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Abstract

This document presents a series of elements for approaching the task of segmenting mouth

structures in facial images, particularly focused in frames from video sequences. Each stage

is treated separately in different Chapters, starting from image pre-processing and going up

to segmentation labeling post-processing, discussing the technique selection and development

in every case. The methodological approach suggests the use of a color based pixel classifi-

cation strategy as the basis of the mouth structure segmentation scheme, complemented by

a smart pre-processing and a later label refinement.

The main contribution of this work, along with the segmentation methodology itself, is based

in the development of a color-independent label refinement technique. The technique, which

is similar to a linear low pass filter in the segmentation labeling space followed by a non-

linear selection operation, improves the image labeling iteratively by filling small gaps and

eliminating spurious regions resulting from a prior pixel classification stage. Results pre-

sented in this document suggest that the refiner is complementary to image pre-processing,

hence achieving a cumulative effect in segmentation quality.

At the end, the segmentation methodology comprised by input color transformation, pre-

processing, pixel classification and label refinement, is put to test in the case of mouth gesture

detection in images aimed to command three degrees of freedom of an endoscope holder.

Keywords: Image segmentation, lips segmentation, gesture classification, human-

machine interface.





Resumen extendido

En éste trabajo se presenta una nueva metodoloǵıa para el reconocimiento automático de

gestos de la boca orientada al desarrollo de una interfaz hombre-máquina para el comando

de endoscopios. Dicha metodoloǵıa comprende etapas comunes a la mayoŕıa de sistemas

de visión artificial, como lo son el tratamiento de la imagen y la segmentación, además de

un método para el mejoramiento progresivo del etiquetado resultante de la segmentación

inicial. A diferencia de otras aproximaciones, la metodoloǵıa propuesta se adecua a gestos

bucales y que no implican movimientos de la cabeza. A lo largo del documento se presta

especial interés a la etapa de segmentación, ya que es ésta la que presenta mayores retos en

el reconocimiento de gestos.

En resumen, las contribuciones principales de este trabajo son:

• El diseño y la implementación de un algoritmo de refinamiento de etiquetas que de-

pende de una segmentación y etiquetado inicial, y de dos parámetros intŕınsecos al al-

goritmo. La estrategia produce una mejora en el etiquetado de las regiones en imágenes

faciales centradas en la región de la boca, mostrando también un rendimiento aceptable

para imágenes naturales.

• La propuesta de dos métodos de segmentación de las estructuras de la boca en imágenes:

uno basado en la clasificación de los ṕıxeles por su color, y otro que incluye además

algunas caracteŕısticas locales de textura. El segundo método mostró ser particular-

mente útil para separar la boca del fondo, mientras que el primero es fuerte en la

clasificación de las estructuras visibles de la boca entre śı.

• La derivación de un procedimiento basado en caracteŕısticas locales de textura en las

imágenes para la selección automática de los parámetros del algoritmo de refinamiento.

• Una versión mejorada del algoritmo de aproximación del contorno externo de la boca

presentado por Eveno y otros [1, 2], en la cual se reducen tanto el número de iteraciones

necesarias para alcanzar la convergencia como el error final de aproximación.

• Se notó la utilidad de la componente CIEa∗ normalizada estad́ısticamente dentro de

la región de interés de la boca, para la clasificación rápida de los labios y la boca a

través del uso de comparación con un umbral fijo.
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El contenido del documento se presenta como sigue: primero, en el Caṕıtulo 2 se introduce

el tema de segmentación de las estructuras de la boca, y se brinda una breve descripción de

las técnicas de medida de rendimiento utilizadas y de la base de datos generada para este

trabajo. Seguidamente, en el Caṕıtulo 3 son tratadas algunas representaciones de color y

su potencial en la tarea de clasificación de estructuras de la boca por comparación, y en el

modelado estocástico de la distribución de color de cada una de ellas. En el Caṕıtulo 4 se

presenta una nueva técnica de refinamiento progresivo de las etiquetas resultantes de pro-

cesos de clasificación/segmentación. Su comportamiento es también estudiado en el caso

de uso de segmentación de imágenes naturales y de segmentación de las estructuras de la

boca en imágenes faciales. El Caṕıtulo 5 muestra un estudio acerca del uso de un grupo de

caracteŕısticas locales de textura para el enriquecimiento de la segmentación de la boca en

imágenes. En el Caṕıtulo 6 se introduce una versión modificada del algoritmo de aproxi-

mación del contorno externo de los labios presentado por Eveno y otros [1, 2]. El Caṕıtulo 7

contiene la aplicación de la metodoloǵıa de segmentación de estructuras de la boca y re-

conocimiento de gestos en la tarea de generar comandos para una interfaz hombre-máquina

para la manipulación de robots porta-endoscopios, en particular orientado al sistema de

ciruǵıa asistida DaVinci. Finalmente, las conclusiones de este trabajo y el trabajo futuro se

presentan en los Caṕıtulos 8 y 9, respectivamente.

Palabras clave: Segmentación, segmentación de labios, clasificación de gestos, interfaz

hombre-máquina.



Résumé étendu

Ce travail présente une nouvelle méthodologie pour la reconnaissance automatique des

gestes de la bouche visant à l’élaboration d’IHM pour la commande d’endoscope. Cette

méthodologie comprend des étapes communes à la plupart des systèmes de vision artificielle,

comme le traitement d’image et la segmentation, ainsi qu’une méthode pour l’amélioration

progressive de l’étiquetage obtenu grâce à la segmentation. Contrairement aux autres ap-

proches, la méthodologie est conçue pour fonctionner avec poses statiques, qui ne compren-

nent pas les mouvements de la tête. Beaucoup d’intérêt est porté aux tâches de segmentation

d’images, car cela s’est avéré être l’étape la plus importante dans la reconnaissance des gestes.

En bref, les principales contributions de cette recherche sont les suivantes:

• La conception et la mise en œuvre d’un algorithme de raffinement d’étiquettes qui

dépend d’une première segmentation/pixel étiquetage et de deux paramètres corrélés.

Le raffineur améliore la précision de la segmentation indiqué dans l’étiquetage de sortie

pour les images de la bouche, il apporte également une amélioration acceptable lors de

l’utilisation d’images naturelles.

• La définition de deux méthodes de segmentation pour les structures de la bouche dans

les images; l’une fondée sur les propriétés de couleur des pixels, et l’autre sur des

éléments de la texture locale, celles-ci se complètent pour obtenir une segmentation

rapide et précise de la structure initiale. La palette de couleurs s’avère particulièrement

importante dans la structure de séparation, tandis que la texture est excellente pour

la séparation des couleurs de la bouche par rapport au fond.

• La dérivation d’une procédure basée sur la texture pour l’automatisation de la sélection

des paramètres pour la technique de raffinement de segmentation discutée dans la

première contribution.

• Une version améliorée de l’algorithme d’approximation bouche contour présenté dans

l’ouvrage de Eveno et al. [1, 2], ce qui réduit le nombre d’itérations nécessaires pour la

convergence et l’erreur d’approximation finale.

• La découverte de l’utilité de la composant de couleur CIE a∗ statistiquement nor-

malisée, dans la différenciation lèvres et la langue de la peau, permettant l’utilisation

des valeurs seuils constantes pour effectuer la comparaison.
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Le contenu de ce document suit les étapes du processus de reconnaissance bouche geste. Tout

d’abord, le Chapitre 2 introduit une bibliographie sur la segmentation de la structure de la

bouche dans les images, et décrit les bases de données et les mesures de performances utilisées

dans les expériences. Le Chapitre 3 traite des représentations de couleurs et plusieurs tech-

niques de traitement d’image qui permettent de mettre en évidence les différences entre les

structures de la bouche, tout en améliorant l’uniformité à l’intérieur de chaque structure.

La modélisation stochastique et les techniques de classification, communes dans la recon-

naissance des formes et d’exploration de données, sont utilisées pour obtenir des résultats

rapides en matière d’étiquetage (segmentation de point de départ). Une nouvelle technique

pour le post-traitement des images d’étiquettes résultant de la segmentation initiale par le

biais d’un raffinement itératif des étiquettes est présentée dans le Chapitre 4. Le proces-

sus est également testé avec des images naturelles, afin d’établir une idée plus complète du

comportement du raffineur. Le Chapitre 5 présente une étude sur l’utilisation de descrip-

teurs locaux de texture afin d’améliorer la segmentation de la structure de la bouche. Le

Chapitre 6 introduit une version modifiée de l’algorithme automatique d’extraction du con-

tours des lèvres, initialement traité dans le travail par Eveno et al. [1, 2], conçu pour trouver

la région d’intérêt de la bouche. Le Chapitre 7 propose une nouvelle méthodologie pour la

reconnaissance des mouvements de la bouche, en utilisant les techniques traitées dans les

chapitres précédents. Une illustration du travail proposé dans le cas spécifique de commande

porte endoscope pour le système chirurgical Da Vinci est présentée. Finalement, les conclu-

sions de ce travail sont montrées au Chapitre 8, des questions ouvertes et des travaux futurs

sont discutés dans le Chapitre 9.

Mots-clés: segmentation, segmentation de lèvres, classement de gestes, interface human-

machine.
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1 Introduction

Vision based human machine interfaces have gained great interest in recent years. The

increasing computational capabilities available in mainstream PCs and embedded systems

such as mobile phones, digital cameras, tablets, etc., enable the massive deployment of a

wide variety of applications using techniques hitherto constrained to specialized equipment.

In example, it is not uncommon to see device unlocking systems based on face recognition,

voice recognition and digital prints, among others, embedded in rather simple devices.

Nevertheless, security and consumer based products are not the only fields that have prof-

ited from the visual recognition race. Medical applications have taken advantage of this

technological leap, translated in the arising of high performing data analysis and visualiza-

tion techniques. These techniques interact in real-time with the working environment both

in patient-wise and surgeon-wise levels, empowering sophisticated assessment systems and

command interfaces.

Visual assessment human machine interfaces in surgical environments can be clearly exem-

plified by the use of the visible tip of surgical instruments, as well as other visual cues, in

order to servo endoscope holders. This approach presents acceptable results if the endoscope

movement is meant to be coupled with those carried out by the instruments, but its appli-

cability seems to be limited if such movements should be independent from each other. In

that case, commanding the holder requires the use of additional elements such as joysticks,

pedals, buttons, etc. Wearable marks in the head of the surgeon have also been used to

estimate the desired endoscope pose by measuring the relative pose of the surgeon face.

In a previous work [5, 6], several approaches for solving the endoscope holder command

were discussed, highlighting the fact that mouth gestures could be regarded as a feasible

alternative to prior approaches in tackling such task. The authors used a small subset of

easily identifiable gestures conveying both mouth poses and head movements, in order to

control three degrees of freedom (upwards-downwards, left-right, zoom in-zoom out). The

approach presents a feasible solution whenever movements of surgeon’s head are admissible

during the intervention, but is not usable otherwise. This fact poses an important limitation

since modern tools such as the DaVinci surgical system impose strict constraints regarding

the surgeon pose during intervention.

In this work, a novel methodology for automatic mouth gesture recognition aimed towards

the development of endoscope holder command HMIs is presented. The methodology com-

prises common stages in most artificial vision systems, such as image pre-processing and
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segmentation, along with a least treated one which is label post-processing or refinement.

Unlike previous approaches, the methodology is designed to work with mouth poses that do

not include head movements. Much interest is given to image segmentation related tasks,

since it has proven to be the most challenging stage in the gesture recognition streamline.

Briefly, the main contributions of this research are:

• The design and implementation of a label refinement algorithm that depends on an

initial segmentation/pixel labeling and two correlated parameters. The refiner im-

proves the segmentation accuracy shown in the output labeling for mouth images, also

bringing an acceptable improvement when using natural images.

• The statement of two segmentation schemes for mouth structures in images, one ut-

terly based in pixel color properties, and other including some local texture elements,

which complements each other in obtaining a fast and accurate initial structure seg-

mentation. The color-only scheme proves to be particularly accurate for structure

from structure separation, while the texture and color scheme excels at mouth from

background distinction.

• The derivation of a texture based procedure for automating the parameter selection

for the segmentation refinement technique discussed in the first contribution.

• An improved version of the mouth contour approximation algorithm presented in the

work by Eveno et al. [1, 2], which reduces both the number of iterations needed for

convergence and the final approximation error.

• The discovery of the usefulness of the CIEa∗ color component statistically normalized

in differentiating lips and tongue from skin, enabling the use of constant threshold

values in such comparison.

The outline of this document follow the stages that conform the mouth gesture recognition

process. First, Chapter 2 introduces a review on mouth structure segmentation in images,

and describes the databases and accuracy measurements used throughout the remainder of

the document. Chapter 3 explores several color representations and pre-processing tech-

niques that help in highlighting the differences between mouth structures, while improving

the uniformity within each structure. Stochastic modeling and classification techniques,

common in pattern recognition and data mining, are used to obtain fast labeling results

usable as a starting point segmentation. A novel technique for post-processing the label im-

ages resulting from the initial segmentation through iterative label refinement is presented

in Chapter 4. The method is also tested with natural images, in order to establish a broader

idea of the refiner’s behavior. Chapter 5 presents a study on the use of local texture de-

scriptors in order to enhance mouth structure segmentation, following the methodological

approach in Chapter 3. Chapter 6 presents a modified version of the automatic lip contour
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extraction algorithm originally introduced in the work by Eveno et al. [1, 2], aimed to find

the mouth’s region of interest. Chapter 7 proposes a new methodology for mouth gesture

recognition in images using most of the elements treated in previous Chapters. It exemplifies

the proposed workflow in the specific case of endoscope holder command for the DaVinci

surgical system. Finally, the conclusions of this work are drawn in Chapter 8, and some

open issues and future work are discussed in Chapter 9.





2 Mouth structure segmentation in

images

The main goal of this Chapter is to serve as an extended introduction to the document. It

presents the topic of mouth structures segmentation in images, giving insights on how this

task has been addressed in the past, and how such task is approached in this work.

The Chapter can be split in two main parts. The first part, which is identified as Section 2.1,

contains a synthesis on how the challenge of automatic mouth structure segmentation has

been addressed in the past. The second part, denoted as Section 2.2, introduces a series

of performance measurement tools that serve as a basis to present the results contained

in the remaining chapters, as well as a brief description of the databases used to obtain

the aforementioned results. The later is a common reference throughout the rest of this

document.

2.1 Previous work

One major step in automatic object recognition in images and scene perception is image

segmentation. In this step, all pixels in the image are classified according to their color,

local texture, etc., preserving local compactness and connectedness. As in any other image

segmentation task, the techniques that can be used to deal with the task may be approached

from a taxonomic point of view regarding their inherent abstraction level. Figure 2.1 shows

one of those possible approaches for the specific challenge of mouth structure segmentation,

and used more specifically in lip segmentation. It is noteworthy that some techniques may

overlap in more than one category (as in the case of active appearance models and Fuzzy

C-Means).

Texture and region based approaches conform the basis of high level segmentation algo-

rithms, while color and highly localized texture features and moments are more common

to low level segmentation approaches. In high level segmentation strategies, like watershed

or region growing-based segmentation, the most time-consuming tasks derive from these re-

gion constraints [7]. Thereby, region constraints are usually excluded at some extent when

developing in favor of speed over quality.

Now, the possibilities narrow down when restraining the application to mouth segmenta-

tion in images. For instance, tongue and teeth segmentation have seen their development
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Mouth structure segmentation

Pixel color classification

Basic color thresholding
Color distributionmodeling
Fuzzy C-Means
Implicit color transformations
Other...

Mouth contour extraction

Polynomial approximation
Active contours
Jumping snakes
Active shape models
Other...

Region growing,  other
region-based approaches

Region growing
Shape-constrained FCM
Shape modeling & fitting
Active appearance models
Other... 

Figure 2.1: Mouth structure segmentation in images: taxonomic diagram.

enclosed in rather punctual applications whose solution usually imply the use of specific

illumination and acquisition hardware. For instance, works like [8, 9, 10, 11] exploit the

inherent highlighting generated by hyperspectral or infra-red lighting in order to facilitate

tongue segmentation for upwards and downwards tongue gestures. Using that configuration,

tongue appears clearly highlighted from lips. Kondo et al. [12] used range imagery and X-

ray images in order to perform teeth segmentation and reconstruction as three dimensional

surfaces. Lai & Lin [13] also used X-ray images for teeth segmentation.

In the other hand, most of previous work on mouth structure segmentation in images has

been focused in segmenting the lip region from skin, leaving aside the remaining visible mouth

structures (namely teeth, gums and tongue). Therefore, the remaining of this Section focuses

in exploring several approaches that arose to cope with such challenge.

2.1.1 Lip segmentation based on pixel color classification

Pixel-based segmentation encompasses pixel classification using region color distribution

models. Commonly, those models are linear and non-linear approximations of the region

separation boundaries, reducing the classification problem to comparing the input feature

vectors against a set of thresholds. The thresholds define region boundaries in the feature

space, conforming models of the regions’ color distribution by themselves.

Thresholds can be set statically, taking into account any prior knowledge about the contents

of the image, or they can also be dynamically adjusted to achieve a proper segmentation

of the image. Dynamical threshold selection rely in either local statistics, like in the case

of adaptive thresholding [7], or global statistics usually based in the image histogram, like

in Otsu’s technique [14]. In most cases, these techniques manage to maximize interclass

variances while minimizing intraclass variances.

Succeeding pixel color based lip segmentation requires a proper input representation of
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the data. Thereupon, several approaches for finding appropriate color representations are

treated.

Color representations used in mouth structure segmentation

The first step in solving a segmentation task is to find an adequate input representation

which helps highlighting the existent differences among regions. Those representations can be

classified in two different categories. The first category is composed by general purpose color

transformations that prove to be helpful in the specific application; and the second comprises

color transformations which are specifically designed aiming towards the application through

the use of linear and non-linear transformations. In this Section, some approaches explored

in both categories are treated briefly.

The lip region and skin are very similar in terms of color [15]. For this reason many different

color transformations have been developed.

Some linear transformations of the RGB color space have led into fair results in term of color

separability between lips and skin. For example, Guan [16, 17], and Morán & Pinto [18] made

use of the Discrete Hartley transform (DHT) in order to improve color representation of the

lip region. The component C3 of the DHT transformation properly highlights lip area for

subjects with pale skin and no beard, as shown in Figure 2.3d. Chiou & Hwang [19] used the

Karhunen–Loève Transform in order to find the best color projection for linear dimension

reduction.

Hue-based transformations are also used in lip segmentation. The pseudo hue transforma-

tion, proposed in the work of Hurlbert & Poggio [20], exhibits the difference between lips

and skin under controlled conditions, as seen in Figure 2.3b. The pseudo hue transformation

focuses in the relation between red and green information of each pixel, and is defined as

pH = R/(R + G). It leads into a result that appears very similar to the one achieved using

hue transformation, but its calculation implies less computational reckoning, and therefore

was a preferred alternative in some work [21, 1, 22]. Particularly, a normalized version of

this representation was used in the development of a new color transformation, called the

Chromatic Curve Map[1]. As with hue, pseudo hue cannot separate properly the lips’ color

from the beard and the shadows. Pseudo-hue may generate unstable results when the image

has been acquired under low illumination, or in dark areas; this effect is mainly due to a

lower signal to noise ratio (SNR).

Chromaticity color space, introduced in 1931 by the CIE (Commission Internationale de

l’Éclairage), have been used in order to remove the influences of varying lighting conditions,

so that the lip region can be described in a uniform color space. Using a chromatic repre-

sentation of color, the green values of lip pixels are higher than that of the skin pixels. Ma

et al. [23] reported that in situations with strong/dim lights, skin and lip pixels are better

separated in chromatic space than in the pseudo-hue plane. In order to address changes in

lighting, in [24] the color distribution for each facial organ on the chromaticity color space
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was modeled. Chrominance transformations (Y CbCr, Y CbCg) have also been used in lip

segmentation [25].

The use of pixel based, perceptual non-linear transformations, which presents a better color

constancy over small intensity variations, has been a major trend in the late 90s. Two well-

known perceptual color transformations, presented by the CIE, are the CIEL ∗ a ∗ b∗ and

CIELu′v′. The principle behind these transformations is the compensation of natural loga-

rithmic behavior of the sensor. Work like [26, 27, 28] made use of these color representations

in order to facilitate the lip segmentation process in images. Like in Y ′CbCr, L ∗ a ∗ b∗
and Lu′v′ representations theoretically isolate the effect of lighting and color in separated

components1.

In Gómez et al. [3], a combination of three different color representations is used. The

resulting space enables the algorithm to be more selective, leading into a decrease of spurious

regions segmentation. The authors perform a clipping of the region of interest (RoI) in order

to discard the nostril region, as shown in Figure 2.2.

Figure 2.2: Example of mouth segmentation presented in [3]
.

One major disadvantage of the pixel based techniques is the lack of connectivity or shape

constrains in its methods. In order to deal with that problem, Lucey et al. [29] proposed

a segmentation algorithm based on dynamic binarization technique that takes into account

local information in the image. The first step in Lucey’s method is to represent the image in

a constrained version of the R/G ratio. Then, an entropy function that measures the uncer-

tainty between classes (background and lips) is minimized, in terms of membership function

parameters. After that, a second calculation based in neighboring region information is used

to relax the threshold selection. Despite of the threshold adaptation, a later post-processing

is needed in order to eliminate spurious regions.

1Sensor operating noise and lighting response, as well as lens-related chromatic distortions increase the
correlation between intensity and color.
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Optimal color transformation design using Linear Discriminant Analysis

Skin, lip and tongue color tends to overlap greatly in every color representation treated in

the previous Section. This task has proven to be uneasy even when using the so-called

chromatic constant transformations–which try to make the lighting effect in color negligible,

due to factors such as noise, sensor sensitivity, etc..

However, it is possible to search for optimal solutions to mouth structure classification.

The simplest way to perform this optimization comprise the calculation of a set of linear

combinations of the input features, each one aimed to distinguish a structure from the

others. Notice that following this approaches one obtains a reduction in the feature space

if the input representation dimension surpasses the number of desired output classes, and

if only one projection is computed per each class. Another approach, which comprises the

calculation of more elaborated color models for each mouth structure is discussed in the next

section.

A common approach of linear optimization for classification, a technique which can also be

used for dimensional reduction, is the Fisher Linear Discriminant Analysis (FLDA). The

FLDA is carried out by finding a projection matrix or vector (for multiclass or bi-class

problems, respectively) which transforms the input space into another space with reduced

dimensionality, aiming to maximize the inter-classes covariance while minimizing the intra-

class covariance of the data. Conversely, the goal of FLDA can be translated into maximizing

S(w) =
wTΣBw

wTΣWw
(2.1)

where w is the projection vector, ΣB represents the inter-class covariance matrix, and ΣW

represents the intra-class covariance matrix.

In the case where only two classes are considered, the closed solution for maximizing S(w)

is reduced to

w ∝ (ΣClass1 + ΣClass2)
−1(µClass1 − µClass2) (2.2)

where µ stands for the class mean. Special care should be taken in the case where (ΣClass1 +

ΣClass2) is close to singularity, in which case the pseudo inverse of (ΣClass1+ΣClass2) should be

used. Once w is computed, each input feature can be easily rated by studying its associated

element in the projection vector, or the corresponding eigenvalue in Σ−1W ΣB. Hence, the

data can be classified by projecting each input pattern (denoted by xi) and comparing the

result with a given threshold, as seen in (2.3).

x′i = xTi w (2.3)
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One common choice for the threshold is obtained by averaging the position of the two class

means in the projected space. In our tests, thresholds are computed taking into account the

class standard deviations in the projected space, ensuring that the threshold will be at the

same Mahalanobis distance from both class means (as in (2.4)).

th =
(µTClass1w)σ′Class2 + (µTClass2w)σ′Class1

σ′Class1 + σ′Class2
(2.4)

Multi-class LDA can be extended by generalizing the objective function in (2.1), or by

configuring an “one against the rest” scheme and then finding a projection for each cluster

individually. In example, LDA has been applied in order to project common color spaces,

like RGB, into specifically designed spaces oriented to perform the lip enhancement. Zhang

et al. [30] made use of LDA in order to find an optimal linear separation for lip color and

skin color, using as input space the green and blue color components. Kaucic & Blake [31]

used the FLD to find the best linear separation in RGB, for a given image set; this strategy

was also followed by Rongben et al. [32], and Wakasugi et al. [33]. In all those approaches,

the authors report competitive performance in lip region segmentation if compared with

previous works.

