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Resumen 

Un método para la obtención de especificaciones formales de software a partir de 

leguajes de representación del conocimiento 

 

Los analistas de software usan lenguajes de representación del conocimiento para 

caracterizar el conocimiento proveniente de los interesados en la fase de ingeniería de 

requisitos. Estos lenguajes comprenden modelos de software basados en el lenguaje 

unificado de modelado y métodos estructurados, incluyendo diagramas entidad-relación, 

diagrama de clases, diagramas causa-efecto y grafos conceptuales. Si bien estos modelos 

se usan para representar características básicas de un sistema de software de manera 

efectiva, estos modelos todavía tienen limitaciones al representar el comportamiento y 

componentes de sistemas de software complejos. Las especificaciones formales incluyen 

textos, matemáticas y notaciones basadas en lógica para representar el conocimiento 

relacionado a un dominio específico. Los analistas de software usan especificaciones 

formales para mitigar el impacto de la ambigüedad inherente en los lenguajes de 

representación del conocimiento tradicionales, facilitando procesos computacionales, 

inferencia y la validación no ambigua de conocimiento. Sin embargo, la generación y 

validación de especificaciones formales requiere experiencia en matemáticas y lógica por 

parte de los analistas de software e interesados, impidiendo una comunicación y validación 

efectiva del dominio de software. En esta Tesis de Doctorado, proponemos un novedoso 

enfoque para cerrar la brecha entre los lenguajes formales y los lenguajes de 

representación de conocimiento. Este enfoque contribuye a los campos de representación 

del conocimiento y lenguajes formales, permitiéndole a los analistas de software generar 

especificaciones formales precisas y completas desde cualquier lenguaje de 

representación del conocimiento sin importar su experiencia en matemáticas y lógica. Este 

enfoque facilita la validación de especificaciones a los interesados. El método propuesto 

es validado desarrollando tres casos de estudio. Este enfoque es un nuevo producto de 

trabajo para la representación de conocimiento no ambigua. Además, este método está 

diseñado para apoyar la fase de ingeniería de requisitos como una nueva herramienta para 

el analista de software. 

 

 
Palabras clave: Representación del conocimiento, Ingeniería de requisitos, Modelo 

de software, Especificación formal. 



 
 

 

 

 

Abstract 

 

Software analysts use knowledge representation languages for characterizing the 

knowledge from stakeholders in the requirements engineering phase. Such languages 

encompass software models based on the unified modeling language and structured 

methods, including entity-relationship diagrams, class diagrams, cause-and-effect 

diagrams, and conceptual graphs. While such models are used for effectively representing 

the basic features of a software system, they still fail on including the behavior and 

components coming from complex software systems. Formal specifications comprise texts, 

math, and logic-based notations for representing the knowledge of a given domain. 

Software analysts use formal specifications for mitigating the impact of the ambiguity 

coming from traditional knowledge representation languages, easing computational 

processes, inference, and unambiguous validation of knowledge. However, the generation 

and validation of formal specifications require expertise in mathematics and logic from both 

software analysts and stakeholders, thereby impeding effective communication and 

validation of the software domain. In this Ph.D. Thesis, we propose a novel approach for 

bridging the gap between formal languages and knowledge representation languages. Our 

approach contributes to the fields of knowledge representation and formal languages by 

allowing software analysts for generating precise and comprehensive formal specifications 

from any knowledge representation language, regardless of their mathematical and logical 

proficiency. This approach eases the validation of resulting specifications by stakeholders. 

The proposed method is validated by developing three case studies. Our approach is a 

new work product for unambiguous knowledge representation. Also, our method is 

designed for supporting the requirements engineering phase as a new tool for software 

analysts. 

 
 
 
 
 

Keywords: Knowledge representation, Requirements Engineering, Software model, 

Formal specification. 
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1.Introduction 

 
Software analysts employ Knowledge Representation Languages (KRLs) to effectively 

characterize and capture the knowledge provided by stakeholders during the requirements 

engineering phase (Ang & Hartley, 2007; Dubois et al., 1986). Such languages include 

various software models, such as entity-relationship diagrams, class diagrams, cause- 

effect diagrams, and conceptual graphs, based on the Unified Modeling Language (UML) 

and structured methods (Karolita et al., 2023). KRLs ease the systematic organization and 

representation of stakeholder knowledge, enabling a comprehensive understanding of the 

requirements of a software system. Software analysts ensure the captured knowledge is 

aligned with the needs and expectations coming from stakeholders while using such 

languages, serving as a foundation for the subsequent phases of the software development 

process (Sabri, 2015; Sonbol et al., 2020). 

 
Despite the effectiveness of such models in representing the basic features of software 

systems, some limitations still remain for representing complex software systems (Maio, 

2021). Such models use to fail on representing the interdependencies, interactions, and 

relationships among the subsystems, intricated components, and processes composing a 

complex software system, hardening for a comprehensive representation of the dynamic 

behavior of complex software systems (Popescu & Dumitrache, 2023). 

 
Formal Specifications (FSs) provide an unambiguous and rigorous representation of the 

knowledge coming from a software system. Such specifications comprise well-defined 

textual, mathematical, and logical notations, facilitating computational processes, 

automated reasoning, verification, and validation of captured knowledge (Pang et al., 

2016). KRLs comprise natural language and graphical elements for representing specific- 

domain knowledge, easing the understanding and validation of software domains by the 

stakeholders (Ang & Hartley, 2007; Dubois et al., 1986). Software analysts use FSs for 

identifying, capturing, and communicating complex software systems, including their static 
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and dynamic features. Also, such specifications allow software analysts for mitigating the 

impact of misunderstanding and ambiguity, enhancing their communication with the 

stakeholders (Pang et al., 2016). 

 
FSs are strongly based on logical and mathematical notation. Also, such specifications 

include specialized terminology, domain-specific languages, and symbols, so software 

analysts and stakeholders are challenged to grasp a comprehensive understanding of the 

captured knowledge (Alkhammash, 2020; Rabinia & Ghanavati, 2017). Thus, a simpler 

language becomes necessary for both software analysts and stakeholders for enhancing 

their understanding of formal specifications and the gathered knowledge, easing the 

communication and validation of the software domain. 

 
Consequently, in this Ph.D. Thesis we propose a novel method for obtaining an FS from a 

knowledge representation model and vice versa regardless of the nature of the KRL and 

the FS. Also, we analyze and characterize state-of-the-art proposals coming from the KRL 

and FS fields to identify their features and equivalences, so we facilitate the generation of 

an adequate FS, minimizing the need for a deeper understanding of mathematics and logic, 

and allowing software analysts and stakeholders to validate the produced FS and KRL. 

 
Some authors propose KRL-FL pairs for representing software domains, abstracting some 

of the complex aspects of the FSs. However, such pairs are limited to a specific type of 

domain and KRL-FL pair, hardening generalization among other types of domains and 

KRLs (Alkhammash, 2020; Ang & Hartley, 2007). Also, some KRL-FL pairs only include 

one-way transformation rules, i.e., from KRL to FL, minimizing the flexibility of the proposals 

as software analysts may not transform FLs into KRLs. Our approach overcomes such 

limitations by using a meta-model including concepts such as nodes, names, features, 

types, processes, sequences, classes, relationships, and constraints. Such concepts are 

designed for representing recurrent elements coming from well-known KRLs and FSs, 

eliminating the dependency on specific domains, KRLs, and FSs. Also, we provide a set of 

heuristic rules for generating such FSs. Our approach allows software analysts for 

generating precise and comprehensive FSs from any KRL, regardless of their mathematical 

and logical background. Also, we provide an easier graphical language, helping them for 

communicating and validating the produced FSs and KRLs with stakeholders. 



 

 

We follow the guidelines of the empirically based technology transfer methodology (Wohlin 

et al., 2012) and the design science methodology for information systems and software 

engineering (Wieringa & Wieringa, 2014) for performing our research, including four 

phases: exploration where we perform a systematic literature review for identifying and 

characterizing relevant studies to our proposal; problem formulation where we state the 

problem; solution where we propose a new method for obtaining FS from any KRL; 

validation where we validate our proposal. 

 
We validate our proposal by using three case studies including state-of-the-art object- 

oriented KRL-FL pairs. The validation process is performed by using the experimental 

process of software engineering: planning, executing, and analyzing a mechanism 

experiment (Wieringa, 2014; Wohlin et al., 2012). Our method is a new work product for 

unambiguous knowledge representation. Such a method supports software analysts in the 

generation of FSs during the requirements engineering phase. 

 
This Ph.D. Thesis is structured as follows: in Chapter 2, background, we present the 

conceptual framework, Thesis focus, and methodology; in Chapter 3, research problem, we 

describe our motivation, state of the art, problem statement, research question, hypothesis, 

objectives, and justification; in Chapter 4, a method for obtaining formal software 

specifications and knowledge representation languages, we propose a novel method for 

supporting the generation of formal software specifications and knowledge representation 

languages, comprising a meta-model for representing any KRL, a meta-model for 

representing any FS, and a set of heuristic rules for generating FSs and KRLs; in Chapter 

5, validation, we experimentally evaluate our method and present the derived work 

products; in Chapter 6, conclusions and challenges, we discuss contributions and 

challenges. 



 
 
 
 
 
 
 

 

2. Background 

 
2.1 Conceptual Framework 

 
2.1.1 Knowledge Representation Languages 

KRLs comprise a wide set of graphical and textual components allowing software analysts 

for representing key components of a software domain. Such languages play a key role in 

the RE phase as software analysts may easily organize and validate the gathered software 

domain knowledge with stakeholders. Also, the produced KRs provide the foundation for 

subsequent phases in the software development process. 

Software systems comprise several intertwined components which may be represented by 

using some KRLs, including entity-relationship diagrams, class diagrams, sequence 

diagrams, conceptual graphs, and other structured methods. Such representations allow 

software analysts for representing the dependencies, components, and constraints related 

to a software system. Also, the formal nature of KRLs allows software analysts for 

performing reasoning, inferencing, and automated analysis and validation of the gathered 

knowledge. 

Some examples of KRL approaches for representing concepts, relationships, and 

constraints coming from a specific software domain are described as follows: 

Object-Attribute-Value (O-A-V) triplets are used for representing facts about objects and 

their attributes. An O-A-V triplet includes an attribute value of an object, e.g., the English 

phrase “the color of the ball is yellow” may be written in O-A-V form as “Ball-color-yellow” 

and graphically represented as shown in Figure 2-1. 

 

 
Figure 2-1. O-A-V example. The Authors adapted from Devedžic et al. (2009). 

Rules include one or more premises, conditions, and antecedents (i.e., situation), to one or 

more consequents (i.e., conclusions). Both antecedents and consequents may be used for 

representing complex rules, e.g., IF the time is after midnight AND I am hungry 

(antecedents), THEN I should not eat now (consequents). 
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Semantic networks (also known as conceptual maps) are used for capturing and 

representing cognition. KRLs contain object graphs, concepts, and situations related to a 

specific domain, representing the psychological model of the human associative memory. 

The nodes in the graph are connected by using links and arcs representing relationships. 

Labels are used for improving the understandability of the represented relationships, setting 

them a type such as “kind-of,” “part-of,” and “is-a.” Also, some abstracts of the semantic 

network may be defined as O-A-V triplets and Object-Oriented-Programming (OOP) 

elements, including classes (concepts), instances (objects), attributes, values, and 

relationships. 

The statement “Billy is Labrador, which is a kind of a dog. Other types of dogs are Setters 

and Bulldogs. All of them have 4 legs” may be represented as a semantic network of 

interconnected facts, as shown in Figure 2-2. 

 

 
Figure 2-2. Semantic network example. The Authors adapted from Devedžic et al. (2009). 

Frames are used for modeling stereotypical knowledge related to some concept/object. 

Frames may be understood as classes coming from the OOP context. Class frames are 

used for representing a template for a set of similar objects. Instance frames are used for 

describing instances of objects and their slots (i.e., attributes) in the set. 

 
2.1.2 Formal specification languages 

Formal methods are used for describing the function and architecture of software systems. 

Such methods include strict notations and deductive principles, facilitating the application 

of completeness and correctness proofs. FSLs are the notations of formal methods. Such 

languages include three main components (Pang et al., 2016): alphabets comprise a finite 

set of tokens, including symbols (e.g., punctuation marks and special symbols) and strings 

(e.g., single characters, words, and meaningful units); syntax defines a rule-based logic for 

composing well-formed expressions within a specific FSL; semantics is concerned with the 

meaning and the interpretation of the expressions within a FSL; formal grammar comprises 

a set of rules defining the syntax of a FSL. 

Software analysts use FSLs for writing specifications related to a particular domain, 

including assertions, formulas, and sentences which may be computed, validated, and used 

for inference processes (Hahn et al., 2022; Pang et al., 2016). FSLs allow software analysts 

for enhancing the precision and rigor of the RE process, bridging the gap between high- 
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level informal requirements specifications and formal and unambiguous specifications 

which may be analyzed and validated (Pang et al., 2016; Sammi et al., 2010). However, 

FSLs are based on mathematic and logic-based notations, hardening the learning and 

understanding for inexperienced software analysts and stakeholders (Hahn et al., 2022; 

Parkes, 2002). 

Some types of FSL are explained as follows: 
 

Logic-based representation languages are used for representing sentences as assertions, 

limiting reasoning in formal logic to the derivation of truth values and proofs from such 

assertions. The formal nature is challenging for representing other forms of human 

reasoning beyond logical deduction, such as interrogations, beliefs, doubts, and desires. 

Also, designing a comprehensive and valid inference procedure for multiple logics remains 

a complex task (Bruijn, 2007). 

First-Order Logic (FOL), also known as first-order predicate calculus, comprise three 

fundamental components: syntax, which is used for defining the rules governing the 

constructions of well-formed formulae related to the logical language; semantics, which is 

used for relating meaning to a well-formed formula. Semantics provides a formal framework 

for interpreting and assigning truth values to the expressions related to the logical language, 

allowing for understanding the relationships and implications included in the formulae; proof 

procedures are used for deriving deductive consequences by using syntactic operations 

and semantic methods. Such procedures allow for a systematic exploration and 

manipulation of well-formed formulae, facilitating the inference of logical consequences 

(Rabinia & Ghanavati, 2017). 

Propositional-logic-based languages are used for representing knowledge as propositions, 

i.e., true/false expressions (Parkes, 2002). Symbolic variables are assigned to propositions 

expressed in propositional logic, allowing for symbolic reasoning (Varzi, 2022). More 

complex expressions may be represented by using logical connectors such as AND (𝖠), 

OR (∨), NOT (¬), IMPLIES (→ or ⇒), and EQUIVALENCE (⇔). For example, the 

proposition “The princess is in the palace” may be assigned to the symbolic variable A. 

