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Resumen 

 

Efecto de la estructura del paisaje sobre la diversidad de la microbiota y protozoarios 

intestinales entre mamíferos silvestres y domésticos en algunas regiones de Colombia. 

 

Con relación a la microbiota intestinal, la hipótesis postula que un aumento en la diversidad 

microbiana contribuye significativamente a una mejor funcionalidad en varios procesos asociados 

con ella. La microbiota intestinal muestra una alta susceptibilidad a diversas formas de estrés, y 

el impacto de tales factores estresantes puede ser profundo, afectando tanto su composición 

como su función. Una comprensión integral de cómo distintas formas de estrés afectan a la 

microbiota intestinal es imperativa para el desarrollo de estrategias destinadas a preservar la 

salud gastrointestinal y, por ende, el bienestar general de los individuos. Por otro lado, los 

parásitos constituyen componentes integrales dentro de procesos naturales que podrían 

determinar la regulación poblacional y mantienen el equilibrio del ecosistema. Sin embargo, tanto 

los cambios naturales como los antropogénicos pueden perturbar estos procesos ecológicos. 

Entre las enfermedades infecciosas, aquellas inducidas por protozoos son contribuyentes 

destacados a la morbilidad y mortalidad humanas. Los cambios ambientales exacerban las 

interacciones entre la vida silvestre, los animales domésticos y los humanos, intensificando así 

las tasas de transmisión entre especies. Por tanto, el objetivo de este estudio fue investigar las 

asociaciones, incluyendo relaciones y similitudes, de la estructura del paisaje, influenciada por 

actividades humanas, la diversidad de la microbiota intestinal y la abundancia de protozoarios 

gastrointestinales entre mamíferos silvestres y domésticos en Colombia. La determinación 

taxonómica se hizo mediante metabarcoding con cebadores dirigidos al gen rRNA 18S y 

secuenciación Nanopore, con un enfoque principal en la detección de protozoos. Se recopilaron 

un total de 148 muestras de seis mamíferos silvestres y tres mamíferos domésticos en 29 

paisajes focales en Colombia. También se empleó la microscopía para validar algunos agentes. 

Para describir epidemiológicamente las muestras, se estimaron la riqueza de taxones en la 

microbiota intestinal, así como la prevalencia, intensidad media y abundancia media de los 

protozoarios. Se utilizaron regresiones Beta y Poisson bayesianas para evaluar la relación entre 
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las métricas del paisaje y la disimilitud, la diversidad de la microbiota intestinal y de protozoarios, 

y la abundancia de protozoarios específicos. El estudio identificó varias especies no reportadas 

previamente en las seis especies silvestres hospedadoras evaluadas. Se observó una proporción 

predominante de los phylum Ascomycota, Pseudomonadota, Basidiomicota y Apicomplexa, 

reflejando por un lado una microbiota intestinal saludable, aunque también la posible 

predominancia de ciertos elementos negativos. Las comparaciones entre caninos y equinos, así 

como entre tapires y osos entre los mamíferos terrestres, indicaron una mayor similitud tanto en 

la microbiota intestinal como en los protozoarios. En primates, el mono aullador rojo mostró una 

proximidad más cercana a los bovinos y equinos que a otros primates. Los hallazgos indicaron 

que una mayor proporción de cobertura vegetal natural estaba relacionada con una mayor 

similitud en la microbiota intestinal entre mamíferos silvestres y domésticos. Además, mayores 

proporciones de cobertura vegetal natural, presencia de cuerpos de agua, número de parches 

de bosque e irregularidades en la forma de los bosques se asociaron con una mayor diversidad 

(tanto en riqueza como en equidad) en la microbiota intestinal y de protozoarios intestinales a 

diferentes escalas. 

Palabras clave: Epidemiología del paisaje, índice de disimilaridad, Fragmentación, Ganado, 

Microbiota intestinal, Vida silvestre.  
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Effect of landscape structure on the diversity of microbiota and intestinal protozoa 

between wild and domestic mammals in some regions of Colombia 

 

Concerning the gut microbiota, the hypothesis posits that increased microbial diversity contributes 

significantly to enhanced functionality across various associated processes. The intestinal 

microbiota exhibits high susceptibility to diverse forms of stress, and the impact of such stressors 

can be profound, affecting both its composition and function. A comprehensive understanding of 

how distinct forms of stress influence the intestinal microbiota is imperative for the developing 

strategies aimed at preserving gastrointestinal health and, consequently, the overall well-being of 

individuals. Conversely, parasites constitute integral components within natural processes that 

could determine population regulation and maintain ecosystem balance. However, both natural 

and anthropogenic changes can disrupt these ecological processes. Among infectious diseases, 

those induced by protozoa are prominent contributors to human morbidity and mortality. The 

environmental changes exacerbate interactions among wildlife, domestic animals, and humans, 

thereby intensifying transmission rates between species. Thus, the objective of this study was to 

investigate the associations, including relationships and similarities, between landscape 

configuration influenced by human activities and the diversity of intestinal microbiota, as well as 

the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. 

Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 

18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 

samples were collected from six wildlife mammals and three domestic mammals across 29 focal 

landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe 

the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean 

intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson 

regressions were employed to assess the relationship between landscape metrics and 

dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa. The study 

identified several new species within the six assessed host species. A predominant proportion of 

phyla Ascomycota, Pseudomonadota, Basidiomicota, and Apicomplexa were observed, reflecting 

a healthy intestinal microbiota and a potential predominance of certain negative elements. 

Comparisons between canines and equines, as well as between tapirs and bears among 

terrestrial mammals, indicated greater similarity in both gut microbiota and protozoa. In primates, 
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the red howler monkey exhibited closer proximity to bovines and equines than to other primates. 

The findings indicated that a higher proportion of natural vegetation coverage correlated with 

increased similarity in gut microbiota among wild and domestic mammals. Additionally, higher 

proportions of natural vegetation coverage, presence of water bodies, number of forest patches, 

and irregularities in forest shapes were associated with greater diversity (both richness and 

evenness) in gut microbiota and intestinal protozoa across different scales. 

 

Keywords: Cattle, Dissimilarity index, Fragmentation, Gut microbiota, Landscape epidemiology, 

Wildlife.  
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Introduction 

 

Health in agriculture is the capacity to satisfy the daily requirements and to adapt to the 

environmental changes which implies the capacity to preserve in the system the productive 

parameters. When the disease appears, humans, animals, or plants decrease their productivity. 

In most cases, infective parasites and zoonotic diseases are the main focus (Eriksson & 

Lindstrom, 2008; Frankish et al., 1996). Parasites are integral components of natural processes 

that drive population regulation and ecosystem balance (Clayton & Moore, 1997; Delahay & 

Delahay, 2009). They have the potential to influence key population parameters such as birth and 

death rates (Nunn & Altizer, 2006). These ecological processes may be disrupted by both natural 

and anthropogenic changes. Furthermore, parasites could act synergistically with habitat 

reduction, poaching, and pollution, posing a threat to biodiversity conservation (Aguirre, 2009; 

Smith et al., 2009; Wisely et al., 2008). Parasites may also contribute to substantial economic 

losses due to decreased production, financial expenditures on control and treatment, and 

increased mortality in livestock, particularly cattle (Charlier et al., 2014; Rashid et al., 2019; 

Rodríguez-Vivas et al., 2017). In the face of potential environmental changes, parasites may alter 

their impact on wildlife, domestic animals, and human health by intensifying contact between 

hosts and infectious agents. In this context, a comprehensive prioritized analysis based on the 

"One Health" approach proves valuable for decision-making (Jenkins et al., 2015) and should be 

developed, considering informative proxies and indicators pertaining to the interactions between 

human, animal, and ecosystem health (Aguirre et al., 2002). 

Mammals are an important group for epidemiological surveillance due to the impact that diseases 

can have on their endangered populations, and because of the risk of zoonotic transmission. As 

some primate species are used for bush meat, biomedical models, or, as pets, many mammals 

are in continuous close contact with humans, which increases the risk of cross-transmission and 

disease spread, highlighting the urgent need for mammal epidemiological surveillance (Artois et 

al., 2009; Chapman et al., 2005). 

 



2 Introduction 

 

Thus, the main aim of this study is to determine the association (relationships and similarities) of 

livestock, local landscape, and human activity features with the occurrence probability of the 

pathogenic gastrointestinal protozoa in wild mammals in Colombia. Our hypothesis is the further 

away the livestock is from the sustainability standards, based on the greater the transformation in 

the landscape, the greater the richness and abundance of protozoa on the mammals.  To test my 

hypothesis, I have formulated two specific aims: 1. to determine the relationship between the 

livestock features (Landscape metrics) and the presence and gastrointestinal protozoa burden in 

its domestic animals and associated environment, given that their epidemiology may pose a risk 

some wild mammals and 2. to determine the relationship between the local landscape features 

and the severity of human activities with the occurrence probability of the gastrointestinal protozoa 

in some wild mammals. The first specific aim is documented in chapter 3 titled “Relationship of 

the landscape configuration and the diversity of gut protozoa and microbiota in livestock 

associated with conservation areas in Colombia” here we describe epidemiologically the domestic 

species samples in function of the diversity gut microbiota and the prevalence, mean intensity 

and mean abundance of the protozoa detected, Apicomplexa, Tricomonadida, 

Trypanosomatidae, Paramecium, and Giardia clades and I evaluate the relationship between of 

landscape metrics in the bovine and equine gut microbiota and protozoa diversity (richness and 

evenness). To discuss the risk, the parasites found were contrasted with a systematic review of 

parasites in several wildlife mammals (Rondón et al., 2021; Solórzano-García & Pérez-Ponce de 

León, 2018; Uribe et al., 2021), one of them was developed in the present word and documented 

in the chapter one title “Parasites in bears (Ursidae): sampling gaps in the Spectacle Bear 

(Tremarctos ornatus)”. The second specific aim is documented in chapter 4 titled” Relationship of 

landscape configuration with the diversity of gut microbiota and protozoa in wild mammals and its 

similarity with livestock in conservation areas in Colombia”, here we describe epidemiological 

wildlife mammals sampled in the same way of the domestic in chapter 3. Additionally, we 

estimated the dissimilarity of gut microbiota and protozoa between all host species and assessed 

the relationship of the landscape metrics with those dissimilarities, finally we assessed the 

relationship between the local landscape features and the severity of human activities with the 

diversity of gut microbiota and protozoa, and mean abundance of the gastrointestinal protozoa in 

Alouatta seniculus in a multiscale approach that was the host species with enough sample size 

to this analysis. 

Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 

18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. This approach 

had some challenges, mainly associated we the sample collection, that we should resolve, this 
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process was documented in chapter two titled “Comparison of concentration and quality of DNA 

of fecal samples of mammals between collected and transported in ethanol or lysis buffer”. As all 

chapters were written as independent papers, some texts are delivered repeatedly or have the 

same structure with numbers variation, mainly about the methods and some explication of similar 

results. The supplement information of the four chapters is in 

https://drive.google.com/drive/u/2/folders/12YwS-ACMZThxQv2bwdrM6JvjqUyxLj_6 
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1.1 Abstract 

Parasites are part of the natural processes that help regulate populations and maintain ecosystem 

balance. There is a growing recognition of parasites as important factors to the conservation of 

species, mainly those vulnerable to extinction in a changing environment. Bears are good 

biological models for monitoring infectious agents in wildlife, given their life cycle, broad home 

range, and severity of interactions with humans and their domestic animals as a result of their 

behavioral plasticity, intelligence, and omnivorous food habits. In the Andean region, the only bear 

species Tremarctos ornatus is listed as vulnerable. In order to determine the sampling gap and 

prioritize the approach for understanding parasite diversity in bears, I performed a systematic 

review and metanalysis of the documented parasites of bears across the world, and discuss the 

possibility of the parasites recorded in these other species being present in T. ornatus in the 

Andean region, specifically Colombia. In 283 relevant references, 647 records were found of 189 

parasites in 37 countries. Of the bear species with parasites recorded, U. americanus had the 

most numerous and complete records. The tropical species H. malayanus, M. ursinus, and T. 

ornatus showed the smallest parasite diversity and unseen species estimate, despite being the 
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region where the greatest diversity of parasites was expected. Of interest are around 80 parasites 

that have been recorded in seven non-Colombian bear species, but are documented in other 

species in this country. 

1.1.1 Keywords:  epidemiological risk, infectious agents, Tremarctos ornatus, Ursids 

1.2 Introduction 

Parasites are part of the natural processes that help regulate populations and maintain ecosystem 

balance. They can affect population parameters such as birth and death rates, and some 

mathematical models suggest that they could play an important role in their hosts’ population and 

evolutionary dynamics. There is a growing recognition that parasites play an important role in the 

biology and conservation of species, as they often lead to deleterious health effects, fitness 

reduction, and mortality (Aguirre et al., 2002; Smith et al., 2009; Wisely et al., 2008). These could 

cause local extinction in wildlife populations (Smith et al., 2006; Zhang et al., 2011), so any factor 

that can modify the ecosystem that is the natural reservoir of such infectious agents has the 

potential to disturb their epidemiology (Patz et al., 2003). As such, high rates of abnormal 

mortalities in wildlife must be further investigated to be confirmed epidemiologically and can to 

prevent further infections (Brena et al., 2018). 

These ecological processes are altered by natural and anthropogenic changes, and parasites 

could become a threat to species conservation, together with habitat reduction, poaching and 

pollution. In response to the environmental changes, parasites could change their effect on 

wildlife, domestic and human health by increasing contact between hosts and infectious agents. 

While infectious diseases are not considered an important global threat to wildlife viability (Smith 

et al., 2006), they are a common driver of population depletion (temporal or permanent) at the 

local scale, particularly of threatened, isolated, or small populations (García Marín et al., 2018; 

Ujvari & Belov, 2011). The mega-biodiversity of some countries such as Colombia introduces an 

additional epidemiological risk factor, because there are many more wild and domestic species 

that could serve as susceptible host and reservoirs for several infectious agents when the 

ecosystem dynamic is altered (Mackenstedt et al., 2015; Monsalve-Buriticá, 2019). A challenge 

to conservation medicine is to plan effective actions that mitigate the effect of emerging diseases 

that are currently driving biodiversity loss. 
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Bears could potentially perpetuate disease transmissions to human and livestock, given that they 

often explore anthropogenic habitats in agroecosystems due to their behavioral plasticity, 

intelligence, and omnivorous food habits (Gilbert, 1989; McCullough, 1982; Sasmal et al., 2019). 

Additionally, the current trend of increased interactions might make bears important vectors or 

intermediate hosts for several zoonotic pathogens (Baruch-Mordo et al., 2014; Bronson et al., 

2014; Dubey & Jones, 2008), as they could predate or scavenge an infected host (Elbroch et al., 

2015; Kindschuh et al., 2016; Lesmerises et al., 2015). The overlapping habitat use between 

bears and livestock sets up a potential risk for infectious disease transmission (Borka-Vitális et 

al., 2017; Westmoreland et al., 2016; Wu et al., 2018). Bears may be exposed to humans, 

livestock, and other wildlife pathogens through vectors, predation, scavenging, or environmental 

reservoirs (e.g., water) (Peña-Quistial et al., 2020; Stephenson et al., 2015). The impact of 

infectious diseases in bear conservation may act synergistically with other threats such as 

isolation and low population size, reducing populations even further and increasing their 

vulnerability to habitat reduction and degradation, dietary stress, hunting, and pathogens 

(Ishibashi et al., 2017; Schwab et al., 2011). 

In high mountain Andean ecosystems, the spectacled bear is a good proxy for monitoring 

infectious agents in wildlife, given the species’ life cycle, broad home range, and severity of 

interactions with humans and domesticated animals (Bard & Cain III, 2019; I. Goldstein et al., 

2006). The spectacled bear (Tremarctos ornatus) is the only species of the Ursidae family in south 

America, and it is categorized as species vulnerable to extinction (VU) (Velez-Liendo & García-

Rangel, 2018). Retaliatory killing by high mountain cattle ranchers and habitat degradation and 

reduction have been recognized as the main threats to the bear (I. R. Goldstein, 2002; Jorgenson 

& Sandoval-A, 2005; Kattan et al., 2004; Peyton, 1999). Recently, it was found that the presence 

of unaccompanied cattle (i.e., feral) reduces the probability of bear occupation (Parra-Romero et 

al., 2019). The interaction between wildlife and domesticated animals plays an important role in 

the transmission of different infectious agents. In the rural high mountain areas, domestic and 

feral animals excrete in areas where wildlife forage and prey, potentially leading to the 

transmission of different infectious agents (King et al., 2011). 

In order to prioritize the monitoring effort, diagnosis methods and tools are key for knowing which 

parasites might be present in natural populations of the spectacled bear. This review discusses 

which pathogens have been found in the seven other species of bears and have been recorded 

too in any host in the Andean region, specifically Colombia, to infer which could be present in T. 

ornatus. 
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1.3 Materials and methods 

1.3.1 Document review 

The data was obtained from different sources available on the eight species of bears from across 

the globe. We searched for all relevant published studies. Searches were performed from 1808 

until August, 2023 using Google Scholar (https://scholar.google.com), Scopus 

(https://www.scopus.com), and Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/). We restricted 

our search to documents in Spanish and English, but included some references in Chinese that 

had English abstracts. Search terms included: “Ursidae and nematodes”, “Ursidae and Protista”, 

“Ursidae and Protist”, “Ursidae and virus”, “Ursidae and bacteria”. We did not take into account 

“gut microbiota”, “intestinal flora”, “microbial population of gastrointestinal tract”, “gastrointestinal 

microbiota”. Duplicate articles found in more than one database or terms were excluded. Reviews 

and research articles, theses, and meeting abstract were included. 

1.3.2 Parasite diversity 

I estimated the specific richness index, “S”, of the ursid parasites determined to species level, as 

well as unique records of families and genera. Additionally, I estimated the expected parasite 

richness for each bear species using Chao, Jack1, Jack2, and Bootraps indices, considering the 

year as a sampling unit. As parasite species are expected to remain unseen or undetected in a 

collection of sample units, we used several popular ways of estimating the number of unseen 

species and add them to the observed species richness (Colwell & Coddington, 1994; Palmer, 

1991). The incidence-based estimates use the species frequencies across a collection of years. 

I ran all analyses in the R package Vegan version 2.6-4 (Oksanen et al., 2013). 

Agents found in other bear species that could be present in the Spectacled Bear. In order to 

understand more about the parasites found in the other seven bear species exclusive of T. 

ornatus, I reviewed in the same database the documented records of each parasite to the specific 

and generic level in the Andean Region in human, domestic or wildlife species. Search terms 

included “Species name or genera” and “Colombia”. If a record was not found, we changed 

“Colombia” to “Neotropical”, “Andes” or “South America”. We consider at least one reference 

enough to count the presence of a parasite. 
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1.4 Results 

I found 283 relevant references of parasites in bears; 37 references were not found in original 

versions. The references were published between 1808 and 2023. Close to 647 records, 189 

agents were determined to specific level, 27 agents to genera, and 21 only to family level 

(Supplement information 1). The recorded parasites were distributed across 121 genera, 95 

families, and 12 kingdoms (Supplement information 1,Table 1). The documented records come 

from 37 different countries (Figure 1,Table 2). 

Table 1. The distribution of parasites kingdoms documented in bears 

Kingdom Frequency 

Animalia 430 

Virus 76 

Bacteria 70 

Protista 51 

Chromalveolata 12 

Fungi 7 

Diaphoretickes 4 

Excavata 4 

Alveolata 2 

Coccidia 2 

Amoebozoa 1 

SAR 1 
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Figure 1. Density map of parasite records by bear species and country 

Table 2. The distribution of country records of parasites in bears 

ID Country Frequency 

1 USA 221 

2 Canada 70 

3 China 69 

4 Russia 45 

5 India 32 

6 Japan 22 

7 Romania 19 

8 Alaska 18 

9 Italy 14 

10 Colombia 12 

11 Germany 11 

12 Slovakia 11 

13 Peru 10 



Chapter 1 11 

 

14 Croatia 7 

15 Yugoslavia 7 

16 Norway 6 

17 Thailand 6 

18 Ecuador 4 

19 France 4 

20 Turkey 4 

21 USA – Russia* 4 

22 Poland 3 

23 Sweden 3 

24 Brazil 2 

25 Chile 2 

26 Greenland 2 

27 Malaysia 2 

28 Mexico 2 

29 Netherlands 2 

30 Spain 2 

31 UK 2 

32 Venezuela 2 

33 Vietnam 2 

34 Azerbaijan 1 

35 Czech Republic 1 

36 Denmark 1 

37 Greece 1 

38 Ireland 1 

39 Kazajistan 1 

*Bering strait 
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The Ursid species with the most records of parasites was Ursus americanus, but the diversity 

could be between 132 and 203 species. So, in species with a more sampling effort, this could be 

between 52 and 81% of completeness. The tropical species Helarctos malayanus, Melursus 

ursinus, and T. ornatus showed the smallest parasite diversity and unseen species estimates. 

This is probable due to their poor sampling coverage (Table 3). It is expected that there is a 

greater diversity of parasites in tropical regions (Diamond, 2016). 

Table 3. Diversity analysis of parasites reported in ursid species. 

Species S chao chao.se jack1 jack.se jack2 boot boot.se n 

A. melanoleuca 45 192 90 79 9 107 58 4 26 

H. malayanus 11 59 30 21 4 29 15 2 8 

M. ursinus 20 63 33 35 7 47 26 3 10 

T. ornatus 25 60 25 40 9 51 32 5 7 

U. americanus 107 187 28 166 15 203 132 9 46 

U. arctos 92 345 101 162 17 221 120 8 39 

U. maritimus 31 102 52 51 6 68 39 3 35 

U. tibetanus 21 89 59 37 5 50 27 2 16 

*Species richness 

The parasites with the greatest number of records in bears were Baylisascaris transfuga, 

Toxoplasma gondii, Trichinella sp., Trichinella spiralis, Canine morbillivirus, Dirofilaria ursi, 

Canine mastadenovirus A, with 10 to 32 records. 134 agents were mentioned in a single record 

(Supplement information 2). At least 80 parasite species reported in the other seven bear species 

have been registered in other non-ursid Colombian species, with two others being reported from 

the Neotropical region and South America. Four agents not reported in T. ornatus have worldwide 

distributions (Supplement information 3). 

