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Abstract

Video in-loop restoration methods have traction much attention across the standardization

groups for future video codecs AV2 1 and VVC 2. Primarily, because of potential benefits to

compensate the artifacts generated during super-resolution scenarios and the effect of quan-

tization process. Thus, new sophisticated learned-based algorithms have been proposed, in

recent years, surpassing the classical switchable filter implementation in objective quality

rate. However, CNN-based approaches requirements on computational cost and decoder

complexity are still challenging.

Therefore, we propose a low-complex learned-based method that leverages the solid and

consistent sparse representation theory to exploit the spatial redundancy of frames. Our

approach models the decoding residual, the distance between each reference and the respec-

tive decoded frame. Furthermore, the proposed methods shrink the support of the sparse

vector to two in order to control the restoration signal information. In addition, our method

uses the Discrete Cosine Transform (DCT) orthogonal basis as a dictionary to exploit the

statistical correlation between nonzero coefficients and the quantization level. Finally, we

leverage the official and public available AV2 raw video dataset to compare our performance

against the anchor AV2 codec through three objective visual quality metrics. The validation

protocol includes benchmark data sets for the anchor and the restoration-enabled configu-

rations. Our experimental results show a consistent restoration using sparse representation

as well as an effective mechanism for sharing nonzero coefficients leveraging a Gaussian cor-

relation. The experimental evaluation showed that our method has a 1%-2% gain regarding

AV2, using SSIM and VMAF under similar bitrate conditions.

Key Words: AV2, HEVC, VVC, QP, PCA, Sparse, Dictionary, PSNR.

1https://aomedia.org/
2Versatile Video Coding https://jvet.hhi.fraunhofer.de/
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T́ıtulo: Método para la restauración de video en el bucle del proceso de compresión

Resumen:

Los métodos de restauración de v́ıdeo en bucle han venido incrementando el intereste por

parte los grupos de estandarización para los futuros códecs de v́ıdeo AV2 y VVC. Esto prin-

cipalmente debido a a los beneficios potenciales para compensar efectos no deseados en el

video producidos durante los procesos de super-resolución y cuantización. Aśı, en los últimos

años se han propuesto nuevos y sofisticados algoritmos basados en aprendizaje, que superan

a la clásica implementación de filtros conmutables en cuanto a tasa de calidad objetiva. Sin

embargo, los requisitos de los enfoques basados en CNN en cuanto a coste computacional y

complejidad del descodificador siguen siendo un desafio. Por ello, proponemos un método

de baja complejidad basado en aprendizaje, que aprovecha la sólida y consistente teoŕıa

de la representación dispersa para explotar la redundancia espacial de los fotogramas que

componen un video. Nuestro enfoque modela el residuo de descodificación, la distancia en-

tre cada referencia y el respectivo fotograma descodificado. Además, el método propuesto

reduce el soporte del vector disperso a dos para controlar la información de la señal de

restauración. Por otra parte, nuestro método utiliza la base ortogonal de la transformada

discreta de coseno (DCT) como diccionario para explotar la correlación estad́ıstica entre

los coeficientes distintos de cero y el nivel de cuantificación. Por último, aprovechamos el

conjunto de datos de v́ıdeo de AV2, oficial y público, para comparar nuestro rendimiento con

el códec AV2 de referencia, mediante tres métricas objetivas de calidad visual.El protocolo

de validación incluye conjuntos de datos de referencia para las funciones de anclaje y restau-

ración. Nuestros resultados experimentales muestran una restauración coherente utilizando

una representación dispersa aśı como un mecanismo eficaz para compartir coeficientes dis-

tintos de cero aprovechando una correlación gaussiana. La evaluación experimental mostró

que nuestro método tiene una ganancia del 1%-2% con respecto a AV2, utilizando SSIM y

VMAF en condiciones de bitrate similares.

Palabras claves: AV2, HEVC, VVC, QP, PCA, Sparse, Dictionary, PSNR.
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1 Introduction

This thesis focuses on the in-loop restoration techniques, particularly on reducing complexity

and increasing the objective video quality (PSNR, VMAF 1, and SSIM [46]) while maintain-

ing the bit rate. Most of the work described herein was done with the collaboration of

Elemental Amazon Web Services (AWS), who provides expert guidance and infrastructure

to perform extensive testing on the reference video codec AV2. Therefore, the research’s

target is to design an in-loop restoration method for AV2 open source codec. This chap-

ter provides the motivation for working on in-loop restoration, the research problem and

the aims guided this research. Then, I summarize the main contribution and discuss the

organization of the thesis.

1.1 In-loop restoration

In-loop video restoration is a topic that has gained the attention of the leading video codec

standardization groups. It is because frame denoising and deblurring significantly impact

visual quality and compression efficiency, which are the main topics of AV2 and VVC. Nev-

ertheless, the strategy to tackle restoration problems could be more precise, especially under

computational complexity restriction and objective quality metrics, the last because PSNR

is not the more human perception correlated metric. As expected, the convolutional network

has landed to demonstrate its efficiency in image processing tasks. Outstanding examples

are the filters introduced by Ding et al. [9] and Kong et al. [28]. Both approaches leverage

learning of distorted and clean images, assisted by the quantization compression level, to

obtain superior restoration performance in terms of PSNR BD-rate against classical algo-

rithms. However, it has tremendous implementation complexity, especially on the decoder

side(∼ 30 × x). On the other hand, well-known filters, such as the separable Wiener [43]

and sample adaptive filter (SAO) [8], report significant efficiency improvements (3% BD-

Rate [41] gain) despite the processing time due to the number of recursive operations at the

1https://github.com/Netflix/vmaf
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restoration unit basis.

That said, three main challenges for in-loop restoration are identified: 1) Increasing (BD-

Rate) by relying on more human-visual correlated quality metrics, such as VMAF. 2) Holding

reasonable complexity (<10x) compared with the anchor video codec, and 3) Maintaining a

low bitrate for restoration signal information.

1.2 Problem statement

Consequently, this research focuses on the three main in-loop restoration problem: 1) In-

creasing objective visual quality (SSIM, PSNR, VMAF) against the anchor AV2 codec, 2)

Maintaining a proper restoration signaling bitrate, and 3) Reducing the complexity in both,

the encoder and decoder, sides.

1.3 Aims

Propose a video compression in-loop restoration method, using sparse learned-based tech-

niques, that increases objective visual quality while maintains a reasonable efficiency and

complexity.

The proposed method requires to:

• Build a videos data-set for evaluating video compression in-loop restoration approaches

that guarantees properly standards.

• Deploy an in-loop restoration method for AV2 video compression codec.

• Design an assessment protocol for evaluating the in-loop restoration method against

anchor AV2.

1.4 Thesis contributions

The main contributions of this research are:

• A video compression in-loop restoration method that increases objective visual quality

while maintaining reasonable efficiency and complexity. The method relies on the
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sparse representation of the decoding residual (DR) and the prediction of the nonzero

sparse coefficients through a Gaussian estimators adjusted accordingly to the selected

QP. These reduces the restoration signaling bitrate between the encoder and decoder.

• A video data set for evaluating video compression in-loop restoration approach using

three configurations: 1) Restoration-disable, 2) Restoration-enable, and 3) Sparse-

restoration enable. All three configurations are processed using six QP levels and

generating PSNR, VMAF, and SSIM as objective video quality performance metrics.

• An in-loop restoration prototype integrated to AV2 reference video compression codec

and public accessible 2.

• An assessment protocol for evaluating in-loop restoration methods based on sparse

representation and coefficients estimation. The protocol follows the common standard

conditions defined by AOMedia.

1.5 Thesis organization

The thesis is structure as follows: we present in chapter 2 the current methods for in-loop

restoration in the most recent AOM Video codec standard (AV1), which is the reference

for developing the future video codec (AV2). This chapter illustrates the transform and

quantization blocks beside the algorithms that compound the switchable restoration filter.

Next, we describe in chapter 3 the basis of the sparse representation theory with particu-

lar attention to techniques for defining and learning the dictionary considering the problem

addressed in this thesis. Following in chapter 4, we present a theoretical analysis and pro-

pose a framework for an in-loop restoration method leveraged by three main contributions:

1) Sparse decoded residual, 2) Sparse coefficients estimator and 3) Sparse position estima-

tor. All contributions are QP-awareness and design to add a reasonable signal information

and complexity. Next, we define our experimental and validation methodology in chapter

5 where the performance of the proposed method is contrast against the anchor AV2 and

two CNN-based restoration strategies. Finally, in chapter 6, we present the conclusions and

future works.

2https://github.com/casalazarh/sparse-in-loop-restoration
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Figure 1-1: Thesis organization.



2 AOMedia In-loop restoration tools

The Alliance for Open Media (AOMedia) is a collaboration between leading tech companies

aiming to make video compression standards royalty-free and widely adopted. Companies

such as Amazon, Netflix, Google, and Apple belong to AOMedia. In 2018 the alliance

officially released the AV1 video codec. Since then, the global media industry has embraced

it while addressing the challenge of hardware support on various end-user devices, including

phones, tablets, and Smart-TV. In the last two years, the addition of chips supporting AV1

has grown exponentially, accelerating its adoption (28 % YoY), as depicted in figure 2-1.

It starts establishing a potential ecosystem to ensure the success of adopting the coming

AV2 codec. Therefore academics and industry are actively working on new approaches to

enhance the baseline video codec (AV2), illustrated in figure 2-2, at the distinct functional

blocks while maintaining a reasonable compatibility and complexity.

