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Abstract

Title: A Deep Learning model for automatic grading of prostate cancer histopathol-

ogy images

Gleason grading is recognized as the standard method for diagnosing prostate cancer. How-

ever, it is subject to significant inter-observer variability due to its reliance on subjective

visual assessment. Current deep learning approaches for grading often require exhaus-

tive pixel-level annotations and are generally limited to patch-level predictions, which do

not incorporate slide-level information. Recently, weakly-supervised techniques have shown

promise in generating whole-slide label predictions using pathology report labels, which are

more readily available. However, these methods frequently lack visual and quantitative

interpretability, reinforcing the black box nature of deep learning models, hindering their

clinical adoption. This thesis introduces WiSDoM, a novel weakly-supervised and inter-

pretable approach leveraging attention mechanisms and Kernel Density Matrices for the

grading of prostate cancer on whole slides. This method is adaptable to varying levels of su-

pervision. WiSDoM facilitates multi-scale interpretability through several features: detailed

heatmaps that provide granular visual insights by highlighting critical morphological features

without requiring tissue annotations; example-based phenotypical prototypes that illustrate

the internal representation learned by the model, aiding in clinical verification; and visual-

quantitative measures of model uncertainty, which enhance the transparency of the model’s

decision-making process, a crucial factor for clinical use. WiSDoM has been validated on

core-needle biopsies from two different institutions, demonstrating robust agreement with

the reference standard (quadratically weighted κ of 0.93). WiSDoM achieves state-of-the-art

inter-observer agreement performance on the PANDA Challenge publicly available dataset

while being clinically interpretable.

Keywords: Prostate Cancer, Histopathology, Deep Learning, Cancer Grading, Den-

sity Matrix, Interpretability
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Resumen

T́ıtulo: Modelo de Deep Learning para la gradación automática de imágenes

histopatológicas de cáncer de próstata

La clasificación de Gleason se reconoce como el método estándar para diagnosticar el cáncer

de próstata. Sin embargo, está sujeto a una variabilidad significativa entre observadores de-

bido a su dependencia de la evaluación visual subjetiva. Los enfoques actuales de aprendizaje

profundo a menudo requieren anotaciones exhaustivas a nivel de ṕıxeles y generalmente se

limitan a predicciones a nivel de parche, que no incorporan información a nivel de lámina.

Recientemente, las técnicas débilmente supervisadas se han mostrado prometedoras a la hora

de generar predicciones de etiquetas de láminas completas utilizando etiquetas de informes

de patoloǵıa, que están más fácilmente disponibles. Sin embargo, estos métodos frecuente-

mente carecen de interpretabilidad visual y cuantitativa, lo que refuerza la naturaleza de

caja negra de los modelos de aprendizaje profundo y dificulta su adopción cĺınica. Esta

tesis introduce WiSDoM, un enfoque novedoso interpretable y débilmente supervisado que

aprovecha los mecanismos de atención y las matrices de densidad para gradar cáncer de

próstata en láminas completas. Este método se adapta a distintos niveles de supervisión.

WiSDoM facilita la interpretabilidad a múltiples escalas a través de varias caracteŕısticas:

mapas de calor detallados que brindan información visual granular al resaltar caracteŕısticas

morfológicas cŕıticas sin requerir anotaciones de tejido; prototipos fenot́ıpicos basados en

ejemplos que ilustran la representación interna aprendida por el modelo, ayudando en la

verificación cĺınica; y medidas visual-cuantitativas de incertidumbre del modelo, que mejo-

ran la transparencia del proceso de toma de decisiones, un factor crucial para el uso cĺınico.

WiSDoM se ha validado en biopsias de dos instituciones diferentes, lo que demuestra una

sólida concordancia con el estándar de referencia (κ ponderado cuadráticamente de 0,93).

WiSDoM logra un rendimiento del estado del arte de acuerdo entre observadores en el con-

junto de datos PANDA Challenge además de ser cĺınicamente interpretable.

Palabras clave: Cáncer de prostata, Histopatoloǵıa, Aprendizaje automático, Gradación

de cáncer, Matriz de densidad, Interpretabilidad
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1 Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide, ranking just

behind lung cancer, with 1,276,106 new cases and 358,989 deaths (3.8% of all male cancer

fatalities) reported in 2018 and the average age at diagnosis is 66 years [2].

Prostate cancer in its early stages often presents no symptoms and may require no treat-

ment. The disease is frequently detected through elevated levels of prostate-specific antigen

(PSA > 4 ng/mL), a glycoprotein typically expressed by prostatic tissue. However, due

to the presence of increased PSA in men without cancer, tissue biopsy is recommended for

confirming malignancy [3].

The diagnosis of prostate cancer heavily relies on the microscopic analysis of prostate tissue

obtained through a needle biopsy. Using transrectal ultrasonography to guide the biopsy

extraction, 10 to 12 tissue samples are gathered, are formalin-fixed and paraffin embedded

and stained with Hematoxylin and Eosin (H&E). A pathologist then examines these samples

based on their microscopic architecture and cellular appearance (see figure 1-1), assigning

a primary and secondary Gleason grade [4], each on a scale of 1 to 5. The pathologist de-

termines the Gleason score, which in biopsies is the sum of the predominant pattern and

the secondary one, such as 4+3. This traditional classification of prostate cancer into low,

intermediate, or high risk is based on the combined Gleason patterns, prostate-specific anti-

gen (PSA) level, and clinical stage [5]. Recognizing the heterogeneity within each risk group

and the potential for inter- and intra-observer variability (see figure 1-2), the International

Society of Urological Pathology (ISUP) revised the pathological grading into five categories

in 2014 [6] (see table 1-1). However, despite these modifications, inter- and intra-observer

variability remains an issue, limiting the grading system’s applicability and reproducibility

across different geographic locations and experience levels among uropathologists [7].

Nevertheless, the tissue biopsy examination and pathologist-performed grading using the

Gleason/ISUP grade group system remains the gold standard for prostate cancer diagnosis

[8]. This system stands as the most crucial prognostic factor [9] and plays a significant role

in determining the appropriate treatment strategies [10], making it invaluable for guiding

clinical decisions and managing prostate cancer.

1.1 Problem Statement

With an annual incidence of 1,2 million new cases of prostate cancer worldwide, a high

mortality rate, and the risk of overdiagnosis and overtreatment [11], there is an urgent need
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Figure 1-1: Progressive architectural changes in prostate tissue from Gleason Grade 1 to

5, illustrating the evolution from well-differentiated, organized glandular struc-

tures in Grade 1, through increasingly disorganized and poorly differentiated

cellular patterns, to the nearly complete loss of glandular architecture and

highly irregular, invasive cell formations characteristic of Grade 5.

Table 1-1: Summary of the Gleason and ISUP grade group prostate cancer grading systems.

Grade Group Description

Grade Group 1 (Gleason

score ≤ 6)

Only individual discrete well-formed glands

Grade Group 2 (Gleason

score 3+4=7)

Predominantly well-formed glands with a lesser compo-

nent of poorly-formed/fused/cribriform glands

Grade Group 3 (Gleason

score 4+3=7)

Predominantly poorly-formed/fused/cribriform glands

with a lesser component of well-formed glands

Grade Group 4 (Gleason

score 8)

Only poorly-formed/fused/cribriform glands or pre-

dominantly well-formed glands with a lesser component

lacking glands or predominantly lacking glands with a

lesser component of well-formed glands

Grade Group 5 (Gleason

scores 9-10)

Lacks gland formation (or with necrosis) with or with-

out poorly-formed/fused/cribriform glands

for accurate and reproducible assessment of prognostic survival as well as appropriate treat-

ment of the patient that supports pathologists in making decisions. The Gleason/ISUP

score [10, 6], assigned by a pathologist after examining the biopsy, is the standard grading

system for determining the prognosis of prostate cancer patients and prescribing the most

effective treatment. However, it suffers from significant inter- and intra-observer variability
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Figure 1-2: Illustration of the conventional grading process for a prostate whole-slide image

and a depiction of the inter-observer variability when multiple pathologists

evaluate the slide. As the quantification of the extent of the two most aggressive

patterns relies solely on visual inspection, the diagnosis often differs significantly

among pathologists, indicating a notable risk of inconsistency in diagnosis and

treatment options.

[12], making it an intriguing problem for reproduction by automatic diagnostic and prognos-

tic support systems that produce results within the range of expert pathologists’ variability

and agreement. Typically, pathologists with decades of experience have increased agreement

rates of κ ≈ 0.7 [13], but this experience of subspecialized pathologists in specific organs and

cancer types is uncommon, particularly in developing nations where the majority are gen-

eral pathologists. Due to the nature of the whole-slide histopathology images (size, intricacy

of tissue structures, differences in processing and staining, absence of labels and annota-

tions, and scarcity), the development of an automatic diagnostic and prognostic support

system presents a computational challenge [14]. While the normal glands and tissues of the

prostate have their natural anatomical variability, the degree of severity associated with the

progression and severity of the heterogeneous, poorly differentiated, difficult-to-define, and

variable tumor, for which reason its quantification by conventional methods is problematic,

varies with the tumor’s aggressiveness and severity. The characterization of cellular or tissue

morphometry is an additional challenge. In addition to the aforementioned obstacles, the

adoption of Deep Learning-based automatic diagnostic support systems is low due to their

opaque nature and lack of interpretability. To have confidence in their decisions, pathologists

anticipate being able to interpret the decisions made by automated models. The ability to

explain and interpret system decisions would encourage their acceptance and regulation in
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the medical industry [15]. A robust, interpretable Gleason/ISUP grading by a deep learning-

based computer diagnostic support (CAD) system that achieves the same level of agreement

as expert pathologists could be advantageous for prostate cancer diagnosis. Deep Learning

has demonstrated the ability to perform pathological diagnoses [16, 9, 17]. Therefore, it is

desirable to investigate its potential in automated Gleason/ISUP grading, with a focus on

the interpretability of the model decisions, i.e. the ability to provide the pathologist with,

visual cues, perspectives, and objective information regarding the decision-making process.

1.2 Objective

To develop a robust and interpretable Deep Learning model for prostate cancer grading from

histopathological images.

1.2.1 Specific Objectives

• To integrate a collection of heterogeneous histopathological image data, including its

preparation, preprocessing, and representation.

• To design a thorough architecture that enables the image’s pathological character-

istics to be captured, thereby enhancing the interpretability of decisions made from

histopathological images.

• To design a robust and accurate Gleason/ISUP score prediction component for prostate

cancer histopathological images.

• To systematically evaluate the efficacy of the proposed method using pathologist-

labeled data and compare it using problem-appropriate metrics.

