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nal physicist at Fraunhofer ITWM , for the fruitful discussion regarding the execution and

analysis of quantum circuits. Additionally, I want to give thanks to Andrés Reyes, professor

of Chemistry at Universidad Nacional de Colombia, for his advice regarding molecular Ha-

miltonians and useful perspectives regarding the analysis of exotic molecules.
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Abstract

Title: Ground State Energies of H2 Using Variational Quantum
Circuits

Considering the current limitations on size and reliability of Noisy Intermediate Quantum

Scale devices, Variational Quantum Circuits offer a way to get useful results from quantum

computation. On top of that, Machine Learning methods using quantum data offer a way

to process the information, but also use it to learn and extract useful information. Meta-

Variational Quantum Eigensolver (meta-VQE) was used to learn the ground energy profile

of a molecule using a set of training points. By training an ansatz circuit using a non-linear

Gaussian encoding of each circuit parameter and setting the interatomic distance as a free

parameter, it was possible to find a good approximation of the ground energy of the system

for any interatomic distance within a certain region. This method also has the advantage

to produce good starting parameters to train using standard VQE, and obtain even better

results (opt-meta-VQE). Meta-VQE was implemented in an analytic noise-free simulation

and a 10000 shots-based simulation using the software framework for quantum computing

PennyLane. In the analytic simulation, it was possible to accurately describe the potential

energy surface of an H2 molecule within chemical accuracy, using a hardware inspired ansatz

and the ADAM optimizer. With the 10000 shots-based simulation, the method is capable to

approximate the energy profile, but in general its performance is not as good as the analytical

approach due to the variability on the samples obtained. Meta-VQE provides a novel way

to extract and produce information by learning using quantum data from variational circuits.

Keywords: quantum computing, quantum chemistry, quantum circuits, Variational

Quantum Eigensolver, PennyLane, quantum machine learning.
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Resumen

T́ıtulo: Enerǵıas de Estado Fundamental de H2 Usando Circuitos
Cuánticos Variacionales

Teniendo en cuenta las limitaciones actuales de tamaño y confiabilidad de los dispositi-

vos de escala cuántica intermedia ruidosa, los circuitos cuánticos variacionales ofrecen una

forma de obtener resultados útiles de la computación cuántica. Además de eso, los méto-

dos de aprendizaje automático que utilizan datos cuánticos ofrecen una forma de procesar

la información, pero también de usarla para aprender y extraer información útil. Se usó el

metodo de meta-autosolucionador cuántico variacional (meta-VQE, por sus siglas en inglés)

para aprender el perfil de enerǵıa fundamental de una molécula usando un conjunto de pun-

tos de entrenamiento. Al entrenar un circuito usando una codificación gaussiana no lineal

de cada parámetro del circuito y estableciendo la distancia interatómica como un paráme-

tro libre, fue posible encontrar una buena aproximación de la enerǵıa mı́nima del sistema

para cualquier distancia interatómica dentro de una región determinada. Este método tam-

bién tiene la ventaja de producir buenos parámetros de partida para entrenar usando VQE

estándar y obtener resultados aún mejores (opt-meta-VQE). Meta-VQE se implementó en

una simulación anaĺıtica sin ruido y una simulación basada en 10000 muestras utilizando

el software para computación cuántica PennyLane. En la simulación anaĺıtica, fue posible

describir con precisión la superficie de enerǵıa potencial de una molécula H2 con precisión

qúımica, utilizando un ansatz inspirado en hardware y el optimizador ADAM. Con la si-

mulación basada en 10000 muestras, el método es capaz de aproximar el perfil de enerǵıa,

pero en general no funciona tan bien como el enfoque anaĺıtico debido a la variabilidad de

las muestras obtenidas. Meta-VQE proporciona una forma novedosa de extraer y producir

información mediante el aprendizaje utilizando datos cuánticos de circuitos variacionales.

Palabras clave: computación cuántica, qúımica cuántica, circuitos cuánticos, PennyLa-

ne, autosolucionador cuántico variacional, aprendizaje automático cuántico
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1 Introduction

Quantum theory revolutionised the XX century, and most of the technology coming from

that boom shapes the current world. This makes even more interesting that, right now, there

is a major momentum in both academia and industry pursuing the next breakthrough in

quantum-based technology:quantum advantage, a demonstration that a programmable quan-

tum processor can solve problems and verify the solutions, in a way that no classical device

can solve in a feasible amount of time. The idea is usually attributed to Feynman [29], and

it has received strong support through the last few decades such as the DiVincenzo Criteria

[24], the development of quantum algorithms [68, 50, 10], and indirectly the widespread of

the Quantum Information theory brought by the textbook of Nielsen and Chuang [53] at

the beginning of the century. At the moment, multiple initiatives with private and public

funding create a potential market of US$104 billion [1], even with the current lack of com-

mercial practical uses. IBM, one of the big players in the field, even published a report in

2021 naming the present time as The Quantum Decade, in which proposed a promising path

from quantum awareness to quantum advantage for the next immediate years.

Although real quantum processor currently suffer from noise and scale problems, in what

Preskill named the Noise-Intermediate State Quantum (NISQ) era [61], this is not impedi-

ment for big and small players in the field chasing practical results of these limited devices.

The current noisy qubits can provide useful results when using error mitigation and clever

approaches for circuit execution (take as reference these state-of-the-art works from Google

[51] and IBM [36]). Hybrid devices, combining the edge of the quantum device with the

power and reliability of a classical processor are also powerful candidates to the realization

of near-term quantum applications [47]. Besides this, there are also initiatives looking for

better, more-qubits handling physical processors based on multiple physical principles such

as superconducting architectures [38], photonics [5], trapped ions [60], and several more. In

addition to all of that, there are multiple Software Development Kits (SDKs), most of them

open-sourced, that allow end-users to simulate quantum circuits, or even execute proces-

ses in real ones. All the resources mentioned create the perfect scenario in which sustained

research and experimentation from different parties with varied backgrounds can reach a

breakthrough.

The problems to solve are of high interest for academia and business alike. Big business

players have an eye on the possibilities of quantum computing [63, 12], impulsing leaders

in different markets to be ready for the breakthrough promised by quantum computing in

upcoming years. There are multiple areas that can, and hopefully will, be impacted by this
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new paradigm: simulations procedures for quantum chemistry and material science, energy

and drug discovery; processing linear systems to enhance machine learning, which in turn

can be applied to such varied markets as streaming services or stock prices; optimization

procedures that allow to take the optimal decision in order to attain a specific objective;

even communications through the use of quantum networks and quantum cryptography.

Along with the advent of quantum era computing, there is another hot topic that cannot

be ignored: Machine Learning (ML) and Artificial Intelligence (AI). The influence of AI goes

from generative algorithms offered by the major computing companies to produce image and

text, to affect movie productions in and out of the screen, and even sparking multiple concerns

regarding the regulation of content produced by such features. Again, there are a myriad of

big and small players in the field offering Artificial Intelligence services, from which ChatGPT

language model developed by OpenAI might be the best known. In the area of academic

research, machine learning has been a powerful tool for interpretation, manipulation, and

approximation of data into relevant insight [39]. What is even more interesting is the use of

ML as inspiration to create new possible theories and experimental setups [30, 49].

Both fields join neatly into Quantum Machine Learning (QML) [27, 67]. The union of both

areas is wide, applying the processing of quantum data on classical devices, or even classical

data in quantum devices; also using quantum data to learn information regarding complex

quantum systems and exploit possible results from noisy qubits by training and optimisation

of Variational Quantum Circuits (VQC). From all the possibilities, VQC poses as the most

promising approach to make quantum processors useful in the NISQ era, offering a way to

train circuits and obtain information from quantum systems [14]. It is even common to draw

parallels between quantum networks and VQCs considering their flexibility and fine-tuning

capabilities.

Having into account these properties, Quantum Machine Learning oriented to compu-

tational chemistry has a great potential to overcome the practical challenges in simulating

quantum systems on classical computers and NISQ devices [13, 46]. The exponential growth

of the dimension of the wavefunction makes manipulation and storage impractical in classical

devices. And, at the same time, state-of-the-art quantum processors don’t have the accuracy,

along with the error correction features, required for useful analysis of complex chemical sys-

tems. QML has the chance to deal with these issues by using hybrid architectures, where

the properties of a quantum processor are exploited by the use of variational algorithms,

and the computational heavy-lifting is done in a classical device. To find the ground state

of a molecular system, Variational Quantum Eigensolver (VQE) [73] is a useful approach to

study specific configurations. On top of that, the meta-VQE method [16] represents one of

the first attempts to actually learn the energy profile of the device, and not just solve an

optimization problem. This is the main goal of this work: to study in detail the learning

capabilities of the meta-VQE method over a simple molecule.

In this work, the results and performance of variational quantum algorithms for studying

basal energies of a H2 molecule are analysed, considering as variables the circuit layout,
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gradient calculation and optimization method. In figure 1-1, the main steps of an hyrid

Variational Quantum Algorithm are depicted, where it’s key to identify that both quantum

and classical processors work together to solve the problem. The minimal energy of the

molecule, produced by the expectation value of the Hamiltonian describing the molecule

configuration, is obtained for multiple interatomic separation distances implementing VQE

and meta-VQE methods in Pennylane [7], an open-source software framework for quantum

machine learning. The circuit was trained using analytic modelling of the produced trial

states of the quantum systems, but also was considered the expectation value calculation

produced by the probability distribution function obtained from 10000 runs (or shots) of the

quantum circuit. It was possible to train the circuits using VQE to obtain ground energies of

the molecule within chemical accuracy compare to the Full Configuration Interaction value,

where the best results were obtained using ADAM optimizer and problem-inspired circuits

built upon Single and Double excitations or Coupled Cluster theory. Regarding meta-VQE

and further optimization from meta-VQE results (opt-meta-VQE), there was no advantage

proven against standard VQE, which might be caused by a very simple definition of the meta-

VQE aggregated cost function or some required fine tuning of the optimizer due to the change

in nature of the cost function. In the analytic approach using meta-VQE, it was possible

to learn the energy profile of the molecule and achieve chemical accuracy for most points

using, again, ADAM and problem-inspired circuits. When the shots-based approach was

used, ADAM and problem-inspired circuits produce the smallest error but the performance

is significantly impacted.

The present work lays the fundamentals for more sophisticated projects involving larger

molecules, calculation of another molecular properties (such as excited state energies, dipole

moments, electronic charge distributions, to name a few), and the possibility of analysing

exotic molecules composed by antimatter particles [17]. In this last regard, there are some

works aimed to analyse positronium hydride [56, 57], and there is a lot more to be done. In

particular, QML is well suited to accelerate the identification of energy stability in molecules

composed by antimatter particles.
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The Electronic Problem

Select basis set

Molecular Orbital Coeffs

Fermionic Hamiltonian

to Qubit Hamiltonian

Define ansatz U(θ)

init state and cost Cost value after each optimization cycle

Classical Optimization

θk → θk+1

Converged Cost

Fig. 1-1: Diagram of Variational Quantum Algorithm in an hybrid architecture, used to

get the ground energy of a molecular system. The yellow boxes represent calcula-

tions and executions in a classical device; the green box represent sections where

quantum processors are required. Initially, the electronic problem of finding the

wavefunction for a molecule is approached using tools from quantum chemistry:

expressing the hamiltonian of the system using fermionic operators. After that, the

Hamiltonian is transformed to qubit operators, and then a parametrized circuit

ansatz, initial state and cost function are defined. Then, the quantum processor

is trained to minimize the cost function by finding the optimal values for the

parameters, until it converges.



2 Quantum Mechanics and Quantum

computing

Quantum mechanics deals with the behaviour of particles so small that humans are unable

to directly visualise them at all. That makes more impressive the titanic achievements of

theoretical and practical work based in a theory built in the mathematical abstractions to

understand electrons and their motion. Having this in mind, it is tempting to think that

the theory is able to predict the behaviour of any chemical compound. However, as the

first attempts to describe molecular systems in the 1920’s were made, it was clear that

it was not the case. The complexity of the wavefunction of a quantum system, growing

exponentially with the number of particles, limits classical computing to efficiently simulate

some interesting quantum systems.

That is why quantum chemistry poses as one of the most compelling targets for quantum

computing [52]. The production of theoretical methods using quantum devices have been

in pair with the growth and robustness of quantum processors [13]. However, to gain some

insight regarding why quantum computing might hold an advantage in quantum chemistry,

it is necessary to review some key concepts of quantum mechanics.

2.1. Single and Multiple Qubits

In classical computers, information is processed and stored in bits. A bit is always in one

of two different states, which leads naturally to the common binary representation of 0 or 1

(and hence its name, binary digit). The entire current state of computation is a product of

humanity learning to manipulate (efficiently, thanks to clever algorithms) enormous amounts

of bits to execute processes. A qubit is a quantum analogy to a bit, and just as the classical

bit, it has a state. Two possible states for a qubit are the states |0⟩ and |1⟩ in the Dirac

Notation, which might correspond to the classic 0 and 1 values of a bit. These states form

what is commonly called as the computational basis. However, a qubit can also be in a state

other than |0⟩ and |1⟩; it can be in a superposition state or linear combination of states

|ψ⟩ = α |0⟩+ β |1⟩ , α, β ∈ C, |α|2 + |β|2 = 1. (2-1)

The complex numbers α and β are known as the probability amplitudes of each corres-

ponding state. When a superposition state is measured in a suitable way, the resulting state
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can be either |0⟩ with a probability of |α|2, or |1⟩ with a probability of |β|2. Naturally,

|α|2 + |β|2 = 1, as the probabilities must sum to one. The possibility that a qubit can be in

a superposition is the origin of the counter intuitive nature of quantum mechanics, but also

of the great potential it has into quantum computing. A qubit can exists in a continuum of

states between |0⟩ and |1⟩ until it is measured, resulting in either |0⟩ or |1⟩.
The states of the computational basis can be represented as column vectors, having the

advantage of having unit length and being orthogonal

|0⟩ :=

[
1

0

]
, |1⟩ :=

[
0

1

]
with corresponding elements of the dual space represented as row vectors

⟨0| :=
[
1

0

]T
=
[
1 0

]
, ⟨1| :=

[
0

1

]T
=
[
0 1

]
.

In general, a random state |ψ⟩ can be expressed as

|ψ⟩ = eiγ
(
cos (θ/2) |0⟩+ eiϕsin (θ/2) |1⟩

)
(2-2)

where the parameters θ, γ and ϕ are real numbers. The parameter θ determines the proba-

bility that the returning state is |0⟩ or |1⟩ after the measurement, while the parameter ϕ is

the relative phase of the qubit. The parameter γ is the global phase, which does not have

observable effects in the measurement process and can be disregarded for the purposes of

this work.

The values of θ and ϕ define a point on the unit three-dimensional sphere called the Bloch

Sphere. This tool provides a useful means of visualising the state of a single qubit, as well

as the effect of an operation on it.

