

A METHOD FOR OBTAINING FORMAL
SOFTWARE SPECIFICATIONS FROM

KNOWLEDGE REPRESENTATION
LANGUAGES

Roberto Antonio Manjarrés Betancur

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medellín, Colombia

2023

A METHOD FOR OBTAINING FORMAL
SOFTWARE SPECIFICATIONS FROM

KNOWLEDGE REPRESENTATION
LANGUAGES

Roberto Antonio Manjarrés Betancur

Tesis presentada como requisito parcial para optar al título de:

Doctor en Ingeniería – Sistemas e Informática

Director:
Ph.D., Carlos Mario Zapata Jaramillo

Codirectora:
Ph.D., Bell Manrique Losada

Línea de Investigación:

Ingeniería de Software

Grupo de Investigación:

Grupo de Investigación en Lenguajes Computacionales

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medellín, Colombia

2023

To my parents, family, and friends.

They constantly make me want to do better.

Declaración de obra original

Yo declaro lo siguiente:

He leído el Acuerdo 035 de 2003 del Consejo Académico de la Universidad Nacional.

«Reglamento sobre propiedad intelectual» y la Normatividad Nacional relacionada al

respeto de los derechos de autor. Esta disertación representa mi trabajo original, excepto

donde he reconocido las ideas, las palabras, o materiales de otros autores.

Cuando se han presentado ideas o palabras de otros autores en esta disertación, he

realizado su respectivo reconocimiento aplicando correctamente los esquemas de citas y

referencias bibliográficas en el estilo requerido.

He obtenido el permiso del autor o editor para incluir cualquier material con derechos de

autor (por ejemplo, tablas, figuras, instrumentos de encuesta o grandes porciones de

texto).

Por último, he sometido esta disertación a la herramienta de integridad académica, definida

por la universidad.

Fecha 15/05/2024

Resumen 5

Resumen

Un método para la obtención de especificaciones formales de software a partir de

leguajes de representación del conocimiento

Los analistas de software usan lenguajes de representación del conocimiento para

caracterizar el conocimiento proveniente de los interesados en la fase de ingeniería de

requisitos. Estos lenguajes comprenden modelos de software basados en el lenguaje

unificado de modelado y métodos estructurados, incluyendo diagramas entidad-relación,

diagrama de clases, diagramas causa-efecto y grafos conceptuales. Si bien estos modelos

se usan para representar características básicas de un sistema de software de manera

efectiva, estos modelos todavía tienen limitaciones al representar el comportamiento y

componentes de sistemas de software complejos. Las especificaciones formales incluyen

textos, matemáticas y notaciones basadas en lógica para representar el conocimiento

relacionado a un dominio específico. Los analistas de software usan especificaciones

formales para mitigar el impacto de la ambigüedad inherente en los lenguajes de

representación del conocimiento tradicionales, facilitando procesos computacionales,

inferencia y la validación no ambigua de conocimiento. Sin embargo, la generación y

validación de especificaciones formales requiere experiencia en matemáticas y lógica por

parte de los analistas de software e interesados, impidiendo una comunicación y validación

efectiva del dominio de software. En esta Tesis de Doctorado, proponemos un novedoso

enfoque para cerrar la brecha entre los lenguajes formales y los lenguajes de

representación de conocimiento. Este enfoque contribuye a los campos de representación

del conocimiento y lenguajes formales, permitiéndole a los analistas de software generar

especificaciones formales precisas y completas desde cualquier lenguaje de

representación del conocimiento sin importar su experiencia en matemáticas y lógica. Este

enfoque facilita la validación de especificaciones a los interesados. El método propuesto

es validado desarrollando tres casos de estudio. Este enfoque es un nuevo producto de

trabajo para la representación de conocimiento no ambigua. Además, este método está

diseñado para apoyar la fase de ingeniería de requisitos como una nueva herramienta para

el analista de software.

Palabras clave: Representación del conocimiento, Ingeniería de requisitos, Modelo

de software, Especificación formal.

Abstract

Software analysts use knowledge representation languages for characterizing the

knowledge from stakeholders in the requirements engineering phase. Such languages

encompass software models based on the unified modeling language and structured

methods, including entity-relationship diagrams, class diagrams, cause-and-effect

diagrams, and conceptual graphs. While such models are used for effectively representing

the basic features of a software system, they still fail on including the behavior and

components coming from complex software systems. Formal specifications comprise texts,

math, and logic-based notations for representing the knowledge of a given domain.

Software analysts use formal specifications for mitigating the impact of the ambiguity

coming from traditional knowledge representation languages, easing computational

processes, inference, and unambiguous validation of knowledge. However, the generation

and validation of formal specifications require expertise in mathematics and logic from both

software analysts and stakeholders, thereby impeding effective communication and

validation of the software domain. In this Ph.D. Thesis, we propose a novel approach for

bridging the gap between formal languages and knowledge representation languages. Our

approach contributes to the fields of knowledge representation and formal languages by

allowing software analysts for generating precise and comprehensive formal specifications

from any knowledge representation language, regardless of their mathematical and logical

proficiency. This approach eases the validation of resulting specifications by stakeholders.

The proposed method is validated by developing three case studies. Our approach is a

new work product for unambiguous knowledge representation. Also, our method is

designed for supporting the requirements engineering phase as a new tool for software

analysts.

Keywords: Knowledge representation, Requirements Engineering, Software model,

Formal specification.

Título de la tesis o trabajo de investigación 6

7

Content

Page

1. Introduction ...12

2. Background ...15

2.1 Conceptual Framework ..15

2.1.1 Knowledge Representation Languages ...15

2.1.2 Formal specification languages ...16

2.1.3 Meta-Models for Software Knowledge Representation18

2.1.3 Pre-conceptual Schemas ...18

2.1.4 Requirements Engineering ..19

2.2 Ph.D. Thesis Focus ..20

2.3 Research Methodology ..21

2.3.1 Exploration ..21

2.3.2 Problem Formulation ...21

2.3.3 Solution ...21

2.3.4 Validation ..22

3. Research Problem ...23

3.1 Motivation ..23

3.2 State of the Art ...24

3.2.1 Planning Literature Review ..24

3.2.2 Executing Systematic Literature Review ..24

3.3 Problem Statement ..32

3.4 Objectives ..33

3.4.1 General Objective ..33

3.4.2 Specific Objectives ..33

3.5 Justification ..34

4. A method for transforming KRL-FSL pairs ...35

4.1 Characterizing KRLs in the context of RE ..35

4.2 Characterizing FSLs in the context of RE ...36

4.3 Defining a meta-model for KRLs in the context of RE ...37

4.4 Defining a meta-model for FSLs in the context of RE ...38

4.5 Defining a meta-model for transformation rules for KRL-FSL pairs41

4.6 Defining a method for transforming KRL-FSL pairs ..43

5. Validation ..46

5.1 Case study planning ..46

5.1.1 Objective ...46

5.1.2 Case studies ..46

5.1.3 Theory ...47

5.1.4 Validation research questions ..47

5.1.5 Methods ..48

5.2 Case study validation ...48

5.2.1 Performing a KRL-to-FSL transformation ...48

5.2.2 Performing a FSL-to-KRL transformation ...66

5.3 Work products ..71

5.3.1 Meta-models ..71

5.3.2 A prototype for transforming KRL-FSL pairs ..71

6. Conclusions and challenges ..72

6.1 Conclusions ...72

6.2 Challenges ...74

References ..75

Título de la tesis o trabajo de investigación 8

List of Figures

Figure 2-1. O-A-V example. The Authors adapted from Devedžic et al. (2009). 15

Figure 2-2. Semantic network example. The Authors adapted from Devedžic et al. (2009).

... 16

Figure 2-3. Pre-conceptual schemas structures. The Authors adapted from (Noreña C.,

2020) ...18

Figure 4-1. A meta-model for KRLs. The Authors ..38

Figure 4-2. A meta-model for FSLs. The Authors ...41

Figure 4- 3. A meta-model for model-to-model transformation rules for KRL-FSL pairs.

The Authors. ..43

Figure 4-4. A method for transforming KRL-FSL pairs. The Authors44

Figure 5-1. CS1 source model representation. The Authors. ...48

Figure 5- 2. Process diagram representation (Zapata & Arango, 2009)56

Figure 5-3. Class diagram representation (Zapata & Arango, 2009)57

Figure 5-4. Case diagram representation (Zapata & Arango, 2009)57

Figure 5-5. CS2 target model representation. The Authors ..69

List of Tables

Table 3-1: Study criteria. The Authors ...25

Table 3-2: Primary studies summary. The Authors. ...29

Table 4-1: KRL-FSL pair equivalencies. The Authors. ...42

Table 5-1: CS1 represented elements. The Authors. ...54

Table 5-2: CS1 CM values summary. The Authors. ..56

Table 5-3: CS2 represented elements. The Authors. ..63

Table 5-4: CS2 CM values summary. The Authors. ..65

Table 5-5: CS3 transformation process summary. The Authors.70

Table 5-6: CS2 CM values summary. The Authors. ..71

1.Introduction

Software analysts employ Knowledge Representation Languages (KRLs) to effectively

characterize and capture the knowledge provided by stakeholders during the requirements

engineering phase (Ang & Hartley, 2007; Dubois et al., 1986). Such languages include

various software models, such as entity-relationship diagrams, class diagrams, cause-

effect diagrams, and conceptual graphs, based on the Unified Modeling Language (UML)

and structured methods (Karolita et al., 2023). KRLs ease the systematic organization and

representation of stakeholder knowledge, enabling a comprehensive understanding of the

requirements of a software system. Software analysts ensure the captured knowledge is

aligned with the needs and expectations coming from stakeholders while using such

languages, serving as a foundation for the subsequent phases of the software development

process (Sabri, 2015; Sonbol et al., 2020).

Despite the effectiveness of such models in representing the basic features of software

systems, some limitations still remain for representing complex software systems (Maio,

2021). Such models use to fail on representing the interdependencies, interactions, and

relationships among the subsystems, intricated components, and processes composing a

complex software system, hardening for a comprehensive representation of the dynamic

behavior of complex software systems (Popescu & Dumitrache, 2023).

Formal Specifications (FSs) provide an unambiguous and rigorous representation of the

knowledge coming from a software system. Such specifications comprise well-defined

textual, mathematical, and logical notations, facilitating computational processes,

automated reasoning, verification, and validation of captured knowledge (Pang et al.,

2016). KRLs comprise natural language and graphical elements for representing specific-

domain knowledge, easing the understanding and validation of software domains by the

stakeholders (Ang & Hartley, 2007; Dubois et al., 1986). Software analysts use FSs for

identifying, capturing, and communicating complex software systems, including their static

1. Introduction 13

and dynamic features. Also, such specifications allow software analysts for mitigating the

impact of misunderstanding and ambiguity, enhancing their communication with the

stakeholders (Pang et al., 2016).

FSs are strongly based on logical and mathematical notation. Also, such specifications

include specialized terminology, domain-specific languages, and symbols, so software

analysts and stakeholders are challenged to grasp a comprehensive understanding of the

captured knowledge (Alkhammash, 2020; Rabinia & Ghanavati, 2017). Thus, a simpler

language becomes necessary for both software analysts and stakeholders for enhancing

their understanding of formal specifications and the gathered knowledge, easing the

communication and validation of the software domain.

Consequently, in this Ph.D. Thesis we propose a novel method for obtaining an FS from a

knowledge representation model and vice versa regardless of the nature of the KRL and

the FS. Also, we analyze and characterize state-of-the-art proposals coming from the KRL

and FS fields to identify their features and equivalences, so we facilitate the generation of

an adequate FS, minimizing the need for a deeper understanding of mathematics and logic,

and allowing software analysts and stakeholders to validate the produced FS and KRL.

Some authors propose KRL-FL pairs for representing software domains, abstracting some

of the complex aspects of the FSs. However, such pairs are limited to a specific type of

domain and KRL-FL pair, hardening generalization among other types of domains and

KRLs (Alkhammash, 2020; Ang & Hartley, 2007). Also, some KRL-FL pairs only include

one-way transformation rules, i.e., from KRL to FL, minimizing the flexibility of the proposals

as software analysts may not transform FLs into KRLs. Our approach overcomes such

limitations by using a meta-model including concepts such as nodes, names, features,

types, processes, sequences, classes, relationships, and constraints. Such concepts are

designed for representing recurrent elements coming from well-known KRLs and FSs,

eliminating the dependency on specific domains, KRLs, and FSs. Also, we provide a set of

heuristic rules for generating such FSs. Our approach allows software analysts for

generating precise and comprehensive FSs from any KRL, regardless of their mathematical

and logical background. Also, we provide an easier graphical language, helping them for

communicating and validating the produced FSs and KRLs with stakeholders.

We follow the guidelines of the empirically based technology transfer methodology (Wohlin

et al., 2012) and the design science methodology for information systems and software

engineering (Wieringa & Wieringa, 2014) for performing our research, including four

phases: exploration where we perform a systematic literature review for identifying and

characterizing relevant studies to our proposal; problem formulation where we state the

problem; solution where we propose a new method for obtaining FS from any KRL;

validation where we validate our proposal.

We validate our proposal by using three case studies including state-of-the-art object-

oriented KRL-FL pairs. The validation process is performed by using the experimental

process of software engineering: planning, executing, and analyzing a mechanism

experiment (Wieringa, 2014; Wohlin et al., 2012). Our method is a new work product for

unambiguous knowledge representation. Such a method supports software analysts in the

generation of FSs during the requirements engineering phase.

This Ph.D. Thesis is structured as follows: in Chapter 2, background, we present the

conceptual framework, Thesis focus, and methodology; in Chapter 3, research problem, we

describe our motivation, state of the art, problem statement, research question, hypothesis,

objectives, and justification; in Chapter 4, a method for obtaining formal software

specifications and knowledge representation languages, we propose a novel method for

supporting the generation of formal software specifications and knowledge representation

languages, comprising a meta-model for representing any KRL, a meta-model for

representing any FS, and a set of heuristic rules for generating FSs and KRLs; in Chapter

5, validation, we experimentally evaluate our method and present the derived work

products; in Chapter 6, conclusions and challenges, we discuss contributions and

challenges.

2. Background

2.1 Conceptual Framework

2.1.1 Knowledge Representation Languages

KRLs comprise a wide set of graphical and textual components allowing software analysts

for representing key components of a software domain. Such languages play a key role in

the RE phase as software analysts may easily organize and validate the gathered software

domain knowledge with stakeholders. Also, the produced KRs provide the foundation for

subsequent phases in the software development process.

Software systems comprise several intertwined components which may be represented by

using some KRLs, including entity-relationship diagrams, class diagrams, sequence

diagrams, conceptual graphs, and other structured methods. Such representations allow

software analysts for representing the dependencies, components, and constraints related

to a software system. Also, the formal nature of KRLs allows software analysts for

performing reasoning, inferencing, and automated analysis and validation of the gathered

knowledge.

Some examples of KRL approaches for representing concepts, relationships, and

constraints coming from a specific software domain are described as follows:

Object-Attribute-Value (O-A-V) triplets are used for representing facts about objects and

their attributes. An O-A-V triplet includes an attribute value of an object, e.g., the English

phrase “the color of the ball is yellow” may be written in O-A-V form as “Ball-color-yellow”

and graphically represented as shown in Figure 2-1.

Figure 2-1. O-A-V example. The Authors adapted from Devedžic et al. (2009).

Rules include one or more premises, conditions, and antecedents (i.e., situation), to one or

more consequents (i.e., conclusions). Both antecedents and consequents may be used for

representing complex rules, e.g., IF the time is after midnight AND I am hungry

(antecedents), THEN I should not eat now (consequents).

16 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Semantic networks (also known as conceptual maps) are used for capturing and

representing cognition. KRLs contain object graphs, concepts, and situations related to a

specific domain, representing the psychological model of the human associative memory.

The nodes in the graph are connected by using links and arcs representing relationships.

Labels are used for improving the understandability of the represented relationships, setting

them a type such as “kind-of,” “part-of,” and “is-a.” Also, some abstracts of the semantic

network may be defined as O-A-V triplets and Object-Oriented-Programming (OOP)

elements, including classes (concepts), instances (objects), attributes, values, and

relationships.

The statement “Billy is Labrador, which is a kind of a dog. Other types of dogs are Setters

and Bulldogs. All of them have 4 legs” may be represented as a semantic network of

interconnected facts, as shown in Figure 2-2.

Figure 2-2. Semantic network example. The Authors adapted from Devedžic et al. (2009).

