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Abstract

Modeling and simulation of photovoltaic systems under partial shading

conditions

This thesis introduces a methodology for modeling commercial photovoltaic panels at the cell

level operating under partial shading conditions. In the first part, a review of the literature

is presented, focusing on the proper representation of the current-voltage characteristics in

both forward and reverse bias, the mathematical formulation, the circuit model, and the

estimation of parameters for photovoltaic cells.

In the second part, the single diode model (SDM), the direct-reverse model (DRM), and

Bishop’s model are introduced, emphasizing their current-voltage relationship, mathematical

formulation, circuit model, and parameter requirements.

In the third part of the thesis, a procedure to obtain I-V curves in panel terminals without

the need for any physical intervention is detailed. This procedure is necessary to compare

the behavior of the three models analyzed in both quadrants. The procedure requires a panel

without a bypass diode and measurement equipment capable of acquiring current, voltage,

temperature, and irradiation.

After considering the evaluation of some metrics such as root mean square error (RMSE)

and mean absolute percentage error (MAPE), Bishop’s model is selected for use in the

methodology.

In the fourth part, a methodology to estimate the parameters of Bishop’s model is proposed,

which formulates the estimation of the parameters as an optimization problem. The metho-

dology uses a genetic algorithm, and it is validated using information from two commercial

panels. The curve reconstructions for each technology are evaluated using metrics such as

RMSE and MAPE to assess the accuracy of the models.

Keywords: single diode model, Bishop’s model, partial shading, photovoltaic cell, cir-

cuit modeling, direct mode, reverse mode
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Resumen

Modelado y simulación de sistemas fotovoltaicos bajo condiciones de

sombreado parcial

Esta tesis presenta una metodoloǵıa de modelado de paneles fotovoltaicos comerciales a nivel

de celda operando bajo condiciones de sombreado parcial. En la primera parte se realiza

una revisión de la literatura sobre la representación de celdas fotovoltaicas, en la que se

consideran caracteŕısticas importantes como la formulación matemática, el modelo circuital,

la representación apropiada del comportamiento en modo directo e inverso y la estimación

de parámetros.

En la segunda parte, se exponen algunos de los modelos más utilizados en la literatura para

el modelado de celdas fotovoltaicas, Modelo de un solo diodo (SDM), Modelo DRM y el

modelo de Bishop, prestando especial atención a la relación corriente-voltaje, la formulación

matemática, el modelo circuital y los parámetros necesarios para su evaluación. Para modelar

los paneles a nivel de celda, la tercera parte se enfoca en detallar un procedimiento para

obtener las curvas I-V en terminales de un panel, sin necesidad de ninguna intervención

f́ısica. Para lo se requiere un panel sin diodo de bypass, información del panel obtenida al

sombrear el panel y algunos equipos de medida que permitan adquirir corriente, voltaje,

temperatura e irradiación.

En la tercera parte de la tesis se detalla un procedimiento para obtener curvas I-V en termi-

nales del panel sin necesidad de intervención f́ısica alguna. Este procedimiento es necesario

para comparar el comportamiento de los tres modelos analizados en ambos cuadrantes. El

procedimiento requiere un panel sin diodo de derivación y un equipo de medición capaz de

adquirir corriente, voltaje, temperatura e irradiación.

Después de considerar la evaluación de algunas métricas como el error cuadrático medio

(RMSE) y el error porcentual absoluto medio (MAPE), se selecciona el modelo de Bishop

para su uso en la metodoloǵıa.

En la cuarta parte, se propone una metodoloǵıa para estimar los parámetros del modelo de

Bishop, formulando el problema de estimación de parámetros como un problema de opti-

mizavión. La metodoloǵıa utiliza un algoritmo genético y se valida con información de dos

paneles comerciales. Las reconstrucciones de curvas para cada tecnoloǵıa se evalúan utilizan-

do métricas como RMSE y MAPE para evaluar la precisión de los modelos.

Palabras clave: modelo de un solo diodo, modelo de Bishop, sombreado parcial, celda

fotovoltaica, modelado circuital, modo directo, modo inverso.
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1 Introduction

The need to supply the energy demand in a sustainable way has generated the growth of

renewable sources participation in the worldwide energy matrix [1]. From 2012–2021, the

installed capacity of renewable energy has grown exponentially. The year 2021 was decisive

for the energy transition because renewable energies contributed to 81% of global energy ad-

ditions, resulting in 257 GW of additional installed capacity. Photovoltaic systems accounted

for more than half of renewable additions, with a record 133 GW by 2021, followed by 93

GW of wind power.

In Colombia, for example, photovoltaic technologies are attractive due to their energy po-

tential [2]. According to the solar radiation atlas, Colombia has an average irradiation of 3.9

kWh/m2/day, which is above the average of Germany, which is one of the countries with the

largest installed photovoltaic capacity. Some Colombian regions that are above the national

average are La Guajira (6 kWh/m2/day), Atlantic Coast (5 kWh/m2/day), and the Orino-

quia and Andean Region (4.5 kWh/m2/day). Also, the approval of Law 1715 [3] in Colombia

promoted an increment in the number of renewable energy projects. That law establishes

promotional instruments for the use of non-conventional energy sources. Some of the tax

benefits included in the law are annual rent reduction; VAT exclusion; duty exemption; and

accelerated depreciation of assets, among others. At the end of 2022, the Colombian mining-

energy planning unit, UPME by its acronym in Spanish (Unidad de Planeación Minero

Energética), had received a total of 4745 benefits applications and certificated 3262 renewa-

ble projects. 91.6% of the approved projects correspond to photovoltaic projects. Antioquia

had 456 projects with approved certifications, based on non-conventional energy source, of

which 93.64% corresponded to photovoltaic solar installations [4].

Although photovoltaic systems have advantages such as a life cycle of approximately 20

years and reduced maintenance, their energy production depends on the weather conditions

of the place where the system is installed, which can change quickly [5, 6]. The behavior

of the PV cell under particular environmental conditions is described by using the current-

voltage (I-V) curve because it provides relevant information about the transformed energy,

and can be used to calculate the maximum power that can be delivered to a load [7]. The

cell behavior for different irradiance and temperature conditions can be modeled using an

equivalent electrical circuit, which helps to represent the electrical phenomena associated

with the energy transformation process [8, 9, 10, 11]. Therefore, it is necessary to include all

the elements that intervene in its operation, and also studying the phenomena involved in

its energy production to obtain more accurate predictions.
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When analyzing the behavior of PV arrays, aspects such as power generation, shading im-

pact, Maximum Power Point Tracking (MPPT) controller design [12], and degradation are

examined. However, power generation is one of the most important aspects because it is

associated with performance and reliability. The power output in PV systems is mainly af-

fected by partial shading, a condition that forces the shaded cells to consume power rather

than produce it [13]. This condition, known as reverse bias, imposes a negative voltage on

its terminals, making the cell operate in the second quadrant Q2 (negative cell voltage and

positive cell current), thus consuming power.

The first step in performing a proper analysis of PV arrays is to represent the operation

of the PV cells and modules using circuit models such as the Single Diode Model (SDM)

[14, 15, 16, 17], which is widely used due to its tradeoff between complexity and accuracy [18],

or the Double Diode Model (DDM), which is more accurate to represent the p–n junction at

low irradiance levels [19, 20]. Both SDM and DDM have been used to model commercial PV

cells, modules, and panels made of monocrystalline silicon (mc-SI) or polycrystalline silicon

(pc-SI).

However, when a PV panel is under partial shading, the shaded PV cells might not generate

energy; on the contrary, they might consume the energy produced by the other cells in the

panel. It is worth noting that neither SDM nor DDM can accurately represent this pheno-

menon at the cell level. This condition can be addressed by using an avalanche mechanism

to represent the reverse bias at the cell level. This is the case of the Bishop model [21, 22],

which introduces a variation to the SDM that affects the shunt resistance current (Rsh) by

means of an ohmic term and a non-linear multiplication factor. Such a model, proposed in

[23], was evaluated in I-V curves of mc-SI cells, taken from a database of the ESTI labora-

tory (the European Solar Test Installation) [24]. In particular, the parameters proposed in

[23] correspond to the average value of the parameters obtained for each cell in the databa-

se; unfortunately, that study does not include a detailed procedure to estimate the model

parameters. Other authors have used the Bishop model to analyze PV systems [25, 26, 27]

because it estimates the cell behavior under partial shading conditions at the cell level, but

in general, the parameters suggested by Bishop are adopted when the second quadrant is

analyzed [23]. Another model designed to study the behavior of PV cells under partial sha-

ding conditions is the Direct Reverse Model (DRM). This model introduces a variation to

the DDM using linearized parts from the I-V curve in Q2. The DRM can reproduce the

operation of cells in either direct or reverse biasing modes to account for the influence of

variations in temperature and solar irradiance [28].

Although the Bishop model is one of the most cited and adopted models to represent a PV

cell operating under partial shading conditions [13, 29, 30, 31], there is not a clear procedure

to estimate its parameters; instead, authors typically use parameters already reported in the

literature. A similar situation occurs for the DRM [32]. Given the importance of having an

accurate model for PV power generation analysis under partial shading conditions, there

is a need for procedures to identify the parameters of those models. Moreover, procedures
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with a good relationship between complexity and accuracy, and the ability to be applied to

different PV models, are also needed.

The previous mathematical models require the accurate identification of a set of parameters

to obtain a high–performance in the reproduction of the cell behavior. Several parameter

estimation techniques have been reported in the literature for the different PV cell models.

Those techniques can be divided into two categories: analytical and optimization techniques

[33, 34, 35]. Each one of these techniques requires some initial data, which can be obtained

from the manufacturer’s datasheet or experimental tests.

Analytical methods use a series of mathematical equations for parameter extraction, based

on equations that relate the output current and voltage of the system, and, despite those

approaches determining the representative parameters of a PV model, those depend on

variables under standard test conditions (STC). If those parameters are not adequately

defined, analytical methods are unable to reproduce the variations in PV profiles due to

changes in temperature and irradiance. Typically, these techniques depend on the technical

data provided by the solar panel manufacturer. However, there are certain disadvantages

when using this information, since there may be some variability between the behavior of

the panels within the same manufacturing batch. Additionally, over time and use under

real operating conditions, it is to be expected that the fill factor of a panel will not remain

constant. In other words, the information in the data sheet may not accurately reflect the

behavior of the panel as usage time increases. Furthermore, so far, only techniques based

on technical data have been developed to estimate the parameters that represent the first

quadrant in photovoltaic cells or panels. No study has been carried out to effectively evaluate

the parameters of models that represent the behavior of photovoltaic cells in the first and

second quadrants using data sheet information. Although these methods are simple but have

several complex mathematical operations, which increases the computational time. Also,

the resulting models have low performance in the reproduction of different real operating

conditions [36, 37, 38].

The optimization techniques are classified into two groups, the deterministic and the stochas-

tic ones. For the deterministic ones, there are solution methods such as Newton-Raphson

[39], Gauss-Seidel [40] and other [41] that are related to methods that require a convex,

continuous and differentiable expression, given this context, it is necessary to clarify that

the convergence of an algorithm can trapped within a local minimum due to the complexity

and nonlinearity of the mathematical model. On the other hand, the stochastic methodology

is divided into two groups: heuristics and metaheuristics. For parametric estimation, the

metaheuristics approach has been more adopted because it includes random selections of

candidate solutions and setting parameters. Here, an objective function is evaluated to find

the best solution, also a statistical analysis is required to validate the results [42, 33]. These

alternatives do not require an accurate mathematical model; instead, they need an objective

function and a parameter search range, which can be more effective and less time-consuming.

Furthermore, those techniques evolve several individuals for the problem, which reduces the
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procedure’s sensitivity to the initial guess and provides a strong ability to jump out of a

local optimum [35].

In short, optimization techniques can be applied in many PV applications as long as the equa-

tion to be optimized can be expressed in terms of an objective function, i.e. a mathematical

model that can be used in an iterative process [43, 44, 33]. However, the use of optimization

techniques requires trade-offs between accuracy, computation time, and computational re-

sources, which are defined by the method programming and objective function. Optimization

techniques have been widely used for estimating the parameters of cells (or modules) mostly

using the SDM or the DDM, which do not represent the behavior of the cell in the second

quadrant in a proper way. On the other hand, the Bishop model improves the representation

of the cell behavior in the second quadrant, but eight parameters of an implicit model must

be determined. However, to the best of the authors knowledge, procedures for estimating

its parameters are not reported in the literature. Most of the works concerning PV cell or

arrays analysis based on Bishop model, adopt the parameters from other studies previously

reported.

Recent publications on the parameter estimation problem suggest that metaheuristics methods

have become a relevant research area for all PV circuit models. For instance, the Slime

Mold Algorithm (SMA) [45], the Grasshopper Optimization Algorithm (GOA) [33], Princi-

pal Component Analysis (PCA) [46], Particle Swarm Optimization (PSO) [47], Triple-Phase

Teaching–Learning–Based Optimization (TPTLBO) [48], and Perturbed Stochastic Fractal

Search (pSFS) [49] have been used to extract the parameters of the SDM. For the DDM,

some of the solutions that have been adopted include the Moth Flame Optimization [50],

improved Differential Evolutionary Algorithm [51], the Pattern Search (PS) algorithm [19],

the Crow Search Algorithm [52], and the Wind-Driven Optimization (WDO) algorithm [53].

However, Genetic Algorithms (GA) are the most widely adopted solution for parameter

estimation in PV systems.

For example, the work reported in [54] proposes a new variant of the GA, which integrates

a new crossover operation to provide a good balance between the search for the best solu-

tions and the diversification of the search space; such a solution was designed to identify

the electrical parameters of different PV cell models (SDM and DDM). Similarly, in [55]

the authors extract the solar cell parameters for a Kyocera panel (KC200GT) using GA. In

[56], an inverse modeling method for PV panel is proposed, which is based on parameter

identification through GA. Such a process generates random groups of 5 parameters which

are used in the SDM; then, the parameters that generate a power output most similar to the

experimental value are selected. On the other hand, [57] proposes an algorithm for datasheet

parameter extraction of photovoltaic modules for the SDM, where the extracted parameters

are obtained by approximation using a GA. Authors in [58] present the implementation of a

continuous population genetic optimization algorithm (CGA) as a solution method for the

parameter estimation of the diode model (SDM) in a PV panel from experimental data.

Such a procedure was validated with four different panels: Solarex MSX60, SOLAR SJ65,
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KYOCERA KC200GT, and STP245S. In [59] a GA is used to analyze the behavior of the

estimated parameters as irradiation and temperature changes. Similarly, in [60] is performed

a comparative analysis of the parameter estimation of the SDM, evaluating the results pro-

vided by the Newton Raphson algorithm against optimization techniques such as GA and

particle swarm optimization (PSO). Besides, hybrid techniques, which use both analytical

formulations and numerical algorithms, have been proposed to improve computation time or

accuracy. In [61], mathematical formulations to translate I-V curves and a Moth Flame algo-

rithm are used to take into account the PV cell parameters sensitivity to weather conditions

of the SDM.

All the works reviewed in the previous paragraph use models such as the SDM and the DDM,

which focus exclusively on the analysis of the first quadrant. However, it was not possible to

find research works focused on the problem of parameter estimation for models representing

both the first and second quadrants as an optimization problem. From the analysis of the

results obtained, no analysis of the quality of the solutions was observed that goes beyond the

evaluation of the objective function and the computing time. That is, there is no evidence

of the repeatability of the responses when executing the technique multiple times, or the

variability of the parameters obtained in each execution.

In the literature, research efforts have focused on comparing the performance of models at

the cell level [62, 63] but the analysis only extends to the module level, not to arrays. On the

other hand, there is the evaluation of the operation in the second quadrant of a photovoltaic

cell (non-uniform radiation condition) [64, 23], but this analysis is not generalized to the

configurations of known photovoltaic systems. In other cases, a comparison of the behavior

of each configuration is made, but the shading study is carried out at the module level and

not at the cell level, which reduces the precision of the results [64, 65, 66]. Additionally, there

are studies that use the model that best fits the mode of operation in the second quadrant,

but the methodology used to estimate the model parameters is not specified [67, 22, 21].

Chapter 2 focuses on the state of the art of modeling photovoltaic cells in both the first

and second quadrants, considering information such as topology systems, models, parameter

estimation techniques, and simulation tools. Some concepts related to the circuital model

representation of solar cells, hot spot conditions, direct mode, and reverse mode operation

are presented in Chapter 3. Also, Chapter 3, includes the circuital representation and the

relationship of current-voltage for SDM, Bishop model, and DRM. The final section of Chap-

ter 3 presents the parameter estimation problem as an optimization problem. Next, Chapter

4 details the non-invasive procedure for the extraction of the I-V cell curve in photovoltaic

panels, including a description of the experimental platform, and showing the I-V cell curves

obtained for two different photovoltaic panels. Chapter 5 presents the behavior comparison

between three models (SDM, Bishop, DRM) when the estimation of the I-V curve in both

Q1 and Q2 is needed. For this analysis, the estimation of the parameters of each model was

developed using genetic algorithms and Simulink simulations. Each model was validated by

comparing two error measures (RMSE and MAPE) obtained from the I-V curve reconstruc-
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tion of an experimental PV cell for each model, i.e. in both the first (Q1) and second (Q2)

quadrants.

The purpose of Chapter 6 is to propose a methodology to estimate the parameters of the

Bishop mathematical model to represent a PV cell, this using a Chu-Beasley genetic algo-

rithm. The estimation process is divided into two stages; in the first stage, the curve in

the first quadrant is modeled based on the estimation of SDM parameters; then, using the

first five calculated parameters, the Bishop parameters are estimated to reproduce the I-V

curve in both the first and second quadrants. In the second stage, the behavior in the first

and second quadrants is modeled entirely by the Bishop model. Both estimation stages are

validated based on the I-V curves of two PV cells (with different technologies) using the root

mean square error (RMSE).

Finally, the conclusions and future lines of research derived from this work are given in the

Chapter 7.



2 State of the art about the

representation of photovoltaic cells in

the first and second quadrants

The modeling of photovoltaic systems is a required topic in energy estimation studies, the

analysis under partial shading conditions, and the design and development of controllers,

among other applications. Modeling can be done through simulation tools or using analytical

formulation. Both solutions require a representation of the physical phenomena through a

circuital model and a set of equations that describe their behavior; both, in general, are

validated using experimental schemes. Commonly, the complexity of the system of equations

requires iterative algorithms to achieve its solution. Some of the most commonly used circuit

models are the SDM [68, 16, 69], the DDM [62, 63, 70], and the Bishop model [23, 21, 26, 25].

The granularity of the model can be considered at the cell, module, or array level in a

generalized way, and these models are applied to evaluate the system’s behavior under a given

operating condition. This behavior will depend on the panels’ manufacturing characteristics

and the radiation and temperature conditions [71]. Ideally, those two variables are assumed

to be constant for all the cells in the panel or array; however, some conditions, such as lack

of maintenance, shading, or heat sources, can provide non-uniform conditions [66, 72].

The parameters of a photovoltaic cell model can be obtained through the information pro-

vided in the manufacturer datasheet, or using tests that include electrical measurements

and environmental conditions [73]. Conventional procedures to estimate these parameters

can be classified into analytical and numerical methods. In the case of analytical methods

[74], several points of interest are taken from the Current-Voltage (I-V) curve, such as the

open circuit voltage Voc, the short circuit current Isc, the voltage and current at the point of

maximum power (Vmpp and Impp), and the slopes of the axial intersection of the curve. This

methodology has the advantage of a simpler and faster calculation of the parameters, but

the accuracy of this technique depends on the correct selection of these points in the curve.

