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Resumen

Un Control de Frecuencia basado en
Aprendizaje por Refuerzo para Sistemas
de Potencia, considerando No Linealidades
y Otras Interacciones de Control.
Dada la evolución de las civilizaciones y la existencia limitada de recursos, hay crecientes preocupaciones
sobre la sostenibilidad de ese progreso. Existe una creciente necesidad de fuentes de energía asequibles,
confiables y sostenibles. Diferentes organismos internacionales reconocen el papel crucial de la energía en
conseguir la sostenibilidad global, destacando la necesidad de una transición hacia alternativas energéticas
modernas y ecológicas. Esta transición a la energía renovable añade complejidades en los sistemas de
control, requiriendo controladores de frecuencia confiables. Este documento discute las limitaciones de
las estrategias tradicionales de control proporcional-integral (PI) y estudia el uso de un algoritmo basado
en aprendizaje por refuerzo, específicamente el algoritmo de Optimización de Política Próxima (PPO), en
el control del sistema de potencia. Los resultados demuestran la eficacia de PPO al reducir eficazmente
el error de control de área, manejar no linealidades y adaptarse a las perturbaciones en el sistema. La
capacidad de adaptación de PPO a diferentes situaciones y cambios en el sistema, junto con su naturaleza
agnóstica del sistema, lo convierte en una opción prometedora para mejorar el control del sistema de
potencia. Finalmente, se reconocen consideraciones prácticas como requisitos computacionales, retrasos en la
comunicación, ruido de medición y limitaciones de hardware, como desafíos que necesitan una exploración
adicional para la implementación del mundo real de PPO en entornos de redes eléctricas. El artículo
concluye instando a investigaciones adicionales para abordar estos desafíos y optimizar el algoritmo para
aplicaciones en el mundo real, haciendo énfasis en sus ventajas para la transición hacia las energías renovables.

Palabras clave: control de frecuencia, aprendizaje por refuerzo, optimización de política próxima, energías
renovables

v



A Reinforcement Learning Based Load Frequency Control for Power Systems considering
Nonlinearities and Other Control Interactions.

Abstract

A Reinforcement Learning Based Load
Frequency Control for Power Systems con-
sidering Nonlinearities and Other Control
Interactions.
Considering the advances of civilizations and the limited existence of resources, concerns about the sus-
tainability of that progress are increasing. There is a rising need for affordable, reliable, and sustainable
energy sources. Different international organisms recognize the crucial role of energy in achieving global
sustainability, highlighting the need for a transition to modern and green energy alternatives. This transition
to renewable energy introduces complexities in control systems, requiring reliable load-frequency controllers.
This document discusses the limitations of traditional PI control strategies and studies the use of a rein-
forcement learning-based algorithm, Proximal Policy Optimization (PPO), in power system control. Results
demonstrate the efficacy of PPO in effectively reducing area control error, handling nonlinearities, and
adapting to disturbances in the system. The adaptability of PPO to different situations and system changes,
with its system-agnostic nature, makes it a promising candidate for improving power system control. Finally,
practical considerations such as computational requirements, communication delays, measurement noise,
and hardware constraints are acknowledged as challenges that need further exploration for the real-world
deployment of PPO in power grid environments. The paper concludes by calling for additional research to
address these challenges and optimize the algorithm for real-time applications, emphasizing its advantages
in the transition to renewable energies.
Keywords: load frequency control, reinforcement learning, proximal policy optimization, renewable energies
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1 Introduction

1.1 Introduction

Nowadays civilizations have been characterized as the most advanced in human history. With technological
progress, most of them left behind famine and massive deaths, caused by infectious diseases and plagues,
and now live in peace and prosperity, which allowed world life expectancy to rise. As a consequence, while
these problems and needs persist, population concerns about the future are increasing. In their 2030 Agenda
for Sustainable Development, the United Nations have gathered those concerns and needs, and with them,
they created a blueprint as a road map to advance as a civilization sustainably while maintaining planet
ecosystems[1; 2]. The core of this blueprint is the Sustainable Development Goals. In these, the need for
affordable, reliable, sustainable, and modern energy is recognized to be essential for sustainable development.

Present societies depend on fossil energy, but its finitude and gradual depletion accentuate the need to look
for a replacement. Coal, natural gas, and crude oil reserves are running out at a worrying rate. According to
the latest BP Statistical Review of World Energy, see Figure 1-1, total global reserves of coal, natural gas,
and crude oil would be exhausted by years 2159, 2068, and 2066, respectively [3]. Note that this depletion is
not even across regions. If this dependency continues, extra and major political and economic disputes will
arise as a consequence of it. Additionally, the combustion of fossil fuels is the main contributor to greenhouse
gas emissions in the world. Due to its catastrophic effects, global warming has become an important motive
for the search for new sustainable and greener energy sources. A call to action to combat climate change
and reduce its consequences has also been made.

During the last decade, extreme events have become more frequent and their consequences are increasingly
higher. Heatwaves are rising in frequency, duration, and maximum temperature, which leads to dangerous
droughts in some world regions [4]. On the contrary, but following the same path, heavy downpours are
also increasing in frequency and becoming heavier, which even raises problems in some cities, as they are
not prepared to take that amount of water, leading to floods, possibly deaths, and poorer living conditions.
Hurricanes, blizzards, and thunderstorms are other examples of extreme weather events whose frequency has
risen and pose a high danger to human societies. It has already impacted directly the way of life of some
societies, as more thorough strategic planning has to be done to adapt to the new living conditions and risks
[5].

Electric energy promises to serve as an effective means to combat climate change and to have the necessary
affordability, reliability, and sustainability characteristics. Electricity can be applied interchangeably and
effectively with other types of energy, e.g. fossil energy. Recent technological advances, like solar panels,
converters, and wind turbines, make it affordable and versatile enough for most populations. It also can be
generated in more sustainable and clean ways. Those characteristics have made electricity a prospect of
a reliable energy source for the everyday needs of customers: communication, mobility, cooking, lighting,
heating, and cooling[6]. As a result, electricity has acquired a major role in the lives of people, with 90% of
the global population having access to it[6]. However, the concept of electricity cannot be separated from

1
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Coal, Gas and Oil Reserves-to-production (R/P) Ratios in 2020 

Figure 1-1: Coal, gas and oil reserve-to-production (R/P) ratios in 2020.
[3].

the concept of electrical power systems, as it needs to be used.

1.2 Rationale

An electric power system refers to the interconnection of elements that are responsible for the generation,
transmission, and distribution of electric energy. Most electric power systems over the world are based on
alternating current (AC) and work at a unique frequency, e.g. 60 Hz in most countries of North and South
America and 50 Hz in Europe. The bulk of any modern power system is composed of three fundamental
machines, which exploit the well-known Faraday’s Law

e(t) =
d

dt
φ(t) (1-1)

Where e is the electromotive force (EMF) and φ is the magnetic flux.

Those are (1) Synchronous machines, where flux variation is due to a rotating flux in the rotor by a direct
current flowing through its windings and its spatial rotation, (2) Transformers, where the alternating currents
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that flow through its windings create periodical variations in fluxes and (3) Induction Machines, where the
flux of the rotor varies in space and time through its air gap due to its rotation [7].

Historically, AC systems have been preferred over DC-based without discussion[7]. Nonetheless, DC
transmission and generation have been gaining interest recently. Transmission in DC has fewer losses,
needs fewer conductors and less insulation, there are no skin and corona effects, and is less difficult to
synchronize and stabilize a DC system [8]. The principal drawbacks of DC systems were that transmission
and generation were comparatively not feasible. It was easier and cheaper for AC systems to generate
electricity from mechanical energy and to obtain the high voltages needed to transport electricity long
distances. With the development of semiconductors, and with them, power converters, DC systems regained
attention. Renewable energy sources, such as photovoltaic generation and wind turbines, work on DC or
are asynchronous. e.g. do not have a unique frequency, thus, they rely on power converters to connect
themselves to the AC grid. Power converters also made High Voltage DC transmission (HVDC) systems
feasible, which are preferred over AC for very long distances. Power systems will suffer a hybridization
between AC and DC soon. It is expected that DC systems overtake AC systems at some point. However,
the replacement cost is extremely high, which is why current AC systems still have a long life ahead of them.

This hybridization responds to the present civilization’s needs and values but imposes new challenges to
the operation and control of power systems. Due to the possibilities of new technological advances and
the philosophy of more efficient systems, populations are heading to automation and digitization of several
activities [9]. Therefore, high power quality became a new requirement. Worldwide power systems are also
being operated under stressed conditions, near their stability limits, as electricity consumption has been
increasing [10]. Climate change drives generation matrices to add renewable generation. Renewable resources
participation in electricity generation is already more than 10% and is growing exponentially, as can be
seen in Figure 1-2. They also are allowed to generate in a distributed manner, which promotes the use of
distributed energy generation. Those are usually called distributed energy resources (DER). Therefore, the
intrinsic characteristics of renewable resources, such as solar and wind, as well as the quantity, location, and
diversity of new technologies introduce uncertainty to the power system. These coexist with the traditional
ones in an interconnected form, thus, adding even more complexity to the power system.

Evidently, the current condition of power systems is presenting new challenges. As a summary, the
following factors hinder the operation and control of power systems [9]: (1) there is a large number of
tightly interconnected components, (2) the relationships among various power components are so complex
that mathematical theories and control methods are hard, or almost impossible, to apply; (3) components
in different layers require several spatial and temporal requirements for operation. For example, power
converters control works on different time scales than traditional machine controllers, hundreds of times
higher; (4) simultaneous participation of different new actors, like electric vehicles or distributed generation
resources, in several different places (5) random disturbances, mainly introduced by stochasticity of the
load and wind and solar sources, or disturbances already known by utilities; (6) power system operation is
based in multiple hierarchical layers; (7) as more and more actors participate in power systems generation,
it becomes impossible for a single centralized entity to evaluate, monitor, and control all the interactions in
real-time. Nonetheless, power system control is also evolving. High processing power is given by computers
and processors, that are capable of handling millions of operations, and new and faster communication means,
e.g. optic fiber, wireless, and satellite communications set the foundations for new control and operation
paradigms, opening up new possibilities [9].
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Figure 1-2: Share of global electricity generation by fuel.
[3]

1.3 Background

1.3.1 Overview of Stability and Frequency Control on Power Systems

Power Systems Stability

For AC power systems to work, they ought to have the ability to regain and maintain steady-state conditions
after being physically disturbed [11]. Synchronous machines have damping capacity and large inertia, but
modern transmission systems are adding more converter-based generation to increase capacity or replace
older machines, which results in a system with less inertia, narrowing the operation limits of the system [12].
The loss of stability could lead the system to a blackout, which for such large and essential systems, will
have a great societal and economic impact.

Stability requirements on power systems are usually stated in terms of voltage, rotor angle, and frequency
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stability [13]. Voltage stability refers to the ability to maintain steady voltages on all buses of the power
system. Rotor angle stability refers to the ability to keep the state of synchronization between synchronous
machines in the system. Its most characteristic event is the oscillatory swing of the rotor angle, where a
swing with increasing amplitude indicates the loss of synchronism. Lastly, frequency stability refers to the
ability of the power systems to maintain their frequency in every bus of the system.

Power System Stability

Rotor angle 
stability

Voltage
stability

Frequency
Stability

Small
 disturbance

angle stability

Transient 
stability

Small 
disturbance 

voltage stability

Large
disturbance 

voltage stability

Figure 1-3: Power systems stability classifications.
[14]

As seen in Figure Figure 1-3, voltage and angle stability are usually divided according to the size of the
disturbance, into small-signal, for small disturbances, and transient stability, for large disturbances [14]. This
differentiation allows linearization for small disturbances. Power systems are inherently nonlinear systems,
but they can be linearized around a steady-state operating point. Linearization is based on the following
assumptions: (1) a system can be linearized around a certain operating point and (2) the system keeps an
approximated linear behavior in a region not far from this point. It simplifies the analysis, as a large set of
tools from linear systems theory can be applied. However, the limits to where the linearization can be used
are not clear and it varies from system to system. For relatively large disturbances, the nonlinearities must
be considered in the mathematical model [14].

Frequency on Power Systems

Periodic and oscillatory phenomena are characterized based on frequency by several engineering and science
fields. Usually, frequency is expressed in Hertz [Hz] in the International System of Units (SI), as the number
of cycles per second [15]. To maintain stability, AC power systems need to be operated at a nominal reference
frequency. It has been standardized in 60 Hz, for America, and 50 Hz for Continental Europe and the United
Kingdom (UK). Ideally, the frequency of the system should be constant and equal to the reference value in
the whole power system. However, the frequency in power systems is never constant [16; 17; 18]. Moreover,
as variations of the system state with any frequency different than the nominal one, even small ones, will
decrease the power quality and increase losses on the system, they have to be eliminated or reduced, at
least [7]. Variations may occur by changes in the demand or generation, due to stochastic noise, network
operation, e.g. connection or disconnection of lines or buses, nonlinearities, e.g. saturation on transformers,
harmonics, and occasionally faults. Sources of variations are almost impossible to predict or control. To
assess that regulators have defined ranges where frequency variations are allowed. In North America, the
standard frequency range accepted is ±50mHz, in continental Europe and the UK is ±50mHz and ±200mHz,
whereas the maximum steady-state deviation allowed is ±200mHz, ±250mHz, and ±500mHz, for US, UK,
and Europe respectively [16; 17; 18].

