performance. Furthermore, the hyperparameter analysis

further strengthened the reliability and effectiveness of our regularizer, and the

comparison against other DL architectures confirm its superiority in the context of

MI classification tasks.



CHAPTER

FOUR

FC AND KOLMOGOROV-SMIRNOV TEST-BASED

METHOD TO UNDERSTAND DIFFERENCES AMONG MI

TASK PERFORMERS.

This chapter introduces a new method to thoroughly explore the variations in brain

processes among subjects with different performance levels. Our method allows

for a qualitative assessment of the distinct brain patterns exhibited by each subject,

achieved by representing them as discriminative FC matrices.

To accomplish this, we start by converting the EEG signals of each subject into graph-

structured data using an FC estimator (specifically, the FCs estimated in Chapter 3

using the GFC layer). This conversion enables us to capture the complex connections

among various brain regions. We then group the FCs based on MI classes and utilize

a Kolmogorov-Smirnov (KS) test to measure the distinguishability of these classes at

the connectivity level. As a result, we obtain a single FC matrix that highlights the

most significant connections for each subject concerning the MI task.
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Subsequently, we utilize the obtained discriminative FC matrices and the

classification scores (obtained in Chapter 3) to comprehensively analyze the

variations in FC patterns across individuals and groups of subjects. Additionally, we

utilize the discriminative FC matrices to measure the differences in noise levels

among subjects and create topographical maps that provide valuable insights into

the most discriminative brain regions.

4.1 Methods

4.1.1 Kolmogorov-Smirnov test

The KS test is a non-parametric statistical test used to determine if two datasets

follow the same underlying probability distribution [Berger and Zhou, 2014]. It

compares the cumulative distribution functions of the two samples and quantifies the

maximum difference, known as the KS statistic [Vrbik, 2020]. This test is particularly

useful when the distribution assumptions of parametric tests are not met or when

the data are measured on an ordinal or interval scale.

The KS test can be performed as a one-sample or two-sample test. This section

focuses on the two-sample KS test, which assesses whether two independent samples

are drawn from the same population distribution [Engmann and Cousineau, 2011].

In the two-sample KS test, the null hypothesisH0 assumes that the two samples are

drawn from the same distribution, while the alternative hypothesisH1 suggests that

the distributions differ. The KS statistic, da,b, is defined as

da,b = sup
ν
|L1,a(ν)− L2,b(ν)| (4-1)

Where L1,a(ν) and L2,b(ν) are the empirical distribution functions of the first and

the second sample ν, respectively, and sup denotes the supremum function.
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For large samples, the null hypothesis is rejected at level  if

da,b > t()

√
a+ b

a.b
(4-2)

Where a and b are the sizes of the first and second samples, respectively, the critical

value t() is obtained from the KS distribution and depends on the chosen significance

level.

4.1.2 Construction of Topographic Maps from EEG
Signals

Topographic maps provide a spatial representation of the electrical activity in the

brain based on EEG signals. These maps offer valuable insights into the distribution

and localization of neural activity across the scalp [Hooi et al., 2015]. In this section,

we describe the methodology for constructing topographic maps from EEG data.

Scalp Potential Model

To construct topographic maps, we begin by considering the scalp potential

distribution resulting from neural activity. The scalp potential at any point on the

scalp can be represented as a linear summation of the contributions from underlying

electrical sources. The general equation for the scalp potential at a given electrode

location, denoted by v(i, j), can be expressed as:

v(i, j) =

Q∑
q=1

ôq · sq(i, j)

whereQ is the total number of electrical sources, ôq represents the weight or strength

of the q-th source, and sq(i, j) denotes the contribution of the q-th source at location

(i, j) on the scalp.
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Interpolation Techniques

To construct topographic maps, the scalp potential distribution needs to be

estimated at locations where electrode measurements are not available.

Interpolation techniques are commonly used for this purpose. One widely used

method is the spline interpolation, which assumes that the scalp potential can be

represented by a smooth surface. The interpolated scalp potential, denoted by

v̂(i, j), can be obtained using the following equation:

v̂(i, j) =

Q∑
q=1

ôq · ŝq(i, j)

where ŝq(i, j) represents the interpolated contribution of the q-th source at location

(i, j).

