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José Luis Falla León

Tesis o trabajo de investigación presentada(o) como requisito parcial para
optar al t́ıtulo de:

Magister en F́ısica

Director:
Dr. Carlos Leonardo Viviescas Ramı́rez
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Resumen

T́ıtulo: Corrección de Error Cuántico Mediante Redes Neuronales
Convolucionales Cuánticas

Como una subclase de algoritmos cuánticos variacionales (ACVs), las redes
neuronales convolucionales cuánticas (RNCCs), han surgido como un algo-
ritmo eficiente de corrección de errores cuánticos (QEC) y como un código
de corrección de errores cuánticos completo. A través de la optimización
h́ıbrida cuántico-clásica de una arquitectura RNCC para un modelo de error
en particular, es posible “entrenar” una red neuronal para reducir las tasas
de error lógico para modelos de errores espećıficos. Entrando a la era de la
tecnoloǵıa cuántica ruidosa de escala intermedia (CREI), la corrección de er-
rores cuánticos es necesaria para la computación cuántica precisa con qubits
ruidosos, y los ACVs pueden propiciar una computación cuántica confiable
a corto plazo y a escala intermedia.
Palabras clave: corrección de error cuántico; redes neuronales convolu-
cionales cuánticas; computación cuántica; algoritmos cuánticos.
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Abstract

A sub-class of variational quantum algorithms (VQAs), the quantum con-
volutional neural network (QCNN), has emerged as an efficient quantum
error correction (QEC) algorithm and full quantum error-correcting code.
Through hybrid quantum-classical optimization of a QCNN architecture for
a particular error model, it is possible to “train” a neural network to de-
crease the logical error rates for specific error models. Going into the noisy
intermediate-scale quantum (NISQ) technology era, effective quantum error
correction is necessary for accurate quantum computing with noisy qubits,
and VQAs can bring about near-term, intermediate-scale, reliable quantum
computing.
Keywords: quantum error correction; quantum convolutional neural net-
work; quantum computing; quantum algorithms.
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1 Introduction

As we move into the intermediate noisy-scale quantum (NISQ) technology
era [1], it is more pressing than ever to develop efficient quantum error-
correction algorithms for near-term, reliable quantum processing. In recent
years, the field of quantum error correction has seen promising advances from
the use of machine learning for error mitigation. The quest for quantum
neural networks is taking center stage as we approach this new technological
era–one lying at the interface between artificial intelligence (AI), learning
systems, quantum information theory, and emerging quantum technologies.
With the revival of machine learning and neural networks as competent learn-
ing systems, it is crucial to investigate to what extent quantum information
and quantum computation ideas can benefit from machine learning and neu-
ral network problems, and vice versa. In particular, it is important to un-
derstand whether quantum error correction can improve through the use of
neural networks, given a neural network’s ability to learn highly complex,
non-linear functions.

It is reasonable to postulate that quantum computers may outperform clas-
sical computers on machine learning tasks [2], given that there is already
sub-classes of problems for which quantum computers outperform classical
machines [3]. Furthermore, quantum neural networks can be applied to many
areas of research, highlighting their importance and relevance as an emerging
technology. Many applications of machine learning and neural networks are
geared towards condensed matter problems, as these problems often become
intractable due to the exponentially-growing number of parameters needed to
describe a quantum system [4–6]. Additionally, there is one particular area
where quantum neural networks can provide significant advances: quantum
error correction [7]. A quantum neural network can be constructed with
quantum unitary gates and trained such that it is able to accurately detect
and correct errors associated with particular error models.

Current implementations of medium- and large-scale quantum computing
and quantum information processing rely heavily on effective quantum error
correction schemes. For more than two decades now, many efforts have been
made to determine effective quantum error correction algorithms [8–11]. The
field of quantum error correction has been mostly theoretical, though more
recent efforts focus on experimental quantum error correction schemes, with
approaches ranging from the use of superconducting qubits [12] and trapped
ions [13], to materials with long quantum coherence times [14]. One of the
main issues to overcome in quantum error correction is the large number
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of ancillary qubits required to correct errors without destroying the super-
position of the encoded logical qubit. In general, quantum computation
requires a large number of qubits in order to be a relevant technology; the
“quantum supremacy” limit is set around 60 qubits [3].1 As the number of
qubits increases, so increases the possible errors due to decoherence. Addi-
tionally, it is experimentally complex to achieve full connectivity between all
qubits. Currently, the largest fully-connected quantum computer is an 11-
qubit progammable quantum computer in a trapped ion system composed of
13 171Yb+ ions [15]. Even though there are schemes to reduce the number
of qubits involved in quantum error correction [16], it is still necessary to
determine algorithms that will effectively detect and correct quantum errors.

The best resource to combat quantum error is entanglement (ironically, en-
tanglement is also the reason for quantum error). By entangling logical qubits
with ancilliary qubits, it is possible to measure these ancilla qubits and act on
logical qubits based on measurement outcomes. The first full quantum error
correction code developed, the 9-qubit Shor code [9], requires at least eight
physical qubits in order to encode a single logical qubit; correcting for both
phase-flip and bit-flip errors. Since the Hilbert space dimension scales as 2N

(where N is the number of qubits), it is clear that the use of large numbers
of qubits makes this problem intractable, as the number of ancilla qubits
would be impossible to achieve in the near future. Efficient QEC schemes
are necessary moving forward, even in the NISQ technology era [17], in order
to achieve fault-tolerant quantum computing. Therefore, one of the goals
in the NISQ era is to extract the maximum quantum computational power
from current devices, while developing techniques that might be suited for
the long-term goal of fault-tolerant quantum computing [18]. In this regard,
it is important to focus on the various types of error that can affect quantum
information processing, including correlated errors, for which efficient quan-
tum error-correcting algorithms are yet to be developed.

Even though there have been some efforts in trying to study and reduce
correlated noise [19,20], many schemes assume that decoherence only affects
one qubit of the superposition, while the other qubits remain unchanged.
The assumption that noise is not correlated stems from classical information
theory’s independence of noise [21]. At the macroscopic scale of classical sys-
tems, the theory of independence of noise is accurate, yet, based on the nature
of quantum systems and quantum interactions, it is evident that this assump-

1As of the writing of this work, the largest quantum computer is IBM’s ‘Osprey’ pro-
cessor, containing 433 connected qubits.
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tion does not necessarily hold true, as correlated errors can arise from a myr-
iad of interactions. These interactions can range from “small scale”, such as
two-particle interacting via a dipole-dipole interaction, to “large scale”, such
as a system interacting with external fields. These types of interactions are
common in open quantum systems and are considered sources of quantum
noise. Even with current quantum control techniques, there are errors associ-
ated with physical realizations of quantum computer frameworks, quantum
logic gates, and quantum circuits, to name a few, which arise from these
unwanted interactions. Additional to devising novel techniques for keeping
quantum systems “closed”, it is necessary to develop effective schemes to de-
tect and correct quantum errors, as most quantum system inevitably interact
with the environment.

Recently, the idea of a quantum convolutional neural network has emerged
as a viable scheme for quantum error correction. It has been shown that a
QCNN is able to outperform other quantum error correction schemes when
correcting for correlated errors, while still correcting single-qubit errors [7].
A quantum convolutional neural network is part of a more general class of
algorithms that have become an active field of quantum computation re-
search: variational quantum algorithms (VQAs). These variational quantum
algorithms, in turn, are part of the larger concept of quantum differentiable
programming. In essence, these algorithms involve a quantum-classical inter-
face, in which a quantum circuit is constructed with unitary gates depending
on parameters to be variationally optimized through a classical optimiza-
tion procedure. These classes of variational algorithms have a wide range
of applications, including finding ground states (variational quantum eigen-
solver), solving combinatorial optimization problems (quantum approximate
optimization algorithm), in mathematical applications such as factoring, and
in new frontiers of quantum information and quantum metrology, just to
name a few [22].