Zhang et al. [30] uses FLDA in order to find a linear transformation that maximizes the

difference between the color in the skin and lips. After that, it performs an automatic

threshold selection based in preserving the histogram area occupied by the lips’ region. Kim

et al. [34] proposes the use of manually annotated data in order to train a fuzzy inference

system, which is used as a confidence index for automatic threshold selection.

Color distribution modeling in images

Modeling lip/skin color separation using optimal linear techniques like FLDA implies the

assumption that a linear model is able to map pixel classification sufficiently. Nevertheless,

such overlap appears to have a non linear solution aiming towards structure color classifi-

cation. Hence, non-linear modeling approaches appear as a natural way to cope with these

limitations.

In Loaiza et al. [35] the use of feed-forward artificial neural networks (FFNNs) in order

to model such difference is proposed. The network was trained using a wide set of color

representations used for skin and lip color segmentation tasks as the input, and the desired

class as the output. As in the case of FLDA/LDA, a set of manually labeled color patterns

is needed in order to train the network. The results of the paper reported slightly better

results by using the ANN approach rather than linear approaches in lips highlighting. A

similar approach was followed by Dargham et al. [36]. In both cases, the black-box modeling

given by the connections among the neural units provide a model set whose structure lacks

of a direct physical interpretation. Moreover, neural networks usually comprise a parameter
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set that grows linearly in terms of the input feature space dimension, and the number-of and

size-of intermediate or hidden layers.

Another approach, which is very common in pattern recognition and data mining, comprises

the extension of linear approaches through the use of the kernel trick. In this case, the space

is augmented with linear and non-linear combinations of typical input features in order to

find linear solutions to non-linear separation problems.

A rather used tool in statistical modeling of data is Mixture Modeling. In particular, a

well known and widely used alternative, the Gaussian Mixtures (GMs), has been used in

classifiers, density estimators and function approximators [37]. For instance, the GM ap-

proximation of the probability distribution of a d−dimensional random variable X with

realizations x can be described by

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.5)

where πk is the mixing proportion, and holds for a) 0 < πk < 1 ∀k ∈ 1, ..., K, and b)∑K
k=1 πk = 1; and N (·|µk,Σk) is the d−dimensional Gaussian function with mean µk and

covariance matrix Σk.

One common approach to estimate the parameter set in a mixture model is based on the

Expectation-Maximization (EM) algorithm [38]. The goal in the EM formulation is, given z

the unknown and y the known observations of X, to find the vector of parameters such

that the Ez[f(y, z|θ)|y] reaches its maximum; which, for mathematical facilities, turns into

maximizing the term Q(θ) in (2.6), in terms of θ.

Q(θ) = Ez[log(f(y, z|θ))|y] (2.6)

A more detailed description of Gaussian mixtures is presented in Section 3.2.

Gaussian Mixtures have been used extensively in lip segmentation. One straightforward

use of them is to model the color distribution of skin and lips, in order to maximize its

separability, as in Basu et al. [39, 40, 41] and Sadeghi et al. [42, 43]. In the later, a Sobol-

based sampling is used in order to reduce the computational load of the EM algorithm. The

same technique was used by Bouvier et al. [44] for estimating skin color distribution of the

images.

Shape constraints can be also codified in generating the GMM. In Kelly et al. [45], a spatial

model of the lips conformed by a set of four Gaussian functions is introduced. The model

is adjusted with the information provided in a video sequence, using a set of five different

constraints which enables the update of rotational, translational and prismatic deviations in

the model (the later allows a non-rigid approximation of the data). In Gacon et al.[46], a

method for dynamic lip color characterization and lip segmentation is proposed. The method

is based in statistical Gaussian models of the face color. The method is able to model both
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static and dynamic features of pixel color and mouth shape, and it was reported that the

technique could compensate illumination changes and quick movements of the mouth.

GMMs have been also used for lip contour representation. Bregler & Omohundro [47] pre-

sented a technique which uses a high dimensional modeling using GMMs, and a later re-

projection the model in the image space. The projection is used to constrain an active

contour model that approximates the lips’ outer contour. Chan [48] used a GMM with color

and shape information, in order to model the lip contours.

Implicit color transformations

In cases in which there is no prior labeling information available, it is still possible to com-

pensate some lighting related issues in the images by taking into account image statistics as

regularization or normalization factors. Those transformations that imply the inclusion of

such measures are called implicit color transformations.

Lucey et al. [49] combine chromatic representations with features which consider the local-

ized second order statistics present in adjacent pixels, and then perform segmentation as a

classification problem. They found that results were not improved by using those features.

On the contrary, the outer mouth contour was degraded.

Implicit color transformations take into account image statistics as normalizing or stabilizing

factors. Those transformations are somehow capable to compensate small changes in illumi-

nation for each image, and thus increasing constancy in threshold selection over a variable

image set. Two remarkable implicit, non-linear transformations, are the Mouth Map, by Hsu

et al. [50], and the Chromatic Curve Map, by Eveno et al. [1]. The first one is intended

to adjust the overall color compensation in function of the color values in the whole image,

based in the traditional Y CbCr color space representation. The transformation is described

in (2.7).

MouthMap(x, y) = Cr(x, y)2
(
Cr(x, y)2 − ηCr(x, y)

Cb(x, y)

)2

(2.7)

with

η = 0.95
1
N

∑
(x,y)∈FG Cr(x, y)2

1
N

∑
(x,y)∈FG

Cr(x, y)

Cb(x, y)

(2.8)

where N stands for the total number of pixels in the image, and FG is the set of all possible

pixel locations in the image. The second one, uses the normalized pseudo-hue representation

in order to compute a parabolic approximation of the local chromatic curvature in each pixel.

The value of the Chromatic Curve Map at each pixel of the image can be computed as the

higher-order coefficient of the 2nd order polynomial that passes through three points, whose
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positions are expressed in (2.9).

p1(x, y) =

(
−αk(x, y)

B(x, y) + βk(x, y)

)
p2(x, y) =

(
0

G(x, y)

)
p3(x, y) =

(
1

γk(x, y)

)
(2.9)

here, k(x, y) is the normalized pseudo hue at the pixel (x, y). The authors chose the values

of α, β and γ by sweeping the parameters’ space. An example of images represented using

the Curve Map can be seen in Figure 2.3c.

The two transformations reported lip enhancement for subjects with white skin and without

beard. However, their accuracy decreases when dark skin or beard are present. Also, the

reckoning inherent in implicit transformations make them less suitable in real–time applica-

tions.

Another non-linear implicit transformation, proposed by Liévin & Luthon [51], is the LUX

Color Space (Logarithmic hUe eXtension). LUX components are given in (2.10).

L = (R + 1)0.3(G+ 1)0.6(B + 1)0.6 − 1

U =

{
M
2

(
R+1
L+1

)
if R < L,

M − M
2

(
L+1
R+1

)
otherwise

X =

{
M
2

(
B+1
L+1

)
if B < L,

M − M
2

(
L+1
B+1

)
otherwise

(2.10)

where M is the dynamic range of gray levels, equal to 256 for 8-bit coding. Since the hue of

the face skin is mainly red, for face and lip segmentation consideration of the U component

is enough. Related to Cr or H components the U transformation gains in contrast, but it is

also insensitive to illumination variations.

A well-performing implicit transformation aimed for lip segmentation in RoI clipped facial

images is the normalized a∗ component presented in [6]. This technique is addressed in

detail in Section 3.1.3.

The use of implicit transformation has also a few drawbacks, mostly derived from image

uncertainty. In example, the transformations discussed before in this Section fail in high-

lighting the lip region when skin color varies considerably if compared to the one used in

their development. Also, the presence of specific æsthetic or prosthetic elements in the im-

age, as well as the presence of beards or mustache, modifies the relative relationship between

lip and skin color in terms of image statistic. Thereby, implicit methods may outperform

typical color transformations whenever the image statistics fits a pre-defined range.
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(a) Original images.

(b) Pseudo hue images (shown with contrast enhancement).

(c) Curve map [1].

(d) C3 images [16].

Figure 2.3: Effect of color transformation in mouth images.
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Notice that implicit color transformations are designed for images which exhibit similar color

characteristics. The behavior of an implicit transformation on an image that escapes from

the design set is unpredictable. Hence, this kind of technique are not advised when image

statistics cannot be safely asserted in a certain design range, or if its contents are undefined.

2.1.2 Mouth segmentation derived from contour extraction

Lip could be interpreted as a deformable object, whose shape or contours can be approxi-

mated by one or many parametric curves. Then, it might seem evident that one must first

look for the mouth contour before trying to segment its inner structures. In this Section,

some techniques that have been used in outer lip contour approximation in images in lip

segmentation are briefly discussed.

Polynomials can be used as lip contour approximation, notably between second and fifth

degrees. For instance, in Stillittano & Caplier [52] four cubics are used to represent mouth

contour starting from a series of detected contour points, two in the upper lip and two in

the lower lip. The keypoints are extracted using the Jumping Snakes technique presented

by Eveno et al. [1, 22, 2]. The authors reported some issues due to the presence of gums or

tongue.

Nevertheless, as stated in [53], low order polynomials (up to fourth degree) are not suitable

for anthropometric applications since they lack in mapping capabilities for certain features;

in the other hand, high order polynomials may exhibit undesired behavior on ill-conditioned

zones. For that reason, most of the work that use polynomials to approximate the lip contour

are intended for lipreading applications.

Werda et al. [54] adjust the outer contour of the mouth by using three quadratic functions:

two for the upper lip and one for the lower lip. The adjustment is performed after a binariza-

tion process in the RnGnBn color space where the lighting effect is reduced. Each component

of the RGB space is transformed to the new RnGnBn by An=255*A/Y, with Y the intensity

value. The final representation contains a strong geometric parametric model, whose param-

eters enable the contour to be deformed into a constrained set of possible shapes. In [55]

three or four parabolas are used to extract mouth features for the closed and open mouth

respectively. Rao & Mesereau [56] used linear operators in order to find the horizontal con-

tour of lips, and then they approximate that contours with two parabolas. Delmas et al. [57]

extract from the first frame of a video sequence, the inner and outer lip contour by using

two quartics and three parabolas. The polynomials are defined by the corners and vertical

extrema of the mouth, which are found by using [58].

Active contours or snakes are computer-generated curves that move within images to find

object boundaries. In this case, the inner and outer contour of the mouth. They are often

used in computer vision and image analysis to detect and locate objects, and to describe

their shape. An active contour can be defined as a curve v(u, t) = (x(u, t), y(u, t)), u ∈ [0, 1],
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with t being the temporal position of the point in the sequence, that moves in the space of

the image [59]. Evolution of the curve is controlled by the energy function in (2.11).

Eac =

∫ 1

0

Eint(v(u)) + Eim(v(u)) + Eext(v(u))du (2.11)

Eint represents the internal energy of the curve, and controls the properties of stretching

and bending of the curve. Eim is the image energy, and is related to properties in image

data. Eext is an external energy, and usually represents application-specific constraints in

the evolution of the curve. A technique called Gradient Vector Flow (GVF) was developed

in order to improve convergence and accuracy in representing high curvature regions in the

contour model [60, 61]. More information about the internal energy of the active contours

is described by (2.12) [62, 59].

Eint(v(u)) =
1

2

(
α(u)|v′(u)|2 + β(u)|v′′(u)|2

)
(2.12)

An example of outer lip contour extraction performed with active contours can be seen in

Figure 2.4.

Figure 2.4: Examples of outer contour parametrization by active contours.

The generalized form of active contours was used in lip contour detection in the work of

Lai & Chan [63] Wakasugi et al. [33] use a B-spline curve as the initialization of an active

contour. Because the internal energy is related to the smoothness of the active contour,

it is not considered since the B-spline representation maintains smoothness via implicit

constraints. Okubo & Watanabe [64] used active contours approximated in the optical flow

between the images in a sequence. In another approach, Ramos et al. [65] use an elliptic B-

spline to approximate the lip contour, after a chromaticity clustering segmentation process.

Hernández et al. [59] presented a simplified form of GVF for active contours, and applied

it to mouth segmentation. A simplified parametrization of outer contour which uses fourth-

order polynomials after active contour’s convergence can be found in [53]. The outer mouth

contour can be precisely described using such technique, but it is highly dependent on a

prior segmentation stage.

Wu et al. [66] proposed a method combining a GVF snake and a parabolic template as
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external force, to improve outer lips extraction performance against random image noise

and lip reflections. The technique did not provide good results for the extraction of inner

lips, because the lips and the area inside the mouth are similar in color and texture. So, they

used two parabolas as inner lips. Morán & Pinto [18] used the GVF in order to constrain the

approximation of a parametric contour, bound by a set of landmarks, conforming an active

shape model. The landmarks are meant to converge in the lip’s inner and outer contour.

Mouth region bounding box is found by clipping on the horizontal and vertical axis in the

perpendicular projection of each axis. The GVF is computed in the C3 + U color space

over time, where U represents the u component in CIELUV perceptual color space. Another

approach that uses GVF is the one presented in [67]. In this case, the Viola-Jones face

detector [68] is used to detect the face bounding box and the mouth bounding box. After

that, a formulation of active contours using the level set method without re-initialization is

implemented, in order to perform the model tuning.

In Eveno et al. [22], the authors carried out the lip contour representation by searching a set

of key points in the horizontal and vertical intensity projections of the mouth region, and then

approximating a set of polynomials to the resulting points. The point search and fine-tuning

is controlled by a special image gradient called hybrid edges, based in both luminance and

pseudo hue. This work evolved into a new approach, called Jumping Snakes [69, 2, 70]. This

method allows lip contour detection just by giving an arbitrary point above the lip region

in the image. At each iteration, a new pair of nodes are added at both corners of the model.

Seyedarabi et al. [71] uses a two-step scheme of active contours in order to approximate lip’s

outer contour. First, a Canny operator is used in the image, and a high threshold is used for

upper lip contour extraction. Once converged, a second lower threshold is used to deflate a

deformable model that stops in the lower lip outer contour. Beaumesnil & Luthon [72, 73]

presented a real-time 3D active contour based technique for mouth segmentation, in which

a 3D model of the face is fitted directly to the image.

2.1.3 Shape or region constrained methods for lip segmentation

Color enhancement is a good first step in segmenting lips from skin, as well as other facial

features. But, as shown in the previous Section, changing color representation is not enough

to segment the different structures present in facial images, particularly in the mouth region.

Regions with shadows, beards, gums and tongue often overlap in color with the lips. There-

fore, it is needed to include some other constraints in the problem of representing the image

information, which allows to separate properly the mouth, and more specifically, the lips.

One can cope with that problem by either including shape constraints in the segmentation,

testing local connectivity in small spatial neighborhoods, or by trying to adjust the image

contour information to a specific parameterizable template.

In this section, some alternatives to the first two categories–shape constraints and region
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based methods–which have been used to solve the lip segmentation problem are treated.

Since most segmentation problems can be seen as classification and labeling problems, some

of them have their roots in statistical classification methods and pattern recognition strate-

gies.

Shape-Constrained Fuzzy C-Means

Fuzzy C-means (FCM) is a common clustering technique used in image segmentation. It

was posted first in the mid 60s, and introduced in pattern recognition in the late 60s [74].

The FCM basics are summarized in the text by Bezdek [75, 74].

FCM segmentation is founded in the principle of feature dissimilarity, as follows: given

X = {x1,1,x1,2, . . . ,xN,M} a set of features that corresponds to an image I of size N ×M ,

each xr,s ∈ Rq being the vector of features of the correspondent pixel in I, and C the number

of fuzzy clusters in the image, the goal is to find a set V = {v1,v2, . . . ,vC} of C different

centroids vi ∈ Rq, and a matrix U with size M × N × C which is a fuzzy partition of X,

such that minimizes the cost function J(U ,V ) in (2.13).

J(U ,V ) =
N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sDi,r,s (2.13)

subject to

C−1∑
i=0

ui,r,s = 1, ∀(r, s) ∈ I (2.14)

Di,r,s is a term that reflects the distance between the feature vector xr,s and the centroid

vi; ui,r,s represents each element in the fuzzy partition U . The feature set X is usually

composed by different color representations. The optimum solution of the cost function can

be referred as Jm(U,V ), and is a stationary point at which the gradient of Jm equals to

zero. For the case of the partial derivative of Jm with respect to U and setting it to zero, a

closed-form expression of umi,r,s can be found as [76]

umi,r,s =

[
C−1∑
j=0

(
Di,r,s

Dj,r,s

) 1
m−1

]−1
(2.15)

Commonly, the fuzzy partition U is compared with a threshold, in order to obtain a crisp set

of disjoint regions in the source image. In such case, the FCM scheme acts as a combination

of color representation and binarization algorithm.

Liew et al. [77] uses FCM in order to obtain the mouth’s probability map from the basic

CIELu′v′ color representation. This map is used to facilitate the mouth’s contour extraction,
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which is done by fitting a deformable template. Gordan et al. [78], report a modified ver-

sion of the FCM algorithm which includes not only luminance information but also spatial

information about the pixels in the image.

Segmentation techniques based in pixel color classification (like those treated in this section)

suffer from the effects of noise or high color variations inside regions, usually producing

spurious regions and gaps. FCM is, per se, a classification technique, and thus it can be

arranged along with pixel classification techniques treated before. However, its formulation

has been modified in order to include shape-based constrains. Leung, Wang & Lau [26, 76]

introduced a modified version of a FCM-based unsupervised lip color segmentation engine

which consider elliptical shape constraints in its formulation.

The introduction of an elliptical constrain in the cost function leads to formulation in (2.16)

[26, 76, 79, 80]:

Jm(U,V, p) =
N∑
r=1

M∑
s=1

C−1∑
i=0

umi,r,s(d
2
i,r,s + αf(i, r, s,p)) (2.16)

The term d2i,r,s is the same as Di,r,s in (2.13). The term p = {xc, yc, w, h, θ} is the set of

parameters that describes the aspect and position of the constraining ellipse. The expression

in (2.16) can be splatted in two parts, where the first one is conformed by typical FCM terms,

and the second is p-dependent, as shown in (2.17).

Jm(U,V, p) = Jm1(U,V ) + Jm2(U,p)

Jm1(U,V ) =
N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sd
2
i,r,s

Jm2(U,p) = α

N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sf(i, r, s,p) (2.17)

The elliptical geometric constrain has proven to be effective in eliminating the effect of

spurious regions with similar features than those present in the lip area [76, 79].

Despite of the improvement in FCM by the introduction of geometrical terms, there are some

problems associated with complex backgrounds (i.e., the presence of beards). In this case,

a multi-class shape-guided FCM variant (MS-FCM) can be used [81]. The method’s formu-

lation establishes a set of constraining functions gi,BKG which helps in modeling complex
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backgrounds. The cost function of FCM can be stated as follows [81]

J =
N∑
r=1

M∑
s=1

um0,r,sd
2
0,r,s +

N∑
r=1

M∑
s=1

C−1∑
i=1

umi,r,sd
2
i,r,s

+
N∑
r=1

M∑
s=1

f(u0,r,s)gOBJ(r, s)

+
N∑
r=1

M∑
s=1

C−1∑
i=1

f(ui,r,s)gi,BKG(r, s) (2.18)

subject to condition in (2.14). The functions gOBJ and gi,BKG are usually selected so they

have a sigmoid shape, and include geometrical constrains like the one presented in [76, 79].

The authors reported the method to be more reliable in segmentation with presence of

beards, compared with traditional FCM and with the work of Zhang & Mersereau [21].

This approach achieves better results than the traditional FCM, fundamentally improving

the spurious region generation and filling small gaps. This improvement is somehow limited

to almost symmetric mouth poses, in which lip shape can be closely defined by an ellipse.

Moreover, ill-conditioned results may be obtained if the ellipse is not correctly initialized.

Other techniques used in shape or region lip segmentation

In the work by Goswami et al.[82], an automatic lip segmentation method based on two

different statistical estimators is presented: a Minimum Covariance Determinant Estimator

and a non-robust estimator. Both estimators are used to model skin color in images. The lip

region is found as the largest non-skin connected region. The authors present a significant

improvement over the results reported in [22]. This method uses the assumption that the skin

region could be detected more easily than lips. Mpiperis et al. [83] introduced an algorithm

which classifies lip color features using Maximum Likelihood criterion, assuming Gaussian

probability distributions for the color of the skin and the lips. They also compensate gestures

by using a geodesic face representation. Lie et al. [84] uses a set of morphological image

operations in temporal difference images, in order to highlight the lip area.

Artificial intelligence has also been used in lip segmentation. Mitsukura et al. [85, 86] use

two previously trained feed forward neural networks in order to model skin and lip color.

Shape constraints are included in the weights of the lip detection neural network. Once a

mouth candidate is detected, a test of skin is performed in its neighborhood, using the skin

detector network. After that, a lip detection neural network is used in order to select the

mouth region. In another work, the same authors presented a second scheme [87] based in

evolutionary computation for lip modeling.
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Active Shape Models (ASMs) and Active Appearance Models (AAMs)

ASMs are statistical shape models of objects, which iteratively deform to fit to an example of

the object in a new image. They do not conform to what one may interpret as a segmentation

technique, but they are nevertheless widely used in object detection and classification in

images.

The goal using ASMs is to approximate a set of points in the image (usually provided by

the acquired object’s contour information) by a point distribution model, composed by the

mean shape of the object model x̄ plus a linear combination of the main modes of variation

of the shape P , as shown in (2.19).

x = x̄ + Pb (2.19)

b is a vector of weights related to each of the main modes. The matrix P is obtained from

a set of training shapes of the object, as the t main eigenvectors of the covariance of the

shapes’ point position. x is represented in an object frame scale and rotation, and thus,

the measured data should be adjusted in order to be approximated by such model. Further

information in how ASMs are trained can be found in [88, 89].

In the work of Caplier [90], a method for automatic lip detection and tracking is presented.

The method makes use of an automatic landmark initialization, previously presented in [91].

Those landmarks serve to select and adapt an Active Model Shape (ASM) which describes

the mouth gesture. Kalman filtering is used in order to speed up the algorithm’s convergence

through time.

In Shdaifat et al. [92] an ASM is used for lip detection and tracking in video sequences,

the lip boundaries are model by five Bézier curves. In [93], a modified ASM algorithm is

employed to search the mouth contour. The modification consist in the use both local gray

intensity and texture information on each landmark point. In cases where it is possible that

landmark points are incorrect (for example when the lip boundary is not clear), it is better

to characterize the distribution of the shape parameter b by a Gaussian mixture rather than

by single Gaussian. Jang et al. [94] developed a method for locating lip based on ASM and

using a Gaussian mixture to represent the distribution of the shape parameter. In Jiang et

al. [95], a mixture of deterministic particle filter model and stochastic ASM model is used, in

order to improve convergence and accuracy in lip tracking. Jian et al. [96] used an approach

called radial vector, which is similar to ASMs, but with an implicit labeling of model data.

The authors performed the training of their model using particle filtering.

AAMs are a generalization of the ASMs approach, which include not only shape information

in the statistical model, but also texture information [97]. The basic formulation of the AAM
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can be seen in (2.20).

x = x̄ +Qsc

g = ḡ +Qgc (2.20)

The term g represents the texture information contained in the model frame; ḡ represents the

mean texture of the model, and Qs and Qg are the matrices of the main modes of variation

in shape and texture, respectively; and c is the set of the appearance model parameters.

Further information on how AAMs are trained can be found in [97].

An interesting work, in the context of lipreading, is that presented by Matthews et al. [98].

A comparison of three methods for representing lip image sequences for speech recognition

is made. The first is an ASM lip contour tracker. The second is the ASM extension into

an AAM. The last is a multi-scale spatial analysis (MSA) technique. The experiment was

performed under identical conditions and using the same data. Like it was expected, better

results were obtained when used AAM. Of course, an AAM is an improved ASM with

the addition of appearance or texture. The work of Gacon et al. for detection of the

mouth contour is based on an ASM but introducing two appearance models. One for the

appearance corresponding to skin, lips, teeth or inner mouth, and a second for the mouth

corners [99, 100]. In a posterior work [100], they focus on the detection of the inner mouth

contour, by replacing the cost function used to fit the appearance model. In the previous

work it was based on the difference with the real appearance and on the flow of a gradient

operator through the curves of the shape. In the last work they used a criterion based on

the response of Gaussian local descriptors predicted by using a nonlinear neural network.

