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Resumen

Desempeño y eficiencia energética en vehículos eléctricos utilizando un motor
de inducción a través de estrategías de Rechazo Activo de Perturbaciones y

Control óptimo

Actualmente, la eficiencia energética cobra gran importancia en la sociedad y sus propues-
tas de transición energética, incluyendo los temas de tecnología vehicular. En cuanto a los
vehículos eléctricos, un desafío crítico reside en abordar las cuestiones de autonomía. Para
abordar esta preocupación, se vuelve imperativo optimizar varios componentes y estrategias
asociadas para estos vehículos. Un componente crítico es el motor eléctrico, y los motores
de inducción son ampliamente usados por su rentabilidad y sus técnicas bien establecidas.
A pesar de sus ventajas, el motor de inducción también experimenta pérdidas intrínsecas, lo
que exige una mejora del rendimiento que se puede lograr con estrategias de control. Esta
investigación adopta un enfoque modificado de control basado en rechazo activo de pertur-
baciones para abordar las incertidumbres y la dinámica compleja, junto con conceptos de
control óptimos para los requisitos de eficiencia del motor de inducción. La modificación
implica incluir una ponderación en el rechazo de perturbaciones, desarrollar una función de
costo ponderada y ajustar todos los parámetros del controlador considerando técnicas meta-
heurísticas. Se realiza un análisis comparativo de los enfoques de optimización considerando
el rechazo de perturbaciones y su versión ponderada. El ADRC modificado redujo efectiva-
mente el valor de la función de costos en comparación con el enfoque ADRC clásico. Los
hallazgos del estudio se validan mediante la experimentación con un motor de inducción y
un generador de DC que simula las condiciones de un vehículo eléctrico. Esto sugiere que
la estrategia de control propuesta, basada en el rechazo parcial de perturbaciones dentro del
esquema ADRC, puede ofrecer un rendimiento superior basado en una función de costos,
aunque aumenta la complejidad para el ajuste de los parámetros.
Palabras clave: Motor de inducción, Control por rechazo activo de perturbaciones,
Optimización,Técnicas Metaheuristicas, Vehículos Eléctricos, Observador de estado
extendido .
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Abstract

Performance and energy efficiency in electric vehicles using an induction motor
through Active Disturbance Rejection and Optimal Control strategies

Currently, energy efficiency holds significant importance in society and its energetic transi-
tion proposals, including vehicular technology topics. Regarding electric vehicles, a critical
challenge lies in addressing autonomy issues. To tackle this concern, it becomes imperative
to optimize various components and associated strategies for these vehicles. A critical com-
ponent is the electric motor, and induction motors are popular for their cost-effectiveness and
well-established techniques. Despite its advantages, the induction motor also experiences in-
trinsic losses, demanding performance enhancement that can be accomplished with control
strategies. This research adopts a modified active disturbance rejection control approach to
address the uncertainties and complex dynamics, along with optimal control concepts for the
efficiency requirements of the induction motor. The modification involves including a dis-
turbance rejection weight, developing a weighted cost function, and tuning all the controller
parameters with metaheuristic techniques. A comparative analysis of the optimization ap-
proaches, considering the disturbance rejection, and its weighted version is conducted. The
modified ADRC effectively reduced the cost function value when compared to the classic
ADRC approach. The study’s findings are validated through experimentation with an in-
duction motor and a DC generator simulating electric vehicle conditions. This suggests
that the proposed control strategy, rooted in partial disturbance rejection within the ADRC
scheme, can deliver superior performance based on a cost function, although increasing the
complexity for the parameter tuning.
keywords: Induction motor, Active Disturbance Rejection Control, Optimization ,
Metaheuristic techniques, Electric vehicles, Extended state observer .
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1. Introduction

A new control strategy is crucial for optimizing energy usage in electric vehicles. In the
current context, there are control strategies that overlook the performance criteria necessary
to enhance the functionality of electric cars. The strategy proposed in this research aims to
enhance a performance criterion under electric vehicle conditions and energy utilization. In
this proposal, the complexity and results of the control strategy will be compared to other
well-established control strategies through both offline simulations and real-time implemen-
tations in an experimental setup.

Currently, societal development acknowledges a correlation between economic progress and
environmental preservation. Thus, there is a need to envision a swiftly advancing econ-
omy within the framework of environmental conservation, making it a trending topic [43].
Globalization advocates for a rapid surge in energy consumption, and the use of fossil fuels
contributes to polluting emissions. Consequently, it is imperative to consider the concept of
energy efficiency. As a result, research on these subjects is on the rise in various countries
[64]. Given this context, multiple frameworks are being developed to enhance energy effi-
ciency with the aim of deriving benefits for both the economy and society [11].

One topic that it is possible to consider is vehicles, Internal Combustion Engine (ICE) ve-
hicles generate an emission of gasses, creating research in several characteristics of vehicles
[26]. Additionally, according to [13, 33], electric vehicles are proposed with the objective
of facing global warming and the energy crisis, but for the functioning, it is necessary to
consider the parts of vehicles: The power electronic converter, the motor, the energy stor-
age device, and the controller. For considering maximum energy efficiency, the parts have
to work harmoniously. Here, the control strategies cannot only improve energy efficiency,
therefore can improve safety and driving comfort, allowing to consider electric vehicles to
face vehicles based on fossil fuels. Regarding the motor of electric vehicles, it is possible
to consider several machines such as Induction Motors, Switched Reluctance machines, and
others. According to [33], an induction motor is one of the machines that is widely used in
electric vehicles due to these motors are cheaper than other machines, are tough for harsh
applications, and have good initial torque, but despite the induction motor can reach high
efficiency, the performance of this machine cannot be higher than others and the precise
speed control is complicated. Furthermore, the range in electric vehicles is one of the most
important characteristics. For this reason, it could be important to consider the concept of
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energy efficiency and the performance in induction motors [6, 10, 20, 26].

In the context of energy efficiency in induction motors, this machine exhibits two types of
intrinsic losses: fixed and variable losses [2, 36, 45]. The nature of these losses is contingent
upon motor design. Fixed losses remain constant regardless of motor load and are associ-
ated with the magnetic core, friction, and windage. On the other hand, variable losses are
contingent on motor load and are related to rotor and stator resistances, as well as stray
losses. Consequently, the intrinsic losses of the induction motor can be modified through
various design techniques.

Due to the difficulties that are possible to find in electric vehicles using an induction motor,
it is possible to design control strategies to improve the use of energy and reach a better per-
formance. Between the used techniques, it is possible to find Field-Oriented control, direct
torque control, and Model Predictive Control. Field-oriented control is one of the strategies
more used. This technique takes into account a coordinate system that allows the rotor flux
and the torque can be controlled independently. This control strategy is based on a cascade
control loop considering the control of the internal currents and the external speed of the
motor [33].

Regarding the control, sometimes the design is based on a trial and error process. For this
reason, it is possible to consider an optimal control where the control signal may satisfy phys-
ical constraints and minimize or maximize a cost function or performance criterion. Then, it
is considered the optimal control problem to find the optimal control signal for minimizing
the cost of a performance criterion considering an optimal trajectory [30]. Additionally, the
complexity of the optimization problem varies depending on the structure of the system
because this one can have nonlinear dynamics or constraints. Then, when the problem is
too complicated due to the system structure or the performance criterion complexity, it is
possible to consider methods or algorithms to solve the problem satisfactorily [55]. From
natural processes, arises the search based on conducting the survival of the best individuals
taking into account a criterion. Algorithms like genetic algorithms, simulated annealing, or
other strategies have a similar objective of finding in a probabilistic mode the global solution
(minimum or maximum), taking into account the complexity and the panoramic multinode.
However, each of them follows different processes [49].

Additionally, sometimes a nonlinear system can have unmodeled and/or unknown dynamics,
that can be represented in an unified disturbance under the Active Disturbance Rejection
Scheme and the differential flatness. Through Active Disturbance Rejection approach, it
is possible to consider a system such as a perturbed integrator chain, because this chain
maintains the essentials of the real system [1, 51].
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Figure 1-1.: Integrator chain - ADRC scheme

Taking into account the above, the unified disturbance that contains the nonlinear dynamics
can be estimated through an Extended State Observer (ESO), considering that the distur-
bance can be estimated then could be rejected. For this reason, the Active Disturbance
Rejection approach allows to work with systems that have a high level of uncertainty or are
perturbed [53]. Thus, a system can be described by

y(n)(t) = κu(t) + ξ(t), (1-1)

where n represents the integrator chain, u(t) is the control signal, y(t) is the output, and ξ(t)
is the unified disturbance. The value of κ varies depending on the structure of the output
and its derivatives. However, in general, is considered as a constant average value.
Regarding the relationship between optimization and ADR, currently, it is possible to find
several works about the optimal active disturbance rejection. One of them is based on using
the genetic algorithm to optimize the performance of the ESO, taking into account a motor
DC application [60]. Other work is based on optimizing through ant colony optimization
algorithm with the purpose of optimizing the parameters of an ESO using an induction mo-
tor [62], the performance criterion of this problem considers the cost function taking into
account the tracking error, settling time, and the rise time. This paper shows the compari-
son between the cost of several algorithms. Finally, regarding [18], it is possible to find the
other work where the purpose is to tune the parameters of a nonlinear ESO using the particle
Swarm optimization algorithm for a system based on an induction motor, the cost function is
the same that is found in the work in [62]. In both works are considered metaheuristic meth-
ods, due to these methods consider complex problems. For these problems of metaheuristics
are analyzed the cost of any iteration and the iteration where there is a settlement of the cost.

The works described above take into account the disturbance rejection. In general the objec-
tive is to tune the parameters of the controller or observer. These approaches have advantages
with respect to the disturbance rejection, considering the nonlinear dynamics, external and
internal disturbances, and uncertainties. However, when the optimization problem is consid-
ered, there are different functions for optimizing subject to constraints. Depending on the
optimization problem the disturbance rejection can be considered as a problem due to the
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disturbance rejection could increase the cost of the performance criterion selected.

In other words, the standard Active Disturbance Rejection Control considers a linearization
approximately of the system through an ESO, forcing the disturbance rejection. In the case
of considering the optimization problem using the standard Active Disturbance Rejection,
it is only possible to tune the parameters of the controller and/or observer. However, this
research proposes a modified Active Disturbance Rejection where the disturbance rejection
is not considered, there is a disturbance weighting. This proposal allows us to consider new
grades of freedom taking into account new parameters for tuning and the possibility of mod-
ifying the necessary resources to reject the unified disturbance to improve the cost of the
performance criterion.

To show that disturbance weighting can improve the cost of a performance criterion of an
optimization problem, it is proposed a motivational example with the objective of compar-
ing the traditional Active Disturbance Rejection Control and the modified version through
a deterministic method. Then, the optimization problem is proposed for an induction motor
considering the dynamics of an electric vehicle. The purpose is to compare the results of the
disturbance rejection and disturbance weighting cases. Through a metaheuristic algorithm,
the optimization problem is solved. Finally, the values of the tuning are compared using an
experimental setup, where it is possible to conclude that the disturbance weighting shows a
better performance under statistical variables taking into account the optimization problem.

Hence, the use of disturbance weighting could offer a solution when dealing with an opti-
mization problem under the Active Disturbance Rejection scheme. This approach has the
potential to enhance the cost of the performance criterion compared to disturbance rejec-
tion across various constraint functions. Nevertheless, employing disturbance weighting may
introduce challenges, particularly when considering the variability in results from multiple
experiments conducted under similar system conditions, as opposed to the traditional stan-
dard disturbance rejection in an offline design. This is due to the fact that the system’s
operational conditions may change, given that the modified version considers a nonlinear
problem.
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1.1. Objectives

1.1.1. General objective

This research seeks to develop a control strategy for an induction motor based on Active
Disturbance Rejection and Optimal techniques with an emphasis on energy efficiency and
performance considerations for electric vehicles.

1.1.2. Specific objectives

1. To formulate a performance criterion for the induction motor operation that considers
energy efficiency and performance for a typical electric vehicle.

2. To implement the control strategy on a small-scale experimental setup using an induc-
tion motor and a DC generator to emulate the typical electric vehicle torque and speed
conditions.

3. To evaluate the performance of the proposed control strategy in terms of energy effi-
ciency and robustness in the experimental setup.

1.1.3. Structure of the document

The document has the following structure

• Chapter 2: This chapter discusses the frame of reference. In the first instance, the
chapter talks about the foundations of Active Disturbance Rejection Control. On other
hand, it is considered the optimization problem. In this section is possible to find the
convexity approach and different metaheuristic methods which are compared according
to a group of benchmark functions. Additionally, it is possible to find the hybrid
algorithm that will be used in this proposal. Furthermore, an optimization problem is
considered as an example, where the traditional Active Disturbance Rejection control
tuned by the hybrid algorithm is compared to the optimal solution of the problem.
This chapter considers a modified Active Disturbance Rejection Control.

• Chapter 3: This chapter discusses the dynamics of electric vehicles and the induction
motor. In addition, this chapter considers the optimization problem of the induction
motor under the conditions of the vehicle, and the search for the best solution in the
conditions of the decision variables and constraints is given by the hybrid algorithm ,
several optimization problems are considered.

• Chapter 4: This chapter discusses the results of comparing the use of traditional
ADRC and modified ADRC based on the motivational example. Both control strategies
are implemented in an experimental setup that considers an induction motor and a
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DC motor that functions as the load of the induction machine. These results consider
a reference that is used in the electric vehicle testing scheme.

• Chapter 5: In this chapter, you will discover the conclusions, recommendations, and
insights for future work.

1.1.4. Relationship between objectives and chapters

The relationship between the objectives and the chapters of the document is given by
the figure 1-2

Chapter 1: Introduction

Relationship with objectives

Chapter 2: Frame of

reference

Chapter 3: Induction

motor under vehicle

dynamics

Chapter 4: Experimerntal

Setup – Results

- To create a criterion that considers the 

performance and the energy use, considering 

the dynamics of an electric vehicle using an

induction motor

- To implement the control strategy on a 

small-scale experimental setup.

- To evaluate the performance of the 

proposed control strategy in terms of energy 

efficiency and robustness.

How is the objective achieved?

It is considered a cost function that contemplates

the energy use through a power component taking

into account the tracking error and the settling time.  

The tracking error and the settling time consider

the performance of the strategy, while the power

factor considers the energy use. 

Under the cost function of Chapter 3, are 

implemented the parameters tuned by an

optimization algorithm of the control strategy in an

experimental setup. 

The control strategy is evaluated,  considering 10 

tests under the similar conditions. The robustness is

evaluated under the evaluation of the variation of the

cost, using similar conditions of the experiments, and 

the performance is evaluated, considering the cost

and other parameters associated. 

General Objective

Figure 1-2.: Relationship between chapters and the research objectives

The fulfillment of the objectives occurs as a result of the development of a control law
that is explained in chapters 2 and 3 that involves optimization and active disturbance
rejection. The cost function appears in Chapter 3 by minimizing the absolute value
of the multiplication of voltage by current taking into account the tracking error.
Additionally, the cost penalty is taken through the execution time of the experiment.
Finally, parameter tuning is implemented in a small-scale setup of an electric vehicle in
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Chapter 4, where additional analyses are carried out with respect to an electric vehicle
test reference.