Based on their wide range of applications, it is paramount to investigate vari-
ational quantum algorithms, especially those that bring us closer to large-
scale, fault-tolerant quantum computing. In this work, I introduce the basic
building blocks toward building an error-correcting scheme based on a varia-
tional approach and show that it is possible to achieve a reduction in logical
error for a particular QCNN 3-qubit architecture, exemplifying the power of
this variational approach. In Chapter 2 I introduce the concept of quantum
noise and present the mathematical formalism to describe noise, including the
operator-sum representation and the master equation approach. In Chapter
3 I introduce the concept of quantum error correction and present textbook
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examples of error-correcting schemes. In Chapter 4 I delve into the machine
learning concept of neural networks and bring it all together in Chapter 5,
where I present the quantum convolutional neural network as an error correc-
tion scheme, first introduced in [7], and show how this model can be trained
to correct arbitrary single-qubit errors in a 3-qubit code. Finally, in Chapter
6 I present the conclusions of this work and provide and outlook for the field
of quantum error correction via quantum convolutional neural networks.
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2 Quantum Noise

Open quantum systems are prone to unwanted interactions with the environ-
ment, giving rise to decoherence (noise) in quantum information processing.
Therefore, to have reliable quantum information processing, it is necessary
to understand the mechanisms behind noise and devise noise control meth-
ods. In order to understand quantum noise, it is imperative to find a way to
describe the dynamics of open quantum systems. The quantum operations
mathematical formalism is a helpful tool in describing such dynamics, as it
addresses a wide range of physical scenarios. The quantum operations for-
malism can describe the dynamics of a system that is weakly coupled to the
environment, a system that is strongly coupled to the environment, a system
that is originally closed and suddenly opened to the environment, as well as
systems with discrete state changes.

In this chapter, I review some classical noise concepts before moving on to
the quantum operations formalism. The quantum operation formalism can
be explained with three different approaches; each of these approaches turn
out to be equivalent, albeit their differences. After building the basis to
study quantum noise through the quantum operations formalism, I look at
examples of quantum noise, including the bit flip, phase flip, depolarization,
amplitude damping, and phase damping channels and how errors arise from
each of these channels. In the end, I present an alternative approach to
study open quantum system dynamics under noise, the master equation ap-
proach, and show an example of a two-level system under noise. This chapter
follows Nielsen and Chuang’s Quantum Computation and Quantum Informa-
tion textbook closely [23], as it provides a very clear picture of both classical
and quantum noise in a way that can be applied to various problems of in-
terest, including quantum error correction, which will follow in a subsequent
chapter.
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2.1 Building the Basis for Quantum Noise

In order to understand quantum noise, it is important to understand noise in
classical systems. A simple model to understand classical noise is a classical
hardware used to store bits of information. In classical computing, a bit is
either stored in binary as 0 or 1. If these bits are stored in a hard disk drive,
as is most common, they may experience external magnetic fields that can
cause a flip to occur, that is, a bit flipping from the state 0 to the state 1, or
vice versa. This probability of flipping can be modeled as having a probabil-
ity p that the bit will flip and a probability 1−p that the bit remains the same.

Figure 1: Schematic of classical bit flip. With probability p the bit flips, and
it remains the same with probability 1− p.

In principle, the probability of a bit flip occurring is calculated by sampling
the external magnetic fields in the environment in which the hard drive is
operating (through Maxwell’s equations) and model how the fields will affect
the stored bits over time.

This prescription can be generalized to find the probability of an error occur-
ring in various systems and environments. The issue here becomes finding
an effective model for the environment, as well as the environment-system
interactions. A high level of accuracy in this model, which describes a phys-
ical system, can be attained if the model is constructed conservatively and
the system’s observables are studied closely to determine whether they follow
the model or not.

In the hard drive example above, the behavior of a bit can be described by:

p(Y = y) =
∑
x

p(Y = y|X = x)p(X = x), (1)
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where X is the initial state of the bit, Y is the final state of the bit, and the
conditional probabilities p(Y = y|X = x) are the transition probabilities.
This equation is known as the law of total probability. If the initial probabil-
ities that the bit is in the state 0 or 1 are defined as p0 and p1, respectively,
and q0 and q1 as the corresponding probabilities after the noise, equation 1
can be written explicitly as:q0

p0

 =

1− p p

p 1− p

p0

q0

 . (2)

Therefore, for a single stage process, the output probabilities ~q are related
to the input probabilities ~p by:

~q = E~p, (3)

where E is the transition probabilities matrix, also referred to as the evolu-
tion matrix. The evolution matrix E must be positive and complete. It is
clear that a main feature of a classical noise process is that there is a lin-
ear relationship between input and output probabilities. This linearity will
translate well when looking at quantum noise, since the dynamics of quan-
tum systems behave in a linear manner.

Expanding to instances where noise happens at multiple stages in the process,
the noise acts independently in each stage. Namely, this process becomes a
stochastic Markovian process. Physically, it is safe to assume that noise acts
independently: an environmental source of noise acting on one component of
the system is different than a noise source acting on a different part of the
system, therefore independent. If the noise acting on a system is not caused
by independent environments, then the Markovicity rule does not hold.

In general, there are two categories of quantum noise: coherent noise and
incoherent noise. For the case of coherent noise, it can be described by uni-
tary operations that maintain the purity of the output quantum state. In
this sense, coherent noise is less problematic than incoherent noise. Com-
mon sources of coherent noise are systematic errors originating from devices
that are not perfectly calibrated; for example, a logical gate performing a
rotation of φ+ ε rather than a rotation of φ. On the other hand, incoherent
noise is more problematic, as it involves entanglement of qubits with the en-
vironment, resulting in mixed output states. A key difference between these
types of noise is that incoherent noise results in random outputs, regardless
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of the measurement basis (in the Examples of Quantum Noise and Quantum
Operations subsection, I show how this is not the case for coherent noise).

2.2 Quantum Operations

Classical noise can be described as a stochastic Markov process involving
classical states, which are described by vectors of probabilities. In a similar
fashion, the dynamics of a quantum state can be described by employing
the density operator ρ, and studying how this operator transforms under
different mappings. In short, quantum states transform as:

ρ′ = E(ρ), (4)

where E is a quantum operation mapping ρ to ρ′. A common example of
a quantum operation is the unitary evolution of a quantum system. In the
quantum operations formalism, this unitary evolution can be described as:

E(ρ) = UρU †. (5)

Since pure states evolve under unitary transforms as |ψ〉 → U |ψ〉, it is clear
that, equivalently, ρ → E(ρ) ≡ UρU † for ρ = |ψ〉 〈ψ|. Thus, the dynamics
of closed quantum systems can be studied through the quantum operations
formalism, as it is described by unitary transforms.

Unfortunately, closed quantum systems are practically impossible to achieve
(except possibly if the whole universe is taken as a closed-off system). Nev-
ertheless, the quantum operations formalism can still be applied to open
quantum systems, if a few assumptions are made. Namely, taking both the
system of interest and the environment as a closed system being subjected
to a unitary transformation U . In this scenario, the final state of the system,
E(ρ) might not be related to the initial state of the system ρ through a uni-
tary transform. A further assumption is that the total input state, meaning
the system-environment state, is a product state ρ⊗ρenv. After the transfor-
mation U the reduced density matrix of the system is obtained by performing
a partial trace over the environment:

E(ρ) = trenv[U(ρ⊗ ρenv)U †]. (6)

In general, the system and the environment do not start in a product state,
although under certain experimental considerations, this assumption is ac-
curate. For example, a quantum state can be prepared so that there are
no correlations with the environment. Clearly, as the system evolves, the
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system’s and environment’s degrees of freedom become correlated, and the
system-environment density matrix is no longer a product state.

In reality, an environment has infinite degrees of freedom, yet, for this for-
malism, it is only necessary to model the environment up to a Hilbert space
dimension of d2 if the Hilbert space of the system is d.