Weighting Scheme

The weights assigned to each electrical source in the scalp potential model play

a crucial role in constructing topographic maps. The choice of weighting scheme

depends on the specific research question and analysis goals. Commonly used

weighting schemes include the dipole model, Laplacian transformation, and PCA.

These schemes aim to enhance the sensitivity to particular neural sources or highlight

specific patterns of activity.

Visualization

Once the scalp potential distribution is estimated at all locations, a topographic map

can be generated by assigning colors or contour lines to represent the magnitude of

the scalp potential at each electrode site. The color scale or contour lines are chosen

to reflect the range of values observed in the data, allowing for visual interpretation

of the spatial distribution of neural activity.
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Raw EEG
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Individual FC
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Subject noise
level analysis
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Figure 4-1. Schematic diagram illustrating the proposed methodology to examine inter-
subject variations in brain processes across different performance levels. The
blue box indicates the key step.

4.2 Experimental Set-up

We evaluated the FC variations across subjects, focusing on determining which

connections significantly influence the ability to distinguish between the MI classes.

Acknowledging that a strong correlation in the FC matrix does not automatically

translate into enhanced class distinction is essential. In this endeavor, we utilized the

KS statistic 4.1.1, a tool that quantifies the disparity between the class distributions

for each FC. Our KS-based connectivity pruning, illustrated in Figure 4-1, proceeds

as follows:

– We categorized each connection’s trials for an individual based on the label,

forming the right and left sample sets (in case of DBII).

– Following this, we calculated the KS statistic for the connectivity between

each pair of EEG channels along the training set trials. A KS value nearing 1

signifies a high level of distinguishability for the connectivity between two

channels, whereas a value approaching 0 suggests a low level of separability.
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– Moreover, we utilized the maximum operator across the estimated FCs for

each feature map to establish a KS statistic matrix. This matrix denotes the

class-separability of each connectivity.

– In order to illustrate the variations in each KS statistic matrix across subjects

and groups, we depicted eachmatrix of KS statistic values on a two-dimensional

scatter representation. Both dimensions were calculated employing the widely

accepted t-SNE algorithm (see appendix C) over the RCKA-EEGNet score matrix

obtained in chapter 3.

– Lastly, to fully comprehend the key connectivities and channels involved in

the MI classification, we used topoplots 4.1.2 from the KS statistic matrix. To

compute topoplots, we initially quantified channel contribution using

normalized node degree. Then, we highlighted relevant connectivities above

0.8. For DBII, representative KS matrices were obtained for each group using

the median operator, identifying prominent connectivities and channels.

4.3 Results and Discussion

4.3.1 Individual FC pattern variations

Figures 4-2 and 4-3 depict the t-SNE 2D projections of the KS statistic matrices of

each subject for DBI and DBII, respectively. In particular, the color-coded outer

square of Figure 4-3 represents the group affiliation (GI, GII, and GIII). This visual

representation enhances our comprehension of the significant connectivity patterns

in the MI classification task. Figure 4-2 depicts the optimal performing subjects

at the bottom, intermediate performers towards the left-middle, and the poorly

performing ones at the top-left. Notably, the KS statistic matrices of high-performing

subjects are more distinct, except for subject 7. This finding suggests that the FCs

estimated by the GFC layer hold more significance in the MI classification. On the
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Figure 4-2. DBI-2D t-SNE projection of KS-based pruned FC matrices utilizing our RCKA-
EEGNet. A gradation of colors ranging from blue to red represents a continuum
from low to high separability.

contrary, intermediate and poor performers show sparse KS matrices, implying their

data has a higher noise level, which results in erroneous FCs that overlap with MI

class distributions.