1.5 Discussion 

In spite of being a species located in a region of overall parasite richness, including several taxa 

reported in other bear species, tropical bears have less documented records of agents. This is 

evidently due to lack of sufficient sampling. In particular for T. ornatus of the 44 records (25 
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potential different taxa), only four determine the taxon at the species level, 31 reach the genus 

and the remaining nine just at the Family, Kingdom or Domain level (Mata et al., 2016; Navarro 

M. et al., 2015; Oniki-Willis & Willis, 2018; Zárate Rodriguez et al., 2022). This is a product of the 

fact that most of the research has been done with approaches based on microscopy, which in 

some cases only allow to identify “compatible structures” with some agents (Cruz Hurtado & 

Muñoz Huamaní, 2016; Figueroa, 2015; Quintero et al., 2023; Zárate Rodriguez et al., 2022) or 

with molecular approaches that do not reach sufficient taxonomic resolution for the different 

groups (Chica Cardenas, 2021). Of the 44 records in T. ornatus, 26 belong to the kingdom 

Animalia: 18 are nematodes, two trematodes, one cestode, and two arthropods. 15 records are 

Protists distributed in 10 genera. Two of the records that were able to be determined at the species 

level use specific molecular and immunological diagnostic approaches (Mata et al., 2016; Navarro 

M. et al., 2015). 

Of the 85 infectious agents registered in the other bear species that have been found in Colombia 

in other hosts, 35 belong to the Animalia kingdom, 21 are bacteria, 14 viruses, 11 protists and 4 

fungi. In the case of animal agents, at least 32 are endoparasites, as are protists, bacteria, fungi, 

and viruses. In this sense, the use of fecal samples, which in addition to being non-invasive, 

relatively cheap and easy to collect, once the accessibility to the sampling sites has been 

overcome, would allow having samples for the greatest number of agents of interest, including 

some hemotropic, which reach the digestive tract through different routes. However, the diagnosis 

on these samples demands the adequate means of collection and transport to guarantee the 

quality of the samples (Longmire et al., 1997; Wultsch et al., 2015), in addition to standardized 

extraction processes. Likewise, it is necessary to use Metabarcoding with a combination of 

markers, among which 16S, 18S and ITS are suggested (Francis & Šlapeta, 2022; Semblante et 

al., 2017; Stensvold et al., 2021), and with bioinformatic approaches that contrast the sequences 

with different specific databases (e.g., PlusPFP: Standard plus Refeq protozoa, fungi & plant, 

using kraken2 (Wood et al., 2019)). Thus, it would be possible to increase, cost-effectively, the 

sampling in this and other types of hosts and evaluate, within the framework of One Health, the 

similarity between different components of the assemblies. So far, the few comparison exercises 

evaluate maximum similarities at the genus level and thus it is only possible to speculate about 

the possible transmission of agents between different hosts (Zárate Rodriguez et al., 2022) but 

not to prove the hypothesis about the exchange of specific agents and to differentiate its 

epidemiology and the potential immunological responses stimulated in the different hosts. 
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All four groups of agents identified in other bear species, also found in or near Colombia, are 

potentially zoonotic. After the northern temperate zones, the tropics present some risk of 

zoonoses and carnivores (Order Carnivora), rodents and ungulates are particularly linked to the 

situation (Han et al., 2016). In this sense, increasing sampling efforts to complete the 

characterization of the diversity of infectious agents, with high taxonomic resolution, is key, not 

only to determine the richness of this component of biodiversity, but also to improve risk analysis 

generated by infectious diseases for wildlife, domestic animals and the human population 

(Shaheen, 2022). 

In the Andean region, management efforts to conserve the Spectacle Bear could be faced with 

unknown associated epidemiological risks, potentially even affecting human welfare. The 

presence and load of infectious agents in wildlife and their interaction with humans, with high level 

taxonomic resolution, must be a research priority for conservation and public health stakeholders. 
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2.1 Abstract 

Using fecal microbial community profiles through sequencing approaches helps to unravel the 

intimate interplay between health, wellness, and diet in wild animals with their environment. 

Ensuring the proper preservation of fecal samples before processing is crucial to ensure reliable 

results. In this study, we evaluated the efficiency of two different preservation methods, 

considering the following criteria: DNA yield, quality and integrity, and microbial community 
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structure based on Oxford Nanopore amplicon sequencing of the V3-V4 region of bacterial 16s 

rRNA and protozoa 18S rRNA genes. Eighteen mammalian fecal samples were collected 

transported in 99.8% ethanol and lysis buffer and processed between 55 and 461days post-

collection. Wilcoxon tests were carried out for paired samples for quantitative measurements, 

while for the A260/280 ratio between both conservation media, was done descriptively, and the 

Bartlett test evaluated its dispersion. A Fisher test was performed to compare the number of 

positive reactions for DNA extraction or PCR amplification of the 16S and 18S rRNA genes 

between both storage media. The concentration of total DNA and amplicons, as well as the 

number of reads obtained in sequencing, was significantly higher in the samples preserved with 

lysis buffer compared to those with ethanol, with magnitudes up to three times higher, as well for 

integrity assessed by electrophoresis of total DNA and amplifications. The A260/280 values 

obtained using the lysis buffer were of optimal purity (mean: 1.92) and with little dispersion (SD: 

0.27); on the other hand, the ethanol samples also presented an excellent average quality (mean: 

1.94), but they were dispersed (SD: 1.10). For molecular studies using mammalian feces, the 

lysis Buffer reagent proved to be a reliable solution for their collection, conservation, and storage. 

2.1.1 Keywords: biological sample, microbiota, preservation, stools 

 

2.2 Introduction 

In the field of life sciences, the analysis of fecal samples can be helpful in answering different type 

of research questions related to behavior, population ecology, health, well-being, and diet 

(Jedlicka et al., 2017; Plimpton et al., 2021). This analysis can be implemented through different 

approaches, including microscopy, spectroscopy, biochemical and hormone measurements, as 

well as molecular biology techniques (Acosta Z et al., 2015; Matysik et al., 2016; L. R. Morgan et 

al., 2021). Such studies offer insights into population genetics, molecular epidemiology, the 

characterization of gastrointestinal parasites and microbiota, and the detection of organic content 

in the samples (Ngcamphalala et al., 2019; Villamizar et al., 2019).  

One of the advantages of using fecal samples is the relative ease of collection. This method is 

noninvasive, especially when researchers can directly observe the animal excreting the stool, as 

seen in the case of Atelidae primates (Rondón et al., 2021) or when the samples exhibit species-

specific characteristics, as in Andean bear, tapirs, felines, and certain domestic animals 
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(Gonzales et al., 2016). Additionally, the relatively low cost associated with fecal sample collection 

sets it apart from more invasive methods, such as blood draws or tissue biopsies, which may 

require pre-medication or physical constraints (Aristizabal-Duque et al., 2018; Arnemo et al., 

2006). 

Collecting and storing fecal samples properly is essential to ensure the accuracy of biochemical 

or molecular measurements (Papaiakovou et al., 2018). However, obtaining high-quality and 

concentrated DNA from fecal matter samples is a complex task due to the presence of polymerase 

chain reaction (PCR) inhibitors, including urates, bile salts, complex polysaccharides, bilirubin, 

and byproducts of digested hemoglobin (Longmire et al., 1997). Furthermore, fecal samples are 

inherently contaminated with metabolites from the digestive process, and in the case of samples 

from wild animals, they may also be exposed to environmental contamination, degradation from 

exposure to solar radiation, humidity, and inadequate temperatures for preservation of 

macromolecules (Iker et al., 2013; Menu et al., 2018; Papaiakovou et al., 2018). Additionally, 

under field conditions, it is often challenging to maintain cold chains to preserve samples until 

they reach the laboratory (Camacho-Sanchez et al., 2013). 

To address these challenges, preservation methods for molecular analyses must protect the 

target DNA from endogenous nucleases and degrading compounds. Some commercial 

companies have developed media for environmental DNA preservation, such as DNA stabilizer 

or RNALater, which have shown promise in improving results with these sample types (Choo et 

al., 2015; Gorzelak et al., 2015). However, these preservation buffers can be relatively expensive, 

and their availability may be limited, particularly in developing countries. 

An alternative and cost-effective approach involves using ethanol and lysis buffer for collecting 

and transporting fecal samples (Longmire et al., 1997; Papaiakovou et al., 2018). In this study, 

we compare the concentration and quality of DNA obtained from samples collected and 

transported in both media. We then apply these samples to molecular analysis techniques, such 

as next-generation sequencing (NGS) using Oxford Nanopore Technology (ONT). Through 

bioinformatics analysis, we assess various molecular readouts, including DNA integrity, the 

number of reads obtained for each sample in both media, their conservation capacity, and the 

ability to establish the taxonomic classification of the microorganisms present (Antil et al., 2023). 

Our aim is to determine the reliability of these fecal sample preservatives and their ability to 

stabilize and protect genetic material. 
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2.3 Materials and Methods 

2.3.1 Collection of fecal samples and storage 

Eighteen fecal samples were collected from various species of wild and domestic mammals 

across different departments of Colombia ( 

Table 4). Each sample was divided into two equal parts, with one portion placed in molecular 

grade ethanol (99.8%) and the other in a lysis buffer. The lysis buffer was prepared with the 

following components: 0.1 M Tris-HCl, 0.1 M EDTA, 0.01 M NaCl, 0.5% SDS at pH 8 [13]. Both 

sets of samples were transported at ambient temperature to the laboratory and subsequently 

stored at -20°C until extraction. In most cases, the samples were frozen between eight and 20 

days after collection. The time elapsed from the collection of each sample to the nucleic acid 

extraction process is provided in ( 

Table 4). 

 

Table 4. Species and localities of the samples evaluated. 

Code Species 
Storage 
duration 
(days) 

Department Latitude Longitude Elevation 

42 Atelidae 67 Guaviare 2.441 -72.689 198 

43 
Alouatta 
seniculus 

57 Caldas 5.189 -75.449 2114 

44 
Bos 

primigenius 
57 Caldas 5.190 -75.449 2218 

45 
Equus 

caballus 
57 Caldas 5.191 -75.451 2118 

47 
Equus 

caballus 
57 Caldas 5.184 -75.449 2314 

48 
Alouatta 
seniculus 

57 Caldas 5.189 -75.449 2110 

49 
Alouatta 
seniculus 

55 Caldas 4.741 -75.595 1809 

50 
Bos 

primigenius 
55 Risaralda 4.743 -75.602 1774 
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51 
Alouatta 
seniculus 

55 Quindío 4.755 -75.625 1942 

52 
Alouatta 
seniculus 

55 Quindío 4.715 -75.624 1956 

53 
Equus 

caballus 
55 Quindío 4.713 -75.633 1937 

54 
Alouatta 
seniculus 

55 Quindío 4.710 -75.670 1687 

55 
Alouatta 
seniculus 

55 Quindío 4.708 -75.673 1548 

D001 
Tapirus 

pinchaque 
455 Valle 3.725 -75.951 3743 

Eq001 
Equus 

caballus 
451 Valle 3.717 -75.988 3213 

Oso001 
Tremarctos 

ornatus 
451 Valle 3.713 -75.987 3422 

Oso002 
Tremarctos 

ornatus 
450 Valle 3.701 -75.962 3860 

P001 Puma concolor 461 Valle 3.705 -75.960 3958 

2.3.2 DNA extraction and 16s/18s rRNA library preparation 

The commercial Kit DNeasy PowerSoil Pro® Kit was used for DNA extraction, according to the 

manufacturer’s instructions with minor modifications (addition of 5 minutes of stirring to mix 

sample with the first component of the kit). The extracted DNA was diluted in 50 µl of kit 

resuspension solution. To assess the concentration and quality of extracted DNA, we utilized a 

Colibri system, (Titertek Berthold). High-quality genomic DNA typically exhibits an OD260/OD280 

ratio within the range of 1.8 and 2.0. Values between 1.6 -1.8 are considered acceptable, while 

any measurement below 1.6 indicates potential contamination. To evaluate DNA integrity 2 μL of 

extracted DNA was visualized on a 1% agarose gel (w/v) containing GelRed (Biotium®). 

Electrophoresis was conducted in 0.5X TBE buffer at 100 V for 30 min, using a 1kb DNA ladder 

as a molecular weight marker (Thermo Scientific).  

For molecular characterization studies, the viability of genomic DNA was determined by 

amplifying the V3-V4 hypervariable region of the 16S rRNA gene with locus-specific forward 

primer 341F (5´-CTAYGGGRBGCASCAG-3) and reverse primer 806R (5´-
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GGACTACNNGGGTATCTAAT-3´) (Yu et al., 2005). Additionally, for 18S rRNA gene we utilized 

primer G3F1 (5’ –GCCAGCAGCCGCGGTAATTC-3) and primer G3R1 (5’ –

ACATTCTTGGCAAATGCTTTCGCAG-3) (Krogsgaard et al., 2018). Endpoint polymerase chain 

reaction (PCR) was conducted using the Biorad CFX96 C1000 thermal cycler (Table S1 and 

Table S2).  To ensure the reliability of the PCR results, each reaction included positive controls 

using Pseudomonas spp (16s rRNA) and stool from Tapirus pinchaque (D001, Table 1) genomic 

DNA. Negative controls were performed by using PCR-grade autoclaved water in place of 

template DNA for each PCR. To visualize the amplicons, we prepared 1.4% agarose gels using 

a 0.5X TBE buffer solution and stained them with GelRed; Electrophoresis was conducted at 90V 

for 40 minutes, using 100 bp Plus DNA Ladder (Thermo Scientific) as a molecular weight marker. 

Gels containing both total DNA and amplicons were visualized using a gel scanner (Nippon 

Genetics, FastGene FAS V model). To determine the concentration of amplicons, we employed 

a fluorometric method with the Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, United States) 

using the QubitTM dsDNA HS Assay Kit following the manufacturer's instructions (Freed & 

Silander, 2020). 

 

2.3.3 Oxford Nanopore sequencing and bioinformatics 

For sequencing of ~450bp-long amplified region was conducted using the MinION MK1B 

sequencing platform, managed by the MinKNOW software (van der Reis et al., 2023). The 

sequencing library was prepared with the Ligation Sequencing Kit SQK-LSK109 and using the 

Native Barcoding Expansion Kit 96 (EXP-NBD196) (Quick, 2023). The library pool was 

sequenced on an R-9.4.1 flow cell and run for 48h. Raw FAST5 files pass produced were 

basecalled under high-accuracy mode using the ONT basecaller Guppy v6.2.1. Subsequently, 

the resulting FASTQ files were employed for taxonomic assignment, a process carried out with 

Kraken2 (Wood et al., 2019; Wood & Salzberg, 2014), and the PlusPFP database (3/14/2023). 

The sequences obtained have been deposited in the NCBI under BioProject number 

PRJNA1036276, Biosample numbers SAMN38122182 to SAMN38122221, and accession 

numbers SRR26722958 to SRR26722997. 
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2.3.4 Statistical analysis 

To compare the concentration of total DNA and amplicons, as well as the reads obtained in the 

sequencing, we performed a paired samples analysis by evaluating the assumptions of normality 

and homoscedasticity. The assessment of normality was conducted using Shapiro-Wilk test for 

datasets with less than 30 data points, while homoscedasticity evaluated with the Bartlett test. In 

cases where the concentration did not conform to a normal distribution in some samples (p < 

0.05) or the homoscedasticity assumption was not met (p < 0.05), we conducted comparisons 

using the non-parametric Wilcoxon test for paired samples, with an alpha level of 0.05. The 

comparison of the 260/280 ratio was performed descriptively in relation to reference 

measurements. Data dispersion between ethanol and buffer was assessed using the Bartlett test.  

To determine the positivity of the extraction or amplification of the 16s rRNA and 18s rRNA genes 

between the buffer or ethanol media, we conducted a Fisher's exact test. This test compared the 

number of samples that exhibited a band or the absence of it in the agarose electrophoresis. All 

statistical analyzes were carried out in the Rcmdr 2.8-0 package with R 4.1.2 software (Fox et al., 

2023). 

2.4 Results 

The concentration of total DNA and amplicons (18S rRNA and 16S rRNA), as well as 18S rRNA 

reads extracted from the samples transported in the lysis buffer were significantly higher than 

those obtained from the samples transported in ethanol (p = 0.00067, p = 0.039, p = 0.039, and 

p = 0.011, respectively) (Table 5). In the case of 16S rRNA readings, although no significant 

differences were observed (p = 0.098), it’s worth noting that the median value was approximately 

two-fold higher when using the lysis buffer compared to ethanol (Figure 2). 

 

Table 5. Concentration values from DNA extraction, PCR amplification and data obtained by ONT 
sequencing. 

Code* Species 
Genomic 

ADN 
(ng/µL) 

OD260/
OD280 

Concentration 
Amplicon 18S 
rRNA (ng/uL) 

Concentration 
amplicon 16s 
rRNA (ng/uL) 

Reads 
for 18s 
rRNA** 

Reads 
for 16s 
rRNA** 

42-BF  Atelidae 54.3 1.9 7.3 NA 38,320 NA 

42-
OH 

Atelidae 1.2 4.9 3.4 NA 28 NA 
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43-BF 
Alouatta 
seniculus 

8.9 2.2 9.7 8.9 207,967 291,884 

43-
OH 

Alouatta 
seniculus 

9.7 2.4 3.6 9.7 7 74,869 

44-BF 
Bos 

primigenius 
49.6 1.8 8.9 49.6 291,275 177,149 

44-
OH 

Bos 
primigenius 

22.4 1.9 7.2 22.4 286,188 159,115 

45-BF 
Equus 

caballus 
50.5 1.8 10.0 50.5 381,698 204,101 

45-
OH 

Equus 
caballus 

6.5 2.9 3.4 6.5 177 154,665 

47-BF 
Equus 

caballus 
38.3 1.9 10.9 NA 319,354 NA 

47-
OH 

Equus 
caballus 

0.3 0.3 3.6 NA 42 NA 

48-BF 
Alouatta 
seniculus 

17.7 1.8 7.2 NA 227,707 NA 

48-
OH 

Alouatta 
seniculus 

12.4 1.8 3.5 NA 291,880 NA 

49-BF 
Alouatta 
seniculus 

206.4 1.9 14.2 NA 156,516 NA 

49-
OH 

Alouatta 
seniculus 

10.6 1.5 3.8 NA 69 NA 

50-BF 
Bos 

primigenius 
21.3 1.7 3.2 21.3 18,085 67,914 

50-
OH 

Bos 
primigenius 

39.2 1.7 7.1 39.2 21,517 12,468 

51-BF 
Alouatta 
seniculus 

226.8 1.9 13.3 226.8 405,748 1,158 

51-
OH 

Alouatta 
seniculus 

31.6 1.8 4.7 31.6 211,855 12,080 

52-BF 
Alouatta 
seniculus 

170.1 1.9 12.0 170.1 317,394 294,428 
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52-
OH 

Alouatta 
seniculus 

15.8 2.6 4.3 15.8 1,445 210,534 

54-BF 
Alouatta 
seniculus 10.3 2.6 

NA NA NA NA 

54-
OH 

Alouatta 
seniculus 19.0 2.2 

NA NA NA NA 

53-BF 
Alouatta 
seniculus 

23.7 2.0 7.1 NA 44,531 NA 

53-
OH 

Alouatta 
seniculus 

6.9 3.5 3.9 NA 24 NA 

55-BF 
Alouatta 
seniculus 

22.5 2.3 6.8 22.5 4,529 347,702 

55-
OH 

Alouatta 
seniculus 

17.6 1.9 4.5 17.6 31,723 35,986 

D1-BF 
Tapirus 

pinchaque 
23.4 1.6 6.4 NA 60,229 NA 

D1-
OH 

Tapirus 
pinchaque 

0.6 0.3 3.8 NA 77 NA 

Eq1-
BF 

Equus 
caballus 

42.0 1.7 5.6 42.0 77,208 145,101 

Eq1-
OH 

Equus 
caballus 

3.3 1.3 5.4 3.3 265 173,875 

Os1-
BF 

Tremarctos 
ornatus 

12.6 2.1 5.9 12.6 50,685 20,567 

Os1-
OH 

Tremarctos 
ornatus 

2.1 1.6 7.8 2.1 80 44,382 

Os2-
BF 

Tremarctos 
ornatus 15.7 2.3 

NA NA NA NA 

Os2-
OH 

Tremarctos 
ornatus 0.2 0.5 

NA NA NA NA 

P1-BF 
Puma 

concolor 
51.5 1.5 2.0 NA 7,710 NA 

P1-
OH 

Puma 
concolor 

16.2 1.8 16.1 NA 64,781 NA 

BF: buffer, Oh: ethanol 
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Figure 2. Boxplot with comparisons between the two transports media (A) genomic DNA 

concentration (B), 18S rRNA amplicon concentration (C),16S rRNA amplicon concentration, (D) 

reads ONT for 18S rRNA, (E) reads ONT for 16S rRNA, and (F), DNA quality. Lines connect 

each pair of samples, buffer – ethanol to each response variable analyzed. It shows the boxplot 

with samples in interquartile range and outliers. A, B, C, D and E show a depletion in the values 

to concentration and number of the reads between buffer and ethanol, F shows an increase in 

the variance. 

 

The A260/280 ratio values for the samples collected in buffer had a mean of 1.92 with a standard 

deviation of 0.27, which places it between the values of optimal purity for DNA and with negligible 

dispersion. In contrast, although the samples transported in ethanol exhibited a mean value of 

1.94, the deviation was 1.10, reflecting nearly four times greater dispersion compared to the lysis 

buffer. Only four samples showed optimal quality ranges (Figure 2, 260/280). Thus, the variances 

for both samples were different (Bartlett's K-squared = 25, p = 5.439E-07). 