In the case of having two qubits, there are four computational basis states denoted by

|00⟩, |01⟩, |10⟩, |11⟩. A pair of qubits can also have a superposition state of these four states,

described with the linear combination

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ . (2-3)

The states of the computational basis for multiple qubits can be represented using the

Kronecker product. For example

|01⟩ := |0⟩ ⊗ |1⟩ =

[
1

0

]
⊗
[
0

1

]
=


0

1

0

0

 .
Again, as in the case for one qubit, the condition that the probabilities of measuring each

basis state sum up to one is condensed by the normalisation condition∑
x∈{0,1}⊗2

|α0|2 = 1, (2-4)
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Fig. 2-1: Bloch sphere displaying one qubit states in each of the three axes. The vertical

arrow is the state |0⟩, over the x axis is the state (|0⟩+ |1⟩)/2, and the y axis holds

the state (|0⟩+ i |1⟩)/2. Drawing made using the Python library QuTiP [34].

and so the resulting state is ensured to be one of |00⟩, |01⟩, |10⟩, |11⟩.
For a multi qubit system, a subset of the qubits can be measured, which can have one out

of two values (|0⟩ or |1⟩) and leaves a post-measurement state according to the result. For

example, if the first of a two qubit system is measured, that qubit can be |0⟩ with probability

|α00|2 + |α01|2, leaving a post-measurement state

|ψ0x⟩ =
α00 |00⟩+ α01 |01⟩√
|α00|2 + |α01|2

, (2-5)

where the denominator factor ensures the state still satisfies the normalisation condition.

A multi qubit system is entangled if it cannot be represented by a product of states for

each single qubit. This fairly simple definition contains one of the key components of quantum

mechanics: entanglement. The main feature of a product of states is that each subsystem

behaves independently of the other. For example, the following product state

|ψ⟩ = {α0 |0⟩+ α1 |1⟩} ⊗ {β0 |0⟩+ β1 |1⟩} (2-6)

=α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ , (2-7)

where, good enough, the product state is automatically normalised given that the original

states were normalized as well. Making some operation on a subset (e.g. the first qubit) of

the product state gives exactly the same result as if it was made on the original, isolated

state.
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An entangled state is something else entirely. As it was expressed in equation 2-5, mea-

suring one subset of the general two-qubit state can affect the result of the measurement in

the other subset. Notice how the post-measurement state shows different probabilities for

the possible results of measuring the second qubit if the first measurement give as a result

the state |1⟩

|ψ1x⟩ =
α10 |10⟩+ α11 |11⟩√
|α10|2 + |α11|2

, (2-8)

and there is a correlation between the results of the measurements in both subsets.

An important two qubit state showing this feature is the Bell State∣∣Φ+
〉

=
|00⟩+ |11⟩√

2
, (2-9)

which has the property that, upon measuring the first qubit, the result of measuring the

second one is completely determined. That is, the measurement outcomes are completely

correlated.

For a system of n qubits, the computational basis states are of the form |x1x2...xn⟩, and

a quantum state of such a system is specified by 2n complex coefficients, or amplitudes. For

n = 500, that number is larger than the estimated number of atoms in the Universe. And

here lies the huge potential of computational power acquired by using physical quantum

systems to perform calculations. The only requirement is to learn how Nature keeps tabs of

everything and makes such enormous calculations in the first place.

2.2. Single and Multiple Qubit Gates

Just as in classical computing, it is possible to implement logic gates on a single qubit, as

well as in an array of multiple qubits. However, the superposition of computational states

that can be created while working with qubits give rise to a very interesting feature. While

the only non-trivial logic gate for a simple bit is the NOT gate (that interchanges the states

0 and 1 such that 0 → 1 and 1 → 0), the gate U acting on a qubit only needs to keep the

state normalized. For example, starting with the state

|ψ⟩ = α |0⟩+ β |1⟩ ,

where |α|2 + |β|2 = 1, after the gate has acted the resulting state takes the form

U |ψ⟩ = α′ |0⟩+ β′ |1⟩ ,

where |α′|2 + |β′|2 = 1. This is accomplished by requiring that the gate U is unitary, that

is U †U = I, where U † is the adjoint of U (obtained by transposing and then complex

conjugating U). Logical gates and operators over a system of qubits can be described as

square matrices of size 2n × 2n, where n is the number of qubits in which the gate acts.
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An unitary operator on a single qubit can be understood essentially as a state rotation

over the surface of the Bloch sphere. This means there is an infinite number of unitary

rotations that can act over a qubit. Considering this, an arbitrary rotation can be described

by a succession of rotations over each orthogonal axis of the Bloch sphere. This is done using

the Pauli Matrices

X =

(
0 1

1 0

)
, (2-10)

Y =

(
0 −i
i 0

)
, (2-11)

Z =

(
1 0

0 −1

)
, (2-12)

which are Hermitian (self-adjoint matrices) with real eigenvalues ±1, unitary, and equal to

the identity matrix when squared (X2 = Y2 = Z2 = I). The anticommutation relation of

the Pauli matrices (useful later when representing Hamiltonians of fermionic systems using

qubits) is

{σi, σj} = 2δijI, (2-13)

where {σi, σj} is defined as σiσj + σjσi and δij is the Kronecker delta. The commutation

relation of the Pauli matrices also comes in handy, and reads

[σi, σj] = 2iϵijkσk, (2-14)

where ϵijk is the Levi-Civita symbol. Rotation matrices around the 3 orthogonal axis are

obtained by getting the exponent of each Pauli Matrix

RX(θ) = e−iθX/2, (2-15)

RY(θ) = e−iθY/2, (2-16)

RZ(θ) = e−iθZ/2. (2-17)

where the rotations are parametrized by an angle, which is useful when searching for an

arbitrary operation. Specifically, an arbitrary 2× 2 unitary matrix may be decomposed as

U =eiαRZ(β)RY(γ)RZ(δ) (2-18)

=eiα
(
e−iβ/2 0

0 eiβ/2

)(
cosγ

2
−sinγ

2

sinγ
2

cosγ
2

)(
e−iδ/2 0

0 eiδ/2

)
(2-19)

and thus it is possible to make an arbitrary gate by knowing the optimal values of the

coefficients α, β, γ and δ.

Another useful concept while representing Hamiltonians of fermionic systems is the Pauli

string. A Pauli string is a tensor product of N Pauli matrices P̂a ∈ {I,X, Y, Z}⊗N . These
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kinds of strings form observables suitable for measurement on a quantum device, as each

qubit is affected by a simple gate.

Logical gates on a system of multiple qubits offer the possibility to act on a qubit regarding

the value of the other. The usual gate to show this is the controlled -NOT or CNOT gate.

This gate has two input qubits (control and target qubit, respectively). If the control qubit

is in the state |0⟩, the target qubit is unchanged. However, if the control qubit is |1⟩, the

target qubit is flipped. The CNOT gate is represented by the following matrix

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2-20)

Single qubit gates and controlled-NOT gates are prototypes for all other gates in the way

they are universal : Any multiple logic gate may be composed from CNOT and single qubit

gates (see [53], section 4.5). And even more interesting, any hermitian matrix (of dimension

equal to a power of 2) can be described as a linear combination of products of Pauli matrices,

where the coefficients are always real.

2.3. Circuit Representation

To dive into the formalism of quantum computing, it is necessary to understand the

ubiquitous circuit representation, which is an abstract representation of the collection of

quantum gates interconnected by quantum wires. Each wire corresponds to the state of a

qubit in a specific stage of the circuit. The actual structure of the quantum circuit and

the interconnection inside is fully dictated by the unitary transformation carried out by the

circuit. This is how, for different problems, different sequences of gates are applied to specific

wires. The selection of ordered gates over wires is called an ansatz. In the figure 2-2 there is

an example on how the circuits and gates can be easily visualized in a diagram, commonly

used while discussing quantum computing.

Gates displayed in figure 2-2 can be seen as the building block of more complex, larger

circuits with different capabilities and uses. While working with quantum circuits in the

NISQ era, it is desired to use the simplest configurations to reduce the impact of the State

preparation and measurement (SPAM) errors. However, the circuits should also be capable

of expressing the searched quantum state (or even a good approximation of it) to perform

the desired calculation. Otherwise, it would be like looking for something that is not even in

the searching area. In [69], Sim discusses this feature in great detail.
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Fig. 2-2: An example of gates acting over wires. The first three are 1-qubit gates. Over the

last two wires acts a 2-qubit gate, a CNOT. The black dot represents that the

qubit over that wire is the control qubit. At the other end of the gate, where the

cross is located, is the wire with the target qubit. Schematic figure made using

Pennylane



3 Molecular Hamiltonians for Quantum

Computing

The goal of computational quantum chemistry is to unveil the quantum effects that de-

termine structure and properties of molecules. Questions that are commonly investigated

through computational methods are Molecular geometries, chemical reactivity, electronic

states and even spectroscopy.

Analysis of molecular systems using “first principles” are based on the Schödinger equa-

tion, which kickstarted the development of the quantum theory at the beginning of the XX

century (in fact, work on this field started shortly after the presentation of Schödinger fa-

mous theory, with the introduction self-consistent field method proposed by D. R. Hartree).

Solving the Schödinger equation (eq. ??) for a molecule gives the molecule’s energy and

wavefunction, used to calculate the electron distribution, and from that, everything to be

known about the molecule.

H|Ψ⟩ = E|Ψ⟩. (3-1)

The Schröedinger equation gives impressive results for atoms with just one electron, but

that’s it. Analysing atoms or small molecules (not mentioning the long and complex mole-

cular systems such as molecular chains or macromolecules) is a task out of the reach for this

powerful equation. Thus approximations are required.

3.1. The Electronic Problem

The main interest of Quantum Chemistry is (typically) find approximate solutions of the

non-relativistic time-independent Schrödinger equation

H(R⃗, P⃗ , r⃗, p⃗)|Ψ(R⃗, P⃗ , r⃗, p⃗)⟩ = E(R⃗, P⃗ )|Ψ(R⃗, P⃗ , r⃗, p⃗)⟩,

where H is the Hamiltonian operator for a system of nucleus and electrons, |Ψ⟩ is the

quantum state of the complete system, E is the allowed energy of the system; the parameters

r⃗, p⃗ = ∂/∂r⃗ are the electronic collective coordinates and momentum, and R⃗, P⃗ = ∂/∂R⃗ are

the nuclear collective coordinates and momentum. The equation ?? shows how the quantum

system is described by the position and momenta of every electron and nucleus that conform

the molecule, but the energy is just a scalar value determined by the collective coordinates
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of the nuclei alone. In other words, detailed information of the electrons is not required to

calculate the allowed energies of the molecular system.

In atomic units, the Hamiltonian from N electrons and M nuclei is

H = −
∑
i

1

2
∇2

i −
∑
i,A

ZA

riA
+
∑
i>j

1

rij
+
∑
B>A

ZAZB

RAB

−
∑
A

1

2MA

∇2
A. (3-2)

where the distance between the ith electron and Ath nucleus is riA =
∣∣∣r⃗i − R⃗A

∣∣∣; the distance

between the ith and j th electron is rij = |r⃗i − r⃗j|, and the distance between the Ath nucleus

and the B nucleus is RAB =
∣∣∣R⃗A − R⃗B

∣∣∣. The term MA is the ratio of the mass of the nucleus

A to the mass of an electron, and ZA is the atomic number of the nucleus A. The equation

3-2 represents the kinetic energy of the electrons and the nuclei, along with the Coulomb

repulsion between each pair of electrons and nuclei, and the attraction between electrons

and nuclei.

The Hamiltonian expressed above is written using atomic units. In SI units, the Schrödin-

ger equation with the kinetic and potential energy of a simple system |ϕ⟩ reads[
− ℏ2

2me

∇2 − e2

4πϵ0r

]
|ϕ⟩ = E |ϕ⟩ , (3-3)

where ℏ is Plank’s constant divided by 2π, me is the mass of the electron and −e is the

charge of the electron. In order to write this equation into dimensionless form a substitution

x, y, z → λx′, λy′, λz′ is applied, and the result is[
− ℏ2

2meλ2
∇′ 2 − e2

4πϵ0λr′

]
|ϕ′⟩ = E |ϕ′⟩ . (3-4)

The constants in front of the kinetic and potential energy operators can then be factored

choosing a suitable value for λ,

ℏ2

meλ2
=

e2

4πϵ0λ
= Ea, (3-5)

where Ea is the atomic unit of energy called the Hartree (Ha). Solving Eq. 3-5 for λ

λ =
4πϵ0ℏ2

mee2
= a0 (3-6)

.

At the end, λ is just the Bohr radius a0 and the Schrödinger equation in atomic units

takes the form

Ea

[
−1

2
∇′ 2 − 1

r′

]
|ϕ′⟩ = E |ϕ′⟩ ,(

−1

2
∇′ 2 − 1

r′

)
|ϕ′⟩ = E ′ |ϕ′⟩ ,

where E ′ = E/Ea. The solution of this equation for the ground state of the Hydrogen atom

is E ′ = −0, 5 atomic units ≡ −0, 5 Hartrees.
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3.2. Variational Principle

Fortunately, the impossibility to get exact solutions for complex systems didn’t stop re-

searchers in their attempt to understand them. Several approximation methods can be used

to solve the Schröedinger equation to almost any desired accuracy. Two of the most widely

used approximation procedures are the Variational method [75] and the Perturbation Theory

[20, 42]. When there is a good unperturbed Hamiltonian that can be approximated to the

problem at hand, perturbation theory can be more efficient than the variational method. As

the Variational Method is a key component of the variational quantum algorithms used in

this work, we will discuss the variational principle in some detail.

As the ground state wavefunction Ψ0 and energy E0 satisfy the Schrödinger equation

H |Ψ0⟩ = E0 |Ψ0⟩ , (3-7)

it is possible to calculate an upper bound to E0 by using a trial function ϕ. This trial function

ϕ may depend on some arbitrary parameters α, β, γ, ..., called variational parameters. The

energy also depends on these variational parameters, and then

Eϕ(α, β, γ, ...) ≥ E0. (3-8)

Having selected a trial function suited for the system to be analysed and considering the

compromise between accuracy and efficiency, it is possible to minimize Eϕ with respect to

each of the variational parameters and thus approach the exact ground state energy E0.

Consider that for a Hamiltonian H, there exists a set of orthonormal eigenfunctions {Ψn}
such that HΨn = EnΨn, and the function of the ground-state Ψ0 returns the lowest energy

E0. Then the trial function

ϕ =
∑
n

cnΨn, (3-9)

where cn are constants defined as

cn =

∫
Ψ∗

nϕdτ, (3-10)

and the energy of the state ϕ is

Eϕ =

∫
ϕ∗Hϕdτ∫
ϕ∗ϕdτ

=

∫ ∑
n,m c

∗
ncmΨ∗

nHΨmdτ∫ ∑
n,m c

∗
ncmΨ∗

nΨmdτ

=

∑
n c

∗
ncnEn∑

n c
∗
ncn

.

