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Abstract

Title: A Deep Learning model for automatic grading of prostate cancer histopathol-
ogy images

Gleason grading is recognized as the standard method for diagnosing prostate cancer. How-
ever, it is subject to significant inter-observer variability due to its reliance on subjective
visual assessment. Current deep learning approaches for grading often require exhaus-
tive pixel-level annotations and are generally limited to patch-level predictions, which do
not incorporate slide-level information. Recently, weakly-supervised techniques have shown
promise in generating whole-slide label predictions using pathology report labels, which are
more readily available. However, these methods frequently lack visual and quantitative
interpretability, reinforcing the black box nature of deep learning models, hindering their
clinical adoption. This thesis introduces WiSDoM, a novel weakly-supervised and inter-
pretable approach leveraging attention mechanisms and Kernel Density Matrices for the
grading of prostate cancer on whole slides. This method is adaptable to varying levels of su-
pervision. WiSDoM facilitates multi-scale interpretability through several features: detailed
heatmaps that provide granular visual insights by highlighting critical morphological features
without requiring tissue annotations; example-based phenotypical prototypes that illustrate
the internal representation learned by the model, aiding in clinical verification; and visual-
quantitative measures of model uncertainty, which enhance the transparency of the model’s
decision-making process, a crucial factor for clinical use. WiSDoM has been validated on
core-needle biopsies from two different institutions, demonstrating robust agreement with
the reference standard (quadratically weighted x of 0.93). WiSDoM achieves state-of-the-art
inter-observer agreement performance on the PANDA Challenge publicly available dataset
while being clinically interpretable.

Keywords: Prostate Cancer, Histopathology, Deep Learning, Cancer Grading, Den-
sity Matrix, Interpretability
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Resumen

Titulo: Modelo de Deep Learning para la gradacion automatica de imagenes
histopatologicas de cancer de proéstata

La clasificacion de Gleason se reconoce como el método estandar para diagnosticar el cancer
de prostata. Sin embargo, estd sujeto a una variabilidad significativa entre observadores de-
bido a su dependencia de la evaluacion visual subjetiva. Los enfoques actuales de aprendizaje
profundo a menudo requieren anotaciones exhaustivas a nivel de pixeles y generalmente se
limitan a predicciones a nivel de parche, que no incorporan informacién a nivel de lamina.
Recientemente, las técnicas débilmente supervisadas se han mostrado prometedoras a la hora
de generar predicciones de etiquetas de laminas completas utilizando etiquetas de informes
de patologia, que estan més facilmente disponibles. Sin embargo, estos métodos frecuente-
mente carecen de interpretabilidad visual y cuantitativa, lo que refuerza la naturaleza de
caja negra de los modelos de aprendizaje profundo y dificulta su adopcién clinica. Esta
tesis introduce WiSDoM, un enfoque novedoso interpretable y débilmente supervisado que
aprovecha los mecanismos de atencién y las matrices de densidad para gradar cancer de
préstata en laminas completas. Este método se adapta a distintos niveles de supervision.
WiSDoM facilita la interpretabilidad a multiples escalas a través de varias caracteristicas:
mapas de calor detallados que brindan informacién visual granular al resaltar caracteristicas
morfologicas criticas sin requerir anotaciones de tejido; prototipos fenotipicos basados en
ejemplos que ilustran la representacién interna aprendida por el modelo, ayudando en la
verificacién clinica; y medidas visual-cuantitativas de incertidumbre del modelo, que mejo-
ran la transparencia del proceso de toma de decisiones, un factor crucial para el uso clinico.
WiSDoM se ha validado en biopsias de dos instituciones diferentes, lo que demuestra una
sélida concordancia con el estandar de referencia (x ponderado cuadraticamente de 0,93).
WiSDoM logra un rendimiento del estado del arte de acuerdo entre observadores en el con-
junto de datos PANDA Challenge ademas de ser clinicamente interpretable.