Likewise, Figure 4-3 shows how G III exhibits sparse KS statistic matrices in the

bottom-right corner, indicating that the FCs estimated are not discriminative among

classes. This observation can be explained by the fact that the γ parameter took

lower values for this particular group of subjects (see 3.3.2), which tend to produce

sparse matrices regardless of MI classes. In contrast, the subjects in G I in the top-left

tend to have more fired KS statistics, with a notable concentration over the MI area.

Finally, G II reveals more erratic behavior, with the subjects near G III. The latter

may be attributed to individual differences in brain activity during the MI tasks.
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G.III
G.II
G.I

Figure 4-3. DBII-2D t-SNE projection of KS-based pruned FC matrices utilizing our RCKA-
EEGNet. A gradation of colors ranging from blue to red represents a continuum
from low to high separability. Outer boxes indicate subject group belongingness:
green G I, yellow G II, and red G III.

4.3.2 Subject noise level analysis

In order to evaluate the informational dynamics of pruned FCs, we utilized quadratic

Rényi’s entropy, computed over the KS statistic matrices [Giraldo et al., 2014]. Our

observations suggested that sparse KS statistic matrices corresponded with higher

noise levels, whereas the KS matrices that had been freed up corresponded to

lower noise levels. These statements are corroborated by Figures 4-4a and 4-4b.

Furthermore, our findings align with the mentioned statements from Chapter 3.

Specifically, the subjects that perform poorly in DBI tend to display higher entropy

values, which is also true for the subjects classified under G III in DBII.
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(b) DBII results.

Figure 4-4. Renyi’s entropy-based retained information within the estimated functional
connectivity matrices (H2 stands for quadratic entropy value). 4-4a: DBI results
sorted regarding the classification performance. 4-4b: DBII results where the
background codes the group membership (best, medium, and poor-performing
subjects. Boxplot representation is used to present the retained information
within each group.

4.3.3 Group analysis: Topoplots

Next, the topoplots in Figures 4-5a and 4-5b show the distribution of relevant

connectivities and channels. Certain subjects are selected for visualization purposes

in DBI. Meanwhile, the median KS statistic matrix of each group in DBII is employed.

The results indicate that the sensorimotor area is the most critical region for both

databases. It suggests that our RCKA-EEGNet effectively improves classification
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performance and model interpretability by incorporating a CKA-based regularizer

and a GFC layer.

S3 S4 S6

0.0
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0.0 0.2 0.4 0.6 0.8 1.0

(a)
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0.0 0.2 0.4 0.6 0.8 1.0

(b)

Figure 4-5. Visual outcomes of the topographical maps (DBI and DBII results). Figure 4-5a
illustrates the results related to significant subjects for the DBI. Figure 4-5b
displays group-oriented visualizations for the DBII. Only those connections that
hold a value surpassing the 95th percentile are highlighted. The backdrop of these
visualizations corresponds to the normalized cumulative connection strength
across channels, which is projected onto the topographical map.

For DBI, we analyzed S3, S4, and S6 to represent high-performing, intermediate,

and low-performing subjects. Notably, S3 exhibited a higher number of relevant

FCs compared to S4 and S6. Furthermore, the FCs of S3 and S4 are thickened in

the central-brain region, consistent with the MI paradigm. However, S6 displayed a

concentration of FCs in a single channel in the left-central region. Concerning DBII,

the analysis of connectivities and channels in G I subjects revealed that the primary

areas of interaction during MI tasks are located in the left-right central regions. This
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finding suggests that these subjects exhibit more distinct and reliable patterns of

MI activity. The subjects belonging to G II displayed a pattern of connectivities and

channels in the right-central brain region. However, a diffuse pattern was observed

in the left hemisphere, covering some posterior and brain regions not strongly

associated with MI activity. This diffuse pattern may be attributed to noise-induced

EEG features, affecting classification performance. Finally, for the subjects in G III,

the connectivities are concentrated in the central region of both hemispheres, which

aligns with the MI paradigm. Similar to G II, the main channels are located in the

right-left central brain areas, but robust patterns are observed in the left-posterior

and frontal areas, highlighting noisy behavior.