As an iterative method, AAM relies on the initialization of shape and could suffer of the

local minimum problem. Two possible solutions to this problem are to improve the shape

initialization, or to model the local texture. The last solution may result in high computation

complexity. Li and Hi [101] propose a AAM based mouth contour extraction algorithm. To

reduce the local minimum problem, the algorithm first uses a texture-constrained shape

prediction method to perform initialization, an then characterizes the local texture model

with classifiers obtained by using Real AdaBoost [102]. Turkmani & Hilton [103] also use

AAMs in talking sequences, in order to properly locate inner and outer mouth contours.

They extended the basic AAM in order to avoid falling into local minimum, and also to

eliminate the need of model reinitialization.

Other Parametric Approaches

Moghaddam & Safabakhsh [104] presented a fast algorithm for outer contour extraction

which uses Self Organizing Maps (SOMs). In Khan et al. [105], a scheme of specially

parametrized active contours–called level set representation–is used. The convergence to

the lips’ contour is achieved in a color representation obtained from the output of a support
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vector machine, trained to enhance the lip-skin difference from basic RGB. Chang et al. [106]

also used the level set representation in order to approximate the lip contour, introducing

additional shape constraints. Xie et al. [107] presented a method for lip segmentation

which relies in mixing ASMs and cumulative projections, in order to improve the overall

robustness in contour detection. In [108], the same principle behind Eigenfaces is used in

order to detect and classify the gestures through mouth contour characterization. In the

work of Basu et al. [39, 40, 41], a triangular 3D mesh model is registered to the face in the

images. It uses finite element models in order to constrain the possible movements of the

face and, thus, predicting the possible next states of the mouth. Mirhosseini et al. [109, 110]

used a deformable template basis with shape constrains for outer lip contour tracking. The

algorithm is able to adjust the number of control points in the template using hierarchical

rules.

2.1.4 Performance measurement in mouth segmentation tasks

Most of lip detection and parametrization algorithms are created in order to supply valuable

information to higher level processes like audio-visual speech recognition [27]. In that sense,

much of the work in measuring detection quality is guided to reflect the application’s specific

performance rather than image segmentation, focusing most of the time in determining

contour error rather than segmentation error. However, some measures have been tested in

order to measure at which extent an algorithm is performing properly in lip segmentation.

Even when some of these measures can be somehow comparable, there is a concurrent lack of

generalization in the reported results. In some cases, the measures are taken based on a lim-

ited set of images which have a selected condition such as specific lighting, presence/absence

of shadows, presence/absence of beards, etc. In spite of this, a brief comparison between

some of the methods is shown in Table 2.1.

It can be noticed that most of the measurement methods can be classified in two sets: a

contour-based measurement, and a region based measurement. Measurements belonging to

the first category quantify features such as point-to-point distances, model-to-point distances

and model deviations2. In the other hand, region-based measurements usually derive from

computations extracted from the confusion matrix; common measures include the true pos-

itive rate (TPR, also known as sensitivity) and true negative rate (TNR, also known as

specificity); othre measurements such as the Dice or Jaccard indexes can also be extracted

from the confusion matrix. In [116] the authors present a contour-based measurement de-

veloped to counter the inconsistency exhibited by TPR and TNR under scale changes. Its

computation requires several manually annotated versions of each image, which are not al-

ways available, to obtain significant results. Also, small global deviations in contour location

are reflected by non-negligible increases in error.

2A clear example of contour based error measurement is presented in [2].
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Table 2.1: Methods for lip segmentation: measurement and comparison.
Method Type of Measurement Test Data Compared against
FCMS - Wang
et. al. [26]

Inner and Outer Lip Error
(ILE & OLE).

Detailed results for two
images.

FCM.

Liew et. al. [111]

• Overlap between
regions.

• Segmentation
error.

70 test images taken from
XM2VTS [112] and AR
[113] databases.

The method itself.

FCMS - Leung et.
al. [76]

• ILE & OLE, as in
[26].

• Segmentation
error.

Detailed results reported
for three images; brief re-
sults for 27.

FCM, CT[1],
LL[114], ZM[21]

MS-FCMS - Wang
et. al. [81]

Same as [76].
Detailed results reported
for three images.

FCM, LL[114],
ZM[21]

RoHiLTA - Xie et.
al. [107]

Annotated contour model
error.

150 images taken from
AVCONDIG database
(cited in [107]); 50 of
them with beard or
shadows.

The method itself.

CT - Eveno et. al.
[1]

Segmentation error.
Detailed results reported
for three images.

The method itself.

Eveno et. al. [2]

• Normalized track-
ing error.

• Normalized human
error.

Results reported for 11 se-
quences (300 images); sev-
eral annotations per im-
age, performed by differ-
ent subjects.

The method itself.

Hammal et. al. [70] Same as [2]. Same as in [2]. The method itself.

Bouvier et. al. [44] Same as [2].
Results reported for 12 se-
quences (450 images).

Eveno’s work[2];
Gacon’s work[46].

Guan [16]
Segmentation error as in
[111].

Detailed results reported
for four images; brief re-
sults for 35 images.

FCM, CGC[115].

Khan et. al. [105] Quality of segmentation.
Results reported for 122
images.

The method itself.
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2.2 Experimental workflow

The challenge of segmenting mouth structures for mouth gesture detection is addressed in

depth through the course of this document, following the guideline given in Figure 2.5. This

Section contains a detailed description on how each one of those steps is treated in this

document.

Mouth structure
segmentation

Region 
characterization

Video 
acquisition

Gesture 
recognition

Image pre-processing,
Input color
representation,
dimension reduction.

Pixel color distribution
modeling, pixel color
classification.

Segmentation
refinement.

Texture information.

Figure 2.5: Mouth gesture detection in video sequences, as addressed in this work.

In the previous Section, it is shown how input color representation is exploited in order to

highlight mouth structures among them, notably focused in lip/skin separation challenge.

Each of the components that has been used traditionally to enhance such differences has its

particular advantages and disadvantages that condition the level of accomplishment one may

get by using it. Thus, in this work the individual discriminant capability of each component

is measured using a “one against the rest” evaluation scheme per each mouth structure

separately. Then, FLDA is used in order to find a three-some set of projection vectors that

enables an input space dimension reduction prior to pixel color modeling of mouth regions.

Results on comparing the mapping capabilities of the FLDA reduced input space against

the full featured input space are exposed in Chapter 3.

Besides input representation, image pre-processing plays a key role in image segmentation.

Pre-processing improves compactedness of color distributions while increasing the signal-to-

noise ratio. In this work, two classical approaches for general-purpose image pre-processing

are tested: linear low pass Gaussian filters and non-linear statistical Median filters. Once

again, results regarding such experiments are presented throughout Chapter 3.

In the document, image segmentation basis restricts to the field of pixel color classification

using statistical modeling, namelyK-Means and Gaussian mixture based. Their performance
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and mapping capabilities are tested in the task of mouth structure segmentation in images

by direct comparison with Feed forward neural networks, using a scheme which resembles

those in [35] and [36]. All of these approaches exploit the potential advantages resulting from

using the selected input color transformations altogether. Several combinations regarding

pre-processing and input space dimension reduction are tested, including brief yet clear

conclusions regarding the experiments.

Once the segmentation benchmark is established, the resulting label images are post-processed

using a new segmentation refinement strategy which is introduced in this Thesis. The strat-

egy uses a perceptual unit array that process the input label iteratively, generated an in-

creasingly improved version of the original labeling. The technique, as well as the results

obtained by its application in part of the databases, are presented in Chapter 4.

The use of texture descriptors are introduced in Chapter 5, first as input features compli-

mentary to color in the color distribution modeling engine, and then as a tool to automatize

the segmentation refinement process. Performance is measured for both variations in terms

of computational complexity and error reduction.

Aiming to settle down the previously discussed individual results, overall performance is

tested in a mouth gesture detection application. The results of this experiment are presented

and discussed in Chapter 7. As in the previous Chapters, both computational complexity

and error measurements are provided.

It is noteworthy that in this experimental workflow lip contour tracking is excluded. The

main reason for which tracking is not taken into account is that even in 50 frame-per-sec

video sequences there are very rapid mouth movements which cannot be accurately followed

by the techniques, and in some cases, mouth structures disappear completely from one frame

to another, as shown in Figure 2.6. Mouth segmentation is assumed to happen at every frame

in the sequences instead.

2.2.1 Database description

Aiming to establish a common base for comparison against work presented in literature, two

well known databases were used. The first one, identified as BSDS300 [116], contains a set of

training and testing images in both color and grayscale. Each image has at least one corre-

sponding manually annotated ground truth. This database is particularly used in illustrative

examples in Chapter 3, and for general purpose segmentation refinement measurement in

Chapter 4.

The second database, named Color FERET (Facial Recognition Technology) database [117,

118], contain facial images taken from several subjects covering a wide variety of skin colors,

poses and illuminations. Since this database has no associated ground truth, an image subset

was randomly selected and a manually annotated ground truth was established. These

images are mainly used in pixel color distribution modeling robustness measurement in
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(a) Tongue up to rest transition.

(b) Tongue right to rest transition.

(c) Teeth display to rest transition.

Figure 2.6: Examples of consecutive images in facial video sequences. Sequences were
grabbed at 50fps.
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Chapter 3.

Besides the aforementioned databases, a proprietary database was constructed. The database

is referred as “Own”, and its contents is described subsequently.

The “Own” database

The first portion of the database contains images and sequences of five subjects speaking to

the camera a pre-defined set of phrases and commands. This database was initially acquired

for the work in [6, 119]. Data was acquired using a JVC video camera working at a native

resolution of 720x480 pixels, at a frame rate of 25fps. There was no particular illumination

setup, neither to control or compensate ambient lighting. Therefore, varying illumination

conditions may be found. Particularly, most of the database present upper-left lighting,

generating shadows in the right side of the faces, and under the nostrils and the lower lip.

The last portion of this database is conformed by video sequences of 16 subjects, male and

female, imitating three different combinations of mouth gestures. All considered mouth

gestures are clustered in seven different groups: resting mouth position (R), open mouth

(O), close mouth showing the teeth (Th), tongue up (TU), tongue down (TD), tongue left

(TL) and tongue right (TR). The gesture combinations are identified as follows:

• Init (initialization sequence): R - Th - R - O - R - TH - R - O - Th - R.

• CCWS (counter-clockwise square): R - TR - R - TU - R - TL - R - TD - R.

• CWLDC (clockwise left-down cube3): R - TL - R - Th - R - TU - R - O - R - TR - R

- TD - R - Th - R - TL - R - O - R - TU - R.

Video sequences were acquired in format YUV4:2:2 with a resolution of 658x492 pixels,

and at frame rates of 12 and 50 fps. The acquisition setup comprised two diffused, unbal-

anced spotlights, and a Basler scout scA640-70fc video camera. Environmental lighting was

compensated but uncontrolled, by the means of the spotlights. Daytime related lighting

variations were allowed. Some sample images extracted from this database can be seen in

Figure 2.6.

2.2.2 Error, quality and performance measurement

In spite of the reasons exposed in [116] that instruct to avoid region based confusion matrix

based measures in favor of boundary based measures, the former is still the most common

benchmark in image segmentation tasks4. In this work, Sensitivity and specificity are exten-

3The actual shape described by the sequence does not match exactly a left-down cube.
4The technique in [116] was developed for the specific task of image segmentation evaluation and is not

extendable to any classification problem; moreover, it requires several ground truth annotations per
image. This fact makes it unsuitable when a large image set is to be tested.
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sively used for rating classification and segmentation performance 5. Sensitivity, also known

as True Positive Rate (TPR), can be denoted by

TPR = p(A∗|A)/p(A) (2.21)

where p(A∗|A) is the probability of a pixel being correctly labeled as to belong to class A,

whilst p(A) is the probability of the class A.

Now let B = AC , therefore p(B) = p(AC) = 1− p(A). The True Negative Rate (TNR), also

known as specificity, can be defined in terms of class probabilities as follows:

TPR = p(B∗|B)/p(B) (2.22)

where p(B∗|B) is the probability for a pixel being correctly classified as to belong to AC .

Prior information about the application may help in determining risk factors which weight

the responsibility of TPR and TNR in data analysis. Nevertheless, in cases when risk does

not sets a compromise between the former measures, it is helpful to establish a composite

measure that unifies the effect of sensitivity and specificity in one value6. One way to

accomplish this is by using the Distance to Optimal, or DTO (see Figure 2.7). The DTO

is the euclidean two dimensional distance between the point (TPR, TNR) and the optimal

value (1, 1). Conversely, this definition translates to

DTO =
√

(1− TPR)2 + (1− TNR)2 (2.23)

Notice that DTO values range in the interval [0,
√

2], with zero being the optimal value.

In that sense, DTO can be viewed as a non normalized measure of error rather than a

performance measure. Absolute class confusion, given by p(A∗|AC) = 1, generates DTO =√
2; uniform random selection like a coin flip, given by p(A∗|A) = p(A∗|AC), leads to DTO =

1.

In multiclass problems both A and AC may be seen as super-classes that may contain data

from more than one class. As in example, the “one against the rest” evaluation scheme

confronts data from one class against data from all the remaining classes.

Whenever possible, algorithm complexity is presented using the asymptotic notation O(·)
with the center point being replaced by an order relationship. In some cases, Tables with

parametrized computation times are provided.

5Both measurements are used in balanced classification tasks. For unbalanced classes, Dice index and
Balanced Error Rate are used.

6When risk factor is taken into account, one may want to favor TPR over TNR or viceversa. In example,
it is preferable to diagnose more false positives than false negatives in epidemiology and disease control.
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Figure 2.7: Geometrical interpretation of DTO using the Receiver Operating Characteristic
(ROC) curve.

2.2.3 Ground truth establishment

For each image database used in this work a subset of images was randomly selected, and

manually annotated. Some of them were annotated by more than one evaluator in order to

establish human variability. Every segmented image contains labeling information for Lips,

Teeth and Tongue, as well as a mouth region of interest (RoI).

Also, the video sequence frames in the second part of the “Own” database are associated

with one of the gestures in the set described in Section 2.2.1. As in the later case, one of

the sequences was annotated by more than one evaluator in order to measure human-related

variability in label selection.

Human perception is a definitive factor in ground truth establishment, and thus it cannot

be neglected as a topic of exploration. Thereupon, the next issue discusses human-related

variability and consistency in manual image segmentation and gesture detection in video

sequences.

Image segmentation ground truth variability

Manually annotated ground truth in image segmentation tends to vary from one evaluator to

another. It is seldom taken into account the variability in the appraised segmented images.

In this work, two measures are used in order to establish how consistent or variable the

evaluators’ advise tends to be for the “Own” database.

The first measure, denoted simply as hv, reflects the consistency evidenced among evaluators

for a given region in the image, regarding all the pixels that have been chosen as to belong
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to such region. hv can be defined as

hv = p(x ∈ ∩A)/p(x ∈ ∪A) (2.24)

where p(∩A) stands for the probability of a given pixel x to be selected as to belong to region

A by all subjects, and p(∪A) represents the probability of a given pixel x to be selected as

to belong to region A by at least one subject. A second measure, identified as hm, reflects

the level of overlap in human perception among regions. The measure is defined by

hm = p(x ∈ ∩A|x ∈ ∪B)/min(p(x ∈ ∩A), p(x ∈ ∩B)) (2.25)

where p(A|∪B) represents the conditional probability of a given pixel x to be selected as to

belong to region A by at least one subject while being selected as to belong to a region B by

one or more different subjects for every pair of disjoint classes A and B.. The two measures

account a reflection of consistency in ground truth selection in pixel classification.

Table 2.2 indicates the value of hv for the “Own” database, for a total of five evaluators who

provided three annotations to the same image each (the image can be seen in Figure 2.8).

(a) Original image. (b) Lip segmentation.

(c) Teeth segmentation. (d) Tongue segmentation.

Figure 2.8: Human variation in manual ground-truth establishment. Darker regions mean
higher consistency in pixel labeling selection; white represents the background.
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Table 2.3 is the analogous of Table 2.2 for hm. It can be concluded that the task of manually

stating the boundaries between mouth structures in images is not straightforward, as the

consistency in region selection remained below 70% in average. In example, from all pixels

labeled as to belong to Lip region by any evaluator, only the 69.4% were selected as to belong

to such region by all of them. A similar analysis can be derived from the Table for Teeth

and Tongue, for whom the measure achieved 65.2% and 64.67% respectively.

Table 2.2: Human variability measurement in manual mouth structure segmentation, mea-
sured using hv.

Lips Teeth Tongue
hv 0.6940 (69.4%) 0.6520 (65.2%) 0.6467 (64.7%)

Table 2.3 can be used to interpret how much each of the structures can be interpreted by

a human evaluator as to belong to a different one. The measures do not include the degree

of confusion between the regions and the background; this, however, can be deduced by the

combined results of Tables 2.2 and 2.3.

Table 2.3: Human variability measurement in manual mouth structure segmentation, mea-
sured using hm.

Lips, Teeth Lips, Tongue Teeth, Tongue
hm 0.0386 (3.86%) 0.0080 (0.8%) 0.0254 (2.54%)

The values presented in the Tables should be taken into account when interpreting the results

in mouth structure segmentation provided in the following Chapters.

Gesture detection ground truth variability in video sequences

There is a noticeable difference in the way humans perceive gestures, mostly in transitional

video segments in which one gesture is slowly transforming into another. Thus, it is impor-

tant to establish how consistent human perception proves to be when segmenting gestures

in video sequences.

In this test, one CWLDC sequence taken from the last portion of the “Own” database was

provided to five evaluators. The evaluators were asked to establish the frame ranges in

which a given gesture from the set described in Section 2.2.1 is a clear match. The results of

the experiment were measured using the aforementioned hv measure, and are presented in

Table 2.4. In the test, hm equals to zero for every gesture combination. Average hv equals

0.9355, which indicates high consistency among evaluators.
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Table 2.4: Human variability measurement of gesture classification in video sequences.

Tongue up Tongue down Tongue left Tongue right Open Teeth
hv 0.9534 0.9955 0.9087 0.9494 0.9171 0.8890

2.3 Summary

This Chapter serves as an extended introduction, treating concisely but sufficiently the topic

of mouth structures segmentation, as well as giving a methodological background concerning

the tests and measurements used in the remainder of the document.

Mouth structure segmentation techniques are approached in a rather taxonomic manner,

despite all possible methodological combinations and the sometimes weakly defined limits

between categories, following the scheme in Figure 2.1. In most cases, special notices about

benefits and drawbacks of the techniques are exposed. Special focus is given to color dis-

tribution modeling through linear optimization using FLDA and non-linear modeling using

mixtures of Gaussians.

The second part of the Chapter contains the description of the databases selected for training

and testing purposes in this work, and the basic methodological background needed to

unveil the results presented in the remaining of the document. Human-related ground truth

variation is also treated from an objective point of view, and presented accompanying the

database description.

The measures presented in Tables 2.2 and 2.3 give important notice about the fact that

human factor introduces a level of uncertainty in ground truth establishment that cannot

be neglected or isolated when interpreting automatic segmentation results. A relatively low

consistency in ground truth consistency evidenced in Section 2.2.3 makes contour based error

and performance measurements, like the ones in [1, 2, 116], unsuitable for mouth structure

segmentation.





3 Pixel color classification for mouth

segmentation

In the previous Chapter, several approaches for segmenting mouth structures in images were

discussed. Those approaches are categorized in pixel color classification techniques, region

based techniques and contour based techniques.

Region based segmentation techniques usually give good results when compared against color

classification and contour detection. They, however, include a series of incremental updates

and local connectivity tests which make them relatively expensive in machine time, and quite

hard to parallelize. Shape constraints help improving their accuracy when working with a

restrained set of mouth poses, but resulting in a loss of robustness.

Contour-based techniques, in the other hand, are fast segmentation techniques which may

outperform other approaches in both quality and speed. They base their operation in max-

imizing the gradient flow through a contour located in the image. Their convergence is

conditioned to the gradient flow function, which is often prone to suffer from local minima

problems.

The remaining alternative, pixel color classification, is usually fast and leads to good re-

sults when image lighting could be predicted at some extent and, therefore, compensated.

Poor results may be obtained for images acquired under varying lighting conditions, even

when using the so called chromatic invariant color transformations. Despite such evident

disadvantage, pixel color classification is more appropriate in cases in which pose may vary

considerably among images, and when scale of the features in the image is unknown.

RGB image Label imageImage
Pre-Processing

Color
Representation

Model-based
Color Classif.

Figure 3.1: Image segmentation scheme based in pixel color classification.

In this Chapter, pixel color classification based mouth structure segmentation is treated.

Figure 3.1 shows the basic sequence followed in pixel color based segmentation, in the same

order they are addressed in the Chapter1.

1Color representation and pre-processing stages may be freely interchanged.
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The remainder of this Chapter is organized as follows: Section 3.1 treats the application of

optimal linear modeling of class separation for mouth structures using Fisher Linear Dis-

criminant Analysis (FLDA), as well as the effect of linear and non-linear pre-processing

in such process. An alternative for fast and coarse lips segmentation is also introduced.

Section 3.2 discuss the use of Gaussian mixtures for modeling mouth structure color distri-

butions. Important results are also presented in this Section, which are used as a benchmark

in the majority of the remaining tests in the document. A brief summary and final notes

are presented in Section 3.3.

3.1 Color representations for mouth segmentation

It has been reported in literature that skin and lip color distribution overlap considerably [3].

Figure 3.2 shows that such issue extends to all visible mouth structures, making them difficult

to classify.
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Figure 3.2: RGB distribution of mouth structures.

Nonetheless, it is also proven that combinations of ‘weak’ features - even linear - may lead

to highly discriminant representations [120]2.

In this work, twelve color components, which are common in skin and lip segmentation

tasks, are used for pixel color classification: Red, Green, Blue, Hue, Saturation, Value

(defined as max(R,G,B)), CIEL∗, CIEa∗, CIEb∗, CIEu′, CIEv′ and Pseudo-hue3. Any

linear combination of the base twelve components is avoided, as they do not provide extra

information for the analysis4.

2One approach to find optimal linear transformations in the sense of linear separability among classes is
achieved through Fisher Linear Discriminant Analysis. This method is described in Section 3.1.1.

3In lip/skin segmentation, Hue component is usually rotated by 30◦ in order to concentrate reddish hue in
a compact range.

4The restriction excludes color representations such as Y CbCr, and the C3 component of the Discrete
Hartley Transform.
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Table 3.1: Normalization factors and individual discrimination capabilities in mouth struc-
ture segmentation for several color representations.

Reg. Parameters Ind. Class. Capability (DTO)
Mean Std. Dev. Lip Teeth Tongue

Red 0.5676 0.1982 0.6890 0.6976 0.8291

Green 0.4568 0.1861 0.7201 0.7548 0.8750

Blue 0.4427 0.1837 0.7010 0.7549 0.8378

Hue 0.4044 0.4200 0.5603 0.9161 0.5921

Saturation 0.2650 0.1269 0.7605 0.8134 0.8320

Value 0.5718 0.2008 0.6852 0.6956 0.8174

CIE L∗ 51.2836 18.6664 0.7069 0.8895 0.6549

CIE a∗ 11.2164 9.4382 0.5800 0.5787 0.8469

CIE b∗ 6.6904 7.5667 0.7050 0.7837 0.8356

CIE u′ 0.2410 0.0246 0.8232 0.9102 0.7461

CIE v′ 0.4951 0.0119 0.6489 0.6566 0.9624

Pseudo-hue 0.5600 0.0456 0.7957 0.9324 0.7572

3.1.1 Discriminant analysis of commonly-used color representations

In order to prove the effectiveness of the FLDA in selecting a good input color representation

for mouth structure pixel classification a data set containing annotated pixel color data was

selected. The data come from sixteen facial images randomly selected from the last portion

of the “Own” database, acquired under compensated lighting conditions, aiming to preserve

the same head pose but not the same gesture. Image color is treated using the Grey-edge

color constancy method described in [121].

Each pixel is represented using twelve color representations which are commonly used in

literature. Since component distribution and value range may differ greatly from one com-

ponent to another, each one of them was normalized using the mean and standard deviations

consigned in the first two columns of Table 3.1. A benchmark for pixel classification was

also established using the “one against the rest” approach [122] for each input component,

measuring DTO for lip, teeth and tongue regions; the results of the experiment are shown in

the last three columns of Table 3.1. In the table, the best components’ DTO for classifying

each region is presented in bold.

The projection spaces given by wLip, wTeeth and wTongue will, from now on, be used as the

preferred color representation in further tests.