The agarose gels used to visualize the total DNA revealed the presence of high molecular weight 

bands, located above 10,000 bp, which corresponds to the maximum size of the molecular weight 

marker utilized. While some samples, such as 44BF, 45BF and 49BF, among others, exhibited a 
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characteristic “sweep” pattern indicative of degraded DNA, 15 out of the 18 samples collected in 

lysis buffer displayed a complete high-weight band. In contrast, such a band was only visible in 

four out of the 18 samples collected in ethanol (p -value Fisher's Exact Test = 0.00061) (Figure 

3). 

 

Figure 3. A. 1% agarose gel of total DNA, stained with GelRed. From left to right; 1: 1kb 

molecular weight marker; 2 – 13: samples. B. 1.4% agarose gel of 16S rRNA gene PCR 

products, stained with GelRed. From left to right: 1 = 100bp molecular weight marker, 2 – 13: 

samples; Positive: Pseudomona; Negative: water negative control. C. 1.4% agarose gel of 18S 

rRNA gene PCR products, stained with GelRed. From left to right; 1: 100bp molecular weight 

marker; 2 – 13: samples; Positive: positive control Tapirus pinchaque; Negative: negative 

control water. 

 

The PCR of the V3-V4 subunit of the 16S rRNA gene presented a higher performance, although 

not significantly, in samples collected in lysis buffer, in which an amplicon of approximately 450 

bp was visible in 16 out of the 18 samples, while in ethanol samples, it was observed in only 11 

(p-value Fisher's Exact Test: 0.1212) (Figure 3). Furthermore, it´s worth noting that the amplified 

band of lysis buffer collected samples, such as 43BF, 45BF, 50BF and 54BF displayed greater 

intensity compared to their ethanol collected counterparts. This difference in intensity is likely 

attributed to variations in DNA concentration and integrity between the two sample sets. In the 

case of the PCR targeting the 18S gene, a higher performance was also observed in samples 
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collected in lysis buffer. Approximately 16 samples displayed an amplicon of around 450 bp, 

whereas in samples collected in ethanol, such a band was observed in only six out of the 18 

samples (p-value Fisher's Exact Test: 0.0016) (Figure 3). 

The processed raw reads using Kraken2, revealed that between 87% and 93% of the reads can 

be classified into some domain for both evaluated genes. Notably, the number of reads obtained 

for the samples preserved in lysis buffer was greater than those preserved in ethanol. When 

assessing the 16s rRNA gene, a higher percentage of classified reads corresponded to Bacteria 

in lysis buffer preserved samples. Similarly, in the case of the 18s rRNA gene, higher percentages 

were observed in the classification of reads for Fungi and Protozoa in the lysis buffer preserved 

samples. These findings provide strong evidence of greater genetic material preservation in the 

samples collected and preserved with lysis buffer, indicating its superior preservation capacity 

compared to ethanol (Figure 4, Table S3 and S4). 

 

 

Figure 4. Data produced and classification by kraken2 for the samples in ethanol and lysis 

buffer where the 16s rRNA (A) or 18s rRNA (B) genes was amplified. 

2.5 Discussion 

Molecular studies of biological samples require appropriate techniques to obtain genomic DNA 

of high integrity and purity. Ensuring the correct preservation of samples for microbiome studies 

is essential to obtain accurate and reproducible results. Freezing samples at -80 °C is widely 

acknowledged as the optimal method for preserving nucleic acids and proteins over time, as it 
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effectively halts degradation without causing damage to the genome and proteome material of 

biological specimens (Burnham et al., 2023). However, in fieldwork, having the necessary 

equipment for freezing samples is often challenging. 

An alternative solution to address this challenge is the preservation of samples in storage 

solutions. Various preservation media have been discussed in literature and are available in the 

biotechnology market. Their use is influenced by factors such as toxicity, resistance to inhibitors, 

preservation costs, transportation requirements, infectivity of the samples and laboratory 

expenses. Considering the non-significant difference in the amount of DNA obtained, the 

collection of samples in ethanol, as compared to other reagents like 5% potassium dichromate, 

RNA Later®, Paxgene®, Formalternate® (Ethylene glycol phenyl ether, Phenol, 1,2 -

Propanediol), FTA cards, and drying samples with silica or a dehydrator, is often recommended 

as a pragmatic choice for preserving fecal samples collected in the field (Jin et al., 2016; Kumar 

& Bhadury, 2022; Papaiakovou et al., 2018). It is recognized that, the higher the concentration 

of ethanol, the faster the penetration of cell membranes and the deactivation of nucleases. 

In our study, the fecal samples transported in the lysis buffer exhibited higher concentration of 

total DNA, amplicons, and a greater number of reads obtained during sequencing (Table 5, 

Figure 2). Furthermore, the samples collected in the buffer presented superior quality 

parameters and better gel resolution compared to those transported in ethanol. These qualities 

into improved performance in taxonomic identification. Previous studies have explored various 

methods to preserving fecal samples to obtain DNA. For instance, research assessing the use 

of dimethyl sufoxide saline buffer found that this reagent significantly outperformed ethanol, 

resulting in a 44% increase in amplification success and 17% improvement in genotyping 

accuracy (Wultsch et al., 2015), findings consistent with our study. Also well, other studies have 

reported similar results when examining rumen samples to assess microbiota; in these cases, 

ethanol yielded lower quality outcomes in comparison to two lysis buffers, namely Tris-NaCl-

EDTA-SDS and guanidine hydrochlorate (Budel et al., 2022). Consistency in results across 

various studies has led to recommendations favoring the use of buffers for the long-term 

preservation of DNA extracted from fecal samples (Frantzen et al., 1998; Seutin et al., 1991). 

Nevertheless, it´s essential to recognize that outcomes may vary depending on factors such as 

the target species, sample type, environmental conditions, or even dietary habits (Wultsch et al., 

2015). In our study, the lysis buffer method emerged as the most effective for a diverse array of 

species, encompassing varying habits and diets, including Bos primigenius, Equus caballus, 

Alouatta seniculus and Tapirus pinchaque, omnivory in Tremarctos ornatus, and carnivory in 
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Puma concolor (Table 4). This finding underscores the versatility of the buffer approach for the 

conservation and preservation fecal samples from different animal species. 

In general, selecting an appropriate method for preserving fecal DNA is critical across all 

environments, particularly when working with low-quality and degraded samples (Wultsch et al., 

2015). However, this consideration becomes more significant in tropical settings where DNA 

degradation occurs more rapidly. Therefore, optimizing sampling protocols is crucial. The fecal 

samples used in this study were collected in tropical areas of Colombia, characterized by an 

average temperature of 28°C and a relative humidity of 80-90% (Pabón et al., 2001). Elevated 

temperatures and increased humidity levels can both negatively impact the preservation of 

microorganisms in ethanol and lysis buffer. Under high temperatures, ethanol may evaporate, 

leading to a reduction in its concentration and subsequently diminishing its preserving 

effectiveness. Similarly, higher relative humidity can also exert a detrimental influence on 

microorganism preservation within ethanol and lysis buffer. Excessive moisture can condense 

on sample surfaces, causing dilution of the ethanol or lysis buffer, which may reduce their 

efficiency (C. A. Morgan et al., 2006). This study highlights the viability of using lysis buffer for 

molecular studies, including metabarcoding, in such environmental conditions, particularly in the 

tropical regions. 

An additional noteworthy observation from our study was the duration between sample 

collection and long-term storage at freezing temperatures before processing for molecular 

analysis. Overall, there was no apparent impact of field storage duration on the amount of DNA 

extracted. Even when samples were stored for extended periods, such as 20 days or up to 461 

days at -20ºC, the resulting DNA yields remained relatively consistent (Table 5). 

To assess the reliability of two widely used genetic markers for metabarcoding (applicable to 

bacteria, protozoans and fungi) in stool samples after various storage durations, we conducted 

amplification experiments. Our results indicated a higher amplification reliability for 18S rRNA 

gene in samples preserved using the lysis buffer as opposed to ethanol. While for the 16S rRNA 

gene, we observed better performance with the lysis buffer, although it was not significantly 

different from the performance of samples stored in ethanol. 

We utilized next-generation sequencing ONT, a proven and viable alternative for studying 

intestinal microbiota (Gill et al., 2006), to analyze the samples. Using the lysis buffer, we 

obtained twice the number of reads compared to samples preserved with ethanol for both genes 
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under study. However, it's important to note that various factors, such as temperature, storage 

time, and the concentration of preservation reagents, can influence the results both positively 

and negatively. For instance, previous research has shown that freezing can increase 

Firmicutes while benefiting Gram-positive bacteria at room temperature. Furthermore, different 

ethanol concentrations (e.g., 70% and 95%) can produce varying conservation effects. Notably, 

95% ethanol demonstrates lower conservation stability, consistent with the results of our study. 

Considering our findings, we recommend the use of a collection buffer as it requires only a small 

amount of fecal sample to yield a substantial amount of DNA. It consistently produces high-

molecular-weight DNA suitable for various techniques. The buffer is well-suited for field 

conditions where samples may need to be stored for several weeks at ambient temperatures. 

These samples can be easily collected into vials pre-filled with lysis buffer. The buffer is also 

versatile and can be used with various tissues, such as cartilage, blood, striated or smooth 

muscle, hair follicles, and feathers. Importantly, it does not require refrigeration. 

2.6  Conclusions 

The present study assessed and compared the effects of two different stool sample preservation 

methods. Our experiment showed that the lysis buffer contributed to a higher quality and yield 

concentrations of DNA and amplification, with higher taxonomic assignment for microbiome 

composition. This finding offers a viable alternative to rapid freezing for subsequent fecal 

microbiome analysis, especially in situations where refrigeration and preserving a cold chain 

during transportation are logistically unfeasible. The collection of fecal samples is vital for 

investigating prospective associations between the fecal microbiota and the health conditions of 

wild animals and their environment. 
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3.1 Abstract 

In the context of the sustainability of livestock, the three dimensions - environmental, economic, 

and social - intersect in the animal health component. Animal health is influenced, among other 

factors, by the risk of parasitosis and imbalances in the intestinal microbiota, which are also 

associated with various physiological processes in the organism. Additionally, through 

bidirectional phenomena, livestock can serve as reservoirs for parasites that impact ecosystem 

health by infesting wildlife. The diversity of intestinal microbiota depends on the biological diversity 
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of the areas they inhabit. This study assesses the diversity of intestinal microbiota and 

gastrointestinal protozoa that could affect wildlife, focusing on cattle and horses in productive 

systems located in conservation areas where they coexist with populations of wild mammals such 

as primates, pumas, Andean bears, and tapirs. Furthermore, the study evaluates the relationship 

between the level of fragmentation of natural vegetation cover and the diversity (Richness and 

evenness) of intestinal microbiota and protozoa in livestock (cattle and horses). Taxonomic 

determination was conducted using metabarcoding with primers for the rRNA 18S gene and 

Nanopore sequencing, primarily focused on detecting protozoa as proxies. Microscopy was also 

employed to verify some agents. Prevalence, mean intensity, and mean abundance were 

estimated to describe the epidemiology of the detected protozoa. Bayesian simple regressions 

were used to evaluate the relationship between landscape metrics and gut microbiota and 

protozoa diversity. Among the 30 samples that successfully amplified and provided sequences 

out of the 54 taken, 12, 13, and three protozoa were found in cattle, horses, and a canine sample, 

respectively. Except for Trichomonas vaginalis, all protozoa had documented records in at least 

one of the seven wild mammals they were compared (four primates, two carnivores, and one 

ungulate). A positive relationship was observed between the amount of native forest and the 

richness of intestinal microbiota and protozoa in cattle and horses. In conclusion, protozoa 

transmission is bidirectional risky from equine and bovine livestock to interacting wild mammals 

in conservation areas. Moreover, an increase in the amount of forest in the livestock enhances 

intestinal microbiota and protozoa, likely positively affecting livestock health. 

3.1.1 Keywords: Protozoa, gut microbiota, fragmentation, livestock, wildlife mammals. 

3.2 Introduction 

Health in agriculture is the capacity to satisfy the daily requirements and to adapt to the 

environmental changes which implies the capacity to preserve in the system the productive 

parameters. In most cases, infective parasites and zoonotic diseases are the focus (Eriksson and 

Lindstrom, 2008; Frankish et al., 1996). Parasites may also drive important economic losses 

because of the decrease in production, the financial cost of control and treatment, and the 

mortality of livestock, particularly cattle (Echeverría et al., 2019; Kohler, 2004; Ryan et al., 2016). 

The economically important parasitic diseases are caused by protozoa and helminths (Rashid et 

al., 2019; Rodríguez-Vivas et al., 2017). In livestock, there are several risks linked to human 

behavior that have an impact on the epidemiology of infectious agents. Health status is a 
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cornerstone component in sustainable livestock, this depends on the synergic of the three 

dimensions of sustainability (environmental - social – economic) (Lovarelli et al., 2020). So, the 

effect of the parasites is bi-directional in all axes (Human – Animal - Wildlife) / (Wildlife - Animal - 

Human) and has a significant impact on the sustainability of the agricultural systems, human 

welfare, and the survival and reproductive success (Fitness) of the wildlife, mainly in conservation 

areas where they interact by acting as reservoirs. For these reasons, it is required the 

implementation of health plans for domestic animals as the conservation and management plans 

that threaten wildlife (Fisher et al., 2012; Lantz et al., 2018). 

Concerning the gut, it is assumed that greater diversity will lead to better performance in various 

processes involving it (Danneskiold-Samsøe et al., 2019; Park et al., 2018). The microbiota in the 

gut participates in the breakdown of diet complex compounds (Sauvaitre et al., 2021; Song et al., 

2021). The presence of beneficial microbiota helps train the immune system. During the early 

years of life, the colonization of the intestinal microbiota plays a crucial role in the development of 

the immune system. Additionally, the intestinal microbiota can modulate inflammatory responses 

and prevent inappropriate immune reactions (Yoo et al., 2020). The composition of the intestinal 

microbiota has been linked to metabolism and obesity (Aron-Wisnewsky et al., 2021). Changes 

in the microbiota have been observed to affect behavior and brain function, leading to research 

on the connection between gut health and neuropsychiatric disorders (Chen et al., 2021). A 

balanced microbiota can act as a barrier against harmful pathogens, preventing their colonization 

and growth (Calo-Mata et al., 2016). It has been suggested that the microbiota may affect the 

endocrine system, influencing hormone production that affects various bodily functions such as 

metabolism and blood sugar regulation (O’Callaghan et al., 2016). 

The intestinal microbiota is highly sensitive to various types of stress, and these stresses can 

have significant impacts on its composition and function. Psychological stress has been 

associated with alterations in the diversity and balance of the microbiota. Physiological stress 

induced by imbalanced diets, exposure to pathogens, or excessive antibiotic use can also disrupt 

microbial homeostasis (He et al., 2021; Lange et al., 2016; Luo et al., 2021). Understanding how 

different forms of stress affect the intestinal microbiota is crucial for developing strategies that 

preserve gastrointestinal health and, by extension, the overall health of individuals. 

In the environmental dimension, crucial aspects include land cover management (Sánchez-

Romero et al., 2021). Sustainable management of these covers directly contributes to soil 

conservation, biodiversity, and water quality (Miralles-Wilhelm, 2021). In the social dimension, 

animal welfare is a key component, focusing on ensuring conditions that promote the physical 

and psychological health of animals in production systems (Broom, 2019; Perry et al., 2007). The 
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relationship between land cover management and animal welfare is fundamental, as adequately 

covered soil can provide thermal comfort, reduce stress, and prevent environment-related 

diseases (Mancera et al., 2018; Rulli et al., 2021). 

Good agricultural and livestock practices, such as pasture rotation, planting forage crops, and 

implementing agroforestry systems, are key strategies to improve environmental sustainability 

and promote animal welfare (Broom et al., 2013). Additionally, adopting technologies that 

minimize environmental footprint, such as efficient waste management and the implementation of 

more efficient production systems, contributes to a holistic approach to sustainability in livestock 

production systems. In summary, the interconnection between environmental management and 

animal welfare is essential for achieving long-term sustainable livestock production systems from 

a health perspective (De Passillé and Rushen, 2005). 

This study investigates the relationship between livestock features linked to the environmental 

dimension of system sustainability, and how these features influence the presence, burden, and 

diversity (richness and evenness) of gastrointestinal protozoa within the intestinal microbiota of 

domestic animals. We hypothesize that increased habitat fragmentation, characterized by less 

natural vegetation cover, greater isolation distances, and larger edge effects, will promote higher 

protozoan diversity but lower overall diversity of the intestinal microbiota in domestic animals. 

3.3 Methods 

3.3.1 Study Area 

Samples were taken from 25 localities in nine departments. The analyses were conducted on 14 

focal landscapes covering 224 km2 each. These landscapes corresponded to those where 

positive results were obtained for at least one sample of the three included species of domestic 

mammals. The focal landscape's size was defined based on the largest area that included 

samples of wild and domestic species (Figure 5). It encompasses transformed ecosystems 

associated with selected conservation areas where samples of sampled wild mammals were 

taken (Chapter 4). The definition of the focal landscape size in landscape epidemiology is crucial 

for determining fragmentation statistics that are relevant for understanding epidemiological 

processes in a specific area (Jackson & Fahrig, 2012). Several criteria must be considered for 

this determination. Firstly, it is essential to consider the ecological dimensions of populations and 

the dynamics of the pathogens at play, suggesting the need for a scale that realistically captures 

interactions. Additionally, accessibility and topographical characteristics of the study area must 
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be considered, as they can influence the spread of diseases. The spatial resolution of available 

data and monitoring capacity are also determining factors in choosing the size of the focal 

landscape (Lausch, 2002). Therefore, it is necessary to adapt the scale of the focal landscape to 

the specific conditions of the epidemiological system in question, ensuring the relevance of 

fragmentation statistics for disease analysis at the local level (Ostfeld et al., 2005). 
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Figure 5. Study area. The map shows the focal landscapes (red boxes) sampled with the host 
domestic species that we were able to sample. 
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3.3.2 Collection of Fecal Samples and Storage 

Fifty-four samples were collected from Bos primigenius, Equus sp., and Canis lupus familiaris in 

nine departments of Colombia (Table 6). The number of samples corresponds to the population 

in each site of each species of domestic species, assumed as an epidemiological unit—

understood as an entity or group of individuals studied in a specific epidemiological context 

(Jakob-Hoff et al., 2014). In this sense, a sample could be representative of the unit (focal 

landscape). Each sample was taken with tweezers directly from the substrate (ground) carefully 

to take a piece that did not contact with any external material, prioritizing an internal portion of the 

deposition, immediately, each sample was deposited in a lysis buffer composed of 0.1 M Tris-

HCl, 0.1 M EDTA, 0.01 M NaCl, and 0.5% SDS at pH 8 (Longmire et al., 1997). The samples 

were transported at ambient temperature to the laboratory and frozen at -20°C until extraction. 

Most samples were frozen between eight and 20 days after collection. The time from collection to 

extraction varied between samples. 

 

Table 6. Number of samples collected, categorized by department and domestic host species. 

Department/Species Bos primigenius Canis lupus familiaris Equus sp. Grand Total 

Antioquia 7 
 

4 11 

Caldas 7 
 

4 11 

Caquetá 1 
 

0 1 

Cordoba 3 
 

1 4 

Guaviare 1 
 

1 2 

Quindío 4 
 

1 5 

Risaralda 2 
 

4 6 

Tolima 
  

1 1 

Valle del Cauca 6 2 5 13 

Grand Total 31 2 21 54 
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3.3.3 DNA Extraction and 18S rRNA Library Preparation 

For DNA extraction, the commercial Kit DNeasy PowerSoil Pro® Kit was used following the 

manufacturer's instructions with minor differences (addition of 5 minutes of stirring to mix sample 

with the first component of the kit). The extracted DNA was diluted in 50 µl of kit resuspension 

solution. The final yield and quality of extracted DNA were determined by Colibrí (Titertek 

Berthold) using 2 µl of DNA. Pure genomic DNA is indicated by an A260/A280 nm ratio between 

1.8 and 2.0, while between 1.6-1.8 are acceptable, and any value less than 1.6 indicates 

contamination. DNA integrity was determined by visualizing 2 μL of extracted DNA on 1% agarose 

gel (w/v) containing GelRed (Biotium®). Subsequently, for the viability assessment of genomic 

DNA in molecular characterization studies, the 18S rRNA gene was targeted using primers G3F1 

and G3R1 G3F1 (5’ –GCCAGCAGCCGCGGTAATTC-3) and primer G3R1 (5’ –

ACATTCTTGGCAAATGCTTTCGCAG-3) (Krogsgaard et al., 2018). The protozoa targets were 

the agents including in Apicomplexa, Tricomonadida, Trypanosomatidae, Paramecium, and 

Giardia clades. Amplifications were done by endpoint polymerase chain reaction (PCR) using the 

Biorad CFX96 C1000 thermal cycler (Roncancio et al. 2024).  

For visualization of the amplicons, 1.4% agarose gels were prepared and stained with GelRed. 

The gels of the total DNA and the amplicons were visualized in a gel photodocumenter (Nippon 

Genetics, FastGene FAS V model). Amplicon concentration was determined fluorometrically on 

the Qubit® 3.0 Fluorometer using the QubitTM dsDNA HS Assay Kit following the manufacturer's 

instructions (Freed & Silander, 2020). 

3.3.4 Oxford Nanopore Sequencing and Bioinformatics 

For sequencing the approximately 500 bp-long amplified regions, the MinION MK1B sequencing 

platform was utilized with the MinKNOW software. The sequencing library was prepared with the 

Ligation Sequencing Kit SQK-LSK109 and the Native Barcoding Expansion Kit 96 (EXP-

NBD196). The library pool was sequenced on an R-9.4.1 flow cell for 48 hours. Raw FAST5 files 

produced were base called under high-accuracy mode using the ONT base caller Guppy v6.2.1. 