H.264/AVC H.265/HEVC H.266/VVC VP8 AV1

20

40

60

80

+28% YoY

A
d
op

ti
on

(%
)

2022 Plan for 2023

Figure 2-1: Video codec adoption in 2022 and plan for 2023 (source : Bitmovin 2022 report).

We leave the general video architecture out of the scope of the chapter and encourage read-
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ers to obtain further details in [21]. Instead, we concentrate on explaining the details of

the transform and quantization of blocks followed by the post-processing stage, including

deblocking, constrained directional enhancement, and in-loop filters. Those topics provide

enough background for the discussion in Chapter 4 where our framework is presented.

Figure 2-2: General AOMedia Reference Video Codec Architecture.

2.1 Transform & Quantization

Expanding a signal into another space, such as the frequency domain, permits eliminating

redundant information. For instance, in images case, the frequency domain allows us to

separate DC and AC components to eventually truncate lower frequency that does not

impact the visual human perception. AV1 extends the definition of transformation operator

–of its predecessor VP9 [34]– in 1) the size of blocks become dynamic and 2) the size of

transform kernels from 2 to 4. As following, a description of those transformation.
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2.1.1 Transform Block Size

AV1 supports square block sizes from 4 × 4to a max of 64 × 64, and includes rectangular

sizes N × N/2, N/2 × N , N × N/4, and N/4 × N . AV1 improved the transform coding

efficiency by capturing localized stationary regions for all inter-coded blocks throughout the

recursive transform block. The initial transform block size is the same as the coding block

size, unless it is more significant than 64 × 64. In that case, the block size will be 64 × 64.

The recursive transform can go up to 2 levels for the luma component. For the intra-coded

block, AV1 inherits the uniform transform block size approach. Therefore, the maximum

transform block size matches the inter-coding block size and can go up to 2 levels down

for the luma component. The chroma components tend to have much less variation in the

statistics. For this reason, the transform block is set to use the most extensive available size.

Figure 2-3: Transform block partition for Inter and Intra mode.
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2.1.2 Transform Kernels

AV1 takes the exact definition of the VP9 Kernels; the difference is that it allows each

transform block to apply its transform kernel independently. It also combines two extra 2-D

separable transform kernels to give a total of four 1-D kernels: DCT [2], ADST [22], flipped

ADST (FLIPADST), and identity transform (IDTX), that four 1-D combinations that re-

sult in 16 2-D transform kernels. The criteria for selecting the kernels rely on statistics and

accommodate various boundary conditions. Each kernel has intrinsic advantages; i.e., DCT

approximates the optimal linear transform, ADST and FLIPADST are naturally suitable for

coding some intra-prediction residuals, and IDTX fits better in cases where sharp transitions

are contained in a block, and neither DCT nor ADST is effective. Furthermore, the IDTX,

combined with other 1-D transforms, provides the 1-D transforms themselves, therefore al-

lowing for better compression of horizontal and vertical patterns in the residual. The inverse

transform is well known for its computational cost. However, a notable reduction is achieved

using a butterfly structure for multiplication operations over simple matrix multiplication.

Furthermore, due to its efficiency with large transform block sizes, it is used for a block size

of 8 × 8 and above. When trying to adjust those boundary conditions, when those are less

pronounced, all the sinusoidal transforms largely converge for large transform block sizes.

That is why DCT and IDTX are used for blocks with dimensions bigger or equal to 32× 32.

2.1.3 Quantization

Once the coefficients of a specific transform are obtained, they are quantized into discrete

steps which depend on the selected QP parameter and vary from 0 to 255, where zero

represents loss mode. The quantization block relies on two main concepts:

• Quantization Step size: this leverage the human-visual system tolerance to fre-

quency distortion. AV1 supports 15 sets of pre-defined quantization weighting matri-

ces, where the quantization step size for each frequency component is further scaled

differently.

• Quantization Parameter Modulation: AV1 defines a hierarchical mechanism to

represent the coefficient for both AC and DC. Its starts with QPbase assigned at the

frame level. Next, an offset value is sent throughout the header (∆QP (p, b)), as-

sociating the color planes. p ∈ Y, U, V denotes the plane and b ∈ DC,AC rep-

resents the DC/AC transform coefficients. AV1 permits QP offset headers at the
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superblock and coding block levels to compensate for some frames’ rate distortion.

Therefore, the effective QP for AC coefficients in a coding block, QPcb, is given by

QPcb = clip(QPframe+∆QPsb +∆QPseg, 1, 255), where ∆QPsb and ∆QPseg are the

QP offsets from the superblock and the segment, respectively. The clip function en-

sures it stays within a valid range. The QP cannot change from a nonzero value to

zero since zero is reserved for lossless coding (Table 2-1).

AC DC

Y QPbase QPbase +∆QPY,DC

U QPbase +∆QPU,AC QPbase +∆QPU,DC

V QPbase +∆QPV,AC QPbase +∆QPV,DC

Table 2-1: Hierarchical QP mechanism.

2.2 Post-processing filters

The reference codec AV1 supports three post-processing filters that are enabled indepen-

dently. The post-processing stage starts with the blocks resulting from the addition between

the prediction and the residual. Then, the blocks are ready to fill in the Inter-prediction

buffer and pass to the display picture module. Before that, the post-processing filter might

be applied with two main objectives: 1) Improve the Inter-prediction due to the most accu-

rate reconstruction frame in the buffer and reduce overall bitrate. 2) Increase visual output

quality. That is a typical case for super-resolution, where before post-processing filters, there

is an upscaling operation that naturally truncates image details. Figure 2-4 presents the

high-level workflow of the post-processing stage. Each filter is also further detailed next.

2.2.1 Deblocking filter

During the encoding process, a residual frame, between a reference and a predicted frames,

is split into transform blocks of different sizes: 4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64. Each

block is computed using the discrete cosine transform (DCT), or the asymmetric discrete

sine transform (ADST) to eliminate spatial correlation. Then, the resulting coefficients are

quantized into N levels determined by the QP parameter. The signal information regarding

quantization is entropy coded and sent to the decoder. The decoder performs the inverse
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Figure 2-4: Post-processing filters.

process (transform and quantization) and recovers the residual, which is finally added to the

prediction to form the decoded block. However, the process mentioned above is not always

lossless (QP=0). Thus, boundary artifacts between transform blocks may appear (figure

2-5). Also, the deblocking filter tool is implemented to mitigate boundary artifacts.

The deblocking algorithms use vertical and horizontal FIR low-pass filters with 4, 8, or 14

taps for the luma component and 4 or 6 for chroma. The size of the FIR filters relies on

the minimum transform size between the blocks sharing the boundary. For example, figure

2-6 shows a case where the dimension of B-block determines the size of the filter. To avoid

wrongly blurring natural edges, the deblocking tools implement a series of thresholds to de-

termine if the filter is applied or not. The conditions are: 1) | p1−p0 |> T0; 2) | q1−q0 |> T0;

3) 2∗ | p0 − q0 | + |p1−q1|
2

> T1; 4) | p31 − p2 |> T0, and 5) | q31 − q2 |> T0. The last two (4,5)
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Figure 2-5: Boundaries artifacts cause by quantization.

are used only for filter taps 8 and 14. Figure 2-7 illustrates the position of the pixels qx and

px.

Figure 2-6: Boundary blocks to determine the size of the deblocking filter.

Figure 2-7: Boundary pixels involved in the deblocking filter.

2.2.2 Constrained Directional Enhancement Filter (CDEF)

CDEF [44] is designed to remove ringing artifacts (depicted in figure 2-8) around hard edges.

It is achieved by applying two filters (45◦ off ) to each pixel. The selection of the proper
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filter is performed based on the minimization of the equation (2-1).

E2
d =

∑
k

∑
p∈Pd,k

(xp − µd,k)
2, (2-1)

Where P are the pixels in the selected direction, as shown in figure 2-9, and µ is the mean

of the group P .

Figure 2-8: Ringing artifact [29].

Figure 2-9: CDEF filters in 8 directions.
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2.2.3 In-loop restoration filters

In-loop restoration filters are applied to loop restoration units (LRU) that can be 64 × 64,

128×128, or 256×256 pixel blocks. Each LRU can independently select one of three possible

restoration options: 1) Wiener filter, 2) Self-guided filter [50], 3) Bypass filtering.

Self-Guided Filter

Self-Guided Filter relies on calculating two possible restored versions (X1 and X2) of the

decoded block X. Then, it projects the mismatch between each version and the reference to

obtain a unified restored patch (Xr), described in equation (2-2).

Xr = X + α(X1 −X) + β(X2 −X) (2-2)

Before that, X is denoised using the equation (2-3) at the pixel basis with two pairs of

parameters sent from the encoder (r1, e1), (r2, e2). Finally, X1 and X2 are computed using α

and β. The self-guided filter requires four parameters to be exchanged from the encoder:

x̂ =
σ2

σ2 + e
x+

e

σ2 + e
µ (2-3)

Where x̂ is the denoised pixel, µ is the mean of the block determined by r, and e is the

standard deviation of the same block.

Wiener Filter

Wiener theory [47] is a well-known restoration technique widely applied to 1-D time series

systems since 1949. It uses the concept of the minimum mean square error (MMSE) to

predict a signal s(t), after being corrupted by a noise w(t). Both signals are considered

wide-sense stationary processes. Wiener initially presented two versions: causal and non-

causal filters. The last case was not physically realizable for time series because it considers

past, present, and future samples.