Notice that the definition of frequency in the SI is not suitable for transient phenomena, where there is no
“repetition” of events. There is a discussion held about this in [7], where some of the most important aspects
are summarized.
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Therefore, in the electrical engineering field, it is pragmatic to define an instantaneous angular frequency in
[rad/s], as the rate of change of the phase v[rad/s], of a sinusoidal wave [19],

u(t) = sin(v(t)) (1-2)

where w is related to v and f as,

w(t) = 2πf(t) =
d

dt
v(t) (1-3)

and, correspondingly, the period is

T (t) =
2π

w(t)
=

1

f(t)
(1-4)

Also, the rate of change of frequency (RoCoF) [Hz/s] is stated as:

RoCoF =
α(t)

2π
=

1

2π

d

dt
w(t) =

1

2π

d2

dt2
v(t) (1-5)

A nominal reference frequency is defined for standardization and regulation purposes. The reason to keep
that frequency constant everywhere is due to the nature of synchronous machines.

The electromechanical behavior of the synchronous machine is given by the swing equation

M
d

dt
w(t) = τm(t)− τe(t)−D(wG(t)− 1) (1-6)

Where τm(t) is the input mechanical torque; τe(t) is the electromagnetic torque linked to the stator flux and
currents; wG(t) is the per unity rate of change of the angle position δG(t) referred to the reference angle δ0
of the system; D and M are the damping coefficient and inertia constants, respectively.

According to 1-6, the electromechanical torque is directly related to the real power of the synchronous
machine. Note that a change in the electrical power will impose a change in the instantaneous frequency
at the output of the machine. Thus, restricting the steady-state of power systems to the case where the
angular frequency is also constant.

Power Systems Control

Frequency Control
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To maintain a constant frequency, power systems require frequency regulation. Despite synchronous
machines tending to keep synchronism and maintain the power system balance by varying their kinetic
energy, they are not able to automatically recover a secure steady-state operation point by themselves after a
contingency. Notice that the electro-mechanical equation (1-6) resembles that of a pendulum with damping
and disturbances terms. Moreover, the oscillatory, swing, response of synchronous machines degrade the
system’s performance and stability. The system will destabilize if the power unbalances created after a
large disturbance are large enough to surpass systems inertia [11]. In power systems with DER based on
power converters, the total inertia of the system is reduced. As modern power systems are put forward
more frequently to work under severe stress conditions, combined with less inertia due to the nature and
popularity of renewable resources, frequency control gained more interest [10].

The objective of frequency regulation is to match generation and consumption while reducing losses on the
system. To do that, the generators must have the capability to work under nominal or maximum available
power at the moment, this saved power is called spinning reserve. Counting on that spinning reserve, four
types of frequency regulation are defined: primary frequency control (PFC), secondary frequency control
(SFC), and tertiary frequency control (TFC). They operate on different scales and in a hierarchical way. A
frequency characteristic response and an overview of the control framework for frequency control, with the
action time of each control type, are shown in figure 1-4. On top of them, one more type is added, which is
called emergency control (EC), which operates in extreme disturbance cases.

Figure 1-4: Characteristic response of primary, secondary, and tertiary frequency controls following the
sudden loss of generation.

[20]

Turbine governors (TG) compose the PFC of synchronous machines. In steady-state operation, small
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frequency deviations are attenuated by the PFC. The frequency deviation ∆f is the input. A dead band is
used to reduce the stress on the mechanical parts of the TG by chattering phenomena. The resulting signal
goes through a gain filter, 1/R, called drop. Its output is added to the power reference given by the SFC
and the TFC.

Disregarding how complex TG models could be, PFC is deliberately based on drop control. Under the
assumption that drop per unit gain values are similar relative to their machine sizes, it enables the unbalance
of power to be distributed among all power plants according to the capacity of their relative machines [7].
This optimizes the usage of the spinning reserve. This result would not be possible for perfect reference
tracking controls. Even if they are used in practice, the dead band in the TG always adds a steady-state
error, thus, another control is needed to correct it.

SFC, which is often called automatic generation control (AGC), has the major function of load frequency
control (LFC). LFC is responsible for eliminating this steady-state error after a disturbance. It is a regional
controller, that selects a pilot bus for a frequency reference, calculates the area control error (ACE),
and sends control signals to the turbine governor of each synchronous machine. Its working time scale
is an order higher than PFC. Its objectives are to maintain the frequency and power interchanges with
neighboring control areas, also known as tie-line flows, at scheduled values. LFC is recognized as one of the
most important control problems in electric power systems design and operation and has been extensively
researched.

TFC is done by the system operator. It is needed to restore the spinning reserve of the system after the
disturbance has been cleared out. To do that, the power references of the generators are adjusted, which
takes the system to a more stable steady state. The economic aspects associated with the operation of the
system are also considered for optimization, e.g. costs of generation and transmission losses.

Emergency control and protection schemes have a discontinuous nature and usually act over the system
structure. When the disturbance is too large, if the system maintains the same structure, it could lose
stability, then, its structure needs to be modified. Switching is used for this purpose. EC includes manual
control, e.g. Emergency Load Shedding (ELS) or generation shedding, or automatic control, e.g. Under
Frequency Load Shedding (UFLS) or Under Voltage Load Shedding (UVLS).

Angle and Voltage Control

Power oscillations, or swings, are directly related to the voltages and angles of the terminals and rotor of the
synchronous machine, respectively. To reduce the risk of losing voltage and angle stability the dynamic
response of the power system needs to be smooth, thus voltage and angle regulation is needed. Analogous
to the PFC, the automatic voltage regulator (AVR) is the primary voltage regulator of generators. It
is responsible for maintaining the voltage at the generator’s connection point and is mandatory for its
connection to the transmission system. Conventional power units allow this modification through the
excitation circuit of the machine.

Supplementary control is given by the power system stabilizer (PSS), which is considered the most relevant
of such controllers. PSS’s aim is the damping of electromechanical oscillations in the machine, due to the
conflict between rotor speed and voltage dynamics, and also, between AVR and oscillatory electromechanical
modes of the machine. Modern power systems also count on flexible AC transmission systems (FACTS)
devices to improve voltage stability on the power system. Similar to frequency control, secondary and
tertiary voltage controls are used to improve system stability and optimize the economic aspects of the
transmission.
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1.3.2 Reinforcement Learning for Control

Reinforcement learning (RL) is a major field of machine learning whose concern is how an agent learns to take
actions from experience, called control laws or policies, to interact with an environment while maximizing
long-term reward signals. An overview of the reinforcement learning framework is shown in figure 1-5.

Figure 1-5: Reinforcement Learning Framework.
[21]

In the RL framework is common to assume that the interaction between agent and environment is described
by a Markov Decision Process (MDP). An MDP generalizes the idea of a Markov process by adding actions
and rewards [21]. It is worth recalling that a Markov process is based on the assumption that the next state
only depends on the current state. Thus, An MDP can be represented by a set of states S, a set of actions
A, and a set of rewards R, along with a transition model T (s, a, s′), which dictates the probability

P (s′, s, a) = P (sk+1 = s′|sk = s, ak = a) (1-7)

of transitioning to the next state s′ given the current state s and a chosen action a, and a reward function
R(s′, s, a).

Common notation uses π to represent a policy, which is sometimes assumed as a mapping from states to
actions π : a→ s, or as an auxiliary notation to be used in a sum of states like [21],

P (s′, s, π) =
∑
a∈A

π(s, a)P (s′, s, a) (1-8)

For the present document, the first representation is one to be used.

The goal of reinforcement learning is to find a policy that maximizes the expected discount cumulative
reward, called optimal policy which is noted as π∗. Then, given a policy, a value function that quantifies the
benefit of being in a given state is defined as,

Vπ(s) = E

(∑
k

γkrk|s0 = s

)
(1-9)

where E is the expected reward over the time steps k, subject to a discount rate γ. Note that future rewards
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are discounted, giving more value to the early rewards. Then, the best policy is given by,

V (s) = max
π

E

(∑
k

γkrk|s0 = s

)
(1-10)

it can be written recursively as,

V (s) = max
π

E

(
r0 +

∞∑
k=1

γkrk|s1 = s′

)
(1-11)

which means that

V (s) = max
π

E(r0 + V (s′)) (1-12)

Thus, the optimal policy is given by,

π∗ = argmax
π

E(r0 + V (s′)) (1-13)

Sometimes, it is necessary to quantify the benefit taking into account also the chosen action. The value
function V (s) does not actually cares about the taken action, that is why another value function is defined
as,

Qπ(s, a) = E

(∑
k

γkrk|s0 = s, a0 = a

)
(1-14)

This is called the quality or Q-value function and is the expected reward from starting at state s, and then
acting with action a. It can be rewritten as,

Q(s, a) = max
π

E (R(s, s′, a) + γV (s′)) (1-15)

=
∑
s′

P (s′, s, a) (R(s, s′, a) + γV (s′)) (1-16)

The optimal policy is then given by,

π∗ = argmax
a

Q(s, a) (1-17)

and is related to V (s) as

V (s) = max
a

Q(s, a) (1-18)

Expressions (1-18) and (1-15) are known as the Bellmans’ equation, which are a necessary optimality
condition, based on Bellman’s principle of optimality.

Finally, it is worth noting that this framework is defined only for finite state and action spaces. However, it
can be extended to infinity spaces with the help of neural networks.

1.4 Problem Identification

In previous sections, it was presented that current societies depend on fossil energy, but it is finite and is
depleting gradually. Also, the combustion of fossil fuels is the main contributor to greenhouse gas emissions
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in the world. Electric energy promises to serve as an effective means to combat climate change and to have
the necessary affordability, reliability, and sustainability characteristics. It has also acquired a major role in
the lives of people. Electricity depends on power systems to be generated, transported, and used. Most power
systems work on AC. For AC power systems to work, they ought to have the ability to regain and maintain
steady-state conditions after being physically disturbed. However, renewable resources, such as solar and
wind, as well as the quantity, location, and diversity of new technologies introduce uncertainty to the power
system. Also, power systems are suffering a hybridization between AC and DC, adding more complexity
to the analysis. On top of that, the digitization of several people’s activities and lives also brought new
requirements for high power quality.

As a consequence, global warming combat efforts and fossil fuel replacement are being delayed because of the
problems related to the adoption of renewable and distributed generation. Due to global warming, extreme
events are becoming more frequent. If the dependency on fossil fuels continues, extra and major political and
economic disputes will arise as a consequence. Moreover, hybrid power systems contain less inertia, making
them more vulnerable to loss of stability after a disturbance. The loss of stability could lead the system to a
blackout, which for such large and essential systems, would have a great societal and economic impact.

These add complexity to the frequency control of power systems while hardening the operation requirements.
Also, nonlinearities of the systems are not usually considered in research. For systems with high penetration
of distributed renewable resources, meaning less inertia to withstand a disturbance, and with new power
quality requirements, these nonlinearities need to be accounted for. Similarly, solar photovoltaic and wind
generation are usually not considered for frequency regulation, when, due to their high penetration in power
systems, they will be asked to do frequency regulation. Then, the control and operation of power systems
are becoming harder. Load frequency control is one of these control problems. Most all the existing control
theories have been applied to this problem, but most of them do not consider the mentioned nonlinearities
and participation of renewable resources, solar and wind, and storage systems, in frequency regulation to
reduce the governor’s efforts of synchronous machines. Also, interactions with other controllers are not
considered. Simultaneously, great processing power, given by computers and processors, set the foundations
for new control and operation paradigms. Reinforcement learning is one of these paradigms. It has proved
good performance addressing the LFC problem, but work on these is recognized to be still in the early
stages. Therefore, the purpose of this research is to contribute to the LFC problem, addressing it from the
reinforcement learning framework, leading to the following research question:

What is the performance of a LFC based on RL for a multi-area power system with high penetration of
solar photovoltaic, wind generation, and energy storage systems, with the participation of these in frequency
regulation, considering nonlinearities and voltage and stabilizers interaction?
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1.5 General and specific objectives

General Objective

Propose a load frequency control for a multi-area power system with high penetration of solar photovoltaic,
wind generation, and energy storage systems based on reinforcement learning.

Specific Objectives

1. Develop the multi-area power system environment for training and testing.

2. Design and train a controller based on reinforcement learning theory.

3. Benchmark the performance of the controller against other control strategies as optimized PI and
ADRC controllers.
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1.6 Thesis Organization

This document is organized as follows. Chapter 2 provides a review of Load Frequency Control (LFC) in
power systems. Then it continues with an overview of neural networks as function approximators, covering
recurrent neural networks, and finalizes with a review of the Proximal Policy Optimization (PPO) algorithm.
Chapter 3 dives into the approach and methods employed in this study to investigate LFC in power systems.
It describes the models used and the several simulation assumptions. It also describes the learning process and
presents the PPO algorithm used. The last section details the Proportional Integral (PI) controller design.
Then Chapter 4 presents the results of the simulation, demonstrating the generalization capabilities of the
reinforcement learning algorithm. Chapter 5 includes a discussion about those results, placing emphasis on
the advantages and disadvantages, and problems found. Chapter 6 closes this document with a conclusion on
the work done and, finally, Chapter 7 presents a discussion on how to extend this work and other approaches
or evaluations that can be performed.
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A Reinforcement Learning Based Load Frequency Control for Power Systems considering
Nonlinearities and Other Control Interactions.

2 Literature Review

This chapter provides a review of Load Frequency Control (LFC) in power systems. It traces the historical
evolution of LFC, from early tie-line bias control to addressing contemporary challenges like renewable energy
source integration and market deregulation. The goals of LFC, such as maintaining constant frequency
and minimizing deviations, are highlighted. The chapter also emphasizes the impact of renewable energy
fluctuations on LFC and their inclusion in control scheme models.