The FASTQ files were used for taxonomic assignment with Kraken2 and the PlusPFP database 

(3/14/2023). The results were subsequently filtered excluding clades with less than five reads and 

the Viridiplantae clade, corresponding to green plants, assuming that the presence of this clade 

was derived primarily from the diet, including water consumption. 
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3.3.5 Direct Observation: microscopy 

To verify forms compatible with the protozoa target species intended for diagnosis, direct 

observation analyses were conducted using microscopy. This method also allowed the 

identification of forms compatible with other agents not diagnosable with the molecular markers 

used, providing additional information. Their utility for interaction and risk analyses is limited, as 

with these methodological approaches, most potential agents can only be determined at the 

genus level. The samples were collected in a 10% formalin fixing solution (PFA) and upon arrival 

at the laboratory, they were stored at a temperature of seven degrees Celsius. For parasitological 

diagnosis, the following approaches were employed: 

Direct Coprology: A drop of saline solution and another of Lugol was applied to a microscope 

slide. An amount equivalent to the tip of a wooden applicator was added to both sides of the slide. 

Subsequently, homogenization was performed, and coverslips were applied. 

Microscopic examination was conducted using an optical microscope at 5X magnification, with an 

assessment of all fields, 10X with an evaluation of all fields, and 40X with an evaluation of 40 

fields. Special attention was given to suspicious structures during assessments at lower 

magnification. 

Sheather Solution Flotation (Saturated Sucrose): The ovu-check® device was utilized. One 

gram of fecal matter was placed on the bottom lid, and the solution was added until reaching 1/3 

of the container. The sample was homogenized with a wooden applicator, and a filter was added. 

The remaining solution was then added to complete the remaining 2/3. An embolus was left on 

the surface, and the solution was allowed to settle for 20 minutes. Afterward, it was covered with 

a cover slip. After 1 minute, the cover slip was removed, placed on a microscope slide, and read 

using the same methodology employed in direct coprology. 

Ziehl-Neelsen: Specifically, to protozoa, the traditional method Ziehl-Neelsen was used, one the 

slide was mounted with the sample, we allowed the slide to air-dry at room temperature. 

Subsequently, once dry, it is heat-fixed using a hot plate for approximately 2 – 3 minutes. Direct 

flame fixation is avoided to prevent sample degradation. While the slide remains on the hot plate, 

phenol fuchsin is added for 5 minutes until vapor emission is observed. It is important not to let it 

boil, and additional staining is performed gradually if the dye appears to be drying. After 5 minutes, 

the slide is removed from the hot plate using forceps, and the dye is discarded into a container 

for chemical waste. Rinsing with R.O water is performed without direct water flow onto the sample 

until no color is observed in the effluent. Excess water is then removed. Subsequent 
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decolorization is achieved using acid-alcohol, followed by another wash with R.O water. Finally, 

Loeffler's methylene blue is added as a contrasting dye for 20 seconds to 1 minute. 

3.3.6 Estimation of Covariates 

Sustainable development in agriculture, forestry, and fisheries sectors, as defined as, conserving 

land, water, plant, and animal genetic resources, is environmentally non-degrading, technically 

appropriate, economically viable, and socially acceptable. The dimensions of sustainability—

economic viability for farmers, environmental soundness, and social acceptability—have several 

indicators (Lovarelli et al., 2020; van der Linden et al., 2020). In this case, these indicators are 

associated with response variables related to the health status of livestock and its potential impact 

on wildlife. In this work, we focused on sustainability indicators related to the environmental 

dimension and based on land cover. We considered that less natural land cover is associated 

with more effects of size, isolation, and border, making livestock less sustainable. Covariates 

included landscape statistics related to land use coverages, bodies of water, roads, climatic 

variables, and altitude. Initially included covariates were River Length, Distance to Road, Forest 

Area, Forest Mean Shape Index (MSI), Forest Number of Patches (NumP), Forest Mean Patch 

Size, Pastures Area, Urbanized Zones Area, Precipitation, Temperature, and Elevation (Arce-

Peña et al., 2019). The information used to estimate de covariates were the natural cover 

information 1:100.000 scale, digital elevation model, raster of temperature, precipitation, and 

shapes of simple drainage to the river and way (Fick & Hijmans, 2017; IDEAM, 2021; Instituto 

Geográfico Agustín Codazzi (Igac), 2023). The geoprocessing -clips, layer intercepts, zonal 

statistics- was done using ArcGis 10.7.1, and the landscape and cover metrics were estimated 

using Patch Analyst - Analysis by Region tools. 

3.3.7 Statistical Analysis 

An initial descriptive analysis was conducted based on species richness at various taxonomic 

levels. Additionally, for the considered protozoa, including the clades Apicomplexa, 

Tricomonadida, Trypanosomatidae, Paramecium, and Giardia, prevalence, mean intensity, and 

mean abundance were estimated. Prevalence refers to the proportion of cases of a specific 

disease or condition in a population at a given point in time. It is usually expressed as a 

percentage and represents the total number of cases relative to the total size of the at-risk 

population. Mean intensity refers to the average burden of a pathogen in infected individuals in a 
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population. It can be expressed in terms of the quantity of pathogens (parasites, bacteria, viruses, 

etc.) present in infected individuals. This measure helps understand the average severity of the 

disease in the affected population. Mean abundance refers to the average quantity of pathogens 

present in all individuals, whether infected or not, in a population. This measure provides 

information about the total burden of pathogens in the population, regardless of their infection 

status. To assess the relationship of covariates with the diversity of the intestinal microbiota and 

protozoa, richness and the inverse Simpson index were used as response variables for both sets. 

The analyses were performed using the Vegan package in R (Oksanen et al., 2013). The 

relationship was measured using a Bayesian Poisson simple regression method. Initially, a 

correlation test was conducted between all covariates to eliminate collinearity (autocorrelation). 

The Spearman coefficient of correlation was used for this assessment. These analyses were 

carried out in the R program, particularly in the PerformanceAnalytics package and Rcmdr (Fox 

et al., 2015; Peterson et al., 2018) (Supplement information 1). When two variables were 

associated (Spearman rank correlation coefficient: p-rs <0.05), one of them (less simple and 

precisely measurable) was eliminated (Sokal et al., 1995). The selected final variables are those 

that were not associated with others. As a result, six out of the 11 were considered covariates 

(River Length, Forest area, Forest MSI, Forest NumP, Urbanized zones area, and Precipitation). 

The Bayesian analysis was employed, utilizing an uninformative prior distribution for the precision 

of the explanatory variable effects and an uninformative prior distribution for the intercept (alpha) 

and slopes (beta). It was assumed that the posterior distributions of the intercept and the slope of 

each variable followed a normal distribution (McCarthy, 2007; Pfeiffer et al., 2008). Interactions 

(multiplicative effects) between the explanatory variables were not considered. To select the most 

parsimonious model, the Deviance Information Criterion (DIC) was employed. The estimation of 

intercepts and slopes was performed using Markov chains with 100,000 iterations, considering 

iterations from 10,001 to the final estimation. The DIC was estimated with an additional 100,000 

iterations. The analyses were conducted using OpenBugs 3.2.2 software (Spiegelhalter et al., 

2018). 

3.4 Results 

Of the 54 collected samples, sequencing was successful for 30 (16 bovine, 13 equine, and 1 

canine). For bovines, the classification percentage ranged from 45.9% to 99.1%, with 10 out of 

16 samples having determinations above 90%. For equines, the classification percentage ranged 
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from 53.6% to 99.7%, with 11 out of 13 samples above 93%. The canine sample had a 

classification percentage of 99.5% (Supplement information 2). 

The diversity of the intestinal microbiota in bovines, after filtering the clades with more than 5 

reads, was represented by four domains: Eukaryota (excluding Viridiplantae) with 97.08% of the 

reads, Bacteria with 2.89%, Archaea with 0.02%, and Viruses with 0.006%. This diversity was 

distributed across 25 phyla, 50 classes, 78 orders, 111 families, 133 genera, and 150 species. 

Similarly, in equines, the four domains were found with proportions of 99.21, 0.76, 0.006, and 

0.006, respectively. This diversity was distributed across 23 phyla, 48 classes, 88 orders, 141 

families, 174 genera, and 145 species. Just the species with more than five reads were 

considered for diversity (Species richness and evenness) analyses, comparisons, and 

regressions. The canine sample presented two domains: Eukaryota with 68.56% and Bacteria 

with 31.44%, distributed across 11 phyla, 26 classes, 33 orders, 43 families, 52 genera, and 61 

species. 

In bovines, the most represented phyla were Ascomycota, Basidiomycota, Apicomplexa, 

Pseudomonadota (Figure 6). The most abundant species were Ustilaginoidea virens, Aspergillus 

puulaauensis, Thermothelomyces thermophilus, Thalassiosira pseudonana, and Fusarium poae, 

with their relative abundances summing up to 53% of all OTUs reads with more than five reads 

(Supplement information 3). For equines, the most represented phyla were Ascomycota, 

Basidiomycota, Apicomplexa, and Pseudomonadota (Figure 7). The most abundant species were 

Neurospora crassa, Thermothelomyces thermophilus, Ustilaginoidea virens, Malassezia restricta, 

and Puccinia striiformis, with their relative abundances summing up to 68% (Supplement 

information 3). To the only one sample of C. l. familiaris the most represented phyla were 

Cyanobacteriota, Ascomycota, Basidiomycota, and Pseudomonadota. The most abundant 

species were Nostoc sp. C057, Fusarium keratoplasticum, Halomonas sp. JS92-SW72, Fusarium 

poae, but the first one had 58% of the reads (Supplement information 3). 
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Figure 6. Relative abundance of microbiota phylum in bovine gut 

 

 

Figure 7. Relative abundance of microbiota phylum in equine gut 

In cattle and horses, for the entire sample, Toxoplasma gondii, Theileria species, and Babesia 

showed the highest values in prevalence, mean intensity, and mean abundance (Table 7, and 

Table 8). In the single sample from the canine, the order of abundance (reads) was as follows: 

Theileria orientalis (97), Toxoplasma gondii (23), and Babesia microti (6). 
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Table 7. Bovine protozoa epidemiological descriptors. Prevalence is the proportion of cases of a 

pathogen in a population at a given point in time. It is expressed as a percentage. Mean intensity 

is the average burden of a pathogen in infected individuals in a population. It is expressed as the 

quantity of pathogens present in infected individuals. Mean abundance is the average quantity of 

pathogens present in all individuals. 

Species 
Prevalence Mean intensity Mean abundance 

Mean LlPI ULPI Mean LlPI ULPI Mean LlPI ULPI 

Theileria orientalis 0.59 0.35 0.80 156.67 148.60 165.00 94.00 89.15 99.00 

Theileria equi 0.53 0.30 0.75 78.36 72.38 72.38 41.80 38.59 45.16 

Babesia bigemina 0.65 0.41 0.85 12.00 9.94 14.24 8.00 6.63 9.50 

Babesia microti 0.65 0.41 0.85 18.99 16.40 21.77 12.66 10.93 14.51 

Babesia bovis 0.35 0.15 0.59 4.20 2.60 6.19 1.40 0.87 2.06 

Plasmodium vivax 0.41 0.20 0.65 4.67 3.10 6.56 1.87 1.24 2.63 

Plasmodium relictum 0.35 0.15 0.59 3.00 1.67 4.72 1.00 0.56 1.57 

Plasmodium yoelii 0.35 0.15 0.59 1.40 0.57 2.62 0.47 0.19 0.87 

Toxoplasma gondii 0.88 0.70 0.98 65.35 61.22 69.65 61.00 57.13 65.03 

Besnoitia besnoiti 0.47 0.25 0.70 5.00 3.48 6.80 2.33 1.62 3.18 

Cryptosporidium parvum 0.47 0.25 0.70 6.14 4.43 8.12 2.87 2.07 3.78 

Trichomonas vaginalis 0.35 0.15 0.59 1.60 0.69 2.88 0.53 0.23 0.97 

LLPI = Lower limit probability Interval, ULPI = Upper limit probability Interval, Colors highlighted 

biggest values in each parameter, red first, orange second, green third, and blue fourth. 

 

Table 8. Equine protozoa epidemiological descriptors. Prevalence is the proportion of cases of a 

pathogen in a population at a given point in time. It is expressed as a percentage. Mean 

intensity is the average burden of a pathogen in infected individuals in a population. It is 

expressed as the quantity of pathogens present in infected individuals. Mean abundance is the 

average quantity of pathogens present in all individuals. 

Species Prevalence Mean intensity Mean abundance 
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Mean LIPI ULPI Mean LIPI ULPI Mean LIPI ULPI 

Theileria orientalis 0.79 0.55 0.95 615.30 600.10 631.00 512.75 500.10 525.60 

Theileria equi 0.86 0.64 0.98 59.36 54.91 63.99 54.42 50.29 58.76 

Babesia microti 0.86 0.64 0.98 70.64 65.76 75.75 64.75 60.28 69.40 

Babesia bigemina 0.50 0.25 0.75 4.00 2.57 5.76 2.00 1.28 2.88 

Babesia bovis 0.64 0.38 0.86 2.63 1.63 3.86 1.75 1.08 2.58 

Plasmodium vivax 0.71 0.46 0.91 13.78 11.45 16.29 10.33 8.60 12.24 

Plasmodium chabaudi 0.36 0.14 0.61 4.75 2.85 7.11 1.58 0.95 2.37 

Plasmodium relictum 0.50 0.25 0.75 12.17 9.55 15.09 6.08 4.77 7.56 

Toxoplasma gondii 0.93 0.75 1.00 188.25 180.60 196.10 188.25 180.60 196.10 

Besnoitia besnoiti 0.43 0.19 0.68 15.00 11.82 18.57 6.25 4.92 7.75 

Cryptosporidium parvum 0.50 0.25 0.75 12.83 10.15 15.84 6.42 5.07 7.92 

Trichomonas vaginalis 0.21 0.11 0.45 4.00 1.73 7.23 0.67 0.29 1.20 

Plasmodium coatneyi 0.14 0.02 0.36 12.00 6.19 19.67 1.00 0.52 1.65 

LLPI = Lower limit probability Interval, ULPI = Upper limit probability Interval, Colors highlighted 

biggest values in each parameter, red first, orange second, green third, and blue fourth. 

 

Distributing the sample across focal landscapes, not all of them yielded positive sequences for 

Bos primigenius and Equus sp. Out of the 14 local landscapes, each species showed results in 

10, with some of them being different. In the case of cattle, a positive relationship was found 

between Forest Area, Number of Forest Patches, and Forest Mean Shape Index with the specific 

richness of the gut microbiota and protozoa. The best model, in both cases, included the Forest 

Area (Table 9). Similar to equines, the Forest Area was the main covariate that affected the gut 

microbiota and protozoa richness, in both cases positively. In no case, evenness was related to 

some of the covariates included. 

 

Table 9. Significant regression models to assess the effect of landscape metrics in the bovine 

and equine gut microbiota and protozoa diversity (richness and evenness). 

Model beta LIPI ULPI DIC Δ DIC 
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BovGMRi_FA 0.36 0.31 0.42 374.50 0.0 

BovGMRi_FNP 0.27 0.21 0.33 452.50 78.0 

BovGMRi_Riv 0.28 0.22 0.35 459.00 84.5 

BovGMRi_FMSI -0.28 -0.37 -0.19 491.60 117.1 

BovGMRi_UZ -0.14 -0.25 -0.04 524.50 150.0 

BovPRi_FA 0.39 0.17 0.61 67.37 0.0 

BovPRi_FNP 0.36 0.13 0.59 70.06 2.7 

BovPRi_FMSI -0.39 -0.80 -0.03 75.04 7.7 

EqGMRi_FA 0.30 0.23 0.38 139.30 0.0 

EqGMRi_FNP 0.29 0.18 0.39 165.10 25.8 

EqGMRi_Riv 0.36 0.21 0.52 171.00 31.7 

EqPRi_Riv 0.43 0.07 0.81 52.43 0.0 

EqPRi_FA 0.22 0.02 0.40 52.82 0.4 

Bov=bovine, Eq=equine, GM= Gut microbiota, Ri=Richness, P=Protozoa, FA=Forest area, FNP= 

Forest Number of Patch, Riv=Length River, UZ= Urbanized zones, FMSI= Forest Mean shape 

index. LLPI = Lower limit probability Interval, ULPI = Upper limit probability Interval, DIC= 

Deviance Information Criteria, Δ DIC= delta DIC, difference between a model and most 

parsimonious model minor DIC. Gray highlighted models with positive relationships. 

 

Through direct observation, the following were found in bovine samples: Endolimax nana (Q), 

Entamoeba (Q), Coccidia (Q), Strongyloides (H), Iodamoeba, Entamoeba histolytica (Q), Giardia 

(Q), Saccharomyces sp, and Cestode. For equines, Strongyloides (H), Endolimax nana (Q), 

Coccidia (Q), Trichuris (H), Entamoeba (Q), Ciliate (Q), Oxyuris (H), Isospora (Q), Nematode (H), 

Saccharomyces, and fungal spores were found (Supplement information 4). 

3.5 Discussion 

The main phyla found in the samples were Ascomycota, Pseudomonadota, with Basidiomycota 

and Apicomplexa also present. The predominance of the Ascomycota phylum has been 

discovered to play a crucial role in the intestinal health of non-human mammals. Recent research 

suggests that evolutionary adaptation between these microorganisms and their hosts has led to 
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a beneficial symbiosis (Dworecka-Kaszak et al., 2016). Furthermore, it has been postulated that 

the predominant presence of Ascomycota could be associated with antagonistic properties toward 

potential pathogens, thereby strengthening the host's defenses (Limon et al., 2017). On the other 

hand, the abundance of Pseudomonadota highlights their crucial roles in intestinal homeostasis 

and might indicate an adaptive response to specific environmental conditions, such as exposure 

to pathogens or changes in the diet. Additionally, it has been suggested that certain members of 

Pseudomonadota may modulate the local immune response and actively participate in the 

degradation of complex compounds (Belvoncikova et al., 2022; Rizzetto et al., 2014). 

Concerns about the wildlife species sampled in this research (Chapter 4) Theileria have been 

reported in Tapiridae (Da Silveira et al., 2017). However, its prevalence, mean intensity, and mean 

abundance are some of the greatest to three domestic hosts, which means that it is present in 

almost all sites. Theileria is a genus of protozoan parasites that infect various vertebrate hosts, 

including mammals and birds. The most well-known species within this genus are those that infect 

cattle, causing the disease known as tropical theileriosis. The epidemiology of Theileria involves 

a complex life cycle that typically includes both a vertebrate host and a tick vector. The protozoans 

are transmitted between hosts during the feeding process of infected ticks. In the case of cattle, 

for example, Theileria species are transmitted by ticks of the genus Rhipicephalus. The 

prevalence and distribution of Theileria depend on factors such as the presence of suitable tick 

vectors, host availability, and environmental conditions. Regions with a high density of ticks and 

susceptible hosts are more likely to have a higher prevalence of Theileria infections. While much 

research has focused on Theileria in domestic animals, there is also interest in understanding its 

occurrence in wildlife. Theileria has been found in various wild animal species, suggesting a 

broader ecological role. However, the epidemiology in wildlife populations is less well-studied 

compared to domestic animals (Mans et al., 2015). 

Babesia has been documented in Ursus arctos, U. thibetanus, U. americanus (Bard & Cain, 2019; 

Ikawa et al., 2011; Jinnai et al., 2010; Skinner et al., 2017), but not in Tremarctos ornatus, Different 

species of Babesia have been found in Puma concolor (Yabsley et al., 2006) and Alouatta 

seniculus (de Thoisy et al., 2000). Here, Babesia had a prevalence of 86%, which means that it 

is relatively common, Babesia is a genus of protozoan parasites that infect red blood cells in 

various vertebrate hosts, including mammals, birds, and reptiles. The epidemiology of Babesia 

involves a life cycle that typically includes both a vertebrate host and a tick vector. Like Theileria, 

Babesia is transmitted between hosts during the feeding process of infected ticks. The primary 

vectors are often ticks of the Ixodes genus. The prevalence and distribution of Babesia infections 

are influenced by factors such as the presence of competent tick vectors, host reservoirs, and 



58 Effect of landscape structure on the diversity of microbiota and intestinal protozoa 

between wild and domestic mammals in some regions of Colombia 

 
environmental conditions. Regions with suitable tick habitats and a reservoir of infected vertebrate 

hosts are more likely to have a higher prevalence of Babesia. Certain species of Babesia are 

zoonotic. The epidemiology of Babesia is complex, and various species may have different host 

ranges and geographical distributions. Research in this field aims to understand the dynamics of 

Babesia infections, identify potential reservoir hosts, and develop strategies for the control and 

prevention of babesiosis in both human and animal populations (Laha et al., 2015). 

Plasmodium, Toxoplasma gondii, and Cryptosporidium affect various species of Neotropical 

primates, including Alouatta seniculus, Saguinus, and Aotus. Similarly, Toxoplasma and 

Cryptosporidium have been documented in bears (Navarro M. et al., 2015; Rondón et al., 2021; 

Solórzano-García & Pérez-Ponce de León, 2018) and pumas (Hatam-Nahavandi et al., 2021; Li 

et al., 2020) but not in tapirs.  Toxoplasma has the greatest prevalence of all the protozoa detected 

and Cryptosporidium was around in half of the samples. Toxoplasma and Cryptosporidium are 

parasitic protozoa with zoonotic significance, meaning they can infect both animals and humans. 