1.3 Contributions

This thesis presents a novel approach in computational pathology with the introduction of

WiSDoM: Interpretable Weakly-Supervised Kernel Density Matrices (refer to figure 4-1),

an interpretability-constrained, probabilistic deep learning framework. WiSDoM integrates

interpretability through attention mechanisms and a novel method to aggregate information

to predict a whole-slide label using Kernel Density Matrices (KDM)[18]. It is specifically

designed to tackle the dual challenges of supervision and interpretability in medical image

analysis.

At the core of WiSDoM is its capability to:

• Predict posterior probability distributions for Gleason and ISUP grades under various

levels of supervision, distinguishing it from traditional probabilistic methods by gen-
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erating explicit discrete distributions, in contrast to Gaussian processes’ continuous

distributions.

• Aggregate posterior distributions into a comprehensive distribution for an entire whole-

slide image, outperforming methodologies like Multiple Instance Learning (MIL) and

conventional aggregation techniques.

• Extend the applicability of KDM to weakly-supervised frameworks, utilizing its robust

interpretability features. This is particularly important in contexts where supervision

is limited, but the need for transparency and interpretability is high.

• Address the challenge of extensive pixel-level annotations in computational pathology

by providing detailed modeling of label probability distributions within an ordinal

regression framework. This approach portrays cancer progression as a continuum and

offers valuable confidence measures.

• Generate detailed heatmaps in both fully and weakly supervised scenarios, essential for

identifying diagnostically significant regions and patterns. Additionally, it aids clinical

decision-making by producing phenotypic prototypes that reveal deep insights into the

decision-making process.

Additionally, the code implementation of WiSDoM is publicly available (see 4.4.1).

1.4 Thesis outline

This thesis is structured as follows: Chapter 2 provides an overview of recent advance-

ments and related work in histopathological image analysis, weakly-supervised learning for

histopathology and prostate cancer grading, along with interpretability in deep learning

models. In Chapter 3, we introduce WiSDoM in a fully-supervised learning task for patch

Gleason grading, explains the method and results. Chapter 4 describes WiSDoM in a weakly-

supervised, interpretable setting in a whole-slide ISUP grading of prostate biopsies, results,

interpretability and discussion. Chapter 5 concludes the thesis and discusses potential av-

enues for future work.



2 Background and Related Work

2.1 Histopathology image analysis

Histopathology, the microscopic evaluation of tissue abnormalities, serves as the basis of can-

cer diagnosis, playing a pivotal role in both diagnosing and treating the disease [19]. Despite

its integral role in the detection and analysis of cancerous formations, it is afflicted with

challenges, notably its time-consuming nature and susceptibility to variances and errors[20].

Traditional clinical practices often necessitate pathologists to conduct histological diagnoses.

This process involves visually identifying, semi-quantifying, and integrating a multitude of

morphological attributes of the test sample with respect to the underlying disease mechanism.

Through rigorous systematic training, pathologists can detect predominant morphological

patterns corresponding to predefined criteria and existing clinical presentations, facilitating

the classification of their observations. Typically, a histopathological diagnosis serves as

the end-product of this process, which is then conveyed to treating physicians in a compre-

hensive written report (see figure 2-1). Even though systematic training and adherence to

standard guidelines can bolster the analytical process and diagnostic precision, histopathol-

ogy is inherently challenged by certain limitations. These drawbacks primarily stem from its

subjective nature and the discrepancies in visual perception, data amalgamation, and vari-

ability among different observers [21]. Interestingly, even amongst pathologists with similar

training, variations in interpretations can occur, leading to diagnostic inconsistencies that

could hinder optimal patient care [22]. Moreover, the increasing use of non-invasive or min-

imally invasive procedures for diagnostic sample collection has significantly reduced the size

and quality of collected specimens. This not only burdens pathologists but also amplifies

the difficulty, given the rising demand for diagnostics that include reporting variables with

prognostic or predictive value [14].

The complexities mentioned above are further exacerbated by the variability in companion

diagnostic tests used to make treatment decisions. This variability often emanates from

a lack of standardization, as well as the spatial and temporal biological heterogeneity in

samples [23].



8 2 Background and Related Work

Figure 2-1: A pathologist’s detailed examination process of a biopsy, starting with the H&E

staining of the biopsy slide to highlight cellular and tissue structures. The slide

is then placed under a microscope, enabling the pathologist to evaluate the tis-

sue’s morphology, including the architecture of glands and the nuclear charac-

teristics of cells. This analysis culminates in a diagnostic report that integrates

observations on glandular patterns, cellular differentiation, and potential ma-

lignancy indicators, leading to a final diagnosis.

2.2 Computational Pathology

To mitigate challenges, the advent of artificial intelligence (AI)-based image analysis tech-

niques are providing remarkable advancements in the realms of pathology and oncology

[17, 24, 25]. These innovative tools, designed to augment diagnostic accuracy, serve as a tool

for pathologists and oncologists, who are the principal end-users of these ground-breaking

technological developments.

A promising development in this area is digital pathology, which capitalizes on advancements

in computing power to digitize histopathological specimens using whole-slide scanners and

computationally analyze the resulting digital whole-slide images (WSI) [14]. However, the

immense complexity and sheer size of these WSI, coupled with their large amount of infor-

mation, make human interpretation challenging and intrinsically subjective.

Computational pathology emerges as a potential solution to these issues. It is born out of

the integration of AI and Machine Learning (ML) tools in pathology and can effectively

handle the complexity of WSI [26].

Fundamentally, computational pathology can be divided into two primary branches: feature

engineering and deep learning. Feature engineering revolves around creating domain-inspired

or domain-agnostic features to enhance the efficiency of machine learning algorithms, while

deep learning capitalizes on the learning capabilities of advanced algorithms to interpret

complex data. Recently, there has been a perceptible shift towards deep learning due to its

ability for autonomous feature extraction, diminished reliance on domain knowledge, and

the increased accuracy it provides. This incorporation of deep learning into computational

pathology is driving an evolution in the field, setting the stage for enhanced diagnosis and
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treatment strategies in medicine [27].

Feature engineering involves constructing domain-inspired algorithms that typically target a

specific cancer or tissue type, focusing on particular features that are not universally appli-

cable. These include quantitative counting of mitosis, textural heterogeneity measurements,

or domain-agnostic features like graph-based approaches that quantify tissue architecture,

shape, or spatial relationships. These feature-based approaches are being developed for

various cancers, including prostate, breast, lung, and oral cavity, among others [28, 29, 30].

The shift from manually crafted features to deep learning was motivated by the observation

that hierarchical feature representations yielded by these algorithms significantly outper-

form traditional image analysis methods [31]. This reduces the reliance on extensive domain

knowledge and ushers in a more refined and reliable process of cancer detection and treat-

ment. This paradigm shift could represent a breakthrough, introducing a new era of cancer

diagnosis characterized by increased precision, consistency, and efficiency. Deep learning

reduces implementation time and complexity while improving diagnostic performance [26].

Regardless of the branch, computational pathology has been used for various image pro-

cessing and classification tasks, from low-level tasks like the detection and segmentation of

tissues, nuclei, or glands to high-level tasks like predicting disease diagnosis and prognosis

[24, 32]. It is primarily used to automate time-consuming tasks [33, 34, 35, 36], thus enabling

pathologists to focus on complex decision-making tasks. Furthermore, it assists oncologists

by creating prognostic tools for evaluating disease severity, predicting outcomes, and fore-

casting response to therapy [37, 38, 39]. The progress and applications of computational

pathology are also leaving significant imprints on the field of prostate cancer diagnosis and

treatment, which stands at the core of this thesis.

2.3 Deep Learning in Prostate Cancer

Prostate cancer diagnosis has particularly benefited from the advancements in computa-

tional pathology. Deep learning methodologies have increasingly been applied to the task of

grading prostate cancer severity, utilizing the Gleason score and ISUP grade groups. This

scoring mechanism plays a crucial role in evaluating disease severity and designing personal-

ized treatment strategies. However, it is subject to both inter- and intra-observer variability

[40]. Pathologists with significant expertise often attain a medium degree of agreement while

Gleason grading, typically exhibiting an average Kappa κ of 0.34 to 0.43 [7]. However, such

expertise remains rare due to a limited number of pathologists specializing in organ-specific

and cancer-specific areas. General pathologists who lack this specific specialization might

only achieve lower Kappa levels. The recent integration of computational pathology tech-

niques has improved accuracy and efficiency, delivering significant results (κ ≈ 0.7 with

genitourinary pathologists) [41, 42]. Beyond detection, the realm of grading cancer has wit-

nessed a profound impact. Computational pathology’s efficacy in achieving prostate cancer

grading surpasses expert pathologist levels (ranging from κ = 0.7 to κ = 0.9), indicating its
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significant potential for more precise and efficient diagnoses [43, 9, 16, 44, 45, 46, 47].

Deep learning has significantly advanced the field of prostate cancer diagnosis, reaching a

level comparable to that of pathologists. This progress has been driven by the availability

of large datasets of WSI of prostate cancer [48], the initiation of public competitions and

challenges [49, 50, 1], and the creation of advanced algorithms [17, 51]. These developments

have transformed the way prostate cancer is diagnosed.

Although the strides in prostate cancer diagnosis and grading are immense, they do not stop

at detection and classification tasks. The field is evolving to explore methodologies that

improve visual interpretability and semantic understanding of learned representations. By

broadening the scope beyond classification and venturing into interpretability and semantic

comprehension, the stage is being set for more insightful and efficient cancer diagnostics.

This focus on interpretability is particularly crucial given the ’black box’ nature of deep

learning methods, which can be a significant hindrance in their broader acceptance and use

in clinical settings [52]. Consequently, research is increasingly focusing on enhancing the

interpretability of deep learning models within computational pathology to shed light on

these systems’ internal operations such as CLAM[17], UNI[51], This Looks Like That[53],

among others[54, 55, 56, 57, 58]. This heightened interpretability can build trust in these

systems by offering more transparency and the ability to identify and address any potential

errors or biases.

Computational pathology has shown the potential to enhance diagnostics, particularly in the

field of prostate cancer. Its effectiveness in grading cancer aligns with the performance of

urological pathologists with decades of experience [1]. With the promise of improved visual

interpretability and semantic comprehension, we are welcoming a new era where diagnoses

could provide more in-depth and comprehensive insights, setting the stage for personalized

and efficient treatment strategies. However, while the technology offers significant benefits,

it is also essential to address its inherent limitations. Doing so will ensure successful inte-

gration into the broader clinical ecosystem and pave the way for unlocking the full potential

of computational pathology powered by deep learning and AI methods in prostate cancer

diagnosis and treatment.