This definition of quantum operations can be generalized to include different
input and output spaces. For example, a qubit prepared in some unknown
state ρ, labeled A, and a qutrit prepared in the standard state |0〉, labeled
B, evolve through a unitary transformation U , and the joint system evolves
to the state U(ρ⊗ |0〉 〈0|)U †. If system A is traced out to leave system B in
a final state ρ′, then the quantum operation describing this process is:

E(ρ) = ρ′ = trA(U(ρ⊗ |0〉 〈0|)U †). (7)

In this case, the quantum operation E maps density operators of the input
system, A, to density operators of the output system, B. It is also possible
to trace over subsystem B to obtain a quantum operation on subsystem A,
that is, the quantum operation maps density operators of system B to den-
sity operators of system A.

2.3 Operator-Sum Representation

The operator-sum representation consists of a different approach to quan-
tum operations, with the same results. In the previous section, the approach
involved studying the interactions between systems and environments. This
approach is helpful because it provides a clear physical picture, yet it lacks
utility. On the other hand, the operator-sum representation provides a math-
ematical framework for quantum operations that is useful for calculations and
theoretical work, yet it lacks the concreteness of the system-environment ap-
proach.

The operator-sum representation recasts equation 6 in terms of operators
on the principal system’s Hilbert space alone. If an orthonormal basis for a
finite-dimensional state space of the environment is defined as |ek〉, then the
initial state of the environment can be described by ρenv = |e0〉 〈e0|. Plugging
this expression into equation 6:
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E(ρ) =
∑
k

〈ek|U
[
ρ⊗ |e0〉 〈e0|

]
U † |ek〉

=
∑
k

EkρE
†
k.

(8)

This equation corresponds to the operator-sum representation of E , where
Ek ≡ 〈ek|U |e0〉 are operators, commonly referred to as Kraus operators,
that act on the state space of the principal system. As was the case for the
evolution matrix, the operator elements {Ek} must satisfy the completeness
relation. For the case of the classical evolution matrix, this required that
the probability distributions be normalized to one. For the operator-sum
elements, the completeness relation means that the trace of E(ρ) be equal to
one. Namely, ∑

k

E†kEk = I. (9)

The equation above holds for operations that are trace-preserving. This def-
inition is equivalent to equation 6. There are non-trace-preserving quantum
operations for which

∑
k E
†
kEk ≤ I, in which extra information about what

occurred in the process is obtained via measurement.

From the definition above, the operator-sum representation offers an intrinsic
way of studying system dynamics, since properties of the environment don’t
have to be considered explicitly: everything is contained within the operator
elements Ek. This representation of quantum operations greatly simplifies
calculations and allows for theoretical insight. Lastly, it is worth noting that
if there is only interest in the dynamics of the principal system, then a rep-
resentation that ignores unimportant information about other systems can
be picked, as many different environmental interactions may cause similar
dynamics.

In the next section, I present a few examples of quantum noise and quantum
operations. Specifically, I show the trace and partial trace within the quan-
tum operations formalism, as well as the error channels used to construct the
error-correction model to follow.
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2.4 Examples of Quantum Noise and Quantum Oper-
ations

In order to illustrate the power of the quantum operations formalism, I be-
gin this section by presenting concrete examples of quantum operations and
quantum noise. It is important to understand, under this formalism, the
practical effect of quantum noise on systems, as it will lead to a better un-
derstanding of the techniques used for error correction.

First, I introduce the most common sources of error (and error channels)
in quantum systems, including the bit flip, phase flip, amplitude damping,
generalized amplitude damping, phase damping, and depolarizing channels.
With a simple example of a Bell state construction, I show how different
sources of error affect our quantum computation.

I follow by introducing the trace and partial trace as quantum operations,
and finish this section by providing a concrete application of quantum op-
erations. Namely, the master equation approach to quantum dynamics, as
it is a powerful tool to describe continuous-time dynamics of open quantum
systems.

2.4.1 Error Channels

Within the operator-sum representation (Kraus operators), common sources
of error can be described, along with their associated probabilities. A com-
mon error in quantum computing is the bit flip error. This type of error
can be modeled by a bit flip channel: a transformation that flips the state
of a qubit (ie. by applying a Pauli X gate) with probability p, and leaves it
unchanged (ie. by applying the Identity gate) with probability 1− p (For a
list of common quantum gates, see [23]). In the Kraus operator formalism:

E0 =
√

1− p

1 0

0 1

 ,

E1 =
√
p

0 1

1 0

 .

Similarly, the Kraus operator representation of a phase flip channel—a trans-
formation that changes the phase of a qubit (by applying a Pauli Z gate) with
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probability p and leaves it unchanged otherwise—is given by:

E0 =
√

1− p

1 0

0 1

 ,

E1 =
√
p

1 0

0 −1

 .

In both of these cases, the only “error” parameter is the probability of error
p, which is not always the case.

Figure 2: Variation of expectation value (measured in the computational
basis) in the construction of a Bell state for increasing probability of er-
ror, shown for various error channels. The change in expectation value is
measurement-basis dependent, which is why there is no change in expec-
tation value for the phase flip and phase damping channels (overlapped at
1.0). This figure was produced using PennyLane’s noisy circuit simulator,
with each of the corresponding noise probabilities injected into the circuit.

Figure 2 presents a schematic of the effect of an increasing probability of
error when preparing a Bell state. A Bell state is defined as:
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|ψ〉 =
1√
2

(|00〉+ |11〉), (12)

which corresponds to a maximally entangled state. The Bell state is ubiqui-
tous in quantum computation, since it is the basis for many quantum algo-
rithms, such as the quantum teleportation algorithm. In an ideal, error-free
implementation of the Bell state construction, a measurement of the expec-
tation value of both qubits in the computational basis should unequivocally
yield 1.

Figure 2 shows the expectation value of making a measurement in the com-
putational basis (Z-basis) on both qubits. That is, the expectation value
represents the operation Z0 ⊗ Z1 on the Bell state. In other words,

〈ψ|Z0Z1 |ψ〉 =
1

2
(〈00|+ 〈11|)Z0Z1(|00〉+ |11〉). (13)

For this particular case, the expectation value is 1, as already mentioned,
since no error has a occurred; the Bell state is as eigenstate of the Z0Z1

operator.

The fact that the measurement is performed in the computational basis is
reflected in the fact that for the case of the phase flip and phase damping
channels there is no reduction in the expectation value. Since the Bell state
is an eigenstate of the Pauli Z matrix, the expectation value does not change.
If, instead, the measurement were performed in the X-basis, there would be
a decrease in the expectation value for these error channels and the expecta-
tion value for the bit flip channel would remain unchanged.

As mentioned previously, most of these channels only involve the parameter
p, representing the probability of an error occurring. This is not the case for
the generalized amplitude damping channel. The Kraus operators for this
error type are:

E0 =
√
p

1 0

0
√

1− γ

 ,

E1 =
√
p

0
√
γ

0 0

 ,
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E2 =
√

1− p

√1− γ 0

0 1

 ,

E3 =
√

1− p

 0 0
√
γ 0

 .

Here, the parameter γ ∈ [0, 1] is the probability of damping, and p ∈ [0, 1]
is the probability of the system being excited by the environment. 2 This
error channel is useful when modeling the exchange of energy between a qubit
and its environment at finite temperature. In Figure 2, p = 0.1; not to be
confused with the probability of a bit flip or a phase flip occurring, as is the
case for the bit flip and phase flip error channels.

2.4.2 Trace and Partial Trace

It is well known that measurements performed on quantum systems lead to
a permanent change in the system. The quantum operations formalism can
be employed to describe the effects of a measurement on a quantum system.
On the one hand, the outcome of a measurement on a system can be deter-
mined, with its respective probability, and on the other hand the change that
took place in the system as an effect of that measurement can be determined.