2. Frame of reference

This chapter focuses on establishing a frame of reference. In the first instance, the concepts
of the active disturbance rejection control are mentioned due to the dynamics of the vehicle
and the motor. Then, it is possible to find the optimization problem and its considerations.
The optimal control problem and the convex problem are considered, then the metaheuristic
approach is considered due to the complexity of the problem taking into account the structure
of the system and the cost function or performance criterion. This section talks about several
metaheuristic processes and it is proposed a hybrid algorithm that is compared to another
traditional algorithms. The comparison is proposed using a group of benchmark functions.
With the comparison of the algorithms, it is possible to conclude that the hybrid algorithm
is the best selection. Finally, it is possible to consider a motivational example, where it
is demonstrated that the traditional active disturbance rejection control does not represent
the optimal solution considering the cost function, this demonstration uses the deterministic
process of Linear Quadratic Regulator and a space state transformation.

2.1. Active Disturbance Rejection Control

In this subsection, the standard Active Disturbance Rejection is delineated. Commencing
with the foundational concept of differential flatness, the exposition progresses to introduce
the ADR approach. An introductory example is presented, followed by an exploration of the
general case for continuous-time systems.

2.1.1. Differential Flatness

According to [50, 53], a nonlinear system can be described by

ẋ(t) = f(x, u), y(t) = h(x), (2-1)

where y(t) is the output, u(t) is the control signal, x(t) represents the states, and f and h

are functions. The objective of the differential flatness is to change the original states in
terms of the flat output and its derivatives

ψ : x 7−→ (y, ẏ, ÿ, . . . , y(n−1)). (2-2)
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In other words, the differential flatness allows to parameterize diferentially the system where
all variables can be described by the flat output and its derivatives. In this case, the control
law depends on the flat output and its derivatives too.

Active Disturbance Rejection control

By considering differential flatness, it is possible to handle a system with nonlinearity and
uncertainties using the Active Disturbance Rejection approach.

1

𝑠𝑛

Nonlinear and 

Disturbed System

𝑦(𝑡)𝑢(𝑡)

𝜉(𝑡)

𝑦(𝑡)

𝑑𝑛𝑑2𝑑1

𝑢(𝑡)

𝜂(𝑡)

…

Active Disturbance

Rejection Approach

+
+

𝜅

Figure 2-1.: Active Disturbance Rejection Approach

In Figure 2-1, d1, ... , dn are the internal and external disturbances, u(t) is the control signal,
η(t) is the noise, κ is a constant value, ξ(t) is the unified disturbance and y(t) is the out-
put of the system. According to [25, 53], under the ADRC scheme the nonlinear dynamics,
the uncertainties, and the external disturbances can be considered in an unified disturbance
ξ(t). Thus, the active disturbance rejection control allows us to consider a nonlinear and
perturbed system with uncertainties as a linear disturbed system.

In the first instance, the unified disturbance is considered as a function that depends on the
flat output and a finite set of its derivatives. Based on the active disturbance rejection, it is
necessary to make the following consideration
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ξ(y(t), ẏ(t), . . . , y(n−1)(t), t)→ ξ(t). (2-3)

According to the equation (2-3), under the ADRC scheme, the unified disturbance only
depends on the time, with the purpose of considering locally the Taylor approximation

ξ(t) = ant
n + an−1t

n−1 + . . .+ a1t+ a0, (2-4)

where the intern model can be considered

dn+1ξ(t)

dtn+1
≈ 0. (2-5)

Based on Figure 2-1, the case most simple is when κ = 1. In order to show a particular
example, a development with n = 2 and κ = 1 will be shown.

In this case, it is possible to consider

y(2)(t) = u(t) + ξ(t), (2-6)

where the purpose of the control law will be based on the dynamic of the tracking error.
Then the control law is

u(t) = y(2)∗(t)− k1(ˆ̇y(t)− ẏ∗(t))− k0(y(t)− y∗(t))− ξ̂(t), (2-7)

considering that ẏ(t) and ξ(t) are not available but can be estimated. Assuming that ˆ̇y(t)

and ξ̂(t) are good approximations or estimations, the dynamic of the tracking error is given
by

e(2)y (t) + k1e
(1)
y (t) + k0ey(t) = 0, (2-8)

where it is possible to observe that the error dynamics are stable if the conditions of the
Hurwitz polynomial are met. Additionally, the space state representation of the system if
n = 2 considering the Figure 2-1, taking into account that the disturbance is locally constant
for the control design is

ẋ1(t) = x2(t), (2-9)

ẋ2(t) = u(t) + x3(t), (2-10)
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ẋ3(t) = ξ̇(t). (2-11)

For estimating ξ and ẏ is used an Extended State Observer, therefore the dynamics are

ˆ̇x1(t) = x̂2(t) + l2(y(t)− ŷ(t)), (2-12)

ˆ̇x2(t) = u(t) + l1(y(t)− ŷ(t)), (2-13)

ˆ̇x3(t) = l0(y(t)− ŷ(t)), (2-14)

subtracting the equations (2-9) and (2-12), (2-10) and (2-13), and (2-11) and (2-14)

ẋ1(t)− ˆ̇x1(t) = x2(t)− x̂2(t)− l2(y(t)− ŷ(t)),

ẋ2(t)− ˆ̇x2(t) = x3(t)− l1(y(t)− ŷ(t)),

ẋ3(t)− ˆ̇x3(t) = ξ̇(t)− l0(y(t)− ŷ(t)),

and using the derivatives and the substitutions, the global dynamic is

(y(t)− ŷ(t))(3) + l2(y(t)− ŷ(t))(2) + l1((y(t)− ŷ(t))(1)) + l0(y(t)− ŷ(t)) = ξ̇(t).

Due to the disturbance being approximately locally constant for the control design, it is
possible to consider that the error of the estimates and the real states tend asymptotically
to zero.

General Case

According to [51, 52, 53], a real system can be represented by the simplified disturbed
integrator chain shown in Figure 2-1. Its corresponding state-space representation is given
by

ẋs(t) = Asxs(t) +Bs(u(t) + ξ(t)), (2-15)

y(t) = Csxs(t), (2-16)

where s denotes the system, and y(t) represents the system output. In this case, the states
of the system are
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xs(t) =


x1(t)

x2(t)
...

xn(t)

 .
Now, considering the disturbance model

xn+1(t) = ξ(t), xn+2(t) = ξ̇(t), xn+3(t) = ξ(2)(t), xn+4(t) = ξ(3)(t), . . . , xn+m(t) = ξ(m−1)(t).

Then, the disturbance has the following state-space representation

ẋξ(t) = Aξxξ(t) +Bξξ
(m)(t), (2-17)

ξ(t) = Cξxξ(t). (2-18)

Considering an extended model using the representations in equations (2-17) and (2-15)

[
ẋs(t)

ẋξ(t)

]
︸ ︷︷ ︸

ẋ

=

[
As BsCξ

0 Aξ

]
︸ ︷︷ ︸

A

[
xs(t)

xξ(t)

]
︸ ︷︷ ︸

x

+

[
Bs

0

]
︸ ︷︷ ︸

B

u(t) +

[
0

Bξ

]
︸ ︷︷ ︸
Bξ

ξ(m)(t). (2-19)

Thus, the global system can be expressed by the representation

ẋ(t) = Ax(t) +Bu(t) +Bξξ
(m)(t), (2-20)

and the dynamics of the observer are given by

ˆ̇x(t) = (A− LC)x̂(t) +Bu(t) + Ly(t). (2-21)

The dynamics of the error are obtained by subtracting equations (2-20) and (2-21)

ėx(t)− (A− LC)ex(t) = Bξξ
(m)(t).

In the Laplace domain, it is possible to consider

(sI − (A− LC))︸ ︷︷ ︸
PO

ex = Bξs
(m)ξ,

where the eigenvalues of the matrix PO (observation matrix) will be stable. Considering the
tracking error, it is possible to define the matrices of the state-space representation
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xs ∈ R1×n, xξ ∈ R1×m,

A =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . .

0 0 0 . . . 1

 ∈ Rm×n, B =


0
...

κ(nth Position)
...
0

 ∈ R
1×(n+m),

C =
[
1 0 . . . 0

]
∈ R1×(n+m), Bξ =


0

0
...
1

 ∈ R(n+m)×1,

where A is the Brunovsky canonical form and κ depends on the structure of the system.
Thus, the Active Disturbance Rejection approach allows us to consider the internal and
external disturbances, the uncertainties, and the nonlinear and unmodeled dynamics in the
unified disturbance ξ(t). The dynamic of the system can be reduced to an integrator chain
using the Active Disturbance Rejection scheme. Using an ESO, it is possible to linearize the
system considering the disturbance feedback through its estimation. This approach shows a
simplification in a control problem due to the complexity of the system can be reduced due
to disturbance rejection.

2.2. Optimization

This subsection discusses the optimization problem within the convex scheme. Subsequently,
attention is given to the optimal control problem, and considering the structure and com-
plexity of the research problem, various metaheuristic algorithms are proposed. The section
describes several algorithms, culminating in the creation of a hybrid algorithm specifically
utilized in this research due to its superior performance compared to two traditional al-
gorithms. This superiority is demonstrated through benchmark functions and statistical
considerations.

2.2.1. Optimization problem

According to [5, 7, 37], the optimization problem is given by

minimize f(x),

subject to gi(x) ≤ bi, i = 1, 2, 3, . . . ,m,
(2-22)
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where x is a vector of decision or optimization variables and

f : Rn → R (2-23)

is the objective or cost function subject to restrictions of constraint functions gi that are
inequalities.

2.2.2. Convex optimization problem

An optimization problem is convex when a local minimum is also the global minimum. To
meet the criteria for convexity, both the cost function and constraints must be convex; in
other words, it is necessary to satisfy

gi(αx+ βy) ≤ αgi(x) + βfi(y), f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (2-24)

where x, y ∈ Rn and α+ β = 1, λ ∈ [0, 1] where α and β have to be higher or equal to zero.
Otherwise the function is concave. Equation (2-24) considers that the cost function and the
constraints are convex [5, 7, 37].

2.2.3. Optimal Control problem

According to [30], the optimal control problem is based on finding a control signal that can
minimize the performance criterion, but in general, the classical design is based on linear
and time-invariant systems. The optimal control performance is given by the following
performance criterion

J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt, (2-25)

where x(t) is associated to the state, u(t) is the control signal, t is the time, while g and
h are scalar functions, and tf and t0 are the final and initial time, respectively. Thus, the
optimal control objective is to find an optimal trajectory using an optimal control signal
with the purpose of minimizing the J criterion. Considering the problem of electric vehi-
cles, it is possible to create a performance criterion or cost function that considers energy
efficiency and the performance of the system taking into account constraints based on the
system functioning.

Induction motor case

This research considers the study of the optimal control for the induction motor used in
electric vehicles under a nondeterministic cost function J that considers the performance
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of the system, the energy efficiency and several constraints of the decision variables. Addi-
tionally, the induction motor proposes a nonlinear dynamic [15]. Thus, the consideration of
the function structure can be taken as a problem due to the complexity of the optimization
problem. For this reason, it is considered an optimization problem through metaheuristic
algorithms.

2.2.4. Metaheuristic

The Metaheuristic is a subgroup of stochastic optimization, where it is necessary to use
a degree of randomness to find an optimal, there are different algorithms that it is possi-
ble to consider. These techniques can be applied in a variety of complex problems [3, 47].
When the problem is too complicated such as when the system is nonlinear or multinodal,
it is necessary to use other strategies, different from the deterministic strategies due to the
problems in resource use. For the example, the problem of the induction motor proposes
a high grade of complexity because this system has nonlinear dynamics, and the decision
variables are subject to the operation conditions. Then, it is possible to show that the meta-
heuristic can face an optimization problem in an efficient way [40]. Exist several algorithms
as the genetic algorithm that can reach the best results using the local search using other
types of algorithms [58]. These types of algorithms produce quality solutions and currently,
these algorithms have increased according to the bibliometric analysis [9]. There are sev-
eral types of these algorithms such as Evolutionary-based, Swarm-based, Physics-based, and
Mathematics-based . Additionally, there are many algorithms that are adapted to control
strategies such as PID [22].

Simulated annealing

Simulated annealing is an algorithm that is based on the solid annealing principle. In
thermodynamics, this procedure is based on the temperature decreasing of an object as
metals, this decrease is gradual, whereas the temperature of the object is lower, the object has
a lower energy. When the temperature starts to cool, it is possible to reach the crystallization
and condensation processes. The system reaches the minimum energy in the crystalline state.
But if the cooling is very fast, the level of minimum energy can not be reached [12, 34].
According to [47], the algorithm is derived from the Metropolis algorithm. The principle is
based on having a candidate solution S and if R is better than S, it is necessary to replace S
with R, but if R is worse than S, it is possible to replace S with R, considering the probability
P , where P is based on

P = e
Q(S)−Q(R)

t , (2-26)

where t is the actual temperature t ≥ 0 while Q represents the cost value. Additionally,
taking into account equation (2-26), if Q(S)−Q(R) < 0 due to R being worse than S, then
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the value of t will determine a high or a low value of P , so it is possible to escape from
local minimums. The Simulated Annealing can have advantages in results respecting brute
force algorithms [57]. However, this algorithm can have problems respecting the selection
of the initial temperature and the annealing rate, if the initial temperature is too high, it is
necessary for more iterations requiring greater computational effort, but if the temperature
is low, the performance of the algorithm will be reduced. Whereas the annealing rate can
change the performance of the algorithm [34].
The simulated annealing is based on the following algorithm
Algorithm 1: Simulated Annealing
Data: Initial Temperature (IT ), Energy variation (∆E = Q(S)−Q(R)),

Temperature (t), Candidate Solution (S), Possible Solution (R), Annealing
rate (ar)

Result: Best Solution (BS)
t← IT

S ← Random possible solution
while t ≥ 0 do

R = Tweak of S
α← Random number between [0, 1]

if ∆E < 0 or α < e
Q(S)−Q(R)

t then
S ← R

if Fitness(S)>Fitness(BS) then
BS ← S

t← t · ar (Temperature decrease)

In algorithm 1, in the first instance, it is considered an initial temperature and a random
possible solution, then it is considered a variation of S with the name of R, also is proposed a
α value, this value allows to compute the probability section. If the fitness of R is better than
the fitness of S, S will take the value of R, if the new value of S has a better performance
than BS, the value of BS will change, after these processes the temperature of the algorithm
will change and all processes will be repeated [34, 47, 57].