Wiener’s theory started getting relevant but had not been applied to 2-D scenarios (image

filtering, prediction, and smoothing). It was only in 1982 when Ekstrom [18] presented a

physically realizable 2-D version of the original Wiener filter and demonstrated that it could

also be extended to multi-dimensions. Ekstrom formulated the optimal error calculation to

find the best parameters that define the filter configuration as described in equation (2-4):
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H(z) =
Syx(z)

Sxx(z)
, (2-4)

Where Sxy is the spectral energy of the correlation between X (reference) and Y (distorted)

images. Similarly, Sxx is the spectral energy of the autocorrelation of X. The feasibility of

applying Wiener on images gets relevant in video restoration problems, because it aims to

find the kernel that linearly relates the original images and its distorted version. In others

words, it allows the encoder to determine the kernel coefficients that the decoder can use

to restore each block. This approach leads the implementation of Wiener in both AV1 and

HEVC, and it is still part of the AV2. The first version implemented in AV1, presented

outstanding compression efficiency, but complexity and signal information were desirable for

improvement. Therefore, considering symmetricity, Siekmann et al. [43] proposed a separa-

ble filter that achieves a reduction of 33.33% and 50% in sum and multiplication operations

for a 3 × 3 block. In addition, it was observed that for 9 × 9 block size, the efficiency is

77.77% and 80% for sum and multiplications, respectively.

Besides the operation performance, the signaling information is also drastically reduced. For

example, a 9×9 block using a non-separable filter requires 81 coefficients. For a non-separable

symmetric, it requires 41 coefficients; and for the case of separable-symmetric filters, it

requires only 18 coefficients. In other words, it represents 78% less signaling information to

send to the encoder. It was also noted that the non-separable and separable filter maintains

a similar performance in terms of bit saving. The separable version is, in fact, the official

implementation of the Wiener filter in the AV1 reference code. However, the processing

time and complexity are still factors to improve in future approaches. Table 2-2 presents

performance results of Wiener Filter vs Passthrough mode using AV1, over ten frames (1920×
1080).

ON OFF Performance ON vs OFF

Average speed (fps) 22 15 −32%

Total encoding time (ms) 27951 40856 +46%

Table 2-2: Wiener Filter vs Passthrough mode in AV1.
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2.3 Deep-learning restoration

In-loop restoration could be classified as part of the non-blind image processing task. How-

ever, in the context of video compression this problem is even more particular. The esti-

mation of the blurring kernel is not part of the essential objectives, since the distorted and

reference frames are always known on the encoder side. In this case, the approaches to

tackle this problem from the perspective of deep-learning architectures become more limited

and point to video coding applications in most cases. At first, Jia et al. [25] proposed a

content-aware CNN-based (CAC) strategy compound by a block-based model selection and

restoration modules incorporated in the HEVC reference code. The first component im-

plements a discriminative network to select the most appropriate CNN [35] per each CTU

(Coding tree Unit). The network structure is depicted in figure 2-10.

Figure 2-10: CNN discriminative net architecture [25].

The selection of which CNN is used, relies on the previous labeling of the training content,

where several categories are considered. Therefore, the discriminative network chooses the

CNN, which minimizes the loss function described in the equation (2-6), considering the

specific content:

JCTU = ∆DCTU + λR, (2-5)

∆DCTU = D′
CTU −DCTU , (2-6)

Where JCTU refers to the performance of the n-sima CNN, ∆CTU is the variation in terms

of BD-rate between the CTU before and after the restoring process, λ is the lagrange mul-

tiplier and controls the tradeoff between rate and distortion. Finally, R represents the

required amount of bits for signaling. The method (CAC) has been evaluated against the

reference codec HEVC, obtaining performance improvements in BD-rate, between 2 % and

4 %. Complexity is also considered against VDSR [27], VRCNN [7], and ALF [6]. The

results demonstrate that the current non-DL-based algorithm (ALF) embedded into HEVC
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is still the most efficient, achieving 123 % vs. 11656 % (CAC) in terms of decoder complexity.

Considering the previous results, it is straightforward to identify that quality can be en-

hanced. However, complexity is still far from reaching the expected level of the future

video codec standards (<10x). Inspired by this fact, Ding et al. [9] proposed a CNN-based

method (SimNet) that reduces the complexity by leveraging a skipping strategy where a

simple CNN network restores specific frames, and the remaining frames continue using the

traditional restoration non-DL-based method. This proposal is being formally evaluated to

be part of the next AV2 video codec. SimNet applies restoration on Intra and Inter frames.

The consideration of Inter frames relies on the propagation impact those have in the group

of pictures (GOP). SimNet contains N cascading convolutional layers and a ReLu at last

(figure 2-11). The depth of the networks depends on the QP (Quantization Parameter) of

each block.

Figure 2-11: CNN in-loop filter architecture [25].

SimNet reported overall performance improvements in BD-rate, of 7.27 % and 5.47 % for

Intra and Inter frames, respectively, against the reference codec AV1. It also demonstrates

a processing time reduction of 12.65 % compared to AV1. However, the original paper does

not provide a report of decoder complexity. The authors mentioned that they expect around

30x decoder added complexity, during the standardization meetings.

The original publication of SimNet highlights an over-filtering problem closely related to the

effect caused by Inter frames that are filtered and then used as a reference for next frames.

The effect is a propagated noise that reduces the performance of the CNN-based restora-

tion methods in comparison to AV1. SimNet tackles this issue by skipping the frames that

potentially introduce errors. Considering this problem, D. Ding (2020) proposes a transfer-
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learning method for only-Inter frames that incorporates back the reconstructed frames into

the training set of the CNN model. This algorithm achieves higher visual quality against

the reference code HEVC, and increases the processing time by around 4%. The encoder

complexity is not reported, but we infer that it may consume around 5x SimNet due the

progressive training.

Kong et al. [28] presents a Guided CNN architecture with similar outcomes, BD-rate : 1.84

% - 3.06 % and additional processing time, 23.79 % (figure 6). The restoration lies in a

linear combination of the N CNN’s weighted outputs. Each CNN aims to capture distinct

features of an image. However, the paper does not specify which characteristics capture from

an image. The idea behind is to have a lightweight array of N CNN and obtain the optimal

vector of weights that minimize the loss function described in equation (2-7).

rcorr = a0r0 + a1r1 + ...+ aM−1rM−1 (2-7)

Figure 2-12: Guided CNN Restoration (GNR) [28].
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Let be X a
√
n ×

√
n gray-scale image represented as a linear combination of m weighted

columns vectors vi ∈ Φ, with dimension in n × m, as described in equation (3-1). If Φ

is properly defined [16], a vector α with few nonzero coefficients representing the weighted

values can be obtained. This idea is the basis of sparse representation [15] and has been

successfully exploited on different image processing problems, such as: restoration [31, 12],

deblurring [14, 13], denoising [19, 24, 40] and super-resolution [17, 26, 49].

X ∼= α1v1 + α2v2 .. + αmvm. (3-1)

Contrasting classical methods such as Inverse Fast Fourier Transform (IFFT), the dictionary

Φ is not necessarily invertible. A essential characteristics of sparse representation lies in the

high redundancy of Φ (m >> n), which enables the sparsity of a vector α [39]. However,

high redundancy of Φ brings an infinity of possible solutions, which opens a question about

the most accurate solution (if there is one), and even more when noise is presented. This

question has been addressed for awhile and is translated into a more formal approach as an

optimization problem described in equation (3-2):

α = ||X − αΦ||22 + λ||α||0, (3-2)

Where X represents the reference image, and λ is a regularization factor. Using a formal

approach, we aim to find a vector α and a dictionary Φ that minimizes the distance of αΦ to

X while maintaining a minimum number of nonzero coefficients in α. The original definition

utilizes a Euclidean distance or L2-norm for modeling the error and L0-norm to penalize

the number of nonzeros coefficients in α. Donoho et al. [15] showed that the L1-norm could

be used instead of L0. Converting the NP-hard combinatorial problem into a computational

realizable problem. Therefore, equation (3-2) becomes in equation (3-3):

α = ||Y − αΦ||22 + λ||α||1. (3-3)
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Considering equation (3-3), we have a realizable problem and aim to find a sparse vector α

and a dictionary Φ simultaneously. Typically, sparse vectors are calculated on block-images

basis, and a dictionary is pre-trained or pre-defined according to a specific application.

3.1 Basic formulation of sparse coding

Despite being an NP-hard problem, the L0 regularization is still a suitable solution for sce-

narios with previous information or precondition establishing very few nonzero coefficients.

In that case, the suite of greedy algorithms is commonly used and especially the Orthogonal

Matching Pursuit (OMP), which was introduced by Cai et al. [5] and it is described in table

3-1.

The equation (3-2) is equivalent to equation (3-4):

min
α

||α||0 s.t. Y = Φα (3-4)

In contrast, when the sparse vector size increases, and the objective is to obtain the sparseness

solution, the L1 norm performs better. The regularization problem is established following

the Least Absolute Shrinkage and Selection Operator (LASSO [23]) and described in equation

(3-5). Furthermore, several optimization techniques have been proposed for the solution of

LASSO, such as LARS, Coordinate Descent, and Feature-sign search algorithm, among

others. Table 3-2 describes LARS.

min
α

||Y − α||2 + λ||α||1. (3-5)

A variety of optimization methods have been proposed for the solution, such as LARS,

Coordinate Descent and Feature-sign search algorithm, among others.

3.2 Dictionary

We found in the literature vast of articles about dictionary definitions and learning. After a

deep search, we select three methods that are align with the scope of our approach; which

have three main pre-conditions: 1) Dictionaries or associated signaling information must be

as small as possible or unnecessary because it impacts the bit budget required for decoding.

2) The dictionary learning process has to rely on the encoder side. 3) The processes on the

decoder side, regarding dictionary selection and update, have to keep low complexity.
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Input: The vector Y ∈ R
√
n , the matrix Φ ∈ R

√
n×m, and the termination thresh-

old for the residual norm e.