Frames are used for modeling stereotypical knowledge related to some concept/object.

Frames may be understood as classes coming from the OOP context. Class frames are

used for representing a template for a set of similar objects. Instance frames are used for

describing instances of objects and their slots (i.e., attributes) in the set.

2.1.2 Formal specification languages

Formal methods are used for describing the function and architecture of software systems.

Such methods include strict notations and deductive principles, facilitating the application

of completeness and correctness proofs. FSLs are the notations of formal methods. Such

languages include three main components (Pang et al., 2016): alphabets comprise a finite

set of tokens, including symbols (e.g., punctuation marks and special symbols) and strings

(e.g., single characters, words, and meaningful units); syntax defines a rule-based logic for

composing well-formed expressions within a specific FSL; semantics is concerned with the

meaning and the interpretation of the expressions within a FSL; formal grammar comprises

a set of rules defining the syntax of a FSL.

Software analysts use FSLs for writing specifications related to a particular domain,

including assertions, formulas, and sentences which may be computed, validated, and used

for inference processes (Hahn et al., 2022; Pang et al., 2016). FSLs allow software analysts

for enhancing the precision and rigor of the RE process, bridging the gap between high-

2. Background 17

level informal requirements specifications and formal and unambiguous specifications

which may be analyzed and validated (Pang et al., 2016; Sammi et al., 2010). However,

FSLs are based on mathematic and logic-based notations, hardening the learning and

understanding for inexperienced software analysts and stakeholders (Hahn et al., 2022;

Parkes, 2002).

Some types of FSL are explained as follows:

Logic-based representation languages are used for representing sentences as assertions,

limiting reasoning in formal logic to the derivation of truth values and proofs from such

assertions. The formal nature is challenging for representing other forms of human

reasoning beyond logical deduction, such as interrogations, beliefs, doubts, and desires.

Also, designing a comprehensive and valid inference procedure for multiple logics remains

a complex task (Bruijn, 2007).

First-Order Logic (FOL), also known as first-order predicate calculus, comprise three

fundamental components: syntax, which is used for defining the rules governing the

constructions of well-formed formulae related to the logical language; semantics, which is

used for relating meaning to a well-formed formula. Semantics provides a formal framework

for interpreting and assigning truth values to the expressions related to the logical language,

allowing for understanding the relationships and implications included in the formulae; proof

procedures are used for deriving deductive consequences by using syntactic operations

and semantic methods. Such procedures allow for a systematic exploration and

manipulation of well-formed formulae, facilitating the inference of logical consequences

(Rabinia & Ghanavati, 2017).

Propositional-logic-based languages are used for representing knowledge as propositions,

i.e., true/false expressions (Parkes, 2002). Symbolic variables are assigned to propositions

expressed in propositional logic, allowing for symbolic reasoning (Varzi, 2022). More

complex expressions may be represented by using logical connectors such as AND (𝖠),

OR (∨), NOT (¬), IMPLIES (→ or ⇒), and EQUIVALENCE (⇔). For example, the

proposition “The princess is in the palace” may be assigned to the symbolic variable A.

Such a proposition may be further used for representing more complex statements and

rules, e.g., IF The princess is in the palace (A) AND The king is in the garden (B) THEN

The king cannot see the princess (C). Such expression may be written by using symbols

as follows: A 𝖠 B ⇒ C. Propositions comprise arguments and predicates, asserting certain

knowledge about the world, e.g., “The princess is in the palace” may be represented as

in(Princess, palace), where the predicate in is used for capturing and generalizing the

knowledge about the relationship between two variables X and Y, i.e., in(X, Y). Such a

predicate may be used for some examples such as in(King, garden) and in(Queen, throne).

Also, functions allow for representing the relationship between elements from different sets,

e.g., father(princess) = king. Rules are used for representing more complex expressions,

including such symbols and notations, e.g., the expression “if the princess is in the palace

18 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

and the king is in the garden, then the king does not see the princess” may be represented

as in(princess, palace) 𝖠 in(king, garden) → ¬see(king, princess).

2.1.3 Meta-Models for Software Knowledge Representation

Software systems comprise a wide range of complex components so several KRLs and

FSLs are needed for a comprehensive representation of their knowledge. Since most KRLs

and FSLs are focused on specific domains, some authors have proposed KRL-FSL pairs

for representing specific software domains, including a set of transformation rules, allowing

software analysts for obtaining FSs from specific KRLs.

Meta-models are aimed at representing several software domains at a time, mitigating the

domain-dependency nature of classical KRLs. Such models comprise KRL-FSL pairs,

allowing software analysts for representing software system artifacts, such as code,

models, and specifications in a more generalized manner. Some proposals are focused on

representing reusable components (Knowledge-Discovery meta-model; Pérez-Castillo et

al., 2011), data entities, user interface entities (MoDisco meta-model; Bruneliere et al.,

2014), code analysis activities (Abstract Syntax Tree meta-model; Son & Kim, 2017),

programming languages (GASTM meta-model Son & Kim, 2017), and object-oriented

features, including classes, attributes, and relationships (FAMIX; Tichelaar et al., 2000).

2.1.3 Pre-conceptual Schemas

Pre-conceptual Schemas (PCSs) are intended to capture and represent a software domain.

Such representations pose an unambiguous syntax, exhibiting a high degree of

resemblance to natural language, thus facilitating the stakeholder comprehension of the

software domain. PCSs comprise a collection of graphical and textual structures, enabling

the depiction of both dynamic and static features coming from a software domain within a

unified representation (Zapata, 2012). Such structures are shown in Figure 2-3 and

described as follows:

Figure 2-3. Pre-conceptual schemas structures. The Authors adapted from (Noreña C.,

2020).

2. Background 19

Nodes. Concepts are used for representing roles, entities, and categories related to a

software domain. Concepts are represented by nouns and noun phrases, e.g., formal

language, software analysts; conditionals are used for describing an expression

conditioning a dynamic relationship, e.g., if state = validated; references are used for linking

concepts and relationships; operators are used for either comparing two concept or

assigning values to a concept. Operators comprise logical (AND, OR), basic (+, -, *, /), and

relational (<, <=, >, >=, =); class concepts are used for defining an attribute of a specific

concept, e.g., language syntax.

Relationships. Structural relationships are used for expressing a dependency relationship

between two concepts including the verbs has and is, e.g., user is software analyst;

Dynamic relationships are used for representing operations, actions, and functions in a

software domain by using action verbs, e.g., software analyst models software domain;

Eventual relationships are used for representing events, e.g., file arrives.

Links. Connections are used for linking concepts with either dynamic/structural

relationships; Implications are used for representing cause-and-effect relationships

between dynamic relationships and events; Operators are used for linking operators with

either operators or concepts.

Gatherers. Frames are used for grouping concepts and dynamic relationships; Notes are

used for assigning values to a concept; Specifications are used for characterizing a dynamic

relationship; Constraints are used for describing constraints related to a concept.

2.1.4 Requirements Engineering

Requirements are formally defined as statements capturing and expressing needs,

constraints, and conditions (IEEE, 2018). Some authors have defined two primary

requirement types: functional requirements pertain to the desired functionality of a specific

software system, including constraints, conditions, and related entities, e.g., “the user may

upload her profile picture;” non-functional requirements are address features related to

performance, reliability, interfaces, and design constraints, e.g., “the system time response

for queries must take less than two seconds” (Wang & Zeng, 2009).

Requirements Engineering (RE) is defined as the process of identifying the requirements

and constraints related to a software system. Such a process is key for subsequent phases

of the software development process (Ross & Schoman, 1977). RE encompasses the

identification of stakeholders, which are individuals who are directly involved or indirectly

affected by the development and implementation process related to a specific software

system (Lapouchnian, 2005), and their requirements to define the domain scope of the

software system. Dick et al. (2017) describe several closely related activities related to RE

as follows:

20 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Domain analysis focuses on characterizing stakeholders, identifying opportunities for

improvement, and establishing target objectives within the software domain.

Elicitation is concerned with identifying and characterizing the requirements of the identified

stakeholders. Such activity involves several techniques, including interviews, surveys, and

observations, facilitating the gathering of relevant information.

Negotiation and agreement aim to select solution alternatives by evaluating the identified

requirements and engaging in negotiations with stakeholders to resolve conflicts and reach

a consensus.

Specification involves formulating and detailing the requirements based on the selected

solution, allowing software analysts for creating models, diagrams, and textual

representations for documenting the identified software system behavior.

Documentation involves the creation of requirements documents capturing the decisions

made during the entire requirements engineering process. Such documents serve as a

reference for stakeholders, software analysts, and other actors during the software

development process.

Such activities produce a high amount of knowledge to be understood, represented, and

validated (Karolita et al., 2023). Software analysts use KRLs for representing such

knowledge, allowing them for understanding, organizing, and sharing it with stakeholders

and other actors in the software development process (Ang & Hartley, 2007; Dubois et al.,

1986). KRLs are key for RE, allowing software analysts for describing the software system

concepts, relationships, constraints, and rules in a formal and unambiguous manner by

using several approaches such as OWL (Web Ontology Language; Alkhammash, 2020),

UML (Unified Modeling Language; Abdelnabi et al., 2021; Siddique et al., 2014), and FOL

(First Order Logic; Rabinia & Ghanavati, 2017).

2.2 Ph.D. Thesis Focus

This Ph.D. Thesis is focused on knowledge representation in the context of RE by

integrating three fields: requirements engineering, knowledge representation languages,

and formal specification languages. We specifically work on the model-to-model

transformation area coming from the KR and FS fields, proposing a new method for

transforming KRLs into FSLs and vice versa, allowing software analysts to easily

understand and communicate complex specifications regardless of their nature.

Our research is aimed at the improvement of the knowledge representation field, allowing

for addressing any KRL and FSL, mitigating the need for high expertise in mathematics and

logic to understand and communicate complex specifications. Therefore, a new method for

model-to-model transformation is proposed by using two meta-models, representing key

2. Background 21

elements from well-known KRLs and FSLs, and a transformation model, describing the

rules of transformation from model to model.

2.3 Research Methodology

We define four research phases by following the guidelines coming from the empirically

based technology transfer methodology (Wohlin et al., 2012) and the design science

methodology for information systems and software engineering (Wieringa, 2014), including

exploration, problem formulation, solution, and validation.

2.3.1 Exploration

During the exploration phase, a systematic literature review is performed for identifying,

selecting, and characterizing the existing evidence related to the research area (Wohlin et

al., 2012). This review adheres to the software engineering guidelines put forth by

Kitchenham et al. (2009) and aligns with the principles of experimentation in software

engineering as outlined by Wohlin et al. (2012). Moreover, several tasks are carried out and

refined for establishing the review protocol, gathering background, compiling a list of

primary studies, and conducting study analysis. Such activities encompass planning the

literature review and executing a systematic examination of the literature.

2.3.2 Problem Formulation

Specifying the problem statement, formulating research questions, and developing

hypotheses are activities performed during the problem formulation phase. Such activities

are key for defining the research objectives, which are based on the three problems

identified during the exploration phase.

2.3.3 Solution

A solution is proposed for improving the model-to-model transformation approach for the

KR and FS fields by creating a method for obtaining FSs and KRLs. Characterizing KRLs

and FSLs, defining a meta-model for KRLs, defining a meta-model for FSLs, defining a

transformation model, and proposing a method for model-to-model transformation are

activities performed for producing a KRL-related key elements report, FSL-related key

elements report, a rule-based approach for model-to-model transformation, and a method

for transforming KRLs into FSs and vice versa.

22 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

2.3.4 Validation

Three experiments are performed for evaluating the flexibility and the capabilities of the

proposed method. Planning experiment, executing experiment, and analyzing experiment

are activities developed for producing an experiment design, experiment data, and an

experiment report.

3. Research Problem

3.1 Motivation

RE is a stakeholder-centered approach so natural language is a common means for

documenting software requirements. Since natural language is inherently ambiguous, the

RE process is prone to misunderstandings and misinterpretations, hardening the

communication and validation of the software domain between the stakeholders and

software analysts (Pang et al., 2016). Software analysts improve the RE process by using

several models comprising graphical and textual elements for representing the knowledge

related to a software domain, including KRLs and FSLs (Ahmad et al., 2020; Ang & Hartley,

2007; Dubois et al., 1986).

KRLs are used for easing the knowledge representation task by including graphical and

textual elements so inexperienced practitioners should understand and validate the

software domain of interest (Karolita et al., 2023). Such languages are aimed at

representing the semantics and relationships of key concepts coming from the software

domain, easing the representation of the dynamics related to a software system (Sonbol et

al., 2020). FSLs are used for representing and analyzing the structure and behavior of a

software system by using mathematics and logic-based formalisms. Such languages allow

software analysts for formalizing the knowledge representation process, enabling them for

representing complex software systems, and providing an unambiguous representation of

the gathered knowledge (Pang et al., 2016).

KRLs and FSLs are often used together with transformation rules, allowing software

analysts for representing and communicating domain knowledge, and validating the

correctness and completion of the software system being developed (Ang & Hartley, 2007).

KRL-FSL pairs are often focused on a specific domain, so software analysts should learn

several KRL-FSL pairs and their transformation rules for representing various software

domains (Alkhammash, 2020). Some authors have proposed meta-models for knowledge

representation, minimizing the number of KRL-FSL pairs to be learned for representing

some software domains (Finne, 2011).

Even though software analysts address a software domain at a time, they are interested in

the same kind of abstractions while they are characterizing a software domain, including

classes, relationships, and constraints. Such knowledge may be framed into a meta-

modeling language, allowing for a generalized representation of the knowledge regardless

of the nature of the software domain. In the context of meta-models, software analysts are

24 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

aimed at representing recurrent components coming from key KRLs and FSLs (Son & Kim,

2017). Thus, such components may be framed into a KRL meta-model and a FSL meta-

model, characterizing any KRL and FSL. Also, since both KRLs and FSLs comprise some

overlapping and complementing elements, a set of heuristic rules enabling model-to-model

transformation may be built based on the meta-model representations, allowing software

analysts for transforming any KRL to a FSL and vice versa.

This Ph.D. Thesis is motivated by the growing trends of applicability of the model-to-model

transformation approaches and the potential of meta-models for representing any KRL and

FSL, allowing software analysts for representing any software domain regardless of its

nature in an unambiguous manner, improving the RE process.

3.2 State of the Art

3.2.1 Planning Literature Review

The formulation of research questions (RQs) is guided by primary studies, enabling for

defining a comprehensive review protocol and characterizing the study criteria (Wohlin et

al., 2012). Software analysts use KRL-FSL pairs for addressing more complex software

systems focused on specific software domains. Such KRL-FSL pairs comprise different set

of heuristic rules, allowing practitioners for transforming one model into another model, e.g.,

transforming a KRL into a FSL and vice versa. Consequently, we suggest research

questions RQ1, RQ2, and RQ3. KRL-FSL pairs are composed of single KRLs and FSLs,

so they may have different capabilities and limitations in terms of the domain elements they

can represent (Maio, 2021; Torres et al., 2019). Therefore, we suggest research questions

RQ4, RQ5, and RQ6.

Conforming to the study criteria outlined in Table 3-1, we systematically identify and

examine KRL to FSL and FSL to KRL proposals which are aimed at supporting the RE

process.

3.2.2 Executing Systematic Literature Review

The study selection process encompasses four steps (Kitchenham et al., 2009): initial

search, remove duplicates, exclude studies, and include external studies. After performing

the study selection process, we obtained 21 primary studies as follows: initial search (391

studies); remove duplicates (376 studies); exclude studies based on title, abstract,

keywords, introduction, and conclusions (17 studies); include external studies (21 studies).

3. Research Problem 25

Table 3-1: Study criteria. The Authors.

Inclusion

criteria

Search

criteria

(i) KRL to FSL model transformation proposals supporting the RE process

(i) FSL to FSL model transformation proposals supporting the RE process

Search

sources
IEEE Explore, Science Direct, Springer Links, Scopus, Google Scholar

Search

terms

Main keyword Derived keywords

Model transformation

“model to model transformation” OR “model

transformation framework” OR “model

transformation language”

Knowledge representation language

"knowledge modeling language" OR

"knowledge representation notation"

Formal specification language

“formal language” OR “formal specification” OR

“formal modeling language” OR “logical

formalism”

Requirements engineering

"requirements elicitation" OR "requirements

analysis" OR "software requirements"

Literature Paper, chapter, book, thesis, and technical document

Exclusion criteria

(i) The proposal does not include a KRL-FSL pair

(ii) The proposal does not have a well-defined and formalized syntax and semantics for

representing knowledge

(ii) The proposal is not focused on RE

Research questions

-RQ1. What model-to-model transformation proposals are used for RE?