Palabras clave: Cancer de prostata, Histopatologia, Aprendizaje automatico, Gradacién

de cancer, Matriz de densidad, Interpretabilidad
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1 Introduction

Prostate cancer (PCa) is the second most common cancer in men worldwide, ranking just
behind lung cancer, with 1,276,106 new cases and 358,989 deaths (3.8% of all male cancer
fatalities) reported in 2018 and the average age at diagnosis is 66 years [2].

Prostate cancer in its early stages often presents no symptoms and may require no treat-
ment. The disease is frequently detected through elevated levels of prostate-specific antigen
(PSA > 4 ng/mL), a glycoprotein typically expressed by prostatic tissue. However, due
to the presence of increased PSA in men without cancer, tissue biopsy is recommended for
confirming malignancy [3].

The diagnosis of prostate cancer heavily relies on the microscopic analysis of prostate tissue
obtained through a needle biopsy. Using transrectal ultrasonography to guide the biopsy
extraction, 10 to 12 tissue samples are gathered, are formalin-fixed and paraffin embedded
and stained with Hematoxylin and Eosin (H&E). A pathologist then examines these samples
based on their microscopic architecture and cellular appearance (see figure [1-1]), assigning
a primary and secondary Gleason grade [4], each on a scale of 1 to 5. The pathologist de-
termines the Gleason score, which in biopsies is the sum of the predominant pattern and
the secondary one, such as 44-3. This traditional classification of prostate cancer into low,
intermediate, or high risk is based on the combined Gleason patterns, prostate-specific anti-
gen (PSA) level, and clinical stage [5]. Recognizing the heterogeneity within each risk group
and the potential for inter- and intra-observer variability (see figure , the International
Society of Urological Pathology (ISUP) revised the pathological grading into five categories
in 2014 [6] (see table [1-1]). However, despite these modifications, inter- and intra-observer
variability remains an issue, limiting the grading system’s applicability and reproducibility
across different geographic locations and experience levels among uropathologists [7].
Nevertheless, the tissue biopsy examination and pathologist-performed grading using the
Gleason/ISUP grade group system remains the gold standard for prostate cancer diagnosis
[8]. This system stands as the most crucial prognostic factor [9] and plays a significant role
in determining the appropriate treatment strategies [10], making it invaluable for guiding
clinical decisions and managing prostate cancer.

1.1 Problem Statement

With an annual incidence of 1,2 million new cases of prostate cancer worldwide, a high
mortality rate, and the risk of overdiagnosis and overtreatment [11], there is an urgent need
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Figure 1-1: Progressive architectural changes in prostate tissue from Gleason Grade 1 to
5, illustrating the evolution from well-differentiated, organized glandular struc-
tures in Grade 1, through increasingly disorganized and poorly differentiated
cellular patterns, to the nearly complete loss of glandular architecture and
highly irregular, invasive cell formations characteristic of Grade 5.

Table 1-1: Summary of the Gleason and ISUP grade group prostate cancer grading systems.

Grade Group Description

Grade Group 1 (Gleason | Only individual discrete well-formed glands
score < 6)

Grade Group 2 (Gleason | Predominantly well-formed glands with a lesser compo-
score 3+4=7) nent of poorly-formed/fused/cribriform glands

Grade Group 3 (Gleason | Predominantly poorly-formed/fused/cribriform glands
score 4+3=7) with a lesser component of well-formed glands

Grade Group 4 (Gleason | Only poorly-formed/fused/cribriform glands or pre-
score 8) dominantly well-formed glands with a lesser component
lacking glands or predominantly lacking glands with a
lesser component of well-formed glands

Grade Group 5 (Gleason | Lacks gland formation (or with necrosis) with or with-

scores 9-10) out poorly-formed/fused/cribriform glands

for accurate and reproducible assessment of prognostic survival as well as appropriate treat-
ment of the patient that supports pathologists in making decisions. The Gleason/ISUP
score [10, 6], assigned by a pathologist after examining the biopsy, is the standard grading
system for determining the prognosis of prostate cancer patients and prescribing the most
effective treatment. However, it suffers from significant inter- and intra-observer variability
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Figure 1-2: Illustration of the conventional grading process for a prostate whole-slide image
and a depiction of the inter-observer variability when multiple pathologists

evaluate the slide. As the quantification of the extent of the two most aggressive
patterns relies solely on visual inspection, the diagnosis often differs significantly
among pathologists, indicating a notable risk of inconsistency in diagnosis and
treatment options.