Tabu Search

The Tabu Search is a metaheuristic algorithm that has the purpose of mathematical opti-
mization under a local search approach [59]. Despite the algorithm work taking into account
a local search, it is possible to find a global optimum, because this algorithm allows one
to select one solution with a higher cost. Additionally, this procedure includes a Tabu list
to avoid cycles considering restrictions [63]. This algorithm can be a good metaheuristic
process for a variety of problems of optimization [35].
According to [47], this algorithm is based on the Steepest Ascent with Replacement. This
algorithm considers a tabu list of the candidate solutions. Items in the list cannot be selected
as a possible solution, if the list is too large, the oldest solution may be deleted. The tabu



2.2 Optimization 17

search is based on the following algorithm
Algorithm 2: Tabu Search
Data: Number of tweaks for each sample (n), maximum number of elements of tabu

list (l), candidate solution (S) , best solution (BS), tabu list (L)
Result: Best Solution (BS)
S ← Random Solution Value
L← L ∪ S
for Iteration ∈ maxIter do

R = Tweak of S
for n− 1 times do

W = Tweak of S
if W ̸∈ L AND Fitness of W < Fitness of R OR R ∈ L then

R← W

if R ̸∈ L then
S ← R

L← L ∪ S
if Fitness of S < Fitness of BS then

BS ← S

In algorithm 2, it is possible to observe that in the first instance, a tabu list L with a
maximum possible length l is proposed, then a random solution S is given, and this solution
is included in the tabu list, if the tabu list reaches the maximum value of elements, the oldest
value will be removed. Then, a possible solution R is selected, this solution is based on a
variation of S (candidate solution), and this value of R is compared to other variations of
S, these new variations will be named W . The different values are compared respecting the
fitness value, if R is the new candidate solution, this value of R is included in the tabu list
[35, 47].

Particle Swarm Optimization

According to [47], this algorithm is similar to evolution algorithms, but this one is different
from these, because it is not modeled based on the evolution process, it is based on swarms
or animals behavior. In this process it is not necessary to consider a new sample of the
population, then any particle changes taking into account the space of search, that is, it is
based on mutated directed. Any particle has two components: The location and the velocity,
the location vector is given by x⃗

x⃗ =< x1, x2, . . . xn >, (2-27)

and the velocity vector is given by the expression v⃗.

v⃗ =< v1, v2, . . . , vn >, (2-28)
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the velocity is the speed and direction of particles taking into account a time-step. The
values of xi and vi under i ∈ {1, 2, 3, . . . n} in the equations (2-27) and (2-28) represent the
coordinates in the space considered.
In this algorithm it is necessary to consider several parameters

• β → A number between (0, 1] that represents the informants best velocity retained.

• α→ A number between (0, 1] that represents the velocity retained.

• γ → A number between (0, 1] that represents the informants velocity retained.

• δ → A number between (0, 1] that represents the global best retained.

• ϵ→ This number represents the jump-size.

Thus, the PSO is based on the following algorithm
Algorithm 3: Particle Swarm Optimization
Data: Population (P )
Result: Best Solution (BS)
P ← {}
P ← P ∪ {Particles with random position and velocity}
for Each particle ∈ P do

Compute the cost value of x⃗i
if cost value of x⃗i < cost value of BS then

BS ← x⃗i

for Iteration < maxIter do
for Each particle ∈ P do

x⃗∗ = Previous fitness location
x⃗+ = Previous fitness location of informants of x⃗
x⃗! = Previous fitness location of any particle
for Each dimension of the problem do

b = random number [0, β]

c = random number [0, γ]

d = random number [0, δ]

v⃗i = αv⃗i + b(x⃗∗i − x⃗i) + c(x⃗+i − x⃗i) + d(x⃗!i − x⃗i)
for Each particle ∈ P do

x⃗ = x⃗+ c · v⃗
Iteration← Iteration+ 1

In algorithm 3, it is possible to observe that in the first instance is proposed a population
of several particles with a random position and speed, then it is necessary to compute the
fitness of each particle and select the best one. Then, taking into account a group of previous
fitness locations, it is possible to compute the velocity of each particle and compute the new
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position of each particle. The process finishes when the number of iterations is equal to or
higher than the maxIter parameter [19, 47].

Genetic algorithm

This algorithm is based on natural selection, a crossover, and mutation. The algorithm
seeks the survival of the fittest candidate. The genetic algorithm allows to escape from the
local minimum but requires more iterations [38, 44]. This algorithm takes into account a
fitness assessment, the algorithm selects many parents and creates enough children. For
reproduction, it is necessary to consider an empty children population, then select several
parents of the original population and reproduce them, generate copies, mutations, and cross
them. This process generates two children, for this reason, it is necessary to select other
parents and repeat the process [47]. According to [47] the procedure of the genetic algorithm
is given by

Algorithm 4: Genetic algorithm
Data: Population (P ), Popsize(ps)
Result: Best Solution (BS)
for popsize times do

P ← P ∪ {new random individual}
BS ← BestFitness(Pi)

for Iteration ∈ maxIter do
for each Pi ∈ P do

Ji ← CalculateFitness(Pi)

if Ji > CalculateFitness(BS) then
BS ← Pi

Q← {}
Pa, Pb ← SelectReplace(P )
Ca, Cb ← Crossover(Copy(Pa), Copy(Pb))

Q← Q ∪ {mutate(Ca),mutate(Cb)}
P ← Q

Iteration← Iteration+ 1

The algorithm 4 is based on creating an initial random population of pop size members, then
it is necessary to compute the fitness of each population member and select the best member
through the "BestFitness" function. After, it is necessary for any population member Pi

the compute the fitness value and compare the value to the value of the best solution, this
process allows to selection of a new best solution according to the actual population. Then,
the reproduction process is considered, two members of the population are selected and then
these parents are crossed. Finally, the new population is given by the mutation of the result
of the crossover of the parents.



20 2 Frame of reference

2.2.5. Hybrid Algorithm - (PSO,AS,TS)

According to [17, 29, 31, 46], the result of the traditional algorithms can be improved through
the combination of many algorithms or the use of techniques such as neural networks, Markov
chains, and others, reaching a better performance considering the original algorithm, for
example, in terms of accuracy. In this work, is proposed an algorithm that uses the Particle
Swarm optimization with an additional local search space through Simulated Annealing and
Tabu Search algorithms. The algorithm is given by

Algorithm start

Initialization of 

Particles 

Compute the 

Performance 

Update new best 

Positions

Find global best: 𝐵𝑠1

Compute new 

Positions and Speeds 

SA Process: 𝐵𝑠2

Candidate 

solution: 𝐵𝑠2

TS Process: 𝐵𝑠3

Select the global best

between 𝐵𝑠1, 𝐵𝑠2 , 𝐵𝑠3

END

End

condition?

Candidate 

solution: 𝐵𝑠1

Figure 2-2.: Hybrid algorithm

According to the Figure 2-2 , the hybrid algorithm is based on the following steps

• Initialization of Particles: In this step, the particles of the Particle Swarm Opti-
mization are generated.

• Compute the performance: In this step, the performance of any particle is com-
puted.

• Update new Positions: In this step, the best performances are selected of any
particle.
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• Find global best: In this step, the best position of all particles is selected taking into
account the performance.

• Update new Positions: In this step, the new positions and speeds are computed.

• Candidate Solution Bs1: In this step the best solution of PSO is considered as a
candidate solution.

• SA process: In this step the Simulated annealing is used taking into account the
candidate solution.

• Candidate solution Bs2: In this step, the best solution of the algorithm is selected
and considered as a candidate solution.

• TS Process Bs3: In this step using Bs2, it is possible to use the TS algorithm and
select a candidate solution Bs3, through a local search.

• Select the global best between Bs1, Bs2, Bs3: In this step, the globally best
solution is selected.

In this process, the Tabu search and simulated annealing algorithms work as a local search
to contribute to the search of the Particle Swarm Optimization. The number of iterations
of any algorithm depends on the application, the complexity of the problem, and system
conditions.

2.2.6. Comparison between algorithms

There are algorithms such as Particle Swarm Optimization and Genetic algorithms that are
faster than other algorithms as the simulated annealing, but the quality of the solution of
these algorithms depends on the initial solutions. Additionally, these algorithms can use
large amounts of memory [32]. For this reason, this research proposes a hybrid algorithm
that is composed of three strategies: The Particle Swarm Optimization, the Tabu search,
and the simulated annealing algorithms. The performance of the algorithm will be compared
to other mature strategies such as genetic algorithm and Particle Swarm Optimization.

Methodology of algorithm comparison

A group of benchmark functions is considered for this comparison. These functions are non-
convex and dependent on six decision variables. The number of variables considered
is related to the number of variables in the induction motor case, because five variables will
be tuned. Additionally, the limits considered for each variable will be (−200, 200).
There are three problems using different metaheuristic algorithms. The first algorithm is
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Particle Swarm Optimization, the second one is the genetic algorithm, and finally a Hybrid
between Particle Swarm Optimization, simulated annealing and Tabu Search. The results
of each function are compared to select the best algorithm to use in the nonlinear problem
of electric vehicles using an induction motor.

2.2.7. Cost Function

For optimization problems, there are benchmark functions. For these functions, the global
minimum and the optimal location of the decision variables are well-known [14, 16, 28, 42, 54].
For the benchmark functions described in the equations (2-29), (2-30) and (2-31), D repre-
sents the dimension of the optimization problem, xi the decision variable i, and x∗ ∈ RD.

Rosenbrock function

For this function the global minimum is 0, and the optimal location of the decision variables
is x∗ =

[
1 1 1 . . . 1

]
. The general structure of the function is

f(X) =
D−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2], (2-29)

Ackley function

For this function the global minimum is 0, and the optimal location of the decision variables
is x∗ =

[
0 0 0 . . . 0

]
. The general structure of the function is

f(X) = −20 exp(−0.2

√√√√ 1

n

D∑
i=1

(x2i ))− exp(
1

n

D∑
i=1

cos(2πxi)) + 20 + e, (2-30)

where e represents the euler constant.

Schwefel function

For this one the optimal location of the decision variables is x∗ =
[
0 0 0 . . . 0

]
. The

general structure of the function is

f(X) = 418.9829D −
D∑
i=1

xi sin
√
|xi|. (2-31)

Algorithm parameters

For finding the optimal value for the benchmark functions described in equations (2-31),
(2-30) and (2-29), the parameters of each algorithm are given in table 2-1.
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Table 2-1.: Parameters of metaheuristic algorithms

Algorithm Values

Genetic algorithm

Number of variables for optimizing 6

Limits (Restrictions of variables) (−200,−200,−200,−200,−200,−200),
(200, 200, 200, 200, 200, 200)

Population size 15

Max Iteration (maxIter) 30

Crossover probability 0.7

Mutation probability 0.1

Particle Swarm Optimization

Number of variables for optimizing 6

Limits (Restrictions of variables) (−200,−200,−200,−200,−200,−200),
(200, 200, 200, 200, 200, 200)

Number of particles 15

Max Iteration (maxIter) 30

C1, C2 0.7

Wmax, Wmin 0.9 , 0.2

Hybrid Algorithm (PSO, SA, GA)

Number of variables for optimizing 6

Limits (Restrictions of variables) (−200,−200,−200,−200,−200,−200),
(200, 200, 200, 200, 200, 200)

Number of particles 15

Max Iteration (maxIter) 30

C1, C2 0.7

Wmax, Wmin 0.9 , 0.2
Initial Temperature 10

Annealing rate 0.7

Lenght of Tabu list 10

For comparing the algorithms, it is proposed a metric whose purpose is to compare the
quality of solutions. For this reason, in the first instance, it is necessary to realize the op-
timization process for the three algorithms using three different functions, the Rosenbrock,
Schwefel, and the Ackley functions. All functions are not convex, which is a challenge for
metaheuristic algorithms.
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Next, it is possible to observe the results of 100 simulation samples per algorithm, in which
the mean, standard deviation, best case and worst case for each algorithm are evaluated.
In this case, algorithm 1 corresponds to the genetic algorithm, algorithm 2 to the particle
Swarm Optimization, and the third to the hybrid algorithm.

Table 2-2.: Algorithm Comparison - Rosenbrock Function

Variable Algorithm 1 Algorithm 2 Algorithm 3

Mean 4.4195e+08 1.5785e+05 1.7054e+05
Standard Deviation 8.3583e+08 5.0371e+05 4.6340e+05
Best case 1.9570e+04 458.2053 321.3912
Worst case 4.1665e+09 3.9497e+06 2.8956e+06

Table 2-3.: Algorithm Comparison - Ackley Function

Variable Algorithm 1 Algorithm 2 Algorithm 3

Mean 20.3653 20.1996 19.9148
Standard Deviation 0.2714 1.2230 2.4069
Best case 18.7648 8.5561 4.8757
Worst case 20.8296 20.6342 20.7743

Table 2-4.: Algorithm Comparison - Schwefel Function

Variable Algorithm 1 Algorithm 2 Algorithm 3

Mean 2.0155e+03 1.7478e+03 1.7457e+03
Standard Deviation 87.7186 120.8496 137.8671
Best case 1.7915e+03 1.3910e+03 1.3910e+03
Worst case 2.2157e+03 2.0354e+03 1.9982e+03

According to Tables 2-2, 2-3, and 2-4, Algorithm 3 demonstrates superior performance
compared to the other algorithms in both the best and worst cases among two of the three
functions. This suggests the potential to achieve a global optimum due to the algorithm
improvement. The Simulated annealing and Tabu search improve the performance of the
Particle Swarm Optimization through the local search.
For this reason, in this thesis, the hybrid algorithm will be used to find the best solution
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to improve the cost of the performance criterion in electric vehicles that use the induction
motor under the ADR scheme.

Thus, if the optimal control problem is considered, it is necessary to contemplate the op-
timization problem due to the optimal control problem is based on optimization. When
the problem becomes overly complex, obtaining a deterministic optimal solution can pose
a challenge. For this reason, there exist algorithms that enable us to achieve an efficient
solution, taking into account the intricacies of the problem. The combination of multiple
algorithms can demonstrate superior performance for the optimization problem compared
to traditional algorithms. Now, a motivational example will be considered where a modified
Active Disturbance Rejection control is proposed.
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2.3. Motivating example

The purpose of this example is to show that regarding the active disturbance rejection
scheme, it is possible to consider different approaches considering an optimization problem.
In this academic example, it is possible to find that approximate linearization through the
standard Active Disturbance Rejection Control is not always necessary. This affirmation
depends on the cost function structure or the complexity of the problem. In the simulation
results of this section, it will be considered that the disturbance rejection does not represent
the optimal cost of an optimization problem, considering the deterministic problem of the
Linear Quadratic Regulator cost. It is important to consider that the standard LQR design
is based on a stabilization problem. This academic example gives a new control structure
based on ADRC where it is considered the disturbance weighting. This approach could im-
prove the performance taking into account a cost function of an optimization problem and
the constraints of the decision variables. This motivation example proposes a new method-
ology where the unified disturbance is not rejected completely. Using the approach of this
academic example, where it is considered a partial rejection of the disturbance, it is consid-
ered the optimization problem for electric vehicles using an induction motor.

Example

It is considered the following nonlinear system from [8]

ẋ1(t) = βx1(t), ẋ2(t) = λx21(t) + αx2(t) + ζu(t)

{β, α, ζ} ∈ R.
(2-32)

In this case, it is possible to observe that this representation shows a nonlinear system, and
if β ∈ R−, the state x1 has a stable dynamic. This stable dynamic can be described by
Laplace approach

ẋ1 = βx1,

sX1(s)− x1(0) = βX1(s),

X1(s) =
x1(0)

s− β
,

where the dynamic of x1 is stable, considering the Laplace inverse transformation.