Additionally, it provides an overview of neural networks as function approximators, covering feedforward
neural networks, recurrent neural networks (RNNs), and Long Short-Term Memory (LSTM) architectures.
It also introduces the Adam optimizer and explores policy gradient algorithms, focusing on multi-step returns
and off-policy learning. Finally, the Proximal Policy Optimization (PPO) algorithm is highlighted as a
solution to noisy gradient challenges in policy gradient methods. The chapter concludes by discussing
performance functions for control problems.

2.1 Load Frequency Control

The LFC problem has been one of the most researched in power systems control. Tie-line power flow and
frequency control in power systems have appeared even before frequency stability was characterized in
[19]. One of the first records was the work done by Cohn et. al. on proposing an LFC based on tie-line
bias control. He also proposed control techniques based on adding coordinated inadvertent interchange
and time error correction factors on area control error computations [22; 23; 24]. Since then, LFC has
been continually evolving. A standardized terminology related to LFC was finally stated in [25], dynamic
modeling for LFC studies began being discussed in depth in [26], and novel concepts such as optimality were
added to the control philosophies. Power system restructuration also brought new challenges for LFC. Since
power systems are turning into a hybrid scheme, due to distributed and renewable resources, the effects of
this effect have been studied in [12], and models of the new technologies had to be added. A huge variety
of these models and technologies can be found in [27]. As market deregulation also changed the rules for
LFC, new studies on deregulated markets for modern power systems have been held and LFC control on
deregulated markets has been extensively studied. Most of the work on deregulated power systems has been
recently reviewed in [28].

In instances where the generated power falls short of the load demanded, the speed and frequency of generator
units decrease, and conversely, if the generated power exceeds the load, the speed and frequency increase.
Typically, normal frequency variations range around 5% between light load and full load conditions [29; 10].

In the context of frequency regulation, there are two primary strategies: flat frequency regulation and parallel
frequency regulation. The former occurs when only the generator closest to the altered load adjusts its
generation set point. On the other hand, parallel frequency regulation involves multiple generators adjusting
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their set points simultaneously [29].

To maintain stability, the change in a specific area is managed by the generators within that region,
ensuring that tie-line loading remains constant. All generators within such an area form a coherent group,
synchronizing their speed and power angles to collectively speed up or slow down. This defined area is
termed a control area, typically aligning with the boundaries of an individual electricity board company
[30; 10]. The objectives of load frequency control are [10]:

• Hold a constant frequency and reduce deviations from its set-point.

• Maintain the tie-lines power flow to their scheduled value.

The power transference through the tie-line is defined by the expression [13]:

Ptie,12 =
|V1||V2|
X12

sin(δ1 − δ2) (2-1)

where V1 and V2, and δ1 and δ2 represent the voltages and their respective angles of both ends and X12

the reactance of the tie-line. Small changes in frequency can be linearly approximated by the following
expression [30; 10].

∆Ptie,12 =
|V1||V2|
X12

cos(δ1 − δ1)(∆δ1 −∆δ1) (2-2)

Grouping terms

Ks12 =
|V1||V2|
X12

cos(δ1 − δ1) (2-3)

where Ks12 is referred as the synchronizing coefficient between the two areas [10]. Then, a change in
transferred power can be expressed as

∆Ptie,12 = Ks12(∆δ1 −∆δ2) (2-4)

Considering that

∆δ =

∫ T

0

∆ωdt (2-5)

Replacing the angle variation ∆δ in the power variation equation,

∆Ptie,12 = Ks12

(∫ T

0

∆ω1dt−
∫ T

0

∆ω2dt

)
(2-6)
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Applying the Laplace transform and considering any pair of areas i and j,

∆Ptie,ij =
Ks12

s
(∆ωi(s)−∆ωj(s)) (2-7)

In general, the tie line power variation for any area is defined by [10],

∆Ptie,i =

n∑
j=1,j ̸=i

∆Ptie,ij (2-8)

Area Control Error (ACE) is considered an essential indicator for the imbalance in generation-load power for
the transmission system operator [10]. Defined as,

ACEi = βi2π∆ωi + Ptie,i

or

ACEi = βi∆fi +∆Ptie,i (2-9)

where βi represents the frequency bias and it is given by,

βi = Di +
1

Ri
(2-10)

Di, and Ri represent frequency bias, damping coefficient, and governor droop, respectively. The Di

determines the LFC system’s ability to rapidly reduce frequency deviations in the power system [10]. The
higher the Di the quicker the LFC to respond to frequency variations and stabilize the power system. The
damping coefficient Di of conventional power system can be calculated as [30]:

Di =
4Hiωnξ

ωm
(2-11)

where Hi, ωn, and ξ represent the inertia constant, natural frequency, and damping factor, respectively.
Likewise, the inertia constant, Hi, is important in determining the system’s capability to respond to variations
in load demand and maintain frequency stability. For a single generator, Hi is determined by

Hi =
1

2

Jiω
2
m

Sn,i
(2-12)

where Ji, ωm, and Sn,i represent the moment of inertia, rotor speed, and rated power of the generator,
respectively. the moment of inertia, Ji, rotor speed, ωm, and rated power, Sn,i, of the generator
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In interconnected power systems with multiple generators, the total inertia constant, Hcon, is computed by
considering the contributions of individual generators based on their rated powers

Hcon =

n∑
i=1

Hi
Sn,i
Sn

(2-13)

where n and Sn are the total number of connected generators and the rated power of the power system.

2.1.1 Renewable Energy Sources Impact on Frequency Response

Renewable power plants are an additional source of variation to an already variable system. Analyzing
the overall effect of fluctuations caused by Renewable Energy Sources (RES) is crucial, as instantaneous
fluctuations in load and RES power output can either amplify, be unrelated, or cancel each other out.
The slow dynamics of RES power fluctuations and total average power variation negatively impact power
imbalance and frequency deviation. Therefore, these fluctuations should be considered in Load Frequency
Control (LFC) schemes, requiring their inclusion in the conventional LFC structure [10].

Figure 2-1: LFC model with considering RES power fluctuation.
[10]

A generalized LFC model in the presence of RES is shown in Fig. 2-1. Here, to cover the variety of
generation types in the control area, different values for turbine governor parameters and the generator
regulation parameters are considered [10]. Figure 2-1 shows the block diagram of a typical control area
with n generator units. Here, ∆f is frequency deviation, ∆Pm is mechanical power, ∆PC is secondary
control action, ∆PL is load disturbance, ∆HSys is equivalent inertia constant, ∆DSys is equivalent damping
coefficient, B is frequency bias, Ri is drooping characteristic, ∆PP is primary control, αi is participation
factors, ∆PRES is RES power fluctuation, K(s) is LFC controller, and Mi(s) is governor turbine model
[10]. Right after a load disturbance in the control area, the frequency experiences a transient change, and a
feedback mechanism generates suitable signals for participating generator units based on their participation
factors (αi) to align generation with the load [10]. Participation factors have the characteristic that their
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sum in a given area equals one,
∑
αi = 1. They are also time-dependent signals that are computed by an

independent organization based on several market and power system factors, e.g. availability, bid prices,
congestion problems, costs, etc. In a steady state, generation matches the load, driving tie-line power and
frequency deviations to zero. The control signal is distributed proportionally among the various generators
within the area [10; 29]. In Fig. 2-1, the frequency performance is represented by a lumped load-generation
model using equivalent frequency, inertia, and damping factors [10]. Wind units, with significant kinetic
energy, are more important than other Renewable Energy Sources (RESs). The equivalent system inertia is
defined by total inertia constants (HC and HW ) for conventional and wind turbine generators, respectively
[10].

Hsys = HC +HW =

N1∑
i=1

HCi
+

N2∑
i=1

HWi
(9.2)

Wind turbines provide substantial inertia for frequency control support, with typical inertia constants of 2–6
s. For context, typical values for grid power generators are in the range of 2–9 s [10]. The total effect of
power fluctuation should consider (∆PRES). The resulting ACE signal must reflect the total RESs power
generation changes [10]

ACE = β∇f +
∑

(PCon,act − PCon,sched) +
∑

(PRES,act − PRES,estim) (2-14)

It can also be shown that frequency deviation in steady state for power systems with RES can be obtained
as [10]:

∆fss =
Rsys(∆PC −∆PRES −∆PL)

DsysRsys + 1
(2-15)

where

1

Rsys
=

1∑
iRi

(2-16)

Dsys =
∑
i

Di (2-17)

(2-18)

Where Rsys and Dsys are the equivalent system drooping characteristic and damping coefficient respectively
[10]. The magnitude of total load-generation imbalance ∆PD immediately after the occurrence of disturbance
can be expressed as [10]:

∆PD = 2Hsys
d∆f

dt
(2-19)

It shows that the frequency gradient is proportional to the imbalance, with the factor of proportionality being
the inertia of the system. The inertia constant is loosely defined by the combined mass of all synchronous
rotating generators and motors connected to the system. A higher inertia constant (H) results in a slower
decrease in frequency following a load decrease, and conversely, a lower inertia results in faster changes in
the frequency.
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2.1.2 LFC control types

Conventional Control Approaches

In the early stages, LFC was implemented using PID controllers. It is still the most common in literature
and the preferred control strategy used where the bulk power system is composed of conventional generators
due to its simplicity [10]. PI-based controllers are mostly known as conventional, or classical, controllers. A
basic formulation of a PI-based LFC can be encountered in [7]. Zigler-Nichols Tunning and other methods for
a PID controller can be found in [31]. Internal model control (IMC), another conventional control strategy,
has been applied for LFC in [32]. The use of IMC for tuning a PID can be found in [33]. The performance of
classical controllers for conventional power systems has been assessed in [34], concluding that its performance
decreases if non-linearities of the system are taken into account. However, PID controllers are still used as
benchmarks for evaluating the performance of the other types of controllers.

The efforts to improve PID performance can be summarized in looking for new topologies, better tunning
methods, and adding new features, e.g. adaptability and specific functions. Patel et. al. studied a double
loop PD+PI controller in [35] for a three-area power system, with thermal and hydro units. Its purpose
was to improve the performance of typical PID controllers against non-linearities, even in the presence of
an HVDC link. Bakken and Grande in [36] proposed a PI controller with an additional ramp following
controller (RFC) to overcome the problem of power deviation during HVDC ramps when modifying the
tie-line scheduled power.

Metaheuristic Optimization Strategies

With the concept of optimality introduced in the control of power systems, optimization strategies gained
popularity in Load Frequency Control. However, the nonlinearities and complexity of modern power systems
involve non-convex and hard-to-solve optimization problems, that deterministic optimization algorithms
cannot solve or cannot find the global optima. To overcome this, several metaheuristic optimization
algorithms were developed. Some examples are genetic algorithms (GA), Particle Swarm Optimization
(PSO), Grey wolf optimization (GWO), Ant Colony Optimization (ACO), Genetic Algorithms (GA), Cuckoo
search algorithm (CSA), etc. Kumari has proposed a control using Particle Swarm Optimization (PSO) and
Gradient Descent (GD) algorithms for tunning a PI for LFC, the governors drop constant, and the area
frequency bias parameters in a multi-area thermal-wind-hydro power plant[37]. The purpose was to compare
the LFC performance of PSO and GD on these systems, obtaining better system performance with PSO.
Kumar and Antwar have proposed a Fractional Order PID (FOPID) in a parallel control structure [38].
This allowed them to decouple set-point tracking and load disturbance rejection. PSO was used to optimize
the integral time absolute error (ITAE) of the frequency deviation for parameter tuning. The performance of
this proposal was compared against IMC-based control proposed in [39] showing a performance improvement,
however, not exceeding also the IMC-based one in [32] in a test carried out in network topology similar
to the standard IEEE 39 bus system (New England 10 machine test system). The difference between
the last two resides in that the first one used the direct synthesis approach, which is based on a desired
closed-loop transfer function, for design, while the second used the principle of the worst-case plant. Both
of them are also robust approaches. Lastly, Otchere et al. proposed an adaptative PI control that uses a
genetic algorithm (GA) also for tunning and compared it against adaptative PI-PSO controller in a power
system with high penetration of renewable energy, such as photovoltaic and wind energy, obtaining a better
performance with GA [40].

Robust Control Approaches

Modern power systems make the task of modeling and parameter identification hard and complex. While
they are the largest systems that ever existed, the operating conditions increase that level of complexity.
The operating point is constantly changing due to inherited demand behavior and rapidly varying sources
that renewable resources depend on. Power systems are also constantly subjected to disturbances that can
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make the system structure change. Moreover, the system parameters vary with time conditions. Adding all
those complex dynamics makes any model-based controller, that does not consider them, not feasible. In
[41], Bevrani et al. suggested a decentralized LFC as a multi-objective optimization problem, considering
the regulation against random disturbances, based on a mixed H2/H∞ control. The author considers that
disturbances are better addressed by H2 or linear quadratic Gaussian (LQG) control, while H∞ is considered
more useful for holding closed-loop stability and formulation of physical control constraints. The suggested
control showed better performance than considering separated strategies. Also, Niimi et al. proposed a
control strategy with H∞ to add frequency support to a solar photovoltaic power plant, improving the
dynamic frequency response of a small system [42]. Shayeghi et al. suggested a novel mixed decentralized
H2/H∞ control technique trained by a new decentralized radial basis function neural network (RBFNN)
based controller, which can account for large modeling uncertainties [43]. This has been compared against
other H2/H∞ mixed techniques and it has been shown to keep a robust performance, minimizing the effects
of area load disturbances in the presence of plant parameter changes and system nonlinearities. Sliding mode
controls are other types of robust controllers. A second-order sliding mode control (SMC) has been suggested
by Kumar in [44], where the characteristic problem of SMC, chattering, is addressed by using a second-order
control law. The LFC problem is solved by stating the system equation in sliding mode and treating the
problem as a linear optimal state regulator problem to solve it. Improvement in performance against PI
controller and low chattering has been shown. More about robust approaches and control strategies for
power systems can be found in Bevrani’s book [10].