2.4 Weakly supervised learning

Despite the recent success of computational pathology applications, significant challenges

persist. WSI present a complex landscape with challenges for automated analysis. Deep

learning techniques, despite their efficacy and ease of development, often necessitate labor-

intensive, pixel-level annotations by pathologists for supervised learning. Weakly supervised

learning models have garnered substantial attention in computational pathology due to their

proficiency in learning from limited or imprecisely labeled data. This feature is particularly

valuable in scenarios where acquiring detailed annotations is challenging or not feasible, a

frequent situation in pathology. It has been especially useful for slide-level tasks such as
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Gleason grading in prostate cancer[44, 9], subtyping of renal cell carcinoma and non-small-

cell lung cancer[17], and sentinel lymph node metastases slide-level classification [59]. These

methods typically rely on a single label derived from a pathology report, reducing the need

for exhaustive manual annotations.

The primary approach used for weakly supervised learning in computational pathology is

Multiple Instance Learning (MIL). In MIL, a WSI is divided into numerous small patches,

each inheriting the slide-level label. The model is trained on these patches, and then predic-

tions are aggregated into a single slide-level decision using techniques such as max-pooling.

However, this approach under-utilizes WSI data since MIL updates the model’s parame-

ters by considering only the signal from the max-pooled instance in the WSI, leading to

a significant loss of context and information. Additionally, these models, along with most

deep learning models, are often perceived as ’black boxes’ due to the opaque nature of their

decision-making processes, which involve navigating complex networks with millions of pa-

rameters. Therefore, it is crucial to enhance the interpretability of these processes or to

develop tools that assist in understanding the decisions made by these models. Ensuring in-

terpretability or providing explanatory tools is a necessary step for the successful integration

of deep learning models into routine clinical workflows[60].

2.5 Interpretability

Interpretability in machine learning encompasses the capacity to render the operations of

these computational models comprehensible to humans. This attribute holds particular

significance in computational pathology, medical images are analyzed. Ensuring that the

workings of these algorithms are accessible and trustworthy is imperative, given their impli-

cations for patient care.

ML systems have limitations in the formulation of problems. These limitations may arise

from various sources, including gaps in scientific knowledge, safety considerations, ethical

dilemmas, or conflicts between differing objectives [61]. In the medical domain, clarity

regarding the rationale behind an algorithm’s decision is essential to ascertain that it is

operating in a manner that is safe, unbiased, and aligned with ethical norms.

In the transition from traditional machine learning to deep learning, the challenge of inter-

pretability becomes even more pronounced due to the ”black box” nature of deep learning

models. Deep learning architectures, especially those used in computational pathology, such

as convolutional neural networks, can achieve remarkable performance in tasks like tumor

detection, classification, and prognosis. However, their complex layers and non-linear trans-

formations make it difficult to understand how they arrive at their decisions. This opacity

can hinder clinicians’ and researchers’ trust in these systems, despite their potential to rev-

olutionize pathology through enhanced accuracy and efficiency.

Attention-guided weakly-supervised MIL methods have emerged as a solution that addresses

two significant challenges in computational pathology: the sub-optimal usage of data inher-
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ent in traditional MIL and the pervasive lack of interpretability in deep learning models. By

incorporating attention mechanisms, these methods not only enhance the data aggregation

process, allowing for more effective utilization of the rich information in whole-slide images,

but also improve the qualitative interpretability of the models. One approach has been the

integration of attention heatmaps [62, 63]. These mechanisms aim to highlight the regions

within the data that the model deems significant for making a diagnosis. For instance, in

models like clustering-constrained-attention multiple-instance learning (CLAM)[17], atten-

tion mechanisms help elucidate the areas within tissue samples that are influential in the

model’s decision-making process. However, while these efforts in qualitative interpretability

contribute valuable insights, they do not comprehensively address the transparency of these

models.

In the context of enhancing deep learning models for clinical use in computational pathology,

it is essential to address three intertwined aspects of model interpretability and transparency:

1. Visual Interpretability: This involves using methods like classification and attention

heatmaps to highlight important areas in diagnostic images. These methods help clini-

cians see what the model focuses on, making it easier for them to trust and understand

the model’s outputs.

2. Prototypical Interpretability: Providing explainability of how the model works inter-

nally by showing previously diagnosed ’prototypes’ or key examples that the model

used in its decision-making. It is important for clinicians to see these prototypes to

grasp why the model makes certain predictions, ensuring these are based on patterns

and phenomena they recognize in their clinical practice.

3. Uncertainty Quantification: It’s vital for models to do more than just identify key areas

and prototypes; they must also accurately measure and communicate the confidence

in their predictions. This is especially important in medical diagnostics, where it helps

manage inherent complexities and ambiguities. By highlighting its own limitations

and potential errors, a model can greatly assist clinicians in making better-informed

decisions. This aspect of model transparency has been largely overlooked in deep

learning research within the medical field.

While weakly supervised learning models offer significant advantages in computational pathol-

ogy, their full clinical adoption hinges on overcoming the ’black box’ nature through enhanced

interpretability. This involves visual and qualitative insights and a deeper understanding of

the model’s internal representations through prototypical interpretability and the incorpo-

ration of uncertainty quantification. Collectively, these dimensions contribute to building

robust, transparent, and clinically viable diagnostic tools.
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2.6 Kernel Density Matrices

This thesis presents WiSDoM (see Figure 4-1), a framework based on Kernel Density

Matrices[18] to model joint probability distributions. WiSDoM is tailored as a probabilistic

deep learning framework specifically for automated grading of prostate whole-slide images.

It operates in a fully and weakly supervised manner, placing a strong emphasis on inter-

pretability.

The application of KDM in medical imaging has already been proven effective in domains

such as diabetic retinopathy analysis and prostate cancer tissue grading [64]. Its success

stems from its unique ability to integrate the robust feature representation of deep convolu-

tional neural networks with a differentiable probabilistic regression model. This integration

enables KDM to offer a sophisticated representation of label probability distributions within

an ordinal regression framework. Such a framework is particularly adept at modeling cancer

progression as a continuum. A key strength of KDM lies in its ability to predict posterior

probability distributions, which allows for the precise quantification of the uncertainty in its

predictions.

2.6.1 Density Matrix

In quantum mechanics, the state of a pure quantum system is encapsulated by a wave

function, denoted as |ψ⟩, within a Hilbert space H. To determine the likelihood of the

system being in a particular state, one computes the square of the magnitude of the wave

function’s projection onto that state [65].

On the other hand, quantum systems can also exhibit classical uncertainty, characterized by

mixed states. These mixed states are conceptualized as a statistical blend of various pure

states, each represented by |ψi⟩ and associated with a distinct probability pi. The set of

probabilities {pi} adheres to the normalization condition
∑N

i pi = 1. For such mixed states,

the formalism of quantum mechanics employs a density matrix, denoted by ρ, to represent

the statistical properties of the system:

ρ =
N∑
i

pi |ψi⟩ ⟨ψi| (2.1)

where ⟨ψi| represents the conjugate transpose of |ψi⟩.The Born rule [65] can be extended to

compute the probability of finding a system with the state represented by ρ in a state |ψ⟩
after a measurement:

p(|ψ⟩ | ρ) = Tr(|ψ⟩⟨ψ|ρ) = ⟨ψ|ρ|ψ⟩ =
N∑
i

pi |⟨ψ | ψi⟩|2 (2.2)

Density matrices serve as powerful instruments for representing probability distributions and

facilitating a range of computations with efficiency. They are pivotal in predicting the results



14 2 Background and Related Work

of quantum measurements and in calculating expected values, among other applications

[65, 18].

The concept of a Kernel Density Matrix (KDM) emerges as a specialized form of a density

matrix, formulated within a Hilbert space shaped by a kernel function. KDMs excel in

efficiently encapsulating joint probability distributions and are instrumental in tasks like

inference, generation, and sampling. A key attribute of KDM is the differentiability of their

internal operations, which allows for seamless integration into deep learning frameworks.

The formal definition of KDM is as follows, as originally stated by González et al [66]:

Definition 1 (Kernel Density Matrix). A Kernel Density Matrix over a set X is a triplet

ρ = (C,p, kθ) where C =
{
x(1), . . . ,x(m)

}
⊆ X,p = (p1, . . . , pm) ∈ Rm and kθ : X×X → R,

such that ∀x ∈ X, k(x,x) = 1,∀ipi ≥ 0 and
∑n

i=1 pi = 1

The elements of C are the components of the KDM, and the pi value represents the mixture

weight, or probability, of the component xi. If ϕ : Rn → H is the mapping to the RKHS H
associated to the kernel kθ, ρ represents a density matrix defined as in 2.1 with components

|ψi⟩ =
∣∣ϕ (x(i)

)〉
. The projection function associated to a KDM ρ is defined as:

fρ(x) =
∑

x(i)∈C

pik
2
θ

(
x,x(i)

)
(2.3)

The projection function in 2.3 can be transformed into a probability density function (PDF)

by multiplying it by a normalization constant that depends on the kernel of the KDM:

f̂ρ(x) = Mkfρ(x) (2.4)

2.6.2 Inference with Kernel Density Matrices

Inference is the process of deducing unknown output variables from known input variables

and the parameters of a model. This process can be approached probabilistically, where

the relationship between inputs and outputs is expressed through a probability distribution,

denoted as p(x′,y′). This distribution reflects the inherent uncertainty in the data gener-

ation process. In making predictions about output variables, it is crucial to consider and

integrate both types of uncertainty into the output probability distribution, p(y). Inference

transforms the probability distribution of input variables, p(x), into a distribution for the

output variables, p(y), by leveraging the joint probability distribution of inputs and outputs,

p(x′,y′). In the context of KDM, these probability distributions are represented as follows:

ρx =
({

x(i)
}
i=1...m

, (pi)i=1...m , kX
)

(2.5)

ρx′,y′ =
({(

x′(i),y′(i))}
i=1...m′ , (p

′
i)i=1...m′ , kX ⊗ kY

)
(2.6)
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ρy =
({

y′(i)}
i=1...m′ , (p

′′
i )i=1...m′ , kY

)
(2.7)

The probabilities of ρy after the inference procedure are given by the following expression:

p′′i =
m∑
ℓ=1

pℓp
′
i

(
kx

(
x(ℓ),x′(i)))2∑m′

j=1 p
′
j (kx (x

(ℓ),x′(j)))
2 , for i = 1 . . .m′ (2.8)

This inference procedure uses a kernel function to assign local weights to each output training

sample according to the input sample’s similarity with each learned prototype x′(i) in the

KDM ρx′,y′ . We obtain a full probability distribution represented as an output KDM ρy.

In quantum mechanics, the density matrix ρx′,y′ represents the state of a bipartite system.

The inference process in this context is a measurement operation, where the x subsystem

collapses, resulting in a state represented by ρx. As a consequence of this collapse, the state

of the y subsystem is altered and becomes ρy [66].

The parameters of the inference model correspond to the parameters of the KDM ρx′,y′ .

