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Summary

In this paper WinBugs code to fit joint mean and precision (variance) beta

regression models is presented. These models are fitted applying Bayesian

methodology and assuming normal prior distribution for the regression pa-

rameters. Analysis of structural data are included, assuming these models.
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1 Introduction

In this paper, we present the WinBugs CODE to fit beta regression models.

The beta distribution defined in equation (1), has applications in uncertainty

or random variation of a probability, fraction or prevalence, among others.

Thus, this distribution has many applications in areas such as financial sci-

ences or social sciences as education, where random variables are continuous

in a bounded interval which is isomorphic to the interval [0, 1]. To mention

an example, in studies of the quality of education, a number from 0 to 5

(or any other positive integer bounds) is assigned as a measure of perfor-

mance for the evaluation of school subjects as math, language, arts, natural

sciences or any other scholar area. In these cases, the measure assigned to

each student can be expressed as a number from zero to one. Thus, it can

be assumed that the level of student performance is a random variable with

beta distribution.

The beta p, q distribution function, defined by equation (1) can be re-

parametrized as a function of the mean and the so called dispersion parameter

as in equation (4), or as function of the mean and variance taking into account

equations (5) and (6). This characterization of the beta distribution can be

more appropriate. In the first re-parametrization, making φ = p+ q we may

see that p = µφ, q = φ(1 − µ) and σ2 = µ(1−µ)
φ+1

. In this case, φ can be

interpreted as a precision parameter in the sense that, for fixed values of µ,

larger values of φ correspond to smaller values of the variance of Y . This

reparametrization presented in Ferrari and Cribari-Neto (2004), was already

proposed in the literature, for example in Jorgensen (1997) or in Cepeda

(2001, pg 63).
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In this case, the mean and dispersion parameters can be modeled as func-

tions of explanatory variables, given that behavior of these parameters can

be explained explanatory variables. To cite a few examples, the educational

level of mothers could influence students school performance; land concentra-

tion can be explained by random variables associated with social and political

factors or the proportion of income spent monthly could be explained by the

number of persons in the household. At the same time, we can assume that

the dispersion parameter changes as a function of the same or other random

variables. With these ideas, Bayesian regression, with joint modeling of the

mean and dispersion parameters, was initially proposed by Cepeda (2001,

pg. 63), under the framework of joint modeling in the biparametric expo-

nential family (see Cepeda and Gamerman 2001, 2005). After that, Ferrari

and Cribari-Neto (2004) proposed classical beta regression models, assuming

that the dispersion parameter is constant through the rank of the explana-

tory variables. Further works have been published by Smithson and Verkuilen

(2006), Simas et al. (2010) and, Cepeda-Cuervo and Achcar (2010), the lat-

ter proposing nonlinear beta regression in the context of Double Generalized

Nonlinear Models. The beta regression models were extended in Cepeda et

al.(2011), assuming that the observation are spatially correlated.

The rest of the paper is organized as follows: Section 2 includes general

concepts on beta distribution. Section 3, the joint mean and precision (vari-

ance) beta regression models are defined. Section 4, provides the Winbugs

CODE for Beta regression models.
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2 Beta Distribution

A random variable Y has beta distribution if its density function is given by

f(y|p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1I(0,1)(y) (1)

where p > 0, q > 0 and Γ(.) denotes the gamma function. The mean and

variance of Y , µ = E(Y ) and σ2 = V ar(Y ), are given by

µ =
p

p+ q
(2)

σ2 =
p q

(p+ q)2(p+ q + 1)
(3)

