

# Simulación experimental de un ambiente con radiación UV solar en Marte y sus efectos en la germinación y contenido de pigmentos fotosintéticos en *Chenopodium quinua*

# Experimental Simulation of a Solar UV Radiation Environment on Mars and Its Effects on Germination and Photosynthetic Pigment Content in *Chenopodium quinua*

Erika Paola Puentes León

Universidad Nacional de Colombia Observatorio Astronómico Nacional Maestría en Ciencias - Astronomía Bogotá, Colombia 2024

# Simulación experimental de un ambiente con radiación UV solar en Marte y sus efectos en la germinación y contenido de pigmentos fotosintéticos en *Chenopodium quinua*

# Erika Paola Puentes León

Tesis presentada como requisito parcial para optar al título de: Maestría en Ciencias - Astronomía

> Director: Ph.D. Santiago Vargaz Domínguez Línea de Investigación: Astrofísica Solar Grupo de Investigación: Astronomía, Astrofísica y Cosmología Universidad Nacional de Colombia

Codirectora: Ph.D. Zaida Zarely Ojeda Pérez Línea de Investigación: Biotecnología Vegetal Grupo de Investigación: Bioplasma Universidad Pedagógica y Tecnológica de Colombia

> Universidad Nacional de Colombia Observatorio Astronómico Nacional Maestría en Ciencias - Astronomía Bogotá, Colombia 2024

A mis abuelos

Por haber hecho que la vida fuera hermosa y sobre todo, por haberme dado una familia en donde fui feliz.

# Agradecimientos

A Dios, por haberme dado la fuerza que necesitaba para cumplir mis objetivos, a mi familia, por tenderme la mano y ayudarme a levantar cuando quise rendirme.

Al amor de mi vida, Luis Miguel Jaime, por ser incondicional y demostrarme que puedo ser grande, pues fue el primero que creyó en mi cuando empecé a trabajar en esta investigación.

A Islena Bonilla, secretaria del OAN, quien fue la persona que desde el comienzo me brindó toda la ayuda no solo para adaptarme sino para superar los inconvenientes de mi vida cadémica.

Al GoSA, por convertirse en mi segundo hogar. A mi director Santiago Vargas por haberme abierto el camino para seguir mis sueños. Al grupo Bioplasma, por brindarme un espacio en donde realizar mis experimentos de la parte biológica y a en cabeza de su directora Zaida Zarely Ojeda Pérez, quien supo orientarme desde la paciencia. Y por supuesto, a todos mis profesores y compañeros del OAN, porque me convirtieron en la científica que soy ahora.

# Resumen

Este trabajo de investigación tiene dos fases importantes, el primero analizar el comportamiento de la irradiacia en la atmósfera de Marte y el segundo, evaluar los efectos de la radiación UV solar simulada en Marte en Quinoa real y Amarilla de maranganí.

Se pudo demostrar que el efecto de la radiación ultravioleta tanto en semillas de quinoa como en el contenido de clorofilas totales, produce una aceleración de las tasas de germinación y al aumento de clorofilas como una respuesta de supervivencia de esta especie.

Quinoa real, Amarilla de maranganí, irradiancia, radiación UV, germinación, clorofilas totales.

# Abstract

This research work has two important phases. The first phase involves analyzing the behavior of irradiance in the atmosphere of Mars, and the second phase focuses on evaluating the effects of simulated solar UV radiation on Mars on Quinoa real and Amarilla de maranganí.

It was demonstrated that the impact of ultraviolet radiation on both quinoa seeds and total chlorophyll content leads to an acceleration of germination rates and an increase in chlorophyll levels as a survival response in this species.

Quinoa real, Amarilla de maranganí, irradiance, UV radiation, germination, total chlorophylls

# Contenido

|    | Agra                                                                         | radecimientos                                             |                                                                    |    |  |  |  |
|----|------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|----|--|--|--|
|    | Res                                                                          | umen                                                      |                                                                    | іх |  |  |  |
| 1. | Intro                                                                        | Introducción                                              |                                                                    |    |  |  |  |
| 2. | Marte: El planeta rojo y su interés astrobiológico                           |                                                           |                                                                    |    |  |  |  |
|    | 2.1.                                                                         | Genera                                                    | alidades de Marte                                                  | 3  |  |  |  |
|    | 2.2.                                                                         | Breve                                                     | recorrido por la exploración marciana                              | 5  |  |  |  |
| 3. | Rad                                                                          | iación (                                                  | dentro y fuera de la atmósfera marciana                            | 9  |  |  |  |
|    | 3.1.                                                                         | Introd                                                    | ucción                                                             | 9  |  |  |  |
|    |                                                                              | 3.1.1.                                                    | Generalidades                                                      | 10 |  |  |  |
|    |                                                                              | 3.1.2.                                                    | Estado del arte                                                    | 11 |  |  |  |
|    | 3.2.                                                                         | Mater                                                     | iales y métodos                                                    | 13 |  |  |  |
|    |                                                                              | 3.2.1.                                                    | Irradiancia fuera de la atmósfera de Marte<br>                     | 13 |  |  |  |
|    |                                                                              | 3.2.2.                                                    | Irradiancia fuera de la atmósfera de Marte                         | 14 |  |  |  |
|    | 3.3.                                                                         | Result                                                    | ados y discusión                                                   | 14 |  |  |  |
|    |                                                                              | 3.3.1.                                                    | Cálculo y análisis de parámetros                                   | 14 |  |  |  |
| 4. | Generalidades de la quinoa y efectos de la radiación UV solar marciana sobre |                                                           |                                                                    |    |  |  |  |
|    | el p                                                                         | el porcentaje de germinación y el contenido de clorofilas |                                                                    |    |  |  |  |
|    | 4.1.                                                                         | Introd                                                    | ucción                                                             | 21 |  |  |  |
|    |                                                                              | 4.1.1.                                                    | Generalidades de la quinoa                                         | 22 |  |  |  |
|    |                                                                              | 4.1.2.                                                    | Germinación y pigmentos fotosintéticos                             | 22 |  |  |  |
|    |                                                                              | 4.1.3.                                                    | Estado del arte                                                    | 27 |  |  |  |
|    | 4.2.                                                                         | Mater                                                     | iales y métodos experimentales                                     | 31 |  |  |  |
|    |                                                                              | 4.2.1.                                                    | Material biológico y tratamientos de exposición a radiación UV $~$ | 31 |  |  |  |
|    |                                                                              | 4.2.2.                                                    | Porcentaje de germinación y contenido de clorofilas totales        | 32 |  |  |  |
|    |                                                                              | 4.2.3.                                                    | Análisis estadístico                                               | 32 |  |  |  |
|    | 4.3.                                                                         | Result                                                    | ados y discusión                                                   | 33 |  |  |  |
|    |                                                                              | 4.3.1.                                                    | Germinación                                                        | 33 |  |  |  |
|    |                                                                              | 4.3.2.                                                    | Clorofilas totales                                                 | 36 |  |  |  |

|              | 4.4.                                                                            | Discus | ion                | 38 |  |
|--------------|---------------------------------------------------------------------------------|--------|--------------------|----|--|
|              |                                                                                 | 4.4.1. | Germinación        | 38 |  |
|              |                                                                                 | 4.4.2. | Clorofilas totales | 40 |  |
| 5.           | Conclusiones y recomendaciones                                                  |        |                    |    |  |
|              | 5.1.                                                                            | Conclu | nsiones            | 41 |  |
|              | 5.2.                                                                            | Recon  | nendaciones        | 42 |  |
| Α.           | A. Anexo: Cálculo de la constante solar                                         |        |                    |    |  |
| В.           | . Anexo: Función de flujo neto normalizado (f, $	au$ )en la superficie de Marte |        |                    |    |  |
| Bibliografía |                                                                                 |        |                    |    |  |

# 1. Introducción

La exploración marciana se ha convertido en los últimos años en una meta para el ser humano, ya que la posibilidad de colonizar Marte abre un espacio para la investigación y la innovación en los campos de la astronomía, la astrofísica, la astrobiología, entre otros; es por eso, que las agencias internacionales han destinado sus esfuerzos para llevar a cabo diferentes misiones de reconocimiento y han destidado miles de dólares con el fin de generar estudios que permitan estudiar no solamente la existencia del ser humano en el planeta rojo, sino la supervivencia alimenticia.

Considerando lo anterior, este trabajo tuvo como objetivo principal, simular un ambiente experimental que replique las condiciones ambientales de Marte relacionadas únicamente con los niveles de radiación ultravioleta solar y establecer su efecto sobre la germinación y contenido de pigmentos fotosintéticos en *Chenopodium quinoa*, a través de diferentes fases experimentales, estimando la irradiancia solar total para diversas latitudes y épocas de año en Marte, dentro y fuera de la atmósfera de este planeta, determinando el porcentaje de germinación de semillas bajo los efectos de la radiación UV solar simulada para la superficie marciana, comparando los resultados con los obtenidos bajo condiciones terrestres (control), y evaluando la respuesta fisiológica de plantas de un mes de crecimiento, bajo estas mismas condiciones, a través de la cuantificación de clorofilas totales (*ICC*).

En la dinámica del contexto social, es importante reconocer que existe un compromiso entre la ciencia, los Objetivos de Desarrollo Sostenible (ODS) y los focos temáticos de la Misión de Sabios; por ende, este trabajo se enfoca en el objetivo 4, educación y calidad, el 9, industria, innovación e infraestructura y el 17, alianzas para lograr los objetivos; así mismo, en el foco de ciencias básicas y del espacio.

La metodología de este trabajo se divide en dos partes, la primera corresponde al cálculo de la irradiancia dentro y fuera de la atmósfera marciana, en donde se estimó la constante solar para cada estación del año en este planeta en diferentes latitudes, teniendo en cuenta la distancia entre el Sol y Marte, con el fin de cuantificar la irradiancia que entra a la atmósfera usando los datos de profundidad óptica de la tabla de la función de flujo normalizada de Appelbaum (1990) [1].

La segunda parte de la metodología incluyó dos experimentos, uno en donde se estudó la

germinación de semillas de *Chenopodium quinoa* y otro, en donde se analizó el contenido de pigmentos fotosintéticos (clorofilas totales) bajo las condiciones de irradiación determinadas en la primera parte. Para la realización de estos experimentos, se adecuaron cuatro cabinas, y en todas ellas, se colocaron bombillas de luz ultravioleta para simular las irradiancias marcianas así: la primera de 180 nm (200 lúmenes), la segunda de 250 nm (275 lúmenes), la tercera de 395 nm (260 lúmenes) y la cuarta con luz normal de 410 nm (250 lúmenes) como control. En cada una de las cabinas se colocaron 12 cajas de Petri con dos materiales de Quinoa: Quinoa real y Amarilla de maranganí. En cada caja de Petri se colocaron 20 semillas para un total de 240 semillas y se dejaron durante 84 horas, a una temperatura y humedad promedio de 14.1 °C y 72 % respectivamente.

En cuanto al contenido de pigmentos fotosintéticos en *Chenopodium quinoa*, en las cajas de 180 nm, 250 nm y 395 nm se colocaron plantas de un mes de crecimiento en condiciones normales y se radiaron durante 75 horas, registrando el *ICC* cada 5 horas, controlando la temperatura y la humedad con un promedio de 14.1°C y 72%, respectivamente; y a través de un análisis de la distribución de los datos de ICC vs los tiempos de exposición a la radiación UV a diferentes longitudes, se pudo comparar los aumentos en los picos y las caídas del contenido de clorofilas totales para cada muestra.

Cabe resaltar que las semillas de los diferentes materiales de *Chenopodium quinoa*, fueron obtenidos del Banco de germoplasma de la Gobernación de Boyacá y aportadas por los grupos de investigación Bioplasma y CIDE de la UPTC.

# 2. Marte: El planeta rojo y su interés astrobiológico

# 2.1. Generalidades de Marte

Marte es un planeta rocoso que ocupa el cuarto lugar en distancia de separación respecto al Sol y el segundo respecto al tamaño comparado con los demás planetas del sistema solar. Tiene un radio de 3390 km, una masa de  $6.39 \times 10^{33}$  kg y su gravedad es de 3.721 m/s [7] [30], teniendo un color rojo característico que es consecuencia de la oxidación de los minerales en su superficie que tiene contenidos altos en hierro [20]. Algunas de las características más importantes se resumen en la tabla **2-1**.

| Propiedad              | Valor                      |
|------------------------|----------------------------|
| Diámetro               | $6772 \mathrm{~km}$        |
| Velocidad media        | $86868 \mathrm{~km/h}$     |
| Distancia media al Sol | 228 millones de kilómetros |
| Periodo de la órbita   | 687 días terrestres        |

Tabla 2-1.: Características de Marte.

Debido a que la órbita de Marte tiene un radio mayor que la de la Tierra, y teniendo en cuenta las Leyes de Kepler, Marte tarda más tiempo en dar una vuelta alrededor del Sol que nuestro planeta (la duración del año marciano es de 687 días terrestres) y viaja a una velocidad media de 24 km/h. A diferencia de la Tierra, Marte no posee campo magnético y cuenta con dos lunas pequeñas, Fobos y Deimos, que presentan formas irregulares con radios de 11 y 12.4 km, respectivamente [20].

El eje de rotación de Marte está inclinado respecto al Sol (24.9°), y esta característica, junto con los cambios en la distancia respecto a la estrella, dan lugar a las estaciones del año, debido a que los rayos del Sol llegan con distinta orientación, de manera que según la época del año la luz incide perpendicularmente (en el verano) u oblicuamente (en el invierno) al planeta [48]. Como la órbita de Marte es significativamente elíptica, con una excentricidad mayor a la órbita terrestre, el planeta pasa mucho más tiempo alejado del Sol (afelio: 249.2 kilómetros) en el hemisferio norte, en donde se presentan veranos largos e inviernos cortos, mientras que en el hemisferio sur los inviernos son largos y los veranos cortos. Adicionalmente, dado que la distancia al Sol es mayor durante el verano del hemisferio norte, los rayos del Sol son también más débiles, esto trae como consecuencia que en el hemisferio norte el verano sea largo pero poco intenso. En el hemisferio sur el verano es corto, debido a que tiene lugar cuando el planeta está más cerca del Sol (perihelio: 206.7 millones de kilómetros), por esta razón, los rayos tienen más intensidad, dando lugar a un verano más intenso, 30°C más caluroso que el verano en el hemisferio norte [1] [3] [15]. La estación de invierno en el hemisferio norte es corta pero más cálida, debido a la incidencia mas directa de los rayos del Sol; mientras que en el sur, el invierno es más largo y severo con una menor de incidencia de rayos solares [23] [37].

4



Figura 2-1.: Meses y estaciones en Marte. Tomado de Chassefiere. E., (2011).

En la figura 2-2 se muestra un mapa de la radiación UV que recibe la superficie de Marte en condiciones de bajo contenido de polvo atmosférico (espesor óptico del polvo = 0.32), con un perfil atmosférico, cuya presión y temperatura superficiales son de 6 mbar y 210 K, respectivamente [7]. La longitud aerocéntrica (Ls) es un parámetro que define el año marciano, dividiendo la órbita sideral en 360°, de los que cada sector de 90° expresa una estación anual, con el origen (Ls = 0°) en el equinoccio de primavera (hemisferio norte). Como se puede observar en la siguiente figura, el hemisferio sur recibe más radiación UV que el hemisferio norte [7] 2-1.



**Figura 2-2**.: Radiación UV solar en la superficie de Marte. Tomado de Córdoba-Jabonero et al, (2004).

La delgada atmósfera de Marte no es capaz de frenar meteoritos o asteroides, dejando una gran cantidad de cráteres en su superficie [53]. Esta atmósfera se compone principalmente de  $Co_2$ , responsable del "corte" de la radiación UV a longitudes de onda  $\lambda < 200$ nm [42]. En Marte no existe una capa de ozono que proteja a la superficie, ya que las cantidades de  $O_2$ son muy bajas, por lo que la radiación UV de longitud de onda entre 200 y 300 nm consigue llegar al suelo marciano [7]. Este  $Co_2$  sufre ciclos estacionales de congelación-sublimación a lo largo del año, provocando que la presión atmosférica sea muy variable. La temperatura media registrada en Marte se encuentra entre -140 y 20°C con una media de 63°C, dependiendo de la latitud y la época del año.

## 2.2. Breve recorrido por la exploración marciana

Desde la década de los sesenta, con la carrera espacial, comenzaron las exploraciones de Marte, los primeros en enviar misiones a este planeta fueron los soviéticos con el Programa Mars (incluidos los Sputnik 22 y 24), que a pesar de no tener un completo éxito, pudo recopilar 61 transmisiones de radio en las que se recogieron pocos datos interplanetarios con la Mars 1. Las Mars 2, 3, 4, 5, 6 y 7, tampoco lograron sus objetivos, sin embargo, algunas pudieron llegar a la superficie marciana, otras realizaron vuelos cercanos, y las que más obtuvieron resultados, solamente transmitieron datos en un corto periodo de tiempo.

Dentro de esta competencia, Estados Unidos lanza la serie Mariner, de las cuales se destacan las Mariner 6 y 7, con las cuales se probaron nuevas tecnologías que luego serÃan usadas en sucesivas misiones y que obtuvieron imágenes de Marte y Phobos, con las cuales se pudieron descubrir los terrenos caóticos y las zonas de hundimiento, además se pudo determinar la presión atmosférica del planeta y se descubrió que estaba compuesta mayormente por dióxido de carbono (sobre todo en el casquete polar sur). Otros análisis importantes fueron la determinación de la masa y el radio del planeta. Así mismo, se concluyó que las formaciones observadas fueron producto de la fusión del permafrost. La Mariner 9 fue la primera sonda en orbitar con éxito otro planeta, también obtuvo el primer mapa global de Marte, reconociendo los volcanes, el Valle Marineris, los casquetes polares, Fobos y Deimos, y proporcionó información sobre las tormentas de polvo globales, el campo gravitatorio y evidencias de actividad erosiva del viento.

En la década de los setenta, el programa Viking (U.S.A.), logra con éxito el aterrizaje de las sondas, lo que permitió que se realizaran análisis biológicos y moleculares del suelo y la atmosfera, igualmente se pudo llevar a cabo un análisis inorgánico, y se obtuvieron imágenes y observaciones meteorológicas.

En los ochentas los soviéticos intentaron obtener resultados satisfactorios con el Programa Fobos, pero igual que con el Programa Mars, solo lograron recopilar pocos datos al entrar con la órbita marciana.

Desde la década de los noventa, se dispara el triunfo de Estados Unidos, gracias las misiones Mars Global Surveyor y Mars Pathfinder (primera de una serie de misiones a Marte que incluyó un róver), cuyos hallazgos fueron las manchas oscuras en las dunas debajo de la capa de hielo del polo sur de Marte y los procesos geológicos y las interacciones superficieatmósfera respectivamente. Rusia y Japón entran en la carrera espacial con el Mars 96 y el Nozomi pero ninguno de los dos resultan satisfactorios.

A partir de los años 2000, Estados Unidos lanza las sondas Mars Odyssey (2001), Mars Reconnaissance Orbiter (2005), Curiosity (2011), MAVEN (2013), y Mars 2020 (2020), las cuales aún continúan operando. Lo mś destacable de estas misiones es que la Mars Odyssey estudia el clima y actualmente realiza un mapa de la superficie marciana, además funciona como enlace de comunicaciones con los robots que están el el suelo; la Mars Reconnaissance Orbiter analiza las zonas potenciales para el aterrizaje, igualmente estudia el clima de Marte, la composición de su atmósfera, su geología y busca rastros de agua en los casquetes polares y su subsuelo; Curiosity es una de las misiones más importantes, ya que dentro de sus objetivos está determinar si existió vida alguna vez en Marte a partir de la determinación

6

y composición de componentes orgánicos, y al igual que las otras misiones, analiza el clima y la geología del planeta con el fin de una futura colonización y caracteriza el espectro de radiación de la superficie; MAVEN tiene como objetivos determinar el estado actual de la atmósfera superior, la ionosfera y las interacciones con el viento solar, con el fin de determinar el papel de la pérdida de sustancias volátiles de la atmósfera al espacio, el escape de gases neutros e iones y las relaciones estables de isótopos en la atmósfera marciana. La Misión Mars 2020 es la más reconocida actualmente debido a que busca condiciones habitables y agua ya sea en el pasado o presente del planeta rojo con la ayuda del Rover Perseverance y el Helicóptero Ingenuity. Cabe destacar también las misiones que ya han culminado como la Spirit, que pudo descubrir antiguos manantiales en ebullición, evidencias de una atmósfera densa, agua dulce hace miles de años, y el ciclo de activo del agua. La Opportunity que buscó y caracterizó regolitos para obtener pistas de actividad del agua en el pasado, determinó la composición de minerales, regolitos y rocas, los procesos geológicos, validó las observaciones de la superficie tomadas por otros instrumentos de misiones anteriores y evaluó el entorno con el fin de determinar si es propicio o no para la vida. La sonda Phoenix caracterizó el clima y la geología de Marte y efectuó estudios de la historia geológica del agua con el fin de determinar si hubo o puede haber vida en este planeta. La Misión InSight colocó un módulo de aterrizaje fijo en Marte para estudiar el suelo y el subsuelo con el fin de estudiar la historia evolutiva del planeta.

En el 2011 Rusia y China lanzaron sin éxito las sondas Fobos-Grunt y Yinghuo-1 (A Fobos), en el 2013 India obtiene el prestigio internacional con el orbitador de la Misión Mars Orbiter Mission que funciona actualmente estudiando las características de Marte. En 2016 Rusia intenta nuevamente con ayuda de la Unión Euopea, obtener resultados con la Misión ExoMars 2016, y a pesar de que el aterrizador se estrelló, el orbitador continua activo actualmente. En 2020, Eniratos Árabes Unidos lanza la Misión Hope Mars, cuyo orbitador opera actualmente y estudia la atmósfera y el clima marciano con el fin de determinar la razón del cambio climático; China logra por fin figurar dentro de la carrera espacial con el éxito del Tianwen-1 que continúa operando en este momento, y tiene como meta encontrar vida tanto actual como antigua en el planeta rojo, evaluar su superficie y su medioambiente.

Hoy por hoy, se encuentra suspendida la misión conjunta entre Rusia y la Unión Europea, ExoMars 2022, que tendrá como objetivo buscar vida en Marte, tanto pasada como presente, investigar cómo el agua y el ambiente geoquímico marciano varía con el tiempo y el estudio de los gases atmosféricos, lo que hace que sea una misón netamente astrobiológica. En la siguiente figura se observa un breve resumen de la carrera espacial a Marte, con las pincipales características de las Misiones exitosas. Cabe resaltar que SPACEX intentará en el 2026, enviar una nave tripulada, la Cargo & Crew Missions, que permitirá transportar carga y pasajeros hacia la órbita terreste, la Luna y Marte.



Figura 2-3.: Cronología de las misiones a Marte.

# 3. Radiación dentro y fuera de la atmósfera marciana

# 3.1. Introducción

Al igual que en la Tierra, la radiación solar que llega a la superficie de Marte está compuesta por dos componentes principales: el haz directo y el componente difuso. Estos componentes están sujetos a procesos de dispersión y absorción a medida que viajan a través de la tenue atmósfera marciana hacia la superficie del planeta. La variabilidad de la radiación solar en la parte superior de la atmósfera de Marte está influenciada por factores como la opacidad atmosférica, la posición orbital del planeta y el ángulo cenital solar.

La radiación solar ultravioleta extrema y el viento solar son las principales fuentes de energía para la atmósfera superior de Marte, contribuyendo al calentamiento de la termosfera y la creación de la ionosfera. Sin embargo, la atmósfera marciana, principalmente compuesta por dióxido de carbono y con una densidad mucho menor que la terrestre, tiene un efecto significativo en la radiación solar, absorbiendo fuertemente fotones con longitudes de onda inferiores reportados en la Tierra.

Los modelos de transferencia radiativa, junto con datos de telescopios y satélites, permiten simular y predecir la distribución y variabilidad de la radiación solar en Marte en diferentes condiciones atmosféricas y orbitales. La comprensión detallada de la radiación solar en Marte es esencial para una variedad de aplicaciones, que van desde la planificación de misiones espaciales y el diseño de sistemas de energía solar hasta la evaluación de los efectos de la radiación en la habitabilidad del planeta y la posible presencia de vida.

Este capítulo aborda un análisis de la irradiancia dentro y fuera de la atmósfera de Marte, a manera de ejercicio, con el fin de comprender la influencia de la composición atmosférica marciana en la distribución y variabilidad de la radiación solar en su superficie, explorando las interacciones entre la radiación solar incidente y los componentes atmosféricos de Marte, que afectan significativamente la cantidad y calidad de la radiación que alcanza la superficie marciana, y de esta manera de los procesos atmosféricos y sus implicaciones para el clima y la habitabilidad de Marte.

#### 3.1.1. Generalidades

Al igual que en el planeta Tierra, la radiación solar en la superficie de Marte está conformada por dos componentes: el haz directo y el componente difuso. El haz directo se ve afectado por la dispersión y la absorción a lo largo del camino desde la parte superior de la atmósfera marciana hasta la superficie. La variación de la radiación solar en la parte superior de la atmósfera de Marte se rige por la opacidad, la ubicación de Marte en su órbita y por el ángulo cenital solar [1] [3]. Junto con el viento solar, la radiación solar ultravioleta extrema, son las principales entradas de energía a la atmósfera superior de Marte, calentando la termosfera, creando la ionosfera y limitando los procesos que conducen al escape atmosférico al espacio [1]. Los fotones con longitudes de onda inferiores a unos 100 nm son fuertemente absorbidos por el  $Co_2$  y el O neutros. La abundancia de estas especies da lugar a una absorción total del espectro solar de la radiación solar ultravioleta extrema por encima de los 100 km aproximadamente, con una deposición de energía máxima que se produce cerca de los 150 km. [1] [3] [15].

El espectro solar, está formado por ondas electromagnéticas en su modo ondulatorio. El 99%de la radiación emitida por el Sol está entre las longitudes de 150 a 4000 nm. La radiación visible o luz está en el intervalo de 380 a 830 nm [3]. Entonces, en cuanto a la distribución espectral de la radiación solar, la energía solar llega en forma de radiación electromagnética o luz, en forma de ondas producidas por la oscilación o la aceleración de una carga eléctrica [1] [3]. Las ondas electromagnéticas no necesitan un medio material para propagarse, por lo que estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a Marte desde el Sol y las estrellas. La longitud de onda (l) y la frecuencia (m) de las ondas electromagnéticas, relacionadas mediante la expresión lm = C (donde C es la velocidad de la luz), son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío a una velocidad de C = 299.792 km/s [1]. Es decir que, la radiación electromagnética se puede ordenar en un espectro en diferentes longitudes de onda, desde longitudes de onda corta de billonésimas de metro (frecuencias muy altas), como los rayos gama, hasta longitudes de onda larga de muchos kilómetros (frecuencias muy bajas) como las ondas de radio.

La radiación ultravioleta extrema o la radiación ultravioleta de alta energía es una radiación electromagnética en la parte del espectro electromagnético que abarca longitudes de onda de 124 nm a 10 nm [40], y en este caso en el que hablamos de la que llega a la superficie marciana, es generada naturalmente por la corona solar. Esta radiación varía significativamente en escalas de tiempo de minutos de las erupciones solares, días de la rotación solar y años del ciclo solar. El efecto de la actividad solar en el espectro de esta radiación solar ultravioleta extrema no es uniforme, y las longitudes de onda más cortas tienden a ser más

variables que las más largas. Esta dependencia espectral de la variabilidad es el resultado de que las longitudes de onda más cortas se originan principalmente en la corona más variable, en comparación con las longitudes de onda más largas que son principalmente de origen cromosférico [5].

La irradiancia, es la cantidad de energía proveniente del Sol, por unidad de área [34], que en este caso, llega a la superficie de Marte, en cada instante de tiempo, por lo tanto, es una cantidad que varía tanto espacial como temporalmente, de acuerdo a la posición de un punto en particular sobre Marte y de la posición de éste respecto del Sol [5, 34].

#### 3.1.2. Estado del arte

#### Radiación en la superficie de Marte

Appelbaum (1990) [1], presenta un procedimiento y datos relacionados con la radiación solar, a partir de los cuales se calculó la variación diurna, horaria y diaria de la insolación global, directa y difusa en Marte. Los datos de radiación se basaron en la profundidad óptica medida de la atmósfera marciana derivada de las imágenes tomadas del sol con un diodo especial en las cámaras Viking, cabe resaltar que el cálculo se basó en la longitud de onda múltiple y la dispersión múltiple de la radiación solar. Estas estimaciones se obtuvieron a partir de imágenes tomadas del Sol y de Fobos con un diodo especial en las cámaras del módulo de aterrizaje Viking. En este trabajo se introdujo una función de flujo solar neto normalizado a partir de la cual, junto con la variación de las opacidades, se calcularon las características de la radiación solar sobre la superficie marciana.

Badescu en 1998 [3] presentó un estudio acerca de las inclinaciones y orientaciones óptimas de una superficie que recibe radiación solar en la superficie en Marte en el hemisferio norte, a través de un modelo para evaluar la irradiación directa, difusa y global en superficies inclinadas arbitrarias que estima las irradiaciones directa, difusa y global en diferentes intervalos de tiempo, como un día, una estación o un año usando los datos de las mediciones de Viking Landers en una superficie orientada al Sur cuyo ángulo de inclinación se ajustaba continuamente para recoger la máxima irradiación global.

Hassler (2014) [15] Informó y discutió las mediciones de las dosis absorbidas y equivalentes de los rayos cósmicos galácticos y las partículas energéticas solares en la superficie marciana para 300 días de observaciones durante el pasado máximo solar, permitiendo comprender los riesgos de radiación asociados a una misión humana en la superficie de Marte, y proporcionando un punto de anclaje para modelar el entorno de radiación subsuperficial, con implicaciones para los tiempos de supervivencia microbiana de cualquier posible vida existente o pasada, así como para la preservación de posibles biofirmas orgánicas del antiguo entorno marciano a partir de mediciones in situ del entorno de radiación ionizante en la superficie de Marte, que pueden utilizarse para probar y validar modelos de transporte de radiación.

Kraemer (1977) [23] elaboró figuras y tablas que muestran la incidencia diaria de la radiación solar en la parte superior de la atmósfera terrestre y en la superficie de la Tierra en función de la temperatura a partir de cálculos de la incidencia diaria de la radiación solar en los planetas que se encuentran en el sistema solar en función de la latitud y la temporada del año en cada uno de ellos.

Patel (2002) [33] presentó un modelo simple de transferencia radiativa para la transmisión de la radiación UV en la superficie de Marte para el rango de longitudes de onda de 190-410 nm, teniendo en cuenta la presencia variable de aerosoles de polvo en la atmósfera marciana y sus efectos sobre la irradiación directa.

Rontó (2003) [37] modeló la transmisión de la radiación UV solar entre los 200 a 400 nm en la atmósfera marciana actual y temprana (hace 3,5 giga años) para una variedad de casos posibles, con resultados que sugieren que la irradiación UV en la superficie marciana primitiva hace 3,5 giga años puede haber sido comparable con la de la Tierra actual, y aunque el entorno UV marciano actual sigue siendo bastante severo desde el punto de vista biológico, también se evidencia que todavía se puede ofrecer una protección sustancial para la supervivencia bajo el polvo y el hielo del planeta.

Mischna (2012) [31] presentó los detalles de un modelo de transferencia radiativa en la atmósfera marciana con el fin de encontrar enfoques más sofisticados de la transferencia radiativa que no sean prohibitivos desde el punto de vista computacional, pero que sean lo suficientemente precisos y flexibles como para ser aplicados a una amplia gama de condiciones atmosféricas, demostrando la robustez del enfoque dentro del entorno atmosférico marciano.

Vicente-Retortillo (2015) [53] presentó un nuevo modelo integral de transferencia radiativa para estudiar la irradiación solar que llega a la superficie de Marte en el rango espectral cubierto por el sensor MetSIS que estará a bordo en la Misión Mars MetNet. Esta sonda medirá la irradiación solar en varias bandas desde el ultravioleta (UV) hasta el infrarrojo cercano. El modelo incluye propiedades radiativas actualizadas en función de la longitud de onda del polvo, las nubes de hielo de agua y las moléculas de gas y permite la caracterización del entorno radiativo en diferentes regiones espectrales bajo diferentes escenarios.