Advanced Control Approaches

Fuzzy logic solves the control problem based on a linearized mathematical model and experience and
knowledge of this system. It has been successfully applied to the LFC problem. You et al. have proposed
an adaptative PI control based on fuzzy logic. The latter is used as a parameter variation logic for online
tunning the PI controller based on a lookup table created with Ziegler-Nichols and critical proportions
methods [45]. The method was tested on a diesel generator linearized model suggesting good performance.
Singh et al. suggested a new fuzzy logic-based approach in PI-controlled LFC two-area linear systems [46].
Here, a fuzzy logic control was used alongside PI to improve the system dynamics, showing less overshoot
and less setting time. Non-linearities and HVDC links are addressed in [47] for a two-area hydrothermal
system using a fuzzy logic control. A comparison against I, PI, and PID controllers is shown, however, it is
not clear if the FLC had better performance. There is more literature in the mix of both, PID and fuzzy
logic, which shows better performance, for example in [48].

Artificial neural networks (ANN) are also used for control and are equivalent to fuzzy logic. The knowledge
of the system is acquired during training from optimization. Demiroren et al. suggested a multilayer ANN
controller that uses the area power deviations as inputs to calculate the control signals for minimizing the
error signal [49]. It was proposed for a three-area interconnected power system that has two areas including
the steam turbine and the other hydro turbine. Chaudhary et al. proposed a multilayer ANN controller for
a hybrid power system entailing non-reheat, re-heat, and hydropower generating units. It compared it with
a fuzzy logic controller, obtaining pretty similar results [50].

A combination of FLC has been used with artificial neural networks, in what is called, an adaptative
neuro-fuzzy inference system (ANFIS) controller. This controller was developed based on an adaptative
controller framework. Shree and Kamaraj have proposed an ANFIS controller for LFC for a three-area
hydrothermal power system using a multilayer perceptron structure for the ANN. The purpose was to
improve the system’s dynamic performance for large disturbances [51]. It has been compared against other
optimization-based and ANN controllers, showing a better performance.

A linear quadratic regulator (LQR) is a state feedback controller. It takes advantage of the linearized system
model and state measurements to design an optimal control law based on state feedback and gains. When
state measurements are not available or noisy, an observer can be used to observe the states of the system.
Prakash et al. suggested an application of a linear quadratic regulator-based proportional-integral (LQR-PI)
controller for load frequency control for a two-area thermal power system, including solar photovoltaic
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systems and wind turbines, [52]. In the control, no observers were used. A sensitivity analysis has been
done, showing robust performance to generation power variations and tie-line power schedule changes. On
the other hand, an LQR based on a state observer is proposed in [53], for addressing the control of a single
area power system. Panwar et al. has proposed the use of the Jaya optimization algorithm to optimize the
definition of the state cost weight matrix (Q) for an LQR control for a two-area hydropower system [54].

Model predictive control (MPC) estimates the future performance of the system based on the present outputs,
measured disturbances, and unmeasured disturbances and control signals over a finite horizon, and uses
optimization to find the set of states and control inputs that gives the best performance. Ali et al. have
proposed a decentralized MPC control for a four-area smart grid, including renewables and electric vehicles,
and compared it against a centralized version [55]. No frequency regulation was provided from EVs or DER.
The results have shown that the decentralized version is better than its centralized counterpart, which is not
usual, as it is more common for centralized controls to have better performance. However, this behavior
can also be found in this comparative study of several MPC [56]. This different MPC has been tested on a
three-area power system considering GRC. Kumtepeli et al. also proposed an MPC control for a four-area
power system considering nonlinearities but aroused concern about the robustness of the optimization-based
controls [57].

Active disturbance rejection (ADR) methods for control are based on techniques to estimate disturbances
and then compensate for them in control input. Liu et al. proposed a two-layer active disturbance rejection
control (ADRC) method with the compensation of estimated equivalent input disturbances (EID) for a
two-area power system, which uses ADRC for its first layer and IM principles for the second layer [58]. This
scheme has also been studied for wind-diesel microgrids and power systems with photovoltaic generation
[59; 60]. Liu et al. later proposed a robust version of ADRC by including a generalized state observer (GSO),
which is tested for the two-area power system to different power disturbances and compared against PI-based
LFC [61]. A comparison between the ADR control strategies is found in [62].

Reinforcement learning (RL), as an artificial intelligence technique, has gained interest recently for LFC.
Rekhasree in [63] proposed multi-agent reinforcement learning for a two-area hydro-thermal power system.
The purpose was to compare the proposed strategy with a GA control. Early results show that GA control
was performing better, however, in a larger system, both had similar behavior. Eftekharnejad has proposed
a control multi-agent strategy based on RL for a two-area power system with FACTS [64]. It consists of a
layer of local agents and a global agent that coordinates the behavior of the local agents. It was shown to
handle different cases with various system parameters, and nonlinearities. More thorough research has been
done by Yan and Xu, where they compare multi-agent, single-agent, deep Q networks (DQN) reinforcement
learning techniques against PID classical controllers. First, the models were tunned and trained in a linear
three-area power system [65]. Then, they considered the impact of nonlinearities and studied the stability
and rotation speed of the generators in a fully-modeled New England 39-bus system, with solar photovoltaic
generation. The RL techniques showed better performance and stability than the PID control technique,
with MA having the best performance.

2.1.3 Wind and Solar Photovoltaic Participation on Frequency Control

A power reserve is needed to give solar and wind generation the possibility to participate in frequency
regulation. Unlike conventional generators where the energy source can be controlled, the sun and wind
cannot. Then, de-loading techniques, that allow having a power reserve for frequency support and regulation
participation of solar and wind generation systems, have been developed. These are mainly based on
maximum power point (MPP) tracking with the additional function for selecting a power reference point, to
select the desired power under the MPP. Some of these techniques have been explained in [66; 67]. With
this power reserve, PV systems and wind turbines can have an inertia response and participate in frequency
regulation. One of the most common mechanisms for that is aggregators, also called virtual power plants
(VPP). Those aggregate all the generation mainly from converter-based sources, and energy storage systems
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also, and give them the ability to participate as a larger virtual generator, some of them, emulating the
electromechanical synchronous generator behavior. However, they also can be treated separately, and the
amount of energy available for frequency support in PV systems or wind turbines varies whether they have
energy storage systems or not.

To simulate, models of the technology are needed. Most of the ones used in the literature are simplified linear
models only considering the governors and frequency response of the converters. However, more complex
and complete models can be encountered in [27; 13].

2.1.4 EMC-UN previous works

Its research seedbed Inteligencia Computacional Aplicada a Sistemas de Potencia has been working on
modeling, simulation, control, and optimization of power systems. Regarding this thesis topic, a decentralized
ADRC has been proposed for a three-area power system [68]. Solar photovoltaic systems and wind turbine
participation in frequency regulation were considered. However, there is still room to add uncertainties of
the system parameters and interaction with the other control types.

2.1.5 Conclusion on Literature Review

In conclusion, it may be considered that extensive work has been done in the area of LFC. To the author’s
best knowledge, almost all the existing control theories have been applied to the problem of LFC: linear,
robust, and nonlinear controllers, centralized and decentralized controllers, and optimization techniques for
control or for improving other proposed controllers. However, despite that some nonlinearities were included,
such as generation rate control, governor dead-bands, or boiler dynamics, few articles actually consider
them for control design and testing; most of the models were linear representations of the power systems.
Others only consider the governor’s dynamics in their models. Also, voltage and stabilizing controls are not
usually considered, when their effects on LFC are demonstrated. Similarly, solar photovoltaic and wind
generation are usually not considered for frequency regulation, when tendencies show that these technologies’
participation in power systems is increasing, and in the future, they will be asked to do frequency regulation
as well.

Following these future tendencies, reinforcement learning has also proved good performance in addressing
the LFC problem, but work on these is recognized to be still in the early stages and it still needs further
testing and improvements.

22



2. Literature Review 2.2. Function Approximation and Neural Networks

2.2 Function Approximation and Neural Networks

Function approximation is one of the key mechanisms used in reinforcement learning to deal with high-
dimensional action and observation spaces. It is based on the intuition that there exists a parameterized
function f with parameters θ that can be used to approximate the values of the target function. In this
context, they can be used to approximate the main functions used in the reinforcement learning framework,
e.g. state value function V , state-action value function Q, or policy π. Among the large set of techniques for
function approximation, machine learning is the most popular nowadays. Machine learning is a discipline
that comprises a set of algorithms and techniques developed with the purpose of allowing computers to learn
by themselves and perform tasks autonomously. It includes deep learning techniques, that employ neural
networks to achieve this goal. The advantages over methods are their flexibility, less programming overhead,
and the ability to capture the non-linearity of some relations.

This section introduces the neural networks and states the intuition behind them and their learning process.
It advances to recurrent neural networks and finishes with its Long Short-Term Memory (LSTM) variation.

2.2.1 Neural Networks

Neural networks are biologically inspired models of computation. Generally, a neural network consists of a
set of artificial neurons, commonly referred to as nodes or units, and a set of directed edges between them,
which intuitively represent the synapses in a biological neural network. Associated with each neuron j is an
activation function lj(·), sometimes called a link function.

Associated with each edge from node j′ to j is a weight wjj′ . Following the convention in several foundational
papers, neurons are indexed with j and j′, and wjj′ denotes the "to-from" weight corresponding to the
directed edge to node j from node J . The value vj of each neuron j is calculated by applying its activation
function to a weighted sum of the values of its input nodes:

vj = lj

∑
j′

wjj · vj′



For convenience, we term the weighted sum inside the parentheses of the incoming activation and notate
it as aj . We represent this computation in diagrams by depicting neurons as circles and edges as arrows
connecting them. When appropriate, we indicate the exact activation function with a symbol, e.g., σ for
sigmoid.

Common choices for the activation function include:

• (Sigmoid)

σ(z) =
1

1 + e−z
(2-20)

• Tanh

tanh(z) =
ez − e−z

ez + e−z
(2-21)
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• Rectified linear unit (ReLU)

lj(z) = max(0, z) (2-22)

Among these, ReLU has been demonstrated to improve the performance of many deep neural networks on
various tasks.

The activation function at the output nodes depends on the task. For multiclass classification with K
alternative classes, a softmax nonlinearity is applied in an output layer of K nodes [69]. The softmax function
calculates

ŷk =
eak∑K

k0=1 e
ak′

, for k = 1 to K (2-23)

The denominator is a normalizing term ensuring that the outputs of all nodes sum to one. For multilabel
classification, the activation function is simply a point-wise sigmoid, and for regression, we typically have a
linear output.

2.2.2 Feedforward Neural Network

A feedforward neural network is a type of artificial neural network where the information flows in one
direction—from the input layer to the output layer—without forming cycles or loops. The absence of
cycles allows the network to be organized into layers, with each layer comprising nodes (or neurons). In
a feedforward network, the input values are set in the lowest layer, and the computation proceeds layer
by layer until an output is generated at the topmost layer. This type of neural network is often used for
supervised learning tasks such as classification and regression.

Neural networks are trained by adjusting their weights to minimize a specified loss function L(ŷ, y), which
penalizes the difference between the predicted output ŷ and the target output y. The most successful
algorithm for training neural networks is backpropagation [70]. in 1985. The backpropagation algorithm
uses the chain rule to calculate the derivative of the loss function with respect to each parameter (weight) in
the network. The weights are then adjusted using gradient descent.

The training process involves the following steps:

1. Forward Pass: An input example is propagated forward through the network to produce outputs at
each layer, ultimately resulting in the predicted output. During this process, each value vj computed
at each node is saved.

2. Loss Calculation: The loss function value is computed based on the predicted output and the target
output, L(ŷ, y).

3. Backward Pass (Backpropagation): The derivatives of the loss function with respect to each
parameter are calculated. This is done by propagating the error backward through the network and
updating the derivatives for each layer. For each output node, the gradient is given by

δk =
δL(ŷk, yk)

δŷk
· l′j(ak) (2-24)
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Given these values, δk, each immediately prior node derivative can be computed as

δj = l′j(aj)
∑
k

δk · wkj (2-25)

Which represents the derivative ∂L/∂aj of the total loss function with respect to that node’s incoming
activation.
Following the chain rule, the gradient of the loss function with respect to the parameters is calculated

∂L
∂wjj′

=
∂L
∂aj

∂aj
∂wjj′

= δjvj′ (2-26)

4. Weight Update: The weights are adjusted using the calculated derivatives and a learning rate for
the gradient descent algorithm. The learning rate determines the size of the steps taken during the
weight updates.

ω = ω − η∇ωFi (2-27)

where ∇ωFi is the gradient of the objective function calculated on one example.

5. Stochastic Gradient Descent (SGD): Nowadays, neural networks are usually trained with stochastic
gradient descent using mini-batches. The SGD update equation involves multiplying the learning rate
by the gradient of the objective function with respect to the parameters, calculated on a mini-batch of
examples.

Various variants of SGD, such as AdaGrad, AdaDelta, RMSprop, and momentum methods, are employed to
accelerate learning and adaptively tune the learning rate for each feature. Despite the non-convex nature of
the loss surface, heuristic pre-training and optimization techniques, along with these SGD variants, have led
to the successful training of neural networks on many supervised learning tasks.

2.2.3 Adam Optimizer

Another popular optimization algorithm is the Adam optimizer [71]. It combines ideas from RMSprop and
momentum methods. Adam adapts the learning rates of each parameter individually by considering both
the first-order momentum and the second-order acceleration of the gradients. This helps in achieving faster
convergence and handling sparse gradients. The adaptive nature of Adam makes it well-suited for a wide
range of neural network architectures and tasks.