Finally, subtracting E0 from the left side of the above equation and E0

∑
n c

∗
ncn/

∑
n c

∗
ncn

from the right hand side

Eϕ − E0 =

∑
n c

∗
ncn(En − E0)∑

n c
∗
ncn

(3-11)
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which is a value equal or greater than zero, as for all En is held that En > E0 except when

n = 0, and clearly all the modulus squared c∗ncn > 0.

3.3. The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is central to quantum chemistry, allowing to get

results that can be verified by experience and so, bypassing the problems set by the comple-

xity of the system. In order to do this, the following assumptions are made:

The nuclear motion is so much slower than the electronic motion, so that the nuclei

can be considered to be fixed,

The electronic motion is then moving in a field of fixed nuclei,

The nuclear motion (e.g. vibrations, rotations) feels an effective potential set from the

behaviour of the electrons.

These assumptions lead to a separation of the electronic motion and the nuclear motion.

This is very powerful, as the resulting wavefunction is parametrized by the nuclear positions

but does not take into account their velocities. Within this approximation, the kinetic energy

of the nuclei can be neglected inside the Hamiltonian, and the repulsion between the nuclei

can be considered to be constant.The remaining terms of the expression form what its called

the electronic Hamiltonian, that describes the motion of N electrons in the field of M point

charges

Helec(R⃗, r⃗, p⃗) = −
∑
i

1

2
∇2

i −
∑
i,A

ZA

riA
+
∑
i>j

1

rij
, (3-12)

which is solved by an electronic wavefunction Ψelec(R⃗, r⃗, p⃗) with an eigenvalue Eelec =

Eelec(R⃗),

HelecΨelec = EelecΨelec. (3-13)

The electronic wavefunction Ψelec explicitly depends on the electronic coordinates but

depends parametrically on the nuclear coordinates, as does the electronic energy Eelec. The

collection of all the possible allowed energies resulting from the possible nuclear configura-

tions R⃗ defines a potential energy surface V (R⃗). The corresponding approximation to the

total wavefunction of 3-2 is a product between the electronic part and the nuclear part

Ψ(r⃗, R⃗) = Ψelec(r⃗iR⃗A)Ψnucl({R⃗A}). (3-14)

Among other applications, the energy analysis of a chemical system can be successfully

used to find the equilibrium geometry of a molecule, searching the lowest-lying state of

a molecule in specific sectors of the Hilbert space, and even explore chemical reactions

through the analysis of the potential energy surface (PES) of the molecule. Potential energy



16 3 Molecular Hamiltonians for Quantum Computing

surfaces describe the energy for different positions of its atoms. The usefulness of the concept

originates from the Bohr-Oppenheimer approximation. The fact that the electrons, being

much lighter than protons and neutrons, adjust their location almost instantaneously based

on the new positions of the nuclei. Then, the energy of the molecule E(R⃗) is a function of the

nuclear coordinates R⃗. The potential energy surface is precisely this function E(R⃗), relating

energies to different geometries of the molecule.

3.4. Hartree-Fock Approach

Based on the very powerful approximations made, it is possible to approach the electronic

problem in different ways. It is safe to say that the Hartree-Fock (HF) method is the simplest,

but at the same time the most used while considering electronic systems with multiple

particles. The key of the Hartree-Fock method is considering the electron wave function

in terms of single electron wave functions. The choosing of this trial function is of great

importance, as it needs to be sufficiently accurate to give good energy results but not too

complex so that the calculations take excessively long. The trade-off between accuracy and

efficiency in quantum chemistry is an issue that becomes more critical to take into account

as larger molecules are analysed.

3.4.1. The Hartree-Fock Equation

The Variational principle can be used to define the set of functions used to represent each

orbital of the molecule. These optimal functions are given by the solution of the Hartree-Fock

equations, a set of equations derived by Vladimir Fock and John Slater in 1930. For an atom

or molecule with an even 2n number of electrons paired off in n orbitals, the HF equations

are

f(r⃗)χi(r⃗) = ϵiχi(r⃗) for i = 1, 2, ..., n, ... (3-15)

where {χk} denote the eigenfuntions of the Fock operator f(r⃗). The corresponding eigenva-

lues are called orbital energies.

Defining the set of functions considered as a solution for these coupled one-electron equa-

tions is the first thing to do. As a starting point consider the electronic structure of atoms

with a single electron. The electron can be found in a region of space around the nucleus,

and the shape of that region is defined by the energy and angular momentum of that elec-

tron. That region of space is called an spatial orbital. The spatial orbitals ϕi(r⃗) describe the

location and wave-like behaviour of an electron in an atom. Specifically, the probability of

finding an electron in the small volume element dr⃗ surrounding r⃗ is |ϕi(r⃗)|2.
Now, as the problem at hand is the electronic structure of a molecular system, the wa-

vefunction of the system would be composed of molecular orbitals. Clearly, atomic orbitals

are not enough to describe an electron around multiple nuclei and interacting with other
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electrons. Having this in mind, one can define a trial molecular orbital ϕi(r⃗) and optimize

it in multiple ways, giving as a result a solution of the Schröedinger equation with a good

enough approximation of the true energy of the system. In that line, a trial molecular orbitals

can be defined as a linear combination of atomic orbitals (LCAO), where coefficients of the

linear combination and parameters of the orbital can then be optimized to fit the molecular

system. If the set of spatial orbitals {ϕ(r⃗}} were complete, then any arbitrary function g(r⃗)

could be expanded as

g(r⃗) =
∞∑
i=1

ciϕi(r⃗), (3-16)

where the ci are constant coefficients. In general, the set of orbitals would need to be infinite to

be complete. However, in practice such a set is not necessary as a finite set {ϕi|i = 1, 2, ..., K}
of K orbitals might be enough to describe an “exact” result within its subspace. In this

subspace, a molecular orbital is expressed as

ψi(r⃗) =
K∑
i=1

ciνϕν(r⃗, α). (3-17)

To completely describe an electron, it is necessary to introduce its spin. As a half-integer

spin particle 1/2, this last feature of the electron can be described by two orthonormal

functions (α, β). The wave function that describes both its spatial distribution and its spin

is a spin orbital, χ(x⃗) where x⃗ indicate both space and spin coordinates. From each spatial

orbital, ψi(r⃗), one can form two different spin orbitals

χi(x) =


ψi(r⃗)α

or

ψi(r⃗)β

and now the set used to expand molecular orbitals contains 2n spin orbitals.

Having selected a basis set to describe the molecular orbitals, the matrix form of the

Hartree-Fock equations is obtained, an then the problem reduces to process of eigenvalues

calculation. The equation 3-15 is rewritten as

F
K∑
i=1

ciνϕν(r⃗) = ϵi

K∑
i=1

ciνϕν(r⃗),

where values ciν are the expansion coefficients of the ith molecular orbital of the matrix C.

To extract the equation for a specific basis function, integrate in the left-hand side by the
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complex conjugate function ϕµ(r⃗)∗

K∑
i=1

ciµ

∫
dr⃗ϕµ(r⃗)∗f(r⃗)ϕν(r⃗) = ϵi

K∑
i=1

ciν

∫
dr⃗ϕµ(r⃗)∗ϕν(r⃗)

K∑
i=1

f i
µc

i
µ = ϵi

K∑
i=1

ciµs
i
µ,

where siµ coefficients form an overlaping matrix of basis functions, and f i
µ describe the

elements of the Fock matrix. Finally, the set of coupled equations takes the form

FC = SCϵ, (3-18)

which are commonly known as the Hall-Roothaan equations. The Hartree-Fock method is

also called self-consistent field method, as the mean field affecting each individual electron

depends on the molecular orbitals (specifically, their expansion coefficients), which depends

on the same coefficients. So, the solutions for the set of equations is to be to be found in an

iterative manner.

3.4.2. The Antisymmetry Principle and Slater Determinants

Having the molecular orbitals of the systems, then the complete electronic wavefuntion of

N electrons can be approximated as a product of individual orbitals, in what is commonly

known as Hartree Product

ΨHP (x⃗1, x⃗2, ..., x⃗N) = χi(x⃗1)χj(x⃗2)...χk(x⃗N). (3-19)

The wavefunction described by a Hartree Product is an independent-electron wavefunction

since the join probability of finding each electron in a given volume of space is equal to the

product of probabilities for each electron

|ΨHP (x⃗1, ..., x⃗N)|2dx⃗1 · · · dx⃗N = |χi(x⃗1)|2dx⃗1 |χj(x⃗2)|2dx⃗2 · · · |χk(x⃗N)|2dx⃗N . (3-20)

There is still another deficiency in the Hartree product: it does not takes account of the

indistinguishability of electrons, e.g. specifically identifies electron-one as occupying spin

orbital χi, electron-two as occupying χj, an so on. The antisymmetry principle requires that

the system does not distinguish between identical electrons and requires that the electronic

wavefunction be antisymmetric.

A satisfactory expression can be found by writing it as a determinant. For any N electron

system, the Slater determinant is defined as
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Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣
≡ |χ1, χ2, · · · , χN⟩,

where the last expression is a shorthand for Slater determinants (and a ket in Dirac notation,

which is not a coincidence). The determinant ensures that two particles cannot be in the

same place with the same quantum state.

3.4.3. Slater and Gaussian Type Orbitals

The selection of a basis set is key in the efficiency and accuracy of the results for a chemical

calculation. The common approach used is to approximate the orbitals of each atom using a

function from the basis set, and then a molecular orbital is created as a linear combination

of atomic orbitals. In order to do this, a function is designed to describe an electron for each

subshell of the atom (1s, 2px, 2py, 2pz and so on). There are two generally basis functions used

in electronic structure calculations: Slater Type Orbitals (STO) and Gaussian Type Orbitals

(GTO). Other basis sets can be created by a linear combination of the mentioned functions,

resulting in contracted basis functions that are less flexible but reduce the computational

cost significantly.

Slater type orbital functions are solutions to the Schrödinger equation of hydrogen-like

atoms (atom or ion with a single valence electron) and decay exponentially far away from

the nucleus. The radial part of STOs is described as

R(r) = Nrn−1e−ζr

where n is the principal quantum number, N is a normalizing constant, r is the distance of

the electron from the atomic nucleus and ζ is a constant related to the effective charge of

the nucleus. As STOs do not have any radial nodes, these are introduced by making linear

combinations of STOs functions. And by finely tuning the value of ζ for each basis function

used, the behaviour of the molecular orbital function regarding the effective field can be

defined.

Calculating integrals with STOs is computationally difficult, so they are commonly re-

placed with the more calculation-friendly Gaussian Type Orbitals. The radial part of GTOs

take the form

R(r) = Ne−ζr2 ,

where, again, N is a normalizing constant and ζ is related to the effective charge. The

main issues with GTOs are that they don’t represent accurately the extremes of the atom
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(the nucleus and the “tail” of the wavefunction) as the radial r2 dependence of the GTOs

falls off to rapidly and has zero slope at the nucleus. The loss of accuracy caused by using

Gaussian functions is faced by using fixed linear combinations of Gaussians with parameters

predetermined by atomic calculations or some other prescription. Besides, the relatively

easy calculations required using the well known Gaussian functions makes them really easy

to work with.

A minimal basis set contains one basis function for each type of atomic orbital that is

occupied in the ground state of each atom in the molecule. For example, methane (CH4)

uses 1× 5 + 4× 1 = 9 basis functions, in which each electron of the system is described by

a different function linked to an atomic orbital. In fact, it’s possible to construct a basis set

for any element in the second period of the periodic table using five functions with different

radial exponents to represent the 1s, 2s, 2px, 2py, 2pz orbitals of the electronic configuration

of these elements. A well-known minimal contracted basis function set is the STO-nG in

which each atomic orbital is described by n GTOs. Although minimal basis sets are easy

to use, they are not accurate enough for most purposes. Instead, further basis sets can be

built using the minimal sets as building blocks by, for example, augmenting the number of

basis sets using the N-Zeta strategy (zeta referring to the variable exponent represented by

ζ). There is an extensive basis set library online called Basis Set Exchange [62] with a vast

amount of available basis sets for atomic orbitals of each element. In figure 3-1, it is possible

to see how energy calculations using different basis sets vary in accuracy.

3.5. Occupation Basis and Fermionic Description of the

Molecule

The use of molecular orbitals to describe the electronic system of the molecules comes

handy in multiple ways. In the last section, a rudimentary wavefunction ΨHP was created

using a product of molecular orbitals, which was then improved using a Slater determinant

to take into account the antisymmetry principle, and from that correction the exchange

correlation arises. Using a basis set of K spatial orbitals {ϕi} leads to a set of 2K spin

orbitals {χa}. Thus, for a system with N electrons, there should be N occupied spin orbitals

{χa} and a complementary set of 2K − N unoccupied or virtual spin orbitals. The Hartree-

Fock ground state Ψ0 has the N lowest energy spin orbitals occupied, which is just one

of the many different states that can be formed from the 2K > N spin orbitals. Every

other possible state consist of one or multiple filled exited orbitals, with the total number of

possibilities being the number of combinations of 2K objects taken N at the time(
2K

N

)
=

2K!

N !(2K −N)!
, (3-21)

and this number also happens to be the total number of Slater determinants that can be built

with N particles distributed among 2K spin orbitals. The dimensionality of the problems
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Fig. 3-1: H2 energy profile using multiple basis sets and Full Configuration Interaction.

Larger basis sets give better results at the expense of more computation load. The

basis used point to the correct internuclear distance of 1,4a0, and the larger triple

Zeta basis “cc-pVTZ” shows a minimal energy of −1,172 Hartrees. This values is

just above the experimental value of −1,174 [33].

explodes when more electrons and their corresponding spatial orbitals are considered. The

Full Configuration Interaction (FCI) method considers a trial wavefunction of the system as

a linear combination of all the possible Slater determinants. This approach usually provides

numerically exact solutions, at the cost of being computational expensive. As the molecular

systems in this work are rather small, FCI are used to benchmark the obtained results.

Taking aside the intimidating growing pace of the problem, trial functions produced by

a Slater determinant are sophisticated representations of distributed particles and holes.

From this perspective, it is straightforward to look for a basis that represents occupied or

empty states. This is where the occupation basis appears, describing a fermionic system as

n single-particle states (spin orbitals) that can be either filled or empty

|f1 · · · fN⟩, where fj ∈ {0, 1}. (3-22)

A system of N fermionic modes, as well as any interaction within, can be expressed using a

set of fermionic creation and annihilation operators. For each fermionic annihilation operator

ai|i = 1, 2, ..., N , its adjoint a†i is the creation operator. These fermionic operators satisfy the

canonical anticommutation relations {ai, aj} = 0, {a†i , a
†
j} = 0, and {ai, a†j} = δij where



22 3 Molecular Hamiltonians for Quantum Computing

{A,B} := AB + BA. The anticommutation relations listed before ensure that the states in

the occupation basis satisfy the antisymmetric principle.

