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TITLE

Involutive AND SAGBI BASES FOR SKEW PBW EXTENSIONS

TÍTULO

BASES involutivas Y SAGBI PARA EXTENSIONES PBW TORCIDAS

ABSTRACT: In this thesis, we study homological properties and SAGBI and Involutive bases
of the noncommutative rings known as skew PBW extensions. First, we present some ring-
theoretical notions of these extensions that are necessary throughout the thesis. With the aim
of showing the generality of these objects in areas such as ring theory and noncommutative
geometry, we include a non-exhaustive list of noncommutative algebras that are particular
examples of these rings. Second, we characterize several homological properties of these ex-
tensions. We provide a new and more general filtration to these extensions, and introduce the
notion of σ-filtered skew PBW extension with the aim of studying its homological properties.
We show that the homogenization of a σ-filtered skew PBW extension over a coefficient ring is a
graded skew PBW extension over the homogenization of such a ring. By using this fact, we prove
that if the homogenization of the coefficient ring is Auslander-regular, then the homogenization
of the extension is a domain Noetherian, Artin-Schelter regular, Zariski and (ungraded) skew
Calabi-Yau. Third, we present our proposal of SAGBI bases theory for skew PBW extensions over
algebras. We consider the notion of reduction which is necessary in the characterization of these
bases, and then establish an algorithm to find the normal form of an element. Then, we define
what a SAGBI basis is, and formulate a criterion to determine when a subset of a skew PBW
extension over a field is a SAGBI basis. In addition, we establish an algorithm to find a SAGBI
basis from a subset contained in a subalgebra of a skew PBW extension. We illustrate our results
with different examples of noncommutative algebras. We also investigate the problem of poly-
nomial composition for SAGBI bases of subalgebras of skew PBW extensions. Finally, we present
a theory of Involutive bases for skew PBW extensions over fields. We consider the notions of
weak and strong Involutive bases, and then we define the involutive reduction process and
involutive remainder that are necessary for the characterization of weak (strong) Involutive
bases. Next, we introduce the notion of standard Involutive representation for elements of a
subset of a skew PBW extension. Also, we give the definition of minimal Involutive basis and
show the existence of a monic, involutively autoreduced, minimal Involutive basis. Finally,
we establish different algorithms that compute involutive standard representations, principal
involutive autoreduction, and an Involutive basis of a left ideal of a skew PBW extension. In
this way, the existence of a finite Involutive basis for these ideals is proved by assuming that
the involutive division is constructive Noetherian.

RESUMEN: En esta tesis, estudiamos propiedades homológicas y bases SAGBI e Involutivas
de los anillos no conmutativos conocidos como extensiones PBW torcidas. Primero, presenta-
mos algunas nociones teóricas de la teoría de anillos de estas extensiones que son necesarias a
lo largo de la tesis. Con el propósito de mostrar la generalidad de estos objetos en áreas como la
teoría de anillos y la geometría no conmutativa, incluimos una lista no exhaustiva de álgebras no
conmutativas que son ejemplos particulares de estos anillos. Segundo, caracterizamos variadas



propiedades homológicas de estas extensiones. Brindamos una nueva y más general filtración
para estas extensiones, e introducimos la noción de extensión PBW torcida σ-filtrada con el
propósito de estudiar sus propiedades homológicas. Mostramos que la homogenización de
una extensión PBW torcida σ-filtrada sobre un anillo de coeficientes es una extensión PBW
torcida graduada sobre la homogenización de dicho anillo. Utilizando este hecho, probamos
que si la homogenización del anillo de coeficientes es Auslander-regular, entonces la homoge-
nización de la extensión es un dominio noetheriano, Artin-Schelter regular, Zariski y Calabi-Yau
torcida. Tercero, presentamos nuestra propuesta de teoría de bases SAGBI para extensiones
PBW torcidas sobre álgebras. Consideramos la noción de reducción la cual es necesaria en
la caracterización de estas bases, y luego establecemos un algoritmo para encontrar la forma
normal de un elemento. Después, definimos lo que es una base SAGBI, y formulamos un criterio
para determinar cuándo un subconjunto de una extensión PBW sobre un campo es una base
SAGBI. De hecho, establecemos un algoritmo para encontrar una base SAGBI a partir de un
subconjunto contenido en una subálgebra de una extensión PBW torcida. Ilustramos nuestros
resultados con diferentes ejemplos de álgebras no conmutativas. También investigamos el
problema de la composición polinomial para bases SAGBI de subálgebras de extensiones PBW
torcidas. Finalmente, presentamos una teoría de bases Involutivas para extensiones PBW
torcidas sobre campos. Consideramos las nociones de base Involutiva débil y fuerte, y luego
definimos el proceso de reducción involutiva y el residuo involutivo que son necesarios para la
caracterización de bases Involutivas débiles y fuertes. A continuación, presentamos la noción
de representación involutiva estándar para elementos de un subconjunto de una extensión PBW
torcida. Además, damos la definición de base Involutiva minimal y mostramos la existen-
cia de una base Involutiva minimal, mónica, e involutivamente autorreducida. Finalmente,
establecemos diferentes algoritmos que calculan representaciones estándar involutivas, autorre-
ducción involutiva principal, y una base Involutiva de un ideal izquierdo de una extensión
PBW torcida. De esta manera, la existencia de una base Involutiva finita para estos ideales se
demuestra asumiendo que la división involutiva es noetheriana constructiva.

KEYWORDS: SAGBI basis, involutive basis, skew PBW extension, quantum algebra, Auslander-
regular, Artin-Schelter regular, skew Calabi-Yau.

PALABRAS CLAVE: Base SAGBI, base involutiva, extensión PBW torcida, álgebra cuántica, regu-
laridad de Auslander, regularidad de Artin-Schelter, Calabi-Yau torcida.
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INTRODUCTION

The objects of our interest in this thesis are the skew Poincaré-Birkhoff-Witt extensions (skew
PBW for short) introduced by Gallego and Lezama [GL11]. Following Lezama et al. [FGL+20,
p. vii], “Skew PBW extensions represent a generalization of PBW extensions defined by Bell
and Goodearl [BG88], and include the usual polynomials rings and a lot of other important
classes of rings such as Weyl algebras, enveloping algebras of Lie algebras, and many examples
of quantum algebras such as the Manin algebra of quantum matrices, q-Heisenberg algebra,
Hayashi algebra, Witten’s deformation of the enveloping algebra of sl(2)”. Over the years, several
authors have shown that skew PBW extensions also generalize families of noncommutative
algebras such as Ore extensions of injective type [Ore31, Ore33], 3-dimensional skew polyno-
mial algebras introduced by Bell and Smith [BS90], diffusion algebras defined by Isaev et al.
[IPR01], ambiskew polynomial rings introduced by Jordan [Jor95, Jor00, Jor01, JW96], solvable
polynomial rings introduced by Kandri-Rody and Weispfenning [KRW90], almost normalizing
extensions defined by McConnell and Robson [MR01], skew bi-quadratic algebras recently in-
troduced by Bavula [Bav23], and others (see [FGL+20, Chapter 2] for more details). Relations
between skew PBW extensions and other noncommutative algebras having PBW bases can be
found in [BG02, BGTV03, GT14, GJ04, Li02, NR23, RS17a, RS17c, Sei10]. Since its introduction,
several mathematicians have studied ring-theoretic, homological and geometric properties of
skew PBW extensions.

Precisely, our first topic of interest in this thesis is the research on homological properties of
these extensions. We provide a new and more general filtration to skew PBW extensions that
generalize the corresponding defined by Gallego and Lezama [GL11, Section 2]. With this, we
prove different results on homogenizations1, and properties such as Auslander-regular, Artin-
Schelter regular, and skew Calabi-Yau. Our results contribute to the characterization of these
properties for skew PBW extensions (e.g., [FGL+20, RS17b, SAR21, SCR21, SLR15, SLR17, SR17]).

Next, motivated by the treatments developed by different authors for Gröbner bases in
the commutative case (e.g., Buchberger [Buc65], Adams and Loustaunau [AL94], Becker and
Weispfenning [BW93], and Cox et al., [CLO15]) and noncommutative setting (e.g., Kandri-Rody
and Weispfenning [KRW90] for algebras of solvable type, Bueso et al. [BGTV03] for PBW rings
and PBW algebras, Levandovskyy [Lev05] for G-algebras, Li [Li02] for quadratic algebras), and
the Gröbner bases theory developed by Gallego in her PhD thesis [Gal15] (and related papers
with Lezama [GL11, Gal16a, GL17, Gal16b]) for skew PBW extensions, we present our proposal

1We have to say that the interest in the homogenizations of algebras is due to that, for example, Gaddis in his PhD
Thesis [Gad13] used the technique of homogenization to study nonN-graded Artin-Schelter algebras.
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INTRODUCTION IV

for a theory of SAGBI2 bases of skew PBW extensions over k-algebras (note that in the literature
we can find these bases for several commutative and noncommutative algebras, e.g., Kapur
and Madlener [KM89], Robbiano et al., [RS90, KR05], Nordbeck [Nor98, Nor01a, Nor01b, Nor02],
and Khan et al. [KKB19]). We also investigate the problem of polynomial composition for SAGBI
bases of subalgebras of skew PBW extensions.

The other topic of interest in this thesis are the Involutive bases which represent a special
kind of Gröbner bases with additional combinatorial properties. As one can appreciate in the
literature, these bases have been developed for commutative and noncommutative algebras
(e.g., Apel [Ape95, Ape98], Blinkov et al. [Ger99, GB98a, GB98b, ZB93], Evans [Eva05], Hausdorff
et al. [HSS02], Saito et al. [SST00], and Seiler [Sei09, Sei10]). In particular, of interest for us is the
theory of Involutive bases presented by Seiler [Sei10, Chapter 3] for his polynomial algebras
of solvable type (c.f. [KRW90]), since as he recognized, his introduction of these bases is closely
modelled on a classical approach to Gröbner bases [Sei10, p. 64]. Due to the similarities between
the algebra of these polynomials and skew PBW extensions, the approach to Involutive bases
of these extensions that we propose takes into account the Gröbner bases theory developed by
Gallego and Lezama, and the ideas formulated by Gerd, Blinkov and Seiler.

On the structure of the thesis, this is based on a collection of papers. Chapter 1 presents
some definitions and properties of skew PBW extensions that are necessary in the next chapters.
With the aim of showing the generality of these objects in areas such as ring theory and noncom-
mutative geometry, we include a non-exhaustive list of remarkable noncommutative algebras.
Next, Chapter 2 presents the first original results on skew PBW extensions obtained in the thesis.
We provide a new and more general filtration to the class of skew PBW extensions. We introduce
the notion of σ-filtered skew PBW extension and study some of its homological properties. We
show that the homogenization of a σ-filtered skew PBW extension A over a ring R is a graded
skew PBW extension over the homogenization of R. Using this fact, we prove that if the ho-
mogenization of R is Auslander-regular, then the homogenization of A is a domain Noetherian,
Artin-Schelter regular, and A is Noetherian, Zariski and (ungraded) skew Calabi-Yau. In Chapter
3, we present a first approach toward a theory of SAGBI bases for skew PBW extensions over
k-algebras. We formulate the notion of reduction which is necessary in the characterization
of SAGBI bases, and then establish an algorithm to find the SAGBI normal form of an element.
Then, we define what a SAGBI basis is, and formulate a criterion to determine when a subset of
a skew PBW extension over a field is a SAGBI basis. In addition, we establish an algorithm to find
a SAGBI basis from a subset contained in a subalgebra of a skew PBW extension. We illustrate
our results with examples concerning algebras appearing in Lie theory, and noncommutative
algebraic geometry. We also investigate the problem of polynomial composition for SAGBI bases
of subalgebras of skew PBW extensions. Finally, in Chapter 4, we present a theory of Involutive
bases for skew PBW extensions over fields. We consider the notions of weak involutive basis
and (strong) involutive basis, and then we define the involutive reduction process and involu-
tive remainder that are necessary for the characterization of weak (strong) Involutive bases.
Next, we introduce the notion of standard involutive representation for elements of a subset of a
skew PBW extension. Also, we give the definition of minimal Involutive basis and show the
existence of at most one monic, involutively autoreduced, minimal Involutive basis. Finally,

2It is an acronym for Subalgebras Analogue to Gröbner Basis for Ideals. This term was used for the
first time by Robbiano and Sweedler [RS90].



INTRODUCTION V

we establish different algorithms that compute involutive standard representations, principal
involutive autoreduction, and an Involutive basis of a left ideal of a skew PBW extension. In
this way, the existence of a finite Involutive basis for these ideals is proved by assuming that
the involutive division is constructive Noetherian.



INTRODUCTION VI

Notation and some terminology

Symbol Meaning
N The set of natural numbers including the zero element

Z The ring of integer numbers

Z>0 The set of positive integer numbers

Q The field of rational numbers

C The field of complex numbers

R Associative ring (not necessarily commutative) with
identity

R∗ The set of non-zero elements of the ring R

K Commutative ring with identity

k Field

k[x1, . . . , xn] Commutative ring of polynomials in n indeterminates
over k

k{X } = k{x1, . . . , xn} Free associative algebra over k in the set of noncom-
mutative indeterminates X = {x1, . . . , xn}

dim(V ) dimension of a k-vector space V

Throughout the thesis, the word ring means an associative ring (not necessarily commu-
tative) with identity. All algebras are k-algebras, all modules are left modules, and the tensor
product ⊗ means ⊗k.
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Statement of contributions

The chapters two, three and four in this thesis correspond to the following publications and
preprints containing original results.

• Chapter 2. Suárez, H., Reyes, A. and Suárez, Y. Homogenized skew PBW extensions.
Arabian Journal of Mathematics (Springer) 12 (1) 247–263 (2023). Available online at
https://link.springer.com/article/10.1007/s40065-022-00410-z

• Chapter 3. Reyes, A. and Suárez, Y. On SAGBI bases theory of skew Poincaré-Birkhoff-Witt
extensions (2024) [Manuscript submitted for publication].

• Chapter 4. Reyes, A. and Suárez, Y. Some remarks about involutive bases of skew Poincaré-
Birkhoff-Witt extensions (2024) [Manuscript submitted for publication].

https://link.springer.com/article/10.1007/s40065-022-00410-z


CHAPTER 1

SKEW PBW EXTENSIONS

In this chapter, we recall some definitions and elementary properties of skew PBW extensions
that are necessary in the next chapters (Section 1.1). Next, in Section 1.2 we present a list (not
exhaustive) of noncommutative algebraic structures that are particular examples of skew PBW
extensions. Our aim in this section is to show explicitly the generality of these rings in the setting
of ring theory, noncommutative algebraic geometry and noncommutative differential geometry.

1.1 DEFINITIONS AND KEY PROPERTIES

As we said in the Introduction, skew PBW extensions were defined by Gallego and Lezama
[GL11] with the aim of extending PBW extensions introduced by Bell and Goodearl [BG88] (these
algebras generalize enveloping algebras of finite-dimensional Lie algebras, any differential
operator ring formed from commuting derivations, differential operators introduced by Rine-
hart [Rin63], the twisted or smash product differential operator ring, and universal enveloping
rings [BG88, Section 5]) and Ore extensions of injective type defined by Ore [Ore31, Ore33].
During the last years, it has been shown that skew PBW extensions also include other fami-
lies of noncommutative rings such as almost normalizing extensions defined by McConnell
and Robson [MR01], solvable polynomial rings introduced by Kandri-Rody and Weispfenning
[KRW90], diffusion algebras defined by Isaev, Pyatov, and Rittenberg [IPR01], 3-dimensional
skew polynomial algebras introduced by Bell and Smith [BS90], bi-quadratic algebras having
PBW bases recently defined by Bavula [Bav23], and some examples of Auslander-Gorenstein
rings, Calabi-Yau and skew Calabi-Yau algebras, Artin-Schelter regular algebras, Koszul algebras,
and quantum universal enveloping algebras. For more details about the generality of skew PBW
extensions in noncommutative ring theory, see [FGL+20, Chapter 2] or [LR14, Section 3]. Several
ring-theoretical properties of skew PBW extensions have been investigated by some authors
(e.g., [AT24, AL15, Art15, Bav23, Cha22, HKA17, HKG19, LR20, NR23, Rey14, Rey19, RR21, RS16a,
RS16b, RS17b, RS18b, RS20, SR17, TRS20, Ven20], and references therein).

DEFINITION 1.1 ([GL11, DEFINITION 1]). Let R and A be rings. We say that A is a skew PBW
extension (also known as σ - PBW extension) over R if the following conditions hold:

1



1.1. DEFINITIONS AND KEY PROPERTIES 2

(i) R is a subring of A sharing the same identity element.

(ii) there exist finitely many elements x1, . . . , xn ∈ A such that A is a left free R-module, with
basis the set of standard monomials

Mon(A) := {xα := xα1
1 · · ·xαn

n |α= (α1, . . . ,αn) ∈Nn}.

Moreover, x0
1 · · ·x0

n := 1 ∈ Mon(A).

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element ci ,r ∈ R \ {0} such that
xi r − ci ,r xi ∈ R.

(iv) For 1 ≤ i , j ≤ n there exists di , j ∈ R \ {0} such that

x j xi −di , j xi x j ∈ R +Rx1 +·· ·+Rxn , (1.1)

or equivalently,
x j xi = di , j xi x j + r0 j ,i + r1 j ,i x1 +·· ·+ rn j ,i xn , (1.2)

where di , j ,r0 j ,i ,r1 j ,i , . . . ,rn j ,i ∈ R, for 1 ≤ i , j ≤ n.

Under these conditions, we write A =σ(R)〈x1, . . . , xn〉.
REMARK 1 ([GL11, REMARK 2]). Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension over R.

(i) Since Mon(A) is a left R-basis of A, the elements ci ,r and di , j in Definition 1.1 are unique.

(ii) If r = 0, then ci ,0 = 0. In Definition 1.1 (iv), di ,i = 1. This follows from x2
i − di ,i x2

i =
s0 + s1x1 +·· ·+ sn xn , with s j ∈ R, which implies 1−di ,i = 0 = s j , for 0 ≤ j ≤ n.

(iii) Let i < j . By (1.1) there exist elements d j ,i ,di , j ∈ R such that xi x j −d j ,i x j xi ∈ R +Rx1 +
·· ·+Rxn and x j xi −di , j xi x j ∈ R +Rx1 +·· ·+Rxn , and hence 1 = d j ,i di , j , that is, for each
1 ≤ i < j ≤ n, di , j has a left inverse and d j ,i has a right inverse. In general, the elements
di , j are not two-sided invertible. For instance, x1x2 = d2,1x2x1 +p = d21(d1,2x1x2 +q)+p,
where p, q ∈ R +Rx1 +·· ·+Rxn , so 1 = d2,1d1,2, since x1x2 is a basic element of Mon(A).
Now, x2x1 = d1,2x1x2 +q = d1,2(d2,1x2x1 +p)+q , but we cannot conclude that d1,2d2,1 = 1
because x2x1 is not a basic element of Mon(A).

(iv) Every element f ∈ A \ {0} has a unique representation as a linear combination of monomi-

als f =
t∑

i=1
ri Xi , with ri ∈ R \ {0} and Xi ∈ Mon(A) for 1 ≤ i ≤ t .

Proposition 1.1 evidences the relationship between skew PBW extensions and Ore extensions
or skew polynomial rings (Section 1.2.1).

PROPOSITION 1.1 ([GL11, PROPOSITION 3]). Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension
over R. For each 1 ≤ i ≤ n, there exist an injective endomorphism σi : R → R and a σi -derivation
δi : R → R such that xi r =σi (r )xi +δi (r ), r ∈ R.

The notation σ(R)〈x1, . . . , xn〉 and the name of the skew PBW extensions are due to Proposi-
tion 1.1.



1.1. DEFINITIONS AND KEY PROPERTIES 3

DEFINITION 1.2 ([GL11, DEFINITION 4]). Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension over
R, Σ := {σ1, . . . ,σn} and ∆ := {δ1, . . . ,δn}, where σi and δi (1 ≤ i ≤ n) are as in Proposition 1.1

(i) A is called quasi-commutative if the conditions (iii) and (iv) in Definition 1.1 are replaced
by

(iii’) for each 1 ≤ i ≤ n and all r ∈ R \ {0}, there exists ci ,r ∈ R \ {0} such that xi r = ci ,r xi ;

(iv’) for any 1 ≤ i , j ≤ n, there exists di , j ∈ R \ {0} such that x j xi = di , j xi x j .

(ii) A is called bijective if σi is bijective for each σi ∈Σ, and di , j is invertible for any 1 ≤ i < j ≤
n.

(iii) If δi = 0 for every δi ∈∆, then we say that A is a skew PBW extension of endomorphism
type.

PROPOSITION 1.2 ([GL11, THEOREM 7]). Let A be a left polynomial ring over R with respect to

{x1, . . . , xn} . A is a skew PBW extension over R if and only if the following conditions hold:

(1) For every xα ∈ Mon(A) and every 0 ̸= r ∈ R there exist unique elements rα := σα(r ) ∈ R \ {0}
and pα,r ∈ A such that xαr = rαxα+ pα,r , where pα,r = 0 or deg

(
pα,r

) < |α| if pα,r ̸= 0.
Moreover, if r is left invertible, then rα is left invertible.

(2) For every xα, xβ ∈ Mon(A) there exist unique elements dα,β ∈ R and pα,β ∈ A such that
xαxβ = dα,βxα+β + pα,β, where dα,β is left invertible, pα,β = 0 or deg

(
pα,β

) < |α+β| if
pα,β ̸= 0.

Recall that a filtered ring is a ring R with a family F (R) = {Fn(R) | n ∈ Z} of subgroups
of the additive group of R, where we have the ascending chain · · · ⊂ Fn−1(R) ⊂ Fn(R) ⊂ ·· ·
such that R = ⋃

n∈Z
Fn(R), 1 ∈ F0(R), and Fn(R)Fm(R) ⊆ Fn+m(R) for all n,m ∈ Z. As is well-

known, from a filtered ring R it is possible to construct its associated graded ring G(R) by taking
G(R)n := Fn(R)/Fn−1(R). A filtration {Fi (R)}i∈Z of an algebra R is called finite if each Fi (R) is a
finite dimensional subspace.

The following proposition shows that skew PBW extensions are filtered rings and establishes
its associated graded ring.

PROPOSITION 1.3 ([LR14, THEOREM 2.2] ). If A =σ(R)〈x1, . . . , xn〉 is a skew PBW extension over
R, then A is a filtered ring with increasing filtration given by

Fm(A) :=
{

R, if m = 0,{
f ∈ A | deg( f ) ≤ m

}∪ {0}, if m ≥ 1,
(1.3)

and the corresponding graded ring G(A) is a quasi-commutative skew PBW extension over R. If A
is also bijective, then G(A) is a quasi-commutative bijective skew PBW extension over R.

Next, we recall briefly some key facts about monomial orders in the setting of skew PBW
extensions. In Section 3.1.1 we will present a detailed treatment of this topic in the commutative
and noncommutative settings.
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DEFINITION 1.3 ([GL11, DEFINITIONS 6 AND 11]). Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW
extension over R.

(i) For α= (α1, . . . ,αn) ∈Nn ,σα :=σα1
1 ◦· · ·◦σαn

n , where ◦ denotes the classical composition of
functions, |α| :=α1 +·· ·+αn . If β= (

β1, . . . ,βn
) ∈Nn , then α+β := (

α1 +β1, . . . ,αn +βn
)
.

(ii) For X = xα ∈ Mon(A), exp(X ) :=α and deg(X ) := |α|.

(iii) Since every element f ∈ A can be written uniquely as f =
t∑

i=1
ri Xi (Remark 1 (iv)), let

deg( f ) := max
{
deg(Xi )

}t
i=1.

(iv) Let ⪯ be a total order defined on Mon(A). If xα ⪯ xβ but xα ̸= xβ, we will write xα ≺ xβ.
xβ ⪯ xα means xα ⪰ xβ. Each element f ∈ A \ {0} can be represented in a unique way
as f = c1xα1 + ·· ·+ ct xαt , with ci ∈ R \ {0},1 ≤ i ≤ t , and xα1 ≻ ·· · ≻ xαt . We say that xα1

is the leading monomial of f and we write lm( f ) := xα1 ;c1 is the leading coefficient of
f , lc( f ) := c1, and c1xα1 is the leading term of f denoted by lt( f ) := c1xα1 . If f = 0, we
define lm(0) := 0, lc(0) := 0, lt(0) := 0.

We say that ⪯ is a monomial order (also called admissible order) on Mon(A) if the following
conditions hold:

(a) For every xα, xβ, xγ, xλ ∈ Mon(A), the relation xα ⪯ xβ implies that lm(xγxαxλ) ⪯
lm(xγxβxλ).

(b) 1 ⪯ xα for every xα ∈ Mon(A).

(c) ⪯ is degree compatible, i.e., |α| ≤ |β| implies xα ⪯ xβ.

The condition (iv)(c) of the previous definition is needed in the proof that every monomial
order on Mon(A) is a well order. Thus, there are not infinite decreasing chains in Mon(A) [GL11,
Proposition 12]. Nevertheless, this hypothesis is not really needed to get a well ordering if a more
elaborated argument, based upon Dickson’s Lemma, is developed (e.g., [BW93, Theorem 4.6.2]).

From Definition 1.1 it follows that skew PBW extensions are not N-graded rings in a non-
trivial sense. With this in mind, Proposition 1.4 allows to define a subfamily of these exten-
sions, the graded skew PBW extensions (Definition 1.4) introduced by Suárez in his PhD Thesis
[Sufrm[o]–7b] (see also [Sufrm[o]–7a]). Before presenting its definition, we recall the following
facts:

• If R = ⊕
p∈N

Rp and S = ⊕
p∈N

Sp are N-graded rings, then a map ϕ : R → S is called graded if

ϕ(Rp ) ⊆ Sp , for each p ∈N. For m ∈N, R(m) := ⊕
p∈N

R(m)p , where R(m)p := Rp+m .

• Suppose that σ : R → R is a graded algebra automorphism and δ : R(−1) → R is a graded
σ-derivation (i.e., a degree +1 graded σ-derivation δ of R). Let B := R[x;σ,δ] be the
associated graded Ore extension of R, that is, B = ⊕

p≥0
Rxp as an R-module, and for r ∈ R,

xr =σ(r )x +δ(r ). If we consider x to have degree 1 in B , then under this grading B is a
connected graded algebra generated in degree 1 (for more details, see [CS08, Pha12]).
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PROPOSITION 1.4 ([SUFRM[O]–7A, PROPOSITION 2.7(II)]). Let A =σ(R)〈x1, . . . , xn〉 be a bijective
skew PBW extension over anN-graded algebra R = ⊕

m≥0
Rm . If the conditions

(1) σi is a graded ring homomorphism and δi : R(−1) → R is a graded σi -derivation, for all
1 ≤ i ≤ n, and

(2) x j xi −di , j xi x j ∈ R2 +R1x1 +·· ·+R1xn , as in Definition 1.1 (iv) and di , j ∈ R0,

hold, then A is anN-graded algebra with graduation given by A = ⊕
p≥0

Ap , where for p ≥ 0, Ap is

the k-space generated by the set{
rt xα | t +|α| = p, rt ∈ Rt and xα ∈ Mon(A)

}
.

DEFINITION 1.4 ([SUFRM[O]–7A, DEFINITION 2.6]). Let A =σ(R)〈x1, . . . , xn〉 be a bijective skew
PBW extension over anN-graded algebra R = ⊕

m≥0
Rm . If A satisfies both conditions established

in Proposition 1.4, then we say that A is a graded skew PBW extension over R.

Some properties of graded skew PBW extensions can be found in [SAR21, SCR21, SRS23].
Note that the family of graded iterated Ore extensions of injective type is strictly contained
in the class of graded skew PBW extensions. For example, homogenized enveloping algebras
and diffusion algebras are graded skew PBW extensions over a field but these are not iterated
Ore extensions of the field. Examples of graded skew PBW extensions can be found in [GS20,
Sufrm[o]–7a, SCR21].

1.2 SOME FAMILIES OF EXAMPLES

Skew PBW extensions generalize several kinds of noncommutative rings of polynomial type such
as Ore extensions [Ore31, Ore33], families of differential operators generalizing Weyl algebras
and universal enveloping algebras of finite dimensional Lie algebras [Bav92, BG88, Smi91],
algebras appearing in mathematical physics [IPR01, RS22, Zhe91], down-up algebras [Ben99,
BR98, KMP99], ambiskew polynomial rings [Jor00, JW96], 3-dimensional skew polynomial rings
[BS90, Red99, RS22, Ros95], bi-quadratic algebras on three generators with PBW bases recently
characterized by Bavula [Bav23], PBW extensions [BG88], and others (e.g., [FGL+20, NR17]).

In this section, we present families of noncommutative rings that are particular examples
of skew PBW extensions with the aim of showing the generality of these objects, and the scope
of the results presented in the next chapters. For the completeness of the thesis, we include
detailed references for every family of rings.

1.2.1 SKEW POLYNOMIAL RINGS AND AMBISKEW POLYNOMIAL RINGS

Skew polynomial rings (also known as Ore extensions) were introduced by Ore [Ore31, Ore33]
(Noether and Schmeidler [NS20] were interested in some kind of differential operator rings).
Briefly, for σ an endomorphism of a ring R, a σ-derivation on R is any additive map δ : R → R
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such that δ(r s) = σ(r )δ(s)+δ(r )s, for all r, s ∈ R (strictly speaking, this is the definition of left
σ-derivation, but we will not need the concept of right σ-derivation, which is any additive map
δ : R → R satisfying the rule δ(r s) = δ(r )σ(s)+ rδ(s)). Notice that if σ is the identity map on R,
then σ-derivations are just ordinary derivations. The condition δ(1) = 0 it follows from the skew
product rule.

DEFINITION 1.5 ([ORE31, ORE33], [GJ04, P. 34]). Let R be a ring, σ a ring endomorphism of R
and δ a σ-derivation on R. We will write R[x;σ,δ] provided

(i) R[x;σ,δ] containing R as a subring;

(ii) x is not an element of R;

(iii) R[x;σ,δ] is a free left R-module with basis {1, x, x2, . . . };

(iv) xr =σ(r )x +δ(r ), for all r ∈ R.

Such a ring R[x;σ,δ] is called a skew polynomial ring over R, or an Ore extension of R. If σ is
an injective map of R, then we call it an Ore extension of injective type, while if σ is the identity
of R, then we write R[x;δ] and call it a differential operator ring. On the other hand, if δ is the
zero map, then we write R[x;σ] which is known as a skew polynomial ring of endomorphism
type. Iterated skew polynomial rings are defined in the natural way. In the literature, we can
find a lot of papers concerning ring-theoretical, homological and geometrical properties of
Ore extensions. Some general details about these objects can be found in Brown and Goodearl
[BG02], Fajardo et al. [FLP+24], Goodearl and Warfield [GJ04], and McConnell and Robson
[MR01], and references therein.

REMARK 2. Skew PBW extensions of endomorphism type are more general than iterated Ore
extensions of endomorphism type. Let us illustrate the situation with two and three indetermi-
nates.

For the iterated Ore extension of endomorphism type R[x;σx ][y ;σy ], if r ∈ R then we have
the following relations: xr =σx (r )x, yr =σy (r )y , and y x =σy (x)y . Now, if we have σ(R)〈x, y〉 a
skew PBW extension of endomorphism type over R , then for any r ∈ R , Definition 1.1 establishes
that xr =σ1(r )x, yr =σ2(r )y , and y x = d1,2x y +r0+r1x +r2 y , for some elements d1,2,r0,r1 and
r2 belong to R. From these relations it is clear which one of them is more general.

If we have the iterated Ore extension R[x;σx ][y ;σy ][z;σz ], then for any r ∈ R, xr =σx (r )x,
yr = σy (r )y , zr = σz (r )z, y x = σy (x)y , zx = σz (x)z, z y = σz (y)z. For the skew PBW ex-
tension of endomorphism type σ(R)〈x, y, z〉, xr = σ1(r )x, yr = σ2(r )y , zr = σ3(r )z, y x =
d1,2x y+r0+r1x+r2 y+r3z, zx = d1,3xz+r ′

0+r ′
1x+r ′

2 y+r ′
3z, and z y = d2,3 y z+r ′′

0 +r ′′
1 x+r ′′

2 y+r ′′
3 z,

for some elements d1,2,d1,3,d2,3,r0,r ′
0,r ′′

0 ,r1,r ′
1,r ′′

1 ,r2,r ′
2,r ′′

2 ,r3, r ′
3,r ′′

3 of R. As the number of in-
determinates increases, the differences between both algebraic structures are more remarkable.

Ore extensions are one of the most important techniques to define noncommutative algebras.
Next, we illustrate this situation with Weyl algebras, some of its deformations, the q-Heisenberg
algebra, and the quantum matrix algebra.

About the family of Weyl algebras An(k), in the literature it is common to find characteriza-
tions of these algebras as rings of differential operators. Surely, the most beautiful and excellent
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treatment about Weyl algebras is presented by Coutinho [Cou95]. Briefly, the nth Weyl algebra
An(k) over the field k is the k-algebra generated by the 2n indeterminates x1, . . . , xn ,∂1, . . . ,∂n

where
xi x j = x j xi , ∂i∂ j = ∂ j∂i , ∂i x j = x j∂i +δi j , 1 ≤ i , j ≤ n,

where δi j is the Kronecker’s delta. From the relations defining the Weyl algebras, it follows that
these cannot be expressed as skew polynomial rings of automorphism type (since the algebra is
simple) but skew polynomial rings with non-trivial derivations.

Following Goodearl and Warfield [GJ04, p. 36], for an element q ∈ k∗, Aq
1 (k) denotes the

k-algebra presented by two generators x and y and the relation x y −q y x = 1, which is known as
a quantized Weyl algebra over k. Note that Aq

1 (k) = A1(k) = k[y][x;d/d y], when q = 1. If q ̸= 1,
then Aq

1 (k) = k[y][x;σ,δ], whereσ is the k-algebra automorphism given byσ( f (y)) = f (q y), and
δ is the q-difference operator (also known as Eulerian derivative)

δ( f (y)) = f (q y)− f (y)

q y − y
= α( f )− f

α(y)− y
,

as it can be seen in [GJ04, Exercise 2N], so this algebra is not a skew polynomial ring of automor-
phism type.

A generalization of Aq
1 (k) is given by the additive analogue of the Weyl algebra An(q1, . . . , qn).

For non-zero elements q1, . . . , qn ∈ k, this algebra is generated by the indeterminates x1, . . . , xn

and y1, . . . , yn satisfying the relations x j xi = xi x j , y j yi = yi y j , for every 1 ≤ i , j ≤ n, yi x j = x j yi ,
for all i ̸= j , and yi xi = qi xi yi +1, for 1 ≤ i ≤ n. It is clear from these definitions that these
algebras are not skew polynomial rings of automorphism type.

Another deformation of Weyl algebras was introduced by Giaquinto and Zhang [GZ95] with
the aim of studying the Jordan Hecke symmetry as a quantization of the usual second Weyl
algebra. By definition, the quantum Weyl algebra A2(Ja,b) is the k-algebra generated by the
indeterminates x1, x2,∂1,∂2, with relations (depending on parameters a,b ∈ k)

x1x2 = x2x1 +ax2
1 , ∂2∂1 = ∂1∂2 +b∂2

2,

∂1x1 = 1+x1∂1 +ax1∂2, ∂1x2 =−ax1∂1 −abx1∂2 +x2∂1 +bx2∂2,

∂2x1 = x1∂2, ∂2x2 = 1−bx1∂2 +x2∂2.

Note that if a = b = 0, then A2(J0,0) is precisely the second Weyl algebra A2(k).

By definition, for an element q ∈ k∗, the q-Heisenberg algebra Hn(q) is the k-algebra gener-
ated over k by the indeterminates xi , yi , zi , for 1 ≤ i ≤ n, subject to the relations

xi x j = x j xi , yi y j = y j yi , z j zi = zi z j , 1 ≤ i < j ≤ n,

xi zi −qzi xi = zi yi −q yi zi = xi yi −q−1 yi xi + zi = 0, 1 ≤ i ≤ n,

xi y j = y j xi , xi z j = z j xi , yi z j = z j yi , i ̸= j .

It can be seen that Hn(q) can be expressed as an iterated skew polynomial ring.

Given any q ∈ k∗, the corresponding quantized coordinate ring of the ring of matrices of
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size 2×2 with entries in k, denoted by M2(k), is the k-algebra Oq (M2(k)) presented by four
generators x11, x12, x21, and x22 and the six relations

x11x12 = qx12x11, x12x22 = qx22x12,

x11x21 = qx21x11, x21x22 = qx22x21,

x12x21 = x21x12, x11x22 −x22x11 = (q −q−1)x12x21.

This algebra, also known as the coordinate ring of quantum 2×2 matrices over k, or the 2×2
quantum matrix algebra over k, can be expressed as the iterated skew polynomial ring given by
k[x11][x12;σ12][x21;σ21][x22;σ22,δ22] [GJ04, Exercise 2V].

Jordan [Jor95] introduced a certain class of iterated Ore extensions called ambiskew polyno-
mial rings. These structures have been studied by Jordan et al. [Jor00, JW96] at various levels of
generality that contain different examples of noncommutative algebras. Next, we recall briefly
its definition.

Consider a commutative k-algebra B , a k-automorphism of B , and elements c ∈ B and
p ∈ k∗. Let S be the Ore extension B [x;σ−1] and extend σ to S by setting σ(x) = px. By [Coh85,
p. 41], there is a σ-derivation δ of S such that δ(B) = 0 and δ(x) = c. The ambiskew polynomial
ring R = R(B ,σ,c, p) is the Ore extension S[y ;σ,δ], whence the following relations hold:

y x −px y = c, and, for all b ∈ B , xb =σ−1(b)x and yb =σ(b)y. (1.4)

Equivalently, R can be presented as R = B [y ;σ][x;σ−1,δ′] with σ(y) = p−1 y , δ′(B) = 0, and
δ′(y) = −p−1c, so that x y −p−1 y x = −p−1c. If we consider the relation xb = σ−1(b)x as bx =
xσ(b), then we can see that the definition involves twists from both sides using σ; this is the
reason for the name of the objects. From [RS17a, Theorem 1.14], ambiskew polynomial rings
are skew PBW extensions over B , that is, R(B ,σ,c, p) ∼=σ(B)〈y, x〉.

1.2.2 UNIVERSAL ENVELOPING ALGEBRAS AND PBW EXTENSIONS

If g is a finite dimensional Lie algebra over a commutative ring K with basis {x1, . . . , xn}, then by
the Poincaré-Birkhoff-Witt theorem, the universal enveloping algebra of g, denoted by U (g), is
the algebra generated by x1, . . . , xn subject to the relations xi r − r xi = 0 ∈ K , for every element
r ∈ K , and xi x j − x j xi = [xi , x j ] ∈ g, where [xi , x j ] ⊆ K +K x1 + . . .+K xn , for all 1 ≤ i , j ≤ n. As
is well-known, in general these algebras are not skew polynomial rings even including non-
zero trivial derivations. Some enveloping algebras can be expressed as skew polynomial rings;
however, in these rings the derivations are non-trivial. Let us see an example.

Following [GJ04, p. 40], the standard basis for the Lie algebra sl2(k) is labelled {e, f ,h}, where
[e, f ] = h, [h,e] = 2e, and [h, f ] = −2 f . In this way, the enveloping algebra U (sl2(k)) is the k-
algebra presented by three generators e, f ,h and three relations e f − f e = h, he −eh = 2e, and
h f − f h =−2 f . If R is the subalgebra of U (sl2(k)) generated by e and h, then R = k[e][h;δ1] =
k[h][e;σ1], where k[e] and k[h] are commutative polynomial rings, δ1 denotes the derivation
2e(d/de) on k[e], and σ1 is the k-algebra automorphism of k[h] with σ1(h) = h − 2. Thus,
U (sl2(k)) = k[e][h;δ1][ f ;σ2,δ2] = k[h][e;σ1][ f ;σ2,δ2], whereσ2(e) = e,σ2(h) = h+2, δ2(e) =−h,
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and δ2(h) = 0 [GJ04, Exercise 2S]. Other examples of universal enveloping algebras known as
parafermionic and parabosonic algebras are presented in Section 1.2.7.