These parameters can be estimated in a non-parametric way which does not scale well to

large datasets, discriminative learning by performing gradient-based optimization minimizing

a suitable loss function like cross-entropy loss or mean square error depending on the output

variable type and task, and maximum likelihood learning which estimates the parameters

by maximizing the probability density of the training dataset assigned by ρx′,y′ .

For training, set Cx′y′ is initialized with a randomly selected subsample from the training

dataset D. Each pair (x′(i), y′(i)) in Cx′y′ is selected to represent the initial state of KDM.

The algorithm proceeds by assigning an initial equal probability px′y′ to each component

in Cx′y′ . Subsequently, a KDM ρ
(i)
x′y′ is constructed for each sample, integrating the kernel

functions kX,σ and kY through tensor product operations. Iterative optimization is carried

out through a gradient-based method, where the objective is to minimize the loss function

L with respect to the predicted label distributions ρ
(i)
Y and the actual labels y(i). This

process continues until a predefined stopping criterion is met, resulting in a KDM ρx′,y′ that

encapsulate the learned distributional characteristics of the data, allowing for the predictive

modeling of labels within an ordinal regression framework and quantifying the uncertainty in

predictions. A graphical representation of KDM ρx′,y′ and the inference procedure is shown

in figure 2-2.

The key strength of KDM lies in its ability to provide uncertainty quantification and model

explainability. In this study, KDM will be extended to tackle two main tasks: prostate tissue

Gleason grading and whole-slide ISUP grading.
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Figure 2-2: Graphical representation of KDM ρx′,y′ containing a set of prototypes or learned

representations of the input data x′, a label distribution y′, and a set of proba-

bilities p′ correlating to the importance or probability of each learned represen-

tation and the inference procedure involving input KDM ρx, and joint KDM

ρx′,y′ yielding a KDM ρy from which label probabilities p′′ can be calculated.
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In this chapter, the introduction of WiSDoM is followed by an in-depth description of its

training and inference pipeline, applicable in fully-supervised learning environments. The

fully-supervised task operates similarly to conventional deep learning approaches, where a

deep neural network is used as a feature extractor, and then a classification is made based on

those features. However, WiSDoM is able to provide uncertainty quantification by treating

the task as an ordinal regression problem where expected value and variance are obtained

for every prediction as a measure of uncertainty, while modeling cancer progression as a

continuum. Additionally, learned internal parameters of the KDM within WiSDoM allow

prototypes to be obtained as examples of the internal learned representations, providing

an additional layer of interpretability for clinical trust. The discussion also includes an

exploration of the uncertainty quantification and interpretability features.

3.1 Method

We investigate the application of WiSDoM for Gleason pattern grading in a fully-supervised

setting, a critical task in the diagnostic process of prostate cancer. Our primary focus is on

the use of WiSDoM to effectively distinguish among various Gleason patterns depicted in

histopathological images of prostate tissue. These patterns constitute a vital determinant in

assessing the severity and progression of prostate cancer.

While WiSDoM in a fully-supervised task works similarly to a traditional deep learning

model, we aim to provide additional layers of trust and interpretability to predictions. Our

model aims to replicate the diagnosis procedure employed by pathologists by visually quan-

tifying the extent of each pattern. The purpose extends beyond the classification of these

patterns; it attempts to accurately quantify their prevalence. It is noteworthy that this

approach mirrors the visual analysis performed by pathologists in examining tissue samples,

which ultimately yields a Gleason score. We create an automated process that closely reflects

a real-world clinical setting, thereby enhancing interpretability.

WiSDoM encodes WSI patches into 128-dimensional feature vector representations x ∈ R128,

using a deep learning model as the backbone. First, patch feature vectors are represented as

a KDM ρx with m = 1 components and p′ = 1, KDM ρx′,y′ is initialized by an arbitrary set

of encoded patch-label pairs Cx′y′ from training dataset D (see figure 3-1).

The inference procedure involves using the KDM ρx′,y′ and input KDM ρx, and performing

an inference operation (see eq. 2.8). The resulting KDM ρy contains a discrete probability
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Figure 3-1: Fully supervised WiSDoM architecture The process begins with extract-

ing patch bags from the WSI. These bags are encoded into a feature space by

a CNN (Convolutional Neural Network). Every patch feature vector is mod-

eled as a single component density matrix. An output distribution of labels is

then derived from the joint KDM ρx′,y′ of weighted prototypes and their labels

obtained after the training process. The output includes a patch-level label

posterior distribution p′′, from which an expected value and variance can be

computed.

distribution of output labels p′′ = (p′′1, p
′′
2, . . . , p

′′
n), where each p′′i , represents the probability

associated with the i-th label. When performing a classification task, we select the most
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probable label from the distribution. When performing ordinal regression, we slightly modify

the inference procedure: First, we convert categorical labels to continuous labels in the range

[0, 1], the conversion operation from a categorical label to an ordinal label is simply achieved

by normalizing the categorical label of each sample by the total number of possible labels as

follows (Eq. 3.1).

yordinal =
ycategorical
Nlabels

(3.1)

From the probability distribution obtained from ρy we can calculate the expected value and

variance.

Given a density matrix ρy, represented by a vector p′′ = (p′′1, p
′′
2, . . . , p

′′
n), where each p′′i rep-

resents the probability associated with the i-th label, the expected value and variance are

computed as follows:

A weighted sum of the probabilities and the values associated with each label. The values

associated with each label are evenly distributed between 0 and 1. Therefore, the expected

value (E[ŷ]i) is calculated as follows:

E[ŷ]i =
m∑
j=1

p′′ij · y′j (3.2)

Where y′jj=1...m
are the values associated with each label.

The variance is calculated as the expected value of the squares minus the square of the

expected value. This is given by:

V ar[ŷ]i = E[ŷ2]i − (E[ŷ]i)
2 (3.3)

where E[ŷ2]i is calculated similarly to E[ŷ] but using the square of the values (y′2j ):

E[ŷ2] =
m∑
i=j

p′′ij · y′2j (3.4)

The expected value and variance are then output for each input patch. Algorithms 1 2

summarize the training and prediction procedure of fully-supervised WiSDoM.

3.2 Experimental Design

This section presents the experimental design of WiSDoM in the fully-supervised task. It

begins with a description of the dataset characteristics, detailing the specific splits used

for training, validation, and testing. This is followed by an overview of the performance

measures adopted for assessing WiSDoM effectiveness. We then discuss the baselines selected

for comparative analysis.
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Algorithm 1: Fully-supervised WiSDoM Training Algorithm

Input:

D = {(xi, yi)}i=1...N : Training dataset.

m: number of components (encoded set of training patches) of KDM ρx′,y′

Z: Deep learning backbone

1. KDM ρx′,y′ is initialized with a sample of size m from dataset D

2. for each (xi, yi) ∈ D:

ρy = ({y′i}i=1...m, (p
′′
i )i=1...m, KY ) = predict(xi, ρx′,y′ , Z) (see algorithm 2)

3. If task = classification:

a) ŷ = y′argmax(p′′)

b) Minimize L = −
∑N

i=1 yi log(ŷi)

4. If task = ordinal regression:

a) Calculate E[ŷ]i =
∑m

j=1 p
′′
ij · y′j and V ar[ŷ]i = E[ŷ2]i − (E[ŷ]i)

2, where

E[ŷ2]i =
∑m

j=1 p
′′
ij · y

′2
j

b) Minimize L = 1
N

∑N
i=1(E[ŷ]i − yi)

2 + α · V ar[ŷ]i, where α is a penalization

parameter for variance.

5. Update all backbone weights w, and KDM ρx′,y′ parameters using gradient descent.

6. Return (Z, ρx′,y′)

Algorithm 2: Fully-supervised WiSDoM prediction procedure

Input:

ρx′,y′ = {(x′i, y′i)}i=1...m, (pi)i=1...m, kX ⊗ kY: joint KDM

x: input patch

Z: Deep Learning backbone

1. Encode patch x using Z: z = Z(x)

2. Create ρx = ({z}, (1), kX)

3. Calculate probabilities p′′ for output KDM ρy using ρx and ρx′,y′ with eq. 2.8

4. ρy = ({y′i}i=1...m, (p
′′
i )i=1...m, KY )

5. Return ρy
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Table 3-1: Patch dataset distribution, G = Gleason grade

Dataset Total Stroma Healthy G 3 G 4 G 5

Training set 1’039.873 655.467 85.354 105.741 160.868 32.443

Validation set 343.114 217.987 28.308 33.350 54.516 8.953

Test set 344.472 218.870 28.703 36.224 52.826 7.849

3.2.1 Dataset

The effectiveness of WiSDoM at the patch level was assessed using the Prostate Cancer Grade

Assessment (PANDA) dataset[1], one of the largest publicly available collections of prostate

WSI. This dataset comprises 10,600 digital whole-slide images of H&E-stained biopsies from

Radboud University Medical Center (D1) and Karolinska Institutet (D2).

The data provided by the two centers vary. Both D1 and D2 include WSI-level diagnostics

for both Gleason and ISUP grades, along with annotation masks indicating the presence

of Gleason patterns on the slides. However, not all WSIs are annotated. D2 includes

regions annotated as cancerous and non-cancerous, whereas D1 provides detailed pixel-level

annotations for Gleason patterns 3, 4, 5, stroma, and healthy tissue.

Furthermore, the centers employed different data acquisition methods. D1 scanned all slides

at a 20x magnification (pixel resolution 0.24 µm) using a 3DHistech Pannoramic Flash II

250 scanner. In contrast, D2 used a 20x magnification as well, but with pixel resolutions

of 0.45202 µm and 0.5032 µm for slides scanned with Hamamatsu C9600-12 and Aperio

ScanScope AT2, respectively.

The annotation process for both centers is subject to variability due to the subjective nature

of Gleason grading. Annotations in D1 were determined by a consensus of medical students

experienced in pathology, while D2 relied on a single expert pathologist for annotations.

For our study, the data from D1 was divided into training, validation, and testing sets

to assess the model’s performance in patch-level Gleason grading. Patch extraction was

exclusively conducted on data from D1 due to the lack of tissue annotations in D2. In D1,

patches are labeled into specific Gleason grades based on the predominant tissue type in the

corresponding annotation masks, with a patch assigned to a particular class if it contains

over 25% of that tissue type. The split of patches was consistently maintained at the slide

level to avoid information leakage. The specifics of the patch dataset are detailed in Table

3-1. It is important to note that the patch data originates solely from D1.