2.3.1. Variations of the motivational example

In this subsection, it will be considered α = λ = ζ = 1 and β = −1 for the example in
equation (2-32), the value of β guarantees the stability of the system.
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ẋ1(t) = −x1(t),
ẋ2(t) = x21(t) + x2(t) + u(t).

(2-33)

Considering the state-space representation in equation (2-33), the control law u(t) = −kx(t)
is proposed, where k is the control vector gains and x(t) is the states vector. Then, consid-
ering the following cost function or performance criterion

J =

∫ tf

t0

(x(t)TQx(t) + u(t)TRu(t))dt,

J =

∫ tf

t0

(x1(t)
2 + x2(t)

2 + u(t)2)dt.

(2-34)

The cost in equation (2-34) represents the Linear Quadratic Regulator Cost [30, 56]. The

values of Q and R for this problem are Q =

[
1 0

0 1

]
, R = 1.

Variation 1 - Space state transformation

Considering [8], the nonlinear system that was described in (2-33), can be modeled through
space transformation T : R2 → R3 considering the following substitutions z3(t) = x1(t)

2,
z1(t) = x1(t) and z2(t) = x2(t). Thus, the space state representation of the transformation
is given byż1(t)ż2(t)

ż3(t)

 =

−1 0 0

0 1 1

0 0 −2

z1(t)z2(t)

z3(t)

+

01
0

u(t). (2-35)

Regarding the equation given in (2-35), it is possible to find an exact linearization through
the space transformation. The control law, considering the performance criterion given in
equation (2-34) is

u(t) = −kz(t) = −
[
0 2.41 0.7071

] z1(t)z2(t)

z3(t)

 ,
u(t) = −2.41x2(t)− 0.7071x21(t),

where the expression of the control represents a nonlinear control law. However, through
space transformation, it is possible to minimize the cost because exact linearization, facil-
itated by the space transformation, enables a linear control design using a deterministic
approach.
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Variation 2

In this variation of the example of equation (2-33), the Active Disturbance Rejection Ap-
proach is considered

ẋ2(t) = x21(t) + x2(t) + u(t) ≡ ẏ(t) = κu(t) + ξ(t).

Due to the stable dynamic of the x1 state, it is possible to consider the state x2 as the output
of the system. In this particular case κ = 1. Then, the disturbance in this case is given by

ξ(t) = x21(t) + x2(t), (2-36)

and computing the dynamics of the disturbance

ξ̇(t) = −ξ(t) + 2x2(t). (2-37)

According to equation (2-37), the dynamic of the disturbance depends in a linear way on
the states and on itself. Then, the space-state representation of the system is

ẋ1(t)ẋ2(t)

ξ̇(t)

 =

−1 0 0

0 0 1

0 2 −1

x1(t)x2(t)

ξ(t)

+

01
1

u(t). (2-38)

According to the equation (2-38), the dynamic of the disturbance allows the consideration
of a linear system. Using the performance criterion of equation (2-34), the optimal control
law is given by

u(t) = −
[
0 1.707 0.7071

] x1(t)x2(t)

ξ(t)

 ,
u(t) = −1.707x2(t)− 0.7071ξ(t),

Where the control law does not consider disturbance rejection, as proposed by traditional
active disturbance rejection control. This illustrates that exact rejection of the dis-
turbance does not always lead to optimal performance.

Variation 3

In this variation, the active disturbance rejection control will be applied to the system
described in (2-33). Taking into account that the control problem is based on the stabilization
problem, then, x∗1(t) = x∗2(t) = 0. Therefore, it is possible to observe

ẋ2(t) = x21(t) + x2(t) + u(t) ≡ ẏ(t) = ξ(t) + κu(t),



2.3 Motivating example 29

˙ex2(t) = x21(t) + ex2(t) + u(t) ≡ ėy(t) = ξ(t) + κu(t),

where ex2(t) = x2(t) − x∗2(t). In this approach, it is feasible to consider the disturbance
ξ(t) = x21(t) + ex2(t) and κ = 1. Considering ξ(t) is constant locally under the Taylor
approach for the control design, through an extended state observer, the dynamic of the
system can be represented by[

˙ex2(t)

ξ̇(t)

]
=

[
0 1

0 0

]
︸ ︷︷ ︸

A

[
ex2(t)

ξ(t)

]
+

[
1

0

]
︸︷︷︸
B

u(t) +

[
0

1

]
ξ̇(t),

˙ex2(t) =
[
1 0

]︸ ︷︷ ︸
C

[
ex2(t)

ξ(t)

]
.

(2-39)

The structure of the extended state observer is given by the following scheme

Ao = A− LC, Bo =
[
B L

]
,

Co =

[
1 0

0 1

]
, Do = 0.

In this case, the estimation of disturbance will be used to linearize approximately the non-
linear system. Additionally, the control law is based on the stabilization of the tracking error
dynamics. Then, the control law is

u(t) = −ξ̂(t)− k0x̂2(t).

Here, the dynamics of the controlled state ex2 are given by

ėx2(t) = −k0êx2(t). (2-40)

Under the S domain and taking into account an approximate estimation, it is considered
the following expression

(s+ k0)x2 = 0, (2-41)

where k0 guarantees stability of system.
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Variation 4

In this variation, the system considered is the same

ẋ1(t) = −x1(t),
ẋ2(t) = x21(t) + x2(t) + u(t),

(2-42)

but in this case the reference of the output or the state x2(t) is given by x∗2(t) = µ(t), where
µ(t) is the unit step function

µ(t) =


0 , t < 0

1 , t ≥ 0.

(2-43)

In this variation, the vector of optimal gains given in Variation 2 is considered

k = −
[
0 1.707 0.7071

]
.

For this variation, the tracking error will be analyzed. For this reason, it is necessary to
observe the stationary state response

ẋ2(t) = x21(t) + x2(t)− 1.707x2(t)− 0.7071ξ̂(t),

ẋ2(t) = ξ(t)− 1.707x2(t)− 0.7071ξ̂(t).

However, in this case the reference is not equal to zero, for this reason

ẋ2(t) = x21(t) + x2(t) + u(t),

ẋ2(t)− ẋ∗2(t) = x21(t) + x2(t) + u(t)− ẋ∗2(t)− x∗2(t) + x∗2(t).

In t = [t0, tf ], without considering the initial condition of the states of the representation,
the dynamic of the of the error of the state x2 can be given by

˙ex2(t) = x21(t) + ex2(t) + 1 + u(t).

Thus,

˙ex2(t) = x21(t) + ex2(t) + 1− 1.707x2(t)− 0.7071ξ̂(t),

˙ex2(t) = ξ(t)− 1.707ex2(t)− 0.7071ξ̂(t),

˙ex2(t) = ξ(t)− 1.707ex2(t)− 0.7071ξ̂(t).

Using a Laplace transformation or the S domain analysis

sex2 − ex2(0) = 0.303x21 + 0.303ex2 +
0.303

s
− 1.707ex2,
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(s+ 1.404)ex2 = 0.303x21 +
0.303

s
.

Then, the response in stationary state of error is

lim
t→∞

ex2(t) ̸= 0.

2.3.2. Simulation Stabilization case

After simulations using ADRC estimation and initial conditions for each one of the states

x1(0) = x2(0) = 2, k0 = 1.6459(Equation (2-40)).∗

The results are

Table 2-5.: Results stabilization case - Motivating example

Function cost (J) Variation 1 Variation 2 Variation 3

J =
∫ 100

0
(x21 + x22 + u2)dt 26.63 26.63 40.81

*:The eigenvalues of the observation matrix are situated at −10 (ESO design), and the value
of k0 is determined by an optimization algorithm.

The ADRC results show lower performance than the optimal cost given by the first and the
second variations. This result is given by variation 2, this variation supposes that the dis-
turbance is not rejected completely for reaching the minimum cost, while the ADR considers
the disturbance rejection.

2.3.3. Conclusion of the motivation example variations

Taking into account the simulation results and the deterministic development through the
cost of the linear quadratic regulator, it is possible to conclude that depending on the cost
function in an optimization problem, the rejection of the disturbance given in the traditional
ADR scheme is not always possible. Disturbance weighting could represent the best solution.
However, disturbance weighting implies a compromise in tracking error reduction under a
disturbance monitoring and rejection scheme, as the final value of the error differs from zero
despite having stable dynamics.
Additionally, it is possible to observe that different substitutions of the nonlinear dynamics
through a space transformation, allow us to reach equivalent results for the original non-
linear system. Despite the disturbance weighting can show a better performance than the
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traditional ADRC, considering a cost function with restrictions, this new approach increases
the complexity of the system because if the control law does not reject the disturbance, it is
considered a nonlinear control problem. Furthermore, disturbance weighting should guaran-
tee the stability of the system. For this reason, the value of the disturbance weighting will be
closer to 1, generating the constraints of the decision variables. Concluding that disturbance
weighting can improve the cost value of a performance criterion but increase the complexity
of the control problem. Thus, the control strategy for this research is given in Figure 2-3.

1

𝑠𝑛

𝑦(𝑡)𝑢(𝑡)

𝜉(𝑡)

+
+

𝜅

ESO 𝑢(𝑡)

መ𝜉(𝑡)

ො𝑥(𝑡)
𝐶

𝐶𝜉

−

−

1

𝜅

Nonlinear and Disturbed System based on

tracking error 

Figure 2-3.: Control strategy proposed

In Figure 2-3, C represents the control law parameters based on the states of the system
taking into account the tracking error, and Cξ is the disturbance weighting parameter, in
this research the objective is to find the values of C and Cξ considering the hybrid algorithm
described in this chapter.



3. Induction motor control under
vehicle dynamics

This chapter discusses the dynamics of induction motors and electric vehicles. For the
induction motor, the Clarke transformation is considered. Considering the two-phase trans-
formation, the Field-Oriented scheme is described, because this scheme is widely used in the
control of electrical machines [15, 18, 56]. Under the FOC scheme, a control strategy based
on the active disturbance rejection approach is proposed to estimate the disturbance and
error signals. For the control law, two control strategies are proposed taking into account
the motivational example of Chapter 2. The first control strategy is based on disturbance
rejection and a control based on feedback of the error states, the second strategy considers a
disturbance weighting that allows another degree of freedom to be considered. However, this
strategy should have restrictions because a nonlinear control problem is considered. Taking
into account what was described above, three optimization problems are proposed, compar-
ing disturbance rejection and disturbance weighting, under the hybrid algorithm described
in Chapter 2 and an offline simulation, the optimal values are found.

3.1. Vehicle Dynamics

According to [24], [41], and [39], based on the dynamics of the vehicle, it is feasible to consider
the energy for the vehicle’s functioning. Then, it is possible to consider the road load that
is given by several forces that have a relationship with the vehicle characteristics and/or the
environmental conditions. In Figure 3-1, it is possible to find the forces that are applied to
a vehicle.
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Figure 3-1.: Vehicle Scheme

The road Load under positive speed conditions is based on

Fω = FRolling resistance + FAerodynamic drag + FClimbing resistance + Fsf, (3-1)

where FRolling resistance pertains to the resistance force that arises when the vehicle’s wheel
contacts the road, and its mathematical expression is given by

FRolling resistance = Ωmg cos (α), (3-2)

where m represents the mass of the vehicle, g is the gravity, and α is the angle of the slope
of the road, while Ω is a nonlinear variable that depends on the speed, and the type and the
pressure of the tire.

FAerodynamic drag =
1

2
ϕCωAf (v + v0). (3-3)

Equation (3-3) represents the aerodynamic drag that shows the influence of the air in the
vehicle. Af is the frontal area of the vehicle, v and v0 are the speed of the vehicle and the
headwind velocity, respectively. While, ϕ is the air density and Cω is the aerodynamic drag
coefficient.

For the climbing resistance expression there are two possibilities. It can be a downgrade
force or climbing resistance, depending on the sign of the expression of equation (3-4).

FClimbing resistance = ± m g sin (α). (3-4)

Another force can be described in equation (3-5), but this force can be ignored taking into
account the FRolling resistance.
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Fsf = kAv. (3-5)

In equation (3-5), kA represents the Stokes’ coefficient.
Using those forces and [39], the total torque of the motor can be given by

τL(t) = τfL(t) +
Rω

Gr

τTL(t), (3-6)

where τfL(t) is the friction torque of the motor shaft, Rω is the radius of the wheel, Gr is
the transmission radio, and τTL is the simplified torque related to the associated all-wheel
drive. Regarding the dynamics of the motor, it is possible to define the following expression

JEV +
dω(t)

dt
= τe(t)− τL(t), (3-7)

where τe(t) is the motor torque and JEV is the total inertia of the motor which can be
described by

JEV = J +
1

2
(
Rω

Gr

)2mω +
1

2
(
Rω

Gr

)2m(1− sω), (3-8)

where m and mω are the masses of the vehicle and the wheel, respectively. sω is the wheel
slippage, and J is the inertia of the motor.

3.1.1. Induction motor

The induction motor is an electric machine that is possible to use in electric vehicles [61].
This machine has many types , for example, one of the most important configurations is
the three-phase motor. There are two types of three-phase induction motors: the squirrel
cage structure and the wound rotor structure [48]. One of the techniques that it is possible
to use for controlling an induction motor is the FOC scheme [27, 56]. According to [15], a
three-phase induction motor can be analyzed under a two-phase scheme through Clarke’s
transformation, where it is possible to consider a three to two-phase transformation.

Field Oriented Scheme (FOC)

Taking into account the two-phase transformation for the induction motor, it can be consid-
ered the following scheme under the Park transformation [15],[
vd(t)

vq(t)

]
=

[
cos(ρ(t)) sin(ρ(t))

− sin(ρ(t)) cos(ρ(t))

] [
va(t)

vb(t)

]
, (3-9)
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where v can represent the currents, the voltages or magnetic fluxes, considering the repre-
sentation

ρ = tan−1(
ψRb

ψRa

), (3-10)

ψd(t) =
√
ψRa(t)2 + ψRb(t)2. (3-11)

Using the transformation d/q described in equation (3-9) to the two-phase transformation,
it is possible to consider the dynamics of the induction motor under the FOC scheme

dθ(t)

dt
= ω(t), (3-12)

dω(t)

dt
= µψd(t)iq(t)−

1

JEV

τL, (3-13)

dψd(t)

dt
= −ηψd(t) + ηMid(t), (3-14)

did(t)

dt
= −γid(t) +

ηM

σLRLS

ψd(t) + npω(t)iq(t) + ηM
iq(t)

2

ψd(t)
+

1

σLs

ud(t), (3-15)

diq(t)

dt
= −γiq(t)−

npM

σLRLS

ω(t)ψd(t)− npω(t)id(t)− ηM
iq(t)id(t)

ψd(t)
+

1

σLs

uq(t), (3-16)

dρ(t)

dt
= npω(t) + ηM

id(t)

ψd(t)
, (3-17)

where,

η =
RR

LR

, β =
M

σLRLS

, γ =
M2RR

σL2
RLs

+
RS

σLS

, σ = 1− M2

LRLS

.