On the other hand, numerical methods are based on fitting an experimental curve using

iterative algorithms [73]. These techniques have a higher computational cost since adjusting

all points of the curve is necessary. Here, the accuracy will depend on selecting the initial

parameters, the cost function, and the fitting algorithm. In the literature, it is possible to

find the application of evolutionary algorithms in estimating parameters of electrical models

for photovoltaic cells. These algorithms optimally estimate the parameters, minimizing an
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objective function, where it is also required to define a search space per parameter to be

estimated [18].

The objective function allows to evaluate the performance of the estimation method effecti-

vely. The most common objective functions are the root mean squared error (RMSE) [75],

the mean absolute error (MAE) [76] and the relative absolute error (RAE) [73]. The objec-

tive function must be minimized during the estimation process, using the parameter values

defined in the search range. Some of the most common techniques for estimating parameters

of the electrical model of a photovoltaic cell are: genetic algorithms (GA) [14], differential

evolution algorithm (DE) [77], pattern search (PS) [78], particle swarm optimization (PSO)

[11] and Simulated Annealing (SA) [79].

The cell technologies used in most of the research works found in the state of art are mo-

nocrystalline and polycrystalline silicon, using the SDM and the DDM as representation

models [18, 79, 80].

Another important aspect of the PV system is the integration of bypass diodes in the modules

as a partial solution to the mismatching problem; this is because the bypass diode limits, but

does not eliminates, the impact on the power production. Such diodes must also be included

in the mathematical models of photovoltaic systems; and they can be represented through

different voltage-current relationships such as the ideal model, the linear model, and the

exponential model (higher complexity) [81, 82].

In this sense, to evaluate a photovoltaic system in a given condition, it is necessary to

take into account the considerations identified in the previous paragraphs; and, in general,

simulation tools are used to manage the complexity of the problem [23, 83, 28].

The following is a review of the information found in the literature on circuit representation

models for photovoltaic systems, which considers the granularity of the study and the most

common simulation tools.

2.1. Modeling of the first quadrant behavior

The most commonly used circuit model for solar photovoltaic representation in the literature

is the SDM [66, 84, 85]. This model allows considering non-uniform operating conditions

at the module, panel, or array level, but it is not possible to evaluate the condition of

mismatching due to partial shading at the cell level, since it is not valid in the second

quadrant.

SDM and DMM have been used to model commercial cells such as monocrystalline and

polycrystalline silicon, but have also been used to represent cells with emerging technologies

such as bifacial. For example, in [86, 87] bifacial cells; were modeled using the SDM to

evaluate energy production, presenting as the main challenge the estimation of the irradiation

received on the back side. The DDM has also been used to model the bifacial cells, in [88]

each cell has been represented by two monofacial cells in parallel, which allows to evaluate

the effect of the operation of one face on the other. It is also possible to find some analyses
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in bifacial cells that are not based on circuit models, such as the one presented in [89], which

proposes an estimation of power that depends on front and rear irradiation, on temperature,

on the temperature coefficient at the cell level, and the nominal power of the module.

For example, in [90], non-uniform operating conditions in photovoltaic arrays are analyzed

using the Lambert-W function, which helps to obtain an explicit relationship between the

voltage and the current at the module level, assuming that the entire module has the same

irradiation condition. Then, using Kirchhoff’s laws, a system of equations is obtained and

then described using a Jacobian matrix, which can be solved using toolboxes included in

simulation tools. In [91], authors analyzed the influence of partial shading of a string (2×1),

considering two modules per panel. Here, each module is protected through a bypass diode,

which was simulated, assuming that would receive two different irradiance levels. Then, the

authors proposed a centralized controller for the DC-DC converters stage to reduce the num-

ber of sensors needed for MPP tracking. Similarly, it is possible to find the SDM in power

estimation applications extended to different array configurations proposed in the literature

(Series (S), Parallel (P), Series-Parallel (SP), Total-Cross-Tied (TCT), Bridge-Linked(BL),

and Honey-Comb(HC)), as in the case of [66, 84, 92], where the susceptibility of each con-

figuration under specific shading conditions is evaluated. The SDM has also been used for

the design of photovoltaic array simulators that allow the evaluation of shading conditions,

such as those presented in [93, 94, 95, 96, 97]. In [94] a Matlab simulator that provides the

I-V and P-V curves was developed. This, for extensive arrays, i.e. an SP photovoltaic array

with 10 modules per branch, and 100 branches connected in parallel. This modeling method

also considers shading conditions at the module level. On the other hand, authors in [93],

developed a simulation in Simulink, using the datasheet information of MSX 60 PV. Three

bypass diodes were included in the simulation, one by region (12 cell series each). Each re-

gion is exposed to a different irradiation level, and then the P-V curve is reconstructed, and

the maximum power point is calculated. In [97] authors also used Simulink to analyze the

behavior of different configuration when are affected by different shading patterns. In [98],

using the Simulink tool, the behavior of different configurations is analyzed when are affected

by typical shading patterns. The authors included a comparison through Voc, Isc, and Pmpp

values, highlighting the configuration Honey-Comb because presented better performance

under the proposed scenarios.

In [95] a procedure to adjust the 3 points of interest of the curve (short circuit, open circuit,

and maximum power point) is proposed: the procedure considers changes in irradiation and

temperature using linear equations. This procedure requires knowing at least the standard

conditions (STC) and two I-V curves (at different temperatures and irradiation). Then, the

five model parameters are calculated using the equation that describes the I-V relationship

in the SDM, evaluated at the three points of interest described above. In [96], a simulator

based on the LTspice IV software is shown, which is used to calculate the I-V curve at the

module level. This work was experimentally validated using a string of six monocrystalline

modules.
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The authors in [99] propose extracting parameters of the STM6-40/36 modules using the

tree seed algorithm. The analysis includes comparing results between different optimization

techniques and the analysis of the answer quality when the number of iterations of the

technique is increased.

In [100], an I-V curve is used, in addition to the information from the panel in the STC,

to estimate the temperature and irradiation of the panel at the time of the test, as well as

the resistance values of the SDM. The parameter estimation is performed through the Trust

region algorithm, and it is necessary to adjust the parameters in relation to temperature and

irradiation. Here, to solve the model, the Lambert-W function is used.

DDM is commonly found in the literature for modeling photovoltaic systems [28]. In [101] a

comparative analysis is made between the models of one diode, two diodes, and the variations

resulting from neglecting the series and shunt resistances. The estimation of the parameters

in each model was carried out with the help of the Levenberg Marquard algorithm, using a set

of equations for the problem of the initial parameters that allow a good relationship between

computational cost and accuracy. Another comparative study is presented in [102], using

SDM and DDM with some variations, such the inclusion of the series and shunt resistances.

Here, all models were simulated and then compared with an experimental curve evaluating

the RMSE metric. The DDM, like the SDM, does not allow the impact of partial shading to

be evaluated at the cell level.

Table 2-1 compares the reviewed works that use the SDM (first-quadrant analysis). In all

the works reviewed in the table, the modeling procedures were developed at the module level.

None of the works presented analysis at the cell level. Also, Table 2-1 includes information

on the analyzed reference: panel, string, or a typical configuration (Topology system), the

modeling of the system: circuital model, which generally uses a circuit simulation tool (Si-

mulation Tool); or through a set of equations that relate voltages and currents of the system

(Mathematical formulation). The parameters estimation technique used can be based on the

datasheet parameters at STC conditions such as (Isc, Voc, and Pmpp), using Isc, Voc, and

Pmpp obtained experimentally (Experimental) or through GA. The latter requires a techni-

que that allows the evaluation of the implicit current-voltage relationship (I-V evaluation);

for references that do not include this information, it will be found (N.I. - not included) or

(N.A. - not apply) in case a circuital simulation tool was used, N-R for Newton-Raphson,

L-W for Lambert-W function, and L-M for Levenberg–Marquardt. Information related to

the simulation tool was also sought, but if the reference does not indicate information about

the tool used for the analysis, then (N.I. - not included) is reported. Finally, it is considered

whether experimental validation of the results obtained was carried out. It is also analyzed

at what level the voltage and current data were taken (cell, panel, or array terminals). If

there are measurements at the cell level, how the data was acquired will be reviewed since,

to access the terminals of each cell in a module, it is necessary to affect the rear face of the

panel.

It should be noted that only in some works, such as [84, 90, 92, 95, 101], the validation of
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Ref.
Topology

Modeling
Parameter I-V Simulation Experimental Acquisition

system estimation evaluation tool validation terminals

[84]
SP-TCT Mathematical Fit using (Irr, T)

N.I. N.I. Yes
String and

BL-HC formulation Datasheet panel

[90] String Math. form. N.A. L-W Matlab Yes String

[91] Array
Mathematical Fit using (Irr, T)

N.I. Matlab No N.A.
formulation Datasheet

[92]
SP-TCT Mathematical Fit using de (Irr, T)

L-W
Matlab/

Yes String
BL formulation Datasheet Simulink

[95]
Panel Circuital Experimental

N.A. PSCAD Yes Panel
(4 modules) model Fit using (Irr, T)

[101] Panel
Mathematical Fit using (Irr, T) N–R Matlab/

Yes Panel
formulation Datasheet, GA L–M Simulink

[93] String
Circuital Fit using (Irr, T)

N.I. Matlab No N.A.
model Datsheet

[97] S-SP-HC
Circuital Fit using (Irr, T)

N.I.
Matlab/

No N.A.
model Datasheet Simulink

[98]
S-SP Circuital Fit using (Irr, T)

N.I.
Matlab/

No N.A.
BL-HC model Datasheet Simulink

Table 2-1: Summary of works based on the single diode model

the modeling stage was performed using experimental I-V curves. In [95, 101], the curves are

taken at panel terminals, considering that each analyzed panel has more than one bypass

diode to do the shading analysis per module. On the other hand, in [84, 90, 92], current and

voltage measurements are taken at the terminals of the analyzed arrays to evaluate power

losses due to partial shading. In none of the cases were curves analyzed at the cell level or

study of power losses at the cell level due to partial shading.

2.2. Modeling of the second quadrant at cell level

Since the models analyzed in the previous section only adequately analyze the cell behavior

in the first quadrant, it is necessary to consider a model that evaluates the mismatching

conditions due to partial shading at the cell level. It can reproduce the inverse mode of

operation, which is generally associated with avalanche mechanisms that affect the primary

cell currents.

Bishop’s model generally represents the behavior of PV cells in the second quadrant. The

model was proposed in [23], and it analyzes the ESTI database made up of the I-V curves

of monocrystalline silicon cells. The parameters proposed in the article refer to the mean

value of the parameters obtained for each cell in the database. Unfortunately, there are

no details on the procedure used to estimate the parameters of each curve. Many authors

have also considered Bishop’s model for the analysis of photovoltaic systems [26, 25, 103],

since it allows to estimate the behavior under conditions of partial shading at the cell level.

However, no emphasis is placed on the estimation of the model parameters. In general, for
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the case of the parameters that affect the reverse characteristic, those proposed by Bishop

in [23] are adopted. For example, in [25], a simulation method for diagnosing photovoltaic

systems is proposed. The photovoltaic current of the shaded region is calculated as a ratio

between the photovoltaic current under standard operating conditions, the irradiance value,

and the transmittance of the applied shade. Although there is no details concerning the

estimation of the parameters related to the first quadrant, it can be observed that those

reported in [26] are assumed for the parameters associated with the second quadrant. In

[103] a general method for modeling arrays and modules is proposed, seeking to generate

the I-V relationship regardless of whether the arrays or modules have different electrical

and geometric configurations. Through Kirchhoff’s laws, the general system of equations

is obtained, and the damped Newton method is used for its solution. The construction of

the array is done in layers, the first from cell to module, and the second from module to

array. The document does not specify how the estimation of the model parameters is carried

out. On the other hand, this approach does not have a theoretical foundation based on

circuit analysis, so it requires a detailed study for its validation, in which different array

configurations can be evaluated, and results contrasted with experimental data.

Bishop’s model has also been used to develop tools to evaluate the behavior of cells, modules,

arrays, and large-scale photovoltaic systems, as is the case of PVSIM [26]. The computer pro-

gram allows to consider elements such as bypass and blocking diodes. Regarding the model

parameters, the tool included data for different operating points (irradiation and temperatu-

re), allowing it to interpolate based on the temperature defined by the user. In addition, the

user can include the desired set of parameters in the simulation; hence, information would

be required at the cell level to estimate the parameters.

The authors of [104] propose to improve the power generation, under shading conditions

using the KenDoKu reconfiguration. For the simulation stage, the Bishop model is used in

LTSpice software. The results are compared with TCT, BC, HC, and SP configurations using

the power losses, fill factor and global maximum power.

Some works have used the Simulink tool to simulate the Bishop model [21, 105, 106]. As

with [21], the authors simulate and analyze PV arrays under uniform and partial shading

conditions for all different PV array configurations (S, P, TCT, BL, and HC). A PV module

block diagram is created in Simulink. Then, different shading patterns are applied to estimate

the power losses using the different array configurations. While the authors in [105] analyze

the incidence of parameters such as the series resistance Rs, the shunt resistance Rsh, and

the saturation current I0 in the reproduction of the I-V curve. On the other hand, in [106],

the hot spot phenomenon and the power dissipated in a shaded cell of a panel are simulated.

In the case of [107], the PSpice environment is used to model solar modules working partially

shaded when they work with different configuration connections of the bypass diode.

In addition, Bishop’s model is used to analyze faults for the photovoltaic generator, as

presented in [108], starting from a set of parameters that represent a panel under normal

operating conditions. Then, each parameter is varied separately to identify how it affects
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the reproduction of the I-V and P-V curves. In the case of [109], a Neuro-fuzzy classifier

for fault detection in photovoltaic modules is presented. Here, the classification of faults is

bypass diode fault, blocking diode fault, and increased series resistance. In [110], a fuzzy

logic approach is used in the fault classification, based on the level of shading (acceptable,

or serious).

Some of the studies reviewed use the Newton-Raphson algorithm to evaluate the current-

voltage relationship, as is the case of [22], where a method for modeling and simulating the

electrical behavior of PV installations under any shading situation is presented. The model

discretizes currents and voltages in PV cells, which are connected in series and parallel

associations. In the study proposed in [111], the analysis of the effect of the bypass diode in

a PV panel under shading conditions is presented. While the work presented in [112], cell-

by-cell models a large-scale PV system using the Jacobian matrix. In [113], the effect of the

bypass diode in reducing power losses due to partial shading is also analyzed, estimating the

contributions of sets of shaded and unshaded cells. On the other hand, in [114], the Lambert-

W function is used to model the voltage-current relationship, to estimate the maximum power

point in shading conditions.

Table 2-2 presents the consolidation of articles that use the Bishop model for modeling or

PV analysis purposes. In addition to the reference, the level of granularity of the mode-

ling is included, which can be cell or module level. Modeling can be done circuital using a

simulator or mathematical formulation (Circuital or Mathematical, respectively). Parame-

ter estimation can be developed using the parameters in the datasheet, although in some

cases, the parameters presented in [23] (Bishop) are used. Implicit current and voltage (I-

V) evaluation can be performed using the Newton-Raphson (N-R), Damped Newton (DN),

Lambert-W (L-W) algorithm, or the Jacobian matrix (JM). Regarding the model simulation

tools, the following were found: Matlab, Simulink, PVNet, and Pspice. In only a few cases

is experimental validation performed through current and voltage data. However, this infor-

mation is acquired at panel terminals. In some of these works, although modeling is carried

out with granularity at the cell level, electrical information is not acquired at the same level.

That is, no information is acquired in cell terminals. It is noted that most of the studies have

granularity at the cell level in the first and second quadrants. However, those works generally

use the same parameters for all cells. No studies were found in which a general modeling

procedure is proposed. Many studies assess performance at the panel or array level. On the

other hand, there is a need to estimate the model parameters since, in the reviewed works,

data from the literature is almost always adopted. The authors present their parameters in

other cases without emphasizing the model estimation process.

In the case of shading analysis in photovoltaic systems using the Bishop model, some studies

present the validation of the modeling through comparison with experimental I-V curves, as

is the case of the works presented in [25, 31, 111, 103, 109]. In all cases, the experimental

voltages and currents data were obtained at the terminals of the panels. In these works, as

in those presented in Table 2-1, there was no analysis of the cell behavior regarding partial
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Ref. Gran. Modeling
Parameter I-V Simulation Experimental Acquisition

estimation evaluation tool validation terminals

[21] Cell Circuital Bishop N.A. Simulink No N.A.

[22] Cell Mathematical N.I. N-R N.I. No N.A.

[23] Cell Mathematical
Database

Sweep on Vd PVNet No N.A.
mc-SI cells

[25] Cell Mathematical N.A. N-R N.I. Yes Panel

[31] Module Circuital N.I. N.I N.I. Yes Panel

[107] Cell Circuital Bishop N.A. Pspice No N.A.

[111] Cell Mathematical N.A. N-R N.I. Yes Panel

[103] Cell Mathematical N.I. DN Matlab Yes Panel

[115] Cell Mathematical N.I. N.I. N.I. No N.A.

[105] Cell Circuital N.I. N.A. Simulink No N.A.

[114] Cell Mathematical N.I.
L-W

N.I. No N.A.
N-R

[112] Cell Mathematical N.I.
JM

Matlab No N.A.
N-R

[109] Module Circuital
Fit using (Irr, T)

N.A.
Matlab/

Yes Panel
Datasheet Simulink

[110] Cell Mathematical N.I. N.I. Matlab No N.A.

[113] Cell Mathematical N.I. N-R N.I. No N.A.

[106] Module Mathematical N.I. N.A. Simulink No N.A.

Table 2-2: Summary of works based on the Bishop model

shading.

2.3. Reverse mode characteristic

The characterization of commercial photovoltaic cells in both direct and reverse operation

modes has been the goal of different studies [116, 117, 118], since manufacturers generally

do not provide information about the behavior of cells in reverse polarization. For example,

in [116], the electrical characterization was carried out on a set of photovoltaic cells through

dark curves (i.e., without incident irradiation). Seven groups of cells were selected, of which

4 were monocrystalline (mc-SI) and the rest polycrystalline (pc-SI). From the experiments

developed, it was demonstrated that the behavior under reverse polarization conditions of

cells of the same reference is subject to considerable variations. This affects both the slope

of the reverse characteristics at low bias voltages and the breakdown voltage value.

The breakdown voltages (Vbr) for pc-SI cells are within the range [12V, 20V], while for mc-SI

cells, the breakdown voltages can extend up to 30V. The slope of the curves is slightly higher

in the case of pc-SI cells, indicating a larger current component due to leakage currents. On

the other hand, in the case of mono-Si cells, the breakdown voltage can have a wide variation

range.
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In [117], 10 cells from 12 different manufacturers were selected. In this case, dark curves were

also used, but analysis through thermal images was included. To obtain the I-V curves, each

cell was subjected to a reverse voltage sweep for approximately 1 minute. Data acquisition

ends when the test current exceeds the cell short circuit current (Isc). The curves obtained

show a great dispersion, even when comparing cells within the same batches. The variation

of avalanche rupture and thermal rupture is highlighted.

Finally, Alonso et al. [118] present the characterization of 33 cells that form a photovoltaic

panel. To achieve this, the panel had to be prepared to access the terminals of all the cells.

Then, each cell was characterized by obtaining the dark and illuminated I-V curves by

means of a four-quadrant programmable source. In this work, it is also possible to find a

high dispersion in the inverse characteristic; For example, it is highlighted how some cells

have high slopes in the reverse zone that achieve high currents at small reverse voltages.