4.4 Summary and Discussion

Our chapter presented a new method for investigating the differences in brain

processes among individuals with varying levels of performance in MI tasks. The

study converted EEG signals into graph-structured data using a FC estimator, which

allowed for capturing the complex connections between different brain regions. The

KS test was used to measure the distinguishability of FCs between MI classes. This

resulted in distinguishing FC matrices that highlighted the most discriminative

connections for each subject. The analysis of individual FC pattern variations

showed that high-performing subjects had more distinct KS matrices, indicating the

importance of the estimated FCs for accurate classification. Additionally, examining

the noise levels of subjects using Renyi’s entropy revealed that sparse KS matrices

corresponded to higher noise levels. The group analysis, conducted using

topographic maps, identified the sensorimotor area as the most critical region for MI

tasks in both databases. In summary, the proposed method offered valuable insights

into the variations in FC patterns and the impact of noise on distinguishing

performers in MI tasks.





CHAPTER

FIVE

FINAL REMARKS

5.1 Conclusions

In conclusion, this thesis presents a comprehensive ML framework designed to

support multi-channel time series classification in BCIs while preserving

interpretability. The main contributions of this work can be summarized as follows:

Firstly, we introduced a Subject-Dependent Artifact Removal strategy (SD-AR) to

address the challenge of low SNR in EEG signals, which leads to variations in subjects’

performance during MI tasks. The SD-AR approach selectively removes artifacts

based on individual classifier accuracy, providing a subject-specific artifact removal

process that effectively enhances the quality of EEG data.

Secondly, a novel regularizer was developed to address the issue of overfitting in end-

to-end DL models used for MI tasks. This regularizer leverages the well-established

CKA method and incorporates information from EEG signals about FCs to guide DL
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architectures in focusing on intrinsic MI patterns while reducing the influence of

noise in EEG signals.

Additionally, we presented a new method for investigating the differences in brain

processes among individuals with varying levels of performance in MI tasks. By

converting EEG signals into graph-structured data using an FC estimator, we were

able to capture complex connections between different brain regions. The use of the

KS test resulted in discriminative FCmatrices that highlighted significant connections

for each subject, contributing to the explainability of end-to-end DL models.

Collectively, these contributions significantly advance the field of BCI and multi-

channel time series classification. The SD-AR strategy and regularizer effectively

address the problem of ISV, enhancing the reliability and generalization of BCI

systems. Moreover, the proposed method for investigating brain process differences

adds a new dimension of interpretability to end-to-end DL models.

Furthermore, the availability of the implementation code in a GitHub repository

facilitates the research community’s adoption and fosters further development of

these techniques. The open-source nature of the code promotes collaboration,

enables reproducibility, and empowers researchers to build upon these methods for

future advancements in BCI systems.

5.2 Future Work

As part of the future work, this thesis proposes a comprehensive research path

aimed at further enhancing the developed approach and expanding its applicability

in Brain-Computer Interface (BCI) systems. The following key research directions

are outlined:

• Evaluation with Diverse Databases: To validate the effectiveness and

generalizability of the subject-dependent preprocessing approach, the authors
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plan to evaluate it on databases containing more subjects and lower-quality

EEG data. By testing the approach in diverse datasets, the research can ensure

its robustness and applicability to a broader range of real-world scenarios.

This evaluation will shed light on the approach’s performance and reliability

in different contexts, providing insights into its potential practical use.

• Elaborate Feature Extraction Methods: In order to tackle the issue of low

Signal-to-Noise Ratio (SNR) in subjects performing poor motor imagery tasks,

the authors aim to explore more elaborate feature extraction methods. By

investigating advanced techniques for extracting relevant information from

EEG signals, the thesis can further improve the quality of processed data,

leading to enhanced classification accuracy and more reliable BCI systems.

• Investigation of Artifact Removal in Modern DL Architectures: To ensure the

compatibility of the developed artifact removal approach with modern DL

architectures, future work will focus on exploring its effectiveness in such

architectures. This investigation is crucial as DL models are continually

evolving, and the proposed approach should be adaptable to leverage the

advancements in DL techniques. Ensuring compatibility with modern

architectures will enhance the approach’s potential for broader adoption and

integration into state-of-the-art BCI systems.