Thiemann (2017) [47] estableció los algoritmos utilizados para derivar el modelo FISM-M y sus incertidumbres asociadas, centrándoce en las diferencias con el FISM original y presentó

ejemplos de salidas del modelo para la variabilidad de la irradiación ultravioleta extrema debido a las erupciones y las rotaciones solares, la excentricidad de la órbita de Marte y el ciclo solar, entre octubre de 2015 y noviembre de 2016.

#### **Ambientes simulados**

Córdoba-Jabonero (2003) [7] abordó el problema de la protección de la superficie de Marte de la radiación UV solar altamente dañina introduciendo algunos otros gases que absorben eficazmente la radiación solar en el mismo rango de longitudes de onda a través de un modelo atmosférico fotoquímico.

Kolb (2005) [21] diseñó un aparato de radiación que simula el espectro superficial UV marciano previsto entre 200 y 400 nm (UVC-UVA) con el fin de construir el simulador Mars-UV que representa un dispositivo para diferentes instalaciones de simulación de Marte con énfasis específico en temas de investigación en el planeta.

López (2017) [26] ilustró el diseño, desarrollo e implementación de un simulador de ambiente marciano, el cuál cuenta con una cámara de vacio y módulos de irradiación UV, así mismo, mostró los criterios de diseño, así como detalles de su fabricación. La validación del dispositivo se hizo mediante el desarrollo de pruebas experimentales sobre el microorganismo *Bacilus Subtilis*.

Wamelink (2014) [54] presentó el primer experimento controlado a gran escala para investigar la posibilidad de cultivar plantas en simulantes de suelo lunar y marciano, mostrando resultados en donde las plantas son capaces de germinar y crecer tanto en el simulante de suelo marciano como en el lunar durante un periodo de 50 días sin adición de nutrientes.

## 3.2. Materiales y métodos

#### 3.2.1. Irradiancia fuera de la atmósfera de Marte

Estimar la irradiancia solar en Marte implica considerar una serie de factores orbitales y atmosféricos. A continuación, se presenta de manera general de cómo se llevó a cabo esta estimación:

1. Cálculo de constantes solares: Se calcularon las constantes solares en el afelio y el perihelio de Marte utilizando una función que toma el radio de la esfera (distancia

Marte-Sol) como entrada y devuelve la constante solar, utilizando la ley de Stefan-Boltzmann.

- 2. Definición de rangos de días y distancias: Se establecieron rangos de días correspondientes a diferentes estaciones en la órbita marciana. y se definieron los rangos de distancias asociados con cada estación.
- 3. Cálculo de distancias y latitudes: Se generó una lista de días y se calcularon las distancias y latitudes correspondientes para cada día dentro de los rangos definidos.
- 4. Cálculo de constantes solares e irradiancia: Utilizando las distancias y latitudes calculadas, se determinaron las constantes solares y la irradiancia para cada combinación de día y distancia.
- 5. Cálculo del valor medio de constantes solares: Se calculó el valor medio de las constantes solares en el afelio y el perihelio.

Siguiendo estas etapas se pudo establecer cómo la constante solar y la irradiancia en Marte varían a lo largo de su órbita, teniendo en cuenta diferentes estaciones y condiciones orbitales.

## 3.2.2. Irradiancia fuera de la atmósfera de Marte

#### Relación entre la irradiancia en la superficie y fuera de la atmósfera en Marte:

Se utilizó la ecuación de la Ley de Beer  $I_f = I_i \cdot e^{-\tau}$  para modelar la relación entre la irradiancia en la superficie y fuera de la atmósfera, esta ecuación describe la atenuación de la intensidad de la luz (o cualquier otra forma de radiación electromagnética) a medida que atraviesa un medio absorbente, como un líquido, una solución o un gas.

# 3.3. Resultados y discusión

## 3.3.1. Cálculo y análisis de parámetros

#### Cálculo de la irradiancia dentro de la atmósfera de Marte

Primero se llevó a cabo el cálculo de la constante solar en Marte, teniendo en cuenta que es la cantidad de radiación solar que llega a la atmósfera marciana por unidad de área, y que además, la intensidad de la radiación solar de este planeta es diferente de la de la Tierra debido a varias razones; la primera razón es la mayor distancia promedio entre Marte y el Sol, pues la órbita de Marte es más elíptica que la de la Tierra, lo que significa que la distancia entre Marte y el Sol varía significativamente durante su año marciano, esto afecta la cantidad de radiación solar que Marte recibe en diferentes momentos del año; la segunda, es que la inclinación del eje de rotación de Marte también afecta la cantidad de radiación solar recibida en diferentes latitudes y estaciones, y por esto, la variación estacional en Marte es más pronunciada que en la Tierra; la tercera, es que la atmósfera marciana es mucho más delgada que la de la Tierra y compuesta principalmente de dióxido de carbono, esto afecta la forma en que la radiación solar interactúa con la atmósfera y llega a la superficie marciana; y la cuarta razón tiene que ver con que la presencia de polvo atmosférico en Marte puede afectar la cantidad de radiación solar que llega a la superficie, ya que el polvo puede dispersar o absorber la luz. (El código se encuentral al final del documento) (A). La siguiente gráfica muestra el comparativo de la constante solar (K) entre la Tierra y Marte:



Figura 3-1.: Constante solar.

Como se puede observar, en el perihelio, Marte se encuentra en su posición más cercana al Sol en su órbita elíptica; esto implica que, en el perihelio, la distancia entre Marte y el Sol es menor en comparación con otros puntos de su órbita. Esta mayor proximidad al Sol tiene un efecto en la cantidad de radiación solar que recibe Marte, pues experimenta un aumento en la radiación recibida debido a su proximidad a esta estrella en ese momento, tal como lo indican [3] [23] [31] [37] [47].

Es importante destacar que aunque la cantidad de radiación solar varía a lo largo de la órbita marciana, esto no se debe a cambios en la constante solar, sino a la geometría de la órbita del planeta alrededor del Sol, así pues, como lo vemos en la siguiente imagen, en cada estación, la radiación solar también se ve afectada por la inclinación axial de Marte. Durante el verano en el hemisferio norte de Marte, el polo norte experimenta días largos y una mayor cantidad de radiación solar, mientras que en el hemisferio sur es invierno con noches más largas. En el equinoccio, la radiación solar se distribuye de manera más uniforme entre los hemisferios norte y sur. A continuación en la siguiente imagen se detalla la variación entre la distacia al Sol y la constante solar en cada estación del año en Marte:



Figura 3-2.: Constante solar en cada estación del año en Marte.

En la figura **3-2** se puede observar que durante la primavera marciana, la irradiancia tiende a aumentar a medida que Marte se acerca a su perihelio, por lo tanto, hay una mayor recepción de radiación solar. En el verano la irradiancia puede alcanzar niveles máximos, especialmente cerca del perihelio, sin embargo, la inclinación axial de Marte también juega un papel importante, como lo indica [47]; las regiones polares pueden experimentar días más largos de radiación solar continua, mientras que las regiones ecuatoriales pueden tener variaciones diurnas más pronunciadas.Durante el otoño marciano, la irradiancia comienza a disminuir a medida que Marte se aleja del perihelio, la inclinación axial y la posición orbital afectan la distribución de la radiación solar en diferentes latitudes y longitudes. El invierno marciano se asocia con irradiancia más baja, ya que Marte se encuentra más alejado del Sol en su órbita elíptica, las regiones polares pueden experimentar noches más largas y temperaturas más frías. La irradiancia solar en Marte varía a lo largo de su órbita alrededor del Sol

16

y en relación con la rotación del planeta. La distancia entre Marte y el Sol (medida en AU) cambia a lo largo del año marciano debido a su órbita elíptica, y este cambio de distancia afecta la cantidad de energía solar que llega a la superficie marciana.

En el contexto de la irradiancia solar, especialmente al considerar la radiación solar que incide en la superficie de un planeta, el ángulo  $\theta$  generalmente se refiere al ángulo de incidencia solar o ángulo zenital solar. Este ángulo representa la inclinación del sol sobre el cenit y está relacionado con la posición del sol en el cielo en un lugar y momento específicos; en la gráfica **3-3** se puede describir cómo la irradiancia solar en Marte cambia en función de la distancia radial desde el centro de Marte, la velocidad angular de su rotación y la posición angular o dirección en la que se está midiendo la irradiancia. Este tipo de análisis es crucial para comprender la distribución de la radiación solar en la superficie de Marte en diferentes momentos y ubicaciones:



Figura 3-3.: r Marte vs  $\Theta$ .

La irradiancia media en Marte, al igual que en la Tierra, está influenciada por diversos factores, incluyendo la inclinación del planeta, la distancia al Sol, la presencia de la atmósfera y la reflectividad de la superficie. Aunque Marte tiene una atmósfera más tenue que la Tierra, todavía tiene un impacto significativo en la radiación solar. Teniendo en cuenta la oblicuidad de la órbita de Marte, la irradiancia solar es más intensa en el Ecuador debido a su ubicación más cercana al Sol tal como se puede observar en la gráfica **3-4** en donde

se ha determinado esta cantidad de energía fuera de la atmósfera de este planeta (K), sin embargo, hay que tener en cuenta que en la superficie, influyen factores como la presencia de polvo atmosférico que puede dispersar la luz solar y afectar la cantidad de radiación que llega a la superficie; y condiciones meteorológicas, que también pueden afectar la irradiancia.

18



Figura 3-4.: Irradiancia media fuera de la atmósfera de Marte

#### Cálculo de la irradiancia dentro de la atmósfera de Marte

Con el cálculo de la constante solar para cada estación del año en Marte en diferentes latitudes, se logró cuantificar la irradiancia que entra a la atmósfera usando los datos de profundidad óptica de la tabla de la función de flujo normalizada de Appelbaum. (1989). (B), usando la siguiente solución de la ecuación de transferencia radiativa, teniendo en cuenta que sólo se habla de absorción para este caso:

$$I_V(S) = I_V(S_0) \cdot e^{-t_V}$$
(3-1)

Siendo  $I_V(S)$  la profundidad óptica de la tabla de la función de flujo normalizada de Appelbaum (1990) [1], y  $-t_V$  la constante solar calculada anteriormente **3-5**.



Figura 3-5.: Irradiancia dentro de la atmósfera de Marte

En la **3-5**, se puede identificar que a irradiancia dentro de la atmósfera de Marte se ve afectada por la absorción y dispersión de la radiación solar por parte de los componentes de la atmósfera marciana, ya que esta es mucho más delgada que la de la Tierra y está compuesta principalmente de dióxido de carbono  $CO_2$  con trazas de nitrógeno y argón, tal como lo describe Badescu (1998) [3]. La irradiancia solar que alcanza la superficie de Marte es significativamente menor que la irradiancia fuera de la atmósfera debido a varios factores, incluida la absorción de luz solar por parte de las moléculas, y la presencia de partículas, como polvo y aerosoles, que también puede influir en la cantidad de luz solar que llega a la superficie marciana.

20

La variabilidad de la irradiancia en la superficie de Marte también se debe a factores como la posición relativa del planeta con respecto al Sol y las variaciones estacionales en la inclinación del eje de Marte. Estos factores pueden afectar la cantidad de luz solar que llega a diferentes regiones del planeta en diferentes momentos del año marciano.

En general, la irradiancia solar en la superficie de Marte es considerablemente menor que en la Tierra debido a la combinación de la mayor distancia promedio entre Marte y el Sol, la atmósfera más tenue y otros factores atmosféricos.

Cabe resaltar que en este estudio no se tuvo en cuenta la contribución de la emisión de la atmósfera marciana, ya que es prácticamente nula y por ende, la función fuente es igual a cero simplificando entonces la solución a la decaída exponencial tanto del haz solar entrante como de la luz solar reflejada. [43].

# 4. Generalidades de la quinoa y efectos de la radiación UV solar marciana sobre el porcentaje de germinación y el contenido de clorofilas

# 4.1. Introducción

La radiación ultravioleta (UV) es un factor ambiental que puede alterar significativamente el proceso de germinación y el crecimiento de las plantas. Estudios han demostrado que diferentes variedades de quinoa responden de manera diferente a la radiación UV, implementando diversas estrategias defensivas para proteger su sistema fotosintético del daño inducido por esta radiación [35, 16, 14]. Sin embargo, la germinación de semillas de quinoa bajo exposición directa a radiación ultravioleta aún no ha sido ampliamente estudiada [44].

Además de la germinación, otro aspecto crucial en la fisiología vegetal es la síntesis de pigmentos fotosintéticos, como las clorofilas, que son esenciales para la captura de la luz solar y la producción de energía química durante la fotosíntesis. El contenido de clorofilas totales en las plantas puede proporcionar información valiosa sobre su salud, eficiencia fotosintética y respuesta al estrés ambiental, incluida la exposición a la radiación UV [35, 11].

La quinoa destaca no solo por su valor nutricional y adaptabilidad, sino también por su capacidad de respuesta frente a factores ambientales como la radiación UV, lo que la convierte en un objeto de estudio relevante en la investigación agrícola y la biología vegetal.

El estudio del efecto de la radiación en Marte y su impacto en los sistemas biológicos es un campo fascinante que ha generado un considerable interés en la comunidad científica. En este contexto, este capítulo se centra en comprender los efectos en la germinación y contenidos de pigmentos fotosintéticos de la radiación ultravioleta (UV) solar en semillas y plantas de un mes de crecimiento de amarilla de maranganí y quinoa real, con el fin de proporcionar información valiosa sobre cómo estos materiales, responden a estas condiciones, permitiendo analizar las respuestas defensivas y/o adaptativas.

4 Generalidades de la quinoa y efectos de la radiación UV solar marciana 22 sobre el porcentaje de germinación y el contenido de clorofilas

### 4.1.1. Generalidades de la quinoa

La quinoa (Chenopodium quinoa Willd.), es una especie vegetal originaria de la región andina. Es un cultivo en expansión, dadas sus características nutritivas, medicinales y de adaptación a diferentes zonas agroecológicas [22]. Se documenta, como el único vegetal que provee todos los aminoácidos esenciales; contiene ácidos grasos, vitaminas y minerales, convirtiéndola en un superalimento por su cotenido nutricional, útil para el de desarrollo de múltiples funciones del organismo [27] [25] [51]. Esta es una planta dicotiledónea, de la familia Amarantaceae, que tiene una alta plasticidad para adaptarse a diferentes condiciones ambientales y agroecológicas tales como sequá, heladas, salinidad, entre otros [29]. Con respecto a la adaptabilidad a radiaciones, existen muy pocos estudios que revelen la respuesta a la radiación ultravioleta de (Chenopodium quinoa Willd.); sin embargo, se ha documentado que la sensibilidad de la quinoa a la radiación solar, puede variar entre las variedades, haciendo que se adapte a diversas altitudes [17] [19, 35].

El periodo vegetativo de esta planta puede variar desde 90 hasta 240 días, se desarrolla, adecuadamente, con precipitaciones de 200 a 280 mm anuales, se adapta a cualquier textura de los suelos y niveles de pH, entre 4,5 y 9,0 y en su madurez fisiológica presenta varias coloraciones, dependiendo del genotipo [17, 28].

## 4.1.2. Germinación y pigmentos fotosintéticos

#### Germinación

La germinación es un proceso fisiológico en el que el embrión de una semilla reinicia su crecimiento después de un periodo de descanso, implicando una serie de eventos fisiológicos y bioquímicos coordinados que ocurren en respuesta a ciertos estímulos ambientales [2]. Cuando una semilla germina, la primera estructura que emerge, de la mayoría de las especies, después de la rehidratación de los diferentes tejidos es la radícula. En aquellas semillas, en las que la radícula no es el primer acontecimiento morfológico, se consideran otros criterios para definir la germinación como: la emergencia del coleoptilo, la obtención de plantas normales, o el aumento de la actividad enzimática tras la rehidratación de los tejidos. Acontinuación se muestran las tres fases de la germinación [49]:

- 1. **Fase de imbibición:** Se produce una absorción de agua por parte de los tejidos de la semilla provocando un incremento de la actividad respiratoria.
- 2. Fase de germinación: Se producen las transformaciones metabólicas para el desarrollo de la plántula, en esta fase se reduce hasta incluso detenerse la absorción de agua.

3. Fase de crecimiento: La radícula emerge y el agua vuelve a ser absorbida y la actividad respiratoria aumenta.

En la quinoa, la relación de estas fases puede apreciarse en que la primera fase se produce tanto en semillas vivas como en muertas, ya que es independiente de la actvidad metabólica de la semilla, pero en aquellas viables, el metabolismo se activa por la hidratación; en la segunda fase existe un proceso de metabolismo activo previo a la germinación en las semillas viables, y en la tercera fase se produce sólo en semillas que germinan e inician el proceso de crecimiento de la plántula [45]. De acuerdo con lo anterior, se pueden identificar dos tipos de germinación [39], hipogea y epígea, en el caso de las semillas de *Chenopodium quinoa Willd.*, la germinación es epígea, pues los cotiledones emergen del suebo debido al crecimiento del hipocótilo, luego, los cotiledones se diferencian en cloroplatos los cuales son el órgano fotosintético de la plántula porque actúan como hojas, finalmente, comienza el desarrollo del epicótilo; cada fase se explica a continuación [38].

- 1. Cotiledones visibles: Los cotiledones, las primeras hojas que emergen de la semilla, se vuelven visibles en la superficie del suelo. Estos cotiledones son parte esencial del sistema de germinación y a menudo desempeñan un papel importante en la fotosíntesis inicial hasta que las hojas verdaderas se desarrollan completamente.
- 2. Elevación de la plántula: A diferencia de la germinación hipogea, donde la plántula permanece bajo la superficie del suelo, en la germinación epigea, la plántula se eleva hacia arriba y se expone a la luz solar. Esto implica que el tallo de la plántula se alarga y transporta los cotiledones hacia arriba.
- 3. Fotosíntesis temprana: Dado que la plántula está expuesta a la luz desde el principio, puede realizar la fotosíntesis de manera más eficiente, utilizando la energía solar para producir sus propios nutrientes y sustentar su crecimiento.

La germinación de semillas está influenciada por factores internos como la viabilidad del embrión, la cantidad y calidad del tejido de reserva y los diferentes tipos de dormancia, y también de factores externos como por ejemplo los que regulan el proceso del el grosor de la testa, disponibilidad de agua, temperatura y tipos de luz. Se ha reportado que condiciones extremas de temperatura, luz, humedad, entre otras, pueden no ser favorables para este proceso [46] [50].En quinua, existen algunos reportes de germinación bajo condiciones de radiación gamma, como por ejemplo el llevado a cabo por Song (2022) [44] en donde encontró que la tasa de germinación y la velocidad de germinación fueron más altas en las semillas tratadas con longitudes de onda más cortas. Sin embargo, no existen reportes en donde se haya evaluado la germinación de semillas de quinua bajo exposición a radiación ultravioleta.

#### Porcentaje de germinación

El porcentaje de germinación es una medida que indica la proporción de semillas que han germinado con éxito en relación con el total de semillas sembradas. Esta métrica se expresa como un porcentaje y es comúnmente utilizada en la investigación agrícola, horticultura, y estudios de biología vegetal para evaluar la viabilidad y la eficiencia del proceso de germinación [13]. La fórmula básica para calcular el porcentaje de germinación es:

Porcentaje de Germinación = 
$$\left(\frac{\text{Número de Semillas Germinadas}}{\text{Total de Semillas Sembradas}}\right) \times 100$$
 (4-1)

#### Pigmentos fotosintéticos: Clorofilas totales

Las clorofilas son un conjunto de pigmentos verdes que desempeñan un papel fundamental en el proceso de la fotosíntesis, el cual es esencial para la vida de las plantas. Estas moléculas son responsables de capturar la luz solar y convertirla en energía química, que luego se utiliza para la síntesis de carbohidratos y otros compuestos orgánicos [35]. En la fotosíntesis, hay varios tipos de clorofila, siendo las dos formas principales la clorofila a y la clorofila b. Estos dos tipos de clorofila difieren en la composición de sus grupos laterales, pero comparten una estructura básica que les permite absorber diferentes longitudes de onda de luz [6] [35].

Las clorofilas totales son a la suma de todas las clorofilas presentes en un sistema biológico, ya que a menudo se miden como un indicador general de la capacidad fotosintética. Medir las clorofilas totales es una forma común de evaluar la salud y la eficiencia fotosintética de las plantas, además pueden proporcionar información valiosa sobre el estado fisiológico de las plantas, además pueden proporcionar información valiosa sobre el estado fisiológico de las mismas, su respuesta al estrés ambiental, incluida la exposición a la radiación ultravioleta (UV) [11].

Una de las principales mediciones que se tienen en cuenta para evaluar los efectos del estrés sobre las plantas es el contenido de clorofilas, es así que, dependiendo de la planta y la condición de estrés, su contenido puede aumentar o disminuir, indicando una afectación del aparato fotosintético. Se han reportado estudios como los llevados a cabo por Prado (2016) [35], en donde se estudian los efectos de la radiación UVB en la síntesis de pigmentos fotosintéticos protectores y azúcares solubles, observando que las diversas variedades de quinoa reaccionan ante la radiación UVB mediante la implementación de distintas estrategias defensivas, ya sean de índole morfológica, fisiológica o bioquímica, recurriendo principalmente al aumento de la concentracón de compuestos absorbentes de UVB, lo cual es interpretado como la formación de un "escudo químico" destinado a salvaguardar el sistema fotosintético de las plantas contra la sobrecarga energética generada por la radiación aplicada. Huarancca a la radiación UVB.

(2018) [16] evaluó la capacidad de la quinoa para resistir la irradiación aguda de UVB a corto plazo, exponiendo a la planta a 30 o 60 minutos diarios de UVB. La exposición de 30 minutos no causó alteraciones graves, pero aumentó la capacidad antioxidante. La exposición de 60 minutos redujo la mayoría de los parámetros y llevó a la muerte de las plantas. Se observó una disminución en la conductancia estomática y la inhibición del transporte electrónico fotosintético con 30 minutos de UVB, posiblemente asociados a la producción de especies reactivas de oxígeno (ROS). Con 60 minutos de UVB, se encontró daño irreversible en el aparato fotosintético, comprometiendo el transporte electrónico. Estos resultados indican que la quinoa modula diferentes mecanismos de respuesta según la dosis de UVB. González (2009) [14], evaluó las respuestas morfológicas y fisiológicas de plántulas de dos variedades de quinoa expuestas a diferentes niveles de radiación solar UVB. La variedad Cristalina mostró un aumento en el área del cotiledón y la altura de las plántulas bajo radiación UVB, mientras que la variedad Chucapaca no se vio afectada. Hubo diferencias en el contenido de clorofila y compuestos absorbentes de UVB entre las variedades y tratamientos de UVB. El trabajo destaca su utilidad para comprender la plasticidad metabólica en la tolerancia de las plantas

Los pigmentos clorofílicos tienen la capacidad de absorber espectros en el rojo y en el azul, en las plantas vasculares las moléculas de clorofila están organizadas en estructuras captadoras de luz (complejos antena) [36], constituidos por pigmentos unidos a proteínas y que a su vez están conectados con sendos fotosistemas (PS I y PS II) a través de un centro de reacción y que contienen los aceptores y transportadores de electrones necesarios para llevar los electrones excitados por los fotones absorbidos hasta sus finales aceptores, [24].

La mayor parte de la fluorescencia que es emitida por la clorofila proviene de la clorofila a del fotosistema dos (PSII), que incrementa si la transferencia o el proceso fotoquímico está limitado por algún factor o en condiciones de luz excesiva, produciéndose una sobrecarga de electrones excitados cuyo destino puede ser muy dañino para la propia célula [12, 36].

En presencia de luz el oxígeno reacciona con la clorofila excitada originándose un singlete de oxígeno que es muy reactivo pudiendo oxidar las clorofilas (blanqueamiento). En presencia de luz en exceso el oxígeno se hace tóxico y la fotosíntesis autodestructiva. Los carotenoides disipan el radical peróxido y también la clorofila excitada adquiriendo el estado triplete que a su vez se disipa desprendiendo calor que cede al medio como lo vemos en la figura **4-1**.

La sensibilidad, el tiempo de exposición y la intensidad de la radiación UV, determinan los efectos sobre las plantas. Además, dependiendo del lugar donde se desarrolle la especie y la latitud, es factible encontrar una tolerancia más alta o menor como respuesta a la radiación [8]. Según el efecto en la planta expuesta a radiaciones de longitud de onda corta se pueden clasificar en directas (relacionado con el crecimiento, la asimilación fotosintética, la división


**Figura 4-1**.: Mecanismo de disipación de energía por los carotenoides. Tomado de Demmig-Adams et al. (1992).

celular y el desarrollo, entre otros) o indirectas (a nivel metabólico como por ejemplo, la síntesis de metabolitos secundarios) [35].

Enlas plantas del desierto las cuales están expuestas naturalmente a condiciones extremas de radiación, se ha observado que estas ajustan sus niveles de pigmentos fotosintéticos y otras moléculas en respuesta a la radiación UV para protegerse contra el estrés inducido por esta. La adaptabilidad de estas plantas proporciona información valiosa sobre la interacción entre las plantas y su entorno, especialmente en condiciones de alta radiación UV [41].

#### 4.1.3. Estado del arte

#### Efectos biológicos de la radiación en Marte

La radiación ultravioleta solar que se recibe en la superficie de Marte es de tipo UVC y UVB. haciendo de este un planeta esterilizante, sin embargo, muchos investigadores se hacen la pregunta de si existe alguna posibilidad de que, dependiendo de las condiciones estacionales, en algún momento en ciertas latitudes del planeta se puedan tener condiciones aptas para el surgimiento de la vida, al menos temporalmente [7] [48] [1]. Los gases junto con la dispersión por los aerosoles, influyen en la propagación de la radiación UV hasta la superficie, estos pueden llegar a tener una distribución espacial y temporal muy variable, por lo que los niveles de UV en el planeta pueden sufrir también variaciones [7] [15]. Otros factores que afectan los niveles de UV en la superficie son la distancia al Sol, ya que influye en la cantidad de radiación solar que llega a Marte, así como el ángulo zenital solar (AZS) que se calcula por medio de determinados parámetros geométricos y orbitales [23, 37]. En la figura 4-2 se muestra la irradiancia UV solar que reciben Marte y la Tierra en la superficie, junto con el espectro solar que Marte recibe a 1.524 UA; esta diferencia es importante por la implicación biológica que conlleva ya que la exposición de los organismos a la radiación UV-C ( $\lambda < 280$ nm) y a parte del UVB (280-320 nm) es perjudicial para los procesos biológicos. Es importante resltar que la sensibilidad de los organismos es determinada por el espectro de acción biológico (BAS) que expresa el daño relativo producido por la exposición a la radiación UV en determinado proceso de desarrollo (normalizado a 300 nm) [7].

Un ejemplo para describir los cambios que suceden en un organismo lo encontramos en las plantas, que son organismos sésiles y por tener esta característica están sometidas a diferentes condiciones abióticas que afectan procesos del desarrollo como la germinación, establecimiento, crecimiento y productividad, que pueden convertirse en estresores, produciendo alteraciones en la fisiología de estas especies vegetales.

En la figura **4-3** se pueden ver varios ejemplos de los espectros de acción de los blancos biológicos más importantes. Es evidente que el daño es mayor cuanto menor sea la longitud





**Figura 4-2**.: Irradiancia UV recibida en la superficie de Marte y de la Tierra. Tomado de Córdoba-Jabonero, (2004).

de onda de la radiación recibida por un organismo y afectará de una manera diferente a cada especie, esta dosis biológica efectiva dependerá del tiempo de exposición a la radiación UV [7].

Existe la idea de que en el pasado, la atmósfera marciana pudiera haber tenido una presión mayor, esto indica que el "corte" espectral de la radiación UV en el planeta habría sido a longitudes de onda mayores, pero aún así hubiera seguido llegando suficiente radiación UV-C a la superficie para no permitir el desarrollo de materia biológica [7] [15]. Estas ideas han hecho que uno de los objetivos de múltiples investigacionea actuales sea estudiar la evolución de las condiciones del planeta y las posibilidades para el desarrollo y mantenimiento de la vida en suelo marciano. Por esta razón, en la exploración espacial, se han destinado recursos que intentan profundizar en el estudio de cómo el ser humano puede adaptarse al planeta rojo y asegurar la supervivencia a largo plazo de nuestra especie más alla de la Tierra. A pesar de los esfuerzos, aún existen dificultades técnicas que han hecho que dos tercios de las misiones destinadas a Marte hayan fracasado. Sin embargo, se ha podido descubrir que las condiciones en este planeta pudieron ser favorables para la vida hace millones de años y es posible encontrar indicios de vida en la antigüedad, ya que se ha descubierto que por



Figura 4-3.: Espectros de Acción Biológica (BAS). Tomado de Jabonero, (2004).

su superficie fluyeron corrientes de agua; de hecho aún se puede encontrar en los casquetes polares en forma de hielo, que en caso de derretirse, podría cubrir el planeta con un océano de 35 metros de profundidad [1] [7].

#### Efectos de la radiación UV solar en modelos biológicos

Cuadra (1997) [8] presentó un enfoque novedoso para el momento de su publicación el cual está de la mano con los descubrimientos de esa misma época sobre el deterioro de la capa de ozono. A raíz de esos hallazgos se abrió un interrogante en la comunidad científica de todas las áreas, planteándose los efectos en las especies a la exposición a niveles mayores de radiación según el daño del ozono. En el presente artículo se aplicó ese interrogante a las especies de *(Gnaphalium luteo-album)*, en condiciones de alta radiación, evidenciándose diferentes cambios enfocados en que se aumenta las concentraciones de pigmentos como respuesta defensiva a la radiación. Aunque deberán hacerse estudios más avanzados conforme se descubren mayores hitos en a fisiología vegetal. 4 Generalidades de la quinoa y efectos de la radiación UV solar marciana
30 sobre el porcentaje de germinación y el contenido de clorofilas

Barsig (2000) [4] buscó determinar los efectos de la radiación UB-V en la estructura celular, los carbohidratos y los pigmentos en plantas de maíz de azúcar en condiciones de Europa central. Para lograr tal fin se dispuso de un simulador solar y un medio simulado que emulara las condiciones ambientales y de radiación de la región de Europa central, y se colocaron muestras de hojas bajo estas condiciones. Durante el estudio no se logró evidenciar cambios significativos a nivel macroscópico, y a nivel microscópico llamó la atención un colapso a nivel celular de la epidermis de las hojas, no obstante, sin alteraciones organulares significativas. A su vez, se evidenciaron ambos a nivel metabólico, con carbohidratos en niveles disminuidos tras la exposición a la radiación, y a su vez los pigmentos fueron analizados, observándose una leve disminución en la composición de la clorofila sin otros hallazgos de relevancia.

Cockell (2000) [6] utilizó un modelo de transferencia radiativa para investigar cuantitativamente aspectos del entorno marciano de radiación ultravioleta en el pasado y el presente, además analiza los espectros de acción biológica para la inactivación del ADN y la inhibición del cloroplasto (fotosistema) para estimar las irradiaciones biológicamente efectivas para la superficie marciana bajo cielos sin nubes.

Patel (2004) [32] investigó el entorno ultravioleta (UV) de Marte para comprender la variación de la exposición a lo largo de un año marciano y relacionó este flujo con los efectos biológicos y la posible supervivencia de los organismos en la superficie marciana, modelando el flujo total de UV solar en la superficie a lo largo de un año marciano para dos escenarios de polvo diferentes. Para comprender el grado de estrés de la radiación UV solar sobre los microorganismos y/o las moléculas esenciales para la vida en la superficie de Marte, calculó la dosis biológicamente efectiva (BED) en regiones de longitud de onda relevantes en la superficie marciana en función de la estación y la latitud, y discutió las tasas de supervivencia biológica en presencia de la radiación UV solar marciana, concluyendo que el entorno de radiación sigue siendo hostil para la vida debido a la persistencia del componente UV-C.

Salama (2011) [41] buscó analizar el efecto de la radiación ultravioleta sobre la clorofila, los carotenoides y las proteínas en plantas desérticas, plantando varios géneros en el medio de estudio y se mantuvieron allí por 15 días en etapa de crecimiento y desarrollo, luego se dividieron en 3 grupos y en cada una se aplicaron condiciones diferentes de radiación para analizar su respuesta. La extracción de los pigmentos se realizó con métodos estandarizados. El resultado evidenció como hallazgo relevante un aumento de clorofila en algunas variedades mientras que en otras hubo un aumento de carotenoides, y a su vez en otros aumentó la de concentración de proteínas, lo que se puede interpretar como diferentes respuestas a la radiación según la necesidad de la planta de defenderse de la misma.