After analyzing the information presented by the authors in [116, 117, 118], an experiment

was carried out to characterize 9 photovoltaic cells from the same batch. The cells were

connected in series, and the voltage sweep was achieved using a programmable electronic

source. Then, the cell of interest was shaded 50% of its area. The I-V curve cells are presented

in Figure 2-1.

The behavior in the first quadrant is within the range [0V, Voc], while in the second quadrant,

it is limited by the breakdown voltage (Vbr). For low reverse bias voltages, near to Isc, the

current is approximately a linear function of the voltage (ohmic behavior - ohmic region).

The slope measures the leakage currents that appear as an additional component to the

saturation current. Leakage currents originate from cellular defects and impurity centers in

the semiconductor (represented by a shunt resistor).

At low bias voltages, the current is distributed over the entire cell area, and heating occurs

more or less uniformly. As the bias voltage increases negatively, the cell suffers high currents.

Since the cells do not have a homogeneous structure, can suffer irreversible damage by

thermal breakdown. Under this condition, the current is locally concentrated, heating the

focal spot occurs, and damage to the cell encapsulation is expected [117].

Therefore, if a detailed analysis of a PV system is needed, it requires characterizing the

operation at the cell level. This information can be obtained from the I-V curve. However,

the cells are encapsulated within the modules, so it is not possible to take measurements of

the voltage and current directly from the cells in a non-invasive way.

However, only one work related to obtaining I-V cell curves in panels was found [119].

The work presents the inverse characteristic of each cell in a commercial panel. Still, this

procedure requires the welding of cables on the terminals of each cell for the voltage injection

(see Figure 2-2), which is necessary for the construction of the I-V curves. However, as shown

in Figure 2-2, the physical integrity of the panel was compromised, so it may not be able to

be used outdoors. Therefore, a contribution to the state of the art can focus on proposing

strategies that allow calculating the I-V cell curves in the first and second quadrants for

commercial panels.
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Figure 2-1: I-V curves in direct and reverse mode for cells of the same batch.
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Figure 2-2: Invasive method to obtain cell-level curves in commercial panels proposed by

[119].

On the other hand, in [120], modules with a standard structure (glass-EVA-cells-EVA-

substrate) were created from groups of crystalline PV cells. To access the terminals of each

cell, cables were soldered to the interconnections of the cells from the collector tape to allow

the measurement of the reverse voltage. This connection allows to select the number of cells

connected in series that form the module.

Therefore, a detailed analysis of a photovoltaic system requires characterizing the operation

of each panel at the cell level. This analysis can be achieved through the I-V curves of the

cells. However, as presented in the state of the art, it is not possible to directly measure
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the voltage and current of a cell in commercial panels without compromising the panels’

physical integrity, since accessing the terminals of each cell requires to affect the encapsula-

ting material of the panel. This intervention on the panel would prevent it from being used

outdoors. Hence, a contribution to the state of the art can focus on proposing strategies that

allow calculating the I-V cell curves in the first and second quadrants for commercial panels

without affecting the encapsulation.

2.4. Parameter estimation techniques

A photovoltaic cell, array, or system can be represented through I-V and P-V curves. The

nonlinearities of both curves can be reproduced using mathematical models such as those

described in Sections 2.1 and 2.2. Nevertheless, each model requires a set of parameters to

build the curves properly. There are different methods to estimate or extract the parame-

ters of some of the most common models. These methods can be classified as analytical,

deterministic, or metaheuristic.

The analytical methods use information from some of the points of interest, such as Isc, Voc,

and Pmpp. The relationship between voltage and current is evaluated at each point, obtai-

ning a number of equations equal to the number of parameters to be extracted. Analytical

methods can easily obtain the unknown parameters but rely on the values available in the

manufacturer’s datasheet, which may lead to a lack of accuracy [121].

Deterministic methods, such as Lambert W-function and Newton-Raphson, have a high local

search capacity but are highly dependent on the initial solution conditions, so can fall into

local optima [122].

Analytical and deterministic methods use forward modeling because they use manufacturer

information to reproduce the I-V curves. However, these methods don’t work correctly for

complex situations, such as if manufacturer information is unavailable or if the original

manufacturer parameters are inaccurate due to prolonged usage of the devices.

Finally, the metaheuristic method uses a fitting procedure to predict the I-V curve [121]. For

this reason, some authors define these methods as inverse modeling [56]. The metaheuristic

methods search for optimal solutions regardless of the initial solution and the problem’s

nature. Basically, they can overcome the limitations of the traditional modeling methods

[122].

Metaheuristic methods turn the estimation problem into an optimization problem, where

the objective is to minimize a function, generally an error between experimental I-V curve

data and estimated data. These methods can be classified as bio-inspired, evolution-based,

nature-based, or human-based [121].

Within the evolutionary-based are: differential evolution (DE) and genetic algorithm (GA)

[59, 55]. Some of the nature-inspired based are pattern search (PS), wind-driven optimization

(WDO), and flower pollination algorithm (FPA). Regard to bio-inspired based are found:

particle swarm optimization (PSO) [123, 124], artificial bee colony (ABC) [125], and cuc-
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koo search optimization (CSO) [122]. Finally, in the human-based are: simulated annealing

(SA)[122], and Jaya [126].

Table 2-3 presents a consolidated list of publications in which parameter estimation for pho-

tovoltaic models was developed through metaheuristic optimization techniques. Some of the

most relevant information has been included, such as the reference (Ref.), the optimization

technique used to solve the parameter estimation problem (Optimization Technique), the

panel technology used for the validation of the method (Technology), the objective function

to be minimized (O.F.), the photovoltaic model (Model), and the simulation tool used to

test the performance of the optimization technique (Simulation Tool). Finally, consider when

a repeatability analysis of the response of the optimization technique was performed (Rep.),

i.e., the algorithm was evaluated several times independently, to analyze the behavior of

the objective function in terms of its mean value and standard deviation, and also consi-

der whether the parameter values of each model were included in the repeatability analysis

(Param. Analysis).

One of the most widely used optimization techniques for parameter extraction in photovoltaic

models is the genetic algorithm (GA) [55, 56, 57, 58, 59]. In [55], a binary codification with

16 bits per individual, the roulette wheel parent selection, and a single parent crossover are

used for the estimation of the SDM parameters. The validation was developed using a RTC

France solar cell at STC (26 I-V data points) and a mc-SI Kyocera solar panel KC200GT (26

I-V data points). The estimated parameters were compared with the results of other works

by means of the relative error of each parameter. Nonetheless, the information on the O.F.

and search space of the parameters is not included, nor is there any metric error between

the experimental and the estimated data. Otherwise, in [56], a total of 101 data (voltage,

current, temperature, and irradiation) were acquired at different load conditions without

needing the complete I-V curve. Two estimation schemes were carried out. First, the data

set was divided into training and validation. Second, all acquired data were used for the

training and validation stages. The analysis results were performed with the voltage’s root

mean square error (RMSE), and five hours of continuous data were used in the validation.

Unfortunately, information regarding the optimization technique and panel reference is not

included.

In the case of [57], GA is executed for generating I-V curves using the datasheet information

(number of cells connected in series, Isc, Voc, and Pmpp). Regarding the GA parameters, se-

lection parents using roulette, with a single point crossover, and the mutation stages, with

a random replacement in the case of mutation. Here, three different O.F. were used: (1)the

I-V relationship evaluated in maximum power point, (2) the I-V relationship derivated at

maximum power point, and the sum of the squares of (1) and (2). For the validation stage,

the information of the mc Samsung panel LPC235SM-08 at STC was used. The authors

developed a Python GUI for parameter PV estimation using GA and shared it on GitHub.

This document does not describe the search ranges established in the algorithm. In [58], the

efficiency of the GA techniques, the continuous population genetic algorithm (CGA), and
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Ref.
Optimization

Technology O.F. Model
Simulation

Rep.
Param.

technique tool analysis

[54] GACCC Not indicated 1/RMSE SDM, DDM Not indicated No No

[55] GA KC200GT Not indicated SDM Matlab No No

[56] GA Not indicated RMSE SDM Not indicated No No

[57] GA LPC235SM-08 MO SDM Python No No

[58]
CGA, GA, MSX60, SOLAR SJ65,

RMSE SDM Matlab 1000 No
PSO KC200GT, STP245S

[59] GA HIT 215, KC200GT, ST 40 AE SDM Simulink No No

[60] PSO,GA PX-170, PT-SP250P-6-60 MASE DDM Matlab No No

[122] AEO PWP 201, CKC200GT RMSE SDM, DDM Not indicated 50 No

[123] FPSO RTC, STM6-40/36 RMSE SDM, DDM Matlab No No

[124] PSO, SA STM6 40/36,STP6 120–36 MO SDM Matlab No No

[125] BABCO
PWP 201, CSTM6-140/36,

RMSE SDM, DDM LabVIEW 30 No
CLS220P

[127] WHHO
RTC, PWP 201, SM55,

RMSE SDM, DDM Matlab Yes No
KC200GT, SW255

[128] DOA
PWP 201, CSTM6-140/36,

RMSE SDM Matlab 30 No
CLS220P

[75] PSO, GA PWP 201 RMSE SDM Matlab/ Simulink No No

[129] ECJAYA
RTC, STP6-120/36

RMSE SDM, DDM Matlab Yes No
STM6-40/36

[130] IMFOL PWP 201, STM6-40/36 RMSE SDM, DDM Not indicated No No

[131] CIWPSO RTC RMSE SDM, DDM Not indicated 100 No

[132] RSO TDS265D60
SSE, AE, MAE,

mSDM Not indicated Yes No
MSE, RMSE

[133] HS-WOA Shell SQ85, KC200GT MO SDM, DDM Matlab Yes No

[134] RCGA PWP201 MO TDM Matlab Yes No

[135] EADE
RTC, PWP201

RMSE SDM, DDM Matlab 30 No
STM6-40/36, STP6-120/36

[136] GAMNU
RTC, ESP-160 PPW,

RMSE SDM, DDM Matlab No No
TP6-120/36, PWP201

[137] AGA Not indicated MO SDM Simulink No No

Table 2-3: Optimization-based parameter estimation summary

particle swarm optimization (PSO) is compared when they are used to estimate the parame-

ters of the SDM model, taking the RMSE as the objective function. CGA generates a set of

offsprings of the same size from the initial population in each generation through selection,

recombination, and mutation stages. Four commercial panels were selected to compare the

results of the techniques (MSX60, SJ65, KC200GT, and STP245S), evaluating the objective

function’s minimum, maximum, average value, and standard deviation. They are achieved

after repeating the estimation using each technique 1000 times (repetitions). Although the

RMSE results and computation times are analyzed, the estimated parameter variation was

not considered. The paper neither includes parametrization information techniques nor I-V

graphical curve reproduction.

Ismail et al. [59] compare the solutions obtained with MATLAB optimization Toolbox gene-

tic algorithm and the developed MATLAB code. The parameterization of the GA MATLAB



2.4 Parameter estimation techniques 21

optimization Toolbox includes: population size = 20, selection function: stochastic uniform

reproduction, reproduction, elite count: 2, crossover fraction: 0.8, and generations: 100. For

the GA code, the parameters are: population size = 30, crossover and mutation rate: 0.9,

and generations: 100. Then, SDM and DDM parameters were estimated using the informa-

tion of Sanyo – HIT 215, Kyocera – KC200GT, and Thin-film shell solar – ST 40 panels.

This validation focused on the comparison of Voc, Isc, and Impp datasheet and estimated

values employing the absolute error (AE). There is no shared space range information or

repeatability analysis in this case.

Moreover, in [60], authors compare the parameter DDM values from equations that depend

on datasheet information (analytical method), GA, and PSO techniques. The selected O.F.

is the minimum absolute square error (MASE), and the estimation process was applied to

two modules, PX-170 and PT-SP250P-6-60. After evaluating the estimation for different

irradiation values, it was possible to establish that the PSO technique presented the lowest

estimation errors. A repeatability analysis was not performed in this study.

In [75], through the RMSE, the parameters of an RTE cell and a PWP-201 module were

estimated. Two estimation stages were compared: (a) using a set of 26 current-voltage data,

(b) using only the datasheet data (Voc, Isc,Pmpp). For this purpose, a GA and a PSO were

evaluated, with the former obtaining the best RMSE value in the estimation results when

only three points were used. In this study, no repeatability analysis was performed.

In other studies, some modifications to traditional genetic algorithms have been proposed

to be applied to the extraction of parameters in photovoltaic systems [54, 134, 136, 137].

For example, in [54], a crossover by convex combination is applied to produce individuals to

diversify the search, explore non-visited areas in the search space, and find new solutions.

This study proposes the inverse of the RMSE (1/RMSE) as an objective function for a cell

and a panel. The proposed modification presents the best results in terms of RMSE, but the

computational time and repetition analysis were not considered. In [134] uses the real coded

genetic algorithm (RCGA) with a tournament selection, a suggested directional mutation,

and a directional crossover based on directional probabilities. The estimated parameters of

the PWP201 module using the three-diode model (TDM) were compared when the sunflo-

wer optimization (SFO) algorithm, hybrid grey wolf optimization -cuckoo search algorithm

(GWCS), Artificial Ecosystem-based Optimization algorithm (AEO), and Gradient-based

optimizer (GBO), and RCGA were used. Through a repeatability analysis, it was possible

to observe that the proposed technique presents the best results from the average value and

standard deviation of the RMSE, but the variation of model parameters or computation

times was not analyzed. Another modification to GA is presented in [136], where a genetic

algorithm based on non-uniform mutation (GAMNU) with a Blend crossover operator was

proposed. Here, an RTC cell and the SP-160 PPW PV, STP6-120/36, and PWP 201 modules

were analyzed, and the result of the proposed technique was compared with several optimi-

zation techniques using metric error such as a mean absolute error in terms of current and

power. Still, in this case, computational time or repeatability analysis was not conducted.
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The Adaptive Genetic Algorithm (AGA) based multiobjective (MO) optimization is propo-

sed in [137], where least mean square error (LSE) plus Pearson residual error (PRE) are

introduced as multiobjective function. The STC manufacturer data were used with pre-

defined initial electrical parameter values (synthetic data). Then, the panel’s behavior in

different temperature and irradiation operation points was evaluated using Simulink. The

validation consists of comparing the synthetic data with the estimated data,but the paper

does not include the parameterization data of the optimization technique.

In other studies, GA, with different techniques, is used as a baseline to contrast the re-

sults of some proposed approaches in evaluating objective function and computing time

[122, 127, 129]. These works have in common RMSE as O.F., parameter estimation of SDM

and DDM, and repeatability analysis focused on assessing average values and standard devia-

tion of the RMSE. They are validated using experimental data from solar cells and modules.

In [122], an artificial ecosystem-based optimization technique (AEO) was compared with

some techniques such as GA and PSO, among others, and also with more than ten different

techniques results from the literature. The advantage here is that AEO does not need more

control parameters and presents the best results in terms of RMSE value. Authors in [127]

use a Whippy version of Harris Hawks Optimization Algorithm (WHHO) that allows high

convergence speed, global exploration, and high robustness. The study analyzes the para-

meters’ behavior of four solar modules for different irradiance values. Premkumar et al., in

[129], proposed an Enhanced chaotic JAYA algorithm (ECJAYA) for parameter estimation

of photovoltaic cell/modules. The proposed algorithm introduces a self-adaptive weight and

more than twenty multimodal functions to regulate the trend to reach the optimal solu-

tion and avoid the worst solution of the search space. The results are compared with some

techniques, such as time-varying PSO (TPSO), improved Teaching–Learning optimization

(ITLO), and GA. From the point of RMSE view, the proposed algorithm presents the best

results in maximum, minimum, and average values.

Another widely used technique in parameter estimation is PSO [123, 124, 131]. In [124], the

estimation of SDM is assessed using a multiobjective function, which is a combination of a set

of equations that relates the current and voltage in some point of interest (Isc, Voc, and Pmpp).

The validation stage is evaluated using two solar modules and the datasheet information

without performing a repeatability analysis. In [123, 131] a modified PSO is implemented. A

flexible PSO (FPSO) and a Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO)

are proposed, respectively. Both techniques were implemented using SDM and DDM through

RMSE O.F. and validated by means of experimental data. In the case of [123], a certain

number of worst particles are deleted at the beginning of each phase algorithm, and some

new particles are replaced in the new search space. The results are compared with PSO and

Bird Mating Optimize (BMO), using some error metrics such as MAE and RMSE. On the

other hand, in [131], a chaotic map through a coefficient is created.

Finally, Other techniques have also been applied to the estimation of parameters in pho-

tovoltaic models, as is the case of Dingo Optimization Algorithm (DOA) [128], in which
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Table 2-4: Search space for SDM parameter estimation in a PV cell

Ref. Boundaries n Rs [Ω] Rsh [Ω] I0 [A] Iph [A]

[122],[125],[75],[126],[123],[129],[130],[131], Min 1 0 0 0 0

[135],[136],[54],[138],[139],[140] Max 2 0,5 100 1× 10−6 1

the calculation of the voltage-current relationship is simplified, using experimental voltage

and current data, so iterative solution techniques such as Newton-Raphson are not required.

The simplification reduces the algorithm execution time by 28%. Authors in [130], propo-

sed an improved moth flame algorithm with local escape operators (IMFOL), improving the

exploitation performance and population variety of MFOs.

Also, Rat Swarm Optimizer (RSO) [132] was used to estimate the parameters of a modified

SDM (mSDM), that includes a supplementary resistance n series with the diode, which

reflects losses in the quasi-neutral area of the semiconductor material. The results of the

technique were compared with HHO and PSO, among others, using a Friedman ranking test

based on the sum of square error (SSE), absolute error (AE), mean absolute error (MAE),

mean squared error (MSE) and RMSE metrics.

An enhanced adaptive differential evolution algorithm for parameter extraction of photovol-

taic models was presented in [135], where an adapted crossover rate value is assigned for each

individual according to their fitness values. Also, a dynamic population reduction strategy

is used to improve the convergence speed and balance the exploration and exploitation. In

[133], two combinatorial social group whale optimization algorithms were implemented (HS-

WOA and HS-WOA+) using a MO function that includes the sum of squares of the errors

in three points of interest (Voc, Isc, and Pmpp), when are evaluated in the current-voltage

relationship.

Hybrid techniques have also been proposed to solve the problem of parameter estimation, as

is the case of [125] where a new Bat Artificial Bee Colony optimizer (BABCO) is proposed.

This study uses Lambert-W function to evaluate the current-voltage relationship for SDM

and DDM.

Regarding the search ranges used for the cell-level parameter estimation stage, validated

through experimental data, information associated with a silicon solar cell (RTC France) at

1000W/m2 and 33°C was found. Table 2-4 consolidates the search range information found

for the single diode model.

After analyzing the information found in the literature, it was possible to establish the

following:

Many estimation approaches reviewed are based on the datasheet panel information.

However, it is possible that such information is unavailable or needs to be adjusted to

the actual behavior of the panel when it has had many years of use.

All estimation approaches found are applied to SDM, DDM, or TDM models. However,
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these models adequately represent the direct mode of operation rather than the reverse

mode.

Genetic algorithms are an optimization technique widely used to estimate photovoltaic

cell and panel model parameters.

The solution for the photovoltaic model’s estimation problem based on optimization

techniques, that represent both the first and second quadrant’s behavior, was not found

in the literature review.

Based on the issues found in the literature review, this thesis focused on developing the

following contributions:

1. A Python application for analysis of photovoltaic cells operating in both the first and

second quadrant.

2. A Graphical user interface (GUI) was developed in QT and Python for programming

the BK 8500 electronic load.