In the case of Toxoplasma gondii, infection primarily occurs through the ingestion of oocysts shed 

in the feces of felids, which act as definitive hosts. Transmission to wildlife species can occur 

through the ingestion of food or water contaminated with oocysts, posing potential health 

implications for wildlife (Aguirre et al 2019). Regarding Cryptosporidium spp., transmission is 

usually associated with water contaminated with oocysts. This transmission route is particularly 

relevant for wildlife relying on natural water sources. The presence of Cryptosporidium in aquatic 

environments can affect wildlife species using these resources for drinking or bathing (Gerace et 

al., 2019). 

Besnoitia species, including B. besnoiti, which was around in half of the samples, are known to 

infect a range of domestic and wild animals. However, it is poorly documented in Neotropical 

wildlife species. While much of the research has centered on domestic livestock, there is an 

increasing recognition of the potential risk posed to wildlife. Transmission of Besnoitia typically 

occurs through the ingestion of oocysts shed in the feces of infected animals, contributing to the 

environmental contamination of pastures and water sources. This transmission route raises 

concerns for various wild species that share habitats with infected domestic animals. Additionally, 

predation and scavenging behaviors in wildlife may contribute to the spread of Besnoitia within 

and between species (Olias et al., 2011). 

Trichomonas is a genus of flagellate protozoans that are primarily parasites of vertebrates, 

including humans, cattle, birds, and cats. The primary focus of T. vaginalis transmission is within 

human populations, and its occurrence in wild animals is not well-documented. The potential for 
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cross-species transmission or the establishment of reservoirs in wildlife remains an area of 

emerging interest (BonDurant, 1997; Collántes-Fernández et al., 2018). 

The risk to wildlife species is influenced by environmental, climatic, and behavioral factors. 

Changes in ecosystems, increased urbanization, and interaction with domestic animals may 

elevate wildlife exposure to these parasites. Furthermore, immunosuppression due to factors 

such as stress, malnutrition, or disease can increase individual susceptibility. Generally, the 

livestock is not sustainable socially, economically, and environmentally (Molina-B, 2019). In this 

sense, cattle become an important reservoir (Buret et al., 2019; Echeverría et al., 2019; Ryan et 

al., 2016). 

Understanding the epidemiology of these parasites in the context of wildlife is essential for 

developing effective management and conservation strategies, as well as assessing the potential 

risk to public health associated with the interaction between wildlife, livestock, and humans. 

Ongoing research is necessary to enhance our understanding of these processes and to develop 

appropriate prevention and control measures. Additional primers specific must be used to expand 

the diagnostic spectrum (Avramenko et al., 2015). 

The positive relationship observed between the forest area and number of the forest parches in 

focal landscapes and the richness of intestinal microbiota and gastrointestinal protozoa in bovine 

and equine livestock can be attributed to various ecological mechanisms. Native forests often 

harbor a rich array of plant species, insects, and wildlife. The diverse plant community contributes 

to a complex microbial environment in the soil, which, in turn, influences the gut microbiota of 

herbivores (Blum et al., 2019). Livestock grazing in areas with higher native forest cover may 

have increased exposure to a variety of microbes through foraging and environmental interactions 

(Phillips et al., 2018). The proximity of livestock to native forests can facilitate the transfer of 

microbes from the natural environment to the gastrointestinal tract of animals (Parajuli et al., 

2020). Animals may consume vegetation, water, or soil containing a diverse range of 

microorganisms, influencing the composition and richness of their gut microbiota (Blum et al., 

2019). Higher biodiversity in native forests may dilute the prevalence of specific pathogenic 

parasites. A more diverse ecosystem could reduce the concentration of parasites that specifically 

target livestock, leading to a lower risk of infection (Williams et al., 2021). The intricate web of 

interactions within diverse ecosystems may affect both beneficial microbes and potentially 

parasitic organisms (Leung et al., 2018). Certain microbial species may confer resistance or 

resilience to parasitic infections, influencing the overall health of the host animals (Kohl, 2012; 

Worsley et al., 2021). Native forests contribute to a more complex and varied environment 

compared to monoculture landscapes. This complexity may stimulate a more diverse microbial 
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community in the intestines of livestock, promoting overall gut health and resilience to 

gastrointestinal parasites (Berrilli et al., 2012; Stensvold & van der Giezen, 2018). The relationship 

with the length of water bodies can be explained by considering that rivers can provide water 

sources rich in essential minerals and other nutrients beneficial to the health of livestock. An 

adequate supply of good-quality water can promote the development and diversity of the intestinal 

microbiota. Proximity to water bodies often means access to richer and more diverse pastures. 

More varied pastures can provide a broader range of substrates for bacterial growth in the 

gastrointestinal tract of livestock. An environment that includes water can reduce stress in 

animals. Less stressed livestock is more likely to maintain a healthy microbiological balance in 

the intestinal tract (Arshad et al., 2021). 

These explanations are based on general ecological principles, and the specific relationships may 

vary based on the characteristics of the landscape, climate, and management practices. 

Continued research, including longitudinal studies and molecular analyses, is essential to unravel 

the intricate dynamics between landscape features, microbial diversity, and gastrointestinal 

parasite abundance in livestock. However, to improve the sustainability standards in the 

environmental, economic, and social dimensions based on the animal health component, the 

livestock landscape configuration in Colombia must be changed from a matrix of grassland with 

forest patches to a matrix of native forest with grassland patches. 

In conclusion, our study found mainly a positive relationship between the quantity of forest and 

the number of forest patches with the richness of gut microbiota and protozoa. It means that major 

natural land covers a major diversity of gut microbial components. The increase of protozoa 

diversity contrasts with our hypothesis but makes sense when it considers that a major diversity 

of protozoa has less burden on each one and less probability to generate an immunologic 

response to disease, which is a positive effect driven by a more natural a complex landscape 

context. 
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4.1 Abstract 

Concerning the gut microbiota, the hypothesis posits that increased microbial diversity contributes 

significantly to enhanced functionality across various processes associated with it. The intestinal 

microbiota exhibits high susceptibility to diverse forms of stress, and the impact of such stressors 

can be profound, affecting both its composition and function. A comprehensive understanding of 

how distinct forms of stress influence the intestinal microbiota is imperative for the development 

of strategies aimed at preserving gastrointestinal health and, consequently, the overall well-being 

of individuals. Conversely, parasites constitute integral components within natural processes that 

facilitate population regulation and maintain ecosystem balance. However, both natural and 

anthropogenic changes can disrupt these ecological processes. Among infectious diseases, 

those induced by protozoa are prominent contributors to human morbidity and mortality. Most 

protozoal diseases are zoonotic, and environmental changes exacerbate interactions among 

wildlife, domestic animals, and humans, thereby intensifying transmission rates between species. 

Thus, the objective of this study was to investigate the associations, including relationships and 

similarities, between landscape configuration influenced by some human activities and the 

diversity of intestinal microbiota, as well as the abundance of gastrointestinal protozoa, among 

wild and domestic mammals in Colombia. Taxonomic determination was achieved through 

metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a 

primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife 

mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy 

was also employed to validate certain agents. To describe the epidemiological landscape, taxa 

richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of 

protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the 

relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the 

abundance of specific target protozoa. The study identified several don’t documented protozoa 

species within the six assessed host species. A predominant proportion of phyla Ascomycota, 

Pseudomonadota, Basidiomicota, and Apicomplexa were observed, reflecting not only a healthy 

intestinal microbiota but also a potential predominance of certain negative elements. 

Comparisons between canines and equines, as well as between tapirs and bears among 

terrestrial mammals, indicated greater similarity in both gut microbiota and protozoa. In primates, 

the red howler monkey exhibited closer proximity to bovines and equines than to other primates. 

The findings indicated that a higher proportion of natural vegetation coverage correlated with 
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increased similarity in gut microbiota among wild and domestic mammals. Additionally, higher 

proportions of natural vegetation coverage, presence of water bodies, number of forest patches, 

and irregularities in forest shapes were associated with greater diversity (both richness and 

evenness) in gut microbiota and intestinal protozoa across different scales. 

4.1.1 Key words: Protozoa, microbiota, gut, dissimilarity index, multiscale landscape 

structure 

4.2 Introduction 

Concerning the gut, it is postulated that greater microbial diversity contributes to enhanced 

functionality in various processes related to it (Danneskiold-Samsøe et al., 2019; Park et al., 

2018). Gut microbiota plays a crucial role in breaking down complex compounds and releasing 

nutrients (Sauvaitre et al., 2021; Song et al., 2021). Notably, the presence of beneficial bacteria 

helps train the developing immune system, and a lack of diversity during this critical period may 

be linked to an increased risk of autoimmune diseases and allergies (Yoo et al., 2020). 

Additionally, the intestinal microbiota can modulate inflammatory responses and mitigate 

inappropriate immune reactions. 

Specific bacterial strains influence fat storage and appetite regulation (Aron-Wisnewsky et al., 

2021). Alterations in the microbiota have been observed to affect behavior and brain function, 

(Chen et al., 2021). A balanced microbiota serves as a barrier against harmful pathogens (Calo-

Mata et al., 2016). It has been proposed that the microbiota may influence the endocrine system, 

affecting hormone production (O’Callaghan et al., 2016). 

The intestinal microbiota is highly sensitive to various forms of stress, and such stressors can 

significantly impact its composition and function. Psychological stress has been associated with 

alterations in the diversity and balance of the microbiota. Moreover, physiological stress can also 

disrupt microbial homeostasis (He et al., 2021; Lange et al., 2016; Luo et al., 2021). 

Understanding how different forms of stress affect the intestinal microbiota is crucial for 

developing strategies that preserve gastrointestinal health and, consequently, the overall health 

of individuals. 

Parasites are integral components of natural processes that could determine population 

regulation and ecosystem balance (Clayton & Moore, 1997; R. Delahay & Delahay, 2009). They 

have the potential to influence key population parameters such as birth and death rates (Nunn & 

Altizer, 2006). Certain mathematical models propose that parasites play a significant role in the 



74 Effect of landscape structure on the diversity of microbiota and intestinal protozoa 

between wild and domestic mammals in some regions of Colombia 

 

 
dynamics of host populations and evolution (Begon & Townsend, 2021). However, these 

ecological processes may be disrupted by both natural and anthropogenic changes. Furthermore, 

parasites could act synergistically with habitat reduction, poaching, and pollution, posing a threat 

to biodiversity conservation (Aguirre, 2009; Smith et al., 2009; Wisely et al., 2008). Parasites may 

also contribute to substantial economic losses due to decreased production, financial 

expenditures on control and treatment, and increased mortality in livestock, particularly cattle 

(Charlier et al., 2014; Rashid et al., 2019; Rodríguez-Vivas et al., 2017). In the face of potential 

environmental changes, parasites may alter their impact on wildlife, domestic animals, and human 

health by intensifying contact between hosts and infectious agents. 

The severity of interactions with parasites is a significant concern for public health and national 

economies (Jenkins et al., 2015). Parasites represent a crucial biological factor for species 

conservation due to their adverse effects on health conditions, reductions in fitness, and increased 

mortality (Aguirre, 2009; Smith et al., 2009; Wisely et al., 2008). Among infectious diseases, those 

caused by protozoa are major contributors to human morbidity and mortality in tropical, 

subtropical, and temperate zones (Fletcher et al., 2012, Kohler, 2004). Livestock, in general, is 

considered unsustainable from social, economic, and environmental perspectives (Molina 

Benavides et al., 2019). In this context, cattle emerge as significant parasite reservoirs (Buret et 

al., 2019; Echeverría et al., 2019; Ryan et al., 2016). The three primary pathogenic protozoa 

worldwide are Cryptosporidium sp., Giardia sp., and Entamoeba histolytica (Xiao & Fayer, 2008). 

Indicators such as presence, prevalence, and richness are crucial in understanding how animals 

harbor infectious agents and regulate them. Additionally, these factors can elucidate the host's 

immunological condition (Muehlenbein, 2006). 

However, comprehending the emergence and causes of the spread of infectious diseases is 

essential for controlling and mitigating their adverse impacts on health, ecology, and the economy 

(Barrett et al., 2008; Kohler, 2004). This knowledge is relevant given the ongoing trends of 

globalization and climate change (Jensen et al., 2010; Miller et al., 2015; Simon et al., 2013; 

VanWormer et al., 2014). The emergence and transmission of a disease within wildlife 

populations that interacts with humans or livestock can have drastic effects on the viability of 

wildlife species. This scenario increases the frequency of interspecific transmission of pathogens, 

significantly impacting human health and the sustainability of livestock (Daszak et al., 2000; Fisher 

et al., 2012; Schurer et al., 2016; Thompson, 2013). 
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Moreover, the ongoing rate of environmental changes, such as climate change, habitat loss, 

species introduction, pollution, and ecosystem disturbances, has modified the dynamics of 

pathogen colonization and prevalence (Acevedo-Whitehouse & Duffus, 2009; Becker et al., 2015; 

Fountain‐Jones et al., 2017). These alterations typically amplify the contact among wildlife, 

domestic animals, and humans, intensifying the transmission rates between species, the 

emergence of diseases, and zoonotic events (Gale et al., 2009; Miller et al., 2015). Wildlife can 

potentially serve as a bidirectional conduit for infectious agents between humans and domestic 

animal populations. Furthermore, heightened interactions among the three components (human, 

domestic animal, and wildlife), propelled by urban and agricultural expansion, alongside changes 

in the structure and composition of biological communities, increase the likelihood of agents 

typically found in wildlife becoming infectious to humans or livestock. Conversely, some diseases 

adapted to domestic settings (including potentially drug-resistant strains) can impact wildlife, 

utilizing it as a reservoir before reemerging with unknown epidemiology (Aguirre, 2009; Deem, 

2015; Keesing et al., 2010). In this context, a comprehensive prioritized analysis based on the 

"One Health" approach proves valuable for decision-making (Jenkins et al., 2015) and should be 

developed, considering informative proxies and indicators about the interactions between human, 

animal, and ecosystem health (Aguirre et al., 2002). 

Mammals are an important group for epidemiological surveillance due to the impact that diseases 

can have on their endangered populations, and because of the risk of zoonotic transmission. As 

some primate species are used for bush meat, biomedical models, or, as pets, many mammals 

are in continuous close contact with humans, which increases the risk of cross-transmission and 

disease spread, highlighting the urgent need for mammal epidemiological surveillance (Artois et 

al., 2009; Chapman et al., 2005). 

In this research, our objective is to investigate the associations (relationships and similarities) 

among livestock, landscape structure determined by some human-derived activities, and the 

diversity of gut microbiota, as well as the abundance of certain pathogenic gastrointestinal 

protozoa in wild mammals in some regions in Colombia. To achieve this objective, we conducted 

an epidemiological description of the evaluated populations, determining richness in intestinal 

microbiota at various taxonomic levels. We also estimated the prevalence, mean intensity, and 

mean abundance of the considered protozoa. We assessed the dissimilarity between the 

microbiota and gastrointestinal protozoa among the evaluated wild mammals and associated 

cattle. 
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Furthermore, we explored the relationship between landscape metrics and the dissimilarity of gut 

microbiota and protozoa between domestic animals and wildlife mammals. Lastly, we determined 

the relationship between landscape configuration, employing a multiscale approach, and the 

diversity of gut microbiota and protozoa, along with the mean abundance of Cryptosporidium 

parvum and Giardia intestinalis, serving as proxies for protozoa in Alouatta seniculus, as this wild 

mammal species had a sufficient sample size (focal landscape) for analysis. We anticipate that 

greater area and reduced fragmentation in forest will result in a higher diversity of intestinal 

microbiota and lower diversity of protozoa and a mean abundance of Cryptosporidium parvum 

and Giardia intestinalis. 

4.3 Methods 

4.3.1 Study Area 

Samples were taken from 29 localities in ten departments (Figure 8). In two different sampling, 

one associated with a high mountain ecosystem in the Central Andes Mountain chain in which we 

take samples of Leopardus sp., Puma concocolor, Tapirus pinchaque, and Tremarctos ornatus, 

and the other in Primates in several localities in Colombia focused on Alouatta seniculus and 

Saguinus leucopus with some opportunistic samples of Aotus species. To determine the 

relationship between landscape metrics and dissimilarity of the gut microbiota and protozoa 

between domestic animals and mammal wildlife, analyses were conducted on 11 focal 

landscapes covering 224 km2 each. This area of focal landscapes corresponded to those where 

we got amplified samples for at least one sample of the three included species of domestic 

mammals and one sample of the eight wildlife mammals sampled. To determine the relationship 

between the local landscape features and the severity of human activities with the diversity of gut 

microbiota and protozoa, and the mean abundance of the gastrointestinal protozoa, that was done 

using a biological model Alouatta seniculus because it has enough focal landscape samples to 

run regression model with deplete the degrees of freedom, the multiscale approach was used, 

begging from 50 ha multiplying by two each scale until 6400 ha (eight scales). The samples were 

nested as the area of the local landscape expanded. The initial size was determined considering 

the mean home range for this species (Bustamante-Manrique, 2023). The definition of the focal 

landscape size in landscape epidemiology is crucial for determining fragmentation statistics that 

are relevant for understanding epidemiological processes in a specific area (Jackson & Fahrig, 
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2012). Several criteria must be considered for this determination. Firstly, it is essential to consider 

the ecological dimensions of populations and the dynamics of the pathogens at play, suggesting 

the need for a scale that realistically captures interactions. Additionally, accessibility and 

topographical characteristics of the study area must be considered, as they can influence the 

spread of diseases. The spatial resolution of available data and monitoring capacity are also 

determining factors in choosing the size of the focal landscape (Lausch, 2002). Therefore, it is 

necessary to adapt the scale of the focal landscape to the specific conditions of the 

epidemiological system in question, ensuring the relevance of fragmentation statistics for disease 

analysis at the local level (Ostfeld et al., 2005). 
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Figure 8. Study area. 

4.3.2 Collection of Fecal Samples and Storage 

One hundred forty-eight fecal samples were collected from eight species of wildlife mammals 

and three domestic mammals in ten departments of Colombia (Table 10). The number of 

samples corresponds to the population in each site of each species, assumed as an 

epidemiological unit—understood as an entity or group of individuals studied in a specific 

epidemiological context (Jakob-Hoff et al., 2014). In this sense, a sample could be 

representative of the unit. Each sample was deposited in a lysis buffer composed of 0.1 M Tris-

HCl, 0.1 M EDTA, 0.01 M NaCl, and 0.5% SDS at pH 8 (Longmire et al., 1997). The samples 

were transported at room temperature to the laboratory and frozen at -20°C until extraction. 

Most samples were frozen between eight and 20 days after collection. The time from collection 

to extraction varied between samples. 

  





 

 

 
 

Table 10. Host species and departments sampled. 

Department Antioquia Arauca Caldas Caquetá Cordoba Guaviare Quindío Risaralda Tolima Valle Total 

A. seniculus 5 4 8 
 

3 4 13 6 
 

6 49 

A. griseimembra 
  

1 
       

1 

A. lemurinus 
         

1 1 

A. vociferans 
   

1 
      

1 

B. primigenius 7 
 

7 1 3 1 4 2 
 

6 31 

C. l. familiares 
         

2 2 

Equus sp. 4 
 

4 
 

1 1 1 4 1 5 21 

Leopardus sp. 
         

3 3 

P. concolor 
        

2 4 6 

S. leucopus 
  

16 
       

16 

T. pinchaque 
        

3 1 4 

T. ornatus 
        

2 11 13 

Grand Total 16 4 36 2 7 6 18 12 8 39 148 

 

  





 

 

 
 

4.3.3 DNA Extraction and 18S rRNA Library Preparation 

For DNA extraction, the commercial Kit DNeasy PowerSoil Pro® Kit was used following the 

manufacturer's instructions with minor differences (addition of 5 minutes of stirring to mix the 

sample with the first component of the kit). The extracted DNA was diluted in 50 µl of kit 

resuspension solution. The final yield and quality of extracted DNA were determined by Colibrí 

(Titertek Berthold) using 2 µl of DNA. Pure genomic DNA is indicated by an A260/A280 nm ratio 

between 1.8 and 2.0, while between 1.6-1.8 are acceptable, and any value less than 1.6 indicates 

contamination. DNA integrity was determined by visualizing 2 μL of extracted DNA on 1% agarose 

gel (w/v) containing GelRed (Biotium®). Subsequently, for the viability assessment of genomic 

DNA in molecular characterization studies, the 18S rRNA gene was targeted using primers G3F1 

and G3R1 G3F1 (5’ –GCCAGCAGCCGCGGTAATTC-3) and primer G3R1 (5’ –

ACATTCTTGGCAAATGCTTTCGCAG-3) (Krogsgaard et al., 2018). The protozoa targets were 

the agents including in Apicomplexa, Tricomonadida, Trypanosomatidae, Paramecium, and 

Giardia clades. Amplifications were done by endpoint polymerase chain reaction (PCR) using the 

Biorad CFX96 C1000 thermal cycler (Roncancio et al. 2024).  

For visualization of the amplicons, 1.4% agarose gels were prepared and stained with GelRed. 

The gels of the total DNA and the amplicons were visualized in a gel photodocumenter (Nippon 

Genetics, FastGene FAS V model). Amplicon concentration was determined fluorometrically on 

the Qubit® 3.0 Fluorometer using the QubitTM dsDNA HS Assay Kit following the manufacturer's 

instructions (Freed & Silander, 2020). 

4.3.4 Oxford Nanopore Sequencing and Bioinformatics 

For sequencing the approximately 500 bp-long amplified regions, the MinION MK1B sequencing 

platform was utilized with the MinKNOW software. The sequencing library was prepared with the 

Ligation Sequencing Kit SQK-LSK109 and the Native Barcoding Expansion Kit 96 (EXP-

NBD196). The library pool was sequenced on an R-9.4.1 flow cell for 48 hours. Raw FAST5 files 

produced were base called under high-accuracy mode using the ONT base caller Guppy v6.2.1. 