-RQ2. What domain scopes are analyzed by using model-to-model transformation

proposals for RE?

-RQ3. What transformation rules are applied by using the model to model transformation

proposals for RE?

-RQ4. What KRLs are represented in the model-to-model transformation proposals for

RE?

-RQ5. What FSLs are represented in the model-to-model transformation proposals for

RE?

-RQ6. What domain elements are represented by using KRLs and FSLs proposals

focused on RE?

Hypothesis

A model-to-model transformation method for RE including a meta-model for representing

KRLs, a meta-model for representing FSLs, and a meta-model for representing

transformation rules can be used for improving the domain knowledge representation in

the context of RE.

26 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Model-to-Model transformation proposals for RE

We analyze 15 proposals in the field of model-to-model transformation in the context of RE.

Such proposals comprise 37 different models including, KRLs, FSLs, and domain-specific

languages. We characterize such approaches and answer RQ1, RQ2, and RQ3 as follows:

Awan et al. (2022) introduce a comprehensive framework for characterizing the concepts,

relationships, functions, and instances related to specific software systems by using natural

language processing and parts-of-speech techniques. Such an approach allows

practitioners for representing natural-language-based specifications by using XText, an

intermediate representation based on domain-specific languages (Awan et al., 2022), which

may be transformed into formal specifications based on the Z-notation (Spivey, 1989).

Djaoui et al. (2018) propose IOD2Maude, a model-to-model transformation focused on the

Interaction Overview Diagram (IOD) and the Maude logic specification language. IOD

diagrams are a specialization of the activity diagrams described in the UML 2.0 specification

(Jena et al., 2015). Also, Maude is used for representing dynamic transitions and alterations

from complex software systems in the context of the logical paradigm (Clavel et al., 2002).

The IOD2Maude framework is aimed at establishing a comprehensive meta-model of IODs,

allowing modelers for encapsulating key IOD elements and mapping the relationships

among them. Such a framework comprises a set of well-defined rules, including graph-

based grammar and pivotal elements for transforming the IOD meta-model elements into

Maude specifications.

Amjad et al. (2018) propose UMLPACE, a tool for transforming Event-driven Process Chain

(EPC) models into timed automata formal specifications. UMLPACE extends EPC models

by incorporating activity diagram components, extending the expressiveness of such

models, and allowing modelers for addressing more complex software systems (Kleppe &

Warmer, 2000). Subsequently, the authors provide a set of procedural sequences,

expressing how the augmented model may be transformed into timed automata formal

specifications, integrating heuristic rules for representing the equivalences between EPC,

activity diagrams, and timed automata formal specifications.

Some authors propose model-to-model transformations based on KRL-FSL pairs by using

Event-B as a target model. Event-B is a formal method for describing complex software

systems, including their events and intricate processes (Abrial, 2010). Sun et al. (2016)

introduce KM3, a model-to-model transformation method focused on KRL-FSL pairs. They

use sequence diagrams and use case diagrams as source models so they can derive the

represented knowledge into the target model, Event-B specifications (Abrial, 2010). Such

a transformation is framed by the Rodin platform which serves as a validation platform for

the resultant specification (Abrial, 2010).

3. Research Problem 27

BPM2.0 provides a high number of model constructs, allowing modelers for representing

complex workflows while characterizing the dynamics of software systems, including

events, data types, tasks, and collaborations (Correia & e Abreu, 2012). Even though such

a model is more expressive than classical approaches such as the activity diagram

(Ramadan et al., 2020), such a model lack well-defined formal semantics, thereby impeding

the validation of the generated model instances. Ben Younes et al. (2019) propose

BPMN2EVENTB for addressing such a limitation, allowing modelers for transforming

BPMN2 models into Event-B formal specifications by using the Rodin platform, including

model constructs for formally representing events, concepts, datatypes, preconditions,

relationships, parameters, and constants (Abrial, 2010). Hlaoui et al. (2017) propose

SD2EventB, a KRL to FSL transformation approach focused on transforming sequence

diagrams (OMG, 2011) into EventB formal specifications in the context of cloud services

development. Furthermore, Boussetoua et al. (2015) propose a model-to-model

transformation method for translating BPMN2 representations into Pi-Calculus, allowing

modelers for representing agents and interactions related to complex software systems

(Sangiorgi & Walker, 2001).

Tariq et al. (2017) introduce a novel methodology for automating the analysis and validation

of activity diagrams. Such an approach is aimed at formally characterizing UML behavioral

models lacking well-defined semantics. The authors propose a model-to-model

transformation including Colored Petri Netas (CPNs) as the target model. Such a model is

key as it allows modelers for analyzing and validating activity diagrams (Zimmermann,

2008). Also, CNPs are used for validating class diagrams by using a KRL-FSL

transformation process, including domain concepts such as concepts, attributes, actions,

and relationships (Sharaff & Rath, 2020).

Couto et al. (2014) introduce a model-to-model transformation approach for identifying

requirements patterns in use cases. Such an approach comprises two well-defined steps:

(i) use case formalization where use cases are formalized by using RUS, an XML-based

representation for use cases (Couto et al., 2014) and (ii) transformation where the RUS

specification is transformed into an ontology focused on RE, including domain concepts

such as concepts, instances, and relationships.

Borgida et al. (2014) address model-to-model transformations from the context of goal-

oriented models. They use i*CORE as a source model for characterizing complex software

systems from a goal view (Giorgini et al., 2002). Such a characterization is further analyzed

and verified by using FOL, allowing practitioners for mapping domain concepts such as

goals, processes, and relationships.

Domain-Specific Languages (DSLs) are tools for capturing the features and relationships

of software systems related to specific domains (Rodríguez-Gil et al., 2019). Jiang et al.

(2016) propose a method for automating the analysis and evaluation of DSLs by using a

model-to-model transformation approach. Such an approach includes XMML, a meta-

28 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

model for representing DSLs, allowing practitioners for representing key components of

DSLs, and a set of heuristic rules for transforming XMML into FOL.

Class diagrams are effective means for representing the concepts, features, and

relationships related to a software domain (E. A. Abdelnabi et al., 2020). However, such

diagrams lack representation of constraints and conditions. Some authors include OCL

constraints for augmenting the expressiveness of class diagrams, allowing modelers for

representing more complex software systems. Gogolla et al. (2017) propose a model

validation, verification, and exploration approach for class diagrams by using a model-to-

model transformation process, including a class diagram extension based on OCL

conditions and transformation heuristics for the Kodkod formal specification (Torlak and

Jackson, 2007). Pérez and Porres (2019) propose a similar approach extending class

diagrams with OCL conditions and providing heuristic rules for transforming such diagrams

into Formula specifications, allowing modelers for evaluating the completeness and

correctness of software domain models.

Chu and Dang (2020) propose a model-to-model transformation method focused on KRL-

KRL pairs, especially, class diagrams and use cases. Such a method provide equivalences

between the main concepts of the class diagram, including classes, attributes, association

relationships, and methods, and the main concepts of the use cases, including actors and

use cases. Such an approach is aimed at extending the expressiveness of complex

software domain representations.

Some authors propose model-to-model transformation approaches for evaluating the

completeness and correctness of UML diagrams such as use case diagrams (Saratha et

al., 2017; Sengupta & Bhattacharya, 2006) and activity diagrams (Jamal & Zafar, 2016) by

using the formal Z-notation, allowing modelers for characterizing domain concepts such as

actors, actions, processes, and relationships.

Xu (2011) proposes a KRL-FSL transformation method for formalizing the activity diagram

by using Process Algebra (Bernardo et al., 2002). Such an approach is aimed at mapping

the key concepts from activity diagrams such as nodes and actions by using agents and

communication relationships, allowing modelers for characterizing the dynamic behavior of

complex software systems.

Meziani et al. (2018) introduce a FSL-KRL transformation method for translating colored

Petri nets into state machine diagrams, including processes, actions, initial values,

constraints, and processes. Such an approach allows modelers for mitigating the inherent

complexity and formalism coming from colored Petri nets by using a simpler representation

based on state machine diagrams.

We summarize the primary studies (21) in Table 3-2 for answering the remaining research

questions of the literature review.

3. Research Problem 29

Table 3-2: Primary studies summary. The Authors.

Proposal

Model
pairs

Transfor
mation

direction

Source
model

Represented source model
elements

Target model

Represented target
model elements

Represent
ed domain
elements

NLP2FM
(Awan et
al., 2022)

KRL-FSL

One-way

NL (Xtext
domain-
specific

language)

System state space schema, system
state space name, system state

space variable, system state space
predicate, system state initial state,

initial state name, initial state
variable, schema name, schema

input variable, schema output
variable, schema predicate, predicate

input, predicate output

Z-Notation

(Spivey, 1991)

Sets, predicate,
schema, expressions,

operator, state,
invariant relationship,

operation, input,
output, relationship,

change of state,
procedure, variable,

inference rule

Concepts,
instances,
relationshi

ps,
functions

BPMN2EVE

NTB
(Bessifi et
al., 2019)

KRL-FSL

One-way

BPMN2
(Correia and
Abreu, 2012)

Event, gateway, datatype, activity,
activity marker, task, flow, basin,

corridor, collaboration

EVENTB
(Abrial, 2007)

Event, btype, action,
invariant,

collaboration,
constraint,
parameter,

multiplicity, predicat,
constants, sets

Events,
concepts,
datatypes,
preconditio

ns,
relationshi

ps,
parameters

,
multiplicity,
constants

IOD2Maude
(Djaoui et
al., 2018)

KRL-FSL

One-way

Interaction
Overview
Diagram

(Santosh et
al., 2015)

Initial Node, final node, fork node,
join node, decision node, merge

node, transition, interaction,
interaction use

Maude (Clave
et al., 2002)

Functional modules,
object-oriented

modules,
parametrized

modules, theories,
views, module

renaming, tuples,
conditions, reflection,

datatypes

Class,
attributes,
relationshi

ps,
constraints

,
conditions,
data types

UMLPACE
(Amjad et
al., 2018)

KRL-FSL

One-way

Activity
diagram

(Kleppe and
Warmer,

2000)

Initial node, control flow, action,

activity final node

Timed
automata

(Bengtsson
and Yi, 2003)

Initial location,

committed location,
location, Edge

Event,

relationshi
p, action

KM3

(Weixuan et
al., 2016)

KRL-FSL

One-way

Use Case
diagram (Siau

and Cao,
2001)

System, actor, use case, association,

include, extend

EVENTB

(Abrial, 2007)

Context, constant,
set, machine,

variable, invariant,
event, guard, action

Concept,
actor,
action,

relationshi
p

SD2EventB
(Daly Hlaoui
et al., 2017)

KRL-FSL

One-way

Sequence
diagram

(OMG, 2013)

Sequence model, interaction
fragment, resource, lifeline,
interaction, message, types,

interaction operator

EVENTB

(Abrial, 2007)

 Process,
action,

parameter,
data type,
operator

(Tariq et al.,
2017)

KRL-FSL

One-way

Activity
diagram

(Lleppe and
Warmer,

2000)

Initial node, control flow, action,
activity final node

Colored petri
net

(Zimmermann
, 2008)

Types, coloured set,
place, transition,

arch, color function,
data value, guard

function, initial
marking

Process,
action,

relationshi
p, initial
value,

constraint

(Couto et
al., 2014)

FSL-KRL

One-way

RUS (Cout et
al., 2014)

Individual, Entity, Property

OWL
(Antoniou and

Grigoris,
2004)

Individual, Entity,
Property, Fact

Concept,
instance,
relationshi
p, attribute

(Borgida et
al., 2014)

KRL-FSL

One-way

i*CORE
(Borgida et al.,
2014; Giorgini

et al., 2002)

Goal, entity, task, relationship,

evidence values

First-order-
logic (Moore,

1988)

Indivdual, predicate,
relationship, variable,

constant

Concept,
goal,

relationshi
p, process

XMML

(Jiang et al.,
2016)

DSL-FSL

One-way

XMML (Jiang
et al., 2016)

Model, entity, relationship

First-order-

logic (Moore,
1988)

Containment,
attachment, source

role, assignment
association, target
role assignment

assocaition,
refinement, symbol,
constraint formula

Concept,
goal,

relationshi
p, process

30 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Table 3-2: Primary studies summary. The Authors. (Continuation)

Proposal

Model
pairs

Transfor
mation

direction

Source
model

Represented source model
elements

Target model

Represented target
model elements

Represent
ed domain
elements

USE
(Gogolla et
al., 2018)

KRL-FSL

One-way

Class diagram

and OCL
(Gogolla et al.,

2018)

Class, attribute, method, constraint,
Object, relationship, class invariant

Kodkod

(Torlak and
Jackson,

2007)

Atom, relation
declaration, relational

formula

Concept,
attribute,

initial
value,

constraint,
relationshi
p, instance

Formula
(Pérez and

Porres,
2019)

KRL-FSL

One-way

Class diagram
and OCL

(Pérez and
Porres, 2019)

Class, attribute, method, constraint,
Object, relationship, class invariant

Formula

(Pérez and
Porres, 2019)

Domain, model,
partial model, class,
constraint, instance,

class, data type,
property, association

relationship,
generalization
relationship

Concept,
attribute,

initial
value,

constraint,
relationshi
p, instance

(Boussetou
a et al.,
2015)

KRL-FSL

One-way

BPMN2
(Correia and
Abreu, 2012)

Start event, intermediate event, end
event, task, and gateway, xor

gateway, subprocess, sequence flow

Pi-Calculus
(Sangiorgi

and Walker,
2001)

Agent, interaction,

process, name

Concept,
process,

relationshi
p

(Ries et al.,

2021)

KRL-FSL

One-way

DRCModel

Dataset, equivalence class, data,
property, invariant property, typed

variable

Alloy
(Jackson,

2012)

Signatures, abstract
signatures, fields,

invariant properties,
signature facts,

predcates

Concepts,
attribute,

relationshi
p

(Chu and

Dang, 2020)

KRL-KRL

One-way

Class diagram
(OMG, 2013)

Class, attribute, method, association

relationship

Use case

(OMG, 2013)

Actor, use case

Concept,
attribute,

relationshi
p

(Jamal et
al., 2016)

KRL-FSL One-way Activity
diagram
(Lleppe and
Warmer,
2000)

Initial node, control flow, action,
activity final node

Z-Notation
(Spivey, 1991)

Sets, predicate,
schema, expressios,
operator, state,
invariant relationship,
operation, input,
output, relationship,
change of state,
procedure, variable,
inference rule

Process,
action,
relationshi
p, initial
value,
constraint

(Sengupta
and
Bhattachary
a, 2006)

KRL-FSL One-way Use Case
diagram (Siau
and Cao,
2001)

System, actor, use case, association,
include, extend

Z-Notation
(Spivey, 1991)

Sets, predicate,
schema, expressios,
operator, state,
invariant relationship,
operation, input,
output, relationship,
change of state,
procedure, variable,
inference rule

Concept,
actor,
action,
relationshi
p

(Saratha et
al., 2017)

KRL-FSL One-way Use Case
diagram (Siau
and Cao,
2001)

System, actor, use case, association,
include, extend

Z-Notation
(Spivey, 1991)

schema, expressios,
operator, operation,
input, output,
relationship,
procedure,

Concept,
actor,
action,
relationshi
p

(Xu, 2011) KRL-FSL One-way Activity
diagram
(Lleppe and
Warmer,
2000)

Initial node, control flow, action,
activity final node

Process
Algebra
(Bernardo et
al., 2002)

Agent, system,
communication

Activity,
concept,
relationshi
p

(Meziani,
2018)

FSL-KRL One-way Colored petri
net
(Zimmermann,
2008)

Types, coloured set, place, transition,
arch, color function, data value,
guard function, initial marking

State Machine
(OMG, 2013)

State, transition,
event, initial state,
final state

Process,
action,
relationshi
p, initial
value,
constraint

(Sharaff and
Kumar,
2020)

KRL-FSL One-way Class diagram
(OMG, 2013)

Class, attribute, method, association
relationship

Colored petri
net
(Zimmermann
, 2008)

Types, coloured set,
place, transition,
arch, color function,
data value, guard
function, initial
marking

Process,
action,
relationshi
p, concept

3. Research Problem 31

The answer to RQ4 is the following:

Some proposals (19 out of 21) comprise KRLs as their source models. Such proposals

include different types of KRL elements which are specific to the transformation process:

Awan et al. (2022) include KRL elements such as system state space schema, system state

space name, system state space variable, system state space predicate, system state initial

state, initial state name, initial state variable, schema name, schema input variable, schema

output variable, schema predicate, predicate input, predicate output; Ben Younes et al.