PBW extensions introduced by Bell and Goodearl [BG88] (Section 1.2.2) are particular exam-
ples of skew PBW extensions. More exactly, the first objects satisfy the relation xi r = r xi +δi (r ),
for every i = 1, . . . ,n, and each r ∈ R, and the elements di j in Definition 1.1 (iv) are equal to the
identity of R . As examples of PBW extensions, we mention the following: the enveloping algebra
of a finite-dimensional Lie algebra; any differential operator ring R[θ1, . . . ,θ1;δ1, . . . ,δn] formed
from commuting derivations δ1, . . . ,δn ; differential operators introduced by Rinehart [Rin63];
twisted or smash product differential operator rings, and others. For more details about the
generality of PBW extensions, see [BG88, p. 27].

1.2.3 3-DIMENSIONAL SKEW POLYNOMIAL ALGEBRAS

Another kind of noncommutative rings which includes the universal enveloping algebra U (sl2(k))
of the Lie algebra sl2(k), the Dispin algebra U (osp(1,2)) and the Woronowicz’s algebra Wν(sl2(k))
[Wor87], is the family of 3-dimensional skew polynomial algebras. These algebras were intro-
duced by Bell and Smith [BS90] and are very important in noncommutative algebraic geometry
and noncommutative differential geometry (e.g., [Red96, Red99, RS22, RS17c, Ros95] and refer-
ences therein). Next, we recall its definition and classification.

DEFINITION 1.6 ([BS90], [ROS95, DEFINITION C4.3]). A 3-dimensional skew polynomial al-
gebra A is a k-algebra generated by the indeterminates x, y, z restricted to relations y z −αz y =
λ, zx −βxz =µ, and x y −γy x = ν, such that

(i) λ,µ,ν ∈ k+kx +ky +kz, and α,β,γ ∈ k \ {0};

(ii) standard monomials {xi y j z l | i , j , l ≥ 0} are a k-basis of the algebra.

It is clear that 3-dimensional skew polynomial algebras are skew PBW extensions with three
indeterminates over the field k.

PROPOSITION 1.5 ([ROS95, THEOREM C.4.3.1]). If A is a 3-dimensional skew polynomial alge-
bra, then A is one of the following algebras:

(1) if |{α,β,γ}| = 3, then A is given by the relations y z −αz y = 0, zx −βxz = 0, x y −γy x = 0.

(2) if |{α,β,γ}| = 2 and β ̸=α= γ= 1, then A is one of the following algebras:

(i) y z − z y = z, zx −βxz = y, x y − y x = x; (if β=−1, then we get the Dispin algebra).

(ii) y z − z y = z, zx −βxz = b, x y − y x = x;

(iii) y z − z y = 0, zx −βxz = y, x y − y x = 0;

(iv) y z − z y = 0, zx −βxz = b, x y − y x = 0;

(v) y z − z y = az, zx −βxz = 0, x y − y x = x;

(vi) y z − z y = z, zx −βxz = 0, x y − y x = 0,

where a,b are any elements of k. All non-zero values of b give isomorphic algebras.
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(3) If |{α,β,γ}| = 2 and β ̸=α= γ ̸= 1, then A is one of the following algebras:

(i) y z −αz y = 0, zx −βxz = y +b, x y −αy x = 0;

(ii) y z −αz y = 0, zx −βxz = b, x y −αy x = 0.

In this case, b is an arbitrary element of k. Again, any non-zero values of b give isomorphic
algebras.

(4) Ifα=β= γ ̸= 1, then A is the algebra defined by the relations y z−αz y = a1x+b1, zx−αxz =
a2 y +b2, x y −αy x = a3z +b3. If ai = 0 (i = 1,2,3), then all non-zero values of bi give
isomorphic algebras.

(5) If α=β= γ= 1, then A is isomorphic to one of the following algebras:

(i) y z − z y = x, zx −xz = y, x y − y x = z;

(ii) y z − z y = 0, zx −xz = 0, x y − y x = z;

(iii) y z − z y = 0, zx −xz = 0, x y − y x = b;

(iv) y z − z y =−y, zx −xz = x + y, x y − y x = 0;

(v) y z − z y = az, zx −xz = z, x y − y x = 0;

Parameters a,b ∈ k are arbitrary, and all non-zero values of b generate isomorphic algebras.

1.2.4 BI-QUADRATIC ALGEBRAS ON 3 GENERATORS WITH PBW BASES

Related with algebras generated by three indeterminates, recently Bavula [Bav23] defined the
skew bi-quadratic algebras with the aim of giving an explicit description of bi-quadratic algebras
on 3 generators with PBW basis.

For a ring R and a natural number n ≥ 2, a family M = (mi j )i> j of elements mi j ∈ R (1 ≤ j <
i ≤ n) is called a lower triangular half-matrix with coefficients in R. The set of all such matrices
is denoted by Ln(R).

If σ = (σ1, . . . ,σn) is an n-tuple of commuting endomorphisms of R, δ = (δ1, . . . ,δn) is an
n-tuple of σ-endomorphisms of R (that is, δi is a σi -derivation of R for i = 1, . . . ,n), Q = (qi j ) ∈
Ln(Z (R)), A := (ai j ,k ) where ai j ,k ∈ R, 1 ≤ j < i ≤ n and k = 1, . . . ,n, and B := (bi j ) ∈ Ln(R), the
skew bi-quadratic algebra (SBQA) A = R[x1, . . . , xn ;σ,δ,Q,A,B] is a ring generated by the ring R
and elements x1, . . . , xn subject to the defining relations

xi r = σi (r )xi +δi (r ), for i = 1, . . . ,n, and every r ∈ R, (1.5)

xi x j −qi j x j xi =
n∑

k=1
ai j ,k xk +bi j , for all j < i . (1.6)

In the particular case when σi = idR and δi = 0, for i = 1, . . . ,n, the ring A is called the
bi-quadratic algebra (BQA) and is denoted by A = R[x1, . . . , xn ;Q,A,B]. A has PBW basis if
A = ⊕

α∈Nn
Rxα where xα = xα1

1 · · ·xαn
n .

The following result classifies (up to isomorphism) the bi-quadratic algebras on three gener-
ators of Lie type, i.e., when q1 = q2 = q3 = 1.
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PROPOSITION 1.6 ([BAV23, THEOREM 1.4]). Let A be an algebra of Lie type over an algebraically
closed field k of characteristic zero. Then the algebra A is isomorphic to one of the following
(pairwise non-isomorphic) algebras:

(1) P3 = k[x1, x2, x3], a polynomial in three indeterminates.

(2) U (sl2(k)), the universal enveloping algebra of the Lie algebra sl2(k).

(3) U (H3)), the universal enveloping algebra of the Heisenberg Lie algebra H3.

(4) U (N )/〈c −1〉 ∼= k{x, y, z}/〈[x, y] = z, [x, z] = 0,[y, z] = 1, and the algebra U (N )/〈c −1〉 is a
tensor product A1 ⊗k[x ′] of its subalgebras, the Weyl algebra A1(k) = k{y, z}/〈[y, z] = 1〉 and
the polynomial algebra [x ′] where x ′ = x + 1

2 z2.

(5) U (n2 ×kz) ∼=k{x, y, z}/〈[x, y] = y〉, and z is a central element.

(6) U (M )/〈c −1〉 ∼= k{x, y, z}/〈[x, y] = y, [x, z] = 1,[y, z] = 0〉 and the algebra U (M )/〈c −1〉 is a
skew polynomial algebra A1(k)[y ;σ] where A1(k) = k{x, z}/〈[x, z] = 1〉 is the Weyl algebra
and σ is an automorphism of A1(k) given by the rule σ(x +1) and σ(z) = z.

PROPOSITION 1.7 ([BAV23, THEOREM 2.1]). Up to isomorphism, there are only five bi-quadratic
algebras on two generators:

(1) The polynomial algebra k[x1, x2],

(2) The Weyl algebra A1(k) = k{x1, x2}/〈x1x2 −x2x1 = 1〉,
(3) The universal enveloping algebra of the Lie algebra n2 = 〈x1, x2 | [x2, x1] = x1〉, U (n2) =

k{x1, x2}/〈x2x1 −x1x2 = x1〉,
(4) The quantum plane Oq (k) = k{x1, x2}/〈x2x1 = qx1x2〉, where q ∈ k \ {0,1}, and

(5) The quantum Weyl algebra A1(q) = k{x1, x2}/〈x2x1 −qx1x2 = 1〉, where q ∈ k \ {0,1}.

1.2.5 DIFFUSION ALGEBRAS

Diffusion algebras were introduced formally by Isaev et al. [IPR01] as quadratic algebras that
appear as algebras of operators that model the stochastic flow of motion of particles in a one
dimensional discrete lattice. However, its origin can be found in Krebs and Sandow [KS97].

DEFINITION 1.7. ([IPR01, p. 5817]) The diffusion algebras type 1 are affine algebras D that
are generated by n indeterminates D1, . . . ,Dn over k that admit a linear PBW basis of ordered
monomials of the form Dk1

α1
Dk2
α2

· · ·Dkn
αn

with k j ∈ N and α1 ≻ α2 ≻ ·· · ≻ αn , and there exist
elements x1, . . . , xn ∈ k such that for all 1 ≤ i < j ≤ n, there exist λi j ∈ k∗ such that

λi j Di D j −λ j i D j Di = x j Di −xi D j . (1.7)

Notice that a diffusion algebra in one indeterminate is precisely a commutative polynomial
ring in one indeterminate. A diffusion algebra with xt = 0, for all t = 1, . . . ,n, is a multiparameter
quantum affine n−space.
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Fajardo et al. [FGL+20] studied ring-theoretical properties of a graded version of these
algebras.

DEFINITION 1.8. ([FGL+20, Section 2.4]) The diffusion algebras type 2 are affine algebras D

generated by 2n variables {D1, . . . ,Dn , x1, . . . , xn} over a field k that admit a linear PBW basis of
ordered monomials of the form B k1

α1
B k2
α2

· · ·B kn
αn

with Bαi ∈ {D1, . . . ,Dn , x1, . . . , xn}, for all i ≤ 2n,
k j ∈ N, and α1 ≻ α2 ≻ ·· · ≻ αn , such that for all 1 ≤ i < j ≤ n, there exist elements λi j ∈ k∗
satisfying the relations

λi j Di D j −λ j i D j Di = x j Di −xi D j . (1.8)

Different physical applications of algebras type 1 and 2 have been studied in the literature.
From the point of view of ring-theoretical, homological and computational properties, thesis and
papers have been published (e.g., [FGL+20, Hin05, Lev05, RS22, Twa02]). For instance, notice
that a diffusion algebra type 1 generated by n indeterminates has Gelfand-Kirillov dimension n
since because of the PBW basis, the vector subspace consisting of elements of total degree at
most l is isomorphic to that of a commutative polynomial ring in n indeterminates. Similarly,
diffusion algebras type 2 have Gelfand-Kirillov dimension 2n.

REMARK 3. About the above definitions of diffusion algebras, we have the following facts:

(i) Isaev et al. [IPR01] and Pyatov and Twarok [PT02] defined diffusion algebras type 1 by
taking k=C. Nevertheless, for the results obtained in this thesis we can take any field or
ring under certain assumptions.

(ii) Following Krebs and Sandow [KS97], the relations (1.7) are consequence of subtracting
(quadratic) operator relations of the type

Γ
αβ

γδ
DαDβ = DγXδ−XγDδ, for all γ,δ= 0,1, . . . ,n −1,

where Γαβ
γδ

∈ k, and Di ’s and X j ’s are operators of a particular vector space such that not
necessarily [Di , X j ] = 0 holds [KS97, p. 3168].

(iii) Hinchcliffe in his PhD thesis [Hin05, Definition 2.1.1] considered the following notation for
diffusion algebras. Let R be the algebra generated by n indeterminates x1, x2, . . . , xn over
C subject to relations ai j xi x j −bi j x j xi = r j xi −ri x j , whenever i < j , for some parameters
ai j ∈C \ {0}, for all i < j and bi j ,ri ∈C, for all i < j . He defined the standard monomials
to be those of the form xin

n xin−1
n−1 · · ·xi2

2 xi1
1 . R is called a diffusion algebra if it admits a PBW

basis of these standard monomials. In other words, R is a diffusion algebra if these standard

monomials are a C-vector space basis for R. If all the elements qi j := bi j

ai j
’s are non-zero,

then the diffusion algebras have a PBW basis in any order of the indeterminates [Hin05,
Remark 2.1.6].

Diffusion algebras of n generators (also called n-diffusion algebras) are constructed in such
a way that the subalgebras of three generators are also diffusion algebras. As we can see in
Proposition 1.8, diffusion algebras type 1 of three generators can be classified into 4 families,
A,B ,C , and D, and these in turn are divided into classes as shown below (notice that this
classification reflects the number of coefficients xs , s ∈ {i , j ,k}, being zero in comparison with
the expression (1.7)).
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PROPOSITION 1.8 ([PT02, P. 3270]). If D is a diffusion algebra type 1 generated by the indeter-
minates Di ,D j and Dk with i < j < k, andΛ ∈ k, then D belongs to some of the following classes
of diffusion algebras:

(1) The case of AI :

g Di D j − g D j Di = x j Di −xi D j ,

g Di Dk − g Dk Di = xk Di −xi Dk ,

g D j Dk − g Dk D j = xk D j −x j Dk ,

where g ̸= 0.

(2) The case of AI I :

gi j Di D j = x j Di −xi D j ,

gi k Di Dk = xk Di −xi Dk ,

g j k D j Dk = xk D j −x j Dk ,

where gst := gs − g t with gs ̸= g t , for all s < t , and s, t ∈ {i , j ,k}.

(3) The case of B (1):

g j Di D j − (g j −Λ)D j Di = −xi D j ,

g Di Dk − (g −Λ)Dk Di = xk Di −xi Dk ,

g j D j Dk − (g j −Λ)Dk D j = xk D j ,

where g , g j ̸= 0.

(4) The case of B (2):

gi j Di D j = −xi D j ,

gi k Di Dk −λki Dk Di = xk Di −xi Dk ,

g j k D j Dk = xk D j ,

where gi j , gi k , g j k ̸= 0.

(5) The case of B (3).

g Di D j − (g −Λ)D j Di = x j Di −xi D j ,

gk Di Dk = −xi Dk ,

(gk −Λ)D j Dk = −x j Dk ,

where g ̸= 0 and gk ̸= 0,Λ.
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(6) The case of B (4):

(gi −Λ)Di D j = x j Di ,

gi Di Dk = xk Di ,

g D j Dk − (g −Λ)Dk D j = xk D j −x j Dk ,

where g ̸= 0 and gi ̸= 0,Λ.

(7) The case of C (1):

g j Di D j − (g j −Λ)D j Di = −xi D j ,

gk Di Dk − (gk −Λ)Dk Di = −xi Dk ,

g j k D j Dk − gk j Dk D j = 0,

where g j , gk , g j ,k ̸= 0.

(8) The case of C (2):

gi j Di D j − g j i D j Di = −xi D j ,

gi k Di Dk − gki Dk Di = −xi Dk ,

D j Dk = 0,

where gi j , gi k ̸= 0.

(9) The case of D: With qst := g t s

gst
, where s, t ∈ {i , j ,k} (recall that gst ̸= 0, for s < t ), we have

Di D j −q j i D j Di = 0,

Di Dk −qki Dk Di = 0,

D j Dk −qk j Dk D j = 0.

About the relationship between diffusion algebras and skew polynomial rings, if we con-
sider the notation in Remark 3(iii), then a 3-diffusion algebra generated by the indeterminates
x1, x2, x3 is a skew polynomial ring over its 2-diffusion subalgebra generated by x2 and x3 [Hin05,
Lemma 2.2.1], where it is easy to see that a 2-diffusion algebra is a skew polynomial ring over
the polynomial subalgebra generated by x2. In general an n-diffusion algebra (generated by
the indeterminates x1, . . . , xn) is a skew polynomial ring over its (n −1)-diffusion subalgebra
generated by x2, . . . , xn [Hin05, Remark 2.2.2].

Since a diffusion algebra on n ≥ 2 generators is left Noetherian if and only if qi j ̸= 0, for all
i < j [Hin05, Proposition 2.2.5], where qi j is given in Remark 3 (3), then every Noetherian 2-
diffusion algebra is isomorphic to one of the following three types of algebra [Hin05, Proposition
3.3.1]:

• The quantum affine plane, that is, the free algebra generated by the indeterminates x1 and
x2 subject to the relation x1x2 −qx2x1 = 0, for some q ∈ C \ {0} (allowing the possibility
q = 1) (Proposition 1.7(4))
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• The quantized Weyl algebra, i.e., the free algebra generated by the indeterminates x1 and
x2 subject to the relation x1x2 −qx2x1 = 1, for some q ∈C \ {0,1} (Proposition 1.7(5)).

• The universal enveloping algebra of the 2-d soluble Lie algebra, that is, the free algebra gen-
erated by the indeterminates x1 and x2 subject to the relation x1x2−x2x1 = x1 (Proposition
1.7(3)).

Related to Proposition 1.8, Hinchcliffe [Hin05] proved the following result about classifica-
tion of diffusion algebras assuming certain conditions on the coefficients of commutation of the
indeterminates.

PROPOSITION 1.9 ([HIN05, PROPOSITION 3.1.4]). If qi j ∉ {0,1}, for all i , j , then a diffusion
algebra R is isomorphic either to multiparameter quantum affine n-space or to the C-algebra
generated by the indeterminates x1, x2, x3, . . . , xn subject to relations

x1x2 −q12x2x1 = 1, where q12 ̸= 1,

x1xi −q1i xi x1 = 0, where q1i ̸= 1,

x2xi −q−1
2i xi x2 = 0,

xi x j −qi j x j xi = 0, for all 3 ≤ i < j .

1.2.6 GENERALIZED WEYL ALGEBRAS AND DOWN-UP ALGEBRAS

Other algebraic structures that illustrate the results obtained in this thesis are some kinds of
generalized Weyl algebras and down-up algebras. We briefly present the definitions and some
relations between these algebras (see [Jor95, Jor00, JW96] for a detailed description).

Given an automorphism σ and a central element a of a ring R, Bavula [Bav92] defined
the generalized Weyl algebra R(σ, a) as the ring extension of R generated by the indetermi-
nates X − and X + subject to the relations X −X + = a, X +X − = σ(a), and, for all b ∈ R, X +b =
σ(b)X +, X −σ(b) = bX −. This family of algebras includes the classical Weyl algebras, primitive
quotients of U (sl2), and ambiskew polynomial rings. Generalized Weyl algebras have been ex-
tensively studied in the literature by various authors (see [Bav23, Jor00], and references therein).

On the other hand, the down-up algebras A(α,β,γ), where α,β,γ ∈ C, were defined by
Benkart and Roby [Ben99, BR98] as generalizations of algebras generated by a pair of operators,
precisely, the “down” and “up” operators, acting on the vector space CP for certain partially
ordered set P . More exactly, consider a partially ordered set (P,≺) and let CP be the complex
vector space with basis P . If for an element p of P , the sets {x ∈ P | x ≻ p} and {x ∈ P | x ≺ p} are
finite, then we can define the “down” operator d and the “up” operator u in EndC CP as u(p) =∑
x≻p

x and d(p) = ∑
x≺p

x, respectively (for partially ordered sets in general, one needs to complete

CP to define d and u). For any α,β,γ ∈ C, the down-up algebra is the C-algebra generated
by d and u subject to the relations d 2u =αdud +βud 2 +γd and du2 =αudu +βu2d +γu. A
partially ordered set P is called (q,r )-differential if there exist q,r ∈C such that the down and
up operators for P satisfy both relations, and α= q(q +1),β=−q3, and γ= r . From [BR98], we
know that for 0 ̸=λ ∈C, A(α,β,γ) ≃ A(α,β,λγ). This means that when γ ̸= 0, no problem if we
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assume γ= 1. For more details about the combinatorial origins of down-up algebras, see [Ben99,
Section 1].

Remarkable examples of down-up algebras include the universal enveloping algebra U (sl2(C))
of the Lie algebra sl2(C) and some of its deformations introduced by Witten [Wit90] and Woronow-
icz [Wor87]. Related to the theoretical properties of these algebras, Kirkman et al., [KMP99]
proved that a down-up algebra A(α,β,γ) is Noetherian if and only if β is non-zero. As a matter of
fact, they showed that A(α,β,γ) is a generalized Weyl algebra and that A(α,β,γ) has a filtration
for which the associated graded ring is an iterated Ore extension over C.

Following [Ben99, p. 32], if g is a 3-dimensional Lie algebra over Cwith basis x, y, [x, y] such
that [x, [x, y]] = γx and [[x, y], y] = γy , then in the universal enveloping algebra U (g) of g these
relations are given by x2 y −2x y x + y x2 = γx and x y2 −2y x y + y2x = γy . Notice that U (g) is a
homomorphic algebra of the down-up algebra A(2,−1,γ) via the mapping φ : A(2,−1,γ) →U (g),
d 7→ x,u 7→ y , and the mapping ψ : g → A(2,−1,γ), x 7→ d , y 7→ u, [x, y] 7→ du −ud , extends
by the universal property of U (g) to an algebra homomorphism ψ : U (g) → A(2,−1,γ) which
is the inverse of ψ. Hence, U (g) is isomorphic to A(2,−1,γ). It is straightforward to see that
U (sl2(C)) ∼= A(2,−1,−2). Also, for the Heisenberg Lie algebra h with basis x, y, z where [x, y] = z
and [z, x] = [z, y] = 0, U (h) ∼= A(2,−1,0).

Now, with the aim of providing an explanation of the existence of quantum groups, Wit-
ten [Wit90, Wit91] introduced a 7-parameter deformation of the universal enveloping algebra
U (sl2(k)). By definition, Witten’s deformation is a unital associative algebra over a field k (which
is algebraically closed of characteristic zero) that depends on a 7-tuple ξ= (ξ1, . . . ,ξ7) of elements
of k. This algebra, denoted by W (ξ), is generated by the indeterminates x, y, z subject to the
defining relations xz − ξ1zx = ξ2x, z y − ξ3 y z = ξ4, and y x − ξ5x y = ξ6z2 + ξ7z. From [Ben99,
Section 2], we know that a Witten’s deformation algebra W (ξ) with

ξ6 = 0, ξ5ξ7 ̸= 0, ξ1 = ξ3, and ξ2 = ξ4, (1.9)

is isomorphic to one down-up algebra. Notice that any down-up algebra A(α,β,γ) with not
both α and β equal to 0 is isomorphic to a Witten deformation algebra W (ξ) whose parameters
satisfy (1.9).

Since algebras W (ξ) are filtered, Le Bruyn [LB94, LB95] studied the algebras W (ξ) whose
associated graded algebras are Auslander regular. He determined a 3-parameter family of
deformation algebras which are said to be conformal sl2 algebras that are generated by the
indeterminates x, y, z over a field k subject to the relations given by zx −axz = x, z y −ay z = y ,
and y x − cx y = bz2 + z. In the case c ̸= 0 and b = 0, the conformal sl2 algebra with these three
defining relations is isomorphic to the down-up algebra A(α,β,γ) withα= c−1(1+ac),β=−ac−1

and γ=−c−1. Notice that if c = b = 0 and a ̸= 0, then the conformal sl2 algebra is isomorphic to
the down-up algebra A(α,β,γ) with α= a−1,β= 0, and γ=−a−1. As one can check, conformal
sl2 algebras are not Ore extensions.

Kulkarni [Kul99, Theorem 3.0.3] showed that under certain assumptions on the parameters,
a Witten deformation algebra is isomorphic to a conformal sl2(k) algebra or to an iterated Ore
extension. More exactly, if ξ1ξ3ξ5ξ2 ̸= 0 or ξ1ξ3ξ5ξ4 ̸= 0, then W (ξ) is isomorphic to one of the
following algebras: (i) a conformal sl2 algebra with generators x, y, z and relations given above



1.2. SOME FAMILIES OF EXAMPLES 17

or (ii) an iterated Ore extension whose generators satisfy

• xz − zx = x, z y − y z = ζy , y x −ηx y = 0, or

• xw = θw x, w y = κy w , y x =λx y , for parameters ζ,η,θ,κ,λ ∈ k.

Notice that iterated Ore extensions above are defined in the following way: (i) the Witten
deformation algebra is isomorphic to k[z][y,σ1][x,σ2] where σ1 is the automorphism of k[z]
defined as σ1(z) = z − ζ, with z y − y z = ζy ; σ2 is the automorphism of k[z][y,σ1] defined as
σ2(y) = η−1 y , σ2(z) = z +1, which satisfies xz − zx = x and y x −ηx y = 0. (ii) The Witten de-
formation algebra is isomorphic to k[w][y,σ1][x,σ2] where σ1 is the automorphism of k[w]
defined as σ1(w) = κ−1w with w y = κy w , and σ2 is the automorphism of k[w ][y,σ1] defined as
σ2(w) = θw , σ2(y) =λ−1 y such that w y = κy w and y x =λx y .

1.2.7 OTHER FAMILIES OF QUANTUM ALGEBRAS

In this section, we recall some examples of noncommutative rings known in the literature as
quantum algebras or quantized algebras.

Let g be a finite dimensional Lie algebra over k with basis x1, . . . , xn and U (g) its enveloping
algebra. The homogenized enveloping algebra of g is A (g) := T (g⊕kz)/〈R〉, where T (g⊕kz)
denotes the tensor algebra, z is a new indeterminate, and R is spanned by the union of sets{

z ⊗x −x ⊗ z | x ∈ g} and
{

x ⊗ y − y ⊗x − [x, y]⊗ z | x, y ∈ g}.

From [GJ04, p. 41], for q an element of k with q ̸= ±1, the quantized enveloping algebra of
sl2(k) corresponding to the choice of q is the k-algebra Uq (sl2(k)) presented by the generators

E ,F,K ,K −1 and the relations K K −1 = K −1K = 1, EF−F E = K−K −1

q−q−1 , K E = q2EK , and K F = q−2F K .
From [GJ04, Exercise 2T], we know that Uq (sl2(k)) can be expressed as an iterated skew poly-
nomial ring of the form k[E ][K ±1;σ1][F ;σ2,δ2], so that this algebra is not of automorphism
type.

The Lie-deformed Heisenberg is the free C-algebra defined by the commutation relations

q j (1+ iλ j k )pk −pk (1− iλ j k )q j = i×δ j k ,

[q j , qk ] = [p j , pk ] = 0, j ,k = 1,2,3,

where q j , p j are the position and momentum operators, and λ j k =λkδ j k , with λk real parame-
ters. If λ j k = 0, then one recovers the usual Heisenberg algebra.

With the aim of obtaining bosonic representations of the Drinfield-Jimbo quantum algebras,
Hayashi [Hay90] considered the A−

q algebra by using the free algebra U. Following Berger [Ber92,
Example 2.7.7], this k-algebra U is generated by the indeterminates ω1, . . . ,ωn ,ψ1, . . . ,ψn , and
ψ∗

1 , . . . ,ψ∗
n , subject to the relations

ψ jψi −ψiψ j =ψ∗
j ψ

∗
i −ψ∗

i ψ
∗
j =ω jωi −ωiω j =ψ∗

j ψi −ψiψ
∗
j = 0, 1 ≤ i < j ≤ n,

ω jψi −q−δi jψiω j =ψ∗
j ωi −q−δi jωiψ

∗
j = 0, 1 ≤ i , j ≤ n,

ψ∗
i ψi −q2ψiψ

∗
i = −q2ω2

i , 1 ≤ i ≤ n.
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Following Yamane [Yam89], if q ∈ C with q8 ̸= 1, the complex algebra A generated by the
indeterminates e12,e13,e23, f12, f13, f23,k1,k2, l1, l2 subject to the relations

e13e12 = q−2e12e13, f13 f12 = q−2 f12 f13,

e23e12 = q2e12e23 −qe13, f23 f12 = q2 f12 f23 −q f13,

e23e13 = q−2e13e23, f23 f13 = q−2 f13 f23,

e12 f12 = f12e12 +
k2

1 − l 2
1

q2 −q−2 , e12k1 = q−2k1e12, k1 f12 = q−2 f12k1,

e12 f13 = f13e12 +q f23k2
1 , e12k2 = qk2e12, k2 f12 = q f12k2,

e12 f23 = f23e12, e13k1 = q−1k1e13, k1 f13 = q−1 f13k1,

e13 f12 = f12e13 −q−1l 2
1 e23, e13k2 = q−1k2e13, k2 f13 = q−1 f13k2,

e13 f13 = f13e13 −
k2

1k2
2 − l 2

1 l 2
2

q2 −q−2 , e23k1 = qk1e23, k1 f23 = q f23k1,

e13 f23 = f23e13 +qk2
2e12, e23k2 = q−2k2e23, k2 f23 = q−2 f23k2,

e23 f12 = f12e23, e12l1 = q2l1e12, l1 f12 = q2 f12l1,

e23 f13 = f13e23 −q−1 f12l 2
2 , e12l2 = q−1l2e12, l2 f12 = q−1 f12l2,

e23 f23 = f23e23 +
k2

2 − l 2
2

q2 −q−2 , e13l1 = ql1e13, l1 f13 = q f13l1,

e13l2 = ql2e13, l2 f13 = q f13l2, e23l1 = q−1l1e23,

l1 f23 = q−1 f23l1, e23l2 = q2l2e23, l2 f23 = q2 f23l2,

l1k1 = k1l1, l2k1 = k1l2, k2k1 = k1k2,

l1k2 = k2l1, l2k2 = k2l2, l2l1 = l1l2,

is very important in the definition of the quantized enveloping algebra of sl3(C).

The Non-Hermitian realization of a Lie deformed defined by Jannussis et al. [JLM95] is
an important example of a non-canonical Heisenberg algebra considering the case of non-
Hermitian (i.e., ×= 1) operators A j , Bk , where the following relations are satisfied:

A j (1+ iλ j k )Bk −Bk (1− iλ j k )A j = iδ j k ,

[A j ,Bk ] = 0 ( j ̸= k),

[A j , Ak ] = [B j ,Bk ] = 0,

and,

A+
j (1+ iλ j k )B+

k −B+
k (1− iλ j k )A+

j = iδ j k ,

[A+
j ,B+

k ] = 0 ( j ̸= k),

[A+
j , A+

k ] = [B+
j ,B+

k ] = 0, (1.10)

with A j ̸= A+
j , Bk ̸= B+

k ( j ,k = 1,2,3). If the operators A j , Bk are in the form A j = f j (N j +
1)a j , Bk = a+

k fk (Nk +1), where a j , a+
j are leader operators of the usual Heisenberg-Weyl algebra,

with N j the corresponding number operator (N j = a+
j a j , 〈N j | n j 〉 = 〈n j |n j 〉), and the structure
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functions f j (N j +1) complex, then it is showed that A j and Bk are given by

A j =
√

i

1+ iλ j

( [(1− iλ j )/(1+ iλ j )]N j+1 −1

(1− iλ j )/(1+ iλ j )−1

1

N j +1

) 1
2

a j ,

Bk =
√

i

1+ iλk
a+

k

( [(1− iλk )/(1+ iλk )]Nk+1 −1

(1− iλk )/(1+ iλk )−1

1

Nk +1

) 1
2

.

Following Havliček et al. [HKP00, p. 79], the C-algebra U ′
q (so3) is generated by the indeter-

minates I1, I2, and I3, subject to the relations given by

I2I1 −q I1I2 =−q
1
2 I3, I3I1 −q−1I1I3 = q− 1

2 I2, I3I2 −q I2I3 =−q
1
2 I1,

where q is a non-zero element ofC. It is straightforward to show that U ′
q (so3) cannot be expressed

as an iterated Ore extension. By using [RS17a, Theorem 1.14], it can be shown that U ′
q (so3) is a

skew PBW extension over k, i.e., U ′
q (so3) ∼=σ(k)〈I1, I2, I3〉.

Zhedanov [Zhe91, Section 1] introduced the Askey-Wilson algebra AW (3) as the R-algebra
generated by three operators K0,K1, and K2, that satisfy the commutation relations

[K0,K1]ω = K2, [K2,K0]ω = BK0 +C1K1 +D1, and [K1,K2]ω = BK1 +C0K0 +D0,

where B ,C0,C1,D0, and D1 are elements of R that represent the structure constants of the
algebra, and the q-commutator [−,−]ω is given by [□,△]ω := eω□△− e−ω△□, where ω ∈ R.
Notice that in the limit ω→ 0, the algebra AW(3) becomes an ordinary Lie algebra with three
generators (D0 and D1 are included among the structure constants of the algebra in order to
take into account algebras of Heisenberg-Weyl type). The relations defining the algebra can be
written as

eωK0K1 −e−ωK1K0 = K2,

eωK2K0 −e−ωK0K2 = BK0 +C1K1 +D1,

eωK1K2 −e−ωK2K1 = BK1 +C0K0 +D0.

According to these relations that define the algebra, it is clear that AW(3) cannot be expressed
as an iterated Ore extension. Using techniques such as those presented in [RS17a, Theorem
1.14], it can be shown that AW(3) is a skew PBW extension of endomorphism type, that is,
AW(3) ∼=σ(R)〈K0,K1,K2〉.

With the purpose of introducing generalizations of the classical bosonic and fermionic
algebras of quantum mechanics concerning several versions of the Bose-Einstein and Fermi-
Dirac statistics, Green [Gre53] and Greenberg and Messiah [GM65] introduced by means of
generators and relations the parafermionic and parabosonic algebras. For the completeness of
the thesis, briefly we recall the definition of each one of these structures following the treatment
developed by Kanakoglou and Daskaloyannis [KD09]. Let [□,△] := □△−△□ and {□,△} :=
□△+△□.

Consider the k-vector space VF freely generated by the elements f +
i , f −

j , with i , j = 1, . . . ,n.
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If T (VF ) is the tensor algebra of VF and IF is the two-sided ideal IF generated by the elements
[[ f ξi , f ηj ], f εk ]− 1

2 (ε−η)2δ j k f ξi + 1
2 (ε−ξ)2δi k f ηj , for all values of ξ,η,ε = ±1, and i , j ,k = 1, . . . ,n,

then the parafermionic algebra in 2n generators P (n)
F (n parafermions) is the quotient algebra of

T (VF ) with the ideal IF , that is,

P (n)
F = T (VF )

〈[[ f ξi , f ηj ], f εk ]− 1
2 (ε−η)2δ j k f ξi + 1

2 (ε−ξ)2δi k f ηj | ξ,η,ε=±1, i , j ,k = 1, . . . ,n〉
.

It is well-known (e.g., [KD09, Section 18.2]) that a parafermionic algebra P (n)
F in 2n generators

is isomorphic to the universal enveloping algebra of the simple complex Lie algebra so(2n +1),
i.e., P (n)

F
∼=U (so(2n +1)).

Similarly, if VB denotes the k-vector space freely generated by the elements b+
i ,b−

j , i , j =
1, . . . ,n, T (VB ) is the tensor algebra of VB , and IB is the two-sided ideal of T (VB ) generated by the
elements [{bξi ,bηj },bεk ]− (ε−η)δ j k bξi − (ε−ξ)δi k bηj , for all values of ξ,η,ε=±1, and i , j = 1, . . . ,n,

then the parabosonic algebra P (n)
B in 2n generators (n parabosons) is defined as the quotient

algebra P (n)
B /IB , that is,

P (n)
B = T (VB )

〈[{bξi ,bηj },bεk ]− (ε−η)δ j k bξi − (ε−ξ)δi k bηj | ξ,η,ε=±1, i , j = 1, . . . ,n〉
.

The parabosonic algebra P (n)
B in 2n generators is isomorphic to the universal enveloping

algebra of the classical simple complex Lie superalgebra B(0,n), that is, P (n)
B

∼=U (B(0,n)). For
more details about parafermionic and parabosonic algebras, see [KD09, Proposition 18.2], and
references therein.

EXAMPLE 1.1. The Jordan plane J introduced by Jordan [Jor01] is the free k-algebra generated
by the indeterminates x, y subject to the relation y x = x y + x2. If we guarantee the PBW basis
condition, then it is easy to see that J ∼= σ(k[x])〈y〉. Also, homogenized enveloping algebras
(Section 1.2.7), and some classes of diffusion algebras (Section 1.2.5) are graded skew PBW
extensions. If we assume the condition of the PBW basis, then graded Clifford algebras defined
by Le Bruyn [LB95] are also examples of graded skew PBW extensions. Let us see the details.

Following Cassidy and Vancliff [CV10], let k be an algebraically closed field such that
char(k) ̸= 2 and let M1, . . . , Mn ∈Mn(k) be symmetric matrices of order n ×n with entries in
k. A graded Clifford algebra A is a k-algebra on degree-one generators x1, . . . , xn and on degree-
two generators y1, . . . , yn with defining relations given by

(i) xi x j +x j xi =
n∑

k=1
(Mk )i j yk for all i , j = 1, . . . ,n;

(ii) yk central for all k = 1, . . . ,n.

Note that the commutative polynomial ring R = k[y1, . . . , yn] is anN-graded algebra where
R0 = k,R1 = {0}, y1, . . . , yn ∈ R2, and Ri = {0}, for i ≥ 3. If we suppose that the set {xa1

1 · · ·xan
n | ai ∈

N, i = 1, . . . ,n} is a left PBW R-basis for A , then the graded Clifford algebra A is a graded skew
PBW extension over the connected algebra R, that is, A ∼= σ(R)〈x1, . . . , xn〉. Indeed, from the
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relations (i) and (ii) above, it is clear that σi = idR , δi = 0, di , j = −1 ∈ R0, for 1 ≤ i , j ≤ n, and∑n
k=1(Mk )i j yk ∈ R2, where di , j is given as in Definition 1.1 (iv). In this way, A is a bijective skew

PBW extension that satisfies both conditions of Proposition 1.4.



CHAPTER 2

HOMOGENIZED SKEW PBW EXTENSIONS

This chapter presents the first original results on skew PBW extensions obtained in the thesis,
which were published in [SRS23].

The chapter is organized as follows. In Section 2.1, we recall some elementary definitions
and properties of ring theory that are needed throughout the chapter. Section 2.2 contains
the definition of filtration on skew PBW extensions over positively filtered algebras, examples
and some properties of these noncommutative rings (Theorem 2.1 and Propositions 2.2, 2.3,
2.4, and 2.5). Next, Section 2.3 presents properties of σ-filtered skew PBW extensions over
finitely presented algebras (Propositions 2.6, 2.7, and 2.9). We prove that the homogenization
of a σ-filtered skew PBW extension over a finitely presented algebra R is a graded skew PBW
extension over the homogenization of R (Theorem 2.8). In Section 2.4, for A a σ-filtered skew
PBW extension over a ring R, we establish different homological properties for A, its associated
graded ring G(A), and the homogenization H(A) of A (Theorems 2.10 and 2.13, and Proposition
2.12). Finally, Section 2.5 presents some ideas for a possible future work concerning the ideas
developed here and topics of interest noncommutative algebraic geometry.

2.1 PRELIMINARIES

An algebra R is called Z-graded if there exists a family of subspaces {Rp }p∈Z of R such that
R = ⊕

p∈Z
Rp and Rp Rq ⊆ Rp+q , for all p, q ∈Z. A graded algebra R is called positively graded (or

N-graded) if Rp = 0, for all p < 0. AnN-graded algebra R is called connected if R0 = k. A non-zero
element r ∈ Rp is called a homogeneous element of R of degree p. A homogeneous element r of
a graded algebra R is said to be regular if it is neither a left nor a right zero divisor. For R and S
two connected graded algebras, if there exists a central element s ∈ S1 such that R ∼= S/〈s〉, then
S is called a central extension of R. If further s is regular in S, then S is called a central regular
extension of R. If R is a Z-graded algebra, R(l ) := ⊕

p∈Z
R(l )p , where R(l )p = Rp+l , for l ∈Z.