A simple quantity related to a measurement is the trace map ρ→ tr(ρ). This
mapping can be cast through the quantum operations formalism as follows:
Let HQ be any input Hilbert space spanned by an orthonormal basis |1〉 ... |d〉,
and H ′Q be a one-dimensional output space spanned by the state |0〉. This
quantum operation is defined as:

E(ρ) =
d∑
i=1

|0〉 〈i| ρ |i〉 〈0| . (15)

Since |0〉 〈0| is an unimportant multiplier, E(ρ) = tr(ρ) |0〉 〈0| is the trace
function.

Now, to trace out a system R from a joint system QR, a basis |j〉 for system
R and a linear operator Ei : HQR → HQ can be defined as:

2Notice that in previous error channels, the probability of an error occurring is denoted
by p. In the case for the amplitude damping channel, this p takes a different meaning, as
explained in the text
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Ei

(∑
j

λj |qj〉 |j〉
)
≡ λi |qi〉 , (16)

where λj are complex coefficients, and |qj〉 are arbitrary states of the system
Q. Here Ei is an operator that forms a basis of the form (8). Therefore, the
quantum operation E becomes:

E(ρ) =
∑
i

EiρE
†
i . (17)

This operation takes the system from QR to Q, by tracing out subsystem R.
If the operation E is applied:

E(ρ⊗ |j〉 〈j′|) = ρδj,j′ = trR(ρ⊗ |j〉 〈j′|), (18)

it is clear that, by linearity, E = trR. Thus, the trace and partial trace can
be defined within the operator-sum formalism.

2.4.3 Master Equation Approach

Research of open quantum systems is currently an active area of research,
and one that gives great insight into quantum error and quantum error cor-
rection. As such, it important to have a wide range of tools to study open
quantum systems, such as the master equation approach.

In the master equation approach, the dynamics, or time evolution, of an
open quantum system is described with a differential equation that properly
describes non-unitary behavior. The most general form of a master equation
comes in the form of the Lindblad equation:

∂ρ

∂t
= − i

h̄
[H, ρ] +

∑
j

[2LjρL
†
j − {L

†
jLj, ρ}], (19)

where Lj, L
†
j are the Lindblad operators describing the coupling of the system

to the environment, and [·, ·] and {·, ·} represent the usual commutator and
anti-commutator, respectively. In Equation 19, the Hamiltonian is a Hermi-
tian operator that described the coherent dynamics of the system, and at all
times tr[ρ(t)] = 1. For this approach to work, the system and environment
are assumed to start out as a product state. Additionally, in order to de-
termine the Lindblad operators Lj, the system + environment Hamiltonian
is simplified by first taking the Born approximation (weak coupling between
the system and the environment) and then the Markov approximation (short
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correlation times).

As an example, a two-level atom coupled to the vacuum that undergoes
spontaneous emission can be described with the master equation approach.
For this system, the Hamiltonian describing the coherent evolution is given
by H = −ωSz = − h̄ω

2
σz, where Sz is the spin operator, and σz is the Pauli Z

operator. The atom undergoes spontaneous emission by going from state |1〉
to state |0〉 and emitting a photon in the process. The Lindblad operator for
this process is given by

√
γσ−, where γ is the rate of spontaneous emission and

σ− ≡ |0〉 〈1|, in the second quantization picture, correspond to the atomic
lowering operator. Similarly, σ+ is the raising operator. Substituting this
Lindblad operator into the master equation:

∂ρ

∂t
= − i

h̄
[H, ρ] + γ[2σ−ρσ+ − σ+σ−ρ− ρσ+σ−]. (20)

Moving into the interaction picture [24] with the change of variables:

ρ̃(t) ≡ eiHtρ(t)e−iHt, (21)

Equation 20 becomes:

∂ρ̃

∂t
= γ[2σ̃−ρ̃σ̃+ − σ̃+σ̃−ρ̃− σ̃σ̃+σ̃−], 3 (22)

where

σ̃− ≡ eiHtσ−e
−iHt = e−iωtσ−

σ̃+ ≡ eiHtσ+e
−iHt = eiωtσ+.

Substituting these into Equation 22, the final equation of motion becomes:

∂ρ̃

∂t
= γ[2σ−ρ̃σ+ − σ+σ−ρ̃− ρ̃σ+σ−]. (24)

This equation of motion can be solved by using the Bloch vector representa-
tion for ρ̃ [23], which yield the solution:

λx = λx(0)e−γt

λy = λy(0)e−γt

λz = λz(0)e−2γt + 1− e−2γt.

3In the interaction picture, the commutator of the density matrix and the Hamiltonian
is zero since we jump into a “rotating frame”.
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With a further substitution of the variable γ
′

= 1− e−2γt and going back to
the density matrix representation:

ρ̃(t) = E(ρ̃(0)) ≡ E0ρ̃(0)E†0 + E1ρ̃(0)E†1, (26)

where

E0 =

1 0

0
√

1− γ′

 ,

E1 =

0
√
γ′

0 0

 .

These Kraus operators are equivalent to the amplitude damping operators.
In this example, the quantum system was small and the bath was modeled as
a collection of simple harmonic oscillators so, while this example shows the
power of the master equation approach, it also reveals some of its drawbacks.
The master equation approach is less general than the quantum operations
formalism: a quantum process that is described in the operator-sum repre-
sentation cannot necessarily be described by a master equation, such as in
the case for non-Markovian dynamics.

Understanding quantum noise and the processes behind it is vital in order
to determine novel and effective ways to correct for these errors. In the
following chapter, I delve into the field of quantum error correction, now
having the tools to describe quantum noise and quantum system’s behaviors
under external interactions.
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3 Quantum Error Correction

The theory of quantum error-correction codes was established more than two
decades ago as the primary tool for fighting decoherence in quantum comput-
ers and quantum communication systems. Quantum systems, such as qubits,
are susceptible to a variety of errors that can perturb or even destroy their
quantum state (quantum information content) [25]. This loss of information
is caused by entanglement of the system to either the environment’s degrees
of freedom or other subsystems’ degrees of freedom—also known as decoher-
ence. Fortunately, there are ways to counteract errors caused by decoherence,
through the clever use of quantum features. That is, quantum errors caused
by entanglement can be countered with entanglement: entanglement is both
a source of error and a powerful tool in the quantum error correction tool-
box [26]. Entanglement is an important tool since it enables teleportation of
quantum states without physically sending quantum systems [27], it doubles
the capacity of quantum channels for sending classical information, and it
helps counteract quantum errors [23].

Many efforts are currently being undertaken to reduce quantum noise lev-
els in physical implementations of quantum computers; and while QEC has
been well understood theoretically, it has just begun its experimental tra-
jectory. The first experimental demonstration of quantum error correction
was done using three beryllium atomic-ion qubits confined to a linear, multi-
zone trap [28]. Unfortunately, experimental implementations of quantum
error correction require scalability, especially moving towards the large-scale
quantum computing era. Experimental efforts continue in order to achieve
highly accurate quantum computation and quantum information processing.

One of the most striking developments in the field of quantum error correc-
tion was the introduction of the stabilizer formalism, whereby quantum codes
are code spaces in Hilbert space and are specified by giving the generators
of an Abelian subgroup of the Pauli group, called the stabilizer of the code
space [23,29,30]. To date, most quantum error-correcting codes are stabilizer
codes. In simple terms, a stabilizer code protects quantum information by
encoding logical qubits via entanglement with ancilla qubits. This idea stems
directly from classical error-correction repetition codes, where redundancy is
created in order to protect information. By appending ancillae, a stabilizer
code can restore a noisy, decohered quantum state to a pure quantum state.
By successfully encoding quantum information, local sources of error can be
detected and corrected via syndrome measurements of ancilla qubits. Many
quantum error-correcting schemes are based on the idea of reverting a deco-
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hered state to a pure state, for example, via a reversal operation, which takes
into account both noise and initial density operator to achieve near-optimal
preservation of the initial density operator’s quantum entanglement or clas-
sical correlation with a reference system [31].