Such a proposition may be further used for representing more complex statements and 

rules, e.g., IF The princess is in the palace (A) AND The king is in the garden (B) THEN 

The king cannot see the princess (C). Such expression may be written by using symbols 

as follows: A 𝖠 B ⇒ C. Propositions comprise arguments and predicates, asserting certain 

knowledge about the world, e.g., “The princess is in the palace” may be represented as 

in(Princess, palace), where the predicate in is used for capturing and generalizing the 

knowledge about the relationship between two variables X and Y, i.e., in(X, Y). Such a 

predicate may be used for some examples such as in(King, garden) and in(Queen, throne). 

Also, functions allow for representing the relationship between elements from different sets, 

e.g., father(princess) = king. Rules are used for representing more complex expressions, 

including such symbols and notations, e.g., the expression “if the princess is in the palace 
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and the king is in the garden, then the king does not see the princess” may be represented 

as in(princess, palace) 𝖠 in(king, garden) → ¬see(king, princess). 

 
2.1.3 Meta-Models for Software Knowledge Representation 

Software systems comprise a wide range of complex components so several KRLs and 

FSLs are needed for a comprehensive representation of their knowledge. Since most KRLs 

and FSLs are focused on specific domains, some authors have proposed KRL-FSL pairs 

for representing specific software domains, including a set of transformation rules, allowing 

software analysts for obtaining FSs from specific KRLs. 

Meta-models are aimed at representing several software domains at a time, mitigating the 

domain-dependency nature of classical KRLs. Such models comprise KRL-FSL pairs, 

allowing software analysts for representing software system artifacts, such as code, 

models, and specifications in a more generalized manner. Some proposals are focused on 

representing reusable components (Knowledge-Discovery meta-model; Pérez-Castillo et 

al., 2011), data entities, user interface entities (MoDisco meta-model; Bruneliere et al., 

2014), code analysis activities (Abstract Syntax Tree meta-model; Son & Kim, 2017), 

programming languages (GASTM meta-model Son & Kim, 2017), and object-oriented 

features, including classes, attributes, and relationships (FAMIX; Tichelaar et al., 2000). 

 
2.1.3 Pre-conceptual Schemas 

Pre-conceptual Schemas (PCSs) are intended to capture and represent a software domain. 

Such representations pose an unambiguous syntax, exhibiting a high degree of 

resemblance to natural language, thus facilitating the stakeholder comprehension of the 

software domain. PCSs comprise a collection of graphical and textual structures, enabling 

the depiction of both dynamic and static features coming from a software domain within a 

unified representation (Zapata, 2012). Such structures are shown in Figure 2-3 and 

described as follows: 
 

 
Figure 2-3. Pre-conceptual schemas structures. The Authors adapted from (Noreña C., 

2020). 
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Nodes. Concepts are used for representing roles, entities, and categories related to a 

software domain. Concepts are represented by nouns and noun phrases, e.g., formal 

language, software analysts; conditionals are used for describing an expression 

conditioning a dynamic relationship, e.g., if state = validated; references are used for linking 

concepts and relationships; operators are used for either comparing two concept or 

assigning values to a concept. Operators comprise logical (AND, OR), basic (+, -, *, /), and 

relational (<, <=, >, >=, =); class concepts are used for defining an attribute of a specific 

concept, e.g., language syntax. 

Relationships. Structural relationships are used for expressing a dependency relationship 

between two concepts including the verbs has and is, e.g., user is software analyst; 

Dynamic relationships are used for representing operations, actions, and functions in a 

software domain by using action verbs, e.g., software analyst models software domain; 

Eventual relationships are used for representing events, e.g., file arrives. 

Links. Connections are used for linking concepts with either dynamic/structural 

relationships; Implications are used for representing cause-and-effect relationships 

between dynamic relationships and events; Operators are used for linking operators with 

either operators or concepts. 

Gatherers. Frames are used for grouping concepts and dynamic relationships; Notes are 

used for assigning values to a concept; Specifications are used for characterizing a dynamic 

relationship; Constraints are used for describing constraints related to a concept. 

 
2.1.4 Requirements Engineering 

Requirements are formally defined as statements capturing and expressing needs, 

constraints, and conditions (IEEE, 2018). Some authors have defined two primary 

requirement types: functional requirements pertain to the desired functionality of a specific 

software system, including constraints, conditions, and related entities, e.g., “the user may 

upload her profile picture;” non-functional requirements are address features related to 

performance, reliability, interfaces, and design constraints, e.g., “the system time response 

for queries must take less than two seconds” (Wang & Zeng, 2009). 

Requirements Engineering (RE) is defined as the process of identifying the requirements 

and constraints related to a software system. Such a process is key for subsequent phases 

of the software development process (Ross & Schoman, 1977). RE encompasses the 

identification of stakeholders, which are individuals who are directly involved or indirectly 

affected by the development and implementation process related to a specific software 

system (Lapouchnian, 2005), and their requirements to define the domain scope of the 

software system. Dick et al. (2017) describe several closely related activities related to RE 

as follows: 
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Domain analysis focuses on characterizing stakeholders, identifying opportunities for 

improvement, and establishing target objectives within the software domain. 

Elicitation is concerned with identifying and characterizing the requirements of the identified 

stakeholders. Such activity involves several techniques, including interviews, surveys, and 

observations, facilitating the gathering of relevant information. 

Negotiation and agreement aim to select solution alternatives by evaluating the identified 

requirements and engaging in negotiations with stakeholders to resolve conflicts and reach 

a consensus. 

Specification involves formulating and detailing the requirements based on the selected 

solution, allowing software analysts for creating models, diagrams, and textual 

representations for documenting the identified software system behavior. 

Documentation involves the creation of requirements documents capturing the decisions 

made during the entire requirements engineering process. Such documents serve as a 

reference for stakeholders, software analysts, and other actors during the software 

development process. 

Such activities produce a high amount of knowledge to be understood, represented, and 

validated (Karolita et al., 2023). Software analysts use KRLs for representing such 

knowledge, allowing them for understanding, organizing, and sharing it with stakeholders 

and other actors in the software development process (Ang & Hartley, 2007; Dubois et al., 

1986). KRLs are key for RE, allowing software analysts for describing the software system 

concepts, relationships, constraints, and rules in a formal and unambiguous manner by 

using several approaches such as OWL (Web Ontology Language; Alkhammash, 2020), 

UML (Unified Modeling Language; Abdelnabi et al., 2021; Siddique et al., 2014), and FOL 

(First Order Logic; Rabinia & Ghanavati, 2017). 

 
2.2 Ph.D. Thesis Focus 

This Ph.D. Thesis is focused on knowledge representation in the context of RE by 

integrating three fields: requirements engineering, knowledge representation languages, 

and formal specification languages. We specifically work on the model-to-model 

transformation area coming from the KR and FS fields, proposing a new method for 

transforming KRLs into FSLs and vice versa, allowing software analysts to easily 

understand and communicate complex specifications regardless of their nature. 

Our research is aimed at the improvement of the knowledge representation field, allowing 

for addressing any KRL and FSL, mitigating the need for high expertise in mathematics and 

logic to understand and communicate complex specifications. Therefore, a new method for 

model-to-model transformation is proposed by using two meta-models, representing key 
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elements from well-known KRLs and FSLs, and a transformation model, describing the 

rules of transformation from model to model. 

 
2.3 Research Methodology 

We define four research phases by following the guidelines coming from the empirically 

based technology transfer methodology (Wohlin et al., 2012) and the design science 

methodology for information systems and software engineering (Wieringa, 2014), including 

exploration, problem formulation, solution, and validation. 

 
2.3.1 Exploration 

During the exploration phase, a systematic literature review is performed for identifying, 

selecting, and characterizing the existing evidence related to the research area (Wohlin et 

al., 2012). This review adheres to the software engineering guidelines put forth by 

Kitchenham et al. (2009) and aligns with the principles of experimentation in software 

engineering as outlined by Wohlin et al. (2012). Moreover, several tasks are carried out and 

refined for establishing the review protocol, gathering background, compiling a list of 

primary studies, and conducting study analysis. Such activities encompass planning the 

literature review and executing a systematic examination of the literature. 

 
2.3.2 Problem Formulation 

Specifying the problem statement, formulating research questions, and developing 

hypotheses are activities performed during the problem formulation phase. Such activities 

are key for defining the research objectives, which are based on the three problems 

identified during the exploration phase. 

 
2.3.3 Solution 

A solution is proposed for improving the model-to-model transformation approach for the 

KR and FS fields by creating a method for obtaining FSs and KRLs. Characterizing KRLs 

and FSLs, defining a meta-model for KRLs, defining a meta-model for FSLs, defining a 

transformation model, and proposing a method for model-to-model transformation are 

activities performed for producing a KRL-related key elements report, FSL-related key 

elements report, a rule-based approach for model-to-model transformation, and a method 

for transforming KRLs into FSs and vice versa. 
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2.3.4 Validation 

Three experiments are performed for evaluating the flexibility and the capabilities of the 

proposed method. Planning experiment, executing experiment, and analyzing experiment 

are activities developed for producing an experiment design, experiment data, and an 

experiment report. 



 

 
 
 
 
 
 

 

3. Research Problem 

 
3.1 Motivation 

RE is a stakeholder-centered approach so natural language is a common means for 

documenting software requirements. Since natural language is inherently ambiguous, the 

RE process is prone to misunderstandings and misinterpretations, hardening the 

communication and validation of the software domain between the stakeholders and 

software analysts (Pang et al., 2016). Software analysts improve the RE process by using 

several models comprising graphical and textual elements for representing the knowledge 

related to a software domain, including KRLs and FSLs (Ahmad et al., 2020; Ang & Hartley, 

2007; Dubois et al., 1986). 

KRLs are used for easing the knowledge representation task by including graphical and 

textual elements so inexperienced practitioners should understand and validate the 

software domain of interest (Karolita et al., 2023). Such languages are aimed at 

representing the semantics and relationships of key concepts coming from the software 

domain, easing the representation of the dynamics related to a software system (Sonbol et 

al., 2020). FSLs are used for representing and analyzing the structure and behavior of a 

software system by using mathematics and logic-based formalisms. Such languages allow 

software analysts for formalizing the knowledge representation process, enabling them for 

representing complex software systems, and providing an unambiguous representation of 

the gathered knowledge (Pang et al., 2016). 

KRLs and FSLs are often used together with transformation rules, allowing software 

analysts for representing and communicating domain knowledge, and validating the 

correctness and completion of the software system being developed (Ang & Hartley, 2007). 

KRL-FSL pairs are often focused on a specific domain, so software analysts should learn 

several KRL-FSL pairs and their transformation rules for representing various software 

domains (Alkhammash, 2020). Some authors have proposed meta-models for knowledge 

representation, minimizing the number of KRL-FSL pairs to be learned for representing 

some software domains (Finne, 2011). 

Even though software analysts address a software domain at a time, they are interested in 

the same kind of abstractions while they are characterizing a software domain, including 

classes, relationships, and constraints. Such knowledge may be framed into a meta- 

modeling language, allowing for a generalized representation of the knowledge regardless 

of the nature of the software domain. In the context of meta-models, software analysts are 



24 A Method for Obtaining Formal Software Specifications from Knowledge 

Representation Languages 

 

 

 
aimed at representing recurrent components coming from key KRLs and FSLs (Son & Kim, 

2017). Thus, such components may be framed into a KRL meta-model and a FSL meta- 

model, characterizing any KRL and FSL. Also, since both KRLs and FSLs comprise some 

overlapping and complementing elements, a set of heuristic rules enabling model-to-model 

transformation may be built based on the meta-model representations, allowing software 

analysts for transforming any KRL to a FSL and vice versa. 

This Ph.D. Thesis is motivated by the growing trends of applicability of the model-to-model 

transformation approaches and the potential of meta-models for representing any KRL and 

FSL, allowing software analysts for representing any software domain regardless of its 

nature in an unambiguous manner, improving the RE process. 

 
3.2 State of the Art 

 
3.2.1 Planning Literature Review 

The formulation of research questions (RQs) is guided by primary studies, enabling for 

defining a comprehensive review protocol and characterizing the study criteria (Wohlin et 

al., 2012). Software analysts use KRL-FSL pairs for addressing more complex software 

systems focused on specific software domains. Such KRL-FSL pairs comprise different set 

of heuristic rules, allowing practitioners for transforming one model into another model, e.g., 

transforming a KRL into a FSL and vice versa. Consequently, we suggest research 

questions RQ1, RQ2, and RQ3. KRL-FSL pairs are composed of single KRLs and FSLs, 

so they may have different capabilities and limitations in terms of the domain elements they 

can represent (Maio, 2021; Torres et al., 2019). Therefore, we suggest research questions 

RQ4, RQ5, and RQ6. 

Conforming to the study criteria outlined in Table 3-1, we systematically identify and 

examine KRL to FSL and FSL to KRL proposals which are aimed at supporting the RE 

process. 

 
3.2.2 Executing Systematic Literature Review 

The study selection process encompasses four steps (Kitchenham et al., 2009): initial 

search, remove duplicates, exclude studies, and include external studies. After performing 

the study selection process, we obtained 21 primary studies as follows: initial search (391 

studies); remove duplicates (376 studies); exclude studies based on title, abstract, 

keywords, introduction, and conclusions (17 studies); include external studies (21 studies). 
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Table 3-1: Study criteria. The Authors. 
 

 
 
 
 
 
 
 
 
 
 
 

Inclusion 

criteria 

Search 

criteria 

(i) KRL to FSL model transformation proposals supporting the RE process 

(i) FSL to FSL model transformation proposals supporting the RE process 

Search 

sources 
IEEE Explore, Science Direct, Springer Links, Scopus, Google Scholar 

 
 
 
 
 
 

Search 

terms 

Main keyword Derived keywords 

 
 

Model transformation 

“model to model transformation” OR “model 

transformation framework” OR “model 

transformation language” 

 
Knowledge representation language 

"knowledge modeling language" OR 

"knowledge representation notation" 

 
Formal specification language 

“formal language” OR “formal specification” OR 

“formal modeling language” OR “logical 

formalism” 

 
 

Requirements engineering 

"requirements elicitation" OR "requirements 

analysis" OR "software requirements" 

Literature Paper, chapter, book, thesis, and technical document 

 

 
Exclusion criteria 

(i) The proposal does not include a KRL-FSL pair 

(ii) The proposal does not have a well-defined and formalized syntax and semantics for 

representing knowledge 

(ii) The proposal is not focused on RE 

 
 
 
 
 
 
 

Research questions 

-RQ1. What model-to-model transformation proposals are used for RE? 

-RQ2. What domain scopes are analyzed by using model-to-model transformation 

proposals for RE? 

-RQ3. What transformation rules are applied by using the model to model transformation 

proposals for RE? 

-RQ4. What KRLs are represented in the model-to-model transformation proposals for 

RE? 

-RQ5. What FSLs are represented in the model-to-model transformation proposals for 

RE? 

-RQ6. What domain elements are represented by using KRLs and FSLs proposals 

focused on RE? 