[12], making it an intriguing problem for reproduction by automatic diagnostic and prognos-
tic support systems that produce results within the range of expert pathologists’ variability
and agreement. Typically, pathologists with decades of experience have increased agreement
rates of k ~ 0.7 [13], but this experience of subspecialized pathologists in specific organs and
cancer types is uncommon, particularly in developing nations where the majority are gen-
eral pathologists. Due to the nature of the whole-slide histopathology images (size, intricacy
of tissue structures, differences in processing and staining, absence of labels and annota-
tions, and scarcity), the development of an automatic diagnostic and prognostic support
system presents a computational challenge [14]. While the normal glands and tissues of the
prostate have their natural anatomical variability, the degree of severity associated with the
progression and severity of the heterogeneous, poorly differentiated, difficult-to-define, and
variable tumor, for which reason its quantification by conventional methods is problematic,
varies with the tumor’s aggressiveness and severity. The characterization of cellular or tissue
morphometry is an additional challenge. In addition to the aforementioned obstacles, the
adoption of Deep Learning-based automatic diagnostic support systems is low due to their
opaque nature and lack of interpretability. To have confidence in their decisions, pathologists
anticipate being able to interpret the decisions made by automated models. The ability to
explain and interpret system decisions would encourage their acceptance and regulation in
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the medical industry [I5]. A robust, interpretable Gleason/ISUP grading by a deep learning-
based computer diagnostic support (CAD) system that achieves the same level of agreement
as expert pathologists could be advantageous for prostate cancer diagnosis. Deep Learning
has demonstrated the ability to perform pathological diagnoses [16], [9 [17]. Therefore, it is
desirable to investigate its potential in automated Gleason/ISUP grading, with a focus on
the interpretability of the model decisions, i.e. the ability to provide the pathologist with,
visual cues, perspectives, and objective information regarding the decision-making process.

1.2 Objective

To develop a robust and interpretable Deep Learning model for prostate cancer grading from
histopathological images.

1.2.1 Specific Objectives

e To integrate a collection of heterogeneous histopathological image data, including its
preparation, preprocessing, and representation.

e To design a thorough architecture that enables the image’s pathological character-
istics to be captured, thereby enhancing the interpretability of decisions made from
histopathological images.

e To design a robust and accurate Gleason/ISUP score prediction component for prostate
cancer histopathological images.

e To systematically evaluate the efficacy of the proposed method using pathologist-
labeled data and compare it using problem-appropriate metrics.

1.3 Contributions

This thesis presents a novel approach in computational pathology with the introduction of
WiSDoM: Interpretable Weakly-Supervised Kernel Density Matrices (refer to figure ,
an interpretability-constrained, probabilistic deep learning framework. WiSDoM integrates
interpretability through attention mechanisms and a novel method to aggregate information
to predict a whole-slide label using Kernel Density Matrices (KDM)[I8]. It is specifically
designed to tackle the dual challenges of supervision and interpretability in medical image
analysis.

At the core of WiSDoM is its capability to:

e Predict posterior probability distributions for Gleason and ISUP grades under various
levels of supervision, distinguishing it from traditional probabilistic methods by gen-
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erating explicit discrete distributions, in contrast to Gaussian processes’ continuous
distributions.

e Aggregate posterior distributions into a comprehensive distribution for an entire whole-
slide image, outperforming methodologies like Multiple Instance Learning (MIL) and
conventional aggregation techniques.

e Extend the applicability of KDM to weakly-supervised frameworks, utilizing its robust
interpretability features. This is particularly important in contexts where supervision
is limited, but the need for transparency and interpretability is high.

e Address the challenge of extensive pixel-level annotations in computational pathology
by providing detailed modeling of label probability distributions within an ordinal
regression framework. This approach portrays cancer progression as a continuum and
offers valuable confidence measures.

e Generate detailed heatmaps in both fully and weakly supervised scenarios, essential for
identifying diagnostically significant regions and patterns. Additionally, it aids clinical
decision-making by producing phenotypic prototypes that reveal deep insights into the
decision-making process.