Prado (2016) [35] analizaró los efectos de la radiación sobre las diferentes variedades de qui-

noa en base a morfología, pigmentos y proteínas. Para lograrlo, reunió diferentes variedades de esta especie y las sometieron a irradiación UVB artificial. En cada cultivo se aplicaron condiciones controladas de temperatura, iluminación y humedad. A su vez, extrajeron clorofila y carotenoides de acuerdo a técnicas estandarizadas. Llamó la atención en los resultados que los diferentes grupos de quinua presentaron gran variedad de reacciones secundarias a la radiación, todas como estrategia de la misma planta para protegerse de la exposición, generando cambios morfológicos y a su vez en su fisiología y bioquímica. Dentro de las principales estrategias observadas, es que la planta aumentó los absorbentes de UVB , lo que puede interpretarse como una estrategia de protección para el aparato fotosintético.

Deoli (2018) [10] estudió la tolerancia de las semillas de *(Brassica rapa)* y las plántulas expuestas a la radiación, exponiendo semillas secas e hidratadas a iones de protón de 1, 2 y 3 MeV de diversas fluencias y examinando el efecto sobre la germinación y el crecimiento de las raíces, encontrando que el porcentaje de germinación disminuyó con el aumento de la fluencia para los iones que podían penetrar la cubierta de la semilla (> 1 MeV).

# 4.2. Materiales y métodos experimentales

#### 4.2.1. Material biológico y tratamientos de exposición a radiación UV

Se utilizaron semillas y plantas de un mes de crecimiento de *(Chenopodium quinoa Willd.)*, de las variedades Amarilla de maranganí y Quinoa real de la colección del Laboratorio de Biotecnología Vegetal de la Secretaría de Agricultura de la Gobernación de Boyacá. El material Quinoa real se colectó del municipio de Ventaquemada y el de Amarilla de maranganí del municipio de Pasca. Ver Tabla **??**.

| 941      | 1 1 | <b>T</b> 1   | <b>—</b> | <b>a c · · ·</b>              | NT 1      |
|----------|-----|--------------|----------|-------------------------------|-----------|
| Código   | del | Lugar de co- | Tiempo   | Georeferenciación             | Nombre    |
| banco de | se- | lección      | de al-   |                               | común de  |
| millas   |     |              | macena-  |                               | la varie- |
|          |     |              | miento   |                               | dad       |
|          |     |              | (años)   |                               |           |
| BGQ0009  |     | Ventaquemada | 7        | 5°22' 00.4" N, 73°31' 16.9" W | Quiona    |
|          |     |              |          |                               | real      |
| BGQ0020  |     | Pasca        | 9        | 4°18' 32.8" N, 74°17' 59.6" W | Amarilla  |
|          |     |              |          |                               | de maran- |
|          |     |              |          |                               | ganí      |

Tabla 4-1.: Información de Semillas. Tomado de Manjarres, (2020)

Las semillas y las plantas de los dos materiales de quinua fueron expuestos a cuatro diferentes tratamientos de exposición a UV, los cuales fueron: 180 nm (200 lúmenes), 250 nm (275 lúmenes), 395 nm (260 lúmenes) y un tratamiento con luz blanca de 410 nm (250 lúmenes).Los experimentos fueron realizados en cabinas independientes localizadas en invernadero. Las condiciones de temperatura y la humedad se midieron con un termo higrómetro digital con sonda certificada, marca Termo, ref. Ta 318; con una temperatura y humedad promedio de 14.1 °C y 72 %, respectivamente.

### 4.2.2. Porcentaje de germinación y contenido de clorofilas totales.

Para determinar el porcentaje de germinación de las semillas, se colocaron 80 semillas de cada material con tres repeticiones, las cuales fueron evaluadas bajo la observación a esteroscopio. En este estudio el criterio de germinación fue la emergencia de la radícula con una longitud entre 0.5 y 1mm. Todas las semillas se colocaron en cajas de Petri con medio húmedo y en cada una de ellas se sembró a capacidad máxima (20 semillas) hasta completar las 80; estas se colocaron en tres cabinas experimentales de 80 cm de largo, 50 cm de alto y 50 cm de ancho, en la primera caja se colocaron bombillas de luz UV de 180 nm (200 lúmenes), en la segunda de 250 nm (275 lúmenes), en la tercera de 395 nm (260 lúmenes); y una caja de control con luz normal de 410 nm (250 lúmenes). Las cajas de Petri se dejaron en cada cabina, de acuerdo al tratamiento, durante 84 horas, controlando el tiempo en el que germinaba cada una de ellas. Por último, se calculó el porcentaje de germinación tomando el número de semillas germinadas sobre el número de semillas totales multiplicado por cien.

Para la cuantificación de pigmentos fotosintéticos de *(Chenopodium quinoa Willd.)* bajo efectos de radiación UV solar simulada en la superficie de Marte se colocaron en las cabinas de 180 nm, 250 nm y 395 nm plantas de un mes de crecimiento en condiciones normales y se irradiaron durante 75 horas. Se midió el contenido de de clorofilas totales (ICC) cada 5 horas con un clorofilómetro marca Apogee MC-100, y controlando la temperatura y la humedad interna, las cuales registraron en promedio 14.1 °C y 72 % de humedad relativa, respectivamente. A través de un análisis de la distribución de los datos de ICC vs los tiempos de exposición a la radiación UV a diferentes longitudes, se pudo comparar los aumentos en los picos y el contenido de clorofilas totales para cada muestra.

#### 4.2.3. Análisis estadístico

Los datos fueron analizados y procesados con el software estadístico IBM SPSS Statistics Base v22.0 y tomando como valor de significancia estadística p < 0.05. Para evaluar la normalidad de los datos se llevó a cabo un análisis de las pruebas de Kolmogorov-Smirnov. Para estudiar las disparidades significativas entre los grupos se utilizó la prueba de Kruskal-Wallis. Para identificar diferencias entre sí se elaboró un análisis de correlación para cada material vegetal, entre los tratamientos de radiación UV y los tiempos de observación (T0 a T14).

Adicionalmente, se implementaron bibliotecas de Python, como NumPy, Pandas, SciPy, Seaborn y Matplotlib, con el objetivo de visualizar datos y obtener resultados más detallados.

# 4.3. Resultados y discusión

#### 4.3.1. Germinación

Los resultados de las pruebas de normalidad a un valor de significancia de p < 0.05 indicaron que los datos no son normales. Al aplicar la prueba de Kruskal-Wallis, se determinó que hay diferencias significativas en el índice de contenido de clorofila (ICC) entre los tratamientos de radiación UV (395 nm, 250 y 180 nm) para los dos materiales vegetales utilizados, desde el tiempo cero (0h) hasta el tiempo 14 (70 h). Al llevar a cabo un análisis de correlación, entre la radiación UV y los tiempos de observación (T0 a T14), se observó que existen relaciones significativas, lo que indica la dependencia entre sí.

Analizando el tiempo de germinación de cada semilla, teniendo en cuenta que este proceso comienza al emerger la radícula, se puede observar que varía entre las longitudes de onda UV (180 nm, 250 nm, 395 nm y 410 nm, siendo este último el control) y los materiales de quinoa (Quinoa real y Amarilla de Maranganí).

Se pudo observar que para Quinoa real la tendencia general indica un aumento en el tiempo de germinación en los tratamientos de 395 nm y 410 nm) Ver figura **4-4**.

Para amarilla de maranganí, los tratamientos 180 nm y 250 nm muestran una tendencia homogénea (Ver figura 4-5). En 395 nm este tiempo tiende a aumentar en cada tratamiento; sin embargo, el control presenta tiempos de germinación elevados, lo que sugiere que la radiación de longitudes de onda menores aceleran el proceso de emergencia de la radícula para ambos materiales. Cabe resaltar que este hallazgo no se ha reportado hasta el momento en ningún estudio con materiales de quinoa, y es importante resaltar que este resultado es significativo, pues evidenciaría que existe algún mecanismo de supervivencia en la semilla que haga que la radícula emerja más rápido.

En cuanto a mayor cantidad de semillas germinadas en un tiempo determinado, se evidenciío que en la variedad Amarilla de maranganí, las semillas emergen más rápido a comparación con Quinoa real para los diferentes tratamientos, sin embargo, como se puede observar, en

4 Generalidades de la quinoa y efectos de la radiación UV solar marciana 34sobre el porcentaje de germinación y el contenido de clorofilas



Suma de TIEMPO GERMINACIÓN





Suma de TIEMPO GERMINACIÓN

Figura 4-5.: Tiempo de germinación para Amarilla de maranganí

el tratamiento control, ambas variedades emergen relativamente en el mismo tiempo y a la misma cantidad. Ver figura 4-6

Se logró identificar que las semillas emergen más rápido en longitudes de onda más corta, demostrando que la radiación ultravioleta constituye una señal que las plantas utilizan para programar procesos específicos, los cuales desempeñan un papel crucial en la productividad; en este sentido, la luz ultravioleta actúa como una introducción "programada" para la emergencia de las semillas. Ver figura 4-7.

|                                                                     | 180 nm                   |                          |                          |                          |                          |                          |  |
|---------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| Davámatra                                                           |                          | Quinoa real              |                          | Ar                       | Amarilla de maranganí    |                          |  |
| Parametro                                                           | Grupo 1                  | Grupo 2                  | Grupo 3                  | Grupo 1                  | Grupo 2                  | Grupo 3                  |  |
|                                                                     | (80 semillas)            |  |
| Tiempo de<br>germinación de la<br>mayor cantidad de<br>semillas (h) | 12                       | 12                       | 13                       | 13                       | 13                       | 13                       |  |
| Cantidad de semillas<br>germinadas                                  | 60                       | 42                       | 42                       | 52                       | 50                       | 75                       |  |
| semillas germinadas<br>(%)                                          | 75                       | 52.5                     | 52.5                     | 65                       | 63                       | 94                       |  |
|                                                                     |                          |                          | 250                      | nm                       |                          |                          |  |
| Parámetro                                                           |                          | Quinoa real              |                          | Ar                       | marilla de maranga       | aní                      |  |
| ratalieuo                                                           | Grupo 1<br>(80 semillas) | Grupo 2<br>(80 semillas) | Grupo 3<br>(80 semillas) | Grupo 1<br>(80 semillas) | Grupo 2<br>(80 semillas) | Grupo 3<br>(80 semillas) |  |
| Tiempo de<br>germinación de la<br>mayor cantidad de<br>semillas (h) | 14                       | 9                        | 15                       | 13                       | 13                       | 13                       |  |
| Cantidad de semillas<br>germinadas                                  | 56                       | 34                       | 44                       | 78                       | 73                       | 76                       |  |
| semillas germinadas<br>(%)                                          | 70                       | 43                       | 55                       | 98                       | 91                       | 95                       |  |
|                                                                     | 395 nm                   |                          |                          |                          |                          |                          |  |
| Darámetro                                                           | Quinoa real              |                          | Ar                       | marilla de maranga       | aní                      |                          |  |
| Parametro                                                           | Grupo 1                  | Grupo 2                  | Grupo 3                  | Grupo 1                  | Grupo 2                  | Grupo 3                  |  |
|                                                                     | (80 semillas)            |  |
| Tiempo de<br>germinación de la<br>mayor cantidad de<br>semillas (h) | 16                       | 35                       | 35                       | 15                       | 15                       | 16                       |  |
| Cantidad de semillas<br>germinadas                                  | 37                       | 48                       | 44                       | 73                       | 80                       | 90                       |  |
| semillas germinadas<br>(%)                                          | 16                       | 48                       | 55                       | 91                       | 86                       | 72                       |  |
|                                                                     |                          |                          | 410                      | nm                       |                          |                          |  |
| Parámetro                                                           |                          | Quinoa real              |                          | Ar                       | narilla de maranga       | aní                      |  |
| rarametro                                                           | Grupo 1                  | Grupo 2                  | Grupo 3                  | Grupo 1                  | Grupo 2                  | Grupo 3                  |  |
|                                                                     | (80 semillas)            |  |
| Tiempo de<br>germinación de la<br>mayor cantidad de<br>semillas (h) | 37                       | 29                       | 30                       | 28                       | 29                       | 28                       |  |
| Cantidad de semillas<br>germinadas                                  | 24                       | 80                       | 23                       | 52                       | 29                       | 38                       |  |

Figura 4-6.: Tiempo en el que germinaron la mayor cantidad de semillas.

En cuanto al porcentaje de germinación se pudo observar diferencias entre ambas variedades, ques sugieren que la respuesta de los dos materiales a la exposición a la luz UV varía, y cambia con diferentes niveles de exposición a la luz UV. Ver figura **4-8** 



4 Generalidades de la quinoa y efectos de la radiación UV solar marciana 36 sobre el porcentaje de germinación y el contenido de clorofilas

**Figura 4-7**.: Emergencia de Quinoa real y Amarilla de maranganí en diferentes longitudes de onda.

#### 4.3.2. Clorofilas totales

Los resultados de las pruebas de normalidad a un valor de significancia de p < 0.05 indicaron que los datos no son normales. Al aplicar la prueba de Kruskal-Wallis, se determinó que hay diferencias significativas en los tiempos de emergencia de la radícula entre los tratamientos de radiación UV (410 nm, 395 nm, 250 y 180 nm) para los dos materiales vegetales utilizados. Al llevar a cabo un análisis de correlación, entre la radiación UV y los tiempos de germinación, se observó que existen relaciones significativas, lo que indica la dependencia entre sí.



Figura 4-8.: Respuesta germinativa a la exposición a radiación ultravioleta.

En la figura 4-9 se observa que los diagramas de Quinoa real a 180 nm, Amarilla de maranganí a 180 nm y Amarilla de maranganí a 250 nm, muestran una tendencia general a la baja en los valores medianos de ICC a lo largo del tiempo, mientras que los diagramas de Quinoa real a 250 nm, Amarilla de maranganí a 395 nm y Amarilla de maranganí a 395 nm muestran valores medianos más estables en los diferentes puntos temporales. Además, los diagramas de Quinoa real a 180 nm y Amarilla de maranganí a 180 nm muestran un rango más amplio de valores de ICC en comparación con los otros diagramas, lo que indica una mayor variabilidad en las mediciones en estas condiciones. En el análisis de contenido de pigmentos fotosintéticos tanto en Quinoa real como en Amarilla de maranganí, podría indicar que el aumento observado de contenido de clorofilas es una respuesta rápida frente a la condición de estrés que podría estar relacionado con un incremento en la producción de metabolitos secundarios, que contribuyen a reducir la penetración de radiación UV, desempeñando así un papel protector para las proteínas asociadas al aparato fotosintético, ayudando así a prevenir la degradación de los pigmentos y a mantener la estabilidad de los fotosistemas, especialmente los complejos cosechadores de luz. Tal y como lo demuestran Jansen (1998) [18] y Vera (2014) [52], en algunos casos, la respuesta de las plantas bajo una condición alta de estrés, muestra que el contenido de clorofilas puede resultar en un aumento esporádico de su síntesis, el cual tiende a decrecer a medida que el tiempo de exposición aumenta y la eficiencia fotosintética disminuye.

Se calculó la función de distribución acumulativa empírica (ECDF) para Quinoa real y Amarilla de Maranganí con el fin de analizar la distribución del conjunto de datos de ICC para



4 Generalidades de la quinoa y efectos de la radiación UV solar marciana 38 sobre el porcentaje de germinación y el contenido de clorofilas

Figura 4-9.: Comparación entre la distribución y la variabilidad de Quinoa real y Amarilla de Maranganí en diferentes momentos de tiempo para las longitudes de onda de luz UV de 180 nm, 250 nm y 180 nm).

ambos materiales. Ver figura 4-10.

La anterior figura sugiere que hay un cambio en la distribución de los valores de ICC entre ambos materiales de quinoa, siendo Amarilla de maranganí generalmente la que tiene valores de ICC más altos que Quinoa real. Esta variación podrá indicar posibles diferencias en la consistencia de la concentración de clorofila entre ambas variedades.

## 4.4. Discusión

#### 4.4.1. Germinación

Cabe resaltar que aunque a la fecha no se reportan estudios que expliquen la influencia de la radiación UV en las semittas de quinoa, se puede decir que este estudio confirma que la radiación UV puede influir en la producción y la señalización de fitohormonas, como auxinas y giberelinas, que desempeñan un papel clave en la germinación y el crecimiento de las



**Figura 4-10**.: ECDF de Quinoa real y Amarilla de Maranganí con respecto al ICC.

plantas como lo determinó Patel (2004)[33].

Las plantas utilizan la duración de la luz (fotoperiodo) como una señal ambiental para regular sus procesos fisiológicos, incluida la germinación. La radiación UV puede afectar el fotoperiodismo y modular la respuesta de la planta al ambiente luminoso, influyendo así en la germinación tal como se demostró en Foroughbakhch (2015)[11].La radiación UV puede estimular el metabolismo de las plantas, lo que puede tener un impacto positivo en la germinación al acelerar la conversión de reservas en energía utilizable para el crecimiento de la plántula, esto mismo fue lo hallado en Sax (1955)[42]

Es importante tener en cuenta que la respuesta de las plantas a la radiación UV puede ser compleja y depender de varios factores, como la intensidad y la duración de la exposición, el tipo de planta y las condiciones ambientales específicas. La investigación en este campo continúa para comprender mejor los mecanismos subyacentes a estos efectos.

## 4.4.2. Clorofilas totales

El aumento en el índice de contenido de clorofila en respuesta a longitudes de onda cortas de radiación ultravioleta (UV), como UV-A y UV-B, puede deberse a varias respuestas adaptativas de las plantas a la radiación UV, confirmando lo reportado por Vera (2014)[52].

La radiación UV puede generar estrés oxidativo en las células de las plantas al inducir la formación de especies reactivas de oxígeno (ROS). Para contrarrestar este estrés, las plantas pueden aumentar la producción de clorofila, ya que actúa como un antioxidante que ayuda a neutralizar los ROS y protege a las células contra el daño oxidativo, por lo tanto, tal como se reportó en Salama (2011)[41], este comportamiento es completamente esperado. La clorofila puede tener propiedades fotoprotectoras. En respuesta a la radiación UV, las plantas pueden aumentar la síntesis de clorofila para absorber y disipar la energía de la radiación UV antes de que cause daño a las estructuras celulares sensibles, tal como lo reportó Cuadra (1999)[9].

# 5. Conclusiones y recomendaciones

# 5.1. Conclusiones

- 1. Aunque no existen estudios específicos sobre la influencia de la radiación UV en las semillas de quinoa, este estudio sugiere que la radiación UV puede afectar la producción y señalización de fitohormonas clave para la germinación y crecimiento de las plantas, como auxinas y giberelinas.
- 2. La duración de la luz (fotoperiodo) es una señal crucial para regular la germinación, y la radiación UV puede modular la respuesta de las plantas al fotoperiodo, influyendo en la germinación.
- 3. La radiación UV puede estimular el metabolismo de las plantas, acelerando la conversión de reservas en energía utilizable para el crecimiento de las plántulas.

#### **Clorofilas Totales:**

- 1. El aumento en el índice de contenido de clorofila en respuesta a longitudes de onda cortas de radiación UV-A y UV-B confirma investigaciones previas y sugiere respuestas adaptativas de las plantas a esta radiación.
- 2. La radiación UV puede generar estrés oxidativo, y el aumento en la producción de clorofila actúa como un antioxidante, protegiendo las células contra el daño oxidativo.
- 3. La síntesis adicional de clorofila puede tener propiedades fotoprotectoras, absorbiendo y disipando la energía de la radiación UV para evitar daños a las estructuras celulares sensibles.

#### **Consideraciones:**

- La complejidad de la respuesta de las plantas a la radiación UV depende de diversos factores, como intensidad y duración de la exposición, tipo de planta y condiciones ambientales específicas.
- La investigación continua en este campo busca comprender mejor los mecanismos subyacentes a los efectos observados en la germinación y el contenido de clorofila en respuesta a la radiación UV.

# 5.2. Recomendaciones

Basándonos en los hallazgos de este estudio y considerando el contexto de la exploración de Marte y el estudio de las condiciones de habitabilidad en ese planeta, se formulan las siguientes recomendaciones:

Considerar la radiación UV en diseño de experimentos en Marte: Dada la similitud de las condiciones de radiación UV en Marte con algunas longitudes de onda estudiadas, se recomienda considerar este factor al disenar experimentos de cultivo de alimentos en entornos marcianos simulados.

Optimización de condiciones para la habitabilidad en Marte: Para futuras misiones de exploración y colonización en Marte, se sugiere optimizar las condiciones de cultivo, tomando en cuenta la radiación UV como un factor clave que podría afectar el crecimiento de plantas.

Investigación de respuestas de otras especies vegetales: Además de la Quinoa, se recomienda investigar las respuestas de otras especies vegetales a la radiación UV en contextos marcianos, con el objetivo de diversificar las opciones de cultivo y maximizar la opciones de habitabilidad.

Validación de resultados en simuladores de Marte: Los resultados obtenidos en este estudio podrían validarse y extrapolarse utilizando simuladores de condiciones marcianas para mejorar la aplicabilidad práctica de los hallazgos. En el contexto de investigación actual en entornos de simulación análoga, Colombia cuenta con el Hábitat Análogo de Exploración Espacial Simulada en Colombia (HAdEES-C), el primero en el país y segundo en Latinoamérica.

Desarrollo de sistemas de protección UV: Considerando los posibles efectos negativos de la radiación UV en Marte, se sugiere el desarrollo de sistemas de protección UV para plantas cultivadas, garantizando así la sostenibilidad y éxito de los cultivos en el planeta rojo.

Este estudio no solo aporta a la comprensión de la respuesta de la Quinoa a la radiación UV, sino que también ofrece perspectivas valiosas para la investigación agrícola en el contexto de la exploración espacial, especialmente en la búsqueda de condiciones habitables en entornos extraterrestres como el planeta Marte.

# A. Anexo: Cálculo de la constante solar

|                                 | Tabla A-1 Description de datos |          |          |            |  |
|---------------------------------|--------------------------------|----------|----------|------------|--|
| Day                             | Distance                       | K        | Latitude | Irradiance |  |
| 193                             | 249100                         | 490.9231 | -90      | 1095.6305  |  |
| 194                             | 249036.5269                    | 491.1734 | -89.731  | 2532.9703  |  |
| 195                             | 248973.0539                    | 491.4239 | -89.461  | 6619.0019  |  |
| 196                             | 248909.5808                    | 491.6745 | -89.192  | 1458.7907  |  |
| 197                             | 248846.1078                    | 491.9254 | -88.922  | 854.7554   |  |
| 198                             | 248782.6347                    | 492.1764 | -88.653  | 637.1596   |  |
| 199                             | 248719.1617                    | 492.4277 | -88.383  | 538.9716   |  |
| 200                             | 248655.6886                    | 492.6791 | -88.114  | 498.2125   |  |
| 201                             | 248592.2156                    | 492.9307 | -87.844  | 496.5182   |  |
| 202                             | 248528.7425                    | 493.1825 | -87.575  | 533.1666   |  |
| 203                             | 248465.2695                    | 493.4345 | -87.305  | 624.2219   |  |
| 204                             | 248401.7964                    | 493.6867 | -87.036  | 824.3188   |  |
| 205                             | 248338.3234                    | 493.9391 | -86.766  | 1356.5932  |  |
| 206                             | 248274.8503                    | 494.1917 | -86.497  | 4796.819   |  |
| 207                             | 248211.3772                    | 494.4445 | -86.228  | 2987.7923  |  |
| 208                             | 248147.9042                    | 494.6975 | -85.958  | 1172.108   |  |
| 209                             | 248084.4311                    | 494.9507 | -85.689  | 763.6156   |  |
| 210                             | 248020.9581                    | 495.204  | -85.419  | 598.4355   |  |
| 211                             | 247957.485                     | 495.4576 | -85.15   | 523.1274   |  |
| 212                             | 247894.012                     | 495.7113 | -84.88   | 496.5245   |  |
| 213                             | 247830.5389                    | 495.9653 | -84.611  | 507.3476   |  |
| 214                             | 247767.0659                    | 496.2194 | -84.341  | 559.9306   |  |
| 215                             | 247703.5928                    | 496.4738 | -84.072  | 679.2565   |  |
| 216                             | 247640.1198                    | 496.7283 | -83.802  | 950.0414   |  |
| 217                             | 247576.6467                    | 496.983  | -83.533  | 1793.7999  |  |
| 218                             | 247513.1737                    | 497.238  | -83.263  | 44130.302  |  |
| 219                             | 247449.7006                    | 497.4931 | -82.994  | 1948.3998  |  |
| 220                             | 247386.2275                    | 497.7484 | -82.725  | 988.5608   |  |
| 221                             | 247322.7545                    | 498.0039 | -82.455  | 696.1746   |  |
| Continúa en la siguiente página |                                |          |          |            |  |

Tabla A-1.: Descripción de datos

| 222 | 247259.2814 | 498.2597 | -82.186       | 569.0808      |
|-----|-------------|----------|---------------|---------------|
| 223 | 247195.8084 | 498.5156 | -81.916       | 512.5752      |
| 224 | 247132.3353 | 498.7717 | -81.647       | 499.0721      |
| 225 | 247068.8623 | 499.028  | -81.377       | 523.0365      |
| 226 | 247005.3892 | 499.2845 | -81.108       | 594.4291      |
| 227 | 246941.9162 | 499.5412 | -80.838       | 751.0068      |
| 228 | 246878.4431 | 499.7981 | -80.569       | 1129.7962     |
| 229 | 246814.9701 | 500.0552 | -80.299       | 2664.558      |
| 230 | 246751.497  | 500.3125 | -80.03        | 6208.5007     |
| 231 | 246688.024  | 500.57   | -79.76        | 1459.2884     |
| 232 | 246624.5509 | 500.8277 | -79.491       | 862.4473      |
| 233 | 246561.0778 | 501.0856 | -79.222       | 645.332       |
| 234 | 246497.6048 | 501.3436 | -78.952       | 547.1931      |
| 235 | 246434.1317 | 501.6019 | -78.683       | 506.7614      |
| 236 | 246370.6587 | 501.8604 | -78.413       | 505.912       |
| 237 | 246307.1856 | 502.1191 | -78.144       | 544.2605      |
| 238 | 246243.7126 | 502.378  | -77.874       | 638.6961      |
| 239 | 246180.2395 | 502.6371 | -77.605       | 846.4789      |
| 240 | 246116.7665 | 502.8964 | -77.335       | 1404.0637     |
| 241 | 246053.2934 | 503.1559 | -77.066       | 5203.4323     |
| 242 | 245989.8204 | 503.4156 | -76.796       | 2930.9768     |
| 243 | 245926.3473 | 503.6755 | -76.527       | 1177.321      |
| 244 | 245862.8743 | 503.9356 | -76.257       | 771.7272      |
| 245 | 245799.4012 | 504.1959 | -75.988       | 606.6961      |
| 246 | 245735.9281 | 504.4564 | -75.719       | 531.4942      |
| 247 | 245672.4551 | 504.7171 | -75.449       | 505.371       |
| 248 | 245608.982  | 504.978  | -75.18        | 517.2864      |
| 249 | 245545.509  | 505.2391 | -74.91        | 572.0216      |
| 250 | 245482.0359 | 505.5004 | -74.641       | 695.752       |
| 251 | 245418.5629 | 505.7619 | -74.371       | 977.4738      |
| 252 | 245355.0898 | 506.0236 | -74.102       | 1867.6618     |
| 253 | 245291.6168 | 506.2855 | -73.832       | 103156.2055   |
| 254 | 245228.1437 | 506.5476 | -73.563       | 1937.248      |
| 255 | 245164.6707 | 506.81   | -73.293       | 995.7116      |
| 256 | 245101.1976 | 507.0725 | -73.024       | 704.4895      |
| 257 | 245037.7246 | 507.3352 | -72.754       | 577.4317      |
| 258 | 244974.2515 | 507.5982 | -72.485       | 521.1319      |
| 259 | 244910.7784 | 507.8613 | -72.216       | 508.2898      |
|     |             | Contir   | núa en la sig | uiente página |

| 260 | 244847.3054 | 508.1247 | -71.946       | 533.6469      |
|-----|-------------|----------|---------------|---------------|
| 261 | 244783.8323 | 508.3882 | -71.677       | 607.7773      |
| 262 | 244720.3593 | 508.652  | -71.407       | 770.2183      |
| 263 | 244656.8862 | 508.9159 | -71.138       | 1165.4569     |
| 264 | 244593.4132 | 509.1801 | -70.868       | 2806.6591     |
| 265 | 244529.9401 | 509.4445 | -70.599       | 5860.9057     |
| 266 | 244466.4671 | 509.709  | -70.329       | 1460.5252     |
| 267 | 244402.994  | 509.9738 | -70.06        | 870.454       |
| 268 | 244339.521  | 510.2388 | -69.79        | 653.7593      |
| 269 | 244276.0479 | 510.504  | -69.521       | 555.6569      |
| 270 | 244212.5749 | 510.7694 | -69.251       | 515.5621      |
| 271 | 244149.1018 | 511.035  | -68.982       | 515.5886      |
| 272 | 244085.6287 | 511.3008 | -68.713       | 555.7021      |
| 273 | 244022.1557 | 511.5669 | -68.443       | 653.6551      |
| 274 | 243958.6826 | 511.8331 | -68.174       | 869.476       |
| 275 | 243895.2096 | 512.0995 | -67.904       | 1453.8905     |
| 276 | 243831.7365 | 512.3662 | -67.635       | 5669.9598     |
| 277 | 243768.2635 | 512.633  | -67.365       | 2879.6589     |
| 278 | 243704.7904 | 512.9001 | -67.096       | 1183.0116     |
| 279 | 243641.3174 | 513.1674 | -66.826       | 780.1262      |
| 280 | 243577.8443 | 513.4349 | -66.557       | 615.2072      |
| 281 | 243514.3713 | 513.7026 | -66.287       | 540.1073      |
| 282 | 243450.8982 | 513.9705 | -66.018       | 514.4802      |
| 283 | 243387.4251 | 514.2386 | -65.749       | 527.5287      |
| 284 | 243323.9521 | 514.5069 | -65.479       | 584.4997      |
| 285 | 243260.479  | 514.7754 | -65.21        | 712.8195      |
| 286 | 243197.006  | 515.0442 | -64.94        | 1006.0151     |
| 287 | 243133.5329 | 515.3131 | -64.671       | 1945.956      |
| 288 | 243070.0599 | 515.5823 | -64.401       | 355134.7772   |
| 289 | 243006.5868 | 515.8517 | -64.132       | 1927.6167     |
| 290 | 242943.1138 | 516.1212 | -63.862       | 1003.2356     |
| 291 | 242879.6407 | 516.391  | -63.593       | 713.0765      |
| 292 | 242816.1677 | 516.6611 | -63.323       | 586.0321      |
| 293 | 242752.6946 | 516.9313 | -63.054       | 529.9411      |
| 294 | 242689.2216 | 517.2017 | -62.784       | 517.7838      |
| 295 | 242625.7485 | 517.4723 | -62.515       | 544.5866      |
| 296 | 242562.2754 | 517.7432 | -62.246       | 621.5635      |
| 297 | 242498.8024 | 518.0143 | -61.976       | 790.1248      |
|     |             | Contir   | núa en la sig | uiente página |