The updated equations for the Adam optimizer are as follows:

mt = β1mt−1 + (1− β1)gt (2-28)

vt = β2vt−1 + (1− β2)g2t (2-29)

m̂t =
mt

1− βt1
(2-30)

v̂t =
vt

1− βt2
(2-31)

θt+1 = θt − α
m̂t√
v̂t + ϵ

(2-32)
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where:

θt is the parameter at time t,
gt is the gradient of the objective function at time t,
mt, vt are the first and second moments of the gradients,
m̂t, v̂t are bias-corrected estimates of mt, vt,

α is the learning rate,
β1, β2 are the exponential decay rates for the moment estimates,
ϵ is a small constant to prevent division by zero.

2.2.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) extend feedforward neural networks by incorporating edges that span
adjacent time steps, introducing a temporal aspect to the model. Unlike feedforward networks, RNNs can
have recurrent edges that form cycles, allowing information to persist across different time steps. At each
time step, nodes with recurrent edges receive input from the current data point x(t) and hidden node h(t)
values from the network’s previous state, see Figure 2-2. The output at each time step is calculated based
on the hidden node values.

Figure 2-2: Unfold of a Recurrent Neural Network Over Time.

The computations in a simple recurrent neural network are governed by two equations, involving matrices of
conventional weights (between input and hidden layers) and recurrent weights (between the hidden layer
and itself at adjacent time steps), as well as bias parameters.

h(t) = σ(Whxx(t) +Whhh(t−1) + bh) (2-33)

ŷ(t) = Softmax(W yhh(t) + by) (2-34)

To understand the network dynamics, it can be unfolded across time steps, visualizing it as a deep network
with one layer per time step and shared weights across time. This unfolded network allows for training across
multiple time steps using backpropagation through time (BPTT) [72]. BPTT is a fundamental algorithm
applied to train recurrent networks, enabling them to learn and capture temporal dependencies.

Learning with recurrent networks has long been considered difficult, especially due to challenges in learning
long-range dependencies. Long-range dependencies pose a challenge, leading to issues such as vanishing
and exploding gradients when backpropagation is done over many time steps. The vanishing or exploding
gradient phenomenon depends on whether the weight of the recurrent edge is greater or less than 1 and
on the activation function in the hidden node. The Long Short-Term Memory (LSTM) architecture is

26



2. Literature Review 2.2. Function Approximation and Neural Networks

introduced as a solution to the vanishing gradient problem. It utilizes carefully designed nodes with recurrent
edges with fixed unit weight, preventing the vanishing gradient problem.

2.2.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a recurrent neural network architecture designed by Hochreiter and
Schmidhuber in 1997 to mitigate the challenge of vanishing gradients in standard recurrent neural networks
(RNNs) [73]. The LSTM model aims to address this issue by replacing ordinary nodes with memory cells in
the hidden layer, each equipped with a self-connected recurrent edge of fixed weight one. So, gradients can
pass across numerous time steps without vanishing or exploding.

The term "long short-term memory" comes from the intuition of the model’s unique ability to maintain both
long-term memory, encoded in the form of slowly changing weights, and short-term memory, represented
by transitory activations passing through the nodes. LSTM introduces an intermediate storage mechanism
through the memory cell, which is a composite unit built from simpler nodes in a specific connectivity
pattern, incorporating multiplicative nodes [].

Components of an LSTM Cell

1. Input Node (gc): This unit receives activation from the input layer at the current time step (x(t))
and from the hidden layer at the previous time step (h(t− 1)). The summed weighted input typically
undergoes a tanh activation function.

2. Input Gate (ic): A distinctive feature of LSTMs is the presence of gates. The input gate is a
sigmoidal unit that takes activation from the current data point (x(t)) and the hidden layer at the
previous time step. The value of the input gate (ic) multiplies the value of the input node, acting as a
gate to control information flow.

3. Internal State (sc): At the heart of each memory cell lies a node (sc) with linear activation, referred
to as the "internal state." This internal state has a self-connected recurrent edge with a fixed unit
weight, often called the constant error carousel. This structure allows error to flow across time steps
without vanishing or exploding.

4. Forget Gate (fc): Forget gates, introduced by Gers et al. in 2000, provide a mechanism for the
network to learn to erase or reset the contents of the internal state. This feature is particularly
beneficial in scenarios involving continuously running networks.

5. Output Gate (oc): The final value produced by a memory cell is the result of multiplying the internal
state (sc) by the output gate (oc). Typically, the internal state undergoes a tanh activation function
before being passed through the output gate.

Forget gates have become a standard component in modern implementations, offering improved learning
capabilities. Peephole connections allow direct information transfer from the internal state to the input and
output gates, proving beneficial in tasks that demand precise timing.
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Figure 2-3: Long Short Term Memory Cell Diagram.

g(t) = tanh
(
W gx · x(t) +W gh · h(t−1) + bg

)
(2-35)

i(t) = σ
(
W ix · x(t) +W ih · h(t−1) + bi

)
(2-36)

f (t) = σ
(
W fx · x(t) +W fh · h(t−1) + bf

)
(2-37)

o(t) = σ
(
W ox · x(t) +W oh · h(t−1) + bo

)
(2-38)

s(t) = g(t) · i(t) + s(t−1) · f (t) (2-39)

vc = tanh(s(t)) · o(t) (2-40)

To summarize, the LSTM model operates through a set of equations, including those for forgetting gates,
providing a comprehensive algorithm for modern LSTMs. The architecture’s success lies in its ability to
capture and balance long-term and short-term dependencies in sequential data.

2.3 Proximal Policy Optimization Algorithms Theory

This section introduces the basics of policy gradient algorithms and the technique used in the Proximal
Policy Optimization (PPO) algorithm to improve the learning process. It is worth mentioning this chapter
is based on the DeepMimic paper review of proximal policy algorithms [74]. However, only the important
information is considered, while adding more information is required to understand the algorithm used in
this study.

2.3.1 Policy Gradient Algorithms

Policy gradient methods learn the parameters of a policy based on the gradient of some scalar performance
metric J(θ) with respect to the policy parameters. Their goal is to maximize the performance, so their
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updates approximate gradient ascent in J [75].

θt+1 = θt + α∇̂J(θt) (2-41)

where ∇̂J(θt) ∈ Rd′ is a stochastic estimate whose expectation approximates the gradient of the performance
measure with respect to its argument θ. Methods that follow this learning schema are called policy gradient
methods. The method that learns approximations to value and policy functions is often called the actor-critic
method, where the actor refers to the policy and criticizes the value function, usually a state-value function.
Policy gradient methods work by computing an estimator of the policy gradient and plugging it into a
stochastic gradient ascent algorithm [75]. The most commonly used gradient estimator is the form

ĝ = Êt
[
∇θ log πθ(at|st)Ât

]
(2-42)

where π0 is a stochastic policy and Ât is an estimator of the advantage function at time-step t. This function
comes as a result of considering the weighted sum of rewards over a set of trajectories under a policy π. Note
that no derivative with respect to the reward functions is needed, and neither is a system model.

Several software implementations build an objective function whose gradient is the policy gradient estimator
[76]; this function has the form:

J(θt) = E
[
f(θt)Ât

]
(2-43)

where f is the objective function estimator that approximates the policy update and Ât is the advantage
function, which measures how much better or worse an action is compared to the average action at a given
state. It reflects the impact of a given action on the total reward [76].

2.3.2 Multi-Step Return

To obtain an unbiased sample of the expected return, the Monte-Carlo return can be utilized [75]:

Rt =

T−t∑
l=0

γlrt+l

Nonetheless, the accuracy of this estimator suffers from significant variability because rt of the influence of
a stochastic environment and policy. In an effort to address this problem, an alternative approach called
the n-step return has been suggested. This method resigns on the zero-bias characteristic and reduces
the variability by limiting the Monte-Carlo return to n steps, and employing the value function V (s) to
approximate the remaining steps:

R
(n)
t =

n−1∑
l=0

γlrt+l + γnV(st+n) (2-44)
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For n = 1, this yields the low-variance high-bias estimator R(n)
t = rt + γV(st), commonly employed in

Q-learning. Setting n = ∞ retrieves the Monte-Carlo return if all rewards after time T are 0. Thus, the
parameter n trades off bias versus variance in the estimator [75]. This bias-variance trade-off can also be
addressed by using an exponentially weighted average of n-step returns with a decay parameter λ:

Rt(λ) = (1− λ)
∞∑
n=1

λn−1Rnt (2-45)

Assuming all rewards after T are 0, Rnt = RT−t
t for all n ≥ T − t. This expression becomes:

Rt(λ) = (1− λ)
T−t−1∑
n=1

λn−1Rnt + λT−t−1RT−t−1
t (2-46)

Here, λ = 1 corresponds to the 1-step return, and λ = 0 yields the Monte-Carlo return. Varying λ in
the interval (0, 1) provides an estimator with high variance and low bias or vice versa. Empirically, the
λ-return has demonstrated better performance than using the n-step return. When applied to updating the
value function with the temporal difference method, this approach results in the TD(λ) method. Similarly,
employing it to estimate advantages leads to the generalized advantage estimator GAE(λ):

Ât = Rt(λ)− V̂ (st) (2-47)

The algorithm uses the TD error. The temporal difference method defines the TD error as

δt = (rt+1 + γV̂ (st+1, θt))− V̂ (st, θt) (2-48)

where the expected return is calculated using the estimates of the state-value function, rt+1 + γV̂ (st+1, θt).
Applying it to the λ-return using the state-value function, the advantage estimator becomes

Ât = δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1 (2-49)

which then can be used to calculate the expected return for the TD(λ) method,

Rt(λ) = Ât + V̂ (st) (2-50)

2.3.3 Off-Policy Learning

For policy gradient, the update of the parameters is done after the gradient of the expected return is
calculated with samples using the current policy. After an update, new samples with the new policy need
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to be collected. This usage of data is inefficient. An alternative to improve data efficiency is importance
sampling, which provides an unbiased estimator of the policy gradient using only off-policy samples from an
older policy [74; 75]. This allows to reuse of samples from previous episodes run with older policies, avoiding
the early discard of useful samples.

∇θJ(θ) = Est∼dθold(st)
,at∼πold(st|at)

[
wt(θ)∇θ log πθ(at|st)Ât

]
(2-51)

where θold are the parameters of the old policy, wt(θ) is

wt(θ) =
πθ(at|st)
πθold(at|st)

(2-52)

and is known as the probability or likelihood ratio [76].

In the importance-sampling policy gradient, a surrogate objective function can be used instead for the
optimization

LIS = Est∼dθold(st)
,at∼πold(st|at)

[
wt(θ)Ât

]
(2-53)

Finally, LIS allows the use of a batch of data to update θ multiple times.

2.3.4 Proximal Policy Optimization

As a general description, the Proximal policy optimization (PPO) algorithm is a model-free, on-policy,
online, policy gradient learning method. The practice has shown that policy gradient algorithms can still be
extremely unstable due to the variance of estimators. Noisy gradients can lead to instability in learning. To
mitigate methods to prevent big deviations of policy between updates and improve instability in learning
have been proposed. Trust region policy optimization (TRPO) adds a hard constraint to the optimization
problem of optimizing function J(θ) [76]. This hard constrain limits the Kullback–Leibler divergence between
updates as

max
θ
J(θ) (2-54)

s.t.Est∼dθ(st) [KL(πθold(·|st)|πθ(·|st)] ≤ δKL (2-55)

where δKL is another hyperparameter of the optimization problem. This problem can be approximately
solved in an efficient manner using the conjugate gradient algorithm, after making a linear approximation to
the J(θ) and a quadratic approximation to the constrain [76].

Proximal Policy Optimization is a variant of TRPO, which replaces the hard constraint by optimizing a
surrogate loss. The most common surrogate loss for PPO is the clipped surrogate loss LCLIP (θ) defined as
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LCLIP (θ) = Est,at =
[
min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2-56)

When θ = θold, wt = 1, but when θ is different, the likelihood ratio differs from 1. Note, the first term inside
the min is LCPI . The second term clips the likelihood ratio, removing the incentive of moving outside of
the interval [1− ϵ, 1 + ϵ].This term serves a similar purpose to the KL divergence constrain. Finally, the
minimum of clipped and unclipped objectives is taken to obtain a lower bound (i.e., a pessimistic bound)
on the unclipped objective. With this METHOD, the changes in likelihood ratio, when it would make the
objective improve, are limited and when it makes the objective worse remain unlimited [76].

2.4 Performance Metrics for Control Problems

Several objective functions have been proposed to measure the performance of controllers, which can be
used in the optimization problem of LFC in interconnected power systems to minimize the frequency and
tie-lines power deviations. Integral square error (ISE), integral absolute error (IAE), integral time square
error (ITSE), and integral time absolute error (ITAE) are the four most significant objective metrics for
control problems:

JISE =

∫ T

0

(
∆f2i +∆P 2

tie,i

)
dt (2-57)

JIAE =

∫ T

0

(|∆fi|+ |∆Ptie,i|) dt (2-58)

JITSE =

∫ T

0

(
∆f2i +∆P 2

tie,i

)
tdt (2-59)

JITAE =

∫ T

0

(|∆fi|+ |∆Ptie,i|) tdt (2-60)
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A Reinforcement Learning Based Load Frequency Control for Power Systems considering
Nonlinearities and Other Control Interactions.

3 Methodology

This chapter dives into the approach and methods employed in this study to investigate load frequency
control (LFC) in power systems. The main focus is to simulate the Kundur case, a widely used power system
model in dynamic stability studies. Proposed by P. Kundur [13], this model is composed of two mirrored
areas connected by a single transmission line, acting as a weak link. The network topology consists of 10
buses and a virtual bus, featuring generators, transformers, loads, shunt capacitors, and tie-lines.