 
 

Hypothesis 

A model-to-model transformation method for RE including a meta-model for representing 

KRLs, a meta-model for representing FSLs, and a meta-model for representing 

transformation rules can be used for improving the domain knowledge representation in 

the context of RE. 
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Model-to-Model transformation proposals for RE 

 

We analyze 15 proposals in the field of model-to-model transformation in the context of RE. 

Such proposals comprise 37 different models including, KRLs, FSLs, and domain-specific 

languages. We characterize such approaches and answer RQ1, RQ2, and RQ3 as follows: 

Awan et al. (2022) introduce a comprehensive framework for characterizing the concepts, 

relationships, functions, and instances related to specific software systems by using natural 

language processing and parts-of-speech techniques. Such an approach allows 

practitioners for representing natural-language-based specifications by using XText, an 

intermediate representation based on domain-specific languages (Awan et al., 2022), which 

may be transformed into formal specifications based on the Z-notation (Spivey, 1989). 

Djaoui et al. (2018) propose IOD2Maude, a model-to-model transformation focused on the 

Interaction Overview Diagram (IOD) and the Maude logic specification language. IOD 

diagrams are a specialization of the activity diagrams described in the UML 2.0 specification 

(Jena et al., 2015). Also, Maude is used for representing dynamic transitions and alterations 

from complex software systems in the context of the logical paradigm (Clavel et al., 2002). 

The IOD2Maude framework is aimed at establishing a comprehensive meta-model of IODs, 

allowing modelers for encapsulating key IOD elements and mapping the relationships 

among them. Such a framework comprises a set of well-defined rules, including graph- 

based grammar and pivotal elements for transforming the IOD meta-model elements into 

Maude specifications. 

Amjad et al. (2018) propose UMLPACE, a tool for transforming Event-driven Process Chain 

(EPC) models into timed automata formal specifications. UMLPACE extends EPC models 

by incorporating activity diagram components, extending the expressiveness of such 

models, and allowing modelers for addressing more complex software systems (Kleppe & 

Warmer, 2000). Subsequently, the authors provide a set of procedural sequences, 

expressing how the augmented model may be transformed into timed automata formal 

specifications, integrating heuristic rules for representing the equivalences between EPC, 

activity diagrams, and timed automata formal specifications. 

Some authors propose model-to-model transformations based on KRL-FSL pairs by using 

Event-B as a target model. Event-B is a formal method for describing complex software 

systems, including their events and intricate processes (Abrial, 2010). Sun et al. (2016) 

introduce KM3, a model-to-model transformation method focused on KRL-FSL pairs. They 

use sequence diagrams and use case diagrams as source models so they can derive the 

represented knowledge into the target model, Event-B specifications (Abrial, 2010). Such 

a transformation is framed by the Rodin platform which serves as a validation platform for 

the resultant specification (Abrial, 2010). 
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BPM2.0 provides a high number of model constructs, allowing modelers for representing 

complex workflows while characterizing the dynamics of software systems, including 

events, data types, tasks, and collaborations (Correia & e Abreu, 2012). Even though such 

a model is more expressive than classical approaches such as the activity diagram 

(Ramadan et al., 2020), such a model lack well-defined formal semantics, thereby impeding 

the validation of the generated model instances. Ben Younes et al. (2019) propose 

BPMN2EVENTB for addressing such a limitation, allowing modelers for transforming 

BPMN2 models into Event-B formal specifications by using the Rodin platform, including 

model constructs for formally representing events, concepts, datatypes, preconditions, 

relationships, parameters, and constants (Abrial, 2010). Hlaoui et al. (2017) propose 

SD2EventB, a KRL to FSL transformation approach focused on transforming sequence 

diagrams (OMG, 2011) into EventB formal specifications in the context of cloud services 

development. Furthermore, Boussetoua et al. (2015) propose a model-to-model 

transformation method for translating BPMN2 representations into Pi-Calculus, allowing 

modelers for representing agents and interactions related to complex software systems 

(Sangiorgi & Walker, 2001). 

Tariq et al. (2017) introduce a novel methodology for automating the analysis and validation 

of activity diagrams. Such an approach is aimed at formally characterizing UML behavioral 

models lacking well-defined semantics. The authors propose a model-to-model 

transformation including Colored Petri Netas (CPNs) as the target model. Such a model is 

key as it allows modelers for analyzing and validating activity diagrams (Zimmermann, 

2008). Also, CNPs are used for validating class diagrams by using a KRL-FSL 

transformation process, including domain concepts such as concepts, attributes, actions, 

and relationships (Sharaff & Rath, 2020). 

Couto et al. (2014) introduce a model-to-model transformation approach for identifying 

requirements patterns in use cases. Such an approach comprises two well-defined steps: 

(i) use case formalization where use cases are formalized by using RUS, an XML-based 

representation for use cases (Couto et al., 2014) and (ii) transformation where the RUS 

specification is transformed into an ontology focused on RE, including domain concepts 

such as concepts, instances, and relationships. 

Borgida et al. (2014) address model-to-model transformations from the context of goal- 

oriented models. They use i*CORE as a source model for characterizing complex software 

systems from a goal view (Giorgini et al., 2002). Such a characterization is further analyzed 

and verified by using FOL, allowing practitioners for mapping domain concepts such as 

goals, processes, and relationships. 

Domain-Specific Languages (DSLs) are tools for capturing the features and relationships 

of software systems related to specific domains (Rodríguez-Gil et al., 2019). Jiang et al. 

(2016) propose a method for automating the analysis and evaluation of DSLs by using a 

model-to-model transformation approach. Such an approach includes XMML, a meta- 
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model for representing DSLs, allowing practitioners for representing key components of 

DSLs, and a set of heuristic rules for transforming XMML into FOL. 

Class diagrams are effective means for representing the concepts, features, and 

relationships related to a software domain (E. A. Abdelnabi et al., 2020). However, such 

diagrams lack representation of constraints and conditions. Some authors include OCL 

constraints for augmenting the expressiveness of class diagrams, allowing modelers for 

representing more complex software systems. Gogolla et al. (2017) propose a model 

validation, verification, and exploration approach for class diagrams by using a model-to- 

model transformation process, including a class diagram extension based on OCL 

conditions and transformation heuristics for the Kodkod formal specification (Torlak and 

Jackson, 2007). Pérez and Porres (2019) propose a similar approach extending class 

diagrams with OCL conditions and providing heuristic rules for transforming such diagrams 

into Formula specifications, allowing modelers for evaluating the completeness and 

correctness of software domain models. 

Chu and Dang (2020) propose a model-to-model transformation method focused on KRL- 

KRL pairs, especially, class diagrams and use cases. Such a method provide equivalences 

between the main concepts of the class diagram, including classes, attributes, association 

relationships, and methods, and the main concepts of the use cases, including actors and 

use cases. Such an approach is aimed at extending the expressiveness of complex 

software domain representations. 

Some authors propose model-to-model transformation approaches for evaluating the 

completeness and correctness of UML diagrams such as use case diagrams (Saratha et 

al., 2017; Sengupta & Bhattacharya, 2006) and activity diagrams (Jamal & Zafar, 2016) by 

using the formal Z-notation, allowing modelers for characterizing domain concepts such as 

actors, actions, processes, and relationships. 

Xu (2011) proposes a KRL-FSL transformation method for formalizing the activity diagram 

by using Process Algebra (Bernardo et al., 2002). Such an approach is aimed at mapping 

the key concepts from activity diagrams such as nodes and actions by using agents and 

communication relationships, allowing modelers for characterizing the dynamic behavior of 

complex software systems. 

Meziani et al. (2018) introduce a FSL-KRL transformation method for translating colored 

Petri nets into state machine diagrams, including processes, actions, initial values, 

constraints, and processes. Such an approach allows modelers for mitigating the inherent 

complexity and formalism coming from colored Petri nets by using a simpler representation 

based on state machine diagrams. 

We summarize the primary studies (21) in Table 3-2 for answering the remaining research 

questions of the literature review. 
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Table 3-2: Primary studies summary. The Authors. 
 

 
Proposal 

Model 
pairs 

Transfor 
mation 

direction 

Source 
model 

Represented source model 
elements 

 
Target model 

Represented target 
model elements 

Represent 
ed domain 
elements 

 
 

NLP2FM 
(Awan et 
al., 2022) 

 
 

 
KRL-FSL 

 
 

 
One-way 

 

 
NL (Xtext 
domain- 
specific 

language) 

System state space schema, system 
state space name, system state 

space variable, system state space 
predicate, system state initial state, 

initial state name, initial state 
variable, schema name, schema 

input variable, schema output 
variable, schema predicate, predicate 

input, predicate output 

 
 

 
Z-Notation 

(Spivey, 1991) 

Sets, predicate, 
schema, expressions, 

operator, state, 
invariant relationship, 

operation, input, 
output, relationship, 

change of state, 
procedure, variable, 

inference rule 

 

Concepts, 
instances, 
relationshi 

ps, 
functions 

 
 

 
BPMN2EVE 

NTB 
(Bessifi et 
al., 2019) 

 
 
 

 
KRL-FSL 

 
 
 

 
One-way 

 
 
 

BPMN2 
(Correia and 
Abreu, 2012) 

 
 
 

Event, gateway, datatype, activity, 
activity marker, task, flow, basin, 

corridor, collaboration 

 
 
 
 

EVENTB 
(Abrial, 2007) 

 

Event, btype, action, 
invariant, 

collaboration, 
constraint, 
parameter, 

multiplicity, predicat, 
constants, sets 

Events, 
concepts, 
datatypes, 
preconditio 

ns, 
relationshi 

ps, 
parameters 

, 
multiplicity, 
constants 

 
 

IOD2Maude 
(Djaoui et 
al., 2018) 

 
 

 
KRL-FSL 

 
 

 
One-way 

 

Interaction 
Overview 
Diagram 

(Santosh et 
al., 2015) 

 

 
Initial Node, final node, fork node, 
join node, decision node, merge 

node, transition, interaction, 
interaction use 

 
 

 
Maude (Clave 
et al., 2002) 

Functional modules, 
object-oriented 

modules, 
parametrized 

modules, theories, 
views, module 

renaming, tuples, 
conditions, reflection, 

datatypes 

Class, 
attributes, 
relationshi 

ps, 
constraints 

, 
conditions, 
data types 

 
UMLPACE 
(Amjad et 
al., 2018) 

 

KRL-FSL 

 

One-way 

Activity 
diagram 

(Kleppe and 
Warmer, 

2000) 

 
Initial node, control flow, action, 

activity final node 

Timed 
automata 

(Bengtsson 
and Yi, 2003) 

 
Initial location, 

committed location, 
location, Edge 

 
Event, 

relationshi 
p, action 

 
KM3 

(Weixuan et 
al., 2016) 

 

KRL-FSL 

 

One-way 

Use Case 
diagram (Siau 

and Cao, 
2001) 

 
System, actor, use case, association, 

include, extend 

 
EVENTB 

(Abrial, 2007) 

Context, constant, 
set, machine, 

variable, invariant, 
event, guard, action 

Concept, 
actor, 
action, 

relationshi 
p 

 
SD2EventB 
(Daly Hlaoui 
et al., 2017) 

 

KRL-FSL 

 

One-way 

 
Sequence 
diagram 

(OMG, 2013) 

Sequence model, interaction 
fragment, resource, lifeline, 
interaction, message, types, 

interaction operator 

 
EVENTB 

(Abrial, 2007) 

 Process, 
action, 

parameter, 
data type, 
operator 

 

(Tariq et al., 
2017) 

 

 
KRL-FSL 

 

 
One-way 

Activity 
diagram 

(Lleppe and 
Warmer, 

2000) 

 

Initial node, control flow, action, 
activity final node 

 

Colored petri 
net 

(Zimmermann 
, 2008) 

Types, coloured set, 
place, transition, 

arch, color function, 
data value, guard 

function, initial 
marking 

Process, 
action, 

relationshi 
p, initial 
value, 

constraint 

 

(Couto et 
al., 2014) 

 
FSL-KRL 

 
One-way 

 

RUS (Cout et 
al., 2014) 

 
Individual, Entity, Property 

OWL 
(Antoniou and 

Grigoris, 
2004) 

 

Individual, Entity, 
Property, Fact 

Concept, 
instance, 
relationshi 
p, attribute 

 
(Borgida et 
al., 2014) 

 
KRL-FSL 

 
One-way 

i*CORE 
(Borgida et al., 
2014; Giorgini 

et al., 2002) 

 
Goal, entity, task, relationship, 

evidence values 

First-order- 
logic (Moore, 

1988) 

Indivdual, predicate, 
relationship, variable, 

constant 

Concept, 
goal, 

relationshi 
p, process 

 

 
XMML 

(Jiang et al., 
2016) 

 
 

 
DSL-FSL 

 
 

 
One-way 

 
 

XMML (Jiang 
et al., 2016) 

 
 

 
Model, entity, relationship 

 

 
First-order- 

logic (Moore, 
1988) 

Containment, 
attachment, source 

role, assignment 
association, target 
role assignment 

assocaition, 
refinement, symbol, 
constraint formula 

 

Concept, 
goal, 

relationshi 
p, process 
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Table 3-2: Primary studies summary. The Authors. (Continuation) 
 

 
Proposal 

Model 
pairs 

Transfor 
mation 

direction 

Source 
model 

Represented source model 
elements 

 
Target model 

Represented target 
model elements 

Represent 
ed domain 
elements 

 

USE 
(Gogolla et 
al., 2018) 

 
 

KRL-FSL 

 
 

One-way 

 
Class diagram 

and OCL 
(Gogolla et al., 

2018) 

 

 
Class, attribute, method, constraint, 
Object, relationship, class invariant 

 
Kodkod 

(Torlak and 
Jackson, 

2007) 

 

Atom, relation 
declaration, relational 

formula 

Concept, 
attribute, 

initial 
value, 

constraint, 
relationshi 
p, instance 

 

Formula 
(Pérez and 

Porres, 
2019) 

 
 

 
KRL-FSL 

 
 

 
One-way 

 

Class diagram 
and OCL 

(Pérez and 
Porres, 2019) 

 
 

Class, attribute, method, constraint, 
Object, relationship, class invariant 

 

 
Formula 

(Pérez and 
Porres, 2019) 

Domain, model, 
partial model, class, 
constraint, instance, 

class, data type, 
property, association 

relationship, 
generalization 
relationship 

Concept, 
attribute, 

initial 
value, 

constraint, 
relationshi 
p, instance 

(Boussetou 
a et al., 
2015) 

 
KRL-FSL 

 
One-way 

BPMN2 
(Correia and 
Abreu, 2012) 

Start event, intermediate event, end 
event, task, and gateway, xor 

gateway, subprocess, sequence flow 

Pi-Calculus 
(Sangiorgi 

and Walker, 
2001) 

 
Agent, interaction, 

process, name 

Concept, 
process, 

relationshi 
p 

 
(Ries et al., 

2021) 

 

KRL-FSL 

 

One-way 

 

DRCModel 

 

Dataset, equivalence class, data, 
property, invariant property, typed 

variable 

 