The fermionic operators a†i , ai commute with each other, and have eigenvalues 0 and 1,

when using the occupation basis. From this frame nataurally arises a normalized vector |0⟩
called the vacuum state. This state has eigenvalue 0 for the annihilation operator,

ai|0⟩ = 0 = ⟨0|a†i , (3-23)

and, when operated by the creation operator a†i , fills the state i

a†i |0⟩ = |fi⟩, ai|fi⟩ = |0⟩. (3-24)

Keeping in mind the antisymmetric state and the Pauli exclusion principle, one cannot

create or annihilate a fermion in the same mode twice

a2i = 0 = a† 2i . (3-25)

The set of 2n vectors considering all the possible combinations of filled or empty single-

particle states

|f0f1 · · · fn⟩ :=
(
a†0

)f0
· · ·
(
a†0

)f0
|0⟩ , fi ∈ {0, 1}, (3-26)

are orthonormal. We can assume they form a basis for the entire vector space.

Finally, the action on an arbitrary state of the creation or annihilation takes the form

a†j|f0 · · · fj−1 0 fj+1 · · · fn⟩ = (−1)
∑j−1

s=0 fs|f0 · · · fj−1 1 fj+1 · · · fn⟩
a†j|f0 · · · fj−1 1 fj+1fn⟩ = 0

aj|f0 · · · fj−1 1 fj+1fn⟩ = (−1)
∑j−1

s=0 fs|f0 · · · fj−1 0 fj+1 · · · fn⟩
aj|f0 · · · fj−1 0 fj+1 · · · fn⟩ = 0

The factor (−1)
∑j−1

s=0 fs maintains the antisymmetry of the system. The sum accounts for how

many swaps need the a†j or aj operator to act against the vacuum state. Here is an example

of an annihilation operator acting on a predefined state

a1|f10f3f4⟩ =a1a
†
4a

†
3a

†
1|0⟩ = (−1)1a†4a1a

†
3a

†
1|0⟩ = (−1)2a†4a

†
3a1a

†
1|0⟩

=a†4a
†
3(1− a

†
1a1)|0⟩ = a†4a

†
3|0⟩

=|00f3f4⟩

3.6. Electronic Hamiltonian using Fermionic Operators

In the previous section it has been shown that the occupation basis is a powerful and

flexible tool that allows us to work with molecular systems. Also, fermionic operators a†i , ai
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were introduced as a way to build and manipulate such states. The next step to develop an

entire workframe of many-electron systems is to express the many particle operators that

compose the Hamiltonian in creation and annihilation operators.

To write the electronic Hamiltonian in terms of fermionic operators, first take into account

that all the terms in the equation describe:

kinetic and potential energy of each electron in the field of the nuclei (one electron

terms), or

total Coulomb repulsion between each pair of electrons (two electron terms)

which allows to separate the electronic Hamiltonian into one-electron and two-electron

operators

Helec = −
∑
i

1

2
∇2

i −
∑
i,A

ZA

riA
+
∑
i>j

1

rij

= O(1) +O(2),

O(1) = −
∑
i

1

2
∇2

i −
∑
i,A

ZA

riA
=
∑
n

h(rn) (3-27)

O(2) =
∑
i>j

1

rij
. (3-28)

It is interesting to notice that the part O(1) is just the sum of the Hamiltonian h(rn) that

obtains the total energy of each electron in the field of all the nuclei.

To express the one electron operator, A, consider the existence of orthonormal spin orbitals

{χi}, i ∈ {1, ..., 2K}. Each orbital has a linked pair of creation and annihilation operators

{a†i , ai} that fill or clear out the electron in said orbitals. If the operator A acts over the

state |fi⟩

A |fi⟩ = Aa†i |0⟩ (3-29)

= b†i |0⟩ =

(
2K∑
k

cika
†
k

)
|0⟩ (3-30)

where the last line shows how the effect of the operator A is a linear combination of the well

known fermionic operators previously introduced. To determine the expansion coefficients

cik one just needs to operate on the left side by another state ⟨fj|

⟨fj|A |fi⟩ = ⟨0| aj

(
2K∑
k

cika
†
k

)
|0⟩ = ⟨0|

(
2K∑
k

cikaja
†
k

)
|0⟩

= ⟨0|

(
2K∑
k

cik

[
δjk − a†jak

])
|0⟩ = cij ⟨0|0⟩ = cij,



24 3 Molecular Hamiltonians for Quantum Computing

and the anticommutation relation of the operators is used in the last line, along with the

fact that any annihilation operator acting on the vacuum state |0⟩ returns 0. Combining

equations 3-29 and ?? leads to

Aa†i =
2K∑
k

cika
†
k, (3-31)

which are operators that can only act on the vacuum state. To change this, one just needs

to add an annihilation operator to the left

Aa†iai =
2K∑
k

cika
†
kai. (3-32)

Finally, summing over all one electron states (all orbitals) one gets

A
2K∑
i

a†iai =
2K∑
i,k

cika
†
kai (3-33)

where on the left-hand side the operator a†iai returns 1 for all i as the system is composed of

electrons and there can be just one electron in every spin orbital. Finally, the one electron

operator can be expressed as

A =
2K∑
i,k

cika
†
kai (3-34)

cik = ⟨χi|A |χk⟩ . (3-35)

The expression of two electron operators follows the same line.

After all, the electronic Hamiltonian expressed in fermionic operators takes the form

Helec =
∑
i,j

⟨i|h|j⟩a†iaj +
1

2

∑
i,j,k,l

⟨ij|kl⟩a†ia
†
jalak, (3-36)

where the sums run over the set of used spin orbitals {χ(x)}.

hij = ⟨i|h|j⟩ =

∫
dx1 χ

†
i (x1)h(r1)χj(x̄1)

hijkl = ⟨ij|kl⟩ =

∫
dx1 dx2 χ

†
i (x1)χ

†
j(x2) r

−1
12 ϕk(x1)χl(x2).

Notice how the factor 1/2 appears in front of the two electron parts, as the sum in the last

equation considers each pair of interacting electrons (spin orbitals) twice. The molecular

orbitals then have to be written in the molecular orbital basis as

hij =
∑
µν

CiµhµνCνj

hijkl =
∑
µνρσ

CiµCjνhµνρσCρkCσl
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where C is the molecular orbital expansion coefficient matrix.

This fermionic Hamiltonian has several advantages that can be exploited while working

on computational chemistry. The domain of the operator is given by the domain of creation

and annihilation operators acting on the occupation basis, which offers a very pictorial

representation as the filled or void orbitals invite to use a binary basis. Also, remember

that this fermionic representation comes from the introduction of the finite basis of one

electron functions {χi}, i ∈ {1, ..., 2K} which is very important from the point of view of

practical quantum chemistry, and again, the equilibrium between accuracy and efficiency of

the calculations. As this finite set cannot express exactly the wavefunctions resulting from

the action of the original Hamiltonian, this (reduced) Hamiltonian can be interpreted as

the projection of the exact one to a finite subspace spanned by the basis molecular orbitals.

One final thing is that, in this representation, the Hamiltonian is clearly independent by the

number of electrons on the systems. However, it explicitly depends on the list of one and

two electron integrals, and thus on the size of the basis set of used orbitals.

3.7. Mapping Fermions to Qubits with Transformations

To simulate a molecular system on a quantum computer, it is required to choose a re-

presentation of the creation and annihilation operators on the space of the qubits. In other

words, a set of qubit operators are required which satisfy the anticommutation relations.

As qubit operators are written in terms of the Pauli matrices X, Y and Z, there are the

building blocks of the qubits operators to be created.

Good enough, the occupation number basis suggest a direct identification with the compu-

tational basis used in quantum computing

|fn−1 · · · f0⟩ → |qn−1⟩ · · · ⊗ |q1⟩ ⊗ |q0⟩, fj = qj ∈ {0, 1}, (3-37)

where there are, again, n = 2 ∗ K qubits which span the whole subspace after the trans-

formation (one for each spin orbital). A wave function written in this new basis takes the

form

|Ψ⟩ =
2n−1∑
i=0

αi|i⟩(mod 2) (3-38)

3.7.1. The Jordan-Wigner Transform

There are several transformations that can be applied in order to use the fermionic Hamil-

tonian in a qubit system. The Jordan-Wigner Transform is the most basic transformation

to be applied, as it uses the well-known ladder operators for angular momentum that can be

applied in a qubit system

Q+ = |1⟩⟨0| = 1

2
(X− iY), Q− = |0⟩⟨1| = 1

2
(X + iY), (3-39)
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as can be seen from the ket-bra expression in each equation, that disclose the matrix repre-

sentation of each operator.

With the qubit operators, it is straightforward to fully represent the fermionic operators

in terms of basic quantum gates

a†j ≡1⊗n−j−1 ⊗Q+ ⊗ (Z)⊗j (3-40)

aj ≡1⊗n−j−1 ⊗Q− ⊗ (Z)⊗j (3-41)

where the Z operators at the right with eigenvalues {+1,−1} keep track of the parity of

the system (which is related to the fat that the number of occupied states is even or odd),

adding a (−1) phase value whenever a qubit in the way is occupied. The identity operator

1⊗n−j−1 to the right shows that no qubit after the zeroes j is affected in any way.

The introduced operators Q+
j , Q

−
j obey the fermionic anticommutation relations

{Q+
i , Q

+
j } = 0 (3-42)

{Q−
i , Q

−
j } = 0 (3-43)

{Q+
i , Q

−
j } = δij1 (3-44)

and, as they also anticommute with Z, the qubit representation on equation 3-40 also comply

with the fermionic anticommutation relations.

The Jordan-Wigner transformation is associated with a particular mapping of bitstrings

e : {0, 1}N → {0, 1}N that is the identity map, i.e. e(x) = x. This can be easily seen by

noting that the fermionic basis vector |f0 · · · fN−1⟩ is represented by the computational basis

vector |q0 · · · qN−1⟩, where fp = qp for all p. The mapping can be written as

|x⟩ → |e(x)⟩ (3-45)

where the vector on the left is fermionic and the vector on the right is qubit. The mapping

e is called an encoder.

The operators obtained from the Jordan-Wigner transformation have high weight, which

means that the operator acting on the qubit |p⟩ also acts on qubit or state |0⟩ , ..., |p− 1⟩.
This can be a disadvantage as it requires to operate on a high number of qubits, which

implies a high number of gates to simulate attached to a more expensive measurement. In

the worst case, an operator required to act on the last mode is mapped to a qubit operator

that will act on all modes, being this computationally expensive.

3.7.2. The Parity Transform

The Jordan-Wigner Transform uses the string of Pauli Z’s to introduce the phase factor

(−1)
∑p−1

s=0 qs when acting on a computational basis state. Calculating this factor requires

reading p states and operating a Pauli Z string of length p. So, is there some improvement
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to be gained by using this transformation? Consider the Parity transform defined by the

encoding

e(x)p =

p∑
q=0

xq(mod 2), (3-46)

in which the qubit p does not store the occupation of the state p, but the parity of orbitals

with index less than or equal to p. This encoding has the great advantage of computing the

parity sum
∑p−1

s=0 qs by reading just one qubit.

However, it is no longer possible to represent the creation or annihilation of a particle

in a state p by simply operating with Q± on the qubit p. Whether the operator Q+ or Q−

acts on the qubit p depends on the qubit p− 1. If qubit p− 1 is in the state |0⟩, then qubit

p will accurately reflect the occupation of state j, and then the operators can be directly

translated. However, if the qubit p − 1 is in the state |1⟩, then qubit p will have inverted

parity compared to the occupation of state j, and so the operators need to be inverted (Q−

to act as a† and vice versa). Finally, the operators equivalent to Q± in the parity bases are

therefore a two-qubit operator acting on qubits p and p− 1

P±
p ≡ Q± ⊗ |0⟩ ⟨0|p−1 −Q

∓
p ⊗ |1⟩ ⟨1|p−1 =

1

2
(Xp ⊗ Zp−1 ∓ iYp) . (3-47)

This encoding solves the issue of calculating the parity up to a state p, but comes with

the burden of updating all the parity data of every state of index greater than p when a

creation or annihilation operator acts on p. This is done with a Pauli X string operating in

qubits j + 1, ..., N − 1. This is why the Parity transform does not offer any advantages over

the Jordan-Wigner transform. And also comes the downside of losing the nice parallel with

the occupation encoding of states and the computational basis of quantum computing. The

fermionic operators operating over states encoded in the parity bases take the form

a†j ≡
1

2

(
X⊗n−j−1 ⊗Xj ⊗ Zj−1 − iX⊗n−j−1 ⊗Yj

)
(3-48)

aj ≡
1

2

(
X⊗n−j−1 ⊗Xj ⊗ Zj−1 + iX⊗n−j−1 ⊗Yj

)
. (3-49)

As in the Jordan-Wigner transform, the fermionic operators expressed in Pauli matrices

also comply with the fermionic anticommutation relations. While checking this, it is helpful

to remember that all Pauli operators anticommute if acting on different modes.

3.7.3. The Bravyi-Kitaev Transform

To simulate fermionic operators with qubits two things are needed: the occupation of a

given mode, and the parity of the orbitals with index less than the target mode. The precious

two approaches store this information, but are not optimal. In the Jordan-Wigner transform

the mode is stored locally (i.e. the occupation data can be read just by reading the value of
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the state in its index) but the parity information is non-local (i.e. multiple states are read

to get the parity data).

A clever encoding that is capable of balancing these two requirements is then needed. It

was pointed out by Bravyi and Kitaev that the encoder which achieves this is implemented

by a classical data structure called a Binary Indexed Tree (also known as Fenwick tree).

This is a data structure that can efficiently update elements and calculate prefix sums. It

can be seen as a balanced transformation between Jordan-Wigner and parity. However, this

encoding also loses the relation of the states with the computational basis for quantum

computing.

Using this encoding, the ladder operators Q∓ are still being used along with Pauli Ope-

rators X and Z, which again ensures that the creation and annihilation operators for this

encoding comply with the anticommutation relations.

3.8. Example: qubit Hamiltonian for H2

As a summary and example, here are the steps to follow to calculate the qubit Hamiltonian

of a molecule.

1. Use the Born-Oppenheimer approximation to reduce the electronic problem.

2. Select a basis set of functions used to express the molecular orbitals of the system.

3. Calculate the one- and two-electron integrals.

4. Write the system in the Hall-Roothaan equations, and use the Hartree-Fock (self-

consistent) method to find the molecular orbital coefficients.

5. Write the one-and two-electron integrals in the molecular orbital basis using the mo-

lecular orbital coefficients.

6. Express the Hamiltonian in fermionic operators.

7. Transform the Hamiltonian to a qubit basis by using a transformation of choice.

Below is the qubit Hamiltonian of an H2 molecule. The Hamiltonian is encoded using the

Jordan-Wigner transform, and the Basis Set STO-3G was used to describe the s1 atomic

orbitals employed to create the molecular orbital. The interatomic distance of the system was

set in 1, 0 angstroms. More specifically, the Gaussian functions of one atom were centered

on the origin, while the functions for the other molecule used the coordinates (0, 0, 1). The

s1 atomic orbital of Hydrogen in the STO-3G basis set takes the form

ψSTO−3G(s) = c1ϕ1 + c2ϕ2 + c3ϕ3, (3-50)
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where

ϕ1 =

(
2α1

π

)3/4

e−α1r2

ϕ2 =

(
2α2

π

)3/4

e−α2r2

ϕ3 =

(
2α3

π

)3/4

e−α3r2 .