3. Development of a non-invasive procedure to extract the experimental characteristic

curves at the cell level in a photovoltaic panel with partial shading.

4. Generation of a database of experimental current-voltage (I-V) curves based on the

proposed procedure for two solar panel technologies.

5. Evaluation of the performance of the most common mathematical models, reported in

the literature, for the representation of photovoltaic cells in both the first and second

quadrants.

6. Formulation of a methodology for estimating parameters in photovoltaic panels at the

cell level.
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photovoltaic system

Solar cells are the basic unit of a photovoltaic system. A cell transforms the energy radiated

by the Sun into electrical power. In the same way, the basis for any representation model of

an array is the I-V and P-V relationship at cell level [141], since they allow to obtain the

points of interest necessary to analyze its behavior. Typical I-V and P-V curves for a cell

under normal operating conditions are shown in Figure 3-1.

Figure 3-1: Typical curves at the cell level: Current and Power versus Voltage.

The I-V and P-V curves shown in Figure 3-1 can be obtained experimentally by performing

a voltage sweep across the load terminals. In this way, it is possible to find where the

maximum power is transferred to the load. The points of interest marked in the figure

are: the short-circuit current (Isc) obtained when the voltage at the cell terminals is 0V, the

maximum power point Pmpp (Vmpp, Impp), and the open-circuit voltage (Voc) that occurs when

the current through the load terminals is 0 A. Each characteristic curve varies with irradiation

and temperature. That is, a family of curves describes the behavior of a cell depending on
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the temperature and irradiation conditions. At the level of solar panels or photovoltaic

generators, it is impossible to ensure that their cells have identical electrical characteristics

or are under the same lighting conditions [111]. Therefore, to model a photovoltaic system,

it is convenient to use a model that includes the impact of these variations at the cell level.

3.1. Hot spot condition

Hot spots in photovoltaic systems refer to the overheating that cells experience when they

consume power instead of generating it. This phenomenon occurs when the cell operates

in the second quadrant and exhibits a negative voltage at the terminals, generally due to

partial shading caused by nearby structural elements[142, 117, 143]. These shadows generally

vary over time and have complex geometries. As a result of the nature of the electrical

characteristics of solar cells, the energy losses are not proportional to the shaded areas.

Evaluation of such losses is necessary to determine the power produced by the system [141].

The degree of heating of the hot spot in an affected cell depends on the number of cells that

form the panel, the connection, the level of irradiation, and the overcurrent in the affected

cell [144]. The type of heating can become localized and severe, especially if a single cell is

shaded [117].

In the latter case, the shaded cell will be reverse-biased and dissipate a considerable part of

the power generated by the other cells as heat. This operating mode can cause irreversible

damage in cells where the current is concentrated at high intensity, reaching hot spots with

temperatures above 150 °C. In the worst case, there may be a loss of the insulating properties

of the module [116] or damage to the encapsulation materials, which permanently affects the

power delivered by the array due to irreversible damage to the panels [23]. A representation

of the nonuniformity condition is shown in Figure 3-2. The figure shows the behavior of a

module formed by 36 cells connected in series. The black I-V curve describes the operation

of 35 cells without shading, and the blue curve describes the operating condition of only a

shaded cell. The orange curve represents the module behavior. Generally, a shadow causes

a reduction in the irradiation received by the affected cell, and also, a lower Isc. Because of

the series connection, all the cells conduct the same current.

In terms of voltage, the operating point will depend on the impedance of the load supplied

by the photovoltaic (PV) system. Figure 3-2 indicates two operating points for both curves.

In the first (green dotted line), it is observed that for curves with a current of 0.25A, the

voltages delivered for both unshaded and shaded cells are positive, but as the charging current

increases and approaches the maximum power point of the unshaded cells, the voltage of the

shaded cell starts to decrease until it becomes negative; that is, the cell is reverse biased.

Such a case is represented by the red dotted line, where the shaded cell consumes the energy

supplied by the cells operating in forward bias. This condition causes negative voltage at its

terminals, and the cell operates in the second quadrant Q2 (reverse mode). Figure 3-3 shows

the experimental I-V curve of a monocrystalline cell with short-circuit current Isc = 0.43A
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and open-circuit voltage Voc = 0.5V . Such a figure shows the first and second quadrants Q1

and Q2, respectively, where Q1 exhibits positive cell voltage and current, hence producing

power (called direct mode).

Figure 3-2: Comparison of two operating points for a string of 35 cells without shading

(black) and a shaded cell (blue).

The first step in performing a proper analysis of PV arrays it is to represent the operation of

the PV cells and modules using circuit models such as the SDM, which is widely used due to

its tradeoff between complexity and accuracy [18], or the DDM, which is more accurate to

represent the p–n junction at low irradiance levels. The Bishop model [23], instead, aims to

represent the behavior of a PV cell operating under partial shading conditions, which requires

considering the second quadrant (Q2). Another model proposed to study the behavior of PV

cells under partial shading conditions is the Direct Reverse Model (DRM). This model can

reproduce the operation of cells in either direct or reverse biasing modes to account for the

influence of variations in both temperature and solar irradiance [28].

The effect of partial shading can be partially mitigated using bypass diodes. The bypass

diodes are connected in antiparallel with series-connected cell groups to limit the disparities

in current [23, 141, 111]. It is important to note that the bypass diode reduces the power

dissipation but not eliminated.

The bypass diode provides an additional path of current that occurs only when the voltage

in the reverse mode increases [145], causing the P-V curve to develop multiple peaks [91],

where the number of peaks is related to the number of active bypass diodes in the system.

Figure 3-4 shows the simulation of a panel with two modules. Each module has 18 cells

connected in series and includes the antiparallel connection of a bypass diode. A single cell is

partially shaded so that its PV current is reduced to half the current of the unshaded cells.
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Figure 3-3: Electrical characteristic for a PV cell.

The blue I-V curve exhibits an inflection point [145], and the red I-V curve shows the local

maximum and global maximum power points.

A complete description of the effects of partial shading mismatching in real arrays can be

obtained by acquiring operating voltages and currents. The reverse characteristic of indivi-

dual cells allows to determine the power dissipated in a single cell under reverse bias [117].

However, since cells are encapsulated within modules, it is not possible to directly measure

the operating points of each cell [23]. From here arises the need to have procedures that

allow estimating such behavior without physically compromising the panel.

The representation of a photovoltaic system starts by analyzing the I-V relationship at the

cell level, which can be obtained through experimental tests under standard conditions. The

cell can be considered a two-port element; the input port receives light energy, and the output

port delivers current, voltage, and impedance [146]. The representation of cell behavior can

be modeled through circuit models, where two of the best known are the SDM and the

DDM. The SDM and the DDM are described below. Since those models cannot represent

the behavior of cells in the second quadrant, this section also describes models that include

the avalanche mechanism in solar cells.
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Figure 3-4: Simulation of a 36-cell module with a bypass diode: current-voltage curve and

power-voltage curve (blue and red, respectively)

3.2. Single diode model

This model, also known as the five–parameter model, is represented by the equivalent circuit

in Figure 3-5. In this circuit, the current source is associated with the PV current and,

the diode represents the energy level threshold for photons to trigger significant production

and circulation of electron-hole pairs through the junction [147]. Losses are represented by

a series resistance (Rs), which is related to the metal–semiconductor contact resistance, the

contacts’ ohmic resistance, and the semiconductor material’s ohmic resistance. The leakage

currents along the edges of the cell are represented by a shunt resistor (Rsh).

Ish

Icell
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Rsh

Iph

+




Vcell




-

Id

+




Vd




-

Figure 3-5: Circuit diagram of the Single Diode Model
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The cell current (Icell) is obtained as the algebraic sum of the currents through the diode (Id),

the current through the shunt resistor (Ish) and the photocurrent (Iph). Shockley’s equation

[148] models the current–voltage relationship in the diode (Id − Vd). Thus, (3-1) represents

the resulting cell current (Icell).

Icell = Iph − I0
[
e(Vcell+IcellRs)/nVT − 1

]
− (Vcell + Icell ∗Rs )

Rsh

(3-1)

In Eq. (3-1), Vcell is the cell voltage; and I0 and n, are the reverse saturation current and the

ideality factor of the diode, respectively. Finally, VT represents the thermal voltage expressed

in Eq. (3-2), where k is the Boltzmann constant; T , the temperature of the cell; and q, the

electron charge.

VT = kT/q (3-2)

According to the previous equations, five parameters (Rs, Rsh, Iph, I0, and n) must be

evaluated in the SDM to obtain the I–V characteristics of a PV cell. It is important to

consider that, this model is only able to represent the behavior of PV cell in Q1 when energy

is delivered.

3.3. The Bishop model

The model proposed by Bishop incorporates an avalanche mechanism into the SDM. As

depicted in Figure 3-6, this mechanism represents the reverse characteristics of the PV cell,

which is controlled by the current through Rsh. This current term consists of an ohmic term

and a nonlinear multiplication factor [23] as shown in Eq. (3-3).
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Figure 3-6: Circuit diagram of the Bishop Model

In the Bishop model, Eq.(3-3) relates the output current and the voltage of a PV cell, where

a is the ohmic fraction of the current related to the avalanche breakdown; m, the avalanche

breakdown exponent; and Vbr, the junction breakdown voltage.
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Icell = Iph − I0

[
e
(Vcell+IcellRs)

nVT − 1

]
− (Vcell + Icell ∗Rs)

Rsh

[
1 + a ∗

(
1− (Vcell + IcellRs)

Vbr

)−m
]

(3-3)

To evaluate the Bishop model, eight parameters (Rs, Rsh, Iph, I0, n, Vbr ,m, a) must be

estimated. This model is commonly used to represent the behavior of a PV cell in both Q1

and Q2, where the cell consumes power instead of producing it.

In order to analyze the effect of the curve in the second quadrant, due to each of the

parameters proposed by Bishop to represent the behavior in reverse polarization, a cell

was simulated with the following characteristics: Iph = 0.41 A, I0 = 9 × 10−8 A, n = 1.1,

Rs = 0.13Ω, Rsh = 52.5Ω, m = 4, a = 2 × 10−2 and Vbr = −28 V. Figure 3-7 presents

how the variation of the parameters proposed by Bishop to represent the second quadrant

affects the reproduction of the I-V curve. In Figure 3-7 (a), the term a is varied in the range

a = [1 × 10−5, 1 × 10−1]. As the parameter a decreases, the ohmic region extends, and its

negative slope decreases. In Figure 3-7 (b), the variation of m in the range [2, 6] is analyzed.

It is possible to observe how this variation affects the exponential curvature. Finally, Figure

3-7 (c), presents the variation on the breakdown voltage Vbr in the range [−30V,−10V ], the

value at which the current through the cell rises rapidly.
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Figure 3-7: Variation of parameters of the second quadrant in the I-V curve:

(a) a = [1× 10−5, 1× 10−1], (b) m = [2, 6], and (c) Vbr = [−30V,−10V ]

A GUI, using Python, was developed to evaluate the impact that each parameter has on

Bishop’s model. These results were published in Narváez, Fabián, et al. Smart Technologies.

SmartTech-IC 2021: Proceedings of the Second International Conference on Smart Techno-

logies, Systems and Applications. (2022).“Python application for analysis of photovoltaics

cells operating in both first and second quadrant.” Bonie J. Restrepo-Cuestas, Cristian

Guarnizo-Lemus, Adriana Trejos, Carlos A. Ramos-Paja. Pages:51-67. This work can be

found on the publisher’s website at ¡https://dspace.ups.edu.ec/bitstream/123456789/

22473/4/SmartTechnologiesabril-2022.pdf

https://dspace.ups.edu.ec/bitstream/123456789/22473/4/Smart Technologies abril-2022.pdf
https://dspace.ups.edu.ec/bitstream/123456789/22473/4/Smart Technologies abril-2022.pdf
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3.4. Direct–Reverse model

The Direct–Reverse Model (DRM) allows to model the behavior of PV cells in both direct

and reverse polarization modes. Using the I–V characteristics from the same sorted series

cells, the authors of [32, 83, 149] studied the variability of the curves, not only in the value

of the breakdown voltage but also in the slopes of the ohmic regions in Q2. Based on this

characterization, it is possible to observe parts of the curve in Q2 that could be linearized. In

this model, a Thevenin equivalent in series with an ideal diode in the opposite mode models

each linear part; the Thevenin resistance represents the slope of the linear region. As shown

in Figure 3-8, this model evaluates the behavior of a PV cell in Q1 using the DDM.

Ish

Icell




Rs

Rsh

Iph

+




Vcell




-

Id2  +




Vd




-

Id1 

R1 R2 R3

Vbr1 Vbr2 Vbr3

Direct modeReverse mode

Figure 3-8: Circuit diagram of the Direct-Reverse Model

The number of PV parameters that must be estimated depends on the number of branches

used to represent the linear approximation. In the example of Figure 3-8, the circuit is

represented by 13 parameters (7 for the direct mode and 6 for the reverse mode). The DRM

can be used for both Q1 and Q2 representation.

3.5. Parameter estimation problem

In the representation models presented above, the relationship between the cell current Icell
and the cell voltage Vcell is nonlinear. Also, Icell is implicit in the equation through an

exponential function. Therefore, iterative algorithms are required for its evaluation. The

Newton-Raphson algorithm has been widely used to find approximations to the zeros or

roots of a real function. In order to apply this algorithm to the solution of a function, the

function must be differentiable with respect to the variable to be found. Calculating the

current Icell requires the terms of Eq.(3-1) to be grouped on the same side to get an equation

equal to zero. The resulting function depicted in Eq.(3-4) and called f(Icell, Vcell, θ), will be

evaluated through the algorithm Newton-Raphson to find the value of the variable Icell that

satisfies f(Icell, Vcell, θ) ≈ 0.
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f(Icell, Vcell, θ, T ) =Iph − Id − Ish − Icell = 0 (3-4)

In 3-4, θ is the set of parameters required for the evaluation of the function f(Icell, Vcell, θ).

Named θBM = {Iph, Rs, Rsh, I0, n, a, Vbr,m} for representing the set parameters of Bishop’s

model and θSDM = {Iph, Rs, Rsh, I0, n} for SDM. The evaluation algorithm for calculating

the current Icell based on the Newton-Raphson method is detailed in Algorithm 1. The steps

of the algorithm are listed below:

1. The first step is to choose an initial value for the Icell, in this case, 0 A.

2. Then, the function f(Icell, Vcell, θ, T ) is calculated at the initial value defined for Icell.

3. The function’s derivative f(Icell, Vcell, θ, T ) must be calculated with respect to the va-

riable of interest (Icell). The derivative is presented in (3-5). This derivative represents

the slope of the tangent of the function F at a given point. The derivative must also

be evaluated at the starting point for Icell.

4. The point of intersection of the tangent with the variable Icell must be calculated, as

presented in (3-6). This evaluation will return the new value for Icell

5. Steps 2 to 4 are repeated until an error measure is reached (tol).

The algorithm requires as inputs the value of each parameter of the model θ, and the ope-

rating point data i (voltage Vcellm(i) and temperature T ), at which the current Icelle(i) is

to be calculated. Suppose you want to reproduce an I-V curve at a given temperature and

irradiation condition. In that case, the algorithm will calculate the current value in vector

form for a given vector voltage. The algorithm stops when the tolerance tol has been reached.

As seen in Eq.(3-4) tol is given in Amperes, and in this case, was defined tol = 1× 10−6 A.

∂f(Icell, Vcell, θ, T )

∂Icell
=− RsI0

nVT

e
(Vcell+IcellRs)

nVT − Rs

Rsh

− aRs

Rsh

[
1− (Vcell + IcellRs)

Vbr

]−m

− amRs

Vbr

[
Vcell + IcellRs

Rsh

] [
Vcell + IcellRs

Vbr

](−m−1)

− 1

(3-5)

Icelle = Icelle −
f(Icelle(i), Vcellm , θ)

∂f(Icelle , Vcellm , θ, T )/∂Icell
(3-6)

The parameter estimation of a model evaluates a function through the exploration of the

parameter’s search space. Optimization techniques allow a non-exhaustive search to find a

good quality solution. In the case of circuit modeling of photovoltaic cells, it is generally based

on known information, which relates the output voltage behavior and current, called the I-V
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Algorithm 1: Pseudocode for the evaluation of Icell using Newton-Raphson.

1: Load Parameters θ, T , (Vcellm , Icellm)

2: Initialize a zeros vector (Icelle)

3: Solve Newton-Raphson

4: N = length(Vcellm)

5: for i = 1 : N do

6: Eval f(Icelle(i), Vcellm(i), θ)

7: while |f(Icelle(i), Vcellm(i), θ)| > tol do

8: Eval Icelle(i) using Eq. (3-6)

9: Eval f(Icelle(i), Vcellm(i), θ)

10: end while

11: end for

12: PRINT Icelle

curve. This curve can be obtained through different methods: experimental I-V curve [150],

using MPPT information when the shading condition is present [151], considering variations

of temperature in the behavior of the I-V curve [152], applying Lambert-W function to solve

the model [153], using sweep voltage considering an electronic DC load [154] and by means

of a mathematical reduction [155]. Here, the idea is to find the set of parameters that best

reproduces the I-V curve of a cell from a circuital model. Therefore, it is proposed to minimize

an objective function, such as an error metric between the measured data (I-V curve) Icellm
and the estimated data Icelle , under a given test scenario (T and Irr), as Eq. (3-8) shown.

The selected error metric is the root mean square error (RMSE) as shown in Eq.(3-7).

O.F.(θ) = RMSE (Icelle(θ), Icellm) (3-7)

min {O.F.(θ)} = min


√√√√ 1

N

N∑
i=1

(Icelle(θ)− Icellm)
2

 (3-8)

It is also necessary to define a set of constraints to limit the optimization problem, for this

case, it will be given by the search range of each parameter θ, through a minimum limit θmin

and a maximum limit θmax. Eq. (3-9) presents a formulation to generate a set of parameters

named θ1 within the defined search space {θmin, θmax}. Here the function rand[length(θ)]

will generate a vector with the same length as the set of θ parameters, with random values

between 0 and 1.

θ1 = θmin + (θmax − θmin). ∗ rand[length(θ)] (3-9)



4 Non-invasive procedure for extraction

of the I-V cell curve in photovoltaic

panels

As presented in Section 2.3, no non-invasive procedures still allow obtaining I-V curves of

cells in commercial panels. This means procedures that do not require physical intervention

in the panels that could affect their integrity and can be reversed without the need to carry

out complex processes. Therefore, removing the bypass diode of a PV panel is not considered

invasive to the PV module or PV cells. The contribution of this chapter is the proposal of

a noninvasive procedure to obtain the I-V curve per cell in panels in such a way that the

panels do not have to be physically intervened to measure the cell level in both the first

and second quadrants, using a reduced number of measurement equipment, and thus being

applied in other photovoltaic systems.

4.1. Series string analysis

The I-V curve of the shaded cell is taken from the following analysis. Consider a string of

N cells where all cells share the same current since they are connected in series. Only one

cell is partially shaded (cell N). Hence, its short circuit current will be lower than the others

(see Figure 4-1) because it receives a lower amount of irradiation than the others. In this

way, at the operating point called I1, the voltage contribution of each cell, shaded or not,

is positive. However, at the I2 operating point, shaded cell will have negative voltages for

positive currents because it consumes some energy produced by nonshaded N−1 string cells.
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Figure 4-1: Cell contribution for an N-cell string.
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In general, it is possible to calculate the string voltage for a given operating current point Ip
through the sum of the voltage contributions of each non-shaded cell (VNS) plus the voltage

contribution of the shaded cell. From a general context, as shown in the Eq. (4-1), it would

be possible to calculate the voltage on nonshaded cells in IP , as the mean value of the

contribution of N −1 voltage of nonshaded, multiplied by N −1. The string voltage (Vstring)

will be given by (VNS) calculated through the mean value and the voltage of the shaded cell

(VSHC) (see Eq.(4-2)).