Table 3.2 contains the FLDA projection vectors for Lip, Teeth and Tongue regions, computed

using the “one against the rest” approach. Classification performances in the projected

spaces, measured using DTO, are shown in Table 3.3. Training performance was tested

using the same amount of data for both the testing class and “the rest”; such quantity was
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Table 3.2: FLDA projection vectors and comparison thresholds for mouth structure classifi-
cation.

wLip wTeeth wTongue

Red -14.9876 16.2401 -9.9318

Green 30.9664 -10.6025 17.7132

Blue -16.7017 -1.1409 -3.9080

Hue 0.1505 -0.0264 -0.0903

Saturation -1.0330 -0.5130 0.3971

Value 4.6850 0.4752 -1.2842

CIE L∗ -4.6476 -3.9766 -3.0053

CIE a∗ 9.5569 -8.4148 6.7015

CIE b∗ -4.8199 -1.2962 0.2016

CIE u′ -2.3136 6.2434 -1.5410

CIE v′ 2.1365 -1.0480 -0.5272

Pseudo-Hue 1.7660 -4.6361 0.6532

Threshold 0.7788 0.6908 0.6714

Table 3.3: Projection classification performance, using the “one against the rest” approach.

Lips Teeth Tongue

DTO 0.2844 0.2258 0.3228
σDTO 0.0018 0.0012 0.0021

limited to cover the 30% of the total number of elements contained in the class subset which

has the less elements (around 6000). Testing performance, in the other hand, was measured

using all the input patterns contained in the selected image set. Its noteworthy that all

regions are much more easily classifiable using the FLDA projection space than any of the

original input representations; this can be effectively seen by comparing DTO measures in

Tables 3.1 and 3.3. Mean DTO obtained using FLDA based projection and thresholding

for the three regions was 0.2726 (average DTO in Table 3.3, corresponding to an 80% in

combined TPR and TNR).

Features set covariance of the data, represented using the color spaces in Table 3.2, is shown

in Figure 3.3. In the figure, white blocks represent positive values while black blocks repre-

sent negative values. Magnitudes are proportional to block area. Notice a high correlation

between the red, green, blue, value, and CIEb∗ components; also notice the high correla-

tion between hue and CIEL∗ and CIEa∗. Covariance matrices are seldom used as feature

selection tools; however, it has been proved that two or more variables that appear to be

correlated may reach higher classification performances when used altogether.
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Figure 3.3: Covariance matrix codified in blocks. White blocks represent positive values,
while black blocks represent negative values. Element magnitude in the matrix
is represented proportionally regarding block area.

3.1.2 Effect of image pre-processing in FLDA

Digital image quality suffer the influence of several factors that distort the scene realization

made by the sensor. Those distortions can be reflected in changes of relative shape and size

of the objects in the image (like barrel distortion), chromatic changes due to lens phasing or

sensor noise, etc.. Hence, techniques have been developed aimed to cope with each one of

those problems. Shape and chromatic distortion correction usually requires an accurate lens

model, or at least some key points in the image that help in establishing color and shape

references. However, noise reduction can be achieved without prior knowledge about the

acquisition setup5.

The most common approach for tackling with noise reduction problem is the application of

low pass linear and non-linear spatial filtering [7]. In this work, Gaussian linear low pass

filters and non-linear stochastic Median filters are used.

The median filter is O(n) regarding the total number of pixels in the image, and typically

O(n2 log n) regarding filter’s mask width6.

Particularly, separable linear filters can be computed by decomposing the 2-D/2-D convolu-

5Nevertheless, the availability of prior information about the acquisition configuration would lead to better
results in noise reduction.

6The computational complexity of the median filter varies depending the complexity of the implementation
of the underlying sorting algorithm.
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tion operation with two 2-D/1-D convolution operations, using a vertical and a horizontal

kernel. Hence, separable linear filters are O(n) regarding the number of pixels of the in-

put image, and O(n) regarding mask width (unlike non-separable filters, which are O(n2)

regarding mask width). Specialized CPU and GPU operations are able to handle per cycle

floating point addition-multiplication operations, which dramatically improve computational

time for mask widths equaling or below the floating point register size.

Figure 3.4 exposes the effect of filtering in pixel color classification, measured using mean

DTO averaged over Lip, Teeth and Tongue. The experiment was conducted using the one-

against all FLDA configuration for the regions. The analysis was repeated 50 times, each

time using around 6000 input patterns from every region, as well as the background. The

patterns were randomly selected from 16 images, for whom a manually annotated RoI is

provided, each one corresponding to a different subject7.

In 3.4a, the blue dashed line represents the base mean DTO measurement, with a value of

0.2726. The red solid line with round markers show the mean DTO obtained for patterns

selected from filtered images using separable, centered Gaussian low pass filters, varying in

each case the mask size. The solid black line with inverse triangle markers represent the same

measure for a median filter whose mask size was varied alike. Notice that mean DTO tends

to lower as the mask size increase. This trend stops when the filter’s cut frequency surpasses

the size of certain features in the image, like teeth, mouth corners, etc.; in that case, these

structures get excessively blurred by the filter’s softening effect, effectively worsening the

DTO (see median filter behavior for mask widths above 11 pixels, or Gaussian filter behavior

for mask widths above 25 pixels). DTO variation throughout trials remained stable for mask

widths below 23 pixels for both Gaussian and median filters, as shown in Figure 3.4b. In

that range, its value turn around 0.036 and 0.046. Following the results in the figure, a good

quality/performance compromise can be achieved by choosing a 9× 9 Gaussian filter. Using

that selection, an improvement above 18% in DTO can be expected8.

It is noteworthy that image filtering is a scale-variant operation, hence being affected by

feature size in pixels. Results obtained using filtering should be accompanied with detailed

descriptions about the acquisition process and a feature size indicator. In this test, mouth

width is used as scale indicator; mouth width ranges between 138 and 216 pixels, with mean

and standard deviation of 170.88 and 20 pixels, respectively. For all testing purposes, noise is

assumed to have a Gaussian distribution, and to be spatially and chromatically uncorrelated.

7Only eight images were taken into account in each turn, allowing a greater variation in DTO among turns.
8Such improvement can be obtained if the same specific testing conditions are used (“one against the rest”

scheme, equal number of patterns for all classes). The improvement is measured using (DTObase −
DTOimproved)/DTObase.
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(a) Color classification performance, measured us-
ing DTO (lower is better).
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Figure 3.4: Effect of pre-processing in mouth structure color classification.

3.1.3 Case study: the normalized a∗ component

In some cases, the computational complexity implied in computing several input color rep-

resentations for pixel color classification cannot be afforded (this can be true notably for

high-speed color classification). In this Section, a simpler alternative for lip and teeth seg-

mentation in images is presented. The technique, based in the CIEa∗ color representation,

was developed as a part of a methodology for mouth gesture detection in images in video [6].

The a∗ distribution for lip and skin regions tends to vary from one image to another–though

at some extent disjoint among them, making it unsuitable for segmentation with static

threshold selection. That variability decays when the color distribution of the mouth region

and its immediate surroundings in normalized, as shown in the following experiment. First, a

set of twenty facial images taken from our facial image database were used. The images were

manually segmented in order to facilitate threshold establishment and error measurement.

A rectangular ROI was manually established for each image used in the test. The ROI

encloses all mouth structures, extended by around a 10% of the mouth width at each side.

In order to set a benchmark, an optimal threshold was computed for each image represented

in the a∗ color component by minimizing the classification error using the training data. The

experiment was repeated using a normalized a∗ color representation of the input patterns (see

Algorithm 1), with and without RoI selection. Table 3.4 shows the result of the experiment.

Notice that threshold variance decays when ROI is set up prior to threshold selection. If RoI

is not initialized, the a* component behavior is close to that of the standard a* component.

Computing the later is a fully-parallel operation at pixel level, while the former requires

serial calculations (specifically in the mean and variance calculation).

In the second test, the threshold set was averaged for both a∗ and normalized a∗ component,
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Algorithm 1 RGB to a∗ color transformation.

Require: P (Training data, in RGB), L (labeling information associated to P ), N (number
of elements in P ), RoI.

Ensure: A′ = a′1, a
′
2, , a

′
N (normalized a∗ representation of P ).

for i = 0 to N do
ai ← a∗ representation of pi;

end for
a←

(∑N
i=1 ai

)
/N ;

σ2
a ←

(∑N
i=1(a− ai)2

)
/N ;

for i = 0 to N do
a′i ← (ai − a)/

√
σ2
a;

end for

Table 3.4: Mean threshold and threshold variances for the training data set.

Base component Mean (th) Variance (σ2
th)

a∗ 4.9286 2.95202
Normalized a∗ w/o RoI 1.4634 0.2301
Normalized a∗ with RoI 0.6320 0.2016

and they were later used to segment the test image set. Table 3.5 shows the results of this

experiment, in terms of TPR, TNR and DTO. Notice that TPR value dropped drastically

when the a∗ component was normalized without caring about the RoI clipping. The corre-

sponding decay in segmentation quality is exemplified in Figures 3.5c and 3.5g. The best

compromise, reflected with the lowest mean DTO and a relatively small DTO deviation,

was obtained using the normalized a∗ component.

Evidence of the stability gain in threshold selection using the normalized a∗ images is re-

flected in the segmentation process, as seen in Figures 3.5d and 3.5h. The relatively small

threshold deviation for normalized a∗ color representations using RoI clipping indicates that

threshold value can be safely chosen to be 0.632 for a wide range of facial images, expecting

Table 3.5: Lips-skin segmentation performance.

Base component TPR σTPR TNR σTNR DTO σDTO
a∗ 0.9244 0.0597 0.6033 0.3129 0.4140 0.3019
Normalized a∗ w/o RoI 0.0427 0.0392 0.9998 0.0004 0.9573 0.0392
Normalized a∗ with RoI 0.7013 0.0725 0.9769 0.0032 0.2996 0.0725
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a mean TPR, TNR and DTO conforming to those in Table 3.5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Comparison of pixel color based lip segmentation: a, e) original images; b, f)
lip segmentation using the a∗ color representation, with th = 4.9286; c, g) lip
segmentation using the normalized a∗ color representation without RoI clipping,
with th = 1.4634; d, h) lip segmentation using the normalized a∗ representation
with RoI clipping, with th = 0.632.

The a∗ component normalization introduces important changes in computational complexity

when compared to computing plain a∗. Notably, calculating the mean and variance of the

data inside the RoI is only partially parallelizable. In a massive-parallel SIMD9 platform,

computational complexity associated with a∗ color representation can be downscaled from

O(n) to O(1), regarding the number of pixels in the image. In the other hand, the normalized

version of the a∗ color representation can only be reduced from O(n) to O(log(n)), regarding

the total number of pixels inside the RoI. It is also noteworthy that the normalization can

become an important source of error if the RoI is nor properly selected, as suggested by the

results in Table 3.5.

9Acronym for Single-Instruction, Multiple-Data.
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3.2 Gaussian mixtures in color distribution modeling

The assumption is that a good approximation of p(x) can be obtained through a weighted

superposition of K Gaussians probability densities, as in

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.1)

where N (µk,Σk) is a µk-centered Gaussian with covariance matrix given by Σk. The values

of πk indicates the responsibility of the kth Gaussian in representing the data distribution.

The best fit to the input data, determined by the parameter set Θ = {π,µ,Σ}, can be found

by maximizing the log likelihood function

ln p(X|π,µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.2)

Detailed information on how to perform the maximization of (3.2) can be found in Sec-

tion 3.2.2. Initial values for the parameter set are usually obtained through the K-Means

algorithm discussed in the next Section.

Gaussian mixture models can be used to model pixel color distributions in both supervised

and unsupervised manners. In the first case more than one GMM shall be used, each

one approximating the color distribution of the data belonging to a particular class. In

unsupervised color distribution modeling one makes the assumption of no prior knowledge

about the classes present in the image, and one GMM is used to approximate the image

color histogram. In this case, classes may be assigned to subsets in the mixture (down to

one Gaussian per class).

When GMMs are used to model class color distributions, new input patterns may be classified

by looking for the model that generates the highest probability in the data.

3.2.1 The K-Means algorithm

The K-Means algorithm is a statistic modeling technique which aims to represent a data

set distribution by the means of a centroid set. Each centroid in the feature space gather a

subset of data points through the use of a distance measurement. This principle can be coded

in the cost function depicted in (3.6). This function is also known as distortion measure,

and quantifies the dispersion from a given data X = {x1, . . . ,xN} regarding the centroid set
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M = {µ1, . . . ,µK}.

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 (3.3)

The value of rnk is used to associate each pattern or data point xn with a centroid µk. In

basic K-Means, this coefficient is constrained to codify a hard class assignment for each

pattern:

rnk =

{
1 if k = argminj‖xn − µj‖2
0 otherwise

(3.4)

The problem of fitting a K-Mean model to a data set can be regarded as to find a set of K

centroid locations in the feature space given a data set. Due to the constrained form of rnk,

the problem of minimizing J in terms of µk present a closed-form solution

µk =

∑
n rnkxn∑
n rnk

(3.5)

It can be seen that µk becomes the mean of the patterns associated with the kth−cluster

(hence the name of K-Means). Convergence is achieved by alternating iteratively the steps

in (3.4) and (3.5) until a stop criterion(a) is(are) met [123]. Since xn is an euclidean variable

and rnk is also established in an euclidean space, the approximated cluster shape is either

symmetric, circular, spheric or Hyper-spheric, for the case of higher-dimensional data. The

floating parameter K is a pre-set in the algorithm, although its value can be refined during

optimization like in the ISODATA algorithm [124]. Some extensions of the K-Means algo-

rithm, such as the K-Medoids algorithm, use other dissimilarity measures rather than the

euclidean distance in the distortion measure formulation, transforming (3.6) into

J̃ =
N∑
n=1

K∑
k=1

rnkV(xn,µk) (3.6)

It is possible to use K-Means modeling in order to approximate color distribution in both

supervised and unsupervised manner. In the first case, the labeling information associated

to the training data can be used in order to approximate a whole K-Means model for each

class, thus obtaining as much models as labels are in the prior. Once converged, new data are

classified by associating them to the model for which the euclidean distance is minimal. For

unsupervised color modeling, only one model suffices to approximate the color distribution

of the image, and the efforts are usually concentrated in establishing a proper value for K.
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3.2.2 Gaussian mixture model estimation using

Expectation-Maximization

A K-Means model can be regarded as a particular case of a Gaussian mixture where all co-

variance matrices equal to αI. Therefore, posterior parameter tunning is needed for mixtures

initialized using K-Means in order to take benefit from Gaussian approximation potential.

The optimization of the likelihood function in (3.2) can be carried using the Expectation-

Maximization method. In the expectation (E) step, current parameter values are used to

evaluate the posterior probabilities given by (3.7). In turn, the maximization (M) step use

such posterior probabilities in order to update the means, covariances and mixing coefficients,

according to (3.8), (3.9) and (3.10). Iterative alternation between E and M steps ensures

parameter convergence while maximizing the likelihood function, as shown in [125].

A summary of the expectation-maximization method applied to Gaussian mixtures extracted

from [125] is shown in Algorithm 2.

3.2.3 Case study: Color distribution modeling of natural images

Figure 3.6 shows the effect of grouping pixels by color using the K-Means algorithm, and

then representing each cluster by its corresponding centroid. This approach can be used for

color compression or image segmentation [125].

(a) Original image. (b) Compressed
image with K=4.

(c) Compressed image
with K=8.

(d) Compressed im-
age with K=16.

Figure 3.6: Example of image color compression using K-Means pixel color modeling.

Figure 3.7 shows the analogous effect evidenced in Figure 3.6, this time using Gaussian

mixtures.

Gaussian mixture based classification imposes the calculation of (3.1) for every new input

pattern. Unlike the K-Means evaluation, this operation is of order O(n2) regarding the
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Algorithm 2 Expectation-Maximization for Gaussian Mixtures (taken from [125]).

1. Initialize the means µk, covariances σk and mixing coefficients πk, and evaluate the
initial value of the log likelihood.

2. E Step. Evaluate the responsibilities using the current parameter values

γ(znk)←
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

(3.7)

3. M Step. Re-estimate the parameters using the current responsibilities

µnew
k ← 1

Nk

N∑
n=1

γ(znk)xn (3.8)

Σnew
k ← 1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (3.9)

πnew
k ← Nk

N
(3.10)

with

Nk ←
N∑
n=1

γ(znk) (3.11)

4. Evaluate the log likelihood

ln p(X|µ,Σ,π)←
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.12)

and check for convergence of either parameters or the log likelihood. If the conver-
gence criterion is not satisfied return to step 2.
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(a) Original image. (b) Compressed
image with K=4.

(c) Compressed image
with K=8.

(d) Compressed im-
age with K=16.

Figure 3.7: Example of image color compression using Gaussian Mixture based pixel color
modeling.

input pattern dimension. Hence, it is always desirable to reduce the input representation

space (feature space) before carrying out the modeling process. Evaluating a D-dimensional

Gaussian mixture with K Gaussians is approximately 2D ∼ 3D times more expensive than

evaluating a D-dimensional K-Means model with K centroids.

3.2.4 Mouth structure segmentation using K-Means and Gaussian

mixtures

In this Section, K-Means modeling and Gaussian mixture modeling is put to test in the

task of mouth structure segmentation. The feature space is comprised by the same twelve

color representations enunciated in Section 3.1.1, contrasted with the three FLDA vector

projections obtained in the same Section. Those representations serve to conform a 12-

dimensional input feature space in the first case and a three-dimensional input feature space

in the second case.

For the tests, a set of 16 images taken from the last portion of the “Own” database, coming

from 16 different subjects, was used. The images were selected covering most of the gestures

described in Section 2.2.1, in a way that pixels of every structure are contained in at least

six of them10.

Also, in order to establish the effect of pre-processing in color modeling of mouth structures,

the configuration selected in Section 3.1.1 is used. Each test image was represented using

four combinations: 12-feature non-filtered, 12-feature filtered, 3-feature non-filtered and 3-

feature filtered. The 3-feature representations are obtained by projecting the 12-dimensional

10Unlike Teeth and Tongue regions, Lip region is present in the 16 test images.
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data using the FLDA vectors in Table 3.2.

As a special notice, mind that using three features instead of twelve reduces the number of

parameters of each K-Means centroid from twelve to three, and those of each Gaussian from

91 to ten11. These numbers should be multiplied by the number of centroids (in the case of

K-Means) or Gaussians used for a given model.

First of all, a proper value for the parameter K, which controls the number of clusters,

should be established. The easiest way to obtain such value is carried out by sweeping the

parameter’s value over a range of possibilities, measuring classification performance in each

case. In order to improve result significance several models were trained for each parameter

combination, and then the classification results were averaged.

Table 3.6 exposes K-Means color classification performance for mouth structures. The re-

sults include the combination of three and twelve dimensional input feature spaces with and

without pre-processing filtering, using data from within RoI and the whole image. In all

cases, filtered versions show improvements in averaged DTO regarding the unfiltered ver-

sions. Notice that averaged DTO is bigger in value for Lips and Teeth regions when using

data inside RoI than in the case of data coming from the whole image. This effect is due

to an decrease in TNR, indicating a higher overlap between those regions’ models and the

background color model in mouth surroundings. The mean averaged DTO for the three

regions was 0.3712 for 12-dimensional feature input vectors, and 0.3953 for 3-dimensional

feature input vectors.

Table 3.6: K-Means based pixel color classification: performance measurement using DTO.
Upwards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.4170 0.4275 0.5873 0.4423 0.4174 0.6214
Filt. 0.2722 (↑) 0.3243 (↑) 0.4936 (↑) 0.3167 (↑) 0.2894 (↑) 0.5074 (↑)

Clipped
Unfilt. 0.5055 0.4878 0.5220 0.5265 0.4580 0.5656
Filt. 0.3407 (↑) 0.3632 (↑) 0.4599 (↑) 0.3718 (↑) 0.3289 (↑) 0.4852 (↑)

Analogously, Table 3.7 presents the results of mouth structure segmentation using Gaussian

mixture model based color classification instead of K-Means. Once again, filtered versions

show improvements in averaged DTO regarding the unfiltered versions. Mean averaged DTO

for the three regions was 0.3621 for 12-dimensional feature input vectors and 0.3565 for three-

dimensional input feature vectors, besting in both cases the results obtained using K-Means

11Total parameter count is 157 for 12-dimensional Gaussians and 13 for 3-dimensional Gaussians. However,
due to symmetry in the corresponding covariance matrices, the actual number of parameters is reduced
to 91 and 10 respectively. Further reduction can be achieved if using non-rotated Gaussians, where only
25 and 7 parameters are needed.
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by a narrow margin. Figure 3.9 illustrates some results from the experiment conducted for

both K-Means and Gaussian mixtures using two sample images.

Table 3.7: Gaussian mixture based pixel color classification: performance measurement using
DTO. Upwards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.4977 0.4195 0.5302 0.5153 0.4192 0.5698
Filt. 0.2911 (↑) 0.2959 (↑) 0.4673 (↑) 0.3276 (↑) 0.2849 (↑) 0.4738 (↑)

Clipped
Unfilt. 0.4876 0.4728 0.5228 0.5106 0.4454 0.5643
Filt. 0.3103 (↑) 0.3335 (↑) 0.4244 (↑) 0.3397 (↑) 0.2851 (↑) 0.4446 (↑)

A summary of the accuracy obtained after carrying out the experiment can be seen in Fig-

ure 3.8. Notice that both sides of the Figure exhibit great similarity for most combinations;

however, DTO achieves lower values for training data than for testing data. One can con-

clude that model overfitting has not been reached up to K = 30 since there is no noticeable

increase in DTO for any of the modeling engines. As expected, the best results were ob-

tained for Gaussian mixture modeling using three and twelve input features. DTO value

starts to settle for K > 20; thereby, K value is set up at 20 for the rest of the tests in the

Chapter12.
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(a) Training mean DTO for lips, teeth and tongue.
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(b) Testing mean DTO for lips, teeth and tongue.

Figure 3.8: Training and testing DTO measured for each mouth structure, regarding the
number of centroids or Gaussians per model.

Gaussian mixtures modeling capability was compared against that of feed-forward artificial

neural networks (FFNNs), in the task of mouth structure color distribution modeling (as

in [35, 36]). In the case of 12-feature input vectors a FFNN with one hidden layer with 428

12Having twenty Gaussians per model implies the estimation of 1820 parameters for 12-dimensional feature
input vectors, and 200 parameters for three-dimensional feature input vectors.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 3.9: K-Means based and Gaussian mixture based pixel color classification examples.
K-Means based: 3.9a, 3.9b Original images; 3.9c, 3.9d result using a 12-feature
input space; 3.9e, 3.9f result using a 12-feature filtered input space; 3.9g, 3.9h
result using a 3-feature input space; 3.9i, 3.9j result using a 3-feature filtered
input space. GM based: 3.9k, 3.9l result using a 12-feature input space; 3.9m,
3.9n result using a 12-feature filtered input space; 3.9o, 3.9p result using a 3-
feature input space; 3.9q, 3.9r result using a 3-feature filtered input space.
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Table 3.8: FFNN based pixel color classification: performance measurement using DTO.
Upwards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.5335 0.4843 0.4875 0.5037 0.5118 0.5020
Filt. 0.4151 (↑) 0.3545 (↑) 0.3995 (↑) 0.3687 (↑) 0.4601 (↑) 0.5049 (↓)

Clipped
Unfilt. 0.4919 0.4326 0.5115 0.5184 0.4197 0.5468
Filt. 0.3363 (↑) 0.2939 (↑) 0.4134 (↑) 0.3886 (↑) 0.3139 (↑) 0.5126 (↑)

neural units and four output units was used; for 3-feature input vectors, a FFNN with one

hidden layer with 100 units and four outputs was used. Both network architectures were

selected to match approximately the number of parameters of the corresponding GMM.

The networks were trained using the resilient backpropagation algorithm [126] using the

same training data as in the case of GMM approximation. Results of this experiment are

presented in Table 3.8. Notice that FFNNs perform a better color classification for 12-

dimensional feature input vectors than the one obtained with Gaussian mixtures; however,

Gaussian mixtures outperform FFNNs using three dimensional feature input vectors.

In order to test the robustness of the GMMs, the structure classification was repeated using

images from the FERET database and the second portion of the “Own” database. Mind

that the images from the FERET database contain all the head and neck of the subjects,

and in some cases the upper part of the torso, thus the mouth region is a very small portion

in the images (around 5% of the pixels in the image). Color models were not re-trained

neither adapted for the new data. Results of this experiment can be seen in Table 3.9.