25



3.1 Constructing Error-Correcting Codes

Many current quantum error-correction schemes are able to determine single-
qubit errors and correct for them. These errors include bit-flip, phase-flip,
damping errors, or combinations of multiple errors [23]. Quantum error is
realized with a noise channel as two independent events: an error is intro-
duced to the qubit with a certain probability p, and with probability (1− p)
the qubit remains the same (Fig. 1).

3.1.1 The 3-Qubit Code

The simplest implementation of a quantum error correcting scheme, the
three-qubit code, stems from the classical error-correction concept of a repe-
tition code, where redundancy is used as a tool to protect information against
noise [9]. By creating redundancy, the total size of the Hilbert space is ex-
panded, so that errors on individual qubits are mapped to a large set of
mutually orthogonal subspaces. The three-qubit code is able to detect and
correct an arbitrary bit-flip error. In the three-qubit code, the target logical
qubit is protected as:

|ψ〉 = α |0〉+ β |1〉 → α |000〉+ β |111〉 . (28)

To detect and correct a bit flip, a series of projective measurements are per-
formed, so separate auxiliary qubits (ancillae) are necessary for syndrome
measurements, storage and correction. The three-qubit code involves a se-
ries of controlled-NOT (CNOT) gates between encoded qubits and ancilla
qubits, followed by measurements on ancilla qubits, as shown in Figure 3.
|ψ〉 represents the logical qubit, and the |0〉 qubits represent the ancillae.
The CNOT gate acts by flipping the target qubit (black dot) if the control
qubit (crossed circle) is in the |1〉 states. If the control qubit is in the |0〉
state, the target qubit remains unchanged. As opposed to a classical circuit,
the horizontal lines stemming from the qubits do not necessarily represent
an actual circuit, but can represent, for example, the passing of time.
If two unitary operators are defined as Û1 = CNOTq1,a1CNOTq2,a1 and Û2 =
CNOTq2,a2CNOTq3,a2 (here, q refer to encoded qubits and a refer to ancilla

qubits), it is possible to calculate Û2Û1(α |000〉+β |111〉) |00〉 and characterize
the effect of bit flips via the ancilla syndrome measurement. There are four
possible outcomes:

Û2Û1(α |000〉+ β |111〉) |00〉 = (α |000〉+ β |111〉) |00〉 , (29a)

Û2Û1(α |100〉+ β |011〉) |00〉 = (α |100〉+ β |011〉) |10〉 , (29b)
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Figure 3: Representation of 3-qubit error-correcting scheme. Ancilla qubits
are (usually) prepared in the |0〉 state. Through a series of quantum control
gates, bit flip errors in |ψ〉 can be detected and corrected. The bit-flip channel
Ebit is modelled as a Pauli-X gate.

Û2Û1(α |010〉+ β |101〉) |00〉 = (α |010〉+ β |101〉) |11〉 , (29c)

Û2Û1(α |001〉+ β |110〉) |00〉 = (α |001〉+ β |110〉) |01〉 . (29d)

Measurement of the ancilla qubits determines if a bit flip error occurred, and
if it did, in which qubit. For example, if the syndrome measurement is 11, a
bit flip occurred on the second qubit. Similarly, if the syndrome measurement
is 00, no error occurred, and so on. After the error is detected, there are a
few ways to correct it. One way involves feed-forward application of Pauli-X
gates via fast electronics to flip the faulty qubit. A second way of correcting
bit flip errors is applying Toffoli gates with suitable truth tables, so that
error correction becomes “automatic”. The Toffoli gate, also referred to as a
CCNOT (controlled-controlled-not), is a 3-qubit gate that takes the input of
two qubits to determine whether a third qubit is flipped or not. Using Toffoli
gates with suitable truth tables for error correction involves choosing which
two of the three qubits act as controls, and which qubit acts as the target.
Finally, errors can be stored in classical memory and corrected at the end.
Implementation of this coding scheme has been done experimentally in ion
traps [13,28,32] and transmon circuits [12,33].

Similarly, a three-qubit phase flip code is able to detect and correct for arbi-
trary phase flips on qubits. The effect of a phase flip on the computational
basis is α |0〉 + β |1〉 → α |0〉 − β |1〉. The phase flip becomes analogous to
the bit flip when looking at the effect on the |±〉 basis:

|+〉 =
(|0〉+ |1〉)√

2
−→ |−〉 , (30a)

|−〉 =
(|0〉 − |1〉)√

2
−→ |+〉 . (30b)
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Therefore, the logical qubit is encoded as |0L〉 = |+ + +〉 and |1L〉 = |− − −〉.
As for the bit flip code, the phase flip code performs the same projective mea-
sures, only conjugated by Hadamard gates, that is, H⊗3Û1Û2H

⊗3. The phase
flip error is fixed by Hadamard conjugated recovery [23].

3.1.2 The 9-Qubit Code

Building on the three-qubit bit flip and phase flip codes, the 9-qubit Shor
code extends to scope of the error correcting scheme to account for arbitrary
phase flip and bit flip errors [9]. The Shor code for error correction starts by
encoding the qubit using the phase flip code (i.e. |0〉 = |+ + +〉). Next, each
of these qubits is encoded using the bit flip code, for example, |+〉 is encoded
as (|000〉+ |111〉)/

√
2. This results in a 9-qubit code, with codewords4 given

by:

|0〉 −→ |0L〉 ≡
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2
, (31a)

|1〉 −→ |1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
. (31b)

A general scheme for the 9-qubit Shor code is presented in Figure 4. Again,
by a series of projective measurements, this code is able to correct for arbi-
trary errors on any of the qubits, as long as the error happens on a single
qubit. Since the mapping between correctable errors and unique states is not
unique, the Shor code is a degenerate code. Additionally, since the 9-qubit
code can correct for a single X-error in any one block of three and single
Z-error on any of the nine qubits, it is a full quantum error correcting code.
However, the 9-qubit code is only a single error correcting code, and cannot
fix multiple errors occurring in different locations.

Full quantum error correcting codes, such as the 9-qubit Shor code, perform
well under the assumption that noise acts independently on each qubit, as
is assumed in classical error correction, and that noise is not too intense.
In the quantum regime, this assumption no longer holds true, as correlated
errors are prone to occur and can vary in intensity. In the realm of correlated
quantum errors, the scope can vary from two-qubit correlations [19] to fully-
correlated noise channels [20]. Treatment of such errors is crucial towards
achieving large-scale quantum computing. Since quantum error correction

4A codeword is defined as the string of bits—or in this case, qubits–that is used to
define a symbol—in this case, the logical qubit.
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Figure 4: Representation of 9-qubit Shor scheme. The logical qubit |ψ〉 is
encoded in 8 other ancilla qubits through a series of CNOT and Hadamard
gates. The initial CNOT gates encode for bit-flip errors while the Hadamards
gates with the subsequent CNOT gates encode for phase-flip errors.

can become a computationally expensive and experimentally difficult task
to undertake (for the 9-qubit Shor code, 9 physical qubits are necessary to
encode a single qubit), it is necessary to develop novel techniques to address
what it would otherwise be an intractable problem.

3.2 Error Correction vs. Error Mitigation

As seen in the previous two sections, quantum error-correcting codes fully
correct arbitrary errors on a single qubit. In practice, and within the context
of the current NISQ quantum devices, full error correction is not experimen-
tally realizable. Instead, current implementations try to minimize quantum
error. This is referred to as error mitigation [34, 35]. With error mitigation
protocols, it is possible to achieve a good level of fidelity for some classes of
circuits; especially for short-depth circuits [36–38]. Until large scale, fault-
tolerant quantum computation with error correction becomes achievable, er-
ror mitigation can help harness the power of quantum computers in the NISQ
era.
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4 Neural Networks

In recent years, machine learning has resurfaced as a practical and effective
way to solve a variety of problems, with applications ranging from behavioral
psychology to economics and finance, and even medical disciplines. Machine
learning algorithms allow computers to perform specific tasks effectively with-
out being explicitly programmed to do so. In a sense, a computer “learns” to
perform a task, such as classifying input from a training data set. This class
of algorithms reduce the problem to an optimization problem. That is, these
algorithms try to minimize the difference between the “calculated” output,
to the actual (i.e. known) value of a training set; the cost function.