3.2.2 Performance Measures

The efficacy of WiSDoM in both classification and ordinal regression tasks is assessed using

two metrics: Cohen’s Kappa (κ, see equation 3.5), Accuracy (see equation: 3.6), and Mean

Absolute Error (MAE, see equation: 3.7). Cohen’s Kappa (κ) is a statistical metric that

quantifies the agreement between two outcomes. This metric generally ranges from 0, indi-
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cating random agreement, to 1, denoting complete agreement. We chose this metric for its

relevance in measuring inter-observer agreement with the Prostate Cancer Grade Assessment

(PANDA) reference standard. Additionally, since the κ is the primary metric used in the

PANDA challenge, it allows for a direct and coherent assessment of WiSDoM performance

compared to established benchmarks [1]. The MAE, on the other hand, provides a direct

measure of the average magnitude of errors in WiSDoM predictions.

κ = 1−
∑

i,j wi,jOi,j∑
i,j wi,jEi,j

(3.5)

where Oi,j is the observed agreement between the model’s predictions and the actual ground

truth, Ei,j is the expected agreement by chance, and wi,j is the quadratic weight given to

the disagreement between prediction i and ground truth j. The κ metric ranges between 0

and 1, where 1 signifies perfect agreement, providing a measure of the model’s agreement

with the ground truth.

Accuracy is defined as a metric to assess the ratio of correct predictions by the model:

Accuracy =
1

n

n∑
i=1

1(ŷi = yi) (3.6)

Where n is the total number of samples, ŷi is the predicted label for the i-th sample, yi is the

ground truth label for the i-th sample, and 1(·) is the indicator function, which is 1 if ŷi = yi
and 0 otherwise. This calculates the proportion of correct predictions over all predictions

made.

The MAE is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.7)

where yi is the true value, ŷi is the predicted value, and n is the total number of obser-

vations. MAE provides a straightforward measure of how close the predictions are to the

actual values, irrespective of direction, a suitable metric for regression problems.

3.2.3 Baseline

Since, to the best of our knowledge, no work has been published on patch Gleason grading

with the PANDA dataset, we use as a baseline a traditional CNN trained on the same

problem as WiSDoM on a fully-supervised fashion (see table 3-2.)

3.2.4 Training Details

For patch-level, fully-supervised training, we process each WSI to extract all patches that

contain tissue. The selection of patches for training is guided by an automated tissue detec-
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tion algorithm that identifies regions within the slide that contain significant tissue content.

To ensure the relevance and quality of the training data, we exclusively select patches that

exhibit more than 25% of a specific Gleason pattern, as determined by the annotation masks

provided in the Radboud UMC cohort (D1). Patches are extracted at a 20x magnification

level, with each patch sized at 192x192 pixels.

The encoding of patches into a latent feature space is accomplished using an ImageNet pre-

trained ConvNeXT[67] model Z. We employ ConvNeXT due to its position as a state-of-

the-art convolutional neural network. It balances complexity and parameter count, provid-

ing high-quality feature representations. This allows for efficient representation acquisition

without the substantial computational power demand associated with Vision Transformers.

Before training, the model is subjected to a preliminary warm-up phase. During this phase,

lasting for 2 epochs, the encoder processes individual patches in a straightforward classifica-

tion scenario to adjust its weights for optimal performance in the patch-level context.

For the initialization of the KDM ρx′,y′ , which requires establishing a set of patch-label pairs

Cx′,y′ and corresponding importance weights p′, we compile a balanced collection of patch-

label pairs from the training dataset. These pairs, after being processed through the encoder

to transform them into latent space representations, serve as the basis for initializing x′ and

y′ within the KDM ρx′,y′ . Lacking initial importance weights, p′ is uniformly set, assigning

equal significance p′i = 1/m to all m pairs at the start.

Hyperparameter tuning led to the selection of 216 initialization pairs or ’prototypes’, making

sure that each possible class is well represented in this initial set of pairs. Following warmup

and initialization, training is started. Optimization is carried out using the Adam optimizer,

with a learning rate of 0.0001 and parameters β1 = 0.9 and β2 = 0.999. We used a mini-

batch size of 36, with a gradual warm-up scheduler applied for the first epoch followed

by cosine annealing for the subsequent epochs. Categorical cross-entropy loss is used for

classification, training is conducted over 50 epochs with early stopping after five epochs

without improvement in validation loss. For ordinal regression, the setup is similar, using

continuous labels between 0 and 1. The loss function is Mean Squared Error with a variance

penalty (α), maintaining consistent optimizer and batch size settings as in classification.

3.3 Results

WiSDoM demonstrated notable performance in the five-class Gleason pattern classification

task, achieving a κ of 0.896 and an accuracy of 0.901. This task encompassed the classi-

fication of stromal, benign epithelium, and Gleason grades 3, 4, and 5 patches. When the

grading was framed as an ordinal regression task, WiSDoM achieved a κ of 0.906, an ac-

curacy of 0.890, and a MAE of 0.13. These results highlight the model’s adaptability and

effectiveness in addressing the grading challenge, both as a multi-class classification prob-

lem and as an ordinal regression task. The latter approach is particularly significant as it

aligns with the clinical understanding of Gleason grades, representing them as a continuum
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Figure 3-2: Violin plots of predictions variance grouped by absolute error, as seen in the

plot, correct predictions have less variance while error 1 and 2 groups tend to

have larger variance.

indicative of cancer progression.

Uncertainty Quantification

A key feature of the ordinal regression model is its ability to quantify uncertainty. Each

prediction generated by the model includes a confidence level, expressed as variance. This

aspect of the model is crucial as it allows for the exclusion of predictions with high levels

of uncertainty, enhancing the model’s precision and reliability. Through the analysis of

various variance thresholds, it was observed that prioritizing predictions with lower variance

(σ2 < 0.05) improved the model’s inter-observer agreement and accuracy. Specifically, under

these parameters, the model attained a κ of 0.924, an accuracy of 0.910, and maintained

an MAE of 0.13. This relationship between prediction accuracy and variance is visually

represented in Figure 3-2, which displays violin plots of test set predictions. The plots

are categorized according to absolute error and variance values, demonstrating that correct

predictions typically align with lower variance. Predictions off by an error of 1 (for example,

predicting Gleason score 3 when the actual score was 2 or 4) exhibited higher variance values.

Predictions with an error of 2 or more (e.g., predicting a Gleason score of 3 when the true

classification was Benign or Gleason score 5) displayed even greater variance.

Interpretability

WiSDoM delivers fine-grained heatmaps (Figure 4-3 presents various examples with varied

ISUP grade, including an instance of a healthy biopsy. In the case of the healthy biopsy,

the model is expected not to highlight any regions but healthy epithelium, illustrating its
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Table 3-2: Performance Metrics for fully-supervised Gleason pattern grading

WiSDoM κ Accuracy MAE

Five-Class Classification 0.896 0.901 -

Ordinal Regression 0.906 0.890 0.13

Ordinal Regression with Variance Threshold (σ2 < 0.05) 0.924 0.910 0.13

Baseline (EfficientNet-v2[68]) 0.892 0.899 0.158

ability to discern between pathological and non-pathological samples accurately.) that reveal

near-pixel-level detail of the Gleason patterns identified across the whole slide. This feature

is particularly valuable as a visual aid for pathologists in quantifying the extent of Gleason

patterns, a fundamental aspect of the Gleason grading protocol. The heatmaps serve as a

supplementary tool, aiding pathologists in identifying potential blind spots and providing a

secondary perspective on regions that may be difficult to diagnose.

Gleason pattern area quantification

Following the results of WiSDoM in Gleason pattern classification and ordinal regression

tasks, we expanded our analysis to encompass an element of pathologist-performed prostate

cancer (PCa) grading: the quantification of Gleason pattern areas. Traditionally, pathol-

ogists grade prostate cancer by identifying and measuring the extent of different Gleason

patterns present in tissue samples, with the Gleason score being determined from the two

most prevalent patterns.

Employing WiSDoM patch-level classification capabilities on WSI, we were able to replicate

this traditional method of area quantification. This approach not only allows for a direct

comparison between the performance of our model and conventional pathological methods

but also introduces an additional dimension of interpretability to the model’s outputs.

We conducted a detailed comparison between the area estimations generated by WiSDoM

and those derived from pathologist annotations. This analysis was stratified according to

ISUP Grade Group. It involved calculating the average difference in area quantification

between pathologist annotations and the model’s predictions at the patch level for all slides

within each ISUP grade group. The MAE was employed as the primary metric for this

assessment, offering a quantifiable measure of the model’s accuracy in area quantification

when compared to the evaluations made by pathologists. The MAE values corresponding to

each ISUP Grade Group, which are detailed in table 3-3, provide insights into the extent

to which the model’s Gleason pattern area quantifications are in concordance with those of

experienced pathologists.
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Table 3-3: Quantification of average Gleason pattern extension in whole-slides grouped by

ISUP grade group. True extension is measured from each healthy epithelium,

stroma, and Gleason pattern available tissue annotations. Predicted extension is

calculated by performing inference at a patch level with a high overlapping ratio

of patches. The difference in extend is then quantified using MAE per tissue

pattern and then averaged across all slides in each ISUP grade group.

ISUP Grade Group Gleason Pattern True extension % Predicted % MAE

GG 0

Stroma 78.0 76.5

0.0059

Healthy Epithelium 22.0 22.8

Gleason 3 0.0 0.04

Gleason 4 0.0 0.02

Gleason 5 0.0 0.01

GG 1

Stroma 64.4 62.3

0.0131

Healthy Epithelium 10.7 13.4

Gleason 3 24.9 23.7

Gleason 4 0.0 0.05

Gleason 5 0.0 0.0

GG 2

Stroma 55.6 51.9

0.0171

Healthy Epithelium 5.4 7.3

Gleason 3 27.1 29.1

Gleason 4 11.9 11.3

Gleason 5 0.0 0.04

GG3

Stroma 57.2 54.0

0.0165

Healthy Epithelium 5.7 7.4

Gleason 3 9.7 11.2

Gleason 4 27.4 26.5

Gleason 5 0.0 0.09

GG 4

Stroma 62.8 60.6

0.0117

Healthy Epithelium 5.1 6.1

Gleason 3 2.6 3.5

Gleason 4 25.9 25.2

Gleason 5 3.5 4.7

GG 5

Stroma 62.8 59.3

0.0174

Healthy Epithelium 3.0 3.4

Gleason 3 0.0 0.08

Gleason 4 21.6 20.7

Gleason 5 12.6 15.8

Overall 0.0136
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WiSDoM is a probabilistic deep learning framework tailored for weakly supervised classifica-

tion and ordinal regression tasks in computational pathology that integrates deep learning,

KDM, and local-global attention. On a weakly supervised task, WiSDoM operates on the

principle that each WSI in the training set is an individual data point with an established

slide-level diagnosis yet lacks specific pixel or region-level annotations, we then view each

WSI as a collection of numerous smaller segments or patches, similar to MIL. Tradition-

ally, MIL focuses on binary classification, discerning positive from negative classes under

the assumption that the presence of one positive patch classifies the entire slide as posi-

tive. This approach typically employs a max-pooling aggregation function, choosing the

patch with the highest probability of the positive class for slide-level classification. However,

this method is not suitable for multiclass classification or binary classification without clear

positive/negative annotations.