The Hamiltonian below requires 4 qubits (two molecular orbitals with two spins each)

and requires 15 terms. Notice that all terms are associated with a Pauli String, with each

gate acting on a specific qubit.

HSTO−3G =(−0,34724) ∗ Z2
+ (−0,34724) ∗ Z3
+ (0,208133) ∗ Z0
+ (0,208133) ∗ Z1
+ (0,298178) ∗ I0
+ (0,132902) ∗ Z0⊗ Z2

+ (0,132902) ∗ Z1⊗ Z3

+ (0,175463) ∗ Z0⊗ Z3

+ (0,175463) ∗ Z1⊗ Z2

+ (0,178609) ∗ Z0⊗ Z1

+ (0,184709) ∗ Z2⊗ Z3

+ (−0,04256) ∗Y0⊗Y1⊗X2⊗X3

+ (−0,04256) ∗X0⊗X1⊗Y2⊗Y3

+ (0,042560) ∗Y0⊗X1⊗X2⊗Y3

+ (0,042560) ∗X0⊗Y1⊗Y2⊗X3.
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As the limitations of the current physical devices used to perform quantum computation

are being tackled one by one with the effort of a booming worldwide community, there is

an equally large community trying to get results from these machines right now. The main

used approach consists in using the variational principle to reshape problems of interest, and

then, using an hybrid framework of classical and quantum devices where the advantages of

both systems are exploited. So, by implementing some subroutines on classical hardware, the

requirements of quantum resources are reduced. Then, quantum resources are focussed on

the main feature of interest (often, the representation of a quantum system). A Variational

Quantum Circuit (VQC) [14] is then used to find the best values of an array of parameters

acting on a sequence of gates and produce the state of interest.

For quantum chemistry, the Variational Quantum Eigensolver (VQE) and several propo-

sed variants have been used for searching the ground state of the electronic Hamiltonians of

molecules. In the same sense, other problems have been studied under this framework with

promising results.

In this chapter, the hybrid framework of quantum and classical devices is presented. Then,

Variational Quantum Circuits are presented as a way to approximate the ground state of a

molecular Hamiltonian, being VQE a prototype of the process. Finally, some implementations

using several software development kit (SDK).

4.1. Definition of Variational Quantum Circuits

A Variational Quantum Circuit is a collection of quantum gates interconnected by quan-

tum wires that receives an array of parameters as variables. The values of these variables

determine the outcome of the circuit. So, by selecting a suitable sequence of gates (commonly

Pauli rotation plus entangler gates such as CNOT) and then getting the optimal values of

the variational parameters, the product of the circuit can be a good approximation of the

state of interest. A VQC consists of three ingredients:

1. Preparation of a fixed initial state ψinit (e.g. the vacuum state, or a quantum state

with embedded data x of the system of interest)

2. A quantum circuit U(θ), parameterized by a set of free parameters θ.
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3. Measurement of the output that defines a scalar cost C for a given task. Typically,

that measurement is the expected value of an observable B.

Each one of the ingredients required to create a VQA are highly customizable depending

on the problem at hand. This versatility translates into a wide variety of possibilities for each

element (initial state, circuit, and cost function), usually related to the system of interest.

The first step to developing a VQC is to define a cost function C which encodes the solution

to the problem. Then a parametrized circuit is proposed along with the initial state. This

ansatz is then trained in an hybrid quantum-classical loop to solve the optimization task

θ∗ = argmin
θ

C(θ). (4-1)

The big appeal of VQC lies in the fact that the quantum behaviour is kept by using a quantum

device to prepare the state and measure the observables of interest, while the optimization

of the parameters (usually a computing expensive task) is outsourced to classical devices. In

addition to that, the sequence of gates used by the circuit can be modelled to tackle a variety

of problems, but also can be kept as short as desirable to reduce the issues presented by the

hardware in the NISQ era. With this in mind, the ever present equilibrium between accuracy

and efficiency of computational problems is managed by the complexity of the circuit and

the way it is trained. Taking into account their flexibility, VQCs have been developed for

a wide range of applications including quantum chemistry simulation of dynamic quantum

systems, solving linear systems of equations, extension of machine learning problems and

even optimization.

One of the main challenges while using a VQC is to choose an effective circuit that

represents well the space in which the solution state is searched, but at the same time

keeping a low circuit depth and number of parameters [69]. It is required that the circuit

can create states all over the Hilbert space being researched, ensuring that the objective

state is within reach (Expressibility). In the same line, it is desirable to use a circuit that

can generate highly entangled states so it can efficiently represent the solution space for

the task at hand (Entangling Capability). These metrics are usually tuned by changing the

used rotation gates and its combinations (RX, RY, RZ gates), the two-qubit entangler

gates (CNOT, CZ, or event a controlled rotation such as CRX), and the number of circuit

layers. So, again, it is necessary to balance the performance of the circuit against the number

of parameters and circuit depth. One thing to highlight is that keep adding gates and layers

of gates do not always improves the expresability of the circuit. This implies that there is a

threshold beyond which the expressibility value does not improve.

4.2. A Word on Quantum Advantage

The main reason quantum computation attracts that much attention is the possibility to

achieve practical quantum advantage with universal quantum simulators. As interesting as
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physical quantum computers are, it’s key to find and validate situations in which efficient

classical learning and calculation is impossible, while quantum learning can be efficient.

In [23], the authors present some details about the perspectives of quantum advantage on

quantum simulations. This reference also describes an interesting view on the requirements

of practical advantage (section IV). Not only the quantum simulator needs to return reliable

solutions for relevant problems beyond the classical reach, but also it is required to be

verifiable. With such hard problems, there might be some of them that can be verified

using powerful classical devices. However, the harder ones might need more calculations by

a quantum device in order to be confirmed.

At this point it would be possible to use a device with quantum advantage to validate the

results of another one. However, there is a more practical way of Hamiltonian learning. In

this way, it might be possible to learn the Hamiltonian from a quantum device by making

some appropriate measurements on the quantum state resulting from the simulation. Then,

comparing the results from the simulated and reconstructed state, it might be possible to

evaluate the results of said simulation. It is also helpful that the number of terms in the

Hamiltonians that describe many-body physics (usually the target of complex simulations)

is relatively small.

On a more quantitative side, it is also important to define some base metrics to keep track

of the scale of quantum devices. The following concise parameters to evaluate current and

future quantum processors are presented in [74]:

Scale: (Number of qubits) How much information can be encoded in a quantum device?

The number of qubits grows steadily due to extended research on materials, fabrication

technologies and physical ways in which the qubits are encoded (trapped-ions, cold

atoms, photons, etc.). However the true challenge is to make scaling possible while

maintaining the coherence between qubits in the device.

Quality: (Quantum Volume [22]) How faithfully a circuit can be implemented in a

quantum computer? Quality of a device is a holistic metric due to its dependence on

multiple factors, such as qubit connectivity, coherence, gate fidelity and measurement

fidelity.

Speed: (Circuit Layer Operations per Second or CLOPS) How fast is the quantum

device? In [74], CLOPS are proposed as a counterpart to the classical metric of com-

puter performance floating point operations per second, or FLOPS. It is proposed to

capture the real-world use by considering the performance of the run-time environment

that invokes the circuits. In the reference, there is also a detailed description on how to

calculate that number using parametrized circuits as a good representation of systems

with non-persistent quantum data across multiple invocations.

The discussion regarding quantum advantage and quantum supremacy has been dispu-

ted, to say the least, in recent years. Since the announcement of quantum supremacy from
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the Sycamore processor using 53 qubits [8], there have been research groups that challenged

those claims by showing that similar (if not better) results have been achieved using classical

devices and different, more optimal algorithms. One of the most recent episodes regarding

this was a paper claiming evidence for quantum computers simulating an Ising model be-

yond quantum capabilities by combining error mitigations techniques [36]. Shortly after the

publication, the community responded, referring to an earlier publication claiming to do the

same thing using the same class of parametrized quantum circuits [48]. As the authors of

this last work state in their abstract, ”Understanding the limits of classical computing in

simulating quantum systems is an important component of addressing this question“. So,

let’s keep an eye on this interesting discussion while working on quantum computing.

4.3. Variational Quantum Eigensolver

Variational Quantum Eigensolver (VQE) appears as one of the most simple implementa-

tions of VQCs. However, it is a friendly entrypoint for the work on quantum computing in

the NISQ era. VQEs were first proposed in 2014 [58], but there are currently several reviews

on the intricacies of this algorithm [73, 28], as each an every one of the components of the

circuit play an important role in the efficiency and accuracy of the results. VQE is grounded

in the variational principle, which optimizes an upper bound for the lowest possible expec-

tation value of an observable with respect to a trial quantum state. Providing a hamiltonian

H, a a trial wavefunction |ψ⟩, the ground state energy associated with this hamiltonian, E0

is bounded by

E0 ≤
⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

. (4-2)

The goal of VQE is to find the parametrization of |ψ⟩ such that the expectation value of

the Hamiltonian is minimized. Then, |ψ⟩ can be expressed as the application of a generic

parametrized unitary operator U(θ) over an initial state of N qubits, which is the heart of

the variational circuits method. The qubit register is usually initialized in the vacuum or

empty state, namely |0⟩⊗N , but any other low-depth initialization can be done depending

on the system. The optimization problem then takes the form

EV QE = argmin
θ
⟨0|U(θ)†HU(θ) |0⟩ . (4-3)

To perform this procedure on a quantum computer, it is required that both the para-

metrized unitary U(θ) and the Hamiltonian H are described using the building blocks used

by such devices: qubit operators. Therefore, H is defined and mapped into qubit operators

giving as a result a linear combination of Pauli strings Pa ∈ {I,X, Y, Z}⊗N , with N the

number of qubits required to represent the Hamiltonian,

H =
P∑
a

ωaPa, (4-4)
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The Electronic Problem

Select basis set

Molecular Orbital Coeffs

Fermionic Hamiltonian

to Qubit Hamiltonian

H =
∑P

a ωaPa

Pa ∈ {I,X, Y, Z}⊗N

Define ansatz U(θ)

init state |Ψinit⟩
|Ψ(θ0)⟩ = U(θ) |Ψinit⟩

|Ψ(θk)⟩ = U(θ) |Ψinit⟩
Cost= ⟨Ψ(θk)|H |Ψ(θk)⟩

Classical Optimization

θk → θk+1

Converged Cost

⟨Ψ(θopt)|H |Ψ(θopt)⟩

Fig. 4-1: Detailed diagram of Variational Quantum Algorithm in an hybrid architecture,

used to get the ground energy of a molecular system (based on figure 1-1). The

yellow boxes represent calculations and executions in a classical device; the green

box represent sections where quantum processors are required. After the molecular

system is analysed and the Hamiltonian is written as a linear combination of Pauli

strings, the parametrized circuit is used to calculate its value. Then, training the

circuit is traduced to find the optimal circuit parameters that minimize the energy.

with ωa the coefficients and P the set of Pauli strings in the Hamiltonian. The optimization

problem now reads

EV QE = argmin
θ

P∑
a

ωa ⟨0|U(θ)†PaU(θ) |0⟩ = argmin
θ

P∑
a

ωa⟨Ha⟩, (4-5)

which is just the sum of the expectation values of each individual term in the encoded Hamil-

tonian. Obtaining these expectation values ⟨Ha⟩ is the main job of the quantum processor,

and is the place where the quantum advantage is expected to appear. The components of the

VQE method are depicted in figure 4-1, and the steps beyond the Hamiltonian caluculation

are discussed in more detail in the next subsections.

4.3.1. Cost Function

Choosing a suitable way to encode the optimization problem into a scalar cost function is

crucial. In a machine learning approach, the cost defines a hyper-surface and the task at hand

is to navigate through this landscape to find the global minima. In that sense, the change of

the calculated cost in each iteration gives information about the hyper-surface itself. Usually,
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the optimization procedure ends when the cost value change between iterations is lower than

a predefined threshold, signalling that a local or global minimum has been reached.

The cost function C uses as argument the variational parameters θ, but can also use a set

of non-adaptable parameters x = (x1, x2, ...) such that

C(x, θ) = ⟨0|U(x, θ)†HU(x, θ) |0⟩ . (4-6)

Following [14] regarding Variational Quantum Algorithms, Cerezo et al. list some desirable

criteria for the cost function. Some of the required conditions are that the cost function should

be:

Faithful: The parameters that minimize the function can be used to solve the problem.

Efficiently solvable in a quantum device: No just that the solution can be found using

a quantum processor, but also that the problem is not efficiently computable in a

classical device, implying that no quantum advantage can be achieved using VQE.

Meaningful: Smaller cost values indicate higher quality of the solution.

Trainable: It is possible to optimize the parameters θ in the VQC.

In the VQE framework, the used cost function is the encoded expected value Hamiltonian

⟨H⟩, which simplifies enough the problem: let’s find the minimal energy of the system by

finding the circuit that returns the lowest ⟨H⟩. The way the hamiltonian is created and

encoded is key in VQE, as it defines the number N of qubits required to represent the

electronic quantum state. It also specifies the number of Pauli strings and the Pauli weight

(i.e. the number of tensor factors in the Pauli string that are not equal to the identity) which

also affect the circuit length.

As the cost function is the expected value of an operator, a single run of the circuit is not

enough to obtain its value. The fact that quantum computers are inherently probabilistic

machines, accompanied by noise and errors, require multiple executions of the circuit in

order to obtain a probability distribution that allows to calculate the desired expectation

value. This is why it is necessary to define how many times (i.e. the number of shots) an

algorithm is going to run to get the probability distribution of the results. There is no

rule to define an optimal number of shots,and just like all the other buttons and knobs of

machine learning, it can be set by trial and error by increasing the number until the results

are statistically accurate but also reducing the number until the execution time is optimal.

Some common shots values are 1024 or 1000, but usually SDKs for quantum computing

allow setting different numbers. Additionally, there are several shot optimization procedures

focusing on reducing the number of shots while keeping the accuracy of the results [40, 4, 59].
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4.3.2. State Encoding and Initial State

A qubit, or quantum bit, has two distinct states usually represented as |0⟩ and |1⟩. The fact

that they can exist in superposition states and be entangled gives rise to exciting possibilities.

One of the new interesting things is the way information is encoded in such states. The way

this is done is by using a Quantum Embedding [43, 66]. This is especially important when

considering the embedding of classical data into quantum states. For example, consider M

items with N features

D = x(1), ..., x(m), ..., x(M),

where x(m) is an N dimensional vector from m = 1, ...,M . To embed this data in a quantum

system, an embedding technique is required.

The Basis embedding links each input with a computational basis state of the qubit

system. In this case, classical data takes the form of binary strings. Having the classical data

in the form x(m) = (b1..., bN), with bi ∈ {0, 1} for i = 1, ..., N , each input item x(m) can be

directly mapped to the quantum state
∣∣x(m)

〉
. The entire dataset thus takes the form

D =
1√
M

M∑
m=1

∣∣x(m)
〉
.