Under the FOC scheme, it is possible to conclude that the Field-Oriented Control scheme
shows a decoupling with respect to the magnitude of the rotor flux by means of the direct
current. Additionally, a decoupled control design can be considered for three variables, where
the direct current is controlled by the voltage ud, the quadrature current by the voltage uq,
and the speed is controlled by the quadrature current [15].
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Optimal Field Weakening

According to the [15], the Field weakening is a product of the purpose of obtaining a higher
speed without violating the restriction of voltages and currents. For considering a reference
of direct current, it is necessary to consider the torque

τ =
npM

2

LR

idiq =
npM

LR

ψdiq. (3-18)

In this case, the constraint of the problem is given by

i2d + i2q = I2 ≤ I2max, (3-19)

and defining δ = iq
id

, the expression of the torque is

τ =
npM

2

L2
R

I2
δ

1 + δ
. (3-20)

Using the equation (3-20) the maximum torque requires that I = Imax, and solving the
convex optimization problem δ = 1. Thus, the reference of the direct current is given by

i∗d =
Imax√

2

Control of an induction motor under FOC scheme

The general scheme of the control of the induction motor using the FOC scheme is given by
Figure 3-2.
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Figure 3-2.: Control under Field Oriented scheme - Induction motor

The induction motor under the Field-oriented scheme needs three controllers, two for the
currents and one for the angular velocity of the system [27, 33]. Additionally, it is necessary
to consider a flux estimator through the implementation of the dynamics given in equations
(3-14) and (3-17). Going into detail in Figure 3-2, the controller Cid is considered, whose
objective is to control the dynamics of the direct current where its behavior is in the equation
(3-15). The controller Ciq seeks to control the dynamic of the quadrature current where its
behavior is described in equation (3-16). Finally, the last controller is Cω, the objective of
this controller is to control the dynamics of the angular speed described in equation (3-13).
These controllers can be designed based on an Extended State Observer.

Active Disturbance Rejection Control in Induction Motor

For the control of the induction motor, the three controlled variables are ω, iq and id,
considering the equations (3-13),(3-15) and (3-16). Their dynamics have the structure

ẏ(t) = κu(t) + ξ(t), (3-21)

where y(t) is the output, u(t) is the control signal, κ is an average value and ξ(t) is the
unified disturbance. Additionally, in equation (3-21), it is viable to subtract the reference of
the derivative of y(t) to leave the equation in terms of the tracking error ey(t).

ėy(t) = κu(t) + ξ1(t), ξ1(t) = ξ(t)− ẏ∗(t), (3-22)

where ξ1(t) considers the derivative of the reference, but this reference can be considered
as an external disturbance. For this control problem, it will be considered an intern model



3.1 Vehicle Dynamics 39

that corresponds to approximately a constant signal for the Extended State Observer design,
then it is only considered one extended state for implementing an Extended State Observer.
Thus, the design for each variable is given by

x1(t) = ey(t), (3-23)

x2(t) = ξ1(t). (3-24)

Therefore, the space-state representation of the dynamics of the system is given by[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

0 0

] [
x1(t)

x2(t)

]
+

[
κ

0

]
u(t) +

[
0

1

]
ξ̇(t), (3-25)

x1(t) = ey(t) =
[
1 0

] [x1(t)
x2(t)

]
. (3-26)

The control law using the ADR scheme is given by a feedback state control that can be
described in equation (3-27)

u(t) =
1

κ
(−k0êy(t)− k1ξ̂(t)), (3-27)

where êy(t) and ξ̂(t) are good approximations. The traditional ADRC considers k1 = 1 to
linearize approximately the nonlinear system and consider the dynamic of the tracking error

ėy(t) = κu+ ξ(t),

ėy(t) = κ(
1

κ
(−k0êy(t)− ξ̂(t))) + ξ(t),

(3-28)

simplifying equation (3-28) under the linear approximation,

ėy(t) = −k0êy(t). (3-29)

Using the Laplace transformation in equation (3-29), it is possible to consider the dynamic
of the tracking error

(s+ k0)ey = 0, (3-30)

where k0 > 0 in equation (3-30) to guarantee the stability of the system. Thus, considering
the standard ADR approach, a good estimation of the disturbance and the equations of
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the dynamics of the induction motor under the intern model considered, it is possible to
contemplate the following simplification of the dynamic equations, taking into account the
controlled variables

dω(t)

dt
= µψd(t)iq(t) + ξw(t), (3-31)

did(t)

dt
=

1

σLs

ud(t) + ξid(t), (3-32)

diq(t)

dt
=

1

σLs

uq(t) + ξiq(t). (3-33)

The ADR can estimate ξiq(t), ξid(t) and ξω(t), then through a feedback linearization, it is
possible to consider the linear approximation of the system that is possible to observe in
equations (3-34) , (3-35) and (3-36).

deid(t)
dt

≈ 1

σLs

ud(t), (3-34)

deiq(t)

dt
≈ 1

σLs

uq(t), (3-35)

deω(t)
dt
≈ µψd(t)iq(t). (3-36)

The equations are based on the tracking error to consider a stabilization problem. Addition-
ally, the scheme of the linear approximation of the system is given by
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Figure 3-3.: Linear approximation of the induction motor under Active Disturbance Rejec-
tion approach

Figure 3-3 shows that is possible to simplify the complexity of the problem using the linear
approximation taking into account the disturbance rejection considering a good estimation
of the unified disturbance. This approximation allows to design of a control strategy based
on the tracking error of a linear system. In the case of the standard Active Disturbance
Rejection where the disturbance is rejected, it is possible to observe that the values of kiq,
kid and kω should guarantee the stability of the system.

3.1.2. Disturbance Weighting in the induction motor

However, according to the motivational example, the value of k1 in equation (3-27) is not
always equal to 1, the value of k1 depends on the complexity of the optimization problem.
Then it is possible to consider

deω(t)

dt
= µψd(t)(

1

µψd(t)
(−kωêω(t)− kξω ξ̂ω)) + ξω(t),

deω(t)

dt
+ kωêω(t) = ξω(t)− kξω ξ̂ω(t).

(3-37)
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Considering that there is not an exact linearization, it is necessary to define

eω(t) = êω(t) + ∆eω(t), êω(t) = eω(t)−∆eω(t),

ξω(t) = ξ̂ω(t) + ∆ξω(t), ξ̂ω(t) = ξω(t)−∆ξω(t),

where ∆eω(t) and ∆ξω(t) represent the estimation error of the tracking error and the distur-
bance, respectively. Then, it is possible to consider

deω(t)

dt
+ kωeω(t)− kω∆eω(t) = ξω(t)− kξωξω(t) + kξω∆ξω(t),

(s+ kω)eω = (1− kξω)ξω + kω∆eω + kξω∆ξω.
(3-38)

Equation (3-38) shows that the dynamic of the tracking error is based on the error of esti-
mation and the value of kξω. If it is considered a good approximation, where ∆eω ≈ 0 and
∆ξω ≈ 0, the dynamic of the tracking error will depend principally on the value of kξω. In a
similar way for currents it is possible to observe

deid(t)

dt
=

1

σLs

(σLs(−kidêid(t)− kξidξ̂id)) + ξid(t),

deid(t)

dt
+ kidêid(t) = ξid(t)− kξidξ̂id(t).

(3-39)

Defining

eid(t) = êid(t) + ∆eid(t), êid(t) = eid(t)−∆eid(t),

ξid(t) = ξ̂id(t) + ∆ξid(t), ξ̂id(t) = ξid(t)−∆ξid(t),

where ∆eid(t) and ∆ξid(t) represent the estimation error of the tracking error and the dis-
turbance according to the direct current. Thus,

deid(t)

dt
+ kideid(t)− kid∆eid(t) = ξid(t)− kξidξid(t) + kξid∆ξid(t),

(s+ kid)eid = (1− kξid)ξid + kid∆eid + kξid∆ξid.
(3-40)

Equation (3-40) shows that if ∆eid ≈ 0 and ∆ξid ≈ 0, the dynamic of the error depends
principally on the parameter kξid. Finally, for the quadrature current, it is possible to
consider

deiq(t)

dt
=

1

σLs

(σLs(−kiqêiq(t)− kξiq ξ̂iq)) + ξiq(t),

deiq(t)

dt
+ kiqêiq(t) = ξiq(t)− kξiq ξ̂iq(t).

(3-41)
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Defining

eiq(t) = êiq(t) + ∆eiq(t), êiq(t) = eiq(t)−∆eiq(t),

ξiq(t) = ξ̂iq(t) + ∆ξiq(t), ξ̂iq(t) = ξiq(t)−∆ξiq(t),

where ∆eiq(t) and ∆ξiq(t) represent the estimation error of the tracking error and the dis-
turbance according to the quadrature current. Thus,

deiq(t)

dt
+ kiqeiq(t)− kiq∆eiq(t) = ξiq(t)− kξiqξiq(t) + kξiq∆ξiq(t),

(s+ kiq)eiq = (1− kξiq)ξiq + kiq∆eiq + kξiq∆ξiq.
(3-42)

In equation (3-42), it is possible to conclude that if ∆eiq ≈ 0 and ∆ξiq ≈ 0 due to a good
approximation is considered, the dynamic of the error will be based on the parameter kξid.
The equations (3-40), (3-42), and (3-38) show that it does not exist a rejection of the distur-
bance but it is assumed a good approximation of the estimation, the dynamic of the error
can be stable, but the weighting of the unified disturbance can produce an increasing in a
complexity of the problem because the system continues to be a nonlinear system and the
control strategy depends on the model and the variations of the system can be unknown
then they are not considered. For this research on the induction motor case, to avoid many
problems with respect to the variations of the parameters and nonlinear conditions

kξω = 1, (3-43)

for equation (3-38).

Electric Vehicles have a dynamic related to the environmental conditions and their structure,
this dynamic can be applied to the induction motor. The induction motor is one of the
machines that is possible to use in electric vehicles, and using the FOC scheme, it is possible
to design three controllers based on Extended State Observers. Under the ADR approach,
two control strategies can be considered, the first one is based on disturbance rejection and an
approximate linearization, and the second one is based on disturbance weighting taking into
account the motivational example described in Chapter 2. The disturbance weighting case
shows that the weighting parameter can handle tracking error dynamics, for this reason, this
value should be close to 1. Additionally, the disturbance weighting increases the complexity of
the problem due to the control design is based on a nonlinear system. Finally, for the tracking
of the reference, the disturbance rejection of the angular speed variable is considered. Now,
it is important how the disturbance weighting can be related to the optimization problem
and compared to the traditional Active Disturbance Rejection scheme.
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3.2. Optimization problem - Induction motor case

In this section, it is possible to consider an optimization problem for the induction motor
under the dynamics of an electric vehicle, then the simulations are proposed considering
cost functions that take into account the settling time, the tracking error, and the power
used. Additionally, those simulations are elaborated using the hybrid algorithm described
in Chapter 2. Three optimization problems are considered with the purpose of comparing
the disturbance weighting and the disturbance rejection cases. The reference considered for
these problems is based on the acceleration and deceleration processes.

Cost Function for electric vehicles using a FOC scheme in induction
motor

Taking into account what was mentioned above, the induction motor has intrinsic losses,
and for this reason, it is necessary to improve its performance. However, the ideal per-
formance of the induction motor does not only consider energy use. For this work, there
are three components for consideration in the performance criterion, the objective is tuning
the parameters of the controller and the weighting of the disturbance. Additionally, three
performance criteria will be considered, the comparison of the disturbance weighting and
the disturbance rejection, and the tuning only of the parameters of the weighting of the
disturbance. For all optimization problems

{K1, K2, K3} ∈ R.

Considerations for the performance criterion of optimization problems

In the first instance, it is necessary to define

tsc = |ew(t)|t, t ≥ 0, (3-44)

where ew = ω−ω∗ and t is the execution or work time, this part of the criterion is based on
obtaining a value proportional to the tracking error and will be weighted taking into account
the execution time. Therefore, it is possible to consider a relationship between the error and
the settling time in this part of the criterion.

P = |vα(t)iα(t)|+ |vβ(t)iβ(t)|, (3-45)

where uα/β and iα/β are the two-phase voltages and currents, respectively. This part has a
relationship with the voltage and current that will be applied to the motor, for this reason
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it is important to consider the minimum value of the voltage considering the tracking error.

e = |ew(t)|. (3-46)

Additionally , it is necessary to consider the tracking error of the angular speed, while the
voltage and current component in equation (3-45) seeks to minimize the multiplication of
the voltage and current used in the motor, the settling time component in equation (3-44)
seeks to minimize the time in which the system settles. Thus , it is necessary to minimize
the tracking error independently in order to reach the reference in terms of speed.

First optimization problem

The first optimization problem is given by

J =

∫ tf

t0

(K1P +K2e+K3tsc) dt. (3-47)

S.t
60 ≤ kω ≤ 300,

60 ≤ kid ≤ 300,

60 ≤ kiq ≤ 300.

The objective of the first problem is to tuning the parameters of the control law kiq, kid and
kω to guarantee the stability. The disturbance weighting is not considered.

kξiq = kξid = kξω = 1.

In equation (3-47), the constraints of the decision variables have a relationship with the
operating conditions and stability due to the values of decision variables have to be greater
than zero to guarantee stability. Thus, in this case, disturbance rejection is implemented as
traditional Active Disturbance Rejection Control. The objective of this optimization problem
is to tune the controller parameters considering prescribed eigenvalues of the observer matrix
associated with an Extended State Observer (ESO) design.

Second optimization problem

The second optimization problem is given by

J =

∫ tf

t0

(K1P +K2e+K3tsc) dt. (3-48)
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S.t
60 ≤ kω ≤ 300,

60 ≤ kid ≤ 300,

60 ≤ kiq ≤ 300,

0.990 ≤ kξiq ≤ 1.1,

0.990 ≤ kξid ≤ 1.1.

The second problem considers the tuning of the parameters of the control law ( kiq, kid and
kiω) and the weighting of the disturbance of the currents. The constraints associated with
kξiq and kξid are related to the analysis described in Appendix D, where stable cases are
considered. Additionally, the disturbance rejection of the angular speed is considered

kξiq ̸= kξid ̸= 1,

kξω = 1.

In equation (3-48), to improve the performance and for reducing the complexity of the
problem, it is considered kξω = 1. Additionally, this assumption is considered due to the un-
certainty of the real system can be higher under an implementation considering a parameter
change taking into account the operation conditions. However, this problem considers greater
complexity than the first optimization problem, because there are five decision variables in
the problem.
Finally, the objective of this problem is to show that the disturbance weighting can show a
better performance than the traditional Active Disturbance Rejection scheme described in
equation (3-47).

Third optimization problem

The third optimization problem is given by

J =

∫ tf

t0

(K1P +K2e+K3tsc) dt. (3-49)

S.t

0.9905 ≤ kξid ≤ 1.08,

0.9905 ≤ kξiq ≤ 1.08,

kξω = 1.