Alloy 
(Jackson, 

2012) 

Signatures, abstract 
signatures, fields, 

invariant properties, 
signature facts, 

predcates 

Concepts, 
attribute, 

relationshi 
p 

 
(Chu and 

Dang, 2020) 

 
KRL-KRL 

 
One-way 

 
Class diagram 
(OMG, 2013) 

 
Class, attribute, method, association 

relationship 

 
Use case 

(OMG, 2013) 

 
Actor, use case 

Concept, 
attribute, 

relationshi 
p 

(Jamal et 
al., 2016) 

KRL-FSL One-way Activity 
diagram 
(Lleppe and 
Warmer, 
2000) 

Initial node, control flow, action, 
activity final node 

Z-Notation 
(Spivey, 1991) 

Sets, predicate, 
schema, expressios, 
operator, state, 
invariant relationship, 
operation, input, 
output, relationship, 
change of state, 
procedure, variable, 
inference rule 

Process, 
action, 
relationshi 
p, initial 
value, 
constraint 

(Sengupta 
and 
Bhattachary 
a, 2006) 

KRL-FSL One-way Use Case 
diagram (Siau 
and Cao, 
2001) 

System, actor, use case, association, 
include, extend 

Z-Notation 
(Spivey, 1991) 

Sets, predicate, 
schema, expressios, 
operator, state, 
invariant relationship, 
operation, input, 
output, relationship, 
change of state, 
procedure, variable, 
inference rule 

Concept, 
actor, 
action, 
relationshi 
p 

(Saratha et 
al., 2017) 

KRL-FSL One-way Use Case 
diagram (Siau 
and Cao, 
2001) 

System, actor, use case, association, 
include, extend 

Z-Notation 
(Spivey, 1991) 

schema, expressios, 
operator, operation, 
input, output, 
relationship, 
procedure, 

Concept, 
actor, 
action, 
relationshi 
p 

(Xu, 2011) KRL-FSL One-way Activity 
diagram 
(Lleppe and 
Warmer, 
2000) 

Initial node, control flow, action, 
activity final node 

Process 
Algebra 
(Bernardo et 
al., 2002) 

Agent, system, 
communication 

Activity, 
concept, 
relationshi 
p 

(Meziani, 
2018) 

FSL-KRL One-way Colored petri 
net 
(Zimmermann, 
2008) 

Types, coloured set, place, transition, 
arch, color function, data value, 
guard function, initial marking 

State Machine 
(OMG, 2013) 

State, transition, 
event, initial state, 
final state 

Process, 
action, 
relationshi 
p, initial 
value, 
constraint 

(Sharaff and 
Kumar, 
2020) 

KRL-FSL One-way Class diagram 
(OMG, 2013) 

Class, attribute, method, association 
relationship 

Colored petri 
net 
(Zimmermann 
, 2008) 

Types, coloured set, 
place, transition, 
arch, color function, 
data value, guard 
function, initial 
marking 

Process, 
action, 
relationshi 
p, concept 
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The answer to RQ4 is the following: 
 

Some proposals (19 out of 21) comprise KRLs as their source models. Such proposals 

include different types of KRL elements which are specific to the transformation process: 

Awan et al. (2022) include KRL elements such as system state space schema, system state 

space name, system state space variable, system state space predicate, system state initial 

state, initial state name, initial state variable, schema name, schema input variable, schema 

output variable, schema predicate, predicate input, predicate output; Ben Younes et al. 

(2019) and Boussetoua et al. (2015) analyze KRL elements such as start event, 

intermediate event, end event, task, and gateway, xor gateway, subprocess, sequence 

flow; Amjad et al. (2018), Djaoui et al. (2018), and Tariq et al. (2017) explore KRL elements 

related to the activity diagram and the interaction overview diagram such as initial Node, 

final node, fork node, join node, decision node, merge node, transition, interaction, 

interaction use; Sun et al. (2016) and Jiang et al., (2016) represent KRL elements such as 

system, actor, use case, association, include, and extends relationships in the context of 

use case diagrams; Hlaoui et al. (2017) represent KRL elements in the context of sequence 

diagrams, including sequence model, interaction fragment, ressource, lifeline, interaction, 

message, types, interaction operator; Cuoto et al. (2014) use KRL elements such as 

entities, properties, and facts for representing OWL characterizations; Borgida et al. (2014) 

address goal-oriented concepts by using KRL elements such as goals, entities, tasks, 

relationships, and evidence values; Gogolla et al. (2018), Pérez and Porres (2019), and 

Chu and Dang (2020) characterize class diagramas by using KRL elements such as 

classes, attributes, methods, and association relationships. 

The answer to RQ5 is the following: 
 

Some proposals (20 out of 21) comprise FSLs as their target and source model. Such 

proposals include different types of FSL elements which are specific to the transformation 

process: Mehboob et al. (2022), Jamal and Zafar (2016), Saratha et al. (2017), and 

Sengupta and Bhattacharya (2006) include FLS elements such as sets, predicates, 

schemas, expressions, operators, states, invariant relationships, operations, relationships, 

changes of state, procedures, variables, and inference rules related to the context of the 

formal Z-notation; Ben Younes et al. (2019), Hlaoui et al. (2017), and Sun et al. (2016) use 

Event-B as target model in the KRL-FSL transformation process, including FSL elements 

such as context, constant, set, machine, variable, invariant, event, guard, and action; Djaoui 

et al. (2018) include some FSL elements in the context of the Maude formal specifications, 

including functional modules, object-oriented modules, parametrized modules, theories, 

views, module renaming, tuples, conditions, reflection, and datatypes; Amjad et al. (2018) 

explore timed automata as FSL in the UMLPACE method, including FSL elements such as 

initial location, committed location, location, and edge; Tariq et al. (2017) include FSL 

elements related to CPNs, including types, coloured set, place, transition, arch, color 

function, data value, guard function, and initial marking; Couto et al. (2014) represent FSL 

elements based on the RUS model, including individuals, entities, and properties; Borgida 
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et al. (2014) address goal-based scenarios including FSL elements such as individual, 

predicate, relationship, variable, and constants coming from the FOL language; Jiang et al. 

(2016) include more FOL elements, including source role, assignment association, target 

role, and constraint formula; Gogolla et al. (2018) include the Kodkod formal specification 

as FSL in the ISE method, including FSL elements such as atom, relation declaration, and 

relational formula; Pérez and Porres (2019) address the class diagram formalization into 

Fomrula, including FSL elements such as domain, model, partial model, class, constraint, 

instance, class, data type, property, association relationship, and generalization 

relationship; Boussetoua et al. (2015) use agents, interactions, processes, and names as 

FSL elements in the context of Pi-Calculus; Rise et al. (2021) use Alloy elements, including 

signatures, abstract signatures, fields, invariant properties, signature facts, and predicates 

as FSL elements in the KRL-FSL transformation process. 

The answer to RQ6 is the following: 
 

KRL and FSL elements are used for representing domain elements at different levels of 

abstraction, including concepts (Awan et al., 2022; Bessifi et al., 2019; Sun et al., 2016; 

Couto et al., 2014; Borgida et al., 2014; Jiang et al., 2016; Gogolla et al., 2018; Pérez and 

Porras, 2019; Boussetou et al., 2015; Ries et al., 2021; Chu and Dang, 2020), instances 

(Awan et al., 2022; Couto et al., 2014), relationships (Awan et al., 2022; Bessifi et al., 2019; 

Sun et al., 2016; Couto et al., 2014; Borgida et al., 2014; Jiang et al., 2016; Gogolla et al., 

2018; Pérez and Porras, 2019; Boussetou et al., 2015; Ries et al., 2021; Chu and Dang, 

2020; Tariq et al., 2017), functions (Awan et al., 2022), events (Amjad et al., 2018; Ben 

Younes et al., 2019), data types (Ben Younes et al., 2019; Djaoui et al., 2018; Hlaoui et al., 

2017), preconditions (Ben Younes et al., 2019), parameters (Ben Younes et al., 2019; 

Hlaoui et al., 2017), multiplicity (Ben Younes et al., 2019), constants (Ben Younes et al., 

2019), attributes (Chu & Dang, 2020; Djaoui et al., 2018; Gogolla et al., 2017; Pérez & 

Porres, 2019; Ries et al., 2021), actors (Sun et al., 2016), processes (Hlaoui et al., 2017; 

Jiang et al., 2016; Tariq et al., 2017), and goals (Borgida et al., 2014; Jiang et al., 2016). 

 
3.3 Problem Statement 

The field of KRLs and FSLs is an active area of research aiming at improving the RE 

process. KRLs and FSLs enable software analysts for rigorously and unambiguously 

capturing, modeling, and reasoning about the domain knowledge and the software system 

requirements. However, some challenges remain in adopting and using KRLs and FSLs in 

the context of RE. Such challenges are focused on two problems: limitations on the domain 

scope and model transformation. The first problem refers to the ability of software analysts 

for using KRL-FSL pairs for representing different types of software domains. The second 

problem refers to the ability of software analysts for using KRL-FSL pairs which provide 

consistent and automated mechanisms for transforming models between different levels of 

representation, such as from KRL to FSL and from FSL to KRL. 
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Software analysts use KRL-FSL pairs for describing concepts and relationships coming 

from a software domain, and the features and constraints related to software systems. 

While such languages are effective tools for representing different aspects of the software 

domain, by combining them, software analysts may use such KRL-FSL pairs for 

comprehensively capturing both the semantic and syntactic aspects related to a software 

domain. Also, KRL-FSL pairs allow software analysts for improving the communication of 

the software domain with the stakeholders and the verification and validation of the software 

system. However, KRL-FSL pairs are not suitable for addressing software domains in a 

generalized way. Therefore, since each software domain comprises different features, 

choosing the adequate KRL-FSL pair is key for the RE process. The literature review shows 

some of the existing KRL-FSL pair proposals (4 out of 21) are tailored to specific software 

domains, including domain-specific languages. While such proposals are used for 

improving the RE process in such specific software domains, the applicability and 

reusability of such KRL-FSL pairs on other software domains are still limited. 

Model transformation allows software analysts for obtaining one model (target model) from 

another model (source model) in different levels of representation, such as KRL to FSL and 

FSL to KRL. Such a process comprises a set of heuristic rules, characterizing the 

equivalences between the related models, so software analysts may transform one model 

into another. However, most of the analyzed proposals focused on model transformation 

provide one-way transformation rules, including from KRL to FSL (17 out of 21), from FSL 

to KRL (2 out of 21), and from KRL to KRL (1 out of 21). Such proposals are strongly limited 

by the lack of bi-directionality of the transformation rules between the source and target 

model and the dependency on specific features related to the KRL and the FSL. Hence, 

software analysts should be proficient in different KRLs and FSLs so they can address 

diverse software domains. 

 
3.4 Objectives 

 
3.4.1 General Objective 

Proposing a method for obtaining FL-based specifications based on KRL-based 

descriptions, independent of the KRL-FL pair to be considered. 

 
3.4.2 Specific Objectives 

▪ Identifying the general features of the FL, independent of the orientation the FL 

have. 

▪ Selecting a KRL as a starting point of the mapping process to FL-based 

specifications. The KRL should exhibit the general features identified in the previous 

objective. 
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▪ Defining the method for obtaining FL-based specifications from the selected KRL. 

The method should include the rules for transforming each element of the KRL into 

all of the features identified on the FL. 

▪ Validating the proposed method by representing at least three case studies from 

the state-of-the-art review, related to several KRL-FL pairs. 

 

3.5 Justification 

Wieringa (2014) defines three key components related to the design science methodology 

for information systems and software engineering: the work product which is the result of 

an improvement to a problem; the social context which describes the stakeholders who are 

affected by the work product; the knowledge context which includes well stated scientific 

and engineering theories, available practical knowledge and products, and produced 

knowledge as a result of the experimentation process from researches. In this Ph.D. Thesis 

we introduce a novel method for obtaining FSLs from KRLs and vice versa as a work 

product. Such a work product is aimed at supporting software analysts (social context) as 

a new model-to-model transformation approach for RE (knowledge context). 

In this Ph.D. Thesis we integrate RE, KRLs, and FSLs. Our method allows software 

analysts for overcoming the limitations on the domain scope by using a meta-model for 

KRLs and a meta-model for FSLs for representing any KRLs and FSLs in the context of 

RE. In addition, our method allow software analysts for performing model-to-model 

transformations bidirectionally, mitigating the impact of the one-way transformation rules 

coming from most of the state-of-the-art proposals by using a meta-model for representing 

transformation rules regardless of the KRL-FSL pair. Therefore, our method allows software 

analysts for representing domain knowledge in a more general way, improving the RE 

process. 



 

 
 
 
 
 
 
 

 

4. A method for transforming KRL-FSL pairs 

 
KRL-FSL pairs are effective means for representing features and constraints inherent in 

software domains (Ang & Hartley, 2007). Software analysts use different KRL-FSL pairs for 

effectively capturing and modeling the intricacies of different software systems 

(Alkhammash, 2020). One of the key advantages of employing KRL-FSL pairs is the 

provision of one-way transformation rules, allowing software analysts for transforming 

representations from one language to another. Such capability allows software analysts for 

exploring and analyzing several software systems by leveraging the expressiveness of 

different languages (Alkhammash, 2020). 

We propose in this Ph.D. Thesis a method for transforming KRL-FSL pairs in the context of 

RE. Our method includes three main components: a meta-model for representing KRLs, a 

meta-model for representing FSLs, and a meta-model for representing model-to-model 

transformations. Such components are used for defining what software domain concepts a 

software analyst should represent in any KRL/FSL and how they should do it while using 

our method, allowing them for representing any software domain by using any KRL and 

FSL and transforming them into any other KRL/FSL. 

We propose a new method for transforming KRL-FSL pairs according to the research 

methodology in six steps: (i) we characterize state-of-the-art KRLs; (ii) we characterize 

state-of-the-art FSLs; (iii) we define a meta-model for representing KRLs; (iv) we define a 

meta-model for representing FSLs; (v) we define a meta-model for representing model-to- 

model transformations; (vi) we present a method for transforming KRL-FSL pairs. 

 
4.1 Characterizing KRLs in the context of RE 

While KRLs are used for representing different software domains, such languages are often 

focused on the same domain elements (Caetano et al., 2017). Some authors define KRL 

elements for representing well-known software domain elements: 

Domain concepts are explored by using system spaces and schemas (Awan et al., 2022), 

events (Ben Younes et al., 2019; Boussetoua et al., 2015), nodes (Amjad et al., 2018; 

Djaoui et al., 2018; Tariq et al., 2017), entities (Borgida et al., 2014; Couto et al., 2014), and 

actors (Sun et al., 2016). 
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Attributes are studied by using variables (Awan et al., 2022), interactions (Djaoui et al., 

2018), properties (Couto et al., 2014; Ries et al., 2021), and attribute values (Chu & Dang, 

2020; Gogolla et al., 2017). 