Many random variables can be assumed to have beta distribution. For ex-

ample, income inequality or land distribution when measured using the Gini

index proposed by Atkinson(1970), and the performance of students in sub-

jects such as mathematics, natural sciences or literature. In the latter case,

if performance X takes values within the interval (a, b), the random vari-

able Y = (X − a)/(b − a) can be assumed to have beta distribution. This

performance can be explained by household socioeconomic variables, hav-

ing fundamental impact on the student cognitive achievement. For example,

the level of student achievement is closely related to the educational level of

their parents and the number of hours devoted to study a subject. Thus,

the beta regression model could be appropriate to explain the behavior of

school performance as a function of associated factors. In these applications

however, the reparametrization of the beta distribution given in (4) could

be more appropriate. In the first, doing φ = p + q we can see that p = µφ,

q = φ(1 − µ) and σ2 = µ(1−µ)
φ+1

. Hence, φ can be interpreted as a precision
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parameter in the sense that, for fixed values of µ, larger values of φ corre-

spond to smaller values of the variance of Y . This reparametrizacion that

is presented in Ferrari and Cribari-Neto (2004), had already appeared in the

literature, for example in Jorgensen (1997) or in Cepeda (2001). With this

reparametrization, the density of the beta distribution (1) can be rewritten

as

f(y|α, β) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y) (4)

In this case, the mean and dispersion parameters can be modeled as func-

tion of explanatory variables, for example, as was proposed in Cepeda(2001),

given that changes in the precision parameter can be explained by explana-

tory variables, such as mothers educational level in the case of the student’s

school performance.

The beta distribution given in (1) can also be reparametrized as a function

of the mean and variance, with

p =
(1− µ)µ2 − µσ2

σ2
(5)

q =
(1− µ)[µ− µ2 − σ2]

σ2
(6)

Although writing (1) as a function of µ and σ2 can result in a complex

expression, joint modeling of the mean and variance can be easily achieved

applying the Bayesian methodology proposed in Cepeda(2001), and Cepeda

and Gamerman (2005). Sometimes, joint modeling of the mean and variance

could be more appropriate than the joint modeling of the mean and the so
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called dispersion parameter, given that parameters of the regression models

would be more easily interpreted.

3 Joint Mean and Precision (Variance) Beta

Regression Models

With the reparametrization of the beta distribution as a function of µ and

φ, we can define a double generalized beta regression model as proposed in

Cepeda (2001). In that research, joint modeling of the mean and dispersion

parameters in the beta regression model and a Bayesian methodology to

fit the parameters of the proposed model, was defined. Under a general

framework, a random sample Yi ∼ Beta(pi, qi), i = 1, 2, . . . , n, was assumed,

where both, mean and precision parameters, are modeled as a function of

explanatory variables. That is,

logit(µ) = xtiβ (7)

log(φ) = ztiγ (8)

where β = (β0, β1, ..., βk) and γ = (γ0, γ1, . . . , γp) are the vectors of the mean

and dispersion regression models and, xi and zi are the vectors of the mean

and dispersion explanatory variables, at the i-th observation, respectively

http://www.bdigital.unal.edu.co/5947. Afther Cepeda’s work, Ferrari

and Cribari-Neto (2004) proposed the same reparametrization of the beta

distribution, µ = p/(p + q) and φ = p + q. In that paper, they assumed

that g(µi) = xtiβ, where g is a strictly monotonic and twice differentiable

real valued link function defined in the interval (0, 1), assuming that the
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dispersion parameter is constant. Although they consider many possible link

functions, in the applications they take the logit link function, given that

the mean can be interpreted as a function of the odds ratio. The joint mean

and dispersion beta regression models proposed by Cepeda(2001), was later

studied by Smithson and Verkuilen (2006) and Simas et al. (2010), under

a classical perspective. At the same time, a nonlinear beta regression was

proposed by Cepeda and Achcar (2010), assuming a nonlinear mean model

given by (9) and a dispersion model given by (8), in the context of Double

Generalized Nonlinear Models. This model was applied to the schooling

rate data analysis in Colombia, for the period ranging from 1991 to 2003

http://www.tandfonline.com/doi/abs/10.1080/03610910903480784.

µi = β0
1+β1 exp(β2xi)

(9)

In this paper, we propose joint mean and variance beta regression models,

with the mean modeled as linear or nonlinear function of the parameters, as in

(7) or (9), and the variance modeled as a function of the explanatory variables

(10), where g is a monotonic and two time differentiable real function, that

take into account the positivity of the variance http://www.bdigital.unal.

edu.co/6207.

g(σ2
i ) = zi

tγ (10)

The results of fitting the mean and variance beta regression models are

easily interpretable: the mean fitted models have the usual interpretation,

but the fitted variance model is easily interpreted directly from data behavior.