The third problem is based on optimizing only the weighting of the disturbance of the direct
and quadrature currents. The constraints associated with disturbance weighting have a
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relationship with the real implementation and the analysis described in the Appendix D,
where stable cases are considered. The control law is given for arbitrary values that allow
the tracking of the angular speed reference considering the disturbance rejection

kω = 285,

kid = 300,

kiq = 300.

The objective of this optimization problem is to show that the disturbance rejection does not
represent the best scenario taking into account the performance required in a cost function
with restrictions.

Finally , in equations (3-47), (3-48) and (3-49) the constants K1, K2, and K3, are the weight-
ings for considering the importance and the magnitudes of each component of the criterion.
In conclusion, in the equation (3-47), it is considered the standard ADRC, where the dis-
turbance is rejected. Whereas, in the performance of the equation (3-48), it is considered a
disturbance weighting for the direct and the quadrature currents, the disturbance weighting
of the angular speed is not considered due to the performance of the motor operation. The
minimum and maximum values of the decision variables are given by conditions of the oper-
ating system. The cost in equation (3-49) seeks to find the optimal value of the disturbance
weighting with the objective that these parameters can improve the performance of the con-
troller.

Proposed control scheme

For the finding of the optimal value for any optimization problem, it will be considered
an offline simulation that uses the hybrid algorithm that is described in Chapter 2 and
the dynamics of the induction motor under FOC scheme. Depending on the optimization
problem the algorithm will return different values of the parameters. The scheme of the
tuning of the parameters for the optimization problems is given by Figure 3-4.
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Figure 3-4.: Proposed control scheme - Offline simulation

Thus, according to Figure 3-4, it is possible to consider three options: The disturbance
rejection taking into account the cost and restrictions given by the function of the equation
(3-47). The second option considers the weighting of the disturbance as in the motivational
example, in this case, it is considered the cost of the equation (3-48), and finally the third
option where it is only considered the tuning of the weighting of the disturbance under fixed
controller parameters. Additionally, for all optimization problems, it is considered the hybrid
algorithm described in Figure 2-2 under the parameters described in Appendix C, depending
on each optimization problem.

3.2.1. Simulation results

In this subsection, it is possible to find three offline optimization cases. The first one is
based on the comparison of two control strategies, the standard Active disturbance Rejection
Control and a nonlinear control strategy based on active disturbance rejection, but the
rejection of the disturbance is weighted. For the second case, it is considered the disturbance
weighting, but the weights of the cost function in equation (3-48) change. Finally, the third
case is based on selecting arbitrary parameters of the control law and comparing the results
with the same control law but using a tuning of the weighting disturbance for the quadrature
and direct currents. In all cases, the weight of the speed disturbance is equal to 1 to improve
the performance.

Experiment conditions

For the experiment, the following conditions are considered

• For the experiment of this research, the slope of the system is not considered and the
dynamics are modeled by a motor DC, where the purpose is to model the reference
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of the current of this machine for describing the torque. Thus, climbing force is not
considered α = 0 in Figure 3-1 (the angle of the slope of the road is not considered)
and, Fsf is not considered (Equation (3-5)).

• For the ESO design in the induction motor, the eigenvalues associated with the currents
are located at −650 and the eigenvalues for the speed are located at −610.

• The reference of the direct current is a constant value i∗d(t) = 1.2[A].

Consideration of Reference for parameter tuning - First and third optimization case

The reference for the optimization problem for cases one and three is given for a signal given
in Figure 3-5. The form of the angular speed reference is based on a section of the Urban
Dynamometer Driving Schedule (UDDS) that allows us to evaluate the performance of the
vehicle under urban conditions [21, 23]. The cycle in this section is not considered completely.
However, the section considered is based on acceleration and deceleration processes, where
it is possible to consider high and low speeds.
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Figure 3-5.: Reference of the optimization problem

Considering Figure 3-5 and the first optimization case, the hybrid algorithm performed
24 iterations in both cases (disturbance rejection and disturbance weighting) because the
disturbance weighting find a final value of the cost in this number of iterations. In this case,
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it is used the performance criterion described in equation (3-48) for the case of the weighting
of the disturbance, and the performance criterion described in equation (3-47) for the case
of the disturbance rejection. The weights of the performance criteria are given by

K1 = 0.35,

K2 = 50,

K3 = 500.

The values of K1, K2 and K3 are based on the maximum values of the different components
of the cost function

• For the value of K1, it is considered that the maximum value of the power factor P
(Equation (3-45)) can be lower than 160 for all intervals of time, this value is considered
under simulation conditions, then

|maximum value of P | < 160,

K1|maximum value of P | < 160K1,

K1|maximum value of P | < 56,
(3-50)

• For the value of K2, it is considered that the maximum value of the error e (Equation
(3-46)) can be lower than one for all intervals of time, then

|maximum value of e| < 1,

K2|maximum value of e| < K2,

K2|maximum value of e| < 50,
(3-51)

• For the value of K3, it is considered that the maximum value of the error e (Equation
(3-46)) can be lower than one for all intervals of time. Additionally, the work time is
considered, then

t|maximum value of e| < t,

K3t|maximum value of e| < K3t, (3-52)

Considering t = 0.1 seconds to achieve a low settling time under the given reference

0.1K3|maximum value of e| < 0.1K3,

0.1K3|maximum value of e| < 50, (3-53)

Using these values, the hybrid algorithm is used for tuning the parameters of the controller
and the disturbance weighting.
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Parameter tuning - Disturbance rejection

According to Figures 3-7, 3-6 and 3-8, it is possible to observe that all parameters require
three iterations for establishing their final value using the hybrid algorithm. Taking into
account the result of the algorithm it is possible to observe that the optimal value of the
parameters is given by the limits of each decision variable. In iteration 23, it is possible to
find out any value does not change. The result of the tuning of each parameter considering
the number of iterations is given by
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Figure 3-6.: Evolution of the parameter kid - Disturbance Rejection
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Figure 3-7.: Evolution of the parameter kiq - Disturbance Rejection
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Figure 3-8.: Evolution of the parameter kω - Disturbance Rejection

It is possible to conclude that all variables find their final values at the same iteration.
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Regarding the speed of the controller of motor variables, the control of the current id should
be slower than the control of the other considered variables.

Parameter tuning - Weighting Disturbance

According to the figures 3-9, 3-10, 3-11, 3-12 and 3-13, the final value of the parameters
is established for iteration 22, but any parameter finds its final value in different value
of iteration. This situation represents a greater requirement with respect to the system
that considers the approximate linearization of the system through the rejection of the
disturbance. However, it is possible to observe that the final values of the weighting of
the disturbances of the direct and quadrature currents are not equal to one, allowing us
to consider that the standard Active Disturbance Rejection approach does not represent
the optimal value of the system taking into account the hybrid algorithm. However, it is
necessary to consider that the values of the disturbance weighting should be close to one for
the analysis described in Appendix D.
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Figure 3-9.: Evolution of the parameter kid -Disturbance Weighting
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Figure 3-10.: Evolution of the parameter kiq - Disturbance Weighting
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Figure 3-11.: Evolution of the parameter kω - Disturbance Weighting
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Figure 3-12.: Evolution kξid parameter - Disturbance Weighting
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Figure 3-13.: Evolution kξiq parameter - Disturbance Weighting

In conclusion the parameter associated to the direct current has a lower value than the other
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controlled variables, this parameter finds its final value at iteration 20. Regarding Figure
3-13, it is possible to find out the weighting of the disturbance the quadrature current is
equal to the upper value of the decision variable. It is feasible to observe that disturbance
weighting proposes two new degrees of freedom. However, the variations of these values
propose a nonlinear control strategy where the linearization does not exist. For this reason,
the limits of these values should be close to one.

Cost comparison - Disturbance Weighting and Disturbance Rejection

Taking into account the setting of the value of the system parameters, it is possible to see
the behavior of the cost for both configurations in which it can be seen that the disturbance
weighting approach shows a better performance.
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Figure 3-14.: Cost value - Disturbance Rejection
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Figure 3-15.: Cost value - Weighting Disturbance

According to the figure 3-14, the associated cost sits close to iteration 3. Additionally, it is
possible to find that the circles represent an optimal value given by the local search given
by the modification of the traditional particle swarm optimization algorithm, while the x’s
represent a given optimal value by traditional search. Thus, the search for the optimal for
the disturbance rejection does not depend on the modification of the traditional Particle
Swarm Optimization. Regarding Figure 3-15, the cost associated with the weighting of the
disturbance shows that it starts at a lower value than the initial value in the rejection of
the disturbance. However, more iterations are required to reach the final value of the cost,
the final value is lower than the system that is based on approximate linearization through
disturbance rejection. However, these values serve as a guide because the optimization is
based on an offline simulation where a time-invariant system is considered. The variation
of the traditional Particle Swarm Optimization algorithm is considered to search for the
optimal value of the cost.

Summary of the parameters found by hybrid algorithm

The summary of the parameter tuning and its respective costs can be seen in table 3-1
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Table 3-1.: Results of tuning - Disturbance Rejection and Disturbance Weighting

Parameter Disturbance Weighting Disturbance Rejection

kid 71.0542 60

kiq 300 300

kω 300 300

kξid 1.0273 Not Considered
kξiq 1.100 Not Considered
Cost 4644.3 4711.6

The weighting of the disturbance proposes a lower cost than the disturbance rejection case
under the reference considered. However, not considering the disturbance rejection proposes
a higher grade of uncertainty due to a nonlinear control problem is considered. Additionally,
despite both strategies having similar final costs. It is important to observe that the cost
function depends on the work time and the tracking error, this situation implies a grade of
uncertainty due to the reference can include other forms or the time duration can be different,
then the values of the cost can change. Additionally, as was previously mentioned, the values
of the disturbance weighting imply a higher grade of uncertainty then it is necessary to
implement these values in an experimental setup.

Sensibility analysis

In this section, it is possible to observe two cases of analysis of the variations of the parame-
ters, the first experiment is based on varying the parameters K1, K2 and K3 independently,
of the cost given in the equation (3-48). The second experiment of the sensitivity analysis is
given by the consideration of only one parameter of the cost function. The reference for this
sensibility is given by the reference exposed in Figure 3-16 due to this reference considers
the acceleration and deceleration processes, the time of this reference is based the resource
use, reducing the complexity of the problem. The results of the parameters can be observed
in the tables 3-2 and 3-3.
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Table 3-2.: Consideration of only one parameter

Parameter K1 = 1

K2 = K3 = 0

K2 = 1

K3 = K1 = 0

K3 = 1

K2 = K1 = 0

kid 70.8016 154.1852 135.6484

kiq 127.4332 243.4036 300

kω 261.3929 141.1478 300

kξid 1.0729 1.0291 0.9900

kξiq 1.0665 1.0841 1.0823

Table 3-3.: Results of tunning - Varying K1, K2 and K3

Parameter K1 = 1 K3 = 500

K2 = 50

K1 = 2 K3 = 500

K2 = 50

K1 = 3 K3 = 500

K2 = 50

kid 60 91.2667 86.8805

kiq 300 300 266.8140

kω 300 291.0261 293.1717

kξid 1.0475 1.0849 1.0828

kξiq 1.0904 1.0595 1.0599

Parameter K1 = 0.2 K3 = 500

K2 = 250

K1 = 0.2 K3 = 500

K2 = 500

K1 = 0.2 K3 = 500

K2 = 750

kid 60 247.9713 131.0916

kiq 300 300 291.0297

kω 300 198.1115 291.0908

kξid 1.068 1.0996 1.0469

kξiq 1.0905 1.1 1.0467

Parameter K1 = 1 K3 = 2500

K2 = 50

K1 = 1 K3 = 5000

K2 = 50

K1 = 1 K3 = 7500

K2 = 50

kid 68.9831 63.1690 206.3902

kiq 299.9103 300 300

kω 298.1367 299.1652 300

kξid 0.9905 0.9900 0.9900

kξiq 1.0860 1.0853 1.0829
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Figure 3-16.: Reference considered - Sensitivity analysis

According to Table 3-2, if only one of the components of the cost function described in
equation (3-48) is considered, the weighting of the disturbance changes its value, subject
to the considered reference and other parameters. In the case where only P is considered,
the value of the disturbance weighting for the direct current is higher than the values for
other configurations considering the other components of the initial performance criterion.
When K3 = 1, it can be observed that the value of kξid is at the lower bound. It is well
known that the disturbance associated with the angular speed is completely rejected to
improve the performance of the control strategy. Regarding Table 3-3, all results consider
all components of the cost function described in equation (3-48), but under the optimization
process, including the algorithm, the reference, and the complexity of the problem, it is
found that the values do not reach the value of one. However, these results are subject
to offline simulation due to the exact simulation model having limitations regarding the
operation system in a real implementation. It is possible to conclude that the results of all
experiments are different. However, in the case of the disturbance weighting of the direct
current, the values are close to the lower bound of the decision variable constraint when
changes in the settling time weight are considered. Meanwhile, it is possible to observe
that the parameter of the disturbance weighting of the quadrature current is close to the
upper value. Finally, in the largest number of experiments, the parameters of the quadrature
current controller and speed controller are close to the upper bound, while in the case of
direct current, the values are close to the lower bound. This leads to the conclusion that
the values of the parameters can be different depending on the structure of the optimization
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problem.

Disturbance Weighting

According to the literature, the selection of the parameters of the controller and observer
based on the Active disturbance rejection control are selected by the experience [62], for this
reason, the third problem of the optimization of the induction motor is considered under
the reference described by the Figure 3-5. The results of the weighting under the cost of
equation (3-49) are

K1 = 0.2

K2 = 50

K3 = 500.

The weighting values are selected taking into account the order of magnitude of each com-
ponent of the cost function for short simulation times, the selection is based on equations
(3-50), (3-51) and (3-53).
In this problem, the objective is to compare two control strategies, both strategies have the
same controller parameters, but one of the strategies tunes the weighting of the disturbance
through the hybrid algorithm. Concluding that the weighting of disturbance can represent
a high number of degrees of freedom. However, these values have to be close to one due to
the nonlinear dynamics and the control approach. The results of the of the optimization are
in Table 3-4.

Table 3-4.: Results of tuning

Parameter Disturbance Weighting Rejected Disturbance

kξid 0.9905 Not Considered
kξiq 1.08 Not Considered

Table 3-4 shows the optimal values of the weighting of the disturbance, Figure 3-17 shows
that the parameter kξid tends to a value close to 0.9905 that represents the lower value of
the decision variable, while Figure 3-18 shows that the parameter kξiq tends to the upper
bound of the decision variable. These constraints of the decision variables are based on the
uncertainties and the problems with respect to the variations in the model considering the
operating conditions.
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Figure 3-17.: Evolution kξid parameter - Disturbance weighting
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Figure 3-18.: Evolution kξiq parameter - Disturbance weighting

Concluding that the disturbance rejection does not represent the optimal performance ac-
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cording to a performance criterion and hybrid algorithm, allowing us to consider the weight-
ing of the disturbance as a degree of freedom subject to decision variables constraints.