Processes are analyzed by using activities and tasks (Amjad et al., 2018; Ben Younes et 

al., 2019; Borgida et al., 2014; Boussetoua et al., 2015; Tariq et al., 2017), methods (Chu 

& Dang, 2020; Gogolla et al., 2017), and subprocesses (Boussetoua et al., 2015). 

Parameters are represented by using variables and input variables (Awan et al., 2022; Ries 

et al., 2021). 

Relationships are described by using collaborations (Ben Younes et al., 2019), transitions 

and interactions (Djaoui et al., 2018; Hlaoui et al., 2017), associations (Chu & Dang, 2020; 

Sun et al., 2016), and class and event relationships (Borgida et al., 2014; Chu & Dang, 

2020; Gogolla et al., 2017; Jiang et al., 2016). 

 
4.2 Characterizing FSLs in the context of RE 

We analyze eleven different FSL proposals in the literature review on model-to-model 

transformation approaches focused on KRL-FSL pairs (see Section 3.2). Most of such 

proposals (10 out of 19) are focused on object-oriented programming. Therefore, we 

characterize such proposals based on object-oriented programming concepts: 

Classes are explored by using schemas and initial states (Awan et al., 2022), object- 

oriented modules (Djaoui et al., 2018), initial locations (Amjad et al., 2018), sets (Sun et al., 

2016; Tariq et al., 2017), agents (Boussetoua et al., 2015), signatures (Ries et al., 2021), 

individuals (Borgida et al., 2014), and atoms (Gogolla et al., 2018). 

Attributes are described by using properties (Couto et al., 2014; Pérez & Porres, 2019), and 

fields (Ries et al., 2021). 
 

Data types are represented by using data types (Pérez and Porres, 2019). 
 

Functions are studied by using operations (Awan et al., 2022), functional modules and 

parametrized modules (Djaoui et al., 2018), actions (Sun et al., 2016), color functions (Tariq 

et al., 2017), and processes (Boussetoua et al., 2015; Tariq et al., 2017). 

Invariants are analyzed by using invariant relationships and properties (Awan et al., 2022; 

Ries et al., 2021) and invariants (Awan et al., 2022; Ben Younes et al., 2019; Ries et al., 

2021; Sun et al., 2016). 

Relationships are addressed by using generic relationships (Awan et al., 2022; Borgida et 

al., 2014; Pérez & Porres, 2019), collaborations (Ben Younes et al., 2019), arches (Tariq et 

al., 2017), and association and generalization relationships (Pérez and Porres, 2019). 
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Constraints are characterized by using conditions (Djaoui et al., 2018), constraints (Ben 

Younes et al., 2019; Gogolla et al., 2017; Pérez & Porres, 2019), and constraint formulas 

(Jiang et al., 2016). 

Processes are analyzed by using procedures (Awan et al., 2022) and interaction processes 

(Boussetou et al., 2015). 

 

4.3 Defining a meta-model for KRLs in the context of RE 

We define a meta-model for representing KRLs in the context of RE by using common 

components coming from the KRL characterization (see Section 4.1). Such components 

and their relationships represent the common knowledge related to the KRL domain. Thus, 

we structure such knowledge by using PCSs, representing the KRL domain in a general 

way as shown in Figure 4-1 and described as follows: 

Nodes are used for representing key entities related to a software domain, including 

concepts, objects, properties, features, and abstract concepts. Nodes are characterized by 

three elements: name (e.g., “modeler”), feature, and process. 

Features are used for characterizing specific nodes. Features are described by three 

components: name is used for textually representing the feature (e.g., “years of 

experience”); visibility is used for representing the scope of the feature in the context of 

object-oriented programming (i.e., public, private, and protected); type is used for 

representing the data type related to the feature (e.g., integer). 

Processes are used for characterizing the dynamic behavior related to a specific node. 

Processes are described by five components: visibility is used for representing the scope 

of the process in the context of object-oriented programming (i.e., public, private, and 

protected); type is used for representing the data type related to the resulting element of 

the process (e.g., string); name is used for representing the process (e.g., “Transforms”); 

parameter is used for representing the components and inputs influencing the behavior and 

outcome of the process. Parameters are represented by type (i.e., data type) and name; 

sequence is used for describing the order in which the process is to be performed (e.g., 1 

for representing first, 2 for representing second, and so on). An example of a process is 

“modeler transforms model.” Such a process may be described as follows: the name is 

“transforms,” the visibility is public so the process may be reused; the type is Model (i.e., 

model data type, considering model as an already identified node); the parameters are 

source model and target model, both of which have type Model and name “class diagram” 

and “first-order-logic,” respectively; the sequence is 1, so such a process is the first process 

to be performed. 

Relationships are used for linking two nodes (i.e. the source node and the target node). 

Relationships are described with five components: type is used for representing the type of 

relationship in the context of object-oriented programming, including association (e.g., the 
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node “Teacher” is associated with the node “Student” as a teacher knows about some 

features of the students), composition (e.g., the node “house” has some features such as 

“room” and “kitchen” which are also represented by using nodes), aggregation (e.g., 

generalization (e.g., the node “car” is a type of the node “vehicle”), and dependency (e.g., 

the node “delivery driver” depends on the node “car” for delivering products); cardinality is 

used for representing the number of occurrences of one node being related to another node 

in a relationship, including one-to-one cardinality which is used for representing the 

relationship between one instance of the source node with one instance of the target node, 

one-to-many cardinality, which is used for representing the relationship between one 

instance of the source node and many instances of the target node, and many-to-many 

cardinality, which is used for representing the relationship between many instances of the 

source node and many instances of the target node. We define a cardinality for each node 

(i.e., source cardinality and target cardinality); roles are used for representing the 

participation role which each node is playing in the relationship, e.g., in a relationship 

between the nodes “software analyst” and the node “software domain,” the role of the node 

“software analyst” (i.e., source role) could be “modeler” and the role of the node “software 

domain” (i.e., target role) could be “characterized requirement.” 
 

Figure 4-1. A meta-model for KRLs. The Authors. 

 
4.4 Defining a meta-model for FSLs in the context of RE 

We define a meta-model for representing FSLs in the context of RE by defining common 

components related to the FSL domain as we described in Section 4.2. According to the 
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systematic literature review, some FSL proposals (11 out of 11) are focused on the object- 

oriented paradigm, allowing practitioners for modeling object-oriented concepts such as 

classes and functions. Thus, we define seven components describing the key features of 

any object-oriented FSL as shown in Figure 4-2 and described as follows: 

Classes are used for representing key entities and concepts related to a software domain, 

including their structure and behavior. Such representation comprises a set of elements 

allowing for a broader characterization of the class: names are used for representing a 

textual identification of the class (e.g., “Software analyst”); protocols are used for specifying 

the behavior and capabilities related to a class so practitioners may establish a clear 

contract for interacting with the related class while using other classes. Protocols may 

include information about key features, processes, and constraints related to a class; 

aliases are used for representing alternative names for an existing class (e.g., “Modeler” 

could be an alias for the class “Software Analyst”). 

Features are used for representing the characteristics of a class which is specified within 

the FSL. Features provide a structured way for representing classes, including a name for 

textually identifying the feature (e.g., “years of experience”), a type for representing the 

feature data type (e.g., integer), an initial value for representing a default value for the 

feature (e.g., 0), a cardinality for representing the number of occurrences of such feature in 

the classes (e.g., 1, representing the class “Software analyst” has one value related to its 

feature “years of experience”), a visibility value for representing the scope of the feature in 

the context of oriented-object programming (i.e., public, private, protected), and a derivation 

expression for representing the derivation process so practitioners may determine how they 

can derive a specific feature based on other feature structure and behavior. 

Processes are used for representing the behavior of a specified class. Such components 

provide a dynamic view of the class, allowing practitioners for representing the interaction 

capabilities of the class. Processes are based on several components: names are used for 

identifying a specific process (e.g., “Models”); visibility is used for representing the scope 

of the process in the context of object-oriented programming (i.e., private, public protected) 

so the usage of the process may be clearly limited; type is used for representing the data 

type of the returning element related to the process (e.g., Model as data type, representing 

an object of the class Model); parameters are used for representing the input elements 

used while performing the process, including their name and type (e.g., “Software domain” 

representing an object of the class Software domain); valuations are used for defining 

formulae unambiguously representing a specific feature including values, truth values, and 

previously specified objects; preconditions and postconditions are used for representing 

the conditions which should remain true before and after the execution of a specific process, 

so practitioners may express constraints and assumptions related to the behavior of a 

process. Such components are represented by using formulae; participation mode is used 

for representing the type of interaction which should be performed by using the process, 

including called member and shared-with member. Called member participation refers to a 
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process which is invoked by another component within the process. Shared-with member 

refers to a process which is being shared and accessed from several components within 

the process; Constraints are used for defining the limitations of the specified class. Such 

limitations are expressed by using formulae including related features. 

Functions are used for representing specific transformations, computations, and mappings 

of input data (function parameters) to output data. Functions comprise four components: 

name is used for textually identifying the function; type is used for representing the data 

type related to the expected output of the function; formula is used for representing the 

algorithm and logic related to the computation process being performed by using the 

function; parameters are used for representing the input data of the function. Parameters 

are characterized by a specific name and type (i.e., data type). While the structure is similar 

to class processes, functions provide a broader scope as they may be performed in the 

context of the FSL rather than the scope of a specific class. 

Data type is used for representing data types defined in the context of the FSL. Such a 

component comprises well-known data types such as integer, string, and boolean, and 

user-defined data types such as Modeler, representing the data type of an object of the 

specified class Modeler. 

Invariants are used for representing the constraints and assertions which remain 

unchanged while performing specific processes and functions. Invariants are identified by 

specific names and provide a set of invariant attributes, which are represented by name 

and type, a set of invariant preconditions, which are represented by formulae defining the 

conditions to be true before evaluating the specified invariant, and a formula formally 

representing the components of the invariant. 

Relationships are used for linking two classes (i.e. the source class and the target class). 

Relationships are described with five components: type is used for representing the type of 

relationship in the context of object-oriented programming, including association, 

composition, aggregation, generalization, and dependency; cardinality is used for 

representing the number of occurrences of one class being related to another class in a 

relationship, including one-to-one cardinality which is used for representing the relationship 

between one instance of the source class with one instance of the target class, one-to- 

many cardinality, which is used for representing the relationship between one instance of 

the source class and many instances of the target class, and many-to-many cardinality, 

which is used for representing the relationship between many instances of the source class 

and many instances of the target class. We define a cardinality for each class (i.e., source 

cardinality and target cardinality); roles are used for representing the participation role 

which each class is playing in the relationship, e.g., in a relationship between the classes 

“software analyst” and the class “software domain,” the role of the class “software analyst” 

(i.e., source role) could be “modeler” and the role of the class “software domain” (i.e., target 

role) could be “characterized requirement.” 
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Figure 4-2. A meta-model for FSLs. The Authors. 

 
4.5 Defining a meta-model for transformation rules for 

KRL-FSL pairs 

We define a meta-model for representing model-to-model transformation rules in the 

context of KRL-FSL pairs. The meta-model is built upon the previously proposed meta- 

models for KRLs and FSLs. Eventhough KRLs and FSLs are distinct languages used for 

representing different perspectives of software domains, both KRLs and FSLs share 

common components, such as concepts, relationships, and features, which are 

fundamental to representing any software domain. We identify 22 equivalencies between 

the meta-model for KRLs and the meta-model for FSLs by using an in-depth analysis of the 

proposed meta-models, as outlined in Table 2. Such equivalencies serve as the basis for 

defining heuristic rules encompassing both KRLs and FSLs, enabling practitioners (i.e., 

Modelers) to perform bidirectional transformations between the two representations. The 

heuristic rules encompass two principal components: direction is used for specifying 

whether the equivalence should be applied from KRL to FSL or vice-versa, while 

equivalence is employed to denote the corresponding KRL and FSL elements being used 

on the transformation when the rule is applied. 
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Table 4-1: KRL-FSL pair equivalencies. The Authors. 
 

Number KRL Element KRL Name FSL Element FSL Name 

1 Node  Class Class 

2 Node Node.Name Class Class.Name 

3 Node Node.Feature Class Class.Feature 

4 Node Node.Process Class Class.Process 

5 Node Source Node.Name Class Source Class 

6 Node Target Node.Name Class Target Class 

7 Feature Feature.Visibility Feature Feature.Visibility 

8 Feature Feature.Type Feature Feature.Type 

9 Feature Feature.Name Feature Feature.Name 

10 Relationship Relationship Relationship Relationship 

11 
Relationship Relationship.Source 

Cardinality 
Relationship Relationship.Source Cardinality 

12 
Relationship Relationship.Target 

Cardinality 
Relationship Relationship.Target Cardinality 

13 
Relationship Relationship.Source 

Role 
Relationship Relationship.Source Role 

14 
Relationship Relationship.Target 

Role 
Relationship Relationship.Target Role 

15 Relationship Relationship.Type Relationship Relationship.Type 

16 Process Process Process Process 

17 Process Process.Visibility Process Process.Visibility 

18 Process Process.Type Process Process.Type 

19 Process Process.Name Process Process.Name 

20 Process Process.Parameter Process Process.Parameter 

21 Parameter Parameter.Type Parameter Parameter.Type 

22 Parameter Parameter.Name Parameter Parameter.Name 

 

Such equivalencies comprise several key attributes: number which is used for uniquely 

identifying each equivalence; KRL element and FSL element which are textual 

identifications of the KRL and FSL elements (e.g., node and class); KRL name and FSL 

name which are the specific nomenclatures used in both the KRL and FSL meta-models 

(e.g., node.feature and class.feature); KRL value and FSL value which are used for 

representing the associated values for each component in the representation. The 

proposed meta-model is summarized in Figure 4-3. 
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Figure 4- 3. A meta-model for model-to-model transformation rules for KRL-FSL pairs. 
The Authors. 

 
4.6 Defining a method for transforming KRL-FSL pairs 

We present a novel method for the bidirectional transformation of KRL-FSL pairs, 

regardless of the specific type of KRL, FSL, and software domain. To achieve this, we 

introduce a comprehensive integration of three meta-models, which offer a unified 

approach for representing and transforming KRLs and FSLs in the context of both RE and 

object-oriented programming. 

The proposed meta-models serve as high-level abstractions, representing key components 

and relationships inherent in the fields of KRLs and FSLs. Such meta-models provide a 

structured method, easing a systematic transformation process across different types of 

KRLs and FSLs, enabling modelers for exchanging knowledge between KRLs and FSLs, 

and grasping a broader understanding of the software domain. 