| 298                             | 242435.3293 | 518.2856 | -61.707 | 1202.6965  |
|---------------------------------|-------------|----------|---------|------------|
| 299                             | 242371.8563 | 518.5571 | -61.437 | 2960.4644  |
| 300                             | 242308.3832 | 518.8288 | -61.168 | 5563.4672  |
| 301                             | 242244.9102 | 519.1007 | -60.898 | 1462.4901  |
| 302                             | 242181.4371 | 519.3728 | -60.629 | 878.7839   |
| 303                             | 242117.9641 | 519.6452 | -60.359 | 662.45     |
| 304                             | 242054.491  | 519.9177 | -60.09  | 564.372    |
| 305                             | 241991.018  | 520.1905 | -59.82  | 524.6241   |
| 306                             | 241927.5449 | 520.4635 | -59.551 | 525.5589   |
| 307                             | 241864.0719 | 520.7367 | -59.281 | 567.5053   |
| 308                             | 241800.5988 | 521.0101 | -59.012 | 669.1195   |
| 309                             | 241737.1257 | 521.2838 | -58.743 | 893.3504   |
| 310                             | 241673.6527 | 521.5576 | -58.473 | 1506.2264  |
| 311                             | 241610.1796 | 521.8317 | -58.204 | 6210.0999  |
| 312                             | 241546.7066 | 522.106  | -57.934 | 2833.3256  |
| 313                             | 241483.2335 | 522.3805 | -57.665 | 1189.1831  |
| 314                             | 241419.7605 | 522.6552 | -57.395 | 788.8216   |
| 315                             | 241356.2874 | 522.9302 | -57.126 | 623.9778   |
| 316                             | 241292.8144 | 523.2053 | -56.856 | 548.9759   |
| 317                             | 241229.3413 | 523.4807 | -56.587 | 523.862    |
| 318                             | 241165.8683 | 523.7563 | -56.317 | 538.0862   |
| 319                             | 241102.3952 | 524.0321 | -56.048 | 597.3807   |
| 320                             | 241038.9222 | 524.3081 | -55.778 | 730.4841   |
| 321                             | 240975.4491 | 524.5843 | -55.509 | 1035.7224  |
| 322                             | 240911.976  | 524.8608 | -55.24  | 2029.0413  |
| 323                             | 240848.503  | 525.1375 | -54.97  | 67226.3915 |
| 324                             | 240785.0299 | 525.4144 | -54.701 | 1919.4378  |
| 325                             | 240721.5569 | 525.6915 | -54.431 | 1011.1399  |
| 326                             | 240658.0838 | 525.9688 | -54.162 | 721.9447   |
| 327                             | 240594.6108 | 526.2464 | -53.892 | 594.8912   |
| 328                             | 240531.1377 | 526.5242 | -53.623 | 539.0124   |
| 329                             | 240467.6647 | 526.8022 | -53.353 | 527.565    |
| 330                             | 240404.1916 | 527.0804 | -53.084 | 555.8686   |
| 331                             | 240340.7186 | 527.3588 | -52.814 | 635.8062   |
| 332                             | 240277.2455 | 527.6375 | -52.545 | 810.758    |
| 333                             | 240213.7725 | 527.9164 | -52.275 | 1241.605   |
| 334                             | 240150.2994 | 528.1955 | -52.006 | 3127.3456  |
| 335                             | 240086.8263 | 528.4748 | -51.737 | 5306.6914  |
| Continúa en la siguiente página |             |          |         |            |

| 336                             | 240023.3533 | 528.7543 | -51.467 | 1465.1744 |
|---------------------------------|-------------|----------|---------|-----------|
| 337                             | 239959.8802 | 529.0341 | -51.198 | 887.4455  |
| 338                             | 239896.4072 | 529.3141 | -50.928 | 671.4135  |
| 339                             | 239832.9341 | 529.5943 | -50.659 | 573.3478  |
| 340                             | 239769.4611 | 529.8747 | -50.389 | 533.9573  |
| 341                             | 239705.988  | 530.1554 | -50.12  | 535.8345  |
| 342                             | 239642.515  | 530.4362 | -49.85  | 579.6848  |
| 343                             | 239579.0419 | 530.7173 | -49.581 | 685.1111  |
| 344                             | 239515.5689 | 530.9987 | -49.311 | 918.1444  |
| 345                             | 239452.0958 | 531.2802 | -49.042 | 1561.2367 |
| 346                             | 239388.6228 | 531.562  | -48.772 | 6842.038  |
| 347                             | 239325.1497 | 531.844  | -48.503 | 2791.5346 |
| 348                             | 239261.6766 | 532.1262 | -48.234 | 1195.8399 |
| 349                             | 239198.2036 | 532.4086 | -47.964 | 797.8224  |
| 350                             | 239134.7305 | 532.6913 | -47.695 | 633.0171  |
| 351                             | 239071.2575 | 532.9742 | -47.425 | 558.1096  |
| 352                             | 239007.7844 | 533.2573 | -47.156 | 533.527   |
| 353                             | 238944.3114 | 533.5407 | -46.886 | 548.9717  |
| 354                             | 238880.8383 | 533.8242 | -46.617 | 610.6814  |
| 355                             | 238817.3653 | 534.108  | -46.347 | 748.7725  |
| 356                             | 238753.8922 | 534.3921 | -46.078 | 1066.6564 |
| 357                             | 238690.4192 | 534.6763 | -45.808 | 2117.3138 |
| 358                             | 238626.9461 | 534.9608 | -45.539 | 37750.799 |
| 359                             | 238563.4731 | 535.2455 | -45.269 | 1912.6515 |
| 360                             | 238500      | 535.5304 | -45     | 1019.4327 |
| 361                             | 238436.5269 | 535.8156 | -44.731 | 731.1034  |
| 362                             | 238373.0539 | 536.101  | -44.461 | 604.0184  |
| 363                             | 238309.5808 | 536.3866 | -44.192 | 548.3558  |
| 364                             | 238246.1078 | 536.6724 | -43.922 | 537.6445  |
| 365                             | 238182.6347 | 536.9585 | -43.653 | 567.5068  |
| 366                             | 238119.1617 | 537.2448 | -43.383 | 650.5246  |
| 367                             | 238055.6886 | 537.5313 | -43.114 | 832.1518  |
| 368                             | 237992.2156 | 537.8181 | -42.844 | 1282.2783 |
| 369                             | 237928.7425 | 538.1051 | -42.575 | 3308.891  |
| 370                             | 237865.2695 | 538.3923 | -42.305 | 5083.365  |
| 371                             | 237801.7964 | 538.6798 | -42.036 | 1468.5712 |
| 372                             | 237738.3234 | 538.9674 | -41.766 | 896.4482  |
| 373                             | 237674.8503 | 539.2554 | -41.497 | 680.6593  |
| Continúa en la siguiente página |             |          |         |           |

| 374 | 237611.3772 | 539.5435 | -41.228       | 582.5939      |
|-----|-------------|----------|---------------|---------------|
| 375 | 237547.9042 | 539.8319 | -40.958       | 543.5722      |
| 376 | 237484.4311 | 540.1205 | -40.689       | 546.4274      |
| 377 | 237420.9581 | 540.4093 | -40.419       | 592.2561      |
| 378 | 237357.485  | 540.6984 | -40.15        | 701.6529      |
| 379 | 237294.012  | 540.9877 | -39.88        | 943.9031      |
| 380 | 237230.5389 | 541.2772 | -39.611       | 1619.1002     |
| 381 | 237167.0659 | 541.567  | -39.341       | 7590.4441     |
| 382 | 237103.5928 | 541.857  | -39.072       | 2753.9026     |
| 383 | 237040.1198 | 542.1472 | -38.802       | 1202.987      |
| 384 | 236976.6467 | 542.4376 | -38.533       | 807.1385      |
| 385 | 236913.1737 | 542.7283 | -38.263       | 642.3349      |
| 386 | 236849.7006 | 543.0193 | -37.994       | 567.5184      |
| 387 | 236786.2275 | 543.3104 | -37.725       | 543.4863      |
| 388 | 236722.7545 | 543.6018 | -37.455       | 560.1982      |
| 389 | 236659.2814 | 543.8935 | -37.186       | 624.4193      |
| 390 | 236595.8084 | 544.1853 | -36.916       | 767.7126      |
| 391 | 236532.3353 | 544.4774 | -36.647       | 1098.8816     |
| 392 | 236468.8623 | 544.7698 | -36.377       | 2211.2118     |
| 393 | 236405.3892 | 545.0623 | -36.108       | 26550.0159    |
| 394 | 236341.9162 | 545.3552 | -35.838       | 1907.2049     |
| 395 | 236278.4431 | 545.6482 | -35.569       | 1028.1226     |
| 396 | 236214.9701 | 545.9415 | -35.299       | 740.5626      |
| 397 | 236151.497  | 546.235  | -35.03        | 613.4237      |
| 398 | 236088.024  | 546.5287 | -34.76        | 557.9817      |
| 399 | 236024.5509 | 546.8227 | -34.491       | 548.0341      |
| 400 | 235961.0778 | 547.117  | -34.222       | 579.5157      |
| 401 | 235897.6048 | 547.4114 | -33.952       | 665.7391      |
| 402 | 235834.1317 | 547.7061 | -33.683       | 854.3417      |
| 403 | 235770.6587 | 548.0011 | -33.413       | 1324.8195     |
| 404 | 235707.1856 | 548.2963 | -33.144       | 3506.9492     |
| 405 | 235643.7126 | 548.5917 | -32.874       | 4887.9106     |
| 406 | 235580.2395 | 548.8873 | -32.605       | 1472.6755     |
| 407 | 235516.7665 | 549.1832 | -32.335       | 905.8017      |
| 408 | 235453.2934 | 549.4794 | -32.066       | 690.1975      |
| 409 | 235389.8204 | 549.7757 | -31.796       | 592.1205      |
| 410 | 235326.3473 | 550.0724 | -31.527       | 553.4798      |
| 411 | 235262.8743 | 550.3692 | -31.257       | 557.3504      |
|     | 1           | Contir   | núa en la sig | uiente página |

| 412 | 235199.4012 | 550.6663 | -30.988       | 605.2355      |
|-----|-------------|----------|---------------|---------------|
| 413 | 235135.9281 | 550.9636 | -30.719       | 718.7689      |
| 414 | 235072.4551 | 551.2612 | -30.449       | 970.674       |
| 415 | 235008.982  | 551.559  | -30.18        | 1680.0107     |
| 416 | 234945.509  | 551.8571 | -29.91        | 8489.6434     |
| 417 | 234882.0359 | 552.1554 | -29.641       | 2720.0967     |
| 418 | 234818.5629 | 552.4539 | -29.371       | 1210.6306     |
| 419 | 234755.0898 | 552.7527 | -29.102       | 816.7801      |
| 420 | 234691.6168 | 553.0517 | -28.832       | 651.9415      |
| 421 | 234628.1437 | 553.351  | -28.563       | 577.2129      |
| 422 | 234564.6707 | 553.6505 | -28.293       | 553.7513      |
| 423 | 234501.1976 | 553.9503 | -28.024       | 571.7796      |
| 424 | 234437.7246 | 554.2503 | -27.754       | 638.6128      |
| 425 | 234374.2515 | 554.5505 | -27.485       | 787.334       |
| 426 | 234310.7784 | 554.851  | -27.216       | 1132.4668     |
| 427 | 234247.3054 | 555.1518 | -26.946       | 2311.2217     |
| 428 | 234183.8323 | 555.4527 | -26.677       | 20658.3169    |
| 429 | 234120.3593 | 555.754  | -26.407       | 1903.0512     |
| 430 | 234056.8862 | 556.0554 | -26.138       | 1037.2189     |
| 431 | 233993.4132 | 556.3571 | -25.868       | 750.3328      |
| 432 | 233929.9401 | 556.6591 | -25.599       | 623.1176      |
| 433 | 233866.4671 | 556.9613 | -25.329       | 567.9011      |
| 434 | 233802.994  | 557.2637 | -25.06        | 558.7462      |
| 435 | 233739.521  | 557.5664 | -24.79        | 591.9104      |
| 436 | 233676.0479 | 557.8694 | -24.521       | 681.4711      |
| 437 | 233612.5749 | 558.1726 | -24.251       | 877.3654      |
| 438 | 233549.1018 | 558.476  | -23.982       | 1369.3388     |
| 439 | 233485.6287 | 558.7797 | -23.713       | 3723.6842     |
| 440 | 233422.1557 | 559.0836 | -23.443       | 4715.9493     |
| 441 | 233358.6826 | 559.3878 | -23.174       | 1477.4842     |
| 442 | 233295.2096 | 559.6922 | -22.904       | 915.5165      |
| 443 | 233231.7365 | 559.9969 | -22.635       | 700.0386      |
| 444 | 233168.2635 | 560.3018 | -22.365       | 601.9384      |
| 445 | 233104.7904 | 560.607  | -22.096       | 563.6914      |
| 446 | 233041.3174 | 560.9124 | -21.826       | 568.6166      |
| 447 | 232977.8443 | 561.2181 | -21.557       | 618.6399      |
| 448 | 232914.3713 | 561.524  | -21.287       | 736.4847      |
| 449 | 232850.8982 | 561.8302 | -21.018       | 998.5078      |
|     |             | Contir   | núa en la sig | uiente página |

| 450 | 232787.4251 | 562.1366 | -20.749       | 1744.1788     |
|-----|-------------|----------|---------------|---------------|
| 451 | 232723.9521 | 562.4433 | -20.479       | 9588.8484     |
| 452 | 232660.479  | 562.7502 | -20.21        | 2689.8268     |
| 453 | 232597.006  | 563.0574 | -19.94        | 1218.7776     |
| 454 | 232533.5329 | 563.3648 | -19.671       | 826.7579      |
| 455 | 232470.0599 | 563.6725 | -19.401       | 661.8475      |
| 456 | 232406.5868 | 563.9805 | -19.132       | 587.2041      |
| 457 | 232343.1138 | 564.2886 | -18.862       | 564.3343      |
| 458 | 232279.6407 | 564.5971 | -18.593       | 583.7303      |
| 459 | 232216.1677 | 564.9058 | -18.323       | 653.2813      |
| 460 | 232152.6946 | 565.2147 | -18.054       | 807.6679      |
| 461 | 232089.2216 | 565.5239 | -17.784       | 1167.4849     |
| 462 | 232025.7485 | 565.8334 | -17.515       | 2417.8846     |
| 463 | 231962.2754 | 566.1431 | -17.246       | 17029.6836    |
| 464 | 231898.8024 | 566.453  | -16.976       | 1900.1497     |
| 465 | 231835.3293 | 566.7633 | -16.707       | 1046.7315     |
| 466 | 231771.8563 | 567.0737 | -16.437       | 760.425       |
| 467 | 231708.3832 | 567.3845 | -16.168       | 633.1108      |
| 468 | 231644.9102 | 567.6954 | -15.898       | 578.1255      |
| 469 | 231581.4371 | 568.0067 | -15.629       | 569.7937      |
| 470 | 231517.9641 | 568.3182 | -15.359       | 604.7071      |
| 471 | 231454.491  | 568.6299 | -15.09        | 697.743       |
| 472 | 231391.018  | 568.9419 | -14.82        | 901.2626      |
| 473 | 231327.5449 | 569.2542 | -14.551       | 1415.9546     |
| 474 | 231264.0719 | 569.5667 | -14.281       | 3961.6455     |
| 475 | 231200.5988 | 569.8795 | -14.012       | 4563.9965     |
| 476 | 231137.1257 | 570.1925 | -13.743       | 1482.9958     |
| 477 | 231073.6527 | 570.5058 | -13.473       | 925.6034      |
| 478 | 231010.1796 | 570.8194 | -13.204       | 710.1938      |
| 479 | 230946.7066 | 571.1332 | -12.934       | 612.0587      |
| 480 | 230883.2335 | 571.4472 | -12.665       | 574.2193      |
| 481 | 230819.7605 | 571.7616 | -12.395       | 580.2402      |
| 482 | 230756.2874 | 572.0761 | -12.126       | 632.4872      |
| 483 | 230692.8144 | 572.391  | -11.856       | 754.8269      |
| 484 | 230629.3413 | 572.7061 | -11.587       | 1027.458      |
| 485 | 230565.8683 | 573.0215 | -11.317       | 1811.8332     |
| 486 | 230502.3952 | 573.3371 | -11.048       | 10961.2058    |
| 487 | 230438.9222 | 573.653  | -10.778       | 2662.8395     |
|     | 1           | Contir   | núa en la sig | uiente página |

| 488 | 230375.4491 | 573.9691 | -10.509       | 1227.4359     |
|-----|-------------|----------|---------------|---------------|
| 489 | 230311.976  | 574.2855 | -10.24        | 837.0833      |
| 490 | 230248.503  | 574.6022 | -9.97         | 672.0642      |
| 491 | 230185.0299 | 574.9191 | -9.701        | 597.5036      |
| 492 | 230121.5569 | 575.2363 | -9.431        | 575.248       |
| 493 | 230058.0838 | 575.5538 | -9.162        | 596.0656      |
| 494 | 229994.6108 | 575.8715 | -8.892        | 668.4453      |
| 495 | 229931.1377 | 576.1895 | -8.623        | 828.7471      |
| 496 | 229867.6647 | 576.5078 | -8.353        | 1204.0141     |
| 497 | 229804.1916 | 576.8263 | -8.084        | 2531.8036     |
| 498 | 229740.7186 | 577.145  | -7.814        | 14574.3628    |
| 499 | 229677.2455 | 577.4641 | -7.545        | 1898.4649     |
| 500 | 229613.7725 | 577.7834 | -7.275        | 1056.6711     |
| 501 | 229550.2994 | 578.103  | -7.006        | 770.8505      |
| 502 | 229486.8263 | 578.4228 | -6.737        | 643.4151      |
| 503 | 229423.3533 | 578.7429 | -6.467        | 588.6669      |
| 504 | 229359.8802 | 579.0633 | -6.198        | 581.1903      |
| 505 | 229296.4072 | 579.3839 | -5.928        | 617.9225      |
| 506 | 229232.9341 | 579.7048 | -5.659        | 714.5787      |
| 507 | 229169.4611 | 580.026  | -5.389        | 926.0753      |
| 508 | 229105.988  | 580.3474 | -5.12         | 1464.7939     |
| 509 | 229042.515  | 580.6691 | -4.85         | 4223.8566     |
| 510 | 228979.0419 | 580.9911 | -4.581        | 4429.2458     |
| 511 | 228915.5689 | 581.3133 | -4.311        | 1489.2104     |
| 512 | 228852.0958 | 581.6358 | -4.042        | 936.0742      |
| 513 | 228788.6228 | 581.9586 | -3.772        | 720.6747      |
| 514 | 228725.1497 | 582.2816 | -3.503        | 622.4933      |
| 515 | 228661.6766 | 582.6049 | -3.234        | 585.076       |
| 516 | 228598.2036 | 582.9285 | -2.964        | 592.2358      |
| 517 | 228534.7305 | 583.2524 | -2.695        | 646.7964      |
| 518 | 228471.2575 | 583.5765 | -2.425        | 773.8238      |
| 519 | 228407.7844 | 583.9009 | -2.156        | 1057.5815     |
| 520 | 228344.3114 | 584.2255 | -1.886        | 1883.2229     |
| 521 | 228280.8383 | 584.5505 | -1.617        | 12720.3526    |
| 522 | 228217.3653 | 584.8757 | -1.347        | 2638.9128     |
| 523 | 228153.8922 | 585.2011 | -1.078        | 1236.6143     |
| 524 | 228090.4192 | 585.5269 | -0.808        | 847.7683      |
| 525 | 228026.9461 | 585.8529 | -0.539        | 682.6035      |
|     |             | Contir   | núa en la sig | uiente página |

| 526                             | 227963.4731 | 586.1792 | -0.269 | 608.1236   |
|---------------------------------|-------------|----------|--------|------------|
| 527                             | 227900      | 586.5057 | 0      | 586.5057   |
| 528                             | 227836.5269 | 586.8326 | 0.269  | 608.8015   |
| 529                             | 227773.0539 | 587.1597 | 0.539  | 684.1261   |
| 530                             | 227709.5808 | 587.4871 | 0.808  | 850.6064   |
| 531                             | 227646.1078 | 587.8147 | 1.078  | 1242.1372  |
| 532                             | 227582.6347 | 588.1427 | 1.347  | 2653.6533  |
| 533                             | 227519.1617 | 588.4709 | 1.617  | 12805.6642 |
| 534                             | 227455.6886 | 588.7993 | 1.886  | 1897.9663  |
| 535                             | 227392.2156 | 589.1281 | 2.156  | 1067.0492  |
| 536                             | 227328.7425 | 589.4571 | 2.425  | 781.6216   |
| 537                             | 227265.2695 | 589.7864 | 2.695  | 654.0423   |
| 538                             | 227201.7964 | 590.116  | 2.964  | 599.538    |
| 539                             | 227138.3234 | 590.4459 | 3.234  | 592.9502   |
| 540                             | 227074.8503 | 590.776  | 3.503  | 631.5743   |
| 541                             | 227011.3772 | 591.1064 | 3.772  | 732.003    |
| 542                             | 226947.9042 | 591.4371 | 4.042  | 951.8482   |
| 543                             | 226884.4311 | 591.7681 | 4.311  | 1515.9935  |
| 544                             | 226820.9581 | 592.0993 | 4.581  | 4513.9307  |
| 545                             | 226757.485  | 592.4308 | 4.85   | 4309.413   |
| 546                             | 226694.012  | 592.7626 | 5.12   | 1496.1299  |
| 547                             | 226630.5389 | 593.0947 | 5.389  | 946.9411   |
| 548                             | 226567.0659 | 593.4271 | 5.659  | 731.4936   |
| 549                             | 226503.5928 | 593.7597 | 5.928  | 633.2545   |
| 550                             | 226440.1198 | 594.0926 | 6.198  | 596.2749   |
| 551                             | 226376.6467 | 594.4258 | 6.467  | 604.6188   |
| 552                             | 226313.1737 | 594.7593 | 6.737  | 661.5872   |
| 553                             | 226249.7006 | 595.0931 | 7.006  | 793.5054   |
| 554                             | 226186.2275 | 595.4271 | 7.275  | 1088.9386  |
| 555                             | 226122.7545 | 595.7614 | 7.545  | 1958.6191  |
| 556                             | 226059.2814 | 596.096  | 7.814  | 15052.923  |
| 557                             | 225995.8084 | 596.4309 | 8.084  | 2617.8523  |
| 558                             | 225932.3353 | 596.7661 | 8.353  | 1246.3228  |
| 559                             | 225868.8623 | 597.1015 | 8.623  | 858.8254   |
| 560                             | 225805.3892 | 597.4373 | 8.892  | 693.4778   |
| 561                             | 225741.9162 | 597.7733 | 9.162  | 619.0769   |
| 562                             | 225678.4431 | 598.1096 | 9.431  | 598.1217   |
| 563                             | 225614.9701 | 598.4462 | 9.701  | 621.9548   |
| Continúa en la siguiente página |             |          |        |            |

| 564 | 225551.497                      | 598.783  | 9.97   | 700.3465   |  |  |  |  |
|-----|---------------------------------|----------|--------|------------|--|--|--|--|
| 565 | 225488.024                      | 599.1202 | 10.24  | 873.2825   |  |  |  |  |
| 566 | 225424.5509                     | 599.4576 | 10.509 | 1281.9432  |  |  |  |  |
| 567 | 225361.0778                     | 599.7954 | 10.778 | 2784.1898  |  |  |  |  |
| 568 | 225297.6048                     | 600.1334 | 11.048 | 11473.5039 |  |  |  |  |
| 569 | 225234.1317                     | 600.4717 | 11.317 | 1898.6279  |  |  |  |  |
| 570 | 225170.6587                     | 600.8102 | 11.587 | 1077.878   |  |  |  |  |
| 571 | 225107.1856                     | 601.1491 | 11.856 | 792.751    |  |  |  |  |
| 572 | 225043.7126                     | 601.4883 | 12.126 | 665.0052   |  |  |  |  |
| 573 | 224980.2395                     | 601.8277 | 12.395 | 610.7522   |  |  |  |  |
| 574 | 224916.7665                     | 602.1674 | 12.665 | 605.0885   |  |  |  |  |
| 575 | 224853.2934                     | 602.5074 | 12.934 | 645.6812   |  |  |  |  |
| 576 | 224789.8204                     | 602.8477 | 13.204 | 750.0424   |  |  |  |  |
| 577 | 224726.3473                     | 603.1883 | 13.473 | 978.6284   |  |  |  |  |
| 578 | 224662.8743                     | 603.5292 | 13.743 | 1569.7002  |  |  |  |  |
| 579 | 224599.4012                     | 603.8704 | 14.012 | 4836.2197  |  |  |  |  |
| 580 | 224535.9281                     | 604.2119 | 14.281 | 4202.6213  |  |  |  |  |
| 581 | 224472.4551                     | 604.5536 | 14.551 | 1503.7578  |  |  |  |  |
| 582 | 224408.982                      | 604.8956 | 14.82  | 958.217    |  |  |  |  |
| 583 | 224345.509                      | 605.238  | 15.09  | 742.6633   |  |  |  |  |
| 584 | 224282.0359                     | 605.5806 | 15.359 | 644.3554   |  |  |  |  |
| 585 | 224218.5629                     | 605.9235 | 15.629 | 607.8298   |  |  |  |  |
| 586 | 224155.0898                     | 606.2667 | 15.898 | 617.4054   |  |  |  |  |
| 587 | 224091.6168                     | 606.6102 | 16.168 | 676.8805   |  |  |  |  |
| 588 | 224028.1437                     | 606.954  | 16.437 | 813.9029   |  |  |  |  |
| 589 | 223964.6707                     | 607.2981 | 16.707 | 1121.5935  |  |  |  |  |
| 590 | 223901.1976                     | 607.6424 | 16.976 | 2038.3182  |  |  |  |  |
| 591 | 223837.7246                     | 607.9871 | 17.246 | 18288.3589 |  |  |  |  |
| 592 | 223774.2515                     | 608.3321 | 17.515 | 2599.4873  |  |  |  |  |
| 593 | 223710.7784                     | 608.6773 | 17.784 | 1256.5721  |  |  |  |  |
| 594 | 223647.3054                     | 609.0228 | 18.054 | 870.2678   |  |  |  |  |
| 595 | 223583.8323                     | 609.3687 | 18.323 | 704.7001   |  |  |  |  |
| 596 | 223520.3593                     | 609.7148 | 18.593 | 630.377    |  |  |  |  |
| 597 | 223456.8862                     | 610.0612 | 18.862 | 610.1106   |  |  |  |  |
| 598 | 223393.4132                     | 610.408  | 19.132 | 635.5434   |  |  |  |  |
| 599 | 223329.9401                     | 610.755  | 19.401 | 717.1303   |  |  |  |  |
| 600 | 223266.4671                     | 611.1023 | 19.671 | 896.8143   |  |  |  |  |
| 601 | 223202.994                      | 611.4499 | 19.94  | 1323.5266  |  |  |  |  |
|     | Continúa en la siguiente página |          |        |            |  |  |  |  |

| 602                             | 223139.521  | 611.7978 | 20.21  | 2924.2639  |  |  |
|---------------------------------|-------------|----------|--------|------------|--|--|
| 603                             | 223076.0479 | 612.146  | 20.479 | 10436.2083 |  |  |
| 604                             | 223012.5749 | 612.4945 | 20.749 | 1900.4277  |  |  |
| 605                             | 222949.1018 | 612.8433 | 21.018 | 1089.1705  |  |  |
| 606                             | 222885.6287 | 613.1924 | 21.287 | 804.252    |  |  |
| 607                             | 222822.1557 | 613.5418 | 21.557 | 676.3172   |  |  |
| 608                             | 222758.6826 | 613.8915 | 21.826 | 622.3234   |  |  |
| 609                             | 222695.2096 | 614.2415 | 22.096 | 617.6211   |  |  |
| 610                             | 222631.7365 | 614.5918 | 22.365 | 660.2627   |  |  |
| 611                             | 222568.2635 | 614.9424 | 22.635 | 768.7246   |  |  |
| 612                             | 222504.7904 | 615.2933 | 22.904 | 1006.4659  |  |  |
| 613                             | 222441.3174 | 615.6445 | 23.174 | 1626.0724  |  |  |
| 614                             | 222377.8443 | 615.996  | 23.443 | 5196.0132  |  |  |
| 615                             | 222314.3713 | 616.3478 | 23.713 | 4107.3156  |  |  |
| 616                             | 222250.8982 | 616.6999 | 23.982 | 1512.0991  |  |  |
| 617                             | 222187.4251 | 617.0523 | 24.251 | 969.9157   |  |  |
| 618                             | 222123.9521 | 617.405  | 24.521 | 754.1974   |  |  |
| 619                             | 222060.479  | 617.758  | 24.79  | 655.8096   |  |  |
| 620                             | 221997.006  | 618.1113 | 25.06  | 619.7556   |  |  |
| 621                             | 221933.5329 | 618.4649 | 25.329 | 630.6128   |  |  |
| 622                             | 221870.0599 | 618.8188 | 25.599 | 692.6984   |  |  |
| 623                             | 221806.5868 | 619.1731 | 25.868 | 835.0497   |  |  |
| 624                             | 221743.1138 | 619.5276 | 26.138 | 1155.6145  |  |  |
| 625                             | 221679.6407 | 619.8824 | 26.407 | 2122.6442  |  |  |
| 626                             | 221616.1677 | 620.2375 | 26.677 | 23067.7838 |  |  |
| 627                             | 221552.6946 | 620.593  | 26.946 | 2583.6682  |  |  |
| 628                             | 221489.2216 | 620.9487 | 27.216 | 1267.3741  |  |  |
| 629                             | 221425.7485 | 621.3048 | 27.485 | 882.1097   |  |  |
| 630                             | 221362.2754 | 621.6611 | 27.754 | 716.2842   |  |  |
| 631                             | 221298.8024 | 622.0178 | 28.024 | 642.0379   |  |  |
| 632                             | 221235.3293 | 622.3747 | 28.293 | 622.488    |  |  |
| 633                             | 221171.8563 | 622.732  | 28.563 | 649.5857   |  |  |
| 634                             | 221108.3832 | 623.0896 | 28.832 | 734.5026   |  |  |
| 635                             | 221044.9102 | 623.4475 | 29.102 | 921.2429   |  |  |
| 636                             | 220981.4371 | 623.8057 | 29.371 | 1366.9887  |  |  |
| 637                             | 220917.9641 | 624.1642 | 29.641 | 3074.8355  |  |  |
| 638                             | 220854.491  | 624.523  | 29.91  | 9607.5195  |  |  |
| 639                             | 220791.018  | 624.8822 | 30.18  | 1903.3479  |  |  |
| Continúa en la siguiente página |             |          |        |            |  |  |

| 640                             | 220727.5449 | 625.2416 | 30.449 | 1100.9404  |  |  |
|---------------------------------|-------------|----------|--------|------------|--|--|
| 641                             | 220664.0719 | 625.6013 | 30.719 | 816.1388   |  |  |
| 642                             | 220600.5988 | 625.9614 | 30.988 | 687.9921   |  |  |
| 643                             | 220537.1257 | 626.3218 | 31.257 | 634.2663   |  |  |
| 644                             | 220473.6527 | 626.6824 | 31.527 | 630.5644   |  |  |
| 645                             | 220410.1796 | 627.0434 | 31.796 | 675.3395   |  |  |
| 646                             | 220346.7066 | 627.4047 | 32.066 | 788.079    |  |  |
| 647                             | 220283.2335 | 627.7664 | 32.335 | 1035.4137  |  |  |
| 648                             | 220219.7605 | 628.1283 | 32.605 | 1685.2806  |  |  |
| 649                             | 220156.2874 | 628.4905 | 32.874 | 5599.8034  |  |  |
| 650                             | 220092.8144 | 628.8531 | 33.144 | 4022.1975  |  |  |
| 651                             | 220029.3413 | 629.216  | 33.413 | 1521.1604  |  |  |
| 652                             | 219965.8683 | 629.5791 | 33.683 | 982.0517   |  |  |
| 653                             | 219902.3952 | 629.9426 | 33.952 | 766.1101   |  |  |
| 654                             | 219838.9222 | 630.3065 | 34.222 | 667.6314   |  |  |
| 655                             | 219775.4491 | 630.6706 | 34.491 | 632.0677   |  |  |
| 656                             | 219711.976  | 631.035  | 34.76  | 644.2589   |  |  |
| 657                             | 219648.503  | 631.3998 | 35.03  | 709.0641   |  |  |
| 658                             | 219585.0299 | 631.7649 | 35.299 | 856.981    |  |  |
| 659                             | 219521.5569 | 632.1303 | 35.569 | 1191.0741  |  |  |
| 660                             | 219458.0838 | 632.496  | 35.838 | 2211.9519  |  |  |
| 661                             | 219394.6108 | 632.862  | 36.108 | 30826.7415 |  |  |
| 662                             | 219331.1377 | 633.2283 | 36.377 | 2570.2637  |  |  |
| 663                             | 219267.6647 | 633.595  | 36.647 | 1278.7416  |  |  |
| 664                             | 219204.1916 | 633.962  | 36.916 | 894.3656   |  |  |
| 665                             | 219140.7186 | 634.3293 | 37.186 | 728.2445   |  |  |
| 666                             | 219077.2455 | 634.6969 | 37.455 | 654.0745   |  |  |
| 667                             | 219013.7725 | 635.0648 | 37.725 | 635.2704   |  |  |
| 668                             | 218950.2994 | 635.4331 | 37.994 | 664.1016   |  |  |
| 0                               | 218886.8263 | 635.8017 | 38.263 | 752.49     |  |  |
| 1                               | 218823.3533 | 636.1706 | 38.533 | 946.6116   |  |  |
| 2                               | 218759.8802 | 636.5398 | 38.802 | 1412.4377  |  |  |
| 3                               | 218696.4072 | 636.9094 | 39.072 | 3236.9914  |  |  |
| 4                               | 218632.9341 | 637.2792 | 39.341 | 8931.9191  |  |  |
| 5                               | 218569.4611 | 637.6494 | 39.611 | 1907.3744  |  |  |
| 6                               | 218505.988  | 638.0199 | 39.88  | 1113.2027  |  |  |
| 7                               | 218442.515  | 638.3908 | 40.15  | 828.4263   |  |  |
| 8                               | 218379.0419 | 638.7619 | 40.419 | 700.0447   |  |  |
| Continúa en la siguiente página |             |          |        |            |  |  |