Another common embedding is the Amplitude Embedding, which encodes the data into

the amplitude state. A normalized classical N -dimension vector x(m) is represented by the

amplitudes of an n-qubit quantum state

|ψx⟩ =
N∑
i=1

xi |i⟩ ,

where N = 2n, xi is the i-th element of x(m), and |i⟩ is the i-th computational basis state.

Finally, the embedding method used for VQE is the occupation embedding or occupation

number representation. As the Hamiltonian of the electronic system is composed of n elec-

trons occupying spin orbitals, this embedding readily displays which orbitals have excitations

(i.e. electrons), and which are empty. Even better, when working with fermions, the occupa-

tion pi of each orbital can only be 1 or 0 due to the Pauli exclusion principle, which allows to

work directly with the computational basis (using the Jordan-Wigner transformation from

fermionic to qubit Hamitonians, or some other similar transform). For n = 2 electrons in

K = 4 spin orbitals, a valid occupation state is |ψ⟩ = |1100⟩.
However, another valid state is a superposition over all the states of the computational

basis

|ψ⟩ = c1 |1100⟩+ c2 |1010⟩+ c3 |1001⟩+ c4 |0110⟩+ c5 |0101⟩+ c6 |0011⟩ .

Perhaps neither of the states displayed above correspond with the state that returns the

lowest expected value of the Hamiltonian. However, it is useful to start the training process
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with a state that conveys some information of the studied system; in this case, the number

of electrons in the molecule. For VQE, it is usual to use the first few gates of the circuit to

initialize the qubit register. It is customary to use the Hartree-Fock state as the initial state,

where the excitations fill the lower spin orbital levels. In the circuit, this is seen as a single

Pauli X gate acting on the wires with the excitation.

4.3.3. Circuit Selection and Construction

A very important aspect of a VQC is its circuit layout, usually called ansatz. The form

of the ansatz dictates what the parameters θ are and how many there are, which defines

how they can be efficiently trained to get an accurate response. The specific structure of

an ansatz generally depends on the task at hand, using general information of the system.

However, there are some general and problem-agnostic architectures that are used when no

prior information is available, or when an even shorter, shallow circuit is desired for the

calculation. A circuit U(x, θ) can be expressed as the product of L sequentially applied

unitary operators

U(x, θ) = UL(θL) · · ·U2(θ2)U1(θ1)U0(X), (4-7)

in which each layer Ul(θl) can be composed by unparametrized unitary operators along with

gates function of θl, and the initial gate U0(X) performs the state initialization using some

predefined metaparameter x. Remember that all unitary operators act over some set of wires

(a single wire, some of them, or even all).

The ansatz discussed in this work are fixed structure ansatz, which are set at the beginning

of the optimization process and remain unchanged afterwards. There is another important

type, called adaptive structure ansatz, referring to the circuits constructed iteratively as part

of the optimization process [32, 55, 54, 25]. In the table 4-1 three key metrics to compare

ansatzë are presented:

Depth: Number of sequential operations required for the gate implementation. This

impacts the overall runtime of the circuit and its resilience to noise.

Number of parameters: Has influence over the overall implementation and the comple-

xity of the optimization process.

Number of entangling gates: In general is the main source of noise resulting from the

execution of a quantum circuit.

Finally, before talking about some of the multiple available ansatz, it is important to

remember that these circuits eventually run in a physical quantum device. The quantum

circuits discussed are abstract objects whose qubits are virtual representations of actual

qubits used in computations. In the same way, the quantum gates of these circuits may not

be available in a quantum device, or they may require multiple (sometimes dozens of simple

gates). Notice that for a physical implementation one needs to deal with several levels of
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Table 4-1: Summary of circuit depth, parameters and entangling gates across several ansatz.

The number of entangling gates does not consider possible extra gates required

for real devices without full connectivity. The number of layers is denoted by L,

the number of qubits (i.e. wires in the circuit) is n.

Method Depth Parameters Entangling

gates

Notes

Two local Circuit O(L) O(L(N − 1)) O
(

L(N−1)
2

)
L is an arbitrary number of

layers.

Single Givens Ro-

tation

O(3k̃) O(k̃) O(3k̃) k̃ as the number of single

excitations used

Double Givens

Rotation

O(20k̃) O(k̃) O(14k̃) k̃ as the number of double

excitations used

k-UpCCGSD O(70kN) O (2kq̃) O (16kq̃) k as the number times

UpCCGSD unitary is re-

peated. q̃ is the number

of generalized singles and

paired doubles excitation

terms.

circuit encoding. The goal is to reduce the input circuit into a series of gates and an optimal

layout that can be understood by the physical device, so the device can execute the gates

and move the qubits accordingly. This is done through Transpilation, where the input circuit

is rewritten to match the topology of a specific device.

Simplified Two Design

The hardware efficient ansatz [35] is a generic name used for ansatzes aimed at reducing the

circuit depth required to implement U(θ) when using a quantum hardware. Specifically, these

kinds of circuits are tailored to create the unitaries using the quantum gates offered by the

quantum device on which the experiment may run. All the proposed hardware-efficient ansatz

circuits consist of repeating blocks on successive single parametrized rotation gates, followed

by ladders of entangling gates. Both rotating and entangling gates can vary depending on

the native gate set of the device.

One of the main advantages of this kind of circuit is its versatility, as it can accommodate

encoding symmetries and ensure correlated qubits are together to ensure depth reductions,

making the transpilation easier. However, these circuits have some important limitations.

The first one arises directly from the fact that the circuit has no prior knowledge and/or

information of the system under study. This means that it must span a very large portion

of the Hilbert space of states to guarantee it can get an accurate enough representation of
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the ground state. In this regard, problem-inspired ansatz start with an advantage, spanning

a portion of the space where the solution is expected to be. There are several works about

the training of these circuits over a cost landscape such as [41, 19]

Fig. 4-2: Layout for Simplified Two Design ansatz. The entangling gates are implemented

by pairs, which comes in handy for the partially connected real devices in the

NISQ era.

Two-Local Circuit (figure 4-2) is one of the most widely used hardware-efficient ansatz,

consisting of alternating rotation layers and entanglement layers proposed by Cerezo et al. in

[15]. The Simplified Two Design ansatz used in this work uses layers consisting of a simplified

2-design architecture of Pauli-Y rotations and controlled-Z entanglers. It is interesting as it

exhibits important properties to study barren plateaus in quantum optimization landscapes,

while keeping a simple connectivity and a low gate number.

Changing the number of layers has a great impact on the accuracy of the circuit. For

hardware efficient ansatz, increasing the number of used layers becomes mandatory as just

one layer might not have access to the searched state into the Hilbert space. In the figure

4-3 it’s clear how one layer of the circuit is insufficient for the calculation. When two layers

are used, the performance increases significantly for points after the minimum value, even

better for some points compared with circuits using more layers. With three and four layers

the errors are within the chemical accuracy. It’s worth noticing how there is no important

improvement between three and four layers, which might be caused by a saturation of the

circuits.

Combinations of Single and Double Excitations

Using the occupation encoding and the Jordan-Wigner transformation provides a conve-

nient way to describe the occupation of the molecular orbitals. And having a fixed number

of excitations (i.e. the number of electrons), superposition over all basis states are valid sta-

tes describing electrons on a molecule. For n = 2 electrons in k = 4 spin orbitals, a valid
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Fig. 4-3: Potential Energy Surface plots for 1 to 4 layers of Simplified Two Design ansatz

of the H2 molecule. For this plot, STO-3G basis was used along with DEMON

ADAM optimizer. At the bottom, the error of training using each circuit in a

log scale. Notice that using 3 and 4 layers produces results inside the chemical

accuracy.

occupation state is |ψ⟩ = |1100⟩. However, another valid state is a superposition over all the

states of the computational basis

|ψ⟩ = c1 |1100⟩+ c2 |1010⟩+ c3 |1001⟩+ c4 |0110⟩+ c5 |0101⟩+ c6 |0011⟩ , (4-8)

where all basis states show the same number of excitations: 2. Any transformation capable of

conserve the number of particles is called a particle-conserving unitary operation. For VQCs,

these kind of gates are not strictly necessary, as it is possible to produce wavefunctions with

the wrong number of excitations but the correct energy of the system. However, particle-

conserving unitary operators ensure the resulting wavefunction produced is a valid state that

can be used in some other procedures.

The simplest particle-conserving unitaries are the Givens Rotations, which describe an

arbitrary U(2) rotation in the subspace spanned by two states, parametrized by an angle ϕ.

The rotation can be also understood as an excitation, as the transformation from one basis

state to the other is interpreted as “exciting” a particle. For instance, a single excitation

gate is expressed by the two-qubit gate

G(ϕ) =


1 0 0 0

0 cos(ϕ/2) −sin(ϕ/2) 0

0 sin(ϕ/2) cos(ϕ/2) 0

0 0 0 1

 , (4-9)

and the circuit representation is depicted in figure 4-4 (a). The double excitation circuit
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(figure 4-4 (b)) shares the same principle of controlled rotations, and its use in the ansatz

can improve greatly the performance of the training.

(a) Single Excitation

(b) Double Excitation

Fig. 4-4: Circuit representation for a single and double excitation gates. In (a), the exci-

tation goes from the qubit 0 to the qubit 1. The middle four gates constitute a

controlled Y rotation, where each angle rotation is half the excitation parameter

(in this case, θ = 1). In (b), the excitations goes from the qubits 0 and 1 to the

qubits 2 and 3. The circuit is clearly larger and more intricate that the single

excitation circuit, but share the same principle of using controlled Y rotations.

An ansatz can be created using combinations of single and double excitations from the

basis occupation states of the system. Although these kinds of gates are not universal [3],

it is show in [6] that controlled single-excitation gates in the form of Givens rotations are
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universal. There are also some methods that allow to select only the excitations that are

found to be important for the given molecule [32].

Unitary Coupled Clustered Ansatz

Given the current effervescence of the research in quantum computing, it is possible to

find a problem-inspired ansatz for almost every problem of interest for the community. For

quantum chemistry problems, the Unitary Coupled (UCC) ansatz is a circuit widely used

where the goal is to obtain the ground state energy of a fermionic molecular Hamiltonian H.

For quantum chemistry problems, the Unitary Coupled (UCC) ansatz [9, 2] is a circuit

widely used where the goal is to obtain the ground state energy of a fermionic molecular

Hamiltonian H. The UCC ansatz propose a candidate for such ground state based on exciting

some reference state |ψ0⟩ as eT (θ⃗)−T (θ⃗)† |ψ0⟩. Here, T =
∑

k Tk is the cluster operator and Tk
are excitation operators. There Tk are actual excitations of the state, in contrast with the

Givens rotations. For UCCSD (SD stands for singles and doubles) the summation on the

cluster operator is truncated to contain single excitations T1 =
∑

pq θpqa
†
paq, and double

excitations T2 =
∑

pqrs θpqrsa
†
pa

†
qaras. To implement this ansatz the transformation from

fermionic to spin operators (usually the Jordan-Wigner transformation) is used.

In this work, the k-Unitary Pair Coupled-Cluster Generalized Singles and Doubles (k-

UpCCGSD) ansatz [70, 2] is used. The ansatz uses k repetitions (layers) of generalized

singles and pair coupled-cluster doubles excitation operators. Here, ”generalized”means that

the single and double excitation terms do not distinguish between occupied and unoccupied

orbitals. Also,”pair coupled-cluster”means that the double excitations contain only those

two-particle excitations that move a pair of electrons from one spatial orbital to another.

4.3.4. Gradients

In order to train a Variational Quantum Circuit in the NISQ era, a classical device is

required. And the used methods are based on training procedures that have been getting

continually better through the last decades with the widespread use of Machine Learning.

This procedures can be divided in two big sections

Gradient-based Strategies.

Gradient-free Strategies.

Each strategy comes with its own advantages and challenges. As a significant amount of

optimization methods use the gradient (or higher-order derivatives) of the objective functions

at a given parameter value, some ways to obtain these values are presented here. Interestingly

enough, Schuld et al. [65] show how gradients of the cost function can be evaluated using

the same architecture of the original circuits, or a very similar one.
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A common approach to evaluate gradients is to use stochastic approximation methods.

Finite Difference Stochastic Approximation (FDSA) is one of the simplest methods, which

uses two cost points with a small shift of the parameter of interest, and uses the difference

as the approximated gradient

∂f

∂θi
=
f(θ + ctei)− f(θ − ctei)

2ct
, (4-10)

where ct is the unit vector with a 1 in the i-th dimension. There are several strategies of the

finite difference method that define how the small shift is done. A symmetrical shift around

the starting point specified in eq. 4-10 is very common. Besides that, the “forward” and

“backward” methods use the value of the function at a starting point θ0 and make a shift

forward (θ0 +h) or backward (θ0−h). This method calculates the gradient using Number of

params + 1 runs of the circuit, as the value in the starting point is reused.

An improved stochastic method is the Simultaneous Perturbation Stochastic Approxima-

tion (SPSA) [72], where the perturbation is done over all parameters and not just one as in

FDSA. For this method the gradient takes the form

∂f

∂θi
=
f(θ + ct∆)− f(θ − ct∆)

2ct∆i

, (4-11)

where ∆ is a random perturbation vector and ∆i is the displacement over the i-th dimension.

Notice that, once the perturbation vector ∆ is defined, the numerator in 4-11 is unchanged,

which reduces the number of required cost calculations in half.

A different approach to evaluate the gradients is the Parameter-Shift rule [65, 21], that

has the great advantage to be analytic and exact. An objective function expressed as an

expected value of an observable (eq. 4-6) uses an unitary transformation U(x, θ) carried out

by the circuit, which can be broken into a product of unitaries, as expressed in eq. 4-7. As

each of these gates are unitary and must have the form Ul(θl) = exp(−iaθlGl) where Gl

is a Hermitian operator which generates the gate, a is a real constant, and θl is the gate

parameter.

Without loss of generality, consider the cost function

f(θ) = ⟨ψ|U(θ)†HU(θ) |0⟩ , (4-12)

where the unitary operator of the circuit takes the form

U(θ) = e−iaθG,

the operator G acting as the gate generator. The parameter-shift rule then states that if the

generator G has only two eigenvalues (e0 and e1), then the derivative of the expectation value

f(θ) is proportional to the difference in expectation of two circuits with shifted parameters

∂

∂θ
f(θ) = r

[
f
(
θ +

π

4r

)
− f

(
θ − π

4r

)]
, (4-13)
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where the shift constant r = a
2
(e0−e1). The parameter shift rule applies to several cases, being

one of the most important the 1-qubit Pauli rotation gates with a = 1/2 and r = 1/2. As the

parametrized gates of the Simplified Two Design ansatz use these kinds of gates, two circuit

runs per parameter are needed to get a parameter shift gradient. For more complex gates,

such as controlled rotation or excitation preserving gates (e.g. single or double excitation

gates), it is required a four-term parameter shift rule [3]. This is the case for single and

double excitation gates (each one using a single parameter), and also for every parameter of

the k-UpCCGSD ansatz.