• Integration of Eye-Tracking and Cognitive Psychological Attention Test Data:

To further enhance the artifact removal approach and improve both BCI

performance and interpretability, the authors plan to integrate eye-tracking

and cognitive psychological attention test data. By incorporating additional

sources of information related to users’ attention and cognitive states, the

thesis can refine the artifact removal process, leading to more accurate and

reliable BCI predictions. This integration can also provide valuable insights

into users’ cognitive processes during MI tasks, contributing to the overall

interpretability of the BCI system.
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• Augmentation of KREEGNet with Graph Convolutional Networks: As part of

future research, the authors aim to augment KREEGNet to achieve end-to-

end functional connectivity estimation via graph convolutional networks. By

leveraging graph-based neural networks, the BCI system can better capture

complex connections between brain regions, leading to improved classification

performance and enhanced interpretability. This augmentation can facilitate a

more comprehensive understanding of brain dynamics during MI tasks.

• Investigation of Causal Connectivity with Information-Theoretic Learning:

Future work also involves investigating causal connectivity rooted in

information-theoretic learning for deep-learning-based estimations. By

exploring causal relationships between brain regions, the research can

uncover meaningful interactions and dependencies, providing deeper insights

into the underlying neural mechanisms during MI tasks. This investigation

can lead to a more detailed understanding of the brain’s functional

connectivity and contribute to improved BCI system performance.

• Subject-Independent Experiments and Testing Transformer Networks: To

validate the generalizability of the proposed methods, the authors plan to

conduct subject-independent experiments. This will test the models’

performance on unseen subjects, verifying their ability to adapt to different

individuals. Additionally, the research will explore the use of transformer

networks, which have demonstrated success in various domains. Integrating

transformer networks into the BCI system can enhance its ability to capture

long-range dependencies in EEG signals and lead to improved multi-channel

time series classification.

5.3 Limitations

Even though the work is of high quality and relevance, certain limitations are

acknowledged in this section:
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• Although subject variability was investigated, the creation of a universal,

subject-independent model remains challenging, as the solutions require a

model for each subject to capture specific brain dynamics.

• To understand MI dynamics, the work presented crucial frequency bands and

brain interconnections for each subject in the MI classification task, grouping

and comparing subjects based on performance. However, the omission of

crucial time segments for the MI classification task hinders a comprehensive

understanding of temporal dynamics.

• The exclusive reliance on MI time segments for classifying EEG signals limits

the real-time applicability of the proposed MI-EEG-based system.
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APPENDIX 1: FASTICA

Algorithm 1 FastICA

1: Input: Q Number of desired sources
2: Input: X ∈ RC×T Prewhitened EEG signal, where Q 5 C

3: Output: O ∈ RC×Q Mixing matrix
4: Output: S ∈ RQ×T Sources’ matrix
5: for q ← 1, Q do
6: oq ← Random vector ∈RC×1

7: while oq Converges do
8: oq ← 1

T
XG′(oT

q X)T − 1
T
G′′(oT

q X)1Toq

9: oq ← oq −
∑q−1

j=1(o
T
q oj)oj

10: oq ← oq

‖oq‖2
11: end while
12: end for
13: OutputO ← [o1, . . . ,oq]
14: Output S ← OTX

where G′ and G′′ represent the first and second derivatives of equation 2.2.1.





APPENDIX

B

APPENDIX 1: K-MEANS

In this appendix, we provide a detailed mathematical formulation of the K-means

algorithm, a widely used clustering technique. The algorithm aims to partition a

given dataset intoK∈N distinct clusters based on their similarity. We present the

main equations associated with theK-means algorithm, including the model, cost

function, and the optimization procedure.

B.1 Model

Let us consider a dataset X = {xn∈RD}Nn=1 consisting of N∈N data points, where

each xn represents a D∈N-dimensional feature vector. The goal of the K-means

algorithm is to assign each data point to one ofK clusters, with each cluster being

represented by its centroid.