An algebra R is said to be finitely graded if the following conditions hold:

22
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• R isN-graded,

• R is connected,

• R is finitely generated as k-algebra, i.e., there are finite elements t1, . . . , tm ∈ R such that
the set

{
ti1 ti2 · · · tip | 1 ≤ i j ≤ m, p ≥ 1

}∪ {1} spans R as a k-space.

A filtration F on an algebra R is a collection of vector spaces {Fp (R)}p∈Z such that Fp (R) ⊆
Fp+1(R), Fp (R)·Fq (R) ⊆Fp+q (R), for every p, q ∈Z, and

⋃
p∈Z

Fp (R) = R . The filtration F is said

to be finite if each Fp (R) is a finite dimensional subspace. The filtration is positive if F−1(R) = 0.
In this case, we say that R is positively filtered (N-filtered). If 0 ̸= r ∈ Fp (R) \ Fp−1(R), then r
is said to have degree p, and write deg(r ) = p. A positive filtration is said to be connected if
F0(R) = k; in this case, we say that R is connected filtered. The associated graded algebra of R
is given by GF (R) := ⊕

p≥0
Fp (R)/Fp−1(R). Notice that GF (R) is connected if the filtration F is

connected. We simply write G(R) if no confusion arises.

The associated Rees algebra to R is defined as ReesF (R) := ⊕
p≥0

Fp (R)zp . The filtration

{Fp (R)}p∈Z is left (right) Zariskian and R is called a left (right) Zariski ring if F−1(R) ⊆ Rad(F0(R))
(where Rad(F0(R)) is the Jacobson radical of F0(R)), and the associated Rees ring ReesF (R) is
left (right) Noetherian. Of course, if R is graded, then R = G(R). In this case, we write Rp for
the vector space spanned by homogeneous elements of degree p. If R is a filtered algebra with
filtration {Fp (R)}p∈Z and M is an R-module, then we say that M is filtered if there exists a family
{Fp (M)}p∈Z of subspaces of M such that Fp (M) ⊆ Fp+1(M), Fp (R) ·Fq (M) ⊆ Fp+q (M), and⋃
p∈Z

Fp (M) = M . If m ∈ Mp \ Mp−1, then m is said to have degree p. For further details about

filtered and Rees rings, see Li and Van Oystaeyen [LvO96].

For R a connected graded algebra, its global homological dimension gld(R) is the projective
dimension of the trivial R-module k= R/R+, where R+ is the augmentation ideal generated by
all degree one elements. If V is a generating set for R and V n is the set of elements of degree n,
then the Gelfand-Kirillov dimension of R is defined as GKdim(R) := limn→∞logn(dimV n).

The free associative algebra L in m generators t1, . . . , tm , denoted by L := k{t1, . . . , tm}, is the
k-algebra whose underlying k-vector space is the set of all words in the indeterminates ti , that is,
expressions of the form ti1 ti2 . . . tip , for some p ≥ 1, where 1 ≤ i j ≤ m, for all j . The degree (deg)
of a word ti1 ti2 . . . tip is p, and the degree of an element f ∈ L is the maximum of the degrees
of the words in f . We include among the words a symbol 1, which we think of as the empty
word, and which has degree 0. The product of two words is concatenation, and this operation is
extended linearly to define an associative product on all elements. Notice that L is positively
graded with graduation given by L := ⊕

p≥0
Lp , where L0 = k, and Lp is spanned by all words

of degree p in the alphabet {t1, . . . , tm}, for p > 0. L is connected and therefore augmented,
where the augmentation of L is given by the natural projection ε : k{t1, . . . , tn} → L0 = k and the
augmentation ideal is given by L+ := ⊕

p>0
Lp . L is connected filtered with the standard filtration

{Fq (L)}q∈N, where Fq (L) = ⊕
p≤q

Lp .

An algebra R is finitely presented if it is a quotient k{t1, . . . , tm}/I where I is a finitely generated
two-sided ideal of k{t1, . . . , tm}, say I = 〈r1, . . . ,rs〉. k{t1, . . . , tm}/I is said to be a presentation of
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R with generators t1, . . . , tm and relations r1, . . . ,rs . Throughout this section, we assume that
{r1, . . . ,rs} is a minimal set of relations for R, the generators ti all have degree 1, and none of the
relations ri are linear. Notice that if the relations r1, . . . ,rs are all homogeneous, then R is called
a connected graded algebra. Now, by a deformation of a connected graded algebra R we mean an
algebra

U = k{t1, . . . , tm}/〈r1 + l1, . . . ,rs + ls〉, (2.1)

where l1, . . . , ls are (not necessarily homogenous) elements of k{t1, . . . , tm} such that deg(li ) <
deg(ri ), for all i . There is a standard filtration on U induced by the standard filtration on

k{t1, . . . , tm}. If g =
p∑

k=0
gk ∈ k{t1, . . . , tm}, where each non-zero gk is a homogeneous polynomial

of degree k, and deg(g1) < deg(g2) < ·· · < deg(gp ), then gp is said to be the leading homogeneous

polynomial of g , which is denoted by lh(g ). The homogenization ĝ of g is given by ĝ =
p∑

k=0
gk zp−k ,

where z is a new central indeterminate. Let R = k{t1, . . . , tm}/〈 f1, . . . , fs〉 be a finitely presented
algebra. Since R is not necessarily graded, if we homogenize every polynomial fi ∈ R, we obtain
a graded algebra known as the homogenization of R.

In the setting of noncommutative rings having PBW bases, Cassidy and Shelton [CS07,
Theorem 1.3] proved that a deformation U of the graded algebra R is a PBW deformation if
and only if the homogenization of U is a regular central extension. Other properties of central
extensions and homogenization have been used by several authors to study certain classes of
algebras (e.g. [CS07, CSW18, Gad16, SL16, WZ13]).

Of interest for us in this section, we recall the following definition.

DEFINITION 2.1. ([Gad16, Definition 2.1]). Let U = k{t1, . . . , tm}/〈 f1, . . . , fs〉 be an algebra, where
f1, . . . , fs ∈ L = k{t1, . . . , tm}. The graded algebra H (U ) = L[z]/〈 f̂1, . . . , f̂s〉 is called the homogeniza-
tion of U .

In other words, the homogenization H(R) of R = L/〈 f1, . . . , fs〉 is the algebra with n + 1
generators t1, . . . , tn , and z, subject to the homogenized relations f̂k as well as the additional
relations zti − ti z, for 1 ≤ i ≤ n.

Notice that if U := k{t1, . . . , tm}/〈 f1, . . . , fs〉 is an algebra and we consider

R := k{t1, . . . , tm}/〈lh( f1), . . . , lh(fs)〉,

then we have a natural graded surjective homomorphism φ : R →G(U ).

When φ is an isomorphism, we say that U is a Poincaré-Birkhoff-Witt (PBW) deformation of
G(U ) [Gad16, Definition 2.6]. If R is a connected graded algebra, a deformation U of R as in (2.1)
is said to be a PBW deformation if G(U ) is isomorphic to R.

DEFINITION 2.2. ([AS87, p. 171]). A connected graded algebra R is said to be Artin-Schelter
regular of dimension d if the following conditions hold:

(i) R has finite global dimension d ;

(ii) R has finite Gelfand-Kirillov dimension;
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(iii) (Gorenstein’s condition) Exti
R (k,R) = 0 if i ̸= d , and Extd

R (k,R) ∼= k.

Let I ⊆ ∑
n≥2 Ln be a finitely generated homogeneous ideal of k{t1, . . . , tm} and let R =

k{t1, . . . , tm}/I be a connected graded algebra generated in degree 1. Suppose that σ : R → R
is a graded algebra automorphism and δ : R(−1) → R is a graded σ-derivation (i.e., a degree
+1 graded σ-derivation δ of R). As we saw in Section 1.1, let B := R[x;σ,δ] be the associated
graded Ore extension of R, that is, B = ⊕

p≥0
Rxp as an R-module, and for r ∈ R, xr =σ(r )x +δ(r ).

If we consider x to have degree 1 in B , then under this grading B is a connected graded algebra
generated in degree 1.

2.2 σ-FILTERED SKEW PBW EXTENSIONS

If R is an arbitrary algebra, then it is clear that R is a filtered algebra with filtration given by
Fp (R) = R, for all p ∈ Z. In this case, we say that R has the trivial filtration. R has the trivial
positive filtration if Fp (R) = R, for all p ≥ 0 and F−1(R) = 0. If l ≥ 0, then R is connected filtered
with filtration given by

Fp (R) =


0, if p =−1;
k, if 0 ≤ p ≤ l ;
R, if p > l .

In this case, we say that R is an l -trivial connected filtered algebra. If l = 0, then we say that R is a
trivial connected filtered algebra. We assume that k has trivial connected filtration.

DEFINITION 2.3. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over a positively filtered
algebra R = ⋃

p∈N
Fp (R).

(i) For X = xα = xα1
1 · · ·xαn

n ∈ Mon(A) and c ∈ R \ {0}, tdeg(c X ) := deg(c)+deg(X ).

(ii) Let f = c1X1 +·· ·+cd Xd ∈ A \ {0}, tdeg( f ) := max{tdeg(ci Xi )}d
i=1.

(iii) Let σ : R → R be an endomorphism of algebras. If σ(Fp (R)) ⊆Fp (R), then we say that σ is
a filtered endomorphism.

(iv) Let δ : R → R be a σ-derivation. If δ(Fp (R)) ⊆ Fp+1(R), we say that δ is a filtered σ-
derivation, and if δ(Fp (R)) ⊆Fp+m(R), then we say that δ is an m-filtered σ-derivation,
for m > 1.

(v) We say that A preserves tdeg if for each x j xi as in (1.2),

tdeg(x j xi ) = tdeg(ci , j xi x j + r0 j ,i + r1 j ,i x1 +·· ·+ rn j ,i xn) = 2.

The following theorem, one of the most important results of the chapter, provides a general
filtration to the skew PBW extensions.

THEOREM 2.1. If A =σ(R)〈x1, . . . , xn〉 is a skew PBW extension over a positively filtered algebra R
such that the following conditions hold:
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(1) σi and δi are filtered, for 1 ≤ i ≤ n;

(2) A preserves tdeg,

then {Fp (A)}p∈N is a filtration on A, where

Fp (A) := {
f ∈ A | tdeg( f ) ≤ p

}∪ {0}. (2.2)

Moreover, A is a filtered R-module with the same filtration.

Proof. Notice that for each f ∈ A \ {0}, tdeg( f ) ≥ 0. By definition, 0 ∈ Fp (A). Let f , g ∈ Fp (A)
with f ̸= 0 and g ̸= 0. By Remark 1(iv), f and g have a unique representation as f = c1X1 +
·· ·+ cd Xd and g = r1Y1 + ·· ·+ re Ye , with ci ,r j ∈ R \ {0} and Xi ,Y j ∈ Mon(A) for 1 ≤ i ≤ d and
1 ≤ j ≤ e. In this way, tdeg(ci Xi ) ≤ p and tdeg(r j Y j ) ≤ p, for 1 ≤ i ≤ d , 1 ≤ j ≤ e. Thus tdeg( f +
g ) = tdeg(c1X1 + ·· · + cd Xd + r1Y1 + ·· · + re Ye ) = max{tdeg(ci Xi ), tdeg(r j Y j ) | 1 ≤ i ≤ d ,1 ≤ j ≤
e} ≤ p, and so f + g ∈ Fp (A). Now, if k ∈ k, then tdeg(k f ) = tdeg((kc1)X1 +·· ·+ (kcd )Xd ) ≤ p,
whence Fp (A) is a subspace of A, for each p ∈ N. It is clear that

⋃
p∈N

Fp (A) = A. If 0 ̸= f =
c1X1 + ·· · + cd Xd ∈ Fp (A), then tdeg(ci Xi ) ≤ p < p + 1, for 1 ≤ i ≤ d , and Fp (A) ⊆ Fp+1(A).
Let h ∈ Fp (A) ·Fq (A). Without loss of generality we assume that h = hp hq with hp ∈ Fp (A)
and hq ∈ Fq (A). Let hp = a1X1 +·· ·+ am Xm , hq = b1Y1 +·· ·+bt Yt . Then tdeg(ai Xi ) ≤ p and
tdeg(b j Y j ) ≤ q , for 1 ≤ i ≤ m, 1 ≤ j ≤ t . Hence

h = (a1X1 +·· ·+am Xm)(b1Y1 +·· ·+bt Yt ) =
m+t∑
k=1

( ∑
i+ j=k

ai Xi b j Y j

)
, (2.3)

and so tdeg(h) = max{tdeg(ai Xi b j Y j ) | 1 ≤ i ≤ m,1 ≤ j ≤ t }, but obtaining the unique represen-
tation of ai Xi b j Y j once the commutation rules have been made taking into account (iii) and
(iv) in the Definition 1.1.

Let Xi = xα1
1 · · ·xαn

n , Y j = xβ1

1 · · ·xβn
n , with αi ,βi ∈N. By [RS18a, Remark 2.7],

ai Xi b j Y j = ai (xα1
1 · · ·xαn

n b j )x
β1
1 · · ·x

βn
n

= ai xα1
1 · · ·xαn−1

n−1

( αn∑
j=1

x
αn− j
n δn (σ

j−1
n (b j ))x

j−1
n

)
x
β1
1 · · ·x

βn
n

+ ai xα1
1 · · ·xαn−2

n−2

(αn−1∑
j=1

x
αn−1− j
n−1 δn−1(σ

j−1
n−1(σαn

n (b j )))x
j−1
n−1

)
xαn

n x
β1
1 · · ·x

βn
n

+ai xα1
1 · · ·xαn−3

n−3

(αn−2∑
j=1

x
αn−2− j
n−2 δn−2(σ

j−1
n−2(σαn−1

n−1 (σαn
n (b j ))))x

j−1
n−2

)
xαn−1

n−1 xαn
n x

β1
1 · · ·x

βn
n +

·· ·+ ai xα1
1

( α2∑
j=1

x
α2− j
2 δ2(σ

j−1
2 (σα3

3 (σα4
4 (· · · (σαn

n (b j ))))))x
j−1
2

)
xα3

3 · · ·xαn−1
n−1 xαn

n x
β1
1 · · ·x

βn
n

+ aiσ
α1
1 (σα2

2 (· · · (σαn
n (b j ))))xα1

1 · · ·xαn
n x

β1
1 · · ·x

βn
n , σ0

j := idR for 1 ≤ j ≤ n.

(2.4)

Notice that as σi and δi are filtered, then σk
i (Fp (R)) ⊆σk−1

i (Fp (R)) ⊆ ·· · ⊆σi (Fp (R)) and
δk

i (Fp (R)) ⊆Fp+k (R)), and thus σk
i is filtered and δk

i is k-filtered. Furthermore, as A preserves
tdeg, then for each of the summands in (2.4), tdeg ≤ p +q (once the commutation rules have
been made taking into account (iii) and (iv) in the Definition 1.1). In this way, tdeg(h) ≤ p +q ,
and so h ∈Fp+q , whence {Fp (A)}p∈N is a filtration on A.
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On the other hand, let g ∈ Fp (R)Fq (A). Then g = r f , for some r ∈ Fp (R) and f = r1X1 +
·· · + rt X t ∈ Fq (A). So, tdeg(ri Xi ) = deg(ri )+deg(Xi ) ≤ q , for 1 ≤ i ≤ t . Thus tdeg(r (ri Xi )) =
tdeg((r ri )Xi )) = deg(r ri )+deg(Xi ) ≤ p+deg(ri )+deg(Xi ) ≤ p+q , which implies that tdeg(r f ) ≤
p +q , and therefore r f = g ∈Fp+q (A). This shows that A is a filtered R-module.

Theorem 2.1 suggests the following definition.

DEFINITION 2.4. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over a positively filtered
algebra R . We say that A is a σ-filtered skew PBW extension over R if A satisfies the conditions (1)
and (2) in Theorem 2.1.

In this case, it is understood that A has the filtration {Fp (A)}p∈N, where Fp (A) is as in (2.2).

PROPOSITION 2.2. Let A =σ(R)〈x1, . . . , xn〉 be a σ-filtered skew PBW extension over R.

(1) If {Fp (R)}p∈N is a positive filtration on R, then Fp (R) is a subspace of Fp (A).

(2) If the filtration on R is finite, then the filtration of A is finite.

Proof. Let {Fp (R)}p∈N be a connected filtration on R and {Fp (A)}p∈N the filtration on A.

(1) If 0 ̸= r ∈Fp (R), then deg(r ) ≤ p. By Definition 1.1(i), we have R ⊆ A, and r = r x0
1 · · ·x0

n is
the unique representation of r . This means that tdeg(r ) = deg(r ) ≤ p, and so r ∈Fp (A).

(2) Let B(R)
k be a finite basis for Fk (R). By Definition 1.1(ii), we have that A is a left free

R-module with basis Mon(A) = {
xα = xα1

1 · · ·xαn
n |α= (α1, . . . ,αn) ∈Nn

}
, whence Bp =(

p⋃
k=0

B(R)
k

)⋃{
X ∈ Mon(A) | deg(X ) ≤ p

}
is a finite basis for Fp (A).

PROPOSITION 2.3. If A = σ(R)〈x1, . . . , xn〉 is a σ-filtered skew PBW extension over R, then R is
connected filtered if and only if A is connected filtered.

Proof. Let A =σ(R)〈x1, . . . , xn〉 = ⋃
p∈N

Fp (A) be aσ-filtered skew PBW extension over a connected

filtered algebra R. If 0 ̸= h ∈F0(A), then h has a unique representation as h = a1X1 +·· ·+at X t ,
whence tdeg(ai Xi ) = deg(ai )+deg(Xi ) = 0, for 1 ≤ i ≤ t . Thus, deg(ai ) = 0 = deg(Xi ), Xi = 1, for
1 ≤ i ≤ t , and so h ∈ R with deg(h) = 0, that is, h ∈F0(R) = k since R is connected filtered. This
proves that F0(A) = k, i.e., A is connected filtered.

For the converse, let 0 ̸= r ∈F0(R). By Proposition 2.2(1), F0(R) ⊆F0(A) = k, whence r ∈ k,
that is, F0(R) = k.

From Proposition 1.3 we know that skew PBW extensions are filtered rings. Notice that if R
has the trivial positive filtration, then deg(r ) = 0, for all r ∈ R . Thus, deg( f ) = tdeg( f ) (tdeg( f ) as
in Definition 2.3(iv) and deg( f ) as in (1.3)), i.e., the filtration (2.2) coincides with the filtration
(1.3). More precisely,
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PROPOSITION 2.4. If A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over R with filtration as in
(1.3), then A is a σ-filtered skew PBW extension if and only if R has the trivial positive filtration.

Proof. Suppose that A = σ(R)〈x1, . . . , xn〉 is σ-filtered with the filtration given in (1.3). Then
R is positively filtered and F ′

0(A) = R. By (2.2), F ′
0(A) = {

f ∈ A | tdeg( f ) ≤ 0
}∪ {0} = R. Let

r ∈ R = F ′
0(A). Then tdeg(r ) = deg(r ) = 0 = min

{
p ∈N | r ∈Fp (R)

}
, i.e., r ∈ F0(R). Therefore,

F0(R) = R and so Fp (R) = R for p ≥ 0.

For the converse, assume that R has the trivial positive filtration, i.e., Fp (R) = R for all p ≥ 0.
Notice that σi (Fp (R)) = σi (R) ⊆ R and δi (Fp (R)) = δi (R) ⊆ R = Fp+1(R). Thus σi and δi are
filtered. Now, as x j xi = ci , j xi x j +r0 j ,i +r1 j ,i x1+·· ·+rn j ,i xn with ci , j ,r0 j ,i ,r1 j ,i , . . . ,rn j ,i ∈ R =F0(R),
then deg(ci , j ) = deg(r0 j ,i ) = deg(r1 j ,i ) = ·· · = deg(rn j ,i ) = 0, so, tdeg(ci , j xi x j + r0 j ,i + r1 j ,i x1 +·· ·+
rn j ,i xn) = 2, that is, A preserves tdeg. Thus A is a σ-filtered skew PBW extension.

REMARK 4. From Proposition 2.4 it follows that every skew PBW extension A over a ring R is
σ-filtered with the filtration given by Lezama and Reyes (Proposition 1.3). Of course, graded
skew PBW extensions are trivially σ-filtered skew PBW extensions. For some examples of skew
PBW extensions, filtrations (2.2) and (1.3) coincide. More exactly, if we consider a skew PBW
extension A over R where σi is the identity map on R and δi = 0, for each 1 ≤ i ≤ n, where
σi and δi are as in Proposition 1.1, then the skew PBW extensions are trivially σ-filtered skew
PBW extensions. For instance, if g is a finite dimensional Lie algebra over k, then its universal
enveloping algebra U (g) satisfies these conditions.

EXAMPLE 2.1. (i) The Weyl algebra k[t1, . . . , tn][x1,∂/∂t1] · · · [xn ,∂/∂tn] = An(k) (c.f. Section
1.2.1) is a skew PBW extension over the commutative polynomial ring k[t1, . . . , tn], where
xi t j = t j xi + δi j , xi x j − x j xi = 0, and δi j = 0 for i ̸= j and δi i = 1, 1 ≤ i , j ≤ n. The
endomorphisms and derivations of Proposition 1.1 are σi , the identity map of R, and
δi = δi j , respectively. If R is endowed with the standard filtration, then An(k) is aσ-filtered
skew PBW extension.

(ii) Let k be a field of characteristic zero. It is well known that An(k) ∼=U (g)/〈1−y〉, where U (g)
is the universal enveloping algebra of the (2n +1)-dimensional Heisenberg Lie algebra
with basis given by the set {t1, . . . , tn , x1, . . . , xn , y} over k. Li and Van Oystaeyen [LO92,
Example (i)] proved that U (g) is the Rees algebra of An(k) with respect to the filtration
F ′′ on An(k), where F ′′

p (An(k)) = {∑
|α|≤p fα(t1, . . . , tn)xα

}
, fα(t1, . . . , tn) ∈ k[t1, . . . , tn] and

xα ∈ Mon(An(k)). Notice that F ′′ coincides with the filtration given in (1.3). Thus, by
Proposition 2.4, An(k) ∼=U (g)/〈1− y〉 is σ-filtered with the filtration F ′′.

(iii) Let R = k{t1, t2}/(t2t1 − t1t2 − t 2
1 ) be the Jordan plane and A =σ(R)〈x1〉 be the skew PBW

extension over R, where x1t1 = t1x1 and x1t2 = t2x1 +2t1x1. According to Proposition 1.1
we have σ1(t1) = t1 and σ1(t2) = 2t1 + t2 and δ1 = 0. Notice that A is a σ-filtered skew PBW
extension over the Jordan plane R, when R is endowed with the standard filtration.

(iv) Let R = k[t ] be the polynomial ring and A = σ(R)〈x1〉 a skew PBW extension over R,
where x1t = c1t x1 + c2x1 + c3t 2 + c4t + c5, for c1,c2,c3,c4,c5 ∈ k and c1 ̸= 0. According to
Proposition 1.1, σ1(t ) = c1t +c2 and δ1(t ) = c3t 2+c4t +c5. Therefore A is a σ-filtered skew
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PBW extension over k[t ], when k[t ] is endowed with the standard filtration. Notice that
since c1 ̸= 0 then σ1 is an automorphism of k[t ].

REMARK 5. Let A be the free algebra generated by the indeterminates x, y subject to the relation
y x = x y +x3, that is, k{x, y}/〈y x −x y −x3〉. As one can check (following the ideas presented in
[AL15]), A is a skew PBW extension over k[x]. By Proposition 1.1, y x =σ(x)y +δ(x), whence σ is
the identity map of k[x] and δ(x) = x3. Notice that the standard filtration of k[x] is connected, σ
is filtered but δ is not filtered. In this way, A is not σ-filtered.

Let R be a graded algebra. A graded R-module M is free-graded on the basis
{
e j | j ∈ J

}
if M is

free as a left R-module on the basis {e j }, and also every e j is homogeneous, say of degree d( j ). A
filtered module M = ⋃

p∈N
Fp (M) over a filtered algebra R = ⋃

p∈N
Fp (R) is free-filtered with filtered

basis {e j | j ∈ J } if M is a free R-module with basis
{
e j | j ∈ J

}
, and Fp (M) = ⊕

j
Fp−p( j )(R)e j ,

where p( j ) is the degree of e j .

PROPOSITION 2.5. If A =σ(R)〈x1, . . . , xn〉 is aσ-filtered skew PBW extension, then A is free-filtered
with filtered basis Mon(A). Moreover, G(A) is free-graded over G(R).

Proof. By Definition 1.1(ii), we have that A is a free R-module with basis given by Mon(A) ={
xα = xα1

1 · · ·xαn
n |α= (α1, . . . ,αn) ∈Nn

}
. If the degree of xα is denoted by deg(xα) := |α|, the idea

is to show that
Fp (A) = ⊕

α∈Nn

Fp−|α|(R)xα. (2.5)

Let 0 ̸= f ∈Fp (A). By Remark 1(iv), f has a unique representation given by f = c1X1 +·· ·+
cd Xd , with ci ∈ R \ {0} and Xi := xα

i = x
αi

1
1 · · ·x

αi
n

n ∈ Mon(A), where tdeg(ci Xi ) = tdeg(ci xα
i
) =

deg(ci )+deg(Xi ) = deg(ci )+|αi | ≤ p, for 1 ≤ i ≤ d . Hence, deg(ci ) ≤ p −|αi |, i.e., ci ∈Fp−|αi |(R),

for 1 ≤ i ≤ d , and so f ∈Fp−|α1|(R)xα
1 +·· ·+Fp−|αd |(R)xα

d
. From the uniqueness of the repre-

sentation of f , it follows that f ∈ ⊕
α∈Nn

Fp−|α|(R)xα.

For the another inclusion, let f ∈ ⊕
α∈Nn

Fp−|α|(R)xα. Then f has a unique representation as

f = fα1 +·· ·+ fαt , where fα j ∈ Fp−|α j |(R)xα
j
, for 1 ≤ j ≤ t . Thus, fα j = r j xα

j
, with r j ∈ Fp−|α j |

and xα
j ∈ Mon(A). In this way, deg(r j ) ≤ p −|α j |, and therefore tdeg( fα j ) = deg(r j )+|α j | ≤ p,

whence tdeg( f ) ≤ p, that is, f ∈ Fp (A). This means that A is free-filtered with filtered basis
Mon(A). Finally, since A free-filtered, by [MR01, Proposition 7.6.15], we obtain that G(A) is
free-graded over G(R) on the graded basis Mon(A).

2.3 HOMOGENIZATION OF σ-FILTERED SKEW PBW EXTENSIONS

PROPOSITION 2.6. Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension over an algebra R.

(1) If R is finitely generated as algebra, then A is finitely generated as algebra.

(2) If R is finitely presented, then A is finitely presented.
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Proof. (1) If R is finitely generated as algebra, then there exists a finite set of elements
t1, . . . , ts ∈ R such that the set

{
ti1 ti2 · · · tim | 1 ≤ i j ≤ s,m ≥ 1

}∪ {1} spans R as a k-space.
By Definition 1.1(ii), Mon(A) = {xα = xα1

1 · · ·xαn
n |α= (α1, . . . ,αn) ∈Nn} is an R-basis for A.

There exists a finite set of elements t1, . . . , ts , x1, . . . , xn ∈ A such that {ti1 ti2 · · · tim xα1
1 · · ·xαn

n |
1 ≤ i j ≤ s,m ≥ 1,α1, . . . ,αn ∈N} spans A as a k-space.

(2) If R is finitely presented, then R = k{t1, . . . , tm}/I , where

I = 〈r1, . . . ,rs〉, (2.6)

is a two-sided ideal of k{t1, . . . , tm} generated by a finite set r1, . . . ,rs of polynomials in
k{t1, . . . , tm}. In this way,

A = k{t1, . . . , tm , x1, . . . , xn}/J , where

J = 〈r1, . . . ,rs , fi k , g j i | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉, (2.7)

is the two-sided ideal of k{t1, . . . , tm , x1, . . . , xn} generated by a finite set of polynomials
r1, . . . ,rs , fi k , g j i with r1, . . . ,rs as in (2.6), that is,

fi k := xi tk −σi (tk )xi −δi (tk ), (2.8)

where σi and δi are as in Proposition 1.1, i.e.,

g j i := x j xi − ci , j xi x j − (r0 j ,i + r1 j ,i x1 +·· ·+ rn j ,i xn) (2.9)

as in (1.2). Therefore, A is finitely presented.

PROPOSITION 2.7. If A is a skew PBW extension over a finitely presented algebra R such that σi ,
δi are filtered, and A preserves tdeg, then A is a connected σ-filtered algebra, and the filtration of
A is finite.

Proof. Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension over a finitely presented algebra R =
k{t1, . . . , tm}/〈r1, . . . ,rs〉. As L = k{t1, . . . , tm} is connected filtered, R inherits a connected filtration
{Fq (R)}q∈N, from the standard filtration on the free algebra k{t1, . . . , tm}. Since σi and δi are
filtered and A preserves tdeg, then A is σ-filtered. Now, as R is connected filtered, Proposition
2.3 implies that A is connected filtered. Notice that Lp is a finite dimensional subspace of L,
for all p ∈N. In this way, Fq (L) is also a finite dimensional subspace, and so Fq (R) is a finite
dimensional subspace of R, for all q ∈ N, i.e., the filtration of R is finite. Proposition 2.2(2)
guarantees that the filtration of A is finite.

THEOREM 2.8. If A =σ(R)〈x1, . . . , xn〉 is a bijective skew PBW extension over a finitely presented
algebra R such that σi , δi are filtered and A preserves tdeg, then H(A) is a graded skew PBW
extension over H(R).

Proof. Let R = k{t1, . . . , tm}/〈r1, . . . ,rs〉 = L/〈r1, . . . ,rs〉, and consider H(R) = L[z]/〈r̂1, . . . , r̂s〉 =
k{t1, . . . , tm , z}/〈r̂1, . . . , r̂s , tk z−ztk | 1 ≤ k ≤ m〉 be the homogenization of R . By Proposition 2.6(2)



2.3. HOMOGENIZATION OF σ-FILTERED SKEW PBW EXTENSIONS 31

and its proof, A is finitely presented with presentation given by

A = k{t1, . . . , tm , x1, . . . , xn}

〈r1, . . . ,rs , fi k , g j i | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉 , (2.10)

where fi k = xi tk −σi (tk )xi −δi (tk ), g j i = x j xi − ci , j xi x j − (r0 j ,i + r1 j ,i x1 +·· ·+ rn j ,i xn), with
ci , j ,r0 j ,i ,r1 j ,i , . . . ,rn j ,i ∈ R. Let Lt x := k{t1, . . . , tm , x1, . . . , xn}. Then

H(A) = Lt x [z]/〈r̂1, . . . , r̂s , f̂i k , ĝ j i | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉 (2.11)

= k{z, t1, . . . , tm , x1, . . . , xn}

〈r̂1, . . . , r̂s , f̂i k , ĝ j i , tk z − ztk , xi z − zxi | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉
. (2.12)

By Proposition 2.7, A is a connected σ-filtered algebra, whence σi and δi are filtered and A
preserves tdeg. Hence,

tdeg( fi k ) = tdeg(xi tk −σi (tk )xi −δi (tk )) = 2,

tdeg(g j i ) = tdeg(x j xi − ci , j xi x j − (r0 j ,i + r1 j ,i x1 +·· ·+ rn j ,i xn)) = 2.

Notice that
f̂i k = xi tk − (σi (tk )z1−deg(σi (tk )))xi −δi (tk )z2−deg(δi (tk )), (2.13)

ĝ j i = x j xi − ci , j xi x j − r0 j ,i z2−deg(r0 j ,i ) − (r1 j ,i z1−deg(r1 j ,i ))x1 −·· ·− (rn j ,i z1−deg(rn j ,i ))xn , (2.14)

where ci , j ∈ k\ {0}, r0 j ,i z2−deg(r0 j ,i ), r1 j ,i z1−deg(r1 j ,i ), . . . ,rn j ,i z1−deg(rn j ,i ) ∈ H(R), for 1 ≤ i , j ≤ n.

From (2.13) and (2.14), in H(A) we have the relations

xi tk = (σi (tk )z1−deg(σi (tk )))xi +δi (tk )z2−deg(δi (tk )), (2.15)

and

x j xi − ci , j xi x j = r0 j ,i z2−deg(r0 j ,i ) + (r1 j ,i z1−deg(r1 j ,i ))x1 +·· · + (rn j ,i z1−deg(rn j ,i ))xn , (2.16)

where ci , j ∈ k \ {0}, r0 j ,i z2−deg(r0 j ,i ), r1 j ,i z1−deg(r1 j ,i ), . . . ,rn j ,i z1−deg(rn j ,i ) ∈ H(R), for 1 ≤ i , j ≤ n.

Relations given in (2.15) and (2.16) correspond to Definition 1.1(iii) and (iv), respectively,
applied to H (R) and H (A). Notice that H (R) ⊆ H (A) and H (A) is an H (R)-free module with basis

Mon(A) := Mon{x1, . . . , xn} := {xα = xα1
1 · · ·xαn

n |α= (α1, . . . ,αn) ∈Nn},

whence H(A) is a skew PBW extension over H(R) in the variables x1, . . . , xn . Thus H(A) ∼=
σ(H(R))〈x1, . . . , xn〉. Notice that H(R) is a connected graded algebra, i.e., H(R) = ⊕

p≥0
H(R)p .

From (2.15) and applying Proposition 1.1 to H(A), it follows that σ̂i (tk ) = (σi (tk )z1−deg(σi (tk )));
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σ̂i (z) = z; δ̂i (tk ) = δi (tk )z2−deg(δi (tk )) and δ̂i (z) = 0, for 1 ≤ i ≤ n. Thus, σ̂i : H(R) → H(R) is a
graded ring homomorphism and δ̂i : H (R)(−1) → H (R) is a graded σ̂i -derivation for all 1 ≤ i ≤ n.
From (2.16) we have ci , j ∈ k \ {0}, r0 j ,i z2−deg(r0 j ,i ) ∈ H(R)2, r1 j ,i z1−deg(r1 j ,i ), . . . ,rn j ,i z1−deg(rn j ,i ) ∈
H (R)1, for 1 ≤ i , j ≤ n. Thus, x j xi −ci , j xi x j ∈ H (R)2+H (R)1x1+·· ·+H (R)1xn , and ci , j ∈ H (R)0 =
k. As σi is bijective then σ̂i is bijective and as ci , j is invertible, then H(A) is bijective. Therefore,
H(A) =σ(H(R))〈x1, . . . , xn〉 is a bijective skew PBW extension over the N-graded algebra H(R)
that satisfies both conditions formulated in Proposition 1.4, and so H(A) is a graded skew PBW
extension over H(R).

REMARK 6. Consider A as in Theorem 2.8. By (2.12), we know that

H(A) = k{z, t1, . . . , tm , x1, . . . , xn}

〈r̂1, . . . , r̂s , f̂i k , ĝ j i , tk z − ztk , xi z − zxi | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉
.

Let f ∈ H(A). By Theorem 2.8, H(A) =σ(H(R))〈x1, . . . , xn〉 is a graded skew PBW extension
over H(R). Remark 1(iv) shows that f has a unique representation as f = c1X1 + ·· · + cd Xd ,
with ci ∈ H(R) \ {0} and Xi ∈ Mon(A). As H(A) is graded, ci Xi is homogeneous in H(A), let us
say of degree d(i ), and ci is homogeneous in H(R). Then ci Xi = ki zβi ti1 ti2 . . . tip Xi , 0 ≤ i j ≤ m,
where ti1 ti2 . . . tip ∈ R = k{t1, . . . , tm}/〈r1, . . . ,rs〉, t0 = x0 = z0 = 1, ki ∈ k andβi +p+deg(Xi ) = d(i ).
Therefore f has a unique representation as f = k1zβ1 t11 t12 . . . t1p X1 +·· ·+kd zβd td1 td2 . . . tdp Xd .

Let A be a bijective σ-filtered skew PBW extension over a finitely presented algebra R. Let
us fix the notation: G(A) and Rees(A) denote the associated graded algebra and the associated
Rees algebra of A, respectively, regarding the filtration given in Theorem 2.1. One can always
recover A and G(A) from H(A), via A ∼= H(A)/〈z −1〉 and G(A) ∼= H(A)/〈z〉, respectively.

PROPOSITION 2.9. If A = σ(R)〈x1, . . . , xn〉 is a bijective σ-filtered skew PBW extension over a
finitely presented algebra R, then the following assertions hold:

(1) A ∼= H(A)/〈z −1〉.

(2) H(A)/〈z〉 ∼=G(A).

Proof. (1) It is clear.

(2) From (2.7) and (2.10),

A = k{t1, . . . , tm , x1, . . . , xn}/J

= k{t1, . . . , tm , x1, . . . , xn}/〈r1, . . . ,rs , fi k , g j i | 1 ≤ i , j ≤ n, 1 ≤ k ≤ m〉,

i.e., A is an algebra defined by generators and relations. Then there is a standard connected
filtration {F∗

p (A)}p∈N on A wherein F∗
p (A) = (Fp (Lt x )+ J )/J , i.e., F∗

p (A) is the span of all
words in the variables t1, . . . , tm , x1, . . . , xn of degree at most p. Notice that for σ-filtered
skew PBW extensions of a finitely presented algebra R, F∗

p (A) coincides with Fp (A) as in
(2.2), for all p ≥ 0. Therefore, H(A)/〈z〉 ∼=G(A).
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EXAMPLE 2.2. The Weyl algebra An(k) in Example 2.1 is the free associative algebra with genera-
tors t1, . . . , tn , x1, . . . , xn modulo the relations t j ti = ti t j , x j xi = xi x j , and xi t j = t j xi +δi j , where
δi j is the Kronecker delta, 1 ≤ i , j ≤ n. Adding another generator h that commutes with t1, . . . , tn ,
x1, . . . , xn and replacing δi j with δi j h2 in the above relations yields the n homogenized Weyl
algebra H (An(k)). Since An(k) is a bijective skew PBW extension over a finitely presented algebra
R = k[t1, . . . , tn], such that σi , δi are filtered and An(k) preserves tdeg, by Theorem 2.8 we have
that H(An(k)) is a graded skew PBW extension over H(R) = k[t1, . . . , tn ,h]. By Proposition 2.9,
An(k) ∼= H (An(k))/〈h−1〉 and H (An(k))/〈h〉 ∼=G(An(k)), which is just a commutative polynomial
ring in 2n variables, where G(An(k)) is the associated graded algebra of An(k) with respect to the
filtration F as in (2.2).

EXAMPLE 2.3. Redman [Red99] studied the geometry of the homogenizations of two classes of
3-dimensional skew polynomial algebras (Section 1.2.3). Following the terminology used by Bell
and Smith [BS90], the algebras Type I and Type II (these objects are called like this because these
are two classes of three dimensional skew polynomial rings that have finite dimensional simple
modules of arbitrarily large dimensions) are defined as

Type I


g1 = y z −αz y,

g2 = zx −βxz −ay −b,

g3 = x y −αy x

and Type II


g1 = y z −αz y −x −b1,

g2 = zx −αxz − y −b2,

g3 = x y −αy x − z −b3

where a,b,b1,b2,b3,α,β ∈Cwith such that αβ ̸= 0.

The homogenization H(A ) of both types of algebras with respect to a central variable t is
given by C〈x, y, z, t〉 with defining relations

y z −αz y = 0,

zx −βxz = ay t +bt 2,

x y −αy x = 0,

or


y z −αz y = xt +b1t 2,

zx −αxz = y t +b2t 2,

x y −αy x = zt +b3t 2,

and xt − t x = y t − t y = zt − t z = 0. From [BS90, Proposition 2.1.1], the standard monomials
{xi y j zk t l | i , j ,k, l ≥ 0} form a C-basis for the algebra D with the degree and dictionary ordering
being x > y > z > t , whence t is a non-zero divisor.