Our method provides a flexible framework for software analysts as they can represent any 

KRL and FSL and transform them into other FSL and KRL, respectively, by using 

bidirectional equivalences related to the proposed meta-models for KRLs and FSLs. Also, 

we represent such meta-models by using PCSs as they are models close to natural 

language, easing the understanding and interpretation of the proposed meta-models, and 

allowing non-technical and novice modelers for using our method. Such an approach is 

intended to minimize the inherent complexity related to representing knowledge coming 

from complex software systems by using KRLs and FSLs. 
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The proposed method for transforming KLR-FSL pairs comprises five different steps. We 

summarize such steps in Figure 4-4 and describe them as follows: 

Software domain selection: the modeler selects a specific software domain for knowledge 

representation, defining the context of the software system to be represented. Such a step 

is key as the modelers should use the software domain elements for guiding the 

representation process. 

Source model selection: the modeler selects a source model which is the starting point for 

the transformation process. The source model may be either a KRL or a FSL. 
 

 
Figure 4-4. A method for transforming KRL-FSL pairs. The Authors. 

Source model representation: the modeler uses the proposed meta-model representation 

for the selected source model (either the meta-model for KRLs or the meta-model for FSLs) 

for representing the source model. In this step, the modeler characterizes the software 

domain elements such as classes, attributes, and relationships by using the selected 

source model, allowing her for building the source model representation. 
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Heuristic rule application: the modeler uses the proposed meta-model for transformation 

rules by applying the identified equivalencies so she can build the target model. In this step, 

the modeler maps the values coming from the source model elements to the target model 

elements rule by rule as they may be applied. Such a step is key as it allows modelers for 

maintaining the consistency between models. 

Target model generation: the modeler generates the target model representation by using 

the applied equivalences and the target model meta-model. Such a representation 

comprises the same software domain elements represented in the context of the target 

model, including all its elements and relationships, when applicable. 



 

 
 
 
 
 
 

 

5. Validation 

 
5.1 Case study planning 

We validate this Ph.D. Thesis by using an experimental process based on case study 

research. We develop a prototype based on the proposed method and we evaluate it on 

three case studies by using a consistency metric for measuring the number of elements 

coming from KRLs and FSLs which can be represented and transformed by using our 

method. We validate our proposal based on the design science methodology for information 

systems and software engineering (Wieringa, 2014) and the case study research process 

of the experimentation in software engineering (Wohlin et al., 2012), including five 

components: objective, case studies, theory, research questions, and method. 

 
5.1.1 Objective 

Analyze the representation and transformation capabilities of the proposed method. 

 

5.1.2 Case studies 

The case studies comprise well-known representation languages in the context of RE. 
 

- Case study #3 (CS3): OASIS is an object-oriented FSL (Pastor et al., 1992). In this case 

study, we validate the KRL to FSL transformation capability by using a class diagram as a 

source model and the OASIS model as the target model. 

- Case study #2 (CS2): the UNC-Method is a software development method focused on 

problems and goals (Zapata & Arango, 2009). Such a method comprises several KRLs 

such as a process diagram, class diagram, and use case diagram. In this case study, we 

validate the KRL to FSL transformation capabilities of our method by using well-known 

KRLs and show how they can be transformed into different object-oriented FSLs. 

- Case study #3 (CS3): UN-LEND is an object-oriented formal language (Mosquera, 2021). 

In this case study, we validate the FSL to KRL transformation capability by using UN-LEND 

as a target source and the KRL meta-model representation as the target model. 
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5.1.3 Theory 

We propose the Consistency Metric (CM) for evaluating the representation capabilities of 

our method. Such a metric is aimed at measuring the proportion of elements of the source 

model which can be represented by the target model. The CM depends on two variables, 

the Number of Represented Elements in the Target model (NRET) and the Number of 

Represented Elements in the Source model (NRES). The CM is formally described in 

Equation (1): 
 

 

𝐶𝑀 = 
𝑁𝑅𝐸𝑇 

 
 

𝑁𝑅𝐸𝑆 

 

(1) 

We compute four different CM values for evaluating the transformation process: 
 

- The Source-Model-to-Source-Model-Meta-Model CM (SM2SMM-CM) is aimed at 

computing the number of elements coming from the source model which may be 

represented by the source model meta-model. 

- The Source-Model-Meta-Model-to-Target-Model-Meta-Model CM (SMM2TMM-CM) is 

used for computing the number of elements coming from the source meta-model which may 

be represented by the target model meta-model. 

- The Target-Model-Meta-Model-to-Target-Model CM (TMM2TM-CM) is used for computing 

the number of elements coming from the target model meta-model which may be 

represented by the target model. 

- The Source-Model-to-Target-Model CM (SM2TM-CM) is used for computing the number 

of elements coming from the source model which may be represented by the target model. 

The CM may be represented by three types of value: (i) a CM lower than 1 indicates the 

evaluated source model (i.e., the source model for computing the CM value) lacks some 

domain elements which are included in the evaluated target model; (ii) a CM greater than 

1 indicates the evaluated target model lacks some domain elements for representing all the 

domain elements coming from the evaluated source model; (iii) a CM value equals to 1 

indicates both the source model and the target model fully represent the domain of interest, 

so they are equivalent for such a domain. 

 
5.1.4 Validation research questions 

We define two validation research questions: 
 

- VR1: what are the CM values of the proposed method on KRL-to-FSL transformations? 
 

- VR2: what are the CM values of the proposed method on FSL-to-KRL transformations? 
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5.1.5 Methods 

We follow the proposed method for transforming the models related to the case studies. 

We manually count the number of elements we can represent by using the proposed meta- 

models before and after the transformation process. Then, we use such counts for 

evaluating the resulting representation by using the CM. We support such a process by 

using a prototype application which helps us to automate the transformation process. 

 
5.2 Case study validation 

 
5.2.1 Performing a KRL-to-FSL transformation 

We analyze CS1 based on the method for transforming a KRL into a FSL by following its 

five steps: 

Software domain selection: we select the software domain, which in CS1 is related to the 

medical field. 

Source model selection: we represent the selected software domain by using a class 

diagram as shown in Figure 5-1. 
 

 

Figure 5- 1. CS1 source model representation. The Authors. 

Source model representation: we use the KRL meta-model for representing our source 

model. The underlying structure of the class diagram can be represented with the KRL 
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meta-model we defined in the previous Chapter as follows. We will use bold italics for 

representing the meta-model elements and italics for instances. 

 

- We have six nodes with the names Hospital, Department, Nurse, Doctor, Patient, 

and Employee. 

 

- The node named Department has two features: one with the name Name, the 

visibility private, and the type string and one with the name PatientCount, the 

visibility private, and the type int. 

 

- The node named Nurse has one feature with name shift, visibility public, and 

type string. 

 
- The node named Doctor has one feature with the name isAvailable, visibility 

public, and type boolean. 

 
- The node named Patient has two features: one with the name Name, visibility 

public, and type string, and one with the name RoomNumber, visibility public, and 

type int. 

 

- The node named Employee has two features: one with the name Name, 

visibility public, and type string, and one with the name Department, visibility 

public, and type string. 

 

- The node named Department has one process with the name getDeptName, the 

visibility public, and the sequence 1. 

 
- The node named Department has one process with the name getPatientsCount, 

the visibility public, and the sequence 2. 

 

- The node named Doctor has one process with the name checkPatient, the 

visibility public, and the sequence 1. 

 
- The node named Patient has one process with the name askRoomAttention, the 

visibility public, and the sequence 1. 

 
- The node named Hospital has one relationship with type composition in which it 

is the source node with the target node named Department. 

 

- The node named Department has one relationship with type composition in 

which it is the source node with the target node named Doctor. 

 

- The node named Department has one relationship with type composition in 

which it is the source node with the target node named Nurse. 
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- The node named Department has one relationship with type aggregation in 

which it is the source node with the target node named Patient. 

 

- The node named Department has one relationship with type composition in 

which it is the source node with the target node named Doctor. 

 

- The node named Employee has two relationships with type generalization in 

which it is the source node: one with the target node named Doctor and one with 

the target node named Nurse. 

 

The previous information completely covers the class diagram as follows: 

 
- The basic information is extracted from the class diagram. 

 
- Nodes are considered Classes in the class diagram, e.g., Doctor. 

 
- Features are considered Class attributes in the class diagram, e.g., Name. 

 
- Processes are considered Class methods in the class diagram, e.g., 

checkPatient. 

 

- Aggregation, composition, and generalization relationships are represented 

equivalently in the class diagram. 

 

Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can 

represent the target model into one instance of the FSL meta-model. 

After we apply the transformation rules, we obtain the following results: 

 
- We have six classes with the names Hospital, Department, Nurse, Doctor, 

Patient, and Employee. 

 

- The class named Department has two features: one with the name Name, the 

visibility private, and the type string, and one with the name PatientCount, the 

visibility private, and the type int. 

 

- The class named Nurse has one feature with name shift, visibility public, and 

type string. 

 
- The class named Doctor has one feature with the name isAvailable, visibility 

public, and type boolean. 
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- The class named Patient has two features: one with the name Name, visibility 

public, and type string, and one with the name RoomNumber, visibility public, and 

type int. 

 

- The class named Employee has two features: one with the name Name, 

visibility public, and type string, and one with the name Department, visibility 

public, and type string. 

 

- The class named Department has one process with the name getDeptName, the 

visibility public, and the sequence 1. 

 
- The class named Department has one process with the name getPatientsCount, 

the visibility public, and the sequence 2. 

 

- The class named Doctor has one process with the name checkPatient, the 

visibility public, and the sequence 1. 

 
- The class named Patient has one process with the name askRoomAttention, the 

visibility public, and the sequence 1. 

 
- The class named Hospital has one relationship with type composition in which it 

is the source class with the target class named Department. 

 

- The class named Department has one relationship with type composition in 

which it is the source class with the target class named Doctor. 

 

- The class named Department has one relationship with type composition in 

which it is the source class with the target class named Nurse. 

 

- The class named Department has one relationship with type aggregation in 

which it is the source class with the target class named Patient. 

 

- The class named Department has one relationship with type composition in 

which it is the source class with the target class named Doctor. 

 

- The class named Employee has two relationships with type generalization in 

which it is the source class: one with the target class named Doctor and one with 

the target class named Nurse. 

 

Target model generation: the previous information can be represented in different object- 

oriented FSLs as follows. In this case, we represent the transformed information by using 

the OASIS model (Pastor et al., 1992). 

class Hospital: 

identification 



A Method for Obtaining Formal Software Specifications from Knowledge 

Representation Languages 

52 
 

 

 
constant attributes 

derived attributes 

derivations 

events 

preconditions 

end class 

class Department: 

identification 

constant attributes 

derived attributes 

Name:string; 

PatientsCount:int; 

derivations 

events 

getDeptName 

getPatientsCount 

preconditions 

end class 

class Nurse: 

identification 

constant attributes 

derived attributes 

shift:string; 

derivations 

events 

preconditions 

end class 

class Doctor: 

identification 

constant attributes 

derived attributes 

isAvailable:boolean; 
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derivations 

events 

checkPatient 

preconditions 

end class 

class Employee: 

identification 

constant attributes 

derived attributes 

Name:string; 

Department:string; 

derivations 

events 

preconditions 

end class 

class Patient: 

identification 

constant attributes 

derived attributes 

Name:string; 

RoomNumber:int; 

derivations 

events 

askRoomAttention 

preconditions 

end class 

Hospital dynamic composition of 

Department; 

Department dynamic aggregation of Nurse; 

Department dynamic aggregation of Doctor; 

Department dynamic aggregation of Patient; 

Doctor static specialization of Employee; 
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Nurse static specialization of Employee; 

 

Be advised that the OASIS language has no equivalences for relationships with type 

association, and for sequences of the processes. Also, we have no information coming 

from the knowledge representation language related to derivations and preconditions of 

OASIS, as well as many other details linked to the OASIS specification. 

We summarize the transformation process in Table 5-1. 
 

Table 5-1: CS1 represented elements. The Authors. 
 

Software domain 

element name 

 
KRL element 

KRL meta-model 

element 

KRL meta-model 

complementary 

elements 

FSL meta-model 

element 

FSL meta-model 

complementary 

elements 

FSL element 

(OASIS) 

Hospital Class Node - Class - Hospital 

Department Class Node - Class - Department 

Nurse Class Node - Class - Nurse 

Doctor Class Node - Class - Doctor 

Patient Class Node - Class - Patient 

Employee Class Node - Class  Employee 

 

Hospital.Name 
 

Class atribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Hospital.Name: 

string Type: string Type: string 

Department.Nam 

e 

 

Class attribute 
 

Feature 
Visibility: private  

Feature 
Visibility: private Department.Nam 

e: string Type: string Type: string 

Department.Patie 

ntsCount 

 

Class attribute 
 

Feature 
Visibility: private  

Feature 
Visibility: private Department.Patie 

ntsCount: int Type: int Type: int 

 

Nurse.shift 
 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public  

Nurse.shift: string 
Type: string Type: string 

 

Doctor.isAvailable 
 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Doctor.isAvailable 

: boolean Type: boolean Type: boolean 

 

Patient.Name 
 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Patient.Name: 

string Type: string Type: string 

Patient.RoomNu 

mber 

 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Patient.RoomNu 

mber: int Type: int Type: int 

 

Employee.Name 
 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Employee.Name: 

string Type: string Type: string 

Employee.Depart 

ment 

 

Class attribute 
 

Feature 
Visibility: public  

Feature 
Visibility: public Employee.Depart 

ment: string Type: string Type: string 

 

getDeptName 
 

Class Method 
 

Process 
Visibility: public  

Process 
Visibility: public  

getDeptName 
Sequence: 1 Sequence: 1 

 

getPatientsCount 
 

Class Method 
 

Process 
Visibility: public  

Process 
Visibility: public  

getPatientsCount 
Sequence: 1 Sequence: 1 

 

checkPatient 
 

Class Method 
 

Process 
Visibility: public  

Process 
Visibility: public  

checkPatient 
Sequence: 1 Sequence: 1 

 

askRoomattention 
 

Class Method 
 

Process 
Visibility: public  

Process 
Visibility: public  

askRoomattention 
Sequence: 1 Sequence: 1 

 

Composition 

relationship 

between Hospital 

and Department 

 
 

 
Composition 

relationship 

 
 

 
Composition 

relationship 

Source node: 

Hospital 

 
 

 
Composition 

relationship 

Source node: 

Hospital 

 

Aggregation 

relationship 

between Hospital 

and Department 

Target node: 

Department 

Target node: 

Department 

Type: 

Composition 

Type: 

Composition 
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Table 5-1:     CS1 represented elements. The Authors. (Continuation) 
 

Software domain 

element name 

 

KRL element 
KRL meta-model 

element 

KRL meta-model 

complementary 

elements 

FSL meta-model 

element 

FSL meta-model 

complementary 

elements 

FSL element 

(OASIS) 

Composition 

relationship 

between 

Department and 

Doctor 

 

 
Composition 

relationship 

 

 
Composition 

relationship 

 

 
Source node: 

Department 

 

 
Composition 

relationship 

 

 
Source node: 

Department 

Aggregation 

relationship 

between 

Department and 

Doctor 

 

Composition 

relationship 

between 

Department and 

Nurse 

 
 

 
Composition 

relationship 

 
 

 
Composition 

relationship 

Target node: 

Doctor 

 
 

 
Composition 

relationship 

Target node: 

Doctor 

 

Aggregation 

relationship 

between 

Department and 

Nurse 

Type: 

Composition 

Type: 

Composition 

Type: 

Composition 

Type: 

Composition 

 

Aggregation 

relationship 

between 

Department and 

Patient 

 
 

 
Aggregation 

relationship 

 
 

 
Aggregation 

relationship 

Source node: 

Department 

 
 

 
Aggregation 

relationship 

Source node: 

Department 

 

Aggregation 

relationship 

between 

Department and 

Patient 

Target node: 

Patient 

Target node: 

Patient 

Type: 

Aggregation 

Type: 

Aggregation 

 

Generalization 

relationship 

between 

Employee and 

Doctor 

 
 

 
Generalization 

relationship 

 
 

 
Generalization 

relationship 

Source node: 

Employee 

 
 

 
Generalization 

relationship 

Source node: 

Employee 

 

Generalization 

relationship 

between 

Employee and 

Doctor 

Target node: 

Doctor 

Target node: 

Doctor 

Type: 

Generalization 

Type: 

Generalization 

 

Generalization 

relationship 

between 

Employee and 

Nurse 

 
 

 
Generalization 

relationship 

 
 

 
Generalization 

relationship 

Source node: 

Employee 

 
 

 
Generalization 

relationship 

Source node: 

Employee 

 

Generalization 

relationship 

between 

Employee and 

Nurse 

Target node: 

Nurse 

Target node: 

Nurse 

Type: 

Generalization 

Type: 

Generalization 

 
 

CS1 comprises 19 different domain elements, including classes, features, and processes. 