Table 3.9: Robustness test - Color FERET database. Values measure DTO.
12 Features 3 Features

Lip Teeth Tongue Avg. Lip Teeth Tongue Avg.

K-Means
Whole 0.6239 0.8613 0.9835 0.8229 0.6580 0.9431 0.9287 0.8433

Clipped 0.6385 0.7664 0.9910 0.7986 0.6620 0.9315 0.9397 0.8444

GMM
Whole 0.6299 0.8512 0.9263 0.8025 0.6483 0.8566 0.9487 0.8179

Clipped 0.6442 0.7689 0.9591 0.7907 0.6302 0.7904 1.0274 0.8160

FFNN
Whole 0.4918 0.8903 0.9855 0.7892 0.8570 0.9969 0.7263 0.8601

Clipped 0.5072 0.8642 0.9867 0.7860 0.8574 0.9641 0.8877 0.9030

From Table 3.9, it can be concluded that pixel color classification error increased signifi-

cantly by using a completely new database. This effect can be issued to variable lighting

conditions present in the FERET database and the increased size and color variability of

the background, among other factors. TNR decreased considerably using the new data,

which reflects negatively in DTO. As in the previous tests, FFNN bested Gaussian mixtures

and K-Means by a narrow margin for 12-dimensional feature input vectors, and Gaussian



3.3 Summary 75

mixtures bested K-Means and FFNN for three dimensional feature input vectors.

3.3 Summary

This Chapter presents a study in pixel color classification of mouth structures in facial

images. The first part of the Chapter focuses in studying the individual and conjoint dis-

criminant capabilities of several color components that have been used to tackle the afore-

mentioned task. In the second part of the Chapter, these representations are used as features

in stochastic modeling engines trained to model the color distributions of each visible mouth

structure in the images.

Neural networks proved higher accuracy in color distribution modeling when using a 12-

dimensional input feature vector than Gaussian mixtures. This effect is reversed when only

three features were used. There is a considerable reduction in computational complexity

when downscaling from 12 features to three; at the same time, a barely noticeable decrease

in accuracy was obtained by performing that change. Thereby, results presented in following

chapters will be referred to a three-dimensional feature Gaussian mixture model. The models

use the configuration described in Section 3.2.4.

From the tests conducted over “Own” database and Color FERET database, it can be

concluded that changes among databases can produce higher variations in color classification

performance than changes among subjects in the same database. The tests clearly illustrate

the complexity of isolating the influence of issues related to acquisition set-up from the final

color register in the images.

As a side contribution of the study conducted in this Chapter, a fast alternative for coarse

lip/skin segmentation based in pixel classification is introduced in Section 3.1.3. The segmen-

tation technique is based in the use of the CIEa∗ color component, with its value normalized

using the values inside the mouth’s region of interest (RoI). Classification results proved

to be better than those obtained using other color components commonly used in lip/skin

segmentation through pixel color thresholding.





4 A perceptual approach to

segmentation refinement

Image segmentation produces label images that can be used in higher level processes in per-

ception. Human-like interpretation of the scene is possible when an accurate region detection

and characterization is available. When segmenting with pixel-color based techniques, which

lack of region and task specific constraints (like connectedness tests), regions usually present

jagged borders and holes, and may vary considerably in size and shape, as seen in Figure 4.1.

(a) Original image. (b) Pixel color classification of mouth
structures.

Figure 4.1: Example of pixel color classification based image segmentation. Notice the pres-
ence of jagged region borders, unconnected spurious regions and small holes and
gaps.

There are some techniques that can be applied to label images in order to refine the la-

beling. For instance, localized application of binary morphological operations may improve

region definition by smoothing jagged areas around the borders or filling small gaps between

regions1. Nonetheless, applying these techniques involve setting up a wide variety of pa-

rameters that condition their behavior, like structuring element selection (shape and size),

operation ordering (erosion, dilation, combinations of them), etc.. The varying nature of

such parameters makes morphological operation selection a task in which tuning for the best

1Given that Gray-scale morphological operations are based in ordering relationships that cannot be easily
extended to classes, they are not applicable to segmentation refinement straightforwardly.
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results is commonly carried out by the means of heuristic searches or by following guidelines

stated in the state of the art. Having all those possible parameter combinations also means

that it is impractical to predict or characterize the final output for every combination of

operations and structuring elements.

In this Chapter, a new technique for segmentation refinement is proposed. The technique

was designed aiming to be both easily understandable, as well as predictable through time,

based on a simplistic analogy to the first stage of the human visual perception system. Being

predictable through time means that one may expect a predictable result when iteratively

applying the refinement to an input labeling until convergence is achieved; therefore, the

insights of the infinite-time behavior of the refiner are discussed thoroughly. The fundamen-

tals of the method are stated in Section 4.1. Section 4.2 treats topics such as parameter

selection and infinite behavior of the refiner through parameter study cases. Sections 4.3

and 4.4 provide some results obtained in segmentation refinement of natural images and

mouth structures in images, respectively. Finally, a brief summary of this Chapter in given

in Section 4.5.

4.1 Segmentation refinement using perceptual arrays

Image segmentation based in thresholding or pixel color classification gives fast results but

compromising in segmentation quality. As discussed before, problems such as jagged edges

and small holes or unconnected regions are common results of this kind of image segmen-

tation. Therefore, their usage is usually accompanied by image pre-processing and output

labeling refinement. In this section, a biologically inspired method for tackling segmentation

refinement is proposed.

According to [4, 127], human nervous system may be viewed as a three-stage system with

forward and backward propagation, where a set of receptors transform the input stimuli and

propagate them through a complex neural net (the brain), ultimately generating a response

through the effectors (please refer to Fig. 4.2). Similarly, the proposed segmentation scheme

uses a set of color classifiers that transform visual color information coming from the scene

into segmentation labels, thus taking the role of receptors, and a segmentation refiner who

acts as the neural net and the effector, in the case where the desired output corresponds to

a label image2.

The refinement technique comprises a layer of organized units with forward, backward and

lateral connections. From now on, this layer will be referred as a perceptual array, and

its layout mimics the cone and rod distribution in human retina. Each unit in the array

is connected with one unique input pixel class labeling, thus equaling the total number of

patterns in the input array. The effect of the feedback connections is controlled by the joint

2Explicit feedback is avoided in the segmentation scheme (upper part of Figure 4.2) due to parameter
tuning and color modeling being carried out off-line.
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Receptors Neural
net

Stimulus ResponseEffectors

Pixel color
classifier

Refiner

Proposed segmentation strategy

Input image Labeled segm.
image

Figure 4.2: Segmentation methodology diagram and the dual block diagram representation
of nervous system according to [4].

influence of two parameters: σ, which determines the size of the unit’s perceptual field (set

of neighboring units), as well as its associated weighting function; and α, which sets the

proportion between the lateral and forward influence in the unit output.

The behavior of the perceptual layer is summarized in Equation (4.1). In the equation, P 0

stands for the input pattern set, and P k and P k+1 represent the layer output at iterations k

and k + 1, respectively.

P k+1 = W
(
αP 0 + (1− α)(P k ∗Gσ)

)
, (4.1)

It is noteworthy that P 0, P k and P k+1 represent the class labeling for every pixel in the input

image rather than its color or intensity representation. The “Winner” function, denoted by

W , is a non-linear operator that generates a “winning” array or vector with the same size of

its argument. In the case of pixel labeling, the “Winner” function will select the class which

most likely correspond to a given pixel based in an input vector whose component codify the

class rating associated to each class. A formal definition of the “Winner” function for vector

is explained in Section 4.2, (please refer to formulation in Equation (4.3)). The operator · ∗ ·
stands for the spatial convolution operation, and Gσ is a centered bi-dimensional Gaussian

window with variance σ2.

It can be immediately noticed the analogy between a low-pass filter-like behavior and that of

each iteration of the refiner, where the corresponding smoothing factor is controlled by the

combination of parameters (α, σ). Nevertheless, the actual enhancement potential of the

method is met when the process is recalled to convergence; that is, when the calculation of

Equation (4.1) is repeated until one or more stop criteria are met, as shown in Algorithm 3.

Common criteria are a maximum number of iterations, and a minimum number of label

changes between consecutive values of P k. The computational complexity of each refiner

iteration is O(n) regarding the number of pixels in the image; particularly, its reckoning is

slightly higher than the one associated with a linear filter with a window width and height
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equaling 5σ. This relationship can be established since most of the area contained by a

Gaussian function is bound inside the domain range (µ− 2.5σ, µ+ 2.5σ)3.

Algorithm 3 Segmentation refinement.

Require: P 0, α, σ, Stop criterion(a).
Ensure: P k

k ← 0
while Stop criterion(a) is(are) NOT met, do
P k+1 ← W

(
αP 0 + (1− α)(P k ∗Gσ)

)
k ← k + 1

end while

Thanks to symmetry in Gσ, and bounding its size to match that of the image (that is, N×M
elements), the pixel-wise form of Equation (4.1) can be expressed as

pk+1
i,j = w

(
αp0

i,j + (1− α)

(∑
u,v

pku,vgu,v,σ(i, j)

))
, (4.2)

with u, v varying to cover the image size. Gσ(i, j) is a bi-dimensional Gaussian window with

variance σ2 centered at (i, j), and gu,v,σ(i, j) represents the element (u, v) in Gσ(i, j). Notice

that pi,j represents a label vector resulting from a prior pixel classification, not the actual

color or intensity of the pixel.

Figure 4.3 shows the pixel-wise principle of the technique. In the diagram, the combination

(α = 0.25, σ = 0.6) is used. Each color in the colored squares represent a particular class

labeling, while gray-shaded squares represent the values of Gσ, centered at i, j. The output

block holds the color which corresponds to the winning class, as obtained by using the

“Winner” operation.

Figure 4.4 exemplifies the refiner behavior after an image segmentation based in color classi-

fication. The analysis is focused in the detail in Figures 4.4d and 4.4e, where two phenomena

can be regarded: neighborhoods with high variability in the input labeling do not produce

changes in such labeling along iterations, as seen in the subject’s right hand; and a clear

softener effect in the bright side (left) of the subject’s leaf headband. The former is an

uncommon behavior that mimics the one of a high pass spatial filter applied to the labeling

information. The later, a smoothing effect produced by the refiner, tends to blur or even

eliminate small features through iterations depending on the perceptual field size and the

weight of the lateral effect. Figure 4.5 shows the effect of varying the refiner parameters

when the input is a label facial image with an initial mouth structure segmentation.

3The area contained by a Gaussian function inside the domain range (µ−2.5σ, µ+ 2.5σ) is slightly greater
than 0.987, which corresponds to a 98.7% of the total area of the curve.
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Gσ(i,j)
sum[P(0)oGσ(i,j)]

pij(0)

1-α

α

Winner

P(0)

pij(1)

Sum

Select

Figure 4.3: Refinement process example diagram for α = 0.25 and σ = 0.6 (3x3 pixels
perceptual field size). Colored squares represent class labeling, while gray-shaded
squares represent weights.

4.2 Special cases and infinite behavior of the refiner

In order to clarify the insights of the refinement process some definitions will be stated.

First, let I be a given input image, with size N ×M pixels. Each element qi,j ∈ I is a vector

containing the intensity and/or color information of the pixel referred by indexes (i, j). Let

P0 be a vector array with size N×M , containing an initial classification of the information in

I. Each element p0
i,j codifies the class label assigned to the input pattern qi,j. Any possible

value for p0
i,j lies in the set composed by the column vectors of the identity matrix of order C;

C standing for the total number of detected classes.

Now, let w(p) = (w1, w2, . . . , wC)> be a function from RC to RC , defined by its elements as

wj(p) =


1, ∃!j : j = argmaxi{pi}
indeterminable, ∃j1, j2, j1 6= j2 : j1, j2 = argmaxi{pi}
0, otherwise

. (4.3)

From now on, w(p) can be referred as the “Winner” vector resulting from p; in the same

way, W (P ) can be referred as the “Winner” array resulting from vector array P . Namely

speaking, the “Winner” vector w(p) contains zeros in all but one of its components; that

component holds a value equal to one, and corresponds to the same component that holds

the maximum value in the input vector p. If the result of argmaxi{pi} is not unique, w(p)

becomes indeterminable4.

With these priors in mind, it follows that the expressions in Equations (4.1) and (4.2) lead

to valid class labels for any value of k if α is bound to [0, 1] and σ keeps its value in the

4In order to reduce the influence of indeterminable values in refiner computation, indeterminable pk+1 are
forced to keep their older value; that is, pk.
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(a) Original image, taken
from the Berkeley image
database [116].

(b) Label image generated
usingK-Means with k=8.

(c) Figure 4.4b after refine-
ment.

(d) Detail of 4.4a. (e) Corresponding detail in
4.4b.

(f) Detail on 4.4b after refine-
ment.

Figure 4.4: Effect of segmentation refinement in a K-Means based color classification.



4.2 Special cases and infinite behavior of the refiner 83

(a) Original image. (b) Initial classification image,
coded in grayscale.

(c) Result of the refinement
process for (σ = 4.0, α =
0.4).

(d) Result of the refinement
process for (σ = 4.0, α =
0.1).

Figure 4.5: Example of segmentation refinement using a mouth image.

range [0,∞). The stationary behavior of the refiner can be predicted if constraints for α and

σ are imposed. In this section, some of those variations are studied.

First, let P ′k = P k − {pki,j} be a labeling vector set constructed as the array P k minus the

element at location (i, j); then, one can reformulate Equation (4.2) by splitting it as

pk+1
i,j = w

(
αp0

i,j + (1− α)gi,j,σ(i, j)pki,j + (1− α)(
∑

u,v p′ku,vgu,v,σ(i, j))
)
, (4.4)

Intuitively, big values of σ lead to small values of gi,j,σ(i, j); particularly, σ →∞ =⇒ gi,j →
1/(nm)+, and σ → 0 =⇒ gi,j → 1. The splat version presented in Equation (4.4), which

seems clearer to interpret than the original expression in Equation (4.2), is used as a basis

for studying the effect of the parameter set (α, σ) in conditioning the refiner behavior.

Case 1: σ →∞, α = 0

In this case the Gaussian window given by Gσ(i, j) flattens completely, turning formulation

in (4.4) into

pk+1
i,j ≈ w

(∑
u,v

pku,v
nm

)
= mode(P k), (4.5)

for any location (i, j) in the image. Particularly, when k = 1, p1
i,j = mode(P 0). This
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generalizes to any value of k > 0, as no further changes are produced, and therefore can be

regarded as a degenerated case of parameter selection.

Case 2: σ = 0, α = 0

In this case, gi,j = 1 and
∑

u,v p′ku,vgu,v,σ(i, j) = 0. Thus, the expression in Equation (4.4)

becomes

pk+1
i,j = w

(
pki,j
)
. (4.6)

This particular case leads to no changes between consecutive arrays P k and P k+1, therefore

making P k = P 0 for any value of k. No changes between consecutive labeling arrays mean

no refinement at all, thus the combination (σ = 0, α = 0) is another degenerated case of

parameter selection for the refiner.

Case 3: Every pku,v ∈ P ′k equals the mode, while pki,j does not

In this case, formulation in Equation (4.4) can be safely changed by

pk+1
i,j = w

(
αp0

i,j + (1− α)gi,jp
k
i,j + (1− α)(1− gi,j)mode(P ′k)

)
. (4.7)

By setting k = 0,

p1
i,j = w

(
(α + (1− α)gi,j)p

0
i,j + (1− α)(1− gi,j)mode(P ′0)

)
. (4.8)

As both p0
i,j and mode(P ′0) are vectors from the identity matrix of order C, the value of p1

i,j

is given by

p1
i,j =


p0
i,j, α + gi,j − αgi,j > 1/2

ind, α + gi,j − αgi,j = 1/2

mode(P ′0), otherwise

. (4.9)

This is the most favorable case for producing changes between p0
i,j and p1

i,j, as the elements

in P ′0 do not compete each other but collaborate in introducing that change. In order to

ensure that p1
i,j = p0

i,j first condition in Equation (4.9) should be attained. Regardless the

value of p1
i,j, no further changes in the labeling are be expected, and then

pki,j =


p0
i,j, α + gi,j − αgi,j > 1/2

ind, α + gi,j − αgi,j = 1/2

mode(P ′0), otherwise

. (4.10)

The derived condition α+gi,j−αgi,j > 1/2 is clearly established as necessary in order to avoid
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any change in the labeling; moreover, if the indetermination resulting from the “Winner”

function is resolved by avoiding changes, the condition can be extended to α+ gi,j −αgi,j ≥
1/2. Hence, a necessary condition for valid parameter selection is given by

α + gi,j − αgi,j < 1/2, (4.11)

subject to avoid the already discussed degenerated parameter combinations.

Notice that the previous analytic study reveals a series of necessary but not sufficient con-

ditions for the refiner to work properly in label images. Hence, Figure 4.6 shows the result

of an empirical study of the effect of σ and α in the refiner behavior through iterations,

measured using the number of changes detected between consecutive labeling arrays. Notice

that small values of α usually lead to a constant decay through time in the effect of the input

P0 over the output Pk+1. It is important to note that such behavior is consistent with the

dual alertness-encoding factors in the stimuli-repetition effects theory presented in [128].

4.3 Unsupervised natural image segmentation refinement

In order to clarify the effect of label refinement in pixel color based image segmentation a

set of tests using natural images were carried out. In the tests, no prior knowledge about

the images is assumed, therefore leading to the application of unsupervised segmentation

approaches. The data source selected for the experiment is the “test” subset of the Bereke-

ley’s database (BSDS300) [116], which comprises a hundred images along with corresponding

manual annotations or ground truths. The BSDS300 database contain more than one ground

truth image per source image; hence, TPR, TNR and DTO measures obtained using this

database represent mean values rather than absolutes.

Three different techniques were selected to generate the reference segmentation measures:

K-Means, Gaussian mixtures and Fuzzy C-Means. In the case of Gaussian mixtures, K-

Means and Expectation-Maximization were used to initialize and fine tune the parameter

set, like in Chapter 3.

4.3.1 Refiner parameter set-up

First of all, refiner parameters should be set in proper values for the dataset. One intuitive

way of tuning σ and α is by minimizing DTO(α, σ). Since it is impossible to predict DTO’s

behavior within a natural image set, a sub-optimal solution can be found by sweeping the pa-

rameter space and computing the corresponding DTO value for each combination. Bounded

limits for studying parameter influence over refining performance can be established using

conditions in (4.10). In all case, the refiner stop criterion was set to either (a) reaching 25

iterations, or (b) obtaining no changes between consecutive label images.
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Figure 4.6: Refiner evolution through iteration for diverse parameter combinations.
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Figure 4.7 exposes the effect of parameter variation in refinement performance, measured

using the DTO, for images in the BSDS300 database. In the figure, darker shades mean

lower DTO values and higher performance. The dashed white line shows local minima path

of DTO in the parameter space. The lowest DTO value was obtained for (α = 0.05, σ = 1);

this specific combination creates a relatively small perceptual field for each unit (5×5 pixels

in size), and favors changes between iterations. There is a noticeable drop in performance

for σ > 5, which corresponds to perceptual fields with more than 25 × 25 pixels in size.

This effect is quite similar to the one evidenced from the usage of relatively big windows for

Gaussian filters and Median filters in image pre-processing, as seen in Section 3.1.2 (reader

may refer particularly to Figure 3.4). It can be concluded that important regions in the

image are lost once that perceptual field size is surpassed.
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Figure 4.7: Influence of σ and α in segmentation refinement performance for BSDS300
database. Darker areas represent lower DTO values.

4.3.2 Pixel color classification tuning

The three methods share one parameter which controls the desired number of clusters. Its

value was swept from three to eight, and the best fit in terms of DTO for each technique in

each image was selected. Then, the mean values for TPR, TNR and DTO were computed,

along with their associated deviations, as seen in Table 4.1. In the table, upwards arrows

indicate improvement, which in the case of DTO, σTPR, σTNR, OS and σOS correspond to

values closing to zero. Notice that in most of the cases TPR and OS profit from the refine-

ment process; however, this behavior does not hold for the other measures. Summarizing,
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the average changes obtained by using the refiner were: an increase of 4.85% in TPR, a

decrease of 2.97% in TNR, and a decrease of 3.3% in DTO.

Table 4.1: Refinement applied to unsupervised segmentation of BSDS300 image database.
Upwards arrows in right side of the table indicate improvement, whereas down-
wards arrows indicate worsening.

K-Means GMMs FCM

TPR
Base 0.4373 0.4368 0.4273
Refined 0.4628 (↑) 0.4425 (↑) 0.4590 (↑)

σTPR
Base 0.0869 0.0790 0.0901
Refined 0.0793 (↑) 0.0826 (↓) 0.0810 (↑)

TNR
Base 0.9734 0.9350 0.9767
Refined 0.9519 (↓) 0.8923 (↓) 0.9559 (↓)

σTNR
Base 0.0273 0.0497 0.0217
Refined 0.0389 (↓) 0.0744 (↓) 0.0382 (↓)

DTO
Base 0.5633 0.5669 0.5732
Refined 0.5393 (↑) 0.5678 (↓) 0.5428 (↑)

OS
Base 6400.3 3007.1 6998.8
Refined 968.35 (↑) 450.62 (↑) 1026.8 (↑)

σOS
Base 5010.7 1980.8 5116.6
Refined 792.33 (↑) 322.26 (↑) 789.21 (↑)

High values in OS and σOS were obtained using the three segmentation techniques. This

behavior is very common in pixel color based segmentation since it usually produces spurious

unconnected regions and gaps. Figure 4.8 illustrates how the refinement process cope with

the aforementioned problem. A quick comparison between the figure pairs 4.8a and 4.8d,

4.8b and 4.8e and 4.8c and 4.8f demonstrates the smoothing effect of the refiner, and a proper

elimination of small spurious features.

4.4 Mouth structures segmentation refinement

In this work, particular attention is given to mouth structure segmentation in images. There-

fore, important notice on refiner’s performance in mouth segmentation refinement is given

in this Section. The experiment was conducted using sixteen images chosen from different

subjects from the “Own” database, provided that each image has one corresponding manu-

ally annotated ground truth image. The label images used as the refiner input are the same

that resulted from experiment in Section 3.2.4. Segmentation error, reflected by DTO, was

computed using all of the sixteen images (including those five used for model training).

Following the same guideline proposed in natural images segmentation in Section 4.3.1,
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(a) Resulting label image
from Fig. 4.4d, using
K-Means with K=6.

(b) Resulting label image
from Fig. 4.4d, using
GMM with K=6.

(c) Resulting label image
from Fig. 4.4d, using
FCM with C=6.

(d) Figure 4.8a after re-
finement.

(e) Figure 4.8b after re-
finement.

(f) Figure 4.8c after refine-
ment.

Figure 4.8: Example of K-Means, Gaussian mixtures and Fuzzy C-Means pixel color seg-
mentation. Refined results were obtained with (α = 0.05, σ = 1.0).
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refiner parameters were tuned through a parameter sweep. From the experiment, the com-

bination which led to better results in terms of average DTO was (σ = 1.0, α = 0.1). Given

this parameter selection, a good approximation for the inner term of Equation (4.1) can be

achieved using a Gaussian window of five pixels width per five pixels height.

Table 4.2 contains the mouth structure segmentation average DTO measurements presented

in Table 3.6, along with the corresponding average DTO obtained after the refinement. The

Table is composed by measurements taken from all possible combinations of: 12-dimensional

and 3-dimensional feature input vectors; whole image data and RoI clipped data; filtered

and unfiltered; refined and unrefined segmentation labeling.

Table 4.2: Refinement results of K-Means based pixel classification.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

W
h

ol
e Unfilt.