The FASTQ files were used for taxonomic assignment with Kraken2 and the PlusPFP database 

(3/14/2023). The results were subsequently filtered excluding clades with less than five reads and 

the Viridiplantae clade, corresponding to green plants, assuming that the presence of this clade 

was derived primarily from the diet, including water consumption. 
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4.3.5 Direct Observation: microscopy (Supplement information 4) 

To verify forms compatible with the parasite target species intended for diagnosis, direct 

observation analyses were conducted using microscopy. This method also allowed the 

identification of forms compatible with other agents not diagnosable with the molecular markers 

used, providing additional information. Their utility for interaction and risk analyses is limited, as 

with these methodological approaches, most potential agents can only be determined at the 

genus level. The samples were collected in a 10% formalin fixing solution (PFA) and upon arrival 

at the laboratory, they were stored at a temperature of 7 degrees Celsius. For parasitological 

diagnosis, the following approaches were employed: 

Direct Coprology: A drop of saline solution and another Lugol was applied to a microscope slide. 

An amount equivalent to the tip of a wooden applicator was added to both sides of the slide. 

Subsequently, homogenization was performed, and coverslips were applied. 

Microscopic examination was conducted using an optical microscope at 5X magnification, with an 

assessment of all fields, 10X with an evaluation of all fields, and 40X with an evaluation of 40 

fields. Special attention was given to suspicious structures during assessments at lower 

magnification. 

Sheather Solution Flotation (Saturated Sucrose): The ovu-check® device was utilized. One 

gram of fecal matter was placed on the bottom lid, and the solution was added until reaching 1/3 

of the container. The sample was homogenized with a wooden applicator, and a filter was added. 

The remaining solution was then added to complete the remaining 2/3. An embolus was left on 

the surface, and the solution was allowed to settle for 20 minutes. Afterward, it was covered with 

a cover slip. After 1 minute, the cover slip was removed, placed on a microscope slide, and read 

using the same methodology employed in direct coprology. 

Ziehl-Neelsen: Specifically, to protozoa, the traditional method Ziehl-Neelsen was used, one the 

slide was mounted with the sample, we allowed the slide to air-dry at room temperature. 

Subsequently, once dry, it is heat-fixed using a hot plate for approximately 2 – 3 minutes. Direct 

flame fixation is avoided to prevent sample degradation. While the slide remains on the hot plate, 

phenol fuchsin is added for 5 minutes until vapor emission is observed. It is important not to let it 

boil, and additional staining is performed gradually if the dye appears to be drying. After 5 minutes, 

the slide is removed from the hot plate using forceps, and the dye is discarded into a container 
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for chemical waste. Rinsing with R.O water is performed without direct water flow onto the sample 

until no color is observed in the effluent. Excess water is then removed. Subsequent 

decolorization is achieved using acid-alcohol, followed by another wash with R.O water. Finally, 

Loeffler's methylene blue is added as a contrasting dye for 20 seconds to 1 minute. 

4.3.6 Estimation of Covariates 

Sustainable development in agriculture, forestry, and fisheries sectors, as defined as, conserving 

land, water, plant, and animal genetic resources, is environmentally non-degrading, technically 

appropriate, economically viable, and socially acceptable. The dimensions of sustainability—

economic viability for farmers, environmental soundness, and social acceptability—have several 

indicators (Lovarelli et al., 2020; van der Linden et al., 2020). In this case, these indicators are 

associated with response variables related to the health status of livestock and its potential impact 

on wildlife. In this work, we focused on sustainability indicators related to the environmental 

dimension and based on land cover. We considered that less natural land cover is associated 

with more effects of size, isolation, and border, making livestock less sustainable. Covariates 

included landscape statistics related to land use coverages, bodies of water, roads, climatic 

variables, and altitude (Arce-Peña et al., 2019). Initially, we considered 15 candidate covariates 

(Table 11). 

 

Table 11. Initial covariates selected to evaluate the effect of the landscape configuration on the 

response variables defined. 

Covariate 

Distance to tracks (km) 

Elevation (m) 

Forest area (km2) 

Forest Mean Patch Size 

Forest Mean Shape Index 

Forest Number Patches 

Habit (Arboreal=0, Terrestrial=1) 
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Number of samples 

Pastures areas (km2) 

Precipitation (m3) 

River (km) 

Temperature (ºC) 

Urbanized zones (km2) 

Weigthed Cover Index (WCI) 

Wildlife number of samples/Domestic number of samples 

 

We introduced the Weighted Cover Index (WCI) to integrate an index that allowed us to 

measure the land cover composition and structure, not only the land cover structure as SI 

(Fahrig et al., 2011). To estimate the WCI, we qualified class types as follows (Table 12), based 

on the quality of wildlife mammals, if more mature or less transformed cover, best quality. 

Table 12. Quality multipliers of land cover to estimate the Weighted Cover Index (WCI) 

Cover 
 Quality 

Multiplier 

1.1.1. Continuous urban fabric 1 

1.1.2. Discontinuous urban fabric 1 

1.2.1. Industrial or commercial areas 1 

1.2.2. Road, railway, and associated land 1 

1.2.4. Airports 1 

1.2.5. Hydraulic works 1 

1.3.1. Mining extraction areas 1 

1.4.2. Recreational facilities 1 

2.1.1. Other transitory crops 3 

2.1.2. Cereals 3 

2.2.1. Herbaceous permanent crops 3 
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2.2.2. Shrub permanent crops 3 

2.2.3. Tree permanent crops 3 

2.3.1. Clean pastures 2 

2.3.2. Tree-covered pastures 2 

2.3.3. Weedy pastures 2 

2.4.1. Crop mosaic 3 

2.4.2. Mosaic of grass and crops 2.5 

2.4.3. Mosaic of crops, grass, and natural spaces 3.5 

2.4.4. Mosaic of grass with natural spaces 3 

2.4.5. Mosaic of crops with natural spaces 3.5 

3.1.1. Dense forest 10 

3.1.2. Open forest 9 

3.1.3. Fragmented forest 8 

3.1.4. Gallery and riparian forest 7 

3.1.5. Forest plantation 3 

3.2.1. Herbaceous vegetation 4 

3.2.2. Shrubland 5 

3.2.3. Secondary or transitional vegetation 6 

3.3.1. Natural sandy areas 1 

3.3.3. Bare and degraded lands 1 

3.3.4. Burned areas 1 

4.1.1. Swamp areas 1 

4.1.3. Aquatic vegetation on water bodies 1 

5.1.1. Rivers 1 

5.1.2. Natural lagoons, lakes, and marshes 1 

5.1.4. Artificial water bodies 1 
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The landscape index is calculated by multiplying the assigned value of each class type (e.g., 

dense forest, pasture) by its relative area within the focal landscape. These products are then 

summed to obtain the final index value. Consequently, landscapes dominated by classes with 

high assigned values (e.g., dense forest) will have higher index values (close to ten), while 

landscapes with a greater proportion of classes assigned lower values (e.g., pasture and crops) 

will have lower index values (between two and three) (Roncancio Duque, 2021). 

 

To determine the relationship between landscape metrics and dissimilarity of the gut microbiota 

and protozoa between domestic and wildlife mammals the covariates were estimated to the each 

of 224 km2 of focal landscape considering this objective. This focal landscape size was defined 

based on the largest area that included samples of wild and domestic species from the localities 

included. To determine the relationship between the focal landscape features and the severity of 

human activities with the diversity of gut microbiota and protozoa, and occurrence probability 

(mean abundance) of the gastrointestinal protozoa in A. seniculus, the covariates were estimated 

to each focal landscape to each one of the eight-scale analyzed. Here we do not consider habit 

and the relation of the number of the samples between domestic and wildlife mammals because 

are not relevant, and the precipitation and temperature because the resolution of the pixel is not 

accurate to this scale of analysis. The information used to estimate the covariates were the natural 

cover information 1:100.000 scale, Digital elevation model, raster of temperature, precipitation, 

and shapes of simple drainage to the river and way (Fick & Hijmans, 2017; IDEAM, 2021; IDEAM 

(Instituto de Hidrología, 2017). The geoprocessing -clips, layer intercepts, zonal statistics- was 

done using ArcGIS 10.7.1, and the landscape and cover metrics were estimated using Patch 

Analyst - Analysis by Region tools. 

4.3.7 Statistical Analysis 

An initial descriptive analysis was conducted to show the diversity based on specific richness at 

various taxonomic levels from species to phylum. Furthermore, for the considered protozoa, 

including the clades Apicomplexa, Tricomonadida, Trypanosomatidae, Paramecium, and Giardia, 

prevalence, mean intensity, and mean abundance were estimated. Prevalence, denoting the 

proportion of cases of a specific disease or condition in a population at a given point in time, is 

typically expressed as a percentage. It represents the total number of cases relative to the total 

size of the at-risk population. Mean intensity refers to the average burden of a disease in infected 
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individuals within a population, expressed in terms of the quantity of pathogens present. This 

measure aids in understanding the average severity of the disease in the affected population. 

Mean abundance, on the other hand, signifies the average quantity of pathogens present in all 

individuals, whether infected or not, in a population. This measure provides information about the 

total burden of pathogens in the population, irrespective of their infection status (Ostfeld et al., 

2005). 

To determine the dissimilarity between the microbiota and gastrointestinal protozoa among 

evaluated wild mammals and associated domestic counterparts, cluster dendrograms were 

constructed, and Bray-Curtis dissimilarity indices were estimated, considering taxa with more than 

five reads in the sample. Cluster analysis serves to evaluate the similarity between samples based 

on species composition. A common method involves using the Bray-Curtis index to quantify 

dissimilarity between assemblages. This index considers the presence and relative abundance of 

species in two samples, yielding a value ranging from 0 (identical assemblages) to 1 (completely 

different assemblages). By applying cluster analysis techniques to the Bray-Curtis dissimilarity 

matrix, samples with higher similarity are grouped, revealing patterns of assemblage structuring. 

To construct the dendrogram, three methods—single, average, and complete—were employed, 

and the optimal dendrogram was selected using the cophenetic distance method. This distance 

is calculated as the distance between two objects within the same cluster in the dendrogram. The 

distance from the first object to the second object passing through the joining node of the two 

objects is the cophenetic distance. A cophenetic matrix is a matrix that represents the cophenetic 

distances between all pairs of objects. This matrix can be correlated with the original dissimilarity 

matrix. The method with the highest cophenetic correlation can be regarded as having produced 

the best clustering model for the distance matrix (Borcard et al., 2011). 

To determine the relationship between focal landscape features and the diversity of gut microbiota 

and protozoa, the mean abundance of target gastrointestinal protozoa detected in A. seniculus 

Cryptosporidium parvum and Giardia intestinalis, richness, and the inverse Simpson index were 

used as response variables. The analyses were performed using the Vegan package in R 

(Oksanen et al., 2013). 

The relationship was assessed using simple beta regression methods for the dissimilarity index 

and simple Poisson regression for richness, inverse Simpson index, and mean abundance. 

Initially, a correlation test was conducted among all covariates to eliminate collinearity 

(autocorrelation). The Spearman coefficient of correlation was employed for this evaluation after 
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standardizing all covariates, given that the covariates were not normal and homoscedastic. These 

analyses were executed in the R program, specifically utilizing the PerformanceAnalytics package 

and Rcmdr (Fox et al., 2015; Peterson et al., 2018). When two covariates exhibited association 

(Spearman rank correlation coefficient: P-rs <0.05), one of them was excluded (Sokal et al., 

1995). The final variables selected were those not associated with others. Consequently, for the 

dissimilarity regression, eight out of the 15 covariates were considered (Habit, WCI, Forest MSI, 

Forest NumP, Pastures area, Urbanized zones area, River Length, and Elevation). For the 

richness, inverse Simpson index, and mean abundance regression, three to five covariates were 

considered (Supplement information 1). 

A Bayesian approach was employed, utilizing an uninformative prior distribution for the precision 

of the explanatory variable effects and an uninformative prior distribution for the intercept (alpha) 

and slopes (beta). It was assumed that the posterior distributions of the intercept and the slope of 

each variable followed a normal distribution (McCarthy, 2007; Pfeiffer et al., 2008). Interactions 

(multiplicative effects) between the explanatory variables were not considered. To select the most 

parsimonious model, the Deviance Information Criterion (DIC) was employed. The estimation of 

intercepts and slopes was performed using Markov chains with 100,000 iterations, considering 

iterations from 10,001 to the final estimation. The DIC was estimated with an additional 100,000 

iterations. The analyses were conducted using OpenBugs 3.2.2 software (Spiegelhalter et al., 

2018). 

4.4 Results 

4.4.1 General gut microbiota and protozoa diversity 

Sequences were obtained from 73 out of 148 collected samples (Table 13). To A. seniculus the 

classification percentage ranged from 20.8% to 95%. For S. leucopus, the determination 

percentage ranged from 56.1% to 99.6%, with five out of six samples above 94.6%. The Aotus 

species samples had a classification percentage of 74.9 and 86.4%. The two samples of T. 

ornatus were 88.8 and 94.1 % of the classification percentage. P. concolor was from 88.1 and 

97.8% and the two samples of T. terrestris were 58 and 94 %. For bovines, the classification 

percentage ranged from 45.9% to 99.1%, with 10 out of 16 samples having determinations above 

90%. For equines, the determination percentage ranged from 53.6% to 99.7%, with 12 out of 13 
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samples above 93%. The canine sample had a classification percentage of 99.5% (Supplement 

information 2). 

 

Table 13. Proportion of domain represented in the sequenced samples by host species. 

Host/Domain Archaea Bacteria Eukaryota Viruses 
Sequenced 

samples 

A. lemurinus 
 

53.93 46.04 
 

1 

A. seniculus 0.19 36.85 62.73 0.21 27 

A. vociferans 
 

16.46 83.54 
 

1 

B. primigenius 0.02 2.89 97.08 0.01 16 

C. l. familiaris 
 

31.44 68.56 
 

1 

Equus sp 0.01 0.76 99.21 0.01 13 

O. leucopus 
 

12.79 87.10 0.11 4 

P. concolor 
 

3.43 96.51 0.06 6 

T. ornatus 
 

0.55 99.43 0.02 2 

T. pinchaque   10.26 89.74 
 

2 

 

The diversity distribution to each taxonomic level of the detected organisms in each host 

species is in Table 14. 

Table 14. Gamma diversity (taxa richness) by host species to different taxonomic levels and 

some agent species with more than five reads used for epidemiological analyses (Supplement 

information 3). 

Species Phylum Classes Order Family Genus Species 

A. lemurinus 7 12 12 13 10 11 

A. seniculus 40 76 143 287 571 693 

A. vociferans 3 6 6 6 3 4 
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B. primigenius 25 50 78 111 133 150 

C. l. familiaris 11 26 33 43 52 61 

Equus sp. 23 48 88 141 174 145 

S. leucopus 10 23 29 35 40 36 

P. concolor 8 21 29 36 35 43 

T. ornatus 9 22 32 43 44 49 

T. pinchaque 11 25 41 61 64 70 

 

In the case of A. seniculus, the main phyla observed were Apicomplexa, Ascomycota, and 

Pseudomonadota (Figure 9), with the most abundant protozoa identified as Toxoplasma gondii, 

Plasmodium vivax, Babesia microti, and Plasmodium rectilineum (Table 15). Conversely, S. 

leucopus exhibited Ascomyota and Pseudomanadota as prevailing phyla, hosting Babesia microti 

and Toxoplasma gondii as the most frequently detected protozoa. A. lemurinus displayed 

Pseudomonadota, and Ascomicota, with protozoa such as Babesia bovis and Toxoplasma gondii 

being the most represented in the sample. Similarly, the intestinal microbiota of A. vociferans 

featured Ascomicota, Campylobaterota, and Pseudomonadota as predominant phyla (Figure 10) 

(Supplement information 3). 
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Figure 9. Phylum relative abundance to Alouatta seniculus (As). 

Table 15. Epidemiological descriptors of protozoa to Alouatta seniculus 

Species 
Prevalence Mean intensity Mean abundance 

Mean LLPI ULPI Mean LLPI ULPI Mean LLPI ULPI 

Babesia bigemina 0.34 0.19 0.52 4 3 5 1 1 2 

Babesia bovis 0.41 0.24 0.59 20 17 22 8 7 9 

Babesia microti 0.59 0.41 0.76 51 48 55 30 28 33 

Besnoitia besnoiti 0.41 0.24 0.59 9 8 11 4 3 5 

Cryptosporidium parvum 0.34 0.19 0.52 5 4 7 2 1 2 

Giardia intestinalis 0.17 0.06 0.33 1 1 3 0 0 0 

Leishmania mexicana 0.24 0.11 0.41 1 0 2 0 0 0 

Neospora caninum 0.28 0.13 0.45 2 1 3 0 0 1 

Plasmodium berghei 0.28 0.13 0.45 1 1 2 0 0 1 

Plasmodium chabaudi 0.38 0.22 0.56 5 3 6 2 1 2 

Plasmodium coatneyi 0.31 0.16 0.49 4 3 6 1 1 2 

Plasmodium cynomolgi 0.28 0.13 0.45 1 1 2 0 0 1 

Plasmodium falciparum 0.31 0.16 0.49 1 0 2 0 0 1 

Plasmodium malariae 0.45 0.27 0.63 3 2 4 1 1 2 

Plasmodium reichenowi 0.28 0.13 0.45 1 0 2 0 0 0 

Plasmodium relictum 0.55 0.37 0.72 30 27 33 17 15 18 

Plasmodium sp. gorilla 
clade G2 

0.24 0.11 0.41 2 1 3 0 0 1 

Plasmodium vinckei 0.34 0.19 0.52 3 2 4 1 1 1 

Plasmodium vivax 0.72 0.55 0.87 14 12 15 10 9 11 

Plasmodium yoelii 0.41 0.24 0.59 2 2 3 1 1 1 

Theileria annulata 0.24 0.11 0.41 1 0 2 0 0 0 

Theileria equi 0.41 0.24 0.59 260 250 270 106 102 110 
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Theileria orientalis 0.52 0.34 0.69 5 4 7 3 2 3 

Toxoplasma gondii 0.72 0.55 0.87 230 224 237 170 166 175 

Trichomonas vaginalis 0.62 0.44 0.79 3 2 4 2 1 2 

Trypanosoma brucei 0.14 0.04 0.28 2 1 4 0 0 0 

LLPI = Lower limit probability Interval, ULPI = Upper limit probability Interval, Colors highlighted 

biggest values in each parameter, red first, orange second, green third, and blue fourth. 

To A. lemurinus just we found the genome of Babesia bovis with 18 reads, Babesia microti 1, 

Theileria orientalis 1, and Toxoplasma gondii 8. To A. vociferans we did not find protozoa. To S. 

leucopus we found genome of Trypanosoma brucei, Trichomonas vaginalis, Plasmodium 

coatneyi, P. relictum, P. falciparum, P. malariae, P. cynomolgi, P. vivax, P. chabaudi, Babesia 

microti, B. bigemina, B. bovis, Theileria orientalis, T. equi, Neospora caninum, Toxoplasma gondii. 

To B. microti prevalence was 0.43 (PI95%= 0.23 - 0.64), mean intensity 2.88 (PI95%= 1.83 - 

4.165), mean abundance 1.21 (PI95%= 0.768 - 1.758), T. gondii prevalence 0.62 (PI95%= 0.41 

– 0.81), mean intensity 5.17 (PI95%= 3.96 - 6.54) and mean abundance 3.26 (PI95%= 2.5 - 4.13). 

Furthermore, T. ornatus and P. concolor showcased a diversity of phyla in the intestinal 

microbiota, primarily represented by Ascomicota, Apicomplexa, and Basidiomycota (Figure 10). 

Genomic protozoa including Theileria equi, Theileria orientalis, Toxoplasma gondii, Babesia 

bigemina, and Plasmodium rectilineum were prevalent ( 

In bovine and equine samples, Ascomycota, Basidiomycota, and Apicomplexa were notably 

represented. Within the intestinal microbiota phyla, Toxoplasma gondii, Theileria species, and 

Babesia exhibited the highest values in terms of prevalence, mean intensity, and mean 

abundance. In the sole sample from Canis lupus familiaris, the most representative phyla included 

Cyanobacteriota, Ascomycota, Basidiomycota, and Pseudomonadota, with the highest 

abundances recorded for Theileria orientalis, Toxoplasma gondii, and Babesia microti (Chapter 

3). 

Table 16, Table 17). T. pinchaque, on the other hand, presented the phyla Ascomicota, 

Pseudomonadota, and Apicomplexa (Figure 10), with the common protozoa being Theileria 

orientalis, Theileria equi, Toxoplasma gondii, and Babesia microti in its samples (Table 18). 
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Figure 10. Phylum relative abundance to other host wild mammals. Al: Aotus lemurinus, Av: 
Aotus vociferans, Tp: Tapirus pinchaque, To: Tremactos ornatus, Pc: Puma concolor, Sl: 
Saguinus leucopus 

 

In bovine and equine samples, Ascomycota, Basidiomycota, and Apicomplexa were notably 

represented. Within the intestinal microbiota phyla, Toxoplasma gondii, Theileria species, and 

Babesia exhibited the highest values in terms of prevalence, mean intensity, and mean 

abundance. In the sole sample from Canis lupus familiaris, the most representative phyla included 

Cyanobacteriota, Ascomycota, Basidiomycota, and Pseudomonadota, with the highest 

abundances recorded for Theileria orientalis, Toxoplasma gondii, and Babesia microti (Chapter 

3). 