Output: The sparse vector α ∈ Rm.

Task: Approximate the vector y by using the fewest columns of the matrix Φ.

1. Initialization: α0 = 0, rt = y, t = 1, I = {}
2. Compute the correlation vector: ct = ΦT rt−1

3. Find a column index of the matrix Φ that is best correlated with current residual

vector. This can be achieved by determining the index of the largest absolute entry

in the vector.

i = argmax
j∈Ic

| ct(j) |

where Ic is the inactive set (the set have indices of columns of the matrix Φ that

are not in the active set).

4. Add i to the active set: I = I ∪ {}
5. Solve the least square problem:

ΦT
I ΦIαt(I) = ΦT

I y

6. Compute the new residual vector : rt = y − Φαt

7. If ∥rt∥2 < e, terminate and return α = αt as the final solution. Else, increase

the iteration.

Counter: t = t+ 1 and return to step 2.

Table 3-1: OMP Algorithm [10]

3.2.1 Concatenation of two orthogonal basis

The groups actively working on standardization, often consider models the residual between

a reference and distorted frames in some sparse transform domain, such as the Wavelet or

Fourier [1]. However, there is a solid experimental understanding that, in several cases,

images combine elements from different transforms [16]. As a manner of illustration, let

X be an image represented by a sparse vector α and an orthogonal matrix Φ. A second

representation of X using a sparse vector β and a matrix Ψ. Both matrices are
√
n ×

√
n,

as described in equation (3-6):

X = αΦ = βΨ. (3-6)

If Φ and Ψ are concatenated to form a single
√
n × 2

√
n dictionary, instead of

√
n ×

√
n
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Input: The vector Y ∈ R
√
n , the matrix Φ ∈ R

√
n×m, and the termination thresh-

old for the residual norm e.

Output: The sparse vector α ∈ Rm.

Task: Approximate the vector y by using the fewest columns of the matrix Φ.

1. Initialization: α0 = 0, rt = y,t = 1,I = {}
2. Compute the correlation vector: ct = ΦT rt−1

3. Compute the maximum absolute value in the correlation vector: λt = ∥ct∥∞
4. If λt is zero or approaches a very small value, LARS is terminated and the vector

αt is returned as the final solution, otherwise the following steps are implemented.

5. Find the active set: I = {j :| ct(j) |= λt}
6. Solve the following least square problem to find active entries of the updated

direction:

ΦT
I ΦIdt(I) = sign(ct(I))

where sign(ct(I)) returns the sign of the active entries of the correlation vector ct.

7. Set the inactive entries of the updated direction to zero: dt(I
c) = 0

8. Calculate the step size:

γt = mini∈Ic{λt−ct(i)

1−aTi vt
, λt+ct(i)

1+aTi vt
}

Where vt = ΦIdt(I)

9. Update the solution vector: αt = αt−1 + γtdt

10. Compute the new residual vector: rt = y − Φαt

11. If ∥rt∥2 < e, terminate and return α = αt as the final solution. Else, increase

the iteration counter: t = t+ 1 and return to step 2.

Table 3-2: LARS Algorithm

matrices1, we obtain a new representation: X = [Φ Ψ]γ. Unlike equation (3-6), where

α = XΦT and β = XΨT , the representation of X = [Φ Ψ]γ using an overcomplete dictionary

leads to infinite solutions. However, Elad et al. [20] demonstrate a condition to determine

the upper limit of the number of nonzeros coefficients in γ without requiring to execute any

complex processing. Furthermore, Elad et al. state that under the condition depicted in

equation (3-7), the solution of the optimization problems described in equation (3-2) and

(3-3), that constrain the sparsity throughout the L0 and l1 norms respectively, converge to

the same result. It is a remarkable statement considering the computational unfeasibility of

1Donoho et al. defines the concept of a dictionary as a combination of N-by-N basis
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the l0−norm.

∥γ∥0 <
0.9142

M
, (3-7)

Where M is the maximum absolute value of the cross inner product between the basis Φ

and Ψ.

block size M = Sup |< ϕi, γj >| ∨(i, j) ∥αi∥0 < 0.9142
M

4× 4 0.9061 1.0089

8× 8 0.9007 1.0150

16× 16 0.9003 1.0154

32× 32 0.9003 0.9003

64× 64 0.9003 1.0154

Table 3-3: Optimal total sparse non-zero coefficients using DCT+DWT dictionary.

Table 3-3 presents the optimal total sparse non-zero coefficients using DCT+DWT dictio-

nary using different block size.

3.2.2 Multi-dictionaries and dynamic selection

Dong et al. [11] state that a single
√
n ×

√
n matrix can effectively represent an image-

patch X. Nonetheless, instead of using a universal basis, such as Wavelet or Fourier, Dong

propose a set of dictionaries with specific high-frequency characteristics and groups them

by the K-means cluster algorithm. Before executing any procedure, the first step consists

of building a dataset with high-quality image patches from the YUV space that are neither

compressed nor distorted. The idea is to collect several features at the block level to create

a rich and heterogeneous universe of patches that can eventually recover any image patch.

In the second step, they apply a high-pass filter to all patches for obtaining a high-frequency

version of each. Since, dictionaries perform well on recovering image edges and high color

variations that are the most relevant for the human visual system. However, the proposed

methodology includes a dictionary built from the low-passed filtering patches clustering to

cover the plain and low-variation features. Once clusters are ready, the next step is to obtain

a compact version of dictionaries per cluster. Dong found that if the algorithm efficiently

selects a proper group, the dictionaries can be
√
n ×

√
n (non-overcomplete), reducing the

optimization problem to a simple matrix-vector multiplication. Consequently, the algorithm
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utilizes the classical signal decorrelation, and dimensional reduction technique PCA [30] to

obtain a set of K dictionaries with dimensions
√
n×

√
n as described in equation (3-8):

Φ = {Φ0,Φ1,Φ2, ...,Φk} (3-8)

The methodology contains a high-processing stage during the dictionary learning process,

but it is executed once and offline. Conversely, the proper dictionary selection is performed

per image patch basis and dynamically.

3.2.3 Universal dictionary

Yang et al. [49] presents a dictionary learning technique for image super-resolution, where

they train both low Φl and high Φh resolution dictionaries simultaneously. This algorithm is

an extension of the classical single dictionary learning method described in equation (3-9):

min
{Φl,Φh,Z}

∥Xc − ΦcZ∥22 + (
1

N
+

1

M
)∥Z∥1 (3-9)

In equation (3-9), Φc integrates information about Φl and Φh. In the same manner, Xc

concatenates the HR (Xh) and LR (Yl) patches in equation (3-10):

Xc =

[
1
N
Xh

1
M
Yl

]
, Φc =

[
1
N
Φh

1
M
Φl

]
(3-10)

Where N and M are the dimensions of the high-resolution and low-resolution image patches,

in vector form, using a dataset of 100,000 LR and HR image patches. Yang et al. state a more

robust relation between LR and HR based on a feature extraction process of the LR. They

apply four filters to extract different characteristics and concatenate them to construct the

LR image blocks for training and validation. In this way, the LR incorporates information

about neighbors, proving more than a simple linear relation with the HR block. Conversely,

they obtain the HR image patches using the bicubic interpolation method with a factor of

2x.
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Restoration Method (SRM)

The problem of in-loop restoration is presented in chapter 2, including the current methods,

available in the reference AV1 video codec, and the most relevant proposals using deep learn-

ing, that are potential tools for AV2. Regarding existing methods, there is an extensive effort

to optimize the performance at the complexity and BD rate levels, i.e. Wiener and a well-

stated theoretical non-blind filter, it is separated into vertical and horizontal components,

that together with the concept of symmetry – introduced by Siekmann et al. [43] – give a

powerful restoration mechanism at the expenses of few side bytes. For instance, a 256× 256

patch only requires three taps coefficients that can be represented with 12 bytes (96 bits)

using double precision. The case of the self-guided is similar, where only four coefficients

are necessary. Despite the benefits of both approaches (approx. 1.338 BD rate gain), there

is still room for further optimization –mainly in processing time.

On the other hand, leaning-based algorithms such as content-aware CNN proposed by Jia

et al. [25] achieve a nearly 4 % gain in terms of BD rate with a 113 % (encoder) and 11656

% (decoder) complexity compared to anchor HEVC. Another case is the self-guided CNN

method presented by Ding et al. [9] that reports an attractive BD-rate gain of around 1

%-3 %, that does not require side information. However, the complexity of the residual

prediction in the encoder (+23 %) is still higher than in the existing methods. Ding et al.

do not report decoding complexity, but considering the prediction network, it is expected to

be similar to encoding. Finally, we summarize in table 4-1, the performance of the classic

Wiener and the most relevant approaches based on deep learning.

Considering the opportunities in the field of in-loop restoration, we introduce a novel learned-

based sparse approach supported by three main components: 1) Sparse decoding residual,

2) Sparse coefficients estimator, and 3) Sparse position estimator, which are further detailed
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Characteristic Wiener Guided CNN CNN1

Encoder complexity (frames/sec) 7.48 9.26 8.79

Decoder complexity low high high

BD-rate -1.338 -2.85 -1.39

Table 4-1: Characteristics of Traditional vs Deep Learning In-loop Restoration approaches.

in this Chapter. Figures 4-1 and 4-2 present the overall architecture of our method.