Unref. 0.4170 0.4275 0.5873 0.4423 0.4174 0.6214
Ref. 0.3172 (↑) 0.3478 (↑) 0.6282 (↓) 0.4507 (↓) 0.4185 (↓) 0.4630 (↑)

Filt.
Unref. 0.2722 0.3243 0.4936 0.3167 0.2894 0.5074
Ref. 0.2443 (↑) 0.2958 (↑) 0.4992 (↓) 0.3154 (↑) 0.3326 (↓) 0.4436 (↑)

C
li

p
p

ed Unfilt.
Unref. 0.5055 0.4878 0.5220 0.5265 0.4580 0.5656
Ref. 0.3600 (↑) 0.3285 (↑) 0.6540 (↓) 0.4728 (↑) 0.3908 (↑) 0.5142 (↑)

Filt.
Unref. 0.3407 0.3632 0.4599 0.3718 0.3289 0.4852
Ref. 0.2978 (↑) 0·2561 (↑) 0.5109 (↓) 0.3519 (↑) 0.2978 (↑) 0.4706 (↑)

Despite increases in some of DTO measurements occur, average DTO went from 0.3712 to

0.3549 for filtered 12-dimensional feature input vectors after refinement, reflecting a gain in

classification accuracy of 1.56%. Similarly, this measurement decayed from 0.3953 to 0.3734

for filtered 3-dimensional feature input vectors after refinement, meaning a gain in classifica-

tion accuracy of 3.62%. DTO for unfiltered inputs improved from 0.4482 to 0.4455, leading

to an average gain in classification accuracy of 5.75%. The gain in average segmentation

accuracy from unfiltered unrefined to filtered refined is 14.77% for 12-dimensional feature

input vectors, and 14.5% for 3-dimensional feature input vectors. It can be thereupon de-

duced that image pre-processing and label refinement effects on segmentation accuracy are

notably complementary when using K-Means pixel color classification.

Table 4.3 contains the mouth structure segmentation average DTO measurements presented

in Table 3.7, along with the corresponding average DTO obtained after the refinement.

Improvement in DTO measurements is more consistent than in the case of K-Means based

classification, with average DTO going from 0.3537 to 0.3441 for filtered 12-dimensional

feature input vectors after refinement, reflecting a gain in classification accuracy of 0.91%.

This measurement went from 0.3593 to 0.3320 for filtered 3-dimensional feature input vectors

after refinement, meaning a gain in classification accuracy of 2.59%. The gain in average

segmentation accuracy from unfiltered unrefined to filtered refined is 17.56%. Particularly
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good results were obtained for 3-dimensional feature input vectors with pre-processing and

refinement, closing to the accuracy of 12-dimensional feature input vectors case.

Table 4.3: Refinement results of Gaussian mixture based pixel classification.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

W
h

ol
e Unfilt.

Unref. 0.4977 0.4195 0.5302 0.5153 0.4192 0.5698
Ref. 0.4230 (↑) 0.3324 (↑) 0.5116 (↑) 0.4241 (↑) 0.3829 (↑) 0.4497 (↑)

Filt.
Unref. 0.2911 0.2959 0.4673 0.3276 0.2849 0.4738
Ref. 0.2622 (↑) 0.2618 (↑) 0.4741 (↓) 0.2865 (↑) 0.3064 (↓) 0.4019 (↑)

C
li

p
p

ed Unfilt.
Unref. 0.4876 0.4728 0.5228 0.5106 0.4454 0.5643
Ref. 0.4450 (↑) 0.3244 (↑) 0.5444 (↓) 0.4484 (↑) 0.3546 (↑) 0.4983 (↑)

Filt.
Unref. 0.3103 0.3335 0.4244 0.3397 0.2851 0.4446
Ref. 0.3064 (↑) 0.2469 (↑) 0.4788 (↓) 0.3207 (↑) 0.2511 (↑) 0.4242 (↑)

Figure 4.9 extend the example in Figure 3.9. The Figure illustrates the effect of segmen-

tation refinement when segmenting using K-Means color classification and Gaussian based

color classification. The joint effect of image pre-processing and refinement can be seen in

Figures 4.9e and 4.9i.

4.5 Summary

In this Chapter, a new technique for refining the label image resulting from segmentation

is presented. The method, inspired in a simplistic model of the human visual perceptual

system, improves iteratively the label image by smoothing region boundaries, filling small

gaps inside or between regions, and eliminating small spurious regions.

The refiner is composed by a layer of perceptual units (one per pixel), each of them connected

to one unique input label pattern, and to neighboring units’ output. Two parameters,

which are proven to be at some extent correlated in Sections 4.2 and 4.3.1, control the

compromise between input labeling and field effect through iterations. The technique mimics

the smoothing effect of low pass filters applied to labeling information, and its computational

cost per iteration is also around the same as the one of such kind of filters. Refiner’s behavior

is analyzed in depth in Section 4.2, and numerical results are also provided in Sections 4.3

and 4.4.

In most cases, the refiner improves the output labeling resulting from unsupervised pixel

color based segmentation of natural images. In the case of supervised mouth structures

segmentation, the benefit is clearer by improving the results in all cases. The improvement

is at some extent cumulative with the one obtained by the means of image pre-processing,

thus proving to be complementary techniques. Individually, linear filtering and segmentation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Segmentation refinement on K-Means based and Gaussian mixture based pixel
color classification examples. 4.9a: Original image. 4.9b: K-Means based clas-
sification, K = 3. 4.9c: K-Means based classification, K = 3, filtered. 4.9d:
Refined version of 4.9b. 4.9e: Refined version of 4.9c. 4.9f: Gaussian mixture
based classification, K = 3. 4.9g: Gaussian mixture based classification, K = 3,
filtered. 4.9h: Refined version of 4.9f. 4.9i: Refined version of 4.9g.
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refinement increase segmentation accuracy by 5 to 10% approximately (reflected in DTO),

while the combined effect of both techniques lead to an increment of 15% approximately. It

is noteworthy that the computational complexity of each refinement iteration is comparable

with that of the linear filter, and that the refiner usually takes between five and fifteen

iterations to converge.





5 Texture in mouth structure

segmentation

According to Shapiro & Stockman [129], local image texture can be defined in terms of local

image statistic or structural behavior. From the first point of view, texture is regarded as

basic image structures or neighborhoods in which some statistic or spectral measurements

remain constant, or at least very similar, all along the textured region. The latter, closely

related to human interpretation, sees texture as patterns which repeat themselves throughout

some areas in the image preserving their appearance among occurrences. This approach to

texture definition can be difficult to express in terms of measurable image features, despite

of being easier to understand, thus the first definition is more commonly found in fields like

image processing and artificial vision.

Texture features can be classified in two main categories: the first category, often identified as

low-level texture features, encompasses the use of raw color or intensity data extracted from

windows or pixel sets in the image. Then, texture is implicitly represented by the concate-

nation of that raw information provided by the pixels. The second category, referred as high

level texture features, is based in local statistic measurements (i.e., moments), non-linear

transformations or spectral information, extracted from the pixels and their corresponding

neighborhoods.

Throughout this Chapter, texture descriptors are used in every stage of the proposed mouth

segmentation scheme, discussing the benefits and disadvantages in every case. Particularly,

Figure 5.1 shows how texture can interact within the stages involved in the proposed mouth

structure segmentation scheme (as in Figure 2.5). These interactions are studied through this

Chapter, discussing their usefulness in improving the initial color based pixel segmentation.

First, a brief introduction on low-level and high-level texture feature representation is pre-

sented in Sections 5.1 and 5.2, respectively. Then, in Section 5.3 the use of scale (a high level

texture descriptor) in image preprocessing is discussed through an example, in the particular

task of improving color definition and compactedness for pixel color classification of mouth

structures. Section 5.4 shows a comparison between color and color+texture based pixel

classification for mouth structure segmentation, using both low-level and high-level texture

descriptors. Section 5.5 introduces the use of scale as a tool to automatize segmentation

refinement, and studies the effect of this process in refined mouth structure segmentation

based in pixel color/color+texture classification. Finally, a brief discussion on the topics
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Image pre-processing,
Input color
representation,
dimension reduction.

Pixel color and texture 
dist. modeling, pixel
classification.

Automatic 
segmentation
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Texture information.

Figure 5.1: Mouth structure segmentation and refinement scheme, highlighting the alterna-
tive use of texture at each stage.

explored in this Chapter is presented in Section 5.6.

5.1 Low-level texture description

The simplest way to represent texture encompasses use of raw intensity and color data inside

the supposed texture elements or units (usually referred as texels). Raw image data can be

concatenated conforming feature vectors that can be used as texture indicators, like in the

example in Figure 5.2. In this case, the pixel of interest is identified by the number five, and

texture is encoded using the information contained on its immediate surroundings.

In the example, the RGB information contained in a 3× 3 pixels window is concatenated in

a vector, which results in a 27-dimensional texture descriptor. It can be intuitively seen that

pixel class modeling using a high-dimensional feature set suffers from the Hughes effect1,

meaning that great amounts of training data are needed in order to obtain a representa-

tive model for each class. This limitation is usually overcome using dimension reduction

techniques such as Principal Component Analysis (PCA) and Fisher Linear Discriminant

Analysis (FLDA) [30, 31].

An example of mouth structure pixel classification in a bi-dimensional space conformed by

the two principal components from an original low-level feature set is shown in Figure 5.3.

The original input space encompasses color information contained inside pixel neighborhoods

(windows of 3 × 3 pixels each) concatenated in a large feature vector like in Figure 5.2,

using twelve color representations per pixel. Therefore, the original feature dimension is 108

1In other contexts, the Hughes effect or Hughes phenomenon is commonly referred as the Dimensionality
curse.
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Figure 5.2: Low level feature vector conformation using RGB input and a 3x3 window.

components. After PCA, more than 99% of the input data variance was represented by the

first two principal components.

Figure 5.3: Mouth structure color distribution represented using first two principal compo-
nents, which cover approximately 99.65% of data variance.

Notice that pre-defining the texture window size implies the assumption that texture can be

properly described by the information contained inside that window. It also implies that the
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window has a size such that no relevant object features or objects are completely contained

by it (therefore masked by the texture descriptors).

Low-level texture descriptors are commonly used in face detection, subject recognition, eyes

and mouth detection, etc.. Techniques such as Eigenfaces [130], which is based in low-

level texture description, proved to be effective in tackling automatic object recognition

tasks. Nevertheless, their use pose some constraints like the availability of a large enough

amount of annotated training data, the disallowance of considerable variations in pose, and

a mandatory object scale standardization prior to classification.

5.2 High-level texture description

Low level texture description imposes a series of limitations, suffering notably from issues

related to changes in scale, rotation, projection and shear. In cases in which texture preserves

appearance features like local variability, orientation, etc., but varying in the aforementioned

ones, a different approach is needed to texture characterization. Texture measurements

based in more elaborated image analysis and complex transformations are grouped in a new

category which is usually referred as high-level texture descriptors.

Under uncontrolled scale and rotation conditions, new texture samples can only be matched

with base patterns or classes if it can be closely represented by them. Hence, it seems that

a more adequate way to quantify texture should rely in the extraction of indexes that prove

robustness against the aforementioned issues. One possibility is to define texture in terms

of its local spectral behavior, codifying periodic or quasi-periodic elements using frequency

bands and amplitudes.

Another possibility sees texture in terms of its local statistical behavior, considering mainly

local first and second moments on the intensity and/or orientation. In those cases, texture

patterns may be regarded as patches of information that retain their statistical behavior

both locally and all throughout the textured region. Texture statistics are computed inside

small windows, and continuity among patches is then measured in terms of continuity in

their statistics. Clear examples of this kind of features are local anisotropy and contrast,

both treated in Section 5.2.2.

Regardless the approach to texture concept, a texture patch is defined as a structural element

inside the image, and is defined inside pre-defined pixel neighborhoods. A key issue in

texture analysis is the estimation of the neighborhood size, as texture features may vary

considerably depending on that size. In order to establish the size of the window of interest

or neighborhood for each pixel in the image, a notion of local integration scale must be

introduced. A common approach to estimate the local integration scale, based in local image

statistics, is treated in the following Section.
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5.2.1 Integration scale

The integration scale, artificial scale or simply scale (denoted as σS
2), is a measurement

that reflects the variability in the local orientation inside an arbitrarily small window in the

image. According to [131], one way to make scale notion concrete is to define it to be the

width of the Gaussian window within which the gradient vectors of the image are pooled.

The integration scale is closely related to the statistical properties of the region surrounding

the pixel, and its selection is not always straightforward. In [131] the authors present a

technique for the implicit calculation of σS using an auxiliary quantity often referred to as

polarity. Polarity is a measure of the extent to which the gradient vectors in a certain neigh-

borhood all point in the same direction. Its value closes to one if the local orientation inside

the neighborhood is uniform, and decreases when local orientation is sparse. Intuitively,

once a proper scale value is achieved no further significant changes will be detected in local

polarity. For any image location or pixel (x, y), polarity can be computed as

polσ(x, y) =
|E+ − E−|
E+ + E−

(5.1)

with

E+ =
∑

x,y|∇IT n̂>0

Gσ(x, y) ◦ (∇IT n̂) (5.2)

E− = −
∑

x,y|∇IT n̂≤0

Gσ(x, y) ◦ (∇IT n̂) (5.3)

where I denotes the image intensity value, n̂ represents the main direction of∇I at pixel (x, y)3,

Gσ(x, y) is a Gaussian window centered at point (x, y), and the ◦ operator denotes the

Hadamard matrix product.

Once the polarity images are computed, σS(x, y) is selected as the smallest value such that

∂polσS(x, y)

∂σS(x, y)
≤ th (5.4)

In [131], a threshold value of 2% (th = 0.02) is suggested. Since one cannot have the partial

derivative directly, the authors swept the value of σS starting from 1.0 to 3.5 with steps of

0.5, stopping once the condition was met or the maximum value was reached. This allows

2For any image location (x, y) the corresponding integration scale is denoted as σS(x, y).
3The main direction n̂ can be set as the unitary vector whose direction follows the main eigenvector of the

second moment matrix inside the integration window generated by Gσ.
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them to limit the window size up to 10 pixels approximately4.

The scale can be regarded as a texture descriptor by itself, but is more commonly used for

computing features derived from the scale-based second moment matrix. Two well known

features extracted from the second moment matrix are local anisotropy and contrast, both

treated in the following Section.

5.2.2 Scale based features for image segmentation

Given the intensity (I) component of an image, the second moment matrix (MσS(x, y)) can

be computed as in Equation (5.5).

MσS(x, y) = GσS(x, y) ∗ (∇I)(∇I)T (5.5)

where GσS(x, y) is a Gaussian kernel centered at (x, y) with a variance of σS
2. It is notewor-

thy that ∗ in Equation (5.5) does not represent an actual convolution since the operating

window size and its corresponding weights depend on the value of σS(x, y).

Local image contrast (c(x, y)) and local anisotropy (a(x, y)) can be obtained from the eigen-

values of Mσ(x, y)–denoted by λ1(x, y) and λ2(x, y), with λ1(x, y) ≥ λ2(x, y))–as in Equa-

tions (5.6) and (5.7).

c(x, y) = 2(
√
λ1(x, y) + λ2(x, y))3 (5.6)

a(x, y) = 1− λ2(x, y)

λ1(x, y)
(5.7)

Figure 5.4 shows local anisotropy and contrast for test image in 5.4a. It can be easily noted

that anisotropy take high values in relatively smooth regions, while contrast is higher in

areas where local variation rises.

5.3 Scale based image filtering for mouth structure

classification

Since the integration scale reflects the extent at which orientation varies inside a window, its

value can be used to setup anisotropic image pre-processing. If local scale can be estimated

properly, a Gaussian filter whose deviation correspond to the pixel scale will theoretically

smooth noise and localized orientation variation while preserving color, thus improving region

color compactness.

4Assuming that window width is approximately three times σS , covering around the 87% of the area enclosed
by the Gaussian function. In this work, window sizes are computed as five times σS , thus covering almost
a 99% of the area enclosed by the Gaussian function. This, however, increases computation time.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Local anisotropy and contrast. a) Original image; b) gray-coded local anisotropy
(white: 1.0, black: 0.0); c) gray-coded local contrast (white: 1.0, black: 0.0); d),
e), f) detail from a), b) and c), respectively.

In order to measure the extent of such pre-processing, a test base encompassing sixteen

manually annotated images was selected. Each image was processed using a scale-variant

Gaussian filter and a fixed scale Gaussian filter with σ = 1.8, corresponding to a window size

of 9×9 pixels. For training and testing purposes, ten thousand pixels were randomly chosen

from each structure in the whole image set (lips, teeth, tongue and background), totaling

forty thousand pixels. The pixels were equally distributed for training and testing.

Table 5.1 presents the pixel color classification performance before and after a scale-variant

Gaussian filtering. Notice that the filter helps improving TPR, TNR and DTO for lips

and tongue, while producing an adverse effect in the teeth region. The average improvement

obtained for each region during training was 1.85% in DTO for all structures, with a standard

deviation of 6.64%; using the testing database, the average improvement was 1.66% in DTO

for all structures, with a standard deviation of 7.03%. The measured averaged changes

in DTO are several times smaller than their corresponding deviations, which is inconclusive

regarding the effect of the scale-based filtering process in mouth structure color classification.

It is noteworthy that computing the scale implies complex calculations, including several

sequential steps for each pixel in the image. Furthermore, fixed-scale filtering generated a

clearer improvement in classification accuracy, as shown in Sections 3.1.2 and 3.2.4.

Figure 5.5 presents a sample image filtered using fixed-scale and scale-variant Gaussian filters.

Typical uniform smoothing obtained from fixed-scale filters is evidenced in Figure 5.5b.

Notice that fixed-scale filtering affects negatively region features that are below its integration
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Table 5.1: Color classification performance using scale-based filtering.
Training Testing

TPR TNR DTO TPR TNR DTO

L
ip

s RGB
Unfilt. 0.3774 0.9448 0.625 0.383 0.9426 0.6197
Filt. 0.4274 (↑) 0.9457 (↑) 0.5752 (↑) 0.4166 (↑) 0.9456 (↑) 0.5859 (↑)

12-C
Unfilt. 0.648 0.9463 0.3561 0.6242 0.9439 0.3799
Filt. 0.6748 (↑) 0.9501 (↑) 0.329 (↑) 0.6592 (↑) 0.9503 (↑) 0.3444 (↑)

T
ee

th RGB
Unfilt. 0.7686 0.9767 0.2326 0.7698 0.9764 0.2314
Filt. 0.6798 (↓) 0.9709 (↓) 0.3215 (↓) 0.6786 (↓) 0.9694 (↓) 0.3228 (↓)

12-C
Unfilt. 0.8292 0.9742 0.1727 0.8294 0.9741 0.1726
Filt. 0.8026 (↓) 0.9673 (↓) 0.2001 (↓) 0.787 (↓) 0.9669 (↓) 0.2156 (↓)

T
on

gu
e RGB

Unfilt. 0.7454 0.9235 0.2658 0.7388 0.9266 0.2713
Filt. 0.8428 (↑) 0.9391 (↑) 0.1686 (↑) 0.8304 (↑) 0.9408 (↑) 0.1796 (↑)

12-C
Unfilt. 0.8558 0.9432 0.155 0.8368 0.9382 0.1745
Filt. 0.9086 (↑) 0.9546 (↑) 0.1021 (↑) 0.9112 (↑) 0.9507 (↑) 0.1016 (↑)

scale–in this case corresponding to approximately 1.8 pixels–by blurring them excessively, as

in the case of region borders. Nevertheless, the filter stabilizes color inside regions, making

them more compact and less prone to generate unconnected spurious regions after pixel color

classification. This advantage is lost at some extent when using scale-variant filtering, as

some localized lighting effects persist after the smoothing effect of the filter. By dissecting

Figures 5.5c and 5.5d one can identify where the filter has effectively softened region color

(i.e., near lip corners) and where it has preserved localized features that may lead to pixel

misclassification (i.e., region borders with high color variability and specular light reflections

like those found in the teeth).

Despite exposing a better behavior in preserving region borders, scale-variant filtering does

not remove specular noise or highly variable texture hatching. It can also be noticed that the

lack of continuity in scale among neighboring pixels introduces artifacts, easily identifiable

at teeth and around some region borders.

5.4 Texture features in mouth structure classification

Texture descriptors can be used along with pixel color features to model the pixel distribution

for each mouth structure. In order to expose the effect of using texture in that task, a mouth

classification experiment was set up following the basic guideline stated in Section 3.2.4.

There, 16 facial images from 16 subjects were chosen from the “Own” database, and a

subset of pixels was extracted from each structure pixel data, totaling six thousand data

points per structure for training the models and the whole image data for testing.

Table 5.2 shows the accuracy of pixel classification using color and texture features in a

Gaussian mixture classification engine, using four different setups. The first combination,
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(a) Original image. (b) Filtered image obtained using a 9×9 Gaus-
sian filter.

(c) Filtered image obtained using a scale-
variant Gaussian filter.

(d) Image scale, codified using grayscale
(White: 10 pixels, Black: 1 pixel).

Figure 5.5: Example of scale-variant Gaussian filtering vs. fixed-scale Gaussian filtering.
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identified as LLTF-27, encompasses the use of low level texture features, particularly the first

two principal components extracted from a concatenated version of the color information

contained in windows with 3× 3 pixels in size, like in Figure 5.2. The suffix “27” is used to

denote the number of Gaussians in the distribution model corresponding to each structure.

This number is chosen to match as close as possible the total number of parameters of the

reference classification configuration chosen in Section 3.2.4: three dimensional input vector

resulting from color-based LDA space reduction, twenty Gaussians per model. The second

combination, referred as HLTF-27, uses local anisotropy and contrast in order to conform the

input vectors, and like in the previous case, 27 Gaussians are chosen to model each mouth

structure’s pixel distribution. The third combination, called CATF-5, makes use of the color

and texture information in order to conform the input vectors (seven features in total), and

uses five Gaussians to model each pixel distribution. Finally, combination CATF-20 follows

the same scheme as in CATF-5, only changing the total number of Gaussians used to model

pixel distribution. While CATF-5 configuration was selected as a close match in number of

parameters to the reference configuration, CATF-20 surpasses greatly that number.

Table 5.2: Pixel classification accuracy measured using DTO.

Lips Teeth Tongue Backg. Mean

Whole

Base 0.6767 0.6763 0.3175 0.6893 0.4950
LLTF-27 0.8697 0.4131 0.8033 0.5538 0.6600
HLTF-27 0.8581 0.5323 0.6902 0.3737 0.6136
CATF-5 0.8993 0.2894 0.6006 0.2431 0.5081
CATF-20 0.8662 0.3635 0.5908 0.2537 0.5185

Clipped

Base 0.6893 0.3389 0.6468 0.3459 0.5052
LLTF-27 0.8722 0.4294 0.7179 0.5530 0.6431
HLTF-27 0.8760 0.5712 0.6952 0.5519 0.6736
CATF-5 0.9001 0.3177 0.6051 0.3092 0.5330
CATF20 0.8682 0.3796 0.6018 0.3302 0.5450

From the Table, it is noteworthy that background-associated DTO is lower (therefore better)

for mixtures of color and texture features in the input vector, thus concentrating most of

classification error among mouth structures. Hence, it is safe to advise the use of color

and texture for tasks in which the main goal is to separate the mouth as a whole from the

background. In the case of inner mouth structures separation, the best results were obtained

using feature vectors derived utterly from color.

Another important effect that can be observed from the Table lies in the fact that classifica-

tion accuracy in structure from “the rest” classification dropped when increasing the number

of modeling Gaussians from five to twenty (CATF-5 vs. CATF-20). This result indicates

that, in the latter, the number of parameters introduces model overfitting. Specifically, this
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effect can be evidenced clearly in a tongue-related DTO increase. Figure 5.6 shows eight

image labelings resulting from two RoI clipped input images, sweeping over the combinations

studied in Table 5.2. Figure 5.6 summarizes the effect obtained by either using texture-only

features in pixel classification, or using color and texture feature combinations. Notice that

mouth from background distinction is both perceptually and numerically superior when both

color and texture are used together.

(a) RoI clipped original images.

(b) Low-level texture feature based pixel classifica-
tion.

(c) High-level texture feature based pixel classifica-
tion.

(d) Color and texture feature based pixel classifi-
cation, using five Gaussians per model.

(e) Color and texture feature based pixel classifica-
tion, using twenty Gaussians per model.

Figure 5.6: Mouth structure pixel classification using texture and color features.

5.5 Automatic scale-based refiner parameter estimation

In the previous Chapter a method for segmentation refinement through iterative label up-

dates was introduced. This method relies in the usage of two parameters that control the

integration window size and the probability for a label to change due to the neighboring

labels. The first parameter, which was denoted by σ, can be directly related to the inte-

gration scale studied in the previous Section, as they both intend to reflect the size of the
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smallest window inside whom the local orientation is pooled5. Hence, this Section shows

the behavior of the segmentation refinement process if σ is set after the value of the local

integration scale. The experiment was conducted using the same basis as in Section 5.4,

renaming it from “Base” to GMM-20, and applying both constant scale and variant scale

segmentation refinement to the whole set .