By Proposition 2.9, A ∼= H(A )/〈t −1〉 and H(A )/〈t〉 ∼=G(A ), where G(A ) is the associated
graded algebra of A with respect to the filtration F as in (2.2). Thus, H (A ) is a central extension
of the algebra H(A )/〈t〉, and therefore H(A ) is a central extension of G(A ). These facts were
used by [Red99] to prove that the quotient algebra H(A )/〈t〉 is a 3-dimensional Artin-Schelter
regular algebra ([Red99, Lemma 1.1]), H(A ) is 4-dimensional Artin-Schelter regular, graded
Noetherian domain, and Cohen Macaulay with Hilbert series (1− t )−4 [Red99, Proposition 1.2].
He also described the noncommutative projective geometry of these objects, and compute the
finite dimensional simple modules for the homogenization of Type I algebras in the case that α
is not a primitive root of unity. In this case, all finite dimensional simple modules are quotients
of line modules that are homogenizations of Verma modules. From Theorem 2.8, we know
that H(A ) is a graded skew PBW extension over C[t ]. In Theorem 2.10 below, we generalize
some of these properties for σ-filtered skew PBW extensions over a ring R such that H(R) is
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Auslander-regular.

EXAMPLE 2.4. Following Le Bruyn and Smith [LBSdB96], we write g = Ce ⊕C f ⊕Ch and define a
vector space isomorphism sl(2,C) → g by(

0 1
0 0

)
→ e,

(
0 0
1 0

)
→ f ,

(
1 0
0 −1

)
→ h,

and we transfer the Lie bracket on sl(2,C) to g giving [e, f ] = h, [h,e] = 2e, [h, f ] = −2 f .
The homogenization H(U (g)) of the universal enveloping algebra of g with respect to a central
variable t is C〈e, f ,h, t〉 with defining equations

e f − f e = ht , he −eh = 2et , h f − f h =−2 f t et − te = f t − t f = ht − th = 0.

By Proposition 2.9, U (g) ∼= H(U (g))/〈t −1〉 and H(U (g))/〈t〉 ∼=G(U (g)), where G(U (g)) is the
associated graded algebra of U (g) with respect to the filtration F as in (2.2). Thus, H(U (g))
is a central extension of H(U (g))/〈t〉 ∼= G(U (g)) ∼= C[e, f ,h] = S(g), the symmetric algebra on
g. These facts were used by Le Bruyn and Smith [LBS93] to deduce that H(U (g)) has Hilbert
series (1− t)−4, it is a positively graded Noetherian domain, Auslander-regular of dimension
4, satisfies the Cohen-Macaulay property, and its center is C[Ω, t ], whereΩ= h2 +2e f +2 f e is
the Casimir element. Recall that U (g) is a σ-filtered skew PBW extension (Example 2.1), and by
Theorem 2.8, H(U (g)) is a graded skew PBW extension over C[t ]. Below, using Theorem 2.10, we
obtain some of the above properties for σ-filtered skew PBW extensions over R such that H (R) is
Auslander-regular.

REMARK 7. A graded algebra R is said to be generated in degree one if R1 generates R as an algebra.
Let A be a σ-filtered skew PBW extension over a commutative polynomial ring R = k[t1, . . . , tm].
Notice that if we use the filtration given in (1.3), then H (A) and G(A) are not generated in degree
one, while if we use the standard filtration for R, then H(A) and G(A) are generated in degree
one. For the study of certain properties in an algebra such as Artin-Schelter regular, strongly
Noetherian, Auslander regular, Cohen-Macaulay, Koszul and the Jacobson radical, some authors
impose the condition that the algebra be generated in degree one (e.g. [GSZ19, Theorem 3.3] or
[ZZ09, Theorem 0.1]). For the example presented by Greenfeld et al. [GSZ19, Section 6], it was
considered that in Ore extensions of endomorphism type R[x,σ], deg(r ) = 0, for all non-zero
r ∈ R and deg(r x j ) = j , for all natural number j > 0. This fact was used to study the properties
graded nilpotent (a graded algebra is graded nilpotent if the algebra generated by any set of
homogeneous elements of the same degree is nilpotent), graded locally nilpotent (a graded
algebra is graded locally nilpotent if the algebra generated by any finite set of homogeneous
elements of the same degree is nilpotent), the Jacobson radical, and to ask some related questions
in the Ore extension R[x;σ].

2.4 OTHER HOMOLOGICAL PROPERTIES

It is well-known that a graded algebra R is right (left) Noetherian if and only if it is graded
right (left) Noetherian, which means that every graded right (left) ideal is finitely generated
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[Lev92, Proposition 1.4]. Let M be an R-module. The grade number of M is jR (M) := min{p |
Extp

R (M ,R) ̸= 0} or ∞ if no such p exists. Notice that jR (0) =∞. When R is Noetherian, jR (M) ≤
pdR (M) (where pdR (M) denotes the projective dimension of M), and if furthermore injdim(R) =
q < ∞, we have jR (M) ≤ q , for all non-zero finitely generated R-module M (see [Lev92] for
further details).

DEFINITION 2.5. ([Lev92, Definition 2.1]). Let R be a Noetherian ring.

(i) An R-module M satisfies the Auslander-condition if for all p ≥ 0, jR (N ) ≥ p, for every
R-submodule N of Extp

R (M ,R).

(ii) R is called Auslander-Gorenstein of dimension q if injdim(R) = q <∞, and every left or
right finitely generated R-module satisfies the Auslander-condition.

(iii) R is said to be Auslander-regular of dimension q if gld(R) = q <∞, and every left or right
finitely generated R-module satisfies the Auslander-condition.

THEOREM 2.10. If A is a σ-filtered skew PBW extension over a ring R such that H (R) is Auslander-
regular, then the following assertions hold:

(1) H(A) is graded Noetherian.

(2) H(A) is a domain.

(3) A is Noetherian.

(4) A is a PBW deformation of G(A).

(5) G(A) is Noetherian.

(6) Rees(A) ∼= H(A).

(7) A is Zariski.

(8) H(A) is Artin-Schelter regular.

(9) G(A) is Artin-Schelter regular.

Proof. From Theorem 2.8, we know that H(A) is a graded bijective skew PBW extension over
H(R).

(1) Since H(R) is Noetherian and graded, by [Lev92, Proposition 1.4] H(R) is graded Noethe-
rian. From [SLR17, Proposition 2.7], we obtain that H(A) is graded Noetherian.

(2) By [LV17, Theorem 2.9], we know that H(A) is Auslander-regular. Since H(R) is connected
graded, by [Sufrm[o]–7a, Remark 2.10] we get that H (A) is connected graded, and thus the
assertion follows from [Lev92, Theorem 4.8].

(3) Part (1) above shows that H(A) is Noetherian, whence A ∼= H(A)/〈z −1〉 is Noetherian.
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(4) Notice that A is a deformation of G(A). By (2), z is regular in H(A), and since G(A) ∼=
H(A)/〈z〉, then H(A) is a central regular extension of G(A). By [CS07, Theorem 1.3], A is a
PBW deformation of G(A).

(5) Since H(A) is connected graded and z ∈ H(A)1 is central regular, then by [Lev92, Proposi-
tion 3.5] we have that H(A) is Noetherian if and only if H(A)/〈z〉 ∼=G(A) is Noetherian.

(6) It follows from (4) and [WZ13, Proposition 2.6].

(7) From (1) and (6), Rees(A) is Noetherian. As A is connected filtered, then A is Zariski.

(8) Since H(R) is finitely presented connected Auslander-regular and H(A) is a graded skew
PBW extension over H(R), then by [SLR17, Proposition 3.5 (iii)] we have that H(A) is
Artin-Schelter regular.

(9) As H(A) is a connected graded, by (2) H(A) is a domain, and by (8) H(A) is Artin-Schelter
regular. From [RZ12, Corollary 1.2], G(A) ∼= H(A)/〈z〉 is Artin-Schelter regular.

Example 2.1 showed that the Weyl algebra An(k) is a σ-filtered skew PBW extension over
R = k[t1, . . . , tn], and by Example 2.2, H(R) = k[t1, . . . , tn , z], which is Auslander-regular. Hence,
Theorem 2.10 guarantees that An(k) is Noetherian, Zariski, and a PBW deformation of G(An(k)),
H (An(k)) is a domain graded Noetherian and Artin-Schelter regular, G(An(k)) is Noetherian and
Artin-Schelter regular, and Rees(An(k)) ∼= H(An(k)).

From Proposition 2.9 and Theorem 2.10, we immediately get the following result.

COROLLARY 2.11. If A is a σ-filtered skew PBW extension over a ring R = k〈t1, . . . , tm〉/〈r1, . . . ,rs〉
such that σi is graded, then G(A) is a graded skew PBW extension over G(R) in n variables
y1, . . . , yn given by

yi tk =σi (tk )yi + ri ,

y j yi = ci , j yi y j + r0 j ,i + r1 j ,i y1 +·· ·+ rn j ,i yn ,
(2.17)

where

ri =
{
δi (tk ), if deg(δi (tk )) = 2,
0, otherwise,

r0 j ,i =
{

r0 j ,i , if deg(r0 j ,i ) = 2,
0, otherwise,

rl j ,i =
{

rl j ,i , if deg(rl j ,i ) = 1,

0, otherwise,

(2.18)

for 1 ≤ l ≤ n, with ci , j ,r0 j ,i ,r1 j ,i , . . . ,rn j ,i , 1 ≤ i , j ≤ n, the constants that define A as in (1.2), and
tk ∈G(R) is the coset of tk .

PROPOSITION 2.12. PBW deformations of Artin-Schelter regular algebras of dimension two are
σ-filtered skew PBW extensions.
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Proof. By [Gad16, Corollary 2.13], PBW deformations of Artin-Schelter regular algebras of di-
mension two are isomorphic to one of the following algebras: k{x, y}/〈x y −q y x〉, k{x, y}/〈x y −
q y x+1〉, k{x, y}/〈y x−x y+y〉, k{x, y}/〈y x−x y+y2〉, k{x, y}/〈y x−x y+y2+1〉, where q ∈ k\{0}.
Notice that the first three algebras are skew PBW extensions over k and the last two are skew
PBW extensions over k[y]. As one can check, every algebra satisfies the conditions (1) and (2)
established in Theorem 2.1.

EXAMPLE 2.5. (1) Andruskiewitsch et al. [ADP22] studied the Hopf algebra D which was called
the double of the Jordan plane. The authors considered the field k to be characteristic
zero and algebraically closed. Following [ADP22, Definition 2.1], the Hopf algebra D is
presented by generators u, v,ζ, g±1, x, y and relations g±1g±1 = 1, ζg = gζ, g x = xg ,
g y = y g + xg , ζy = yζ+ y , ζx = xζ+ x, ug = g u, v g = g v + g u, vζ = ζv + v ,
uζ = ζu + u, y x = x y − 1

2 x2, vu = uv − 1
2 u2, ux = xu, v x = xv + (1 − g ) + xu,

uy = yu + (1− g ), v y = y v − gζ+ yu. According to Andruskiewitsch et al. [ADP22,
Lemma 4.1], the algebra D can be described as the iterated Ore extension

D ∼= k[g±1, x,u][y ;σ1,δ1][ζ;σ2,δ2][v ;σ3,δ3],

withσ1 the identity automorphism ofk[g±1, x,u], andδ1 is theσ1-derivation ofk[g±1, x,u]
given by δ1(x) = −1

2 x2, δ1(u) = g − 1, and δ1(g ) = −xg ; σ2 is the identity automor-
phism of k[g±1, x,u][y ;σ1,δ1], and δ2 is the σ2-derivation of k[g±1, x,u][y ;σ1,δ1] de-
fined by δ2(x) = x, δ2(u) =−u, δ2(g ) = 0, and δ2(y) = y . Finally, σ3 and δ3 are the auto-
morphism and the σ3-derivation of k[g±1, x,u][y ;σ1,δ1][ζ;σ2,δ2], respectively, given by
σ3(x) = x, σ3(u) = u, σ3(g ) = g , σ3(y) = y and σ3(ζ) = ζ+1, δ3(x) = 1− g + xu, δ3(u) =
−1

2 u2, δ3(g ) = g u, δ3(y) = yu − gζ and δ3(ζ) = 0.

Notice that k[g±1, x,u][y ;σ1,δ1][ζ;σ2,δ2][v ;σ3,δ3] satisfies the four conditions estab-
lished in [FGL+20, Example 2.2 of Part I], which means that D is a bijective skew PBW
extension over k[g±1, x,u], that is,

D ∼= k[g±1, x,u][y ;σ1,δ1][ζ;σ2,δ2] ∼=σ(k[g±1, x,u])〈y,ζ, v〉.

It is clear that σi and δi restricted to k[g±1, x,u] are the endomorphism and derivation as
in Proposition 1.1, whence D satisfies the conditions of Theorem 2.1, and therefore D is a
σ-filtered skew PBW extension.

(2) Semi-graded rings were defined by Lezama and Latorre [LL17] in the following way: a
ring R is called semi-graded (SG) if there exists a collection {Rp }p∈N of subgroups Rp of the
additive group R+ such that the following conditions hold:

• R = ⊕
p∈N

Rp ;

• For every p, q ∈N, Rp Rq ⊆ R0 ⊕R1 ⊕·· ·⊕Rp+q ;

• 1 ∈ R0.

Notice that R has a standardN-filtration given by Fp (R) := R0⊕·· ·⊕Rp [LL17, Proposition
2.6], and N-graded rings and skew PBW extensions are examples of semi-graded rings
([LL17, Proposition 2.7]). In the case of a skew PBW extension A over a ring R , they assumed
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A0 = R, i.e., R has the trivial positive filtration. Notice that under these conditions, skew
PBW extensions over an algebra R with the standardN-filtration are σ-filtered. In this way,
if R does not have the trivial positive filtration, then A is not generally σ-filtered, as can be
seen in Remark 5.

Recently, Lezama [Lez21, Definition 4.3] introduced the notion of semi-graded Artin-
Schelter regular algebra, and proved under certain assumptions that skew PBW extensions
are semi-graded Artin-Schelter regular [Lez21, Theorem 4.14]. With this purpose, he
showed that A is a connected semi-graded algebra with semi-graduation A0 = k, and Ap

is the k-subspace generated by Rq xα such that q +|α| = p, for p ≥ 1. In this regard, notice
that A with the standard N-filtration given by this semi-graduation is σ-filtered [LL17,
Proposition 2.6].

(3) Zhang and Zhang [ZZ08] defined double Ore extensions as a generalization of Ore exten-
sions. If R is an algebra, and B is another algebra containing R as a subring, then B is a
right double Ore extension of R if the following conditions hold:

• B is generated by R and two new variables x1 and x2.

• The variables x1 and x2 satisfy the relation

x2x1 = p12x1x2 +p11x2
1 +τ1x1 +τ2x2 +τ0,

where p12, p11 ∈ k and τ1,τ2,τ0 ∈ R.

• As a left R-module, B = ∑
α1,α2≥0

Rxα1
1 xα2

2 and it is a left free R-module with basis the

set {xα1
1 xα2

2 |α1 ≥ 0,α2 ≥ 0}.

• x1R +x2R ⊆ Rx1 +Rx2 +R.

Left double Ore extensions are defined similarly. B is a double Ore extension if it is left and
right double Ore extension of R with the same generating set {x1, x2} [ZZ09, Definition 1.3].
B is a graded right (left) double Ore extension if all relations of B are homogeneous with
assignment deg(x1) = deg(x2) = 1. They studied the property of being Artin-Schelter for
these extensions [ZZ08, Theorem 3.3].

Later, Zhang and Zhang [ZZ09] constructed 26 families of Artin-Schelter regular algebras
of global dimension four using double Ore extensions. Briefly, to prove that a connected
graded double Ore extension of an Artin-Schelter regular algebra is Artin-Schelter regular,
Zhang and Zhang needed to pass the Artin-Schelter regularity from the trimmed double
extension RP [x1, x2;σ] to RP [x1, x2;σ,δ,τ] (details about the notation used for double Ore
extensions can be seen in Zhang and Zhang [ZZ08]). For this purpose they defined a
new grading and with this a filtration: let A = RP [x1, x2;σ,δ,τ] be a graded (or ungraded)
double extension of R with d1 = deg(x1) and d2 = deg(x2) (or deg(x1) = deg(x2) = 0), the
new defined graduation is deg′(x1) = d1 +1 and deg′(x2) = d2 +1 and deg′(r ) = deg(r ) for
all r ∈ R. Using this grading they defined a filtration of A by Fp (A) = {

∑
rn1,n2 xn1

1 xn2
2 ∈ A |

deg′(rn1,n2 )+n1 deg′(x1)+n2 deg′(x2) ≤ m}. F = {Fp (A)}p∈Z is an N-filtration such that
the associated graded ring GF (A) is isomorphic to RP [x1, x2;σ]; there is a central element
t of degree 1 such that ReesF (A)/(t ) = RP [x1, x2;σ] as graded rings and ReesF (A)/(t −1) =
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RP [x1, x2;σ,δ,τ] as ungraded rings; also, if A is connected graded, then so are GF (A) and
ReesF (A), where ReesF (A) is the Rees ring associated to this filtration [ZZ08, Lemma 3.4].

Related with this work, Gómez and Suárez showed that for R = ⊕
m≥0

Rm anN-graded algebra

and A = RP [x1, x2;σ,δ,τ] be a graded right double Ore extension of R , if P = {p12,0}, p12 ̸= 0

and σ :=
(
σ11 0

0 σ22

)
, where σ11, σ22 are automorphism of R, then A is a graded skew PBW

extension over R [GS20, Theorem 3.5]. As one can check, the previous filtration on A
coincides with the filtration given in (2.2), and so A = RP [x1, x2;σ,δ,τ] is a σ-filtered skew
PBW extension.

For the last theorem of the chapter, recall that the enveloping algebra of an algebra R is the
tensor product Re = R ⊗Rop , where Rop is the opposite algebra of R . If M is an R-bimodule, and
ν, µ : R → R are two automorphisms, then the skew R-bimodule νMµ is equal to M as a vector
space with a ·m ·b := ν(a) ·m ·µ(b). When ν is the identity, we omit it. M is a left Re -module
with product given by (a ⊗b) ·m = a ·m ·b = ν(a) ·m ·µ(b). In particular, for R and Re , we have
the structure of left Re -module given by (a ⊗b) · x = ν(a)xµ(b), (a ⊗b) · (x ⊗ y) = a · (x ⊗ y) ·b =
ν(a) · (x ⊗ y) ·µ(b) = ν(a)x ⊗ yµ(b).

An algebra R is said to be skew Calabi-Yau of dimension d if it has a finite resolution by
finitely generated projective bimodules, and there exists an algebra automorphism ν of R such
that

Exti
Re (R,Re ) ∼=

{
0, i ̸= d ,
Rν, i = d .

as Re -modules. If ν is the identity, then R is said to be Calabi-Yau. Enveloping algebras and
skew Calabi-Yau algebras related to skew PBW extensions were studied in [RS17b].

THEOREM 2.13. If A is a σ-filtered skew PBW extension over a ring R such that H (R) is Auslander-
regular, then A is skew Calabi-Yau.

Proof. From Theorem 2.10(4), (5) and (9), we know that A is a PBW deformation of a Noetherian
Artin-Schelter regular algebra G(A). The assertion follows from [Gad16, Proposition 2.15].

EXAMPLE 2.6. Let R = k[t1, . . . , tm],m ≥ 0. Since H(R) = R[z] is Auslander-regular and a com-
mutative polynomial ring in m +1 variables over k, then the examples of σ-filtered skew PBW
extensions over R presented in [FGL+20, GL11, LR14, Sufrm[o]–7a] are skew Calabi-Yau. In par-
ticular, every one of the algebras presented in the proof of Proposition 2.12 is skew Calabi-Yau.

2.5 FUTURE WORK

Since Redman [Red99] and Chirvasitu et al. [CSW18] studied the noncommutative geometry of
the homogenization of two classes of three dimensional skew polynomial algebras, and of the
homogenization of the universal enveloping algebra U (sl(2,C)), respectively, keeping in mind
that these algebras are particular examples of skew PBW extensions (Examples 2.3 and 2.4), we
can think of establishing several properties of noncommutative geometry of the homogenization
of skew PBW extensions. It is a natural task to investigate if the treatment developed by Redman
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[Red99] and Chirvasitu et al. [CSW18] can be extended to the more general setting of these
extensions.



CHAPTER 3

SUBALGEBRA ANALOGUES OF GRÖBNER BASES FOR IDEALS

BASES

In this chapter, we present a first approach toward a theory of SAGBI bases for skew PBW
extensions over k-algebras.

With this aim and to motivate the study of SAGBI bases, in Section 3.1 we consider some
key facts about these bases in the commutative setting of the polynomial ring k[x1, . . . , xn]. We
follow the treatment founded in Kapur and Madlener [KM89], and Robbiano et al. [RS90, KR05].
We also consider the problem of bases under composition initiated by Hong [Hon98] in the case
of Gröbner bases, and developed by Nordbeck in his PhD Thesis [Nor01a] (see also [Nor02]) for
SAGBI bases of subalgebras of k[x1, . . . , xn]. This review of the commutative case will allow us to
illustrate some of the main difficulties that arise when computing SAGBI bases (see Remarks 8
and 13, and Problem 3.1).

Next, Section 3.2 contains the theory of SAGBI bases for free algebras developed by Nordbeck
[Nor01a] (see also [Nor98]). Since this theory is very important for what we want to do on these
bases for skew PBW extensions in Section 3.4, we reconstruct in detail the treatment performed
by him. As in the commutative case, we review the problem of SAGBI bases under composition
presented in [Nor01b, Nor02].

In Section 3.3, we consider the approach to SAGBI bases developed by Khan et al. [KKB19],
which follows Nordbeck’s ideas described in Section 3.2, for the class of G-algebras introduced by
Apel [Ape88]. Our interest in these algebras is due to their similarities with skew PBW extensions
[LR14, Remark 3.1(ii)].

Having in mind the developments and results formulated in Sections 3.1, 3.2, and 3.3, in
Section 3.4 we present our proposal for a theory of SAGBI bases for skew PBW extensions over
k-algebras. We present the notion of reduction which is necessary in the characterization of
SAGBI bases, and then establish an algorithm to find the SAGBI normal form of an element.
Then, we define what a SAGBI basis is, and formulate a criterion to determine when a subset of
a skew PBW extension over a field is a SAGBI basis. In addition, we establish an algorithm to find
a SAGBI basis from a subset contained in a subalgebra of a skew PBW extension. We illustrate

41
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our results with examples concerning algebras appearing in Lie theory, and noncommutative
algebraic geometry. We also investigate the problem of polynomial composition for SAGBI bases
of subalgebras of skew PBW extensions. Our important results of this chapter are formulated in
Algorithm 2, Theorem 3.20, Propositions 3.22 and 3.25, and Theorem 3.26.

Finally, Section 3.5 presents some ideas for a future work.

3.1 COMMUTATIVE SETTING

Gordan [Gor00] introduced the idea of Gröbner bases in 1900 while Gröbner bases for commuta-
tive polynomial rings over a field k were defined and developed by Buchberger in his PhD Thesis
[Buc65] under the direction of Gröbner. In this commutative setting, Shannon and Sweedler
[SS88] solved the membership problem in subalgebras transforming it into a problem of ideals.
Almost at the same time, Kapur and Madlener [KM89] presented a procedure to compute a
canonical basis for a finitely presented k-subalgebra. In that paper they move away a bit from
what was worked by Shannon and Sweedler [SS88], generalizing the theory of the Buchberger’s
algorithm using the term rewriting method. Nevertheless, this direct method has a disadvan-
tage because for some orders on indeterminates and terms, the completion algorithm may
not terminate and thus generate an infinite canonical basis, something that does not happen
in the approach of Shannon and Sweedler. Later, Robbiano and Sweedler [RS90] studied the
analogue of Gröbner bases for subalgebras of commutative polynomial rings, and used for
the first time the term SAGBI (Subalgebras Analogue to Gröbner Basis for Ideals). They showed
explicitly that the SAGBI theory is not simply a formal translation of Buchberger’s theory from
ideals to subalgebras. As a matter of fact, the theory of Gröbner bases of ideals of a subalgebra in
a polynomial ring was developed by Miller [Mil98], while Lezama and Marín [LM09] used SAGBI
bases to determine the equality of subalgebras based on the the ideas presented by Kreuzer and
Robbiano [KR05].

In this section we present briefly the treatment on SAGBI bases of the commutative polyno-
mial ring k [x1, . . . , xn] following [KR05], where they consolidated the theory of the SAGBI bases,
gave a criterion for SAGBI bases and the algorithm for their construction, and proved that finite
SAGBI bases exist for some classes of subalgebras.

3.1.1 BASIC DEFINITIONS

For the set of products of powers of the indeterminates x1, . . . , xn ofk[x1, . . . , xn], which is denoted
by Mon(k[x1, . . . , xn]), and whose elements are called monomials (at least for the moment), recall
that a monomial ordering ≺ on k[x1, . . . , xn] is a relation on Zn

≥0, or equivalently, a relation on
the set of monomials xα,α ∈Zn

≥0, satisfying:

(i) ≺ is a total (or linear) ordering on Zn
≥0.

(ii) If α≺β and γ ∈Zn
≥0, then α+γ≺β+γ.

(iii) ≺ is a well-ordering on Zn
≥0. This means that every nonempty subset of Zn

≥0 has a smallest
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element under ≺. In other words, if C ⊂ Zn
≥0 is nonempty, then there is α ∈C such that

α≺β for every β ̸=α in C .

Given a monomial ordering ≺ on k[x1, . . . , xn], α ≺ β can be written as β ≻ α. We say that
α⪯βwhen either α≺β or α=β. More details about monomial orders can be found in excellent
texts such as [AL94, BW93, CLO15, KR05]1.

Notice that an order relation ≺ onZn
≥0 is a well-ordering if and only if every strictly decreasing

sequence in Zn
≥0, α(1) ≻α(2) ≻α(3) ≻ eventually terminates [CLO15, Lemma 2].

Let us see some classical examples of monomial orderings (for more details, see [CLO15,
Chapter 2, Section 2]).

EXAMPLES 3.1.

(i) (Lexicographic Order) Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) be in Zn
≥0. We say α ≻ β

if the leftmost non-zero entry of the vector difference α−β ∈ Zn
≥0 is positive. We will write

xα ≻lex xβ if α≻lex β.

The indeterminates x1, . . . , xn are ordered in the usual way by the lex ordering

(1,0, . . . ,0) ≻lex (0,1,0, . . . ,0) ≻lex · · · ≻lex (0, . . . ,0,1),

so x1 ≻lex x2 ≻lex · · · ≻lex xn .

If we work with polynomials in two or three indeterminates, we will write x, y, z rather than
x1, x2, x3.

(ii) (Degree Lex Order) Let α,β ∈Zn
n≥0. We say α≻deglex β if

|α| =
n∑

i=1
αi > |β| =

n∑
i=1

βi , or |α| = |β| and α≻lex β.

We will write xα ≻deglex xβ if α≻deglex β.

(iii) (Degree Reverse Lex Order) Let α,β ∈Zn
n≥0. We say α≻degrevlex β if

|α| =
n∑

i=1
αi > |β| =

n∑
i=1

βi , or

|α| = |β| and the rightmost non−zero entry of α−β ∈Zn is negative.

We will write xα ≻degrevlex xβ if α≻degrevlex β.

Given a non-zero polynomial f =
m∑

i=1
ci x

α1i
1 · · ·x

αin
n ∈ k[x1, . . . , xn], the set

{
x
α1i
1 · · ·x

αin
n | ci ̸= 0

}
is called the support of f and is denoted by Supp( f ). Throughout this section, for an ordering
≺ on the set Zn

≥0, which we can identify with the set of products of powers of indeterminates
of k[x1, . . . , xn], Mon(k[x1, . . . , xn]), the leading monomial of f , denoted by lm( f ), is the largest

1We have to be a little careful because in some texts and papers considered in this chapter, monomial orderings
are called term orderings, and vice versa. We will clarify the meaning of monomial and term where appropriate.
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element (with respect to ≺), lc( f ) denotes the leading coefficient of f , and the leading term of f
under ≺ is given by lt( f ) = lc( f )lm( f ). For F ⊆ k[x1, . . . , xn], lt(F ) := {

lt( f ) | f ∈ F
}
.

Throughout this section, S will denote a non-zero finitely generated k-subalgebra of the
polynomial ring k [x1, . . . , xn]. Thus, there are polynomials f1, . . . , fs ∈ k[x1, . . . , xn] such that
S = k[ f1, . . . , fs]. Equivalently, the ring S is the image of the k-algebra homomorphism ϕ :
k[y1, . . . , ys] → k[x1, . . . , xn] defined by ϕ(yi ) = fi .

DEFINITION 3.1 ([KR05, DEFINITION 6.6.2]). A set F ⊆ S is called a SAGBI basis of S if

k
[
lt( f ) | f ∈ S \ {0}

]= k [lt(F )] .

Notice that every SAGBI basis of S is a system of k-algebra generators of S [KR05, Proposition
6.6.3].

Remark 8 shows that there exist subalgebras of k[x1, . . . , xn] which have no finite SAGBI basis
at all (more examples that illustrates this situation have been recently presented by Kuroda
[Kur23]).

REMARK 8 ([KR05, EXAMPLE 6.6.7]). Let S = k[ f1, f2, f3] ⊆ k[x1, x2] where f1 = x1+x2, f2 = x1x2,
and f3 = x1x2

2 . Then S has no finite SAGBI basis, no matter which term ordering ≺ we use.

From [KR05, Proposition 6.6.11], we know that for non-zero elements f1, . . . , fs ∈ k [x1, . . . , xn],
if S = k

[
f1, . . . , fs

]
and the leading terms lt

(
f1

)
, . . . , lt

(
fs

)
are algebraically independent, then{

f1, . . . , fs
}

is a SAGBI basis of S.

3.1.2 REDUCTION

With the aim of computing SAGBI bases (Propositions 3.1 and 3.2 below), we recall the following
reduction process.

REDUCTION 3.1 ([KR05, DEFINITION 6.6.16]). Let F be a non-empty subset of k [x1, . . . , xn].

(i) Consider h1 ∈ k [x1, . . . , xn], and suppose there exist a constant k ∈ k, polynomials f1, . . . , fs

belonging to F , and a monomial t ∈ k
[

y1, . . . , ys
]

such that the polynomial h2 = h1 −
kt

(
f1, . . . , fs

)
satisfies t

(
lt

(
f1

)
, . . . , lt

(
fs

)) ∉ Supp(h2). Then we say that h1 subalgebra re-

duces to h2 in one step and we write h1
F−→ss h2. The passage from h1 to h2 is called a

subalgebra reduction step.

(ii) The transitive closure of the relations
F−→ss is called the subalgebra rewrite relation defined

by F and is denoted by
F−→s.

(iii) An element h1 ∈ k [x1, . . . , xn] with the property that there exists no subalgebra reduction

step h1
F−→ss h2 for which h2 ̸= h1 is called irreducible with respect to

F−→s.

(iv) The equivalence relation defined by
F−→s will be denoted by

F←→s.
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For f1, . . . , fs ∈ k [x1, . . . , xn] and F = (
f1, . . . , fs

)
, the ideal{

f ∈ k[
y1, . . . , ys

] | f
(

f1, . . . , fs
)= 0

}
is called the ideal of algebraic relations of F and is denoted by Rel(F ) or Rel

(
f1, . . . , fs

)
[KR05,

Definition 6.6.20].

3.1.3 SAGBI BASES CHARACTERIZATION

PROPOSITION 3.1 ([KR05, THEOREM 6.6.25]). Let F ⊆ k [x1, . . . , xn] \ {0} and S = k〈F 〉k[x1,...,xn ]

denotes the subalgebra of k [x1, . . . , xn] generated by F in k [x1, . . . , xn]. Then the following condi-
tions are equivalent:

( A1) For each f ∈ S \ {0}, there are f1, . . . , fs ∈ F and h ∈ k[
y1, . . . , ys

]
with f = h

(
f1, . . . , fs

)
and

lt( f ) ⪰ lt
(
t
(

f1, . . . , fs
))

for all t ∈ Supp(h).

( A2) For each f ∈ S\{0}, there are f1, . . . , fs ∈ F and h ∈ k
[

y1, . . . , ys
]

with f = h
(

f1, . . . , fs
)

and
lt( f ) = max

{
lt

(
t
(

f1, . . . , fs
)) | t ∈ Supp(h)

}
.

( B1) The set F is a SAGBI basis of S. By definition, this means that we have k [lt(S)] = k [lt(F )].

( B2) The monoid
{
lt( f ) | f ∈ S\{0}

}
is generated by

{
lt(g ) | g ∈ F

}
.

(C1) For an element f ∈ k [x1, . . . , xn], we have f
F−→ 0 if and only if f ∈ S.

(C2) If f ∈ S is irreducible with respect to
F−→ then we have f = 0.

(C3) For every element f1 ∈ k [x1, . . . , xn], there is a unique element f2 ∈ k [x1, . . . , xn] for which

f1
F−→ f2 and f2 is irreducible with respect to

F−→ s.

DEFINITION 3.2 ([KR05, DEFINITION 6.6.26]). Let G = {g1, . . . , gs} ⊆ k[x1, . . . , xn] \ {0} be monic
polynomials, and let b := t1− t2 be a pure binomial in Rel(lt(G)), where t1, t2 ∈ Mon(k[x1, . . . , xn]).
Then the polynomial b(g1, . . . , gs) ∈ k[x1, . . . , xn] is called the T-polynomial of b.

“T -polynomials will be for the computation of SAGBI bases what S-polynomials are for
the computation of Gröbner bases. The letter “T ” reminds us of the “toric origin” of these
polynomials and also of the fact that the pair (log(t1), log(t2)) was called a tête-a-tête in the
pioneering paper [RS90].” [KR05, p. 494].

Proposition 3.2 is known as The SAGBI Basis Criterion.

PROPOSITION 3.2 ([KR05, PROPOSITION 6.6.28]). Let F be a non-zero set of monic polynomials
of k [x1, . . . , xn], and S := k〈F 〉k[x1,...,xn ]. Then the following conditions are equivalent:

(1) The set F is a SAGBI basis of S.

(2) For every tuple F = (
f1, . . . , fs

)
of elements of F , there exists a set B of pure binomials in

k
[

y1, . . . , ys
]

which generates the ideal Rel(lt(F )) and which satisfies b
(

f1, . . . , fs
) F−→ 0 for

all b ∈ B.
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Proposition 3.3 is an important result for the SAGBI basis procedure formulated in Proposi-
tion 3.4. Next, we establish some notation and preliminary definitions.

Given further indeterminates y1, . . . , ym , let L := k
[

y1, . . . , ym , y−1
1 , . . . , y−1

m

]
be the Laurent

polynomial ring in the indeterminates y1, . . . , ym over k. An element of the form y i1
1 y i2

2 · · · y im
m ∈ L

with i1, . . . , im ∈ Z is called an extended monomial. The monoid of all extended monomials
is denoted by Em . For an extended monomial t ∈ Em , there exists a unique minimal number
τ(t ) ∈N such that t · (y1 · · · ym

)τ(t ) ∈ k[
y1, . . . , ym

]
[KR05, Section 6.1.A].

Recall that a toric ideal associated to the matrix A = (
ai j

) ∈ Matm,n(Z) is I (A) = ker(ϕ) in
k [x1, . . . , xn] where ϕ : k [x1, . . . , xn] −→ L is a k-algebra homomorphism given by ϕ (xi ) = ti with
ti = y a1i

1 y a2i
2 · · · y ami

m for i = 1, . . . ,n.

PROPOSITION 3.3 ([KR05, PROPOSITION 6.1.3]). Let t1, . . . , tn ∈ Em , let I ⊆ k [x1, . . . , xn] be the
toric ideal associated to (t1, . . . , tn), and let J ⊆ k

[
x1, . . . , xn , y1, . . . , ym

]
be the binomial ideal

generated by
{
πτ(t1) (x1 − t1) , . . . ,πτ(tn ) (xn − tn)

}
where π= y1 · · · ym .

(1) I = 〈J :π∞〉∩k [x1, . . . , xn], where J :π∞ is the saturation of I with respect to the element π,
defined as I :π∞ = ⋃

i∈N
I :πi , with I :πi := {

f ∈ k[x1, . . . , xn] |πi f ∈ I
}
.

(2) Let z be a new indeterminate, and let G be a Gröbner basis of the ideal J + (πz −1) with
respect to an elimination ordering for

{
y1, . . . , ym , z

}
. Then the toric ideal I is generated by

G ∩k [x1, . . . , xn].

(3) The toric ideal I is generated by pure binomials.

3.1.4 SAGBI BASES ALGORITHM

PROPOSITION 3.4 ([KR05, THEOREM 6.6.29]). Consider a non-zero set of monic polynomials F ={
f1, . . . , fs

}⊆ k [x1, . . . , xn], and let F := (
f1, . . . , fs

)
, S := k[ f1, . . . , fs], and the following sequence of

instructions:

(1) Let s′ = s, let H = F , and let H =F .

(2) Using Proposition 3.3, compute a set B of pure binomials which generates the ideal Rel(lt(H ))
in k

[
y1, . . . , ys′

]
.

(3) If B =;, return the tuple H and stop. Otherwise, let B ′ =;.

(4) For every b ∈ B, reduce the polynomial b
(

f1, . . . , fs′
)

via
H−→s until an irreducible element

b′ ∈ k [x1, . . . , xn] is found, and if b′ ̸= 0, adjoin the element lc
(
b′)−1 b′ to the set B ′.

(5) If B ′ = ; then return the tuple H and stop. Otherwise, let t = #B ′, increase s′ by t , and
append the elements fs′−t+1, . . . , fs′ of B ′ to H and H .

(6) Using Proposition 3.3, compute a set B of pure binomials which generate the ideal Rel(lt(H ))
in k

[
y1, . . . , ys′

]
. Replace B by its subset consisting of those elements which involve at least

one of the indeterminates ys′−t+1, . . . , ys′ . Then continue with step (3.4).
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Then this is an enumerating procedure. The set of all elements contained in H at some point
is a SAGBI basis of S. The procedure stops if and only if S has a finite SAGBI basis. In this case, it
returns a tuple H of polynomials which form a SAGBI basis of S.

The next example presents one case where a subset not is a SAGBI basis of a subalgebra, but
we can find it.

EXAMPLE 3.1 ([KR05, EXAMPLE 6.6.30]). Consider thek-algebra A = k[x1, x2] and let F := {x2
1 x2,

x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2} be a subset of A with the order deglex with x1 ≻ x2.

For the element f1 =
(
x2

1 −x2
2

)(
x2

1 x2
2 −x4

2

)− (
x2

1 x2
)(

x4
1 x2

)=−2x2
1 x4

2 + x6
2 , it follows that f1 ∈

S = k〈F 〉A .

Notice that t
(
y1, y2, y3, y4

) = y4, t
(
lt( f1), . . . , lt( f4)

) = x2
1 x4

2 ∉ Supp
(

f2
)
, whence f1

F→+ f2.
Thus, F is not a SAGBI basis of S [KR05, Theorem 6.6.25].

To find a SAGBI basis of S we use the algorithm formulated in Proposition 3.4.

(i) Let s′ = 4, H = {
x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2

}
, and H = (x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2).

(ii) We compute a Gröbner basis for the ideal

J̃ = 〈
y1 −x2

1 x2, y2 −x2
1 , y3 −x2

1 x2
2 , y4 −x2

1 x4
2 , x1x2z −1

〉
considering the order lex with x1 ≻ x2 ≻ z ≻ y1 ≻ y2 ≻ y3 ≻ y4. Using the package
SINGULAR we obtain the basis given by B = {

y2
1 − y2 y3, y2 y4 − y2

3

}
. Proposition 3.3 im-

plies that B generates the ideal of relationships Rel(LT(H )) in k
[

y1, . . . , y4
]

(iii) Let B ′ =;.

(iv) For b1 = y2 y4 − y2
3 we find

b1
(
x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2

)= x2
1 x6

2 −x8
2 .

From the process described in Reduction 3.1 we know that b1 is irreducible with respect
to F , and so b1 = b′

1.

For b2 = y2
1 − y2 y3, we compute

b2
(
x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2

)= 2x2
1 x4

2 −x6
2 ,

and by the reduction process, b2
H−→S −x6

2 . Thus, x6
2 = b′

2.