Figure 4-1: Sparse decoded - Gaussian

4.1 Sparse decoding residual

During the video compression process, the spatial residual between the reference and In-

ter/Intra predicted frame is transformed into the frequency domain. Then, the resulting

coefficients, such as DCT, are mapped into predefined quantized factors, which vary from

0-255, where 0 is lossless. After that, an entropy operation is applied to eliminate the sta-

tistical redundancy. In the particular case of DCT, it means bringing more bits to represent

the DC and the high-frequency coefficients. Finally, the bit sequence is sent to the decoder.
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Figure 4-2: Encoder/Decoder sparse in-loop restoration

Equation 4-1 models the frequency-domain residual after quantization Q [42] and transform

T operations:

g = Q[T{r}] (4-1)

Figure 4-3 illustrates the process described above. In order to recover the original frame,

the decoder uses the prediction frame and the residual. The last is obtained after applying

inverse transform and quantization operators to the entropy-decoded bitstream. However,

quantization is a lossy task; depending on the number of levels, such as 85, 110, or 210,

the loss is higher. That is something expected by the trade-off between bitrate and quality.

Therefore the result of the inverse transform is not equal to the residual r (equation 4-2):

r̂ = T−1[Q−1{g}] (4-2)

r ̸= r̂
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Since the quantization error (eq) is linear, we can approximate r as follow:

r ≈ T−1[Q−1{g}+ eq] (4-3)

r ≈ r̂ + T−1[eq]

As illustrated in figure 4-3, the reference frame X is theoretically expected to be equal to

its prediction Xpre plus a residual r. Integrating this into equation 4-4 conducts to express

the relation between the decoded frame Y and its reference X in equation 4-4:

X ≈ Xpre + r (4-4)

X ≈ Xpre + r̂ +T−1[eq]

X ≈ Y +T−1[eq]

In the decoder, Xpre and r̂ are always obtained through prediction and inverse quantiza-

tion/transformation operations, respectively. Therefore, the proposed method models the

differential cause by the inverse transform of the quantization error (T−1[eq]). From now on,

we call the differential decoding residual (DR). The reference AV2 video codec imple-

ments a series of tools, described in chapter 2, to either reduce the effect of the quantization

on the block boundaries or recover the lost information (same as DR). Those processes re-

quire few bytes to improve the visual quality of the decoded frame, then the final bitrate

is barely impacted. Our method takes into account this constraint –low impact in the fi-

nal bitrate– by modeling DR using the sparse theory to rely on a few nonzero coefficients

expanded by a proper basis or dictionary.

In our proposal, we use γ to represent DR and the L0 norm presented in Equation 3-4 to

obtain the equation (4-5):

||α||0 ≤ z s.t. γ = αΦ (4-5)

The use of the L0 norm and the OMP algorithm relies on our target, which is to minimize

the total of nonzeros instead of the error. The solution of the optimization problem in

equation (4-5) provides a sparse vector α that, together with the dictionary Φ, can estimate

the residual γ̂ = Φα. The calculation of α is entirely executed in the encoder. The resulting

few nonzero coefficients and corresponding positions in the vector are sent to the decoder

as restoration signaling information. The residual γ is split into 8 × 8, 16 × 16, or 32 × 32

blocks, which are simultaneously processed in order to make the problem suitable in terms
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Figure 4-3: Simplified video codec architecture.

of computer memory usage. An operator Ri,j is introduced to extract the i, j patch of size
√
n×

√
n. The equation (4-6) models the i, j sparse vector α:

||αi,j||0 ≤ z, s.t. Ri,jγ = αi,jΦ (4-6)

The patch-based approach requires blocks to be overlapped to avoid edge reconstruction

artifacts. Mairal et al. [32] introduce a weighted average formulation that we adapt in

equation (4-7):

γ̂ =

(∑
i,j

RT
i,jRi,j

)−1(∑
i,j

RT
i,jΦαi,j

)
(4-7)

We evaluated three dictionary approaches, described in section 3.2, to select the proper

vector-basis to model γ:

1. The first method is concatenating two orthogonal basis [20]. We combined the discrete

cosine transform (DCT), discrete wavelet transform (DWT), and identity matrix (I)

to obtain five vector-basis.

2. The second method relies on a universal dictionary [49]. We used the A2 raw video

sequence (Described in table 5-1) and the respective decoded frames with QP =

[85, 160, 210] to train four dictionaries ( 1 lossless and 1 per QP). During the testing



30 4 Sparse In-loop Video Coding Restoration Method (SRM)

and evaluation, we used a concatenation of the lossless and the respective QP dictionary

to obtain dimensions of 64× 256 and 256× 1024, for blocks size of 8× 8 and 16× 16

respectively.

3. Finally, we use the multi-dictionaries method [11] with 10 and 20 clusters using dic-

tionaries of dimensions 64× 64 and 128× 128.

Details of each basis are depicted in table 4-2, and the performance evaluation, in terms

of PSNR, is presented in table (4-2). Further information on the experiments is covered in

chapter 5.

Dictionary Description

Φ1 DCT + I

Φ2 DCT

Φ3 DCT +DWT

Φ4 DWT

Φ5 DWT + I

Φ6 Universal

Φ7 Multi-dictionaries (10 clusters)

Φ8 Multi-dictionaries(20 clusters)

Table 4-2: Evaluated Dictionaries.

Ref Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

Average 36.03 40.24 39.75 39.85 38.25 39.08 41.23 38.60 38.70

PSNR gain(%) 11.67 10.32 10.60 6.14 8.46 14.41 7.11 7.39

Table 4-3: PSNR (summary) after restoration over raw video sequence A2.

The results presented in table 4-2 and extended in table 5-7 give us several insights: 1)

Universal dictionary (Φ6) behaves better than the others with a nearly 14 % average PSNR

gain across all configurations. This performance is reasonable due to the overcomplete factor

of the dictionaries. 2) The multi-dictionaries methods (Φ7,Φ8) show that the number of

clusters impacts the quality gain. A more significant number of clusters (> 20) may bring

better results. However, the added computational complexity during the dictionary selections
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makes this approach unsuitable for our application when the number of clusters increases. 3)

All the concatenated dictionaries (Φ1,Φ2,Φ3) that include DCT show gains between 10-11 %.

That aligns with the previous knowledge of the most common transform basis used by AV2

and the modeling of DR previously described, in this chapter. 4) Despite the performance

of the sparse representation approach, the number of bits required to signal the nonzero

coefficients in the sparse vector makes it an unfeasible strategy from the perspective of BD-

Rate, i.e using blocks of 16× 16, 2 nonzero coefficients and a dictionary 256× 512 requires

approx 2048 bytes for restoring a 256×256 image block. Which is 170x more expensive than

the current Wiener filter.

Considering the insights, we introduce a strategy to reduce the signaling information by

predicting the nonzero coefficients and their position in the sparse vector. Consequently, our

strategy selects the DCT basis as the dictionary based on the solid statistical redundancy

regarding the magnitude of nonzero coefficients and their location in the transformed vector

(sparse vector), as depicted in figure 4-6.

4.2 Sparse coefficients estimator

In order to exploit the statistical redundancy of the sparse coefficients, we decided to use

the DCT basis as dictionary in our method. In this case, the sparse vector is interpreted

as the truncated version of T [γ], where T is the DCT transform operator. Therefore, the

nonzero coefficients follows predictable statistical behavior [37]. In fact, AV1/AV2 models the

magnitude of the DCT coefficients as a Laplace distribution [36], which permits estimating

the rate-distortion per different transform configurations. Thus, our method follows a similar

assumption, but finding that a Gaussian distribution (equation 4-8) best fits the absolute

magnitude of the DC nonzero coefficient (z) and the Gamma [48] distribution (equation 4-9)

for the rest of the coefficients. The only variation concerns QP = 85 where the Laplace

distribution(equation 4-10) better fits the AC coefficient’s absolute value:

f(| z |) = 1

σ
√
2π

e−
1
2(

|z|−µ
σ )

2

(4-8)

f(z | a, b) = za−1e−bzba

Γ(a)
(4-9)

f(z | µ, b) = 1

2b
e(−

|z−µ|
b ) (4-10)
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The parameters of the mentioned distributions are correlated with the QP level. Accordingly,

we estimate the parameters per each QP ∈ {85, 110, 135, 160, 185, 210}, as shown in table

4-4.

QP DC AC

85 −− Laplace(µ = 6.01, b = 1.08)

110 N (a = 13.25, b = 0.70) N (µ = 10.06, σ = 2.77)

135 Γ(a = 6.30, b = 2.42) N (µ = 17.98, σ = 6.94)

160 Γ(a = 4.09, b = 5.89) N (µ = 33.45, σ = 14.68)

185 Γ(a = 3.04, b = 13.11) N (µ = 61.37, σ = 28.53)

210 Γ(a = 2.50, b = 27.81) N (µ = 110.20, σ = 54.29)

Table 4-4: PDF’s parameters by QP Level.

Our method estimates the nonzero coefficients following the Probability Distribution Func-

tions (PDF) instead of sharing them with the decoder. Our method uses the sign of the

coefficient after verifying if it is correct. The magnitude of the coefficient could vary but

still add gain to the distorted frame –since the method is concentrated in a residual, not in

a frame– as illustrated in figure 4-4. For the case of (QP = 135), the cost of predicting the

coefficients is -0.16 dB in terms of PSNR. However, the saving is around 25K Bytes ( 2.78

%) per frame of 1280× 7202.

Figure 4-4: Sparse coefficient estimation forQP = 135 (Distorted Image PSNR = 38.81dB).