VNS(Ip) =V cell1(Ip) + V cell2(Ip) + V cell3(Ip) + · · ·+ V cellN−1(Ip)

=(N − 1) ∗
(

1

N − 1

)N−1∑
i=1

V celli(Ip)
(4-1)

Vstring(Ip) =VNS(Ip) + VSHC(Ip)

=(N − 1) ∗
(

1

N − 1

)N−1∑
i=1

V celli(Ip) + VSHC(Ip)
(4-2)

From the Eq. (4-2), it is possible to obtain the voltage in the shaded cell (VSHC) as the

difference between the string voltage (Vstring) and the voltage contribution of the non-shaded

cells (VNS).

Performing a comparison with the data obtained from the experimental curves (see Figure 4-

2 (b)) and simulated curves (see Figure 4-2 (a)), voltage contribution of theN−1 non-shaded

cells (VNS) can be extracted from a panel I-V curve without shading as follows:

Given the series connection of the cells, the panel voltage will be equal to the addition

of cell voltage contributions VPV (Ip) =
∑N

i=1 V celli(Ip).

The voltage contribution of N − 1 nonshaded cell can be given as a scaled form of VPV

(See Eq. (4-3)).

VNS(Ip) ≈ (N − 1)

[
1

N

N∑
i=1

V celli(Ip)

]
(4-3)

The string voltage when a cell is shaded (Vstring(Ip)), can be obtained experimentally by

measuring the voltage in a panel terminal when a portion of a cell is shaded.

From Eq. (4-2), VSHC can be evaluated as follows:

VSHC(Ip) = Vstring(Ip)− VNS(Ip) (4-4)

To extend the shaded cell voltage calculation VSHC to a set of current operating points, it

is necessary to guarantee that the voltages Vstring and VNS are taken at the same current
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values. If this condition is not reached, it is possible to interpolate them using the same

current vector

Figure 4-2(a) presents the simulation results of a 36-cell string, where only one cell is shaded,

and its I-V curve is colored red. The green curve represents the contribution of cells without

shading (NS), that is, a total of N − 1 = 35 cells. Finally, the I-V string curve, in black,

is the summation of the voltage contribution from the red and green curves. The dashed

green curve represents the mirror of the IV curve corresponding to the cells without shading.

From the intersection of the second quadrant curve of the shaded cell and the dashed curve,

it is possible to determine the greatest power dissipated by the shaded cell. For example,

for Figure 4-2(a), this value corresponds to −3.93 W. This information allows the detection

of hot spots in photovoltaic panels [156]. Figure 4-2(b) presents the experimental results

in a PV panel without bypass diode, considering, this value correspond to -3.93 only one

shaded cell, and obtaining two I-V curves with and without shading cell (green and black,

respectively). Then, the red curve is obtained using the proposed procedure, which will be

described in detail in the following subsections.
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Figure 4-2: Graphical analysis of shading phenomena: (a) from simulation and (b) from

experimental analysis

4.2. Experimental platform

Two ERDM SOLAR panels with module type HYBRITEC-10/12 (one mc-SI and another

pc-SI), were selected to obtain an I-V cell curves dataset. Table 4-1 reports the most im-

portant electrical parameters of the datasheet for the modules. In each case, a cell with a

50% shaded area was selected to experimentally obtain its I-V curve in the first and second

quadrants. An opaque object generates the shadow in the selected area of the cell to avoid
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incident radiation. Therefore, the experimental I-V curves, of both mc-SI and pc-SI cells,

were generated under real operating conditions, with an irradiance of 1008 W/m2 and a

temperature of 320.65 K. The experimental setup shown in Figure 4-3 was used to obtain

cell I-V curves in a panel. Two panels with the same reference (a) and (b) were used, an

oscilloscope R&S®RTE1204 records the current and voltage of the panel (c), a sweep voltage

was achieved with the DC electronic load BK 8514 (d). Irradiance and temperature were

measured with the MACSOLAR SLM018c-2 (e) and the FLUKE 63 infrared thermometer

(f), respectively. Finally, the short-circuit current of panel (b) was measured with a mul-

timeter. The DC electronic load BK 8514 was programmed using serial communication to

perform a sweep voltage until 110% ×Voc panel value, with intervals of 1 ms between each

pair of points on the curve. A voltage sweep was selected to obtain greater detail in terms of

current data near the short circuit region; that is, where the behavior in the second quadrant

begins. If a current sweep had been chosen, it is possible that a lower resolution would be

obtained in this region, which is quite important for the estimation of the parameters that

affect the second quadrant. the aim was to ensure that the exposure time in each test was

as small as possible to avoid changes in irradiation. Figure 4-8 shows the experimental I-V

curves.

Using the previously described procedure, the shaded cell’s behavior was calculated, and

those results are presented in Figure 4-9. There is a noticeable difference in the second-

quadrant behavior for pc-SI and mc-SI cells, related to the reverse-mode operation. The

following subsection describes, in detail, the proposed procedure.

Table 4-1: Datasheet parameters for ERDM-SOLAR 10/12 panel

Parameters Vmp Imp Voc Isc Pmax Cells Bypass diodes

Value 17.4V 0.58A 21.8V 0.69A 10W 36 1

Measures
Irradiance

Voltage, current
Temperature

Measures
Current

a b

d

e

f

gc

Figure 4-3: Experimental stage.
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4.3. Procedure description

The procedure for obtaining the I-V curve at the cell level in photovoltaic panels is presented

in Figure 4-4 and described as follows:

Procedure description

Platform

Select two panels (same reference):

Panel (a) and Panel (b)


N= number of cells

Select shade area

Start

Remove the bypass diodes

No

i ≤ N


i = 1
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Programa nd
connect the 

electronic load.
Install meters
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Short circuit
terminals.
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Yes

Figure 4-4: Proposed procedure for obtaining the I-V curve at the cell level in photovoltaic

panels.

1. Select two panels of the same reference (panels (a) and (b)); the junction box with the

bypass diodes must be accessible to disconnect the bypass diodes.

2. The bypass diode included in panel (a) must be removed.

3. To guarantee that curves are acquired under similar weather conditions, panel (b) must

be short-circuited, and it is necessary to measure its current Isc because it is directly

related to irradiance. In this way, if the current did not change significantly, it can be

assumed that the irradiation did not change considerably.

4. The curve of the panel (a) without shadowing (Vpanel and Ipanel) is acquired, as well as

the irradiation and temperature. In addition, the short-circuit current Isc data value

from panel (b) is taken using a digital multimeter, to identify considerable changes in

irradiation during the test.
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5. To select a cell, refer to the numbering indicated in Figure 4-5. The numbers represent

the rows, while the letters represent the columns where the cell is located on the panel.

For the mc-SI panel, the cell range is from A1 to D9, and for the pc-SI panel, it is from

A1 to C12.

6. The shaded I-V curve of the panel (a) can be obtained by shading a certain percentage

of its area. In this case, a solid shadow covering 50% of the cell area was selected. The

measurement of Isc in panel (b) holds significance as it provides valuable information

about changes in irradiation. The reference panel (b) to which the current is measured

through the multimeter will deliver the short-circuit current at the time of the test.

This current has a direct relationship with the irradiation perceived by the panel. For

Panel 1, most tests returned a short circuit current value between 0.67 A, 0.68 A, or

0.69 A. The variation in irradiance concerning that difference in current measurements

of 0.01A, or 1.6% referring to relative error, corresponds to a change in irradiance

between 10 W/m2 and 20 W/m2. Concerning Panel 2, current variations ranged from

0.57 A to 0.66 A in steps of 0.01 A. The measures were acquired using a multimeter

with a resolution 0.1 mV, and precision is equal to 0.15%. Hence, a notable change

in irradiation corresponded to a variation in the short-circuit current measurement of

0.01 A.

7. Both curves, with and without shading, must be acquired under similar irradiation and

temperature conditions. The acquisition time required for a complete curve is 200 ms.

The time between curves is 20 ms. Figure 4-6 and Figure 4-7 show an example of the

data recorded by the scope for mc-SI panel (a):

Figure 4-6 (a) presents the panel voltage and current without shading. Data was

taken at T = 47.8 ℃, Irr = 1008 W/m2, and Isc = 0.68 A in panel (b).

Figure 4-7 (b) presents the panel voltage and current when A1 cell is shaded, at

T = 46.7 ℃, Irr = 1007 W/m2, and Isc = 0.68 A in panel (b).

At least three curves were acquired for each test with or without shading, as shown

in Figure 4-7 and Figure 4-6, respectively. Then, the information is segregated by

curves in terms of current ( I1, I2, and I3); if significant variations in their shape are

found when superimposing them, the test must be repeated. Figures 4.6(b) and 4.7(b)

present the comparison of 3 of the analyzed curves. For these examples, no differences

are found in the curves, so the test information is suitable and does not need to be

repeated.

8. Then, a current-voltage data set is extracted. the curve is labeled according to the cell

under analysis, as shown in Figure 4-8. Figure (a) shows the curves of the mc-SI panel

without shading (NS-A1) and when cell A1 is shaded to 50% its area (SH-A1). Figure

(b) presents the experiment in the pc-SI panel when cell A2 is analyzed; that is, the
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Figure 4-5: Cell labeling in photovoltaic panels: (a) monocrystalline mc-SI (b) polycrysta-

lline pc-SI
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Figure 4-6: Voltage and current data from the monocrystalline panel: (a) without shado-

wing and (b) with a 50% shaded area of the A1 cell

panel curve without shading (NS-A2) and the panel I-V curve when cell A1 has been

shaded (SH-A2). Table 4-2 presents the irradiation and temperature information for

acquiring shaded and non-shaded data. As can be seen, the data sets were obtained

under similar conditions. Cell labeling is carried out according to Figures 4-5 (a) and

(b).

9. The I-V curve of the shaded cell is reconstructed by subtracting between the two I-V

curves, with and without shading in terms of voltage (see Figure 4-8). Following the
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Figure 4-7: Voltage and current data from the monocrystalline panel: (a) without shado-

wing and (b) with a 50% shaded area of the A1 cell

Table 4-2: Meteorological data measured during experimental tests presented in Figure 4-8

mc-SI Panel (a) pc-SI Panel (a)

NS-A1 SH-A1 NS-A2 SH-A2

Temperature

(°C)
47.8 46.7 47.5 47.1

Irradiance

(W/m2)
1008 1007 945 942

Isc for panel (b)

(A)
0.68 0.68 0.60 0.60

description provided in Subsection 4-1, it is necessary:

To calculate the contribution of the nonshaded cells VNS; hence, it is necessary

to scale the curve without shading to the contribution of N − 1 cells. Thus,

the output voltage vector of the panel corresponding to the N − 1 cells will be

V N−1
NS = VNS ∗ (N−1)

N
. Those results can be observed in Figure 4-2 (b) in green.

Considering that all cells of the panel share a series connection, for the subtrac-

tion between the shaded I-V curve of the voltage vectors VSH and the non-shaded

scaled I-V curve V N−1
NS , it must be guaranteed that both curves have been evalua-

ted for the same current values of the panel. Therefore, a current vector must be

created Isub. The range of Isub is defined in (4-5) and (4-6).

Imin
sub =max [min(ISH),min(INSscaled

)] (4-5)
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Figure 4-8: Experimental I-V curves: Nonshadowed (NS) and shadowed (SH): (a) for mc-SI

panel (a) cell A1 and (b) pc-SI panel (a) cell A2

Imax
sub =min [max(ISH),max(INSscaled

)] (4-6)

The minimum limit is the highest value between the minimum currents of both

curves (SH and scaled NS). The upper limit will be the lowest value within the

maximum current value of both curves. The points in Isub can be between 150

and 200.After reviewing the state of the art related to parameter estimation for

photovoltaic cells/panels, it was found that many of the analyzed works used

a data set of 25 or 101 samples for voltages and currents (see 2.4). It must be

considered that these studies were developed only to analyze behavior in the first

quadrant. Therefore, it was defined as a set of 150 to 200 data, enough to estimate

the parameters in both the first and second quadrants. On average, for each cell

of the trading panel, 116 samples were used for the first quadrant and 78 for the

second quadrant.

Next, both voltage vectors VSH and V N−1
NS are interpolated using the current vector

Isub. These vectors are named VSHint
and V N−1

NSint
, respectively.

Finally, the estimated I-V cell curve is obtained by subtracting VSHint
and V N−1

NSint
.

Figure 4-9 shows the results of the procedure for (a) the A2 cell in the mc-SI panel

and (b) the A1 cell in the pc-SI panel. It can be seen that both curves present

information from the first and second quadrants. In addition, it is also possible to

observe important variations in the short-circuit current and the behavior in the

reverse mode operation.
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Figure 4-9: I-V cell curve of: mc-SI 4.9(a) and 4.9(b) pc-SI technologies

10. Repeat steps five to nine for all the cells in the panel to obtain the IV cell curve in the

first and second quadrants, for which it is required:

A voltage sweep is programmed into an electronic load to generate the I-V curve

on the panel.

I-V curves were acquired at panel terminals without shading and when a cell is

shaded.

Then both curves are subtracted interpolating the voltages of both curves in

terms of the same current vector. The current vector used approximately 200

points equally spaced.

Figure 4-9 presents the IV curves at the cell level for each panel technology (mc-SI and pc-

SI). It is possible to note some differences in the behavior in the first and second quadrants.

For example, considering that the experimental stage was obtained with similar values of

temperature and irradiation, and, that both panels have the same nominal information, the

short circuit current Isc presents a visible difference. Regarding the behavior in the second

quadrant, it is possible to observe that the magnitude of the breakdown voltage Vbr is lower

for the pc-SI cell than for the mc-SI cell. The mc-SI cell shows the beginning of exponential

growth in this region, while the pc-SI cell only exhibits the ohmic region in the second

quadrant because, under the test, it was not possible to acquire information close to the

breakdown voltage (Vbr). Table 4-3 consolidates information about some points of interest

on the curve. Some relevant differences are present in the short circuit current (Isc) and the

maximum power point (Pmpp).

The procedure outlined in this section enables the estimation of cell behavior within the

first and second quadrants of a commercial panel. Each curve provides detailed information
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Figure 4-10: P-V cell curve of: mc-SI 4.10(a) and 4.10(b) pc-SI technologies

Table 4-3: IV curve cell interest points for mc-SI panel (a) and pc-SI panel (a)

Vmpp Impp Voc Isc Pmpp

mc-SI A1 cell 0.37V 0.36A 0.50V 0.43A 0.13W

pc-SI A2 cell 0.47V 0.23A 0.54V 0.32A 0.12W

on irradiance, temperature, voltage, and current data. This procedure was applied to two

panels featuring different technologies, namely mc-Si and pc-SI. The cell-level information

obtained will serve as input for the analyses presented in Chapters 5 and 6. The proposed

method presents a non-invasive option for obtaining cell curves in photovoltaic panels’ first

and second quadrants. However, some improvements can be implemented. The first one is

by implementing the tests in a controlled environment, ensuring constant irradiation and

temperature, for which a specialized panel testing laboratory is required. The second one is

developing a data acquisition system, which automatically takes voltage, current, irradiation,

and temperature data to be stored in the cloud for further analysis. This development can

reduce data processing times considerably.



5 Evaluation of cell models for both

direct and reverse representation

This section shows a behavior comparison between the three models, the SDM, Bishop, and

DRM, when reproducing the current vs. voltage curve for both Q1 and Q2. To achieve this,

it was necessary:

Identify the parameters required by each model.

Define the data set that will be used for the estimation.

Select the metrics for validation.

Initially, SDM, which in literature, has been widely used to represent behavior in the first

quadrant. Here, it will represent both quadrants (Q1 and Q2). It will use experimental data

from both quadrants. The focus will be on the representation of Q2. Bishop, which is used

to represent both quadrants, also will use experimental information in Q1 and Q2. The focus

will be on the representation of Q1. Finally, for DRM, the analysis will be divided into two

sections, Q1 and Q2. The first will use the experimental data from the first quadrant (Q1) to

estimate the SDM parameters. For the model segment representing the second quadrant, the

experimental data in Q2 will be used and calculated as explained in [32]. This information

is consolidated in Table 5-1. Those results were validated by comparing two error measures

(RMSE and MAPE) obtained from the reconstruction of an experimental I-V cell curve

for each model, that is, in both Q1 and Q2. Furthermore, the results of the estimation of

some points of interest, such as the short-circuit current (Isc), the open-circuit voltage (Voc),

and the voltage and current at the maximum power point (Vmpp, Impp) were evaluated and

analyzed for each model.

Table 5-1: Comparison scenario for the three models.

Model Model parameters I-V experimental data

SDM [Iph, Rs, Rsh, I0, n] Q1 and Q2

Bishop [Iph, Rs, Rsh, I0, n, Vbr,m, a] Q1 and Q2

DRM
[Iph, Rs, Rsh, I0, n]

[V1, R1, V2, R2, V3, R3]

Q1

Q2
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The proposed methodology for evaluating the electrical model at the cell level, in both the

direct and reverse modes, is summarized in Figure 5-1.
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Figure 5-1: Evaluation of the electrical model at the cell level in the direct and reverse

modes.

5.1. Proposed parameter estimation technique

The parameter estimation problem for each model presented in Section 3.5 was solved using

Genetic Algorithms. Each step of the estimation process, explained in the following sub-

sections, is related to the fitness function and the search space constraints, which must be

accurately defined to avoid falling into a local minimum. A set of constraints must also be

defined and determined by the search space of the parameters when modeling PV cells. The

literature describes the search space for the SDM and DDM of PV cells [14, 157] to represent

only Q1. Those ranges can be applied to parameters common in the Bishop model and in the

DRM; however, search ranges for the parameters that determine the behavior of PV cells in

Q2 are also required. In the DRM, these ranges can be obtained using information contained

in the experimental data of the I–V curve.
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5.1.1. Initial population

A set of p solution vectors is randomly generated within the search space (see Eq.(3-9)) to

establish the current population Θini as shown in the Eq. (5-1). Here, the size of the solution

vectors depends on the number of parameters in each model (see Table 5-2). All solution

vectors in the initial population must be different to meet the diversity criterion. Then, the

fitness function of each solution vector is evaluated and stored as shown in the Eq.(5-2), and

the minimum value is selected as the incumbent.

Θini =


θ1
θ2
θ3
...

θp

 (5-1)

O.F.(Θini) =


RMSE (Icelle(θ1) , Icellm)

RMSE (Icelle(θ2) , Icellm)

RMSE (Icelle(θ3) , Icellm)
...

RMSE (Icelle(θp) , Icellm)

 (5-2)

5.1.2. Selection

A section of the initial population, with a length given by a random integer (r), is chosen

to generate a new population. Therefore, to complete this new population, p − r solution

vectors must be created (Θadj). Next, a pair of solution vectors, which are named parents,

are selected for the crossover stage (see Figure 5-2).

5.1.3. Crossover

In this stage, the two selected solution vectors are combined to produce new vectors called

offspring, which the parents cross at a selected point. This will ensure that each offspring

contains information from both parents. The crossover process is explained in Figure 5-3.

5.1.4. Mutation

As can be seen in Figure 5-3, two descendants were created, named Offspring1 and Offs-

pring2. It is necessary to introduce some variation in both descendants (mutation), preserving

the information inherited from their parents. Also, it is possible to decide whether or not

the offspring will be mutated based on a randomized number that can take values of 0 or 1.
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Figure 5-2: Selection process.
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Figure 5-3: Crossover process.