Additionally, the code implementation of WiSDoM is publicly available (see [4.4.1]).

1.4 Thesis outline

This thesis is structured as follows: Chapter [2| provides an overview of recent advance-
ments and related work in histopathological image analysis, weakly-supervised learning for
histopathology and prostate cancer grading, along with interpretability in deep learning
models. In Chapter [3] we introduce WiSDoM in a fully-supervised learning task for patch
Gleason grading, explains the method and results. Chapter[d]describes WiSDoM in a weakly-
supervised, interpretable setting in a whole-slide ISUP grading of prostate biopsies, results,
interpretability and discussion. Chapter [5| concludes the thesis and discusses potential av-
enues for future work.



2 Background and Related Work

2.1 Histopathology image analysis

Histopathology, the microscopic evaluation of tissue abnormalities, serves as the basis of can-
cer diagnosis, playing a pivotal role in both diagnosing and treating the disease [19]. Despite
its integral role in the detection and analysis of cancerous formations, it is afflicted with
challenges, notably its time-consuming nature and susceptibility to variances and errors|20].

Traditional clinical practices often necessitate pathologists to conduct histological diagnoses.
This process involves visually identifying, semi-quantifying, and integrating a multitude of
morphological attributes of the test sample with respect to the underlying disease mechanism.
Through rigorous systematic training, pathologists can detect predominant morphological
patterns corresponding to predefined criteria and existing clinical presentations, facilitating
the classification of their observations. Typically, a histopathological diagnosis serves as
the end-product of this process, which is then conveyed to treating physicians in a compre-
hensive written report (see figure . Even though systematic training and adherence to
standard guidelines can bolster the analytical process and diagnostic precision, histopathol-
ogy is inherently challenged by certain limitations. These drawbacks primarily stem from its
subjective nature and the discrepancies in visual perception, data amalgamation, and vari-
ability among different observers [21]. Interestingly, even amongst pathologists with similar
training, variations in interpretations can occur, leading to diagnostic inconsistencies that
could hinder optimal patient care [22]. Moreover, the increasing use of non-invasive or min-
imally invasive procedures for diagnostic sample collection has significantly reduced the size
and quality of collected specimens. This not only burdens pathologists but also amplifies
the difficulty, given the rising demand for diagnostics that include reporting variables with
prognostic or predictive value [14].

The complexities mentioned above are further exacerbated by the variability in companion
diagnostic tests used to make treatment decisions. This variability often emanates from
a lack of standardization, as well as the spatial and temporal biological heterogeneity in
samples [23].
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Figure 2-1: A pathologist’s detailed examination process of a biopsy, starting with the H&E
staining of the biopsy slide to highlight cellular and tissue structures. The slide
is then placed under a microscope, enabling the pathologist to evaluate the tis-
sue’s morphology, including the architecture of glands and the nuclear charac-
teristics of cells. This analysis culminates in a diagnostic report that integrates
observations on glandular patterns, cellular differentiation, and potential ma-
lignancy indicators, leading to a final diagnosis.

2.2 Computational Pathology

To mitigate challenges, the advent of artificial intelligence (AI)-based image analysis tech-
niques are providing remarkable advancements in the realms of pathology and oncology
[17, 24, 25]. These innovative tools, designed to augment diagnostic accuracy, serve as a tool
for pathologists and oncologists, who are the principal end-users of these ground-breaking
technological developments.