The disturbance Weighting scheme proposes a modified Active Disturbance Rejection con-
trol. This modified strategy can improve a performance of a cost function but it implies
a high grade of uncertainty due to the cost function structure and system dynamic. The
values that have a relationship with the weighting disturbance have to be close to 1, to guar-
antee the control approach. The uncertainties can have a relationship with the nonlinear
control approach due to when the disturbance is not rejected the control design is based in
a nonlinear scheme and the parameter variations can change the control problem.



4. Experimental setup - Results

This chapter discusses the implementation of the control strategies that were described in
Chapter 3 in an experimental setup. Two global experiments are considered. The first ex-
periment takes into account two control strategies: The first one is based on the disturbance
rejection, and the second one considers the disturbance weighting. For the first and sec-
ond control strategies, ten experiments are implemented to decrease the uncertainties due
to the measurement equipment or the motor conditions at the moment of the test. After
tests, it is computed the arithmetic mean of the system response in terms of the angular
speed, and then it is compared the arithmetic mean and standard deviation of the cost of the
two strategies. The second global experiment is based on considering another two control
strategies that are compared. Both strategies consider the same linear control law based on
state-feedback control, but one of these, considers a weighting of the current disturbances,
then ten experiments are carried out for any strategy, and the results are compared in terms
of cost and the response of the system.

4.1. Experimental setup

For the prototype, it is important to give the specifications for the following components

• Induction motor: The parameters of the induction motor and the electric vehicle
are in Appendix B.

• Xpc target: It is considered a solution to implement a real-time control system using
a PC and off-the-shelf l/O boards allowing to consider prototypes in real-time.

• Three-phase rectifier: For the implementation, it is considered a rectifier with a
rated power of 600[W ]. The nominal values of voltage input and current input are
220[Vrms] and 3[Arms], respectively. This rectifier includes a filter for changes in the
voltage. The measurement voltage system works with ±15[V ].

• Three-phase inverter: For the implementation, it is considered a three-phase in-
verter that works through IGBT modules that have a rated power of 600[W ]. Addi-
tionally, it is considered a commercial controller compatible that works with 13.5[V ]

and 2.6[A]. There are electronic components that work with the PWM signals to con-
trol the IGBT firing. To protect the counter it is necessary to implement optocouplers
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that work with 13.5[V ] and 2.6[A]. Finally, there is a filter for connecting the motor
that has a cutoff frequency of 800[Hz].

• Induction motor measurement:

For the measurement of the voltages and currents of the stator, it is considered an
electronic system that works with ±15[V ] and 0.5[A]. The nominal values of the input
are 220[Vrms] and 3[Arms]. Finally, the relationship between the input and the output
is 25[V/V ] for the voltage and 1[A/V ] for the current.

• DC-DC converter: This system gives the energy for the motor DC-DC, the rated
power is 500[W ] and the firing voltage is 12[V ], and the nominal values for the input
are 170[V ] and 0.5[A].

• Motor DC measurement: There is a filter that has a a cutoff frequency of 5[kHz] to
avoid unwanted harmonics. The nominal values for the voltage and current are 100[V]
and 3[A]. This system works with 12 [V].

System operation

The experimental setup of the electric vehicle is given in Figure 4-1. In the first instance,
a three-phase source is connected to a three-phase variac, and the output is connected to
a three-phase rectifier that gives a DC voltage, this voltage works as a voltage supply of
the inverter, and the objective of the inverter is to change the voltage through an XPC-
target via PWM scheme . The output of the inverter is filtered via an LC filter, avoiding
high-frequency harmonics from PWM modulation, and giving a sinusoidal signal to the
induction machine. The output of the LC filter is connected to the induction motor and
the measurement instrumentation. A DC motor is connected mechanically to the induction
motor, representing the load. In this case, the DC motor works as a generator, and the
mechanical movement of the induction motor generates a current that is controlled via a
DC-DC converter that is connected to an LC filter, cleaning the signal, and making it
possible to use the PWM scheme. The output is connected to a resistive load. Regarding
the electronics associated with the induction motor, there are two measurement instruments,
the first one is for the measurement of analog signals and the second is a high-speed counter
that gives a PWM signal, controlling the IGBT transistors of the inverter. Now, regarding
the signals of voltages and currents, these are connected to one measurement instrument
(measurement of analog signals), and the second device sends the control signal associated
with the PWM modulation. The control of the system is given by an XPC-target that allows
work in real-time. This software is provided by MATLAB. Regarding the DC motor, there
is a system that generates a PWM for controlling the DC-DC converter, changing the power
in the resistive load. So, both systems work at the same time, it is necessary to connect the
systems through a HUB or router that works via TCP/IP protocol.
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Figure 4-1.: Experimental setup

The diagram illustrating the connections among the various components can be found in
Appendix A.

4.1.1. The Robustness of the Experiments

For each global experiment, robustness is determined by assessing changes in the cost under
similar operational conditions. The results of any global experiment are evaluated based on
both standard deviation and arithmetic mean.

4.1.2. Reference Considered

Various driving cycles can be considered [4]. For this experiment, the UDDS (Urban Dy-
namometer Driving Schedule) driving cycle is proposed, allowing the evaluation of the per-
formance of the vehicle under urban conditions [21, 23]. The UDDS reference is provided in
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Figure 4-2, where both acceleration and deceleration processes can be observed.
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Figure 4-2.: Reference considered

4.1.3. First experiment

For this experiment, two control strategies are compared, the first one considers the dis-
turbance rejection, while the second strategy is based on the disturbance weighting. The
parameters of the control strategies are given by the table 3-1.

Remark:

For each control strategy, 10 experiments are conducted under similar conditions to account
for uncertainties in the system and the measurement process. Moreover, statistical analyses
were performed, involving comparisons among the results.

System Response

Figure 4-3 shows the results of the ten experiments for any strategy. According to the re-
sults, it is possible to observe that both strategies can allow good reference tracking of the
angular speed. However, there are differences between the results for each strategy due to
the measurement process, taking into account the limitations of the speed of the experimen-
tal setup and the computer communication through the HUB. Thus, it is considered the
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arithmetic mean of the tests of any control strategy to compare the strategy performance
considering the tracking error. The results of the arithmetic mean of the response of any
control strategy are given in Figure 4-4.

Figure 4-3.: Experimental results (First experiment)
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Figure 4-4.: Arithmetic mean of the results - Comparison between Disturbance Rejection
and Disturbance Weighting (First experiment)
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Figure 4-5.: Comparison of tracking error - Arithmetic mean approach (First experiment)
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For Figure 4-4, the following equation is considered

Arithmetic mean of angular speed =

∑10
i=1 ωi(t)

10
, (4-1)

where ωi(t) is the angular speed of the experiment i. Regarding Figure 4-4, the arithmetic
mean of the disturbance weighting process has a higher value than the arithmetic mean of
the disturbance rejection process. However, both strategies have the disturbance rejection
of the speed-controlled variable to guarantee the tracking of the reference.

For Figure 4-5, it is considered the following equation for each control strategy

Arithmetic mean of Tracking error = em(t) =

∑10
i=1 |ei(t)|
10

, ei(t) = ωi(t)− ω∗(t). (4-2)

Figure 4-5 shows that the performance taking into account the tracking error is better when
exists a disturbance weighting. This result is possible due to other components are considered
in the cost functions given by equations (3-47) and (3-48).

Cost Value
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Figure 4-6.: Performance criterion for all test - Disturbance Rejection (First experiment)
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Regarding Figure 4-6, it is possible to find the cost values of the performance criterion
using the disturbance rejection approach, while Figure 4-7 shows the cost values using the
disturbance weighting approach. Graphically, it is possible to observe that the disturbance
rejection case has a lower difference between the different tests, but its best and worst cases
have a higher value than the experiments of the weighting of the disturbance case. The
summary of the final value of the cost for any experiment is shown in Table 4-1.
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Figure 4-7.: Performance criterion for all test - Disturbance Weighting (First experiment)

In table 4-1, it is possible to observe the standard deviation and variance of all tests for
each control strategy. The arithmetic mean of the cost in the disturbance weighting case
represents the 81.96% of the disturbance rejection case, approximately. Additionally, the
disturbance rejection case presents a lower standard deviation than the disturbance weight-
ing case. Graphically, it can be observed bigger variations between the values of all the
experiments in the disturbance weighting case, these values can be seen in the graphs previ-
ously analyzed. The variation in costs is attributed to the fact that the technique based on
disturbance weighting loses the linear approach. Additionally, the transient behavior of the
cost average of each case can be seen in Figure 4-8.
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Table 4-1.: Cost - Disturbance Rejection and Disturbance Weighting

Test Disturbance Weighting Disturbance Rejection

Test 1 5.6216e+ 07 7.6265e+ 07

Test 2 5.3445e+ 07 7.7550e+ 07

Test 3 6.2152e+ 07 7.4057e+ 07

Test 4 6.5996e+ 07 7.5427e+ 07

Test 5 6.3923e+ 07 6.9383e+ 07

Test 6 6.5987e+ 07 6.7590e+ 07

Test 7 5.7465e+ 07 7.5999e+ 07

Test 8 5.8502e+ 07 6.9452e+ 07

Test 9 5.0622e+ 07 7.6476e+ 07

Test 10 6.8316e+ 07 7.3108e+ 07

Arithmetic mean 6.0262e+ 07 7.3531e+ 07

Variance 3.4910e+ 13 1.2396e+ 13

Standard deviation 5.9085e+ 06 3.5209e+ 06
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Figure 4-8.: Performance criterion for all test - Arithmetic mean approach (First experi-
ment)
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The equation associated with Figure 4-8 is

Arithmetic mean of the costs =
∑10

i=1 ci(t)

10
, (4-3)

where ci(t) represents a cost for the i experiment.
Figure 4-8 shows that in the first stage of the UDDS cycle, the average values of the costs are
similar. However, when a higher speed is requested, the increase in the difference in the costs
of both strategies is observed; this situation may be because the tuning of the parameters
was carried out with a high-speed reference. Then, considering the mean, it is necessary to
consider the best and the worst cases for any control design. This procedure is observed in
Figure 4-9. This figure shows that the best result of the disturbance rejection case shows a
similar performance to the worst case of the disturbance weighting case. Finally, the best
case of the disturbance weighting case represents about 75% of the disturbance rejection
case.
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Figure 4-9.: Best and worst cases comparison (First experiment)

4.1.4. Performance evaluation

Remark:

While energy use is considered in the performance criteria described in equations (3-47),
(3-48), and (3-49), this analysis was susceptible to tracking errors. Therefore, in this subsec-
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tion, two new parameters are evaluated to enhance the analysis. The first analysis is based
on energy, and the second one incorporates a weighting of the energy using the tracking error.

Power and energy analyses

After analyzing the costs associated with the related experiments, two performance criteria
will be proposed for evaluation. The first performance criterion is based on the average of
energy used Em(t), considering all experiments. In this case, it is considered the following
expression

pm(t) = vam(t)iam(t) + vbm(t)ibm(t) + vcm(t)icm(t),

Em(t) =

∫ tf

t0

pm(t) · dt,
(4-4)

where am, bm, and cm are the averages of the three-phase voltages and currents. The second
performance criterion is given by the first criterion but with a weighting by the magnitude
of the tracking error

EP (t) =

∫ tf

t0

|em(t)|pm(t) · dt. (4-5)

In equation (4-4), it is possible to observe that it is considered the energy used and in
equation (4-5), it is possible to consider the energy of the system and the error at the same
time, where it is possible to evaluate the importance of the tracking error in any strategy
due to the nonlinear dynamics and the variation of the parameters.
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Figure 4-10.: Em(t) Parameter - Comparison (First experiment)
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Figure 4-11.: EP (t) Parameter - Comparison (First experiment)

The energy parameter shown in Figure 4-10 shows a lower value for the disturbance weight-
ing case. Additionally, according to Figure 4-11, in the case when it is considered the integral
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where the pm(t) is weighted by the magnitude of the error, the disturbance weighting shows
a better result than the disturbance rejection case. Concluding, a better performance of the
disturbance weighting case considering the parameters.

Cost variation analysis (Cost robustness)

Given that the experimental conditions are very important for the experiments, it is proposed
an analysis with respect to the statistical variables of arithmetic mean and standard deviation
considering the final value of the costs. Figure 4-12 shows the values of the mean and the
standard deviation.
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Figure 4-12.: Arithmetic mean and standard deviation (First experiment)

Additionally, to compare the variation of the final value of the experiments, it is proposed
the following parameter

R = (
Standard deviation
Arithmetic mean

)× 100. (4-6)

The parameter R is depicted Figure 4-13.In this figure, it is possible to conclude that the
variation of the final value of the experiments is higher in the disturbance weighting case.
In conclusion, the disturbance weighting can improve the cost of the performance criterion,
but the variation of the experimental results can be higher under operation conditions. The
nonlinear control problem of the disturbance weighting case shows if the disturbance is not
rejected the variation of the parameters can change the final values of the cost.
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Figure 4-13.: R parameter (First experiment)

4.1.5. Vehicles dynamics - Comparison
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Figure 4-14.: Comparison of the current Iout - Vehicle dynamics (First experiment)
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To consider the vehicle dynamics, the current reference of the DC generator is considered,
the vehicle dynamics and according to the vehicle speed and the conditions of the problem is
reflected in the DC motor current reference. For both control strategies the result is similar,
the differences depend on the speed of any control strategy.
The current reference and the τ associated to electric vehicles torque for the induction motor
have the following relationship

τ = γior, (4-7)

where γ is a constant value and ior is the reference of Iout.

Conclusions from the first experiment

It can be concluded that the cost of disturbance rejection is higher than that of the distur-
bance weighting case, under the constraints of the hybrid algorithm and decision variables.
The weighting in the rejection of disturbances in the currents proposes two new degrees of
freedom. However, the parameters associated with the weighting of the disturbances are
limited to values close to 1. Not considering values close to 1 decreases the robustness of the
system regarding the costs due to the simulation and tuning process of the parameters does
not consider the variation of the parameters given the operating conditions and uncertainties.
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4.1.6. Second experiment

The objective of this experiment is to show the case of the disturbance weighting of Chapter
3 considering the respecting performance criterion under a control parameter condition. In
this case, the parameters tuned of the disturbance weighting by the hybrid algorithm are
considered, using the values of Table 3-4, ten experiments are carried out for each control
strategy under the electric vehicle conditions, and the reference of Figure 4-2.

Remark:

For each control strategy, 10 experiments are conducted under similar conditions to account
for uncertainties in the system and the measurement process. Moreover, statistical analyses
were performed, involving comparisons among the results.