WiSDoM differentiates itself by not using the standard max-pooling or other conventional

aggregation functions like average pooling, generalized mean, or log-sum-exp, which are

limited in terms of problem-specific adaptability and interpretability. Instead, WiSDoM

integrates an attention-guided KDM for aggregating information from patches. This allows

for a better integration of patch-level data into a unified WSI prediction or representation,

offering enhanced interpretability and adaptability for various classification problems.

4.1 Method

Our prior approach relied on tissue annotations to select relevant patches and to gather

Gleason pattern labels for patches across an entire slide. This strategy facilitated an in-

terpretable method for quantifying the extent of each Gleason pattern on the whole slide,

similar to how a pathologist would conduct their diagnosis, all centered around WiSDoM

classifying patches into specific Gleason patterns.

However, given the high cost and relative unavailability of tissue annotation masks in real-

world clinical scenarios, we aim to eliminate the necessity for tissue annotations during

training. In this section, we propose a novel method that requires only a whole-slide diagno-

sis, typically an ISUP grade group for prostate biopsies, which can be easily obtained from

pathology reports.

Competitive performance can be achieved in line with current state-of-the-art methodologies

for whole-slide grading, which only needs a weak label for training while being constrained
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by providing interpretability.

We extend WiSDoM probabilistic deep learning framework for weakly supervised, inter-

pretable ordinal regression and classification. It operates on the principle that each WSI in

the training set is an individual data point with an established slide-level diagnosis yet lacks

specific pixel or region-level annotations. The framework adopts a similar approach to MIL,

viewing each WSI as a collection of numerous smaller segments or patches (see figure 4-1).

Traditionally, MIL focuses on binary classification, discerning positive from negative classes

under the assumption that the presence of one positive patch classifies the entire slide as

positive. This approach typically employs a max-pooling aggregation function, choosing the

patch with the highest probability of the positive class for slide-level classification. How-

ever, this method is unsuitable for multiclass or binary classifications without explicit posi-

tive/negative annotations.

WiSDoM differentiates itself by not using the standard max-pooling or other conventional

aggregation functions like average pooling, generalized mean, or log-sum-exp, which are

limited in terms of problem-specific adaptability and interpretability. Instead, WiSDoM

integrates an attention-guided KDM for aggregating information from patches. This method

allows for a more nuanced integration of patch-level data into a unified WSI prediction or

representation, offering enhanced interpretability and adaptability for various classification

problems.

Following tissue detection and patch extraction, WiSDoM involves encoding the N patches

constituting a WSI into a feature vector representation xn ∈ R128 utilizing a deep learning

backbone.

In our study on ISUP grading, we adopt a novel approach by using a collection of sample

instances, known as ’bags,’ instead of labeling each sample individually. This method is

particularly suited to scenarios where patches from a whole slide collectively form a specific

ISUP grade group, but individual Gleason patterns at the patch level remain unknown, a

common occurrence in real-world settings.

We interpret a specific collection of patches from a WSI as a ’bag.’ The challenge for the

model is to learn to assign accurate labels to each patch within these bags and then synthesize

this information to make a comprehensive prediction at the whole-slide level. This approach

inherently involves uncertainties, especially regarding the individual characteristics of each

patch within a bag. Our objective is to model these uncertainties effectively. This integration

allows for a more accurate and reliable prediction process, closely mirroring the complexities

encountered in actual pathological assessments.

During the training process, WiSDoM takes bags of training samples X(i) =
(
x(i)j

)
j=1...mi

.

The training dataset corresponds to a set of pairs D =
(
X(i),y(i)

)
i=1...ℓ

, where each y(i) is a

vector expressing the label proportions of the i-th sample. Each input sample is represented

by a KDM ρx with mi components. For our specific problem, where the goal is to obtain a

whole-slide ISUP grade group from a patch bag, we model a variant of the original implemen-
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Figure 4-1: Weakly supervised WiSDoM architecture. The process begins with ex-

tracting patch bags from the WSI. These bags are encoded into a feature space

by a CNN. The patch feature vectors are then processed through an attention

network. This step aggregates local and global information, thereby weighing

the importance of each patch. An inference operation is then performed using

KDM ρx′,y′ and ρx. An output distribution of labels p′′ is then derived from

the joint probability distribution of weighted prototypes and their labels. The

output includes a whole slide-level label posterior distribution, from which an

expected value and variance can be computed.

tation of KDM[18]. It receives training sample bags as a set of pairs D =
(
X(i),y(i)

)
i=1...ℓ

,
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where each y(i) is the ISUP grade group of the bag, perceived as the whole-slide ’weak’ label.

Furthermore, considering the density matrix representation inherent to the KDM, which

ascribes a probability to each possible label, we can model the significance or contribution

of each instance within a bag towards the overall bag’s label. To accomplish this, we employ

a local-global attention method, as shown in [69]. This method assigns a weight, or a

contribution factor, to each instance within the bag. Its application to natural images has

proven to be useful, as it not only enhances performance but is also able to pinpoint regions

of interest (ROIs), providing an additional layer of interpretability. This contribution of each

patch to the bag class can be modeled into the probability pi of each KDM ρx component x(i)j.

By incorporating this additional information, we enhance the weakly-supervised learning

process by compelling the model to assign greater importance to certain instances within

the bags over others.

This attention module receives patches from a bag and processes it using two multi-layer

perceptrons (MLPs), which form the means to extract attention weights from these patch

bags. The initial MLP is charged with computing the local context, which essentially en-

capsulates the local information available in each patch xj. This is accomplished by passing

the input through the first MLP, defined as MLP1, which yields zlocalj .

zlocalj = MLP1(xj) (4.1)

Subsequently, a global context is obtained by aggregating the local context across all patches.

zglobal =
1

k

k∑
j=1

zlocalj (4.2)

Where k is the number of patches in the bag. This step provides understanding of the

information present in the input data and forms the basis for the subsequent attention

distribution. The local (zlocalj ) and global (zglobal) information are then combined, and this

representation of both local and global information, are local-global embeddings that are fed

to the second MLP MLP2, yielding another set of weights, z which are the importance of

each patch in the bag. The raw attention weights, z, are then passed through a Softmax

operation.

zattnj = Softmax(MLP2((z
local
j , zglobal))) (4.3)

The final attention weights are zattnj for each patch in the bag. This Softmax operation

normalizes these weights such that they all lie between 0 and 1 and their total sum equals 1.

The application of this operation allows the model to weigh each patch based on both the

unique contribution of each patch and the global context, enhancing the model’s performance

by considering both individual and collective factors.

The primary differentiation in this approach, in comparison to the previous experiment, re-

sides in the KDM ρx creation process. Instead of uniformly distributing weights by assigning
1
mi

to every patch in the bag, where mi is the total number of patches, this novel approach
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utilizes the attention mechanism to determine these weights. This inclusion allows for a

more informative weight assignment that takes into account both individual patch contri-

butions and their collective influence: we assign p = zattn in ρx. Each MLP is configured

with 64 neurons and uses a ReLU activation function. This configuration, with the number

of neurons being half of the input’s dimension, is chosen based on the feature vector size of

128 neurons, effectively reducing the input dimensionality by half, balancing between model

complexity and computational efficiency, ensuring that the model is capable of learning a

rich set of features without being prohibitively expensive to train on top of the encoder and

KDM ρx′,y′ parameters. The training is conducted in an end-to-end manner, optimizing

the parameters across all components of the model. This includes the patch encoder, the

global-local attention mechanism, and the KDM ρx′,y′ .

Additionally, the trained local-global attention layer of our model can be extended to provide

qualitative interpretability of the decisions, not only providing a way to visualize the most

important patches in the patch bag but effectively showing the most significant patches in

the slide for accurately prediction its ISUP grade group.

The core of the slide-level classification task is the inference process using the KDM ρx′,y′

and input KDM ρx in the same fashion as the fully-supervised case using eq. 2.8.

The density matrix ρy is then translated into a discrete probability distribution over the

classes. A vector of probabilities is computed from the components of ρy, where the weights

and vectors are denoted by p′′ and y′, respectively. Both are normalized, p′′ = p′′∑
p′′

and

y′ = y′

∥y′∥ , and the probability distribution is obtained as p′′ =
∑

j p
′′
jy

′2
ji. This probability

vector represents the likelihood of the WSI belonging to each class, forming the basis for

the slide-level classification or ordinal regression task. For the ordinal regression task, we

add a final regression layer that takes the probability distribution of labels p′′ as input. This

layer computes the expected value and variance for predictions. Algorithms 3 and 4 show

a summary of the training and prediction procedure of WiSDoM in a weakly-supervised

setting.

4.2 Experimental Design

This section presents a the experimental design of WiSDoM in the weakly-supervised task.

It begins with a description of the dataset characteristics, detailing the specific splits used

for training, validation, and testing. This is followed by an overview of the performance

measures adopted for assessing WiSDoM effectiveness. We then discuss the baselines selected

for comparative analysis.

4.2.1 Dataset

To evaluate the performance and interpretability features of WiSDoM, we established the

research scenario of weakly supervised ordinal regression task where we aim to predict the
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Algorithm 3: Weakly-supervised WiSDoM training algorithm

Input:

D = {(X(i), y(i))}i=1...N : Training dataset, with X(i) = {X(i)
j }j=1..k a WSI with k patches

m: number of components of KDM ρx′,y′

Z: Deep learning backbone

1. KDM ρx′,y′ is initialized with a sample of size m from dataset D

2. for each (X(i), y(i)) ∈ D:

ρy = ({y′i}i=1...m, (p
′′
i )i=1...m, kY) = predict(X(i), ρx′,y′ , Z) (see algorithm 4)

3. If task = classification:

a) ŷ = y′argmax(p′′)

b) Minimize L = −
∑N

i=1 yi log(ŷi)

4. If task = ordinal regression:

a) Calculate E[ŷ]i =
∑m

j=1 p
′′
ij · y′j and V ar[ŷ]i = E[ŷ2]i − (E[ŷ]i)

2, where

E[ŷ2]i =
∑m

j=1 p
′′
ij · y

′2
j

b) Minimize L = 1
N

∑N
i=1(E[ŷ]i − yi)

2 + α · V ar[ŷ]i, where α is a penalization

parameter for variance.

5. Update backbone, MLP1 and MLP2 weights w, and KDM ρx′,y′ parameters using

gradient descent.