(2019) and Boussetoua et al. (2015) analyze KRL elements such as start event,

intermediate event, end event, task, and gateway, xor gateway, subprocess, sequence

flow; Amjad et al. (2018), Djaoui et al. (2018), and Tariq et al. (2017) explore KRL elements

related to the activity diagram and the interaction overview diagram such as initial Node,

final node, fork node, join node, decision node, merge node, transition, interaction,

interaction use; Sun et al. (2016) and Jiang et al., (2016) represent KRL elements such as

system, actor, use case, association, include, and extends relationships in the context of

use case diagrams; Hlaoui et al. (2017) represent KRL elements in the context of sequence

diagrams, including sequence model, interaction fragment, ressource, lifeline, interaction,

message, types, interaction operator; Cuoto et al. (2014) use KRL elements such as

entities, properties, and facts for representing OWL characterizations; Borgida et al. (2014)

address goal-oriented concepts by using KRL elements such as goals, entities, tasks,

relationships, and evidence values; Gogolla et al. (2018), Pérez and Porres (2019), and

Chu and Dang (2020) characterize class diagramas by using KRL elements such as

classes, attributes, methods, and association relationships.

The answer to RQ5 is the following:

Some proposals (20 out of 21) comprise FSLs as their target and source model. Such

proposals include different types of FSL elements which are specific to the transformation

process: Mehboob et al. (2022), Jamal and Zafar (2016), Saratha et al. (2017), and

Sengupta and Bhattacharya (2006) include FLS elements such as sets, predicates,

schemas, expressions, operators, states, invariant relationships, operations, relationships,

changes of state, procedures, variables, and inference rules related to the context of the

formal Z-notation; Ben Younes et al. (2019), Hlaoui et al. (2017), and Sun et al. (2016) use

Event-B as target model in the KRL-FSL transformation process, including FSL elements

such as context, constant, set, machine, variable, invariant, event, guard, and action; Djaoui

et al. (2018) include some FSL elements in the context of the Maude formal specifications,

including functional modules, object-oriented modules, parametrized modules, theories,

views, module renaming, tuples, conditions, reflection, and datatypes; Amjad et al. (2018)

explore timed automata as FSL in the UMLPACE method, including FSL elements such as

initial location, committed location, location, and edge; Tariq et al. (2017) include FSL

elements related to CPNs, including types, coloured set, place, transition, arch, color

function, data value, guard function, and initial marking; Couto et al. (2014) represent FSL

elements based on the RUS model, including individuals, entities, and properties; Borgida

32 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

et al. (2014) address goal-based scenarios including FSL elements such as individual,

predicate, relationship, variable, and constants coming from the FOL language; Jiang et al.

(2016) include more FOL elements, including source role, assignment association, target

role, and constraint formula; Gogolla et al. (2018) include the Kodkod formal specification

as FSL in the ISE method, including FSL elements such as atom, relation declaration, and

relational formula; Pérez and Porres (2019) address the class diagram formalization into

Fomrula, including FSL elements such as domain, model, partial model, class, constraint,

instance, class, data type, property, association relationship, and generalization

relationship; Boussetoua et al. (2015) use agents, interactions, processes, and names as

FSL elements in the context of Pi-Calculus; Rise et al. (2021) use Alloy elements, including

signatures, abstract signatures, fields, invariant properties, signature facts, and predicates

as FSL elements in the KRL-FSL transformation process.

The answer to RQ6 is the following:

KRL and FSL elements are used for representing domain elements at different levels of

abstraction, including concepts (Awan et al., 2022; Bessifi et al., 2019; Sun et al., 2016;

Couto et al., 2014; Borgida et al., 2014; Jiang et al., 2016; Gogolla et al., 2018; Pérez and

Porras, 2019; Boussetou et al., 2015; Ries et al., 2021; Chu and Dang, 2020), instances

(Awan et al., 2022; Couto et al., 2014), relationships (Awan et al., 2022; Bessifi et al., 2019;

Sun et al., 2016; Couto et al., 2014; Borgida et al., 2014; Jiang et al., 2016; Gogolla et al.,

2018; Pérez and Porras, 2019; Boussetou et al., 2015; Ries et al., 2021; Chu and Dang,

2020; Tariq et al., 2017), functions (Awan et al., 2022), events (Amjad et al., 2018; Ben

Younes et al., 2019), data types (Ben Younes et al., 2019; Djaoui et al., 2018; Hlaoui et al.,

2017), preconditions (Ben Younes et al., 2019), parameters (Ben Younes et al., 2019;

Hlaoui et al., 2017), multiplicity (Ben Younes et al., 2019), constants (Ben Younes et al.,

2019), attributes (Chu & Dang, 2020; Djaoui et al., 2018; Gogolla et al., 2017; Pérez &

Porres, 2019; Ries et al., 2021), actors (Sun et al., 2016), processes (Hlaoui et al., 2017;

Jiang et al., 2016; Tariq et al., 2017), and goals (Borgida et al., 2014; Jiang et al., 2016).

3.3 Problem Statement

The field of KRLs and FSLs is an active area of research aiming at improving the RE

process. KRLs and FSLs enable software analysts for rigorously and unambiguously

capturing, modeling, and reasoning about the domain knowledge and the software system

requirements. However, some challenges remain in adopting and using KRLs and FSLs in

the context of RE. Such challenges are focused on two problems: limitations on the domain

scope and model transformation. The first problem refers to the ability of software analysts

for using KRL-FSL pairs for representing different types of software domains. The second

problem refers to the ability of software analysts for using KRL-FSL pairs which provide

consistent and automated mechanisms for transforming models between different levels of

representation, such as from KRL to FSL and from FSL to KRL.

3. Research Problem 33

Software analysts use KRL-FSL pairs for describing concepts and relationships coming

from a software domain, and the features and constraints related to software systems.

While such languages are effective tools for representing different aspects of the software

domain, by combining them, software analysts may use such KRL-FSL pairs for

comprehensively capturing both the semantic and syntactic aspects related to a software

domain. Also, KRL-FSL pairs allow software analysts for improving the communication of

the software domain with the stakeholders and the verification and validation of the software

system. However, KRL-FSL pairs are not suitable for addressing software domains in a

generalized way. Therefore, since each software domain comprises different features,

choosing the adequate KRL-FSL pair is key for the RE process. The literature review shows

some of the existing KRL-FSL pair proposals (4 out of 21) are tailored to specific software

domains, including domain-specific languages. While such proposals are used for

improving the RE process in such specific software domains, the applicability and

reusability of such KRL-FSL pairs on other software domains are still limited.

Model transformation allows software analysts for obtaining one model (target model) from

another model (source model) in different levels of representation, such as KRL to FSL and

FSL to KRL. Such a process comprises a set of heuristic rules, characterizing the

equivalences between the related models, so software analysts may transform one model

into another. However, most of the analyzed proposals focused on model transformation

provide one-way transformation rules, including from KRL to FSL (17 out of 21), from FSL

to KRL (2 out of 21), and from KRL to KRL (1 out of 21). Such proposals are strongly limited

by the lack of bi-directionality of the transformation rules between the source and target

model and the dependency on specific features related to the KRL and the FSL. Hence,

software analysts should be proficient in different KRLs and FSLs so they can address

diverse software domains.

3.4 Objectives

3.4.1 General Objective

Proposing a method for obtaining FL-based specifications based on KRL-based

descriptions, independent of the KRL-FL pair to be considered.

3.4.2 Specific Objectives

▪ Identifying the general features of the FL, independent of the orientation the FL

have.

▪ Selecting a KRL as a starting point of the mapping process to FL-based

specifications. The KRL should exhibit the general features identified in the previous

objective.

34 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

▪ Defining the method for obtaining FL-based specifications from the selected KRL.

The method should include the rules for transforming each element of the KRL into

all of the features identified on the FL.

▪ Validating the proposed method by representing at least three case studies from

the state-of-the-art review, related to several KRL-FL pairs.

3.5 Justification

Wieringa (2014) defines three key components related to the design science methodology

for information systems and software engineering: the work product which is the result of

an improvement to a problem; the social context which describes the stakeholders who are

affected by the work product; the knowledge context which includes well stated scientific

and engineering theories, available practical knowledge and products, and produced

knowledge as a result of the experimentation process from researches. In this Ph.D. Thesis

we introduce a novel method for obtaining FSLs from KRLs and vice versa as a work

product. Such a work product is aimed at supporting software analysts (social context) as

a new model-to-model transformation approach for RE (knowledge context).

In this Ph.D. Thesis we integrate RE, KRLs, and FSLs. Our method allows software

analysts for overcoming the limitations on the domain scope by using a meta-model for

KRLs and a meta-model for FSLs for representing any KRLs and FSLs in the context of

RE. In addition, our method allow software analysts for performing model-to-model

transformations bidirectionally, mitigating the impact of the one-way transformation rules

coming from most of the state-of-the-art proposals by using a meta-model for representing

transformation rules regardless of the KRL-FSL pair. Therefore, our method allows software

analysts for representing domain knowledge in a more general way, improving the RE

process.

4. A method for transforming KRL-FSL pairs

KRL-FSL pairs are effective means for representing features and constraints inherent in

software domains (Ang & Hartley, 2007). Software analysts use different KRL-FSL pairs for

effectively capturing and modeling the intricacies of different software systems

(Alkhammash, 2020). One of the key advantages of employing KRL-FSL pairs is the

provision of one-way transformation rules, allowing software analysts for transforming

representations from one language to another. Such capability allows software analysts for

exploring and analyzing several software systems by leveraging the expressiveness of

different languages (Alkhammash, 2020).

We propose in this Ph.D. Thesis a method for transforming KRL-FSL pairs in the context of

RE. Our method includes three main components: a meta-model for representing KRLs, a

meta-model for representing FSLs, and a meta-model for representing model-to-model

transformations. Such components are used for defining what software domain concepts a

software analyst should represent in any KRL/FSL and how they should do it while using

our method, allowing them for representing any software domain by using any KRL and

FSL and transforming them into any other KRL/FSL.

We propose a new method for transforming KRL-FSL pairs according to the research

methodology in six steps: (i) we characterize state-of-the-art KRLs; (ii) we characterize

state-of-the-art FSLs; (iii) we define a meta-model for representing KRLs; (iv) we define a

meta-model for representing FSLs; (v) we define a meta-model for representing model-to-

model transformations; (vi) we present a method for transforming KRL-FSL pairs.

4.1 Characterizing KRLs in the context of RE

While KRLs are used for representing different software domains, such languages are often

focused on the same domain elements (Caetano et al., 2017). Some authors define KRL

elements for representing well-known software domain elements:

Domain concepts are explored by using system spaces and schemas (Awan et al., 2022),

events (Ben Younes et al., 2019; Boussetoua et al., 2015), nodes (Amjad et al., 2018;

Djaoui et al., 2018; Tariq et al., 2017), entities (Borgida et al., 2014; Couto et al., 2014), and

actors (Sun et al., 2016).

36 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Attributes are studied by using variables (Awan et al., 2022), interactions (Djaoui et al.,

2018), properties (Couto et al., 2014; Ries et al., 2021), and attribute values (Chu & Dang,

2020; Gogolla et al., 2017).

Processes are analyzed by using activities and tasks (Amjad et al., 2018; Ben Younes et

al., 2019; Borgida et al., 2014; Boussetoua et al., 2015; Tariq et al., 2017), methods (Chu

& Dang, 2020; Gogolla et al., 2017), and subprocesses (Boussetoua et al., 2015).

Parameters are represented by using variables and input variables (Awan et al., 2022; Ries

et al., 2021).

Relationships are described by using collaborations (Ben Younes et al., 2019), transitions

and interactions (Djaoui et al., 2018; Hlaoui et al., 2017), associations (Chu & Dang, 2020;

Sun et al., 2016), and class and event relationships (Borgida et al., 2014; Chu & Dang,

2020; Gogolla et al., 2017; Jiang et al., 2016).

4.2 Characterizing FSLs in the context of RE

We analyze eleven different FSL proposals in the literature review on model-to-model

transformation approaches focused on KRL-FSL pairs (see Section 3.2). Most of such

proposals (10 out of 19) are focused on object-oriented programming. Therefore, we

characterize such proposals based on object-oriented programming concepts:

Classes are explored by using schemas and initial states (Awan et al., 2022), object-

oriented modules (Djaoui et al., 2018), initial locations (Amjad et al., 2018), sets (Sun et al.,

2016; Tariq et al., 2017), agents (Boussetoua et al., 2015), signatures (Ries et al., 2021),

individuals (Borgida et al., 2014), and atoms (Gogolla et al., 2018).

Attributes are described by using properties (Couto et al., 2014; Pérez & Porres, 2019), and

fields (Ries et al., 2021).

Data types are represented by using data types (Pérez and Porres, 2019).

Functions are studied by using operations (Awan et al., 2022), functional modules and

parametrized modules (Djaoui et al., 2018), actions (Sun et al., 2016), color functions (Tariq

et al., 2017), and processes (Boussetoua et al., 2015; Tariq et al., 2017).

Invariants are analyzed by using invariant relationships and properties (Awan et al., 2022;

Ries et al., 2021) and invariants (Awan et al., 2022; Ben Younes et al., 2019; Ries et al.,

2021; Sun et al., 2016).

Relationships are addressed by using generic relationships (Awan et al., 2022; Borgida et

al., 2014; Pérez & Porres, 2019), collaborations (Ben Younes et al., 2019), arches (Tariq et

al., 2017), and association and generalization relationships (Pérez and Porres, 2019).

4. A method for transforming KRL-FSL pairs 37

Constraints are characterized by using conditions (Djaoui et al., 2018), constraints (Ben

Younes et al., 2019; Gogolla et al., 2017; Pérez & Porres, 2019), and constraint formulas

(Jiang et al., 2016).

Processes are analyzed by using procedures (Awan et al., 2022) and interaction processes

(Boussetou et al., 2015).

4.3 Defining a meta-model for KRLs in the context of RE

We define a meta-model for representing KRLs in the context of RE by using common

components coming from the KRL characterization (see Section 4.1). Such components

and their relationships represent the common knowledge related to the KRL domain. Thus,

we structure such knowledge by using PCSs, representing the KRL domain in a general

way as shown in Figure 4-1 and described as follows:

Nodes are used for representing key entities related to a software domain, including

concepts, objects, properties, features, and abstract concepts. Nodes are characterized by

three elements: name (e.g., “modeler”), feature, and process.

Features are used for characterizing specific nodes. Features are described by three

components: name is used for textually representing the feature (e.g., “years of

experience”); visibility is used for representing the scope of the feature in the context of

object-oriented programming (i.e., public, private, and protected); type is used for

representing the data type related to the feature (e.g., integer).

Processes are used for characterizing the dynamic behavior related to a specific node.

Processes are described by five components: visibility is used for representing the scope

of the process in the context of object-oriented programming (i.e., public, private, and

protected); type is used for representing the data type related to the resulting element of

the process (e.g., string); name is used for representing the process (e.g., “Transforms”);

parameter is used for representing the components and inputs influencing the behavior and

outcome of the process. Parameters are represented by type (i.e., data type) and name;

sequence is used for describing the order in which the process is to be performed (e.g., 1

for representing first, 2 for representing second, and so on). An example of a process is

“modeler transforms model.” Such a process may be described as follows: the name is

“transforms,” the visibility is public so the process may be reused; the type is Model (i.e.,

model data type, considering model as an already identified node); the parameters are

source model and target model, both of which have type Model and name “class diagram”

and “first-order-logic,” respectively; the sequence is 1, so such a process is the first process

to be performed.

Relationships are used for linking two nodes (i.e. the source node and the target node).

Relationships are described with five components: type is used for representing the type of

relationship in the context of object-oriented programming, including association (e.g., the

38 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

node “Teacher” is associated with the node “Student” as a teacher knows about some

features of the students), composition (e.g., the node “house” has some features such as

“room” and “kitchen” which are also represented by using nodes), aggregation (e.g.,

generalization (e.g., the node “car” is a type of the node “vehicle”), and dependency (e.g.,

the node “delivery driver” depends on the node “car” for delivering products); cardinality is

used for representing the number of occurrences of one node being related to another node

in a relationship, including one-to-one cardinality which is used for representing the

relationship between one instance of the source node with one instance of the target node,

one-to-many cardinality, which is used for representing the relationship between one

instance of the source node and many instances of the target node, and many-to-many

cardinality, which is used for representing the relationship between many instances of the

source node and many instances of the target node. We define a cardinality for each node

(i.e., source cardinality and target cardinality); roles are used for representing the

participation role which each node is playing in the relationship, e.g., in a relationship

between the nodes “software analyst” and the node “software domain,” the role of the node

“software analyst” (i.e., source role) could be “modeler” and the role of the node “software

domain” (i.e., target role) could be “characterized requirement.”