| 9                               | 218315.5689 | 639.1334 | 40.689 | 646.5965   |  |  |
|---------------------------------|-------------|----------|--------|------------|--|--|
| 10                              | 218252.0958 | 639.5052 | 40.958 | 643.9362   |  |  |
| 11                              | 218188.6228 | 639.8773 | 41.228 | 690.9334   |  |  |
| 12                              | 218125.1497 | 640.2498 | 41.497 | 808.1366   |  |  |
| 13                              | 218061.6766 | 640.6226 | 41.766 | 1065.5281  |  |  |
| 14                              | 217998.2036 | 640.9957 | 42.036 | 1747.509   |  |  |
| 15                              | 217934.7305 | 641.3691 | 42.305 | 6055.6459  |  |  |
| 16                              | 217871.2575 | 641.7429 | 42.575 | 3946.1756  |  |  |
| 17                              | 217807.7844 | 642.1169 | 42.844 | 1530.95    |  |  |
| 18                              | 217744.3114 | 642.4914 | 43.114 | 994.6403   |  |  |
| 19                              | 217680.8383 | 642.8661 | 43.383 | 778.4164   |  |  |
| 20                              | 217617.3653 | 643.2412 | 43.653 | 679.836    |  |  |
| 21                              | 217553.8922 | 643.6166 | 43.922 | 644.7823   |  |  |
| 22                              | 217490.4192 | 643.9923 | 44.192 | 658.3627   |  |  |
| 23                              | 217426.9461 | 644.3683 | 44.461 | 726.0019   |  |  |
| 24                              | 217363.4731 | 644.7447 | 44.731 | 879.7337   |  |  |
| 25                              | 217300      | 645.1214 | 45     | 1228.0496  |  |  |
| 26                              | 217236.5269 | 645.4985 | 45.269 | 2306.6306  |  |  |
| 27                              | 217173.0539 | 645.8759 | 45.539 | 45577.7873 |  |  |
| 28                              | 217109.5808 | 646.2536 | 45.808 | 2559.1587  |  |  |
| 29                              | 217046.1078 | 646.6316 | 46.078 | 1290.6886  |  |  |
| 30                              | 216982.6347 | 647.01   | 46.347 | 907.0511   |  |  |
| 31                              | 216919.1617 | 647.3887 | 46.617 | 740.5962   |  |  |
| 32                              | 216855.6886 | 647.7677 | 46.886 | 666.5024   |  |  |
| 33                              | 216792.2156 | 648.1471 | 47.156 | 648.4749   |  |  |
| 34                              | 216728.7425 | 648.5268 | 47.425 | 679.1116   |  |  |
| 35                              | 216665.2695 | 648.9068 | 47.695 | 771.1204   |  |  |
| 36                              | 216601.7964 | 649.2872 | 47.964 | 972.9667   |  |  |
| 37                              | 216538.3234 | 649.6679 | 48.234 | 1459.9897  |  |  |
| 38                              | 216474.8503 | 650.0489 | 48.503 | 3411.9668  |  |  |
| 39                              | 216411.3772 | 650.4303 | 48.772 | 8372.0597  |  |  |
| 40                              | 216347.9042 | 650.812  | 49.042 | 1912.4965  |  |  |
| 41                              | 216284.4311 | 651.194  | 49.311 | 1125.973   |  |  |
| 42                              | 216220.9581 | 651.5764 | 49.581 | 841.13     |  |  |
| 43                              | 216157.485  | 651.9591 | 49.85  | 712.4905   |  |  |
| 44                              | 216094.012  | 652.3422 | 50.12  | 659.3302   |  |  |
| 45                              | 216030.5389 | 652.7256 | 50.389 | 657.7547   |  |  |
| 46                              | 215967.0659 | 653.1093 | 50.659 | 707.0673   |  |  |
| Continúa en la siguiente página |             |          |        |            |  |  |

| 47 | 215903.5928                     | 653.4934 | 50.928 | 828.9299   |  |  |  |  |
|----|---------------------------------|----------|--------|------------|--|--|--|--|
| 48 | 215840.1198                     | 653.8778 | 51.198 | 1096.8687  |  |  |  |  |
| 49 | 215776.6467                     | 654.2625 | 51.467 | 1812.9567  |  |  |  |  |
| 50 | 215713.1737                     | 654.6476 | 51.737 | 6573.6588  |  |  |  |  |
| 51 | 215649.7006                     | 655.033  | 52.006 | 3878.327   |  |  |  |  |
| 52 | 215586.2275                     | 655.4188 | 52.275 | 1541.4776  |  |  |  |  |
| 53 | 215522.7545                     | 655.8049 | 52.545 | 1007.6977  |  |  |  |  |
| 54 | 215459.2814                     | 656.1914 | 52.814 | 791.1321   |  |  |  |  |
| 55 | 215395.8084                     | 656.5782 | 53.084 | 692.4393   |  |  |  |  |
| 56 | 215332.3353                     | 656.9653 | 53.353 | 657.9166   |  |  |  |  |
| 57 | 215268.8623                     | 657.3528 | 53.623 | 672.9441   |  |  |  |  |
| 58 | 215205.3892                     | 657.7406 | 53.892 | 743.5378   |  |  |  |  |
| 59 | 215141.9162                     | 658.1287 | 54.162 | 903.3473   |  |  |  |  |
| 60 | 215078.4431                     | 658.5173 | 54.431 | 1266.6233  |  |  |  |  |
| 61 | 215014.9701                     | 658.9061 | 54.701 | 2407.1082  |  |  |  |  |
| 62 | 214951.497                      | 659.2953 | 54.97  | 84400.8372 |  |  |  |  |
| 63 | 214888.024                      | 659.6848 | 55.24  | 2550.2529  |  |  |  |  |
| 64 | 214824.5509                     | 660.0747 | 55.509 | 1303.2302  |  |  |  |  |
| 65 | 214761.0778                     | 660.4649 | 55.778 | 920.1825   |  |  |  |  |
| 66 | 214697.6048                     | 660.8555 | 56.048 | 753.3553   |  |  |  |  |
| 67 | 214634.1317                     | 661.2464 | 56.317 | 679.3382   |  |  |  |  |
| 68 | 214570.6587                     | 661.6377 | 56.587 | 662.1197   |  |  |  |  |
| 69 | 214507.1856                     | 662.0293 | 56.856 | 694.6377   |  |  |  |  |
| 70 | 214443.7126                     | 662.4213 | 57.126 | 790.4233   |  |  |  |  |
| 71 | 214380.2395                     | 662.8136 | 57.395 | 1000.3567  |  |  |  |  |
| 72 | 214316.7665                     | 663.2063 | 57.665 | 1509.7687  |  |  |  |  |
| 73 | 214253.2934                     | 663.5993 | 57.934 | 3601.1708  |  |  |  |  |
| 74 | 214189.8204                     | 663.9926 | 58.204 | 7901.8975  |  |  |  |  |
| 75 | 214126.3473                     | 664.3864 | 58.473 | 1918.707   |  |  |  |  |
| 76 | 214062.8743                     | 664.7804 | 58.743 | 1139.2678  |  |  |  |  |
| 77 | 213999.4012                     | 665.1748 | 59.012 | 854.2664   |  |  |  |  |
| 78 | 213935.9281                     | 665.5696 | 59.281 | 725.3459   |  |  |  |  |
| 79 | 213872.4551                     | 665.9647 | 59.551 | 672.4846   |  |  |  |  |
| 80 | 213808.982                      | 666.3602 | 59.82  | 672.0395   |  |  |  |  |
| 81 | 213745.509                      | 666.756  | 60.09  | 723.7653   |  |  |  |  |
| 82 | 213682.0359                     | 667.1522 | 60.359 | 850.4938   |  |  |  |  |
| 83 | 213618.5629                     | 667.5487 | 60.629 | 1129.4989  |  |  |  |  |
| 84 | 213555.0898                     | 667.9456 | 60.898 | 1881.8387  |  |  |  |  |
|    | Continúa en la siguiente página |          |        |            |  |  |  |  |

| 85                              | 213491.6168 | 668.3428 | 61.168 | 7166.7253   |  |  |
|---------------------------------|-------------|----------|--------|-------------|--|--|
| 86                              | 213428.1437 | 668.7404 | 61.437 | 3817.8674   |  |  |
| 87                              | 213364.6707 | 669.1383 | 61.707 | 1552.7547   |  |  |
| 88                              | 213301.1976 | 669.5366 | 61.976 | 1021.2411   |  |  |
| 89                              | 213237.7246 | 669.9353 | 62.246 | 804.2738    |  |  |
| 90                              | 213174.2515 | 670.3343 | 62.515 | 705.4581    |  |  |
| 91                              | 213110.7784 | 670.7336 | 62.784 | 671.4885    |  |  |
| 92                              | 213047.3054 | 671.1334 | 63.054 | 688.0241    |  |  |
| 93                              | 212983.8323 | 671.5334 | 63.323 | 761.6989    |  |  |
| 94                              | 212920.3593 | 671.9339 | 63.593 | 927.8632    |  |  |
| 95                              | 212856.8862 | 672.3347 | 63.862 | 1306.8829   |  |  |
| 96                              | 212793.4132 | 672.7358 | 64.132 | 2513.856    |  |  |
| 97                              | 212729.9401 | 673.1373 | 64.401 | 463659.2237 |  |  |
| 98                              | 212666.4671 | 673.5392 | 64.671 | 2543.4588   |  |  |
| 99                              | 212602.994  | 673.9415 | 64.94  | 1316.3828   |  |  |
| 100                             | 212539.521  | 674.344  | 65.21  | 933.7773    |  |  |
| 101                             | 212476.0479 | 674.747  | 65.479 | 766.5387    |  |  |
| 102                             | 212412.5749 | 675.1503 | 65.749 | 692.599     |  |  |
| 103                             | 212349.1018 | 675.554  | 66.018 | 676.224     |  |  |
| 104                             | 212285.6287 | 675.958  | 66.287 | 710.7028    |  |  |
| 105                             | 212222.1557 | 676.3624 | 66.557 | 810.4301    |  |  |
| 106                             | 212158.6826 | 676.7672 | 66.826 | 1028.8336   |  |  |
| 107                             | 212095.2096 | 677.1723 | 67.096 | 1561.9078   |  |  |
| 108                             | 212031.7365 | 677.5778 | 67.365 | 3806.2178   |  |  |
| 109                             | 211968.2635 | 677.9837 | 67.635 | 7502.7203   |  |  |
| 110                             | 211904.7904 | 678.3899 | 67.904 | 1926.0018   |  |  |
| 111                             | 211841.3174 | 678.7965 | 68.174 | 1153.1049   |  |  |
| 112                             | 211777.8443 | 679.2034 | 68.443 | 867.8529    |  |  |
| 113                             | 211714.3713 | 679.6108 | 68.713 | 738.628     |  |  |
| 114                             | 211650.8982 | 680.0184 | 68.982 | 686.0777    |  |  |
| 115                             | 211587.4251 | 680.4265 | 69.251 | 686.8111    |  |  |
| 116                             | 211523.9521 | 680.8349 | 69.521 | 741.0532    |  |  |
| 117                             | 211460.479  | 681.2437 | 69.79  | 872.8646    |  |  |
| 118                             | 211397.006  | 681.6529 | 70.06  | 1163.4862   |  |  |
| 119                             | 211333.5329 | 682.0624 | 70.329 | 1954.3881   |  |  |
| 120                             | 211270.0599 | 682.4723 | 70.599 | 7851.5049   |  |  |
| 121                             | 211206.5868 | 682.8825 | 70.868 | 3764.127    |  |  |
| 122                             | 211143.1138 | 683.2932 | 71.138 | 1564.7943   |  |  |
| Continúa en la siguiente página |             |          |        |             |  |  |

| 123                             | 211079.6407 | 683.7042 | 71.407 | 1035.2884   |  |  |  |
|---------------------------------|-------------|----------|--------|-------------|--|--|--|
| 124                             | 211016.1677 | 684.1155 | 71.677 | 817.859     |  |  |  |
| 125                             | 210952.6946 | 684.5273 | 71.946 | 718.91      |  |  |  |
| 126                             | 210889.2216 | 684.9394 | 72.216 | 685.5173    |  |  |  |
| 127                             | 210825.7485 | 685.3519 | 72.485 | 703.6249    |  |  |  |
| 128                             | 210762.2754 | 685.7648 | 72.754 | 780.5141    |  |  |  |
| 129                             | 210698.8024 | 686.178  | 73.024 | 953.3256    |  |  |  |
| 130                             | 210635.3293 | 686.5916 | 73.293 | 1348.9222   |  |  |  |
| 131                             | 210571.8563 | 687.0056 | 73.563 | 2627.394    |  |  |  |
| 132                             | 210508.3832 | 687.42   | 73.832 | 140062.5338 |  |  |  |
| 133                             | 210444.9102 | 687.8347 | 74.102 | 2538.7008   |  |  |  |
| 134                             | 210381.4371 | 688.2498 | 74.371 | 1330.1637   |  |  |  |
| 135                             | 210317.9641 | 688.6653 | 74.641 | 947.8534    |  |  |  |
| 136                             | 210254.491  | 689.0811 | 74.91  | 780.164     |  |  |  |
| 137                             | 210191.018  | 689.4974 | 75.18  | 706.3034    |  |  |  |
| 138                             | 210127.5449 | 689.914  | 75.449 | 690.8079    |  |  |  |
| 139                             | 210064.0719 | 690.331  | 75.719 | 727.3313    |  |  |  |
| 140                             | 210000.5988 | 690.7484 | 75.988 | 831.1737    |  |  |  |
| 141                             | 209937.1257 | 691.1661 | 76.257 | 1058.4521   |  |  |  |
| 142                             | 209873.6527 | 691.5842 | 76.527 | 1616.5501   |  |  |  |
| 143                             | 209810.1796 | 692.0027 | 76.796 | 4028.9654   |  |  |  |
| 144                             | 209746.7066 | 692.4216 | 77.066 | 7160.7411   |  |  |  |
| 145                             | 209683.2335 | 692.8409 | 77.335 | 1934.3801   |  |  |  |
| 146                             | 209619.7605 | 693.2605 | 77.605 | 1167.5032   |  |  |  |
| 147                             | 209556.2874 | 693.6806 | 77.874 | 881.9078    |  |  |  |
| 148                             | 209492.8144 | 694.101  | 78.144 | 752.3549    |  |  |  |
| 149                             | 209429.3413 | 694.5218 | 78.413 | 700.1287    |  |  |  |
| 150                             | 209365.8683 | 694.943  | 78.683 | 702.0911    |  |  |  |
| 151                             | 209302.3952 | 695.3645 | 78.952 | 758.9577    |  |  |  |
| 152                             | 209238.9222 | 695.7865 | 79.222 | 896.0811    |  |  |  |
| 153                             | 209175.4491 | 696.2088 | 79.491 | 1198.9022   |  |  |  |
| 154                             | 209111.976  | 696.6315 | 79.76  | 2030.8575   |  |  |  |
| 155                             | 209048.503  | 697.0546 | 80.03  | 8649.9223   |  |  |  |
| 156                             | 208985.0299 | 697.4781 | 80.299 | 3716.5315   |  |  |  |
| 157                             | 208921.5569 | 697.902  | 80.569 | 1577.611    |  |  |  |
| 158                             | 208858.0838 | 698.3262 | 80.838 | 1049.8589   |  |  |  |
| 159                             | 208794.6108 | 698.7509 | 81.108 | 831.9062    |  |  |  |
| 160                             | 208731.1377 | 699.1759 | 81.377 | 732.8136    |  |  |  |
| Continúa en la siguiente página |             |          |        |             |  |  |  |

| 161 | 208667.6647 | 699.6013 | 81.647 | 700.0228  |
|-----|-------------|----------|--------|-----------|
| 162 | 208604.1916 | 700.0271 | 81.916 | 719.77    |
| 163 | 208540.7186 | 700.4533 | 82.186 | 800.0137  |
| 164 | 208477.2455 | 700.8799 | 82.455 | 979.781   |
| 165 | 208413.7725 | 701.3069 | 82.725 | 1392.8411 |
| 166 | 208350.2994 | 701.7342 | 82.994 | 2748.2971 |
| 167 | 208286.8263 | 702.162  | 83.263 | 62317.487 |
| 168 | 208223.3533 | 702.5901 | 83.533 | 2535.9138 |
| 169 | 208159.8802 | 703.0187 | 83.802 | 1344.5919 |
| 170 | 208096.4072 | 703.4476 | 84.072 | 962.4302  |
| 171 | 208032.9341 | 703.8769 | 84.341 | 794.25    |
| 172 | 207969.4611 | 704.3067 | 84.611 | 720.4704  |
| 173 | 207905.988  | 704.7368 | 84.88  | 705.8928  |
| 174 | 207842.515  | 705.1673 | 85.15  | 744.5488  |
| 175 | 207779.0419 | 705.5982 | 85.419 | 852.6889  |
| 176 | 207715.5689 | 706.0295 | 85.689 | 1089.2705 |
| 177 | 207652.0958 | 706.4612 | 85.958 | 1673.8488 |
| 178 | 207588.6228 | 706.8932 | 86.228 | 4271.5616 |
| 179 | 207525.1497 | 707.3257 | 86.497 | 6865.5813 |
| 180 | 207461.6766 | 707.7586 | 86.766 | 1943.8438 |
| 181 | 207398.2036 | 708.1919 | 87.036 | 1182.4824 |
| 182 | 207334.7305 | 708.6256 | 87.305 | 896.4504  |
| 183 | 207271.2575 | 709.0596 | 87.575 | 766.5457  |
| 184 | 207207.7844 | 709.4941 | 87.844 | 714.6577  |
| 185 | 207144.3114 | 709.929  | 88.114 | 717.9023  |
| 186 | 207080.8383 | 710.3642 | 88.383 | 777.5075  |
| 187 | 207017.3653 | 710.7999 | 88.653 | 920.1843  |
| 188 | 206953.8922 | 711.236  | 88.922 | 1235.8232 |
| 189 | 206890.4192 | 711.6725 | 89.192 | 2111.5212 |
| 190 | 206826.9461 | 712.1093 | 89.461 | 9591.4211 |
| 191 | 206763.4731 | 712.5466 | 89.731 | 3674.5872 |
| 192 | 206700      | 712.9843 | 90     | 1591.2214 |

# B. Anexo: Función de flujo neto normalizado (f, τ)en la superficie de Marte

| Optical<br>depth                                                                                                                                                                                 | Zenith angle Z,<br>deg                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| τ                                                                                                                                                                                                | 0                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                            | 40                                                                                                                                                                                                            | 50                                                                                                                                                                                                            | 60                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                    |
| 0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7<br>0.8<br>0.9<br>1.0<br>1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8<br>1.9<br>2.0<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25<br>3.50<br>4.00 | 0.885<br>.866<br>.847<br>.828<br>.810<br>.793<br>.776<br>.760<br>.745<br>.732<br>.713<br>.697<br>.682<br>.666<br>.651<br>.637<br>.622<br>.609<br>.596<br>.582<br>.552<br>.518<br>.486<br>.460<br>.434<br>.411<br>.370 | 0.883<br>.865<br>.846<br>.827<br>.810<br>.791<br>.773<br>.756<br>.740<br>.725<br>.709<br>.692<br>.677<br>.661<br>.646<br>.630<br>.615<br>.600<br>.587<br>.573<br>.542<br>.509<br>.478<br>.450<br>.424<br>.400<br>.360 | 0.882<br>.860<br>.841<br>.821<br>.802<br>.785<br>.766<br>.750<br>.733<br>.717<br>.700<br>.683<br>.667<br>.650<br>.633<br>.618<br>.601<br>.586<br>.571<br>.558<br>.522<br>.492<br>.462<br>.492<br>.462<br>.434<br>.410<br>.387<br>.347 | 0.880<br>.858<br>.836<br>.796<br>.775<br>.755<br>.736<br>.717<br>.700<br>.682<br>.662<br>.646<br>.629<br>.612<br>.597<br>.581<br>.568<br>.551<br>.537<br>.501<br>.469<br>.440<br>.414<br>.390<br>.367<br>.330 | 0.876<br>.851<br>.826<br>.778<br>.755<br>.733<br>.710<br>.690<br>.670<br>.651<br>.632<br>.613<br>.596<br>.580<br>.563<br>.546<br>.531<br>.514<br>.500<br>.462<br>.430<br>.401<br>.376<br>.354<br>.333<br>.296 | 0.870<br>.836<br>.778<br>.752<br>.725<br>.700<br>.675<br>.650<br>.628<br>.604<br>.585<br>.567<br>.546<br>.530<br>.512<br>.494<br>.480<br>.464<br>.448<br>.410<br>.378<br>.353<br>.330<br>.308<br>.290<br>.258 | 0.857<br>.813<br>.774<br>.740<br>.708<br>.677<br>.646<br>.616<br>.587<br>.560<br>.539<br>.518<br>.498<br>.478<br>.498<br>.478<br>.460<br>.441<br>.424<br>.408<br>.393<br>.378<br>.343<br>.316<br>.293<br>.254<br>.240<br>.212 | 0.830<br>.758<br>.708<br>.667<br>.628<br>.593<br>.555<br>.520<br>.487<br>.455<br>.433<br>.413<br>.394<br>.379<br>.362<br>.348<br>.322<br>.348<br>.322<br>.318<br>.304<br>.293<br>.265<br>.242<br>.224<br>.206<br>.193<br>.180<br>.160 | 0.755<br>.640<br>.562<br>.502<br>.452<br>.414<br>.383<br>.360<br>.336<br>.317<br>.300<br>.288<br>.273<br>.262<br>.251<br>.240<br>.232<br>.224<br>.217<br>.208<br>.190<br>.174<br>.158<br>.150<br>.140<br>.132<br>.118 | 0.635<br>.470<br>.412<br>.373<br>.342<br>.318<br>.298<br>.280<br>.264<br>.252<br>.239<br>.230<br>.220<br>.210<br>.202<br>.195<br>.188<br>.181<br>.176<br>.176<br>.176<br>.176<br>.156<br>.145<br>.136<br>.128<br>.120<br>.110<br>.100 |
| 5.00<br>6.00                                                                                                                                                                                     | .294<br>.228                                                                                                                                                                                                          | .286<br>.223                                                                                                                                                                                                          | .275<br>.215                                                                                                                                                                                                                          | .258                                                                                                                                                                                                          | .230                                                                                                                                                                                                          | .203                                                                                                                                                                                                          | .166                                                                                                                                                                                                                          | .130                                                                                                                                                                                                                                  | .094                                                                                                                                                                                                                  | .080                                                                                                                                                                                                                                  |

TABLE III. - NORMALIZED NET FLUX FUNCTION  $f(z,\tau)$  AT THE MARTIAN SURFACE

**Figura B-1**.: Función de flujo neto normalizado  $(f, \tau)$  en la superficie de Marte
# Bibliografía

- [1] APPELBAUM, J.; FLOOD, D: Solar Radiation on Mars. En: Solar Energy (1990)
- [2] AZCÓN-BIETO, J.; TALÓN, M.: Chapter 27: Desarrollo y germinación de las semillas.
  2. Fundamentos de Fisiología Vegetal, 2008
- [3] BADESCU, V.: Different strategies for maximum solar radiation collection on Mars surface. En: Acta Astronautica (1998)
- [4] BARSIG, M.; MALZ, R.: Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation. En: *Environmental and Experimental Botany* (2000)
- [5] CAPLIN, N.; WILLEY, N.: Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. En: *Frontiers in Plant Science* (2018)
- [6] COCKELL, C. S.; CATLING, D. C.; DAVIS, W. L.; SNOOK, K.; KEPNER, R. L.; LEE, P.; MCKAY, C. P.: The ultraviolet environment of Mars: biological implications past, present, and future. En: *Icarus* (2000)
- [7] CÓRDOBA-JABONERO, C. ; LARA, L. M. ; MANCHO, A. M. ; MÁRQUEZ, A. ; RODRI-GO, R.: Solar ultraviolet transfer in the Martian atmosphere: biological and geological implication. En: *Planetary and Space Science* (2003)
- [8] CUADRA, P.; HARBORNE, J. B.; WATERMAN, P. G.: Increases in Surface Flavonols and Photosynthetic Pigments in (Gnaphalium luteo-album) in Response to UV-B Radiation. En: Phytochemistry (1997)
- [9] Germinación, latencia y dormición de las semillas
- [10] DEOLI, N. T.; HASENSTEIN, K. H.: Irradiation effects of MeV protons on dry and hydrated (Brassica rapa seeds). En: Life Sciences in Space Research (2018)
- [11] FOROUGHBAKHCH-POURNAVAB, R. ; BACÓPULOS-MEJÍA, E. ; BENAVIDES-MENDOZA, A.: Efecto de la irradiación con UV-C en la germinación y vigor de tres especies vegetales. En: *Ecosistemas y recursos agropecuarios* (2015)
- [12] FRANK, H. A.; COGDELL, R. J.: Carotenoids in photosynthesis. En: *Photochemistry* and *Photobiology* (1996). – *Carotenoids in photosynthesis*

- [13] Técnicas Para Evaluar Germinación, Vigor y Calidad Fisiológica de Semillas Sometidas a Dosis de Nanopartículas, 2016
- [14] GONZ¡LEZ, J.; ROSA, M.; PARRADO, R.; HILAL, M.; PRADO, F.: Morphological and physiological responses of two varieties of a highland species *Chenopodium quinoa Willd.* growing under near-ambient and strongly reduced solar UV–B in a lowland location. En: *Journal of Photochemistry and Photobiology B: Biology* (2009)
- [15] HASSLER, D. M.; ZEITLIN, C.; WIMMER-SCHWEINGRUBER, R. F.; EHRESMANN, B.; RAFKIN, S.; EIGENBRODE, J. L.; ...; GROTZINGER, J. P.: Marsâ€<sup>™</sup> surface radiation environment measured with the Mars Science Laboratoryâ€<sup>™</sup>s Curiosity rover. En: *Science* (2014)
- [16] HUARANCCA REYES, T.; SCARTAZZA, A.; CASTAGNA, A.: Physiological effects of short acute UVB treatments in *Chenopodium quinoa Willd*. En: *Scientific Reports* (2018)
- [17] JACOBSEN, S. E.; MUJICA, A.; JENSEN, C. R.: The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. En: Food Reviews International (2003)
- [18] JANSEN, M.; GABA, V.; GREENBERG, B.: Higher plants and UV-B radiation: balancing damage, repair and acclimation. En: *Trends in Plant Science* (1998)
- [19] JARVIS, D. E.; HO, Y. S.; LIGHTFOOT, D. J.; SCHMöCKEL, S. M.; LI, B.; BORM, T. J.; TESTER, M.: The genome of *Chenopodium quinoa*. En: *Nature* (2017)
- [20] JORGE, P. L. A.; RAFKIN, S. C.: Meteorología mesoescalar en Marte. 1. Física de la Tierra, 2016
- [21] KOLB, C.; ABART, R.; BÉRCES, A.; GARRY, J. R. C.; HANSEN, A. A.; HOHENAU,
   W.; STAN-LOTTER, H.: An Ultraviolet Simulator for the Incident Martian Surface Radiation and Its Applications. En: International Journal of Astrobiology (2005)
- [22] KOZIOL, M. J.: Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). En: Journal of food composition and analysis (1992)
- [23] KRAEMER, D. R.; KUHN, W. R.: Solar radiation incident on Mars and the outer planets: Latitudinal, seasonal, and atmospheric effects. En: *Icarus* (1977)
- [24] L., Carrasco.: EFFECT OF ULTRAVIOLET-B RADIATION IN PLANTS. En: Idesia (2009)
- [25] LÓPEZ, M.; RECALDE, A.: The first quinoa (*Chenopodium quinoa Willd.*) macrobotanical remains at Sierras del Norte (Central Argentina) and their implications in pre-Hispanic subsistence practices. En: *Journal of Archaeological Science: Reports* (2016)

- [26] LÓPEZ, O. ; MÉNDEZ, Y. ; OJEDA, O. ; PÁEZ, J.: Desarrollo de una Cámara de Simulación de Condiciones Atmosféricas Marcianas. En: IX Congreso Argentino de Tecnología Espacial, 2017
- [27] MANJARRES, E. H.; ARIAS-MORENO, S. M.; MORILLO-CORONADO, A. C.; OJE-DA PÉREZ, Z. Z.; CÁRDENAS-CHAPARRO, A.: Phenotypic Characterization of Quinoa (*Chenopodium quinoa Willd.*) for the Selection of Promising Materials for Breeding Programs. En: *Plant* (2021)
- [28] MANJARRES, E. H.; MORILLO-CORONADO, A. C.; OJEDA PÉREZ, Z. Z.; CÁRDENAS-CHAPARRO, A.; ARIAS-MORENO, S. M.: Characterization of the yield components and selection of materials for breeding programs of quinoa (*Chenopodium quinoa Willd.*). En: *Euphytica* (2021)
- [29] MAUGHAN, P. J.; BONIFACIO, A.; COLEMAN, C. E.; JELLEN, E. N.; STEVENS, M. R. ; FAIRBANKS, D. J.: Quinoa (Chenopodium quinoa). 1. In Pulses, Sugar and Tuber Crops, 2007
- [30] MCKAY, C. P. ; STOKER, C. R.: The early environment and its evolution on Mars: Implications for life. En: *Reviews of Geophysics* (1989)
- [31] MISCHNA, M. A.; LEE, C.; RICHARDSON, M.: Development of a Fast, Accurate Radiative Transfer Model for the Martian Atmosphere, Past and Present. En: *Journal* of Geophysical Research: Planets (2012)
- [32] PATEL, M. R.; BÉRCES, A.; KERÉKGYÁRTO, T.; RONTÓ, G.; LAMMER, H.; ZARNEC-KI, J. C.: Annual solar UV exposure and biological effective dose rates on the Martian surface. En: Advances in Space Research (2004)
- [33] PATEL, M. R.; ZARNECKI, J. C.; CATLING, D. C.: Ultraviolet Radiation on the Surface of Mars and the Beagle 2 UV Sensor. En: *Planetary and Space Science* (2002)
- [34] PLASENCIA, E. ; MATOS, L. ; POSADAS, A. ; CABRERA, C.: Estimación Horaria de la Irradiancia Solar Total Extraterrestre. En: Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica (2007)
- [35] PRADO, F. E. ; PACREZ, M. L. ; GONZÁLEZ, Y. J.: Efectos de la radiación ultravioleta B (UV-B) sobre diferentes variedades de Quinoa: II.-efectos sobre la síntesis de pigmentos fotosintéticos, protectores y azúcares solubles en condiciones controladas. En: Boletín de la Sociedad Argentina de Botánica (2016)
- [36] REOL, E. M.: Los pigmentos fotosintéticos, algo más que la captación de luz para la fotosíntesis. En: *Ecosistemas* (2003)

- [37] RONTÓ, G. ; BÉRCES, A. ; LAMMER, H. ; COCKELL, C. S. ; MOLINA€CUBEROS,
   G. J. ; PATEL, M. R. ; SELSIS, F.: Solar UV Irradiation Conditions on the Surface of Mars. En: *Photochemistry and Photobiology* (2003)
- [38] ROSABAL AYAN, L. ; MARTÍNEZ GONZÁLEZ, L. ; REYES GUERRERO, Y. ; DELL€<sup>™</sup>AMICO RODRÍGUEZ, J. ; NÚÑEZ VÁZQUEZ, M.: ASPECTOS FISIOLÓGI-COS, BIOQUÍMICOS Y EXPRESIÓN DE GENES EN CONDICIONES DE DÉFICIT HÍDRICO. INFLUENCIA EN EL PROCESO DE GERMINACIÓN. En: Cultivos Tropicales (2014)
- [39] ROSABAL AYAN, L. ; MARTÍNEZ GONZÁLEZ, L. ; REYES GUERRERO, Y. ; DELL€<sup>™</sup>AMICO RODRÍGUEZ, J. ; NÚÑEZ VÁZQUEZ, M.: Responses of quinoa (Chenopodium quinoa Willd.) seeds stored under different germination temperatures. En: Acta Scientiarum. Agronomy (2017)
- [40] RUELAS, M. E. G.; ESPINOZA, S. A. H.; HOSTEIN, N.; GONZÁLEZ, F. M. C.: Estudio de los parámetros y factores que modifican los niveles de radiación ultravioleta. En: *Iberoamericana de Producción Académica y Gestión Educativa* (2014)
- [41] SALAMA, H. M.; AL WATBAN, A. A.; AL-FUGHOM, A. T.: Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. En: *Saudi Journal of Biological Sciences* (2011)
- [42] SAX, K: The effect of ionizing radiation on plant growth. En: American Journal of Botany (1955)
- [43] SIEGEL, R. ; HOWELL, J.: CHAPTER 1. FUNDAMENTALS OF RADIATION IN AB-SORBING, EMITTING, AND SCATTERING MEDIA. 1. THERMAL RADIATION HEAT TRANSFER, 1971
- [44] SONG, K.; PARK, C.; HONG, S.; CHUNG, J.; KIM, M.; SHIM, S.: Beneficial effects of gamma-irradiation of quinoa seeds on germination and growth. En: *Radiation and Environmental Biophysics* (2022)
- [45] STRENSKE, A.; VASCONCELOS, E. S. D.; EGEWARTH, V. A.; HERZOG, N. F. M.; MALAVASI, M. D. M.: Responses of quinoa (*Chenopodium quinoa Willd.*) seeds stored under different germination temperatures. En: Acta Scientiarum. Agronomy (2017)
- [46] SUÁREZ, D.; MELGAREJO, L. M.: Biología y germinación de semillas. En: *Experimentos* en fisiología vegetal, 2010
- [47] THIEMANN, E. M.; CHAMBERLIN, P. C.; EPARVIER, F. G.; TEMPLEMAN, B.; WOODS, T. N.; BOUGHER, S. W.; JAKOSKY, B. M.: The MAVEN EUVM Model of Solar Spectral Irradiance Variability at Mars: Algorithms and Results. En: Journal of Geophysical Research: Space Physics (2017)

- [48] VAN HEMELRIJCK, E.: The influence of global dust storms on the mean seasonal daily insolations at the Martian surface. En: *Earth, Moon, and Planets* (1985)
- [49] VARELA, A.: Desarrollo y germinación de las semillas. 1. Fundamentos de fisiología vegetal, 2007
- [50] VARELA, S. A.; ARANA, V.: Latencia y germinación de semillas. Tratamientos pregerminativos. 1. Sistemas Forestales Integrados, 2011
- [51] VARGAS, P. ; ARTEAGA, R. ; CRUZ, L.: Bibliographical analysis about nutritional potential of quinoa (*Chenopodium quinoa*) as a functional food. En: *Centro Azúcar* (2019)
- [52] VERA, C. ; HINOJOSA, A. ; TAPIA, M. ; GONZáLEZ, D. ; BUSTAMANTE, A. ; LUCHSIN-GER, L. ; ESCALONA, V.: Efecto de la radiación UVB sobre los pigmentos y compuestos funcionales en dos cultivares de acelga tipo Baby. En: *TecnologÃa Postcosecha* (2014)
- [53] VICENTE-RETORTILLO, A.; VALERO, F.; VÁZQUEZ, L.; MARTÍNEZ, G. M.: A model to calculate solar radiation fluxes on the Martian surface. En: Journal of Space Weather and Space Climate (2015)
- [54] WAMELINK, G. W.; FRISSEL, J. Y.; KRIJNEN, W. H.; VERWOERT, M. R.; GOEDHART, P. W.: Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. En: *PLoS ONE* (2014)

## Constante\_Solar-Copy1

#### May 9, 2024

En el afelio Marte se encuentra a 249,1 millones de km del Sol.