6. Return (Z, ρx′,y′)

Algorithm 4: Weakly-supervised WiSDoM prediction procedure

Input:

X = {xj}j=1..k: input WSI with k patches

ρx′,y′ = {(x′i, yi)i=1...m, (pi)i...m, kX ⊗ kY}: joint KDM

Z: Deep Learning backbone

1. zlocalj = MLP1(xj)

2. zglobal = 1
k

∑k
j=1 z

local
j

3. zattnj = Softmax(MLP2((z
local
j , zglobal)))

4. Encode patches using Z: zj = Z(xj)

5. Create ρx = ({zj}j=1...k, (z
attn
j )j=1...k, kX)

6. Calculate probabilities p′′ from output KDM ρy using ρx and ρx′,y′ with eq. 2.8

7. ρy = ({y′i}i=1...m, (p
′′
i )i=1...m, KY )

8. Return ρy
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Table 4-1: PANDA dataset description (Percentage), GG = ISUP Grade Group
Source No. of biopsies Nontumor GG 1 GG 2 GG 3 GG 4 GG 5

Radboud UMC (D1) 5160 967 (19) 852 (17) 675 (13) 925 (18) 768 (15) 973 (19)

Karolinska Institutet (D2) 5456 1925 (35) 1814 (33) 668 (12) 317 (6) 481 (9) 251 (5)

ISUP grade group for the entire whole-slide image (WSI) using selected bags of patches from

each WSI.

The effectiveness of WiSDoM at the slide level was assessed using the Prostate Cancer Grade

Assessment (PANDA) dataset[1] like with the fully-supervised model.

For our study, the data from D1 and D2 were divided into training, validation, and testing

sets to assess the model’s performance in whole-slide ISUP grading. The composition of the

PANDA dataset are detailed in Table 4-1. It is important to note that while the patch data

used in chapter 3 originates solely from D1, the WSI dataset is a composite of data from

both D1 and D2, following the same split to ensure data consistency.

4.2.2 Performance Measures

The efficacy of WiSDoM in both classification and ordinal regression tasks in a weakly-

supervised scenario is assessed using the same three metrics as in the fully-supervised setting:

Cohen’s Kappa (κ, see equation 3.5), Accuracy (see equation 3.6), and Mean Absolute Error

(MAE, see equation: 3.7).

4.2.3 Baseline

On the weakly supervised task, we compare the performance of WiSDoM with the publicly

available dataset scores of the winning teams from the PANDA Challenge consortium [1]

(see table 4-3). Most strategies from the winning teams included weakly-supervised learning

with CNNs on a mosaic of patches representing the whole slide, ensemble networks, and label

denoising, i.e., removing from the training set during k-fold cross-validation, samples that

are difficult for the network to predict.

4.2.4 Training details

During training, our process involves extracting a set of patches, referred to as a ’bag,’ from

each slide. The aim is to select patches containing substantial useful information. This is

achieved using an automatic tissue detection process to identify areas rich in tissue within

the slides. From these, the top x(i)j patches, each with more than 90% tissue content,

are randomly selected. This method ensures the training patches are both informative and

diverse. Given computational capacity constraints and considering that prostate core-needle

biopsies are relatively small, we selected 36 patches at 20× magnification, each measuring
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192×192 pixels, for each whole-slide image. We employ a deep learning encoder, specifically a

pre trained ConvNeXT [67], for mapping patch bags to latent space. The network undergoes

a warm-up for 2 epochs by processing patches in a classification task before attaching this

backbone to the KDM with adjusted weights post-warm-up. For KDM ρx′,y′ initialization,

which requires patch-label pairs x′ and y′ and importance weights p′, we select a balanced

set of patch-label pairs from the training set. These pairs, termed trainable prototypes, are

processed through the warmed-up deep learning backbone. The pairs in the latent space

are then used to initialize x′ and y′. Without pre-training importance information, p′ is

initialized with equal weights 1/mi for all pairs. Systematic hyperparameter tuning led

to the selection of 216 prototypes, with 36 patch-label pairs representing each ISUP grade

group. After initializing KDM ρx′,y′ , the deep learning backbone, attention module, and

KDM ρx′,y′ are trained end-to-end. We use the Adam [70] optimizer with a learning rate of

0.0001, β1 = 0.9, and β2 = 0.999. A gradual warm-up scheduler with a factor of 10 is applied

for 1 epoch, followed by cosine annealing for the remaining epochs. The mini-batch size is set

to 4 bags. For the loss function, we use categorical cross-entropy for the classification task.

The model is trained for 50 epochs with an early-stopping callback to prevent overfitting,

stopping training after 5 epochs without validation loss improvement.

The warm-up and KDM ρx′,y′ initialization are the same for the ordinal regression task. How-

ever, we use real-valued labels in the range [0,1] instead of one-hot encoded labels during

training. The loss function is modified to Mean Squared Error with an additional penaliza-

tion α for high variance predictions. The same Adam optimizer settings are employed, along

with a gradual warm-up scheduler and a mini-batch size of 4 bags.

4.3 Results

The flexibility of WiSDoM for both full and weak supervision, enables its application in

grading entire slides without the necessity for pixel-level annotations. This feature is par-

ticularly valuable due to the high cost and scarcity of detailed annotations. We evaluated

WiSDoM on the PANDA dataset, focusing this time exclusively on whole-slide labels. The

objective was to classify entire slides according to the ISUP grading system, which includes

six grades, each linked to a corresponding prior Gleason score (GS): ISUP 0 (benign), ISUP

1 (GS 3+3), ISUP 2 (GS 3+4), ISUP 3 (GS 4+3), ISUP 4 (GS 4+4, 3+5, 5+3), and ISUP 5

(GS 4+5, 5+4, 5+5). In this grading task, the model achieved a κ of 0.898 and an accuracy

rate of 0.663 (see tables 4-2 and 4-3, aligning with the reference standard [1].

Uncertainty Quantification

Similar to the fully supervised patch model approach, WiSDoM was also adapted to treat

the grading challenge as an ordinal regression problem in a weakly supervised context. In

this setting, the model recorded a κ of 0.900, an accuracy of 0.660, and a MAE of 0.173.
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Remarkably, when utilizing the variance of the ordinal regression model as an indicator of the

model’s confidence (with a threshold of σ2 < 0.05), improvements were observed across the

metrics, with a κ of 0.930, accuracy of 0.73, and MAE of 0.073. Figure 4-2 presents violin

plots of the test set predictions, categorized by absolute error and variance values, illustrating

that correct predictions typically correspond to lower variance, even under weakly supervised

training conditions.

Figure 4-2: Violin plots of slide-level weakly-supervised predictions variance grouped by

absolute error, as seen in the plot, correct predictions have less variance while

error 1 and 2 groups tend to have a much larger variance

Table 4-3 presents a comparison of the leading solutions from the PANDA Challenge [1].

Alongside the winning team scores, the table includes an additional entry to compare the

performance metrics of our model on the public test set. This test set comprises a subset of

data that was openly accessible for model development and validation.

Table 4-2: Performance Metrics for Whole-Slide Grading

WiSDoM κ Accuracy MAE

Whole-Slide Classification 0.898 0.663 -

Ordinal Regression (Whole-Slide) 0.900 0.660 0.173

Ordinal Regression with Variance Threshold (σ2 < 0.05) 0.930 0.73 0.073

Interpretability

The interpretability of deep learning classifiers, particularly in a weakly supervised context,

plays a crucial role in validating their predictive accuracy and aligning with established
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Table 4-3: Performance comparison with PANDA consortium teams using public dataset

scores[1]. The open development dataset, accessible for research, was the only

source used for our model evaluation and comparison.

PANDA Consortium Team κ

Dmitry A. Grechka 0.8861

KovaLOVE v2 0.8889

ctrasd123 0.8948

Manuel Campos 0.898

Kiminya 0.9007

ChienYiChi 0.9086

rähmä.ai 0.9096

PND 0.9108

BarelyBears 0.9118

iafoss 0.9179

NS Pathology 0.9180

Save The Prostate 0.9209

WiSDoM (Ours) 0.9300

morphological criteria used in pathology. Moreover, this interpretability is instrumental in

analyzing cases where the model may not perform as expected. In clinical applications,

heatmaps generated at the whole-slide level offer valuable support for AI-assisted diagnoses.

WiSDoM provides multifaceted interpretability, which is instrumental in enhancing clinician

trust in automated diagnostic support tools. The model’s capability for visual interpretabil-

ity is evident through its generation of heatmaps that emphasize regions of high diagnostic

importance.

In the weakly supervised setting, although the heatmaps lack the explicit detail of Glea-

son patterns per patch due to the absence of such information during training, they still

effectively identify regions crucial for ISUP grade group classification. Notably, there is a

consistent correlation between the regions highlighted in both fully and weakly supervised

heatmaps. This overlap demonstrates that even with coarser granularity in the weakly super-

vised setting, the heatmaps remain effective in underscoring regions contributing significantly

to the ISUP grade group classification. Furthermore, a comparison of these heatmaps with

pathologist annotations (see figure 4-3) reveals their efficacy in pinpointing morphological

features pertinent to human pathology assessments, such as fused cell sheets indicative of

Gleason 5 patterns and cribriform patterns for Gleason 4.

Additionally, these heatmaps prove valuable in analyzing misclassified slides. For instance,

challenging cases were noted where the model identified regions as low-aggressive Gleason

patterns but failed to accurately classify them. This finding mirrors the complexities encoun-

tered in Gleason grading, particularly in differentiating benign from Gleason 3 patterns, a
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Figure 4-3: Visual Heatmap Comparison Across Supervision Levels. This figure

illustrates our model-generated heatmaps under different supervision settings,

compared with pathologist-provided ground truth annotations. The top left

shows weakly supervised heatmaps identifying ISUP grade groups, reflecting di-

agnostic relevance akin to Gleason patterns in both fully-supervised and ground

truth examples. The top right features detailed heatmaps from the fully su-

pervised model, trained on Gleason-pattern-labeled patches, closely mirroring

the ground truth (bottom). The detail level of these heatmaps is modifiable

through patch overlap adjustments during inference.

task known for its difficulty[71].

Overall, WiSDoM ability to generate informative heatmaps in both full and weak super-

vision scenarios enhances its utility as an interpretative tool, providing crucial insights for

clinicians and aiding in the nuanced task of prostate cancer grading. While the heatmaps

offer valuable practical insights, it is important to exercise caution and not interpret them

as exact segmentation masks with pixel-level precision. However, despite this limitation,

the straightforward and intuitive nature of these visualizations offers researchers significant

insights into the morphological patterns that underpin the model’s predictions. This under-
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standing is crucial for both the validation of the model’s decision-making process and for

exploring the morphological basis of its predictive outcomes.