For example, if the explanatory variable Z1 is associated to γ1 and γ1 > 0,
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increasing behavior of Z1 is associated with increasing behavior of σ2. In

the same way, the interpretation is applicable when the parameters of the

variance models are negative.

In the next sections, structured and real data sets are analyzed applying

joint mean and dispersion, and joint mean and dispersion beta regression

models to compare the performance of these models, according to the behav-

ior of the data.

4 WinBugs CODE for beta regression

4.1 Joint mean and precision beta regression model

http://www.bdigital.unal.edu.co/5947

model

{

for( i in 1 : N ) {

Y[i] ~ dbeta(p[i],q[i])

p[i]<-mu[i]*tau[i]

q[i]<-tau[i]-mu[i]*tau[i]

logit(mu[i])<-b0+ b1*x1[i]+b2*x2[i]

tau[i] <-exp(c0+ c1*x2[i])

}

b0 ~ dnorm(0.0,1.0E-2)

b1 ~ dnorm(0.0,1.0E-2)
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b2 ~ dnorm(0.0,1.0E-2)

c0 ~ dnorm(0.0,1.0E-2)

c1 ~ dnorm(0.0,1.0E-2)

}

Data

list(Y=c(0.53, 0.69,0.47,0.87,0.82,0.68,0.53,0.56,

0.74,0.53,0.06,0.58,0.80,0.64,0.58,0.24),

x1=c(0.441,0.356,0.466,0.177,0.355,0.447,0.591,

0.602,0.326,0.477,0.436,0.345,0.173,0.549,0.156,0.668),

x2=c(0.188,0.428,0.09,0.413,0.312,0.185,0.283,0.362,

0.3918,0.131,0.411,0.336,0.272,0.204,0.169,0.188),

N= 16)

Inits

list(b0=-1, b1=-1, b2=0, c0=-3, c1=0)

4.2 Joint mean and variance beta regression model

http://www.bdigital.unal.edu.co/6207

model

{

for( i in 1 : N ) {

Y[i] ~ dbeta(a[i],b[i])
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a[i]<-((1-mu[i])*mu[i]*mu[i]- mu[i]*sg[i])/sg[i]

b[i]<-(1-mu[i])*(mu[i]-mu[i]*mu[i]-sg[i])/sg[i]

logit(mu[i]) <-b0+ b1*x1[i]

sg[i] <-exp(c0+c1*x1[i])

}

b0 ~ dnorm(0,1)

b1 ~ dnorm(0,0.1)

c0 ~ dnorm(0,0.01)

c1 ~ dnorm(0,0.2)

}

Data

list(Y=c(0.53, 0.69,0.47,0.87,0.82,0.68,0.53,0.56,

0.74,0.53,0.06,0.58,0.80,0.64,0.58,0.24),

x1=c(0.441,0.356,0.466,0.177,0.355,0.447,0.591,

0.602,0.326,0.477,0.436,0.345,0.173,0.549,0.156,0.668),

N= 16)

Inits

list(b0=0, b1=0, c0=-3, c1=0)

4.3 Nonlinear beta regression modes

http://www.tandfonline.com/doi/abs/10.1080/03610910903480784

model

{

for( i in 1 : N ) {
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Y[i] ~ dbeta(a[i],b[i])

a[i]<-mu[i]*tau[i]

b[i]<-tau[i]-mu[i]*tau[i]

mu[i] <-b0/(1+ b1*exp(b2*x1[i]))

tau[i] <-exp(c0+c1*x1[i])

}

b0 ~ dunif(0,1)

b1 ~ dnorm(0,0.1)

b2 ~ dunif(-6, 0)

c0 ~ dnorm(-10,0.01)

c1 ~ dnorm(0,0.2)

}

Data

list(Y=c(0.2,0.3,0.45,0.55,0.6,0.64,0.7,0.75,0.85,0.9),

x1=c(1,2,3,4,5,6,7,8,9,10), N= 10)

Inits

list(b0=0.88, b1=3, b2=-2, c0=-9, c1=0)
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