Figures 4-5 and 4-6 present the PDF for nonzero coefficients associated with QP = 110 and

QP = 185. As we can empirically identify and confirm in table 4-4, the standard deviation of

2This example uses blocks of 16× 16 and ∥α∥0 = 2
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QP = 185 is approx. 10× the standard deviation of QP = 110. It is completely aligned with

the previous knowledge that higher QPs (lower quality) require more comprehensive ranges

or frequencies to compensate for the quantization loss. As a result, QP ∈ [185, 210] introduce

blocking effects during the sparse restoration process because, in some cases, the nonzero

coefficient estimator overcompensates higher frequencies and consequently strengthens the

block boundaries. The blocking effect is depicted in figure 5-13. We experimentally found

that reducing the prediction by a factor of 0.6 mitigates the overcompensation at the cost

of about -1dB (PSNR) compared with the standard sparse restoration method when using

a block size of 16× 16 and two atoms per block.

4.3 Sparse position estimator

From the frequency-domain perspective, the positions of nonzero coefficients, in α, are the

most relevant frequencies in the decoded block (y) requiring compensation. On the decoder

side, this information is unknown. However, considering the quantization errors equally

affect all the AC components of y, we can expect that the most relevant frequencies in y

are also the ones requiring more considerable restoration. We confirm this idea executing

restoration over patches across raw video sequences with different QP levels and finding that

80 % of the time, at least one of the three most relevant coefficients in y corresponds to

the most relevant frequencies in the residual decoding block. Thus, implementing a DCT

transform of y could bring this information to the decoder. However, the sign of the DCT

coefficients does not keep relation with the potential sign of the nonzero coefficient on a spe-

cific position. Therefore, we introduced a novel algorithm that relies on the image quality

blind assessment in the frequency domain, introduced by Saad M. et al. [38], to evaluate

the most efficient combination, in terms of the sign of two nonzero coefficients in the sparse

vector whose positions are determined by the location of the most relevant components of

the DCT transform of y.

We follow the well-established definition of Natural Scene Statistics (NSS [33]), where natu-

ral images are characterized by a Generalized Gaussian Distribution (GGD), and the effect

of distortions, such as JPEG blocking and blur, affects the shape and histogram of the orig-

inal image. However, we are not willing to evaluate the image quality. Instead, we use the

features of the GGD as criteria to determine the proper predicted decoding residual block.

Specifically, we utilize the GGD constant parameter a described in the equation 4-11. This
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Figure 4-5: PDF for the sparse nonzero coefficients (QP = 185).

Figure 4-6: PDF for the sparse nonzero coefficients (QP = 110).

allows us to avoid signaling information between the encoder and decoder to share coeffi-

cients information, besides a single bit per restoration block to guide the restoration process.

The complete details of our prediction algorithm are given below in tables 4-5 and 4-6.
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FX(x, µ, σ
2, τ) = ae(−b|x−µ|)τ x ∈ ℜ (4-11)

b =

(
1

σ

√
Γ(3/ϕ)

Γ(1/ϕ)

)
a =

(
bϕ

2Γ(1/ϕ)

)

Input: Reference block: x, Decoded block : y, block size : (
√
n×

√
n)

Task: Set encoder flag

1. Apply DCT to x and y

xf = T [x], yf = T [y] :

2. Calculate the GGD feature a for x and y:

ax =
(

bxϕ
2Γ(1/ϕ)

)
ay =

(
byϕ

2Γ(1/ϕ)

)
3. Set encoder flag:

ax
ay

> 1 → encoder flag = 1

ax
ay

< 1 → encoder flag = 0

Table 4-5: Sparse prediction algorithm at the encoder per block-basis.

The comparison of our model is presented in table 4-7 across video sequences A2-A5 and

B1. We use the Bjontegaard Delta-Rate (BD-Rate) [4] to evaluate our method’s perfor-

mance under different bitrate and quality conditions. Despite the efficiency of prediction,

regarding accuracy and reduction of signaling bits, the encoder must inform the decoder

whether a block is subjected to restoration or not. Our method is partially blind, which can

restore blocks accuracy in most cases (up to 70 %). For the remaining 30 %, the encoder

must inform the decoder that restoration is not demanded. A guiding bit (encoder-flag)

is also added for those patches subjected to restoration. Therefore, a frame from group

A2 (1920× 1080) and block size 32× 32 requires approx. 379 bytes for signaling, consider-

ing 50 % of the blocks are restored. This number is 2x the demanded by the switchable filter.

Another exciting result is that our method performs better on SSIM and VMAF metrics

which, according to the MSU Graphics & Media Lab Video Group [3], are 90.57 % and

93.86 % (respectively) correlated to the human subjective score, that surpasses the 87.43 %

reported for PSNR. The reason for that is that our model uses GGD features to select the

most predictable decoding residual. It goes in the direction of the Natural Scenes Statistic,
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which assesses the structure of the images instead of measuring the distance between pixels.

SSIM and VMAF use the principles (structure of images).

Figure 4-7 illustrates a result under sequence B1. In the top-right correct, we can see the

patch starts getting details of the plants. As described previously in this chapter, our method

aims to reduce or increase those frequencies (in the DCT domain) that are more relevant for

the image and provide more gain in terms of details. We omit DC coefficients which are not

considered by the GGD features.

Figure 4-7: Frame restoration for sequence B1 and QP=210. Top-left : Original, Top-

center: Distorted: Top-right: Distorted (+1dB gain), Bottom: Full reference

image.
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Input: Decoded block : y, block size : (
√
n×

√
n), encoder flag ∈ {0, 1}, QP

Task: Predict the decoding residual block at the decoder (γ)

1. Apply DCT to the decoded block:

yf = T [y]

2. Identify the position in yf of the two coefficients with the largest absolute value

A = sort(| yf |) s.t. max(A) = A[0] ∧ A[0] ≥ A[1]

p0 = k0 s.t. A[0] =| yfk0 |
p1 = k1 s.t. A[1] =| yfk1 |

3. Predict the magnitude of the sparse nonzero coefficients:

{c0, c1} ∼ Laplace(µ, b) ∀ QP ∈ {85}
{c0, c1} ∼ N (µ, σ2) ∀ QP ∈ {110, 135, 160, 185, 210}

4. Create four sparse vectors with the possible signs combinations

∀ i /∈ {p0, p1} ν0[i] = 0, ν0[p0] = +c0, ν0[p1] = +c1

∀ i /∈ {p0, p1} ν1[i] = 0, ν1[p0] = −c0, ν1[p1] = +c1

∀ i /∈ {p0, p1} ν2[i] = 0, ν2[p0] = +c0, ν2[p1] = −c1

∀ i /∈ {p0, p1} ν3[i] = 0, ν3[p0] = −c0, ν3[p1] = +c1

5. Obtain four potential restored blocks in the DCT domain

yf0 = yf + ν0

yf1 = yf + ν1

yf2 = yf + ν2

yf3 = yf + ν3

6. Calculate the GGD feature a for each potential restored block:

bi =
(

1
σi

√
Γ(3/ϕ)
Γ(1/ϕ)

)
ai =

(
biϕ

2Γ(1/ϕ)

)
A = {a0, a1, a2, a3}

7. Select the restored block that gets the max or min of the GDD feature a:

encoder flag = 0 → {ai = max(A)}
encoder flag = 1 → {ai = min(A)}

γ = viΦ yresto = y + γ

Table 4-6: Sparse prediction algorithm at the decoder.
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BD-Rate 3

Sequence Implementation PSNR SSIM VMAF

A2 AV2 + switchable filter -1.816 -0.035 -1.994

AV2 + SRM 0.487 -0.337 -2.206

A3 AV2 + switchable filter -1.813 -0.183 -2.310

AV2 + SRM 0.794 0.763 -1.642

A4 AV2 + switchable filter -2.156 -1.890 -0.326

AV2 + SRM 1.158 1.355 0.730

A5 AV2 + switchable filter -0.499 -0.627 -1.33

AV2 + SRM 0.615 -0.174 -1.276

B1 AV2 + switchable filter -0.337 0.025 -1.603

AV2 + SRM 1.047 -0.949 -2.585

Table 4-7: BD-Rate (PSNR, VMAF and SSIM).
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5.1 Datasets and quality metrics

The standardization group for AV2 recommends a series of raw video sequences with di-

verse characteristics, including content type, bit-depth, resolution, and color sub-sampling,

intending to provide enough scenarios to test new tools against the reference codec. Thus,

five test sequences were selected to assess the performance of the sparse in-loop restora-

tion method. The selection was made based on two criteria: 1) Sequences with content

proper for All Intra (AI) configuration; 2) Due to the computational cost, we choose se-

quences with resolutions < 1920 × 1080 and bit-depth = 8. Table 5-1 presents general

details of the selected content. In addition, the standardization group defines a group of

QP values to evaluate each configuration. In our case, we follow the AI recommendation:

QP = {85, 110, 135, 160, 185, 210}. Raw videos are publicly available and hosted at the open-

source platform: Xiph1. Figure 5-1 shows examples of frames belonging to the sub-classes

A2-A5 and B1.

Class Sub-class Resolution Bit-depth Total

Natural Videos (A) A2 1920× 1080 8 10

A3 1280× 720 8 6

A4 640× 360 8 6

A5 480× 270 8 3

Synthetic (B) B1 1920× 1080 8 7

Table 5-1: Selected raw video test sequences

Regarding quality assessment metrics, the standardization group recommends the usage

of PSNR per channel (YUV), SSIM [45], and VMAF 2. Being the less computationally

1https://media.xiph.org/video/aomctc/test set/
2https://github.com/Netflix/vmaf
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Figure 5-1: Examples of video test sequences (Y plane).

expensive, PSNR is still the most popular metric. However, it is well-known that PSNR

correlation with subjective assessments is only partially consistent when evaluating processes

such as denoising and restoration. Therefore, PSNR, VMAF, and SSIM are utilized as video

quality no-reference assessment metrics.
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5.2 Experimental protocol

The experimentation involves four steps:

1. Dictionary selection: assessment of three methodologies, described in sections 3.1.1-3

for establishing the proper dictionary to model the decoding residual, perform training

(when applicable) using the sequences A1 and B1 from the database sample and target

four block sizes: 8× 8, 16× 16, 32× 32, and 64× 64; and ran a series of testing using

the content categories A1-A5 and B1 with different block sizes.