A promising development in this area is digital pathology, which capitalizes on advancements
in computing power to digitize histopathological specimens using whole-slide scanners and
computationally analyze the resulting digital whole-slide images (WSI) [I4]. However, the
immense complexity and sheer size of these WSI, coupled with their large amount of infor-
mation, make human interpretation challenging and intrinsically subjective.
Computational pathology emerges as a potential solution to these issues. It is born out of
the integration of Al and Machine Learning (ML) tools in pathology and can effectively
handle the complexity of WSI [26].

Fundamentally, computational pathology can be divided into two primary branches: feature
engineering and deep learning. Feature engineering revolves around creating domain-inspired
or domain-agnostic features to enhance the efficiency of machine learning algorithms, while
deep learning capitalizes on the learning capabilities of advanced algorithms to interpret
complex data. Recently, there has been a perceptible shift towards deep learning due to its
ability for autonomous feature extraction, diminished reliance on domain knowledge, and
the increased accuracy it provides. This incorporation of deep learning into computational
pathology is driving an evolution in the field, setting the stage for enhanced diagnosis and
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treatment strategies in medicine [27].

Feature engineering involves constructing domain-inspired algorithms that typically target a
specific cancer or tissue type, focusing on particular features that are not universally appli-
cable. These include quantitative counting of mitosis, textural heterogeneity measurements,
or domain-agnostic features like graph-based approaches that quantify tissue architecture,
shape, or spatial relationships. These feature-based approaches are being developed for
various cancers, including prostate, breast, lung, and oral cavity, among others [28] 29, [30].
The shift from manually crafted features to deep learning was motivated by the observation
that hierarchical feature representations yielded by these algorithms significantly outper-
form traditional image analysis methods [31]. This reduces the reliance on extensive domain
knowledge and ushers in a more refined and reliable process of cancer detection and treat-
ment. This paradigm shift could represent a breakthrough, introducing a new era of cancer
diagnosis characterized by increased precision, consistency, and efficiency. Deep learning
reduces implementation time and complexity while improving diagnostic performance [26].

Regardless of the branch, computational pathology has been used for various image pro-
cessing and classification tasks, from low-level tasks like the detection and segmentation of
tissues, nuclei, or glands to high-level tasks like predicting disease diagnosis and prognosis
[24,[32]. Tt is primarily used to automate time-consuming tasks [33] 34, [35], [36], thus enabling
pathologists to focus on complex decision-making tasks. Furthermore, it assists oncologists
by creating prognostic tools for evaluating disease severity, predicting outcomes, and fore-
casting response to therapy [37, B8, 39]. The progress and applications of computational
pathology are also leaving significant imprints on the field of prostate cancer diagnosis and
treatment, which stands at the core of this thesis.

2.3 Deep Learning in Prostate Cancer

Prostate cancer diagnosis has particularly benefited from the advancements in computa-
tional pathology. Deep learning methodologies have increasingly been applied to the task of
grading prostate cancer severity, utilizing the Gleason score and ISUP grade groups. This
scoring mechanism plays a crucial role in evaluating disease severity and designing personal-
ized treatment strategies. However, it is subject to both inter- and intra-observer variability
[40]. Pathologists with significant expertise often attain a medium degree of agreement while
Gleason grading, typically exhibiting an average Kappa x of 0.34 to 0.43 [7]. However, such
expertise remains rare due to a limited number of pathologists specializing in organ-specific
and cancer-specific areas. General pathologists who lack this specific specialization might
only achieve lower Kappa levels. The recent integration of computational pathology tech-
niques has improved accuracy and efficiency, delivering significant results (k ~ 0.7 with
genitourinary pathologists) [41l [42]. Beyond detection, the realm of grading cancer has wit-
nessed a profound impact. Computational pathology’s efficacy in achieving prostate cancer
grading surpasses expert pathologist levels (ranging from x = 0.7 to k = 0.9), indicating its
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significant potential for more precise and efficient diagnoses [43], 9, [16], 44|, 45] [46), [47].