Table 16. Epidemiological descriptors of protozoa to Tremarctos ornatus 

Species 

Prevalence Men intensity Mean abundance 

Mean LLPI ULPI Mean LLPI ULPI Mean LLPI ULPI 

Babesia bigemina 0.50 0.10 0.91 20 12 30 10 6 15 

Babesia microti 0.75 0.29 0.99 10 7 15 10 7 15 
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Cryptosporidium parvum 0.75 0.29 0.99 4 2 7 4 2 7 

Plasmodium relictum 0.75 0.29 0.99 4 2 7 4 2 7 

Plasmodium vivax 0.75 0.29 0.99 4 2 7 4 2 7 

Theileria equi 0.75 0.29 0.99 1069 1024 1115 1069 1024 1115 

Theileria orientalis 0.75 0.29 0.99 262 240 284 262 240 284 

Toxoplasma gondii 0.75 0.29 0.99 261 240 285 261 240 285 

 

Table 17. Epidemiological descriptors of protozoa to Puma concolor 

Species 
Prevalence Mean intensity Mean abundance 

Mean LLPI ULPI Mean LLPI ULPI Mean LLPI ULPI 

Babesia microti 0.83 0.48 0.99 6.25 4.06 8.93 6.25 4.06 8.93 

Besnoitia besnoiti 0.50 0.15 0.85 3.50 1.41 6.54 1.75 0.71 3.26 

Plasmodium relictum 0.33 0.05 0.72 13.98 7.65 22.14 3.50 1.91 5.58 

Theileria equi 0.50 0.15 0.85 6.00 3.10 9.83 3.00 1.55 4.93 

Theileria orientalis 0.67 0.29 0.95 3.67 1.83 6.16 2.75 1.38 4.61 

Toxoplasma gondii 0.83 0.48 0.99 11.00 7.99 14.48 11.00 7.99 14.48 

 

Table 18. Epidemiological descriptors of protozoa to Tapirus pinchaque 

Species 
Prevalence Mean intensity Mean abundance 

Mean LLPI ULPI Mean LIPI ULPI Mean LIPI ULPI 

Babesia microti 0.75 0.29 0.99 9 5 14 9 5 14 

Theileria equi 0.75 0.29 0.99 57 47 69 57 47 69 

Theileria orientalis 0.75 0.29 0.99 738 701 776 738 701 776 

Toxoplasma gondii 0.75 0.29 0.99 37 29 46 37 29 46 



 

 

 
 

Table 19. Parasites were confirmed and additional records were by microscopy (Supplement information 4). 

Kingdom Phylum Class Order Family Species 

Bos 
primigenius 

Equus 
sp 

T. 
ornatus 

T. 
pinchaque 

A. 
seniculus 

Leopardus 
sp. 

Animal Cestodo     1      

Animal Nematoda Adenophorea Enoplida Capillariidae Capillaria sp.      1 

Animal Nematoda Adenophorea Trichurida Trichuridae Trichuris sp.  1     

Animal Nematoda Chromadorea Oxyurida Oxyuridae  Enterobius sp.     1  

Animal Nematoda Chromadorea Oxyurida Oxyuridae  Oxyuris sp.  1     

Animal Nematoda Chromadorea Oxyurida Oxyuridae    1 1    

Animal Nematoda Chromadorea Rhabditida Strongylidae Strongyloides sp. 1 1 1  1 1 

Animal Nematoda Secernentea Ascaridida Ascarididae    1  1 1 

Animal Nematoda      1 1 1 1  

Fungi Ascomycota Hemiascomycetes Saccharomycetales Saccharomycetaceae Saccharomyces 1 1     

Protist Amoebozoa Archamoebea Mastigamoebida Entamoebidae Entamoeba sp. 1 1 1 1 1 1 

Protist Amoebozoa Archamoebea Mastigamoebida Entamoebidae Iodamoeba sp. 1      

Protist Amoebozoa Archamoebea Mastigamoebida Mastigamoebidae Endolimax nana  1 1     

Protozoa Bigyra Blastocystea Blastocystida Blastocystea Blastocystis sp.     1  

Protozoa Metamonada Fornicata Diplomonadida  Giardia sp 1  1  1 1 

Protozoa Metamonada Parabasalia Trichomonadida  Trichomonas sp.     1  

Protozoa 
Miozoa: 
Apicomplexa Coccidiasina    1 1 1 1 1  

Protozoa 
Miozoa: 
Apicomplexa Conoidasida Eucoccidiorida Cryptosporidiidae Cryptosporidium sp     1  

Protozoa 
Miozoa: 
Apicomplexa Conoidasida Eucoccidiorida Eimeriidae Isospora sp. 1      

Protozoa               1 1     

 





 

 

 
 

 

4.4.2 Dissimilarity 

High mountain 

The diversity of gut microbiota among wild and domestic species in the central Andes revealed 

greater similarity between domestic canines and equines, sharing a 33% similarity. Closest to 

these, the puma exhibited a 19% similarity in intestinal microbiota with dogs and a 29% similarity 

with horses and mules (Figure 11). T. pinchaque primarily shared its intestinal microbiota with 

bears at a 29% similarity. The most distant organism in this landscape, in terms of intestinal 

microbiota, was the domestic bovine, with a maximum similarity of only 13% with the puma. 

Regarding protozoa, a similar pattern emerged, with a 78% similarity between domestic canines 

and equines, while similarities decreased among other species (Figure 12). 

 

Bray curtis 
dissimilarity 

Bp_
1 

Cf_
2 

Tp_
3 

Eq_
4 

To_
5 

Cf_2 0.97 
    

Tp_3 0.97 0.82 
   

Ec_4 0.95 0.67 0.73 
  

To_5 0.98 0.84 0.71 0.76 
 

Pc_6 0.87 0.81 0.74 0.71 0.84 

Bp= Bos primigenius, Cf= Canis lupus familiaris, 

Tp= Tapirus pinchaque, Eq= Equus sp. To= 

Tremarcots ornatus, Pc= Puma concolor 

Figure 11. Cluster dendrogram and matrix to gut microbiota dissimilarity between wild and 

domestic mammals in high mountain sampling. 
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Bp= Bos primigenius, Cf= Canis lupus familiaris, 

Tp= Tapirus pinchaque, Eq= Equus sp. To= 

Tremarctos ornatus, Pc= Puma concolor 

Bray curtis 
dissimilarity 

Bp_1 Cf_2 Tp_3 Eq_4 To_5 

Cf_2 0.98 
    

Tp_3 1.00 0.74 
   

Ec_4 0.99 0.22 0.65 
  

To_5 1.00 0.84 0.68 0.77 
 

Pc_6 0.94 0.74 0.94 0.76 0.96 

Figure 12. Cluster dendrogram and matrix to gut protozoa dissimilarity between wild and domestic 

mammals in high mountain sampling. 

 

Primates 

Concerning the primate-associated sampling, the highest similarity, both in intestinal microbiota 

and protozoa, was observed between domestic equines and bovines, with a greater resemblance 

in protozoa compared to the overall microbiota. Conversely, equines and bovines exhibited 

greater similarities with the red howler monkey than with other primates. In this regard, the howler 

monkey tends to cluster more closely with bovines than with other species, both in terms of 

microbiota and protozoa. The two nocturnal monkeys are proximate to each other in terms of 

microbiota. S. leucopus appears to be the species furthest away, both in terms of intestinal 

microbiota and protozoa (Figure 13, Figure 14). 
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Bray curtis 
dissimilarity 

Al_1 As_2 Av_3 Bp_4 Ec_5 

As_2 0.96     

Av_3 0.78 0.99    

Bp_4 0.98 0.65 0.99   

Ec_5 0.99 0.77 1.00 0.62  

Sl_6 0.89 0.77 0.96 0.83 0.92 
 

Figure 13. Cluster dendrogram and matrix to gut microbiota dissimilarity between wild and 

domestic mammals in primates sampling. 

 

 

Bray curtis 
dissimilarity 

Al_1 As_2 Bp_3 Ec_4 

As_2 0.92    

Bp_3 0.93 0.59   

Ec_4 0.98 0.56 0.52  

Sl_5 0.67 0.92 0.88 0.96 

Figure 14. Cluster dendrogram and matrix to protozoa dissimilarity between wild and domestic 

mammals in primates sampling. 
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4.4.3 Relationship between landscape metrics and dissimilarity of the 
gut microbiota and protozoa between domestic animals and 
wildlife 

Out of the initially considered 15 covariates, eight showed no significant associations with each 

other: Elevation, Forest Mean Shape Index, Forest Number Patches, Habit, Pastures areas, 

Urbanized zones, River, and Weighted Cover Index (Supplement information 1). 

At the evaluated scale, a negative relationship was identified solely between the Weighted 

Cover Index and the dissimilarity of intestinal microbiota. Notably, this relationship proved to be 

the most parsimonious model for this response variable. Following this model, for intestinal 

microbiota dissimilarity, the subsequent model included the number of forest patches and the 

habit (terrestrial, arboreal). However, these models were significantly different from the first 

(Delta Dic > 2), and their relationships were not statistically significant (the probability interval 

included 0). Concerning protozoa dissimilarity, the most parsimonious model included pasture 

areas, followed by habit and the mean shape index. While these variables were not significantly 

different from each other, they also did not show a statistically significant relationship with this 

response variable (Table 20). 

Table 20. Regression models to assess the effect of some landscape metrics in the dissimilarity 

of gut microbiota and protozoa diversity between the wild and domestic mammals sampled. 

Model 
Alpha Beta Phi 

DIC 
Delta 
DIC Mean LIPI ULPI Mean LIPI ULPI Mean LIPI ULPI 

GM_WCI 1.54 1.19 1.87 -0.35 -0.69 -0.01 25.40 9.34 49.76 -20.77 0.00 

GM_FNP 1.51 1.12 1.89 -0.12 -0.48 0.29 18.25 6.77 35.60 -17.12 3.65 

GM_Habit 1.51 1.12 1.90 -0.09 -0.45 0.43 18.21 6.72 35.72 -17.07 3.70 

GM_FMSI 1.51 1.12 1.90 0.13 -0.25 0.53 18.17 6.71 35.52 -17.04 3.73 

GM_E 1.51 1.12 1.90 -0.08 -0.48 0.35 17.85 6.65 34.70 -16.89 3.88 

GM_Past 1.51 1.11 1.90 0.02 -0.37 0.42 17.50 6.51 34.06 -16.69 4.08 

GM_Riv 1.51 1.11 1.90 0.00 -0.43 0.41 17.52 6.53 34.01 -16.64 4.13 

GM_UA 1.52 1.12 1.91 0.02 -0.39 0.54 17.58 6.59 34.29 -16.62 4.15 
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P_PA 0.81 0.19 1.42 -0.54 -1.16 0.07 4.05 1.67 7.56 -2.13 0.00 

P_Habit 0.89 0.14 1.50 0.07 -0.73 1.01 3.14 1.34 5.79 -1.13 1.01 

P_FMSI 0.87 0.22 1.49 0.50 -0.18 1.22 3.80 1.58 7.10 -1.03 1.11 

P_WCI 0.86 0.20 1.50 -0.31 -1.03 0.42 3.44 1.45 6.40 0.07 2.21 

P_E 0.82 0.15 1.48 -0.21 -0.90 0.47 3.25 1.38 6.01 0.53 2.67 

P_R 0.81 0.13 1.47 0.15 -0.47 0.77 3.18 1.35 5.89 0.65 2.79 

P_UA 0.84 0.17 1.49 0.17 -0.52 0.94 3.20 1.36 5.92 0.72 2.85 

P_FNP 0.83 0.15 1.49 -0.12 -0.80 0.60 3.19 1.34 5.91 0.78 2.92 

GM: gut microbiota, P: Richness of gut protozoa, FNP: Forest number patches Past: Pastures 

area, FMSI: Forest mean shape index, WCI: weighted cover index, DisTr: Distance to track, Riv: 

length of river, UA: Urban areas, LLPI: Low limit probability interval, ULPI: Upper limit probability 

interval, DIC: Deviance information criteria, Δ DIC= delta DIC, difference between a model and 

most parsimonious model minor DIC. The red letter highlighted the significant regression and not 

statistically different models. 

 

4.4.4 Relationship between the local landscape features and the 
severity of human activities with the diversity of gut microbiota 
and protozoa, and mean abundance of the gastrointestinal 
protozoa in Alouatta seniculus. 

Regarding the diversity of intestinal microbiota, a significant relationship was observed in 29 out 

of the 33 evaluated regressions. The distance to roads negatively impacted richness at 50, 1600, 

3200, and 6400 hectares, consistently across all models that included this variable. Similarly, the 

mean shape index of forests negatively influenced richness at seven scales, except at 1600 

hectares where no significant relationship was found. On the other hand, the weighted cover index 

showed a positive effect on richness at 50, 800, 1600, and 6400 hectares, being negative at 200 

and 3200 hectares, with no significant relationship at 100 and 400 hectares. The length of rivers 

exhibited a variable impact, affecting richness negatively at some scales and positively at others. 

The inclusion of pasture areas from 400 hectares onward had a positive impact on richness, while 

the number of forest patches from 1600 meters also showed a positive relationship across all 

evaluated scales (Table 21). 
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Concerning the evenness in the diversity of intestinal microbiota, a significant relationship was 

found in 31 out of the 33 evaluated regressions. The distance to roads and the quantity of pastures 

consistently showed a negative relationship at all scales. The shape and coverage of forests, as 

well as the presence of forest patches, had both positive and negative impacts at different scales. 

Moreover, evenness showed a positive relationship with the mean shape index and the weighted 

cover index at several scales, being negative at 3200 hectares. Additionally, a positive 

relationship was found with the number of forest patches at 1600 and 3200 hectares, with no 

significant relationship at 6400 hectares (Table 21). 

Regarding gastrointestinal protozoa, richness was significantly related in 19 out of the 33 

evaluated regressions. The distance to roads negatively impacted richness at all scales, while the 

weighted cover index had a positive effect at several scales and no relationship at others. The 

distance to rivers showed a variable impact. The pasture area had a positive influence from 400 

hectares onward, while the number of forest patches from 1600 meters showed a positive 

relationship across all evaluated scales (Table 21). 

Concerning evenness in the diversity of gastrointestinal protozoa, a negative relationship was 

found with the mean shape index of forests at 100, 200, and 400 hectares, as well as the weighted 

cover index at 800 and 1600 hectares. In other words, the effects of the included explanatory 

variables were only detected in five out of the 33 evaluated regressions (Table 21). 

Regarding the mean abundances of Giardia intestinalis, a positive relationship was found with the 

weighted cover index at 50, 100, 200, 400, and 800 hectares. It also presented a positive 

relationship with the length of rivers at 50 hectares, while a negative relationship with the distance 

to roads at 100 hectares. At 3200 hectares, the mean shape index had a negative relationship 

with the relative abundance of Giardia intestinalis. Generally, the effects of the included 

explanatory variables were only detected in eight out of the 33 evaluated regressions. Concerning 

the relative abundance of Cryptosporidium parvum, no relationship was found in any of the 

evaluated regressions; in fact, some models did not run (Table 21). 

The explanatory variable with the most weight in the modeling was the Weighted Cover Index, 

appearing in 26 models, followed by Forest Mean Shape Index in 18, Distance to Track in 16, 

Pastures Area in 12, Length of River in 11, and finally, Forest Number Patches in 8 (Table 21). 
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Table 21. Significant regression models to assess the effect of some landscape metrics in the 

epidemiological response variables in Alouatta seniculus. The gray resalted models have a 

positive effect, blank with negative. 

Model Scale beta LIPI ULPI DIC Δ DIC 

GM_R_DisTr 

50 

-0.67 -0.72 -0.63 5602 0 

GM_R_FMSI -0.15 -0.17 -0.13 6360 758 

GM_R_WCI 0.04 0.02 0.05 6544 942 

GM_R_Riv -0.03 -0.04 -0.01 6553 951 

GM_IS_Riv -0.56 -0.65 -0.47 635.4 0 

GM_IS_FMSI 0.61 0.50 0.72 660.2 25 

GM_IS_WCI 0.41 0.33 0.49 689.4 54 

GM_IS_DisTr -0.64 -0.84 -0.45 749.7 114 

P_R_DisTr -0.56 -0.90 -0.25 174.8 0 

P_R_WCI 0.19 0.05 0.32 179.4 5 

P_R_Riv 0.17 0.03 0.30 181.4 7 

AbM_G_WCI 0.98 0.45 1.59 52.75 0 

AbM_G_Riv 0.52 0.05 1.02 62.26 10 

GM_R_DisTr 

100 

-0.66 -0.71 -0.61 5658 0 

GM_R_FMSI -0.17 -0.19 -0.15 6203 545 

GM_R_Riv -0.04 -0.06 -0.02 6402 744 

GM_IS_WCI 0.51 0.42 0.59 611.9 0 

GM_IS_DisTr -1.14 -1.41 -0.88 665.1 53 

GM_IS_Riv -0.47 -0.58 -0.36 670.4 59 

GM_IS_FMSI 0.41 0.29 0.54 707.9 96 

P_R_DisTr -0.56 -0.93 -0.21 169.2 0 

AbM_G_WCI 1.05 0.48 1.70 43.31 0 
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AbM_G_DisTr -1.90 -3.76 -0.33 51.85 9 

GM_R_FMSI 

200 

-0.21 -0.23 -0.19 5290 0 

GM_R_Riv -0.07 -0.10 -0.05 5573 283 

GM_R_WCI -0.03 -0.05 -0.01 5592 302 

GM_IS_WCI 0.58 0.49 0.67 556.3 0 

GM_IS_Riv 0.47 0.35 0.59 665.5 109 

GM_IS_FMSI 0.16 0.04 0.28 718.6 162 

P_R_WCI 0.14 0.01 0.27 158.5 0 

P_IS_FMSI -0.42 -0.72 -0.11 74.32 0 

AbM_G_WCI 0.96 0.44 1.52 41.98 0 

GM_R_Past 

400 

0.19 0.17 0.20 5507 0 

GM_R_FMSI -0.16 -0.18 -0.14 5606 99 

GM_R_Riv 0.10 0.08 0.13 5772 265 

GM_IS_WCI 0.60 0.52 0.68 507.7 0 

GM_IS_Riv 0.49 0.36 0.61 653.7 146 

GM_IS_Past -0.49 -0.65 -0.33 666.3 159 

GM_IS_FMSI 0.13 0.02 0.24 707.2 200 

P_R_Riv 0.24 0.05 0.43 155.4 0 

P_R_WCI 0.16 0.03 0.29 156.1 1 

P_R_Past 0.15 0.00 0.30 157.7 2 

P_IS_FMSI -0.35 -0.62 -0.07 68.9 0 

AbM_G_WCI 0.79 0.26 1.33 34.46 0 

GM_R_WCI 

800 

0.13 0.11 0.15 5409 0 

GM_R_Past 0.11 0.09 0.13 5491 82 

GM_R_FMSI -0.06 -0.09 -0.03 5584 175 
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GM_IS_Past -0.27 -0.44 -0.11 361 0 

GM_IS_FMSI 0.29 0.12 0.46 361.6 1 

P_R_WCI 0.27 0.14 0.41 142.9 0 

P_IS_WCI -0.41 -0.70 -0.12 62.79 0 

AbM_G_WCI 0.96 0.36 1.61 31.51 0 

GM_R_DisTr 

1600 

-0.77 -0.83 -0.72 3585 0 

GM_R_FNP 0.16 0.14 0.18 4182 597 

GM_R_WCI 0.09 0.07 0.11 4329 744 

GM_IS_Past -0.58 -0.80 -0.37 290.3 0 

GM_IS_DisTr -0.97 -1.34 -0.62 290.9 1 

GM_IS_FMSI 0.33 0.17 0.48 307.4 17 

GM_IS_FNP 0.22 0.09 0.35 312 22 

GM_IS_WCI -0.12 -0.25 0.00 320 30 

P_R_FNP 0.26 0.10 0.42 119.9 0 

P_R_DisTr -0.59 -1.02 -0.20 121.6 2 

P_R_WCI 0.20 0.07 0.33 121.8 2 

P_R_Past 0.19 0.00 0.37 126.2 6 

P_IS_WCI -0.53 -0.89 -0.19 51.15 0 

GM_R_DisTr 

3200 

-0.68 -0.74 -0.62 4286 0 

GM_R_FNP 0.25 0.23 0.27 4301 15 

GM_R_Past 0.11 0.08 0.14 4810 524 

GM_R_FMSI -0.07 -0.09 -0.05 4817 531 

GM_R_WCI -0.02 -0.04 0.00 4853 567 

GM_IS_Past -1.59 -1.83 -1.36 371.9 0 

GM_IS_WCI 0.54 0.47 0.61 392.4 21 

GM_IS_DisTr -1.71 -2.10 -1.35 489.3 117 
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GM_IS_FNP 0.42 0.32 0.51 529.8 158 

GM_IS_FMSI -0.14 -0.24 -0.04 596.9 225 

P_R_FNP 0.23 0.08 0.38 125.5 0 

P_R_DisTr -0.54 -0.98 -0.13 127.8 2 

P_R_Past 0.26 0.04 0.46 129 4 

AbM_G_FMSI -0.99 -2.09 -0.10 31.22 0 

GM_R_DisTr 

6400 

-0.93 -1.00 -0.86 1831 0 

GM_R_WCI 0.31 0.28 0.33 1967 136 

GM_R_FNP 0.26 0.23 0.28 2166 335 

GM_R_Past -0.10 -0.13 -0.07 2636 805 

GM_R_FMSI -0.06 -0.08 -0.04 2642 811 

GM_IS_DisTr -1.85 -2.38 -1.36 226.7 0 

GM_IS_Past -0.71 -0.95 -0.48 256.5 30 

GM_IS_FMSI 0.34 0.21 0.46 268.8 42 

GM_IS_WCI -0.26 -0.39 -0.12 283.3 57 

P_R_WCI 0.34 0.17 0.50 79.31 0 

P_R_DisTr -0.86 -1.37 -0.39 82.24 3 

P_R_FNP 0.22 0.05 0.38 88.81 10 

GM_R: Richness of gut microbiota, GM_IS: Evenness (Inverse Simpson`s index), P_R: Richness 

of gut protozoa, P_IS: Evenness (Inverse Simpson`s index) of gut protozoa, AbM_G: Mean 

abundance of Giardia intestinalis. FNP: Forest number patches, Past: Pastures area, FMSI: 

Forest mean shape index, WCI: weighted cover index, DisTr: Distance to track, Riv: length of 

river, LLPI: Low limit probability interval, ULPI: Upper limit probability interval, DIC: Deviance 

information criteria, Δ DIC= delta DIC, difference between a model and most parsimonious model 

minor DIC 
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4.5 Discussion 

Analyzing composition at the phylum level provides information about taxonomic richness and the 

stability of the microbiome, which is linked to resistance against environmental disturbances and 

pathogens (Rinninella et al., 2019). Different bacterial phyla are associated with specific metabolic 

functions, such as fiber fermentation and vitamin synthesis. Understanding the distribution of 

these phyla can help elucidate the metabolic and nutritional functions of the intestinal microbiome, 

crucial for understanding the relationship between diet, health, and disease (Rowland et al., 

2018). Investigating the phylum-level composition of the intestinal microbiome can offer insights 

into how certain microbial communities may modulate the host's immune response (Mazmanian 

& Lee, 2014). Changes in the microbiome composition at the phylum level have been 

demonstrated to be associated with various diseases, including gastrointestinal disorders, 

obesity, diabetes, and infectious diseases (Ottman et al., 2012). Analyzing these changes can 

provide important clues about the etiology and progression of diseases, as well as potential 

biomarkers for early detection (Vijay & Valdes, 2022). 