2. Sparse in-loop restoration evaluation: compare the performance of PSNR/VMAF/SSIM

gain and signaling bits added to the decoder for all the block sizes.

3. Statistical nonzero prediction: evaluate the same three-factor using statistical predic-

tion for the nonzero coefficients in the sparse vector.

4. Sparse in-loop restoration performance: execute a batch of testing for all content cate-

gories and compare them against the AV2 restoration tool in terms of PSNR, VMAF,

SSIM, and BD-Rate.

The following sections present the result of the steps mentioned above.

5.2.1 Dictionary

Table 5-2 presents the chosen basis for the joint orthogonal approach. DCT refers to the

Discrete Cosine, and DWT refers to the Discrete Wavelet transforms. The identity (I) is

also included. In addition, we also add the single basis DCT and DWT (no-concatenation).

This first approach does not demand training.

Dictionary Dictionary sizes

DCT + I 64× 128, 256× 512, 1024× 2048

DCT 64× 64, 256× 256, 1024× 1024

DCT +DWT 64× 128, 256× 512, 1024× 2048

DWT 64× 64, 256× 256, 1024× 1024

DWT + I 64× 128, 256× 512, 1024× 2048

Table 5-2: Joint dictionary basis configuration.
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Table 5-3 describes the configuration used for the multi-dictionaries approach. For the

training phase, we use the content sequence A2. The original algorithm aims to model the

reference frame; in our case, we adapted it to model the residual for three QP levels: 210,

85, and 135. In addition, we defined the first dictionary of the group to be a DCT basis.

And, we also utilize different cluster sizes: K = 10, K = 50, and K = 100 to evaluate the

performance.

QP Dictionary sizes Clusters per Dictionary size

210 64× 64, 256× 256, 1024× 1024 (10 + 1), (50 + 1), (100 + 1)

135 64× 64, 256× 256, 1024× 1024 (10 + 1), (50 + 1), (100 + 1)

85 64× 64, 256× 256, 1024× 1024 (10 + 1), (50 + 1), (100 + 1)

Table 5-3: Multi-dictionaries configuration.

Table 5-4 describes the configuration used for the universal dictionary approach. We use

sequence A2 with the associated residual blocks for the training phase for the following QP

configurations: 85, 135, and 210. The objective of the universal approach is to build over-

complete dictionaries where n ≫ m. In our case, we used a 4 : 1 ratio.

Table 5-5 describes the performance, in terms of PSNR, for eight dictionaries configurations,

detailed in table 5-6. Despite the result of the Universal dictionary ( Φ6), the Discrete

Cosine Transform (DCT) was selected due to its effect of a high-statistical correlation of the

magnitude and location of the nonzero coefficients of the sparse vector. This factor is crucial

for prediction on the encoder side, which is a fundamental part of the proposed method.

QP Dictionary sizes

210 64× 256, 256× 1024, 1024× 4096

135 64× 256, 256× 1024, 1024× 4096

85 64× 256, 256× 1024, 1024× 4096

Table 5-4: Universal dictionary configuration.
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Bl QP ∥α∥0 Ref Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

16 85 2 45.09 45.62 45.49 45.50 45.28 45.55 45.66 45.56 45.59

16 160 2 34.26 35.89 35.68 35.75 35.10 35.44 36.38 35.00 35.03

16 210 2 28.96 32.45 32.34 32.44 31.26 31.48 34.39 30.62 30.64

16 85 4 45.15 46.11 45.86 45.87 45.53 45.97 46.12 45.91 45.95

16 160 4 34.18 36.73 36.37 36.41 35.27 35.83 37.29 35.20 35.23

16 210 4 28.34 32.74 32.50 32.61 30.66 31.08 34.85 30.10 30.14

16 85 8 45.41 47.38 46.57 46.60 46.16 47.15 47.00 46.71 46.75

16 160 8 34.31 38.13 37.58 37.67 35.96 36.76 38.77 35.90 35.96

16 210 8 27.97 34.18 33.70 33.79 31.06 31.70 36.00 30.43 30.48

8 85 2 44.90 46.35 46.10 46.15 45.56 46.16 46.55 46.39 46.52

8 160 2 34.47 37.94 37.59 37.74 36.60 37.25 39.00 36.88 36.97

8 210 2 28.88 34.78 34.61 34.74 33.14 33.66 37.38 32.93 33.05

8 85 4 44.82 47.45 46.93 47.00 46.03 47.00 47.47 47.24 47.41

8 160 4 34.71 40.00 39.39 39.58 37.65 38.72 41.34 38.19 38.32

8 210 4 28.57 36.49 36.07 36.25 33.28 34.30 39.28 33.43 33.60

8 85 8 45.08 49.75 48.61 48.75 47.16 48.89 49.25 49.08 49.26

8 160 8 34.94 42.81 41.72 41.94 38.62 40.45 43.91 39.88 40.10

8 210 8 28.60 39.54 38.44 38.61 34.15 36.10 41.48 35.31 35.54

Average 36.03 40.24 39.75 39.85 38.25 39.08 41.23 38.60 38.70

PSNR gain(%) 11.67 10.32 10.60 6.14 8.46 14.41 7.11 7.39

Table 5-5: PSNR after restoration using different dictionaries and raw video sequence A2.

5.3 Sparse in-loop restoration evaluation

Figure 5-2 shows an example of image restoration using sparse representation theory. In

this example were utilized block-sizes of 16 × 16 and a criteria of four nonzero coefficients.

We can see a gain of around 0.42 dB. The Orthogonal matching pursuit (OMP) algorithm

is used to select the four most relevant atoms from a DCT basis as dictionary.

Figure 5-3 describes the improvement in PSNR for sparse restoration using a block size of

32× 32 and 2,4,6,8 and nonzero coefficients. It can be identified that the atoms of the DCT

basis are trying to define a shape in some regions. There is also a Block effect, managed by



44 5 Experimental validation

Dictionary Description

Φ1 DCT + I

Φ2 DCT

Φ3 DCT +DWT

Φ4 DWT

Φ5 DWT + I

Φ6 Universal

Φ7 Multi-dictionaries (10 clusters)

Φ8 Multi-dictionaries(20 clusters)

Table 5-6: Evaluated dictionaries.

overlapping blocks, as depicted in 5-4.

5.4 Statistical nonzero prediction

In addition to the result presented in Chapter 4, Figures 5-10 describe the histogram of the

magnitude of the AC nonzero coefficients for QP ∈ {85, 110, 135, 160, 185, 210}. Figure 5-16
presents the distribution for QP=85. On the left side is the distribution for DC nonzeros, as

we notice the low amount of data (peak approx. 10), which led us to discard DC for QP=85.

In others words, for this QP, we assume all the coefficients of the sparse vector are all in

AC. This assumption is used across the development of the model in chapter 4. For QP=85,

the histogram tends to a Laplace distribution which aligns with the lossless compression

for this quality level, and consequently, the coefficients are concentrated around µ. For the

remaining QPs, the DC nonzero coefficient was modeled as a Gamma distribution; for AC,

it was defined as Gaussian. We found highly accurate results, in terms of visual quality,

for QP < 185. In the scenario of QP ∈ {185, 210}, we discovered that the images tend

to create a blocking effect when the Gaussian prediction outputs peak values (figure 5-13.

We experimentally encountered that reducing a factor of 0.35 and 0.6 for QP ∈ {185, 210}
eliminates this artifact 5-14. The blocking impairment is only perceived during subjective

evaluation, even though all metrics, including PSNR, SSIM, and VMAF, still show gains.

Regarding the Gaussian estimation of the AC coefficient, we obtained a performance where

nearly 1% of PSNR quality is sacrificed compared to the non-prediction approach (classical),
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Figure 5-2: Frame restoration QP=135.

figure 5-11 and 5-12 illustrate that. That means Gaussian estimation reduces the gain while

eliminating the need to share the nonzero coefficients (a double-precision number of 2 bytes).

This prediction makes our Sparse restoration method feasible for real implementations.

Regarding the position of the non-zero coefficient, we experimentally encountered a concen-

tration around bands and highly spread for lossless QP, i.e., 85 when the DCT basis is used

as a dictionary. Figure 5-15 compares two QPs using DCT and a Universal dictionary. The

DCT is concentrated, and more predictable, which supports the proper estimation of the

decoding residual discussed and presented in Chapter 4.
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Figure 5-3: Frame restoration for QP=185, block-size= 32 × 32, nonzero ∈ {2, 4, 6, 8},
overlapping factor=1.

5.5 Sparse in-loop restoration performance

In addition to the results presented in Chapter 3, we evaluate two GDD features. The first

is a, described and used in Chapter 3 and ζ, the frequency factor defined as ζ = σ2/µ. We

executed tests where: 1) Only AC coefficients were considered, and DC was skipped. 2) DC

coefficients are modeled when the variance of the distorted block y is less than 1. And 3).

Includes always the DC coefficient as part of the potential options for modeling the decoding

residual. Table 5-7 presents the results.
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Figure 5-4: Frame restoration QP=185, block-size =16×16, nonzeros ∈ {2, 4}, overlapping
factor=4.