Deep learning has significantly advanced the field of prostate cancer diagnosis, reaching a
level comparable to that of pathologists. This progress has been driven by the availability
of large datasets of WSI of prostate cancer [4§], the initiation of public competitions and
challenges [49, 50, [, and the creation of advanced algorithms [I7], 51]. These developments
have transformed the way prostate cancer is diagnosed.

Although the strides in prostate cancer diagnosis and grading are immense, they do not stop
at detection and classification tasks. The field is evolving to explore methodologies that
improve visual interpretability and semantic understanding of learned representations. By
broadening the scope beyond classification and venturing into interpretability and semantic
comprehension, the stage is being set for more insightful and efficient cancer diagnostics.
This focus on interpretability is particularly crucial given the 'black box’ nature of deep
learning methods, which can be a significant hindrance in their broader acceptance and use
in clinical settings [52]. Consequently, research is increasingly focusing on enhancing the
interpretability of deep learning models within computational pathology to shed light on
these systems’ internal operations such as CLAM[I7], UNI[51], This Looks Like That[53],
among others[54], 55] 56, 57, 58]. This heightened interpretability can build trust in these
systems by offering more transparency and the ability to identify and address any potential
errors or biases.

Computational pathology has shown the potential to enhance diagnostics, particularly in the
field of prostate cancer. Its effectiveness in grading cancer aligns with the performance of
urological pathologists with decades of experience [I]. With the promise of improved visual
interpretability and semantic comprehension, we are welcoming a new era where diagnoses
could provide more in-depth and comprehensive insights, setting the stage for personalized
and efficient treatment strategies. However, while the technology offers significant benefits,
it is also essential to address its inherent limitations. Doing so will ensure successful inte-
gration into the broader clinical ecosystem and pave the way for unlocking the full potential
of computational pathology powered by deep learning and Al methods in prostate cancer
diagnosis and treatment.

2.4 Weakly supervised learning

Despite the recent success of computational pathology applications, significant challenges
persist. 'WSI present a complex landscape with challenges for automated analysis. Deep
learning techniques, despite their efficacy and ease of development, often necessitate labor-
intensive, pixel-level annotations by pathologists for supervised learning. Weakly supervised
learning models have garnered substantial attention in computational pathology due to their
proficiency in learning from limited or imprecisely labeled data. This feature is particularly
valuable in scenarios where acquiring detailed annotations is challenging or not feasible, a
frequent situation in pathology. It has been especially useful for slide-level tasks such as
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Gleason grading in prostate cancer[44], 0], subtyping of renal cell carcinoma and non-small-
cell lung cancer[17], and sentinel lymph node metastases slide-level classification [59]. These
methods typically rely on a single label derived from a pathology report, reducing the need
for exhaustive manual annotations.

The primary approach used for weakly supervised learning in computational pathology is
Multiple Instance Learning (MIL). In MIL, a WSI is divided into numerous small patches,
each inheriting the slide-level label. The model is trained on these patches, and then predic-
tions are aggregated into a single slide-level decision using techniques such as max-pooling.
However, this approach under-utilizes WSI data since MIL updates the model’s parame-
ters by considering only the signal from the max-pooled instance in the WSI, leading to
a significant loss of context and information. Additionally, these models, along with most
deep learning models, are often perceived as ’black boxes’ due to the opaque nature of their
decision-making processes, which involve navigating complex networks with millions of pa-
rameters. Therefore, it is crucial to enhance the interpretability of these processes or to
develop tools that assist in understanding the decisions made by these models. Ensuring in-
terpretability or providing explanatory tools is a necessary step for the successful integration
of deep learning models into routine clinical workflows[60].

2.5 Interpretability

Interpretability in machine learning encompasses the capacity to render the operations of
these computational models comprehensible to humans. This attribute holds particular
significance in computational pathology, medical images are analyzed. Ensuring that the
workings of these algorithms are accessible and trustworthy is imperative, given their impli-
cations for patient care.

ML systems have limitations in the formulation of problems. These limitations may arise
from various sources, including gaps in scientific knowledge, safety considerations, ethical
dilemmas, or conflicts between differing objectives [61]. In the medical domain, clarity
regarding the rationale behind an algorithm’s decision is essential to ascertain that it is
operating in a manner that is safe, unbiased, and aligned with ethical norms.