Figure 4-1. A meta-model for KRLs. The Authors.

4.4 Defining a meta-model for FSLs in the context of RE

We define a meta-model for representing FSLs in the context of RE by defining common

components related to the FSL domain as we described in Section 4.2. According to the

4. A method for transforming KRL-FSL pairs 39

systematic literature review, some FSL proposals (11 out of 11) are focused on the object-

oriented paradigm, allowing practitioners for modeling object-oriented concepts such as

classes and functions. Thus, we define seven components describing the key features of

any object-oriented FSL as shown in Figure 4-2 and described as follows:

Classes are used for representing key entities and concepts related to a software domain,

including their structure and behavior. Such representation comprises a set of elements

allowing for a broader characterization of the class: names are used for representing a

textual identification of the class (e.g., “Software analyst”); protocols are used for specifying

the behavior and capabilities related to a class so practitioners may establish a clear

contract for interacting with the related class while using other classes. Protocols may

include information about key features, processes, and constraints related to a class;

aliases are used for representing alternative names for an existing class (e.g., “Modeler”

could be an alias for the class “Software Analyst”).

Features are used for representing the characteristics of a class which is specified within

the FSL. Features provide a structured way for representing classes, including a name for

textually identifying the feature (e.g., “years of experience”), a type for representing the

feature data type (e.g., integer), an initial value for representing a default value for the

feature (e.g., 0), a cardinality for representing the number of occurrences of such feature in

the classes (e.g., 1, representing the class “Software analyst” has one value related to its

feature “years of experience”), a visibility value for representing the scope of the feature in

the context of oriented-object programming (i.e., public, private, protected), and a derivation

expression for representing the derivation process so practitioners may determine how they

can derive a specific feature based on other feature structure and behavior.

Processes are used for representing the behavior of a specified class. Such components

provide a dynamic view of the class, allowing practitioners for representing the interaction

capabilities of the class. Processes are based on several components: names are used for

identifying a specific process (e.g., “Models”); visibility is used for representing the scope

of the process in the context of object-oriented programming (i.e., private, public protected)

so the usage of the process may be clearly limited; type is used for representing the data

type of the returning element related to the process (e.g., Model as data type, representing

an object of the class Model); parameters are used for representing the input elements

used while performing the process, including their name and type (e.g., “Software domain”

representing an object of the class Software domain); valuations are used for defining

formulae unambiguously representing a specific feature including values, truth values, and

previously specified objects; preconditions and postconditions are used for representing

the conditions which should remain true before and after the execution of a specific process,

so practitioners may express constraints and assumptions related to the behavior of a

process. Such components are represented by using formulae; participation mode is used

for representing the type of interaction which should be performed by using the process,

including called member and shared-with member. Called member participation refers to a

40 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

process which is invoked by another component within the process. Shared-with member

refers to a process which is being shared and accessed from several components within

the process; Constraints are used for defining the limitations of the specified class. Such

limitations are expressed by using formulae including related features.

Functions are used for representing specific transformations, computations, and mappings

of input data (function parameters) to output data. Functions comprise four components:

name is used for textually identifying the function; type is used for representing the data

type related to the expected output of the function; formula is used for representing the

algorithm and logic related to the computation process being performed by using the

function; parameters are used for representing the input data of the function. Parameters

are characterized by a specific name and type (i.e., data type). While the structure is similar

to class processes, functions provide a broader scope as they may be performed in the

context of the FSL rather than the scope of a specific class.

Data type is used for representing data types defined in the context of the FSL. Such a

component comprises well-known data types such as integer, string, and boolean, and

user-defined data types such as Modeler, representing the data type of an object of the

specified class Modeler.

Invariants are used for representing the constraints and assertions which remain

unchanged while performing specific processes and functions. Invariants are identified by

specific names and provide a set of invariant attributes, which are represented by name

and type, a set of invariant preconditions, which are represented by formulae defining the

conditions to be true before evaluating the specified invariant, and a formula formally

representing the components of the invariant.

Relationships are used for linking two classes (i.e. the source class and the target class).

Relationships are described with five components: type is used for representing the type of

relationship in the context of object-oriented programming, including association,

composition, aggregation, generalization, and dependency; cardinality is used for

representing the number of occurrences of one class being related to another class in a

relationship, including one-to-one cardinality which is used for representing the relationship

between one instance of the source class with one instance of the target class, one-to-

many cardinality, which is used for representing the relationship between one instance of

the source class and many instances of the target class, and many-to-many cardinality,

which is used for representing the relationship between many instances of the source class

and many instances of the target class. We define a cardinality for each class (i.e., source

cardinality and target cardinality); roles are used for representing the participation role

which each class is playing in the relationship, e.g., in a relationship between the classes

“software analyst” and the class “software domain,” the role of the class “software analyst”

(i.e., source role) could be “modeler” and the role of the class “software domain” (i.e., target

role) could be “characterized requirement.”

4. A method for transforming KRL-FSL pairs 41

Figure 4-2. A meta-model for FSLs. The Authors.

4.5 Defining a meta-model for transformation rules for

KRL-FSL pairs

We define a meta-model for representing model-to-model transformation rules in the

context of KRL-FSL pairs. The meta-model is built upon the previously proposed meta-

models for KRLs and FSLs. Eventhough KRLs and FSLs are distinct languages used for

representing different perspectives of software domains, both KRLs and FSLs share

common components, such as concepts, relationships, and features, which are

fundamental to representing any software domain. We identify 22 equivalencies between

the meta-model for KRLs and the meta-model for FSLs by using an in-depth analysis of the

proposed meta-models, as outlined in Table 2. Such equivalencies serve as the basis for

defining heuristic rules encompassing both KRLs and FSLs, enabling practitioners (i.e.,

Modelers) to perform bidirectional transformations between the two representations. The

heuristic rules encompass two principal components: direction is used for specifying

whether the equivalence should be applied from KRL to FSL or vice-versa, while

equivalence is employed to denote the corresponding KRL and FSL elements being used

on the transformation when the rule is applied.

42 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

Table 4-1: KRL-FSL pair equivalencies. The Authors.

Number KRL Element KRL Name FSL Element FSL Name

1 Node Class Class

2 Node Node.Name Class Class.Name

3 Node Node.Feature Class Class.Feature

4 Node Node.Process Class Class.Process

5 Node Source Node.Name Class Source Class

6 Node Target Node.Name Class Target Class

7 Feature Feature.Visibility Feature Feature.Visibility

8 Feature Feature.Type Feature Feature.Type

9 Feature Feature.Name Feature Feature.Name

10 Relationship Relationship Relationship Relationship

11
Relationship Relationship.Source

Cardinality
Relationship Relationship.Source Cardinality

12
Relationship Relationship.Target

Cardinality
Relationship Relationship.Target Cardinality

13
Relationship Relationship.Source

Role
Relationship Relationship.Source Role

14
Relationship Relationship.Target

Role
Relationship Relationship.Target Role

15 Relationship Relationship.Type Relationship Relationship.Type

16 Process Process Process Process

17 Process Process.Visibility Process Process.Visibility

18 Process Process.Type Process Process.Type

19 Process Process.Name Process Process.Name

20 Process Process.Parameter Process Process.Parameter

21 Parameter Parameter.Type Parameter Parameter.Type

22 Parameter Parameter.Name Parameter Parameter.Name

Such equivalencies comprise several key attributes: number which is used for uniquely

identifying each equivalence; KRL element and FSL element which are textual

identifications of the KRL and FSL elements (e.g., node and class); KRL name and FSL

name which are the specific nomenclatures used in both the KRL and FSL meta-models

(e.g., node.feature and class.feature); KRL value and FSL value which are used for

representing the associated values for each component in the representation. The

proposed meta-model is summarized in Figure 4-3.

4. A method for transforming KRL-FSL pairs 43

Figure 4- 3. A meta-model for model-to-model transformation rules for KRL-FSL pairs.
The Authors.

4.6 Defining a method for transforming KRL-FSL pairs

We present a novel method for the bidirectional transformation of KRL-FSL pairs,

regardless of the specific type of KRL, FSL, and software domain. To achieve this, we

introduce a comprehensive integration of three meta-models, which offer a unified

approach for representing and transforming KRLs and FSLs in the context of both RE and

object-oriented programming.

The proposed meta-models serve as high-level abstractions, representing key components

and relationships inherent in the fields of KRLs and FSLs. Such meta-models provide a

structured method, easing a systematic transformation process across different types of

KRLs and FSLs, enabling modelers for exchanging knowledge between KRLs and FSLs,

and grasping a broader understanding of the software domain.

Our method provides a flexible framework for software analysts as they can represent any

KRL and FSL and transform them into other FSL and KRL, respectively, by using

bidirectional equivalences related to the proposed meta-models for KRLs and FSLs. Also,

we represent such meta-models by using PCSs as they are models close to natural

language, easing the understanding and interpretation of the proposed meta-models, and

allowing non-technical and novice modelers for using our method. Such an approach is

intended to minimize the inherent complexity related to representing knowledge coming

from complex software systems by using KRLs and FSLs.

44 A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

The proposed method for transforming KLR-FSL pairs comprises five different steps. We

summarize such steps in Figure 4-4 and describe them as follows:

Software domain selection: the modeler selects a specific software domain for knowledge

representation, defining the context of the software system to be represented. Such a step

is key as the modelers should use the software domain elements for guiding the

representation process.

Source model selection: the modeler selects a source model which is the starting point for

the transformation process. The source model may be either a KRL or a FSL.

Figure 4-4. A method for transforming KRL-FSL pairs. The Authors.

Source model representation: the modeler uses the proposed meta-model representation

for the selected source model (either the meta-model for KRLs or the meta-model for FSLs)

for representing the source model. In this step, the modeler characterizes the software

domain elements such as classes, attributes, and relationships by using the selected

source model, allowing her for building the source model representation.

4. A method for transforming KRL-FSL pairs 45

Heuristic rule application: the modeler uses the proposed meta-model for transformation

rules by applying the identified equivalencies so she can build the target model. In this step,

the modeler maps the values coming from the source model elements to the target model

elements rule by rule as they may be applied. Such a step is key as it allows modelers for

maintaining the consistency between models.

Target model generation: the modeler generates the target model representation by using

the applied equivalences and the target model meta-model. Such a representation

comprises the same software domain elements represented in the context of the target

model, including all its elements and relationships, when applicable.

5. Validation

5.1 Case study planning

We validate this Ph.D. Thesis by using an experimental process based on case study

research. We develop a prototype based on the proposed method and we evaluate it on

three case studies by using a consistency metric for measuring the number of elements

coming from KRLs and FSLs which can be represented and transformed by using our

method. We validate our proposal based on the design science methodology for information

systems and software engineering (Wieringa, 2014) and the case study research process

of the experimentation in software engineering (Wohlin et al., 2012), including five

components: objective, case studies, theory, research questions, and method.

5.1.1 Objective

Analyze the representation and transformation capabilities of the proposed method.

5.1.2 Case studies

The case studies comprise well-known representation languages in the context of RE.

- Case study #3 (CS3): OASIS is an object-oriented FSL (Pastor et al., 1992). In this case

study, we validate the KRL to FSL transformation capability by using a class diagram as a

source model and the OASIS model as the target model.

- Case study #2 (CS2): the UNC-Method is a software development method focused on

problems and goals (Zapata & Arango, 2009). Such a method comprises several KRLs

such as a process diagram, class diagram, and use case diagram. In this case study, we

validate the KRL to FSL transformation capabilities of our method by using well-known

KRLs and show how they can be transformed into different object-oriented FSLs.

- Case study #3 (CS3): UN-LEND is an object-oriented formal language (Mosquera, 2021).

In this case study, we validate the FSL to KRL transformation capability by using UN-LEND

as a target source and the KRL meta-model representation as the target model.

5. Validation 47

5.1.3 Theory

We propose the Consistency Metric (CM) for evaluating the representation capabilities of

our method. Such a metric is aimed at measuring the proportion of elements of the source

model which can be represented by the target model. The CM depends on two variables,

the Number of Represented Elements in the Target model (NRET) and the Number of

Represented Elements in the Source model (NRES). The CM is formally described in

Equation (1):

𝐶𝑀 =
𝑁𝑅𝐸𝑇

𝑁𝑅𝐸𝑆

(1)

We compute four different CM values for evaluating the transformation process:

- The Source-Model-to-Source-Model-Meta-Model CM (SM2SMM-CM) is aimed at

computing the number of elements coming from the source model which may be

represented by the source model meta-model.

- The Source-Model-Meta-Model-to-Target-Model-Meta-Model CM (SMM2TMM-CM) is

used for computing the number of elements coming from the source meta-model which may

be represented by the target model meta-model.

- The Target-Model-Meta-Model-to-Target-Model CM (TMM2TM-CM) is used for computing

the number of elements coming from the target model meta-model which may be

represented by the target model.

- The Source-Model-to-Target-Model CM (SM2TM-CM) is used for computing the number

of elements coming from the source model which may be represented by the target model.

The CM may be represented by three types of value: (i) a CM lower than 1 indicates the

evaluated source model (i.e., the source model for computing the CM value) lacks some

domain elements which are included in the evaluated target model; (ii) a CM greater than

1 indicates the evaluated target model lacks some domain elements for representing all the

domain elements coming from the evaluated source model; (iii) a CM value equals to 1

indicates both the source model and the target model fully represent the domain of interest,

so they are equivalent for such a domain.

5.1.4 Validation research questions

We define two validation research questions:

- VR1: what are the CM values of the proposed method on KRL-to-FSL transformations?

- VR2: what are the CM values of the proposed method on FSL-to-KRL transformations?

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

48

5.1.5 Methods

We follow the proposed method for transforming the models related to the case studies.

We manually count the number of elements we can represent by using the proposed meta-

models before and after the transformation process. Then, we use such counts for

evaluating the resulting representation by using the CM. We support such a process by

using a prototype application which helps us to automate the transformation process.

5.2 Case study validation

5.2.1 Performing a KRL-to-FSL transformation

We analyze CS1 based on the method for transforming a KRL into a FSL by following its

five steps:

Software domain selection: we select the software domain, which in CS1 is related to the

medical field.

Source model selection: we represent the selected software domain by using a class

diagram as shown in Figure 5-1.

Figure 5- 1. CS1 source model representation. The Authors.

Source model representation: we use the KRL meta-model for representing our source

model. The underlying structure of the class diagram can be represented with the KRL

5. Validation 49

meta-model we defined in the previous Chapter as follows. We will use bold italics for

representing the meta-model elements and italics for instances.

- We have six nodes with the names Hospital, Department, Nurse, Doctor, Patient,

and Employee.

- The node named Department has two features: one with the name Name, the

visibility private, and the type string and one with the name PatientCount, the

visibility private, and the type int.

- The node named Nurse has one feature with name shift, visibility public, and

type string.

- The node named Doctor has one feature with the name isAvailable, visibility

public, and type boolean.

- The node named Patient has two features: one with the name Name, visibility

public, and type string, and one with the name RoomNumber, visibility public, and

type int.

- The node named Employee has two features: one with the name Name,

visibility public, and type string, and one with the name Department, visibility

public, and type string.

- The node named Department has one process with the name getDeptName, the

visibility public, and the sequence 1.

- The node named Department has one process with the name getPatientsCount,

the visibility public, and the sequence 2.

- The node named Doctor has one process with the name checkPatient, the

visibility public, and the sequence 1.

- The node named Patient has one process with the name askRoomAttention, the

visibility public, and the sequence 1.

- The node named Hospital has one relationship with type composition in which it

is the source node with the target node named Department.

- The node named Department has one relationship with type composition in

which it is the source node with the target node named Doctor.

- The node named Department has one relationship with type composition in

which it is the source node with the target node named Nurse.

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

50

- The node named Department has one relationship with type aggregation in

which it is the source node with the target node named Patient.

- The node named Department has one relationship with type composition in

which it is the source node with the target node named Doctor.

- The node named Employee has two relationships with type generalization in

which it is the source node: one with the target node named Doctor and one with

the target node named Nurse.

The previous information completely covers the class diagram as follows:

- The basic information is extracted from the class diagram.