We obtain B ′ = {x2
1 x6

2 −x8
2 , x6

2}.

(v) Let t = 2, s′ = 6, H = {
x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2 , x6

2 , x2
1 x6

2 −x8
2

}
, and H = (x2

1 x2, x2
1 −

x2
2 , x2

1 x2
2 −x4

2 , x2
1 x4

2 , x6
2 , x2

1 x6
2 −x8

2).

(vi) We compute a Gröbner basis for the ideal

J̃ = 〈
y1 −x2

1 x2, y2 −x2
1 , y3 −x2

1 x2
2 , y4 −x2

1 x4
2 , y5 −x2

1 x6
2 , y6 −x6

2 x1x2z −1
〉
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with the order lex and x1 ≻ x2 ≻ z ≻ y1 ≻ y2 ≻ y3 ≻ y4 ≻ y5 ≻ y6. SINGULAR gives us the
basis

G = {
y2

1 − y2 y3, y2 y4 − y2
3 , y2 y6 − y5, y3 y5 − y2

4 , y2 y5 − y3 y4
}

.

We choose the elements with the indeterminates y5 and y6, and so

B = {y2 y6 − y5, y3 y5 − y2
4 , y2 y5 − y3 y4}.

(vii) Let B ′ =;.

(viii) For the element b1 = y2 y6 − y5, we have

b1
(
x2

1 x2, x2
1 −x2

2 , x2
1 x2

2 −x4
2 , x2

1 x4
2 , x6

2 , x2
1 x6

2 −x8
2

)= 0.

For b2 = y3 y5 − y2
4 ,

b2(x2
1 x2, x2

1 −x2
2 , x2

1 x2
2 −x4

2 , x2
1 x4

2 , x6
2 , x2

1 x6
2 −x8

2) =−x4
1 x8

2 +x2
1 x8

2 −x10
2 ,

and by the reduction process, b2
H−→S 0.

Finally, for b3 = y2 y5 − y3 y4 we compute

b3(x2
1 x2, x2

1 −x2
2 , x2

1 x2
2 −x4

2 , x2
1 x4

2 , x6
2 , x2

1 x6
2 −x8

2) =−x4
1 x6

2 +x2
1 x8

2 +x2
1 x6

2 −x8
2 ,

and applying the reduction process it follows that b3
H−→S 0.

In this way, B ′ =;, and therefore, H ∪ {x2
1 x6

2 −x8
2 , x6

2} is a finite SAGBI basis for S.

The next proposition gives us the normal form of a polynomial which is necessary to define
a reduced SAGBI basis.

PROPOSITION 3.5 ([LM09, PROPOSITION 3.2]). For every f ∈ k [x1, . . . , xn] there exists a unique
polynomial fF ∈ k [x1, . . . , xn] with the properties that f − fF ∈ S and Supp

(
fF

)∩k [lt(F )] =;.

The element fF is called the normal form of f with respect to S, and it is denoted by NFS( f ).

PROPOSITION 3.6 ([LM09, PROPOSITION 3.3]). Let f , f1, f2 ∈ k [x1, . . . , xn]. Then

(1) NFS(NFS( f )) = NFS( f ).

(2) NFS
(

f1 − f2
)= NFS

(
f1

)− NFS
(

f2
)
.

(3) NFS
(

f1 f2
)= NFS(NFS( f1)NFS( f2)).

Recall that Kreuzer and Robbiano [KR05, p. 501] called F a reduced SAGBI basis of S if the
set

{
lt

(
f1

)
, . . . , lt

(
fs

)}
is the minimal monomial system of algebra generators of k [lt(F )] and

Supp
(

fi − lt
(

f fi
))∩k [lt(F )] =;, for i = 1, . . . , s. This reduced SAGBI basis of S is unique [LM09,

Proposition 3.4]. The next example shows the process for computing a reduced SAGBI basis.
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EXAMPLE 3.2 ([LM09, EXAMPLE 3.2]). Let F = {
x2x3 −x2

3 , x4
1 −x2

2 x2
3

}
be a SAGBI basis of S =

Q[F ] with the order deglex with x1 ≻ x2 ≻ x3. Then:

NFS
(
x2x3 −x2

3

)= NFS (x3 (x2 −x3))

= NFS(NFS (x3)NFS (x2 −x3))

= NFS (x3 (x2 −x3))

= NFS (x2x3)−NFS
(
x2

3

)
= x2x3 −x2

3 ,

and

NFS
(
x4

1 −x2
2 x2

3

)= NFS
((

x2
1 −x2x3

)(
x2

1 +x2x3
))

= NFS
(
NFS

(
x2

1 −x2x3
)
NFS

(
x2

1 +x2x3
))

= NFS
{
(NFS

(
x2

1

)−NFS(x2x3))
(
NFS

(
x2

1

)+NFS (x2x3)
)}

= NFS
((

x2
1 −x2

3

)(
x2

1 +x2
3

))
= NFS

(
x4

1 −x4
3

)
= NFS

(
x4

1

)−NFS
(
x4

3

)
= x4

1 −x4
3 .

In this way, a reduced SAGBI basis of S is given by
{

x2x3 −x2
3 , x4

1 −x4
3

}
.

From [LM09, Corollary 3.2], we know that two subalgebras S and T are equal if and only if S
and T have the same reduced SAGBI bases. Example 3.3 illustrates this situation.

EXAMPLE 3.3 ([LM09, EXAMPLE 3.3]). Determine whether or not the following two subalgebras
are equal. Let F1 =

{
x2x3 −x2

3 , x4
1 −x2

2 x2
3

}
be a SAGBI basis of the Q-subalgebra S1 =Q [F1] and

F2 =
{

x2
1 −1, x2

2 −1, x2
3 −1

}
a SAGBI basis of theQ-subalgebra S2 =Q [F2]. Consider the monomial

order degrevlex.

The reduced SAGBI basis of the Q-subalgebra S1 is
{

x2x3 −x2
3 , x4

1 −x4
3

}
and the reduced

SAGBI basis of theQ-subalgebra S2 is
{

x2
1 −1, x2

2 −1, x2
3 −1

}
. Since the reduced SAGBI basis of S1

is different from the reduced SAGBI basis of S2, the two subalgebras S1 and S2 are different.

3.1.5 SAGBI BASES UNDER COMPOSITION

In this section, we consider the question about polynomial composition of SAGBI bases investi-
gated by Nordbeck [Nor01a] (see also [Nor02]). We start by recalling the origin of the question
and the corresponding answer made by Hong [Hon98] in the setting of Gröbner bases.

3.1.5.1 MOTIVATION: GRÖBNER BASES UNDER COMPOSITION

Polynomial composition is the operation of replacing the indeterminates in a polynomial with
other polynomials. Hong asked in his paper: When does composition commute with Gröbner ba-
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sis computation? [Hon98, p. 643] More exactly, let F be a finite set of polynomials in k[x1, . . . , xn],
and let G be a Gröbner basis of the ideal generated by F under some monomial ordering ≺ on
k[x1, . . . , xn]2. ForΘ= {θ1, . . . ,θn} a list of n polynomials in k[x1, . . . , xn], let F∗ be the set obtained
from F by replacing xi by θi , and likewise let G∗ be the set obtained from G by replacing xi by θi .
The question is if G∗ is also a Gröbner basis of F∗ (under the same monomial ordering ≺), or
equivalently, when does Gröbner basis computation commute with composition? (see Defini-
tion 3.4). Hong proved that this is the case if and only if the composition is “compatible” with the
monomial ordering and the nondivisibility (see Definition 3.5 and Proposition 3.7). Gutiérrez
and San Miguel [GM98] studied composition of Gröbner bases for reduced Gröbner bases, while
Liu and Wang [LW07] investigated homogeneous Gröbner bases under composition.

Throughout this section,Θdenotes a list {θ1, . . . ,θn} of n non-zero polynomials ink[x1, . . . , xn],
lt(Θ) := {lt(θ1), . . . , lt(θn)}, lm(Θ) := {lm(θ1), . . . , lm(θn)}, and F means a finite set of polynomials
in k[x1, . . . , xn].

DEFINITION 3.3 ([HON98, DEFINITION 3.1]). The composition of h by Θ, written as h ◦Θ, is
the polynomial obtained from h by replacing each xi in it with Θi . Likewise, H ◦Θ is the set

{h ◦Θ | h ∈ H }.

One might consider the possibility of defining composition as the “function composition”,
namely, for all (k1, . . . ,kn) ∈ kn , (h ◦Θ)(k1, . . . ,kn) = h(θ1(k1, . . . ,kn), . . . ,θn(k1, . . . ,kn)). However,
this is not suitable since h ◦Θ is not uniquely determinated when k is a finite field.

DEFINITION 3.4 ([HON98, DEFINITION 3.2]). Composition byΘ commutes with Gröbner basis
computation if and only if the following formula is true forΘ: if G is a Gröbner basis for the ideal
generated by F , then G ◦Θ is a Gröbner basis for the ideal generated by F ◦Θ.

With the aim of answering the question formulated above, Hong introduced the following
notions of compatibility.

DEFINITION 3.5. LetΘ= {θ1, . . . ,θn} and ≺ be a monomial ordering on k[x1, . . . , xn].

(i) ([Hon98, Definition 3.3]) Composition byΘ is compatible with the monomial ordering ≺ if and
only if for all monomials xα and xβ belonging to Mon(k[x1, . . . , xn]), we have

xα ≺ xβ implies that xα ◦ lt(Θ) ≺ xβ ◦ lt(Θ).

(ii) ([Hon98, Definition 3.4]) Composition byΘ is compatible with nondivisibility if and only if for
all monomials xα and xβ belonging to Mon(k[x1, . . . , xn]), we have

xα ∤ xβ implies that xα ◦ lt(Θ) ∤ xβ ◦ lt(Θ),

where | denotes the classical divisibility relation over monomials (that is, sum on Zn
≥0).

The main result in Hong’s paper [Hon98] is formulated in Proposition 3.7.

PROPOSITION 3.7 ([HON98, THEOREM 3.1]). The following are equivalent:

2Hong called term what here we means monomial.
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(1) Composition byΘ commutes with Gröbner basis computation.

(2) Composition byΘ is

(a) compatible with monomial ordering ≺ and

(b) compatible with nondivisibility.

3.1.5.2 SAGBI BASES UNDER COMPOSITION

Following Nordbeck [Nor02, Section 2] (see also [Nor01a]), by a term t in k[x1, . . . , xn] he means
an element of the form xα1

1 · · ·xαn
n with α1, . . . ,αn ∈ N. The set of all terms of k[x1, . . . , xn] is

denoted by T . Of course, 1 = x0
1 · · ·x0

n . If we compare with the notation established in Section
3.1.1, then T = Mon(k[x1, . . . , xn]). Note that this is the terminology used by Hong [Hon98].

If H is a subset of k[x1, . . . , xn] (not necessarily finite), then the subalgebra of k[x1, . . . , xn]
generated by H is usually denoted as k[H ]. The elements of k[H ] are precisely the polynomials in
the set of formal intederminates H , viewed as elements of k[x1, . . . , xn]. Of course, the elements
of k⊂ k[H ] correspond to the constant polynomials. Nordbeck [Nor02, Section 2] reserved the
word monomial for the “terms in H” (in contrast to the terminology used in Section 3.1.1 for
k[x1, . . . , xn]). In this way, by a monomial he means a finite product of elements from H (or some
other subset of k[x1, . . . , xn] that we are working with). Such a product will usually be written
m(H). The “empty” monomial 1 is considered. Of course, these monomials are not (in general)
terms viewed as elements of k[x1, . . . , xn].

We assume that T is given a term ordering ≺ in the sense of monomial orderings considered
in Section 3.1.1. For a non-zero polynomial f ∈ k[x1, . . . , xn], Nordbeck denoted its leading
term as f̂ ∈ T . He called the coefficient of f̂ the leading coefficient of f . For a subset F ⊂
k[x1, . . . , xn], F̂ := {

f̂ | f ∈ F
}
.

DEFINITION 3.6 ([NOR02, DEFINITION 1]). Let S be a subalgebra of k[x1, . . . , xn]. A subset H ⊂ S
is called a SAGBI basis for S if for every non-zero s ∈ S, there exists a monomial m(H) ∈ H such
that ŝ = �m(H).

Since term orderings are preserved by multiplication,

m(H) =∏
i

hi (hi ∈ H) implies �m(H) =∏
i

ĥi ,

that is, �m(H) = m(Ĥ). (3.1)

This means that an equivalent formulation of Definition 3.6 is that H is a SAGBI basis if the
leading term of every non-zero element in S can be written as a product of leading terms of
elements in H [Nor02, Remark 1]. It can be seen that if H is a SAGBI basis for S, then H generates
S, that is, S = k[H ]. We say that H is a SAGBI basis meaning that H is a SAGBI basis for k[H ].

DEFINITION 3.7 ([NOR02, DEFINITION 2]). Two monomials m(H),m′(H) ∈ H form a critical
pair (m(H ),m′(H )) of H if �m(H) = àm′(H). If c ∈ k∗ is such that m(H ) and cm′(H ) have the same
leading coefficient, then we define the T -polynomial of (m(H),m′(H)) as T (m(H),m′(H)) =
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m(H )−cm′(H ) (c.f. Definition 3.2). The idea with the constant c is that the leading words cancel
in T (m(H),m′(H)), whence áT (m(H),m′(H)) ≺ �m(H) = àm′(H) .

Proposition 3.8 characterizes SAGBI basis by using the notion of T -polynomial (c.f. Proposi-
tion 3.1(B1) and (C3)).

PROPOSITION 3.8 ([NOR02, THEOREM 1]). A subset H ⊂ k[x1, . . . , xn] is a SAGBI basis if and only
if the T -polynomial of every critical pair (m(H),m′(H)) of H either is equal to zero, or can be
written as

T (m(H),m′(H)) =
t∑

i=1
ci mi (H), àmi (H) ≺ �m(H) = àm′(H), for every i , (3.2)

where the mi are monomials belonging to H and the ci ∈ k.

Note that every subset H ⊂ k[x1, . . . , xn] consisting only of terms (or terms times coefficients)
is a SAGBI basis.

Now, let us define the process of composition of polynomials (c.f. Definition 3.3).

DEFINITION 3.8 ([NOR02, DEFINITION 3]). LetΘ= {θ1, . . . ,θn} be a subset of k[x1, . . . , xn], and let
f ∈ k[x1, . . . , xn]. The composition of f byΘ, written f ◦Θ, is the polynomial obtained from f by
replacing each ocurrence of the xi with θi . For a subset F ⊂ k[x1, . . . , xn], F ◦Θ := {

f ◦Θ | f ∈ F
}
.

It is assumed that θ ∉ k for all i . This is used to guarantee that t ̸= 1 implies t ◦ Θ̂ ̸= 1, for
every t ∈ T .

REMARK 9 ([NOR02, REMARK 4]). Considering the notation in Definition 3.8, it seems natural
to write monomials m(H) above as m ◦H . Nevertheless, Nordbeck retained the notation m(H)
with the aim of distinguishing “compositions” by H from compositions byΘ. As a matter of fact,
the two forms of compositions are associative in the sense that

m(H)◦Θ= m(H ◦Θ). (3.3)

Notice that the notion m(H ◦Θ) makes sense due to the natural correspondence between the
sets H = {h1, . . . } and H ◦Θ= {h1 ◦Θ,h2 ◦Θ, . . . }. Note also that for elements f , g ∈ k[x1, . . . , xn],

( f g )◦Θ= ( f ◦Θ)(g ◦Θ), (3.4)

( f + g )◦Θ= f ◦Θ+ g ◦Θ. (3.5)

Having in mind that the term order is preserved by multiplication, in a similar way to
expression (3.1), we have the equality

�t ◦Θ= t ◦ Θ̂. (3.6)

Definition 3.9 is the analogue of Definition 3.4 but now in the setting of SAGBI bases.

DEFINITION 3.9 ([NOR02, DEFINITION 4]). Composition byΘ commutes with SAGBI bases com-
putation if for every SAGBI basis H , also H ◦Θ is a SAGBI basis (under the same ordering as
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H).

REMARK 10 ([NOR02, REMARK 5]). “In Hong’s paper [Hon98], the counterpart of Definition
3.9 (see Definition 3.4) requires that if G is a Gröbner basis for the ideal generated by a set of
polynomials F , then G ◦Θ is a Gröbner basis for the ideal generated by F ◦Θ. A direct translation
to the subalgebra language would of course be: if H is a SAGBI basis for the subalgebra generated
by a set of polynomials F , then H ◦Θ is a SAGBI basis for the subalgebra generated by F ◦Θ.
That this implies the statement in Definition 3.9 is clear (take F = H). The two formulations
are equivalent since it is easy to prove (using (3.4) and (3.5) above) that k[H ] = k[F ] implies
k[H ◦Θ] = k[F ◦Θ].”

Nordbeck decided under which conditions onΘ, composition byΘ commutes with SAGBI
bases computation (Proposition 3.9).

DEFINITION 3.10. Let ≺ be a term ordering on k[x1, . . . , xn] and Θ = {θ1, . . . ,θn} be a subset of
k[x1, . . . , xn].

(i) ([Nor02, Definition 5]) Composition byΘ is compatible with the given ordering if for all terms
xα, xβ ∈ T , we have

xα ≺ xβ implies xα ◦ Θ̂≺ xβ ◦ Θ̂. (3.7)

For an element f ∈ k[x1, . . . , xn] written as a linear combination of terms in decreasing order

f =
s∑

i=1
ci ti , t1 ≻ ·· · ≻ ts , if composition byΘ is compatible with the ordering, then t1 ◦ Θ̂≻ ·· · ≻

ts ◦ Θ̂, so expressions (3.5) and (3.6) guarantee that

�f ◦Θ= f̂ ◦ Θ̂. (3.8)

(ii) ([Nor02, Definition 6]) Composition by Θ is compatible with nonequality if for all terms
xα, xβ ∈ T , we have

xα ̸= xβ implies xα ◦ Θ̂ ̸= xβ ◦ Θ̂. (3.9)

Definition 3.10 contains the two sufficient conditions needed for commutation of SAGBI
bases computation. However, since term orderings are total, the second condition follows from
the first one [Nor02, Lemma 1].

The following is the most important result presented by Nordbeck [Nor02].

PROPOSITION 3.9 ([NOR02, THEOREM 2]). Composition by Θ commutes with SAGBI bases com-
putation if and only if the composition is compatible with the term ordering ≺ on k[x1, . . . , xn].

Proof. The sufficiency of the compatibility condition requires of the following preliminary result:
if composition byΘ is compatible with the ordering, and (m(H ),m′(H )) is a critical pair of H ◦Θ,
then (m(H),m′(H)) is also a critical pair of H [Nor02, Lemma 2].

We follow the ideas presented in [Nor02, Proposition 1]. Consider an arbitrary SAGBI basis
H . We have to show that H ◦Θ is also a SAGBI basis. With this aim, let (m(H ),m′(H )) be a critical
pair of H ◦Θ. By the previous result, (m(H),m′(H)) is also a critical pair of H . Proposition 3.8
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guarantees the expression

m(H)− cm′(H) =∑
i

ci mi (H) (or zero), àmi (H) ≺ �m(H) = àm′(H), for all i . (3.10)

If we compose with the T -polynomial by Θ, in expression (3.10), (3.3) and (3.4) and (3.5)
imply that

m(H ◦Θ)− cm′(H ◦Θ) =∑
i

ci mi (H ◦Θ) (or zero). (3.11)

Now, if we compose the inequality in (3.10) by Θ̂, by (3.6) and (3.7) we have

ámi (H ◦Θ) ≺ ám(H ◦Θ) = ám′(H ◦Θ), for all i . (3.12)

Notice that the leading words in the left-hand side of expression (3.11) cancel, so the constant
c must be the same as in the definition of the T -polynomial of (m(H),m′(H)) with respect to
H ◦Θ. Therefore, expressions (3.11) and (3.12) are a representation in the sense of Proposition
3.8, and having in mind that the critical pair (m(H),m′(H)) of H ◦Θwas arbitrary, it follows that
H ◦Θ is a SAGBI basis.

On the other hand, the proof of necessity of the compatibility condition requires of the two
following results:

• ([Nor02, Lemma 3]) Let u, v ∈ T be two terms with u ̸= v but u ◦ θ̂ = v ◦ Θ̂. Then for every
w ≻ u, H = {u −w, v} is a SAGBI basis.

• ([Nor02, Proposition 2]) If composition byΘ commutes with SAGBI bases computation,
then composition byΘ is compatible with nonequality.

With these two preliminary results, let us rewrite the proof of the Proposition presented by
Nordbeck [Nor02, Theorem 2 and Proposition 3].

Assume that composition byΘ commutes with SAGBI bases computation. If u, v ∈ T are two
terms with u ≻ v , then we have to show that u ◦ Θ̂≻ v ◦ Θ̂. Since in particular u ̸= v , we know
from [Nor02, Proposition 2] that we cannot have u ◦ Θ̂= v ◦ Θ̂, so we need only exclude the case
u ◦ Θ̂≺ v ◦ Θ̂.

We first claim that H = {u − v, v} is a SAGBI basis. In fact, we saw above that every subset
H ⊂ k[x1, . . . , xn] consisting only of terms (or terms times coefficients) is a SAGBI basis, whence
H ′ = {u, v} is a SAGBI basis so, having [Nor02, Remark 1], our claim follows since k[H ] = k[H ′]
and Ĥ = Ĥ ′. We conclude that H ◦Θ= {u ◦Θ− v ◦Θ, v ◦Θ} must be also a SAGBI basis.

Assume now that u◦Θ̂≺ v ◦Θ̂. We then have �H ◦Θ= {v ◦Θ̂}, and u◦Θ= (u◦Θ−v ◦Θ)+v ◦Θ ∈
k[H ◦Θ]. But since u ◦ Θ̂≺ v ◦ Θ̂, u ◦ Θ̂ ̸= 1 cannot be written as a power of v ◦ Θ̂, so H ◦Θ cannot
be a SAGBI basis. Thus our assumption that u ◦ Θ̂ ≺ v ◦ Θ̂ was false, so composition by Θ is
compatible with the ordering.

REMARK 11 ([NOR02, REMARK 6]). Nordbeck used the assumption that θi ∈ k, for all i . Hong
[Hon98] used instead the fact that in the definition of a Gröbner basis G , it is common to assume
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that zero polynomial is not allowed as a member of G . Notice that if do not allow zero in SAGBI
bases, then if θi = c ∈ k for some i , by using that H = {xi − c} is obviously a SAGBI basis, we
assert that H ◦Θ= {xi ◦Θ−c} = {Θi −c} = {0}, which contradicts the commutation of SAGBI bases
computation. This fact shows that it would have worked equally well to assume that SAGBI
bases may not contain the zero polynomial.

In Sections 3.2.5 and 3.4.4 we will consider the problem of composition in the setting of free
associative algebras and skew PBW extensions, respectively.

3.2 FREE ALGEBRAS

In his PhD Thesis [Nor01a], (see [Nor98, Nor02]), Nordbeck also studied SAGBI bases for subal-
gebras of the free associative algebra over a field k. In this section, we recall his key ideas.

3.2.1 BASIC DEFINITIONS

As in Section 2.1, let X = {x1, . . . , xn} be a finite alphabet, and k {x1, . . . , xn} the free associative
algebra over k. The symbol W means the set of all words in X including the empty word 1 (i.e.
W = X ∗, the free monoid generated by X ). For H a subset of k {x1, . . . , xn}, the subalgebra S
of k {x1, . . . , xn} generated by H is denoted by k{H }. In other words, the elements of S are the
polynomials in the set of formal and noncommutative indeterminates H viewed as elements
of k {x1, . . . , xn}. It is assumed that the coefficient of such monomials is the identity 1. Notice
that with this description, for Nordbeck the monomials are not general words appearing in
k {x1, . . . , xn}. As it is clear, the elements of k⊂ S correspond to the constant polynomials.

EXAMPLE 3.4 ([NOR98, EXAMPLE 1]). Consider the subset H := {h1 = y x2+1, h2 = 2x y − y, h3 =
y x} of the free algebra k{x, y}. An example of a monomial m(H) ∈ k{X } is given by h1h2 =
(y x2 +1)(2x y − y) = 2y x3 y − y x2 y +2x y − y .

For Nordbeck [Nor98], an admissible order ≺ on a set W is a well-order preserving multi-
plication, that is, f ≺ g implies h f k ≺ hg k for all f , g ,h,k ∈ W , such that the smallest word
is the unity 1. It follows that every infinite sequence u1 ≻ u2 ≻ ·· · ≻ in W stabilizes. He used
the order deglex (Definition 3.1(ii)), so we can, if terms with identical words are collected
together using the operations over k, with every non-zero element f ∈ k{x1, . . . , xn} associate its
leading word lw( f ), that is, the word in f that is larger (relative the order ≺) than every other
word occurring in f . The leading term lt( f ) of f is the leading word times its coefficient. For
instance, in Example 3.4, using deglex, lw(m(H)) = y x3 y and lt(m(H)) = 2y x3 y . As expected,
for H ⊆ k{X }, lw(H) := {lw(h) | h ∈ H }.

DEFINITION 3.11 ([NOR98, DEFINITION 1]). Let H ⊂ k{x1, . . . , xn}, and let
t∑

i=1
ki mi (H), ki ∈

k, mi ∈ k{H }, be a sum of monomials. The height of the sum is max{lw(mi (H)) | 1 ≤ i ≤ t }, where
the maximum is taken relative the order in k {x1, . . . , xn}. The breadth of the sum is the number
of i ’s such that lw(mi (H)) is equal to the height.
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As one can see, the leading word of f =
t∑

i=1
ki mi (H) can be smaller than the height of

t∑
i=1

ki mi (H). As a matter fact, this happens if and only if some words larger than lw( f ) cancel in

the sum, and the breadth of the sum is then necessarily at least two.

Next, we present the definition of SAGBI basis in the case of free associative algebras (c.f.
Definition 3.1).

DEFINITION 3.12 ([NOR98, DEFINITION 2]). Let S be a subalgebra of k{x1, . . . , xn}. A subset
H ⊂ S is called a SAGBI basis for S if for every f ∈ S, f ̸= 0, there exists a monomial m ∈ k{H }
such that lw( f ) = lw(m(H)).

By recalling that orders are preserved after multiplication, if m(H) = hi1 hi2 · · ·hi t with hi j ∈
H , then lw(m(H)) = lw(hi1 )lw(hi2 ) · · · lw(hi t ). This means that an equivalent formulation of
Definition 3.12 is that H is a SAGBI basis if the leading word of every non-zero element in S can
be written as a product of leading words of elements in H . Notice that every subalgebra is a
SAGBI basis for itself, so every subalgebra has a SAGBI basis. Also, if H consists only of words (or
terms), then H is a SAGBI basis for the subalgebra S generated by H [Nor98, Example 2].

An important fact is that the SAGBI property depends on which order we consider, as the
following example illustrates (c.f. Remark 8).

EXAMPLE 3.5 ([NOR98, EXAMPLE 3]). Let H := {h1 = y z, h2 = z y, h3 = x − y} ∈ k{x, y, z}, S the
subalgebra generated by H , and consider the order deglex with x ≻ y ≻ z. Then lw(H) =
{y z, z y, x}, and it is easy to check (by using Proposition 3.13 below) that H is a SAGBI basis.

On the other hand, if we let x ≺ y ≺ z, then lw(H) = {y z, z y, y}. However, p(H) = h1h3 −
h3h2 = y zx−xz y ∈ S and lw(p(H )) = y zx cannot be written as a product of words in lw(H ). This
means that H is not a SAGBI basis for S.

Next, we present the process of reduction in SAGBI bases (c.f. Section 3.1.2).

3.2.2 REDUCTION

REDUCTION 3.2 ([NOR98, P. 141]). The reduction of f ∈ k{x1, . . . , xn} over a subset H ⊂ k{x1, . . . , xn}
is performed as follows:

(1) f0 = f .

(2) If fi = 0, or if there is no monomial m ∈ k{H } with lw( fi ) = lw(m(H)), then terminate. In
case of termination this fi will be referred as the result of the reduction.

(3) Find a monomial mi ∈ k{H } and ki ∈ k such that lt( fi ) = lt(ki mi (H)). (This is possible
since we have not terminated in step (2)). Now let si+1 = si −ki mi (H).

(4) Go to step (2) (i +1 7→ i ).

When step (3) has been performed, the leading word of si+1 is strictly smaller than the
leading word of si (by the choice of mi and ki ). Now, since the order is well-founded, the
reduction always terminates after a finite number of steps.
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Notice that if H is a finite set, then it is a constructive matter to determine whether a given
word is a product of elements in lw(H), and hence the reduction is algorithmic. This is also the
case if H is infinite but sorted by e.g. the length of the leading words.

If the result (i.e., the last fi ) of a reduction of f over H is denoted f H , and if the reduction
terminated after t iterations of step (3) above, then

f =
t−1∑
i=0

ki mi (H)+ f H . (3.13)

If t = 0 the right hand side of (3.13) is of course just f H . If step (3) is performed at least once we
have, then

lw( f ) = lw(m0(H)) ≻ lw(m1(H)) ≻ ·· · ≻ lw(mt−1(H)), (3.14)

so the sum in the right hand side of (3.13) is clearly of breadth one and height equal to lw( f ).
Nordbeck used these facts several times (in particular when f H = 0).

Notice that there are several different possibilities to choose the mi ’s in step (3), so the result
of the reduction depends (in general) on how we choose these monomials.

It is interesting to consider the case when sH = 0 above. Nordbeck [Nor98, p. 142] said that
f reduces to zero weakly over H if there exists one reduction (i. e., one choice of the mi ’s) with
sH = 0, and that s reduces to zero strongly over H if every reduction (every choice) yields sH = 0.
As he asserted, in most cases it does not matter which formulation we use, and we will then
simply say that s reduces to zero over H . By definition, f = 0 reduces to zero.

The following result is an application of SAGBI bases for the Subalgebra Membership Problem,
that is, the decision whether an element f ∈ k{x1, . . . , xn} is in a given subalgebra (c.f. Proposition
3.1(C1)).

PROPOSITION 3.10 ([NOR98, PROPOSITION 1]). Let H ⊂ k{x1, . . . , xn} be a SAGBI basis for the
subalgebra S, and let f ∈ k{x1, . . . , xn}. Then f ∈ S if and only if f reduces to zero over H.

As expected, if H is a SAGBI basis for the subalgebra S, then H generates S [Nor98, Corollary
1]. We will simply say that H ⊂ k{x1, . . . , xn} is a SAGBI basis meaning that H is a SAGBI basis for
the subalgebra of k{x1, . . . , xn} generated by H .

REMARK 12. Notice that an arbitrary element of k{x1, . . . , xn} has not in general a unique result
of reduction over a SAGBI basis H . The uniqueness can be obtained by modifying step (2) above.
Instead of terminating when the leading term no longer can be written as a product of lw(H ), we
move this term to some kind of remainder (generalizing f H ) and continue with the other terms.

3.2.3 SAGBI BASIS CRITERION

We start with the following proposition that gives a first method to test the SAGBI basis property
(c.f. Proposition 3.2).

PROPOSITION 3.11 ([NOR98, PROPOSITION 2]). H ⊂ S is a SAGBI basis for the subalgebra S if
and only if every f ∈ S reduces to zero over H.
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Definition 3.13 and Proposition 3.12 allow us to reduce the number of elements we need
to consider for the SAGBI basis test. The definition of a T -polynomial is as expected from
Definitions 3.2 and 3.7.

DEFINITION 3.13 ([NOR98, DEFINITION 3]). Let H be a subset of k{x1, . . . , xn}. A critical pair
(m(H ),m′(H )) of H is a pair of monomials m(H ),m′(H ) ∈ k{x1, . . . , xn} with lw(m(H )) = lw(m′(H )).
If k ∈ k∗ is such that lt(m(H)) = lt(km′(H)) we define the T -polynomial of (m(H),m′(H)) as
T (m(H),m′(H)) = m(H)−km′(H).

As in Definition 3.7, the idea of the constant is that the leading words cancel in T (m(H ),m′(H )),
whence it follows that lw(T (m(H ),m′(H ))) ≺ lw(m(H )) = lw(m′(H )). Note that T (m(H ),m′(H )) =
k ′T (m(H),m′(H)), for some k ′ ∈ k, and that T (m(H),m′(H)) reduces to zero weakly (resp.
strongly) if and only if T (m(H),m′(H)) does.

Proposition 3.12 is the analogue of Propositions 3.1(B1) and (C3), and 3.8.

PROPOSITION 3.12 ([NOR98, PROPOSITION 3]). H is a SAGBI basis if and only if the T -polynomials
of all critical pairs of H reduce to zero over H.

The following result establishes sufficient conditions for a set to be a SAGBI basis.

PROPOSITION 3.13 ([NOR98, PROPOSITION 4]). Let H ⊂ k{x1, . . . , xn} be such that lw(hi ) ̸= lw(h j )
if hi ̸= h j , hi ,h j ∈ H. If either no word in lw(H) is a prefix (proper left factor) of some other word
in lw(H), or no word in lw(H) is a suffix (proper right factor) of some other, then H is a SAGBI
basis.

With the aim of reducing the number of critical pairs to be considered for the SAGBI basis
test, Nordbeck formulated another version of Proposition 3.12. Briefly, the idea is that in the
proof of the sufficiency of that result, it was only used that every T (m(H ),m′(H )) either was zero,
or could be written as a sum of monomials of height less than lw(m(H)) = lw(m′(H)). Nordbeck
said that, sometimes without mentioning the corresponding m(H) and m′(H), that such a T -
polynomial admits a low representation. Since this property of the T (m(H ),m′(H ))’s is clear if H
is a SAGBI basis (by reduction), then H is a SAGBI basis if and only if every T -polynomial of H
admits a low representation [Nor98, Proposition 5].

PROPOSITION 3.14 ([NOR98, PROPOSITION 6]). Let (m(H),m′(H)) be a critical pair of H, and
assume that there are factorizations m(H ) = m1(H )m2(H ), m′(H ) = m′

1(H )m′
2(H ), where m1(H ),

m2(H),m′
1(H),m′

2(H) are monomials in k{H } with lw(mi (H)) = lw(m′
i (H)), i = 1,2. If we have

that T (mi (H),m′
i (H)) admits a low representation for i = 1,2, then also T (m(H),m′(H)) admits

a low representation.

Of course, by induction we have that Proposition 3.14 holds for every number of factors, i.e.,
that for any factorizations m = m1 · · ·mt and m′ = m′

1 · · ·m′
t with lw(mi (H)) = lw(m′

i (H)) for all
i , then the only critical pairs necessary for the SAGBI test are those which can not be factored in
the sense above. Notice that this is the case only for the critical pairs of the form (h,h′), h,h′ ∈ H
with lw(h) = lw(h′), and pairs (m,m′), m = hi1 · · ·his , m′ = h′

i1
· · ·h′

i t
, s or (and) t ≻ 1, where the

leading words of the factors overlap. Nordbeck called a critical pair with leading words of this
form an overlapping pair. With the aim of finding all such pairs we can proceed in the following
way.
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IDEA 3.1 ([NOR98, P. 143]). “An overlapping pair must begin with two elements of H where one
of the leading words is a prefix of the other. If these words are u1 and u2 = u1v we get the overlap
v . We must then find all possibilities to continue on v . This could be with a leading word equal
to v (in which case we have obtained a critical pair), with a prefix of v , or finally with a word of
which v is a prefix. In the two latter cases we get new overlaps that might be continued. If we get
an overlap we have obtained before (starting with u1,u2 or a previous pair) we need of course
not continue with this; we have already examined how it can be be continued. As mentioned
before, we get critical pairs whenever a leading word fits on an overlap.”

“If H is a finite set, then the process above is algorithmic. This rests on the fact that there
only can be a finite number of different overlaps shorter than a given length. However, there may
be an infinite number of overlapping pairs. This is the case if (and only if) the pair of leading
words of some overlapping pair contains a segment beginning and ending with the same overlap.
We will call such a segment a loop.”

The following is one of the main aspects in SAGBI theory.

PROBLEM 3.1 ([NOR98, PROBLEM, P. 144]). For a finite set H , is the SAGBI basis test in general
algorithmic?

Below, we will some answers to this question (c.f. Propositions 3.3 and 3.4).

PROPOSITION 3.15 ([NOR98, THEOREM 1]). A subset H ⊆ k{x1, . . . , xn} is a SAGBI basis if and
only if the T -polynomials of all the necessary critical pairs describes above reduce to zero over H.

3.2.4 SAGBI BASIS CONSTRUCTION

Nordbeck [Nor98] presented the Algorithm 1 to compute SAGBI bases, where we know that
H∞ is a SAGBI basis for the subalgebra S generated by H [Nor98, Proposition 12]. As Nordbeck
stated, “In general the algorithm will not stop, and we have seen in Section 3.2.3 that Step (2)
may not be algorithms even for a finite set H . We conclude that the construction algorithm is
mostly of theoretical value” [Nor98, p. 146].

Algorithm 1:

INPUT :A subset H of k{x1, . . . , xn}
OUTPUT :A SAGBI basis for the subalgebra S generated by H
INITIALIZATION: H0 = H ;

Use the methods in Section 3.2.3 to find the set Mi of all necessary critical pairs (m,m′)
of Hi .

Hi+1 = Hi
⋃

{T (m(H),m′(H)) | (m(H),m′(H)) ∈ Mi ,T (m(H),m′(H)) ̸= 0}. Here
T (m(H),m′(H)) denotes a result of reduction over Hi .

If Hi+1 ̸= Hi then go to Step (2) (i +1 7→ i ).

H∞ =⋃
Hi

The following remark shows the importance of homogeneous elements in the computation
of SAGBI bases.
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REMARK 13 ([NOR98, P. 146]). If H is a set of homogeneous elements, then the situation is
a bit more promising. It is then clear that all monomials m(H) are homogeneous, and thus
also all T -polynomials. Since reduction over H involves only homogeneous elements, every
T -polynomial will reduce to a homogeneous element (or zero). It follows that H1 must be
homogeneous, and by induction every Hi (and H∞).

If, moreover, H has only a finite number of elements of degree (word length) less than or
equal to d ∈N (and we can find all these elements), then we can algorithmically obtain a “partial”
SAGBI basis H(d) =

{
h ∈ H∞ | deg(h) ≤ d

}
as follows.

Performing Step (2) and (3) above we need only consider critical pairs of degree ≤ d , because
critical pairs of degree > d can only reduce to new elements of degree > d (or to zero). It is
clear that the results T (m(H),m′(H)) ̸= 0 of reduction over Hi all have leading words not lying
in lw(Hi ) (since the reduction algorithm terminated). Since there are only a finite number
of different words of length ≤ d , we must sooner or later get T (m(H),m′(H)) = 0 for all T -
polynomials of degree ≤ d in Step (3), and the current Hi is then our requested H(d).

To perform the reduction of an arbitrary element of k{x1, . . . , xn} over some subset, we need
of course in each step of the reduction only know this subset up to a certain degree. We conclude
that if H consists of homogeneous elements (with the finiteness condition above), then the
Subalgebra Membership Problem (Proposition 3.10) is algorithmic in the sense of Problem 3.1.

3.2.5 SAGBI BASES UNDER COMPOSITION

In this section, we study the problem of polynomial composition of SAGBI bases in free asso-
ciative algebras solved also by Nordbeck [Nor01a] (see also [Nor02, Section 5]). Note that in
[Nor01b] he investigated this problem for noncommutative Gröbner bases.

Nordbeck [Nor02, Section 5] gave a sufficient and necessary condition on a set Θ of poly-
nomials of k{x1, . . . , xn} to assure that the set F ◦Θ of composed polynomials is a SAGBI basis
whenever F is. He proved [Nor02, Theorem 4] that exactly the same results of the commutative
setting (Proposition 3.9) hold in the noncommutative case, that is, composition byΘ commutes
with noncommutative SAGBI bases computation if and only if the composition is compatible
with the ordering. Just as we did in the commutative case, we will separate the proof into
sufficiency and necessity of the condition of compatibility with the ordering.