In the transition from traditional machine learning to deep learning, the challenge of inter-
pretability becomes even more pronounced due to the "black box” nature of deep learning
models. Deep learning architectures, especially those used in computational pathology, such
as convolutional neural networks, can achieve remarkable performance in tasks like tumor
detection, classification, and prognosis. However, their complex layers and non-linear trans-
formations make it difficult to understand how they arrive at their decisions. This opacity
can hinder clinicians’ and researchers’ trust in these systems, despite their potential to rev-
olutionize pathology through enhanced accuracy and efficiency.

Attention-guided weakly-supervised MIL methods have emerged as a solution that addresses
two significant challenges in computational pathology: the sub-optimal usage of data inher-
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ent in traditional MIL and the pervasive lack of interpretability in deep learning models. By
incorporating attention mechanisms, these methods not only enhance the data aggregation
process, allowing for more effective utilization of the rich information in whole-slide images,
but also improve the qualitative interpretability of the models. One approach has been the
integration of attention heatmaps [62], [63]. These mechanisms aim to highlight the regions
within the data that the model deems significant for making a diagnosis. For instance, in
models like clustering-constrained-attention multiple-instance learning (CLAM)[I7], atten-
tion mechanisms help elucidate the areas within tissue samples that are influential in the
model’s decision-making process. However, while these efforts in qualitative interpretability
contribute valuable insights, they do not comprehensively address the transparency of these
models.

In the context of enhancing deep learning models for clinical use in computational pathology,
it is essential to address three intertwined aspects of model interpretability and transparency:

1. Visual Interpretability: This involves using methods like classification and attention
heatmaps to highlight important areas in diagnostic images. These methods help clini-
cians see what the model focuses on, making it easier for them to trust and understand
the model’s outputs.

2. Prototypical Interpretability: Providing explainability of how the model works inter-
nally by showing previously diagnosed 'prototypes’ or key examples that the model
used in its decision-making. It is important for clinicians to see these prototypes to
grasp why the model makes certain predictions, ensuring these are based on patterns
and phenomena they recognize in their clinical practice.

3. Uncertainty Quantification: It’s vital for models to do more than just identify key areas
and prototypes; they must also accurately measure and communicate the confidence
in their predictions. This is especially important in medical diagnostics, where it helps
manage inherent complexities and ambiguities. By highlighting its own limitations
and potential errors, a model can greatly assist clinicians in making better-informed
decisions. This aspect of model transparency has been largely overlooked in deep
learning research within the medical field.

While weakly supervised learning models offer significant advantages in computational pathol-
ogy, their full clinical adoption hinges on overcoming the ’black box’ nature through enhanced
interpretability. This involves visual and qualitative insights and a deeper understanding of
the model’s internal representations through prototypical interpretability and the incorpo-
ration of uncertainty quantification. Collectively, these dimensions contribute to building
robust, transparent, and clinically viable diagnostic tools.
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2.6 Kernel Density Matrices

This thesis presents WiSDoM (see Figure , a framework based on Kernel Density
Matrices[18] to model joint probability distributions. WiSDoM is tailored as a probabilistic
deep learning framework specifically for automated grading of prostate whole-slide images.
It operates in a fully and weakly supervised manner, placing a strong emphasis on inter-
pretability.

The application of KDM in medical imaging has already been proven effective in domains
such as diabetic retinopathy analysis and prostate cancer tissue grading [64]. Its success
stems from its unique ability to integrate the robust feature representation of deep convolu-
tional neural networks with a differentiable probabilistic regression model. This integration
enables KDM to offer a sophisticated representation of label probability distributions within
an ordinal regression framework. Such a framework is particularly adept at modeling cancer
progression as a continuum. A key strength of KDM lies in its ability to predict posterior
probability distributions, which allows for the precise quantification of the uncertainty in its
predictions.