Figure 5-5: QP = 85, Laplace PDF for AC (right) and few DC coefficients (left).
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Figure 5-6: QP = 110, Gamma PDF for DC (right) and Gaussian PDF for DC (left).

Figure 5-7: QP = 135, Gamma PDF for DC (right) and Gaussian PDF for DC (left).
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Figure 5-8: QP = 160, Gamma PDF for DC (right) and Gaussian PDF for DC (left).

Figure 5-9: QP = 185, Gamma PDF for DC (right) and Gaussian PDF for DC (left)
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Figure 5-10: QP = 210, Gamma PDF for DC (right) and Gaussian PDF for DC (left).

Figure 5-11: Sparse coefficient estimation for QP = 210.

Figure 5-12: Sparse coefficient estimation for QP = 185.
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Figure 5-13: Sparse coefficient estimation for QP = 185 and blocking effect.

Figure 5-14: Sparse coefficient estimation for QP = 185 and blocking effect mitigation.

Figure 5-15: Distribution of nonzero coefficients across the sparse vector.
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Figure 5-16: Distribution of sparse nonzero coefficient position QP = 85 (top) and QP =

210 (bottom).
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Accuracy Gain

QP Description Criteria SSIM PSNR SSIM PSNR

210 Only AC a 49.65 46.55 8.84 1.30

ζ 48.12 48.82 10.45 1.27

210 DC+AC a 51.93 57.54 9.71 2.77

var(y) < 1 ζ 48.96 47.06 10.97 2.39

210 DC+AC a 53.42 61.97 6.21 2.78

var(y) > 0 ζ 49.52 48.57 7.90 2.89

160 Only AC a 50.02 46.72 1.82 0.37

ζ 48.63 44.20 1.89 0.38

160 DC+AC a 47.62 54.91 1.55 0.66

var(y) < 1 ζ 43.47 43.58 1.80 0.56

160 DC+AC a 51.40 59.37 1.01 0.62

var(y) > 0 ζ 47.63 47.77 1.16 0.62

85 Only AC a 39.24 46.40 0.11 0.04

ζ 42.63 42.42 0.12 0.04

85 AC+DC a 40.27 49.39 0.11 0.04

var(y) < 1 ζ 44.37 43.31 0.09 0.03

85 AC+DC a 44.00 59.30 0.08 0.04

var(y) > 0 ζ 46.99 42.71 0.07 0.04

Overall a 47.50 53.57 3.27 0.95

ζ 46.70 45.38 3.82 0.91

Table 5-7: Prediction accuracy and gain against PSNR and SSIM.



6 Conclusions and future works

• Sparse representation is, without a doubt, an efficient approach for image restoration

tasks. Regarding the video coding in-loop restoration scenario, the critical challenge is

eliminating the information required to transfer between the encoder and decoder to

represent the nonzero coefficients. However, moving the high-intensive task to the de-

coder is not an option, considering the real-time exigency during the decoding process.

Therefore, we developed a hybrid approach where most of the required information is

predicted in the decoder, and only a guiding bit encoder-flag was required. The rea-

son for utilizing a guiding bit is the poor precision of predicting if a block, i.e., 32×32,

needs to collapse or expand in terms of the GGD. We ran experiments using various

methods, including CNN, and non-reference quality metrics, such as NIQE and PIQE;

the accuracy was not higher than 25%. It is difficult to predict because the method

tries to be as closer as possible to a block, using PSNR and SSIM as error metrics

which still need to be fully correlated with non-reference metrics at the block level.

• Our result points to the following research where a highly correlated video quality

metric at the DCT level, such as BLIND-II [38], can be adapted to run in real-time

and allows blind-restoration using the Sparse estimation algorithm presented in this

document. A critical factor that could accelerate the development of restoration models

in this research line is defining quality at the block level and correlating with the whole

frame.

• Deep-learning tools for in-loop restoration are the right direction to tackle this problem.

However, those methods must incorporate non-reference quality metrics, as explained

before, to be able to run in parallel, which means restoring at the block level and

achieving efficiency at the whole frame. In addition, this should exploit frequency

features in order to reduce computational cost and time during the decoding process.
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[30] Maćkiewicz, Andrzej ; Ratajczak, Waldemar: Principal Components Analysis

(PCA). En: Computers & Geosciences 19 (1993), p. 303–342

[31] Mairal, Julien ; Elad, Michael ; Sapiro, Guillermo: Sparse representation for color

image restoration. En: IEEE Transactions on Image Processing 17 (2008), p. 53–69. –

ISSN 10577149

[32] Mairal, Julien ; Sapiro, Guillermo ; Elad, Michael: Learning multiscale sparse

representations for image and video restoration. En: Multiscale Modeling and Simulation

7 (2008), Nr. 1, p. 214–241. – ISSN 15403467

[33] Moorthy, Anush K. ; Bovik, Alan C. STATISTICS OF NATURAL IMAGE DIS-

TORTIONS

[34] Mukherjee, Debargha ; Han, Jingning ; Bankoski, Jim ; Bultje, Ronald ;

Grange, Adrian ; Koleszar, John ; Wilkins, Paul ; Xu, Yaowu: A Technical

Overview of VP9 – The Latest Open-Source Video Codec. (2013), p. 1–17

[35] O’Shea, Keiron ; Nash, Ryan: An Introduction to Convolutional Neural Networks.

En: CoRR abs/1511.08458 (2015)

[36] Oxford: A Dictionary of Statistics. Oxford University Press, 2014. – ISBN

9780191758317

[37] Reininger, Randall C. ; Gibson, Jerry D.: Distributions of the Two-Dimensional

DCT Coefficients for Images. En: IEEE Transactions on Communications 31 (1983),

p. 835–839. – ISSN 00906778

[38] Saad, Michele A. ; Bovik, Alan C. ; Charrier, Christophe: DCT statistics model-

based blind image quality assessment, 2011. – ISBN 9781457713033, p. 3093–3096



59

[39] Sankaraiah, Yediga R. ; Varadarajan, Sourirajan: An effective image deblurring

scheme using cluster based sparse representation. En: ASEAN Engineering Journal 11

(2021), Nr. 4, p. 16–28. – ISSN 25869159

[40] Scetbon, Meyer ; Elad, Michael ; Milanfar, Peyman: Deep K-SVD denoising.

En: IEEE Transactions on Image Processing 30 (2021), Nr. 8, p. 5944–5955. – ISSN

19410042

[41] Schneider, Jens ; Sauer, Johannes ; Wien, Mathias: RDPlot – An Evaluation Tool

for Video Coding Simulations. En: 2021 International Conference on Visual Commu-

nications and Image Processing (VCIP), 2021, p. 1–1

[42] Segall, C A. ; Katsaggelos, Aggelos K. ; Molina, Rafael: Chapter 11 Super-

resolution from compressed video. En: Book (2001), p. 1–32

[43] Siekmann, Mischa ; Bosse, Sebastian ; Schwarz, Heiko ; Wiegand, Thomas: SEP-

ARABLE WIENER FILTER BASED ADAPTIVE IN-LOOP FILTER FOR VIDEO

CODING Image Processing Department Fraunhofer Institute for Telecommunications

– Heinrich Hertz Institute Image Communication Chair Department of Telecommuni-

cation Systems Technical Universit. (2010), p. 70–73. ISBN 9781424471355

[44] Valin, Jean-Marc: The Daala Directional Deringing Filter. En: CoRR abs/1602.05975

(2016)

[45] Wang, Z. ; Simoncelli, E.P. ; Bovik, A.C.: Multiscale structural similarity for image

quality assessment. En: The Thrity-Seventh Asilomar Conference on Signals, Systems

and Computers, 2003 Vol. 2, 2003, p. 1398–1402 Vol.2

[46] Wang, Zhou ; Bovik, A.C. ; Sheikh, H.R. ; Simoncelli, E.P.: Image quality

assessment: from error visibility to structural similarity. En: IEEE Transactions on

Image Processing 13 (2004), Nr. 4, p. 600–612

[47] Wiener, Norbert: Extrapolation, interpolation, and smoothing of stationary time series

with engineering applications. 1964. – ISBN 9780262730051

[48] Y., Dodge: Gamma Distribution. New York, NY : Springer New York, 2008. – 215–216

p.. – ISBN 978–0–387–32833–1



60 7 Bibliography

[49] Yang, Jianchao ; Wright, John ; Huang, Thomas S. ; Ma, Yi: Image super-

resolution via sparse representation. En: IEEE Transactions on Image Processing 19

(2010), Nr. 11, p. 2861–2873. – ISSN 10577149

[50] Zhu, Shujin ; Yu, Zekuan: Self-guided filter for image denoising. En: IET Image

Processing 14 (2020), Nr. 11, p. 2561–2566


	Acknowledgment
	Abstract
	Introduction
	In-loop restoration
	Problem statement
	Aims
	Thesis contributions
	Thesis organization

	AOMedia In-loop restoration tools
	Transform & Quantization
	Transform Block Size
	Transform Kernels
	Quantization

	Post-processing filters
	Deblocking filter
	Constrained Directional Enhancement Filter (CDEF)
	In-loop restoration filters

	Deep-learning restoration

	Sparse representation
	Basic formulation of sparse coding
	Dictionary
	Concatenation of two orthogonal basis
	Multi-dictionaries and dynamic selection
	Universal dictionary


	Sparse In-loop Video Coding Restoration Method (SRM)
	Sparse decoding residual
	Sparse coefficients estimator
	Sparse position estimator

	Experimental validation
	Datasets and quality metrics
	Experimental protocol
	Dictionary

	Sparse in-loop restoration evaluation
	Statistical nonzero prediction
	Sparse in-loop restoration performance

	Conclusions and future works
	Bibliography