Within the realm of machine learning algorithms, there are classes of algo-
rithms, which are tailored to different types of problems. Some of these algo-
rithms include nearest neighbor, naive Bayes, decision trees, linear regression,
support vector machines (SVMs), and neural networks [39]. Furthermore,
each architecture can contain sub-classes of algorithms. For example, within
neural networks, there are recurrent, feed-forward, and convolutional neural
networks. In this chapter, I focus on the latter types of machine learning
frameworks and the types of problems that can be solved using these.

I begin this chapter with an introduction to classical neural networks and
the inspiration behind their architecture. The mathematical construction of
neural networks follows, as well as the types of problems one can study with
neural networks. In particular, I will focus on a particular type of neural
network: the convolutional neural network, and highlight some of its most
important features. Finally, I will bridge classical and quantum by expanding
the idea of a convolutional neural network in terms of a quantum architec-
ture, which will serve as a basis for the following chapter.
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4.1 The Brain as a Model for Neural Networks

The human brain, one of the most complex biological system known to sci-
ence, is composed of a convoluted network of interconnected biological neu-
rons. These biological neurons receive information, in the form of an electri-
cal impulse, through their dendrites and, based on this input, they produce
an output to another neuron or neurons via their axon. A schematic of a
biological neuron is shown below.

Figure 5: Schematic of a biological neuron. The dendrites receive a signal,
which is processed and output to other neurons through the axon terminal.

Every signal in the nervous system is transferred through a network of these
neurons, producing a particular output, which can include muscle movement,
memory retrieval, pattern recognition, etc. The term “neural network” was
derived from the work by neuroscientist Warren S. McCulloch and logician
Walter Pitts, who were the first to develop the first conceptual model of an
“artificial neural network” [40]. This became the basis for the neural network
architecture ubiquitous in many areas of science and technology.

4.2 From Biological to Artificial

Based on the machine learning paradigm, and with the aid of studies in
neuroscience and the brain, the concept of a neural network emerged as a
powerful learning tool [41]. As previously mentioned, neural networks are
models of interconnected units based on biological neurons feeding signals
into one another, as depicted in Figure 6. The transmission of signal be-
tween neurons can be modeled as nodes having two states: “active” when
signal is being fed into the neuron, and “resting” when there is no signal
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going through the neuron.

Figure 6: Representation of a neural network. The network consists of three
main sections: the input layer (green nodes), the hidden layers (yellow nodes),
and the output layer (red nodes). The number of nodes at each layer can
vary, as well as the number of layers in each hidden layer. The white nodes
represent bias nodes.

A neural network sends signals between connected neurons (nodes), each of
which represent a real number. A neuron receives a signal, which it then pro-
cesses, and computes an output with some non-linear function—usually re-
ferred to as an activation function—given the sum of its inputs. The learning
process is carried out by adjusting the weights of each connection, therefore
increasing or decreasing the strength of a particular signal, for a particular
input/output. The number of neurons in each layer, as well the the number
of hidden layers and the learning rate are collectively referred as the hyper-
parameters, which vary depending on the learning task at hand.

An active area of research involves the optimization of hyperparameters, since
this represents a major challenge in designing neural networks. Typically, hy-
perparameters are chosen heuristically and manually fine-tuned, which can
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be very time consuming [42]. Not only is choosing the optimal hyperparam-
eters time consuming; increasing the number of nodes and layers in a neural
network often comes with longer run times and the need for more compu-
tational resources. Some cases arise in which choosing a large number of
nodes and/or layers causes the neural network to over-fit the data, rendering
it useless in classification of new data, ie. not training data properly.

4.3 Mathematical Formulation of Neural Networks

In this section I introduce the mathematical formalism used to describe
neural networks. Starting from a single neuron, a collection of neurons
(layer), the weights connecting each layer, and the activation function, a
fully-connected neural network for a given input/output can be formally de-
scribed.

4.3.1 Single Neuron

The smallest element of a neural network is the neuron, or node. Each neuron
receives as input a set of x-values, x = {1, 2, ..., n}, and predicts an output
y. The data set x contains the features of one of m training set examples.
As seen in Figure 6, each unit contains an associated weight vector w and
a bias node b (white), which changes during the learning process. In each
iteration, the neuron calculates a weighted average of the values of vector x,

z = w1x1 + w2x2 + ...+ wnxn + b = wT · x + b. (32)

Finally, the result of this calculation is passed through a non-linear activation
function g(z). Figure 7 shows the process a single neuron undergoes in a
neural network.
The activation function is one of the key elements of a neural network. With-
out the non-linear activation function, the neural network would just consist
of a combination of linear functions, so it would just be a linear function it-
self. If this were the case, the neural network would be limited to solve only
linear regression type problems. With the addition of a non-linear activation
function, the neural network is able to explore more complex optimization
landscapes. Some of the most common activation functions in use today are
the sigmoid, tanh, ReLU, and leaky ReLU functions [43].
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Figure 7: Schematic of an artificial neuron. Each input x has a weight w
associated with it. The result of all of these inputs is passed through a non-
linear activation function to obtain the output y. There is a bias input x0,
which introduces a threshold for the activation function.

4.3.2 Single Layer

Now that the mathematical basis for a single neuron has been established, it
is possible to expand this idea to a layer containing multiple neurons. This
is done by vectorizing across a full layer l to obtain the same equations for a
single neuron with index i:

zli = wT
i · a(l−1) + bi, (33)

where

ali = gl(zli). (34)

Here, x, which is the activation vector for the input layer, is replaced with
a, which denotes a general activation vector for a given layer.

It is clear that for each layer a number of very similar operations is per-
formed. Therefore, a matrix W of dimension (nl, nl−1) can be built from the
transpose of the vectors w, and a bias vector b of dimension (nl, 1).

By applying multiple of these layers the neural network is constructed, as in
Figure 6. The learning task becomes finding the appropriate weights w that
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minimize the cost function for a particular training set.

4.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) have become ubiquitous in classifi-
cation tasks, such as image recognition [44]. A CNN consists of a sequence
of convolution and pooling layers, followed by a fully connected layer. The
convolution and pooling layers are image processing layers that, upon each
application of a convolution-pooling layer, abstract and reduce the dimen-
sionality (i.e. pixels) of the image. In each layer of image processing a new
feature map (a 2D array of pixels) is generated from the previous layer.

The convolutional layer computes new pixel values x
(l)
i,j from a linear combina-

tion of nearby ones in the preceding map, such that x
(l)
i,j =

∑ω
a,b=1 ωa,bx

(l−1)
i+a,j+b.

The weights ωa,b form a ω×ω kernel. The pooling layer reduces the size of the
feature map by taking the maximum value from a small neighboring subset of
pixels, frequently followed by application of an activation function. Finally,
a fully connected layer is applied to all the remaining pixels once the feature
map has become sufficiently small. A schematic of a typical convolutional
neural network is shown in Figure 8.

Figure 8: Representation of a CNN architecture. The input (image) goes
trough convolution and pooling layers, followed by a fully-connected layer.
The CNN then classifies the input into one of the previously trained classi-
fiers.

The power of convolutional neural networks comes from the reduction in the
dimensionality of the problem through the extraction of key features.