In the context of LFC, the study involves replacing one of the generators with a wind turbine to explore the
control strategies in response to transient events. Two critical events, line disconnection, and re-connection,
and a sudden load change, are considered, necessitating high-resolution time-domain simulations in the order
of milliseconds.

To model the system, several standard models are employed. These models follow the modeling guidelines
stated by the Western Electricity Coordinating Council (WECC) in order to meet strict specifications for
their use in standards and regulations [77; 78; 79]. These models are widely used in power system simulation
software like PSS/E, and Power World, or can be easily modeled using MATLAB/Simulink, and in Python
using the ANDES library.

The chapter also provides an overview of the policy and value networks implemented for reinforcement
learning, leveraging artificial neural networks (ANNs) with Long Short-Term Memory (LSTM) networks
as feature extractors. The load frequency control with the reinforcement learning algorithm is detailed,
including its key parameters, such as discount factor, likelihood ratio clipping threshold, and step size.

Considerations for the simulation, such as the smallest simulation step, the absence of noise in measurements,
and the use of LSTM networks for recurrent processing, are discussed. The return function, defining the
reward in reinforcement learning, is introduced, emphasizing its role in capturing the power system’s stability.

The section on Policy and Value Networks addresses the choice of ANNs and LSTM networks for function
approximation.

Finally, it concludes with an overview of the Proximal Policy Optimization algorithm, providing a compre-
hensive understanding of the learning process and parameter tuning. The last section details the Proportional
Integral (PI) controller design.

3.1 System Model

Kundur case is a power system model commonly used in benchmarks for power system dynamic stability
studies and research. It was proposed by P. Kundur. It is divided into two mirrored areas joined by a
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single transmission line, the tie-line, acting as a weak link. Its network topology is composed of 10 buses
and a virtual bus in the middle of the weak link that joins the two areas. It contains 4 generators and 4
transformers, 2 loads, and 2 shunt capacitors at each end of the weak link. All are connected by 4 lines and
the tie-line. That tie-line is divided from the middle in two sections. Two voltage levels are present, 20kV
and 230kV . For this study, generator no. 4, connected to bus 4, is replaced by a wind turbine, see Figure
3-1.

Figure 3-1: Kundur System Diagram.
[13].

This study is about load frequency controllers. This requires analysis of transient events in the system to
capture the transient response of controllers to these events. The two events considered are line disconnection
and re-connection and a big sudden load change. This requires time-domain simulations in the order of
milliseconds [79]. Suited models to accurately simulate the behavior of electrical machines in this temporal
resolution are needed.

All dynamics of elements in the power system are modeled by differential-algebraic equations (DAE), which
depend on having consistent initial values, making it harder to solve than ordinary differential equations
(ODE). In this case, initial values are taken from the result of a power flow simulation previous to the
simulation. Then the trapezoid rule is used to solve the differential equations.

All models used in this study to model electrical machines are standard models used in multiple power
systems simulation software, like PSS/E or Power World, or are easily modeled using MATLAB/Simulink.
These models follow the modeling guidelines stated by the WECC in order to meet strict specifications for
their use in standards and regulations [79]. Their modeling was able thanks to the ANDES library in Python.
This library contains the standard parts to recreate the different models.

The replication was considered crucial when choosing the models. Considering this, all models are available
in the ANDES library. Moreover, any of the module’s parameters and complete models can be found in the
Annex A. So, they can be replicated not only in Python but in any other simulation program available for
power system simulations using the WECC guidelines [77; 78; 79].

3.1.1 Modeling of Traditional Power System Elements

Synchronous Generator

The synchronous generator used in this study only comprises a machine model, an exciter model, and a
governor Model. They are all interconnected as shown in Figure 3-2 and connect to the network through
current commands [79]. The modules used to model the synchronous generators are listed below:
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• Machine model GENROU, for machines with a solid round rotor with quadratic saturation

• Turbine governor TGOV1 without deadband

• Exciter model EXDC2A

Figure 3-2: Synchronous Generator Model: GENROU, TGOV1 AND EXDC2A standar models.
[79]

Load model The load model uses a constant P-Q load model during initialization, employing results from
the power flow. This model is then internally transformed into a constant Z model for transient simulations.

Line/Transformer Loads and transformers use the equivalent π model, as shown below in Figure 3-3.
This model is modified to be able to shift the phase to also model phase shifts in transformers.

Figure 3-3: π model employed for lines and transformers.

3.1.2 Modeling of Renewable Energies

Strictly speaking, renewable generation does not have a machine model, an exciter model, or a governor
model. However, this block distribution can still be useful, by replacing the machine model with a converter
model, the exciter model for electrical control, and the governor model for mechanical or plant control for
renewable. The models presented in this section follow the WECC guidelines for renewable energy system
dynamics [79].

For this study, only two systems will be considered: a wind turbine generator and a solar PV and battery
storage hybrid plant. Choosing these two systems encompasses the three main systems proposed earlier
in this document; wind turbines, energy storage systems, and PV systems. As per the experience of the
WECC Modeling Validation Subcommittee, for transient studies the dynamics observed in the DC side
of the converters are faster than power systems dynamics, this side is purposely ignored [78]. Then, solar
panels or battery dynamics, elements placed on the DC side of the converter, are not incorporated into the
modeling. Additionally, they use similar components to form their models. Consequently, and aiming to
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balance the modeling efforts versus the significance of the results, their mechanics are lumped into a single
hybrid system. Its impact is seen in the turbine type and the minimum power of the converter model, from
zero to a negative value.

Wind Turbine Generator

This model includes the three core components, a converter or generator, an electrical control, and a plant
control. Additionally, it includes models of elements of the wind turbine like the drive train, a turbine torque
controller, and a pitch controller [77]. And then, a model of the turbine aerodynamics. The models used to
model the wind turbine generator are listed below:

• Renewable energy generator REGCA1

• Renewable energy electrical controller REECA1

• Pitch controller WTPTA1

• Wind turbine torque controller WTTQA1

• Renewable energy plant control REPCA1

• Wind turbine generator drive train WTDTA1

• Wind turbine aerodynamics WTARA1

Figure 3-4: Wind Turbine Model Integration: REGCA1, REPCA1, REECA1, WTPTA1, WTTQA1,
WTDTA1, and WTARA1 standard models.

[77]

Solar PV and Battery Storage Hybrid Plant

The solar PV and Battery Storage Hybrid Plant is modeled using just the three components, due to the
reasons mentioned in the introduction of this section. The models used to model the hybrid plant are listed
below:

• Renewable energy generator REGCA1

• Renewable energy electrical controller REECA1

• Renewable energy plant control REPCA1
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Figure 3-5: Solar PV and Battery Storage Hybrid Plant Model Integration: REGCA1, REPCA1 and
REECA1 standard models.

3.2 Simulation and Training-Testing Considerations

3.2.1 Tests Descriptions

Line Disconnection Test

To simulate a disturbance in the system, a disconnection event was initiated in the tie-line. This disconnection
occurred 2 seconds after the simulation commenced and lasted for 500 milliseconds. During this period,
the Load Frequency Control (LFC) needed to adjust the generated power of all synchronous generators to
mitigate the Area Control Error (ACE) and stabilize the frequency.

Load Change Test

This scenario is set up to test the generalization of the policy. It consists of changing the load PQ0, decreasing
it by 25% at 2 seconds after the simulation started, and increasing it again by 10% at 30 seconds.

3.2.2 Power System as an Environment for Reinforcement Learning

Before integrating this model into the reinforcement learning framework, certain definitions must be
established, and considerations must be addressed.

In this study case, the power system functions as the environment. The observation space comprehends all
relevant measurements for the algorithm to determine the power system’s state, including variables such as
generator speed (ω) and ACEs. The agent interacts with the environment by modifying an auxiliary input
(Paux), which is added to the power reference in the governors of the synchronous generators.

There are several considerations to the simulation. The smallest simulation step possible is 33 milliseconds.
After each step, the values of all system variables, including ACEs, and the phase angle (δ) and speed (ω)
of each generator, are known, for a total of 11 measurements. However, actions are not executed after
every simulation step but rather at intervals of 100 milliseconds. The algorithm receives all preceding
measurements in between actions each 100-millisecond. The observations from each 33-millisecond step
within each 100-millisecond interval are aggregated and sent to the agent. To effectively use this information,
the policy employs a recurrent neural network known as a Long Short-Term Memory Network (LSTM) with
only forward processing. This network is also shared with the value function to assess state values.

It is important to note that no noise is considered in measurements, and it is assumed that all information about
the power system state is available; there are no missing measurements. Furthermore, no communication
delays are taken into account, and the speed at which actions are executed is limited to 100 milliseconds,
conceiving impractical for the algorithm to counteract frequency deviations that occur more rapidly.
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3.2.3 Reward Function

The return function is a negative sum of all ACEs:

rt = −
∑
i

|ACEti| − 0.5
∑
i

|Ptieti − Ptie0i | (3-1)

Other return functions were considered. For example, the quadratic cost function is used in Linear Quadratic
Regulators. This was selected because it was the most simple one, avoiding observed behaviors like obtaining
policies similar to the ones in other algorithms.

3.2.4 Termination Logic and Training Description

For learning, the algorithm only runs for 20 seconds. During those 20 seconds, there is a disturbance on line
8 that causes a disconnection for 500 milliseconds. After the 20 seconds, the episode is considered truncated,
rather than terminated, so that the updates of the policy and value functions are completed correctly. The
simulation is stopped and the done flag is set to true in two cases, when the stability criteria for the power
system are not met or, in a more extreme case, the system is busted. In that case, the return is -200. The
resulting policy will be used in the load change scenario.

3.3 Policy and Value Networks

Reinforcement learning faces a problem with continuous state and action variables. Managing large spaces
becomes impractical in terms of memory and computational resources. It’s nearly impossible to go through
every state during training in such vast spaces. To address this, one needs to leverage the similarities
between observed states and new ones to make informed decisions. This principle extends to actions as well,
where even a slight difference in states should prompt a corresponding adjustment in actions. The main
challenge is making sure the system generalizes well.

In the context of power systems, states, and actions inherently have a continuous nature. In policy gradient
algorithms, adapting to continuous spaces involves approximating the policy and value functions. Among
the various methods for function approximation, artificial neural networks (ANNs) stand out for their proven
success across a diverse set of applications. ANNs exhibit key features such as adaptability and flexibility,
allowing them to effectively learn complex patterns in data, including non-linear patterns. This adaptability
is particularly valuable in reinforcement learning applications, where good generalization is essential. In
this specific study, the policy parameters, denoted as θ, and the value function parameters, denoted as ψ,
are parameters representing neural networks. Both the policy and value functions share a common base,
specifically, an LSTM (Long Short-Term Memory) neural network for feature extraction, which is later used
by two different feed-forward neural networks, one for each function, policy and value see Figure 3-6.

This feature extractor was selected due to its flexibility in encoding information from a series of any length
in time. Allowing the use of any set of measurements before acting. The feature extractor is updated along
with both, value function and policy. Thus, it encodes information from both, value and actions.
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Figure 3-6: Policy and Value Functions with Common Feature Extractor.

3.4 Load Frequency Control with Proximal Policy Optimization

In this section, the algorithm is described. The learned policy resulting from this algorithm is then tested
in the same state and actions framework used in reinforcement learning. Each step is a simulation of 100
milliseconds. After each step is finished, observations are used to compute the action to modify the auxiliary
inputs of the generators.

3.4.1 Algorithm

Algorithm 1 summarizes the common learning procedure used to train all policies. A discount factor γ = 0.99
is used for all motions. Discounter reward parameter λ = 0.95 is used for both TD(λ) and GAE(λ). Updates
on the policy are performed after a batch of m = 2048 samples has been collected. Mini batches of size
n = 64 are then sampled from the data for each gradient step. The likelihood ratio clipping threshold is set
to ϵ = 0.2. An initial stepsize of α = 1e− 4 is used for the value function and policy updates. This could
be modified if more accuracy in the learning process. Once gradients have been computed, the network
parameters are updated using Adam optimizer, with parameters β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8. The
same hyper-parameter settings are used for all characters and skills, with the exception of the step size. This
algorithm, and other implementations, can be found in Stable-Baselines3 library [80]. This same library was
used in this study to train the control policy with their implementation of the PPO Algorithm 1. Policies for
this problem require about 600 thousand samples to train, requiring about 10 hours on a 4-core machine. All
simulation and network updates are performed on the CPU and no GPU acceleration is used.
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Algorithm 1 Proximal Policy Optimization
1: θ ← random weights
2: ψ ← random weights
3: while not done do
4: s0 ← simulate power system for j steps to get initial state
5: Initialize character to state s0
6: for step = 1, . . . ,m do
7: s← start state
8: a ∼ πθ(a|s)
9: Apply a and simulate forward one step

10: s′ ← end state
11: r ← reward
12: record (s, a, r, s′) into memory (roll-out buffer) B
13: end for
14: θold ← θ
15: for each update step do
16: Sample minibatch of n samples {(si, ai, ri, s′i)} from B
17:
18: Update value function:
19: for each (si, ai, ri, s

′
i) do

20: yi ← compute target values using TD(λ)
21: end for
22: ψ ← ψ + αv

1
n

∑
i∇ψVψ(si)(yi − V (si))

23:
24: Update policy:
25: for each (si, ai, ri, s

′
i) do

26: Ai ← compute advantage using Vψ and GAE(λ)
27: wi(θ)← πθ(ai|si)

πθold (ai|si)
28: end for
29: θ ← θ + απ 1

n

∑
i∇θmin(wi(θ)Ai, clip(wi(θ), 1− ϵ, 1 + ϵ)Ai)

30:
31: end for
32: end while
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3.5 PI design

The design of the Proportional Integral (PI) controllers is done according to Figure 2-1. Each area has its
own controller, that follows the common structure of a PI controller. The output of each PI controller is
determined by the proportional and integral components. For a generic PI controller, the control signal u(t)
is given by

u(t) = Kp · e(t) +Ki ·
∫ t

t0

e(τ) dτ

Here, Kp is the proportional gain, Ki is the integral gain, and e(t) is the error signal, which in this case is
the ACE.