En el perihelio Marte se encuentra a 206,7 millones de km del Sol.

```
[1]: #Librerías a utilizar
     import matplotlib.pyplot as plt
     import pandas as pd
     import numpy as np
     import math
[2]: #Precisión decimal.
     float_precision = 4
[3]: def constante_solar(ao,Sigma = 5.670373e-8, Teff = 5772, Ts = 695.700e3):
       .....
       Constantes
       Sigma: Constante de Stefan-Boltzmann
       Teff: Temperatura efectiva
       Ts: Radio solar
       ao: Radio de esfera valor a ingresar (En Kilómetros) para realizar cálculo
       Retorna: Constante Solar
       .....
       ao = ao*1e3 #Convertir Km -> m
       return Sigma*(Teff**4)*((Ts/ao)**2)
[4]: """Teff = 5772
     Sigma = 5.670373e-8
     Ts = 695.700e3
     .....
     perihelio = 206.7*1e3 #Distancia en metros
```

afelio = 249.1\*1e3 #Distancia en metros

[5]: K\_afelio = constante\_solar(ao = afelio)
K\_perihelio = constante\_solar(ao = perihelio)

**k\_tierra** = 1367.7

[6]: K\_afelio

- [6]: 490.9231014756434
- [7]: K\_perihelio
- [7]: 712.9843071398398

```
[8]: rangos = [(193.3, 257.8)],
               (257.8, 317.5),
               (317.5, 371.9),
               (371.9, 421.6),
               (421.6, 468.5),
               (468.5, 514.6),
               (514.6, 562.0),
               (562.0, 612.9),
               (612.9, 668.6),
               (0.0, 61.2),
               (61.2, 126.6),
               (126.6, 193.3)
               1
     #index = [rango[0] for rango in rangos]
     dias = []
     for rango in rangos:
       dias = dias + list(range(round(rango[0]), round(rango[1])))
     """for idx in range(len(index)):
       print(idx)"""
     distancias = np.linspace(afelio, perihelio, num=len(dias))
     cant_dias = [193, 179, 142, 154]
     theta_init = 24.9
     #0:179
     #179+1:321
     #321:475
     #475:
     """latitude = []
     latitude.append(193.3 - 24.9)
     latitude = np.array(latitude)
     aux_array = np.ones_like(dias[1:179])*(193.3 - 24.9/179)
     latitude = np.append(latitude, aux_array)
```

```
aux_array = np.ones_like(dias[179:321])*(193.3 - 24.9/142)
latitude = np.append(latitude, aux_array)
aux_array = np.ones_like(dias[321:475])*(193.3 - 24.9/154)
latitude = np.append(latitude, aux_array)
aux_array = np.ones_like(dias[475:])*(193.3 - 24.9/193)
latitude = np.append(latitude, aux_array)"""
latitude = np.linspace(-90, 90 , num=len(dias))
estaciones = [distancias[179], distancias[321], distancias[475], distancias[668]]
estaciones
```

[8]: [237738.3233532934, 228725.1497005988, 218950.2994011976, 206700.0]

```
[9]: #Calculo constante solar
     K = constante_solar(ao = distancias)
     K.round(float_precision)
     #Cálculo Irradiancia
     irradiance = np.divide(K,np.abs(np.cos(latitude)))
     df = pd_DataFrame(data={'Day':dias,'Distance':distancias,'K':K, 'Latitude':
     →latitude, 'Irradiance': irradiance})
     df.Distance = df.Distance.round(float_precision)
     df.K = df.K.round(float_precision)
     df.Latitude = df.Latitude.round(3)
     df.Irradiance = df.Irradiance.round(float_precision)
     df
```

[9]:

|     | Day   | Distance    | К        | Latitude | Irradiance |
|-----|-------|-------------|----------|----------|------------|
| 0   | 193   | 249100.0000 | 490.9231 | -90.000  | 1095.6305  |
| 1   | 194   | 249036.5269 | 491.1734 | -89.731  | 2532.9703  |
| 2   | 195   | 248973.0539 | 491.4239 | -89.461  | 6619.0019  |
| 3   | 196   | 248909.5808 | 491.6745 | -89.192  | 1458.7907  |
| 4   | 197   | 248846.1078 | 491.9254 | -88.922  | 854.7554   |
| ••  | • • • |             |          |          |            |
| 664 | 188   | 206953.8922 | 711.2360 | 88.922   | 1235.8232  |
| 665 | 189   | 206890.4192 | 711.6725 | 89.192   | 2111.5212  |
| 666 | 190   | 206826.9461 | 712.1093 | 89.461   | 9591.4211  |
| 667 | 191   | 206763.4731 | 712.5466 | 89.731   | 3674.5872  |
| 668 | 192   | 206700.0000 | 712.9843 | 90.000   | 1591.2214  |

[669 rows x 5 columns]

```
[10]: valor_medio = abs((K_afelio + K_perihelio)/2)
valor_medio
```

[10]: 601.9537043077416

```
[11]: # Plotting:
                         def plot_df_K(df, x, y, valor_medio, k_tierra, estaciones, title="",

where the second second
                                  .....
                                  .....
                                plt.figure(figsize=(10,5), dpi=dpi)
                                plt.plot(x, y, color='tab:red')
                                plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel)
                                plt.axhline(y=valor_medio, color='b', linestyle='-')
                                plt.axhline(y=k_tierra, color='g', linestyle='-')
                                m, b = np.polyfit(x, y, 1)
                                plt.plot(x, m*x + b, color='yellow')
                                plt.grid()
                                plt.xlim(np.min(x)-500, np.max(x))
                                plt.legend(["K Marte", "Valor Medio", "K Tierra", "Aprox Linear"], loc = 1)
                                plt.vlines(x=estaciones, ymin=200, ymax=k_tierra + 200, colors='purple',
                              →ls='--', lw=2)
                                plt.show()
```



```
[13]: # Plotting:
      def plot_df_mars(df, x, y, estaciones, title="", xlabel='Date', ylabel='Value',
       →dpi=100):
        .....
        .....
        plt.figure(figsize=(10,5), dpi=dpi)
        plt.plot(x, y, color='tab:red')
        plt.gca() set(title=title, xlabel=xlabel, ylabel=ylabel)
        m, b = np.polyfit(x, y, 1)
        plt.plot(x, m*x + b, color='orange')
        plt.grid()
        print(f"Aproximación lineal:\ K = \{m\}x+\{b\}\n")
        plt.legend(["K Marte", "Aprox Linear"])
        plt.xlim(np.min(x), np.max(x))
        plt.vlines(x=estaciones, ymin=np.min(y) - 200, ymax=np.max(y) + 200,
       \hookrightarrow colors='purple', ls='--', lw=2)
        plt.show()
```

```
Aproximación lineal:
K = -0.005201154495165166x+1776.9838469668264
```



```
[15]: # Plotting:
      def plot_df_seasons(df, x, y, title="", xlabel='Date', ylabel='Value', dpi=100):
        #0:179
        #179:321
        #321:475
        #475:
        fig, axs = plt.subplots(2, 2,figsize=(15,10))
        axs[0, 0].plot(x[475:], y[475:])
        axs[0, 0].set_title('Primavera Boreal')
        axs[0, 0].grid(True)
        axs[0, 0].set_xlabel(xlabel)
        axs[0, 0].set_ylabel(ylabel)
        axs[0, 1].plot(x[0:179], y[0:179], 'tab:orange')
        axs[0, 1].set_title('Verano Boreal')
        axs[0, 1].grid(True)
        axs[0, 1].set_xlabel(xlabel)
        axs[0, 1].set_ylabel(ylabel)
        axs[1, 0].plot(x[179:321], y[179:321], 'tab:green')
        axs[1, 0].set_title('Otoño Boreal')
        axs[1, 0].grid(True)
        axs[1, 0].set_xlabel(xlabel)
        axs[1, 0].set_ylabel(ylabel)
        axs[1, 1].plot(x[321:475], y[321:475], 'tab:red')
```

```
axs[1, 1].set_title('Invierno Boreal')
axs[1, 1].grid(True)
axs[1, 1].set_xlabel(xlabel)
axs[1, 1].set_ylabel(ylabel)
```





| [19]: | #Mean irradiance:                             |                |                 |             |                                  |               |  |  |
|-------|-----------------------------------------------|----------------|-----------------|-------------|----------------------------------|---------------|--|--|
|       | latitude_ta                                   | ags =          | ["80° S",       | "60° S",    | "40° S",                         | "20°⊔<br>"80° |  |  |
|       | ⇔۵",<br>⇔N"]                                  | "O" N",        | ~20° N~,        | "40° N"     | , <sup>600</sup> N <sup></sup> , |               |  |  |
|       | latitude =                                    | [-80, -60, -4  | 10, -20, 0, 20, | 40, 60, 80] |                                  |               |  |  |
|       | mean_irrad                                    | iance = [45.1, | 64.6,           | 96.0,       | 120.3,                           | 129.          |  |  |
|       | <u>⊶</u> 4,                                   | 121.4,         | 98.0,           | 67.0,       | 47.4]                            |               |  |  |
| 50.07 |                                               |                |                 |             |                                  |               |  |  |
| [20]: | f, ax = plt.subplots(figsize=(10,5), dpi=100) |                |                 |             |                                  |               |  |  |
|       | <pre>ax.plot(latitude, mean_irradiance)</pre> |                |                 |             |                                  |               |  |  |
|       | <pre>ax.set_title('Mean irradiance')</pre>    |                |                 |             |                                  |               |  |  |
|       | <pre>ax.grid()</pre>                          |                |                 |             |                                  |               |  |  |



[21]: latitude = [-90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, →60, 70, 80, 90] mean\_irradiance = [[57.94, 60.17, 67.40, 81.35, 99.52, 117.124, 132.178, 143.63, →150.87, 153.53, 151.49, 144.85, 133.95, 119.38, 102.15, 84.22, 70.33, 63.15, L **→**60.91], [51.82, 54.07, 61.30, 74.72, 92.03, 108.99, 123.607, 134.77, \_\_ →141.84, 144.43, 142.44, 135.95, 125.31, 111.15, 94.53, 77.41, 63.99, 56.77, 54. →5], [46.90, 49.18, 56.34, 69.23, 85.73, 102.054, 116.205, 127. →064, 133.95, 136.48, 134.53, 128.20, 117.84, 104.119, 88.109, 71.75, 58.83, 51. ↔653, 49.36], [42.88, 45.14, 52.18, 64.57, 80.32, 96.02, 109.718, 120.264, U →126.96, 129.43, 127.528, 121.36, 111.297, 98.0052, 82.59, 66.95, 54.50, 47.42, L 45.15], [30.14, 32.18, 38.39, 48.66, 61.48, 74.54, 86.18, 95.27, 101. →113, 103.267, 101.59, 96.21, 87.50, 76.18, 63.30, 50.51, 40.13, 33.83, 31.74]]

#### []:

[22]: Ls = [angle for angle in range(360)]
Theta = [L-248 for L in Ls]
Ls = np.array(Ls)
Theta = np.array(Theta)

```
[23]: def r_mars(a,theta,excentricity):
    num = a*(1-excentricity)
    den = 1 - excentricity*np.cos(np.radians(Theta))
    return num/den
[24]: r = r_mars(1.524, Theta, 0.093377)
[25]: plt.figure(figsize=(15,8))
    plt.grid()
    plt.title("R Mars vs Theta")
    plt.title("R Mars vs Theta")
    plt.xlabel("Theta (°)")
    plt.ylabel("r (AU)")
    #plt.xlim(np.min(Ls), np.max(Ls))
    plt.plot(Ls, r)
    #plt.show()
```

[25]: [<matplotlib.lines.Line2D at 0x1dba26c5610>]



[26]: seasons\_duration = [199, 183, 147, 158]
 degree\_delta = [round(90/duration,4) for duration in seasons\_duration]
 degree\_delta

[26]: [0.4523, 0.4918, 0.6122, 0.5696]

```
[27]: day_angle=[]
angle = 0
for idx, season in enumerate(seasons_duration):
    for i in range(season+1):
        day_angle.append(round(angle,2))
        angle += degree_delta[idx]
[28]: mars_days = [x for x in range(len(day_angle))]
[29]: Theta = [day-248 for day in day_angle]
Theta = np.array(Theta)
[30]: r = r_mars(1.524, Theta, 0.093377)
[31]: plt.figure(figsize=(15,8))
    plt.grid()
    plt.title("R Mars vs Day")
    deble("These (a)")
```

```
plt.xlabel("Theta (°)")
plt.ylabel("Mars day")
plt.xlim(np.min(r), np.max(mars_days))
plt.plot(mars_days, r)
#plt.show()
```

[31]: [<matplotlib.lines.Line2D at 0x1dba25c6f40>]



## []:[

## Irradiancia dentro de la atmósfera de Marte

#### May 9, 2024

### 1 Gráfica Irradiancia Superficie vs fuera Atmosfera en Marte

Librerias y dependencias

```
[7]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

#### 1.0.1 Descripción de datos

```
[3]: I_i = pd.read_excel('irradiancia.xlsx', header=0)
I_i
```

| 95.6305<br>32.9703<br>19.0019<br>58.7907 |
|------------------------------------------|
| 32.9703<br>19.0019<br>58.7907            |
| 19.0019<br>58.7907                       |
| 58.7907                                  |
|                                          |
| 54.7554                                  |
|                                          |
| 35.8232                                  |
| 11.5212                                  |
| 91.4211                                  |
| 74.5872                                  |
|                                          |
| 5                                        |

[669 rows x 5 columns]

```
[4]: tao = pd.read_excel('prof óptica.xlsx', header=0)
tao
```

| 4  | 0.50 |
|----|------|
| 5  | 0.60 |
| 6  | 0.70 |
| 7  | 0.80 |
| 8  | 0.90 |
| 9  | 1.00 |
| 10 | 1.10 |
| 11 | 1.20 |
| 12 | 1.30 |
| 13 | 1.40 |
| 14 | 1.50 |
| 15 | 1.60 |
| 16 | 1.70 |
| 17 | 1.80 |
| 18 | 1.90 |
| 19 | 2.00 |
| 20 | 2.25 |
| 21 | 2.50 |
| 22 | 2.75 |
| 23 | 3.00 |
| 24 | 3.25 |
| 25 | 3.50 |
| 26 | 4.00 |
| 27 | 5.00 |
| 28 | 6.00 |

#### 1.0.2 Ecuación:

 $I_f = I_i \exp(-\tau)$ 

```
[27]: for i,tau in enumerate(tao['Profundidad óptica']):
    plt.plot(I_i['K'],I_i['K']*np.exp(-tau), label=tau)
    plt.xlabel(r'$I_{i}$')
    plt.ylabel(r'$I_{i}$')
    plt.legend(loc='lower center',bbox_to_anchor=(0.5,-0.6),ncol=5)
    plt.show()
```



## Germinación de *Chenopodium quinoa* bajo efectos de radiación UV solar simulada en la superficie de Marte.

May 9, 2024

**Evento** : Germinación de la semilla

Survival: El evento de interes no ocurre

Survival duration: Tiempo hasta que ocurra el evento de interés (o el final de nuestras observaciones)

96 horas (fin de observaciones-> NA)

```
[119]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

df.head()

| [120]: |   | T1_180 | T9_180 | T1_250 | T9_250 | T1_395 | T9_395 | T1_410 | T9_410 |
|--------|---|--------|--------|--------|--------|--------|--------|--------|--------|
|        | 0 | 12 h   | 28 h   | 14 h   | 13 h   | 16 h   | 15 h   | 10 h   | 10 h   |
|        | 1 | 28 h   | 28 h   | 14 h   | 13 h   | 16 h   | 35 h   | 29 h   | 28 h   |
|        | 2 | 12 h   | 28 h   | 9 h    | 13 h   | 16 h   | 35 h   | 30 h   | 11 h   |
|        | 3 | 12 h   | 13 h   | 9 h    | 13 h   | 16 h   | 15 h   | 30 h   | 28 h   |
|        | 4 | 28 h   | 28 h   | 9 h    | 13 h   | 16 h   | 15 h   | 30 h   | 28 h   |

[121]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 260 entries, 0 to 259 Data columns (total 8 columns): Column Non-Null Count Dtype # \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_ \_ \_ \_ 0 T1\_180 238 non-null object T9\_180 255 non-null object 1 2 T1\_250 258 non-null object 3 T9\_250 259 non-null object

```
T1_395 254 non-null
                                    object
       4
       5
           T9_395 257 non-null
                                    object
       6
           T1_410 260 non-null
                                    object
       7
           T9_410 260 non-null
                                    object
      dtypes: object(8)
      memory usage: 16.4+ KB
[122]: # Remove 'h' from values while preserving non-string values
       for col in df.columns:
           df[col] = df[col].apply(lambda x: x.replace(' h', '') if isinstance(x, str)
        \rightarrowelse x)
       #df.tail(30)
[123]: df[['T1_180', 'T9_180', 'T1_250', 'T9_250', 'T1_395',
              'T9_395', 'T1_410', 'T9_410']]=df[['T1_180', 'T9_180', 'T1_250',
        \leftrightarrow 'T9_250', 'T1_395',
               'T9_395', 'T1_410', 'T9_410']] astype('float')
       print(df.dtypes)
       df.describe()
                float64
      T1_180
      T9_180
                float64
                float64
      T1_250
      T9_250
                float64
      T1_395
                float64
      T9_395
                float64
      T1_410
                float64
      T9_410
                 float64
      dtype: object
[123]:
                  T1_180
                               T9_180
                                           T1_250
                                                        T9_250
                                                                    T1_395
                                                                                 T9_395 \
                                       258.000000
                                                                254.000000
              238.000000
                          255.000000
                                                   259.000000
                                                                             257.000000
       count
       mean
               19.571429
                           16.925490
                                        14.426357
                                                     13.822394
                                                                 27.964567
                                                                              18.097276
       std
               11.669913
                            8.391875
                                        10.354251
                                                      6.846555
                                                                 11.865298
                                                                              10.334743
               12.000000
                            13.000000
                                         9.000000
                                                      9.000000
                                                                 16.000000
                                                                              15.000000
      min
       25%
               12.000000
                           13.000000
                                         9.000000
                                                     13.000000
                                                                 16.000000
                                                                              15.000000
       50%
               13.000000
                           13.000000
                                                     13.000000
                                                                 35.000000
                                                                              15.000000
                                        14.000000
       75%
               28.000000
                           13.000000
                                        15.000000
                                                     13.000000
                                                                 35.000000
                                                                              16.000000
               81.000000
                           81.000000
                                        82.000000
                                                     82.000000
                                                                 58.000000
                                                                              84.00000
      max
                  T1_410
                               T9_410
              260.000000
                          260.000000
       count
               28.757692
                            23.196154
       mean
       std
                8.023550
                             8.151319
       min
               10.000000
                            10.000000
       25%
               29.000000
                           11.000000
```

```
50%
               30.000000
                          28.000000
      75%
               30.000000
                          28.000000
      max
               37.000000
                          30.000000
[124]: # Melt the DataFrame to create 'Measurement' and 'Value' columns
      melted_df = pd.melt(df, var_name="Measurement", value_name="Time")
[125]: # Extract the measurement type (T1 or T9) from the column name
      melted_df["Material"] = melted_df["Measurement"].str.split("_").str[0]
      melted_df["UV"] = melted_df["Measurement"].str.split("_").str[1]
[126]: melted_df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 2080 entries, 0 to 2079
      Data columns (total 4 columns):
       #
           Column
                        Non-Null Count Dtype
           _____
                        _____
                                        ____
      _ _ _
                                        object
       0
           Measurement 2080 non-null
       1
           Time
                        2041 non-null
                                        float64
       2
           Material
                        2080 non-null
                                        object
       3
           UV
                        2080 non-null
                                        object
```

dtypes: float64(1), object(3)
memory usage: 65.1+ KB

```
[127]: melted_df['UV']=melted_df['UV'].astype('category')
    melted_df['Time']=melted_df['Time'].astype('float')
```

#### 1 EDA

```
[128]: sns.boxplot(data=melted_df, x="UV", y="Time", hue="Material")
    plt.xlabel('UV')
    plt.ylabel('Tiempo [h]')
    #plt.title('Sales by Quarter')
```

[128]: Text(0, 0.5, 'Tiempo [h]')



[129]: sns.boxplot(data=melted\_df, x="UV", y="Time", hue="Material", showfliers = False)
plt.xlabel('UV')
plt.ylabel('Tiempo [h]')

[129]: Text(0, 0.5, 'Tiempo [h]')



[130]: Text(0, 0.5, 'Frecuencia')



[131]: Text(0.5, 1.0, 'Material T1')



[132]: Text(0.5, 1.0, 'Material T9')



[133]: <Axes: xlabel='Time', ylabel='Density'>



- [134]: sns.kdeplot(data=melted\_df, x='Time', hue='Measurement')
- [134]: <Axes: xlabel='Time', ylabel='Density'>



/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)

[135]: <seaborn.axisgrid.FacetGrid at 0x17be7cbd0>



```
sns.histplot( melted_df, x="Time", hue="UV", element="step", stat="density", com-
mon_norm=False, )
sns.histplot(data=melted_df, x="Time", y="UV", hue="UV", bins=range(2,40,2))
sns.histplot(data=melted_df, x="Time", y="UV", hue="Material", bins=range(2,40,2))
sns.histplot(data=melted_df, x="Time", y="Material", hue="UV", bins=range(2,40,2))[136]: sns.histplot(data=melted_df[melted_df['Material']=='T1'], x="Time", y="UV", u
```

```
>hue="UV", bins=range(2,40,2))
plt.xlabel('Tiempo[h]')
plt.ylabel('UV [nm]')
plt.title('Material T1')
```

[136]: Text(0.5, 1.0, 'Material T1')



[137]: Text(0.5, 1.0, 'Material T9')



```
[138]: # Plot histograms grouped by 'Measurement_Type', using FacetGrid
g = sns.FacetGrid(melted_df, col="Material",row="UV")
g.map(plt.hist, "Time")
#g.set_titles(col_template="{col_name}")
plt.show()
```

/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)



```
[139]: # Filter the rows based on the condition
      rows_to_remove = melted_df[melted_df['Measurement'] == 'T1_180'].tail(20)
      # Remove the filtered rows from the DataFrame
      melted_df = melted_df.drop(rows_to_remove.index)
       # Print the updated DataFrame
       #print(melted_df)
[140]: melted_df.head()
[140]: Measurement Time Material
                                     UV
             T1_180 12.0
                                T1 180
      0
             T1_180 28.0
      1
                                T1 180
      2
             T1_180 12.0
                                T1 180
      3
             T1_180 12.0
                                T1 180
      4
             T1_180 28.0
                                T1 180
[141]: # Create a function to return 1 if observed 0 otherwise
      def check_observed(row):
          if pd.isna(row['Time']):
               flag = 0
          else:
               flag = 1
          return flag
[142]: # Create a censorship flag column
      melted_df['observed'] =melted_df.apply(check_observed, axis=1)
       # Print average of observed: the proportion of censored data in the melted_df
      print(np.average(melted_df['observed']))
       # Count censored data
      count = len(melted_df[melted_df['observed'] == 0])
       # Print the count to console
      print(count)
      0.9907766990291262
      19
[143]: 200/238
```

[143]: 0.8403361344537815

```
[144]: 100-melted_df.Time.isnull().groupby(melted_df['Measurement']).mean()*100
[144]: Measurement
       T1_180
                   99.166667
       T1_250
                  99.230769
       T1_395
                  97.692308
       T1_410
                  100.000000
       T9_180
                  98.076923
       T9_250
                  99.615385
       T9_395
                   98.846154
       T9_410
                  100.000000
       Name: Time, dtype: float64
      melted_df.Time.isnull().groupby(melted_df['Measurement']).sum().astype(int)
[145]:
[145]: Measurement
       T1_180
                 2
       T1_250
                 2
       T1_395
                 6
       T1_410
                 0
       T9_180
                 5
       T9_250
                 1
       T9_395
                 3
       T9_410
                 0
       Name: Time, dtype: int64
[146]: #print('Valor mínimo de germinación:'
       print(melted_df['Time'].min())
       #print('Valor maximo de germinación:'
       print(melted_df['Time'].max())
      9.0
      84.0
      La última semilla que germino ocurrio a las 84 horas. Para todas las semillas que no germinaron
      vamos a asignarles el valor de 96 horas (el término right censored nos dice que el evento de in-
      terés, Germinación, no ha ocurrido dentro de nuestra ventana de observación.) como el fin de las
      observaciones. FILLNA
[147]: #melted_df.dropna(subset=['Time', 'observed'], inplace= True)
       melted_df.Time.fillna(96,inplace= True)
       melted_df.describe()
[147]:
                      Timo
                                abaarwad
```

| ( ] : |       | lime        | observed    |
|-------|-------|-------------|-------------|
|       | count | 2060.000000 | 2060.000000 |
|       | mean  | 21.049515   | 0.990777    |
| std | 13.114413 | 0.095617 |
|-----|-----------|----------|
| min | 9.00000   | 0.000000 |
| 25% | 13.000000 | 1.000000 |
| 50% | 15.000000 | 1.000000 |
| 75% | 28.000000 | 1.000000 |
| max | 96.000000 | 1.000000 |

# 2 Non-Parametric

```
[148]: from lifelines import KaplanMeierFitter
from lifelines.statistics import pairwise_logrank_test
[149]: # Calculate Median Survival Time
kmf = KaplanMeierFitter(alpha=0.05) # calculate a 95% confidence interval
kmf.fit(melted_df['Time'], melted_df['observed'])
median_ = kmf.median_survival_time_
median_
```

- [149]: 15.0
- [150]: kmf.plot\_survival\_function()
- [150]: <Axes: xlabel='timeline'>



[151]: kmf.plot\_cumulative\_density()

[151]: <Axes: xlabel='timeline'>



Porción de la población que sobrevive (no-germina) en un momento dado

[152]: kmf.predict([10, 15, 20, 25])
[152]: 10 0.909709
 15 0.465049
 20 0.366019
 25 0.366019
 Name: KM\_estimate, dtype: float64

Porción de la población que No-sobrevive (germina) en un momento dado

### [153]: print(1-kmf.predict(20))

0.6339805825242719

#### 2.0.1 Examinar como varía la supervivencia

El patrón general de supervivencia cuenta una historia bastante convincente sobre la germinación de las semillas de quinoa, pero puede ser interesante examinar cómo este patrón varía según el material T1, T9 y el tratamiento UV al que fue sometido.

T1:

T9:

UV: 180 nm, 250 nm, 395 nm y 410 nm

Al centrarnos en los atributos de las semillas y los tratamientos, es posible que podamos identificar variables que nos digan algo sobre la probabilidad de no germinación de las semillas de quinoa.

```
[154]: def plot_survival(ax, label, time, observed):
           kmf = KaplanMeierFitter()
           kmf.fit(time, observed, label=label)
           kmf.plot_survival_function(ax=ax, label=label)
       def median_survival(label, time, observed):
           kmf = KaplanMeierFitter()
           kmf.fit(time, observed, label=label)
           print(label,kmf.median_survival_time_)
[155]: # Data for different measurements
       mat = ['T1', 'T9']
       # Create a subplot
       fig, ax = plt.subplots()
       for ma in mat:
           time_data = melted_df[melted_df['Material'] == ma]['Time']
           observed_data = melted_df[melted_df['Material'] == ma]['observed']
           plot_survival(ax, ma, time_data, observed_data)
       # Customize the plot
       ax.set_xlabel('Tiempo [h]')
       ax.set_ylabel('Probabilidad de Supervivencia')
       #ax.set_title('Material T1')
       ax.legend()
       # Show the plot
       plt.show()
```



Antes de intentar interpretar estas diferentes curvas, es importante que evalúemos si son estadísticamente diferentes entre sí. Comparando cada curva con las demás, podemos calcular la probabilidad de que estas curvas no difieran entre sí utilizando el **log-rank test**.

• NOTA: Al agregar un argumento para  $t_0$  a la siguiente llamada, puede calcular las mismas métricas para cada curva en un momento específico, en lugar de hacerlo en todos los momentos, como se muestra aquí

[156]: test\_statistic p -log2(p) T1 T9 123.36587 1.159665e-28 92.800278

- Un p-value grande indica evidencia débil contra la hipótesis nula. (No se puede rechazar la hipótesis nula a un nivel de significancia de 0.05)
- Un p-value pequeño indica evidencia fuerte contra la hipótesis nula. (Rechazas la hipótesis nula a un nivel de significancia de 0.05.)