Despite the visual interpretability provided by heatmaps, the ’black box’ nature of deep

learning models is not addressed by them, even though we can now visualize the predictions

made by the model. The exploration of interpretability techniques for deep learning models

in medical imaging extends beyond the scope of heatmaps, encompassing a range of diverse

methods. Each technique offers a unique perspective in making these complex models more

transparent and clinically relevant. The methods include: concept learning models [72],

prototype-based models[53, 73, 74], counterfactual explanations[75, 76], internal network

representations[76], among others[60], these techniques collectively contribute to reduce the

’black-box’ nature of the decision-making processes of deep learning models, enhancing their

interpretability and suitability for clinical application.

WiSDoM distinguishes itself from other deep learning models in terms of interpretability.

During its training phase, the model’s learnable parameters, comprising a set of samples

x′, and importance weights p′, are initialized using examples from the training set. These

examples are first encoded into a latent space (see Fig. 4-4) using a deep learning backbone.

The parameters, representing a joint probability distribution of samples and labels, are then

fine-tuned during training to optimize performance, whether for classification or ordinal

regression tasks.

We refer to these parameters as ’prototypes’, which offer a look into the model’s internal

representation of each class, including Gleason patterns or ISUP grade groups. This feature

enables a practical comparison between the model’s internal perception of these patterns

and their established clinical interpretations. The prototypes, existing in the latent space,

are exemplified by selecting the nearest samples from the training set.

We conducted a study with three resident pathologists to assess the relevance and accuracy

of 36 prototypes derived from WiSDoM. For this evaluation, the prototypes were shown to

the pathologists without any accompanying labels, facilitating a blind assessment of Gleason

grading in context with the corresponding whole-slide images. This approach allowed for

an unbiased evaluation of the prototypes. The results of this study indicated a substantial

agreement (κ = 0.88) between the prototype labels and the Gleason patterns determined by

the pathologists.

Figures 4-4, 4-5, and 4-6 demonstrate that the prototypes sampled from WiSDoM not

only accurately represent but also closely mimic the morphology of the targeted regions of

interest. This resemblance is crucial, as it validates the model’s ability to mirror clinical

observations.

Moreover, these prototypes serve as an additional interpretability tool. They enable the

model to convey to clinicians how certain regions of interest correlate with specific pro-

totypes learned by the model in its internal representation. This feature of WiSDoM is

instrumental in bridging the gap between automated predictions and clinical diagnostics,

providing clinicians with understandable and relatable visual representations that align with
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Figure 4-4: Learned prototypes feature space. t-distributed Stochastic Neighbor Em-

bedding (t-SNE) plot of the learned prototypes inside WiSDoM for different

supervision scenarios, in the fully supervised model (left), the prototypes per-

fectly discriminate the latent space in Gleason grades. In the weakly-supervised

model (right), not all prototypes are discriminant of the latent space, however,

prototypes with weights or importance over 0.01 (marked with x) can efficiently

differentiate ISUP grades in the latent space.

their expertise.

Post-training, we observe that the weight p′ of some learnable prototypes, are weighted to

zero as shown in figure 4-4. This suggests that WiSDoM requires only a subset of the

initialized prototypes to differentiate between ISUP grade groups and Gleason grades.

The final aspect of interpretability offered by WiSDoM is uncertainty quantification. This

concept has been extensively studied in the field of ordinal regression to develop more in-

terpretable models, particularly when reliability is crucial for end-users, such as in clinical

environments [77]. Quantifying a model’s uncertainty can mitigate the risks associated with

relying solely on its predictions. This is relevant in medical contexts where incorrect di-

agnoses can lead to significant patient harm. Our approach utilizes a probabilistic model

framework, enabling the generation of prediction outputs as actual probability distributions

across various degrees. This is achieved without enforcing a distribution using softmax or

similar activation functions, thereby allowing the interpretation of variance as a direct mea-

sure of uncertainty. Furthermore, unlike traditional probabilistic methods, WiSDoM can be

trained via gradient descent, facilitating its seamless integration with standard deep learning

architectures. As seen in figure 4-7, an uncertainty heatmap can be obtained from WiSDoM,

clearly highlighting regions of the whole slide where the model is unsure of its prediction.

WiSDoM offers a comprehensive approach to interpretability, encompassing several aspects

relevant for clinical applications. This includes the generation of prediction heatmaps and
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Figure 4-5: Learned prototypes. After training, prototypes are sampled from WiSDoM.

These learned prototypes enhance model explainability. The figure illustrates

the top three patches closest to the learned prototypes for each ISUP grade

group. Additionally, the closest prototype for each grade group is displayed

in the context of the whole slide. As observed, the prototypes appropriately

validate that the internal representation of ISUP grade groups is effectively

encapsulated by the morphological patterns inherent in the Gleason grades

constituting the grade group.

prototype-based explanations, which offer visual and intuitive insights into the model’s

decision-making process. Additionally, WiSDoM incorporates uncertainty quantification,

providing not only variance values for each prediction but also heatmaps that visually indi-

cate areas where the model lacks confidence. These features collectively enhance the utility

of WiSDoM in clinical environments, where the interpretability of computer-aided diagnosis

tools is essential for gaining trust and ensuring reliability.
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Figure 4-6: Prototype-based model explainability. Given a region of particular in-

terest highlighted by the model, example prototypes can be sampled from the

learned representation of WiSDoM with their corresponding Gleason grade,

providing a visual yet clinically relevant understanding of the model’s decision-

making.

4.4 Discussion

In this study, we demonstrated the versatility and efficacy of WiSDoM in addressing vari-

ous challenges in computational pathology. Our findings indicate that WiSDoM performs

comparably to expert pathologists in Gleason grading tasks. Notably, WiSDoM achieves

this level of accuracy both with comprehensive tissue annotations and with only slide-level

labels, the latter being particularly advantageous due to the labor-intensive nature of manual

annotations in whole-slide images.

A significant advantage of WiSDoM lies in its interpretability tools, which are applicable

in both research and clinical settings. The model generates visual heatmaps that highlight

diagnostically important regions in whole-slide images. These heatmaps are valuable for
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Figure 4-7: Model uncertainty visualization. A representative slide is shown with re-

gions of high variance highlighted in red. The whole-slide heatmap was gener-

ated by obtaining the variance values for the prediction over patches tiled at

80% overlap, with zoomed-in regions on the right. Patches with a red border

indicate regions where the model’s uncertainty of the prediction was high, while

blue borders indicate high confidence in the prediction.

identifying critical areas for both overall slide grading and finer Gleason grading, partic-

ularly when trained with detailed tissue annotations. However, we recognize that visual

interpretability alone does not fully demystify the ’black box’ aspect of deep learning mod-

els. To address this, WiSDoM incorporates prototype-based explainability. This feature

elucidates the internal representations learned by the model, identifying the closest internal

representations to diagnostically relevant regions. Such transparency is crucial to fostering

trust in AI-assisted diagnostics among pathologists.

Further enhancing this trust, WiSDoM quantifies uncertainty at both the slide and region-

of-interest levels. This capability allows the model to withhold predictions in cases of high

uncertainty, thereby boosting confidence in its diagnostic suggestions. The model can also

be configured to operate within predefined confidence thresholds, highlighting areas of diag-

nostic ambiguity that may be particularly informative for pathologists.

Despite these advancements, certain challenges persist and warrant further investigation.

Our observations suggest that while a relatively small number of patches is sufficient for

slide-level diagnosis, the requisite volume of data (in terms of the number of slides or ’bags’)
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remains substantial for optimal model performance. Future research should focus on evalu-

ating WiSDoM’s performance across different organs and surgical resections. Our training

on core-needle biopsies, which contain less tissue, raises questions about the model’s efficacy

in larger resection samples, potentially necessitating an increased number of patches and,

consequently, higher computational resources.

Our study provides valuable insights into the development of weakly-supervised, inter-

pretable deep learning models for clinical applications. We anticipate that these findings

will facilitate the clinical adoption of such models, thereby enhancing diagnostic processes

in pathology.

4.4.1 Code Availability

Patches from Whole Slide Images (WSIs) were generated locally using HistoPrep[78]. Net-

work training was conducted on NVIDIA A5500 GPUs on-site and NVIDIA A100 GPUs

on Google Colab Pro1. Our pipeline, implemented in Python (3.11)2, utilizes OpenSlide3,

Pillow4, and TensorFlow v25.

The code is publicly available here

1https://colab.research.google.com
2https://www.python.org
3https://openslide.org
4https://pillow.readthedocs.io
5https://www.tensorflow.org

https://github.com/srmedinac/interpretable-weakly-supervised-grading
https://colab.research.google.com
https://www.python.org
https://openslide.org
https://pillow.readthedocs.io
https://www.tensorflow.org


5 Conclusions and future work

This thesis contributes to the field of computational pathology, particularly in the con-

text of prostate cancer grading. We have successfully combined deep neural networks with

probabilistic models, leveraging Kernel Density Matrices into a weakly supervised, inter-

pretable computational pathology setting. This novel approach has demonstrated its efficacy

in modeling uncertainty, providing additional interpretability, and achieving state-of-the-art

prostate tissue differentiation, quantification, and grading performance.

Adhering to the same model philosophy, we are capable of quantifying Gleason patterns at

the patch level, offering a tool that aligns naturally with pathologists’ methodologies. This

is achieved by grading based on the quantification of the area of the two most prevalent

Gleason patterns present in the slides, albeit requiring tissue annotation masks for training.

Simultaneously, our innovative application of weakly supervised MIL and KDM allows us to

manage the inherent uncertainties of the training samples, even without explicit knowledge

of patch labels. This technique, which learns from collections or ’bags’ of patches from WSI,

holds significant relevance in the field of pathology, especially in the context of ISUP group

grading. This is particularly the case when comprehensive whole-slide tissue annotations are

rare and costly.

Moreover, incorporating a local-global attention mechanism improved the model’s perfor-

mance by attributing weights to each instance within a bag. This not only enhances the

model’s agreement with expert pathologists but also provides an additional layer of inter-

pretability by identifying regions of interest (ROIs), achieved without the need for expert

tissue annotations during model training.

WiSDoM excels in three key areas. First, it provides quantification at the patch level of the

extent of the Gleason patterns in a given slide. Second, it highlights ROIs for pathologists

in both a fully supervised manner and a weakly supervised way with local-global attention.

Third, it enables the sampling of prototypes of each tissue pattern from the joint probability

distribution estimated during the training of the KDM ρx′,y′ . These prototypes serve as

an explainable representation of the model’s internal understanding of the various tissue

patterns present in the prostate.

In conclusion, this work has made significant strides in enhancing the interpretability of

deep learning models in a clinical setting. The ability to understand the reasoning behind

a model’s predictions is as crucial as the accuracy of the predictions themselves. WiSDoM

provides valuable insights into its learning process and understanding of the data, making

it a valuable contribution to the field of computational pathology.
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