We denote the centroids of the clusters as C = {ck∈RD}Kk=1, where each ck is a

D-dimensional vector representing the centroid of the k-th cluster. TheK-means

algorithm seeks to find the optimal set of centroids that minimizes the within-cluster

sum of squared distances.
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B.2 Cost Function

The cost function used in theK-means algorithm quantifies the total sum of squared

Euclidean distances between each data point and its assigned centroid. Let us define

a binary indicator variable rnk∈{0, 1}, which takes the value of 1 if data point xn is
assigned to cluster k and 0 otherwise. The cost function, denoted by J , is given by:

J =
N∑

n=1

K∑
k=1

rnk‖xn − ck‖22 (B-1)

The objective of theK-means algorithm is to minimize this cost function by finding

the optimal assignments of data points to clusters and the corresponding centroids.

B.3 Optimization

To optimize the K-means cost function, we employ an iterative procedure that

alternates between two steps: the assignment step and the update step.

B.3.1 Assignment Step

In the assignment step, each data point is assigned to the cluster with the nearest

centroid. This assignment is based on the squared Euclidean distance between

the data point and each centroid. The assignment of data point xn to cluster k is

determined by:

rnk =

1 if k = argminj ‖xn − cj‖22
0 otherwise

(B-2)
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B.3.2 Update Step

In the update step, the centroids are recomputed based on the current assignments.

The new centroid for cluster k is calculated as the mean of all data points assigned

to that cluster:

ck =
1

τk

N∑
n=1

rnkxn (B-3)

where τk∈N represents the number of data points assigned to cluster k.

These assignment and update steps are iteratively performed until convergence,

which occurs when there is minimal change in the assignment of data points and the

corresponding
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APPENDIX 1: T -SNE

In this appendix, we present the main equations and concepts related to the t-SNE

algorithm. t-SNE is a powerful dimensionality reduction technique used for

visualizing high-dimensional data in lower-dimensional space while preserving the

local and global structure of the data. The algorithm is widely employed in various

domains, including machine learning, data visualization, and exploratory data

analysis.

C.1 Model

The t-SNE algorithm constructs a probability distribution over pairs of

high-dimensional objects (e.g., data points) in such a way that similar objects have a

high probability of being selected, while dissimilar objects have a low probability. It

then constructs a similar probability distribution over pairs of points in a

lower-dimensional map. The goal is to minimize the Kullback-Leibler (KL)
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divergence between these two distributions, thereby preserving the neighborhood

relationships between data points.

The t-SNE model computes pairwise similarities in the high-dimensional space using

a Gaussian kernel. Let X = {xn∈RD}Nn=1 be the set of N∈N data points, where each

xn represents aD∈N-high-dimensional vector. The pairwise similarity between xn
and xm in the high-dimensional space is defined as:

pnm =


exp(−‖xn−xm‖2/2σ2

n)∑
j 6=n exp(−‖xn−xj‖2/2σ2

N )
if n 6= m

0 otherwise
(C-1)

Note that
∑N

m=1 pnm = 1 for all n.

Here, σn is the variance of the Gaussian kernel centered at xn. By default, σn is set

to the median of the pairwise distances between xn and all other data points.

In the low-dimensional space, the similarity between two points yn and ym∈RV ,

where V < D, is defined using the Student t-distribution with a single degree of

freedom. The pairwise similarity in the low-dimensional space is given by:

qnm =


(1+‖yn−ym‖2)−1∑

j

∑
j 6=l(1+‖yj−yl‖2)−1 if n 6= m

0 otherwise
(C-2)

C.2 Cost Function and Optimization

To optimize the t-SNE model, we aim to minimize the KL divergence between the

two distributions P and Q in the high-dimensional and low-dimensional spaces,

respectively. The cost function for t-SNE is defined as:

KL(P‖Q) =
∑
n 6=m

pnm log
pnm
qnm
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The optimization process involves finding a set of low-dimensional points Y =

{yn∈RV }Nn=1 that minimizes the cost function KL(P‖Q). This is typically achieved

using gradient descent optimization techniques.
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