The range of applications of convolutional neural networks is wide: from im-
age recognition to natural language processing, and even in drug discovery
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and classic board games, such as Checkers and Go. Application of neural
network algorithms in the study of quantum many-body systems and open
quantum systems has been recently demonstrated [6,45–47]. These problems
reduce to training a neural network to perform some classification task on a
quantum system. For example, one can train a neural network to generate
the ground state of a Bose-Einstein condensate [4].

Even though this implementation of neural networks has provided good re-
sults in condensed matter physics, there is even more potential in the im-
plementation of a fully quantum neural network. That is, a neural network
that is constructed from quantum principles, and is able to perform quantum
tasks on quantum systems. The intuition behind the construction of a quan-
tum neural network to study quantum systems stems from the same intuition
for using quantum computation to study quantum systems, or, as Richard
Feynman conjectured: a quantum computer which uses quantum mechanics
intrinsically might be more powerful than a computer mired in the classical
world [48].

Not only does a quantum neural network provide a speed-up over a classical
neural network, but it does so while inherently possessing a quantum nature.
In the following section I show the application of convolutional neural net-
works to quantum error correction and provide concrete examples of error
mitigation instances.

36



5 Variational Quantum Algorithms

One of the main challenges of many-body physics is the exponential growth
of Hilbert space dimension with the system’s size. Even though modern com-
puting affords incredibly powerful machines, the analytical study of quantum
systems is still intractable. At present, many numerical techniques and sim-
plifications are made in order to study quantum many-body systems. Addi-
tionally, physical states frequently have some internal structures, simplifying
the general problem further [49]. Even with these simplifications, studies of
many-body quantum systems are still a computationally expensive task.

A particular area that benefits from machine learning algorithms is quan-
tum error correction. Through the clever use of classical machine learning
algorithms, such as neural networks, in conjunction with a quantum informa-
tion processing device, i.e. a quantum computer, hybrid quantum-classical
algorithms can be constructed. These algorithms are able to “learn” error
correction for specific noise models.

In this chapter, I starts by introducing variational quantum algorithms. In
the VQA section, I review two particular algorithms that have proven ef-
fective in quantum error correction: the quantum variational error corrector
(QVECTOR) and the quantum convolutional neural network (QCNN) [7,50].
Following this, I show instances of quantum error correction simulations using
the QCNN architecture.
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5.1 Quantum Variational Error Correction Algorithm

As mentioned previously, quantum error-correcting codes often require a
large overhead in physical qubits. This is not the case only for Shor’s error
code; it is also the case for color code and surface code correction schemes.
Estimates for the overhead of surface codes is even more egregious than for
the Shor code, with estimates ranging in the 103–104 physical qubits required
to protect a single logical qubit [51].

Reference [50] is one of the first proposals of a variational approach to quan-
tum error correction. The main objective of the quantum variational error
correction algorithm is to generate an encoding and a recovery circuit that
is able to sufficiently mitigate error in a quantum memory.

This approach to quantum error correction is based on the general mathemat-
ical formalism of subspace code quantum error correction. In this approach,
k logical qubits with Hilbert space HL ' Q⊗k are encoded via an encoding
process E into n physical qubits. These physical qubits are then subjected
to a noise channel N before being subjected to a decoding process D. The
quantum error-correcting performance of this scheme is given by how close
the encoding-noise-decoding mechanism resembles unity: D ◦ N ◦ E ≈ I.5

This performance is quantifiable either via the average fidelity or worst-case
fidelity of the quantum process.

The process of variationally correcting quantum error begins with the parametriza-
tion of the encoding/decoding mechanism via parameterized unitary gates.
These unitary gates often involve rotations along an axis (parametrized Pauli-
X or Pauli-Z gates). At the heart of QVECTOR is obtaining the optimal
parameters to perform these rotations in order to mitigate the error caused
by the channel N .

5.2 Quantum Convolutional Neural Networks

With the idea of a variational quantum error correction scheme present, I
begin this section by introducing a quantum convolutional neural network:
a scheme that combines both a variational approach and a convolution of
the state. I show the construction of the QCNN, and show how this scheme

5Recall that in quantum operator formalism, the operations are applying beginning
with the right-most operator.
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performs in correcting error for a particular error channel.

5.2.1 Multiscale Entanglement Renormalization Ansatz

The particular construction of this QCNN is motivated by the multiscale
entanglement renormalization ansatz (MERA) [5]. The multiscale entangle-
ment renormalization ansatz is a structure that efficiently encodes quantum
many-body states of D-dimensional lattice systems and from which local ex-
pectation values can be computed exactly. A MERA consists of a network
of isometric tensors in D+1 dimensions. The extra dimension can be seen as
parametrizing different length scales in the system, according to successive
applications of a lattice coarse-graining procedure known as entanglement
renormalization [52]. Each isometry layer introduces a set of new qubits in
a predetermined state, such as |0〉, before applying unitary gates on nearby
qubits. A schematic of the MERA architecture is shown in Figure 9.

In relation to QCNNs, MERA shares the same circuit structure, but runs
in reverse direction. Hence, for any given state ψ with a MERA representa-
tion, there is always a QCNN that recognizes ψ with deterministic measure-
ment outcomes. If a state ψ that is prepared with a MERA representation
is disturbed, the QCNN will no longer produce deterministic measurement
outcomes, and the measurement outcomes become syndrome measures for
quantum error correction. These syndrome measures determine specific ro-
tation unitaries to apply to the remaining qubits. A QEC scheme based on a
MERA and QCNN architecture is able to detect and correct local quantum
errors without collapsing the wavefunction, even if those errors are corre-
lated [7, 52].

5.2.2 Implementation of QCNN

A QCNN takes as input an unknown quantum state ρin. Convolution, pool-
ing, and fully-connected layers are realized by quantum unitary gates, as
seen in Figure 10. For the convolution layer, a quasi-local unitary is applied
in a translationally-invariant manner. For the pooling layer, a fraction of
the qubits are measured, and the results of these measurements determine
rotations on the fraction of unmeasured qubits. After a series of convolution-
pooling layers the system size is small enough and a fully-connected layer is
applied. Finally, the outcome of the QCNN is obtained by measuring a fixed
number of the output qubits. For a QCNN the unitaries corresponding to
the convolution, pooling, and fully-connected layers are learned.
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Figure 9: Representation of a MERA architecture. Reading the schematic
from top to bottom: the blue octagon represents the logical qubit to be
protected. At each branch (which can be interpreted as discrete times that
give the depth Θ of the circuit) of the MERA, the qubit is entangled with
an ancilliary qubit (in this case, with the state |0〉). This quantum circuit
transforms the state |0〉⊗N into the N -site state |Ψ〉 of a 1D lattice. The
circuit contains 2N−1 gates organized in O(logN) layers labeled by a discrete
time Θ.

The unitaries are parametrized as exponentials of generalized a×a Gell-Mann
matrices {Λi}, where a = 2w and w is the number of qubits involved in the

unitary, such that U = exp
(
−i
∑

j cjΛj

)
. The QCNN learning procedure

involves optimizing the coefficients cµ of the Gell-Mann matrices [7]. This
procedure is performed by computing the derivative of the mean-squared
error function,

MSE =
1

2M

M∑
α=1

(yα − f{Ui}(|ψα〉))2 (35)

as:
∂MSE

∂cµ
=

1

2ε
(MSE(cµ + ε)−MSE(cµ − ε)) +O(ε2). (36)

In the expression for mean-error squared, f{Ui}(|ψα〉) represents the expected
QCNN output value for input |ψα〉. For this instance, the expected value is
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Figure 10: Representation of a QCNN architecture. The state ρin is an un-
known quantum state. The state goes through a series of convolution and
pooling layers, marked by unitaries Ui and Vi, respectively. In the pool-
ing layer, measurements are performed on a fraction of qubits to determine
rotations on the remaining qubits. Finally, the qubits pass through a fully-
connected layer F , and a measurement is performed on a fraction of qubits.

the fidelity:

fq =
∑

|ψl〉∈{|±x,±y,±z〉}

〈ψl|M−1
q (N (Mq(|ψl〉 〈ψl|))) |ψl〉 , (37)

where Mq andM−1
q are the encoding and decoding schemes generated by a

QCNN circuit, and |±x,±y,±z〉 are the ±1 eigenstates of the Pauli matrices.
N is the error channel, which is constructed from X-, Y-, and Z-gates, as
shown in Figure 11.