La hipótesis nula es que las semillas T1 y T9 tienen las mismas curvas de supervivencia. Dada esta hipótesis nula y el valor p que acabas de calcular, ¿qué puedes concluir? Rechazas la hipótesis nula a un nivel de significancia de 0.05

En general y específicamente en la hora 15, el tiempo medio de supervivencia identificado anteriormente, la mayoría de estas curvas son significativamente diferentes entre sí (como lo indica que casi todos los valores de p son <0,05).

```
[157]: for ma in mat:
           time_data = melted_df[melted_df['Material'] == ma]['Time']
           observed_data = melted_df[melted_df['Material'] == ma]['observed']
           median_survival(ma, time_data, observed_data)
      T1 16.0
      T9 13.0
[158]: # Data for different measurements
       measurements = ['T1_180', 'T1_250', 'T1_395', 'T1_410']
       colors = ['180 nm', '250 nm', '395 nm', '410 nm']
       # Create a subplot
       fig, ax = plt.subplots()
       for measurement, color in zip(measurements, colors):
           time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
           observed_data = melted_df[melted_df['Measurement'] ==___
        →measurement]['observed']
           plot_survival(ax, color, time_data, observed_data)
       # Customize the plot
       ax.set_xlabel('Tiempo [h]')
       ax.set_ylabel('Probabilidad de Supervivencia')
       ax.set_title('Material T1')
       ax.legend()
       # Show the plot
       plt.show()
```



```
[]:
[159]: for measurement, color in zip(measurements, colors):
    time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
    observed_data = melted_df[melted_df['Measurement'] == "
    -.measurement]['observed']
    median_survival(color, time_data, observed_data)
180 nm 13.0
250 nm 14.0
395 nm 35.0
410 nm 30.0
[160]: # Data for different measurements
    measurements = ['T9_180','T9_250', 'T9_395', 'T9_410']
    colors = ['180 nm','250 nm', '395 nm', '410 nm']
    # Create a subplot
    fig, ax = plt.subplots()
```

```
for measurement, color in zip(measurements, colors):
    time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
    observed_data = melted_df[melted_df['Measurement'] ==_u
    ->measurement]['observed']
    plot_survival(ax, color, time_data, observed_data)
# Customize the plot
ax.set_xlabel('Tiempo [h]')
ax.set_ylabel('Probabilidad de Supervivencia')
ax.set_title('Material T9')
ax.legend()
# Show the plot
plt.show()
```



[161]: for measurement, color in zip(measurements, colors): time\_data = melted\_df[melted\_df['Measurement'] == measurement]['Time'] observed\_data = melted\_df[melted\_df['Measurement'] ==\_L ->measurement]['observed'] median\_survival(color, time\_data, observed\_data)

180 nm 13.0 250 nm 13.0 395 nm 15.0 410 nm 28.0

- Use the **log-rank test** to determine if survival curves are statistically equivalent
- The log-rank test is a chi-square test that is used to test the null hypothesis that two or more survival curves are statistically equivalent

[162]: # Run log-rank test to compare seeds with different treatments log\_rank = pairwise\_logrank\_test(melted\_df['Time'], melted\_df['Measurement'],\_\_  $\rightarrow$  melted\_df['observed'])#, t\_0=184) log\_rank.summary

[162]

| 2]: |        |        | test_statistic | р            | -log2(p)   |
|-----|--------|--------|----------------|--------------|------------|
|     | T1_180 | T1_250 | 9.703162       | 1.839512e-03 | 9.086461   |
|     |        | T1_395 | 150.462909     | 1.373346e-34 | 112.487860 |
|     |        | T1_410 | 137.157343     | 1.113990e-31 | 102.824035 |
|     |        | T9_180 | 7.970547       | 4.754457e-03 | 7.716504   |
|     |        | T9_250 | 0.054454       | 8.154868e-01 | 0.294266   |
|     |        | T9_395 | 9.566677       | 1.981411e-03 | 8.979256   |
|     |        | T9_410 | 12.037968      | 5.212776e-04 | 10.905660  |
|     | T1_250 | T1_395 | 358.483359     | 6.023238e-80 | 263.163708 |
|     |        | T1_410 | 200.959817     | 1.289379e-45 | 149.120087 |
|     |        | T9_180 | 4.038386       | 4.447633e-02 | 4.490818   |
|     |        | T9_250 | 41.957216      | 9.329249e-11 | 33.319448  |
|     |        | T9_395 | 185.934596     | 2.453411e-42 | 138.226191 |
|     |        | T9_410 | 110.796263     | 6.557521e-26 | 83.656980  |
|     | T1_395 | T1_410 | 3.471292       | 6.244252e-02 | 4.001328   |
|     |        | T9_180 | 208.035566     | 3.685182e-47 | 154.248885 |
|     |        | T9_250 | 405.434042     | 3.614363e-90 | 297.119787 |
|     |        | T9_395 | 163.823966     | 1.652789e-37 | 122.186437 |
|     |        | T9_410 | 128.603285     | 8.282317e-30 | 96.607808  |
|     | T1_410 | T9_180 | 203.258460     | 4.062477e-46 | 150.786333 |
|     |        | T9_250 | 196.622993     | 1.139728e-44 | 145.976147 |
|     |        | T9_395 | 137.093983     | 1.150108e-31 | 102.778001 |
|     |        | T9_410 | 249.948540     | 2.664762e-56 | 184.613967 |
|     | T9_180 | T9_250 | 40.763253      | 1.718341e-10 | 32.438265  |
|     |        | T9_395 | 40.107151      | 2.404074e-10 | 31.953800  |
|     |        | T9_410 | 28.687705      | 8.504194e-08 | 23.487250  |
|     | T9_250 | T9_395 | 369.535961     | 2.361729e-82 | 271.158260 |
|     |        | T9_410 | 70.564286      | 4.455097e-17 | 54.317321  |
|     | T9_395 | T9_410 | 24.439667      | 7.667362e-07 | 20.314766  |

Esto nos dice que las diferentes representaciones en el cuadro anterior son significativas. Es muy interesante que algunos tratamientos en la semillas tienen tasas de germinación muy diferentes.

Aquí está la comparación pairwise, limitada a aquellas **curvas que no difieren lo suficiente entre sí** como para ser consideradas estadísticamente diferentes.

[163]: # Probability Curves are the same summary = log\_rank.summary summary[summary['p']>=0.05]

[163]:

test\_statisticp-log2(p)T1\_180T9\_2500.0544540.8154870.294266T1\_395T1\_4103.4712920.0624434.001328

A partir de los resultados del Log Rank test, parecería que las semillas con estos tratamientos T1\_180 y T9\_250, T1\_250 y T9\_180 no están diferenciados estadísticamente (al igual que T1\_395 y T1\_410)

## 3 Parametric

Model time-to-event data with parametric models. Select the best survival model for your data.

#### 3.0.1 The Weibull distribution

A continuous probability distribution that models time-to-event data very well ( but originally applied to model particle size distribution)

$$f(x;\lambda,k) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$$
$$x \ge 0, k \ge 0, \lambda \ge 0$$

): Determines the shape

•

• k (or

λ

ρ

: Determines the scale (indicates when 63.2% of the population has experienced the event) Survival function

$$S(t) = e^{-(t/\lambda)^{\rho}}$$

• When

k < 1

, germinación/event rate decreases over time

• When

k = 1

, germinación/event rate is constant over time

• When

```
k > 1
```

, germinación/event rate increases over time

```
[164]: # Histograma de germinación de semillas
       melted_df.head()
[164]:
         Measurement Time Material
                                        UV
                                             observed
       0
              T1_180
                       12.0
                                   T1
                                       180
                                                    1
       1
              T1_180
                                                    1
                       28.0
                                   T1
                                       180
       2
              T1_180
                                                    1
                       12.0
                                   Τ1
                                       180
       3
              T1_180
                       12.0
                                   T1
                                       180
                                                    1
       4
              T1_180
                       28.0
                                   T1
                                       180
                                                    1
[165]: sns.histplot(data= melted_df, x='Time', bins=int(np.sqrt(len(melted_df))))
        \rightarrow #binwidth=1)
       plt.xlabel('Time')
       plt.ylabel('Frecuencia')
       plt.title('Semillas Quinoa')
```

[165]: Text(0.5, 1.0, 'Semillas Quinoa')



[166]: from lifelines import WeibullFitter

```
[167]: wb = WeibullFitter()
wb.fit(melted_df['Time'], melted_df['observed'])
```

```
[168]: # Access .survival_function_, .lambda_, .rho_, .summary, .predict()
wb.survival_function_.plot()
plt.grid()
```



[169]: # Event increases as time goes on print(wb.lambda\_, wb.rho\_)

 $23.88689111462736 \ 1.7517294507735066$ 

[170]: print(wb.predict(15))

0.642351352451179

```
[171]: def plot_weibull(ax, label, time, observed):
          wb = WeibullFitter()
           wb.fit(time, observed, label=label)
           wb.plot_survival_function(ax=ax, label=label)
       # Data for different measurements
       measurements = ['T1_180', 'T1_250', 'T1_395', 'T1_410']
       colors = ['180 nm', '250 nm', '395 nm', '410 nm']
       # Create a subplot
       fig, ax = plt.subplots()
       for measurement, color in zip(measurements, colors):
           time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
           observed_data = melted_df[melted_df['Measurement'] ==__
       →measurement]['observed']
           plot_weibull(ax, color, time_data, observed_data)
       # Customize the plot
       ax.set_xlabel('Tiempo [h]')
       ax.set_ylabel('Probabilidad de Supervivencia')
       ax.set_title('Material T1')
       ax.legend()
       # Show the plot
       plt.show()
```



```
[172]: def weibull_lr(label, time, observed):
    wb = WeibullFitter()
    wb.fit(time, observed, label=label)
    print(label,wb.lambda_, wb.rho_)
[173]: for measurement, color in zip(measurements, colors):
    time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
    observed_data = melted_df[melted_df['Measurement'] ==_⊔
    ->measurement]['observed']
    weibull_lr(color, time_data, observed_data)
180 nm 22.916620770454397 1.6681841255570593
250 nm 16.9793341437924 1.4967863751857562
395 nm 33.628373570595 1.9663027181096342
410 nm 31.41080860885849 4.773741410656731
```

```
[174]: # Data for different measurements
measurements = ['T9_180','T9_250', 'T9_395', 'T9_410']
colors = ['180 nm','250 nm', '395 nm', '410 nm']
```

```
# Create a subplot
fig, ax = plt.subplots()
for measurement, color in zip(measurements, colors):
    time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
    observed_data = melted_df[melted_df['Measurement'] == 
    ->measurement]['observed']
    plot_weibull(ax, color, time_data, observed_data)
# Customize the plot
ax.set_xlabel('Tiempo [h]')
ax.set_ylabel('Probabilidad de Supervivencia')
ax.set_title('Material T9')
ax.legend()
# Show the plot
plt.show()
```



[175]: for measurement, color in zip(measurements, colors): time\_data = melted\_df[melted\_df['Measurement'] == measurement]['Time'] observed\_data = melted\_df[melted\_df['Measurement'] ==\_⊔ →measurement]['observed'] weibull\_lr(color, time\_data, observed\_data)

180 nm 20.938228413468643 1.5735776373148826 250 nm 15.934397693341255 1.8263470643805169 395 nm 21.56661218355623 1.6669923302399037 410 nm 25.886891873123965 3.5951479122346903

# 4 The Accelerated Failure Time (AFT) model

Population A:

Population B:

 $S_B(t)$ 

 $S_A(t) = S_B(t * \lambda)$ 

 $S_A(t)$ 

•

 $S_B(t)$ 

is speeding up (accelerating) or slowing down (decelerating) along

 $S_A(t)$ 

by a factor of

 $\lambda$ 

## [176]: from lifelines import WeibullAFTFitter

[178]: melted\_df['Mat\_dummy'] = melted\_df.Material.cat.codes melted\_df['Measu\_dummy'] = melted\_df.Measurement.cat.codes melted\_df['UV\_dummy'] = melted\_df.UV.cat.codes #.dtypes#

```
[179]: #melted_aft=melted_df[['Time', 'observed', 'Mat_dummy', 'Measu_dummy', 

→ 'UV_dummy']].copy()
```

melted\_aft=melted\_df[['Time', 'observed', 'Measu\_dummy']].copy()

[180]: aft = WeibullAFTFitter()

[181]: aft.fit(df=melted\_aft, duration\_col='Time', event\_col='observed')

[181]: <lifelines.WeibullAFTFitter: fitted with 2060 total observations, 19 rightcensored observations>

[182]: print(aft.summary) exp(coef) se(coef) coef lower 95%  $\$ coef covariate param lambda\_ Measu\_dummy -0.019882 0.980315 0.005685 -0.031025 Intercept 3.243571 25.625069 0.024314 3.195916 Intercept 0.565984 1.761180 0.015149 0.536293 rho\_ coef upper 95% exp(coef) lower 95% exp(coef) upper 95% \ covariate param lambda\_ Measu\_dummy -0.008739 0.969452 0.991299 Intercept 3.291226 24.432546 26.875799 rho\_ Intercept 0.595675 1.709657 1.814255 -log2(p) cmp to z р param covariate lambda\_ Measu\_dummy 0.0 -3.497045 4.704420e-04 11.053696 Intercept 133.402053 0.00000e+00 0.0 inf Intercept 37.361379 1.656962e-305 1012.459529 0.0 rho\_ [183]: aft.plot()

[183]: <Axes: xlabel='log(accelerated failure rate) (95% CI)'>



- [184]: #aft.plot\_partial\_effects\_on\_outcome(covariates='Mat\_dummy', values=[0, 1])
  #aft.plot\_partial\_effects\_on\_outcome(covariates='UV\_dummy', values=[0, 1, 2, 3])
  aft.plot\_partial\_effects\_on\_outcome(covariates='Measu\_dummy', values=[0, 4, 1, ⊥
  →5, 2, 6, 3, 7])
- [184]: <Axes: >



[185]: melted\_aft.Measu\_dummy.unique()

[185]: array([0, 4, 1, 5, 2, 6, 3, 7], dtype=int8)

# 4.1 Other distributios and model selection

Many parametric models are commonly used for survival analysis, including the **Weibull model**, the **exponential model**, the **gamma model**, the **log normal model**, and the **log logistic model**.

The Akaike Information Criterion, or AIC metric, is an estimator of prediction error and the quality of a model. It estimates the amount of information loss by any model and penalizes models with many parameters. Given a set of models, we could compare their AIC values. The model with the lowest AIC value is the preferred model.

```
fig, ax = plt.subplots()
```

```
bestmodel(ax, color, time_data, observed_data)
```

```
# Customize the plot
ax.set_xlabel('Tiempo [h]')
ax.set_ylabel('Probabilidad de Supervivencia')
ax.set_title('Material T9')
ax.legend()
```

180 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 1
breakpoint", fitted with 260 total observations, 5 right-censored observations>
250 nm <lifelines.LogLogisticFitter:"LogLogistic\_estimate", fitted with 260
total observations, 1 right-censored observations>
395 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 2
breakpoint", fitted with 260 total observations, 3 right-censored observations>
410 nm <lifelines.SplineFitter:"SplineFitter: 3 internal knot", fitted with 260
total observations, 0 right-censored observations>





| [188]: | measurements                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| [188]: | ['T9_180', 'T9_250', 'T9_395', 'T9_410']                                                                                                             |
| [189]: | colors                                                                                                                                               |
| [189]: | ['180 nm', '250 nm', '395 nm', '410 nm']                                                                                                             |
| [190]: | <pre># Data for different measurements measurements = ['T1_180','T1_250', 'T1_395', 'T1_410'] colors = ['180 nm','250 nm', '395 nm', '410 nm']</pre> |
|        | # Create a subplot                                                                                                                                   |
|        | <pre>fig, ax = plt.subplots()</pre>                                                                                                                  |
|        | for measurement, color in zip(measurements, colors):                                                                                                 |
|        | <pre>time_data = melted_df[melted_df['Measurement'] == measurement]['Time']</pre>                                                                    |

```
observed_data = melted_df[melted_df['Measurement'] ==_⊥

→measurement]['observed']

bestmodel(ax, color, time_data, observed_data)

# Customize the plot

ax.set_xlabel('Tiempo [h]')

ax.set_ylabel('Probabilidad de Supervivencia')

ax.set_title('Material T1')

ax.legend()
```

180 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 3
breakpoint", fitted with 240 total observations, 2 right-censored observations>
250 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 3
breakpoint", fitted with 260 total observations, 2 right-censored observations>
395 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 2
breakpoint", fitted with 260 total observations, 6 right-censored observations>
410 nm <lifelines.PiecewiseExponentialFitter:"PiecewiseExponentialFitter: 2
breakpoint", fitted with 260 total observations, 0 right-censored observations>

[190]: <matplotlib.legend.Legend at 0x17c77abd0>



#### Material T1

```
[109]: find_best_parametric_model?
```

```
[113]: # Data for different measurements
       def bestmodel1(ax,label, time, observed):
           best_model, best_aic_=find_best_parametric_model(event_times=time,
                                                        event_observed=observed,
                                                        scoring_method="AIC")
           best_model.plot_survival_function(ax=ax)
           print(label,best_model, best_aic_)
       measurements = ['T9_410']
       colors = ['410 nm']
       # Create a subplot
       fig, ax = plt.subplots()
       for measurement, color in zip(measurements, colors):
           time_data = melted_df[melted_df['Measurement'] == measurement]['Time']
           observed_data = melted_df[melted_df['Measurement'] ==
       →measurement]['observed']
           bestmodel1(ax, color, time_data, observed_data)
       # Customize the plot
       ax.set_xlabel('Tiempo [h]')
       ax.set_ylabel('Probabilidad de Supervivencia')
       #ax.set_title('Material T1')
       ax.legend()
```

410 nm <lifelines.SplineFitter:"SplineFitter: 3 internal knot", fitted with 260 total observations, 0 right-censored observations> 528.8589020137697

[113]: <matplotlib.legend.Legend at 0x17b8cf010>



```
[116]: from lifelines import KaplanMeierFitter,WeibullFitter, ExponentialFitter,
__LogNormalFitter, LogLogisticFitter, GeneralizedGammaFitter
fig, axes = plt.subplots(3, 2, figsize=(13.5, 7.5))
T = melted_df[melted_df['Measurement'] == measurement]['Time']
E = melted_df[melted_df['Measurement'] == measurement]['observed']
kmf = KaplanMeierFitter().fit(T, E, label='KaplanMeierFitter')
wbf = WeibullFitter().fit(T, E, label='WeibullFitter')
exf = ExponentialFitter().fit(T, E, label='WeibullFitter')
lnf = LogNormalFitter().fit(T, E, label='LogNormalFitter')
llf = LogLogisticFitter().fit(T, E, label='LogLogisticFitter')
#ggf = GeneralizedGammaFitter().fit(T, E, label='GeneralizedGammaFitter')
```

wbf.plot\_survival\_function(ax=axes[0][0])

```
exf.plot_survival_function(ax=axes[0][1])
lnf.plot_survival_function(ax=axes[1][0])
kmf.plot_survival_function(ax=axes[1][1])
llf.plot_survival_function(ax=axes[2][0])
#ggf.plot_survival_function(ax=axes[2][1])
```

[116]: <Axes: >



[118]: #print(wbf.AIC\_, exf.AIC\_, lnf.AIC\_, llf.AIC\_, ggf.AIC\_)

1817.5489779983086 2156.872970867119 1923.1993843970267 1936.391906847997 1569.1860683554523

[]:

# ICC (1)

### May 9, 2024

# 1 Indice de contenido de clorofilas : ICC

```
[2]: import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
[3]: # Read the Excel sheet
     UV180 = pd.read_excel('DATOS T1 Y T9_V3.xlsx', sheet_name='UV180',
      →parse_dates=['H'])
     UV250 = pd.read_excel('DATOS T1 Y T9_V3.xlsx', sheet_name='UV250',
      \rightarrow parse_dates=['H'])
     UV395 = pd.read_excel('DATOS T1 Y T9_V3.xlsx', sheet_name='UV395',
      →parse_dates=['H'])
     df = pd.concat([UV180, UV250, UV395], ignore_index=True)
     # Remove the '°C' suffix from the 'Temperatura' column
     df['Temperatura'] = df['Temperatura'].str.replace('°C', '')
     df['Temperatura'] = df['Temperatura'].astype('float')
     # Display the dataframe
     print(df.head())
```

/var/folders/n\_/jr7n3tyn6l9bdfkx3fyszj1c0000gn/T/ipykernel\_97407/1751100231.py:2
: UserWarning: Could not infer format, so each element will be parsed
individually, falling back to `dateutil`. To ensure parsing is consistent and
as-expected, please specify a format.

```
UV180 = pd.read_excel('DATOS T1 Y T9_V3.xlsx', sheet_name='UV180',
parse_dates=['H'])
```

```
/var/folders/n_/jr7n3tyn6l9bdfkx3fyszj1c0000gn/T/ipykernel_97407/1751100231.py:3
: UserWarning: Could not infer format, so each element will be parsed
individually, falling back to `dateutil`. To ensure parsing is consistent and
as-expected, please specify a format.
```

UV250 = pd.read\_excel('DATOS T1 Y T9\_V3.xlsx', sheet\_name='UV250', parse\_dates=['H'])

|   | Temperatura | Hr   | UV     | DIA | Н          | Muestra | T1    | Т9    |
|---|-------------|------|--------|-----|------------|---------|-------|-------|
| 0 | 15.0        | 0.79 | 180 nm | 1   | 2023-10-27 | 1       | 280.8 | 274.6 |
| 1 | 15.0        | 0.79 | 180 nm | 1   | 2023-10-27 | 2       | 243.2 | 280.4 |
| 2 | 15.0        | 0.79 | 180 nm | 1   | 2023-10-27 | 3       | 242.6 | 265.0 |
| 3 | 15.0        | 0.79 | 180 nm | 1   | 2023-10-27 | 4       | 251.6 | 274.1 |
| 4 | 15.0        | 0.79 | 180 nm | 1   | 2023-10-27 | 5       | 247.6 | 249.2 |

/var/folders/n\_/jr7n3tyn6l9bdfkx3fyszj1c0000gn/T/ipykernel\_97407/1751100231.py:4
: UserWarning: Could not infer format, so each element will be parsed
individually, falling back to `dateutil`. To ensure parsing is consistent and
as-expected, please specify a format.
UV395 = pd.read\_excel('DATOS T1 Y T9\_V3.xlsx', sheet\_name='UV395',

```
parse_dates=['H'])
```

[4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1215 entries, 0 to 1214
Data columns (total 8 columns):
 #
    Column
                 Non-Null Count Dtype
    _____
                 -----
_ _ _
                                 ____
 0
    Temperatura 1215 non-null
                                 float64
 1
    Hr
                 1215 non-null
                                 float64
 2
    UV
                 1215 non-null
                                 object
 3
    DIA
                 1215 non-null
                                 int64
 4
    Н
                 1215 non-null
                                 datetime64[ns]
 5
                 1215 non-null
                                 int64
    Muestra
 6
                 1215 non-null
                                 float64
    T1
 7
    Τ9
                 1215 non-null
                                 float64
dtypes: datetime64[ns](1), float64(4), int64(2), object(1)
memory usage: 76.1+ KB
```

[5]: df['H'] = df['H'].dt.time

```
[6]: df['H'].unique()
```

[7]: # Combine 'day' and 'hour' into a single datetime column df['Time'] = df['DIA'].astype(str) + ' ' + pd.to\_datetime(df['H'], format='%H:%M: →%S').dt.strftime('%H:%M:%S') df['Time'] = pd.to\_datetime(df['Time'], format='%d %H:%M:%S')

df.head()

| [7]: | Temperatura | Hr   | UV     | DIA | Н        | Muestra | T1    | Т9    | Time       |
|------|-------------|------|--------|-----|----------|---------|-------|-------|------------|
| 0    | 15.0        | 0.79 | 180 nm | 1   | 00:00:00 | 1       | 280.8 | 274.6 | 1900-01-01 |
| 1    | 15.0        | 0.79 | 180 nm | 1   | 00:00:00 | 2       | 243.2 | 280.4 | 1900-01-01 |
| 2    | 15.0        | 0.79 | 180 nm | 1   | 00:00:00 | 3       | 242.6 | 265.0 | 1900-01-01 |
| 3    | 15.0        | 0.79 | 180 nm | 1   | 00:00:00 | 4       | 251.6 | 274.1 | 1900-01-01 |
| 4    | 15.0        | 0.79 | 180 nm | 1   | 00:00:00 | 5       | 247.6 | 249.2 | 1900-01-01 |

[8]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1215 entries, 0 to 1214
     Data columns (total 9 columns):
      #
                       Non-Null Count
          Column
                                       Dtype
                       _____
          _____
                                       ____
     _ _ _
      0
          Temperatura 1215 non-null
                                       float64
      1
          Hr
                       1215 non-null
                                       float64
      2
          UV
                       1215 non-null
                                       object
      3
          DIA
                       1215 non-null
                                       int64
      4
                       1215 non-null
                                       object
          Η
      5
          Muestra
                       1215 non-null
                                       int64
      6
                       1215 non-null
                                       float64
          T1
      7
          Τ9
                       1215 non-null
                                       float64
      8
          Time
                       1215 non-null
                                       datetime64[ns]
     dtypes: datetime64[ns](1), float64(4), int64(2), object(2)
     memory usage: 85.6+ KB
 [9]: time_difference = df['Time'] - df['Time'].iloc[0]
      # Convert the time difference to hours
      df['HOUR'] = time_difference.dt.total_seconds() / 3600
[10]: #len(df['Time'].unique())
```

```
df['HOUR'].unique()
```

```
[10]: array([ 0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 50., 55., 60.,
65., 70.])
```

```
[11]: df['UV'].value_counts()
```

```
[11]: UV
```

180 nm405250 nm405395 nm405

Name: count, dtype: int64

```
[12]: print(df['UV'].unique())
      print(df['DIA'].unique())
      print(df['Muestra'].unique())
     ['180 nm' '250 nm' '395 nm']
     [1 2 3]
     [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
      25 26 27]
[13]: df[['Temperatura', 'Hr', 'T1', 'T9']].describe()
[13]:
                                                              Т9
             Temperatura
                                   Hr
                                                Τ1
             1215.000000
                          1215.000000
                                       1215.000000
                                                    1215.000000
      count
      mean
               14.246667
                             0.729400
                                        225.888642
                                                     241.781811
      std
                3.054678
                             0.119549
                                         84.437622
                                                      60.501606
     min
                9.500000
                             0.530000
                                         10.200000
                                                      76.300000
      25%
               11.200000
                             0.610000
                                        193.200000
                                                     206.750000
      50%
               14.700000
                             0.750000
                                        241.200000
                                                     248.600000
      75%
               17.000000
                             0.840000
                                        247.600000
                                                     267.250000
                             0.910000
               20.000000
                                        737.000000
      max
                                                     763.800000
[14]: sns.histplot(data= df, x='T1', bins=int(np.sqrt(len(df)))) #binwidth=1)
      plt.xlabel('ICC')
      plt.ylabel('count')
      plt.title('Material T1')
```

```
[14]: Text(0.5, 1.0, 'Material T1')
```



[15]: sns.histplot(data= df, x='T9', bins=int(np.sqrt(len(df)))) #binwidth=1)
 plt.xlabel('ICC')
 plt.ylabel('count')
 plt.title('Material T9')

[15]: Text(0.5, 1.0, 'Material T9')



```
[16]: def ecdf(data):
    """Compute ECDF for a one-dimensional array of measurements."""
    # Number of data points: n
    n = len(data)
    # x-data for the ECDF: x
    x = np.sort(data)
    # y-data for the ECDF: y
    y = np.arange(1, n+1) / n
    return x, y
[17]: # Compute ECDFs
x_set, y_set = ecdf(df['T1'])
x_vers, y_vers = ecdf(df['T9'])
# Plot all ECDFs on the same plot
_ = plt.plot(x_set, y_set, marker='.', linestyle='none')
_ = plt.plot(x_vers, y_vers, marker='.', linestyle='none')
```

```
# Annotate the plot
plt.legend(('T1', 'T9'), loc='lower right')
_ = plt.xlabel('ICC')
_ = plt.ylabel('ECDF')
```





```
g.set_xticklabels(['$T_0$','$T_1$','$T_2$','$T_3$','$T_4$','$T_5}$','$T_6$',

→'$T_7$', '$T_8$',

→'$T_9$','$T_{10}$','$T_{11}$','$T_{12}$','$T_{13}$','$T_{14}$'])
```

```
/var/folders/n_/jr7n3tyn619bdfkx3fyszj1c0000gn/T/ipykernel_97407/2634114768.py:1
2: UserWarning: FixedFormatter should only be used together with FixedLocator
  g.set_xticklabels(['$T_0$','$T_1$','$T_2$','$T_3$','$T_4$','$T_5}$','$T_6$',
  '$T_7$', '$T_8$',
  '$T_9$','$T_{10}$','$T_{11}$','$T_{12}$','$T_{13}$','$T_{14}$'])
```

[18]: [Text(0, 0, '\$T\_0\$'),

Text(1, 0, '\$T\_1\$'), Text(2, 0, '\$T\_2\$'), Text(3, 0, '\$T\_3\$'), Text(4, 0, '\$T\_4\$'), Text(5, 0, '\$T\_5}\$'), Text(6, 0, '\$T\_6\$'), Text(6, 0, '\$T\_6\$'), Text(7, 0, '\$T\_7\$'), Text(7, 0, '\$T\_7\$'), Text(8, 0, '\$T\_8\$'), Text(9, 0, '\$T\_9\$'), Text(10, 0, '\$T\_9\$'), Text(10, 0, '\$T\_{10}\$'), Text(11, 0, '\$T\_{11}\$'), Text(12, 0, '\$T\_{12}\$'), Text(13, 0, '\$T\_{13}\$'), Text(14, 0, '\$T\_{14}\$')]



```
[19]: #g = sns.boxplot(x="Time", y="T1", data=df[df["UV"]=='180 nm'])
#g = sns.boxplot(x="Time", y="T9", data=df[df["UV"]=='250 nm'])
g = sns.boxplot(x="Time", y="T9", data=df[df["UV"]=='250 nm'])
#g = sns.boxplot(x="Time", y="T1", data=df[df["UV"]=='395 nm'])
#g = sns.boxplot(x="Time", y="T9", data=df[df["UV"]=='395 nm'])
g set_xlabel('Tiempo')
g.set_ylabel('ICC')
g.set_title('Material T1 - 395 nm')
g.set_xticklabels(['$T_0$','$T_1$','$T_2$','$T_3$','$T_4$','$T_5$','$T_6$',u
$\interpressionset_115$','$T_{11}$','$T_{12}$','$T_{13}$','$T_{14}$'])
```

[19]: [Text(0, 0, '\$T\_0\$'), Text(1, 0, '\$T\_1\$'), Text(2, 0, '\$T\_2\$'), Text(3, 0, '\$T\_3\$'), Text(4, 0, '\$T\_4\$'),

| Text(5,  | 0, | '\$T_5\$'),    |
|----------|----|----------------|
| Text(6,  | 0, | '\$T_6\$'),    |
| Text(7,  | 0, | '\$T_7\$'),    |
| Text(8,  | 0, | '\$T_8\$'),    |
| Text(9,  | 0, | '\$T_9\$'),    |
| Text(10, | 0, | '\$T_{10}\$')  |
| Text(11, | 0, | '\$T_{11}\$')  |
| Text(12, | 0, | '\$T_{12}\$')  |
| Text(13, | 0, | '\$T_{13}\$')  |
| Text(14, | 0, | '\$T_{14}\$')] |



| [20]: | Temperatura | Hr   | UV     | Muestra | Time       | HOUR | Material | Value |
|-------|-------------|------|--------|---------|------------|------|----------|-------|
| 0     | 15.0        | 0.79 | 180 nm | 1       | 1900-01-01 | 0.0  | T1       | 280.8 |
| 1     | 15.0        | 0.79 | 180 nm | 2       | 1900-01-01 | 0.0  | T1       | 243.2 |
| 2     | 15.0        | 0.79 | 180 nm | 3       | 1900-01-01 | 0.0  | T1       | 242.6 |
| 3     | 15.0        | 0.79 | 180 nm | 4       | 1900-01-01 | 0.0  | T1       | 251.6 |
| 4     | 15.0        | 0.79 | 180 nm | 5       | 1900-01-01 | 0.0  | T1       | 247.6 |

- [22]: # Create a combined boxplot
  plt.figure(figsize=(10, 6))
  sns.boxplot(data=melted\_df, x="UV", y="Value", hue="Material")
  plt.title("Combined Boxplot")
- [22]: Text(0.5, 1.0, 'Combined Boxplot')



#### [23]: melted\_df['Value'].describe()

[23]: count 2430.000000 mean 233.835226

| 73.864953             |
|-----------------------|
| 10.200000             |
| 200.400000            |
| 243.100000            |
| 262.000000            |
| 763.800000            |
| Value, dtype: float64 |
|                       |

```
[24]: sns.histplot(data=df, x="T1", hue="UV")
```