The PI controller parameters (Kp and Ki) are obtained through optimization using the Nelder-Mead method
for a max of 100 steps. The negative of the total sum of rewards serves is the objective function during this
optimization process, making sure that the controllers are tuned to minimize the same objective function as
the RL algorithm.

The control signals generated by the PI controllers are distributed among the generators within each area
based on their αi coefficients. In this study, they are set to 1/n, where (n) is the number of generators in an
area that can participate in the frequency regulation. The auxiliary signal for the (i)-th generator (Pauxi

(t))
is determined by multiplying the control signal (ui(t)) with the associated coefficient (αi):

Pauxi
(t) = ui(t) · αi (3-2)

This distribution allows each generator to contribute to the overall control effort based on its characteristics.
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Nonlinearities and Other Control Interactions.

4 Results

To implement load frequency control (LFC) within power systems, this study employs a reinforcement
learning (RL) methodology. The following section presents a detailed analysis of the results obtained,
exploring the effectiveness of RL in tackling the complexities associated with LFC.

This results section is organized to present a detailed analysis of the system dynamics after a load disturbance
with PI and RL controllers, allowing for a detailed understanding of the RL algorithm’s performance in load
frequency control under a disturbance scenario. Results are presented separately, to allow a comprehensive
view of the system transient response. Along with a comparison analysis of the conventional PI controller
versus the reinforcement learning-based controller.

It begins by examining the mean reward over simulation steps, followed by the performance of the algorithm,
and finally computing criteria metrics for comparison. The evaluation criteria include ISE and IAE. These
metrics serve as benchmarks for comparing results with existing methodologies.

4.1 PPO Training and PI Controller Optimization

In the following Figure 4-1, the mean reward across the training process is shown. The initial value of the
reward is low, as the controller still does not know a good policy. As it starts exploring and learning the
correct values, it improves. There are no peaks or high variations in the mean reward, which indicates that
the training was stable. As expected, it plateaus at some values where there is a need for the change of
learning rate to continue improving. From these changes, there are small improvements. On the other hand,
the yellow line is the maximum value reached by the PI controller, which is surpassed by the mean reward
of the PPO algorithm. Additionally, it is important to mention that the total real training time was 10
hours, with only a 4-core CPU.

As per the PI controller optimization, it took half an hour, far less than the computation resources used
for the PPO controller. The values obtained were Kp1 = 0.13937 and Ki1 = −0.00075 for area 1, and
Kp2 = 0.01519, Ki2 = −0.00019 for area 2.

4.1.1 A Note on Hyperparameters Optimization

A thorough optimization was not performed in this work, but it does not mean there was not a tuning of
hyperparameters. The selection of the structure size varied from values from 16 to 128 nodes per layer. For
the low limit, the model did not have the capabilities to cover the whole range of the generators’ power
input, while keeping the numerical accuracy to perform the task correctly. While the bigger the network the
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Figure 4-1: Reward versus Learning Steps

higher the accuracy, the model tends to unlearn the objective task.

To get an acceptable behavior, the reward function is crucial. So, this was also a parameter to consider. First,
the negative of a quadratic loss function was used as a reward function. However, this enforces behaviors in
the model that can be similar to known controllers. It was also way harder to avoid unwanted behaviors, like
learning a suboptimal task. To avoid this, the reward function was simplified considering just l1 distance to
the desired frequency values. A study on the reward functions and their outcomes in comparison to known
controllers is worth exploring.

Finally, Another tuning was done in the learning rate, as it needed to be adjusted to reach accurate values
to keep the working point of the system. It was reduced once the training reward stopped increasing.

4.2 Line Disconnection Test

4.2.1 System with Wind Turbine Generator

For the system with a wind generator, Figure 4-2a shows the ACEs, before and after the disturbance in line
8. The sudden load drop increased the frequency on the nodes, which triggered a response in the governors
of the generators. The drop controller then tries to adjust the generation to meet the new load, while
keeping the frequency changes in a secure level and stabilizing the generators. However, the tie-line power
transference also suffers some changes, this can be seen in Figure 4-2b.

After the disturbance is cleared, it takes more than 20 seconds for the primary controllers to stabilize the
frequency. The ACE for Area 1 has fewer changes and ripples. This is the area with the majority of the
inertia of the system. Also, the ACE of Area 2 now has bigger peaks and dips and seems to be coupled with
the frequency changes and tie-line power transference from the changes in Area 1. This is explained by the
presence of a mechanical coupling. This is the signal used in the PI controller as input and among others for
the RL controller.

Now, considering the LFC PI controller designed using the optimization strategy, Figure 4-3a shows the

43



4.2. Line Disconnection Test 4. Results

(a) ACEs without load frequency control (b) Tie-power without load frequency control

Figure 4-2: Results of 8th line disconnection without Load Frequency Control for system with Wind Turbine
Plant replacing 4th Gen.

frequency deviations. In there, the stabilization appears faster. The ACEs shown in Figure 4-3b allow us
to see peaks earlier than the system without a controller, due to the complexity added by the acting time
resolution in the system. The auxiliary control signals are shown in Figure 4-3d. The control actions are
trying to compensate for the disturbance effects. Note that the tie-power transferred between areas in Figure
4-3c suffered a subtle reduction compared to the system without a controller. After the stabilization, it goes
back to the previous disturbance level.

Then, for the PPO controller, Figure 4-4a shows the frequency deviations. Frequency reaches smaller peaks
and dips than with the PI controller. The ACEs show a lower frequency deviation, especially in the peaks.
However, at the start of the episode, due to the nature of the network, it was a hard task for the network
to learn to output a zero auxiliary reference so it adds a non-zero signal to area 2. A closer look at the
auxiliary signals in Figure 4-4d, confirms this. Observe that ACE is being reduced to zero, but there is
some chattering. The tie-line power in Figure 4-4c is also maintained near the initial value, but keeping
some chattering, that later disappears.
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4. Results 4.2. Line Disconnection Test

(a) Frequency deviations in buses of the tie-line
and 4th bus, where the wind turbine is connected.

(b) ACEs for each area, calculated using the tie-
line buses.

(c) Tie-line power transference. (d) Auxiliary inputs for the generator set-points.

Figure 4-3: Line disconnection results: frequency deviations, ACEs, tie-line power transference, and auxiliary
inputs for generators power set-points with the PI controller and a Wind Turbine Plant replacing 4th Gen.
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4.2. Line Disconnection Test 4. Results

(a) Frequency deviations in buses of the tie-line
and 4th bus, where the wind turbine is connected.

(b) ACEs for each area, calculated using the tie-
line buses.

(c) Tie-line power transference. (d) Auxiliary inputs for the generator set-points.

Figure 4-4: Line disconnection results: frequency deviations, ACEs, tie-line power transference, and auxiliary
inputs for generators power set-points with the PPO controller and a Wind Turbine Plant replacing 4th Gen.
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4. Results 4.2. Line Disconnection Test

4.2.2 System with Solar-Battery Hybrid Plant

For the system with a solar-battery hybrid plant generator, Figure 4-5a shows the ACEs, before and after
the disturbance in line 8. The response is similar to the system with the wind turbine. However, the
faster response from the drop controller, which acts as modifying the generation, to meet the transient
frequency changes reduces the frequency changes in Area 1. For Area 2 the lower inertia causes an increase
in frequency peaks and dips, and those changes do not follow the Area 1 changes. This is explained by the
lower mechanical coupling.

Again, after the disturbance is cleared, it takes around 20 seconds for the controllers to stabilize the frequency.
The ACEs are shown in Figure 4-5a. The tie-line power transference is shown in Figure 4-5b, where is
possible to see that the decay of the transient signal is lower than the system with the wind turbine.

(a) ACEs without load frequency control (b) Tie-power without load frequency control

Figure 4-5: Results of 8th line disconnection response without Load Frequency Control for system with
Solar-Battery Hybrid Plant replacing 4th Gen.

For the PI controller, the stabilization effect on frequencies, in Figure 4-6a, is not noticeable and there are
even more peaks. The ACEs shown the Figure 4-6b, follow the frequency changes in their respective areas,
and also the power transference through the tie-line. The auxiliary control signals shown in Figure 4-6d
show that the control actions are helping to compensate for the disturbance effects and try to reduce the
settling time and that the tie-power transferred between areas in Figure 4-6c is also being affected, but their
changes are small. After the stabilization, it goes back to the previous disturbance level, as expected.

Additionally, Figure 4-7a shows the frequency deviations with the PPO controller. Frequency reaches lower
peaks and dips. The ACEs show a lower frequency deviation, especially in the peaks. However, at the start
of the episode, due to the nature of the network, it was a hard task for the network to learn to output a zero
auxiliary reference, inducing some offset in the frequency. A closer look at the auxiliary signals in Figure
4-7d, confirms this. Also, note that ACE is being reduced to zero, but there is also some chattering left.
The tie-line power in Figure 4-7c is also maintained near the initial value but keeps some chattering. See
that the controller tries to keep the ACEs near zero as fast as possible, by using a higher control action.
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4.2. Line Disconnection Test 4. Results

(a) Frequency deviations in buses of the tie-line
and 4th bus, where the wind turbine is connected.

(b) ACEs for each area, calculated using the tie-
line buses.

(c) Tie-line power transference. (d) Auxiliary inputs for the generator set-points.

Figure 4-6: Line disconnection results: frequency deviations, ACEs, tie-line power transference, and auxiliary
inputs for generators power set-points with the PI controller and a Solar-Battery Hybrid Plant replacing 4th
Gen.
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4. Results 4.2. Line Disconnection Test

(a) Frequency deviations in buses of the tie-line
and 4th bus, where the wind turbine is connected.

(b) ACEs for each area, calculated using the tie-
line buses.

(c) Tie-line power transference. (d) Auxiliary inputs for the generator set-points.

Figure 4-7: Line disconnection results: frequency deviations, ACEs, tie-line power transference, and auxiliary
inputs for generators power set-points with the PPO controller and a Solar-Battery Hybrid Plant replacing
4th Gen.

49



4.2. Line Disconnection Test 4. Results

4.2.3 Controllers Performance Comparison

To better observe the difference between the two controllers, the ACEs for both controllers for the system
with the wind turbine generator are shown in Figure 4-8. The PPO controller presents a slightly better
performance than the optimized PI controller. However, the PPO controller also poses a bigger burden on
generator 2, in area 2, as seen in Figure 4-4d. The algorithm learned that is better and more straightforward
to modify the power output of generator 2, but this is going to present some problems once it is tested on
generalization, as observed in the next section.

Figure 4-8: ACEs comparison between PI and PPO controllers in the power system with Wind Turbine
Plant replacing 4th Gen.

The following tables show the ISE and IAE metrics in the six scenarios: The system with a wind turbine
without the controller, and with PI and PPO controllers, and for the system with a solar-battery hybrid plant
without the controller, and with PI and PPO controller. Notice that the system can have better performance
with PPO than with PI, or without a controller. This demonstrates an improvement in performance to meet
the two objectives, reducing the frequency deviations while maintaining the tie-line power transference inside
the limits. However, the difference is subtle. Next, we are going to test the generalization of the policy to
the meet goals of the LFC.

As per the ADRC controller, that is approached by a colleague in his thesis [68]. This controller design is
based on advanced control theory and leverages more information from the system than the PI controller.
Then, its stabilization time for this specific problem falls into the order of 5-10 seconds frame, which is far
better than the actual PPO controller. However, dynamics not modeled in the system, like delays, noises,
communication network problems, and discrete signals and acting times, would hinder the performance of
this controller. To provide a fair comparison, the ADRC controller needs to be adapted to consider the
discrete acting times and re-tested using the same environment used in this study, which is out of the scope
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4. Results 4.2. Line Disconnection Test

of this document, and is proposed as future work.

Wind Turbine Generator
Variable Controller IAE ISE

Ptie

PI Controller 322.12 298.58
PPO Controller 311.79 246.55

No Control 395.66 377.68

ACE1

PI Controller 29.86 4.53
PPO Controller 28.93 2.41

No Control 33.52 6.67

ACE2

PI Controller 53.36 10.62
PPO Controller 47.69 7.27

No Control 64.23 13.53

Table 4-1: Control Performance Metrics for Power System with Wind Turbine Generator

Solar-Battery Hybrid Plant
Variable Controller IAE ISE

Ptie

PI Controller 313.57 360.81
PPO Controller 311.79 246.55

No Control 342.93 340.22

ACE1

PI Controller 37.18 6.92
PPO Controller 28.93 2.41

No Control 78.7 27.83

ACE2

PI Controller 53.57 12.78
PPO Controller 47.69 7.27

No Control 91.38 31.55

Table 4-2: Control Performance Metrics for Power System with Solar-Battery Hybrid Plant
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4.3. Load Change Test 4. Results

4.3 Load Change Test

The load change test enables to observation of the behavior of the policy trained using disturbance data,
ensuring it learns to help the primary frequency controllers to keep the frequency changes between desired
and secure levels. In Figure 4-9, the ACEs and the tie-line power transference are shown. The increase in
power transference also coincides with a positive change in the ACEs, but the differences do not match,
indicating an important impact due to frequency deviations.