We manage to represent and extend such domain elements by using 63 KRL meta-model 

elements and FSL meta-model elements. 

We compute 4 different CM values for the CS1: 
 

- We achieve a SM2SMM-CM value of 1 which shows that our KRL meta-model fully 

represents the source model, including all its classes, class attributes, class methods, and 

relationships. 

- We achieve a SMM2TMM-CM value of 1 which shows that the proposed KRL meta-model 

and the FSL meta-model are consistent with the representation of the CS1. Such a CM 

value indicates that every represented element coming from the KRL meta-model is fully 

represented in the FSL meta-model. 
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- We achieve a TMM2TM-CM value of 1 which shows that the proposed FSL meta-model 

represents all the necessary elements of the target model in the context of the CS1. 

Therefore, the context model may be represented by the FSL meta-model. 

- We achieve a SM2TM-CM value of 1. Such a value represents the method capability for 

transforming a class diagram into the OASIS model in the context of the CS1, showing that 

the represented software domain may be fully represented and bidirectionally transformed. 

We summarize the CM values related to CS1 in Table 5-2. 
 

Table 5-2: CS1 CM values summary. The Authors. 
 

 NES NET CM 

SM2SMM (KRL to KRLMM) 63 63 1 

SMM2TMM (KRLMM to FSLMM) 63 63 1 

TMM2TM (FSLMM to Target FSL) 63 63 1 

SM2TM (Source KRL to Target FSL) 63 63 1 

 

We analyze CS2 based on our method for transforming a KRL into a FSL by following its 

five steps: 

Software domain selection: we select the software domain, which in CS1 is related to the 

sales management field. 

Source model selection: since the UNC-Method includes some knowledge representation 

languages such as the process diagram, the class diagram, and the use case diagram, we 

select the three of them as source models. While our method is intended to work with one 

source model at a time, we may use it for representing any KRL. Such diagrams are 

depicted in Figure 5-2, Figure 5-3, and Figure 5-4. 

Source model representation: we use the KRL meta-model for representing our source 

models. The underlying structure of the three diagrams can be represented with the KRL 

meta-model we defined in the previous Chapter as follows. We will use bold italics for 

representing the meta-model elements and italics for instances. 
 

Figure 5- 2. Process diagram representation (Zapata and Arango, 2009). 
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Figure 5-3. Class diagram representation (Zapata & Arango, 2009). 
 

Figure 5- 4. Case diagram representation (Zapata and Arango, 2009). 

- We have six nodes with the names sale, vendor, sales employee, company, order, 

and assistant. 

- The node named vendor has one feature with the name commission and the 

visibility private. Be advised that we need at least the type of the feature with a 

value int, even though it is not declared in the information we have in the diagrams. 

- The node named order has two features: one with the name number and the 

visibility private and one with the name customer and the visibility private. Again, 

we need at least the type of the feature number with a value int and the type of the 

feature customer with a value string even though it is not declared in the information 

we have in the diagrams. 

- The node named order has three processes: one with the name reports, the 

visibility public, and the sequence 2; one with the name confirms, the visibility 

public, and the sequence 3; and one with the name delivers, the visibility public, 

and the sequence 4. 
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- The node named sales employee has one feature with the name base salary and 

the visibility private. Additionally, the type of the feature is int, even though it is 

not declared in the information we have in the diagrams. 

- The node named sale has one process with the name makes, the visibility public, 

and the sequence 1. 

- The node named vendor has two relationships with type generalization in which 

it is the source node: one with the target node named sales employee and one 

with the target node named company. 

- The node named order has one relationship with type aggregation in which it is 

the source node with the target node named vendor. 

- The node named order has one relationship with type association in which it is 

the source node with the target node named vendor. 

- The node named vendor has one relationship with type association in which it is 

the source node with the target node named sale. 

- The node named order has one relationship with type association in which it is 

the source node with the target node named company. 

- The node named order has one relationship with type association in which it is 

the source node with the target node named assistant. 

The previous information completely covers the three diagrams as follows: 

- The basic information is extracted from the class diagram. 

- Nodes with features are considered storages with features of the process diagram, 

e.g., order with number. 

- Nodes with processes are considered processes of the process diagram or use 

cases of the use case diagram, e.g., confirms order. 

- Nodes with relationships with type association with nodes with processes are 

considered lanes or actors of the process diagram and actors of the use case 

diagram, e.g., vendor. 

 
Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can 

represent the target model into one instance of the FSL meta-model. 

After we apply the transformation rules, we obtain the following results: 
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- We have six classes with the names sale, vendor, sales employee, company, 

order, and assistant. 

- The class named vendor has one feature with the name commission, the visibility 

private, and the type int. 

- The class named order has two features: one with the name number, the visibility 

private, and the type int and one with the name customer, the visibility private and 

the type string. 

- The class named sales employee has one feature with the name base salary, the 

visibility private, and the type int. 

- The class named order has three processes: one with the name reports and the 

visibility public, one with the name confirms and the visibility public, and one with 

the name delivers and the visibility public. 

- The class named vendor has two relationships with type generalization in which 

it is the source class: one with the target class named sales employee and one 

with the target class named company. 

- The class named order has one relationship with type aggregation in which it is 

the source class with the target class named vendor. 

- The class named order has one relationship with type association in which it is 

the source class with the target class named vendor. 

- The class named vendor has one relationship with type association in which it is 

the source class with the target class named sale. 

- The class named order has one relationship with type association in which it is 

the source class with the target class named assistant. 

- The class named order has one relationship with type association in which it is 

the source class with the target class named company. 

- The class named sale has one process with the name makes and the visibility 

public. 

 
 

Target model generation: the previous information can be represented in different object- 

oriented FSLs as follows. In this case, we only generate two of them. 

 
- UN-LEND (Mosquera 2021): 
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class Vendor: 

attributes: 

int: commision 

constraints: 

operations: 

class SalesEmployee extends Vendor: 

attributes: 

int: baseSalary 

constraints: 

operations: 

class Company extends Vendor: 

attributes: 

constraints: 

operations: 

class Order: 

attributes: 

int: number 

string: customer 

constraints: 

operations: 

void: reports () { 

} 

void: confirms () { 

} 

void: delivers () { 

} 

class Sale: 

attributes: 

constraints: 

operations: 

void: makes () { 

} 
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class Assistant: 

attributes: 

constraints: 

operations: 

 
 

Be advised that the UN-LEND language has no equivalences for relationships with type 

aggregation and association, and for sequences of the processes. Also, we have no 

information coming from the knowledge representation language related to constraints of 

UN-LEND. 

 
- OASIS (Pastor et al., 1992): 

 
 

class vendor: 

identification 

constant attributes 

derived attributes 

commission:int; 

derivations 

events 

preconditions 

end class 

class SalesEmployee: 

identification 

constant attributes 

derived attributes 

baseSalary:int; 

derivations 

events 

preconditions 

end class 

class Order: 

identification 

number:int; 
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constant attributes 

customer:string; 

derived attributes 

derivations 

events 

reports 

confirms 

delivers 

preconditions 

end class 

class Sale: 

identification 

constant attributes 

derived attributes 

derivations 

events 

makes 

preconditions 

end class 

class Assistant: 

identification 

constant attributes 

derived attributes 

derivations 

events 

preconditions 

end class 

Order dynamic aggregation of 

Vendor; 

SalesEmployee static specialization of 

Vendor; 

Company static specialization of 
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Vendor; 

 
 

Be advised that the OASIS language has no equivalences for relationships with type 

association, and for sequences of the processes. Also, we have no information coming 

from the knowledge representation language related to derivations and preconditions of 

OASIS, as well as many other details linked to the OASIS specification. 

We summarize the transformation process in Table 5-3. 
 

Table 5-3: CS2 represented elements. The Authors. 
 

Software 

domain 

element name 

KRL element KRL meta- 

model element 

KRL meta-model 

complementary 

elements 

FSL 

meta- 

model 

element 

FSL meta-model 

complementary 

elements 

FSL element 

(UN-Lend) 

FSL element 

(OASIS) 

Assistant Storage (Process diagram); 

Class (Class diagram); Lane 

or Actor (Process diagram); 

Actor (Use case diagram) 

Node - Class  Assistant Assistant 

Base_Salary Feature related to a storage 

(Process diagram); Attributes 

(Class diagram) 

Feautre (related to 

Sales_employee) 

Visibility: private Feautre 

(related to 

Sales_em 

ployee) 

Visibility: private BaseSalary:int BaseSalary:int 

Type: int Type: int 

Commission Feature related to a storage 

(Process diagram); Attributes 

(Class diagram) 

Feautre (related to 

Vendor) 

Visibility: private Feautre 

(related to 

Vendor) 

Visibility: private Comission:int Comission:int 

Type: int Type: int 

Company Storage (Process diagram); 

Class (Class diagram) 

Node - Class  Company Company 

Confirms Process (Process diagram); 

Use case (Use case diagram) 

Process (related 

to Order) 

Visibility: public Process 

(related to 

Order) 

Visibility: public Confirms Confirms 

Sequence: 3 Sequence: 3 

Customer Feature related to a storage 

(Process diagram); Attributes 

(Class diagram) 

Feature (related to 

Order) 

Visibility: private Feature 

(related to 

Order) 

Visibility: private Customer:string Customer:string 

Type: string Type: string 

Delivers Process (Process diagram); 

Use case (Use case diagram) 

Process (related 

to Order) 

Visibility: public Process 

(related to 

Order) 

Visibility: public Delivers Delivers 

Sequence: 3 Sequence: 3 

Makes Process (Process diagram); 

Use case (Use case diagram) 

Process (related 

to Sale) 

Visibility: public Process 

(related to 

Sale) 

Visibility: public Makes Makes 

Sequence: 1 Sequence: 1 

Number Feature related to a storage 
(Process diagram); 
Attributes (Class diagram) 

Feature (related 
to Order) 

- Feature 
(related to 
Order) 

- Number Number 

Order Storage (Process diagram); 
Class (Class diagram) 

Node - Class - Order Order 

Reports Process (Process diagram); 
Use case (Use case 
diagram) 

Process (related 
to Order) 

Visibility: public Process 
(related to 
Order) 

Visibility: public Reports Reports 

   Sequence: 2  Sequence: 2   

Sale Storage (Process diagram); 
Class (Class diagram) 

Node - Class - Sale Sale 
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Table 5-3:     CS2 represented elements. The Authors. (Continuation) 

 

Software 

domain 

element name 

KRL element KRL meta- 

model element 

KRL  meta-model 

complementary 

elements 

FSL 

meta- 

model 

element 

FSL meta-model 

complementary 

elements 

FSL element 

(UN-Lend) 

FSL element 

(OASIS) 

Sales_Employee Lane or Actors (Process 

diagram); Actors (Use case 

diagram) 

Node - Class - SalesEmployee SalesEmployee 

Vendor Lane or Actors (Process 

diagram); Actors (Use case 

diagram) 

Node - Class - Vendor Vendor 

Aggregation 

relationship 

between Order 

and Vendor 

Relationship (Class diagram) Relationship Source node: Order Relationsh 

ip 

Source node: Order NA Aggregation 

relationship between 

Order and Vendor 
Target node: Vendor Target node: Vendor 

Type: aggregation Type: aggregation 

Association 

relationship 

between Order 

and Vendor 

Relationship (Class diagram) Relationship Source node: Order Relationsh 

ip 

Source node: Order NA NA 

Target node: Vendor Target node: Vendor 

Type: association Type: association 

Association 

relationship 

between Vendor 

and Sale 

Relationship (Class diagram) Relationship Source node: Vendor Relationsh 

ip 

Source node: 

Vendor 

NA NA 

Target node: Sale Target node: Sale 

Type: association Type: association 

Association 

relationship 

between Order 

and Company 

Relationship (Class diagram) Relationship Source node: Order Relationsh 

ip 

Source node: Order NA NA 

Target node: Company Target node: 

Company 

Type: association Type: association 

Association 

relationship 

between Order 

and Assistant 

Relationship (Class diagram) Relationship Source node: Order Relationsh 

ip 

Source node: Order NA NA 

Target node: Assistant Target node: 

Assistant 

Type: association Type: association 

Generalization 

relationship 

between Sales 

Employee and 

Vendor 

Relationship (Class diagram) Relationship Source node: 

Sales_Employee 

Relationsh 

ip 

Source node: 

Sales_Employee 

Generalization 

relationship between 

Sales_Employee 

and Vendor 

Generalization 

relationship between 

Sales_Employee 

and Vendor 

Target node: Vendor Target node: Vendor 

Type: generalization Type: generalization 

Generalization 

relationship 

between Sales 

Employee and 

Company 

Relationship (Class diagram) Relationship Source node: 

Sales_Employee 

Relationsh 

ip 

Source node: 

Sales_Employee 

Generalization 

relationship between 

Sales_Employee 

and Company 

Generalization 

relationship between 

Sales_Employee 

and Company 

Target node: Company Target node: 

Company 

Type: generalization Type: generalization 

CS2 comprises 35 different domain elements, including storages, classes, use cases, 

features, and relationships. We manage to represent and extend such domain elements by 

using 49 KRL meta-model elements and FSL meta-model elements. 