PROPOSITION 3.16 ([NOR02, THEOREM 4]). Composition byΘ commutes with noncommutative
SAGBI bases computation if and only if the composition is compatible with the ordering.

Sketch of the proof. With respect to the sufficiency of the compatibility condition, Nordbeck
stated that “The reader can check that the proofs of [Nor02, Lemma 2] and [Nor02, Proposition
1] (see the beginning of the proof of Proposition 3.9) still work when H and the monomials
are noncommutative” [Nor02, p. 75]. We have verified the details and will present them in the
setting of SAGBI bases of skew PBW extensions in Section 3.4.4 (more exactly, Theorem 3.26).

With respect to the necessity of this condition, Nordbeck proved the following preliminary
results:

• ([Nor02, Lemma 3]) Let u, v ∈ T be two words with u ̸= v but u ◦ Θ̂= v ◦ Θ̂. Then, for every
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w ≺ u, the set H = {u −w, v} is a SAGBI basis.

• ([Nor02, Proposition 2]) If composition byΘ commutes with SAGBI bases computation,
then composition byΘ is compatible with nonequality.

Since that we will build our proposal in Section 3.4.4 following Nordbeck’s ideas, we will
leave the detailed proofs of these results for that section.

3.3 G -ALGEBRAS

G-algebras were introduced by Apel [Ape88] (c.f. Gómez-Torrecillas and Lobillo [GTL00] and
Li [Li02]) without requiring the vanishing of the non–degeneracy conditions to guarantee
the existence of a PBW basis as can be seen in Kandri-Rody and Weispfenning [KRW90] and
Levandovskyy’s PhD thesis [Lev05, Chapter 1, Section 2]. Some examples of G-algebras are
quasi–commutative polynomial rings, universal enveloping algebras of finite dimensional Lie
algebras, some iterated Ore extensions, many quantum groups, some nonstandard quantum
deformations, Weyl algebras and most of various flavors of quantizations of Weyl algebras (like
additive and multiplicative analogues of Weyl algebras), many important operator algebras,
Witten’s algebra, some of diffusion algebras and many more. Several algorithmic properties of
these algebras have been investigated in [BHL17, LH17], and references therein.

Despite the similarities between the definitions of G-algebra (Definition 3.14) and skew PBW
extension (Definition 1.1), Lezama and Reyes [LR14, Remark 3.1(ii)] showed that there are no
inclusions between the classes of all G-algebras of a field k and skew PBW extensions over this
field (of course, these two families share several examples of non-commutative algebras like
those mentioned above). In this way, our purpose in this section is to recall briefly the theory
presented by Khan et al. [KKB19] of SAGBI bases of G-algebras, and hence motivate our proposal
of SAGBI bases theory for skew PBW extensions in Section 3.4.

DEFINITION 3.14 ([APE88], [LEV05, SECTION 6.4.33]). Let k{x1, . . . , xn} be the free associative
k-algebra generated by the indeterminates x1, . . . , xn over k. Let ci j ∈ k∗ and di j denote the
standard polynomials in k{x1, . . . , xn}, where 1 ≤ i < j ≤ n. Let

A := k{x1, . . . , xn}

〈x j xi = ci j · xi x j +di j , 1 ≤ i < j ≤ n〉 .

A is said to be a G-algebra if the following conditions hold:

(i) There exists a monomial ordering (in the sense of Section 3.1) ≺ on the set

Mon(A) := {
xα1

1 xα2
2 · · ·xαn

n |αk ≥ 0,for every k
}

,

such that lm(di j ) ≺ xi x j .

(ii) For all 1 ≤ i < j < k ≤ n, the polynomial

ci k c j k ·di j xk −xk di j + c j k · x j di k − ci j di k x j +d j k xi − ci j ci k · xi d j k
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reduces to 0 with respect to the relations of A.

As a k-algebra, A has a PBW basis if the set Mon(A) is a k-basis of A.

DEFINITION 3.15 ([KKB19, DEFINITION 2]). Let A be a G-algebra in n indeterminates.

(i) As we know, Mon(A) forms a k-basis of A, so any non-zero element f in A can be uniquely
written as f = cαxα+ g with cα ∈ k∗ and xα a monomial (for any non-zero term cβxβ of g ,
xβ ≺ xα). The monomial xα ∈ Mon(A) represents the leading monomial of f , denoted by
lm( f ). The element cα ∈ k \ {0} represents the leading coefficient of f , denoted by lc( f ),
and lt( f ) = lc( f )lm( f ).

(ii) Let F ⊆ A. The notation k〈F 〉A means the subalgebra S of A generated by F . It is the
polynomials set in the F -indeterminates in A.

(iii) For F ⊆ A, m(F ) denotes a monomial in terms of elements of F , we call it F -monomial.
For m(F ) = fi 1 fi 2 · · · fi t , fi j ∈ F , we define

lmm(F ) = lm(lm( fi 1)lm( fi 2) · · · lm( fi t )),

and
ltm(F ) = lt(lt( fi 1)lt( fi 2) · · · lt( fi t )).

Next, we recall the process of reduction together with the SAGBI normal form in G-algebras
presented by Khan et al. [KKB19] (c.f. Proposition 3.5).

REDUCTION 3.3 ([KKB19, DEFINITION 3]). Let F and s be a subset and a polynomial in a G-
algebra, respectively. If there exists an F -monomial m(F ) and k ∈ k satisfying lt(km(F )) = lt(s),
then we say that

s0 = s −km(F ) (3.15)

is a one-step s-reduction of s with respect to F . Otherwise, the s-reduction of s with respect to F
is s itself.

If we apply the one-step s-reduction process iteratively, we can achieve a special form of s
with respect to H (which cannot be s-reduced further with respect to F ), called SAGBI normal
form, and write it as, s0 := SNF(s|F ).

Khan et al. [KKB19] presented an algorithm which computes the output of SNF. It is impor-
tant to say that for different choices of km(F ) in this algorithm, the output of SNF may also be
different [KKB19, Remark 2].

EXAMPLE 3.6 ([KKB19], EXAMPLE 2). Let A =Q〈e, f ,h | f e = e f −h,he = eh+2e,h f = f h−2 f 〉
(Section 1.2.2). Let S be a subalgebra of A generated by F = {

q1, q2, q3
} = {

e2, f , f h + f
}

and
g = e2 f h + eh + f , associated with degrevlex ordering. Using the Algorithm 1 presented by
Khan et al. [KKB19] to compute SNF(g |F ) we find the following results (first and second possible
choice, respectively):
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Turn fi F fi Choose fi+1

i = 0 g {q1q3, q3q1} q1q3 −e2 f +eh + f

i = 1 h1 {q1q2, q2q1} q1q2 eh + f

i = 2 f2 ; SNF(g |F ) = eh + f

Turn fi F fi Choose fi+1

i = 0 g {q1q3, q3q1} q3q1 −5e2 f +2eh2 +13eh +10e + f

i = 1 f1 {q1q2, q2q1} q1q2 2eh2 +13eh +10e + f

i = 2 f2 ; SNF(g |F ) = 2eh2 +13eh +10e + f

Let S be a subalgebra of a G-algebra A and F ⊆ S. Khan et al. [KKB19] asks when SAGBI
normal form s0 = 0. If there is at least one choice of F -monomials such that s0 = 0, then they
said that s reduces weakly over F , and reduces strongly if all possible choices give s0 = 0.

The next definition is the analogue of Definitions 3.1 and 3.12.

DEFINITION 3.16 ([KKB19, DEFINITION 4]). Let S be a subalgebra of a G-algebra A. A subset
F ⊆ S is called a SAGBI basis for S if for every non-zero element s ∈ S there exists an F -monomial
m(F ) ∈ k〈F 〉A such that lm(s) = lm(m(F )).

The next result establishes that s ∈ k〈F 〉A reduces strongly to s0 = 0 if F is a SAGBI basis of S
(c.f. Propositions 3.1(C1) and 3.10).

PROPOSITION 3.17 ([KKB19, PROPOSITION 2]). Let S be a subalgebra of A and F ⊆ S. If F is a
SAGBI basis of S, then the following conditions hold:

(1) For each s ∈ A, s ∈ S if and only if SNF(s|F ) = 0.

(2) F generates the subalgebra S, i.e., S = k〈F 〉A .

For the computation of SAGBI bases in a G-algebra, Khan et al. proposed an algorithm and
explored some necessary elements for its construction. Next, we state the notion of critical pair
(c.f. Definitions 3.2 and 3.7).

DEFINITION 3.17 ([KKB19, DEFINITION 5]). Let F ⊆ A and m(F ) and m′(F ) be F -monomials.
The pair (m(F ),m′(F )) is a critical pair of F if lm(m(F )) = lm(m′(F )). The T -polynomial of critical
pair is defined as T (m(F ),m′(F )) = m(F )−km′(F ), where k ∈ k satisfies lt(m(F )) = lt(m′(F )).

Definition 3.18 is the analogous of Definition 3.11.

DEFINITION 3.18 ([KKB19, DEFINITION 6]). Let F be a set of polynomials in A and S = k〈F 〉A

be a subalgebra in A. We consider P ∈ S with the representation P =
t∑

i=1
ki mi (F ). Then the

height of P with respect to this representation is defined as ht(P ) = maxt
i=1{lm(mi (F ))}, where

the maximum is taken with respect to term ordering in A (the height is defined for a specific
representation of elements of A, not for the elements itself).

The next result is the most important theorem appearing in Khan et al. [KKB19]. This is the
analogous to Proposition 3.12).
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PROPOSITION 3.18 ([KKB19, THEOREM 1]). Assume that F generates S as a subalgebra in A.
Then F is a SAGBI basis of S if every T -polynomial of every critical pair of F gives zero SAGBI
normal form.

REMARK 14 ([KKB19, REMARK 4]). The necessary critical pairs used in SAGBI basis testing
are those critical pairs (m(F ),m′(F )) which cannot be factor as m(F ) = m1(F ) · · ·mt (F ), m′(F ) =
m′

1(F ) · · ·m′
t (F ) with lm(mi (F )) = lm(m′

i (F )), for all i . The T -polynomial induced by a necessary
critical pair is called the necessary T -polynomial. Since G-algebras are finite factorization
domains [BHL17, Theorem 1.3], therefore for any critical pair given by (m(F ),m′(F )) (possibly
not a necessary critical pair), the F -monomials m(F ) and m′(F ) have finite irreducible factors.
The necessary critical pairs are formed by these irreducible factors, therefore the zero SAGBI
normal form of T -polynomials induced by necessary critical pairs implies the SAGBI normal
form of T -polynomial of a critical pair (m(F ),m′(F )) are zero [Nor98, Proposition 6].

REMARK 15. To date, the polynomial composition problem for G-algebras has not been studied,
neither in Gröbner bases nor in SAGBI bases. Of course, these pending tasks can be considered
as near future work.

3.4 SKEW PBW EXTENSIONS

Gallego in her PhD Thesis [Gal15] (and related papers with Lezama [GL11, Gal16a]) developed
the Gröbner basis theory for skew PBW extensions (see also Fajardo et al. [Faj18, Faj19, Faj22,
FLP+24]), and then studied several homological properties of projective modules over these
extensions [GL17, Gal16b]. Nevertheless, the problem of SAGBI bases for these objects has never
been considered before. This fact motivates us to present a first approach toward a theory of
SAGBI bases for skew PBW extensions over k-algebras. We are interested in finding sufficient or
necessary conditions to guarantee the existence of these bases (Section 3.4.3), and in the topic
of bases under composition (Section 3.4.4).

We start by presenting some terminology used in this section.

3.4.1 BASIC DEFINITIONS

DEFINITION 3.19. Throughout this section, let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension
over a k-algebra R (that is,σi (k) = k and δi (k) = 0, for every k ∈ k, and 1 ≤ i ≤ n, as in Proposition
1.1), and F a finite set of non-zero elements of A. Let ⪯ be a monomial ordering on A in the
sense of Definition 1.3(iv).

(i) The notation k〈F 〉A means the subalgebra of A generated by F . The elements of k〈F 〉A are
precisely the polynomials in the set of formal intederminates F , viewed as elements of A.
The elements of k⊂ k〈F 〉A correspond to the constant polynomials.

(ii) By an F -monomial we mean a finite product of elements from F that will usually be written
as m(F ) (the “empty” monomial 1 is considered). When we speak of the leading monomial,
leading coefficient and leading term of an element in k〈F 〉A , we will always mean the
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leading monomial, leading coefficient and leading term, respectively, of the element
viewed as an element of A, relative to the monomial ordering ⪯ in A.

(iii) lm(F ) := {
lm( f ) | f ∈ F

}
. Since orders are preserved under multiplication, if m(F ) =

fi1 fi2 · · · fi t , with fi j ∈ F , then

lt(m(F )) = lt
(
lt

(
fi1

)
lt

(
fi2

) · · · lt( fi t

))
and lm(m(F )) = lm

(
lm

(
fi1

)
lm

(
fi2

) · · · lm(
fi t

))
.

EXAMPLE 3.7. Consider the diffusion algebra (Definition 1.8) σ(Q[x1, x2, x3])〈D1,D2,D3〉, and
let F := { f1 := x1x2D1D2 + x3D1D3, f2 := D2

2D2
3} be a subset of the algebra with the monomial

ordering deglex, and D1 ≻ D2 ≻ D3. An example of an F -monomial m(F ) ∈ k〈F 〉A is given by

m(F ) = f1 f2 = (x1x2D1D2 +x3D1D3)D2
2D2

3

= x1x2D1D3
2D2

3 +x3D1(D3D2)(D2D2
3)

= x1x2D1D3
2D2

3 +x3D1(D2D3 +x3D2 −x2D3)(D2D2
3)

= x1x2D1D3
2D2

3 +x3D1D2(D3D2)D2
3 +x2

3D1D2
2D2

3 −x2x3D1(D3D2)D2
3

= x1x2D1D3
2D2

3 +x3D1D2(D2D3 +x3D2 −x2D3)D2
3 +x2

3D1D2
2D2

3

−x2x3D1(D2D3 +x3D2 −x2D3)D2
3

= x1x2D1D3
2D2

3 +x2
2 x3D1D3

3 −x2x2
3D1D2D2

3

−2x2x3D1D2D3
3 +2x2

3D1D2
2D2

3 +x3D1D2
2D3

3.

EXAMPLE 3.8. For the algebra U ′(so3) defined in Example 1.2.7, consider the subset F = { f1 :=
I1I2 + I3, f2 := I1I3 + I2} of U ′

q (so3) with the monomial ordering deglex, and I1 ≻ I2 ≻ I3. An
F -monomial m(F ) ∈ k〈F 〉A is the following:

m(F ) = f1 f2

= (I1I2 + I3)(I1I3 + I2)

= I1(I2I1)I3 + I1I 2
2 + (I3I1)I3 + I3I2

= I1(q I1I2 −q1/2I3)I3 + I1I 2
2 + I3(q−1I1I3 +q−1/2I2)+q I2I3 −q−1/2I1

= q I 2
1 I2I3 −q−1/2I1I 2

3 + I1I 2
2 +q−1(q−1I1I3 +q−1/2I2)I3

+q−1/2(q I2I3 −q1/2I1)+q I2I3 −q−1/2I1

= q I 2
1 I2I3 + I1I 2

2 + (q−2 −q−1/2)I1I 2
3 + (q−3/2 +q1/2)I2I3

+q I1I3 − (1+q−1/2)I1

Notice that lm( f1) lm( f2) = (I1I2)(I1I3) = I1(q I1I2 − q1/2I3)I3 = q I 2
1 I2I3 − q1/2I1I 2

3 , and
lm

(
lm

(
f1

)
lm

(
f2

))= q I 2
1 I2I3 = lm(m(F )).

EXAMPLE 3.9. Let U (osp(1,2)) be the algebra generated by the indeterminates x, y, z subject to
the relations y z − z y = z, zx +xz = y , and x y − y x = x. U (osp(1,2)) corresponds to the universal
enveloping algebra of the Lie superalgebra osp(1,2) (see Sections 1.2.2 and 1.2.3). From [LR14, p.
1215], U (osp(1,2)) ∼=σ(k)〈x, y, z〉. Consider the subset F = { f1 = x2 y, f2 = x y + z} of U (osp(1,2))
with the monomial ordering deglex, and x ≻ y ≻ z. An example of an F -monomial m(F ) ∈ k〈F 〉A
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can be

m(F ) = f2 f1 = (x y + z)x2 y

= x(y x)x y + (zx)x y

= x(x y −x)x y + (−xz + y)x y

= x2(y x)y −x3 y −x(zx)y + (y x)y

= x2(x y −x)y −x3 y −x(−xz + y)y + (x y −x)y

= x3 y2 −2x3 y +x2(z y)−x y

= x3 y2 −2x3 y +x2(y z − z)−x y

= x3 y2 −2x3 y +x2 y z −x2z −x y.

Note that lm( f1) lm( f2) = (x y)(x2 y) = x(x y − x)x y = x2(y x)y − x3 y = x2(x y − x) − x3 y =
x3 y2 −2x3 y , and lm(m(F )) = lm

(
lm

(
f1

)
lm

(
f2

))= x3 y2.

EXAMPLE 3.10. In Example 3.7, lm( f1) lm( f2) = (D1D2)(D2
2D2

3) = D1D3
2D2

3, and lm(m(F )) is equal
to lm

(
lm

(
f1

)
lm

(
f2

))= D1D3
2D2

3.

3.4.2 REDUCTION AND ALGORITHM FOR THE SAGBI NORMAL FORM

Next, we present the notion of reduction which is necessary in the characterization of SAGBI
bases (c.f. Reductions 3.1, 3.2 and 3.3).

REDUCTION 3.4. Let A =σ(R)〈x1, . . . , xn〉 be a skew PBW extension over a k-algebra R, F a finite
set of non-zero elements of A, and s, s0 elements of A. We say that s0 is a one-step s-reduction
of s with respect to F if there exist an F -monomial m(F ) and k ∈ k such that the following two
conditions hold:

(i) k lt(m(F )) = lt(s), and

(ii) s0 = s −km(F ).

If the first condition of Reduction 3.4 fails, then the s-reduction of s with respect to F is s.
When we apply the one-step s-reduction process iteratively, we obtain a special form of s with
respect to F (which cannot be s-reduced further with respect to F ), called SAGBI normal form
(c.f. Proposition 3.5). In this case, we write s0 := SNF(s|F) (c.f. Proposition 3.5 and Reduction 3.3).
Algorithm 2 allows us to compute the SNF.

Algorithm 2:

INPUT :A fixed monomial ordering ⪰ on Mon(A), F ⊆ A and s ∈ A.
OUTPUT :h ∈ A, the SAGBI normal form
INITIALIZATION: s0 := s; Fs0 := {km(F ) | k ∈ k and k lt(m(F )) = lt (s0)};

while s0 ̸= 0 and Fs0 ̸= ; do
choose km(F ) ∈ Fs0 ; s0 := s0 −km(F ); Fs0 := {km(F ) | k ∈ k and k lt(m(F )) = lt(s0)};

return s0;
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Notice that for different choices of km(F ), the output of SNF may also be different. Examples
3.11, 3.15 and 3.13 illustrate this situation.

EXAMPLE 3.11. Consider the Jordan plane (Example 1.1). Let k〈F 〉A be the subalgebra generated
by the set F := {q1, q2, q3}, where q1 := x2, q2 := y, q3 := x y + y , and g = x3 y + y ∈ J . For the
computation of SNF(g |F ), we use Algorithm 2.

Let g = x3 y + y := s0. If Fs0 = {q1q3, q3q1}, then we have two possibilities to choose km(F ) ∈
Fs0 . Let us see them:

(i) If km(F ) := q1q3, then s0 := −x2 y + y and Fs0 := {−q1q2,−q2q1}. Now, we take km(F ) =
−q2q1, which implies s0 := y ∈ F, whence SNF(g |F ) = 0.

(ii) If km(F ) := q3q1, then s0 := −2x4 − x2 y −2x3 + y and Fs0 := {−2(q1)2}, and so km(F ) =
−2(q1)2, whence s0 :=−x2 −2x3 + y , which implies that Fs0 := {−q1q2,−q2q1}. In this way,
km(F ) =−q1q2, and we obtain s0 :=−2x3 + y and Fs0 =;. Thus, SNF(g |F ) =−2x3 + y.

EXAMPLE 3.12. Consider the Askey-Wilson algebra AW (3) (Section 1.2.7) with the monomial
ordering deglex and K0 ≻ K1 ≻ K2. Let k〈F 〉A be the subalgebra generated by the set F :=
{q1, q2, q3}, where q1 := K0K1 +K2, q2 := K0, q3 := K0K2, and g = K 2

0 K1K2 +K2 ∈ AW (3). Let us
find SNF(g |F ) by using Algorithm 2.

Let s0 := g = K 2
0 K1K2 +K2. If Fs0 = {e−2ωq1q3, q3q1}, then we have two options to choose

km(F ) ∈ Fs0 :

(i) If

km(F ) := e−2ωq1q3

= e−2ω(e2ωK 2
0 K1K2 +

(
e−2ω−eω

)
K0K 2

2 +e−ωBK0K2 +e−ωC1K1K2 +e−ωD1K2),

then
s0 := (

e−ω−e−4ω)
K0K 2

2 −e−3ωBK0K2 −e−3ωC1K1K2 +
(
1−e−3w D1

)
K2,

and Fs0 =;. Thus,

SNF(g |F ) = (
e−ω−e−4ω)

K0K 2
2 −e−3ωBK0K2 −e−3ωC1K1K2 +

(
1−e−3w D1

)
K2.

(ii) If

km(F ) := q3q1

= K 2
0 K1K2 −e−ωC0K 3

0 +e−ωC1K0K 2
1 +K0K 2

2 −e−ωD0K 2
0 +e−ωD1K0K1,

then
s0 := e−ωC0K 3

0 −e−ωC1K0K 2
1 −K0K 2

2 +e−ωD0K 2
0 −e−ωD1K0K1 +K2,

and Fs0 := {e−ωC0q3
2 }. In this way, km(F ) = e−ωC0q3

2 , whence

s0 :=−e−ωC1K0K 2
1 −K0K 2

2 +e−ωD0K 2
0 −e−ωD1K0K1 +K2,
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which implies that Fs0 =;. We conclude that

SNF(g |F ) =−e−ωC1K0K 2
1 −K0K 2

2 +e−ωD0K 2
0 −e−ωD1K0K1 +K2.

EXAMPLE 3.13. Consider the quantized enveloping algebra of sl2(k) (Section 1.2.7) with the
monomial ordering deglex, and E ≻ F ≻ K ≻ K −1. Let k〈F 〉A be the subalgebra generated by
the set F := {q1, q2, q3}, with q1 := EK −F K −1, q2 := EF, q3 := F K −1, and g = E 2F K +EF K 2 ∈ A.
With the aim of finding SNF(g |F ), let g = K 2

0 K1K2 +K2 := s0. If Fs0 = {q1q2, q2q1}, then:

(i) If km(F ) := q1q2 = E 2F K −EF 2K −1 + F−F K −2

q−q−1 , then s0 := EF 2K −1 +EF K 2 − F−F K −2

q−q−1 and

Fs0 = {q2q3, q3q2}. Now, if km(F ) = q2q3 = EF 2K −1, we get s0 := EF K 2 − F−F K −2

q−q−1 , which

implies Fs0 =;. Thus, SNF(g |F ) = EF K 2 − F−F K −2

q−q−1 . On the other hand, if km(F ) = q3q2 =
EF 2K −1− F−F K −2

q−q−1 , it follows that s0 := EF K 2 which implies that Fs0 =;. Thus, SNF(g |F ) =
EF K 2.

(ii) Let km(F ) := q2q1 = E 2F K −EF 2K −1 − EK 2−E
q−q−1 . We have s0 := EF 2K −1 +EF K 2 + EK 2−E

q−q−1

and Fs0 = {q2q3, q3q2}. If km(F ) = q2q3 = EF 2K −1, we get s0 := EF K 2 + EK 2−E
q−q−1 , whence

Fs0 =;. This implies that SNF(g |F ) = EF K 2 − EK 2−E
q−q−1 . Now, considering km(F ) = q3q2 =

EF 2K −1 − F−F K −2

q−q−1 , it follows that s0 := EF K 2 + EK 2−E
q−q−1 + F−F K −2

q−q−1 , and so Fs0 = ;. Hence,

SNF(g |F ) = EF K 2 + EK 2−E
q−q−1 + F−F K −2

q−q−1 .

If S is a subalgebra of a skew PBW extension A and F is a subset of S, then our interest lies in
the case when SAGBI normal form is zero. If there is at least one choice of F -monomials such
that s0 = 0, then we say s reduces weakly over F, and reduces strongly if all possible choices give
s0 = 0. This is the same as the case of G-algebras.

EXAMPLE 3.14. The reduction process done in Example 3.11 shows us that g = x3 y + y ∈ J

reduces weakly over F.

EXAMPLE 3.15. Consider the 3-dimensional skew polynomial algebra generated by the inde-
terminates x, y, z restricted to relations y z − z y = z, zx + xz = 0, and x y − y x = x (Proposi-
tion 1.5(2)(v)). Let k〈F 〉A be the subalgebra generated by the set F := {q1, q2, q3, q4}, where
q1 := x2, q2 := z, q3 = x y + z, q4 = x3 with the monomial ordering deglex, x ≻ y ≻ z, and con-
sider the element s = x3 y + z ∈ A. Let s = x3 y + z := s0. If Fs0 = {q1q3, q3q1}, then we have two
options to choose km(F ) ∈ Fs0 :

(i) If km(F ) := q1q3, then s0 :=−x2z + z and Fs0 := {−q1q2 =−q2q1}. Now, we take km(F ) =
−q2q1, whence s0 := z ∈ F, whence SNF(s|F ) = 0.

(ii) If km(F ) := q3q1, then s0 := 2x3 + x2z + z and Fs0 = {2q4}. By taking km(F ) = 2q4, we get
s0 := x2z + z and Fs0 := {q1q2 = q2q1}. If km(F ) = q2q1, then s0 := z ∈ F and SNF(s|F ) = 0.

These facts show that s reduces strongly over F.

The next definition is completely analogous to Definitions 3.1, 3.12, and 3.16.
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DEFINITION 3.20. Let S be a subalgebra of a skew PBW extension A. A subset F ⊆ S is called a
SAGBI basis for S if for all non-zero element s ∈ S, there exists an F -monomial m(F ) in k〈F 〉A

such that lm(s) = lm(m(F )).

As occurs in the setting of free algebras, since monomial orderings are compatible with
the multiplication, an equivalent formulation of the definition is that F is a SAGBI basis if the
leading term of every non-zero element in S can be written as a product of leading terms of
elements in F .

EXAMPLE 3.16. Consider A as in the Example 3.15 and let k〈F 〉A be the subalgebra generated
by the set F = {

q1 = z y, q2 =−z y +x, q3 =−y +x
}

. If we use deglex with z ≻ y ≻ x we have
lm(F ) = {z y, y}. But f = q1q3 −q3q2 = 2z y x − z2 + y2 + y x − x2 − z ∈ S, and lm( f ) = z y x cannot
be written as a product of terms in lm(F ). Thus, F is not a SAGBI basis.

The following result establishes that when F is a SAGBI basis of S, then s ∈ k〈F 〉A reduces
strongly to s0 = 0. This is the corresponding version of Propositions 3.1(C1), 3.10, and 3.17.

PROPOSITION 3.19. Let S be subalgebra of a skew PBW extension A and F ⊆ S. If F is a SAGBI
basis of S, then the following assertions hold:

(1) For each s ∈ A, s ∈ S if and only SNF(s|F ) = 0.

(2) F generates the subalgebra S, i.e., S = k〈F 〉A .

Proof. (1) If SNF(s|F ) = 0, then s =
l∑

i=1
ki mi (F ), where ki ∈ k, and hence s ∈ S.

Conversely, suppose that s ∈ S and SNF(s|F ) ̸= 0. This means that it cannot be reduced
further, i.e., lm(SNF(s|F )) ̸= lm(m(F )), for any F -monomial m(F ), and this contradicts
that F is a SAGBI basis.

(2) It follows from Proposition 3.19(1). More exactly, s ∈ S if and only if SNF(s|F ) = 0, that is,

s =
l∑

i=1
ki mi (F ), with ki ∈ k. Therefore s ∈ k〈F 〉A , which shows that S = k〈F 〉A .

3.4.3 SAGBI BASES CRITERION

In this section, we present an algorithm to calculate SAGBI basis in skew PBW extensions. Once
more again, we assume that A =σ(R)〈x1, . . . , xn〉 is a skew PBW extension over a k-algebra R.

As in the previous sections, below we present the definition of critical pair (c.f. Definitions
3.2, 3.7, and 3.17).

DEFINITION 3.21. Let F be a subset of a skew PBW extension A, and m1(F ), m2(F ) two F -
monomials. The pair given by (m1(F ),m2(F )) is called a critical pair of F if lm(m1(F )) =
lm(m2(F )). The T -polynomial of a critical pair (m1(F ),m2(F )) is defined as T (m1(F ),m2(F )) =
m1(F )−km2(F ), where k ∈ k is such that lt(m1(F )) = k lt (m2(F )) .

The following definition is precisely our adaptation of Definition 3.11.
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DEFINITION 3.22. Let F be a subset of a skew PBW extension A, and k〈F 〉A the subalgebra

generated by F in A. Let P =
t∑

i=1
ki mi (F ) ∈ k〈F 〉A . The height of P is defined as ht(P ) =

maxt
i=1 {lm(mi (F ))} , where the maximum is taken with respect to one monomial ordering ⪯ in

A.

The height is defined for a specific representation of elements of A, not for the elements
itself.

The following result is one of the most important of the chapter. This is the analogous
version of Propositions 3.8 and 3.18 in the case of free algebras and G-algebras, respectively.

THEOREM 3.20. Suppose that F generates S as a subalgebra in the skew PBW extension A. Then F
is a SAGBI basis of S if an only if every T -polynomial of every critical pair of F gives zero SAGBI
normal form.

Proof. If H is a SAGBI basis of S then every T -polynomial is an element of S = k〈F 〉A and its
SAGBI normal form is equal to zero by part (1) of Proposition 3.19.

Conversely, suppose given 0 ̸= s ∈ S. It is sufficient to prove that it has a representation

s =
t∑

p=1
kp mp (F ), where kp ∈ k and mp (F ) ∈ k〈F 〉A with lm(s) = ht

(
t∑

p=1
kp mp (F )

)
= lm(mi (F )).

Let s ∈ S given by s =
t∑

p=1
kp mp (F ) with smallest possible height X among all possible represen-

tations of s in S, that is, X = maxt
p=1

{
lm

(
mp (F )

)}
. It is clear that X ⪰ lm(s).

Suppose X ≻ lm(s) i.e., cancellation of terms occur then there exist at least two F -monomials
such that their leading monomial is equal to X . Assume we have only two F -monomials

mi (F ),m j (F ) in the representation s =
t∑

p=1
kp mp (F ) such that lm(mi (F )) = lm

(
m j (F )

) = X .

If T
(
mi (F ),m j (F )

)= mi (F )−km j (F ), we can write

s =
t∑

p=1
kp mp (F ) (3.16)

= ki
(
mi (F )−km j (F )

)+ (
k j +ki k

)
m j (F )+

t∑
p=1,p ̸=i , j

kp mp (F ) (3.17)

= ki T
(
mi (F ),m j (F )

)+ (
k j +ki k

)
m j (F )+

t∑
p=1,p ̸=i , j

kp mp (F ). (3.18)

Since T
(
mi (F ),m j (F )

)
has a zero SAGBI normal form, then this T -polynomial is either zero

or can be written as sum of F -monomials of height lm
(
T

(
mi (F ),m j (F )

))
which is less than

X . If k j +ki k is equal to zero, then the right-hand side of expression (3.18) is a representation
of s with height less than X , which contradicts our initial assumption that we have chosen
a representation of s with smallest possible height. Otherwise, the height is preserved, but
on the right-hand side of expression (3.18), we have only one F -monomial m j (F ) such that
lm

(
m j (F )

)= X , which is a contradiction as at least two F -monomials of such type must exist in
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the representation of s.

REMARK 16. From Theorem 3.20, it follows that every subset H ⊂ A consisting only of terms or
monomials is a SAGBI basis since every T -polynomial is clearly equal to zero.

As we can see the elements to consider for the test of the basis SAGBI are many and some-
times unlimited. For the case of free associative algebras over the arbitrary field k, Nordbeck in
[Nor98] gives special conditions on the critical pairs to be taken into account for the construction
of a SAGBI basis, reducing the number of such pairs, following we show two examples of skew
PBW extensions where we show that this construction is not valid in our object of study. From
the above, a new question arises: What conditions should we impose so that in the construction
of a SAGBI basis the critical pairs to be taken into account are reduced and thus be able to build
a finite algorithm?

The following two examples show that the assertion [Nor98, Proposition 6] for free algebras
does not hold for skew PBW extensions.

EXAMPLE 3.17. Consider the Dispin algebra U (osp(1,2)) (Proposition 1.5 (2)(i)), the set F given
by F = {x y, y z, xz, z2, x y +xz, y z + z2} and S = k〈F 〉A . If we use the monomial ordering deglex
with x ≻ y ≻ z, then we get the critical pair (m,m′) of F , where

m = (x y +xz)y z = x y2z +x y z2 −xz2, and

m′ = x y(y z + z2) = x y2z +x y z2.

Notice that m = m1m2 and m′ = m′
1m′

2, with lm(mi (F )) = lm(m′
i (F )), i = 1,2. It follows that

T (m1(F ), m′
1(F )) = xz is a monomial of S with height less than lm(m1(F )) = x y , and T (m2(F ),

m′
2(F )) = z2 is a monomial of S with height less than lm(m2(F )) = y z. Nevertheless, the T -

polynomial T (m(F ),m′(F )) =−xz2 is not a sum of monomials of S, which shows that [Nor98,
Proposition 6] does not hold in the setting of skew PBW extensions.

EXAMPLE 3.18. Consider the Sklyanin algebra S = k{x, y, z}/〈ay x + bx y + cz2, axz + bzx +
c y2, az y +by z + cx2〉, where a,b,c ∈ k ([Rog16, Example 1.14]). If c = 0 and a,b ̸= 0 then we

obtain the defining relations y x =−b

a
x y ; zx =−a

b
xz and z y =−b

a
y z. It can be seen by using

[RS17a, Theorem 1.14] that S ∼=σ(k)〈x, y, z〉. Let the set F ⊆S given by

F = {y z + z2, y z + z, z2 − z}

and S = k〈F 〉S . If we use the monomial ordering deglex with x ≻ y ≻ z, then let (m,m′) be a
critical pair of F , with

m = (y z + z2)(y z + z2) =−b

a
y2z2 + y z3 + b2

a2 y z3 + z4 (3.19)

m′ = (y z + z)(y z + z) =−b

a
y2z2 + y z2 − b

a
y z2 + z2. (3.20)

Note that m = m1m2 and m′ = m′
1m′

2, where lm(mi (F )) = lm(m′
i (F )), for i = 1,2, and

T (m1(F ), m′
1(F )) = z2 − z is a monomial of S with height less than lm(m1(F )) = y z; similarly,

T (m2(F ), m′
2(F )) = z2 − z is a monomial of S with height less than lm(m2(F )) = y z. However,
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T (m(F ), m′(F )) =
(
1+ b2

a2

)
y z3+z4+

(
b

a
−1

)
y z2−z2 is not a sum of monomials of S. Once more

again, [Nor98, Proposition 6] does not hold.

3.4.4 SAGBI BASES UNDER COMPOSITION

In this section, we present the original results about SAGBI bases under composition in the
setting of skew PBW extensions. We will consider similar definitions to those corresponding
presented in Sections 3.1.5, 3.2.5, and the notation used in Section 3.4.1. More exactly:

(1) Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over R and F a finite set of non-zero
elements of A.

(2) k〈F 〉A means the subalgebra of A generated by F , that is, the polynomial set in the F -
variables in A.

(3) m(F ) denotes a monomial in terms of the elements of F , and we call it an F -monomial.

(4) When we speak of the leading monomial, leading coefficient and leading term of an
element in k〈F 〉A , we will always mean the leading monomial, leading coefficient and
leading term, respectively, of the element viewed as an element of A, relative to the fix
monomial ordering in Mon(A). lm(F ) := {lm( f ) | f ∈ F }.

(5) Let S be a subalgebra of A. A subset H ⊂ S is called a SAGBI basis for S if for every non-zero
s ∈ S, there exists a monomial m such that ŝ = �m(H).

(6) Since monomial orderings are preserved by multiplication,

m(H) =∏
i

hi (hi ∈ H) implies �m(H) =∏
i

ĥi

that is, �m(H) = m(Ĥ). (3.21)

This means that an equivalent formulation of Definition 3.6 is that H is a SAGBI basis if
the leading term of every non-zero element in S can be written as a product of leading
terms of elements in H [Nor02, Remark 1]. It can be seen that if H is a SAGBI basis for S,
then H generates S, that is, S = k〈H〉A . We say that H is a SAGBI basis meaning that H is a
SAGBI basis for k〈H〉A .

(7) We will say that two monomials m,m′ form a critical pair (m,m′) of H if �m(H) = àm′(H).
If c ∈ k is such that m(H) and cm′(H) have the same leading coefficient, then we define
the T -polynomial of (m,m′) as T (m,m′) = m(H)− cm′(H). [Nor02, Definition 2]. The
idea with the constant c is that the leading terms cancel in T (m,m′), whence áT (m,m′) <�m(H) = àm′(H).

(8) Every subset H ⊂ A consisting only of terms (or terms times coefficients) is a SAGBI basis.
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(9) Let Θ = {θ1, . . . ,θn} be a subset of A, and let f ∈ A. The composition of f by Θ, written
f ◦Θ, is the polynomial obtained from f by replacing each ocurrence of the xi with θi .
For a subset F ⊂ A, F ◦Θ := {

f ◦Θ | f ∈ F
}
. Once more again, it is assumed that θi ∉ k for

all i . This is used to guarantee that X ̸= 1 implies X ◦ Θ̂ ̸= 1, for every X ∈ Mon(A). It is
straightforward to see that two forms of compositions are associative in the following
sense:

m(H)◦Θ= m(H ◦Θ). (3.22)

(10) Notice that the notion m(H ◦Θ) makes sense due to the natural correspondence between
the sets H = {h1,h2, . . . , } and H◦Θ= {h1 ◦Θ,h2 ◦Θ, . . . }. Note also that for elements f , g ∈ A,

( f g )◦Θ= f ◦Θg ◦Θ, (3.23)

( f + g )◦Θ= f ◦Θ+ g ◦Θ (3.24)

Having in mind that the order is preserved by multiplication, in a similar way to (3.1),

�X ◦Θ= X ◦ Θ̂, for every X ∈ Mon(A). (3.25)

(11) LetΘ= {θ1, . . . ,θn} be a subset of A. Composition byΘ is compatible with the monomial
ordering ≺ if for all monomials Xi , X j ∈ Mon(A), we have

Xi ≺ X j implies Xi ◦ Θ̂≺ X j ◦ Θ̂. (3.26)

For an element f ∈ A written as a linear combination of monomials in decreasing order

f =
t∑

i=1
ri Xi , X1 ≻ ·· · ≻ X t (Remark 1 (iv)), if composition by Θ is compatible with the

monomial ordering ≺, then X1 ◦ Θ̂≻ ·· · ≻ Xs ◦ Θ̂, so expressions (3.5) and (3.6) guarantee
that �f ◦Θ= f̂ ◦ Θ̂. (3.27)

Composition by Θ is compatible with nonequality if for all monomials Xi , X j ∈ Mon(A),
we have

Xi ̸= X j implies Xi ◦ Θ̂ ̸= X j ◦ Θ̂. (3.28)

Since monomial orderings are total, if composition byΘ is compatible with the monomial
ordering ≺, then composition byΘ is compatible with nonequality [Nor02, Lemma 1].