- Nodes are considered Classes in the class diagram, e.g., Doctor.

- Features are considered Class attributes in the class diagram, e.g., Name.

- Processes are considered Class methods in the class diagram, e.g.,

checkPatient.

- Aggregation, composition, and generalization relationships are represented

equivalently in the class diagram.

Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can

represent the target model into one instance of the FSL meta-model.

After we apply the transformation rules, we obtain the following results:

- We have six classes with the names Hospital, Department, Nurse, Doctor,

Patient, and Employee.

- The class named Department has two features: one with the name Name, the

visibility private, and the type string, and one with the name PatientCount, the

visibility private, and the type int.

- The class named Nurse has one feature with name shift, visibility public, and

type string.

- The class named Doctor has one feature with the name isAvailable, visibility

public, and type boolean.

5. Validation 51

- The class named Patient has two features: one with the name Name, visibility

public, and type string, and one with the name RoomNumber, visibility public, and

type int.

- The class named Employee has two features: one with the name Name,

visibility public, and type string, and one with the name Department, visibility

public, and type string.

- The class named Department has one process with the name getDeptName, the

visibility public, and the sequence 1.

- The class named Department has one process with the name getPatientsCount,

the visibility public, and the sequence 2.

- The class named Doctor has one process with the name checkPatient, the

visibility public, and the sequence 1.

- The class named Patient has one process with the name askRoomAttention, the

visibility public, and the sequence 1.

- The class named Hospital has one relationship with type composition in which it

is the source class with the target class named Department.

- The class named Department has one relationship with type composition in

which it is the source class with the target class named Doctor.

- The class named Department has one relationship with type composition in

which it is the source class with the target class named Nurse.

- The class named Department has one relationship with type aggregation in

which it is the source class with the target class named Patient.

- The class named Department has one relationship with type composition in

which it is the source class with the target class named Doctor.

- The class named Employee has two relationships with type generalization in

which it is the source class: one with the target class named Doctor and one with

the target class named Nurse.

Target model generation: the previous information can be represented in different object-

oriented FSLs as follows. In this case, we represent the transformed information by using

the OASIS model (Pastor et al., 1992).

class Hospital:

identification

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

52

constant attributes

derived attributes

derivations

events

preconditions

end class

class Department:

identification

constant attributes

derived attributes

Name:string;

PatientsCount:int;

derivations

events

getDeptName

getPatientsCount

preconditions

end class

class Nurse:

identification

constant attributes

derived attributes

shift:string;

derivations

events

preconditions

end class

class Doctor:

identification

constant attributes

derived attributes

isAvailable:boolean;

5. Validation 53

derivations

events

checkPatient

preconditions

end class

class Employee:

identification

constant attributes

derived attributes

Name:string;

Department:string;

derivations

events

preconditions

end class

class Patient:

identification

constant attributes

derived attributes

Name:string;

RoomNumber:int;

derivations

events

askRoomAttention

preconditions

end class

Hospital dynamic composition of

Department;

Department dynamic aggregation of Nurse;

Department dynamic aggregation of Doctor;

Department dynamic aggregation of Patient;

Doctor static specialization of Employee;

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

54

Nurse static specialization of Employee;

Be advised that the OASIS language has no equivalences for relationships with type

association, and for sequences of the processes. Also, we have no information coming

from the knowledge representation language related to derivations and preconditions of

OASIS, as well as many other details linked to the OASIS specification.

We summarize the transformation process in Table 5-1.

Table 5-1: CS1 represented elements. The Authors.

Software domain

element name

KRL element

KRL meta-model

element

KRL meta-model

complementary

elements

FSL meta-model

element

FSL meta-model

complementary

elements

FSL element

(OASIS)

Hospital Class Node - Class - Hospital

Department Class Node - Class - Department

Nurse Class Node - Class - Nurse

Doctor Class Node - Class - Doctor

Patient Class Node - Class - Patient

Employee Class Node - Class Employee

Hospital.Name

Class atribute

Feature
Visibility: public

Feature
Visibility: public Hospital.Name:

string Type: string Type: string

Department.Nam

e

Class attribute

Feature
Visibility: private

Feature
Visibility: private Department.Nam

e: string Type: string Type: string

Department.Patie

ntsCount

Class attribute

Feature
Visibility: private

Feature
Visibility: private Department.Patie

ntsCount: int Type: int Type: int

Nurse.shift

Class attribute

Feature
Visibility: public

Feature
Visibility: public

Nurse.shift: string
Type: string Type: string

Doctor.isAvailable

Class attribute

Feature
Visibility: public

Feature
Visibility: public Doctor.isAvailable

: boolean Type: boolean Type: boolean

Patient.Name

Class attribute

Feature
Visibility: public

Feature
Visibility: public Patient.Name:

string Type: string Type: string

Patient.RoomNu

mber

Class attribute

Feature
Visibility: public

Feature
Visibility: public Patient.RoomNu

mber: int Type: int Type: int

Employee.Name

Class attribute

Feature
Visibility: public

Feature
Visibility: public Employee.Name:

string Type: string Type: string

Employee.Depart

ment

Class attribute

Feature
Visibility: public

Feature
Visibility: public Employee.Depart

ment: string Type: string Type: string

getDeptName

Class Method

Process
Visibility: public

Process
Visibility: public

getDeptName
Sequence: 1 Sequence: 1

getPatientsCount

Class Method

Process
Visibility: public

Process
Visibility: public

getPatientsCount
Sequence: 1 Sequence: 1

checkPatient

Class Method

Process
Visibility: public

Process
Visibility: public

checkPatient
Sequence: 1 Sequence: 1

askRoomattention

Class Method

Process
Visibility: public

Process
Visibility: public

askRoomattention
Sequence: 1 Sequence: 1

Composition

relationship

between Hospital

and Department

Composition

relationship

Composition

relationship

Source node:

Hospital

Composition

relationship

Source node:

Hospital

Aggregation

relationship

between Hospital

and Department

Target node:

Department

Target node:

Department

Type:

Composition

Type:

Composition

5. Validation 55

Table 5-1: CS1 represented elements. The Authors. (Continuation)

Software domain

element name

KRL element
KRL meta-model

element

KRL meta-model

complementary

elements

FSL meta-model

element

FSL meta-model

complementary

elements

FSL element

(OASIS)

Composition

relationship

between

Department and

Doctor

Composition

relationship

Composition

relationship

Source node:

Department

Composition

relationship

Source node:

Department

Aggregation

relationship

between

Department and

Doctor

Composition

relationship

between

Department and

Nurse

Composition

relationship

Composition

relationship

Target node:

Doctor

Composition

relationship

Target node:

Doctor

Aggregation

relationship

between

Department and

Nurse

Type:

Composition

Type:

Composition

Type:

Composition

Type:

Composition

Aggregation

relationship

between

Department and

Patient

Aggregation

relationship

Aggregation

relationship

Source node:

Department

Aggregation

relationship

Source node:

Department

Aggregation

relationship

between

Department and

Patient

Target node:

Patient

Target node:

Patient

Type:

Aggregation

Type:

Aggregation

Generalization

relationship

between

Employee and

Doctor

Generalization

relationship

Generalization

relationship

Source node:

Employee

Generalization

relationship

Source node:

Employee

Generalization

relationship

between

Employee and

Doctor

Target node:

Doctor

Target node:

Doctor

Type:

Generalization

Type:

Generalization

Generalization

relationship

between

Employee and

Nurse

Generalization

relationship

Generalization

relationship

Source node:

Employee

Generalization

relationship

Source node:

Employee

Generalization

relationship

between

Employee and

Nurse

Target node:

Nurse

Target node:

Nurse

Type:

Generalization

Type:

Generalization

CS1 comprises 19 different domain elements, including classes, features, and processes.

We manage to represent and extend such domain elements by using 63 KRL meta-model

elements and FSL meta-model elements.

We compute 4 different CM values for the CS1:

- We achieve a SM2SMM-CM value of 1 which shows that our KRL meta-model fully

represents the source model, including all its classes, class attributes, class methods, and

relationships.

- We achieve a SMM2TMM-CM value of 1 which shows that the proposed KRL meta-model

and the FSL meta-model are consistent with the representation of the CS1. Such a CM

value indicates that every represented element coming from the KRL meta-model is fully

represented in the FSL meta-model.

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

56

- We achieve a TMM2TM-CM value of 1 which shows that the proposed FSL meta-model

represents all the necessary elements of the target model in the context of the CS1.

Therefore, the context model may be represented by the FSL meta-model.

- We achieve a SM2TM-CM value of 1. Such a value represents the method capability for

transforming a class diagram into the OASIS model in the context of the CS1, showing that

the represented software domain may be fully represented and bidirectionally transformed.

We summarize the CM values related to CS1 in Table 5-2.

Table 5-2: CS1 CM values summary. The Authors.

 NES NET CM

SM2SMM (KRL to KRLMM) 63 63 1

SMM2TMM (KRLMM to FSLMM) 63 63 1

TMM2TM (FSLMM to Target FSL) 63 63 1

SM2TM (Source KRL to Target FSL) 63 63 1

We analyze CS2 based on our method for transforming a KRL into a FSL by following its

five steps:

Software domain selection: we select the software domain, which in CS1 is related to the

sales management field.

Source model selection: since the UNC-Method includes some knowledge representation

languages such as the process diagram, the class diagram, and the use case diagram, we

select the three of them as source models. While our method is intended to work with one

source model at a time, we may use it for representing any KRL. Such diagrams are

depicted in Figure 5-2, Figure 5-3, and Figure 5-4.

Source model representation: we use the KRL meta-model for representing our source

models. The underlying structure of the three diagrams can be represented with the KRL

meta-model we defined in the previous Chapter as follows. We will use bold italics for

representing the meta-model elements and italics for instances.

Figure 5- 2. Process diagram representation (Zapata and Arango, 2009).

5. Validation 57

Figure 5-3. Class diagram representation (Zapata & Arango, 2009).

Figure 5- 4. Case diagram representation (Zapata and Arango, 2009).

- We have six nodes with the names sale, vendor, sales employee, company, order,

and assistant.

- The node named vendor has one feature with the name commission and the

visibility private. Be advised that we need at least the type of the feature with a

value int, even though it is not declared in the information we have in the diagrams.

- The node named order has two features: one with the name number and the

visibility private and one with the name customer and the visibility private. Again,

we need at least the type of the feature number with a value int and the type of the

feature customer with a value string even though it is not declared in the information

we have in the diagrams.

- The node named order has three processes: one with the name reports, the

visibility public, and the sequence 2; one with the name confirms, the visibility

public, and the sequence 3; and one with the name delivers, the visibility public,

and the sequence 4.

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

58

- The node named sales employee has one feature with the name base salary and

the visibility private. Additionally, the type of the feature is int, even though it is

not declared in the information we have in the diagrams.

- The node named sale has one process with the name makes, the visibility public,

and the sequence 1.

- The node named vendor has two relationships with type generalization in which

it is the source node: one with the target node named sales employee and one

with the target node named company.

- The node named order has one relationship with type aggregation in which it is

the source node with the target node named vendor.

- The node named order has one relationship with type association in which it is

the source node with the target node named vendor.

- The node named vendor has one relationship with type association in which it is

the source node with the target node named sale.

- The node named order has one relationship with type association in which it is

the source node with the target node named company.

- The node named order has one relationship with type association in which it is

the source node with the target node named assistant.

The previous information completely covers the three diagrams as follows:

- The basic information is extracted from the class diagram.

- Nodes with features are considered storages with features of the process diagram,

e.g., order with number.

- Nodes with processes are considered processes of the process diagram or use

cases of the use case diagram, e.g., confirms order.

- Nodes with relationships with type association with nodes with processes are

considered lanes or actors of the process diagram and actors of the use case

diagram, e.g., vendor.

Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can

represent the target model into one instance of the FSL meta-model.

After we apply the transformation rules, we obtain the following results:

5. Validation 59

- We have six classes with the names sale, vendor, sales employee, company,

order, and assistant.

- The class named vendor has one feature with the name commission, the visibility

private, and the type int.

- The class named order has two features: one with the name number, the visibility

private, and the type int and one with the name customer, the visibility private and

the type string.

- The class named sales employee has one feature with the name base salary, the

visibility private, and the type int.

- The class named order has three processes: one with the name reports and the

visibility public, one with the name confirms and the visibility public, and one with

the name delivers and the visibility public.

- The class named vendor has two relationships with type generalization in which

it is the source class: one with the target class named sales employee and one

with the target class named company.

- The class named order has one relationship with type aggregation in which it is

the source class with the target class named vendor.

- The class named order has one relationship with type association in which it is

the source class with the target class named vendor.

- The class named vendor has one relationship with type association in which it is

the source class with the target class named sale.

- The class named order has one relationship with type association in which it is

the source class with the target class named assistant.

- The class named order has one relationship with type association in which it is

the source class with the target class named company.

- The class named sale has one process with the name makes and the visibility

public.

Target model generation: the previous information can be represented in different object-

oriented FSLs as follows. In this case, we only generate two of them.

- UN-LEND (Mosquera 2021):

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

60

class Vendor:

attributes:

int: commision

constraints:

operations:

class SalesEmployee extends Vendor:

attributes:

int: baseSalary

constraints:

operations:

class Company extends Vendor:

attributes:

constraints:

operations:

class Order:

attributes:

int: number

string: customer

constraints:

operations:

void: reports () {

}

void: confirms () {

}

void: delivers () {

}

class Sale:

attributes:

constraints:

operations:

void: makes () {

}

5. Validation 61

class Assistant:

attributes:

constraints:

operations:

Be advised that the UN-LEND language has no equivalences for relationships with type

aggregation and association, and for sequences of the processes. Also, we have no

information coming from the knowledge representation language related to constraints of

UN-LEND.

- OASIS (Pastor et al., 1992):

class vendor:

identification

constant attributes

derived attributes

commission:int;

derivations

events

preconditions

end class

class SalesEmployee:

identification

constant attributes

derived attributes

baseSalary:int;

derivations

events

preconditions

end class

class Order:

identification

number:int;

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

62

constant attributes

customer:string;

derived attributes

derivations

events

reports

confirms

delivers

preconditions

end class

class Sale:

identification

constant attributes

derived attributes

derivations

events

makes

preconditions

end class

class Assistant:

identification

constant attributes

derived attributes

derivations

events

preconditions

end class

Order dynamic aggregation of

Vendor;

SalesEmployee static specialization of

Vendor;

Company static specialization of

5. Validation 63

Vendor;

Be advised that the OASIS language has no equivalences for relationships with type

association, and for sequences of the processes. Also, we have no information coming

from the knowledge representation language related to derivations and preconditions of

OASIS, as well as many other details linked to the OASIS specification.

We summarize the transformation process in Table 5-3.

Table 5-3: CS2 represented elements. The Authors.