Table 5.3 shows the result of comparing three different refinement combinations. The identi-

fier GMM-20 represents mouth structure pixel classification results using three color features

as input in color models obtained using twenty Gaussians per structure, following the scheme

used in Chapter 3. GMMR-20, GMMCR-20 and GMMVR-20 points the accuracy obtained

using fixed-scale fixed-proportion refinement, variable-scale fixed-proportion refinement and

variable-scale variable-proportion refinement, respectively. It is noteworthy that despite that

the first combination, denoted by GMMR-20, presents the best mean accuracy in structure

segmentation, the variable-scale related combinations improve mouth from background dis-

tinction for data sampled inside the whole image and the RoI.

Table 5.3: Variations on label refinement of color-based mouth structure segmentation, mea-
sured using DTO.

Lips Teeth Tongue Backg. Mean

Whole

GMM-20 0.6767 0.3095 0.6763 0.3175 0.4950
GMMR-20 0.6639 0.2858 0.6626 0.3081 0.4801

GMMCR-20 0.6774 0.2794 0.6998 0.2840 0.4851
GMMVR-20 0.6726 0.2991 0.7075 0.2889 0.4920

Clipped

GMM-20 0.6893 0.3389 0.6468 0.3459 0.5052
GMMR-20 0.6774 0.3200 0.6299 0.3387 0.4915

GMMCR-20 0.6872 0.3310 0.6764 0.3091 0.5009
GMMVR-20 0.6827 0.3431 0.6858 0.3160 0.5069

Table 5.4 presents a comparison between color and color + texture based based mouth

structure classification.

In both Tables, the compromise in accuracy favors mouth from background distinction over

structure from structure distinction.

5.6 Summary

In this Chapter, the usage of texture features in mouth structure segmentation is evaluated.

Since texture indexes can be used at each stage in the process, the evaluation extends to

image pre-processing, pixel classification and segmentation refinement.

5This is particularly true if color and intensity variations can be associated with label changes in the
segmented image.
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(a) RoI clipped original images. (b) Mouth structure classification using color fea-
tures, refined with fixed parameters.

(c) Mouth structure classification using color fea-
tures, refined with variable integration scale.

(d) Mouth structure classification using color fea-
tures, refined with variable proportion and in-
tegration scale.

(e) Mouth structure classification using color and
texture features, refined with fixed parame-
ters.

(f) Mouth structure classification using color and
texture features, refined with variable integra-
tion scale.

(g) Mouth structure classification using color and
texture features, refined with variable propor-
tion and integration scale.

Figure 5.7: Refinement approaches in color and color+texture based mouth structure classi-
fication.
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Table 5.4: Effect of scale-based label refinement in structure segmentation accuracy using
color and color+texture models.

Lips Teeth Tongue Backg. Mean

Whole

GMM-20 0.6767 0.3095 0.6763 0.3175 0.4950
GMMCR-20 0.6774 0.2794 0.6998 0.2840 0.4851
GMMVR-20 0.6726 0.2991 0.7075 0.2889 0.4920

CATF-5 0.8993 0.2894 0.6006 0.2431 0.5081
CATFCR-5 0.9584 0.2373 0.6551 0.2231 0.5185
CATFVR-5 0.9427 0.2620 0.6486 0.2305 0.5209

Clipped

GMM-20 0.6893 0.3389 0.6468 0.3459 0.5052
GMMCR-20 0.6872 0.3310 0.6764 0.3091 0.5009
GMMVR-20 0.6827 0.3431 0.6858 0.3160 0.5069

CATF-5 0.9001 0.3177 0.6051 0.3092 0.5330
CATFCR-5 0.9587 0.2976 0.6545 0.2775 0.5471
CATFVR-5 0.9430 0.3115 0.6491 0.2872 0.5477

As shown in Chapter 3, image pre-processing proved to benefit pixel color classification,

notably through the use of fixed-scale low pass linear filters. Particularly, the use of a 9× 9

Gaussian filter improved pixel classification DTO for all mouth structures. In this Chapter,

the Gaussian filter’s size was made variable in terms of local scale, using the measured

integration scale for every pixel. Results of image filtering with the scale variable filter

expose a clear retention of structure borders while smoothing the color information within

each region. Nevertheless, features such as specular noises and strongly variable textures (like

the bright hatched pattern in the lips) also remain after filtering. Hence, pixel classification

performance was not clearly improved by the scale-variant filtering, as opposed to the fixed

scale version. This fact makes it advisable to use a fixed-scale filter over a scale variant

version.

In the next stage of the segmentation process, texture descriptors are used as part of the

feature vector fed to the pixel classification engine. Texture is characterized using a reduced

set of low-level features, and two more features derived from the integration scale, known as

local contrast and anisotropy. The augmented feature set show a considerable improvement

in mouth from background distinction, but the addition of the texture features raised the

confusion between lips and tongue regions. The results of the conducted tests indicate

that a good practice can be derived from the mixed use of texture and color features for

initial mouth selection, and then the use of color-only features for structure from structure

classification.

Finally, the integration scale was used to set up automatically the scale parameter σ for

segmentation refinement. As in the case of the scale-variant filtering, the lack of continuity
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in the scale among neighboring pixels led to refinement results exhibiting poorer results than

those obtained with the presets found in the previous Chapter.

At the end, texture proved to be particularly helpful in pixel color classification for mouth

from background distinction, but its usage is bound to the quality/performance compro-

mise for every particular application. However, its use in pre-processing and segmentation

refinement in the task mouth structure classification can be safely avoided.





6 An active contour based alternative

for RoI clipping

In recent years, lip contour extraction has regained attention from research community,

mainly due to its great potential in human machine interface and communication systems

development. Most of the lip contour extraction techniques have been designed for audio-

visual speech recognition (AVSR) [2, 132], and in some cases extended to speaker identifi-

cation. In this task only a few landmarks suffice to estimate key features, as in the case of

MPEG-4 facial animation parameters [119].

Over-specialization of lip contour extraction methods for the task of AVSR makes them in-

appropriate in cases where mouth appearance may change subjected to pose changes and/or

specific lip malformations. This also excludes them when an accurate description of the

whole mouth contour is needed, rolling them out for general gesture detection or accurate

mouth structures segmentation.

Indeed, mouth gestures cannot be solely described by the outer contour of the mouth. There

is always a set of gestures that can match the same mouth contour, even though they may

differ in the type of structures visible in the images, as well as their aspect, size and position.

Thereby, features extracted from the different structures should be taken into account for

precise gesture characterization.

The considerable overlap between lip and skin color distributions slanted mouth segmentation

towards lip region segmentation. Elaborated methods, like those presented in [36, 106],

seem to cope with some limitations of color-based techniques. Nevertheless, their associated

computational complexity make them unsuitable for real time applications.

Even when the refinement algorithm proposed in Chapter 4 is able to correct most of the

problems introduced by pixel-based color segmentation, some spurious regions may remain

in the refinement output. In this section, the use of an outer lip contour extraction method

aimed to constrain the Region of Interest (RoI) is proposed. The technique is based in the

work of Eveno et al. [2], with the modification introduced in [133]. This technique is aimed

to be a in-place alternative for the stages discussed in Subsections 7.3.4 and 7.3.5 in the

segmentation streamline presented in Section 7.3.
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6.1 Upper lip contour approximation

The core of the upper lip contour approximation in Eveno’s technique is the gradient flow

value of the Pseudo-hue color component minus the Luminance. Denoted as ϕ, its value aids

in selecting those points that should be added to or trimmed from the snake. The gradient

flow passing through the line segment |pi−1pi|, denoted ϕi, is given by

ϕi =


∫
pipi+1

[∇(ph− L))] · dnl

|pipi+1|
, i ∈ [1, N ]∫

pi−1pi

[∇(ph− L))] · dnr

|pi−1pi|
, i ∈ [N + 2, 2N + 1]

, (6.1)

where 2N + 1 is the total number of points in the snake, N + 1 stands for the seed point

index in the snake points set; ph represent the Pseudo-hue component values of the pixels

in the line segment; L the corresponding Luminance value; and dnl and dnr are normalized

vectors which lie perpendicular to line segments conformed by the points located at left or

right side of the seed and the seed itself. According to [2], a seed point is chosen slightly over

the upper lip, and then points are iteratively added at left and right sides of the seed. This

process occurs subject to a constrained flow maximization rule, while preserving a constant

horizontal distance in pixels (denoted as ∆).

In this Chapter, an alternative approach for seed updating, point addition and trimming are

used. This modified methodology is described in depth in [133], and proposes a continuous

point addition until a noticeable decrease in flow is obtained. Gradient flow usually increases

in value when approaching mouth corners, and then decreases rapidly when points are added

outside mouth contour. Points should be added until their associated ϕ decay below the

minimum value of ϕ closest to the seed (this can be seen in Figure 6.1). Points are added

preserving the line segment size, instead of preserving a constant horizontal distance, thus

producing better results in near vertical contour approximation.

Seed update is performed by maximizing the gradient flow passing through both seeds asso-

ciated left and right line segments, ensuring that overall line segment size is kept bounded.

The goal can be translated into maximizing the objective function

ϕN+1 =

∫
pNpN+1

[∇(ph− L))] · dn−
|pNpN+1|

+

∫
pN+1pN+2

[∇(ph− L))] · dn+

|pN+1pN+2|
(6.2)

subject to

|pNpN+1| < γ, and

|pN+1pN+2| < γ
, (6.3)
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(a) Gradient flow plot.

(b) Detected mouth contour, showing trimmed
points in black.

Figure 6.1: Gradient flow based point trimming.

where pN+1 is the seed, ϕN+1 is the gradient flow associated to point pN+1, dn− and dn+

are the normalized gradient vectors of left and right line segments, and γ is a parameter

that controls the average line segment length. The value of γ should lie inside the range

(∆, 2∆ − 5]. Smaller γ values will lead to smoother lip contour, but it increases the fitting

error around corners in cupids arc. This method also ensures that seed final position lies

closer to the actual lip contour, contrasting with [2]. Therefore, the seed position can be

treated like any other snake point in further procedures.

6.2 Lower lip contour approximation

Lower lip contour approximation is performed following the same principle as for the upper lip

contour, but in this case flow is computed using only the gradient of Pseudo-hue component.

Therefore, the formulation in Equation (6.1) changes into

ϕi =


∫
pipi+1

(∇ph)] · dnl

|pipi+1|
, i ∈ [1, N ]∫

pi−1pi

(∇ph)] · dnr

|pi−1pi|
, i ∈ [N + 2, 2N + 1]

. (6.4)

Usually, only one or two iterations suffice in order to achieve full convergence. Similarly, the
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seed update follows the formulation in (6.2), substituting ∇(ph− L) with ∇ph.

6.3 Automatic parameter selection

The initial value of ∆, as well as the location of upper and lower seeds, can be obtained by

using the bounding box of the mouth as an initial RoI. Upper and lower seed initial position

is computed by choosing the closest points labeled with “Lip” to the mid-points of upper

and lower RoI boundaries. Then, the average of each pair of mid-point and closest “Lip”

point is used as a seed.

An acceptable value for ∆ can be chosen by dividing the RoI width by 4N , whenever that

operation leads to a value bigger than five pixels. Otherwise, decreasing the value of N is

recommended. When ∆ is chosen to be smaller than five pixels the flow through each line

segment is highly unstable thus introducing undesired local minima in (6.1) and (6.2).

Once the outer lip contour extraction algorithm has converged, contour points can be used

in order to conform a restricted RoI for mouth structures segmentation. The effect of this

process can be seen in Figure 6.2.

(a) (b)

Figure 6.2: Lip contour based RoI clipping. (a) Lip contour approximation; (b) mouth struc-
ture segmentation after RoI clipping.

The computational complexity associated to the contour approximation technique has an

order O(n), regarding the total number of contour points. This is usually much less than

the complexity associated in computing the Pseudo-hue and Luminance transforms–both of

them needed for contour approximation, whose order is O(n) regarding the total number of

pixels in the image. This makes the technique much faster than the streamline conformed

by the texture-based clipping with a later convex hull based region trimming, both discussed

previously in this Chapter.
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6.4 Tests and results

Images were selected from three different databases: the FERET database [117, 118], widely

used in subject identification and gesture detection researches, and briefly treated in Chap-

ter 2. A second database, conformed by facial images extracted from video sequences of

children who have been operated for cleft lip and/or palate (from now on denoted as CLP);

and a database comprised by facial images extracted from video sequences taken from dif-

ferent subjects during speech with uncontrolled lighting conditions (from now on denoted as

“Other”). The FERET images were clipped in order to contain information primarily from

the lower face. The image set used in the experiments contains 24 images from FERET

database, 5 from CLP database, and 16 from “Other” database. Every image in the dataset

was manually annotated in order to be used as ground truth.

In the first experiment, Gaussian mixtures were trained in a supervised manner in order to

model the color distribution of each class. The image pixels were represented using feature

vectors containing RGB, L*a*b* and Pseudo-hue color values. Four Gaussians were used

in each mixture. Results for pixel classification performance can be seen in the confusion

matrices in Table 6.1. The best results were achieved using the “Other” database images.

This can be explained by the fact that the intra-class variation is lower than in FERET or

CLP, as is the overlapping between classes. An illustrative example using one image from

CLP and one image from “Other” is provided in Figure 6.3.

Table 6.1: Pixel classification performance for three databases, measured using DTO.

Lips Teeth Tongue Backg.

F
E

R
E

T Class. 0.2154 0.2309 0.6923 0.4258
Ref. 0.1895 0.1944 0.6723 0.3683
C. RoI 0.1992 0.0580 0.6711 0.2198

“O
th

er
” Class. 0.3368 0.1372 0.1418 0.1132

Ref. 0.2921 0.1040 0.0904 0.0506
C. RoI 0.3602 0.1457 0.1448 0.0777

C
L

P Class. 0.1885 0.3016 N.A. 0.4719
Ref. 0.1629 0.3108 N.A. 0.4684
C. RoI 0.0283 0.1205 N.A. 0.0242

From the Table, it is noteworthy that overall classification performance improves greatly for

FERET and CLP images when contour based RoI clipping is used; however, the performance

actually dropped for “Other” images. This effect is due to control points intruding inside the

lips, thus over-cutting regions that should have been preserved. The impossibility to detect

when a control point gets inside the mouth area makes the technique prone to rejection

for fully automated systems, and therefore is not recommended nor included in the main
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streamline of the proposed gesture detection methodology. The technique is nevertheless

advisable for semi-automatic systems where a human operator gives the seed points location

manually. Other limitations of this technique are treated in the following notes.

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 6.3: Behavior of the contour extraction methodology. (a), (f): original images. (b),
(g): initial pixel color classification using GMMs. (c), (h): refined pixel classifi-
cation. (d), (i): detected RoI and outer lip contour. (e), (j): final segmentation
with contour-based RoI clipping.

Gradient flow related issues

The basis of the contour approximation algorithm is the local gradient flow, as computed

in Equation 6.1. The possibility of a contour approximation method converging to a true
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contour depends in the quality of the gradient, and in turn the gradient depends on image

quality.

There are several factors that impact gradient quality, most notably image noise. This

challenge is tackled by the means of image pre-processing algorithms like filters and mor-

phological operations. Unfortunately, coping with noise usually imply a negative affectation

in border region definition, causing an excessive contour smoothing and softening textures.

In some cases, image artifacts such as specular reflections and motion blurring are spread

through their neighboring regions in the image, compromising region quality.

Figure 6.4 shows the effect of using a strong filter along with the gradient flow calculation

for lip contour approximation. Notice how region borders get deflected from their initial

position by the excessive image smoothing, hence affecting the location of the approximated

contour. Figure 6.5, in the other hand, shows how poor filtering causes the contour approx-

imation algorithm to get stuck outside the actual lip contour. This effect is caused by high

fluctuations in the gradient flow due to image noise.

(a) Base image. (b) Local gradient approxima-
tion near the left mouth cor-
ner.

Figure 6.4: Contour approximation behavior under a excesively smoothed local color distri-
bution.

Tracking issues

Tracking is usually much less complex in computational effort than region based segmenta-

tion, achieving in some cases comparable results. Hence, lip contour detection and tracking

has been a preferred choice for some authors in order to cope with continuous video tasks

(i.e., audio visual speech recognition).

Nevertheless, tracking is not always a better choice over image segmentation when processing

video sequences. For instance, landmark detection algorithms tend to fail when there are

non negligible changes among consecutive images in the sequence. Moreover, it is difficult in

some cases to determine automatically whether a landmark has been properly tracked or not
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(a) Base image. (b) Local gradient approxima-
tion near the left mouth cor-
ner.

Figure 6.5: Contour approximation behavior under highly variable local color distribution.

from one frame to the next. This proved to be particularly true in our tests, where subjects

performed movements that change considerably mouth appearance at speeds close to that

of the sensor.

Figure 6.6 shows a clear example of this situation using two consecutive frames from a

sequence acquired at 50fps. Notice how the subject is able to change from a clear tongue

pointing downwards gesture to a rest gesture from one frame to the next.

(a) Base frame. (b) Next frame.

Figure 6.6: Gesture change between consecutive frames in a 50fps facial video sequence.

6.5 Summary

In this Chapter, a modification to the algorithm introduced in [1, 2] is proposed. The method

encompasses the progressive update of two active contours–one for the upper lip, the other

for the lower lip–which encloses tightly the mouth region.

The foundation of the algorithm is an iterative maximization of the gradient flow through
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a series of line segments conformed by the points in the active contour. The proposed

modification performs a two-way propagation of the update mechanism, thus taking the

most benefit from re-computed contour point location. This novel approach reduces both

the number of iterations needed to achieve full contour convergence while reducing the

approximation error.

The technique exhibit great accuracy for outer lip contour extraction when image conditions

permit a proper gradient flow extraction. This, however, cannot be guaranteed for every

facial image in a video sequence, since image noise cannot be estimated precisely nor com-

pensated without compromising border definition. Also, common image artifacts such as

specular reflections also compromise the local gradient behavior in the base color represen-

tations. Current difficulties in detecting whether or not the contour has properly reached

the mouth contour presents the method as a usable precise alternative for assisted mouth

RoI delimitation, but not as an advisable alternative for fully automatic outer lip contour

detection.





7 Automatic mouth gesture detection in

facial video sequences

In this Chapter, a novel approach to mouth gesture recognition based in the mouth struc-

tures visible in the images is proposed. The methodology takes into account the basic scheme

presented at the beginning of this document. Figure 7.1 presents a clear flowchart summa-

rizing the proposed mouth gesture recognition proposal. This diagram is an updated version

of the experimental workflow shown in Figure 2.5, and later modified in Figure 5.1. It cov-

ers the whole streamline, emphasizing in the actual sub-processes suggested by the proposed

methodology at every stage. Unlike prior diagrams, the region characterization stage and the

gesture recognition stage are highlighted, as they are briefly treated in this Chapter. Also,

numbers enclosed by parenthesis in the Figure indicate the Chapters inside the document

which contain the most information regarding the corresponding topic.

* Gaussian 9x9 filtering (3).
* 12-Color repr. extraction (3).
* LDA-based simplification (3). 
* Color-based RoI clipping (6).

* Color classification
using a 3-D GMM (3).

* Constant-scale segmen-
tation refinement (4).

* Color and Texture
classification using a
5-D GMM (5).
* Mouth from background
classification (5).

Mouth structure
segmentation

Region 
characterization (6)

Video 
acquisition (2)

Gesture 
recognition (6)

Figure 7.1: Proposed gesture recognition methodology, illustrated with an update to Fig-
ure 2.5. Numbers enclosed by parenthesis denote Chapters in this document.
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7.1 Problem statement

Current approaches for facial gesture recognition cover fields like virtual avatar animation,

security, and with less accuracy, automatic visual speech recognition. Human-machine in-

terfaces based in actual mouth gestures has captured less attention, and typical applications

focus in camera autoshoot systems, awareness detection, etc. The scope of this Chapter is

related to mouth-gesture based human-machine interfaces design; particularly, a study case

encompassing the laparoscope movement assessment in robotic surgery is treated, stepping

into each stage in automatic gesture recognition in video images.

7.1.1 Motivation

The DaVinci robotic surgical system [134] is a tele-operated system composed of three parts:

a control console, a surgical arm cart, and a conventional monitor cart with vision system.

The control console could be placed on one side of the operating room, or even in an adjoining

room. A camera and robot-assisted instruments are controlled by the surgeon from this

console with hand manipulators and foot pedals. The surgical arm cart consists of three or

four arms with an endoscope and two or three surgical tools. The vision system provides

three-dimensional imaging by using a stereo endoscope. Figure 7.2 illustrate the typical

set-up of the system.

Figure 7.2: DaVinci surgical system set-up. Taken from Intuitive Surgical R© homepage.
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Table 7.1: Approaches for endoscope holder robot command.
Voice Command Joystick Face movements Tool-guided Pedal

Automation level Assisted Assisted Assisted Automatic Assisted
Response time Considerable Negligible Negligible Negligible Negligible
Expected Precision Medium High Medium High Medium
Tremor Absent Present Absent Present Absent
Speed Slow Variable Variable Slow Slow
Hands-free Yes No Yes Yes Yes
Feet-free Yes Yes Yes Yes No

The surgical instruments and the camera, which are carried by the arms, are operated by

the manipulation of two master controls on the surgeon’s console. The surgeon has a visual

feedback of the intervention area by the means of an endoscope connected to a stereoscopic

viewer. In order to have a better view of the intervention area, the surgeon is forced to

leave the joystick-based control of the instruments by pushing a pedal, hence enabling the

camera command. In order to take back the instrument control, the surgeon must leave the

camera by performing a similar sequence of movements. That swapping between camera and

instrument command introduces small delays in surgery time, and in some cases affecting

the surgeons concentration. Even when endoscope movements are not as frequent as tool

movements (there can be more than fifteen minutes between two endoscope movements in a

common intervention), it is desirable to perform both tool and endoscope movements at the

same time.

In the past twenty to thirty years, several approaches for automatic or assisted endoscope

holder command have been developed. Table 7.1 presents briefly a summary of common

approaches used to cope with the aforementioned task. Endoscope movements are not very

frequent during intervention; however, current approaches based in spoken commands, joy-

sticks, etc., do not comply with both time and accuracy constraints at the same time. In

the other hand, tool-based guidance systems are aimed towards tool tracking and following,

thus introducing tremor and making it impossible to decouple the endoscope movements

from those of the tool (which is desirable in some cases).

The current benchmark holder is the speech-based system, which use a reduced set of voice

commands in order to lead the endoscope movements [135]. Using voice commands, the

surgeon is able to decouple tool and endoscope movements and to avoid introducing tremor

in the movements, while escaping from the stress generated with more invasive command

techniques. Nevertheless, voice commands take some time to be processed which is reflected

in a noticeable time lag between thinking in the movement and actually performing it1; also,

speech-based systems usually command endoscope movements at pre-defined speeds [119].

1In a simple study presented in [119], an english voice command set was measured to range between 200ms
and 700ms in duration–the time needed to utter them properly, with an average of 500ms.
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Since the console is usually located at least three meters far from the patient, there is no

inherent need of covering the surgeon’s mouth, and then mouth gestures can be used to

command the endoscope. They can also be seen an interpreted at a speed corresponding to

the camera’s grabbing frame rate. Hence, mouth gestures arise as a natural alternative to

existing interfaces.

7.1.2 Previous work

In a first approach, combinations of three distinguishable mouth gestures and bi-axial head

movements were used in order to command three degrees of freedom of a robot [136, 3]. The

gesture set was composed by resting position, wide open mouth and tightly closed mouth

hiding part of the lips. Results from this first approximation led us to propose two new

alternatives for the endoscopic camera command. The first one, a mouth gesture based

approach that uses a set of basic mouth movements in order to drive the robot movements.

The second one, a voice command based system which detects a small set of command words,

like in [137].

7.1.3 Limitations and constraints

Non-permanent access to the system led to relax the data acquisition process to lab-based

video sequences, somehow compliant with the lighting and pose conditions given by the

physical examination of the DaVinci console. Since sequences were acquired under several

daylight conditions, no hardware-based color calibration was to be performed prior to data

acquisition.