4.3.5. Optimization Methods

As for any variational approach, the success of employing a Variational Quantum Circuit

depends on the efficiency and reliability of the optimization method used. For the algorithm

to be useful, it is required that it can learn a good enough approximation of the solution

within an acceptable number of learning steps. However, compared to conventional numerical

optimization problems, optimizing the expectation value of a variational quantum ansatz

faces additional challenges. The biggest issue currently is the sampling noise and gate noise

on NISQ devices, which disturb the landscape of the cost function. The precision of the

found solution can also be an issue because it is limited by the sample shot number when

calculating the expectation value. In this section several optimization methods are presented,

with a detailed description of the algorithms. The used values in the execution of each method

are presented in the requirements of the algorithm. The values used are the suggested ones

by the literature [73].

The most common approaches to optimization fall under the category of Gradient Descent,

where the gradient indicates the direction to take for each iteration step. Into this category,

the simplest of all is Simple Gradient Descent (detailed in algorithm 1), where a parameter

θ is updated by taking a step toward the opposite direction of the gradient. For this method,

the used gradient can be calculated in any available way.

In the same line, the Simultaneous Perturbation Stochastic Approximation method (SPSA)

[72, 71] updates the parameters in each step according to the calculated gradient, and the

gradient is approximated through a simultaneous perturbation of the input parameters. The

SPSA method (detailed in algorithm 2) involves evaluating the cost function twice in each

iteration step. Notice how this method uses several nonnegative coefficients a, c, A, α, and γ,

which is critical to the performance of the optimization algorithm. In [71], the creator of the

algorithm gives some guidelines on how to pick these coefficients. In particular, in high-noise

settings, he recommends selecting a smaller a and larger c than in a low-noise setting. In

that reference, he also suggests using α = 0,602 and γ = 0,101 as the lowest allowable values.

One more gradient-based algorithm for training a circuit is the Adaptative Moment Es-

timation method (ADAM) [37], presented as computationally efficient and optimal when

working with very noisy and/or sparse gradients. In each training step, ADAM (detailed in
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Algorithm 1 Simple Gradient Descent

Hamiltonian operator H encoding the cost function ⟨H(θ)⟩, parametrized quantum cir-

cuit U(θ) with D parameters to train.

Require:

η: Step size (0,1)

ϵ: Limit of convergence (1× 10−5)

1: Initialize θd ∈ (−π, π] for d = 1, ..., D heuristically or at random

2: repeat

3: for d = 1, ..., D do

4: Get gradient g
(t)
d = ∂⟨H(θ(t))⟩

∂θd

5: θ
(t−1)
d ← θ

(t)
d − ηg

(t)
d

6: end for

7: until |⟨H(θ(t+1))⟩ − ⟨H(θ(t))⟩| < ϵ or max iterations

Algorithm 2 Simultaneous Perturbation Stochastic Approximation (SPSA)

Hamiltonian operator H encoding the cost function ⟨H(θ)⟩, parametrized quantum cir-

cuit U(θ) with D parameters to train

Require:

α: Scaling Exponent (0,602)

γ: Scaling exponent (0,101)

c: Hyperparameter related to the expected noise (0,2)

A: Scaling parameter (0,1 ∗maxiter)
a: Scaling parameter (0,05 ∗ [A+ 1]α)

ϵ: Limit of convergence (1× 10−5)

1: Initialize θd ∈ (−π, π] for d = 1, ..., D heuristically or at random

2: repeat

in step t

3: a(t) ← a
(t+A)(α)

4: c(t) ← c
tγ

5: Random perturbation vector ∆(t) = [∆
(t)
1 , ...,∆

(t)
D ]

6: Gradient vector g(t)(θ(t)) = ⟨H(θ(t) + c(t)∆(t))⟩ − ⟨H(θ(t) − c(t)∆(t))⟩/2c(t)∆(t)

7: θ(t+1) = θ(t) − a(t)g(t)(θ(t))
8: until |⟨H(θ(t+1))⟩ − ⟨H(θ(t))⟩| < ϵ or max iterations
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algorithm 3) introduces the effect of past cost changes on the current direction of movement

in the cost landscape, while also adapting the used learning rate. Considering the effect of

past costs provides a kind of ’momentum’ in the cost landscape that effectively filters out

high-frequency variations [64]. This is done by computing a weighted moving average of the

gradient

m(t+1) = βm(t) + (1− β)g(t), (4-14)

where m(t) is the momentum used to update the parameter, and β controls the moving ave-

rage, by gauging the relevance of the previous momentum. Regarding the adapting learning

rate (key in the RMSProp optimization method [31]), the moment is divided by the weighted

moving average of the root mean square of the gradient value, which improves the direction

of the step to take and reduces the significance of its magnitude.

The training results from ADAM are generally accurate results. Its adaptative learning

rate and momentum-based approach let a circuit learn faster and converge more quickly

towards an optimal set of parameters that minimize the cost function. There are several

optimization methods with a direct relation to ADAM and worth considering such as the

already mentioned RMSProp, ADAMAX ([37], section 7.1), AdaGrad [26] , AdamW [44], and

Decaying Momentum (DEMON) ADAM [18]. There are several works comparing optimizers

for Quantum Machine learning such as [76], where several optimizers are used along with

SPSA-based gradients, and [11] where gradient-free optimization methods are compared with

SPSA.

DEMON ADAM is one of the most promising improvements over ADAM, and can be

applied to any gradient descent algorithm with momentum parameters. The researchers

that introduce DEMON mention that it is less sensitive to parameter tuning while also

performing very well training neural networks. By decaying the momentum parameter, the

total contribution of a gradient to all future updates is decayed. This is done with the

advantage that no hyperparameter tuning is required, as the momentum parameter usually

decays to 0 or a small value. To apply DEMON, the parameter β1 is a function of the training

step t

β1 → βt = βinit

(
1− t

T

)
(1− βinit)− βinit

(
1− t

T

) , (4-15)

where βinit is the value set for the momentum parameter at the beginning of the training

and total T steps.

As a final word for this topic, it’s important to understand that optimization problems in

multidimensional spaces are a challenging task. And more so for the optimization landscape

of variational hybrid algorithms, whose cost function shows many local minima and barren

plateaus. The number of variables, as well as the difficulty to evaluate the cost function or

its gradients are key in selecting an useful optimizer. If the model is very cheap (easy cost

and gradient calculation) it is possible that any of the available optimizers will provide a

reasonable solution within a reasonable time. But in general, gradient-based optimization
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methods are the most efficient way to explore the cost landscape; even better when the

optimizers are sophisticated enough to ensure a quick convergence.

Algorithm 3 Adaptative Moment Estimation (ADAM)

Hamiltonian operator H encoding the cost function ⟨H(θ)⟩, parametrized quantum cir-

cuit U(θ) with D parameters to train

Require:

η: Step size (0,01)

β1 ∈ [0, 1): Update rate for the first momentum (0,9)

β2 ∈ [0, 1): Update rate for the second momentum (0,99)

ϵ0: Offset for numerical stability (1× 10−8)

ϵ: Limit of convergence (1× 10−5)

1: Initialize θd ∈ (−π, π] for d = 1, ..., D heuristically or at random

2: m(0) ← 0 Initialize first moment

3: v(0) ← 0 Initialize second moment

4: repeat

in step t

5: for d = 1, ..., D do

6: Get gradient g
(t)
d = ∂⟨H(θ(t))⟩

∂θ
(t)
d

7: m(t+1) ← β1m
(t) + (1− β1)g(t)d

8: v(t+1) ← β2v
(t) + (1− β1)(g(t)d )2

9: (m(t+1))← m(t+1)/(1− β1)
10: v(t+1) ← v(t+1)/(1− β2)
11: θ

(t+1)
d ← θ

(t)
d − ηm(t+1)/(

√
v(t+1) + ϵ0)

12: end for

13: until |⟨H(θ(t+1))⟩ − ⟨H(θ(t))⟩| < ϵ or max iterations

4.4. VQE with multiple configurations for H2

Training results in VQE can vary greatly regarding on the configuration of ansatz, gradient

method and optimizers used. And keep in mind that each possible selection in one of the

pieces mentioned can have multiple variants, with equal (if not more) importance, that allow

a very fine tuning of the training procedure. In this word, simulations of VQE performed using

PennyLane are presented. For this, two big approaches are presented: analytical execution,

where the results of the circuits and expectation values are computed exactly from the

quantum state; and shots-based execution, the way expected in a real quantum processor,

where the circuit is evaluated (or “sampled”) a number of times to estimate statistical

quantities. As the cost function used in VQE is based on expectation values, the number of

shots affects greatly the accuracy of the results.
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4.4.1. Simulation details

Here you can find the details of the simulations done to calculate the ground energy for

a H2 molecule using VQE.

The electronic wavefunction is described using LCAO of lowest energy states S1, and

the chemical basis set STO-3G.

The integrals required to get the molecule hamiltonian are calculated using the Penny-

Lane wrapper of PySCF.

150 steps max in each training method are used.

FCI (Full Configuration Interaction) is used as comparison value for error calculation,

using chemical accuracy (Error < 1,6mHa) as baseline

4.4.2. Analytic Approach

The analytic results are, as expected, very accurate. For all the ansatz tested (given there

were enough layers used in the case of hardware efficient ansatz) it was possible to train the

circuits and obtain energy results within chemical accuracy (shaded region). In the figure

4-5 is clear how the use of different optimizers affects the results, specifically the absolute

difference between the FCI energies and the ones obtained. For an analytics calculation, the

differences caused by using finite differences or parameters shift rule are very small. Both

gradient descend and ADAM give great optimization results, but ADAM behaves better

in general. This is convenient ad ADAM uses the same circuit resources per run to get

the gradient of the circuits (regardless of the method) as gradient descend, but performs

better. On the other hand, SPSA behaves good enough with few parameters to train, as

in the excitations ansatz, but shows significant energy differences for circuits with many

parameters, such as the Simplified Two Design Ansatz.

4.4.3. Shots-based approach using 10000 shots

When considering the shots based approach, the training results are somewhat more in-

teresting. In this scenario, using parameter shift rule to calculate the gradients do make an

impact in the accuracy of the procedure. Figure 4-6 displays the absolute error of multiple

running configurations, obtained from the average of 5 complete runs of each configuration,

using 10000 shots. The results in the left column are obtained using finite differences, and

the ones in the right use parameters shift rule. SPSA outperforms the other optimizers when

they use finite differences. It is important to remember that SPSA uses an stochastic appro-

ximation to obtain the gradients, so it is expected to vary between runs and configurations.

ADAM always outperforms gradients descend, which again give good word regarding the
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optimization procedure, and achieves chemical accuracy (or gets very close) in all considered

ansatz.
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Fig. 4-5: Error in log-scale for VQE analytic training using different optimizers. For all an-

satz it was possible to train the circuit to reach error within chemical accuracy

(shaded region). Notice how the errors in the bottom row using Excitations ansatz

perform particularly well. ADAM outperforms the other optimizers, with gradient

descend close enough and SPSA showing larger error for ansatz with many para-

meters.
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Fig. 4-6: Error in log-scale for VQE shots-based training using different optimizers. The

errors presented are the average of 5 complete runs of each configuration, using

10000 shots. Left column results use finite difference, and right column uses pa-

rameters shift rule. SPSA outperforms the other optimizers when they use finite

difference, and ADAM provides good enough accuracy when using parameters

shift.



5 The Meta-Variational Quantum

Eigensolver

In the best scenario, with an initial state preparation and a physically inspired circuit,

a VQE execution only returns a specific ground-state energy, associated with the punctual

geometry and other parameters used to calculate the Hamiltonian of the system. Parameters

such as nuclear coordinates, external field strengths or model-specific parameters define the

Hamiltonian, the cost function, and the resulting energy of the calculation. However, finding

the ground energy for a specific configuration can be insufficient when the goal is to find

the configuration that leads to specific properties of the system. In these situations, the

potential energy surfaces are of great utility, but they come with the computational cost of

running many instances of the VQE to scan over the parameters. That is the reason why

some works have explored the possibility of reducing this problem by making the circuit

’learn’ the Hamiltonian.

The Meta-Variational Quantum Eigensolver (meta-VQE) [16] encodes the circuit para-

meters using the Hamiltonian meta-parameters as free variables. Then, the meta-VQE is

trained using a small set of Hamiltonian meta-parameters by setting a cost function that is

a combination of all expected values. Finally, the meta-VQE has learned the optimal values

used to encode the meta-parameters, and then other Hamiltonian meta-parameters can be

used to obtain good estimations of the ground-state energy without further optimizations.

This concept is portrayed in figure 5-1, with the left panel showing the results of a stan-

dard VQE procedure, and the right panel depicting multiple training points (Hamiltonian

meta-parameters) used to learn the optimal values that encode the circuit parameters. If the

estimation is not precise enough, the resulting parameters of meta-VQE can be used as a

starting point to running VQE (opt-meta-VQE) for all the Hamiltonian meta-parameters.

5.1. General Description

Given an n qubits parametrized Hamiltonian of the form H = H(λ⃗) where λ⃗ = {λ1, ..., λq}
are q different meta-parameters, M sets of λ⃗ are selected as the training set. Notice how the

set of meta-parameters is closely related to the problem’s complexity: it might be just the

distance R between the two nuclei of a single molecule, or a group of variables encoding a

complex geometry. Then, the unitary VQC U(θ⃗) is expresed using an encoding unitary ope-

rator S which arguments include the Hamiltonian meta-parameters λ⃗i and extra variational
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Fig. 5-1: Layout for meta-VQE. Using a set of training points (interatomic distances for a

molecular system, represented in the plot as vertical lines) it is possible to learn

the energy profile of the system and obtain energy values for other points.

parameters Φ⃗. This means that all the variables θ⃗ that rule the effect of the circuit over the

inital state are now encoded as

θ⃗ = θ⃗(λ⃗i, Φ⃗). (5-1)

The final state of the circuit takes the form

|ψi⟩ = S(λ⃗i, Φ⃗) |ψ0⟩ , (5-2)

where |ψ0⟩ is the initial state of the circuit. The meta-VQE is optimized over a set of training

points λ⃗i by minimizing a cost function that depends on a mixture of the energies H(λ⃗i)

calculated over all training points. The simplest cost function is the average of all expected

values

C(λ⃗, Φ⃗) =
M∑
i=1

1

M

〈
ψi(λ⃗i, Φ⃗)

∣∣∣H(λ⃗i)
∣∣∣ψi(λ⃗i, Φ⃗)

〉
, (5-3)

but other more sophisticated aggregations of cost functions can be used (e.g. aggregations

inspired on the problem at hand). Once the circuit is trained, the expected value of the

Hamiltonian can be calculated for other values of λ⃗ using the trained parameters θ⃗opt =

θ⃗(λ⃗, Φ⃗opt). Notice how this procedure can be described as an multi-objective optimization

(MOO) [45] where a collection of functions are minimized over the same set of designed

variables.