 
We compute 6 different CM values for the CS1: 
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- We achieve a SM2SMM-CM value of 1.4 showing our KRL meta-model fully represents 

the source model (CS1 comprises several source models, including a class diagram, 

process diagram, and use case diagram). Also, since such a value is higher than 1, it 

indicates the source meta-model representation includes more domain elements than the 

elements represented by the source model. Specifically, in CS1 we complement the source 

model representation by adding visibility and type features for the represented nodes. 

 
- We achieve a SMM2TMM-CM value of 1 showing the proposed KRL meta-model and the 

FSL meta-model are consistent with the representation of the CS1. Such a CM value 

indicates every represented element coming from the KRL meta-model is fully represented 

in the FSL meta-model. 

 
- We compute two different TMM2TM-CM values, one for representing the transformation 

into the UN-LEND model, and one for representing the transformation process into the 

OASIS model. Such values are 0.59 and 0.65, respectively. Since the TMM2TM-CM values 

are lower than 1, they show the target models lack sufficient elements for representing all 

the domain elements coming from the FSL meta-model. Also, such values show the OASIS 

model provides a higher expressiveness than the UN-LEND model as it can include more 

elements, according to the TMM2TM-CM value. 

 
- We compute two different SM2TM-CM values for representing the main KRL-to-FSL 

transformation processes. Such transformations are targeted at two different FSLs: the UN- 

LEND model with a SM2TM-CM value of 0.83, and the OASIS model with a SM2TM-CM 

value of 0.91. Such values indicate the target models are less expressive than the source 

models. 

We summarize the CM values related to the CS2 and answer VR1 in Table 5-4. 

Table 5-4: CS2 CM values summary. The Authors. 
 

 NES NET CM 

SM2SMM (KRL to KRLMM) 35 49 1.4 

SMM2TMM (KRLMM to FSLMM) 49 49 1 

TMM2TM (FSLMM to Target FSL, UN-LEND) 49 29 0.59 

TMM2TM (FSLMM to Target FSL, OASIS) 49 32 0.65 

SM2TM (Source KRL to Target FSL, UN-LEND) 35 29 0.83 

SM2TM (Source KRL to Target FSL, OASIS) 35 32 0.91 
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5.2.2 Performing a FSL-to-KRL transformation 

We follow the method for transforming a FSL into a KRL by following its five steps: 
 

Software domain selection: we select the software domain, which is related in CS3 to the 

householding field. 

Source model selection: we select UN-LEND as source model. Mosquera (2021) extends 

the UN-LEND language proposed by Zapata and Arango (2004) by adding the specification 

of the operations. UN-LEND is pretty similar to other object-oriented formal languages like 

OASIS and ObjectZ. The following specification was extracted from Mosquera (2021): 

 
class Person: 

attributes: 

string: name [0,1] 

string: lastName [0,1] 

int: age [0,1] 

constraints: 

alive: age>0 and age<100 

operations: 

class Man extends Person: 

attributes: 

constraints: 

operations: 

class Woman extends Person: 

attributes: 

constraints: 

operations: 

class Household: 

attributes: 

constraints: 

operations: 

void: contHousehold() { 

int: countOfHouseholdMembers = 0 
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for (HouseholdMembership: householdMembershipList): 

countofHouseholdMembers = countofHouseholdMembers + 

1 

} 

void: establishHousehold() { 

} 

class HouseholdMembership: 

attributes: 

constraints: 

operations: 

void: addHouseholdMembership() { 

} 

Source model representation: we use the FSL meta-model for representing our source 

model. The underlying structure of this specification can be represented with the OOFL 

metamodel we defined in the previous Chapter as follows. We will use bold italics for 

representing the metamodel elements and italics for instances. 

 
- We have five classes with the names person, man, woman, household, and 

householdmembership. 

- The class named person has three features: one feature with the name name, 

the cardinality [0,1], and the type string; one feature with the name lastName, the 

cardinality [0,1], and the type string; and one feature with the name age, the 

cardinality [0,1], and the type int. 

- The class named person has one constraint with the formula alive: age>0 and 

age<100. 

- The class named household has two processes: one with the name 

counthousehold and the type void; and one with the name establishhousehold and 

the type void. 

- The process named counthousehold has one valuation with formula {int: 

countOfHouseholdMembers = 0 for (HouseholdMembership: 

householdMembershipList): countofHouseholdMembers = 

countofHouseholdMembers + 1}. 
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- The class named householdmembership has one process with the name 

addhouseholdmembership and the type void. 

- The class named person has two relationships with type generalization in which 

it is the source class: one with the target class named man and one with the 

target class named woman. 

 
Heuristic rule application: we analyze the equivalences from the heuristic rules, so we can 

represent the target model into one instance of the KSL meta-model. 

After applying the equivalences from the heuristic rules, we have the following results for 

instantiating the knowledge representation language metamodel: 

 
- We have five nodes with the names person, man, woman, household, and 

householdmembership. 

- The node named person has two relationships with type generalization in which 

it is the source node: one with the target node named man and one with the target 

node named woman. 

- The node named person has three features: one feature with the name name and 

the type string; one feature with the name lastName and the type string; and one 

feature with the name age and the type int. 

- The node named household has two processes: one with the name 

counthousehold and the type void; and one with the name establishhousehold and 

the type void. 

- The node named householdmembership has one process with the name 

addhouseholdmembership and the type void. 

 
 

As you can see, too much information is missing in the transformation since the usual 

syntax of the knowledge representation languages lacks several elements. For example, 

the valuations of the processes, the constraints of the classes, and the cardinality of 

the features have no equivalences in the knowledge representation language meta-model. 

On the other side, elements like the relationships with type association and aggregation 

and the sequence of the processes are absent from the specification based on UN-LEND. 
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Target model generation: the previous information can be represented in different KRLs. In 

this case, we represent the gathered knowledge by using a class diagram as shown in 

Figure 5-5. 

Figure 5- 5. CS3 target model representation. The Authors. 

We summarize the CS3 transformation process in Table 5-5. 
 

CS2 comprises 27 different domain elements, including classes, attributes, operations, 

constraints, and relationships. We manage to represent and extend such domain elements 

by using 27 KRL meta-model elements and FSL meta-model elements. 

 
We compute 4 different CM values for the CS3: 

 

- We achieve a SM2SMM-CM value of 1, showing all the domain elements coming from the 

source model (UN-LEND) may be represented by the FSL meta-model. In this case, we 

maintain the integrity of the source model by representing all its knowledge. 

- We achieve a SMM2TMM-CM value of 0.89 which indicates we lost some knowledge in 

the transformation process as the value is lower than 1. Such a value shows the target 

model (the KRL meta-model) lacks some of the knowledge from the source model. 

Specifically, in CS2, we lack constraints in the KRL meta-model. 

-We achieve a TMM2TM-CM value of 1, showing all the elements represented by the KRL 

meta-model may be represented by the target model (class diagram). While such a value 

indicates we can achieve a full transformation from the KRL meta-model to the target KRL 

model, we probably fail in achieve the full transformation from the initial source model (UN- 

LEND). 
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Table 5-5: CS3 transformation process summary. The Authors. 
 

Software domain element 
name 

FSL   element   (UN- 
LEND) 

FSL meta- 
model 
element 

FSL meta-model 
complementary elements 

KRL meta- 
model 
element 

KRL meta-model 
complementary 
elements 

KRL element (Class 
diagram) 

 

Person Class Class - Node - Person 

name Person attribute, 
type:int, cardinality: [0,1] 

Feature Type: string Feature Type: string name 

Cardinality: [0,1] 

lastname Person attribute, 
type:int, cardinality: [0,1] 

Feature Type: string Feature Type: string lastname 

Cardinality: [0,1] 

age Person attribute, 
type:int, cardinality: [0,1] 

Feature Type: int Feature Type: int age 
Cardinality: [0,1] 

alive Person constraint Constraint formula - alive: age>0 and 
age<100 

NA NA alive 

Man Class Class - Class - Man 

Woman Class Class - Class - Woman 

Household Class Class - Class - Household 

contHousehold Household operation Process type: void Process type: void contHousehold 

valuation with formula {int: 
countOfHouseholdMembers 
= 0 for 
(HouseholdMembership: 
householdMembershipList): 
countofHouseholdMembers 
= 
countofHouseholdMembers 
+ 1}. 

NA 

establishHousehold Household operation Process type: void Process type: void establishHousehold 

HouseholdMembership Class Class - Class - HouseholdMembership 

addHouseholdMembership HouseholdMembership 

operation 

Process type: void Process type: void addHouseholdMembership  

Man extends Person Generalization 
relationship 

Relationship type: generalization Relationship type: 
generalization 

Man extends Person 
relationship 

 

source class: Person source node: 
Person 

 

target class: Man target node: Man  

Woman extends Person Generalization 
relationship 

Relationship type: generalization Relationship type: 
generalization 

Woman extends Person 
relationship 

 

source class: Person source node: 
Person 

 

target class: Woman target node: 
Woman 

 

 
- We achieve a SM2TM-CM value of 0.89 which indicates we lack a full transformation of 

the source model (UN-LEND) into the target model (class diagram). In the context of the 

FSL-to-KRL transformation, UN-LEND is more expressive than the class diagram as such 

a model can be used for representing more complex domain elements such as constraints. 

We summarize CS3 CM values and answer to VRQ2 in Table 5-6. 
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Table 5-6: CS2 CM values summary. The Authors. 
 

 NES NET CM 

SM2SMM (FSL to FSLMM) 27 27 1 

SMM2TMM (FSLMM to KRLMM) 27 24 0.89 

TMM2TM (KRLMM to Target KRL, class 
diagram) 

24 24 1 

SM2TM (Source FSL to Target KRL, UN-LEND- 
to-class diagram) 

27 24 0.89 

 
5.3 Work products 

 
5.3.1 Meta-models 

The proposed method comprises three meta-models: the KRL meta-model, the FSL meta- 

model, and the Transformation rules meta-model. Since such meta-models comprise well- 

known elements coming from the KRL and FSL fields, such meta-models may be 

independently reused for supporting other KRL and FSL proposals in the context of RE. 

 
5.3.2 A prototype for transforming KRL-FSL pairs 

The prototype of the method for transforming KRL-FSK pairs is available at 

https://github.com/ramanjar/prototipo. Such a prototype integrates the meta-models and 

the heuristic rules, so modelers can automatically transform KRLs into FSLs and vice-versa. 

https://github.com/ramanjar/prototipo


 

 
 
 
 
 
 
 

 

6. Conclusions and challenges 

 
6.1 Conclusions 

In this Ph.D. Thesis we proposed a comprehensive method for KRL-FSL pair transformation 

for improving the knowledge representation and transformation process in the context of 

RE. We obtained the following contributions: 

Regarding representation language characterization 
 

KRLs and FSLs were characterized by performing a systematic literature review of 

model-to-model transformation proposals, focused on KRL-FSL pairs. 

Recurrent elements related to KRLs were identified from the related KRLs within the 

KRL-FSL pair transformation proposals, including nodes, features, processes, and 

relationships. 

Recurrent elements related to FSLs were identified from the related FSLs within the 

KRL-FSL pair transformation proposals, including classes, features, functions, 

processes, constraints, invariants, relationships, data types, and derivations. 

Regarding representation language meta-model definition 
 

A new KRL meta-model is defined for representing KRLs in the context of RE. 
 

New KRL meta-model elements are based on the KRL components identified, 

including nodes, features, processes, and relationships. 

A new FSL meta-model is defined for representing FSLs in the context of RE and 

object-oriented programming. 

New FSL meta-model elements are based on the FSL components identified, 

including classes, features, functions, processes, constraints, invariants, 

relationships, data types, and derivations. 

PCSs were used for representing meta-models as they are models close to natural 

languages, mitigating the need for technical skills for understanding and modeling 

software domains while using KRLs and FSLs. 
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Modelers should use the meta-models for grasping a more intuitive understanding 

of KRLs and FSLs. 

Regarding transformation heuristic rule definition 
 

New heuristic rules are defined for representing the equivalences between the KRL 

meta-model and the FSL meta-model. 

Modelers should use such heuristic rules for performing model-to-model 

transformations in the context of KRL-FSL pairs. 

Regarding the method for transforming KRL-FSL pairs 
 

A new method for KRL-FSL pair transformation was proposed for improving the 

knowledge representation and transformation process in the context of RE, 

including a KRL meta-model for representing any KRL in the context of RE, a FSL 

meta-model for representing any FSL in the context of RE and object-oriented 

programming, and a set of heuristic rules for describing the equivalences between 

the KRL and FSL meta-models. 

The method integrates the fields of KRL, FSL, and RE, allowing for describing 

concepts and relationships coming from a software domain, and the features and 

constraints related to more complex software systems. 

Modelers should use the method for enhancing the comprehension and 

representation of complex software systems as they can combine several KRLs and 

FSLs, allowing them for representing different views of the software system. 

The method does not impose restrictions on the type of KRL and FSL utilized or the 

software domain targeted, allowing modelers for adapting the method to various 

RE-related contexts. 

Modelers should use the method for transforming KRLs into FSLs and vice-versa. 

The bidirectional nature of the proposed method eases the knowledge exchange 

between KRL and FSL representations, fostering the navigation between the 

expressive capabilities of KRLs and the unambiguous representations related to 

FSLs. 

Our method is aimed at enhancing the comprehensibility of software domain 

modeling by integrating three powerful meta-models and enabling bidirectional 

transformations, thereby empowering software analysts and modelers for tackling 

increasingly complex software systems. 

Regarding the method validation 
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The Consistency Metric was defined for indicating the representation and 

transformation capabilities related to the proposed method, including the 

representation of KRLs, FSLs, and the bidirectional transformation of KRL-FSL 

pairs. 

Three case studies were defined for evaluating the transformation capabilities of our 

method, including some KRLs, FSLs, and software domains. 

Validation results were obtained by using the consistency metric by indicating the 

method prototype can be used for representing KRLs, FSLs, and performing 

bidirectional transformation between KRL-FSL pairs in the context of RE regardless 

of the KRL-FSL pair and the software domain. 

Modelers should use the consistency metric for evaluating model-to-model 

transformation processes in the context of KRL-FSL pairs, easing the understanding 

of the expressiveness and shortcomings of KRLs and FSLs in the context of RE. 

 
6.2 Challenges 

The following challenges are identified as future work from this Ph.D. Thesis: 
 

Our method is focused on KRL-FSL pairs. However, other unattended types of 

representation languages can be addressed, such as domain-specific languages, 

ontology languages, control specification languages, and rule-based languages. 

Our method allows modelers for performing bidirectional transformations. However, 

ensuring the bidirectional transformation method produces equivalent and complete 

representations remains challenging as KRLs are not as expressive as FSLs, 

hardening the FSL-to-KRL transformation because of the loss of knowledge in the 

process. 

The CM can be used and extended in other model transformation scenarios such 

as model-to-text and text-to-model. 

The method for transforming KRL-FSL pairs can be used as an educational 

environment for novice software analysts and modelers, allowing them for 

mitigating the impact of the complexity related to the understanding and adoption 

of KRLs and FSLs while learning and performing software modeling. 
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