System Response

Figure 4-15.: Experimental results (Second experiment)
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Figure 4-16.: Arithmetic mean of the results - Comparison between Disturbance Rejection
and Disturbance Weighting (Second experiment)
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Figure 4-17.: Comparison of tracking error - Arithmetic mean approach (Second experi-
ment)
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The results of the figures 4-16 and 4-17 are based on the equations (4-1) and (4-2), re-
spectively. Figure 4-15 shows a tracking of the reference, but as mentioned in the first
experiment, there are measurement problems, so it is necessary to carry out several exper-
iments and determine the corresponding statistical values. For this reason, it is possible to
observe the arithmetic mean of the response of the system in Figure 4-16. Figure 4-16 shows
that the disturbance rejection has a lower value than the disturbance weighting strategy, the
comparison of the tracking error can be observed in Figure 4-17. This figure shows the mag-
nitude of the error for any case considering the mean of the response of the ten experiments,
concluding that the system that considers the disturbance rejection shows a higher value of
error than the weighting of the disturbance case. Considering the tracking error it is possible
to observe that the weighting of the disturbance proposes a better performance, but taking
into account the performance described in equation (3-49).

Cost value

Considering Figures 4-18 and 4-19, it is possible to conclude that the weighting of the
disturbance considers a better performance, but the values present a higher variation of
the final value of the costs than the other strategy, the final values an the analysis of the
experiments can be seen in table 4-2.
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Figure 4-18.: Performance criterion for all test - Disturbance Rejection (Second experiment)
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Figure 4-19.: Performance criterion for all test - Disturbance Weighting (Second experi-
ment)

Table 4-2.: Results of tuning - Disturbance Rejection and Disturbance Weighting

Test Disturbance Weighting Disturbance Rejection

Test 1 5.2372e+ 07 7.5739e+ 07

Test 2 5.4419e+ 07 7.2865e+ 07

Test 3 5.3536e+ 07 7.5569e+ 07

Test 4 6.4036e+ 07 7.5742e+ 07

Test 5 6.4576e+ 07 7.2283e+ 07

Test 6 6.0083e+ 07 7.3454e+ 07

Test 7 6.6193e+ 07 7.2596e+ 07

Test 8 5.6026e+ 07 7.2293e+ 07

Test 9 7.0820e+ 07 7.5799e+ 07

Test 10 6.8907e+ 07 7.4809e+ 07

Arithmetic mean 6.1097e+ 07 7.4115e+ 07

Variance 4.5210e+ 13 2.4113e+ 12

Standard deviation 6.7238e+ 06 1.5528e+ 06
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According to the table 4-2 it can be concluded that the weighting of the disturbance presents
lower costs taking into account the performance criterion. However, there is a much larger
variation in the data compared to the strategy where there is disturbance rejection. This
phenomenon is due to the fact that when carrying out a large number of tests the motor
presents a variation in the parameters that cause the offline optimization or the problems
with the nonlinear approach.
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Figure 4-20.: Performance criterion for all test - Arithmetic mean approach (Second exper-
iment)

Figure 4-20 is based in equation (4-3). This figure shows that the mean of the disturbance
rejection case begins to have a higher cost when the reference is at a higher speed. The
mean value of the disturbance weighting case represents the 82.44% of the mean value of
the disturbance rejection case. Additionally, in Figure 4-21, it is possible to observe a
higher standard deviation in the disturbance weighting case. However, the worst case of
the disturbance weighting experiment has a lower cost than the best case of the disturbance
rejection experiment.



84 4 Experimental setup - Results

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

8
10

7

Figure 4-21.: Best and worst cases comparison (Second experiment)
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4.1.7. Performance evaluation
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Figure 4-22.: Em(t) Parameter - Comparison (Second experiment)
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Figure 4-23.: EP (t) Parameter - Comparison (Second experiment)
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For this experiment are considered the same additional performance criteria to evaluate the
first experiment. The criteria can be described in equations (4-4) and (4-5). When it is
considered the integral of the power parameter pm(t), it is possible to observe that in the
case of disturbance weighting, the result of the energy parameter is given in Figure 4-22, in
this case, a lower final value is evident for the considered interval. When the error weighting
is considered, it is contemplated Figure 4-23, the disturbance weighting shows a better
performance.

Analysis cost variation (Cost robustness)

For the cost variation analysis, the same analysis that was used in the first experiment is
proposed. Additionally, the same parameter of the equation (4-6) is used to determine the
variations of the system under the operating conditions.
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Figure 4-24.: Arithmetic mean and standard deviation (Second experiment)

According to Figures 4-25 and 4-24, it is possible to conclude, despite the same values
for the parameters of the ESO and the controller, the disturbance weighting proposes a
higher variation of the results, showing that if the disturbance is not rejected completely, the
variation of different experiments is higher than the traditional Active disturbance Rejection
Control.
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Figure 4-25.: R Parameter (Second experiment)

4.1.8. Vehicles dynamics - Comparison
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Figure 4-26.: Comparison of the current Iout(t) - Vehicle dynamics (Second experiment)
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As in the first experiment, the dynamics of the electric vehicle are provided by the reference
current of the DC motor. This currents has a direct relationship with the torque. Where
it is possible to see that the behavior of the current of both systems is similar and there a
tracking of the reference current. The relationship between the reference of current Iout and
the associated torque is given by equation (4-7).

The disturbance weighting strategy can offer advantages in an optimization problem since it
allows for the consideration of new degrees of freedom. However, the absence of an approxi-
mate linearization in the standard Active Disturbance Rejection Control leads to a nonlinear
control problem. This consideration introduces higher complexity and increases variations
in different experiments due to operational conditions that can alter system parameters.
These conclusions are validated through experimental results considering the dynamics of
an electric vehicle using an induction motor.



5. Additional discussion

5.1. General Comparison Between Approaches

Considering a nonlinear system, it can be described by the following representations

ẋ(t) = f(x(t)) ≡ ey(t)
(n) = ξ(t) + κu(t), (5-1)

where x(t) represents the states, f is a vector field that describes the dynamics of the system,
including the control signal, r is a function, κ is an average value, u(t) is the control signal,
and ey(t) is the tracking error of the output of the system. In equation (5-1), it is possible to
consider the Koopman approach, Active Disturbance Rejection under disturbance rejection,
and ADR under disturbance weighting.

5.1.1. Koopman Approach

Under the Koopman approach described in [8], the objective is to find a vector z to simplify
or linearize the system:

ż(t) = Lz(t), x = ϕ(z), z = ϕ(x) (5-2)

where the dynamics of the system are described by the eigendecomposition of L. Addition-
ally, considering that it is possible to access measurement data, the discrete-time represen-
tation is considered:

x(k + 1) = F (x(k)), z(k + 1) = K(x(k)), (5-3)

where K is equivalent to L but in discrete time. Considering ρ is the Koopman operator, it
is possible to define:

ρϕ(x(k)) = g(F (x(k))) = g(F (x(k + 1)))ρϕ(x(k)) = λϕ(x(k)) = ϕ(k + 1), (5-4)

where g is a measurement function that evaluates x. Additionally, ϕ is an eigenfunction
of ρ, and λ is the respective eigenvalue. The eigendecomposition of the Koopman operator
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allows us to decompose the nonlinear dynamics in a linear way or in simpler ways, subject to
measurement data. Then the control of the system can be realized under an approximation
[8].

5.1.2. ADR Control - Disturbance Rejection

Under Disturbance Rejection control, the design is based on an Extended State Observer
(ESO) where the estimation of the states and the disturbance is considered. The linearization
of the system is given by the feedback linearization considering the disturbance

e(n)y (t) = v(t) + ξ(t)− ξ̂(t) + ∆M , (5-5)

where κu(t) = v(t)− ξ̂(t) +∆M , ∆M is the estimation error, and v(t) represents the control
law without considering the feedback linearization. A good estimation of the disturbance
allows to consider a linear system design [53].

5.1.3. ADR Control - Disturbance Weighting

Under the disturbance weighting approach, it is possible to consider

e(n)y (t) = v(t) + ξ(t)− cξ̂(t) + ∆M , (5-6)

where κu(t) = v(t) − cξ̂(t) + ∆M , ∆M represents the estimation error, and v(t) denotes
the control law without considering the weighting of the feedback linearization. Concerning
traditional Active Disturbance Rejection control, it is possible to find a new degree of freedom
given by c parameter. A good estimation of the disturbance can be achieved by considering
a linear system with values of c close to 1. However, the design is based on a nonlinear
control problem.

5.1.4. Conclusion of Comparison

The traditional Active Disturbance Rejection Control (ADRC) and the modified version
presented in this document represent a method for linearizing the system through distur-
bance estimation. However, the estimation error may not significantly impact the system
results with well-tuned parameters. The introduction of disturbance weighting provides an
additional degree of freedom, enabling the consideration of various optimization problems to
achieve a better result considering a higher level of complexity. In contrast, the Koopman
approach offers a linear approximation, but it necessitates measurement data, which can
pose an additional challenge. Consequently, both ADR approaches hold advantages over the
Koopman approach as they do not require the measurement of data to linearize the system.
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Instead, these ADRC approaches achieve system linearization through the differential grade
of the system.



6. Conclusions and recommendations

6.1. Conclusions

Taking into account the results of this research, it is possible to conclude

• In optimization problems, under the Active Disturbance Rejection approach and an
optimal control problem. Including a weighting of the disturbance rejection may im-
prove the performance of a control design mixing both optimal control and ADRC.
However, this weighting also increases the complexity when solving the optimization
problem and reduces the ADRC rejection capabilities.

• The use of disturbance weighting considers a higher variety in the results than the
traditional Active Disturbance Rejection Control because the disturbance weighting
strategy is based on a nonlinear control design and uncertainties are not completely
rejected. Additionally, in these cases, it is important to keep disturbance weighting
values close to 1 to mitigate the nonlinear and uncertainty aspects and guarantee the
stability of the system.

• The traditional Active Disturbance Rejection Control (ADRC) can be considered a
more practical design from an optimization problem since it is based on a linear process.
Additionally, it does not imply much difference in percentage regarding a considered
cost compared to the modified ADRC. The reduction in degrees of freedom decreases
the complexity of the optimization problem and confines the stability of the system to
the controller parameters.

6.2. Recommendations

For each experiment, it is advisable to operate the system under consistent conditions.
Conducting multiple experiments consecutively can introduce variations in the operational
conditions of the motor, potentially leading to changes in the dynamic system parameters. It
is important to note that the control strategy proposed in this work is based on disturbance
weighting. This strategy does not linearize the system, preserving unmodeled dynamics and
uncertainties that can vary considerably. Additionally, the disturbance weighting constraints
need to be set close to 1 because accurately predicting the behavior of the system is too
complex taking into account the stability of the system.
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6.3. Future work

After conducting experiments and working on the optimization problem, it is necessary to
consider the following issues and topics for future research:

• The metaheuristic method employed in this work operates under offline conditions,
which may pose a challenge due to potential changes in system parameters during
experiments. The disturbance weighting results in a nonlinear system that might en-
counter issues when the system dynamics change under operational conditions. Hence,
it is necessary to devise an optimal online control strategy that considers the system
model continuously, reducing dependency on the model.

• During offline optimization, it is recommended to use other and different algorithms
considering the same optimization problem, with the aim of determining which algo-
rithm is superior.

• It is recommended to characterize the induction motor parameters because the use and
variations can change the dynamic of the system.

• It is recommended to use other extended states for the disturbance model for the
control design to compare the results regarding the tuning of the controller.



A. Experimental setup diagrams

Using the references from tables 0-1, 0-2, and 0-4, the experimental setup can be modeled in
Figure A-1. Figure A-1 illustrates the structure of the controller and the implementations,
taking into account the xPC-Target. Figure A-2 shows the control principle of the induction
motor, considering the respective electronic components, while Figure A-3 illustrates the
control principle of the DCG, considering the electronics.

Figure A-1.: Experimental setup - Operating principle
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Figure A-2.: Experimental setup - Induction motor control
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Figure A-3.: Experimental setup - Generator DC control



B. Induction motor and Vehicle
parameters

The parameters that will be used for the induction motor can be shown in table B-1

Table B-1.: Induction motor and Vehicle parameters

Induction motor
Parameter Value

Nominal speed/ pair pole 1500rpm/2
Nominal voltage/ Nominal frequency 70V /50Hz

Nominal current 1.2A

Stator resistor/ Rotor resistance 6.575Ω/19.577Ω
Nominal torque/Nominal power 0.6Nm / 100W

Magnetization inductance 243.4mH

Rotor leakage inductance 5.4mH

Stator leakage inductance 55.2mH

Vehicle
Parameter Value

Vehicle mass 98Kg

Wheel Radius/Fixed Gear Ratio 0.3594m/9.73
Frontal Area 2.4m2

Air density 1.1839 kg
m3

Aerodynamic drag coefficient 0.24

γ 5.3475

Rolling resistance coefficient 0.002
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C. Hybrid algorithm parameters

Table C-1.: Parameters of hybrid algorithm - Induction motor case

Algorithm for tuning kid , kidq and kω
(Disturbance Rejection)

Number of variables for optimizing 3

Limits (Restrictions of variables) (60, 60, 60),

(300, 300, 300)

Number of particles 10

Max Iteration (maxIter) 30

C1, C2 0.7

Wmax, Wmin 0.9 , 0.2
Initial Temperature 10 / 5∗

Annealing rate 0.7

Lenght of Tabu list 10

Neigh-board Tabu Search 3

Iterations of tabu Search 3

Algorithm for tuning kid , kiq, kω , kξid and kξiq
(Disturbance Rejection)

Number of variables for optimizing 5

Limits (Restrictions of variables) (60, 60, 60, 0.990, 0.990),

(300, 300, 300, 1.1, 1.1)

Number of particles 10

Max Iteration (maxIter) 30

C1, C2 0.7

Wmax, Wmin 0.9 , 0.2
Initial Temperature 10 / 5∗

Annealing rate 0.7

Lenght of Tabu list 10

Neigh-board Tabu Search 3

Iterations of tabu Search 3
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Table C-2.: Parameters of hybrid algorithm - Induction motor case

Algorithm for tuning kξid and kξiq

Number of variables for optimizing 2

Limits (Restrictions of variables) (0.995, 0.995),

(1.08, 1.08)

Number of particles 10

Max Iteration (maxIter) 30

C1, C2 0.7

Wmax, Wmin 0.9 , 0.2
Initial Temperature 10 / 5∗

Annealing rate 0.7

Lenght of Tabu list 10

Neigh-board Tabu Search 3

Iterations of tabu Search 3

∗: The value of the initial parameter temperature depends on the actual temperature and
the comparison between the optimal value of the particle swarm optimization algorithm and
the improvements. If the actual temperature is equal to 1 or the hybrid algorithm has a
better performance than the traditional PSO, the new initial temperature is equal to 5 to
reduce the search space.



D. Selection of the disturbance
weighting parameters interval
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Figure D-1.: Selection of the disturbance weighting parameters interval

For the selection of decision variable constraints related to disturbance weighting parameters,
numerical analysis was employed using various values for controller parameters while varying
the values of variables associated with disturbance. The cost considered is determined by
calculating the average tracking error of the angular speed over the working time across
multiple simulations

Cost considered =

∫ tf

t0

(a|eω(t)|)dt, a ∈ R+, eω(t) = ω(t)− ω∗(t). (D-1)
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The analysis can be observed in Figure D-1. The reference considered is that of Figure 3-5,
taking into account the first 100 seconds of operation.
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