If the value is 0, no mutation is performed; mutation occurs if it is 1. If the decision is to

mutate the offspring, the parameter to be mutated is randomly selected and replaced by a

random value within its search range. Figure 5-4 shows this process.
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Figure 5-4: Mutation process.

5.1.5. Population update

The two mutated descendants must be evaluated in the model, to establish which is the best

offspring, that is, the one with a lower value of O.F.

To update the population, the algorithm repeats the selection, crossover, and mutation

processes until a set of p offspring is created.

The offsprings and the initial population are concatenated, creating a new group of size 2p.

Then, the new group is sorted according to the evaluation of their fitness function (smallest

to largest). Only the first p solution vectors of the new group will be selected as the initial

population of the next generation.

5.1.6. Stopping criterion

The stop criterion is the maximum number of iterations for the estimation process (itermax),

called generations. Algorithm 2 presents the pseudocode of the GA described above.

5.1.7. Objective function (O.F.)

The objective function (O.F.) of the optimization problem addressed in this study is to

minimize the root mean square error (RMSE ) between the cell current measured in the

experimental tests (Icellm) and the value estimated with the optimization technique, as shown

in Eq. (3-7). Icelle (θ) is the cell output current and depends on the model used for its

representation. For example, for SDM, it is presented in Eq. (3-1) and for the Bishop model

in (3-3). In the case of DRM, only the parameters of the first quadrant will be estimated

using Eq.(3-1). Table 5-2 provides the coding for the optimization problem discussed in

this section; θ is the solution vector, which includes the model’s unknown parameters to be
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Algorithm 2: Pseudocode of GA applied to PV cell parameter estimation.

Data: Experimental I − V data, p, itermax, θmin, θmax

Result: θ

1 iter=1;

2 Generate initial population Θini;

3 Evaluate the O.F. and constraints;

4 Select the best solution;

5 while iter = 2 : itermax do

6 for i = 1 : p do

7 Select r vectors of initial population;

8 Create p− r vectors randomly Θadj;

9 Generate the new population by combining selected and created vectors;

10 Select two parents randomly from the new population;

11 Create offspring 1 and 2 by recombining parents;

12 Mutate offspring;

13 Evaluate offspring O.F.;

14 Select the best offspring (min(O.F.));

15 offspring population (i) =best offspring ;

16 end

17 New population= [initial population; offspring population];

18 New Population sorted = Sort(New population (min to max O.F.)) ;

19 Initial population= New Population sorted(1:p);

20 Select the first position of New Population sorted as incumbent θinc;

21 end

identified. As mentioned earlier, the specific coding depends on the chosen PV model, as

each model has different parameters.

Table 5-2: Optimization problem formulation for each model.

Model Icelle (θ) Parameters to estimate (θ) Constraints

SDM (3-1) [Iph, Rs, Rsh, I0, n]
Eqs. (5-7), (5-4), (5-5),

(5-6), (5-3)

Bishop (3-3) [Iph, Rs, Rsh, I0, n, Vbr,m, a]
Eqs. (5-7), (5-4), (5-5), (5-6),

(5-3), (5-10), (5-9), (5-8)

DRM (3-1) for Q1 [Iph, Rs, Rsh, I0, n]
Eqs. (5-7), (5-4), (5-5),

(5-6), (5-3)
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5.1.8. Problem constraints

The restrictions of the optimization problem correspond to the search ranges of the parame-

ters to be estimated, which are defined in equations (5-7), (5-4), (5-5), (5-6), (5-3), (5-10),

(5-9), and (5-8). Those parameters correspond to the models reported in Section 3, where

the search ranges should be respected to ensure a correct estimation of the parameters in

each model as presented in Table 5-2.

Iphmin
≤ Iph ≤ Iphmax (5-3)

Rsmin
≤ Rs ≤ Rsmax (5-4)

Rshmin
≤ Rsh ≤ Rshmax (5-5)

I0min
≤ I0 ≤ I0max (5-6)

nmin ≤ n ≤ nmax (5-7)

Vbrmin
≤ Vbr ≤ Vbrmax (5-8)

mmin ≤ m ≤ mmax (5-9)

amin ≤ a ≤ amax (5-10)

5.2. Tuning of GA for each model

The I–V curve for the validation process was obtained using the procedure described in

Chapter 4 applied to the A1 cell in the monocrystalline panel (mc-SI) (see Section 4.3). In

this case, the I-V curve obtained has the electrical characteristics shown in Table 5-3, and

the panel was exposed to an irradiance of 1008 W/m2 and a temperature of 47.8◦C.

Table 5-3: Electrical characteristic from the I-V cell curve

Parameters Vmp Imp Voc Isc

Value 0.37V 0.36A 0.50V 0.43A

Table 5-4 reports the constraints used to estimate the parameters of each model addressed

in this study. Thus, the ranges in Table 5-4 were selected as search ranges; those values

were taken from the literature [158, 159, 138, 139, 160, 140, 161, 162, 163]. The photovoltaic

current (Iph) was adjusted to a range of ±10% of the short-circuit current of the test (Isc),

this based on the fact that Isc is caused by the generation and collection of light-generated

carriers, therefore Isc and Iph are very close values.

The input parameters required for the GA, the number of individuals per population, and the

maximum number of iterations were defined by evaluating the algorithm results in a range

of {5, 70} individuals per population and {500, 5000} iterations. An example of this tuning is
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Table 5-4: Parameter constraints.

Parameter Minimum value Maximum value

Iph [A] 90% ∗ Isc 110% ∗ Isc
I0 [A] 1× 10−10 1× 10−7

n 0.05 4

Rs [Ω] 1× 10−5 2

Rsh [Ω] 20 100

Vbr [V ] −50 −10

m 2 8

a 1× 10−3 30× 10−3

shown in Figure 5-5, where the SDM parameters were estimated. As observed in Figure 5-5,

there is an increase in the number of individuals per population and a decrease in the average

value of the objective function with a decreasing number of iterations. Figure 5-6 shows the

contour of the surface, which reports that the objective function reaches its minimum value

with 65 individuals after 1500 iterations. The models were simulated in MATLAB® R2021a

on a computer with an Intel Core i5–5200U 2.2GHz processor, 8GB of RAM, and Windows

10 pro. The results obtained with each model, which are presented in the next subsection,

were contrasted with the I–V curve obtained experimentally.

Figure 5-5: Selection of GA parameters for SDM: Mesh



54 5 Evaluation of cell models for both direct and reverse representation

Figure 5-6: Selection of GA parameters for SDM: Contour

Parameter tuning was performed to determine the best number of individuals and iterations

to estimate the parameters of each model; that is, they allow finding the smallest O.F. value.

Table 5-5 shows the results of the tuning process for each model. Regarding the population

size, Bishop’s model requires only 5 individuals, a low value considering the values obtained

for SDM and DRM.While the maximum number of iterations for the Bishop model and DRM

is 500, the SDM requires triple that value. As Bishop’s model will be evaluated considering

the smallest population size and maximum iterations, the computation time is expected to

be shorter than for the parameter estimation of the other models.

Table 5-5: Selection of GA variables for each model.

Model Individual per population Number of iterations

SDM 60 1500

Bishop 5 500

DRM 60 500
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5.3. Estimation result

With the GA variables provided in Table 5-5, and for each model, 100 repetitions of the

parameter estimation algorithm (Algorithm 2) were performed for each model. To evaluate

the repeatability of the solutions, the mean value and standard deviation of each estimated

parameter of the SDM, Bishop model, and DRM were calculated. These metrics were also

calculated for O.F., the mean absolute percentage error (MAPE), and the computational

time of each model, as reported in Table 5-6. The calculation of MAPE is shown in (5-11).

This metric is useful because provides a measure of relative error in percentage terms. Ad-

ditionally, it penalizes both positive and negative errors evenly. However, it should be taken

into account that the calculation of this metric can be amplified by small values in the

denominator (zero or close to zero).

MAPE =
1

N

N∑
i=1

∣∣∣∣Icelle(i)− Icellm(i)

Icellm(i)

∣∣∣∣ (5-11)

Table 5-6: Parameters estimated for each model (mean ± standard deviation %).

Parameter SDM Bishop DRM

Iph [A] 0.43± 4.57% 0.43± 5.62% 0.43± 5.80%

I0 [10−8 A] 5.66± 44.8% 5.72± 44.35% 5.11± 59.06%

n 1.17± 5.61% 1.36± 16.11% 1.17± 6.90%

Rs [Ω] 0.21± 40.97% 0.61± 63.05% 0.26± 46.45%

Rsh [Ω] 47.40± 18.48% 58.01± 28.60% 51.87± 51.21%

Vbr [V] −− −24.58± 37.22% −−
m −− −5.68± 31.22% −−
a −− 0.016± 54.69% −−

RMSE 0.026± 35.81% 0.047± 37.36% 0.032± 40.73%

MAPE 0.15± 60.50% 0.39± 46.46% 0.62± 45.16%

Time [s] 49.80± 1.74% 1.27± 47.17% 3.12± 6.60%

According to Table 5-6, the parameters I0, Rs and Rsh have the highest standard deviation,

although the mean values of RMSE and MAPE are considerably low for the three models.

This showed the impact of the Rsh parameter on the zone near Isc, which is the beginning of

the Q2 zone. The low computation time of Bishop’s model implies that the tuning parameters

of GA are suitable for the number of parameters to estimate. In the case of SDM, the

computation time is higher since it has three times more iterations. A proper estimation of

its parameters is a crucial task to ensure accurate parameter estimation in Q2.

The DRM parameters in reverse mode, presented in Figure 3-8, were estimated following

the instructions provided in [83]. First, it was necessary to identify the zones that could be
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linearized; in this case, the blue, red, and gray regions highlighted in Figure 5-7 are the

zones to be linearized. Breakdown voltages Vbr1, Vbr2, and Vbr3 correspond to the points on

the curve where a linear zone begins, that is, 0V , 2.318V and 5.979V , respectively. The

values of the resistors (R1 = 90Ω, R2 = 40Ω and R3 = 26.31Ω), which correspond to the

slopes of the linear zones, were calculated through Ohm’s law using the extreme points of

the corresponding linear zone.
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Figure 5-7: Estimation of DRM parameters for Q2.

The circuit in Figure 3-8 was simulated in Simulink to obtain the I–V curve for the DRM.

Then, an interpolation with the voltage vector of the experimental data was performed to

compare the results of the cell current estimated by the DRM with those predicted by the

SDM and Bishop model.

Figure 5-8 illustrates the I–V curves obtained with each model using the best population

function results taken from Table 5-8. In Q1, the three models show high precision between

the simulation and the experimental data. In Q2, the Bishop model provides the best result,

while the SDM and the DRM exhibit a decrease in accuracy.

The DRM accuracy depends on the linear zones chosen for the curve characterization, as

well as on the precise calculation of the number of branches. Moreover, the estimation of

the parameters that define the DRM model in the first quadrant is similar to the SDM,

and those were estimated using only the information of the experimental I-V curve in the
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first quadrant. Finally, these parameters also affect the behavior of the models in the second

quadrant (Q2).

In addition, it is observed that the estimation provided by the SDM did not have a good

approximation in Q2. This model presents a linear behavior for Q2. Therefore, the breakdown

voltage is not observed. Here, for the parameterization of this model, the whole information

of the experimental I-V curve was used (Q1 and Q2). Table 5-7 presents the evaluation

results of the error metrics for the estimation in Q1, Q2, and Q1-Q2. For the experimental

I-V curve, there are 197 data, 129 corresponding to Q1 and the remaining 68 to Q2.

Table 5-7: Error metrics for the I-V curve reconstruction using the best solution.

Quadrant Model RMSE MAPE

Q1

SDM

Bishop

DRM

0.0067

0.0075

0.1618

0.0695

0.0292

0.5551

Q2

SDM

Bishop

DRM

0.0142

0.0123

0.0332

0.0223

0.0209

0.0529

Q1-Q2

SDM

Bishop

DRM

0.0099

0.0094

0.1208

0.0532

0.0263

0.3228
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Figure 5-8: Comparison between the experimental and estimated curves in Q1 and Q2

(zoom-in for Q2).
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Table 5-8: Parameters used for the best solution.

Parameter SDM Bishop DRM

Iph [A] 0.41 0.43 0.42

10−8 ∗ I0 [A] 8.35 6.77 3.63

n 1.19 1.16 1.13

Rs [Ω] 0.14 0.15 0.15

Rsh [Ω] 41.82 49.92 26.13

Vbr [V] −− −18.90 −−
m −− −3.53 −−
a −− 0.02 −−

Vbr1 [V] −− −− 0

R1 [Ω] −− −− 90

Vbr2 [V] −− −− −2.31

R2 [Ω] −− −− 40

Vbr3 [V] −− −− −5.97

R3 [Ω] −− −− 26.31

Table 5-9 presents the relative percent error of the main points of interest, that is, Isc, Voc,

and Pmpp. The three models show low error values in the estimation of Pmpp, making them

suitable for applications where the delivered power needs to be estimated [164].

As observed in Figure 5-9, the SDM and the Bishop model exhibit high accuracy for the

representation of Q1, especially at the Maximum Power Point (MPP), which is the most

relevant point for power analysis (see Figure 5-10). For the DRM, there is a significant

difference in the estimation of Voc, while the estimation of Isc exhibits a lower difference.

However, both differences affect the estimated location of the MPP compared to the one

obtained in the experimental stage.

Table 5-9: Relative percent error of some points of interest in the I–V and P–V curves.

Parameter SDM Bishop DRM

Isc [A] 4.15 0.69 2.45

Voc [V] 7.94 0.07 15.26

Impp [A] 13.45 5.61 14.22

Vmpp [V] 0 2.07 11.34

Pmpp [W] 2.66 0.43 4.01
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Figure 5-9: Comparison between the experimental and estimated curves (zoom-in for Isc).

Figure 5-10 shows the power vs. voltage (P–V) curves obtained with each model near the

MPP. The relative estimation errors for some important points in Q1 are consolidated in

Table 5-9. In this case, the Bishop model and SDM provide the best results for MPP esti-

mation based on the experimental data. The Bishop model exhibits the smallest estimation

error of 0.43%, while the error provided by SDM is 2.66%. On the other hand, the DRM

presents an error of 4.01%, which is the highest deviation obtained.

Finally, Figure 5-11 shows the errors obtained for the best estimation of SDM, Bishop’s

model, and DRM. For Q1, in terms of RMSE, the SDM provides the best result for I–V

characterization, while for Q2, the Bishop model exhibits the lowest error, comparing the

results of RMSE and MAPE. Considering the estimation analysis of both quadrants, the best

representation is given by the Bishop model, both from the RMSE and MAPE perspectives.

It is important to clarify that 129 points were considered for Q1 and 68 for Q2, as a result of

applying the procedure described in Section 4.3. In the case of DRM, the I–V characterization

depends on the accurate estimation of the parameters in Q1, which highlights the impact of

Rsh as previously discussed. However, this model is analyzed because the parameters that

represent the first quadrant are similar to those of the SDM model, so they can be taken

from the literature, and the estimation of the parameters for the second quadrant is based

on the calculation of the slope in each linearized section of the curve.
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5.4. Discussion

This section presented a simple strategy for I-V curve characterization of a PV cell conside-

ring three models. This proposed strategy uses GA and Simulink to extract the parameters

from the experimental I-V curve. The analysis of the results demonstrated that the SDM

model does not correctly reproduce the cell behavior when the current increases exponen-

tially while the voltage at the cell terminals increases negatively (Q2).
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The parameter estimation of the DRM model was carried out in two stages. The first stage

considers the parameters of the SDM model that has been widely studied in the literature.

With respect to the second quadrant, the parameters can be easily calculated by linearizing

the function in stages. However, the estimation of the parameters per quadrant has a ne-

gative influence on the accuracy of the model. When estimating the parameters of the first

quadrant, exclusively using the experimental information related to that quadrant, the criti-

cal parameter Rsh is not correctly identified, which is one of the parameters that impose the

behavior in the second quadrant. Moreover, the results reveal the need for a mathematical

formulation that allows the whole set of parameters to be estimated for this particular model.

Here, this procedure was developed with the evaluation of the circuital model in Simulink,

which required the estimation of the five parameters for Q1 described in Table 5-2, and the

calculation of the parameters for Q2 (see Figure 5-7), independently.

It is also important to highlight that the proposed procedure can be used, along with PV

array modeling methodologies, to analyze the behavior of cells operating in both Q1 and Q2,

which is needed for power analysis and loss estimation during partial shading conditions.

Future works could consider estimating the energy per day, month, or year using the electrical

representation described for the PV cell modeling. Also, another future work could consider

applying other optimization techniques to solve the parameter estimation problem, which

may reduce both estimation errors and computation time.

Finally, this contribution was published in the following journal paper: Restrepo-Cuestas,

B.J.; Durango-Flórez, M.; Trejos-Grisales, L.A.; Ramos-Paja, C.A. “Analysis of Electrical

Models for Photovoltaic Cells under Uniform and Partial Shading Conditions.” Computation

2022, 10, 111. This article can be found on the publisher’s website at https://www.mdpi.

com/2079-3197/10/7/111. The journal’s homepage is located at https://www.mdpi.com/

journal/computation, and the publisher’s copyright information can be found at https:

//www.mdpi.com/journal/computation/about.

https://www.mdpi.com/2079-3197/10/7/111
https://www.mdpi.com/2079-3197/10/7/111
https://www.mdpi.com/journal/computation
https://www.mdpi.com/journal/computation
https://www.mdpi.com/journal/computation/about
https://www.mdpi.com/journal/computation/about


6 Proposed methodology for estimation

of Bishop model parameters

Optimization techniques have been widely used for estimating the parameters of cells or

photovoltaic modules primarily for the SDM or the DDM. However, those models do not

represent the behavior of the cell in the second quadrant in a proper way. Although, the

Bishop model improves the representation of the behavior of the cell in the second quadrant,

procedures for estimating its parameters are not reported in the literature. Most of the works

concerning PV cell or arrays analysis based on the Bishop model, adopt the parameters from

other studies previously reported. Therefore, in this chapter, a methodology to estimate the

parameters of the Bishop mathematical model to represent a PV cell, in both the first and

second quadrants, is proposed. Because of the high number of parameters to be identified

and the implicit, and non-linear, relationship between the output current and voltage of the

Bishop model, an optimization approach based on a Chu-Beasley genetic algorithm is used.

Genetic algorithms are the most widely used optimization technique in the parameter estima-

tion of photovoltaic systems [55, 56, 54]. This technique presents an advantage in execution

time due to its advanced criterion. In this chapter, a variation of the Chu-Beasly algorithm

is proposed, which selects the descendant randomly in each iteration, avoiding the evalua-

tion of O.F. for each generated offspring.The reduction in computing time is an important

advantage since this model could also be adjusted and used in the diagnosis of panel failures,

degradation analysis, and estimation of power losses due to partial shading.

The parameter estimation methodology of the Bishop model was established using a com-

parison between two estimation scenarios. The first scenario is based on the information

found in the literature review; that is, the parameters for Q2 are not estimated, but rather

the values of the parameters most commonly found in the literature are used. Regarding the

parameters associated with the SDM (n, Rs, Rsh, I0, Iph), it is possible to find defined ranges

for different cell technologies in the literature. However, the parameters’ ranges that affect

the second quadrant behavior (a, m, and Vbr) have not been extensively studied; therefore,

those ranges will be described in Section 6.3.1. While for Q1, the estimation of the set of

parameters of θSDM is made using only the experimental values of voltage and current of

the cell in the first quadrant (see Table 6-1).