Software

domain

element name

KRL element KRL meta-

model element

KRL meta-model

complementary

elements

FSL

meta-

model

element

FSL meta-model

complementary

elements

FSL element

(UN-Lend)

FSL element

(OASIS)

Assistant Storage (Process diagram);

Class (Class diagram); Lane

or Actor (Process diagram);

Actor (Use case diagram)

Node - Class Assistant Assistant

Base_Salary Feature related to a storage

(Process diagram); Attributes

(Class diagram)

Feautre (related to

Sales_employee)

Visibility: private Feautre

(related to

Sales_em

ployee)

Visibility: private BaseSalary:int BaseSalary:int

Type: int Type: int

Commission Feature related to a storage

(Process diagram); Attributes

(Class diagram)

Feautre (related to

Vendor)

Visibility: private Feautre

(related to

Vendor)

Visibility: private Comission:int Comission:int

Type: int Type: int

Company Storage (Process diagram);

Class (Class diagram)

Node - Class Company Company

Confirms Process (Process diagram);

Use case (Use case diagram)

Process (related

to Order)

Visibility: public Process

(related to

Order)

Visibility: public Confirms Confirms

Sequence: 3 Sequence: 3

Customer Feature related to a storage

(Process diagram); Attributes

(Class diagram)

Feature (related to

Order)

Visibility: private Feature

(related to

Order)

Visibility: private Customer:string Customer:string

Type: string Type: string

Delivers Process (Process diagram);

Use case (Use case diagram)

Process (related

to Order)

Visibility: public Process

(related to

Order)

Visibility: public Delivers Delivers

Sequence: 3 Sequence: 3

Makes Process (Process diagram);

Use case (Use case diagram)

Process (related

to Sale)

Visibility: public Process

(related to

Sale)

Visibility: public Makes Makes

Sequence: 1 Sequence: 1

Number Feature related to a storage
(Process diagram);
Attributes (Class diagram)

Feature (related
to Order)

- Feature
(related to
Order)

- Number Number

Order Storage (Process diagram);
Class (Class diagram)

Node - Class - Order Order

Reports Process (Process diagram);
Use case (Use case
diagram)

Process (related
to Order)

Visibility: public Process
(related to
Order)

Visibility: public Reports Reports

 Sequence: 2 Sequence: 2

Sale Storage (Process diagram);
Class (Class diagram)

Node - Class - Sale Sale

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

64

Table 5-3: CS2 represented elements. The Authors. (Continuation)

Software

domain

element name

KRL element KRL meta-

model element

KRL meta-model

complementary

elements

FSL

meta-

model

element

FSL meta-model

complementary

elements

FSL element

(UN-Lend)

FSL element

(OASIS)

Sales_Employee Lane or Actors (Process

diagram); Actors (Use case

diagram)

Node - Class - SalesEmployee SalesEmployee

Vendor Lane or Actors (Process

diagram); Actors (Use case

diagram)

Node - Class - Vendor Vendor

Aggregation

relationship

between Order

and Vendor

Relationship (Class diagram) Relationship Source node: Order Relationsh

ip

Source node: Order NA Aggregation

relationship between

Order and Vendor
Target node: Vendor Target node: Vendor

Type: aggregation Type: aggregation

Association

relationship

between Order

and Vendor

Relationship (Class diagram) Relationship Source node: Order Relationsh

ip

Source node: Order NA NA

Target node: Vendor Target node: Vendor

Type: association Type: association

Association

relationship

between Vendor

and Sale

Relationship (Class diagram) Relationship Source node: Vendor Relationsh

ip

Source node:

Vendor

NA NA

Target node: Sale Target node: Sale

Type: association Type: association

Association

relationship

between Order

and Company

Relationship (Class diagram) Relationship Source node: Order Relationsh

ip

Source node: Order NA NA

Target node: Company Target node:

Company

Type: association Type: association

Association

relationship

between Order

and Assistant

Relationship (Class diagram) Relationship Source node: Order Relationsh

ip

Source node: Order NA NA

Target node: Assistant Target node:

Assistant

Type: association Type: association

Generalization

relationship

between Sales

Employee and

Vendor

Relationship (Class diagram) Relationship Source node:

Sales_Employee

Relationsh

ip

Source node:

Sales_Employee

Generalization

relationship between

Sales_Employee

and Vendor

Generalization

relationship between

Sales_Employee

and Vendor

Target node: Vendor Target node: Vendor

Type: generalization Type: generalization

Generalization

relationship

between Sales

Employee and

Company

Relationship (Class diagram) Relationship Source node:

Sales_Employee

Relationsh

ip

Source node:

Sales_Employee

Generalization

relationship between

Sales_Employee

and Company

Generalization

relationship between

Sales_Employee

and Company

Target node: Company Target node:

Company

Type: generalization Type: generalization

CS2 comprises 35 different domain elements, including storages, classes, use cases,

features, and relationships. We manage to represent and extend such domain elements by

using 49 KRL meta-model elements and FSL meta-model elements.

We compute 6 different CM values for the CS1:

5. Validation 65

- We achieve a SM2SMM-CM value of 1.4 showing our KRL meta-model fully represents

the source model (CS1 comprises several source models, including a class diagram,

process diagram, and use case diagram). Also, since such a value is higher than 1, it

indicates the source meta-model representation includes more domain elements than the

elements represented by the source model. Specifically, in CS1 we complement the source

model representation by adding visibility and type features for the represented nodes.

- We achieve a SMM2TMM-CM value of 1 showing the proposed KRL meta-model and the

FSL meta-model are consistent with the representation of the CS1. Such a CM value

indicates every represented element coming from the KRL meta-model is fully represented

in the FSL meta-model.

- We compute two different TMM2TM-CM values, one for representing the transformation

into the UN-LEND model, and one for representing the transformation process into the

OASIS model. Such values are 0.59 and 0.65, respectively. Since the TMM2TM-CM values

are lower than 1, they show the target models lack sufficient elements for representing all

the domain elements coming from the FSL meta-model. Also, such values show the OASIS

model provides a higher expressiveness than the UN-LEND model as it can include more

elements, according to the TMM2TM-CM value.

- We compute two different SM2TM-CM values for representing the main KRL-to-FSL

transformation processes. Such transformations are targeted at two different FSLs: the UN-

LEND model with a SM2TM-CM value of 0.83, and the OASIS model with a SM2TM-CM

value of 0.91. Such values indicate the target models are less expressive than the source

models.

We summarize the CM values related to the CS2 and answer VR1 in Table 5-4.

Table 5-4: CS2 CM values summary. The Authors.

 NES NET CM

SM2SMM (KRL to KRLMM) 35 49 1.4

SMM2TMM (KRLMM to FSLMM) 49 49 1

TMM2TM (FSLMM to Target FSL, UN-LEND) 49 29 0.59

TMM2TM (FSLMM to Target FSL, OASIS) 49 32 0.65

SM2TM (Source KRL to Target FSL, UN-LEND) 35 29 0.83

SM2TM (Source KRL to Target FSL, OASIS) 35 32 0.91

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

66

5.2.2 Performing a FSL-to-KRL transformation

We follow the method for transforming a FSL into a KRL by following its five steps:

Software domain selection: we select the software domain, which is related in CS3 to the

householding field.

Source model selection: we select UN-LEND as source model. Mosquera (2021) extends

the UN-LEND language proposed by Zapata and Arango (2004) by adding the specification

of the operations. UN-LEND is pretty similar to other object-oriented formal languages like

OASIS and ObjectZ. The following specification was extracted from Mosquera (2021):

class Person:

attributes:

string: name [0,1]

string: lastName [0,1]

int: age [0,1]

constraints:

alive: age>0 and age<100

operations:

class Man extends Person:

attributes:

constraints:

operations:

class Woman extends Person:

attributes:

constraints:

operations:

class Household:

attributes:

constraints:

operations:

void: contHousehold() {

int: countOfHouseholdMembers = 0

5. Validation 67

for (HouseholdMembership: householdMembershipList):

countofHouseholdMembers = countofHouseholdMembers +

1

}

void: establishHousehold() {

}

class HouseholdMembership:

attributes:

constraints:

operations:

void: addHouseholdMembership() {

}

Source model representation: we use the FSL meta-model for representing our source

model. The underlying structure of this specification can be represented with the OOFL

metamodel we defined in the previous Chapter as follows. We will use bold italics for

representing the metamodel elements and italics for instances.

- We have five classes with the names person, man, woman, household, and

householdmembership.

- The class named person has three features: one feature with the name name,

the cardinality [0,1], and the type string; one feature with the name lastName, the

cardinality [0,1], and the type string; and one feature with the name age, the

cardinality [0,1], and the type int.

- The class named person has one constraint with the formula alive: age>0 and

age<100.

- The class named household has two processes: one with the name

counthousehold and the type void; and one with the name establishhousehold and

the type void.

- The process named counthousehold has one valuation with formula {int:

countOfHouseholdMembers = 0 for (HouseholdMembership:

householdMembershipList): countofHouseholdMembers =

countofHouseholdMembers + 1}.

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

68

- The class named householdmembership has one process with the name

addhouseholdmembership and the type void.

- The class named person has two relationships with type generalization in which

it is the source class: one with the target class named man and one with the

target class named woman.

Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can

represent the target model into one instance of the KSL meta-model.

After applying the equivalences from the heuristic rules, we have the following results for

instantiating the knowledge representation language metamodel:

- We have five nodes with the names person, man, woman, household, and

householdmembership.

- The node named person has two relationships with type generalization in which

it is the source node: one with the target node named man and one with the target

node named woman.

- The node named person has three features: one feature with the name name and

the type string; one feature with the name lastName and the type string; and one

feature with the name age and the type int.

- The node named household has two processes: one with the name

counthousehold and the type void; and one with the name establishhousehold and

the type void.

- The node named householdmembership has one process with the name

addhouseholdmembership and the type void.

As you can see, too much information is missing in the transformation since the usual

syntax of the knowledge representation languages lacks several elements. For example,

the valuations of the processes, the constraints of the classes, and the cardinality of

the features have no equivalences in the knowledge representation language meta-model.

On the other side, elements like the relationships with type association and aggregation

and the sequence of the processes are absent from the specification based on UN-LEND.

5. Validation 69

Target model generation: the previous information can be represented in different KRLs. In

this case, we represent the gathered knowledge by using a class diagram as shown in

Figure 5-5.

Figure 5- 5. CS3 target model representation. The Authors.

We summarize the CS3 transformation process in Table 5-5.

CS2 comprises 27 different domain elements, including classes, attributes, operations,

constraints, and relationships. We manage to represent and extend such domain elements

by using 27 KRL meta-model elements and FSL meta-model elements.

We compute 4 different CM values for the CS3:

- We achieve a SM2SMM-CM value of 1, showing all the domain elements coming from the

source model (UN-LEND) may be represented by the FSL meta-model. In this case, we

maintain the integrity of the source model by representing all its knowledge.

- We achieve a SMM2TMM-CM value of 0.89 which indicates we lost some knowledge in

the transformation process as the value is lower than 1. Such a value shows the target

model (the KRL meta-model) lacks some of the knowledge from the source model.

Specifically, in CS2, we lack constraints in the KRL meta-model.

-We achieve a TMM2TM-CM value of 1, showing all the elements represented by the KRL

meta-model may be represented by the target model (class diagram). While such a value

indicates we can achieve a full transformation from the KRL meta-model to the target KRL

model, we probably fail in achieve the full transformation from the initial source model (UN-

LEND).

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

70

Table 5-5: CS3 transformation process summary. The Authors.

Software domain element
name

FSL element (UN-
LEND)

FSL meta-
model
element

FSL meta-model
complementary elements

KRL meta-
model
element

KRL meta-model
complementary
elements

KRL element (Class
diagram)

Person Class Class - Node - Person

name Person attribute,
type:int, cardinality: [0,1]

Feature Type: string Feature Type: string name

Cardinality: [0,1]

lastname Person attribute,
type:int, cardinality: [0,1]

Feature Type: string Feature Type: string lastname

Cardinality: [0,1]

age Person attribute,
type:int, cardinality: [0,1]

Feature Type: int Feature Type: int age
Cardinality: [0,1]

alive Person constraint Constraint formula - alive: age>0 and
age<100

NA NA alive

Man Class Class - Class - Man

Woman Class Class - Class - Woman

Household Class Class - Class - Household

contHousehold Household operation Process type: void Process type: void contHousehold

valuation with formula {int:
countOfHouseholdMembers
= 0 for
(HouseholdMembership:
householdMembershipList):
countofHouseholdMembers
=
countofHouseholdMembers
+ 1}.

NA

establishHousehold Household operation Process type: void Process type: void establishHousehold

HouseholdMembership Class Class - Class - HouseholdMembership

addHouseholdMembership HouseholdMembership

operation

Process type: void Process type: void addHouseholdMembership

Man extends Person Generalization
relationship

Relationship type: generalization Relationship type:
generalization

Man extends Person
relationship

source class: Person source node:
Person

target class: Man target node: Man

Woman extends Person Generalization
relationship

Relationship type: generalization Relationship type:
generalization

Woman extends Person
relationship

source class: Person source node:
Person

target class: Woman target node:
Woman

- We achieve a SM2TM-CM value of 0.89 which indicates we lack a full transformation of

the source model (UN-LEND) into the target model (class diagram). In the context of the

FSL-to-KRL transformation, UN-LEND is more expressive than the class diagram as such

a model can be used for representing more complex domain elements such as constraints.

We summarize CS3 CM values and answer to VRQ2 in Table 5-6.

5. Validation 71

Table 5-6: CS2 CM values summary. The Authors.

 NES NET CM

SM2SMM (FSL to FSLMM) 27 27 1

SMM2TMM (FSLMM to KRLMM) 27 24 0.89

TMM2TM (KRLMM to Target KRL, class
diagram)

24 24 1

SM2TM (Source FSL to Target KRL, UN-LEND-
to-class diagram)

27 24 0.89

5.3 Work products

5.3.1 Meta-models

The proposed method comprises three meta-models: the KRL meta-model, the FSL meta-

model, and the Transformation rules meta-model. Since such meta-models comprise well-

known elements coming from the KRL and FSL fields, such meta-models may be

independently reused for supporting other KRL and FSL proposals in the context of RE.

5.3.2 A prototype for transforming KRL-FSL pairs

The prototype of the method for transforming KRL-FSK pairs is available at

https://github.com/ramanjar/prototipo. Such a prototype integrates the meta-models and

the heuristic rules, so modelers can automatically transform KRLs into FSLs and vice-versa.

https://github.com/ramanjar/prototipo

6. Conclusions and challenges

6.1 Conclusions

In this Ph.D. Thesis we proposed a comprehensive method for KRL-FSL pair transformation

for improving the knowledge representation and transformation process in the context of

RE. We obtained the following contributions:

Regarding representation language characterization

KRLs and FSLs were characterized by performing a systematic literature review of

model-to-model transformation proposals, focused on KRL-FSL pairs.

Recurrent elements related to KRLs were identified from the related KRLs within the

KRL-FSL pair transformation proposals, including nodes, features, processes, and

relationships.

Recurrent elements related to FSLs were identified from the related FSLs within the

KRL-FSL pair transformation proposals, including classes, features, functions,

processes, constraints, invariants, relationships, data types, and derivations.

Regarding representation language meta-model definition

A new KRL meta-model is defined for representing KRLs in the context of RE.

New KRL meta-model elements are based on the KRL components identified,

including nodes, features, processes, and relationships.

A new FSL meta-model is defined for representing FSLs in the context of RE and

object-oriented programming.

New FSL meta-model elements are based on the FSL components identified,

including classes, features, functions, processes, constraints, invariants,

relationships, data types, and derivations.

PCSs were used for representing meta-models as they are models close to natural

languages, mitigating the need for technical skills for understanding and modeling

software domains while using KRLs and FSLs.

6. Conclusions and Challenges 73

Modelers should use the meta-models for grasping a more intuitive understanding

of KRLs and FSLs.

Regarding transformation heuristic rule definition

New heuristic rules are defined for representing the equivalences between the KRL

meta-model and the FSL meta-model.

Modelers should use such heuristic rules for performing model-to-model

transformations in the context of KRL-FSL pairs.

Regarding the method for transforming KRL-FSL pairs

A new method for KRL-FSL pair transformation was proposed for improving the

knowledge representation and transformation process in the context of RE,

including a KRL meta-model for representing any KRL in the context of RE, a FSL

meta-model for representing any FSL in the context of RE and object-oriented

programming, and a set of heuristic rules for describing the equivalences between

the KRL and FSL meta-models.

The method integrates the fields of KRL, FSL, and RE, allowing for describing

concepts and relationships coming from a software domain, and the features and

constraints related to more complex software systems.

Modelers should use the method for enhancing the comprehension and

representation of complex software systems as they can combine several KRLs and

FSLs, allowing them for representing different views of the software system.

The method does not impose restrictions on the type of KRL and FSL utilized or the

software domain targeted, allowing modelers for adapting the method to various

RE-related contexts.

Modelers should use the method for transforming KRLs into FSLs and vice-versa.

The bidirectional nature of the proposed method eases the knowledge exchange

between KRL and FSL representations, fostering the navigation between the

expressive capabilities of KRLs and the unambiguous representations related to

FSLs.

Our method is aimed at enhancing the comprehensibility of software domain

modeling by integrating three powerful meta-models and enabling bidirectional

transformations, thereby empowering software analysts and modelers for tackling

increasingly complex software systems.

Regarding the method validation

A Method for Obtaining Formal Software Specifications from Knowledge

Representation Languages

74

The Consistency Metric was defined for indicating the representation and

transformation capabilities related to the proposed method, including the

representation of KRLs, FSLs, and the bidirectional transformation of KRL-FSL

pairs.

Three case studies were defined for evaluating the transformation capabilities of our

method, including some KRLs, FSLs, and software domains.

Validation results were obtained by using the consistency metric by indicating the

method prototype can be used for representing KRLs, FSLs, and performing

bidirectional transformation between KRL-FSL pairs in the context of RE regardless

of the KRL-FSL pair and the software domain.

Modelers should use the consistency metric for evaluating model-to-model

transformation processes in the context of KRL-FSL pairs, easing the understanding

of the expressiveness and shortcomings of KRLs and FSLs in the context of RE.