Lemma 3.21 and Proposition 3.22 are the analogues of [Nor02, Lemma 2 and Proposition
1], respectively. We need these two results to prove the sufficiency of the compatibility with the
ordering in Theorem 3.26.

LEMMA 3.21. Suppose that the composition byΘ is compatible with the ordering ≺. If (m,m′) is a
critical pair of H ◦Θ, then (m,m′) is also a critical pair of H.

Proof. Suppose that (m,m′) is a critical pair of H ◦Θ. By (3.22), m(H ◦Θ) = m(H )◦Θ and m′(H ◦
Θ) = m′(H) ◦Θ, whence lt(m(H ◦Θ)) = lt(m′(H ◦Θ)) and so lt(m(H)) ◦ lt(H) = lt(m′(H)) ◦ lt(Θ)
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due to (3.25). Now, by assumption the composition is compatible with the ordering, and hence
with the nonequality, which implies that lt(m(H)) = lt(m′(H)), that is, (m,m′) is a critical pair of
H .

The following result illustrates the necessity of the compatibility with the ordering.

PROPOSITION 3.22. If composition byΘ is compatible with the ordering ≺, then composition byΘ
commutes with noncommutative SAGBI bases computation.

Proof. Consider an arbitrary SAGBI basis H . We have to show that H ◦Θ is also a SAGBI basis.
Consider an arbitrary critical pair of H ◦Θ. By Lemma 3.21 we know that (m,m′) is also a critical
pair of H . Theorem 3.20 guarantees the expression

m(H)− cm′(H) =∑
i

ci mi (H) (or zero), àmi (H) ≺ �m(H) = àm′(H), for all i . (3.29)

If we compose the T -polynomial byΘ, then expressions (3.22), (3.23), and (3.24) guarantee

m(H ◦Θ)− cm′(H ◦Θ) =∑
i

ci mi (H ◦Θ) (or zero), (3.30)

Now, if we compose the inequality in expression (3.29) by Θ̂, by (3.25) and (3.26) we get

ámi (H ◦Θ) ≺ ám(H ◦Θ) = ám′(H ◦Θ), for all i . (3.31)

Notice that the leading terms in the left-hand side of expression (3.30) cancel, so the constant
c must be the same as in the definition of the T -polynomial of (m,m′) with respect to H ◦Θ.
Therefore, expressions (3.30) and (3.31) are a representation in the sense of Theorem 3.20, and
having in mind that the critical pair (m,m′) of H ◦Θwas arbitrary, it follows that H ◦Θ is a SAGBI
basis.

Now, the proof of the necessity of the compatibility with the ordering in Theorem 3.26
requires of Lemma 3.23 and Proposition 3.24 which are the analogue versions of [Nor02, Lemma
3 and Proposition 2], respectively.

LEMMA 3.23. If u, v are two monomials with u ̸= v but u ◦ Θ̂ = v ◦ Θ̂, then for every w ≺ u,
H = {u −w, v} is a SAGBI basis.

Proof. It is clear that both u and v must be different from 1. If this is not the case, say v = 1,
then u ̸= 1, and having in mind that the elements θi ’s are nonconstant, v ◦ Θ̂ = u ◦ Θ̂ ̸= 1, a
contradiction.

The idea is to show that H has no non-trivial critical pairs, that is, if �m(H) = àm′(H) then
m = m′, because in this situation H is a SAGBI basis, and hence every T -polynomial must be
identically equal to zero. Let us see the proof by contradiction.

Let (m,m′) be a non-trivial arbitrary critical pair of H . Notice that Ĥ = {u, v}, and so �m(H) =
m(Ĥ ) = uk v l and àm′(H) = us v t , and uk v l = us v t . Since the critical pair is non-trivial, then k ̸= s
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and l ̸= t , which means that k > s and l < t or vice versa. In this way, it follows that ui = v j , with
i , j ≥ 0. If we compose this equality by Θ̂, expression (3.23) implies that (u ◦ Θ̂)i = (v ◦ Θ̂) j . By
using that u ◦ Θ̂ = v ◦ Θ̂ ̸= 1, it follows that i = j . Finally, the equality ui = v j implies u = v , a
contradiction, whence the critical pair (m,m′) is trivial. We conclude that H is a SAGBI basis.

PROPOSITION 3.24. If composition byΘ commutes with noncommutative SAGBI bases computa-
tion, then composition byΘ is compatible with nonequality.

Proof. LetΘ be commuting with SAGBI bases computation. Once more again, we proceed by
contradiction.

Suppose that there exist two different monomials u, v ∈ Mon(A) but u ◦ Θ̂= v ◦ Θ̂. As we saw
in the proof of Lemma 3.23, u, v ̸= 1. Since every subset H ⊂ A consisting only of monomials
(or terms) is a SAGBI bases, H = {u, v} is a SAGBI basis, and so H ◦Θ = {u ◦Θ, v ◦Θ} also is.
Hence, if f = u ◦Θ− v ◦Θ ∈ k〈H ◦Θ〉A is not equal to 1 or zero, then the assertion follows. Since
f̂ ≺ u ◦ Θ̂= v ◦ Θ̂, f̂ cannot be written as a product from �H ◦Θ= {u ◦ Θ̂, v ◦ Θ̂}, which means that
H ◦Θ cannot be a SAGBI basis [Nor02, Remark 1].

Let u′ = uxi and v ′ = v xi for some indeterminate xi in the skew PBW extension of A. Note
that u′ ◦Θ= (u ◦Θ)θi and

u′ ̸= v ′ and �u′ ◦Θ= �v ′ ◦Θ. (3.32)

If f = u ◦Θ− v ◦Θ= 1, then we consider H ′ = {u′, v ′} which is a SAGBI basis by Remark 16.
Now,

f ′ = u′ ◦Θ− v ′ ◦Θ= (u ◦Θ)θi − (v ◦Θ)θi = f θi = θi ∈ k〈H ′ ◦Θ〉A ,

and, once more again, it follows that H = {u′ ◦Θ, v ′ ◦Θ} cannot be a SAGBI basis (note that
θ̂i ≺ �u′ ◦Θ= �v ′ ◦Θ).

We only need to consider the case f = u ◦Θ−v ◦Θ= 0 (e.g., ifΘ= Θ̂). Let H ′ = {u′+xi , v ′}. By
expression (3.32) and xi ≺ u′ = uxi , it follows that H ′ is a SAGBI basis by Lemma 3.23. As above,
we obtain a contradiction from f ′ = u′ ◦Θ− v ′ ◦Θ= θi ∈ k〈H ′ ◦Θ〉A .

PROPOSITION 3.25. If composition byΘ commutes with noncommutative SAGBI bases computa-
tion, then composition byΘ is compatible with the ordering ≺.

Proof. Suppose that composition by Θ commutes with SAGBI bases computation. Let u, v ∈
Mon(A) two monomials with u ≻ v . We want to show that u◦Θ̂≻ v ◦Θ̂. Due to u ̸= v , Proposition
3.24 shows that we cannot have u ◦ Θ̂= v ◦ Θ̂, which means that we exclude the case u ◦ Θ̂≺ v ◦ Θ̂.

By Remark 16 we know that H ′ = {u, v} is a SAGBI basis, and due to (3.21), k〈H〉A = k〈H ′〉A ,
and Ĥ = Ĥ ′, we get that H = {u − v, v} is a SAGBI basis. Thus, H ◦Θ= {u ◦Θ− v ◦Θ, v ◦Θ} must
be also a SAGBI basis.

Consider u◦Θ̂≺ v◦Θ̂. It follows that �H ◦Θ= {v◦Θ̂} and u◦Θ= (u◦Θ−v◦Θ)+v◦Θ ∈ k〈H◦Θ〉A .
However, as we saw in the proof of Proposition 3.24, u ◦ Θ̂≺ v ◦ Θ̂, and so u ◦ Θ̂ ̸= 1 cannot be
expressed as a power of v ◦ Θ̂which means that H ◦Θ is not a SAGBI basis. In other words, the
assumption u◦Θ̂≺ v ◦Θ̂ is false, and hence the composition byΘ is compatible with the ordering
≺.
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Finally, we present the most important result of this section that follows from Propositions
3.22 and 3.25.

THEOREM 3.26. Composition byΘ commutes with noncommutative SAGBI bases computation if
and only if the composition is compatible with the ordering ≺.

3.5 FUTURE WORK

As we said in Section 3.4, Gallego developed the theory of Gröbner bases of skew PBW extensions.
However, the problem of Gröbner bases under composition of these extensions has not been
investigated, so a first natural task is to investigate this problem. In fact, recently Kanwal and
Khan [KK23] considered the question of SAGBI-Gröbner bases under composition. As expected,
this paper is of our interest in the near future.

Related with the topic of Gröbner bases, another interesting questions concern the notions of
Universal Gröbner basis and the Gröbner Walk method. In the commutative setting, a set F which
is a Gröbner basis for an ideal I of the commutative polynomial ring k[x1, . . . , xn] with respect
to every monomial ordering is called a universal Gröbner basis. From [AL94, Exercise 1.8.6(d)]
we know that every ideal of k[x1, . . . , xn] has a basis of this kind. Since some approaches to this
notion of basis in the noncommmutative case have been developed by Weispfenning [Wei89],
we consider interesting to ask the possibility of these bases in the setting of skew PBW extensions.
With respect to the Gröbner Walk method, this is a basis conversion method proposed by Collart,
Kalkbrener, and Mall [CKM97] with the aim of converting a given Gröbner basis, respect to a
fixed monomial order, of a polynomial ideal I of the commutative polynomial ring k[x1, . . . , xn]
to a Gröbner basis of I with respect to another monomial order. Since some approaches have
been realized to Gröbner Walk method in the noncommutative setting (for instance, Evans in his
PhD Thesis [Eva05] who presented an algorithm for a noncommutative Gröbner Walk in the case
of conversion between two harmonious monomial orderings), it is important to us to investigate
the possibility of this procedure in the setting of Gröbner bases of skew PBW extensions.

Last, but not least, regarding the computational development of SAGBI bases, this has been
strongly driven in the commutative case as we can see in the literature (e.g., [HMAR13, KR05,
GP08] and references therein), and recently in Robbiano and Bigatti’s paper [RB22]. Now, since
Fajardo in his PhD Thesis [Faj18], and related papers [Faj19, Faj22, FLP+24] and [FGL+20, Appen-
dices C, D, E], developed the library SPBWE.lib in Maple with the aim of making homological
and constructive computations of Gröbner bases of skew PBW extensions, it is natural to con-
sider the problem of developing a computational approach to the SAGBI basis theory for skew
PBW extensions following the ideas presented in Section 3.4.



CHAPTER 4

Involutive BASES IN SKEW PBW EXTENSIONS

In this chapter, we present a first approach toward a theory of Involutive bases for skew PBW
extensions.

We start in Section 4.1 with a motivation about the study of Involutive bases. We mention
general facts of the theory in comparison with the theory of Gröbner bases, and present some
examples that illustrate the differences between both kinds of bases.

Next, Section 4.2 presents an illustrative example for the computation of Involutive bases
in the noncommutative setting, and more exactly, the Weyl algebras. We also recall the most
important preliminaries on Involutive divisions and total orders following the ideas developed
by Gerdt and Blinkov [GB98a, GB98b], Hausdorff et al. [HSS02], and Saito et al. [SST00].

In Section 4.3, we consider the polynomial algebras of solvable type defined by Seiler [Sei10]
with some technical details about its theory of Gröbner and Involutive bases. This will be use-
ful in the next section due to the similarities between these algebras and skew PBW extensions.

Section 4.4 contains the treatment on Involutive bases for skew PBW extensions. We
explore the relationships between Gerdt and Blinkov’s ideas [GB98a, GB98b], Seiler’s theory
[Sei10] and the theory of Gröbner bases presented by Gallego and Lezama [Gal15, Gal16a, GL11].
We start in Section 4.4.1 with definitions and preliminaries on Involutive bases in the setting of
these extensions. Then, Section 4.4.2 presents some results with the aim of proving the existence
of a finite Involutive basis for a left ideal of a skew PBW extension (Theorem 4.16).

Finally, Section 4.5 contains some ideas for a possible research on Involutive bases.

4.1 MOTIVATION

Janet-Riquier theory of linear systems of partial differential equations is the origin of Involutive
bases (see Janet [Jan20, Jan24, Jan29], Riquier [MR90, Riq10], Thomas [Tho37], and Tresse [Tre94]

77
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for a detailed history of the topic). Briefly, the key idea in the theory of Involutive bases de-
veloped by Janet is to assign to every generator in a basis a subset of all indeterminates: its
multiplicative indeterminates. This way of assigning is called an involutive division and it is a
restriction of the usual divisibility relation on terms (also called monomials by some authors,
as we saw in different sections of Chapter 3). If one only allow to multiply each generator by
polynomials in its multiplicative indeterminates, then the involutive standard representation
is unique, and yields to interesting combinatorial properties not shared by classical Gröbner
bases in the sense considered in Chapter 3 (that is, works such as Buchberger [Buc65], Adams
and Loustaunau [AL94], Becker and Weispfenning [BW93], and Cox et al., [CLO15]). Note that,
in comparison with the theory of Gröbner bases, where it is well-known that given a Gröbner
basis G the remainder obtained from dividing a polynomial with respect to G will always be the
same no matter how the division is carried out, in the case of Involutive bases the difference
is that there is only one way for the division to be performed, which guarantees that unique
remainders are also obtained in a unique way.

It is important to say that the Janet-Riquier theory in its original form lacks only the concept
of reduction to a normal form; in other case, it contains all the ingredients of Gröbner bases.
Several relations between both kinds of bases have been established by Wu [Wu91], and then by
Blinkov et al., [GB98a, GB98b, ZB93] who introduced a special form of non-reduced Gröbner
bases for polynomial ideals. In this way, Involutive bases are a special family of non-reduced
Gröbner bases with additional combinatorial properties.

Due to these combinatorial properties appearing in the theory of Involutive bases it is
possible to define Stanley decompositions (c.f. Seiler [Sei01]). This kind of decompositions were
introduced with the aim of carrying Hilbert function computations (see Stanley [Sta78] for more
details) and it has been showed that these are very useful in applications like invariant theory
(e.g., Sturmfels and White [SW91], Gatermann [Gat00]) or the computation of syzygy resolutions
(Seiler [Sei01]). With respect to Gröbner bases, Gerdt et al., [GBY01] proved that Involutive
bases are very efficient and represent an useful alternative to the Buchberger algorithm for the
computation of Gröbner bases.

In the noncommutative setting, it is interesting to determine whether Involutive bases
can also be defined for ideals in rings of polynomial type. Some approaches have been realized
in this line of thinking. For example, the definition and the construction of Involutive bases
for order terms was realized by Apel [Ape95, Ape98] in the case of algebras of solvable type; Gerdt
[Ger99] studied the case of linear differential operators; Seiler [Sei01] considered examples of
solvable algebras; Hausdorff et al., [HSS02] studied the problem of defining these bases for Weyl
algebras; Evans in his PhD Thesis [Eva05] investigated Involutive bases in the setting of free
algebras; and more recently, Seiler [Sei09] has studied these bases for a rather general class of
polynomial algebras including non-commutative algebras like linear differential and difference
operators or universal enveloping algebras of finite dimensional Lie algebras.

As expected, motivated by all works mentioned above, it is interesting to investigate the
possibility of defining Involutive bases of skew PBW extensions.

With the aim of motivating and illustrate some key concepts of interest for us in the the-
ory of involutive bases for noncommutative rings, next we present some notions used in the
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development of the theory.

4.2 WEYL ALGEBRAS: AN ILLUSTRATIVE EXAMPLE

4.2.1 Involutive DIVISIONS

The notion of an involutive division was introduced for the commutative polynomial ring
k[x1, . . . , xn] and leads to a restriction of the divisibility relation on power products. If we want
to extend this concept, then we need to establish the theory on the set of n-tuples with non-
negative integer entries. When we say “division” we are using addition and substraction.

An element of the Abelian monoid (Nn ,+) is called a multi index. For two multi indices
µ = (µ1, . . . ,µn) and ν = (ν1, . . . ,νn) ∈ Nn , we say that µ | ν (µ divides ν) if µi ≤ νi , for all i .
The cone of µ with respect to a subset N ⊆ {1, . . . ,n} is the set CN (µ) := µ+Nn

N ⊂ Nn , where
Nn

N = {
ν ∈Nn | νi = 0, for i ∉ N

}
.

DEFINITION 4.1 ([HSS02, P. 183]). An Involutive division L on Nn is given by prescribing
for each finite subset N ⊂Nn and for each multi index µ ∈N , a set NL,N (µ) of multiplicative
indices such that the following holds:

(i) For all µ,ν ∈ N with CL,N (µ) ∩CL,N (ν) ̸= ; either CL,N (µ) ⊆ CL,N (ν) or CL,N (ν) ⊆
CL,N (µ).

(ii) If M ⊂N , then for all µ ∈M , NL,N (µ) ⊆ NL,M (µ).

CL,N (µ) is called the involutive cone of µ with respect to L and N . We denote the comple-
ment of NL,N (µ) in {1, . . . ,n}, the non-multiplicative indices of µ, by N L,N (µ). For µ ∈ N and
ν ∈ Nn , we write µ|L,N ν (µ involutively divides or is an involutive divisor of ν), if and only if
ν ∈CL,N (µ).

Next, we recall the definitions of two involutive divisions that are most frequently found (see
[HSS02] or [Sei09] for more details).

(i) Janet division J: Let N be a finite subset ofNn and µ ∈N .

• 1 ∈ NJ ,N (µ) if and only if µ1 ≥ ν1, for all ν ∈N .

• For i = 2, . . . ,n we have i ∈ NJ ,N (µ) if and only if µi ≥ νi , for all those ν ∈ N with
νl =µl , for l = 1, . . . , i −1.

(ii) Pommaret division P: Let µ ∈Nn be an arbitrary multi index and let k be the position of
the right-most non-zero entry. Then i is a multiplicative index if and only if i ≥ k. For
µ= (0, . . . ,0), all indices are multiplicative.

EXAMPLE 4.1. (i) [Eva05, p. 4] Consider the Janet Involutive Basis H = {x y−z, y z+2x+z,2x2+
xz + z2,2x2z +xz2 + z3} with multiplicative indeterminates given in the next table:
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Polynomial Janet Multiplicative Indeterminates
x y − z {x, y}

y z +2x + z {x, y, z}
2x2 +xz + z2 {x}

2x2z +xz2 + z3 {x, z}

Any polynomial may only be involutively divisible by at most one member of any Involutive
basis. Note that G = {x y −z, y z +2x +z,2x2+xz +z2} is a Gröbner basis for the same ideal
generated by H .

(ii) [Eva05, Example 4.1.16] Let U = {x5 y2z, x4 y z2, x2 y2z, x y z3, xz3, y2z, z} be a set of mono-
mials over the polynomial ringQ[x, y, z], with x ≻ y ≻ z. According the Janet and Pommaret
divisions, the following table presents the multiplicative indeterminates for the elements
of U :

Monomial Janet Pommaret
x5 y2z {x, y} {x}
x4 y z2 {x, y} {x}
x2 y2z {y} {x}
x y z3 {x, y, z} {x}
xz3 {x, z} {x}
y2z {y} {x, y}

z {x} {x, y, z}

(iii) [Eva05, Example 4.1.18] Consider the polynomial ring Q[x, y], the monomial ordering
deglex, and the Gröbner basis G = {g1, g2, g3} = {x2−2x y +3,2x y + y2+5, 5

4 y3− 5
2 x+ 37

4 y}.
Let p = x2 y + y3 +8y ∈Q[x, y]. It can be seen that p reduces to 0 (i.e., p belongs to the
ideal generated by G) by g1 and then by g2, or by g2 twice, and then by g3. A Pommaret
Involutive basis for G is given by the set P = {g1, g2, g3, g4} = {x2 −2x y +3,2x y + y2 +
5, 5

4 y3 − 5
2 x + 37

4 y,−5x y2 −5x +6y}, with the following assignation of multiplicative inde-
terminates:

Polynomial Pommaret Multiplicative Indeterminates
x2 −2x y +3 {x}
2x y + y2 +5 {x}

5
4 y3 − 5

2 x + 37
4 y {x, y}

−5x y2 −5x +6y {x}

As an illustration, consider the polynomial p = x2 y + y3 + 8y . It can be seen that p is
reduced to 0 (i.e., p belongs to the ideal generated by G) by g1 and then by g2, or by g2

(twice) and then by g3. Nevertheless, p is only involutively divisible by one element of the
Involutive basis P (g2) starting the following unique involutive reduction path for p:

x2 y + y3 +8y
g2−→−1

2
x y2 + y3 − 5

2
x +8y

g4−→ y3 −2x + 37

5

g3−→ 0.

The multiplicative indices in the Pommaret division are determined independently of a set
N ; these are known as globally defined. For both divisions above multi indices are ordered
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tuples, as the entries are considered one after the other. In this way we may introduce variants
of them by applying a fixed permutation to any multi index before computing its multiplicative
indices.

DEFINITION 4.2 ([HSS02, P. 183]). Let L be an involutive division onNn and N ⊂Nn a finite
set.

(i) The involutive span of N is the union of the involutive cones of its elements

〈N 〉L = ⋃
µ∈N

CL,N (µ).

(ii) N is involutively autoreduced (with respect to the division L), if CL,N (µ)
⋂

CL,N (ν) =;,
for all µ ̸= ν with µ,ν ∈N .

(iii) N is called weakly (L)-involutive, if 〈N 〉L = 〈N 〉, where 〈N 〉 denotes the ordinary span
of N , i.e., the monoid ideal 〈N 〉 =N +Nn .

(iv) A finite subset N̂ ⊂ N is called a weak involutive basis of 〈N 〉 if 〈N̂ 〉 = 〈N 〉. If N̂

contains N , it is a weak (L)-completion of N . If the set N̂ is furthermore autoreduced, it
is a (strong) involutive basis of 〈N 〉 or a (strong) completion of N , respectively.

(v) An involutive division L is called Noetherian if every finite set N ⊂Nn of multi indices has
a completion.

We know that if N is a weakly involutive set, there exists a subset N ′ ⊂N such that N ′ is a
strong involutive basis of 〈N 〉 [HSS02, Lemma 2.1].

With the aim of obtaining an efficient tool to find involutive completions of a given set, it is
necessary that the involutive division L possess two additional properties introduced by Gerdt
and Blinkov [GB98a]. Let us see the details.

DEFINITION 4.3 ([HSS02, P. 184]). Let L be an involutive division onNn .

(i) L is continuous if for all finite subsets N ⊂Nn the following condition is satisfied: for each
finite sequence (µi )i=1,...,r of elements from N obeying that for all i the sum µi +1 j ∈
CL,N (µi+1) for some non-multiplicative index j ∈ N L,N (µi ), the inequality µk ̸=µl holds,
for all k ̸= l (the multi index 1i has 1 in the i th place and all other entries are 0).

(ii) L is constructive if it satisfies the following condition: for all finite subsets N ⊂Nn and for
each multi index µ ∈N and i ∈ N L,N (µ) with

(a) µ+1i ∉ 〈N 〉L ,

(b) µ+1i is minimal in the sense that each of its proper divisors lies in the involutive
span of N , i.e., if there exists ν ∈ N and j ∈ N L,N (ν) such that ν+1 j | µ+1i and
ν+1 j ̸=µ+1i , then ν+1 j ∈ 〈N 〉L .

N cannot be enlarged by a multiplicative multiple to include µ+1, i.e., there does not
exist ρ ∈ 〈N 〉L such that µ+1i ∈ 〈N ∪ {ρ}〉L .
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It was shown by Gerdt and Blinkov [GB98a] that for a continuous division L a set N ⊂Nn

is weakly L-involutive, if it is locally L-involutive, i.e., if for every µ ∈N and i ∈ N L,N (µ) there
exists some ν ∈N with µ+1i ∈CL,N (ν). By using this result, a simple strategy for completing a
set N is established by Gerdt and Blinkov [GB98a] and Calmet et al., [CHS01]: if i ∈ N L,N (µ) is
a non-multiplicative index for µ ∈N , we check whether µ+1i ∈ 〈N 〉L ; in other case, µ+1i is
added to N . The algorithm which illustrates this procedure can be found in Hausdorff et al.,
[HSS02, p. 185]. From Gerdt and Blinkov [GB98a] we know that if the division L is continuous
and constructive, this algorithm terminates with an L-completion for any finite input set N

possessing an L-completion. Janet and Pommaret involutive divisions are all continuous [Eva05,
Proposition 4.3.2].

In Section 1.2.1 and Example 2.1(i), we saw that for n ∈N, the n-dimensional Weyl algebra
An(k) is the free associative k-algebra with generators x1, . . . , xn ,∂1, . . . ,∂n modulo the relations

xi x j = x j xi , ∂i∂ j = ∂ j∂i , ∂i x j = x j∂i +δi j , 1 ≤ i , j ≤ n,

where δi j is the Kronecker’s delta. In Example 2.2, we also saw that adding another generator
h that commutes with the indeterminates x1, . . . , xn ,∂1, . . . ,∂n and replacing δi j with δi j h2 in
the above relations we obtain the n-dimensional homogenized Weyl algebra H(An(k)).

Since any element f ∈ An(k) can be written in a unique normally form

f = ∑
µ,ν∈Nn

aµνxµ∂ν, (4.1)

where only finitely many aµν ∈ k do not vanish, the normally ordered monomials Tn :=
{xµ∂ν = xµ1

1 · · ·xµn
n ∂

ν1
1 · · ·∂νn

n | µ,ν ∈Nn} form a k-vector space basis of An(k). Similarly, T(h)
n :=

{hλxµ∂ν |λ ∈N,µ,ν ∈Nn} forms a basis of H(An(k)).

DEFINITION 4.4 ([HSS02, P. 186]). Let ⪯ be a total order on Tn . We call ⪯ a multiplicative
monomial order on Tn if the following conditions hold:

(i) 1 ⪯ xi∂i , for all 1 ≤ i ≤ n, and

(ii) xα∂β ⪯ xa∂b implies xα+µ∂β+ν ⪯ xa+µ∂b+ν, for all µ,ν ∈Nn .

If in addition 1 ⪯ t holds for all t ∈Tn , then we call ⪯ a term order on Tn ; otherwise, we refer
to ⪯ as a non-term order. Notice the differences with respect to monomial orderings considered
in Definition 1.3(iv) and Section 3.1.1.

Replacing the first of the above conditions with h2 ⪯ xi∂i and adapting the second one
condition, we obtain the corresponding definitions for the terms T(h)

n in the homogenized Weyl
algebra.

EXAMPLE 4.2 ([HSS02, P. 186]). Let (ξ,ζ) ∈ R2n be a weight vector, that is, ξ+ ζ ∈ Rn is non-
negative and ⪯ an arbitrary term order. It is defined a multiplicative monomial order ⪯(ξ,ζ) by
setting xα∂β ≺(ξ,ζ) xa∂b if eitherα ·ξ+β ·ζ< a ·ξ+b ·ζ, orα ·ξ+β ·ζ= a ·ξ+b ·ζ and xα∂β ≺ xa∂b .
This yields a term order if and only if (ξ,ζ) is non-negative.
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Once one fix a multiplicative monomial order ⪯ on Tn , we define the leading term, leading
exponent and leading coefficient of f ∈ An(k) \ {0} by selecting in the normally ordered form
(4.1) the ⪯-maximal term ocurring in f . This yields applications lt⪯ : An(k) \ {0} → Tn , le⪯ :
An(k) \ {0} →N2n , and lc⪯ : An(k) \ {0} → k. In a similar way we have maps lt(h)

⪯ , le(h)
⪯ and lc(h)

⪯
for H(An(k)).

The next definition contains the notion of Gröbner basis of a left ideal in An(k) with respect
to a term order. It is well-known that using suitable analogues of the commutative syzygy-
polynomials and the commutative normal form algorithm, a Gröbner basis can be computed
with Buchberger’s algorithm. As a matter of fact, in the Weyl algebra the notion of a Gröbner
basis can be extended to multiplicative monomial orders.

DEFINITION 4.5 ([HSS02, P. 187]). Let I be a left ideal in An(k) and ⪯ a multiplicative monomial
ordering on Tn . A finite subset G ⊂ An(k) with 0 ∉ G is a Gröbner basis of I if the following
conditions hold:

(i) An(k) ·G = I , and

(ii) 〈le(g ) | g ∈G〉 = {
le( f ) | f ∈ I

}= le(I ).

A Gröbner basis G is reduced if for any two distinct f , g ∈G the following condition holds: for
all monomials t ∈Tn occurring in the normally ordered form (4.1) of f with non-zero coefficient,
le(g ) does not divide le(t ).

Saito et al., [SST00] showed how to compute effectively Gröbner bases in An(k) with respect
to non-term orders ⪯. Briefly, the idea is to derive from ⪯ a term order ⪯h on T(h)

n that respects
the total degree:

hλxa∂β ⪯h hl xa∂b ⇔ λ+|α|+ |β| < l +|a|+ |b| or both

λ+|α|+ |β| = l +|a|+ |b| and xα∂β ⪯ xa∂b ,

where |µ| =
n∑

i=1
µi , for a multi index µ= (µ1, . . . ,µn) ∈Nn .

The following results establishes the relation between homogenization and dehomogeniza-
tion of Gröbner bases.

PROPOSITION 4.1 ([SST00, THEOREM 1.2.4]). Let F ⊂ An(k) be a finite generating set of some left
ideal I ⊆ An(k), ⪯ a multiplicative monomial order on Tn , and F (h) ⊂ H(An(k)) the set obtained
by homogenizing the elements in F . Then applying Buchberger’s algorithm to F (h) and the induced
term order ⪯h on T(h)

n yields a set Ĝ ⊂ H(An(k)) whose dehomogenization G is a Gröbner basis of
I with respect to ⪯ .

4.2.2 WEYL ALGEBRAS

With the aim of introducing Involutive bases for left ideals in the Weyl algebra, Hausdorff et
al., [HSS02] considered as starting point the choice of some order ⪯ on Tn , either a term order
or a multiplicative monomial order, for selecting the leading term of an element. Following
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Hausdorff et al., [HSS02], “the situation for the more general multiplicative monomial orders is
considerably more difficult, as for them normal form algorithms do not necessarily terminate”.
One example of multiplicative monomial orders which are not order terms is given by means of
weight vectors of the form (−ε,ε) ∈R2n which appears from the action of the algebraic torus (k∗)n

on the Weyl algebra (see Saito et al., [SST00] or Oaku et al., [OTW00]). With the aim of solving
this problem, for Gröbner bases the situation of non-terminating normal form algorithms is
given by computing in the homogenized Weyl algebra: any multiplicative monomial order on
this algebra can be lifted to a term order on the homogenized Weyl algebra. This technique goes
back to Lazard [Laz83] in the commutative case, and in the Weyl algebra by Castro-Jiménez and
Narváez-Maccaro [CJNM97]. Having in mind that involutive bases do not only depend on an
order but also on an involutive division, the problem is to lift this division to the homogenized
Weyl algebra; Hausdorff et al., [HSS02] shown that this is possible.

DEFINITION 4.6 ([HSS02, P. 188]). Let F = { f1, . . . , fr } ⊂ An(k) be a finite set. With respect to a
given involutive division L onN2n , the involutive span of F is defined as

〈F 〉L =
r∑

i=1
k[(ι◦NL,le( f ) ◦ le)( fi )] · fi . (4.2)

By 〈F 〉 we denote the left ideal An(k) ·F in An(k). The set F is a weak involutive basis of the
left ideal I ⊆ An(k) if 〈F 〉L = 〈F 〉 = I .

Saito et al., [SST00] presented details on the notions of reducibility and normal form in the
Weyl algebra.

A finite set F ⊂Wn is said to be autoreduced if every f ∈ F is in normal form modulo F \ { f }.
It is involutively autoreduced if no f ∈ F contains a term t = xµ∂ν such that le( f ′)|L,le( f )le(t ), for
some f ′ ∈ F .

DEFINITION 4.7 ([HSS02, P. 188]). Let F = { f1, . . . , fr } be a weak involutive basis of the left ideal
I . If there do not exist two indices i ̸= j such that le( fi )|L,le(F )le( f j ), then F is called a (strong)
involutive basis.

It is well-known that the sum in (4.2) is direct if and only if F is a strong involutive basis. In
this way, any such basis induces a Stanley decomposition of the given ideal into a direct sum
of free modules over subalgebras of the Weyl algebra. If one think this results in the context of
commutative polynomials, this property allows for a trivial determination of the Hilbert function,
see Stanley [Sta78] for more details.

The next result is one of the most important about involutive basis for Weyl algebras; this
present its relation with Gröbner bases.

PROPOSITION 4.2 ([HSS02, THEOREM 4.1]). Let I ⊆ An(k) be a left ideal. The finite set F =
{ f1, . . . , fr } ⊂ I is an involutive basis of I for the multiplicative monomial order ⪯ if and only if

every polynomial f ∈ I possesses a unique involutive standard representations f =
r∑

i=1
gi fi where

gi ∈ k[(ι◦NL,le( f ) ◦ le)( fi )] and lt(gi fi ) ⪯ lt( f ). Any involutive basis F of I is also a Gröbner basis of
I (for the order ⪯).
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A consequence of Proposition 4.2 is that the involutive standard representation is unique in
contrast to the ordinary one with respect to an arbitrary Gröbner basis; this is due to the fact
that the sum in (4.2) is direct for involutive bases.

The following result establishes that involutive bases with respect to term orders are charac-
terized by the fact that the leading terms involutively generate the leading ideal. Recall that this
is a characteristic property of Gröbner bases.

PROPOSITION 4.3 ([HSS02, THEOREM 4.2]). Let I ⊆ An(k) be a left ideal, ⪯ a term order on Tn ,
and F ⊂ I a finite set. If le(F ) is a (weak) involutive basis of le(I ) with respect to the division L,
then F is a (weak) involutive basis of I . If F is a strong involutive basis, the converse is true, too.

A natural question is how we can explicitly compute an involutive basis for a given involutive
division and a given order. For a term order, the simplest approach is the following one: we
first compute a Gröbner basis and then we complete the leading terms of its elements to an
involutive basis of the leading ideal; Proposition 4.3 yields the desired result. This algorithm was
proposed by Sturmfels and White [SW91] for the determination of Stanley decompositions in
the case of commutative polynomials. About this question, Hausdorff et al., [HSS02] presents an
answer which includes an algorithm to perform the computations (this algorithm can be seen in
[HSS02, Figure 3]).

PROPOSITION 4.4. Let L be a continuous and constructive involutive division, ⪯ a term order on
Tn and F ⊂ An(k) a finite set such that the monoid ideal le(〈F 〉) possesses an involutive basis with
respect to L. Then there is an algorithm which terminates with an involutive basis of 〈F 〉.
REMARK 17 ([HSS02, P. 190]). Involutive bases of left ideals in An(k) have beautiful combi-
natorial properties as it is shown by the following fact: consider a left ideal I ⊂ An(k) with a
strong involutive basis F = {

f1, . . . , fr
}

with respect to a degree compatible term order ⪯. An(k) is
endowed with the Bernstein filtration F 0 ⊂F 1 ⊂ ·· · , where the k-vector spaces F k are spanned
by the terms xα∂β with α+β≤ k, respectively (see Coutinho [Cou95] for a detailed description
of this filtration). If we denote by σk , k ∈ N, the canonical projection of F k onto F k /F k−1,
then the set

{
σ|le( f1)|( f1), . . . ,σ|le( fr )|( fr )

}
is a strong involutive basis of the homogeneous graded

ideal GrF (I ) = ⊕
k≥1

I∩F k

F k−1
of the associated graded algebra ofWn with respect to F (this algebra

is precisely a commutative polynomial ring in 2n indeterminates). If one consider the Hilbert
series of I as that of GrF (I ), we know from Stanley [Sta78] that

H I (λ) =
r∑

i=1

λ|le( fi )|

(1−λ)|NL,le( f )( fi )| .

This amazing fact means that we can compute the Hilbert function and polynomial from H I .

4.3 POLYNOMIAL ALGEBRAS OF SOLVABLE TYPE

Following Seiler [Sei10, p. 63], polynomial algebras of solvable type “comprises many classical
algebras which are important for applications like rings of linear differential or difference
operators or universal enveloping algebras of Lie algebras”. Let us recall its definition.
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Let P = R[x1, . . . , xn] be a polynomial ring over a ring R. Seiler equipped the R-module
P with alternative noncommutative multiplications with the aim of allowing that the inde-
terminates xi ’s do not commute and that they operate on the coefficients. He denoted the
usual multiplication either by a dot · or by no symbol at all, and alternative multiplications
∗ : P ×P →P by f ∗ g . We follow his ideas presented in [Sei10, Section 3.2].

Analogously to Definition 1.3, with respect to a monomial ordering ≺ (Seiler called a term
order), for each polynomial f ∈ P , its leading monomial is lt≺ f = xµ with leading exponent
le≺ f = µ; the coefficient r ∈R of xµ in f is the leading coefficient lc≺ f and the product r xµ is
the leading term lt≺ f .

DEFINITION 4.8 ([SEI10, DEFINITION 3.2.1]). The triple (P =R[x1, . . . , xn],∗,≺) is a polynomial
algebra of solvable type over the coefficient ring R for the monomial order ≺, if multiplication
∗ : P ×P →P satisfies the following three axioms:

(i) (P ,∗) is a ring with neutral element 1.

(ii) For all r ∈R, f ∈P , r ∗ f = r f .

(iii) For all µ,ν ∈N,r ∈R \ {0}, le≺(xµ∗xν) =µ+ν and le≺(xµ∗ r ) =µ.

Condition (i) guarantees that the arithmetics in (P ,∗) satisfies the usual associative and
distributive laws, while condition (ii) implies that (P ,∗) is a left R-module. Finally, condition (iii)
ensures the compatibility of the new multiplication ∗ and the monomial order ≺: ∗ is an order
respecting multiplication. This property implies the existence of injective maps ρµ : R →R, and
maps hµ : R → P with le≺(hµ(r )) ≺ µ for all r ∈ R, coefficients rµν ∈ R \ {0} and polynomials
hµv ∈P with le≺(hµν) ≺µ+ν such that

xµ∗ r = ρµ(r )xµ+hµ(r ),

xµ∗xν = rµνxµ+ν+hµν.

Seiler [Sei10, Definition 3.2.1] introduced the polynomial algebras of solvable type. If we
compare its [Sei10, Proposition 3.2.3] with Propositions 1.1 and 1.2, then we can see the similari-
ties between skew PBW extensions and polynomial algebras of solvable type. Examples of these
algebras are the commutative polynomial rings, rings of linear differential operators, Ore exten-
sions, recurrence and difference operators, universal enveloping algebras of finite-dimensional
Lie algebras, and PBW extensions [BG88]. The definition of Gröbner basis for this algebras was
introduced in [Sei10, Definition 3.3.12].

DEFINITION 4.9 ([SEI10, DEFINITION 3.3.12]). Let (P ,∗,≺) be a polynomial algebra of solvable
type over a (skew) field k and I ⊆P a left ideal. A finite set G ⊂P is a Gröbner basis of the ideal
I (for the term order ≺) if 〈le≺G 〉 = le≺I .

Note that if (P ,∗,≺) is a polynomial algebra of solvable type over a (skew) field k, then P is
a left Noetherian ring and every left ideal I ⊆P possesses a Gröbner basis with respect to ≺.

Next, we proceed to recall the definition of Involutive basis for left ideals in polynomial
algebras of solvable type introduced by Seiler [Sei10, Section 3.4].
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DEFINITION 4.10 ([SEI10, DEFINITION 3.4.1]). Let (P ,∗,≺) be a polynomial algebra of solvable
type over a coefficient field k and I ⊂ P a non-zero left ideal. A finite set H ⊂ I is a weak
involutive basis of I for an involutive division L onNn , if le≺H is a weak involutive basis of the
monoid ideal le≺I . The set H is a (strong) involutive basis of I if le≺H is a strong involutive
basis of le≺I and two distinct elements of H never possess the same leading exponents.

As Seiler stated, Definition 4.10 represents a natural extension of Definition 4.9 of a Gröbner
basis in P . This implies that any weak involutive basis is a Gröbner basis. Any finite set F ⊂P

is said to be (weakly) involutive if it is a (weak) involutive basis of the ideal 〈F 〉 generated by it.