(a) ACEs without load frequency control (b) Tie-power without load frequency control

Figure 4-9: Results of load change response without load frequency control for system with Wind Turbine
Plant replacing 4th Gen.

The same PPO controller used in the previous section is used here. After the stabilization, in Figure 4-10a,
frequency settling values changed from levels previous to the load changes. Also, the ACEs are around zero,
as shown in the Figure 4-10b. While the algorithm was able to reduce the frequency changes, the tie-line
power, in Figure 4-10c, presents an offset. This indicates that the algorithm may require another mechanism
to ensure the offset is reduced while keeping the ACEs down to zero. As the change occurs on the load that
is in Area 1, the auxiliary inputs of the generators in Area 1 should be the ones addressing the load change,
but the power output of the generator 2, in Area 2, suffered the most modifications, as shown in the Figure
4-10d. This behavior is suspected as a result of the policy the algorithm learned during training, which
tends towards modifying the output of that generator to cope with disturbances on the 8th line.
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4. Results 4.3. Load Change Test

(a) Frequency deviations in buses of the tie-line
and 4th bus, where the wind turbine is connected.

(b) ACEs for each area, calculated using the tie-
line buses.

(c) Tie-line power transference. (d) Auxiliary inputs for the generator set-points.

Figure 4-10: Load change results: frequency deviations, ACEs, tie-line power transference, and auxiliary
inputs for generators power set-points with the PPO controller and a Wind Turbine replacing 4th Gen.
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5 Discussion

The introduction of renewable energies to the systems has increased the complexity of the control problem.
Less inertia increases the need for reliable load frequency controllers that can be able to handle the collective
deviations of frequency, and other system parameters, from the steady and stable states. Wind turbines and
solar plants, despite being able to participate with their drop controllers, are not able to participate in a
coordinated strategy to reduce those deviations. Among control strategies, PI control strategies have been
spread across industry and control of power systems also, because of their simplicity and easy implementations.
It is also very intuitive. However, it falls short under different situations where there is a need for better
coordination.

Considering the results, the application of Proximal Policy Optimization in the load frequency control of
power systems demonstrated good results. The experiments show that PPO is able to provide a control
signal to effectively reduce the area control error with a good performance, and leveraging all the available
information from the system, in situations the algorithm has seen. PPO is able to handle nonlinearities and
disturbances in the system for effective control applications. Nevertheless, generalizing to other scenarios,
where the enforcement-specific conditions is required is hard for this algorithm. It needs to see more scenarios
during training to improve the policy. Moreover, its behavior is complicated to asses under unseen scenarios.

One of the advantages of PPO is the possibility to adapt the algorithm to continue learning and improving
in different situations and system changes as it is system agnostic, this is called online learning. It can also
use real information from the current system performance as a baseline to continue improving. This could
help mitigate encountering unseen situations, and the robustness of the controller. Some solutions have been
proposed, like the use of the neural network to tune the Proportional Integral controller parameters [81], or
a Lyapunov function previous to the neural networks to ensure the convergence of the output signals and
the stability of the system [82].

However, these solutions, aside from employing sophisticated solutions, lack the core essence of reinforcement
learning and limit the way the algorithm can interact with the environment. This highlights the need for
solutions more related to those employed under the reinforcement learning framework in other applications,
like game simulations.
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6 Conclusions

In Chapter 3, standard models were employed by following the WECC guidelines to develop a version of the
test bench Kundur power system in Python. By employing the tools provided by the ANDES library, the
power system was modeled. The use of these standard models enables replication and results validation. later,
this model is adapted to the reinforcement learning framework with the logic stated in the second section
of this chapter. Then, the learning algorithm using Proximal Policy Optimization (PPO) was developed.
Alongside a quick strategy to develop a Proportional Integral (PI) conventional controller. After successfully
using the algorithm and developing the controllers, the results are shown in Chapter 4. A discussion in
Chapter 5 follows the results, summarizing and discerning about the observations.

As a result, while the findings in this document highlight the positive aspects of PPO in power system
control, some considerations should be taken into account for real-world applications. Such as computational
requirements, communication delays, measurement noise, and hardware constraints may impact the feasibility
of deploying PPO in practical power grid environments. Additionally, reinforcement learning-based controllers
required mechanisms to ensure the correct suppression of any deviations from the nominal values of the
system and to enforce generalization to unseen scenarios. Nevertheless, these mechanisms should rely on the
same framework elements and techniques, like modifying the rewards modifying the approximation networks,
or the learning algorithm itself. More research is needed to address these challenges optimize the algorithm
for real-time applications and adapt the different techniques used in other applications to power system
control.
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7 Future Work

Addressing the specific limitations of the learning algorithms to ensure hard enforcement of the desired
behavior and requirements for reinforcement learning algorithms seems to be a complex task. Their inherent
stochastic characteristics are opposed to the deterministic behaviors a controller is expected to have for
real-world applications. Acknowledging this, there is still an open field for investigation on the mechanisms
available, and the different strategies, that can be developed as solutions that can allow these algorithms
to be employed in real-world scenarios with confidence that they meet specific control requirements. This
document can be a starting point for PPO algorithms.

Additionally, all the advantages mentioned about these algorithms could allow to reduce the overhead of
control designs, by not having to worry about all the control problems that conventional controllers face, e.g.
delays or noise. However, more studies on how good this algorithm can do in addressing the problems are
needed. Despite the confidence, reinforcement learning algorithms employing neural network models suffer
from the same problems as other solutions using neural networks. They behave as black boxes, with the
necessity of large quantities of data and computational resources to be trained on. Knowing their limitations
becomes crucial to having reasonable expectations of their performance once deployed in the real world. This
is still under investigation and is pending for future work.
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A System Parameters

Table A-1: Bus Parameters

Bus Vn vmax vmin v0 a0 area
1 20 1.1 0.9 1 0.570254917 1
2 20 1.1 0.9 0.99761 0.368746183 1
3 20 1.1 0.9 0.96263 0.185317315 2
4 20 1.1 0.9 0.81691 0.462358663 2
5 230 1.1 0.9 0.97928 0.480202909 1
6 230 1.1 0.9 0.95796 0.283886529 1
7 230 1.1 0.9 0.9362 0.126901145 1
8 230 1.1 0.9 0.87904 -0.080592324 2
9 230 1.1 0.9 0.89054 0.093617716 2
10 230 1.1 0.9 0.82958 0.336600709 2

Table A-2: Transmission Line Parameters

name From To Sn (MVA) fn (Hz) Vn1 (kV) Vn2 (kV) r x b
Line_0 5 6 100 60 230 230 0.005 0.05 0.075
Line_1 5 6 100 60 230 230 0.00501 0.05001 0.075
Line_2 6 7 100 60 230 230 0.002 0.02 0.03
Line_3 6 7 100 60 230 230 0.00201 0.02001 0.03
Line_4 7 8 100 60 230 230 0.02201 0.22001 0.33
Line_5 7 8 100 60 230 230 0.02202 0.22002 0.33
Line_6 7 8 100 60 230 230 0.022 0.22 0.33
Line_7 8 10 100 60 230 230 0.002 0.02 0.03
Line_8 8 10 100 60 230 230 0.00201 0.02001 0.03
Line_9 9 10 100 60 230 230 0.005 0.05 0.075
Line_10 9 10 100 60 230 230 0.00501 0.05001 0.075
Line_11 1 5 100 60 20 230 0.001 0.012 0
Line_12 2 6 100 60 20 230 0.001 0.012 0
Line_13 3 9 100 60 20 230 0.001 0.012 0
Line_14 4 10 100 60 20 230 0.001 0.012 0
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Table A-3: Load Parameters

name PQ_0 PQ_1
bus 7 8

Vn (kV) 230 230
p0 (MW) 11.59 15.75

q0 (MVAr) -0.735 -0.899
vmax 1.1 1.1
vmin 0.9 0.9

Table A-4: Synchronous Generator Parameters

name G1 - Slack G2 G2 G3
Sn (MVA) 900 900 900 900
Vn (kV) 20 20 20 20

bus 1 2 3 4
p0 (MW) 7.45861 7 7 7

q0 (MVAr) 1.43612 3 5.5 -1
pmax (MW) 9 9 9 20
pmin (MW) 0 0 0 0

qmax (MVAr) 6 3 5.5 -1
qmin (MVAr) 0 3 5.5 -1

v0 1 1 1 1
vmax 1.4 1.4 1.4 1.4
vmin 0.6 0.6 0.6 0.6
ra 0 0 0 0
xs 0.25 0.25 0.25 0.25

Table A-5: Generator Model Parameters

name GENROU_1 GENROU_2 GENROU_3
bus 1 2 3
gen 1 2 3

Sn (MVA) 900 900 900
Vn (kV) 20 20 20
fn (Hz) 60 60 60

D 0 0 0
M 13 13 12.35
ra 0 0 0
xl 0.06 0.06 0.06

xd1 0.3 0.3 0.3
kp 0 0 0
kw 0 0 0
S10 0 0 0
S12 1 1 1
xd 1.8 1.8 1.8
xq 1.7 1.7 1.7
xd2 0.25 0.25 0.25
xq1 0.55 0.55 0.55
xq2 0.25 0.25 0.25

Td10 (s) 8 8 8
Td20 (s) 0.03 0.03 0.03
Tq10 (s) 0.4 0.4 0.4
Tq20 (s) 0.05 0.05 0.05
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Table A-6: Turbine Governor Model Parameters

name TGOV1_1 TGOV1_2 TGOV1_3
syn 1 2 3

Tn (s) 900 900 900
wref0 1 1 1

R 0.05 0.05 0.05
VMAX 33 33 33
VMIN 0.4 0.4 0.4
T1 (s) 0.49 0.49 0.49
T2 (s) 2.1 2.1 2.1
T3 (s) 7 7 7

Dt 0 0 0

Table A-7: Excitation System Model Parameters

name EXDC2_1 EXDC2_2 EXDC2_3
syn 1 2 3

TR (s) 0.02 0.02 0.02
TA (s) 0.02 0.02 0.02

TC 1 1 1
TB 1 1 1
TE 0.83 0.83 0.83
TF1 1.246 1.246 1.246
KF1 0.0754 0.0754 0.0754
KA 20 20 20
KE 1 1 1

VRMAX 5.2 5.2 5.2
VRMIN -4.16 -4.16 -4.16

E1 0 0 0
SE1 0 0 0
E2 1 1 1
SE2 1 1 1
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Table A-8: REECA1 Parameters

Parameter Value
PFFLAG 0
VFLAG 0
QFLAG 0
PFLAG 0

PQFLAG 0
Vdip 0.8
Vup 1.1
Trv 0.02
dbd1 -0.02
dbd2 0.02
Kqv 20
Iqh1 999
Iql1 -999

Vref0 1
Iqfrz 0
Thld -2
Thld2 1

Tp 0.02
QMax 999
QMin -999
VMAX 999
VMIN -999
Kqp 1
Kqi 0.1
Kvp 1
Kvi 0.1

Vref1 1
Tiq 0.02

dPmax 999
dPmin -999
PMAX 999
PMIN -999
Imax 10
Tpord 0.02
Vq1 0.2
Iq1 2
Vq2 0.4
Iq2 4

Parameter Value
Vq3 0.8
Iq3 8
Vq4 1
Iq4 10
Vp1 0.2
Ip1 2
Vp2 0.4
Ip2 4
Vp3 0.8
Ip3 8
Vp4 1
Ip4 10
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A. System Parameters

Table A-9: REGCA1 Parameters: Part 1

Parameter Value
name REGCA1_1
bus 4
gen 4
Tg 0.1

Rrpwr 999
Brkpt 0.8
Zerox 0.5
Lvpl1 1
Volim 1.2
Lvpnt1 1
Lvpnt0 0.4
Iolim 0
Tfltr 0.1
Khv 0.7

Iqrmax 999
Iqrmin -999
Accel 0
Iqmax 999
Iqmin -999

ra 0
xs 0.25

Table A-10: REPCA1 Parameters: Part 2

Parameter Value
name REPCA1_1
ree 1
line Line_14
busr
busf BusFreq_4

VCFlag 1
RefFlag 1
Fflag 0
Tfltr 0.02
Kp 1
Ki 0.1
Tft 1
Tfv 1
Vfrz 0.8
Rc
Xc
Kc 1

emax 999
emin -999
dbd1 -0.02
dbd2 0.02
Qmax 999
Qmin -999
Kpg 1
Kig 0.1
Tp 0.02

fdbd1 -0.01
fdbd2 0.01
femax 0.05
femin -0.05
Pmax 999
Pmin -999
Tg 0.02
Ddn 10
Dup 10

Table A-11: WTDTA1 Parameters

Parameter Value
name WTDTA1_1
ree 1
Sn 1000
fn 60
Ht 3
Hg 3

Dshaft 1
Kshaft 1

Table A-12: WTARA1 Parameters

Parameter Value
name WTARA1_1
rego 1
Ka 1

theta0 0
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Table A-13: WTGPTA1 Parameters

Parameter Value
name WTGPTA1_1
rea 1
Kiw 0.1
Kpw 0
Kic 0.1
Kpc 0
Kcc 0
Tp 0.3

thmax 30
thmin 0

dthmax 5
dthmin -5

Table A-14: WTGTRQA1 Parameters

Parameter Value
name WTGTRQA1_1
rep 1
Kip 0.1
Kpp 0
Tp 0.05

Twref 30
Temax 1.2
Temin 0
Tflag 0
p1 0.2
sp1 0.58
p2 0.4
sp2 0.72
p3 0.6
sp3 0.86
p4 0.8
sp4 1
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