The main phyla found in the samples were Ascomycota, Pseudomonadota, Basidiomycota, and 

Apicomplexa. The predominance of the Ascomycota phylum has been discovered to play a crucial 

role in the intestinal health of non-human mammals. Recent research suggests that evolutionary 

adaptation between these microorganisms and their hosts has led to a beneficial symbiosis 

(Dworecka-Kaszak et al., 2016). Furthermore, it has been postulated that the predominant 

presence of Ascomycota could be associated with antagonistic properties toward potential 

pathogens, thereby strengthening the host's defenses (Limon et al., 2017). On the other hand, 

the abundance of Pseudomonadota highlights their crucial roles in intestinal homeostasis and 

might indicate an adaptive response to specific environmental conditions, such as exposure to 

pathogens or changes in the diet. Additionally, it has been suggested that certain members of 

Pseudomonadota may modulate the local immune response and actively participate in the 

degradation of complex compounds (Belvoncikova et al., 2022; Rizzetto et al., 2014). 

The predominant presence of the Basidiomycota phylum in the intestinal microbiota is unusual 

and uncommon. If such predominance is observed, it could result from specific conditions or 

imbalances in the intestinal environment, such as fungal infections, environmental or dietary 

changes favoring the growth of certain fungi over bacteria, or health conditions like inflammatory 

bowel disease or other gastrointestinal pathologies (Pang et al., 2021; Rizzetto et al., 2014). The 

dominance of the Apicomplexa phylum in the intestinal microbiota would also be atypical and 
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uncommon. Apicomplexa comprises a group of obligate intracellular parasitic protozoa. These 

organisms generally do not form part of the normal intestinal microbiota, which is mainly 

composed of bacteria, with the occasional presence of fungi and other microorganisms. The 

presence of Apicomplexa protozoa could be due to environmental contamination or ingestion of 

contaminated food or water containing these pathogens (Van Voorhis et al., 2021). The 

occurrence of these taxa at such frequencies demands specific studies where the context is 

thoroughly analyzed, and factors such as the methodology used, the studied population, and 

experimental conditions are considered to interpret these findings accurately. 

Nevertheless, considering the context of this research, focused on wildlife conservation and 

management, it is imperative to adopt a conservative approach regarding the presence and 

abundance of these organisms. This approach aims to minimize the risk of committing a Type II 

error concerning these hypotheses. In the realm of conservation, assuming a conservative stance 

ensures that potential ecological and microbiological contributions are not overlooked or 

underestimated. This cautious approach is essential for making informed decisions and 

implementing effective conservation strategies based on a comprehensive understanding of the 

intricate relationships between microbial communities and wildlife in their natural environments 

(Artois et al., 2009; Schurer et al., 2016). 

In this study, probably, several first-time records of protozoan species were documented in 

different hosts at both the species and, in some cases, genus levels. For A. seniculus, species 

such as Babesia bigemina, Babesia bovis, Babesia microti, Besnoitia besnoiti, Leishmania 

mexicana, Neospora caninum, and various Plasmodium species, including Plasmodium relictum 

and Plasmodium sp. gorilla clade G2, were identified. Additionally, Trypanosoma brucei was 

reported as a new finding for S. leucopus, along with the presence of Trichomonas vaginalis, 

Plasmodium coatneyi, P. relictum, P. falciparum, P. malariae, P. cynomolgi, P. vivax, P. chabaudi, 

Babesia microti, B. bigemina, B. bovis, Theileria orientalis, T. equi, Neospora caninum, and 

Toxoplasma gondii. For Aotus, new records were established for the genus, including Babesia 

bovis, B. microti, and Theileria (Rondón et al., 2021; Solórzano-García & Pérez-Ponce de León, 

2018). In T. ornatus, species such as Babesia microti, Besnoitia besnoiti, Plasmodium relictum, 

Theileria equi, and Theileria orientalis were identified. Additionally, Cryptosporidium parvum was 

reported just until genera, was determined until species (Roncancio in press Chapter 1). T. 

pinchaque reported Babesia microti and Toxoplasma as the first records for tapirs, highlighting 

that Theileria equi, previously documented in Tapirus terrestris, had not been recorded in T. 
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pinchaque before (Da Silveira et al., 2017). Lastly, in pumas, Babesia microti, Besnoitia besnoiti, 

Plasmodium relictum, Theileria equi, and Theileria orientalis were reported (Hatam-Nahavandi et 

al., 2021; Uribe et al., 2021, Li et al., 2020). Despite the limited sample size, the discovery of 

these findings reflects the broad information gap in this aspect for many species and their 

landscapes. This underscores the need for further research to enhance our understanding of 

protozoan diversity and distribution in various wildlife species and their ecosystems. 

However, many of these results need to be reviewed with more in-depth studies. The use of 

metabarcoding and the analytical approach of Kraken2 may introduce uncertainty in taxonomic 

determination (Lu et al., 2022; Wood et al., 2019). Several factors contribute to this uncertainty, 

including the taxonomic complexity of protozoa (Imam, 2011). Protozoa can exhibit high 

taxonomic diversity, with closely related species that can increase the difficulty of distinguishing 

between similar sequences and affect the accuracy of taxonomic assignment. The use of specific 

protozoan reference sequences can also impact accuracy if the database is not well-curated or 

representative of the diversity in the sample (Krogsgaard et al., 2018; Stensvold et al., 2021). 

Intraspecific genetic variability is another factor to consider, as protozoa may have significant 

intraspecific genetic variability, posing challenges to precise identification, especially if reference 

sequences do not fully capture this variability (Seabolt et al., 2021). The choice of metabarcoding 

marker is crucial, as some markers may be more specific for certain groups of protozoa, while 

others may have higher taxonomic resolution (Stensvold et al., 2021). The presence of immature 

forms or cysts in fecal samples can also affect the representation of obtained sequences and the 

accuracy of taxonomic determination. Given these complexities, caution should be exercised in 

interpreting metabarcoding results, and additional validation and complementary approaches are 

recommended to enhance the reliability of taxonomic assignments in protozoa studies. 

In this context, the almost constant presence of Plasmodium relictum is noteworthy. This 

protozoan is well-known for causing malaria in birds, and there have been no reports of 

Plasmodium relictum infecting mammals naturally. This protozoan is primarily transmitted through 

mosquitoes and has a specific relationship with birds Plasmodium relictum may be found in 

mammalian fecal samples as a result of ingesting infected birds. The presence of genetic material 

(DNA) or infective forms of the protozoa in mammalian feces could be attributed to the ingestion 

of birds carrying Plasmodium relictum. In the life cycle of these protozoa, birds are often the 

definitive hosts, and mosquitoes act as vectors for transmission between birds. However, some 

Plasmodium species can infect different types of hosts, and there is observed flexibility in their 



112 Effect of landscape structure on the diversity of microbiota and intestinal protozoa 

between wild and domestic mammals in some regions of Colombia 

 

 
host range, albeit generally with lower efficiency (Rondón et al., 2019). Detecting Plasmodium 

relictum in mammalian fecal samples may indicate the presence of the protozoa, but it is also 

essential to consider the possibility that genetic material or infective forms may originate from 

birds that have been consumed by these mammals. Confirmation of infection and a complete 

understanding of its life cycle typically require more detailed and specific analyses. Therefore, 

further investigations and specific studies are necessary to confirm the presence of Plasmodium 

relictum in mammals and to elucidate the dynamics of its transmission and potential impact on 

both avian and mammalian hosts (Nourani et al., 2020). 

The higher similarity in gut microbiota and intestinal protozoa between dogs and equines suggests 

a shared microbial community, possibly influenced by their domestication and shared living 

environments. The similarity in gut microbiota and intestinal protozoa of the puma with dogs and 

horses could be attributed to shared ecological niches, interactions, or dietary overlaps in wild or 

domestic settings, driven by common sources of exposure or transmission. The tapir exhibits a 

relatively high similarity in intestinal microbiota with bears, indicating a potential ecological 

connection or dietary overlap in their natural habitats (Guzmán et al. in prep). On the other hand, 

the domestic bovine shows a lower resemblance to other large mountain mammals in terms of 

gut microbiota. This implies significant differences in their microbial communities, possibly due to 

distinct diets or environments influenced by close human management, including prophylactic 

measures such as deworming. 

To the primates associated sampling, the cluster configuration could be due to the diet and 

interactions. Cattle, like equines, are herbivores that consume large amounts of fiber and 

vegetation. Red howler monkeys preferentially feed on fruits, but they are facultative folivores 

when fruit is scarce. In these fragmented landscapes, monkeys may be forced to consume more 

leaves than fruits, and to that extent, their diet would be more like that of domestic herbivores 

(Giraldo et al., 2007; Palma et al., 2011). The adaptation to an herbivorous diet can lead to a 

similar microbial composition. On the other hand, given that, in the sampled areas, red howler 

monkeys cohabitate with cattle and equines, it is possible that they share environments and, 

therefore, are exposed to similar sources of microorganisms and protozoa present in the 

environment and cross-contamination. On the other hand, the similarity between nocturnal 

monkeys and Saguinus may be explained by their similarities in diet; both are consumers of soft 

fruits, invertebrates, and small vertebrates (Bustamante-Manrique et al., 2021; Montilla et al., 
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2021; Roncancio Duque et al., 2012). However, it is necessary to consider that the sample size 

may generate bias in the result. 

The negative relationship between the weighted class index and the dissimilarity of the gut 

microbiota between domestic and wild animals, its mean, also more natural plant covers more 

similarity, can be explained by the complex interaction among the environment, diet, and animal 

microbiota (Qin et al., 2020). Areas with lower natural vegetation cover, typically associated with 

more urbanized or human-altered environments, tend to favor the presence of domestic animals 

and reduce the diversity of wild species (Fehlmann et al., 2020). This shift in animal assemblages 

can directly impact the gut microbiota of the animals inhabiting those areas. The diet of domestic 

animals, influenced by food availability in more human-modified environments, tends to be more 

uniform compared to that of wild animals, which rely on a variety of natural resources (Roncancio 

et al Chapter 3). Dietary variability is directly related to microbial diversity in the intestinal tract 

(Leeming et al., 2019). 

Furthermore, the loss of natural vegetation cover can lead to increased exposure of domestic 

animals to pathogens and antimicrobial agents present in anthropogenic environments (Jin et al., 

2017). This constant exposure can influence the selection and composition of the intestinal 

microbiota, resulting in greater similarity among the microbiota of domestic animals and lower 

diversity compared to the microbiota of wild animals (Blum et al., 2019; Parajuli et al., 2020; 

Phillips et al., 2018). In summary, landscape alteration due to the loss of natural vegetation cover 

leads to changes in animal assemblage composition, associated diets, and exposure to 

pathogens. These factors contribute to the observed negative relationship in the dissimilarity of 

the intestinal microbiota between domestic and wild animals in specific environments (Biek & 

Real, 2010; Williams et al., 2021). 

The negative relationship between distance to roads and the irregularity of forest fragments with 

intestinal microbiota richness and overall protozoa diversity could be explained by the fact that 

shorter distances to roads might provide red howler monkeys with easier access to a variety of 

food sources. Additionally, more irregular forest shapes could be associated with greater plant 

and food resource diversity. Forest irregularity may promote increased mobility and heterogeneity 

in microenvironments within the habitat, leading to greater exposure to different microorganisms 

(Solórzano-García et al., 2023). Similarly, proximity to roads and forest shape irregularity might 

encourage interaction with other animal species and microorganisms present in the environment 

(Klain et al., 2023). 
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Regarding the decrease in intestinal microbiota diversity with distance from water bodies, this 

could be explained by the fact that proximity to rivers is often associated with a greater variety of 

microenvironments, such as riparian zones and gallery forests, affecting habitat mobility and 

connectivity for red howler monkeys Henriquez. Reduced connectivity could limit individual 

dispersal and, consequently, genetic mixing and microorganism transfer between populations 

(Bonte et al., 2012). Additionally, a reduction in interaction with aquatic environments, where 

specific water-related microorganisms may be encountered, could contribute to decreased 

microbiota diversity (Solórzano-García et al., 2023). 

The positive effect of the weighted index of coverages, including more natural vegetation such as 

forests, and the number of forest patches on the diversity of microbiota and intestinal protozoa in 

red howler monkeys may be attributed to these coverages providing a wide variety of plants, fruits, 

and insects, offering a more diverse diet to the primates (Giraldo et al., 2007; McKenzie et al., 

2017; Palma et al., 2011).  Forests, especially those in good conservation status, tend to be 

heterogeneous environments with diverse microhabitats, such as canopy areas, clearings, and 

riverbanks (Solórzano-García et al., 2023). Habitat heterogeneity enables red howler monkeys to 

access different ecological niches and promotes positive interactions with other species, including 

birds, mammals, and microorganisms. 

Well-preserved forests provide a more natural and less disturbed environment, reducing 

environmental stress and facilitating habitat connectivity. This allows red howler monkeys greater 

mobility and access to different areas (Martínez-Mota et al., 2018). The increase in natural 

vegetation coverages can enhance the diversity of the red howler monkey's intestinal microbiota 

by providing a more varied diet, a more complex and less disturbed habitat, as well as increased 

connectivity with various environments and resources (Kowalewski et al., 2015; Palma et al., 

2011). Conversely, increasing the number of grasslands decreases diversity through inverse 

mechanisms. 

Regarding the relative abundance of G. intestinalis and C. parvum, the results are inconclusive, 

and it is necessary to increase the sample size. In these types of organisms and variables, many 

zero values are common, making it challenging to obtain robust models (Solórzano-García et al., 

2017). 

Even though infectious diseases are not considered an important global threat to wildlife viability 

(Smith et al., 2006), it is a common factor in population reduction (temporal or permanent) on a 

local scale, particularly to threatened, isolated, or low populations (García Marín et al., 2018; 
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Ujvari & Belov, 2011). On the other hand, the mega biodiversity in Colombia introduces an 

additional epidemiological risk factor: there are several wildlife and domestic species that could 

play a role such as susceptible hosts and reservoirs to a few infectious agents when the 

ecosystem dynamics have been altered (Mackenstedt et al., 2015; Monsalve-Buriticá, 2019).  

Additionally, its current increased interactions probably make this mammal an important vector or 

intermediate host to several zoonotic pathogens (Baruch-Mordo et al., 2014; Bronson et al., 2014; 

Dubey & Jones, 2008). The impact on wildlife mammals of infectious disease can act 

synergistically with other threats like isolation and low population size, reducing even further their 

numbers and increasing their vulnerability to habitat reduction and degradation, dietary stress, 

hunting, and pathogens (Ishibashi et al., 2017; Schwab et al., 2011). The interaction between 

wildlife and domestic life cycles plays an important role in the transmission of different infectious 

agents. 

In conclusion, we found a negative relationship between the Weighted Cover Index, its mean, the 

quality of the structure, and the composition of the natural plant cover with the dissimilarity of gut 

microbiota between domestic and wildlife mammals. Therefore, when the natural plan cover is 

more mature or less transformed the similarity of gut microbiota is major between both hosts. 

Additionally, we found generally a positive effect of the weighted index of coverages, including 

more natural vegetation such as forests, and the number of forest patches on the diversity of 

microbiota and intestinal protozoa in red howler monkeys that may be attributed to these 

coverages providing a wide variety of plants, fruits, and insects, offering a more diverse diet to 

the primates. 
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Synthesis 

The risk to wildlife species is influenced by environmental, climatic, and behavioral factors. 

Changes in ecosystems, increased urbanization, and interaction with domestic animals may 

elevate wildlife exposure to these parasites. Furthermore, immunosuppression due to factors 

such as stress, malnutrition, or disease can increase individual susceptibility. Generally, livestock 

is not sustainable socially, economically, and environmentally (Molina-B, 2019). In this sense, 

based on the protozoa found in livestock that could be or have been detected in wildlife mammals, 

cattle become an important zoonotic reservoir (Buret et al., 2019; Echeverría et al., 2019; Ryan 

et al., 2016). The positive relationship observed between the forest area and number of the forest 

parches in focal landscapes and the richness of intestinal microbiota and gastrointestinal protozoa 

in bovine and equine livestock can be attributed to various ecological mechanisms. Native forests 

have a more diverse community including the level of microorganisms and prebiotics that favor 

their proliferation and development (Blum et al., 2019). Higher biodiversity in native forests may 

dilute the prevalence of specific pathogenic protozoa. A more diverse ecosystem could reduce 

the concentration of parasites that specifically target livestock, leading to a lower risk of infection 

(Williams et al., 2021). This complexity may stimulate a more diverse microbial community in the 

intestines of livestock, promoting overall gut health and resilience to gastrointestinal parasites 

(Berrilli et al., 2012; Stensvold & van der Giezen, 2018). 

The diversity of gut microbiota among wild and domestic species in the central Andes revealed 

greater similarity between domestic canines and equines. Closest to these, the puma exhibited a 

19% similarity in intestinal microbiota with dogs and a 29% similarity with horses and mules. T. 

pinchaque primarily shared its intestinal microbiota with bears at a 29% similarity. The most 

distant organism in this landscape, in terms of intestinal microbiota, was the domestic bovine, with 

a maximum similarity of only 13% with the puma. Regarding protozoa, a similar pattern emerged, 

with a 78% similarity between domestic canines and equines, while similarities decreased among 

other species. About the primate-associated sampling, the highest similarity, both in intestinal 

microbiota and protozoa, was observed between domestic equines and bovines, with a greater 
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resemblance in protozoa compared to the overall microbiota. Conversely, equines and bovines 

exhibited greater similarities with the red howler monkey than with other primates. In this regard, 

the howler monkey tends to cluster more closely with bovines than with other species, both in 

terms of microbiota and protozoa. The two nocturnal monkeys are proximate to each other in 

terms of microbiota. S. leucopus appears to be the species furthest away, both in terms of 

intestinal microbiota and protozoa. 

A negative relationship was identified in the Weighted Cover Index over soon the dissimilarity of 

intestinal microbiota between wildlife and domestic mammals. Equally, in a multiscale analysis 

from 50 to 64000 ha done to Alouatta seniculus (Red howler monkey) the Weighted Cover Index 

that reflects the structure and composition of the plant cover in each focal landscape was the 

variable with the most weight in the modeling.  In this study, probably, several first-time records 

of protozoan species were documented in different hosts at both the species and, in some cases, 

genus levels. Despite the limited sample size, the discovery of these findings reflects the broad 

information gap in this aspect for many species and their landscapes (Da Silveira et al., 2017; 

Rondón et al., 2021; Solórzano-García & Pérez-Ponce de León, 2018; Uribe et al., 2021). This 

underscores the need for further research to enhance our understanding of protozoan diversity 

and distribution in various wildlife species and their ecosystems. However, many of these results 

need to be reviewed with more in-depth studies. The use of metabarcoding and the analytical 

approach of Kraken2 may introduce uncertainty in taxonomic determination (Lu et al., 2022; Wood 

et al., 2019). 

In summary, in this study, we found that landscape alteration due to the loss of natural vegetation 

cover leads to changes in animal assemblage composition, associated diets, and exposure to 

pathogens. These factors contribute to the observed negative relationship in the dissimilarity of 

the intestinal microbiota between domestic and wild animals in specific environments (Biek & 

Real, 2010; Williams et al., 2021). The positive effect of the weighted index of coverages, including 

more natural vegetation such as forests, and the number of forest patches on the diversity of 

microbiota and intestinal protozoa in red howler monkeys may be attributed to these coverages 

providing a wide variety of plants, fruits, and insects, offering a more diverse diet to the primates 

(Giraldo et al., 2007; McKenzie et al., 2017; Palma et al., 2011). Regarding the relative abundance 

of G. intestinalis and C. parvum, the results are inconclusive, and it is necessary to increase the 

sample size. In these types of organisms and variables, many zero values are common, making 

it challenging to obtain robust models (Solórzano-García et al., 2017). The impact on wildlife 

mammals of infectious disease can act synergistically with other threats like isolation and low 
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population size, reducing even further their numbers and increasing their vulnerability to habitat 

reduction and degradation, dietary stress, hunting, and pathogens (Ishibashi et al., 2017; Schwab 

et al., 2011). The interaction between wildlife and domestic life cycles plays an important role in 

the transmission of different infectious agents. 

These explanations are based on general ecological principles, and the specific relationships may 

vary based on the characteristics of the landscape, climate, and management practices. 

Continued research, including longitudinal studies and molecular analyses, is essential to unravel 

the intricate dynamics between landscape features, microbial diversity, and gastrointestinal 

protozoa abundance in livestock. However, to improve the sustainability standards in the 

environmental, economic, and social dimensions based on the animal health component, the 

livestock landscape configuration in Colombia must be changed from a matrix of grassland with 

forest patches to a matrix of native forest with grassland patches. 
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