2.6.1 Density Matrix

In quantum mechanics, the state of a pure quantum system is encapsulated by a wave
function, denoted as |¢), within a Hilbert space H. To determine the likelihood of the
system being in a particular state, one computes the square of the magnitude of the wave
function’s projection onto that state [65].

On the other hand, quantum systems can also exhibit classical uncertainty, characterized by
mixed states. These mixed states are conceptualized as a statistical blend of various pure
states, each represented by |¢;) and associated with a distinct probability p;. The set of
probabilities {p;} adheres to the normalization condition va p; = 1. For such mixed states,
the formalism of quantum mechanics employs a density matrix, denoted by p, to represent
the statistical properties of the system:

pP= Zpi 1) (Wi (2.1)

where (1);] represents the conjugate transpose of [¢;).The Born rule [65] can be extended to
compute the probability of finding a system with the state represented by p in a state |¢)
after a measurement:

pl) [ p) = Te([9)(blp) = (blpld) = Zpi (& | )| (2.2)

Density matrices serve as powerful instruments for representing probability distributions and
facilitating a range of computations with efficiency. They are pivotal in predicting the results
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of quantum measurements and in calculating expected values, among other applications
[65], 18].

The concept of a Kernel Density Matrix (KDM) emerges as a specialized form of a density
matrix, formulated within a Hilbert space shaped by a kernel function. KDMs excel in
efficiently encapsulating joint probability distributions and are instrumental in tasks like
inference, generation, and sampling. A key attribute of KDM is the differentiability of their
internal operations, which allows for seamless integration into deep learning frameworks.
The formal definition of KDM is as follows, as originally stated by Gonzélez et al [66]:

Definition 1 (Kernel Density Matrix). A Kernel Density Matriz over a set X is a triplet
p=(C,p, ky) where C = {w(l),...,a}(m)} CX,p=(p1, . ,pm) ER™ and kg : X x X = R,
such that Ve € X, k(x,z) =1,Vip; >0 and > p; =1

The elements of C' are the components of the KDM, and the p; value represents the mixture
weight, or probability, of the component x;. If ¢ : R® — H is the mapping to the RKHS H
associated to the kernel ky, p represents a density matrix defined as in with components
i) = ’qﬁ (:v(i))>. The projection function associated to a KDM p is defined as:

L@ =S pikd (2,2 (2.3)

xzeC

The projection function in can be transformed into a probability density function (PDF)
by multiplying it by a normalization constant that depends on the kernel of the KDM:

~

fo() = My fo() (2.4)

2.6.2 Inference with Kernel Density Matrices

Inference is the process of deducing unknown output variables from known input variables
and the parameters of a model. This process can be approached probabilistically, where
the relationship between inputs and outputs is expressed through a probability distribution,
denoted as p(x’,y’). This distribution reflects the inherent uncertainty in the data gener-
ation process. In making predictions about output variables, it is crucial to consider and
integrate both types of uncertainty into the output probability distribution, p(y). Inference
transforms the probability distribution of input variables, p(x), into a distribution for the
output variables, p(y), by leveraging the joint probability distribution of inputs and outputs,
p(x’,y’). In the context of KDM, these probability distributions are represented as follows:

Px = ({w(i)}izl,,,m (P izt s k‘x) (2.5)

pxl7yl = ({ (m/(i)’ y/(’b)> }i:l...m/ , (p’/L)ZZI’m’ , kX ® k’y) (26)
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- ({y/(i)}izl...m’ (0 )izt o) (2.7)

The probabilities of p, after the inference procedure are given by the following expression:

Z pepz » (@0, @ <>))2
S (ke (20, 20)))

fori=1...m (2.8)

This inference procedure uses a kernel function to assign local weights to each output training
sample according to the input sample’s similarity with each learned prototype '™ in the
KDM px . We obtain a full probability distribution represented as an output KDM p,.
In quantum mechanics, the density matrix py y- represents the state of a bipartite system.
The inference process in this context is a measurement operation, where the x subsystem
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