Following the advise from an expert in assisted surgery using the DaVinci system, the mouth

gesture set was constrained to contain seven possibilities: resting mouth position (R), wide

open mouth (OM), closed mouth showing teeth (Th), open mouth with tongue pointing up

(TU), open mouth with tongue pointing down (TD), open mouth with tongue pointing left

(TL), and open mouth with tongue pointing right (TR). An example of the gesture set can

be seen in Figure 7.3.

7.2 Acquisition system set up

Figure 7.4 presents an approximate lateral view of the acquisition set-up. The black circle

in the Figure represents the location of the spotlights, projected in the lateral view. In the

actual set-up, two light were positioned at the left and right sides of the camera, both of

them pointing slightly upwards towards the mouth. Ambient lighting was not completely
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Selected mouth gesture set (rest position excluded).

controlled, thus introducing a noticeable chromatic variation in the data2.

Figure 7.4: Illustrative diagram of the acquisition set-up: lateral view approximation.

2The ambient light hit directly the left cheek of the subjects, thus generating a yellowish glow in this side
of the face. This is evidenced all throughout the database.
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7.3 Mouth structure segmentation

According to the scheme presented in Figure 7.1, the first step in automatic mouth gesture

recognition in images encompasses a series of steps that lead to mouth structure segmenta-

tion. The streamline is composed by an image pre-processing stage, a pixel-color classification

engine, a label refinement stage and a final region trimming stage.

The Section summarizes the combination of techniques which proved to be the fittest in the

results presented in Chapters 3 to 5, aiming towards a fast 3 and accurate mouth structure

segmentation. The following sections convey not only basic information about the techniques

but also information regarding parameter selection and special considerations. Also, a region

trimming method which has been specifically designed to work with our database is described

briefly (an alternative replacement for RoI clipping and region trimming is presented in

Section 6).

7.3.1 Pre-processing and initial RoI clipping

Based on the results obtained in Chapter 3, images were treated using a 9 × 9 Gaussian

low-pass filter in order to reduce noise effects without compromising excessively in terms of

quality. Image illumination was partially controlled in most of the database; hence, lighting

related issues were neglected in later processes.

There are approaches in literature for mouth RoI clipping, most of them based in simple

per-pixel color operations. In this work, RoI clipping is carried out by using per-row and

per-column color profiles. As an example, Figure 7.5 shows the result of detecting RoI based

in the Pseudo-Hue (ph) color representation of the input image. First, the skin region is

segmented using a simple comparison between the ph color representation of the image and

a pre-defined value (in this case, 0.46). Small gaps and holes are corrected by applying

a morphological opening operation followed by an erosion, both of them using a radial

structuring element.

Once the face region is separated from the background, a column profile conformed by the

normalized summation of each row of the ph is computed4, as seen in the lower left part of

the Figure. The horizontal mouth axis (the red line in the lower right part of the figure)

is chosen to be located at the row that corresponds to the maximum value in the column

profile, while the closest minima in the upper and lower side of such axis determine the top

and bottom limits of the RoI.

Then, the ph row profile corresponding to the main axis is used to determine the location of

the left-most and right-most margins of the RoI. Good choices for those limits are selected as

the closest local minima in the row profile which lie inwards between the two main maxima,

3Close to standard video frame rates.
4Notice that only data from inside the face region is taken into account in conforming the profiles.
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Figure 7.5: RoI clipping based in color profiles.
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as seen in the upper right part of Figure 7.5. The two maxima correspond to those points

in the profile that separate background from skin. It is noteworthy that both the column

profile and the row profile are heavily smoothed in order to avoid falling in undesired local

minima.

The methodology presented for RoI clipping is relatively fast (taking around 1ms per image),

and presents acceptable results for most of the subjects. However, its performance is not

sustainable for non-resting mouth positions, since presence of teeth generate serious varia-

tions in the ph profiles. Hence, working with video sequences imply alternating between RoI

detection (carried out using the proposed methodology) and tracking.

7.3.2 Mouth segmentation through pixel classification

Mouth structure segmentation is done by following the recommendations in Chapters 3 and 5,

where color-based pixel classification using Gaussian mixtures outperforms other approaches

in the compromise between computational reckoning and segmentation quality (measured

in terms of DTO). The pixel color classification based mouth segmentation methodology,

extracted from the best performing technique combination, encompasses the following stages:

• The basic scheme is comprised by representing pixel color in an augmented feature

space containing the basic RGB components, along with other nine enunciated in

Section 3.1.

• Next, a three-fold FLDA projection is used in order to reduce the feature set dimen-

sion.

• The resulting three-dimensional feature vectors are fed to a pixel classifier which uses a

set of four previously trained Gaussian mixture models–one model per structure, three

Gaussians per model. Labels are assigned depending on how likely is every pixel to

belong to each class.

Since each pixel is treated independently, the segmentation process can be carried out in

parallel if the underlying platform supports it. Computational time is basically affected by

the complexity of the color transformations, and is comparable with the one resulting from

applying a 9 × 9 linear filter in the image, if executed in mainstream hardware. A deeper

insight on the computational complexity involved in computing the color transformations

and the pixel classification can be seen in Chapters 2 and 3.

7.3.3 Label refinement

Chapter 4 proved that the proposed refinement algorithm improves DTO in most cases for

pixel color based classification for mouth structure segmentation. Also, the refiner presents
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a more consistent behavior if a fixed scale is selected for all the pixels in the image (as shown

in Chapter 5). Particularly, it has been proven that choosing σ ∈ [1.0, 2.0] leads to adequate

results in most cases. Particularly, σ was set to 1.0 for the tests whose results are presented

in the remainder of this Chapter. The refiner was set to iterate ten times in the label images.

7.3.4 Texture based mouth/background segmentation

As shown in Chapter 5, texture information complements color in mouth from background

distinction. Consequently, the use of texture and color classification is advised in order to

reduce the number of resulting spurious regions and undesired extensions in base regions,

commonly found in bare color pixel based classification.

Fifteen images from different subjects were randomly selected from the annotated part of

the database.

It is noteworthy that for the bi-class classification problem, both classes present the same

DTO. Hereby, the last two rows of the Table hold the same values.

Table 7.2: Effect of Texture-and-color based segmentation masking,
measured using DTO.

Whole image Inside RoI
Base Masked Base Masked

Lips 0.8114 0.6210 0.4166 0.2966
Teeth 0.9825 0.9508 0.7315 0.5379
Tongue 0.8932 0.7133 0.5938 0.4994

Background 0.9138 0.7884 0.4264 0.2491

Mouth region 0.9138 0.7884 0.4264 0.2491

The computing time inherent to texture features is, in general, higher than most linear

and non-linear filtering or morphological operation in the pixels. Due to this fact, texture

features are used only once mouth ROI has already been approximated, thus reducing the

computational complexity of the masking process.

7.3.5 Region trimming using convex hulls

The last stage in the proposed segmentation methodology comprises the use of the biggest

connected lip region and tongue region in order to establish if a given labeled connected

region should be trimmed out or preserved. The assumption states that all preservable

regions must be contained inside the convex hull conformed by the lips and the tongue.

This is particularly true for unadorned mouths without prosthetic modifications, and if the

camera is facing directly to the subject.
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Figure 7.6 shows an example of the texture based RoI clipping complemented by region

trimming. Notice that the texture based RoI clipping aids in removing some misclassified

regions along mouth contour, while the region trimming finally cuts down spurious regions

that may have outlived RoI clipping.

(a) Original RoI clipped image. (b) Initial pixel color classifica-
tion after refinement.

(c) Texture-based clipping
mask.

(d) Refined color-based seg-
mentation after texture-
based clipping.

(e) Convex hull of the biggest
lip and tongue region.

(f) Resulting region trimming.

Figure 7.6: Example of the use of texture-and-color based segmentation masking, trimmed
using the convex hull of the biggest lip and tongue region.

Table 7.3 shows DTO measures for the images in Figure 7.6. Notice that DTO associated to

background improved dramatically after the convex hull based region trimming, indicating

a huge improvement in mouth from background distinction. Despite lip and tongue regions

DTO don’t show numerical improvement after trimming, the overall appearance of the

mouth seems to be cleaner and well defined.

7.4 Mouth gesture classification

The last portion of the recognition scheme encompasses the mouth region characterization

and posterior gesture detection. The remarkable results obtained in the previous stages, par-

ticularly in determining the mouth boundaries and shape, are exploited in choosing rather
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Table 7.3: Illustrative DTO comparison for RoI clipping and region trimming in Figure 7.6.

Lips Teeth Tongue Backg.
Base 0.2972 0.2199 0.4627 0.4405
Tex. Clip. 0.3235 0.2004 0.4837 0.3440
C. Hull trim. 0.3230 0.1479 0.4828 0.1662

simple and fast region feature extraction and gesture classification techniques. In the re-

mainder of this Section both processes are discussed.

7.4.1 Region feature selection

Mouth region segmentation delivers a well delimited mouth region, which permits an easy

geometric characterization of the mouth area. Commonly used features that exploit geo-

metric properties of the regions are the Center of Mass (CoM) location, the mass (number

of pixels conforming the region), aspect ratio, tortuousness, circularity, etc. In this work,

a subset composed by eleven geometric measurements is used for region characterization.

Those features were selected so their computation does not imply significant increases in

complexity, yet subjectively conveying enough information to perform an adequate gesture

classification using the chosen gesture set. The measurements are computed using the con-

vex hull of a mouth in resting position as reference. The measurements are enunciated and

described briefly in Table 7.4.

7.4.2 Gesture classification

Once all region data is codified according the geometric feature set presented in the previous

Subsection, a set of bi-class classifiers based in FLDA is constructed. Each classifier is chosen

to maximize class distinction between each gesture and the rest of the data, producing a

set of seven projection vectors and seven comparison thresholds. Table 7.5 shows the frame

composition rates of the “Own” database regarding its gesture contents.

Once projected using the FLDA vectors, each resulting feature vector serves to classify a

particular gesture in a “One against the rest” scheme. The result of comparing the projected

feature vector with the seven thresholds can lead to a true for the pattern to belong to more

than one class. In those cases, the gesture is marked as “Undefined”, and for the test

database took a 2.33% of the total of frames.

Table 7.6 summarizes the classification results obtained using the proposed scheme. It should

be remarked that resulting DTOs for all gestures lie very close to the human variability

measured for the database, thus being located inside the error tolerance region.
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Table 7.4: Geometric feature set used for gesture classification.

Feature Description No. of ind.
Lip region CoM Location of the lip region CoM rela-

tive to the resting mouth convex hull’s
CoM location.

2

Teeth region CoM Location of the teeth region CoM rela-
tive to the resting mouth convex hull’s
CoM location.

2

Tongue region CoM Location of the teeth region CoM rela-
tive to the resting mouth convex hull’s
CoM location.

2

Lip mass proportion Number of pixels inside the convex hull
classified as lip pixels, divided by the
total number of pixels lying inside the
resting mouth’s convex hull.

1

Teeth mass proportion Number of pixels inside the convex hull
classified as teeth pixels, divided by the
total number of pixels lying inside the
resting mouth’s convex hull.

1

Tongue mass proportion Number of pixels inside the convex hull
classified as tongue pixels, divided by
the total number of pixels lying inside
the resting mouth’s convex hull.

1

Free mass proportion Number of pixels inside the convex hull
classified as background, divided by the
total number of pixels lying inside the
mouth’s convex hull.

1

Normalized aspect ratio Convex hull aspect ratio divided by
resting mouth’s aspect ratio.

1

TOTAL 11

Table 7.5: Frame composition rates of the “Own” database.

Rest T. Up T. Down T. Right T. Left Teeth Open Undef.

Init. 64.80 0 0 0 0 22.05 11.63 1.51
CCWS 60.57 7.37 8.97 7.25 9.09 0 0 6.76
CWDLC 56.95 4.24 3.76 4.24 7.9 7.66 7.53 7.74
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Table 7.6: Gesture classification accuracy measured using DTO.

Rest T. Up T. Down T. Right T. Left Teeth Open

Init 0 N.A. N.A. N.A. N.A. 0.0058 0.0017
CCWS 0.0249 0.0053 0.0027 0.0013 0.0136 N.A. N.A.
CWDLC 0.0558 0.056 0.0088 0.0128 0.0286 0.0046 0.0078

Figure 7.7 shows the results of gesture classification for a CWDLC5 sequence. Each Subfig-

ure represents a different gesture, and the three signals in them presents the ground truth,

the gesture classification result and the classification error. From the Figures, it is noticeable

that a considerable amount of the detection errors is located in transitional areas where the

subject is changing his/her pose between two different gestures.

7.4.3 Gesture detection stabilization

Frame-based gesture classification brings results that can be physically unfeasible, like in

example, instant gesture changes directly from “TD” to “Th”. Nevertheless, temporal con-

straints can be used in order to stabilize such undesired behavior.

A first approach, presented in [6], makes use of a state machine which forbids changes between

detected states that may be result from misinterpretation. The technique was applied to

a reduced gesture set which included mixtures of head displacements and base gestures as

completely new gestures.

In this document, a simpler approach for stabilizing gesture classification is proposed. The

technique is based on a decision rule that verifies the existence of two consecutive detections

of the same gesture followed by an undefined gesture. In that case, the former is kept instead

of setting the output as “Undefined”.

Figure 7.8 shows the effect of using the aforementioned decision rule in order to stabilize

gesture detection. Notice that almost every “Undefined” gesture occurrence has been re-

placed with a feasible gesture, and the actual resulting gesture sequence resembles closely

the CWDLC gesture sequence definition as stated in Section 2.2.1.

Despite of the inherent simplicity of the technique, the resulting gesture sequences corre-

sponds almost completely to the actual gesture match and duration in the sequences. It

is noteworthy that the use of such a simple rule for stabilization is possible due to a very

accurate gesture detection stage. Also, it should be noticed that using two past frames in

making the decision introduces a time lag that, in the worst case, corresponds to the time

taken by two frames. That time is, for NTSC and PAL video standards, much smaller than

the time needed to process a typical voice command [6].

5The CWDLC and CCWS sequences are described in Section 2.2.1.
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Figure 7.7: Example of gesture classification using the CWDLC sequence. For all Sub-
Figures, the topmost signal represents the ground truth, the medium signal rep-
resents the gesture detection result, and the bottommost signal show the instant
error. The horizontal axis presents the frame number.
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Figure 7.8: Effect of temporal stabilization in gesture detection in a CWDLC example se-
quence. The upper signal represents the initial gesture detection, and the lower
signal represents the stabilized detection. The varying levels in the vertical axis
represent the gesture, while the horizontal axis presents the frame number.

7.5 Summary

In this Chapter, a methodology for automatic mouth gesture detection in images is discussed.

The methodology is focused in detecting the gestures contained in the “Own” database

described in Chapter 2, which in turn are the result of a selection process aimed towards

human machine interface development for assisted surgery with the DaVinci surgical system.

The methodology, comprised by image pre-processing and segmentation, region feature ex-

traction and gesture classification, proved to exhibit high accuracy for the selected gesture

set. The results were further improved by the use of a gesture stabilization mechanism that

forbids sudden changes between gestures by correcting undefined gestures detection.

In the image segmentation stage, a new method for RoI clipping and region trimming was

discussed. The RoI clipping technique, along with the convex hull based region trimming,

improves dramatically the DTO measure for mouth from background distinction. These two

procedures are nevertheless non-advisable for any possible application since they were de-

signed having in mind images with frontal face poses with unadorned mouths and a compen-

sated lighting environment. Hence, those results may not hold for uncontrolled environments

with face deviations and aesthetic or prosthetic facial modifications.

The overall time spent to process each image ranges between 600ms and 1200ms. The com-

putational complexity indicators given throughout the document for the techniques used in
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the gesture detection scheme leads to think that an optimal implementation of the suggested

methodology could achieve up to 6 frames per second in mainstream hardware. Although

this speed is not considered real-time if compared with standard video formats, it may be

sufficient for low speed appliances.



8 Conclusion

This document is focused in the introduction of a methodology for automatic mouth gesture

recognition in images. The methodology comprise several stages from image pre-processing

to gesture classification, choosing in each stage feasible techniques aimed towards the ob-

tention of a good compromise between speed and recognition accuracy. Special attention is

payed in pixel color representation, region color modeling, image filtering, pixel color classi-

fication, label segmentation refinement. Other topics such as the use of texture descriptors

for mouth/skin distinction and geometric region feature extraction are also treated briefly.

The methodology, comprised by image pre-processing and segmentation, region feature ex-

traction and gesture classification, exhibits high accuracy for the selected gesture set. The

results were further improved by the use of a gesture stabilization mechanism that forbids

sudden changes between gestures by correcting undefined gestures detection.

Color representation and modeling was carried out by starting with a 12-dimensional fea-

ture space conformed using diverse color representations of the image pixel data. Then,

stochastic models of region color were approximated in order to characterize lips, tongue,

teeth and background color using a subset of a proprietary database (widely referenced as

“Own” throughout the document). Measurements obtained in the conducted tests revealed

that Neural Networks exhibit higher accuracy in color distribution modeling when using a

12-dimensional input feature vector than Gaussian mixtures. This effect is reversed when

only three features were used. There is a considerable reduction in computational complexity

when downscaling from 12 features to three; at the same time, a barely noticeable decrease

in accuracy was obtained by performing that change. Thereby, results presented in following

chapters were referred to a three-dimensional feature Gaussian mixture model. The mod-

els use the configuration described in Section 3.2.4. High variations in color classification

accuracy were detected when using data provided by different databases, higher than those

obtained by changing subjects within the same database. The tests clearly illustrate the

complexity of isolating the influence of issues related to acquisition set-up from the final

color register in the images. Complementary tests varying among different pre-processing

combinations resulted in the selection of a low pass Gaussian filter with a window size of

9 × 9 pixels as the best performing one, using as reference the average mouth size of the

proprietary image database.

As a side contribution of the study conducted is a fast alternative for coarse lip/skin seg-

mentation based in pixel classification (Section 3.1.3). The segmentation technique is based
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in the use of the CIEa∗ color component, with its value normalized using the values inside

the mouth’s region of interest (RoI). Classification results proved to be better than those

obtained using other color components commonly used in lip/skin segmentation through

pixel color thresholding.

The region color models enable a quick pixel color classification that can be used as a

starting point for mouth structures detection. However, the results obtained by classifying

color generate label images with spurious regions and gaps within regions. Hence, a new

segmentation refinement technique is introduced. The refiner is composed by a layer of

perceptual units (one per pixel), each of them connected to one unique input label pattern,

and to neighboring units’ output. Two parameters, which are proven to be at some extent

correlated in Sections 4.2 and 4.3.1, control the compromise between input labeling and

field effect through iterations. The technique mimics the smoothing effect of low pass filters

applied to labeling information, and its computational cost per iteration is also about the

same as the one of such kind of filters. Refiner’s behavior is analyzed in depth in Section 4.2,

and numerical results are also provided in Sections 4.3 and 4.4.

In most cases, the refiner improves the output labeling resulting from unsupervised pixel

color based segmentation of natural images. In the case of supervised mouth structures

segmentation, the benefit is clearer by improving the results in all cases. The improvement

is at some extent cumulative with the one obtained by the means of image pre-processing,

thus proving to be complementary techniques. Individually, linear filtering and segmentation

refinement increase segmentation accuracy by 5% to 10% approximately (reflected in DTO),

while the combined effect of both techniques lead to an increment of 15% approximately. It

is noteworthy that the computational complexity of each refinement iteration is comparable

with that of the linear filter, and that the refiner usually takes between five and fifteen

iterations to converge.

Image pre-processing proved to benefit pixel color classification, notably through the use

of fixed-scale low pass linear filters (Chapters 3 and 4). Particularly, the use of a 9 × 9

Gaussian filter improved pixel classification DTO for all mouth structures. In this Chapter,

the Gaussian filter’s size was made variable in terms of local scale, using the measured

integration scale for every pixel. Results of image filtering with the scale variable filter

expose a clear retention of structure borders while smoothing the color information within

each region. Nevertheless, features such as specular noises and strongly variable textures (like

the bright hatched pattern in the lips) also remain after filtering. Hence, pixel classification

performance was not clearly improved by the scale-variant filtering, as opposed to the fixed

scale version. This fact makes it advisable to use a fixed-scale filter over a scale variant

version.

In the next stage of the segmentation process, texture descriptors are used as part of the

feature vector fed to the pixel classification engine. Texture is characterized using a reduced

set of low-level features, and two more features derived from the integration scale, known as
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local contrast and anisotropy. The augmented feature set show a considerable improvement

in mouth from background distinction, but the addition of the texture features raised the

confusion between lips and tongue regions. The results of the conducted tests indicate

that a good practice can be derived from the mixed use of texture and color features for

initial mouth selection, and then the use of color-only features for structure from structure

classification.

Finally, the integration scale was used to set up automatically the scale parameter σ for

segmentation refinement. As in the case of the scale-variant filtering, the lack of continu-

ity in the scale among neighboring pixels led to refinement results exhibiting poorer results

than those obtained with the presets found in Chapter 4. At the end, texture proved to

be particularly helpful in pixel color classification for mouth from background distinction,

but its usage is bound to the quality/performance compromise for every particular appli-

cation. However, its use in pre-processing and segmentation refinement in mouth structure

classification can be safely avoided.

In the image segmentation stage, a new method for RoI clipping and region trimming was

discussed. The RoI clipping technique, along with the convex hull based region trimming,

improves dramatically the DTO measure for mouth from background distinction. These two

procedures are nevertheless non-advisable for any possible application since they were de-

signed having in mind images with frontal face poses with unadorned mouths and a compen-

sated lighting environment. Hence, those results may not hold for uncontrolled environments

with face deviations and aesthetic or prosthetic facial modifications.

The overall time spent to proceed with the gesture recognition for each image varies between

600ms and 1200ms with the current implementation, which restricts its use to offline process-

ing systems. The computational complexity indicators given throughout the document for

the techniques used in the gesture detection scheme leads to think that an optimal implemen-

tation of the suggested methodology could achieve up to 6 frames per second in mainstream

hardware. Although this speed is not considered real-time if compared with standard video

formats, it may be sufficient for low speed gesture detection applications. It is noteworthy

that the computational complexity is also associated to the size of the mouth in the image

(in pixels), and can henceforth be reduced by sacrificing in segmentation accuracy.





9 Open issues and future work

Segmenting mouth structures for dark skin subjects is still the most challenging issue in

mouth segmentation. The color information contained in the zone between the lips and the

skin present high variability, low discriminance and higher noise levels than those found in

brighter skins. Most color representations fail completely to codify the difference between

lips and skin, while the others perform poorly. Thereupon, the need of a more robust color

and/or texture representation that enables an accurate lips-from-skin differentiation arises.

The modified version of the mouth contour extraction introduced in [1, 2] that is proposed in

this work exhibited an outstanding accuracy in outer lip contour approximation for images

acquired under controlled conditions. Nevertheless, its robustness is put to test under any

slight variation of these conditions that may increase noise or unstabilize the local gradient

approximation. This fact opens two derived tasks that must be tackled in order to improve

the contour approximation: first, the improvement of a local gradient approximation that

proves to be robust against a wider noise level range; and second, the generation of a measure

that codifies how fit the approximated contour points are to the actual location of the

mouth contour in the image. The first task can be tackled through the development of

an adaptive pre-processing filter that copes with noise while complying with preserving

important features in facial images. In the other hand, the second task can be tackled by

mixing the contour approximation method with a fast pixel classifier; in that way, the system

would be able to estimate how much of the information contained inside the approximated

contour correspond to mouth information, and how much of the mouth was left outside that

contour.

The segmentation refinement technique proposed in this work proved to be complementary

to image pre-processing in improving mouth structure segmentation. The results do depend

on the refiner parameter selection, which in turn control the number of iterations needed for

the algorithm to converge. A first approximation to the automatic parameter selection by

means of local scale failed to perform better than static parameter selection, leaving a door

open for new automatic parameter selection strategies to emerge. Such strategies should

arise to improve both with final labeling accuracy and the number of iterations needed to

achieve the former goal.

One of the biggest limitations when working in image segmentation, and particularly in

mouth structure segmentation, is related to segmentation quality measurement. General

purpose measures such as those derived from the confusion matrix, do not express prop-
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erly some perceptual concepts such as shape conformance, overall shape definition, context

conformance, etc. In the other hand, humans fail dramatically when trying to adjust subjec-

tive perception to machine-derived assessment, as evidenced in the human variability tests

performed in the “Own” database. Hence, human expertise is still an isolated source of

information waiting to be imbued in artificial vision solutions. This makes segmentation

measure development an important yet very open issue in artificial vision.
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