[24]: <Axes: xlabel='T1', ylabel='Count'>





[25]: <Axes: xlabel='T1', ylabel='Density'>


| [26]: | <pre>sns.histplot(data=df,</pre> | x="T9", | hue="UV") |
|-------|----------------------------------|---------|-----------|
|-------|----------------------------------|---------|-----------|

[26]: <Axes: xlabel='T9', ylabel='Count'>



[27]: sns.kdeplot(data=df, x="T9", hue="UV", cut=0, cumulative=True)

[27]: <Axes: xlabel='T9', ylabel='Density'>



```
[28]: import datetime
      # Mapping of times to labels
      time_labels = {
          '1900-01-01 00:00:00': '$T_0$',
          '1900-01-01 05:00:00': '$T_1$',
          '1900-01-01 10:00:00': '$T_2$',
          '1900-01-01 15:00:00': '$T_3$',
          '1900-01-01 20:00:00': '$T_4$',
          '1900-01-02 01:00:00': '$T_5$',
          '1900-01-02 06:00:00': '$T_6$',
          '1900-01-02 11:00:00': '$T_7$',
          '1900-01-02 16:00:00': '$T_8$',
          '1900-01-02 21:00:00': '$T_9$',
          '1900-01-03 02:00:00': '$T_{10}$',
          '1900-01-03 07:00:00': '$T_{11}$',
          '1900-01-03 12:00:00': '$T_{12}$',
          '1900-01-03 17:00:00': '$T_{13}$',
          '1900-01-03 22:00:00': '$T_{14}$'
      }
```

```
# Convert 'H' column values to strings
      melted_df['Time'] = melted_df['Time'].astype(str)
      melted_df['Time']
[28]: 0
              1900-01-01 00:00:00
      1
              1900-01-01 00:00:00
      2
              1900-01-01 00:00:00
      3
              1900-01-01 00:00:00
      4
              1900-01-01 00:00:00
                     . . .
      2425
              1900-01-03 22:00:00
      2426
              1900-01-03 22:00:00
      2427
              1900-01-03 22:00:00
      2428
              1900-01-03 22:00:00
      2429
              1900-01-03 22:00:00
      Name: Time, Length: 2430, dtype: object
[29]: # Create a new column with labels
      melted_df['Time_Label'] = melted_df['Time'].map(time_labels)
      melted_df.head()
[29]:
                                                            Time HOUR Material \
         Temperatura
                                UV
                                    Muestra
                        Hr
      0
                15.0 0.79
                            180 nm
                                          1 1900-01-01 00:00:00
                                                                   0.0
                                                                              T1
      1
                15.0 0.79 180 nm
                                          2 1900-01-01 00:00:00
                                                                   0.0
                                                                              Τ1
                                                                   0.0
      2
                15.0 0.79
                           180 nm
                                          3 1900-01-01 00:00:00
                                                                              T1
      3
                                          4 1900-01-01 00:00:00
                                                                   0.0
                15.0 0.79
                            180 nm
                                                                              Τ1
      4
                15.0 0.79
                            180 nm
                                          5 1900-01-01 00:00:00
                                                                   0.0
                                                                              T1
         Value Measurement Time_Label
      0 280.8
                    T1_180
                                $T_0$
      1 243.2
                    T1_180
                                $T_0$
      2 242.6
                    T1_180
                                $T_0$
      3 251.6
                    T1 180
                                $T_0$
      4 247.6
                    T1_180
                                $T_0$
[30]: #melted_df =
      melted_df.drop(melted_df[melted_df['Value']>546.3].index, inplace=True)
      melted_df.drop(melted_df[(melted_df['UV']=='395 nm')& (melted_df['Value']>400)].
       →index, inplace=True)
[31]: # Find the 75th and 25th percentiles
      value_seventy_fifth = melted_df["Value"].quantile(0.75)
```

value\_seventy\_fifth = melted\_df["Value"].quantile(0.75)
value\_twenty\_fifth = melted\_df["Value"].quantile(0.25)

```
# Calculate iqr
value_iqr = value_seventy_fifth - value_twenty_fifth
# Calculate the thresholds
upper = value_seventy_fifth + (4.5 * value_iqr)
lower = value_twenty_fifth - (1.5 *value_iqr)
# Subset the data
#planes = planes[(planes["Price"] > lower) & (planes["Price"] < upper)]
melted_df[melted_df['Value']<550]
# Count and print the number of outliers
#print(len(outliers))
print(upper)
```

537.000000000001

```
[32]: g = sns.FacetGrid(melted_df,col="Measurement",col_wrap=3,sharex=False,

→ sharey=False, margin_titles=True)

g.map(sns.boxplot, "Time_Label", "Value",

→ order=['$T_0$','$T_1$','$T_2$','$T_3$','$T_4$','$T_5$','$T_6$', '$T_7$',

→ '$T_8$', '$T_9$','$T_{10}$','$T_{11}$','$T_{12}$','$T_{13}$','$T_{14}$'])
```

/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)

[32]: <seaborn.axisgrid.FacetGrid at 0x15fc86850>



/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)

[33]: <seaborn.axisgrid.FacetGrid at 0x162d41050>



sns.relplot( data=df[df['UV']=='180 nm'], x="Time", y="T1", col="Muestra", kind="scatter" )

| [34]: | <pre>melted_df.groupby('Measurement').describe()</pre> |
|-------|--------------------------------------------------------|
|-------|--------------------------------------------------------|

|             | _                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Tempera                                                                                                                                            | tura                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | С                                                                                                                                                  | ount                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                              | std                                                                                                                                                                                                                                                                                                                          | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measurement |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_180      | 4                                                                                                                                                  | 03.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.03                                                                                                                                                                                                                                                                                                                                                         | 5890                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_250      | 4                                                                                                                                                  | 05.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 366667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.12                                                                                                                                                                                                                                                                                                                                                         | 3617                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_395      | 4                                                                                                                                                  | 02.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00                                                                                                                                                                                                                                                                                                                                                         | 8426                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_180      | 4                                                                                                                                                  | 05.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.04                                                                                                                                                                                                                                                                                                                                                         | 1271                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_250      | 4                                                                                                                                                  | 03.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 866253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.12                                                                                                                                                                                                                                                                                                                                                         | 2969                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_395      | 4                                                                                                                                                  | 03.0                                                                                                                                                                                                                                                                                                                                                                                 | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00                                                                                                                                                                                                                                                                                                                                                         | 7406                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Hr                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HOUR                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              | Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | count                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                    | mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75%                                                                                                                                                                                                                                                                                                                                                          | max                                                                                                                                                                                                                                                                                                                          | cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measurement |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_180      | 403.0                                                                                                                                              | 0.72                                                                                                                                                                                                                                                                                                                                                                                 | 4045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.2198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.39404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_250      | 405.0                                                                                                                                              | 0.73                                                                                                                                                                                                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.5720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.76562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1_395      | 402.0                                                                                                                                              | 0.72                                                                                                                                                                                                                                                                                                                                                                                 | 9430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.9870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.48728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_180      | 405.0                                                                                                                                              | 0.72                                                                                                                                                                                                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.0367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.30495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_250      | 403.0                                                                                                                                              | 0.73                                                                                                                                                                                                                                                                                                                                                                                 | 4516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04.3267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ′99 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.09512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T9_395      | 403.0                                                                                                                                              | 0.72                                                                                                                                                                                                                                                                                                                                                                                 | 9878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.0                                                                                                                                                                                                                                                                                                                                                         | 70.0                                                                                                                                                                                                                                                                                                                         | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.11508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Measurement<br>T1_180<br>T1_250<br>T1_395<br>T9_180<br>T9_250<br>T9_395<br>Measurement<br>T1_180<br>T1_250<br>T1_395<br>T9_180<br>T9_250<br>T9_395 | Tempera         C         Measurement         T1_180         4         T1_250         4         T1_395         4         T9_180         4         T9_250         4         T9_395         4         T9_395         4         T1_180         403.0         T1_250         405.0         T1_395         402.0         T9_180         405.0         T9_250         403.0         T9_395 | Temperatura         Measurement       count         T1_180       403.0         T1_250       405.0         T1_395       402.0         T9_180       405.0         T9_250       403.0         T9_395       403.0         Hr         count         Measurement         T1_250       403.0       0.724         T1_250       405.0       0.734         T1_395       402.0       0.724         T1_395       402.0       0.724         T9_180       405.0       0.724         T9_250       403.0       0.724         T9_395       403.0       0.724 | Temperatura count         Measurement       1         T1_180       403.0       14.1         T1_250       405.0       14.2         T1_395       402.0       14.2         T9_180       405.0       14.3         T9_250       403.0       14.3         T9_395       403.0       14.2         T9_395       403.0       14.2         T1_1180       403.0       14.2         T1_1250       403.0       14.2         T1_1250       403.0       0.724045         T1_250       405.0       0.734000         T1_395       402.0       0.724045         T1_250       405.0       0.724000         T9_180       405.0       0.724000         T9_250       403.0       0.724000 | Temperatura $c \circ unt$ meanMeasurement $403.0$ $14.166005$ T1_180 $403.0$ $14.166005$ T1_250 $405.0$ $14.221642$ T9_180 $405.0$ $14.146667$ T9_250 $403.0$ $14.366253$ T9_395 $403.0$ $14.223573$ HrCountmeanMeasurementT1_180 $403.0$ $0.724045$ T1_395 $402.0$ $0.729430$ T9_180 $405.0$ $0.724000$ T9_250 $403.0$ $0.724000$ T9_395 $403.0$ $0.729878$ | TemperaturacountMeasurementT1_180403.014.1660053.03T1_250405.014.3666673.12T1_395402.014.2216423.00T9_180405.014.1466673.04T9_250403.014.3662533.12T9_395403.014.2235733.00MeasurementT1_180403.00.724045T1_250405.00.73400055.0T1_395402.00.72943055.0T9_180405.00.72400055.0T9_250403.00.72408555.0T9_395403.00.72408555.0 | TemperaturacountmeanstdMeasurement403.014.166005 $3.035890$ T1_180403.014.366667 $3.123617$ T1_395402.014.221642 $3.008426$ T9_180405.014.146667 $3.041271$ T9_250403.014.366253 $3.122969$ T9_395403.014.223573 $3.007406$ HrHURcountmeanT1_180403.0 $0.724045$ T1_250405.0 $0.734000$ $55.0$ T1_395402.0 $0.724045$ $55.0$ T9_180405.0 $0.724000$ $55.0$ T9_250403.0 $0.724000$ $55.0$ T9_395403.0 $0.724085$ $55.0$ T9_395403.0 $0.724085$ $55.0$ T9_395403.0 $0.724085$ $55.0$ | Temperatura           count         mean         std         min           Measurement         403.0         14.166005         3.035890         9.5           T1_250         405.0         14.366667         3.123617         9.5           T1_395         402.0         14.221642         3.008426         9.5           T9_180         405.0         14.366253         3.122969         9.5           T9_250         403.0         14.223573         3.007406         9.5           T9_395         403.0         14.223573         3.007406         9.5           T9_395         403.0         0.724045          75%         max         cour           Measurement           55.0         70.0         403           T1_395         402.0         0.724045          55.0         70.0         403           Measurement           55.0         70.0         403           T1_395         402.0         0.729430          55.0         70.0         403           T9_180         405.0         0.724000          55.0         70.0         403      < | Temperatura<br>countmeanstdmin $25\%$ Measurement403.014.166005 $3.035890$ $9.5$ $11.0$ T1_180405.014.366667 $3.123617$ $9.5$ $11.2$ T1_395402.014.221642 $3.008426$ $9.5$ $11.0$ T9_180405.014.146667 $3.041271$ $9.5$ $11.0$ T9_250403.014.223573 $3.007406$ $9.5$ $11.0$ T9_395403.014.223573 $3.007406$ $9.5$ $11.0$ MeasurementT1_180403.0 $0.724045$ $55.0$ $70.0$ $403.0$ $22.0$ T1_395402.0 $0.729430$ $55.0$ $70.0$ $402.0$ $22.0$ T9_180405.0 $0.724000$ $55.0$ $70.0$ $402.0$ $22.0$ T1_395402.0 $0.729430$ $55.0$ $70.0$ $402.0$ $22.0$ T9_180 $405.0$ $0.724000$ $55.0$ $70.0$ $402.0$ $22.0$ T1_395 $402.0$ $0.729430$ $55.0$ $70.0$ $402.0$ $22.0$ T9_180 $405.0$ $0.724000$ $55.0$ $70.0$ $403.0$ $22.0$ T9_395 $403.0$ $0.729878$ $55.0$ $70.0$ $403.0$ $22.0$ | Temperatura<br>countmeanstdmin $25\%$ $50\%$ Measurement403.014.166005 $3.035890$ $9.5$ $11.0$ $14.3$ T1_250405.014.366667 $3.123617$ $9.5$ $11.2$ $15.0$ T1_395402.014.221642 $3.008426$ $9.5$ $11.0$ $14.3$ T9_180405.014.146667 $3.041271$ $9.5$ $11.2$ $15.0$ T9_395403.014.223573 $3.007406$ $9.5$ $11.2$ $15.0$ T9_395403.0 $14.223573$ $3.007406$ $9.5$ $11.0$ $14.9$ MeasurementT1_180403.0 $0.724045$ $55.0$ $70.0$ $403.0$ $21.2198$ T1_250405.0 $0.734000$ $55.0$ $70.0$ $405.0$ $218.5720$ T1_395 $402.0$ $0.724045$ $55.0$ $70.0$ $405.0$ $214.9870$ T9_180 $405.0$ $0.724000$ $55.0$ $70.0$ $405.0$ $244.9870$ T9_250 $403.0$ $0.724000$ $55.0$ $70.0$ $405.0$ $244.3267$ T9_395 $403.0$ $0.729878$ $55.0$ $70.0$ $403.0$ $204.3267$ | Temperatura<br>countmeanstdmin $25\%$ $50\%$ $75\%$ Measurement11_180403.014.166005 $3.035890$ $9.5$ $11.0$ $14.3$ $17.6$ T1_250405.014.366667 $3.123617$ $9.5$ $11.2$ $15.0$ $17.0$ T1_395402.0 $14.221642$ $3.008426$ $9.5$ $11.0$ $14.3$ $17.6$ T9_180405.0 $14.366253$ $3.041271$ $9.5$ $11.0$ $14.3$ $17.6$ T9_250403.0 $14.223573$ $3.007406$ $9.5$ $11.0$ $14.9$ $17.0$ T9_395403.0 $14.223573$ $3.007406$ $9.5$ $11.0$ $14.9$ $17.0$ MeasurementT1_180403.0 $0.724045$ $55.0$ $70.0$ $403.0$ $210.219851$ $12.2000$ T1_395 $402.0$ $0.724045$ $55.0$ $70.0$ $403.0$ $210.219851$ $12.2000$ T1_395 $402.0$ $0.724045$ $55.0$ $70.0$ $403.0$ $210.219851$ $12.2000$ T1_395 $402.0$ $0.724000$ $55.0$ $70.0$ $403.0$ $210.219851$ $12.2000$ T1_395 $402.0$ $0.724000$ $55.0$ $70.0$ $403.0$ $204.326790$ $72.2000$ T1_395 $402.0$ $0.724000$ $55.0$ $70.0$ $403.0$ $204.326790$ $72.2000$ T9_250 $403.0$ $0.734516$ $55.0$ $70.0$ $403.0$ $204.326799$ $403.0$ T9_395 $403.0$ | TemperaturaMeasurementmeanstdmin25%50%75%maxMasurement403.014.1660053.0358909.511.014.317.619.1T1_250405.014.3666673.1236179.511.215.017.020.0T1_395402.014.2216423.0084269.511.014.317.619.1T9_180405.014.1466673.0412719.511.014.317.619.1T9_250403.014.2235733.0074069.511.014.917.020.0T9_395403.014.2235733.0074069.511.014.917.019.6MeasurementT1_180403.00.72404555.070.0403.0210.219851123.39404T1_250405.00.73400055.070.0405.0218.57209964.76562T1_395402.00.72943055.070.0405.0218.57209964.76562T1_395402.00.72943055.070.0405.0253.03679073.30498T9_180405.00.72400055.070.0403.0204.32679945.09512T9_250403.00.73451655.070.0403.0204.32679945.09512T9_395403.00.73451655.070.0403.0204.32679945.09512< | Temperatura\countmeanstdmin $25\%$ $50\%$ $75\%$ maxMeasurementT1_180403.014.166005 $3.035890$ $9.5$ $11.0$ $14.3$ $17.6$ $19.1$ T1_250405.014.366667 $3.123617$ $9.5$ $11.2$ $15.0$ $17.0$ $20.0$ T1_395402.0 $14.221642$ $3.008426$ $9.5$ $11.0$ $14.9$ $17.0$ $19.6$ T9_180405.0 $14.146667$ $3.041271$ $9.5$ $11.0$ $14.3$ $17.6$ $19.1$ T9_250403.0 $14.366253$ $3.122969$ $9.5$ $11.2$ $15.0$ $17.0$ $20.0$ T9_395403.0 $14.223573$ $3.007406$ $9.5$ $11.0$ $14.9$ $17.0$ $19.6$ Measurementmean $75\%$ maxmeanstdT1_180403.0 $0.724045$ $55.0$ $70.0$ $403.0$ $210.219851$ $123.394040$ T1_250405.0 $0.734000$ $55.0$ $70.0$ $403.0$ $210.219851$ $123.394040$ T1_250 $405.0$ $0.729430$ $55.0$ $70.0$ $403.0$ $210.219851$ $123.394040$ T1_250 $405.0$ $0.729430$ $55.0$ $70.0$ $403.0$ $210.219851$ $123.394040$ T1_250 $405.0$ $0.729430$ $55.0$ $70.0$ $403.0$ $214.2987065$ $3.487288$ T9_180 $405.0$ $0.729430$ $55.0$ $70$ |

|             | min   | 25%     | 50%   | 75%    | max   |
|-------------|-------|---------|-------|--------|-------|
| Measurement |       |         |       |        |       |
| T1_180      | 10.2  | 104.500 | 219.4 | 260.80 | 546.3 |
| T1_250      | 105.3 | 171.200 | 214.5 | 245.60 | 401.6 |
| T1_395      | 234.3 | 243.425 | 245.2 | 247.10 | 253.7 |
| T9_180      | 76.3  | 206.300 | 231.8 | 298.20 | 472.3 |
| T9_250      | 100.6 | 170.500 | 208.4 | 237.85 | 356.2 |
| T9_395      | 224.3 | 257.600 | 264.2 | 269.65 | 286.2 |

[6 rows x 40 columns]

```
[34]: # Create a list of consecutive integers
integers = range(len(melted_df))
```

plt.figure(figsize=(16, 8))

## # Plot a scatterplot

```
plt.scatter(integers, melted_df['Value'], c='red', alpha=0.5)
plt.show()
```



[35]: sns.boxplot(data= melted\_df,x='Value')

[35]: <Axes: xlabel='Value'>



```
/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
  self._figure.tight_layout(*args, **kwargs)
```



```
[35]: deriv =df[(df['UV']=='180 nm')&(df['Muestra']==7)]
x = deriv['HOUR']
y = deriv['T1']
## Derivative
dt1dt = np.gradient(y,x)
[36]: x[1:][(dt1dt[1:]*dt1dt[:-1]<0)]
[36]: 114 20.0
222 40.0
Name: HOUR, dtype: float64
[37]: plt.plot(x,y, 'o--')
```

```
plt.plot(x,dt1dt, 'o--')
#dt1dt
```

[37]: [<matplotlib.lines.Line2D at 0x163259a10>]



```
[41]: # Create a 9x3 grid of plots using FacetGrid
g = sns.FacetGrid(
    data=df[df['UV']=='250 nm'], col="Muestra",
    col_wrap=3, # Number of columns
    height=3, aspect=1,sharex=False, sharey=False # Adjust plot size and aspect_⊔
    ↔ratio
)
# Plot scatter plots in each subplot
g.map(sns.scatterplot, "Time", "T1")
g.fig.subplots_adjust(wspace=0.4, hspace=0.4) # Adjust spacing between subplots
plt.show()
```

/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)



```
[42]: melted_df.head()
                                                            Time HOUR Material \
[42]:
         Temperatura
                        Hr
                                UV
                                    Muestra
                                          1 1900-01-01 00:00:00
                                                                   0.0
      0
                15.0 0.79
                            180 nm
                                                                             T1
      1
                15.0 0.79
                                          2 1900-01-01 00:00:00
                                                                   0.0
                                                                             T1
                           180 nm
                                                                   0.0
      2
                15.0 0.79
                           180 nm
                                          3 1900-01-01 00:00:00
                                                                             T1
                15.0 0.79
                                          4 1900-01-01 00:00:00
                                                                   0.0
                                                                             T1
      З
                            180 nm
                                          5 1900-01-01 00:00:00
      4
                15.0 0.79
                           180 nm
                                                                   0.0
                                                                             T1
         Value Measurement Time_Label
      0 280.8
                    T1_180
                                $T_0$
      1 243.2
                    T1_180
                                $T_0$
      2 242.6
                    T1_180
                                $T_0$
      3 251.6
                    T1_180
                                $T_0$
      4 247.6
                    T1 180
                                $T_0$
[43]: melted_df.corr()
      ValueError
                                                 Traceback (most recent call last)
      Cell In[43], line 1
       ----> 1 melted_df.corr()
```

```
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/frame.py:10054, in_
→DataFrame.corr(self, method, min_periods, numeric_only)
  10052 cols = data.columns
  10053 \text{ idx} = \text{cols.copy}()
> 10054 mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False)
  10056 if method == "pearson":
  10057
            correl = libalgos.nancorr(mat, minp=min_periods)
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/frame.py:1838, inu
 →DataFrame.to_numpy(self, dtype, copy, na_value)
   1836 if dtype is not None:
   1837
            dtype = np.dtype(dtype)
-> 1838 result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value)
   1839 if result.dtype is not dtype:
   1840
            result = np.array(result, dtype=dtype, copy=False)
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/internals/managers.py:
 →1732, in BlockManager.as_array(self, dtype, copy, na_value)
   1730
                arr.flags.writeable = False
   1731 else:
            arr = self._interleave(dtype=dtype, na_value=na_value)
-> 1732
```

```
1733 # The underlying data was copied within _interleave, so no need
```

```
1734  # to further copy if copy=True or setting na_value
1736 if na_value is not lib.no_default:
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/internals/managers.py:
→1794, in BlockManager._interleave(self, dtype, na_value)
1792  else:
1793  arr = blk.get_values(dtype)
-> 1794  result[rl.indexer] = arr
1795  itemmask[rl.indexer] = 1
1797 if not itemmask.all():
ValueError: could not convert string to float: '1900-01-01 00:00:00'
```

[]: sns.heatmap(melted\_df.corr(), annot=True)

[44]: sns.pairplot(data=melted\_df)

/Users/Mila/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight self.\_figure.tight\_layout(\*args, \*\*kwargs)

[44]: <seaborn.axisgrid.PairGrid at 0x17cd50c50>



[121]: print(melted\_df["Measurement"].value\_counts())

| Measureme | nt               |
|-----------|------------------|
| T1_250    | 405              |
| T9_180    | 405              |
| T1_180    | 403              |
| T9_250    | 403              |
| T9_395    | 403              |
| T1_395    | 402              |
| Name: cou | nt, dtype: int64 |
|           |                  |

[122]: melted\_df[(melted\_df['Measure']=='180 nm')&(df['Muestra']==7)]

```
KeyError
                                         Traceback (most recent call last)
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/indexes/base.py:3653, in

→Index.get_loc(self, key)

  3652 try:
           return self._engine.get_loc(casted_key)
-> 3653
   3654 except KeyError as err:
File ~/anaconda3/lib/python3.11/site-packages/pandas/_libs/index.pyx:147, in_
 File ~/anaconda3/lib/python3.11/site-packages/pandas/_libs/index.pyx:176, inu
 →pandas._libs.index.IndexEngine.get_loc()
File pandas/_libs/hashtable_class_helper.pxi:7080, in pandas._libs.hashtable.
 →PyObjectHashTable.get_item()
File pandas/_libs/hashtable_class_helper.pxi:7088, in pandas._libs.hashtable.
 →PyObjectHashTable.get_item()
KeyError: 'Measure'
The above exception was the direct cause of the following exception:
KeyError
                                         Traceback (most recent call last)
Cell In[122], line 1
----> 1 melted_df[(melted_df['Measure']=='180 nm')&(df['Muestra']==7)]
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/frame.py:3761, in_
 →DataFrame.__getitem__(self, key)
  3759 if self.columns.nlevels > 1:
           return self._getitem_multilevel(key)
   3760
-> 3761 indexer = self.columns.get_loc(key)
   3762 if is_integer(indexer):
   3763
           indexer = [indexer]
File ~/anaconda3/lib/python3.11/site-packages/pandas/core/indexes/base.py:3655, in_

→Index.get_loc(self, key)

   3653
           return self._engine.get_loc(casted_key)
  3654 except KeyError as err:
           raise KeyError(key) from err
-> 3655
   3656 except TypeError:
           # If we have a listlike key, _check_indexing_error will raise
   3657
           # InvalidIndexError. Otherwise we fall through and re-raise
  3658
           # the TypeError.
  3659
           self._check_indexing_error(key)
   3660
```

KeyError: 'Measure'

```
[38]: cosa = melted_df[melted_df['Measurement']=='T1_180'].groupby(["Material",_
       → "HOUR"])['Value'].agg('mean')
[39]: cosa
[39]: Material
               HOUR
      Τ1
                0.0
                        253.507407
                5.0
                        239.780769
                10.0
                         226.900000
                15.0
                        213.107407
                20.0
                        201.670370
                25.0
                        226.614815
                30.0
                        289.022222
                35.0
                        367.959259
                40.0
                        416.607407
                45.0
                        323.840741
                50.0
                        152.025926
                55.0
                        104.825926
                60.0
                         68.934615
                65.0
                         41.985185
                70.0
                         22.377778
      Name: Value, dtype: float64
[40]: cosa[4:-4]
[40]: Material HOUR
      Τ1
                20.0
                        201.670370
                25.0
                        226.614815
                30.0
                        289.022222
                35.0
                        367.959259
                40.0
                        416.607407
                45.0
                        323.840741
                50.0
                        152.025926
      Name: Value, dtype: float64
[41]: x = deriv['HOUR']
      y = cosa
      ## Derivative
      dt1dt = np.gradient(y,x)
[42]: dt1dt
[42]: array([ -2.74532764,
                            -2.66074074,
                                           -2.66733618,
                                                         -2.52296296,
               1.35074074,
                             8.73518519,
                                           14.13444444,
                                                          12.75851852,
```

```
-4.41185185, -26.45814815, -21.90148148, -8.30913105,
              -6.28407407, -4.65568376, -3.92148148])
[43]: def gauss_f(x,A,mu,sig):
          return A*np.exp(-(x-mu)**2/(2*sig**2))
 []:
[45]: x_data_cropped = x[(x>15.0) * (x<60.00)]
      y_data_cropped = cosa[4:-3]
[46]: y_data_cropped
[46]: Material HOUR
      T1
                20.0
                        201.670370
                25.0
                        226.614815
                30.0
                        289.022222
                35.0
                        367.959259
                40.0
                        416.607407
                45.0
                        323.840741
                50.0
                        152.025926
                55.0
                        104.825926
      Name: Value, dtype: float64
[47]: plt.scatter(x_data_cropped, y_data_cropped)
      plt.show()
```





```
[51]: [<matplotlib.lines.Line2D at 0x16338db10>]
```



## [52]: x[1:][(dt1dt[1:]\*dt1dt[:-1]<0)]

[52]: 114 20.0
 222 40.0
 Name: HOUR, dtype: float64

```
[53]: 417-((-3*40)+262)
```

```
[53]: 275
```

```
[54]: def Gauss(x1,a,u,s):
    G = a*(np.exp(-(1/2.0)*((u-x1)/(s))**2))
    return G
    '''Descripcion:
    x1 es x, a es peso, u es centroide, s es sigma, esta es la distribucion
    →gaussiana.'''
    def Gauss1(x1,a1,u,s,c,d,e):
    G1 = a1*(np.exp(-(1/2.0)*((u-x1)/s)**2)) + c + d*(x1 - e)
    return G1
    '''Descripcion:
```

```
retorna una qausiana mas una recta de pendiente d'''
```

[54]: 'Descripcion:\nretorna una gausiana mas una recta de pendiente d'

[56]: popt

[56]: array([ 283.12026585, 39.26360829, 6.74420462, -1065.83145914, -3.69622442, 364.02060606])

```
[57]: x_model = np.linspace(min(x), max(x), 1000)
y_model = Gauss1(x_model, *popt)
```

```
[60]: c = 609.03794836
d = -3.69622445
e = -89.10914025
plt.plot(x,y,drawstyle='steps-mid',lw=1)
#plt.plot(x, c+ d*(x - e))
#plt.plot(x, -3.28388626*x+257.92393838)
#plt.plot(x, 331.72950983+ -3.28388626*(x +22.47506987))
plt.plot(x_model, y_model, color='r')
#plt.plot(x,Gauss(x,popt[0],popt[1],popt[2])+331.72950983+ -3.28388626*(x +22.
-47506987))
plt.xlabel('Tiempo [h]')
plt.ylabel('ICC')
plt.title('Material T1 180 nm')
```

[60]: Text(0.5, 1.0, 'Material T1 180 nm')



[214]: x[~((x>15.0) \* (x<60.00))][214]: 6 0.0 5.0 33 60 10.0 87 15.0 330 60.0 357 65.0 384 70.0 Name: HOUR, dtype: float64 cosa[0:4],cosa[12:] [237]: [237]: (Material HOUR 0.0 Τ1 253.507407 5.0 239.780769 10.0 226.900000 15.0 213.107407 Name: Value, dtype: float64, Material HOUR

```
Τ1
                  60.0
                          68.934615
                  65.0
                          41.985185
                  70.0
                          22.377778
        Name: Value, dtype: float64)
[238]: xx = [0,5,10,15,60,65,70]
       yy = [253.507407,239.780769,226.900000, 213.107407,68.934615,41.985185,22.377778]
[250]: def func(x,c,d,e):
           return c + d*(x - e)
[251]: #### curve fit [with only y-error]
       popt,pcov=curve_fit(func,xx,yy)
[252]: popt
[252]: array([331.72950983, -3.28388626, -22.47506987])
[61]: cosa_1 = melted_df[melted_df['Measurement'] == 'T9_180'].groupby(["Material",

→ "HOUR"])['Value'].agg('mean')

[62]:
      cosa_1
[62]: Material
                HOUR
       Τ9
                 0.0
                         248.074074
                 5.0
                         227.433333
                 10.0
                         207.262963
                 15.0
                         195.744444
                 20.0
                         211.703704
                 25.0
                         251.933333
                 30.0
                         294.633333
                 35.0
                         336.807407
                 40.0
                         345.125926
                 45.0
                         345.081481
                 50.0
                         294.300000
                 55.0
                         250.688889
                 60.0
                         216.285185
                 65.0
                         195.744444
                 70.0
                         174.733333
       Name: Value, dtype: float64
[71]: x = deriv['HOUR']
       y = cosa_1
       ## Derivative
       dt1dt = np.gradient(y,x)
```

- [78]: x\_data\_cropped = x[(x>10.0) \* (x<70.00)]
  y\_data\_cropped = cosa\_1[3:-1]</pre>
- [85]: plt.scatter(x\_data\_cropped, y\_data\_cropped)
   plt.plot(x, dt1dt,'o--')
   plt.show()



## [86]: x[1:][(dt1dt[1:]\*dt1dt[:-1]<0)]

- [86]: 87 15.0
   249 45.0
   Name: HOUR, dtype: float64
- [81]: popt1, pcov1 = curve\_fit(Gauss1, x\_data\_cropped, y\_data\_cropped, →p0=[342,40,10,332,-3.3,-22.5])
- [82]: popt1

```
[97]: x_model = np.linspace(min(x), max(x), 1000)
y_model = Gauss1(x_model[180:], *popt1)
[98]: plt.plot(x,y,drawstyle='steps-mid',lw=1)
plt.plot(x_model[180:], y_model, color='r')
#plt.plot(x,Gauss(x,popt[0],popt[1],popt[2])+331.72950983+ -3.28388626*(x +22.
→47506987))
plt.xlabel('Tiempo [h]')
plt.ylabel('ICC')
plt.title('Material T9 180 nm')
```

```
[98]: Text(0.5, 1.0, 'Material T9 180 nm')
```