6.2 Challenges

The following challenges are identified as future work from this Ph.D. Thesis:

Our method is focused on KRL-FSL pairs. However, other unattended types of

representation languages can be addressed, such as domain-specific languages,

ontology languages, control specification languages, and rule-based languages.

Our method allows modelers for performing bidirectional transformations. However,

ensuring the bidirectional transformation method produces equivalent and complete

representations remains challenging as KRLs are not as expressive as FSLs,

hardening the FSL-to-KRL transformation because of the loss of knowledge in the

process.

The CM can be used and extended in other model transformation scenarios such

as model-to-text and text-to-model.

The method for transforming KRL-FSL pairs can be used as an educational

environment for novice software analysts and modelers, allowing them for

mitigating the impact of the complexity related to the understanding and adoption

of KRLs and FSLs while learning and performing software modeling.

References

Abdelnabi, E. A., Maatuk, A. M., Abdelaziz, T. M., & Elakeili, S. M. (2020). Generating

UML Class Diagram using NLP Techniques and Heuristic Rules. 2020 20th

International Conference on Sciences and Techniques of Automatic Control and

Computer Engineering (STA), 277–282.

https://doi.org/10.1109/STA50679.2020.9329301

Abdelnabi, E., Maatuk, A., & Hagal, M. (2021). Generating UML Class Diagram from

Natural Language Requirements: A Survey of Approaches and Techniques. 288–

293. https://doi.org/10.1109/MI-STA52233.2021.9464433

Abrial, J.-R. (2010). Modeling in Event-B - System and Software Engineering. In Modeling

in Event-B: System and Software Engineering.

https://doi.org/10.1017/CBO9781139195881

Alkhammash, E. (2020). Formal modelling of OWL ontologies-based requirements for the

development of safe and secure smart city systems. Soft Computing, 24.

https://doi.org/10.1007/s00500-020-04688-z

Amjad, A., Azam, F., Anwar, M., Haider, W., Rashid, M., & Naeem, A. (2018). UMLPACE

for Modeling and Verification of Complex Business Requirements in Event-driven

Process Chain (EPC). IEEE Access, 6, 1.

https://doi.org/10.1109/ACCESS.2018.2883610

Ang, A., & Hartley, M. (2007). Object oriented knowledge representation framework for

requirements engineering. 477–482.

Awan, M. M., Butt, W. H., Anwar, M. W., & Azam, F. (2022). Seamless Runtime

Transformations from Natural Language to Formal Methods – A usecase of Z-

Notation. 2022 17th Annual System of Systems Engineering Conference (SOSE),

375–380. https://doi.org/10.1109/SOSE55472.2022.9812644

Ben Younes, A., Ben Daly Hlaoui, Y., Ben Ayed, L., & Bessifi, M. (2019). From BPMN2 to

Event B: A Specification and Verification Approach of Workflow Applications. 2019

IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), 2,

561–566. https://doi.org/10.1109/COMPSAC.2019.10266

76 A Method for Obtaining Formal Software Specifications from Knowledge
Representation Languages

Bernardo, M., Ciancarini, P., & Donatiello, L. (2002). Architecting Families of Software

Systems with Process Algebras. ACM Trans. Softw. Eng. Methodol., 11(4), 386–426.

https://doi.org/10.1145/606612.606614

Borgida, A., Horkoff, J., & Mylopoulos, J. (2014). Applying knowledge representation and

reasoning to (simple) goal models. 2014 IEEE 1st International Workshop on

Artificial Intelligence for Requirements Engineering (AIRE), 53–59.

https://doi.org/10.1109/AIRE.2014.6894857

Boussetoua, R., Bennoui, H., Chaoui, A., Khalfaoui, K., & Kerkouche, E. (2015). An

automatic approach to transform BPMN models to Pi-Calculus. 2015 IEEE/ACS 12th

International Conference of Computer Systems and Applications (AICCSA), 1–8.

https://doi.org/10.1109/AICCSA.2015.7507176

Bruijn, J. (2007). Logics for the Semantic Web. Semantic Web Services: Theory, Tools

and Applications, 24–43. https://doi.org/10.4018/978-1-59904-045-5.ch002

Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F. (2014). MoDisco: a Model Driven

Reverse Engineering Framework. Information and Software Technology, 56.

https://doi.org/10.1016/j.infsof.2014.04.007

Caetano, A., Antunes, G., Pombinho, J., Bakhshandeh, M., Granjo, J., Borbinha, J., & da

Silva, M. M. (2017). Representation and analysis of enterprise models with semantic

techniques: an application to ArchiMate, e3value and business model canvas.

Knowledge and Information Systems, 50(1), 315–346.

https://doi.org/10.1007/s10115-016-0933-0

Chu, M.-H., & Dang, D.-H. (2020). Automatic Extraction of Analysis Class Diagrams from

Use Cases. 2020 12th International Conference on Knowledge and Systems

Engineering (KSE), 109–114. https://doi.org/10.1109/KSE50997.2020.9287702

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., & Quesada, J.

(2002). Maude: specification and programming in rewriting logic. Theor. Comput.

Sci., 285, 187–243.

Correia, A., & e Abreu, F. (2012). Adding Preciseness to BPMN Models. Procedia

Technology, 5, 407–417. https://doi.org/10.1016/j.protcy.2012.09.045

Couto, R., Ribeiro, A., & Campos, J. (2014). Application of Ontologies in Identifying

Requirements Patterns in Use Cases. Electronic Proceedings in Theoretical

Computer Science, 147. https://doi.org/10.4204/EPTCS.147.5

Dick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer,

Chan.

References 77

Djaoui, C., Kerkouche, E., Chaoui, A., & Khalfaoui, K. (2018). A Graph Transformation

Approach to Generate Analysable Maude Specifications from UML Interaction

Overview Diagrams. 2018 IEEE International Conference on Information Reuse and

Integration (IRI), 511–517. https://doi.org/10.1109/IRI.2018.00081

Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., & André, R. (1986). A knowledge

representation language for requirements engineering. Proceedings of the IEEE, 74,

1431–1444. https://doi.org/10.1109/PROC.1986.13644

Finne, A. (2011). Towards a quality meta-model for information systems. Software Quality

Journal, 19(4), 663–688. https://doi.org/10.1007/s11219-011-9131-1

Gasevic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology

Development. In Model Driven Architecture and Ontology Development.

https://doi.org/10.1007/3-540-32182-9

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., & Sebastiani, R. (2002). Reasoning with Goal

Models. LNCS, 2503, 167–181. https://doi.org/10.1007/3-540-45816-6_22

Gogolla, M., Hilken, F., & Doan, K.-H. (2017). Achieving Model Quality through Model

Validation, Verification and Exploration. Computer Languages, Systems &

Structures, 54. https://doi.org/10.1016/j.cl.2017.10.001

Hahn, C., Schmitt, F., Tillman, J., Metzger, N., Siber, J., & Finkbeiner, B. (2022). Formal

Specifications from Natural Language. https://doi.org/10.48550/arXiv.2206.01962

Hlaoui, Y. B., Younes, A. Ben, Ben Ayed, L. J., & Fathalli, M. (2017). From Sequence

Diagrams to Event B: A Specification and Verification Approach of Flexible Workflow

Applications of Cloud Services Based on Meta-model Transformation. 2017 IEEE

41st Annual Computer Software and Applications Conference (COMPSAC), 2, 187–

192. https://doi.org/10.1109/COMPSAC.2017.135

Jamal, M., & Zafar, N. A. (2016). Formalizing structural semantics of UML 2.5 activity

diagram in Z Notation. 2016 International Conference on Open Source Systems &

Technologies (ICOSST), 66–71. https://doi.org/10.1109/ICOSST.2016.7838579

Jena, A., Swain, S., & Mohapatra, D. (2015). Model Based Test Case Generation from

UML Sequence and Interaction Overview Diagrams. Smart Innovation, Systems and

Technologies, 32, 247–257. https://doi.org/10.1007/978-81-322-2208-8_23

Jiang, T., She, Y., & Wang, X. (2016). An Approach for Automatically Verifying

Metamodels Consistency. International Journal of Simulation Systems, Science and

Technology, 17, 20.1-20.7. https://doi.org/10.5013/IJSSST.a.17.27.20

78 A Method for Obtaining Formal Software Specifications from Knowledge
Representation Languages

Karolita, D., Kanij, T., Grundy, J., McIntosh, J., & Obie, H. (2023). Use of Personas in

Requirements Engineering: A Systematic Literature Review.

Kleppe, A., & Warmer, J. (2000). Making UML activity diagrams object-oriented.

Proceedings 33rd International Conference on Technology of Object-Oriented

Languages and Systems TOOLS 33, 288–299.

https://doi.org/10.1109/TOOLS.2000.848769

Lapouchnian, A. (2005). Goal-Oriented Requirements Engineering : An Overview of the

Current Research. Requirements Engineering, 8(3), 32.

https://doi.org/10.1007/s00766-003-0178-9

Maio, P. Di. (2021). System Level Knowledge Representation for Complexity. 2021 IEEE

International Systems Conference (SysCon), 1–6.

https://doi.org/10.1109/SysCon48628.2021.9447091

Meziani, L., Bouabana-Tebibel, T., & Bouzar-Benlabiod, L. (2018). From Petri Nets to

UML Model: A New Transformation Approach. 2018 IEEE International Conference

on Information Reuse and Integration (IRI), 503–510.

https://doi.org/10.1109/IRI.2018.00080

OMG. (2011). OMG Unified Modeling Language (OMG UML), Superstructure, Version

2.4.1. http://www.omg.org/spec/UML/2.4.1

Pang, C., Pakonen, A., Buzhinsky, I., & Vyatkin, V. (2016, June). A Study on User-

Friendly Formal Specification Languages for Requirements Formalization.

https://doi.org/10.1109/INDIN.2016.7819246

Parkes, A. (2002). Introduction to Languages, Machines and Logic.

https://doi.org/10.1007/978-1-4471-0143-7

Pérez, B., & Porres, I. (2019). Reasoning about UML/OCL class diagrams using

constraint logic programming and formula. Inf. Syst., 81, 152–177.

https://api.semanticscholar.org/CorpusID:69512866

Pérez-Castillo, R., Guzmán, I., & Piattini, M. (2011). Knowledge Discovery Metamodel-

ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards &

Interfaces, 33, 519–532. https://doi.org/10.1016/j.csi.2011.02.007

Popescu, D., & Dumitrache, I. (2023). Knowledge representation and reasoning using

interconnected uncertain rules for describing workflows in complex systems.

Information Fusion, 93. https://doi.org/10.1016/j.inffus.2023.01.007

Rabinia, A., & Ghanavati, S. (2017). FOL-Based Approach for Improving Legal-GRL

Modeling Framework: A Case for Requirements Engineering of Legal Regulations of

Social Media. 213–218. https://doi.org/10.1109/REW.2017.78

http://www.omg.org/spec/UML/2.4.1

References 79

Ramadan, Q., Strüber, D., Salnitri, M., Jürjens, J., Riediger, V., & Staab, S. (2020). A

semi-automated BPMN-based framework for detecting conflicts between security,

data-minimization, and fairness requirements. Software and Systems Modeling.

https://doi.org/10.1007/s10270-020-00781-x

Ries, B., Guelfi, N., & Jahic, B. (2021). An MDE Method for Improving Deep Learning

Dataset Requirements Engineering using Alloy and UML. 41–52.

https://doi.org/10.5220/0010216600410052

Rodríguez-Gil, L., García-Zubia, J., Orduña, P., Villar-Martinez, A., & López-De-Ipiña, Di.

(2019). New Approach for Conversational Agent Definition by Non-Programmers: A

Visual Domain-Specific Language. IEEE Access, 7, 5262–5276.

https://doi.org/10.1109/ACCESS.2018.2883500

Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition.

IEEE Transactions on Software Engineering, SE-3(1), 6–15.

https://doi.org/10.1109/TSE.1977.229899

Sabri, M. (2015). REQUIREMENTS ENGINEERING DOMAIN KNOWLEDGE IN

INFORMATION TECHNOLOGY. SSRN Electronic Journal, 3, 55–62.

Sammi, R., Rubab, I., & Qureshi, M. A. (2010). Formal specification languages for real-

time systems. 3, 1642–1647. https://doi.org/10.1109/ITSIM.2010.5561643

Sangiorgi, D., & Walker, D. (2001). PI-Calculus: A Theory of Mobile Processes.

Cambridge University Press.

Saratha, P., Uma, G. V, & Santhosh, B. (2017). Formal Specification for Online Food

Ordering System Using Z Language. 2017 Second International Conference on

Recent Trends and Challenges in Computational Models (ICRTCCM), 343–348.

https://doi.org/10.1109/ICRTCCM.2017.59

Sengupta, S., & Bhattacharya, S. (2006). Formalization of UML use case diagram-a Z

notation based approach. 2006 International Conference on Computing &

Informatics, 1–6. https://doi.org/10.1109/ICOCI.2006.5276507

Sharaff, A., & Rath, S. K. (2020). Formalization of UML Class Diagram Using Colored

Petri Nets. 2020 First International Conference on Power, Control and Computing

Technologies (ICPC2T), 311–315.

https://doi.org/10.1109/ICPC2T48082.2020.9071490

Siddique, A. B., Qadri, S., Hussain, S., Ahmad, S., Maqbool, I., Karim, A., & Khan, A. K.

(2014, June). INTEGRATION OF REQUIREMENT ENGINEERING WITH UML IN

SOFTWARE ENGINEERING PRACTICES.

80 A Method for Obtaining Formal Software Specifications from Knowledge
Representation Languages

Son, H. S., & Kim, R. Y. C. (2017). XCodeParser based on Abstract Syntax Tree

Metamodel (ASTM) for SW visualization. Information (Japan), 20, 963–968.

Sonbol, R., Rebdawi, G., & Ghneim, N. (2020, June). Towards a Semantic

Representation for Functional Software Requirements.

https://doi.org/10.1109/AIRE51212.2020.00007

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Prentice-Hall, Inc.

Sun, W., Zhang, H., Feng, C., & Fu, Y. (2016). A Method Based on Meta-model for the

Translation from UML into Event-B. 2016 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C), 271–277.

https://doi.org/10.1109/QRS-C.2016.41

Tariq, O., Sang, J., Gulzar, K., & Xiang, H. (2017). Automated analysis of UML activity

diagram using CPNs. 2017 8th IEEE International Conference on Software

Engineering and Service Science (ICSESS), 134–138.

https://doi.org/10.1109/ICSESS.2017.8342881

Tichelaar, S., Ducasse, S., & Demeyer, S. (2000). FAMIX: Exchange Experiences with

CDIF and XMI.

Torlak Emina and Jackson, D. (2007). Kodkod: A Relational Model Finder. In M.

Grumberg Orna and Huth (Ed.), Tools and Algorithms for the Construction and

Analysis of Systems (pp. 632–647). Springer Berlin Heidelberg.

Varzi, A. (2022). Complementary Logics for Classical Propositional Languages. Kriterion

(Austria), 1. https://doi.org/10.1515/krt-1992-010406

Wang, M., & Zeng, Y. (2009). Asking the right questions to elicit product requirements.

International Journal of Computer Integrated Manufacturing, 22(4), 283–298.

https://doi.org/10.1080/09511920802232902

Wieringa, R. J., & Wieringa, R. J. (2014). Single-Case Mechanism Experiments. In Design

Science Methodology for Information Systems and Software Engineering (pp. 247–

267). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43839-8_18

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in software engineering. In Experimentation in Software

Engineering (Vol. 9783642290). https://doi.org/10.1007/978-3-642-29044-2

Xu, Y. (2011). The formal semantics of UML activity diagram based on Process Algebra.

2011 International Conference on Computer Science and Service System (CSSS),

2729–2732. https://doi.org/10.1109/CSSS.2011.5974744

References 81

Zapata, C. M. (2012). The UNC-Method Revisited: Elements of the New Approach

Eliciting Software Requirements in a Complete, Consistent, and Correct Way. LAP

LAMBERT Academic Publishing GmbH & Co, 5, 2013. https://www.lap-

publishing.com/catalog/details/store/de/book/978-3-8484-0759-0/the-unc-method-

revisited:-elements-of-the-new-approach?search=organic products

Zapata, C. M., & Arango, F. (2009). The UNC-method : a problem-based software

development method UNC-Method : un método de desarrollo de software basado en

problemas. Revista Ingeniería e Investigación, 29(1), 69–75.

Zimmermann, A. (2008). Colored Petri Nets. https://doi.org/10.1007/978-3-540-74173-2_6