DEFINITION 4.11 ([SEI10, DEFINITION 3.4.2]). Let F ⊂P \ {0} be a finite set of polynomials
and L and involutive division on Nn . We assign to each element f ∈F a set of multiplicative
variables

XL,F ,≺( f ) =
{

xi | i ∈ NL,le≺F (le≺ f )
}

. (4.3)

The involutive span of F is then the set

〈F 〉L,≺ = ∑
f ∈F

k[XL,F ,≺( f )]∗ f ⊆ 〈F 〉. (4.4)

Note that the involutive span of a set F depends on both the involutive division L and the
term order ≺.

As is well-known, a key property of Gröbner bases is the existence of standard representations
for any ideal element. The following result establishes that for (weak) involutive bases a similar
characterization exists and in the case of strong bases we obtain unique representations.

PROPOSITION 4.5 ([SEI10, THEOREM 3.4.4]). Let I ⊆ P be a non-zero ideal, H ⊂ I \ {0} a
finite set and L an involutive division onNn

0 . Then the following statements are equivalent:

(1) The set H ⊂I is a weak involutive basis of I with respect to L and ≺.

(2) Every polynomial f ∈I can be written in the form

f = ∑
h∈H

Ph ∗h (4.5)

with coefficients Ph ∈ k[XL,H ,≺(h)] satisfying lt≺(Ph ∗h) ⪯ lt≺ f for all polynomials h ∈H

such that Ph ̸= 0.

H is a strong involutive basis if and only if the representation (4.5) is unique.

COROLLARY 4.6 ([SEI10, COROLLARY 3.4.5]). Let H be a weak involutive of the left ideal I ⊆P .
Then 〈H 〉L,≺ =I . If H is even a strong involutive basis of I , then I considered as a k-linear
space possesses a direct sum decomposition I = ⊕

h∈H
k[XL,H ,≺(h)]∗h.

There are cases where a finite set F with 〈F 〉L = I is not a weak involutive basis of the
ideal I . For example, the ideal I in the commutative polynomial ring k[x, y] generated by
the polynomials f1 = y2 and f2 = y2 + x2, with x1 = x and x2 = y , satisfies that for F = { f1, f2},
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〈F 〉J ,≺ =I , as with respect to the Janet division all variables are multiplicative for each generator.
Nevertheless, le≺F = {[0,2]} does not generate le≺I , as it is clear that [2,0] ∈ le≺I \ 〈{[0,2]}〉
[Sei10, Example 3.4.6].

PROPOSITION 4.7 ([SEI10, PROPOSITION 3.4.7]). Let I ⊆ P be an ideal and H ⊂ I a weak
involutive basis of it for the involutive division L. Then there exists a subset H ′ ⊆H which is a
strong involutive basis of I .

Seiler [Sei10, Chapter 3] defined the notion of Involutive basis but he did not consider
the question of the existence of such bases. He proved in [Sei10, Section 3.3] that ideals of
polynomial algebras of solvable type over fields have Gröbner bases but for Involutive bases
the situation is more complicated. In [Sei10, Example 3.1.16], we can see that an ideal not
possessing a finite Pommaret basis, so we cannot expect that an arbitrary polynomial ideal
has for every involutive division a finite involutive basis. With this in mind, in [Sei10, Section
4.1] Seiler introduced a special class of involutive divisions, the constructive divisions, which
is related to an algorithm for computing involutive basses. The idea is that if such a division is
Noetherian, then the algorithm will always terminate with an involutive basis and this provides
us with a proof of the existence of such bases for many divisions (including the Janet division).
As Seiler said, “Unfortunately, both the definition of constructive divisions and the termination
proof are highly technical and not very intuitive” [Sei10, p. 105].

We start with the notion of local involution that requires only a finite number of checks in
contrast with any involution.

DEFINITION 4.12 ([SEI10, DEFINITION 4.1.1]). A finite set B ⊂Nn of multi indices is locally
involutive for the involutive division L, if ν+ 1 j ∈ 〈B〉L for every non-multiplicative index
j ∈ N L,B(ν) of every multi index ν ∈B.

It is clear that while involution implies local involution but the converse does not hold as the
following division due to Gerdt and Blinkov shows.

EXAMPLE 4.3 ([GB98A, EXAMPLE 4.8]). Consider inN3 the involutive division L defined in the
following way: with the exception of four multi indices all elements ofN3 do not have any multi-
plicative indices. The four exceptions are NL([0,0,0]) = {1,2,3}, NL([1,0,0]) = {1,3}, NL([0,1,0]) =
{1,2}, and NL([0,0,1]) = {2,3}. It can be seen that this assignment defines a global involutive
division.

Take the set B = {[1,0,0], [0,1,0], [0,0,1]}. Since the multi index [1,1,1] ∈ 〈B〉 is not contained
in the involutive span 〈B〉L , then B is not involutive. Nevertheless, it is locally involutive, as the
three multi indices [1,1,0], [0,1,1] and [1,0,1] obtained by taking the elements of B and adding
their respective non-multiplicative index are contained in 〈B〉L .

Next, we recall the definition of continuous division (Definition 4.3(i)) that is not only suffi-
cient condition for the equivalence of local involution and involution but also useful for proving
other properties.

DEFINITION 4.13 ([SEI10, DEFINITION 4.1.3]). Let L be an involutive division and B ⊂Nn a
finite set. Let furthermore (ν(1), . . . ,ν(t )) be a finite sequence of elements of B where every multi
index ν(k) with k < t has a non-multiplicative index jk ∈ N L,B(ν(k)) such that ν(k+1) |L,B v (k)+1 jk .
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The division L is continuous, if any such sequence consists only of distinct elements, i.e. if
ν(k) ̸= ν(l ) for all k ̸= l .

The division of Example 4.3 is not continuous. As expected, for continuous divisions, local
involution implies involution. More exactly, if the involutive division L is continuous, then any
locally involutive set B ⊂Nn is weakly involutive, and it can be proved that the Janet and the
Pommaret divisions are continuous [Sei10, Proposition 4.1.4 and Lemma 4.1.5].

DEFINITION 4.14 ([SEI10, DEFINITION 4.1.7]). Let B ⊂Nn be a finite set of multi indices and
choose a multi index ν ∈B and a non-multiplicative index j ∈ N L,B(ν) such that

(i) ν+1 j ∉ 〈B〉L .

(ii) If there exists a multi indexµ ∈B and k ∈ N L,B(ν) such thatµ+1k | ν+1 j butµ+1k ̸= ν+1 j ,
then µ+1k ∈ 〈B〉L .

The continuous division L is constructive (Definition 4.3(ii)) if for any such set B and any
such multi index ν+1 j no multi index ρ ∈ 〈B〉L with ν+1 j ∈CL,B∪{ρ}(ρ) exists.

Note that any globally defined division is constructive, so Pommaret division also is [Sei10,
Lema 4.1.8]. In fact, Janet division is also constructive.

With all notions above, Seiler [Sei10, Section 4.2] presented an algorithm for determining
involutive bases of left ideals in a polynomial algebra of solvable type (P ,∗,≺). It is important
to say that if we assume that the division is constructive, then a very simple algorithm exists
due to basic ideas of which go back to Janet [Jan20, Jan24, Jan29]. Seiler [Sei10, p. 114] an easy
way to compute an involutive basis for an ideal I in a polynomial algebra (P ,∗,≺) of solvable
type follows from [Sei10, Remark 3.4.12]. First, we determine a Gröbner basis G of I and by
using [Sei10, Algorithm 4.1] we compute an involutive completion of the monomial set le≺G . It
is important to highlight that this idea is similar to the method proposed by Sturmfels and White
[SW91] for the construction of Stanley decompositions that corresponds to the computation of
an involutive basis. Nevertheless, he extended this Algorithm to a direct completion algorithm
for polynomial ideals, by considering subalgorithms for two important tasks: involutive normal
forms and involutive head autoreductions.

4.4 SKEW PBW EXTENSIONS

Having in mind the ideas about Involutive bases for noncommutative algebras presented in
the previous sections, we explore the relationships between Gerdt and Blinkov’s ideas [GB98a,
GB98b], Seiler’s theory [Sei10] and the theory of Gröbner bases presented by Gallego and Lezama
[Gal15, Gal16a, GL11], with the aim of presenting a theory of Involutive bases theory for skew
PBW extensions over fields.
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4.4.1 Involutive BASES

Let A be a skew PBW extension over a fieldk and consider the notation in Definition 1.3. For every
finite set of polynomials F ⊂ A \ {0}. We say that xi is a multiplicative variable of a polynomial
f ∈ F if i ∈ NL,exp(lm(F ))(exp(lm( f ))). Also, we define L(v,B) = {

µ ∈Nn | ∀ j ∉ NL,B (v) :µ j = 0
}

for
any finite subset B ∈Nn (see [Sei10, Definition 3.1.1])

Now, for a finite subset of Mon(A), let exp(F ) = {
exp(xα) | xα ∈ F

}
, and for xα ∈ Mon(A), we

define the set
Mon(NL,B(α)) =

{
xβ |βi = 0 if i ∉ NL,B(α)

}
.

For every Mon(NL,B(α)), let

Xxα :=
{

g =
t∑

i=1
ai Xi ∈ A | Xi ∈ Mon(NL,B(α))

}
.

Motivated by the ideas presented above, we consider the following definition.

DEFINITION 4.15. Let A =σ(k)〈x1, . . . , xn〉 be a skew PBW extension over k and I ⊆ A a non-zero
left ideal. A finite set F ⊂ I is a weak involutive basis of I for an involutive division L on Nn ,
if exp(lm(F )) is a weak involutive basis of the monoid ideal exp(lm(I )). The set F is a (strong)
involutive basis of I if exp(lm(F )) is a strong involutive basis of exp(lm(I )) and for two distinct
elements f1, f2 of F , exp(lm( f1)) ̸= exp(lm( f2))

DEFINITION 4.16. Let A =σ(k)〈x1, . . . , xn〉 be a skew PBW extension over k and F = {
f1, . . . , fr

}⊂
A a finite set. Fix an involutive division L onNn and let B := exp(lm(F )). The involutive span of
F is defined as

〈F 〉L =
r∑

i=1
Xlm( fi ) · fi ⊆ 〈F 〉,

where 〈F 〉 denotes the left ideal of A generated by F.

Next, we consider an involution division by restricting the divisibility relation | on Mon(A)
considered in [FGL+20, Definition 13.1.3]: we say that xα |L,F xβ if and only if α |L,exp(F ) β for
monomials xα and xβ belonging to a finite set F ⊆ Mon(A). As expected, an involutive division
satisfies the criterion of divisibility formulated by Gallego and Lezama [GL11, Definition 13].

PROPOSITION 4.8. Let F ⊂ Mon(A) be a finite set. For any monomials xα and xβ in F , if xα |L,F xβ,
then xα | xβ.

Proof. The assertion follows directly from the corresponding definitions.

By using Proposition 4.8 we define the involutive reduction process in a similar way to its
corresponding for Gröbner bases [GL11, Definition 18].

DEFINITION 4.17. Let F be a finite set of non-zero elements of a skew PBW extension A =
σ(R)〈x1, . . . , xn〉, L an involutive division, and f ,h ∈ A. We say that f involutively reduces to h by

F w.r.t. L in one step, denoted by f
L,F−→ h, if there exist elements f1, . . . , ft ∈ F and r1, . . . ,rt ∈ R
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such that
lm

(
fi

) |L,lm(F ) lm( f ), for 1 ≤ i ≤ t . (4.6)

f reduces to h by F w.r.t. L, denoted by f
L,F−→+ h, if there exist elements h1, . . . ,ht−1 ∈ A such

that
f

L,F−→ h1
L,F−→ h2

L,F−→ ·· · L,F−→ ht−1
L,F−→ h.

f is involutively reduced w.r.t. F and L, if f = 0 or there is no reduction of f by F and L.
Otherwise, we say that f is involutively reducible w.r.t. F and L. If f is involutively reduced to h
w.r.t. F and L, then we say that h is an involutive remainder for f w.r.t. F and L.

REMARK 18. Proposition 4.8 gives us an equivalent condition to expression (4.6): if lm( fi ) |L,lm(F )

lm( f ), for 1 ≤ i ≤ t , then there exists αi ∈ L(exp(lm( fi )),exp(F )) with exp(lm( f )) = exp(lm( fi ))+
αi . From [FGL+20, Proposition 13.1.4], there exists xαi ∈ Mon(A) tal que lm( f ) = lm

(
xαi lm( fi )

)
.

Note that the monomials xαi appearing in the expression of f due to [GL11, Definition 18(iii)]
depend on the involutive division we are considering.

In the next examples, let N i := NL,exp(lm(F ))(exp(lm( fi ))) for every fi ∈ F and a fixed involu-
tive division L.

EXAMPLE 4.4. Consider the Dispin algebra U (osp(1,2)) and the set F given by

F = { f1 = x2 y, f2 = x y + z, f3 = x + y, f4 = x + z}.

If we use deglex with x ≻ y ≻ z and the Janet divison J, the reduction of f = x y w.r.t F and J
is as follows:

Step 1: (i) N 1 = {1,2,3} and CJ,N 1 (exp(lm( f1))) = {(2+n1,1+n2,n3) | ni ∈N} since exp(lm( f )) ∉
CJ,N 1 (exp(lm( f1))). We get lm( f1) ∤J,lm(F ) lm( f )

(ii) N 2 = {2,3} and CJ,N 2 (exp(lm( f2))) = {(1,1+n1,n2) | n1,n2 ∈N} due to exp(lm( f )) ∈
CJ,N 2 (exp(lm( f2))). In this way, lm( f2)|J,lm(F ) lm( f ).

(iii) N 3 = {3} and CJ,N 3 (exp(lm( f3))) = {(1,0,n) | n ∈N}. Then lm( f3) ∤J,lm(F ) lm( f )

(iv) N 4 =N 3 and so lm( f4) ∤J,lm(F ) lm( f )

Step 2: α2 = (0,0,0) and 1 = lc( f ) = r2σ
α2 (1)dα2,exp(lm( f2)) = r2.

Step 3: h = x y − (x y + z) =−z.

Step 4: If we reduce involutively to h w.r.t F and J, then we get lm(h) ∉N i for i = 1,2,3,4, so it is
reduced involutively. We say that h is an involutive remainder for f .

The next example illustrates that if we consider Pommaret division instead Janet division,
then we get surprising results due to the remainders will depend on elements of the field k. Let
us see the details.

EXAMPLE 4.5. Consider :

Step 1: (i) N 1 = {2,3} and CP,N 1 (exp(lm( f1))) = {(2,1+n1,n2) | n1,n2 ∈ N} since exp(lm( f )) ∉
CP,N 1 (exp(lm( f1))) then lm( f1) ∤P,lm(F ) lm( f )
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(ii N 2 = {2,3} and CP,N 2 (exp(lm( f2))) = {(1,1+n1,n2) | n1,n2 ∈ N} since exp(lm( f )) ∈
CP,N 2 (exp(lm( f2))) then lm( f2)|P,lm(F ) lm( f )

(iii) N 3 = {1,2,3} and CP,N 3 (exp(lm( f3))) = {(1 + n1,n2,n3) | n1,n2,n3 ∈ N} since
exp(lm( f )) ∈CP,N 3 (exp(lm( f3))) then lm( f3) |P,lm(F ) lm( f )

(iv) N 4 =N 3 then lm( f4) |P,lm(F ) lm( f )

Step 2: α2 = (0,0,0),α3 = (0,1,0) =α4 then 1 = lc( f ) = r2σ
α2 (1)dα2,exp(lm( f2))+r3σ

α3 (1)dα3,exp(lm( f3))+
r4σ

α4 (1)dα4,exp(lm( f4)) = r2 + r3 + r4 then r2 = 1− r3 − r4.

Step 3:

h =x y − [(1− r3 − r4)(x y + z)+ r3 y(x + y)+ r4 y(x + z)]

=x y −x y − z + r3x y + r3z ++r4x y + r4z − r3 y x − r3 y2 − r4 y x

=r3x y + r4x y − r3(x y −x)− r3 y2 − r4(x y −x)− r4 y z + z(r3 + r4 −1)

=− r3 y2 − r4 y z + (r3 + r4)x + (r3 + r4 −1)z

Step 4: Again, if we reduce involutively h w.r.t F and P, then lm(h) ∉ N i for i = 1,2,3,4, so it is
reduced involutively. h is an involutive remainder for f .

Theorem 4.9 presents the relation between involutive reduction and the process of reduction
in the setting of Gröbner bases of skew PBW extensions formulated in [GL11, Theorem 21].

THEOREM 4.9. Let F = {
f1, . . . , ft

}
be a finite set of nonzero polynomials of A and f ∈ A. Then the

involutive reduction process produces polynomials q1, . . . , qt ,h ∈ A, with h reduced involutively

w.r.t. F and an involutive division L, such that f
L,F−→ +h and f = q1 f1 + ·· · + qt ft +h with

qi ∈ Xlm( fi ).

Proof. If f is involutively reduced with respect to F and L, then h = f , q1 = ·· · = qt = 0 and

qi ∈ Xlm( fi ). If f is not involutively reduced, then we make the first involutive reduction, f
L,F−→ h1,

where f =∑
j∈J1

r j 1xα j f j +h1, with J1 := {
j | lm

(
f j

) |L,lm(F ) lm( f )
}

and r j 1 ∈ k. If h1 is involutively
reduced with respect to F , then the cycle WHILE ends and we have that q j = r j 1xα j for j ∈ J1

and q j = 0 for j ∉ J1. Moreover, by Remark 18 α j ∈ L(exp
(
lm

(
f j

))
,exp(F )), i.e. q j ∈ Xlm( f j ) for

j ∈ J1. If h1 is not reduced, we make the second involutive reduction with respect to F and L,

h1
L,F−→ h2, with h1 =∑

j∈J2
r j 2xα j f j +h2, J2 := {

j | lm
(

f j
) |L,lm(F ) lm(h1)

}
and r j 2 ∈ k. We get

f = ∑
j∈J1

r j 1xα j f j +
∑
j∈J2

r j 2xα j f j +h2.

If h2 is involutively reduced with respect to F the procedure ends and we get that q j = q j for
j ∉ J2 and q j = q j + r j 2xα j for j ∈ J2, and again we have q j ∈ Xlm( f j ). We can continue this way
and the algorithm ends by the Proposition 4.8 and [FGL+20, Theorem 13.2.6].

PROPOSITION 4.10. Let I ̸= 0 be a left ideal of A. Let F be a nonempty finite subset of nonzero
polynomials of I and L a involutive division on Nn

0 . If each element 0 ̸= f ∈ I is involutively
reducible w.r.t. F and L then F is a weak involutive basis of I .
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Proof. Let us show that 〈exp(lm(F ))〉L = exp(lm(I )). Since F ⊆ I , exp(lm(F )) ⊆ exp(lm(I )), so
if µ ∈ CL,exp(lm(F ))(v) for some v ∈ exp(lm(F )), then µ ∈ C(v) for some v ∈ exp(lm(I )), whence
〈exp(lm(F ))〉L ⊆ exp(lm(I )).

Take 0 ̸= f ∈ I an arbitrary element. By assummption, f is involutively reduced w.r.t F and L,
so Remark18 guarantees that lm( f ) = lm

(
xαi lm

(
fi

))
, and hence exp(lm( f )) =αi +exp

(
lm

(
fi

))
.

Since fi ∈ F, exp
(
lm

(
fi

)) ∈ exp(lm(F )) and αi ∈ L
(
exp

(
lm

(
fi

))
,exp(lm(F ))

)
due to Theorem

4.9, and thus exp(lm( f )) ∈ CL,exp(lm(F ))( fi ). In this way, exp(lm( f )) is an arbitrary element of
exp(lm(I )), so 〈exp(lm(F ))〉L ⊇ exp(lm(I )), and therefore F is a weak involutive basis of I .

The characterization of a weak (strong) involutive basis can be given through how the
elements of the ideal I are represented. For skew PBW extensions this representation is due to
Theorem 4.9.

THEOREM 4.11. Let I be a non-zero ideal of a skew PBW extension A, F = {
f1, . . . , fr

}⊂ I \ {0} a
finite set and L an involutive division onNn . Then the following two statements are equivalent:

(1) F is a weak involutive basis of I .

(2) For any polynomial f ∈ A, f ∈ I if and only if f
F,L−→+ 0.

Proof. • (1) ⇒ (2) Let F be a weak involutive basis of I and f ∈ I . By Defintion 4.15,
exp(lm( f )) ∈ CL,exp(lm(F ))(exp(lm( f1)) for some f1 ∈ F , which implies that
exp(lm( f1)) |L,exp(lm(F )) exp(lm( f )), that is, lm( f1) |L,lm(F ) lm( f ). Due to Definition 4.17,

there exists h1 ∈ A such that f
F,L−→ h1 with lm( f ) ≻ lm(h1) and h1 = f − c1xα1 f1, and so

h1 ∈ I . If h1 = 0, then the assertion follows. In other case, we apply the same reasoning to

h1. Since Mon(A) is well-ordered, then f
F,L−−→+ 0.

Now, if f
F,L−−→+ 0, then by Theorem 4.9 there exist elements f1, . . . , ft ∈ F and q1, . . . , qt ∈ A

such that f = q1 f1 +·· ·qt ft , i.e., f ∈ I .

• (2) ⇒ (1) It follows from Proposition 4.10.

From Theorem 4.11, a representation for the elements of I in terms of the elements of the
weak involutive basis is given as follows: F = { f1, . . . , ft } is a weak involutive basis of I if and only
if

f =
t∑

i=1
qi fi with qi ∈ Xlm( fi ), for all f ∈ I . (4.7)

We call this representation the standard involutive representation of f since it is unique.

EXAMPLE 4.6. Consider the commutative polynomial ring k[x, y, z]. The set F = { f1 = x2+y2, f2 =
x2z −1, f3 = y2z +1} is a weak Involutive basis w.r.t Janet division and the ideal I generated by{
x2z −1, y2z +1

}
[Sei10, Example 4.6.2]. For the element f = f2 − z f1 =−y2z −1, it is clear that

f
F,J−→+ 0, whence we obtain a standard involutive representation for 0 given by 0 = z f1 − f2 − f3.

This shows that the representation (4.7) is not unique.
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COROLLARY 4.12. F is a strong involutive basis if and only if the representation (4.7) is unique.

Proof. Suppose that F is a strong Involutive basis, and take a standard involutive represen-
tation for an element f ∈ I as in (4.7). By definition, there exists a unique element f ′ ∈ F such
that lt(q f ′) = lt( f ) which means that lt(q) is also unique. If we apply the same reasoning to
f − (lt q) f ′, inductively we get that the representation (4.7) is also unique.

On the other hand, suppose that F is a weak but not strong Involutive basis of I . Then
there exist elements f1, f2 ∈ F with CL,exp(lm(F ))(exp(lm( f2)) ⊆CL,exp(lm(F ))(exp(lm( f1)), whence
lm( f2) = lm(axα1 f1) for some a ∈ k and xα1 ∈ Mon(A). Consider the element f2−axα1 f1 ∈ I . Note
that if this polynomial is annihilated, then it is a non-trivial standard involutive representation
of the zero element. In other case, there exists a standard involutive representation f2−axα1 f1 =

t∑
i=1

qi fi with qi ∈ Xlm( fi ). By taking q ′
i := qi for all fi ̸= f1, f2 and q ′

1 = q1 +axα1 , q ′
2 = q2 −1, we

obtain a non-trivial standard involutive representation of 0 =
t∑

i=1
q ′

i fi . By last, notice that the

existence of a non-trivial standard involutive representation of 0 implies that the representation
(4.7) is not unique.

As usual, it is easier to show when F is not a weak Involutive basis. The following result
gives us a way to see this fact using Definition 4.16.

COROLLARY 4.13. Let F be a weak involutive basis of the left ideal I . Then 〈F 〉L = I .

Proof. Proposition 4.8 guarantees that if f
F,L−→+ 0 for f ∈ I , then f −→+0 in the sense of [GL11,

Definition 18]. Hence, F is a Gröbner basis for I [GL11, Theorem 24], and so 〈F 〉L = I .

EXAMPLE 4.7. Consider the 3-dimensional skew polynomial algebra A generated by the inde-
terminates x, y, z over the field of rational numbers Q subject to the relations y x − q2x y = x,
zx−q1xz = z and z y = y z. From Section 1.2.3 we know that A ∼=σ(Q)〈x, y, z〉. If q1 = 3

4 and q2 = 2
3 ,

for the left ideal I = 〈
y2z +3xz, x2z − y z

}
with the monomial ordering deglex and x ≻ y ≻ z,

the Buchberger’s algorithm [FGL+20, Section 13.4] shows that F = {xz, y z} is a Gröbner basis for
I . The aim is to determine if F is a Pommaret weak involutive basis of I . Since N 1 = {3} =N 2

and Xlm( f1) = {an zn +·· ·+a1z +a0 | ai ∈ k} = Xlm( f2), it follows that 〈F 〉P = Xlm( f1) · (xz + y z) and
y2z +3xz ∉ 〈F 〉P , which implies that 〈F 〉P ̸= I . Hence, F is not a weak Involutive Pommaret
basis of I .

EXAMPLE 4.8. In the 2-Heisenberg algebra H2(2) =σ(Q)
〈

x1, x2, y1, y2, z1, z2
〉

(Section 1.2.1), con-
sider the monomial ordering deglex with x1 ≻ x2 ≻ y1 ≻ y2 ≻ z1 ≻ z2. Let f1 := x1x2 y1 y2, f2 :=
x2 y1, and f3 := x1z2. By using Buchberger’s algorithm, a Gröbner basis for the left ideal I =〈

f1, f2, f3
}

is given by the set F = {x1x2 y1 y2, x2 y1, x1z2, x1 y1 y2
2 , x1 y1 y2} [FGL+20, Example 13.4.10].

Let us check if F is a Janet or Pommaret weak involutive basis of I .

(i) Since exp(lm(F )) = {(1,1,1,1,0,0), (0,1,1,0,0,0), (1,0,0,0,0,1), (1,0,1,2,0,0), (1,0,1,1,0,0)},
then N 1 = {1,2,3,4,5,6}, N 2 = {2,3,4,5,6}, N 3 = {1,4,5,6}, N 4 = {1,3,4,5,6} and N 5 =
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{1,3,5,6}, whence

Mon(N 1) = Mon(A),

Mon(N 2) = {xα1
2 yα2

1 yα3
2 zα4

1 zα5
2 |αi ∈N},

Mon(N 3) = {xβ1

1 yβ2

2 zβ3

1 zβ4

2 |βi ∈N},

Mon(N 4) = {xγ1

1 yγ2

1 yγ3

2 zγ4

1 zγ5

2 | γi ∈N},

Mon(N 5) = {xλ1
1 yλ2

1 zλ3
1 zλ4

2 |λi ∈N}.

In this way,

〈F 〉J = Xlm( f1) · (x1x2 y1 y2)+Xlm( f2) · (x2 y1)+Xlm( f3) · (x1z2)

+Xlm( f4) · (x1 y1 y2
2)+Xlm( f5) · (x1 y1 y2).

Since g (x) = x1(x2 y1) ∈ I but g (x) ∉ 〈F 〉J, whence 〈F 〉J ̸= I . This means that F is not a weak
Involutive Janet basis of I .

(ii) Note that N 1 = {4,5,6} =N 4 =N 5, N 2 = {3,4,5,6} and N 3 = {6}, which implies that

Mon(N 1) = {yα1
2 zα2

1 zα3
2 |αi ∈N} = Mon(N 4) = Mon(N 5),

Mon(N 2) = {yβ1

1 yβ2

2 zβ3

1 zβ4

2 |βi ∈N},

Mon(N 3) = {zγ1

2 | γ1 ∈N},

and hence

〈F 〉P = Xlm( f1) · (x1x2 y1 y2)+Xlm( f2) · (x2 y1)+Xlm( f3) · (x1z2)+Xlm( f4) · (x1 y1 y2
2)

+Xlm( f5) · (x1 y1 y2).

By using that g (x) = x2
1 x2 y1 y2 ∈ I and g (x) ∉ 〈F 〉P , we obtain 〈F 〉P ̸= I , and hence F is not

also a weak Involutive Pommaret basis of I .

The involutive reduction process given at the beginning of this chapter allows us to relate
in a more direct way the theory of Gröbner bases developed in [Gal15] with the theory of
Involutive bases of skew PBW extensions. Next, we present how this reduction process allows
us to introduce the notion of involutively reduced set and involutively head reduced set.

DEFINITION 4.18. The set F is involutively autoreduced if no polynomial f =
t∑

i=1
ri Xi ∈ F contains

a monomial Xi such that another polynomial f ′ ∈ F \ { f } exists with lm( f ′) |L,lm(F ) Xi . F is
involutively head autoreduced if no element f ∈ F satisfies lm( f ′) |L,lm(F ) lm( f ) for f ′ ∈ F \ { f }.

Let us note that the definition of a strong involutive basis immediately implies that it is
involutively head autoreduced.

DEFINITION 4.19. Let I be a non-zero ideal of A and L an involutive division. An Involutive
basis F of I with respect to L is minimal if exp(lm(F )) is the minimal involutive basis of the
monoid ideal exp(lm(I )) for the division L (see [Sei10, Definition 3.1.20]).



4.4. SKEW PBW EXTENSIONS 96

PROPOSITION 4.14. Let I be a non-zero ideal of A and L an involutive division. Then I possesses
at most one monic, involutively autoreduced, minimal involutive basis for the division L.

Proof. Suppose that there exist F1 and F2 minimal involutive bases, involutively reduced and
monic, different from I with respect to L. By definition of minimal involutive basis, lm(F1) =
lm(F2), and since F1 ̸= F2 there exist f1 ∈ F1 and f2 ∈ F2 such that lm( f1) = lm( f2) but f1 ̸= f2. Let
f := f1 − f2 ∈ I . Note that f ∈ 〈F1〉L and lm( f ) is a monomial in the unique representation of
f1 or f2 (Remark 1 (iv)). However, this implies that F1 of F2 is not involutively autoreduced, a
contradiction.

4.4.2 EXISTENCE AND CORRECTNESS

With the aim of formulating an algorithm to compute an Involutive basis of a left ideal of a
skew PBW extension, we consider the algorithm [FGL+20, Division algorithm in A] to Gröbner
bases theory together Seiler’s ideas [Sei10, Section 4.2]. As expected, we consider an involutive
division instead a general algorithm division. Algorithm 3 gives us an involutive standard
representation according with Theorem 4.9.

Algorithm 3: Involutive Standard Representation

INPUT :A fixed monomial ordering ⪰ on Mon(A), a involutive divison L,
F = { f1, . . . , ft } ⊂ A and f ∈ A.

OUTPUT :q1, . . . , qt ,h ∈ A with f = q1 f1 +·· ·+qt ft +h,h reduced w.r.t. F and qi ∈ Xlm( fi )

INITIALIZATION: q1 := 0, q2 := 0, . . . , qt := 0,h := f ;

while h ̸= 0 and there exists j such that lm
(

f j
) |L,lm(F ) lm(h) do

Calculate J := {
j | lm

(
f j

) |L,lm(F ) lm(h)
}

for j ∈ J do
Calculate α j ∈Nn such that α j +exp

(
lm

(
f j

))= exp(lm(h))

if the equation lc(h) =∑
j∈J r jσ

α j
(
lc

(
f j

))
dα j ,exp(lm( f j )) is soluble, where dα j ,exp(lm( f j )) are

defined as in Proposition 1.2 then
Calculate one solution

(
r j

)
j∈J

h := h −∑
j∈J r j xα j f j

for j ∈ J do
q j := q j + r j xα j

else
Stop

We can obtain a simple implementation of Algorithm 3 for computing a principal involutive
autoreduction (c.f. [Sei10, Algorithm 4.2]).

Algorithm 4 terminates since in every iteration of the bucle while a polynomial h ∈ H
is eliminated or replaced by other polynomial h with lm(h) less than lm(h) (recall that each
monomial ordering on Mon(A) is a well-order, see Definition 1.3(iv), so the bucle finishes).

Algorithm 5 follow the corresponding formulated by Seiler [Sei10, MonomialCompleteL,≺].
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Algorithm 4: Principal Involutive Autoreduction

INPUT :A fixed monomial ordering ⪰ on Mon(A), a involutive divison L and F ⊂ A
finite

OUTPUT :an involutively head autoreduced set H with 〈H〉 = 〈F 〉
INITIALIZATION: H := F ;

while exist h ∈ H , f ∈ H\{h} : lm( f ) |L,lm(H) lm(h) do
choose such a pair (h, f )
Calculate µ := exp(lm(h))−exp(lm( f )); c := lc(h)/ lc(xµ f )
H := H\{h}; h := h − cxµ f

if h ̸= 0 then
H := H ∪ {h}

return H

Algorithm 5:

INPUT :A fixed monomial ordering ⪰ on Mon(A), a involutive divison L and F ⊂ A
finite

OUTPUT :an involutively completion set F
INITIALIZATION: F := F ; S :={

xi f | f ∈ F , xi is not a multiplicative variable of lm( f ),exp(lm(xi f )) ∉
〈

exp(lm(F ))
〉

L

}
while S ̸= ; do

choose s ∈ S such that S does not contain a proper involutive divisor of lm(s);
F := F ∪ {s}

return S

Algorithms 3, 4 and 5 generate Algorithm 6 to compute Involutive bases of left ideals
of skew PBW extensions.

With the aim of obtaining the correctness of Algorithm 6 (Theorem 4.16), we need Definition
4.20 and Proposition 4.15.

DEFINITION 4.20. A finite set F ⊂ A is called involutive up to the multi index λ ∈Nn
0 (partially

involutive) for the involutive division L, if for every f ∈ F and every monomial xα ∈ Mon(A)
such that exp(lm(xα f )) ≺λ, the remainder involutive of xα f with respect to F and L vanishes,
i.e., we have xα f ∈ 〈F 〉L . The set F is locally involutive up to the multi index λ ∈ Nn

0 for the
division L, if xi f ∈ 〈F 〉L for any non-multiplicative variable of any polynomial f ∈ F (such that
exp(lm(xi f )) ≺λ).

PROPOSITION 4.15. Given a continuous involutive division L, any finite involutively head autore-
duced set and locally involutive F ⊂ A is involutive.

Proof. Consider a “complete” local involutive division, that is, without some restriction for some
multi index λ. Of course, the proof remanis valid for any partial involutive division.

The idea is to show that for every monomial xα ∈ Mon(A) and each f1 ∈ F , there exists
h ∈ F such that exp(lm(xα f1)) ∈ CL,exp(lm(F ))(exp(lm(h))). As it is clear, if xα consists of only
multiplicative indeterminates for f1, taking h := f1 the assertion follows.
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Algorithm 6: Involutive basis in A

INPUT :A fixed monomial ordering ⪰ on Mon(A), a involutive division L and F ⊂ A
finite

OUTPUT : an involutive basis F of I = 〈F 〉 with respect to L
INITIALIZATION: F := F ; S :=;
repeat

F :=H , with H an involutively head autoreduced set of F ∪S
F :=F , with F an involutively completion set of F

S := {h | xi f
L,F−→+h, f ∈F , xi is not a multiplicative variable of lm( f )}\{0}

until S =;;
return F

On the contrary, let i1 ∈ N L,exp(lm(F ))(exp(lm( f1))) with αi1 > 0. By assumption, F is locally
involutive, so for every f ∈ F there exists p(1)

f ∈ Xlm( f ) such that xi1 f1 = ∑
f ∈F

p(1)
f f . Note that if we

suppose that the leading monomial of the right hand of this expression is given by lm(p(1)
f2

f2),

then exp(lm(xα f1)) =α+exp(lm( f2))+exp(lm(p(1)
f2
−1i1 ), due to that if p(1)

f2
∈ Xlm( f2) then lm(p(1)

f2
)

only posses multiplicative variables of f2. If we take h := f2 and xα−1i1 only posses multiplicative
indeterminates of f2, then we are done.

Again, on the contrary, let i2 ∈ N L,exp(lm(F ))(exp(lm( f2))) with (αi1 − 1i1 )i2 > 0. By apply-
ing once more again the local involution of F , we get that for every f ∈ F there exists p(2)

f ∈
Xlm( f ) with xi2 f2 = ∑

f ∈F
p(2)

f f . Suppose that the leading monomial of the right hand of the ex-

pression above is lm(p(2)
f3

f3), and let β= exp(lm(xi1 f ))−exp(lm( f2)), whence exp(lm(xα f1)) =
exp(lm(xα+β−1i1−1i2 f3)). Note that for h := f3, if xα+β−1i1−1i2 only have multiplicative indetermi-
nates of f3, then the proof concludes. If this is not the case, we iterate the process by choosing a
non-multiplicative index i3 and decompose xi3 f3 (by using the local involutiveness of F ) into
multiplicative products, and so we obtain a polynomial f4. By repeating this procedure we ob-
tain a sequence v (1) = exp(lm( f1)), v (2) = exp(lm( f2)), . . . with v (k) ∈ exp(lm(F )), and for each v (k)

there exists an index ik ∈ N L,exp(lm(F ))(v (k)) such that v (k+1) |L,exp(lm(F )) v (k) +1ik . Since the divi-
sion is continuous, this sequence cannot be infinite and this process must terminate. In this way,
we assert the existence of a polynomial h ∈ F satisfying exp(lm(xα f1)) ∈CL,exp(lm(F ))(exp(lm(h)))
for every monomial xα ∈ Mon(A) and each f1 ∈ F . Therefore, we have the possibility of consider
linear combinations by using these products (and coefficients in the field k) in such a way that
the leading monomials cannot be reduced since F is head involutively reduced, whence the
leading exponent of every polynomial in 〈F 〉 belongs to the monomial ideal 〈exp(lm(F ))〉L , that
is, F is involutive.

THEOREM 4.16. Let L be a constructive Noetherian division and A a skew PBW extension over a
field k. Then for any finite input set F ⊂ A, Algorithm 6 terminates with an Involutive basis
F of I = 〈F 〉.

Proof. The correctness of the Algorithm 6 follows from Proposition 4.15. Let us show that it
terminates. Since L is Noetherian, the set exp(lm(F )) in the second step of the bucle repeat
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posses a finite involutive completation that has an end due to [Sei10, Proposition 4.2.1]. Then,
the set itself is an Involutive basis, which means that for every polynomial g ∈ S, we get
exp(lm(g )) ∉ 〈

exp(lm(F ))
〉

. Thus, all these monoidal ideals form a strict ascendant sequence
that cannot be infinite [Sei10, Lemma A.1.2]. This concludes the proof.

EXAMPLE 4.9. Let A, I and F as in Example 4.7. If we use the Janet division J which is constructive
Noetherian and apply the Algorithm 4, then we get that F is an involutively head autoreduced
set. Now, if we apply the Algorithm 5, then F is an involutively completion of F . Finally, the
Algorithm 6 guarantees that F is an Involutive Janet basis of I .

REMARK 19. It is important to note that if the division is non-Noetherian, then Algorithm 6
could not terminate, and hence we obtain an infinite Involutive basis [Sei10, Example 4.2.9].

4.5 FUTURE WORK

As we said in Section 4.3, Seiler [Sei10] formulated a detailed theory of Involutive bases of
its polynomial algebras of solvable type. From the theoretic point of view [Sei10, Chapter 3] and
its algorithmic implementation [Sei10, Section 4.2], he extends the theory to non-term orders
[Sei10, Section 4.5] (c.f. Hausdorff et al. [HSS02]) and used it to characterize several homological
properties of commutative polynomial rings [Sei10, Chapter 6]. Having these facts in mind,
by considering the approach to Involutive bases presented in Section 4.4, our interest is to
implement computationally these ideas in an analogous way as was made for Gröbner bases
(see [FGL+20, Appendices C, D and E]). Of course, a possible extension of our results to the
setting of skew PBW extensions over Gröbner-soluble rings will also be considered. By last, the
question on the importance of non-term orders with the technique of homogenization and
dehomogenization remains open.
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