The derivation of the MSE is performed to first order with respect to the co-
efficients cµ by using the finite-difference method, so that the coefficients are
updated as cµ → cµ− η ∂MSE

∂cµ
, where η is the learning rate for that iteration.

Furthermore, the learning rate is computed using the bold driver technique:
η is increased by 5% if the error has decreased from the previous iteration,
and decreased by 50% otherwise [53].

This encoding mechanism, based on the MERA representation, is reminis-
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Figure 11: Representation of a QCNN/MERA performing QEC. The state
|ψl〉 is passed through two layers of unitary matrices. This entangles the
ancilla qubits to the logical qubit. After the state passes through the second
layer U−1

1 , noise is introduced by an error channel N . This error channel
can act independently on any of the qubits, as well as in multiple qubits.
Finally, through a series of measurements (denoted by M), the final state is
recovered. Comparison of the initial input state to the final output state is
done via fidelity measurements.

cent of the stabilizer formalism. A series of ancilla qubits are appended to
the logical qubit, and thus the logical qubit can be protected. Through opti-
mization of the Gell-Mann matrix coefficients for a particular error channel,
the logical qubit can be better protected and therefore have higher fidelity af-
ter the decoding process. In other words, this quantum convolutional neural
network stabilizes a logical qubit prior to the error channel, and rebuilds the
pure state after the error channel. For experimental considerations, the error
channelN is generally unknown since the fidelity fq can be measured directly.

The error channel is realized by applying a (generally anisotropic) depolariza-
tion quantum channel to each of the physical qubits. This means that, with
a certain probability, either a bit-flip (Pauli-X matrix) or phase-flip (Pauli-Z
matrix) or both (Pauli-Y matrix) is applied to each qubit. Analytically, this
means:

N1,i : ρ→ (1−
∑
µ

pµ)ρ+
∑
µ

pµσ
µ
i ρσ

µ
i , (38)

where the σµi are the Pauli matrices for i ∈ {1, 2, ..., N}. The expression above
does not consider correlated errors. For correlated errors, a second quantum
error channel is applied (for example, for two-qubit correlated errors ZiZi+1
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with probability pzz):

N2,i = ρ→ (1− pzz)ρ+ pzzZiZi+1ρZiZi+1, (39)

for pair of nearby qubits i ∈ {1, 2, 4, 5, ...}. The output state, after the system
has gone through the error channel, is compared to the input state via a
fidelity measure. The coefficients of the Gell-Mann matrices are optimized
so that the fidelity between input and output state is maximized. In general,
for an anisotropic logical error model with probabilities pµ for σµ logical
errors, the overlap fq is:

fq = (1− 2
∑
µ

pµ
3

), (40)

since 〈±ν|σµ |±µ〉 = (−1)δµ,ν+1. Therefore, the total logical error probability
from fq is computed as 1.5(1 − fq). These expressions are derived from the
analytical form of the error channel(s). Computationally, the optimization
procedure is performed by a stochastic error channel. Using a stochastic er-
ror channel has more relevance to physical implementations of this model,
since a logical qubit that undergoes the encoding process and is subjected to
a quantum error channel can never go back to its original state.

Figure 12: Simple implementation of a 3-qubit QCNN architecture.

Figure 12 shows an implementation of a 3-qubit QCNN architecture. Based
on this architecture, error can be mitigated, as shown in Figure 13.

Here, the error channel N is given by,

Ni : ρ −→ (1− px)ρ+ pxσ
x
i ρσ

x
i , (41)
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Figure 13: Optimized QCNN: average fidelity measurement for various input
error rates. Solid black line represents no error correction. Colored dashed
lines represent different input states.

where i ∈ {1, 2, 3}. This implementation of a QCNN was done in MATLAB,
simulating the time evolution of the density matrix in a tensor network rep-
resentation approach. The results were obtained by performing the encoding
and decoding mechanism over ∼10,000 shots and averaging individual fideli-
ties by following the prescription of repeating the gradient descent procedure
until the error function changes on the order of 10−5 between successive iter-
ations. It can be seen that there is a clear increase in the average quantum
fidelity for all three input states. This can also be seen in Figure 14.

In general for all input states, the 3-qubit QCNN is able to reduce logical
error rate around ∼50-60%. The percent decrease in logical error rate for
different input error rates is summarized in Table 1.
For all three input states, there is a decrease in logical error as compared
to no error. This method demonstrates the power of a variational approach
to “learn” errors and mitigate them. Even with this reduction in logical
error rates, a much greater fidelity is needed in order to achieve large-scale,
fault-tolerant quantum computing. In the example above, there are very few
unitary gates, making the circuit very shallow. As mentioned previously,
these variational approaches work well for shallow-depth circuits. The real
crux becomes employing these quantum correction algorithms for more com-
plex circuits, as these circuits are the ones that will have an advantage over
classical computing.
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Figure 14: Log-log plot for input error rate vs. logical error rate. Solid black
line represents no error correction. Colored dashed lines represent logical
error rates for different input states.

Table 1: Percent Logical Error Decrease in 3-qubit QCNN

p 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

|+x〉 58% 52% 60% 68% 63% 58% 74% 71% 56% 73%

|+y〉 53% 46% 49% 56% 59% 48% 41% 66% 42% 35%

|+z〉 47% 51% 40% 54% 54% 56% 60% 52% 79% 85%

6 Conclusions

In this work, I have presented an implementation of a quantum convolutional
neural network as an effective tool for quantum error correction. The power
behind this approach comes from the fact that, being variational, the algo-
rithm finds an error correction scheme for arbitrary noise. That is, by finding
the vector of optimal parameters (the coefficients to the Gell-Mann matri-
ces) for a particular error channel, a decoding procedure can be applied to
recover the originally-encoded logical qubit such that the fidelity increases,
as opposed to having no error correction.
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Additionally, the fact that this model is constructed in the context of the
multi-scale entanglement renormalization ansatz, facilities the simulation of
the circuits, since a tensor network approach can be used. For circuits of
shallow depth, this tensor network approach is much less computationally
expensive as, for example, carrying out the time evolution of the entire den-
sity matrix.

Furthermore, given the fact that neural networks can be trained on highly
non-linear models, a quantum convolutional neural network approach to er-
ror correction might lead to mitigation of errors past arbitrary single-qubit
errors. In realistic scenarios, quantum hardware is exposed to quantum noise
that might affect one or more qubits simultaneously, and that might be cor-
related in one way or another. Therefore, it is of great importance to find
effective tools to combat these types of noise moving forward.

Of the current error-correcting techniques, variational quantum approaches
surface as good candidates, given the decrease in physical qubits, as opposed
to other techniques like the surface and color codes. Furthermore, these vari-
ational approaches have a wide range of applications, making the study of
these important for all areas of science and technology.

Nevertheless, improvements on these algorithms are still necessary, as many
of the proposed techniques fail for large-depth circuits. Additionally, it is
important to pay close attention to the development of these algorithms in
regard to their physical implementation and current quantum devices.

In broad strokes, the path to large-scale, fault-tolerant quantum technologies
is still long and it will require a great effort. The issues of scalability, quan-
tum control, physical implementations, and algorithms, to name a few, must
be tackled with a close interdisciplinary collaboration. In particular, the field
of quantum error correction must provide efficient, hardware-implementable
techniques to achieve this goal.

With this work, I hope to bring attention to the current state of quantum
error correction, as well as the hurdles still to overcome in the quest for
reliable quantum technologies.
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