For a simple molecule, the meta-parameter to use is usually the nuclei separation R. The

encoding of the circuit parameters θ⃗ done by the unitary S used for meta-VQE can be done

using a linear function

θi = wiR + ϕi, (5-4)
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Encode

θi = θi(R, ϕi)

meta-VQE

Train aggregated cost

ϕi = {αi, βi, γi, δi}
ϕi → ϕi,opt

θi = θi(R, ϕi,opt)

opt-meta-VQE

Train single cost with VQE

θi,init = θ(R, ϕi,opt)

θinit → θopt

meta

⟨Ψ(θi)|H(Ri) |Ψ(θi)⟩

opt-meta

⟨Ψ(θopt)|H(Ri) |Ψ(θopt)⟩

Fig. 5-2: Diagram of meta-VQE and opt-meta-VQE. After the encoding with the interato-

mic distance as a free parameter is defined, the encoding parameters are optimized

by training the aggregated cost function for a set of interatomic distances. Then,

with the encoding and its optimized parameters, optimal circuit parameters are

obtained for any interatomic distance. The process can be understood as a sta-

tistical regresion where the encoding parameters are optimized to minimize the

aggregated cost function.

with individual variational parameters wi and ϕi, or more complex non-linear encoding such

as a Gaussian function

θi = αie
βi(γi−R) + δi, (5-5)

with individual variational parameters αi, βi, γi and δi. Gaussian functions are fairly good

encoders to use for approximations, and have the additional advantage of capturing the

asymptotic behaviour of molecular distances over the constant offset δ. Figure 5-2 depicts

the procedure of meta-VQE and opt-meta-VQE, where encoding parameters are optimized

to obtain the optimal values of the circuit variables.
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5.2. Meta-VQE results with multiple configurations for H2

As an example for meta-VQE, a H2 molecule is analysed using different ansatz. The

Hamiltonian was calculated using a STO-3G basis and a Jordan-Wigner encoding. The

metaparameter of the Hamiltonian is the interatomic distance of the atoms. Remember that

the position of the atoms, affected by the change in the interatomic distance, also affect

the one- and two-electron integrals, which makes it necessary to calculate a Hamiltonian for

each separation value considered. For training points, an equally spaced set of interatomic

distances were selected: 1.0 a0, 1.8 a0, 2.6 a0, 3.4 a0, 4.2 a0. There is no restriction or rule of

thumb to select these points. However, it is recommended that they surround the inflection

points of the physical quantity under analysis.

The ansatz used will be the same as in the previous chapter: Simplified Two Design,

Combinations of Singles and Double excitations, Just Double excitations and k-UpCCGSD.

Some metrics for circuit comparison can be found in table 5-1. As with other calculations,

the following were also made using PennyLane considering an analytic and a shots-based

approach with 10000 shots. The circuit’s parameters were encoded with the Gaussian fun-

ction in equation 5-5, and the initial values of each variable in the encoding were initialized

at random.

Table 5-1: Cost estimates for circuits used in meta-VQE and opt-meta-VQE. Number of

parameters, number of two-qubit operators (entangling gates), and circuit depth.

Notice that for H2 with 4 qubits, result of using the STO-3G basis, there is two

single and one double excitations.

Ansatz Depth Parameters Entangling Gates

Simplified Two Design - 4 layers 17 28 12

2 Single and 1 Double Excitation 32 3 22

1 Double Excitation 20 1 14

k-UpCCGSD - 1 layer 92 6 72

For meta-VQE, there is a single aggregated cost function that is a combination of the costs

produced by each training point. The aggregation used was the average of the expected value

of the Hamiltonian at each point. The initial values of the Gaussian encoding parameters,

can be set at random, or in such a way that the initial values produced are the same as the

linear encoding (α, δ = 0, β, γ = 1). After meta-VQE optimization procedure, the results

are the optimal parameters used to encode the interatomic distance. For example, using the

Gaussian encoding in the k-UpCCGSD ansatz with 1 layer, there are 6 parameters for the

ansatz and 6 × 4 = 24 parameters to train in meta-VQE. After the optimization, these 24

values are plugged in in the equation 5-5 with an inter atomic distance R as a free variable.

This would produce 6 new variables that depend explicitly on R, and finally these values are

used in the original circuit to calculate the ground energy for any distance within a certain



56 5 The Meta-Variational Quantum Eigensolver

range.

5.2.1. Simulation details

Here you can find the details of the simulations done to calculate the ground energy for

a H2 molecule using meta-VQE.

The electronic wavefunction is described using LCAO of lowest energy states S1, and

the chemical basis set STO-3G.

The integrals required to get the molecule hamiltonian are calculated using the Penny-

Lane wrapper of PySCF.

150 steps max in each training method are used.

For aggregated cost function used in meta-VQE, 5 train points are used: {Ri} ∈ { 1.0

a0, 1.8 a0, 2.6 a0, 3.4 a0, 4.2 a0}.

FCI (Full Configuration Interaction) is used as comparison value for error calculation,

using chemical accuracy (Error < 1,6mHa) as baseline

5.2.2. Analytic Approach

The figure 5-4 depicts the evolution of this aggregated cost function for the ansatz,

where the max number of repetitions were set at 150. All the plots use finite difference, as

the selection of gradient method affects very slightly the results (just like standard VQE).

An important thing to see is that all ansatz portrayed are able to learn, reducing the cost

function of meta-VQE. The Hardware Efficient Ansatz is the one that starts with the highest

cost, as expected due to not considering any information regarding the chemical problem at

hand. However, all ansatz reach a joined close or lower to −1,0 Ha. Again, ADAM optimizer

outperforms the other optimizers, with Gradient descent being a close competitor in Double

Excitation and k-UpCCGSD circuits. SPSA performance is poor in all but one circuit (k-

UpCCGSD).

After the learning process, and with good enough results, the calculations can be further

improved by training all the test points using VQE, using the optimal circuit parameters

for each atomic distance produced by the optimal encoding parameters in a ´´warm start”.

The best results of meta-VQE are obtained using a problem-inspired ansatz and ADAM op-

timizer (figure 5-5), even being able to obtain the ground energy within chemical accuracy

for most of the test points. For analytical calculations, there is not noticeable difference in

the results when finite differences or parameters shift rule are used. Regarding the other

circuits, good results are obtained in general for the problem inspired ansatz, with errors of

order 102 Ha or lower. A detailed comparison of the results can be seen in the table 5-2,
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which contains the root mean squared error (RMSE) of the energies obtained by variational

methods with the FCI energies.

In principle, meta-VQE pursues the reduction of computational cost when analysing the

potential energy surface of a molecule. To prove if there is an actual reduction compared to

VQE, it is necessary to compare the number of runs of the quantum circuit. For this, it is not

considered the (unlikely) possibility that the Hamiltonian might have a variable number of

terms for different intermolecular distances, which might affect the time required to obtain

the expectation value. For each optimizer step and each parameter to train in VQE, it is

required to run the circuit twice (considering the gradient strategy is a simple finite diffe-

rence approximation or simple parameter shift rule). In meta-VQE this value is multiplied

by the number of training points used, but also by the number of variables used to encode

the ansatz. For the Gaussian encoding of equation 5-5 that uses 4 variables, using 5 training

point would require 2 × 4 × 5 = 40 runs per ansatz parameter and optimizer step. This is

an overhead of 20. So, in principle, meta-VQE becomes cheaper if more than 20 points are

required.

5.2.3. Shots-based approach using 10000 shots

Getting the statistics of the systems based on a defined number of shots changes comple-

tely the results of the training. The RMSE errors are shown in table 5-3. For this approach,

it is noticeable how the variational algorithm struggles to minimize the meta-VQE cost fun-

ction. It is also clear how the gradient method used makes a difference in the training of

cost function. Parameter-shift rule clearly improves the performance in all VQE, meta-VQE

and opt-meta-VQE. Also, it is interesting to notice how SPSA outperform the training of

the other gradient based methods when finite differences are used. This may be explained

by the stochastic property of SPSA, which helps to reduce the effect of the variability of the

samples obtained.
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Table 5-2: RMSE error of VQE, meta-VQE and opt-meta-vqe for multiple ansatz and gra-

dient methods using analytical calculation, in mHa. The term “fd” reefers to

finite difference, and “ps” to parameters shift rule. The selection of the differen-

tiation method does not make any significant difference in the calculated errors.

ADAM optimizer gives better results for meta-VQE, although Gradient descend

performance is also good. About the ansatz, problem-inspired circuits produce

the smallest error.

Gradient SPSA ADAM

fd ps fd ps

Simplified Two

Design - 4 layers

vqe-previous 2.668 2.668 229.307 3.683 3.683

meta 254.312 254.311 626.152 58.264 58.264

opt-meta 34.785 34.785 52.414 19.477 19.477

Single and

Double

Excitations

vqe-previous 0.123 0.123 1.574 0.036 0.036

meta 29.925 29.925 146.567 5.015 5.015

opt-meta 0.163 0.163 2.120 0.171 0.171

Double

Excitations

vqe-previous 0.122 0.122 0.734 0.043 0.043

meta 67.518 67.518 117.082 57.753 57.753

opt-meta 0.113 0.113 0.928 0.080 0.080

k-UpCCGSD - 1

layer

vqe-previous 0.056 0.056 33.185 0.701 0.104

meta 19.840 19.840 68.734 7.076 7.076

opt-meta 0.055 0.055 1.519 0.144 0.546
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(a) Simplified Two Design - 4 layers (b) k-UpCCGSD - 1 layer

(c) Single and Double Excitations (d) Double Excitation

Fig. 5-3: Meta-VQE cost function for training step using parameter shift rule. The average

of all expected values of the Hamiltonian at each test point was optimized for each

circuit. Both Hardware-Efficient and problem-inspired ansatz can learn the energy

profile (given enough layers).
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(a) Double Excitation

Finite Diferences

(b) Double Excitation

Parameter Shift

(c) k-UpCCGSD 1 layer

Finite Diferences

(d) k-UpCCGSD 1 layer

Parameter Shift

Fig. 5-4: Meta-VQE trained energies for different optimizers using k-UpCCGSD and Double

Excitation ansatz.
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(a) Single and Double Excitations (b) k-UpCCGSD - 1 layer

Fig. 5-5: Error in log-scale for VQE, meta-VQE and opt-meta-VQE using analytical calcu-

lations, parameter shift rule and ADAM optimizer. The results of meta-VQE are

within chemical accuracy for most of the distances considered. A further training

of the circuit parameters coming from meta-VQE show error in the order of Stan-

dard VQE.
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Table 5-3: RMSE error of VQE, meta-VQE and opt-meta-vqe for multiple ansatz and gra-

dient methods using shots-based approach, in mHa. The results are the average

of 5 complete runs of each configuration, using 10000 shots. The term “fd” reefers

to finite difference, and “ps” to parameters shift rule. With this approach, the

differentiation method does affect the results, with parameter shift rule being

the method with the bests results. Also, when using shots, SPSA appears to

perform better than other optimizers while using finite differences.

Gradient SPSA ADAM

fd ps fd ps

Simplified Two

Design - 4 layers

vqe 854.324 54.734 181.795 673.237 5.695

meta 863.937 846.799 632.235 816.570 833.424

opt-meta 812.076 168.150 371.659 792.859 98.876

Single and

Double

Excitations

vqe 595.586 4.873 12.187 109.237 26.615

meta 610.868 282.837 180.910 201.429 268.976

opt-meta 654.683 57.206 96.391 185.635 94.520

Double

Excitations

vqe 602.135 3.436 8.297 87.357 1.355

meta 172.344 73.782 159.681 197.089 69.279

opt-meta 554.103 18.614 33.831 139.945 38.397

k-UpCCGSD - 1

layer

vqe 634.205 1.361 4.222 82.542 0.990

meta 596.225 354.612 147.007 323.514 438.432

opt-meta 636.187 10.966 103.582 281.916 24.317



6 Conclusions

This work presents a detailed description of Variational Quantum Circuits used to obtain

the ground energy of a molecular system. Starting with a small description of quantum

mechanics, followed by a discussion on how to write a Molecular Hamiltonian in a qubit basis

to be used by a quantum processor, and ending with a comprehensive discussion on how to

build a Variational Quantum Circuit to implement the Variational Quantum Eigensolver

method and meta-Variational Quantum Eigensolver.

In particular, it was shown how VQE is able to find the ground state and obtain the

potential energy surface of an H2 molecule, executing analytics and shots-based simulations.

For both approaches, results within chemical accuracy are obtained using ADAM optimizer,

problem-inspired ansatz composed by Single and Double excitations and Coupled Cluster

methods, and parameter-shift rule as a gradient method for training. Regarding meta-VQE

and further optimization from meta-VQE results (opt-meta-VQE), there was no advantage

proven against standard VQE, which might be caused by a very simple definition of the

meta-VQE joined cost function or some required fine tuning of the optimizer due to the

change in nature of the cost function. Some things to highlight is that the differentiation

methods do not play an important role when analytical simulations are considered. Energies

and errors are almost the same, regardless of using finite differences or parameter-shift rule.

This is not the case for the shots-based approach, where parameter-shift rule clearly has

a better performance. Also, SPSA appeared to perform as well or better than the other

optimizers when the shots based approach was used. This is important as the real use of

quantum devices is shots based.

Possible perspectives of this work include the consideration of refined meta-VQE costs

functions to achieve good performance in the learning process, while also reducing the compu-

tational cost against the standard VQE training. Also, it would be interesting to see how

the training performance of meta-VQE using ADAM and SPSA is impacted by changing the

number of shots. Finally, it is necessary to address the impact the error has in the presen-

ted training procedures. This could the achieved considering error models from real qiskit

devices, or even perform the training in a real quantum processor using Qiskit Runtime.

This work has laid down the grounds for multiple, more sophisticated projects involving

larger molecules, calculation of other molecular properties (such as excited state energies,

dipole moments, charge distributions, to name a few), and the possibility of analysing exotic

molecules composed by antimatter particles. In particular, QML is well suited to accelerate

the identification of energy stability in molecules composed by antimatter particles.
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[40] J. M. Kübler, A. Arrasmith, L. Cincio, and P. J. Coles. An adaptive optimizer for

measurement-frugal variational algorithms. Quantum, 4:263, 2020.

[41] L. Leone, S. F. Oliviero, L. Cincio, and M. Cerezo. On the practical usefulness of the

hardware efficient ansatz. arXiv preprint arXiv:2211.01477, 2022.

[42] J. Li, B. A. Jones, and S. Kais. Toward perturbation theory methods on a quantum

computer. Science Advances, 9(19):eadg4576, 2023.

[43] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran. Quantum embeddings for

machine learning. arXiv preprint arXiv:2001.03622, 2020.

[44] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101, 2017.

[45] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for

engineering. Structural and multidisciplinary optimization, 26:369–395, 2004.

[46] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan. Quantum compu-

tational chemistry. Reviews of Modern Physics, 92(1):015003, 2020.

[47] A. McCaskey, E. Dumitrescu, D. Liakh, and T. Humble. Hybrid programming for near-

term quantum computing systems. In 2018 IEEE international conference on rebooting

computing (ICRC), pages 1–12. IEEE, 2018.
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