The second scenario evaluates the behavior of the Bishop model when the complete set of

its parameters is estimated (θBM). In this case, the experimental values of cell voltage and

current in both Q1 and Q2, are used (see Table 6-1).
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Both estimation stages use Eq. 3-8 as the fitness function, and are validated using the I-V

curves of two PV cells (mc-SI and pc-SI). For each case, the repeatability of the estima-

tion response was evaluated using the parameters mean value and standard deviation after

running the estimation process 100 times. Also, the O.F., the computation time, and some

evaluation of accuracy metrics, such as RMSE, MAPE, and MBE (mean bias error), we-

re used to compare the behavior of both estimation scenarios. A summary diagram of the

methodology proposed in this chapter is presented in Figure 6-1.
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Figure 6-1: Evaluation of the electrical model at the cell level in the direct and reverse

modes.

Table 6-1: Detailed information for each estimation stage.

Stage 1 Stage 2

Icelle (θ) Eq. (3-1) Eq. (3-3)

Parameters to estimate (θ) θSDM = [Iph, Rs, Rsh, I0, n] θBM = [Iph, Rs, Rsh, I0, n, a, Vbr,m]

Parameters from literature {a, Vbr,m} –

I-V curve information Q1 Q1 −Q2

Set of Eqs. (5-7), (5-4), (5-5) Eqs. (5-7), (5-4), (5-5), (5-6)

constraints (5-6), (5-3) (5-3),(5-10), (5-9), (5-8)
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6.1. Chu–Beasley Genetic Algorithm applied to the

problem of parameter estimation

The Chu-Beasley algorithm is a modified version of the basic genetic algorithm. Its main

characteristic is to replace a single individual in the population in each generation. This

individual must meet both the diversity and feasibility criteria; that is, it must be different

from the others that form the population and respect the variable search ranges that define

the problem [165]. From the optimization problem defined in Section 3.5, through the

equations (3-7), and (3-8), the procedure for parameter estimation using the Chu-Beasly

algorithm will be explained. This chapter proposes two stages to solve that problem: (1)

estimation of the SDM parameters and (2) estimation of Bishop parameters that can be

used to represent the cell-level PV profiles in the first and second quadrants, where the GA

is used to find the optimal parameter estimation. This technique employs the same stages

presented in Subsection 5.1:

Generation of the initial population Θini, conformed by p solution vectors. Each solu-

tion, called individual, has a length equal to the number of parameters to be estimated.

Each individual is generated randomly, respecting the search range of each parameter

as shown in Eq. 3-9. All individuals must be evaluated to obtain their O.F. and select

as incumbent the lower valuable. Here, the population constitutes a different set each

time the algorithm is run. In this way, it is desired to reach the neighborhood of the

global minimum, taking different paths in each solution, understanding that a good

solution will be achieved that may not always be the same.

Iterative generation of descendants:

• Selection of two different parents randomly from Θini (see Figure 6-2). To achieve

this, the function randperm(p, 2) from Matlab was used. This function selects 2

unique integers that represent the position of parents, selected randomly from 1

to p.

• Obtain the offspring with a crossover of the parents information, selecting a cros-

sover point. The function randi from Matlab allows generating a value, with

random integers uniformly distributed in a predefined interval, which is used to

obtain the crossover point.This stage produces two descendants. An example of

the crossover stage can be seen in Figure 5-3.

• To define if the mutation is performed, a randomized number that can take values

of 0 (for not mutate) or 1 (to mutate) is used. If the mutation is decided, the para-

meter to be mutated is randomly selected and replaced by a random value within

its search range (see Figure 5-4). This process applies to the two descendants

created in the crossover stage.
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Figure 6-2: Selection stage in GA estimation

• The descendant that will continue the process is also randomly selected. Once it

is selected, its objective function is evaluated.

• The selected descendant must achieve the diversity criterion. If this condition

is fulfilled, in the parent update stage, this descendant will replace the worst

parent in the initial population (i.e., the one with the highest O.F.). Then, the

new population is sorted according to the O.F. value (lowest to highest). If this

new individual has the best O.F. in the entire population, it will replace the

incumbent. At this point, a generation has ended.

The iterative process continues (generations) until one of the two stopping criteria is

met: (1) a maximum number of iterations to be evaluated in the estimation process

(itermax) and (2) a maximum number of consecutive iterations in which the incumbent

is not improved (iternmax).

Finally, Algorithm 3 shows the pseudocode implementation of the GA used for the parameter

estimation of the Bishop model.

6.2. Summary of the proposed procedure

The proposed methodology for estimating the parameters of a photovoltaic cell, considering

the behavior in both the first and second quadrants, is summarized in the following stages

(see Figure 6-3):

6.2.1. Experimental analysis

For the analysis contemplated in this chapter cell current and voltage information is required.

Therefore, the procedure described in Section 4.3 was applied. In the direction of analyzing

the behavior of the curves for both panel technologies, were selected cell A1 of the mc-SI
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Algorithm 3: Pseudocode proposed for Chu-Beasly GA.

Data: Experimental I − V data, p, itermax, iternmax, θ
min, θmax

Result: θ

1 iter=1;

2 Generate initial population Θini randomly (according to θmin, θmax);

3 Evaluate O.F. for Θini;

4 Sort Θini according to O.F. (lower to higher);

5 Select the best solution (min O.F.);

6 while iter = 2 : itertmax do

7 Select two parents randomly from the initial population;

8 Select one crossover point randomly;

9 Create two descendants by recombining parents at crossover point;

10 Define randomly Mutate between 0 and 1;

11 if Mutate==1 then

12 Select parameter to mutate in both descendants;

13 Select a random value of the parameter in its range;

14 else

15 Do not mutate offspring

16 end

17 Randomly select the descendant of the generation;

18 Evaluate the selected descendant O.F.;

19 Replace the parent with the highest O.F. value with the selected descendant in

Θini;

20 Sort Θini according to O.F. (lower to higher);

21 if The best solution was updated==1 then

22 iternmax = 0

23 else

24 iternmax = iternmax + 1

25 end

26 if Was any stopping criteria met? then

27 Finish the estimation process;

28 Print results;

29 Break;

30 else

31 Continue;

32 end

33 end
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Figure 6-3: Evaluation of the electrical model at the cell level in the direct and reverse

modes.

panel and cell A2 of the pc-SI panel (see Figure 4-9). The irradiation and temperature

conditions at which the data were acquired are stated in Table 4-8, and some points of

interest for both curves are listed in Table 4-3.

6.2.2. PV parameter estimation

The estimation of Bishop’s model parameters requires, in addition to the curves of the

experimental stage, the definition of the search ranges for each parameter depending on the

cell technology under analysis. In this work, a range is proposed for the technologies used in

the tests (mc-SI and pc-SI); however, it is required to establish new search ranges for cells

with different technologies.

Then, it is possible to use an optimization technique to solve the PV parameter estima-

tion problem. This work adopts the Chu-Beasly GA (see Section 6.1), which requires some

adjustment parameters such as the number of maximum iterations itermax, the number of

maximum non-improvement iterations iternmax, and the population size p. Therefore, the

PSO algorithm was used to find the value for each of these parameters, which allows the

best behavior of the genetic algorithm.

It is necessary to clarify that the entire estimation process was coded in Matlab, without using

any Genetic or optimization toolboxes, which provides complete control of its operations and

access to the internal variables to improve its performance. Since the function that relates

the cell voltage and current in the Bishop model is implicit, its evaluation is carried out

through the Newton-Raphson technique (see Algorithm 1).

The behavior of the estimation process is validated through its evaluation for a considerable

number of repetitions of the process, in this case, 100 repetitions were performed. With this

information, it is obtained some of the accuracy metrics associated with the estimation of

each parameter: the evaluation of the objective function, the computational time, and some
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other error measures.

6.3. Estimation stages

6.3.1. Estimation of the Q1 parameters (stage 1)

In the first stage of the parameter estimation, the five parameters that define the behavior of

the curve in the first quadrant (Rs, Rsh, Iph, I0 and η) were calculated. The ranges in Table 6-

2 were taken from the literature [158, 159, 138, 139, 160, 140, 161]. The photovoltaic current

(Iph) was adjusted to a range of ±5% of the short-circuit current of the test (Isc). This value

depends directly on the short circuit current, which in turn is linked to the irradiation of

the test, so it will always be necessary to adjust said range, according to the cell technology

used.

Table 6-2: Ranges for the estimation of parameters in the first quadrant.

Limits n Rs [Ω] Rsh [Ω] I0 [A] Iph [A]

Min 0.05 1× 10−5 5 1× 10−10 95%× Isc
Max 4 2 500 1× 10−7 105%× Isc

The Chu-Beasly GA is adjusted to obtain the best solution in terms of the objective function.

In other words, it is necessary to implement another optimization algorithm to obtain the

parameters that best fit the minimization of the problem. This was achieved by implementing

the PSO algorithm due to its simplicity and fast convergence [166, 167]. The following

parameters are used as tuning values: population size (individuals or particles) with a search

range of {2, 100}, number of iterations (maximum iterations allowed in the GA) with a search

range of {1, 10000}, and number of non-improvement iterations (this determines the point

at which the algorithm stops performing convergence or minimizing the objective function)

with a search range of {1, 10000}. The results obtained from this tuning process were p = 11,

itermax = 8761, and iternmax = 4061.

As part of the estimation process, the technique was evaluated 100 times per cell to analyze

metrics such as the mean value and standard deviation for each estimated SDM parameter

and also for O.F. (see Table 6-3). Table 6-4 presents the results of some metric errors such

as RMSE, MAPE, and the mean bias error (MBE). MBE provides a direct measure of the

estimation bias (see (6-1)). The results show a slight deviation for the RMSE metric, used

as an objective function, but this deviation is relatively high for MBE, especially for Cell

2. This may be a result of this metric not considering magnitude. That is, it is possible to

obtain both positive and negative error values, which causes the standard deviation of the

data to increase. In general, the three metrics present small mean values, which ensured a

high accuracy on the I–V curves reproduction.
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As indicated in Table 4-1, the shortcircuit current of the panels that were used for the tests

in this chapter is 0.69A. In this case, the cell that is the object of study was shaded 50%

of its area with a solid shadow, so the short circuit current of the shaded cell will decrease

considerably. This current is expected to be less than the short circuit current of the module

so that second quadrant shaded cell operation can be experienced.

MBE =
1

N

N∑
i=1

(Icelle(i)− Icellm(i)) (6-1)

Table 6-3: Ranges of parameters estimated for the SDM model (mean ± standard devia-

tion).

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)

Iph [A] 0.43± 0.17% 0.32± 0.24%

I0 [A] 9.29× 10−8 ± 23.01% 9.12× 10−8 ± 23.69%

n 1.18± 3.23% 1.29± 2.77%

Rs [Ω] 0.12± 3.41% 0.08± 4.57%

Rsh [Ω] 15.05± 2.07% 485.06± 14.36%

O.F. 3.40× 10−3 ± 7% 8.10× 10−3 ± 1.69%

Time [s] 2.49× 103 ± 112% 1.34× 103 ± 78.3%

Table 6-4: Accuracy measures for estimation with the SDM model (mean ± standard de-

viation).

Accuracy measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.003± 7% 0.008± 1.6%

MAPE 0.014± 10.6% 0.28± 1.93%

MBE −1.6× 10−5 ± 100% −2.8× 10−6 ± 1559%

Analyzing Cell 1 (mc-SI), the highest relative deviations were found in Isat with 23.3%. Con-

cerning Cell 2 (pc-SI), the highest relative deviations were found in parameters Isat and Rsh,

with 23.3% and 14%, respectively. Instead, the other parameters, for both cells, exhibited

variations under 5%. The mean RMSE of Cell 1, evaluated as the objective function, was

lower than the value obtained for Cell 2; however, the relative deviations for Cell 2 were

lower than in the case of Cell 1.

Figures 6.4(b) and 6.5(b) present the convergence of a sample of repetitions of the estimation

algorithm. Both figures show that, starting from different initial values and arriving at similar

values of O.F.
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The best and worst solutions provided by the 100 estimations were also analyzed and com-

pared based on the value of the objective function provided by the GA. Table 6-5 presents

the sets of parameters that provide each cell’s best and worst performance for the SDM.

Furthermore, Figures 6.4(a) and 6.5(a) show the comparison between the I-V curves esti-

mated with the best parameters and the experimental data for Cells 1 and 2, respectively.

Those figures show a satisfactory reproduction of the I-V curve first quadrant using the SDM

parameters obtained with the proposed GA. The most significant differences are presented

in Iph and Rsh, comparing the parameters of both cells.

Table 6-5: Sets of parameters of the best and worst solutions for the SDM of each PV cell.

Parameter
Cell 1 (mc-SI) Cell 2 (pc-SI)

Best Worst Best Worst

Iph [A] 0.43 0.42 0.32 0.33

I0 [A] 1× 10−7 4× 10−9 3.96× 10−9 9.99× 10−8

n 1.20 0.99 1.07 1.3

Rs [Ω] 0.12 0.15 0.1 0.08

Rsh [Ω] 15 15 92.14 67.07

O.F. 0.003 0.004 0.007 0.008

Time [s] 6.2× 103 6.1× 103 170.6 39.97
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Figure 6-4: Parameter estimation results for Cell 1 (mc-SI) using the SDM model: 6.4(a)

Comparison of I-V curves using the best solution, 6.4(b) convergence results

for a sample of 10 repetitions

To reproduce the second quadrant of the I-V curve, an exhaustive search was carried out

in the literature to find the parameters of the Bishop model used for PV cells, modules, or
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Figure 6-5: Parameter estimation results for Cell 2 (pc-SI) using the SDM mode: 6.5(a)

Comparison of I-V curves using de best solution, 6.5(b) convergence results for

a sample of 10 repetitions

panels. This literature review confirmed that second-quadrant studies are commonly perfor-

med using parameters similar to those proposed in [23], with minor variations. It was found

that the works define the parameters such as the breakdown voltage of the semiconductor

junction (Vbr), the fraction of ohmic current involved in avalanche breakdown (a), and the

avalanche breakdown exponent (m) [23, 22, 105, 112, 106]. In some other cases, (a) and (m)

are defined as constants [107, 168, 25, 21] or adjustment coefficients [31, 169]. Furthermo-

re, only a few studies have reported the procedure to obtain these parameters. Table 6-6

lists some of the second quadrant studies found in the literature, the values adopted for the

second quadrant parameters, the technology of the cell under study, and the source from

which the parameters were adopted; in Table N.I. means the information is not indicated in

the reference.

The most commonly adopted values in the literature for the parameters of the second qua-

drant, observed in Table 6-6, are a = 2 × 10−3, m = 3, and Vbr = −28V for Cell 1 and

Vbr = −26V for Cell 2. Using those values to estimate the behavior of both experimental

cells (Cell 1 and Cell 2) through the Bishop model, leads to the results reported in 6-7. Table

6-7 includes these values and also contains the MAPE and MBE metrics. The table shows

how all metrics grow consistently with respect to metrics of the parameter estimation of the

SDM model. Here the RMSE values increase considerably compared to the values obtained

in Table 6-5. Observing the set of parameters that provide the best solutions in both cases,

the most considerable changes can be observed in Isat and Rsh.

Figures 6.6(a) and 6.6(b) show the I-V reproduction for Cell 1 and Cell 2, respectively, when

the best set of parameters are used in the Bishop model (see Table 6-8). Both Figures show
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Table 6-6: Values of the Bishop model parameters for the second quadrant.

Reference a Vbr [V] m
Cell

technology

Parameters

source

[23] 2× 10−3 −15 3.7 mc-SI ESTI data base

[168] 2× 10−3 −20 3 N. I. N. I.

[107] 2× 10−3 −15 6 N. I. N. I.

[103] 0.1 −14 2 N. I. N. I.

[25] 2× 10−3 −21.29 3 N. I. N. I.

[114] 2× 10−3 −21.29 3 N. I. [25, 168]

[22] 0.35 −15 3.8 mc-SI N. I.

[105] 0.1 −20 3 N. I. N. I.

[112] 2× 10−3 −15 3 N. I. N. I.

[21] 2× 10−3 −15 3 N. I. [107]

[106] 1× 10−2 −14.4 3 N. I. N. I.

[31] 0.1 −10 V to −30 3.4 to 4 mc-SI and pc-SI N. I.

[169] 0.1 −10 1.1 mc-SI N. I.

Table 6-7: Accuracy measures for estimation for the Bishop model using the SDM parame-

ters (mean ± standard deviation).

Accuracy measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.15± 2.84% 0.024± 9.76%

MAPE 0.15± 2.30% 0.23± 2.31%

MBE −8.3× 10−2 ± 2.83% 9.4× 10−3 ± 37.68%

a wrong reproduction of the second-quadrant behavior of real PV cells under real operation

conditions. The RMSE values of cells 1 and 2 were 0.1512 A and 0.0149 A, respectively,

much higher than the RMSE obtained in the first quadrant.

In Figures 6.6(a) and 6.6(b), it is possible to observe that although Bishop’s model is used to

represent the behavior of PV cells, its fitting is not correct in the second quadrant. Indeed,

the estimated I-V curves do not present a shape similar to that of the experimental curves.

Furthermore, as the negative voltage increases, the difference between the estimated and

experimental curves becomes noticeable. The main reason is that the estimation includes

only information from the first quadrant to find the SDM parameters.

Therefore, this test is evidence of the need to also estimate the parameters of the second

quadrant instead of adopting the values reported in [23] for any condition. The following

subsection addresses such a second estimation stage.
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Table 6-8: Sets of parameters of the best and worst solutions for the Bishop model using

SDM results of each PV cell.

Parameter
Cell 1 (mc-SI) Cell 2 (pc-SI)

Best Worst Best Worst

Iph [A] 0.42 0.43 0.32 0.33

I0 [A] 9.99× 10−8 9.99× 10−8 9.99× 10−8 9.99× 10−8

n 1.20 1.20 1.30 1.30

Rs [Ω] 0.13 0.13 0.08 0.08

Rsh [Ω] 17.52 15 243.151 67.07

a 2× 10−3 2× 10−3 2× 10−3 2× 10−3

m −3 −3 −3 −3

Vbr [V] −28 −28 −26 −26

O.F. 0.11 0.15 0.01 0.04

Time [s] 38.22 46.28 38.72 39.97
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Figure 6-6: Comparison of I-V curves using the Bishop model with the parameters of the

SDM estimation and: 6.6(a) Cell 1 (mc-SI) a = 2× 10−3, m = 3, Vbr = −28 V,

6.6(b) Cell 2 (pc-SI) a = 2× 10−3, m = 3, Vbr = −26 V

6.3.2. Estimation of the Bishop model parameters (stage 2)

The second estimation stage was carried out for the two cells with different technologies

previously described (Cell 1 and Cell 2) to observe variations in the parameters of the

second quadrant. In this case, in addition to the search ranges defined in Table 6-2, the

ranges of parameters a, Vbr, and m were also defined. Generally, the literature takes the

information presented in Bishop regarding these three parameters. The only range that
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Bishop establishes is for the avalanche exponentm, which can vary between 3 and 4. However,

once the estimation stage began, it was noticed that some of the parameters collided at the

limits of the search range. So, it was necessary to expand these ranges. The information

in Table 6-6 was considered to define the search ranges of the variables a, m, and Vbr.

These additional ranges were obtained by analyzing the impact of each parameter on the

I-V curve in the second quadrant. This procedure was carried out using simulations of the

Bishop model, verifying which values allowed a reconstruction of the I-V curve close to

the experimental ranges obtained from the real cells. Subsequently, the validation of the

established parameter ranges was carried out by analyzing the results in the estimation

stage. These new parameter ranges are detailed in Table 6-9.

Table 6-9: Ranges for parameter estimation in the second quadrant.

Limits a Vbr [V] m

Min 2× 10−3 −50 2

Max 15× 10−3 −20 6

In this case, the results of PSO sintonization gave as results p = 14, itermax = 9709, and

iternm = 1261 for the GA parameters. With the parameters defined for the GA, the es-

timation of the Bishop model was repeated 100 times. Table 6-10 reports the variations

in the model parameter estimation. Furthermore, Table 6-11 presents the parameters that

provide the best and worst estimations obtained in 100 repetitions. The results show a lo-

wer execution time for the worst solution for Cell 1 and Cell 2. Since a maximum number

of non-improvement iterations has been defined, it is possible that, in these cases, the al-

gorithm has fallen into a local minimum. The electrical variables were acquired with the

R&S®RTE1204 Oscilloscope. According to the datasheet. This equipment has an accuracy

for DC measurements of ±1.5%. Four variations in cell voltage and current values were

proposed to analyze the impact of said precision on parameter estimation: 1. {1.015 ∗ Vcell,

1.015 ∗ Icell}, 2. {1.015 ∗Vcell, 0.985 ∗ Icell}, 3. {0.985 ∗Vcell, 1.015 ∗ Icell}, and 4. {0.985 ∗Vcell,

0.985 ∗ Icell}. Comparing the results obtained with the variations in {Vcell, Icell} and the

consolidated information in Table 6-11, the deviations of the parameters are within the

deviations of the estimate for the original data without variations, when the estimation

stage was repeated 100 times. Therefore, no significant changes are observed in estimating

parameters associated with the precision of the measuring equipment.

In this estimation process, the highest relative deviations were found in the same parameters:

Isat, Vbr, m, and a. For Cell 1, those maximum variations were 13.3%, 23.2%, 33.3%, and

22.22%, respectively; while for Cell 2, were 24.4%, 17.5%, 24.5%, and 32.5%, respectively;

finally, the other parameters reported variations under 5%. The mean RMSE for Cell 1

(mc-SI), evaluated as the objective function, was lower than the value for Cell 2; however,

the deviations were higher for Cell 2 (pc-SI).
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Table 6-10: Parameters estimated for the Bishop model (mean ± standard deviation).

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)

Iph [A] 0.41± 0.33% 0.32± 0.25%

I0 [A] 9.61× 10−8 ± 12.65% 9× 10−8 ± 24.4%

n 1.19± 1.05% 1.2± 2.5%

Rs [Ω] 0.13± 2.37% 0.08± 5.6%

Rsh [Ω] 51.69± 3.98% 182.9± 3.1%

Vbr [V] −18.45± 23.25% −37± 17.5%

m 4.59± 34.22% 5.3± 24.5%

a 0.02± 22.88% 0.02± 32.5%

O.F. 4.7× 10−3 ± 0.03% 0.007± 2.8%

Time [s] 408.90± 81.99% 528.1± 109.1%

Table 6-11: Best and worst parameter solutions for the Bishop model of each PV cell.

Parameter
Cell 1 (mc-SI) Cell 2 (pc-SI)

Best Worst Best Worst

Iph [A] 0.41 0.42 0.32 0.32

I0 [A] 9× 10−8 9× 10−8 2× 10−9 9× 10−8

n 1.1 1.2 1 1.3

Rs [Ω] 0.13 0.14 0.1 0.09

Rsh [Ω] 52.5 53.6 155.4 179.9

Vbr [V] −28.1 −18.3 −25.9 −40.9

m 7.5 4.5 4.4 6.1

a 0.029 0.028 0.005 0.024

O.F. 0.004 0.005 0.006 0.008

Time [s] 632.6 162.6 580.8 56.8

Table 6-12 presents the accuracy metrics evaluated for estimating Bishop’s model. When

comparing the results presented in Table 6-7 and Table 6-12, it is observed that the average

values of each metric considered for the assessment of Bishop’s model parameters are consi-

derably lower than those presented in estimation stage 1. RMSE, MAPE, and MBE errors

are based on comparisons between the experimental and estimated current values. Then, a

value of 0.15 A in the RMSE and MAPE values for Cell 1 is considerably high compared

with its Isc = 0.43 A.

Comparing the results obtained in Table 6-7 and Table 6-12, for Cell 1, the average values

for Stage 2 of the RMSE, MAPE, and MBE errors are significantly lower than for Stage 1.

However, Stage 2 presents considerable variability concerning MAPE and MBE. For Cell 2,
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the RMSE of Stage 2 is significantly lower than for Stage 1, indicating higher estimation

precision. The standard deviation in MBE for stage 2 in both cells is very high, suggesting

large variability in bias between different observations.

Finally, Figures 6.7(a) and 6.8(a) compare the estimated I-V curves of Cell 1 and Cell 2

with the experimental data, respectively, using the parameters obtained in the best solution.

Both figures include a zoom-in Q1 that presents the estimation results in the regions near

Isc and Voc. Those comparisons evidence the satisfactory performance of the Bishop model

in the second quadrant, using the parameters estimated with the proposed GA. Therefore,

this approach provides a much more accurate solution compared with using the Bishop

parameters reported in [23] for these real PV cells.

Figures 6.7(b) and 6.8(b) present a representative sample of the convergence of the estimation

algorithm for Cell 1 and Cell 2, respectively. In both figures, it is possible to observe the

decrement of O.F. as the number of iterations increases, and also that after 7000 iterations

all solution paths reach a similar O.F. value, thus providing a similar accuracy in the second

quadrant.

In addition, it is observed that the estimation provided by the SDM did not have a good

approximation in Q2. This model presents a linear behavior for Q2. Therefore, the breakdown

voltage is not observed. Here, for the parameterization of this model, the whole information

of the experimental I-V curve was used (Q1 and Q2).

Table 6-13 presents the evaluation results of the error metrics for the estimation in Q1, Q2,

and Q1-Q2 in both cells. For the experimental Cell 1 I-V curve, there are 197 data, 129

corresponding to Q1 and the remaining 68 to Q2. For the experimental Cell 2 I-V curve,

there are 201 data, 152 corresponding to Q1 and the remaining 49 to Q2.

The table shows how, for Cell 2, the error values are consistent for Q1, Q2, and the complete

set of experimental data (Q1-Q2). In the three evaluations, the errors for the estimation

proposed in stage 2; that is, when the complete set of Bishop model parameters is estimated,

it presents the lowest error values. However, for Cell 1, only for the evaluation in Q1, stage

1 presents the lowest error values but only when RMSE and MBE are calculated.

Table 6-12: Accuracy measures for estimation with the Bishop parameters (mean ± stan-

dard deviation).

Accuracy measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.004± 3.9% 0.007± 2.9%

MAPE 0.018± 25.9% 0.20± 12.34%

MBE −7.3× 10−5 ± 185.4% −6.4× 10−5 ± 196.18%

Table 6-14 presents the relative percent error of the main points of interest, that is, Isc, Voc,

and Pmpp. The two stages show low error values in the estimation of Pmpp, below 2%, making

them suitable for applications where the delivered power needs to be estimated [164].
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Figure 6-7: Parameter estimation results for Cell 1 (mc-SI) using the Bishop model: 6.7(a)

Comparison of I-V curves using the best solution (zoom-in Q1), 6.7(b) conver-

gence results for a sample of 10 repetitions
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Figure 6-8: Parameter estimation results from Cell 2 (pc-SI) using the Bishop model: 6.8(a)

Comparison of I-V curves using the best solution (zoom-in Q1), 6.8(b) conver-

gence results for a sample of 10 repetitions

For Cell 1, the most significant error is found in Isc when calculated through stage 2. For

Cell 2, the most significant errors are found in Impp, for stage 1 equal to 4.43% and stage 2

3.42%. Concerning Vmpp, stage 1 presents an error of 2.85%. The other calculated errors are

below 2%.
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Table 6-13: Error metrics discriminated by quadrant for the best solution

Cell 1 Cell 2

RMSE MAPE MBE RMSE MAPE MBE

Stage 1 0.0037 0.0182 4.03× 10−5 0.0082 0.0024 −2.25× 10−4

Q1
Stage 2 0.0045 0.0174 −2.26× 10−4 0.0072 4.72× 10−4 −3.04× 10−5

Stage 1 0.1995 0,3366 -0.1885 0.0272 0.0541 0.0219
Q2

Stage 2 0.0042 0.0061 2.81× 10−4 0.0025 0.0058 8.36× 10−5

Stage 1 0.1172 0.1281 -0.065 0.0152 0.015 0.0052
Q1-Q2

Stage 2 0.0044 0.0135 −5.11× 10−5 0.0064 0.011 −2.86× 10−6

Table 6-14: Relative percent error of some points of interest in the I–V and P–V curves

Cell 1 Cell 2

Variable Experimental Stage 1 Stage 2 Experimental Stage 1 Stage 2

Voc [V] 0.5023 0 0 0.5414 0.36 0.36

Isc [A] 0.4343 0.02 3.79 0.3298 0.81 1.66

Impp [A] 0.3689 0.24 0.54 0.2864 4.43 3.42

Vmpp [V] 0.3711 0 1.5 0.4375 2.85 1.76

Pmpp [W] 0.1369 1.24 1.97 0.1253 0.79 1.59

6.4. Discussion

Comparing the results of the two stages for the parameter estimation, it was established

that the estimation of the complete set of parameters of the Bishop model achieves better

performance compared to estimating only the five parameters of the SDM and using the

parameters of the second quadrant reported in Table 6-6.

A comparison of the parameter estimation results (stages 1 and 2) shows that the parameters

for the first quadrant are similar for both Cell 1 and Cell 2. The most significant difference

in the estimation stages is Rsh, which affects the behavior in the second quadrant of the

Bishop model. For this parameter, Cell 1 exhibited differences of 36.19Ω between the SDM

and Bishop model from its mean values (see Table 6-3 and Table 6-10), and 37.5Ω from the

best results (see Table 6-5 and Table 6-11). For Cell 2, the difference becomes considerably

larger, with 302.1Ω when comparing the parameter mean value and 63.26Ω for the difference

of best values. This analysis shows that I-V experimental curves, which include the first and

second quadrants, are necessary for estimating the parameters of the Bishop model.

This study found differences in the behavior of the mc-SI and pc-SI I-V curves at important

points, such as the short circuit current Isc and the maximum power point (Vmpp, Impp).

Those variations are reflected in the estimation of the parameters of the Bishop model, as

shown in Table 6-10. Such differences are noticeable not only in the first quadrant but also

in the second quadrant since the three parameters defining that behavior (a, m, and Vbr)
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show considerable variations depending on the type of cell technology. Therefore, parameters

and search ranges should be defined according to the technology of the cells under analysis.

It is important to emphasize that the parameters of the first quadrant also affect both the

result of estimating the parameters of the second quadrant and the reproduction of the

I-V curve in that quadrant; therefore, using values reported in the literature introduces

significant errors in the estimation of the I-V curve. The solution presented in this Chapter

is a tool for improving the analysis of the cell when it is exposed to partial shading, and

its representation is performed with using the Bishop model. In this way, tools oriented to

quantify shading losses and study degradation caused by hot spots, and aging, among other

issues, can be developed by using the proposed methodology; thus, it provides a suitable

compromise between accuracy and complexity.

Finally, future studies should focus on evaluating the performance of other optimization

techniques to estimate the parameters of photovoltaic cells for the first and second quadrants

using the Bishop model. Moreover, performing experiments on a large number of commercial

photovoltaic cells, with different technologies (thin-film, bifacial, PERC, among others) could

be useful for the scientific community, since accurate parameters for both the first and

second quadrants are needed to analyze cells of those technologies. However, it is important

to evaluate the performance of the proposed approach by considering different operating

conditions with respect to temperature and irradiance.

This contribution was published in the journal paper:Restrepo-Cuestas, B.J.; Montano, J.;

Ramos-Paja, C.A.; Trejos-Grisales, L.A.; Orozco-Gutierrez, M.L. “Parameter Estimation of

the Bishop Photovoltaic Model Using a Genetic Algorithm.”Appl. Sci. 2022, 12, 2927. This

article can be found on the publisher’s website at https://www.mdpi.com/2076-3417/12/6/

2927. The journal’s homepage is located at https://www.mdpi.com/journal/applsci, and

the publisher’s copyright information can be found at https://www.mdpi.com/journal/

applsci/about.
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This doctoral thesis has presented a methodology for modeling commercial panels at the

cell level, under partial shading, using experimental I-V curves. This methodology allows

analyzing the cell behavior in the first quadrant, which is in direct operation mode when

the cell produces power, and in the second quadrant when the cell consumes power due to

mismatching conditions.

From the literature review, it was possible to find that SDM has been widely used, from its

application to different panel technologies to the estimation of parameters using analytical

or optimization techniques for its solution. However, its application is limited to the module

or panel level since it is not possible to capture the behavior at the cell level for the second

quadrant.

It was also found that the Bishop model is used to represent photovoltaic systems; this allows

their representation from a cell, module, or panel in the first and second quadrants. However,

the model has not been widely studied, and no proposal for the estimation of its parameters

was found.

On the other hand, the DRM presented in some articles allows associating the first quadrant

with the SDM and adjusting the second quadrant through simple linearizations of the curve.

Of the three models analyzed, this is the least common. It was possible to observe that it

requires the development of a mathematical formulation that allows evaluating the current

and the voltage in terminals through a set of equations, otherwise, it will only be possible

to evaluate it through circuit simulators.

Once the models have been analyzed, it is necessary to obtain cell-level curves that provide

information in both the first and second quadrants. Therefore, Chapter 4 presents a non-

invasive procedure for panels that allows, through voltage and current data taken at its

terminals, to estimate the behavior of one of its cells that has been affected by partial

shading. This procedure seeks to avoid damage to the physical structure of the panel since,

in order to obtain a direct measurement of the voltage at the terminals of the affected cell,

it would be necessary to affect the encapsulating material.

The chapter details the experimental platform used and the procedure to obtain the I-

V curves, which includes the process required to obtain the curves at the cell level. This

procedure was applied in two panels with the same characteristics but different technologies

(monocrystalline and polycrystalline). Each panel has 36 cells connected in series. As a result

of this chapter, a database of I-V curves per panel was obtained, formed by of a curve for

each cell where the behavior is observed in the first and second quadrants when the cell is
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shaded at 50% of the area, also including temperature information and test irradiation. In

addition, I-V curves from a single cell with different sizes of the shaded area were acquired.

Based on the curves obtained in Chapter 4, Chapter 5 presents a strategy for the I-V cha-

racterization of a PV cell considering three PV models: the SDM, the Bishop model, and

the DRM. The proposed strategy uses GA and Simulink to extract the parameters from

an experimental I-V curve. The analysis results demonstrate that the SDM model does not

correctly reproduce the cell behavior when the current grows exponentially while the voltage

at the cell terminals grows negatively (Q2).

The parameter estimation of the DRM model, which was carried out in two stages, demons-

trated that estimating the parameters per quadrant has a negative influence on the model’s

accuracy. When estimating the parameters of the first quadrant, exclusively using the ex-

perimental information related to that quadrant, the critical parameter Rsh is not correctly

identified, which is one of the parameters that impose the behavior in the second quadrant.

Moreover, the results reveal the need for a mathematical formulation that allows estimating

the whole set of parameters of this particular model. Here, this procedure was developed

with the circuital model evaluation in Simulink, which required the estimation of the five

parameters for Q1 and the calculation of the parameters for Q2, in an independent way.

It is also important to highlight that the proposed procedure can be used, along with PV

array modeling methodologies, to analyze the behavior of cells operating in both Q1 and Q2,

which is needed for power analysis and loss estimation during partial shading conditions or

other mismatching phenomena.

The results demonstrated that the Bishop model presents the best behavior of the three

models analyzed. In this way, Chapter 6 focused on the parameter estimation of the Bishop

model. This analysis considers the information found in the literature review.

Most of the studies estimate the parameters of the Bishop model that are common with the

SDM; however, some of the parameters that dictate the behavior of the second quadrant are

not estimated but are defined as fit parameters. Therefore, it was proposed to analyze the

results from two perspectives: First, estimate the parameters of the SDM model and select

values for the other parameters; and Second, estimate the complete set of parameters of the

Bishop model.

Comparing the results of the two stages of the parameter estimation, it was established that

the estimation of the complete set of parameters that form the Bishop model achieves a

better performance in comparison to estimating only the five SDM parameters and using

second-quadrant parameters found reported in [23].

A comparison of the parameter estimation results (Stages 1 and 2) shows that the parameters

for the first quadrant are similar for both Cell 1 and Cell 2. The most significant difference

in the estimation stages is Rsh, which affects the second quadrant behavior in the Bishop

model. This analysis shows that I-V experimental curves, which include the first and second

quadrants, are necessary for estimating the parameters of the Bishop model.

As it was discussed in Chapter 4, the results presented differences in the behavior of the I-V
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curve of mc-SI and pc-SI cells at important points, such as the short-circuit current Isc and

the maximum power point (Vmpp, Impp). Those variations are reflected in the estimation of

the parameters of the Bishop model which are noticeable not only in the first quadrant, but

also in the second quadrant, since the three parameters defining that behavior (a, m, and

Vbr) show considerable variations depending on the type of cell technology. Therefore, not

only parameters but also search ranges should be defined according to the technology of the

cells under analysis.

It is important to emphasize that the parameters of the first quadrant also affect both

the result of estimating the parameters of the second quadrant and the reproduction of I-V

curve at that quadrant; therefore, using values taken from the literature introduces significant

errors in the estimation of the I-V curve. The solution presented in this thesis is a tool to

improve the analysis of the cell when it is exposed to partial shading and its representation

through the Bishop model is also supported. In this way, tools oriented to quantifying shading

losses and the study of degradation caused by hot spots and aging, among other issues, can

be developed by using the presented methodology, thus providing a suitable compromise

between accuracy and complexity.

Finally, the procedure to calculate the voltage-current curve in commercial panels at the

cell level, including information in both the first and second quadrants was developed. In

addition, the subsequent stage of estimating parameters of the Bishop model for its repre-

sentation considers real conditions of operation such as partial shading, achieving estimation

with RMSE of the order of 4 × 10−3, which are comparable with the best estimations of

procedures reported in the literature but those works are focused on the first quadrant only.

Furthermore, the trade-off between precision and complexity means that the methodology

can be used in applications that evaluate energy losses due to partial shading, search for the

maximum power point, and detect faults in photovoltaic panels.

Manufacturers of commercial panels can use the procedure to provide information in the

data sheet about the behavior of the cells in the second quadrant, such as breakdown vol-

tage. Furthermore, the experimental procedure presented in Section 4.3 can be replicated

by researchers to provide models with parameters tuned to cell-level behavior in commer-

cial panels. be to evaluate other optimization techniques, such as PSO, both in parameter

performance and in computational load and execution times.

Future studies should be focused on evaluating the performance of different optimization

techniques, such as PSO, for estimating the parameters of photovoltaic cells for both the

first and second quadrants using the Bishop model. Moreover, performing experiments on a

large number of commercial PV cells with different technologies (thin-film, bi-facial, PERC,

among others) could be useful for the scientific community since accurate parameters for

both the first and second quadrants could be provided. On the other hand, it is important

to evaluate the performance of the proposed approach by considering different operating

conditions regarding temperature and irradiance, to evaluate the variation in the estimated

parameters.



References

[1] IRENA and CPI. Global Landscape of Renewable Energy Finance 2023. International

Renewable Energy Agency, 2 edition, 2023.
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